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Preface

Nowadays, the use of large amounts of data in industry is increasing because of the 
development of new sensors and more complex systems, which require increased 
reliability, availability, and safety. The Internet of Things (IoT) is one example of a 
source that creates large amounts and varieties of data.

Principal component analysis (PCA) is a statistical procedure increasingly being applied 
to analyze large datasets. It is mainly used to modify datasets, reducing the coordinate 
system by a linear transformation. The new, smaller set of information extracted via 
PCA is a set of summary indices called “principal components.” The way to obtain these 
principal components is according to variance, where the first principal component is 
obtained for the greater variance.

The main objective of PCA is to transform the size of a dataset into a smaller transformed 
space provided by the eigenvectors of the covariances associated to the original dataset. A 
ranking of each eigenvector is done following the maximum variability. These are called 
principal components. In other words, the method transforms the original dataset into 
a new p-dimensional set of Cartesian coordinates, being a projection of the dataset onto 
the principal component vector, where the direction is given by the P matrix, where a 
is the first largest eigenvalue and its columns are the retained eigenvectors. PCA can be 
also related by canonical correlation analysis, where the coordinate systems are obtained 
optimally by the cross-covariance considering two datasets together, while PCA defines 
a new orthogonal coordinate system that optimally describes the variance in a single 
dataset.

PCA can also be associated with other algorithms, but with some differences, for example, 
factor analysis, non-negative matrix factorization, correspondence analysis, K-means 
clustering, and so on. PCA does have some shortcomings and thus generalizations of the 
technique have been developed to overcome these limitations. These include sparse PCA, 
robust PCA, and nonlinear PCA. 

This book provides a comprehensive overview of PCA and its analytical principles. 
It examines the use of PCA in a variety of fields, including technology, engineering, 
finance, risk analysis, marketing, economics, and more. It presents practical case studies 
highlighting the use of PCA in several types of industries to solve problems both small 
and large using simple and complex algorithms.

Fausto Pedro García Márquez
Ingenium Research Group,

University of Castilla-La Mancha,
Ciudad Real, Spain



Chapter 1

The Foundation for Open
Component Analysis: A System of
Systems Hyper Framework Model
Ana Perišić and Branko Perišić

Abstract

The interoperability and integration of heterogeneous systems, with a high degree
of autonomy and time-dependent dynamic configuration over multilevel and
multidimensional feature space, raise the problem configurations complexity. Due to
the emergent nature of a large collection of locally interacting components, the prop-
erties and the behavior of a collection may not be fully understood or predicted even
the full knowledge of its constituents is available. The simplification is contemporary
addressed through either dimensional reduction methods, like Principal Component
Analysis (PCA), or overall ontology managing through Physics of Open Systems
(POS) paradigm. The question is: Is it possible to cope with the complexity by inte-
grating dimension reduction steps with basic POS concepts on the Large Data Objects
(LDOs) holding the structure and behavior of the complex system. The intended
mission of this chapter is to formulate a starting System of Systems (SoS) based
configurable hyper framework model that may be dynamically improved to better suit
the static structure and dynamic behavior of complex SoS configurations. That is the
reason why the reflexive integration of POS and different dimensional reduction
methods, through an interoperability framework, have been proposed as the main
contribution of this research chapter.

Keywords: collections complexity, framework modeling, large data objects, principal
component analysis, physics of open systems, heterogeneous systems interoperability,
system of systems analysis

1. Introduction

The globally accepted definitions of digitalization and digital transformation do
not still exist, although the terms are in the field for quite a long time. In Gartner
Glossary, digitalization is defined as the use of digital technologies to change a business
model and provide new revenue and value-producing opportunities; it is the process of
moving to a digital business [1]. This definition accents the higher granularity mission
concerning global system aspects. Considering the particular enterprise systems, that
have decided to move their business into the digital form, there is a challenging
activity of developing a completely new set of processes and procedures in compliance
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with the formulated digital business model. This process is usually considered as
enterprise digital transformation. The proliferation of Information and Communica-
tion Technologies (ICT), especially in the last decade, puts digitalization and digital
transformation into the focus of arbitrary systems development and sustainable col-
laboration/cooperation in the context of a huge number of dynamic configurations
that may emerge throughout its entire life cycle.

The interoperability of heterogeneous systems and integration processes favor
System of Systems (SoS) analysis and synthesis approaches to dominate through the
21st century, a century that has become the era of complexity. From the architectural
point of view, every real-life system is an SoS, where its architecture is usually seen as
a mechanism that creates the illusion of simplicity. To avoid the traditional hierarchi-
cal approach to the representation of systems internals, the SoS metaphor has to be
deeply understood due to its inherent meshed topology. SoS may range from the
technical-systems counterparts, dominantly addressed in systems engineering, to the
social systems like, for example, the education, teaching, learning, and performing
ecosystem that favor personal competency profile, that suits the industry 4.0 compe-
tencies compliance. An integrated systems approach needs to provide a framework
and language that allow different systems, with highly divergent characteristics, to
interoperate in favor of the commonly agreed mission. With the natural multidimen-
sionality, embedded in the generic SoS paradigm, the underlining complexity directly
affects the management and control of the resulting SoS. As a consequence, the
dynamic multilayered architecture emerges as a promising approach to the internals
complexity hiding.

The SoS concept assumes that participating systems are characterized by the:
autonomous mission; independence of encapsulated operations; the difference in
fundamental life cycle model aspects. The SoS life cycle stages generally include
creation (that usually strictly separates the creation process from operational usage);
sustainable operation (leaving the variety of SoS artifacts persistent instances); migra-
tion (SoS evolution that retains functionality and structure while replacing the sup-
portive technologies); replacement (complete or partial component replacement while
preserving the interoperability over specified interfaces); and termination (the retire-
ment of a component(s) system(s) while preserving the structural and functional
consistency of the remaining SoS). The SoS level of integration is dominantly differ-
entiated by the way the participating systems are orchestrated. According to ref. [2]
SoS may be divided into four main categories: centrally (directed); cooperatively
(acknowledged); collaboratively (with common enforcing mechanisms); emergency
control (virtual control of uncontrolled large-scale behavior) orchestrated. To cope with
the complexity, the architectural design tends to hide the internals of complex systems
by wrapping them with an adaptation layer that, to the outer layer stakeholders,
exhibits only high-level granularity concepts through well-defined interfaces.

In general, complex systems are analyzed from two complementary aspects: the
structure (static view) and the behavior (dynamic view). The structural complexity
emerges from observing the system as a composition of arbitrary, interrelated com-
ponents (subsystems). These components may be considered or sometimes really are
systems with a high degree of autonomy. From the behavioral aspect, complexity is
defined as the degree of difficulty in predicting the future dynamic properties and
behavior of an overall system assuming that current dynamic properties and behavior
of the participating components (subsystems) are known. Due to the emergent nature
of a large collection of locally interacting components, the properties and the behavior
of a collection may not be fully understood or predicted even the full knowledge of its
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constituents is available. Because of that, Complex Systems Science (CSS) requires
new mathematical and heuristic frameworks and scientific methodologies to cope
with SoS organized structural and behavioral complexity handling.

The complementary approach is to view an arbitrary system through its inherent
dimensions, which do not strictly structure or behavior-oriented but add another
direction of complexity, the multidimensionality. Combined with the multilevel
architecture it creates multidimensional multilevel (hyper) composites. If there is a
need for different contexts or configurations management in timed framed scale, the
hyper composites may generate an arbitrarily large number of instances that are
context, configuration, and time-dependent. These instances form a generic reposi-
tory that is usually seen as an association of Large Data Objects (LDOs). These objects
need to be stored, loaded, searched, modified, and visualized in vide variety of ways.
Traversing, for example, the hyper-structure instances, with any rational reason in
mind, creates a challenging NP (nondeterministic polynomial time) complex problem
that opens the fundamental question of arbitrary dimensionality reduction approach.
The dimensionality reduction facilitates the transformation of the initial system/
problem into a less complex one (with a lower degree of freedom) that may be
efficiently/effectively solved with acceptably lower accuracy (precision).

Modeling is considered a promising approach to cope with complexity. Model-
driven SoS development is a challenging paradigm that may generate the initial
multidimensional and multilayered meta-SoS model (MSoSM). The originating ver-
sion of any particular MSoSM may serve as a starting orchestration pattern that, by
dynamical inclusion of individual dimensions in particular configuration(s), forms
meta structures and facilitates their instantiation. According to that, one of the main
challenging approaches, being the main goal of this chapter, is the specification of SoS
based open framework model that may serve as the meta-SoS pattern for describing
and monitoring arbitrary complex composites that instantiate multilayered
multidimensional data objects that may serve as a resources pool for arbitrary com-
ponent analysis support.

The openness as a global system property is elaborated in remarkable work on
Physics of Open Systems (POS) where the complexity of systems is perceived from
systems dynamics (a complexity of movement) [3]. The described POS scientific
methods and technologies enable the formation of scientifically proven systems onto-
logical knowledge from its empirical descriptions embedded in a huge amount of
semi-structured, multimodal, multidimensional, and heterogeneous data.

The main question arises: Is it possible to upraise the SoS architecture as a reflection of
successive and self-improve dimension reduction processes concerning basic POS principles
applied on the persistent information resources base that preserves the SoS dynamics
descriptions in the form of LDOs?

Gaining a definitive answer to this question is far beyond the scope of this chapter.
Its intended mission is to formulate a starting SoS-based framework model that may
be further dynamically improved to better suit the static structure and dynamic
behavior of complex SoS configurations. That is the reason why the reflexive integra-
tion of POS and different dimensional reduction methods, through an interoperability
framework, have been proposed as the main contribution of this research chapter.

The rest of the chapter is organized as follows: Section 2—The background and
motivation elaborate problem domain aspects of SoS multilevel multidimensional and
representation, interoperability and integration aspects, architectural challenges, and
framework-based approach with selected related work analysis and discussion.
Section 3—System of Systems Hyper Framework Model (SoS-HFM)—states and
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elaborates the proposed model as a foundation for arbitrary component analysis
method application. It is intended to serve as a reliable LDOs pool for incremental
dimension reduction activities that converge to the SoS architecture upraise. Section 4—
Conclusion is devoted to the concluding remarks, challenges, and the directions of
future research activities. In the Appendices section, there are several Java code tem-
plates of SoS-HFM concepts presented. References—contains a list of references that
have been analyzed and used as the problem domain origins and comparative research
results evaluation basis.

2. Background and motivation aspects

Scientific research is a robust and dynamic practice that employs multiple methods
toward investigating systems or phenomena including experimentation, description,
comparison, and modeling. According to ref. [4], these methods, although often used
in combination, appear more effective if used alone. Experimental methods are used
to investigate the relationship(s) between two or more phenomena in a strictly con-
trolled environment. Description methods utilize the observations and measurements
of natural phenomena and their relationships, to collect the relevant data set that
describes their behavior. Comparison is used to determine and quantify relationships
between two or more phenomena by observing different groups that are, either by
choice or circumstance, exposed to different treatments. Scientific knowledge cannot
be obtained from empirical data by purely logical means because the ontologies of
scientific and empirical knowledge differ significantly. Physics of Open Systems
(POS), briefly introduced in the previous section [3], facilitate the generation of
scientifically proven knowledge about the ontology of open systems via data mining
techniques, applied on a huge amount of semi-structured, multimodal, and heteroge-
neous data that is dynamically generated throughout the SoS lifecycle. The identifica-
tion of characteristic symmetries in an ontology model is used to simplify the
structure and behavior of open systems over the state space defined by the ontology
model.

The modeling is a well-established mechanism for struggle with the complexity
that is the main obstacle of contemporary systems and solutions. The results of the
modeling process are a single or a combination of physical and/or computer-based
models of natural systems and/or phenomena that are afterward used as a framework
for experiments and/or observations. Scientific development (progress) addresses the
scientific approach to overall and sustainable development concerning the wide vari-
ety of contemporary problems that are either global or domain specific [5].

Concerning the SoS discipline, despite the inherent complexity, the large picture
approach is usually the most promising one. The SoS exhibits an organized form of
complexity and therefore cannot be accurately described by the traditional analysis
techniques. The key concept of complexity science is universality, which is the idea
that many systems in different domains exhibit phenomena with common underlying
features that can be described using the same scientific models. Complexity science
can provide a comprehensive, cross-disciplinary analytical approach that comple-
ments traditional scientific approaches that are focused on a specific observed subject
in each domain. Complex systems are often characterized by many components that
interact in multiple ways among each other and, potentially, with their environment
too. These components form then dynamic networks of interactions, with vide variety
of network topologies. They generally range from configurations with a small number
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of components that are involved in a large number of interactions, to configurations
that involve the enormous number of components involved in a small number of
interactions (Figure 1).

Interactions may generate novel information that makes it difficult to study com-
ponents in isolation or to completely predict their future structure and/or behavior.
The main challenge of complexity science is not only to have a sense of the parts and
their connections but also to understand how these connections give rise to the whole.
Advanced mathematical and computational modeling, analysis, and simulations are
almost always required to investigate how these configurations are structured and
change with time.

The growth of stakeholder-driven content has fueled a rapid increase in the vol-
ume and type of data that is generated, manipulated, analyzed, and archived. In
addition, varied newer sets of sources, including sensors, Global Positioning Systems
(GPS), automated trackers, and monitoring systems, are generating a huge amount of
data multidimensional. These larger volumes of data sets, often termed big data, are
imposing newer challenges and opportunities considering: storage, retrieval, analysis,
visualization, and long-term archival. Computer-based analysis of massive data,
emerging from complex systems structure and behavior, enables the recognition of
embedded data/information/knowledge/wisdom (DIKW) patterns that contribute the
further understanding of structure and behavior either of the wholes and/or its parts,
thereby fostering the more accurate prediction of forthcoming structure and/or
behavior. The second challenge raises directly from the multilevel and
multidimensional nature of the artifacts that are consciously or unconsciously
reflected through the complex systems’ time and configuration-dependent state tran-
sitions. In Figure 2, a cognitive DIKW pyramid is presented that relates LDOs that
may be generated with the inherent semantics in mind.

Different forms of data representation are well established and experienced in
engineering practice. It is generally not the case with Information, Knowledge, and
Wisdom, because they are dominantly context-dependent. The SoS persistency layer
is a crucial component of SoS based analytics and possible drawbacks of LDO concepts
need careful attention while specifying a supportive framework model. Although
there is a huge amount of intellectual value embedded in arbitrary real-life systems

Figure 1.
Network representations of composite components [6, 7].
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that are naturally represented in semi-structured or unstructured form, the contem-
porary legacy Enterprise Systems are still dominantly operated over structured repos-
itories. Concerning the growing shift from SQL to NoSQL persistency the hybrid
repository model seems an appropriate solution to start with.

In ref. [8], the authors elaborate Big Data management in the context of three
inherent supportive dimensions: technology (dominantly related to storage, analytics,
and visualization); people (addressing the human aspects); and processes (addressing
technological and business approaches to management aspects). The semantic value,
quality of data, and data security are stated as dominant challenging issues concerning
the Big Data foundation of arbitrary SoS artifacts. The Framework-based approach to
Big Data analytics application in high-level education environments is presented in
ref. [9]. Although strictly conceptual the proposed framework model may be applied
beyond the scope of the education domain. In ref. [10], there is the application of
Linear Mixed Modeling (LMM) promoted as a flexible approach for scientific exper-
imental data analysis. The nature of experimental data opens a challenging question of
dataset quality metrics that may be proliferated to the SoS dynamic configurations
instances. The multilevel ontological generation of semantic relations extracted from
the significant amount of heterogeneous linguistic data, persisting in Big Data repos-
itories, has been proposed by Popova et al. [11]. The solution is based on a specific
XML format that enforces the interoperability of information across individual levels
of generated multilevel ontology, for a particular problem domain. The software
engineering perspectives of the Big Data foundation are surveyed in ref. [12]. The
refinements of software development activities through the challenging aspects of
corresponding Big Data concepts are discussed with the particular accent on architec-
ture design, software quality insurance, and data quality assessment. In ref. [13] the
intelligent systems design processes are discussed through multidimensional modeling
of knowledge and knowledge transfer between internal components and external
counterparts of arbitrary intelligent systems viewed as a four-dimensional (grade,
atomization, abstractness, timing) cellular architecture. The engineering aspects of spa-
tial data is an challenging domain for engineering disciplines that are based on

Figure 2.
The representation of LDOs genesis.
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different natural phenomena analysis and simulation like daylight illumination of
residential buildings in ref. [14] where the representation of large data objects and its
potential dimensionality reduction has an dramatic impact on urban planning.

Although computer-based analysis of massive data sets is in the field for a quite
long time it is far from being a routine activity. From the architecture aspect, it is
essential to separate the external repository from the internal dynamic storing and
presentation layers and thereby hide the particular characteristics of persistent LDO
form from its operational counterparts. This is the first pillar of the proposed SoS
framework model.

The computational complexity of high-dimensional LDOs processing is the main
obstacle for real-time or near real-time applications. The LDO’s complexity reduction
appears as a promising approach to the system/problem simplification process.
Because less complex LDOs are easier to navigate, explore, visualize and analyze in
different contexts they are more suitable for effective machine learning.

That is the main reason why several complexity reduction methods, based on
different dimensionality reduction algorithms, have been proposed, formalized,
applied, and verified. Among them, there are two main unsupervised methods worth
mentioning: hierarchical clustering (HC) and principal component analysis (PCA).
HC tries to build a tree-like structure with leaves representing the individual objects
and nodes (pseudo objects) representing the clustering points of leaves with the
highest degree of similarity. In further iterations, the individual clusters (as surrogates
of clustered objects) replace the whole group and appears as individual objects with a
certain accuracy payoff. PCA, on the other hand, creates a lower-dimensional repre-
sentation of the initial data set on top of principal components as patterns encoding
the highest variance in the data set, trying to preserve as much as possible of the
original data set variance in process of dimensionality reduction.

Reducing the complexity of a particular LDO has its payoff in the accuracy of the
reduced counterpart. The quality of a dimensionality reduction method is measured
by its ability to gain the lowest possible complexity with the highest possible accuracy.
Being unsupervised, HC and PCA methods are better suited for the generation of
sustainable simpler LDOs, and consequently simpler SoSs configurations, rather than
their verification.

Due to the fundamental focus of this chapter, the rest of the section is devoted to a
more detailed elaboration of solely the PCA methods-related publications analysis. The
mathematical elaboration is completely avoided due to the huge amount of references
that have excessively addressed the foundation. A remarkable complete, simplified,
step-by-step analysis of the original PCA method is presented in ref. [15], through five
consecutive steps that lead to the data set dimensionality reduction. It starts with the
standardization of the initial variable (dimension) range to comparable scale, to elimi-
nate the possible supremacy of dominant instances, followed by the calculation of the
covariance matrix of all possible pairs of scaled variables (dimensions) to uncover the
correlation nature of each possible variable pairs. In the third step, the principal com-
ponents isolation is performed by computing the eigenvectors of the covariance matrix
and ordering them by their eigenvalues in descending order. This process isolates the
principal components, which are the surrogates of correlated dimensions, in order of
their significance. In the fourth step, the Feature vector is created by selecting the
representative subset of principal components that leads to the desired dimensional
reduction with preferable accuracy. The last step is the generation of reduced dimen-
sional data set by data recasting over selected principal components. The mathematical
foundation of linear PCA is gradually presented in ref. [16], and joined with the context
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of the previously referenced article completes its light-weighted approach. In ref. [17]
the original row-based two-dimensional principal component analysis (2DPCA) and its
extensions in the 2D image processing domain, have been discussed. The overview of
several extension frameworks have been presented (bilateral projection nonlinear and
iterative, kernel-based, supervised (with four variations), alignment-based, and ran-
dom (with three variations). The robustness of all of the elaborated extensions has
exhibited a performance increase in comparison to the original 2DPCA in image recog-
nition, which has been a traditional application domain of PCA methods. PCA is
discussed in ref. [18] through the extensive survey of five RPCA published models, with
their comparative analysis in the context of video stream background management. In
ref. [19] the modification of classical PCA (MPCA) with subspace learning framework
based on multiple similarity measurements. In ref. [20] a comprehensive review and
future PCA development have been presented. Although the reference is almost six
years old, it has been used for the sake of the overall problem domain clarification
where PCA is addressed as the linear exploratory tool for data analysis. Due to its
application in different fields, the initial PCA has been modified in several ways to
better suit the domain-specific characteristics. The authors enlist and discuss: static and
dynamic functional PCA (FPCA), simplified PCA (SPCA), robust PCA (RPCA), and
symbolic data PCA (SDPCA). In ref. [21], authors present the modification of nonlinear
Kernel PCA (KPCA), with adaptive feature—Adaptive Kernel PCA (AKPCA) that is
integrated with the gray relation analysis (GRA) for fault detection in complex
nonlinear chemical processes.

The comprehensive analysis of different domain-specific PCA applications is far
beyond the reasonable research effort. In ref. [22] the application of state-space
functional PCA (SS-FPCA), as a 3-level hierarchical model built under the state-space
model framework, for identification of spatiotemporal patterns based on satellite
remote sensing of lake water quality in the form of time series of spatial images with
missing observations. The authors of ref. [23] elaborate the Principal Component-
based support vector machine (PC-SVM) as a hybrid machine learning technique that
combines PCA and SVM to cope with the potential software defects especially
concerning the mission-critical software systems. In ref. [24] the contemporary chal-
lenging study of the implementation of machine learning methods for identification of
patients affected by COVID-19 based on X-ray images. Two commonly used classi-
fiers were selected: logistic regression (LR) and convolution neural networks (CNN)
joined with PCA for complexity reduction and shorting the elapsed time to gain the
quality diagnostic answer. The complex boundary generation method, presented in
ref. [25], illustrates an practical application of dimensionality variation through the
recursive search of the optimal residential building outer shape form, based on vari-
able set of parameters.

This short survey and the much broader repertoire of similar research articles fully
qualify the research motivation of this chapter, the formulation of supportive SoS
Hyper Framework Model.

Physics of Open Systems is the additional paradigm for SoS Hyper Framework
Model development where the system is considered as a tool where the knowledge and
sense of its complexity are harvested. It is necessary to reference [3] for the rest of the
relevant influencers. The directly influencing POS intellectual machine analytical core
technologies that support systems: reconstruction through ontology mode variations;
examination based on communication model variations; design based on state model
variation; empirical context formation—the generation of LDOs in this chapter context;
solutions behavior generation—the dynamic representation of varied model;

8

Advances in Principal Component Analysis



visualization. Its formulation is transformed in the formulation of POS dimensions of
the system model in the context of this chapters’ SoS Hyper Framework Model pro-
posal.

Software-supported frameworks of the arbitrary kind are usually targeted in
model-driven software development (MDSD) and model-based system engineering
(MBSE) approaches. They are closely related to the general architecture modeling
paradigms and constitute the core of different contemporary enterprise architecture
(EA) frameworks. There are several EA Frameworks proposed and specified, among
which the most advocated are:

• Zachman Framework (ZF), the framework for enterprise architecture (EA).
According to ref. [26], it is an EA ontology-based on the visualization of an
enterprise and its inherent information system components and their relations
from different perspectives. It is a two-dimensional classification scheme
structured as a matrix containing 36 cells, each of them focusing on one
dimension or perspective of the enterprise. Although popular in EA academic
education and learning environments, due to its inexplicable practical utility, it
has not reached substantial practical achievements and is expected to fade out
from the EA community in near future [27].

• The Open Group Architecture Framework (TOGAF), is declared as the most
commonly used enterprise architecture framework [28]. Due to its architecture
development method (ADM) orientation, it is considered dominantly process-
oriented. The overall TOGAF process is organized into four groups: Business
architecture; Application architecture; Data architecture; and Technical architecture.
Due to its OO community origins, it has been announced as a promising EA
framework. On the contrary, the extensive search through the contemporary
available resources on Global Network shows that there is still a lack of usable
TOGAF software support tools which makes its practical usability questionable.

• Federal Enterprise Architecture Framework (FEAF), according to ref. [29], has
offered a shared approach for the consolidation of strategic, business, and
technology management as a component of organization design and performance
management. It is composed of 6 interconnected Reference Models (Strategy;
Business; Data; Applications; Infrastructure; and Security), each relating to a
sub-architectural domain of the framework that is linked together through the
Consolidated Reference Model (CRM). The main problem FEAF faces today is
the lack of real verifiable success stories even by the enterprise architects working
for the U.S. Government [27].

• CMMI Framework—Capability Maturity Model Integrated, Software Engineering
Institute (SEI) Framework. Although originally tailored toward software, the
latest CMMA Framework version is more general and applies to hardware,
software, and service development across all industries [30]. It is a process-
oriented framework, whose main purpose is to assess the maturity of an
organization’s processes and to provide guidance on their improvement to deliver
high-quality products. In the CMMI model, version 1.3, there are 22 process areas
defined, together with the process-related goals and the set of activities that are
often used to meet them. Because the CMMI Framework is based on well-defined
ontology, classification system, experience, training, and appraisal infrastructure
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(governed by SEI), it is expected to evolve into a de-facto standard for the
maturity classification of at least Software Development Companies.

• International Council On Systems Engineering (INCOSE)—System of Systems
Framework [31]- is closely related to the Model-Based Systems Engineering
(MBSE) approach that emerged from the INCOSE projects in the SoS engineering
domain. It is clustered over three main concepts: model (a formally simplified
version of an entity of interest), systems thinking (a holistic approach to interacting
entities and their components) [32], and systems engineering (transdisciplinary
and integrative approach to the engineering of interacting entities, based on systems
principles and concepts in the context of scientific, technological and management
methods application, through the entire life cycle). MBSE does not strictly
prescribe any process framework the arbitrarily selected process model has to
address the four essential systems engineering domains: requirements/capabilities;
the static structure (systems architecture or topology) [33]; the dynamic structure
(systems behavior); verification and validation aspects [34] (is it the right system?
and if is, is the system right?). In ref. [35] there is a remarkable well-illustrated
approach to SoS mission needs break down to capabilities and functions through
the architecture framework and related ontology that has inspired several concepts
of the SOS Hyper Framework Model specification.

The related work analysis shows that there is a tremendously large number of
documents, studies, standards, procedures, and scientific articles that dominantly
address particular aspects of the Principal Component Analysis approach to handle the
dimensionality reduction problem, but fare fewer references concerning POS para-
digm and its implementation aspects in the context of SoS.

On the other hand, there is also a lack of research concerning the interoperability
framework approach with the integration mission. These facts favor the large-picture-
based approach facilitating the Generic System of Systems Framework that sustain-
ably orchestrates: Domain-Specific and Generic concepts and dimensions of complex
SoS configurations that are opened for arbitrary POS and PCAmethods extension. The
System of Systems Hyper Framework Model, presented in the next section of this
chapter, is considered as a first step toward the established goal. The collaborative
frameworks, like one elaborated in ref. [36], has served as an initial framework
specification of the proposed model presented in this article.

3. The foundation for open component analysis: SoS hyper framework
model (SoS-HFM)

3.1 Why framework-based approach?

In general, a framework may be defined as a real or conceptual foundation, with a
specified level of complexity that serves as a support or a guide for the building of a
particular artifact or performing a particular activity by expanding and specializing
the generic structure that specifies the family of interrelated products and/or pro-
cedures. Framework favors reusability by managing the overall control flow and
orchestration of dynamically configured components in an inversion of control way.
There are two major categories of contemporary framework: non-software
empowered (usually represented as a set of structured and/or semi-structured
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documents) and software empowered (software supported collaborative/cooperative
environments supporting the digital transformation of problem domain). The devel-
opment of software empowered interoperability frameworks have usually been pre-
ceded by the intensive and time-consuming: specification; modeling; and meta-
modeling activities performed and managed within the scope of related projects and/
or portfolios.

3.2 Why interoperability-based approach?

In the context of this chapter, cooperation and collaboration of independently
developed or specified systems may be generally achieved through total homogeniza-
tion; harmonization; adaptation; and orchestration interoperability principles. The
total homogenization principle states that all of the related systems have to be
designed or redesigned to achieve absolute compliance with the globally accepted and
standardized template. Homogenization is the most radical, heavy-weight, approach.
A harmonization principle is a lightweight approach that assumes the definition and
standardization of interfaces that hide the internal characteristic of participating
systems and enable their cooperation/collaboration over the unique communication
protocol and through the standardized interfaces only. The participating systems need
to be functionally complete while retaining the structural diversity. The adaptation
interoperability principle assumes cooperation/collaboration of functionally and
structurally incomplete systems where participating systems are homogenized up to
the functional and structural completeness, in a virtual or real way (where homoge-
nization payoff may substantially differ from system to system) and harmonized
afterward. Adaptation interoperability may be seen as a middle-weight approach. It is
more complex than the harmonization but, compared to the total homogenization,
significantly more acceptable and achievable faster. The orchestration interoperability
is the ability of the heterogeneous systems, with arbitrary functionality and topology,
to interact toward the mutually beneficial dynamically configured mission, build
through the functional and/or structural orchestration of participating systems fea-
tures and/or resources. Each system retains and shares everything it can perform and/
or deliver and delegates and/or acquires everything that is beyond its scope, but
available as a mutual benefit of a current configuration. The orchestration interoper-
ability is an example of broker-based service-oriented dynamic architecture that may
be formally described by the swarm intelligence concepts.

3.3 Why the interoperability framework approach?

If carefully combined the best characteristics of two, previously discussed promis-
ing concepts, may result in an empowered solution capable of handling the growing
complexity of SoS dynamic configurations associated with the multidimensional and
multilevel LDOs. The development of interoperability framework generally requires a
multi-stakeholder process and the long-term vision of a highly reusable generic solu-
tion that, in the context of SoS-HFM, may impact the overall ontology, configurable
topology, state-driven behavior, and time and context-dependent LDOs: creation,
processing, storing, retrieval and visualizing.

The starting point of SoS and POS paradigms integration is the formulation of a
hybrid system meta-model that combines multidimensionality and context-based
multilevel features. The meta-concept (MetaConcept) of SoS-HFM is modeled as a
typed composite MetaElement presented in Figure 3.
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The composition property enables arbitrary topology creation in different contexts
(determined by variant property as Modal object, and version property as Temporal
object), and type associated property that enables the classification over an open set of
classifiers with currently two specified: Generic and system specific.

The open set of MetaConcept specializations is currently composed of three ele-
ments: PosConcept (relates the framework ontology with POS System ontology);
PosModel (relates the framework ontology with POS Model ontology segment); and

Figure 3.
SoS-HFM—meta concept model (a part of).
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Dimension (abstract MetaConcept that clusters the fundamental SoS-HFM object of
interest). The Dimension specialization is further specialized by an open set currently
3 concepts: System and POSProperty that will be defined later on and System Internals
with fundamental internal dimensions of an arbitrary general system (Goal;
OrganizationUnit; Function; InformationResource; Control; and Communication)
that are elaborated in following segments of this Section.

The POSOntology model, developed in compliance with [3], is presented in Figure 4.
POSOntology is an LDO that is composed of four collections:

1.PosProperty collection, organized by the PropertySet associative class, is an LDO
that is configured from six predefined POS contextual dimensions (Relation;
Harmony; Symmetry; Interactions; Constructs; and Structure);

2.PosModel collection, organized by the ModelSet associative class, represents the
POS model triangle composed of contextual modeling dimensions
(OntologycalModeling; CommunicativModeling; and StatesModeling);

Figure 4.
The POSOntology model.
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3.ObservedReality collection, organized by the ObservedSet associative class,
represents the POS model triangle composed of contextual observed dimensions
(Fact, Evaluation, and Carrier);

4.PosConcept collection, organized by the ConceptSet associative class, represents
two interrelated POS triangles composed of contextual concept dimensions
(Symbol; State; Word) and (Interaction; Quality; Standard)

ConcretePOSOntology is a domain or system-specific specialization of
POSOntology that forms the ontology segment of SoS-HFM and is the targeted ontol-
ogy of arbitrary orchestrated POS methods.

The detailed System Dimension of the SoS-HFM ontology meta-model is presented
in Figure 5. The system is an LDO, defined as the SoS-HFM dimension that represents
the organized set of interrelated components that are orchestrated (configured) with
the specific mission in mind.

It is composed of five embedded associative collections and one inherited associa-
tive collection. The five embedded associative collections are:

Figure 5.
The system dimension of SoS-HFM meta model.
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1.Goal set collection, organized by the Mission associative class, that enables the
modeling of domain-specific systems mission (the goal or set of goals that
justifies the existence of a system);

2.OrganizationUnit set collection, organized by the InternalTopology associative
class, that forms the instances of internal systems architecture;

3.Function set collection, organized by the FunctionalStructure associative class,
that forms thy configurations of internal activities that are spread over the
OrganizationUnit topology in favor of the overall Mission;

4.InformationResource collection, organized by the InformationStructure
associative class, that forms the supporting information infrastructure of a
Functional topology;

5.Control set collection, organized by the ControlStructure associative class, forms
the monitoring, control, and management of the configuration instances in favor
of gaining the overall systems Mission.

The inherited associative collection, organized by the ExternalCollaboration
associative class, represents the SoS dimension of the SoS-HFM meta-model, with SoS
defined as a specialization of system meta concept.

The SoS-HFM dimensionality reduction meta-model is presented in Figure 6. The
key meta concepts defined are the configuration and the LargeDataObject.

1.Configuration is the specialization of SoS meta-class with three
associative collections: Orchestrated method represents the aggregation of
orchestrated dimensionality reduction methods for the particular
configuration instance, managed by the dimension meta-class;
ConcretePOSOntology relates configuration with the set of associated POS
ontologies; and LargeDataObject composite collection that is either original or
dimensionally reduced counterpart.

2.LargeDataObject (LDO) encapsulates the dimensionality information and the
status of each dimension that is either reducible (Reducible) or not, for an
unreduced instance, and reduced (Reduced) if reducible in a reduced instance.
LDO is associated with a particular ontology (ConcretePOSOntology). Being a
MetaConcept LDO inherits temporal and modal characteristics and marks the
particular instances with.

In Figure 7, the conceptual model of SoS-Hyper Framework software architecture
is presented. It is modeled as MVC architectural pattern where: SoSHFModel—han-
dles the framework dynamic data structure; SoSHFView—encapsulates the collection
of SoSHFModel visualization methods, and SoSHFControler—supports framework
dynamics. ServiceControler handles an open set of framework services with currently
specified: DataSetBuilder; SesionManager; ActivityTracker; and SecurityManager.
RepositoryManager encapsulates an open set of repository handlers with currently
specified: RelationalRepository; and NoSQL open set of Non-relational repository
handlers.
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In Figure 8, there is a more detailed conceptual model of the SoSHF
Controller segment that encapsulates POS and dimensionality reduction
methods (PCA) presented. It utilizes a two-component interface: AccessIR
(manipulation of arbitrary information resources designated as LDOs in this
chapter); and DimensionAccess (manipulation of the collection of dimensions
embedded in LDOs).

Figure 6.
The SoS-HFM dimensionality reduction meta model.
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3.4 The discussion

As previously mentioned, the main challenge of complexity science is not only to
understand and manage the individual components and their connections that make
the configuration (static structure) but also to understand how these connections
affect the whole. The Foundation for Open Component Analysis is specified on top of
three synergic contexts, The Physics of Open Systems ontology, System specification
as an SoS composition with multidimensional and multilevel instantiation capabilities,
and the simplification mechanisms based on the extendible set of the Principal Com-
ponent Analysis methods. The orchestration is specified through the System of Sys-
tems Hyper-Framework Model where advanced mathematical and computational
modeling, analysis, and simulations may be applied to investigate how these orches-
trated configurations are structured and change with time.

4. Conclusion

Considering the inherent complexity of System of Systems, the mission of creating
the foundation of Opened Component Analysis emerged with an SoS- Hyper

Figure 7.
SoS-hyper framework conceptual model (MVC).
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Framework Model that has inherited the challenging aspects of Physical Open System
fundamental concepts and methods and dimensionality reduction methods by the
orchestration of an opened set of Principle Component Analysis methods. The main
characteristics of the proposed framework model are elaborated in the Introductory
section, founded through the Background and motivation section with related work
analysis, and explicated in Section 3 with the presentation of the key aspects of SoS-
HFM. In Appendices A.1, there is a sample of Java code generated from the
corresponding Configuration meta class presented.

The proposed model is attended to serve as a starting specification for the devel-
opment of the future: open, heterogeneous, cooperative/collaborative, a service-
oriented software framework that may be tailored according to the SoS configura-
tions. These are also the main directions of future research and work.
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Figure 8.
SoSHFController—POC and PCA dimensionality reduction.
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Appendices

A.1 SoSHyperFramework: model-based generated Java code skeleton

/*******************************************************************
* Module: SoSHyperFramework.java
* Author: Branko
* Purpose: Defines the Class SoSHyperFramework
********************************************************************/
import java.util.*;
/** @pdOid 5199ec80-82c8-4224-adf4-6f79e037a32c */
public abstract class SoSHyperFramework {

/** @pdOid 29f37534-7bc3-46d9-9fa5-f8996a25eb8d */
private int domainkID;
/** @pdOid 3f9f6a74-0c4c-448d-878e-1e4d6b216519 */
private DomainType domainType;
public java.util.Collection frameworkRelationsB;
/** @pdRoleInfo migr=no name=DomainContext assc=association3 coll=java.
util.Collection impl=java.util.HashSet mult=* */
public java.util.Collection<DomainContext> domainContext;
/** @pdRoleInfo migr=no name=SoSHFControler assc=association6 mult=0..1 */
public SoSHFControler soSHFControler;
/** @pdRoleInfo migr=no name=SoSHFView assc=association7 coll=java.util.

Collection impl=java.util.HashSet mult=0..* type=Aggregation */
public java.util.Collection<SoSHFView> soSHFView;
/** @pdRoleInfo migr=no name=SoSHFModel assc=association8 coll=java.util.

Collection impl=java.util.HashSet mult=0..* */
public java.util.Collection<SoSHFModel> soSHFModel;
/** @pdRoleInfo migr=no name=RepositoryManager assc=association9 mult=0..1 */
public RepositoryManager repositoryManager;
/** @pdRoleInfo migr=no name=ServiceControler assc=association10 mult=0..1 */
public ServiceControler serviceControler;
public CooperatingDomains[] frameworkRelationsA;
/** @param source
* @param destination
* @param context
* @pdOid 744debe3-5548-4295-a6ea-328715b03caa */
public SoSHyperFramework establisheRelations(SoSHyperFramework source,

SoSHyperFramework destination, DomainContext context) {
// TODO: implement

}
/** @pdOid 75f8bfff-a41b-47be-a366-c6b44131030d */
public void performAction() {
// TODO: implement

}
/** @pdGenerated default getter */
public java.util.Collection<DomainContext> getDomainContext() {
if (domainContext == null)

domainContext = new java.util.HashSet<DomainContext>();
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return domainContext;
}
/** @pdGenerated default iterator getter */
public java.util.Iterator getIteratorDomainContext() {
if (domainContext == null)

domainContext = new java.util.HashSet<DomainContext>();
return domainContext.iterator();

}
/** @pdGenerated default setter
* @param newDomainContext */
public void setDomainContext(java.util.Collection<DomainContext>

newDomainContext) {
removeAllDomainContext();
for (java.util.Iterator iter = newDomainContext.iterator(); iter.hasNext();)
addDomainContext((DomainContext)iter.next());

}
/** @pdGenerated default add
* @param newDomainContext */
public void addDomainContext(DomainContext newDomainContext) {
if (newDomainContext == null)

return;
if (this.domainContext == null)

this.domainContext = new java.util.HashSet<DomainContext>();
if (!this.domainContext.contains(newDomainContext))

this.domainContext.add(newDomainContext);
}
/** @pdGenerated default remove
* @param oldDomainContext */
public void removeDomainContext(DomainContext oldDomainContext) {
if (oldDomainContext == null)

return;
if (this.domainContext != null)
if (this.domainContext.contains(oldDomainContext))

this.domainContext.remove(oldDomainContext);
}
/** @pdGenerated default removeAll */
public void removeAllDomainContext() {
if (domainContext != null)

domainContext.clear();
}
/** @pdGenerated default getter */
public java.util.Collection<SoSHFView> getSoSHFView() {
if (soSHFView == null)

soSHFView = new java.util.HashSet<SoSHFView>();
return soSHFView;

}
/** @pdGenerated default iterator getter */
public java.util.Iterator getIteratorSoSHFView() {
if (soSHFView == null)

soSHFView = new java.util.HashSet<SoSHFView>();
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return soSHFView.iterator();
}
/** @pdGenerated default setter
* @param newSoSHFView */
public void setSoSHFView(java.util.Collection<SoSHFView> newSoSHFView) {
removeAllSoSHFView();
for (java.util.Iterator iter = newSoSHFView.iterator(); iter.hasNext();)

addSoSHFView((SoSHFView)iter.next());
}
/** @pdGenerated default add
* @param newSoSHFView */
public void addSoSHFView(SoSHFView newSoSHFView) {
if (newSoSHFView == null)

return;
if (this.soSHFView == null)

this.soSHFView = new java.util.HashSet<SoSHFView>();
if (!this.soSHFView.contains(newSoSHFView))

this.soSHFView.add(newSoSHFView);
}
/** @pdGenerated default remove
* @param oldSoSHFView */
public void removeSoSHFView(SoSHFView oldSoSHFView) {
if (oldSoSHFView == null)

return;
if (this.soSHFView != null)
if (this.soSHFView.contains(oldSoSHFView))

this.soSHFView.remove(oldSoSHFView);
}
/** @pdGenerated default removeAll */
public void removeAllSoSHFView() {
if (soSHFView != null)

soSHFView.clear();
}
/** @pdGenerated default getter */
public java.util.Collection<SoSHFModel> getSoSHFModel() {
if (soSHFModel == null)

soSHFModel = new java.util.HashSet<SoSHFModel>();
return soSHFModel;

}
/** @pdGenerated default iterator getter */
public java.util.Iterator getIteratorSoSHFModel() {
if (soSHFModel == null)

soSHFModel = new java.util.HashSet<SoSHFModel>();
return soSHFModel.iterator();

}
/** @pdGenerated default setter
* @param newSoSHFModel */
public void setSoSHFModel(java.util.Collection<SoSHFModel>

newSoSHFModel) {
removeAllSoSHFModel();
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for (java.util.Iterator iter = newSoSHFModel.iterator(); iter.hasNext();)
addSoSHFModel((SoSHFModel)iter.next());

}
/** @pdGenerated default add
* @param newSoSHFModel */
public void addSoSHFModel(SoSHFModel newSoSHFModel) {
if (newSoSHFModel == null)

return;
if (this.soSHFModel == null)

this.soSHFModel = new java.util.HashSet<SoSHFModel>();
if (!this.soSHFModel.contains(newSoSHFModel))

this.soSHFModel.add(newSoSHFModel);
}
/** @pdGenerated default remove
* @param oldSoSHFModel */
public void removeSoSHFModel(SoSHFModel oldSoSHFModel) {
if (oldSoSHFModel == null)

return;
if (this.soSHFModel != null)
if (this.soSHFModel.contains(oldSoSHFModel))

this.soSHFModel.remove(oldSoSHFModel);
}
/** @pdGenerated default removeAll */
public void removeAllSoSHFModel() {
if (soSHFModel != null)

soSHFModel.clear();
}

}

A.2 A nomenclature list

ADM Architecture Development Method
DIKW Data/Information/Knowledge/Wisdom pattern
HFM Hyper-Framework Model
LDO Large Data Object
LMM Linear Mixed Modeling
MBSE Model Based Systems Engineering
MDSD Model-Driven Software Development
NoSQL Not only Structured Query Language
PCA The Principal Component Analysis
POS The Physics of \open \systems
SoS The System of Systems
SQL Structured Query Language
XML Extensible Markup Language

22

Advances in Principal Component Analysis



Author details

Ana Perišić1 and Branko Perišić2*

1 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

2 University Singidunum Belgrade, Belgrade, Serbia

*Address all correspondence to: bperisic@singidunum.ac.rs

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

23

The Foundation for Open Component Analysis: A System of Systems Hyper Framework Model
DOI: http://dx.doi.org/10.5772/intechopen.103830



References

[1] Gartner Glossary. Available from:
https://www.gartner.com [Accessed:
January 30, 2022]

[2] Guide to the Systems Engineering
Body of Knowledge (SEBoK), version
2.5. Available from: https://www.seb
okwiki.org/ [Accessed January 30, 2022]

[3] Kachanova TL, Fomin BF, Fomin OB.
Generating scientifically proven
knowledge about ontology of open
systems: Multidimensional knowledge-
centric system analytics. In: Ontology in
Information Science. London:
IntechOpen; 2017. DOI: 10.5772/
intechopen.72046

[4] Carpi A, Anne EE. The Practice of
Science: An Introduction to Research
Methods. available from: https://www.
visionlearning.com/en/library/Process-
of-Science/49/The-Practice-of-Science/
148 [Accessed: January 30, 2022]

[5] Schneegans S, Straza T, Lewis J,
editors. UNESCO Science Report: The
Race Against Time for Smarter
Development. Paris: UNESCO
Publishing; 2021

[6] Complexity. Available from: https://
www.complexity-explorables.org/e
xplorables/clustershuck/ [Accessed
January 10, 2022]

[7] Complexity. https://www.comple
xity-explorables.org/explorables/
knitworks/ [Accessed January 1, 2022]

[8] Rossi R, Hirama K. Characterizing big
data management. Issues in Informing
Science and Information Technology.
2015;12:165-180

[9] Klašnja-Milićević A, Ivanović M,
Budimac Z. Data science in education:
Big data and learning analytics.

Computer Applications in Engineering
Education. 2017;25(6):1066-1078. DOI:
10.1002/cae.21844

[10] Ćwiek-Kupczyńska H, Filipiak K,
Markiewicz A, et al. Semantic concept
schema of the linear mixed model of
experimental observations. Science Data.
2020;7:70. DOI: 10.1038/s41597-020-
0409-7

[11] Maryna Popova, Larysa Globa and
Rina Novogrudska. Multilevel ontologies
for big data analysis and processing,
Proceedings of the 9th International
Conference on Applied Innovations in
IT, (ICAIIT), 2021. Koethen (Germany),
28 April 2021

[12] Davoudian A, Liu M. Big data
systems: A software engineering
perspective. ACM Computing Surveys.
2020;53:5

[13] Konstantin Kostenko .2020.
Knowledge flows processes at
multidimensional intelligent systems,
Russian Conference on Artificial
intelligence (RCAI 2020), October, 10–
16, 2020, Moscow, Russia

[14] Perišić A, Lazić M, Obradović R, et
al. Daylight and urban morphology: A
model for analysing the average annual
illumination of residential housing.
Tehnički vjesnik. 2016;23(5):1343-1350.
DOI: 10.17559/TV-20150526191843

[15] Jaadi Z. A Step-by-Step Explanation
of Principal Component Analysis (PCA).
Available from: https://builtin.com/data-
science/step-step-explanation-principal-
component-analysis [Accessed: January
20, 2022]

[16] Keho Y. The basics of linear principal
components analysis. In: Sanguansat P,

24

Advances in Principal Component Analysis



editor. Principal Component Analysis.
London: InTech; 2012. Available from:
http://www.intechopen.com/books/
principal-component-analysis/the-basic
s-of-principal-component-analysis

[17] Sanguansat P. Two-dimensional
principal component analysis and its
extensions. In: Sanguansat P, editor.
Principal Component Analysis. London:
InTech; 2012. Available from: http://
www.intechopen.com/books/principal-
component-analysis/2dpca-and-its-
extensions

[18] Guyon C, Bouwmans T, Zahzah E-h.
Robust principal component analysis for
background subtraction: Systematic
evaluation and comparative analysis. In:
Sanguansat P, editor. Principal
Component Analysis. London: InTech;
2014. Available from: http://www.intech
open.com/books/principal-component-a
nalysis/robust-principal-component-ana
lysis-forbackground

[19] Fan Z, Yong X, Zuo W, et al.
Modified principal component analysis:
An integration of multiple similarity
subspace models. IEEE Transactions on
Neural Networks and Learning Systems.
2014;26(8)

[20] Jolliffe IT, Cadima J. Principal
component analysis: A review and recent
developments. Philosophical
Transactions of Royal Society A. 2016;
374:20150202

[21] Han Y, Song G, Liu F, Geng Z, Ma B,
Xu W. Fault monitoring using novel
adaptive kernel principal component
analysis integrating grey relational
analysis. Process Safety and
Environmental Protection, Volume.
2022;157:397-410

[22] Gong M, Miller C, Scott M, et al.
State-space functional principal
component analysis to identify

spatiotemporal patterns in remote
sensing lake water quality. Stoch
Environment Res Risk Assessment. 2021;
35:2521-2536. DOI: 10.1007/s00477-021-
02017-w

[23] Mustaqeem M, Saqib M. Principal
component based support vector
machine (PC-SVM): A hybrid technique
for software defect detection. Cluster
Computing. 2021;24:2581-2595

[24] Rasheed J, Hameed AA, Djeddi C, et
al. A machine learning-based framework
for the diagnosis of COVID-19 from
chest X-ray images, Interdisciplinary
Sciences: Computational. Life Sciences.
2021;13:103-117

[25] Lazić M, Perišić A, Perišić B.
Residential Buildings Complex
Boundaries Generation Based on Spatial
Grid System. Appl. Sci. 2022;12:165.
DOI: 10.3390/app12010165

[26] Available from: https://www.zachma
n.com/resources/ea-articles-reference/
327-the-framework-for-enterprise-arch
itecture-background-description-and-
utility-by-john-a-zachman [Accessed
January 10, 2022]

[27] Svyatoslav Kotusev. A comparison of
top four enterprise architecture
frameworks. Available from: https://
www.bcs.org/articles-opinion-and-resea
rch/a-comparison-of-the-top-four-
enterprise-architecture-frameworks/#16
[Accessed January 10, 2022]

[28] The Open Group. The Open Group
Architecture Framework, (TOGAF).
Available from: https://www.opengroup.
org/togaf, https://www.opengroup.org/a
rchitecture-forum [Accessed January 1,
2022]

[29] FEA. Available from: https://www.
feacinstitute.org/ [Accessed January 1,
2022]

25

The Foundation for Open Component Analysis: A System of Systems Hyper Framework Model
DOI: http://dx.doi.org/10.5772/intechopen.103830



[30] Carnegie Mellon University,
Software Engineering Institute,
Capability Maturity Model Integrated.
Available from: https://cmmiinstitute.
com/ [Accessed January 1, 2022]

[31] Cook SC, Pratt JM. Advances in
systems of systems engineering
foundations and methodologies.
Australian Journal of Multi-Disciplinary
Engineering. 2021;17(1):9-22. DOI:
10.1080/14488388.2020.1809845

[32] Yearworth, M., Terry, AJ, Godfrey,
PS., & Edwards, G. (2010). Systems
thinking research: Principles, and
methodologies to grapple with complex
real-world problems. In INCOSE UK
Annual Systems Engineering Conference
(ASEC 2010), Chipping Norton,
Oxfordshire

[33] Potts MW, Sartor P, Johnson A,
Bullock S. A network perspective on
assessing system architectures:
Foundations and challenges. Systems
Engineering. 2019;22:485-501

[34] Salado A, Kannan H. Elemental
patterns of verification strategies.
Systems Engineering. 2019;22:370-388

[35] Knöös Franzén L, Staack I, Krus P,
Jouannet C, Amadori KA. Breakdown of
system of systems needs using
architecture frameworks. Ontologies,
and Description Logic Reasoning,
Aerospace. 2021;8:118. DOI: 10.3390/
aerospace8040118

[36] Perisic A, Lazic M, Perisic B. The
extensible orchestration framework
approach to collaborative design in
architectural, urban and construction
engineering. Automation in
Construction. 2016;71:210-225.
DOI: 10.1016/j.autcon.2016.08.005

26

Advances in Principal Component Analysis



Chapter 2

Identification of Multilinear
Systems: A Brief Overview
Laura-Maria Dogariu, Constantin Paleologu, Jacob Benesty
and Silviu Ciochină

Abstract

Nonlinear systems have been studied for a long time and have applications in
numerous research fields. However, there is currently no global solution for nonlinear
system identification, and different used approaches depend on the type of nonlinearity.
An interesting class of nonlinear systems, with a wide range of popular applications, is
represented by multilinear (or multidimensional) systems. These systems exhibit a
particular property that may be exploited, namely that they can be regarded as linearly
separable systems and can be modeled accordingly, using tensors. Examples of well-
known applications of multilinear forms are multiple-input/single-output (MISO) sys-
tems and acoustic echo cancellers, used in multi-party voice communications, such as
videoconferencing. Many important fields (e.g., big data, machine learning, and source
separation) can benefit from the methods employed in multidimensional system iden-
tification. In this context, this chapter aims to briefly present the recent approaches in
the identification of multilinear systems. Methods relying on tensor decomposition and
modeling are used to address the large parameter space of such systems.

Keywords: nonlinear systems, tensor decomposition, multilinear forms, Wiener
filter, adaptive filters, system identification

1. Introduction

System identification is an important topic nowadays since it can be used in
solving numerous problems [1]. The aim of system identification is to estimate an
unknown model using the available and observed data, namely the input and output
of the system. In this context, the well-known Wiener filter is a popular solution,
along with the adaptive filters which can be derived starting from this approach.

In multilinear system identification, dealing with a large parameter space repre-
sents an important challenge [2, 3]. The huge length of the filter (hundreds or thou-
sands of coefficients) is also a serious problem [4, 5]. The methods used for addressing
these issues usually rely on tensor decomposition and modeling [2, 6–17], meaning
that a high-dimension problem is rewritten as a combination of lower-dimension
structures, using the Kronecker product decomposition [18].

In the context of multilinear forms identification, a few approaches were proposed
recently, addressing the cases when the large system is decomposed into two or three
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smaller components (i.e., bilinear and trilinear forms, respectively) [10, 17–23]. The
aforementioned solutions outperform their conventional counterparts, offering at the
same time a lower computational complexity.

Motivated by the appealing performance of these previous developments, we
extended the tensor decomposition technique to higher-order systems, and in this
framework, this chapter presents a part of the work and results obtained recently by the
authors in the context of multilinear system identification. An iterative Wiener filter
and a family of LMS-based algorithms tailored for multilinear forms are presented. For
more details on the results summarized here, the works [24–26] can be consulted.

Related to the work presented here, several other tensor-based solutions relying on
the recursive least-squares (RLS) algorithm were also developed recently [27, 28].
Possible applications of such system identification frameworks can be encountered in
topics such as big data [29], machine learning [14], but they may be also useful in
nonlinear acoustic echo cancelation [30, 31], source separation [13, 32, 33], channel
equalization [12, 34], array beamforming [16, 35], blind identification [36], object
recognition [37, 38], and cardiac applications [39].

The rest of this chapter is organized in the following way. In Section 2, we intro-
duce the system model for the multiple-input/single-output (MISO) system identifi-
cation problem. In this context, Section 3 presents an iterative Wiener filter tailored
for the identification of multilinear systems. Next, in Section 4, an LMS-based algo-
rithm is presented, together with its normalized version, and then, in Section 5, the
performance of these algorithms is proved through simulations. Finally, conclusions
are drawn in Section 6.

2. System model in the multilinear framework

Let us consider a MISO system, whose output signal at the time index t can be
written as

y tð Þ ¼
XL1

l1¼1

XL2

l2¼1
⋯
XLN

lN¼1
xl1l2l3 … lN tð Þh1,l1h2,l2⋯hN,lN , (1)

where the individual channels are modeled by the vectors:

hi ¼ hi,1 hi,2 ⋯ hi,Li½ �T, i ¼ 1, 2, … ,N, (2)

the superscript T denotes the transpose operator, and the input signals may be
expressed in a tensorial form as X tð Þ∈L1�L2�L3�⋯�LN , with the elements
Xð Þl1l2 … lN tð Þ ¼ xl1l2 … lN tð Þ. Consequently, the output signal becomes

y tð Þ ¼ X tð Þ�1hT
1�2hT

2�3⋯�NhT
N, (3)

where �i (for i ¼ 1, 2, … ,N) denotes the mode-i product [7]. It can be said that y tð Þ is
a multilinear form because it is a linear function of each of the vectors
hi, i ¼ 1, 2, … ,N, when the other N � 1 vectors are fixed. In this context, y tð Þmay be
regarded as an extension of the bilinear form [19]. Next, let us define

H ¼ h1 ∘h2 ∘⋯ ∘hN, (4)
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where ∘ is the vector outer product, i.e., h1 ∘h2 ¼ h1hT
2 , h1 ∘h2ð Þi,j ¼ h1,ih2,j,

vec h1 ∘h2ð Þ ¼ h2 ⊗h1, and

Hð Þl1,l2,… ,lN ¼ h1,l1h2,l2⋯hN,lN , (5)

vec Hð Þ ¼ hN ⊗hN�1 ⊗⋯⊗h1, (6)

where ⊗ denotes the Kronecker product and vec �ð Þ is the vectorization operation:

vec Hð Þ ¼
vec H::… :1ð Þ

⋮
vec H::… :LNð Þ

2
64

3
75, (7)

vec H::… :lið Þ ¼
vec H::… :1,ið Þ

⋮
vec H::… :LN�1,i
� �

2
64

3
75, (8)

and so on, where H::… :li ∈L1�L2�L3�⋯�LN�1 represent the frontal slices of the tensorH.
Therefore, the output signal can be expressed as

y tð Þ ¼ vecT Hð Þvec X tð Þ½ �, (9)

where

vec X tð Þ½ � ¼
vec X::… :1 tð Þ½ �

⋮
vec X::… :LN tð Þ½ �

2
64

3
75 ¼ x tð Þ, (10)

with X::… :li tð Þ∈L1�L2�L3�⋯�LN�1 being the frontal slices of the tensor X tð Þ. Let us
denote the global impulse response of length L1L2⋯LN as

g ¼ vec Hð Þ ¼ hN ⊗hN�1 ⊗⋯⊗h1: (11)

Here, an observation can be made: the solution of the decomposition in Eq. (11) is
not unique [17, 24]. Despite this, no scaling ambiguity occurs in the identification of
the global impulse response, g.

Using Eqs. (9)–(11), we may rewrite y tð Þ as

y tð Þ ¼ gTx tð Þ: (12)

We aim to identify the global impulse response, g. We can define the reference (or
desired) signal as

d tð Þ ¼ gTx tð Þ þw tð Þ, (13)

where w tð Þ denotes the additive noise, which is uncorrelated with the input signals,
and whose variance is

σ2d ¼ gTE x tð ÞxT tð Þ� �
g þ σ2w ¼ gTRg þ σ2w, (14)
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with E �½ � denoting mathematical expectation, R ¼ E x tð ÞxT tð Þ� �
, and σ2w ¼ E w2 tð Þ½ �.

Next, the error signal can be defined as

e tð Þ ¼ d tð Þ � ĝTx tð Þ, (15)

where ĝ denotes an estimate of the global impulse response.
The optimization criterion is the minimization of the mean-squared error (MSE),

which can be defined using Eq. (15):

J ĝ
� � ¼ E e2 tð Þ� � ¼ σ2d � 2ĝTpþ ĝTRĝ, (16)

where p ¼ E d tð Þx tð Þ½ � denotes the cross-correlation vector between d tð Þ and x tð Þ. The
solution to this minimization problem is given by the popular Wiener filter [40]:

ĝW ¼ R�1p: (17)

Relation (17) provides the global impulse response. In order to obtain the N
coefficient vectors hi, i ¼ 1, 2, … ,N, the nonlinear equation set containing L1L2⋯LN
equations with L1 þ L2 þ⋯þ LN scalar variables needs to be solved:

ĝW ¼ ĥW,N ⊗ ĥW,N�1 ⊗⋯⊗ ĥW,1: (18)

3. Multilinear iterative Wiener filter

It can be easily checked that

g ¼ hN ⊗hN�1 ⊗⋯⊗h1

¼ hN ⊗hN�1 ⊗⋯⊗ IL1ð Þh1

¼ hN ⊗hN�1 ⊗⋯⊗h3 ⊗ IL2 ⊗h1ð Þh2

⋮
¼ hN ⊗hN�1 ⊗⋯⊗ ILi ⊗hLi�1 ⊗⋯⊗h1ð Þhi

⋮
¼ ILN ⊗hN�1 ⊗⋯⊗h1ð ÞhN,

(19)

where ILi denotes the identity matrix of size Li � Li.
Hence, the cost function given by Eq. (16) may be expressed in N equivalent

forms:

J ĥ1, ĥ2, … , ĥN

� �
¼ σ2d � 2ĝTpþ ĝTRĝ

¼ σ2d � 2ĥ
T
i ĥN ⊗ ĥN�1 ⊗⋯⊗ ILi ⊗ ĥLi�1 ⊗⋯⊗ ĥ1

� �T
p

þĥT
i ĥN ⊗ ĥN�1 ⊗⋯⊗ ILi ⊗ ĥLi�1 ⊗⋯⊗ ĥ1

� �T

�R ĥN ⊗ ĥN�1 ⊗⋯⊗ ILi ⊗ ĥLi�1 ⊗⋯⊗ ĥ1

� �
ĥi

¼ σ2d � 2ĥ
T
i pi þ ĥ

T
i Riĥi, i ¼ 1, 2, … ,N,

(20)
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where

pi ¼ ĥN ⊗ ĥN�1 ⊗⋯⊗ ILi ⊗ ĥLi�1 ⊗⋯⊗ ĥ1

� �T
p, (21)

Ri ¼ ĥN ⊗ ĥN�1 ⊗⋯⊗ ILi ⊗ ĥLi�1 ⊗⋯⊗ ĥ1

� �T
R

� ĥN ⊗ ĥN�1 ⊗⋯⊗ ILi ⊗ ĥLi�1 ⊗⋯⊗ ĥ1

� �
:

(22)

If all coefficients except ĥi are kept fixed, we may define

Jĥ1,ĥ2,… ,ĥi�1,ĥiþ1,… ,ĥN
ĥi

� �
¼ σ2d � 2ĥ

T
i pi þ ĥ

T
i Riĥi,

i ¼ 1, 2, … ,N:
(23)

The minimization of this convex cost function with respect to ĥi yields

ĥi ¼ R�1i pi, i ¼ 1, 2, … ,N: (24)

Using this result, an iterative approach can be derived. A set of initial values

ĥ
0ð Þ
i , i ¼ 1, 2, … ,N are chosen for starting the algorithm, and then we can compute

p 0ð Þ
1 ¼ ĥ

0ð Þ
N ⊗ ĥ

0ð Þ
N�1 ⊗⋯⊗ ĥ

0ð Þ
2 ⊗ ÎL1

� �T
p, (25)

R 0ð Þ
1 ¼ ĥ

0ð Þ
N ⊗ ĥ

0ð Þ
N�1 ⊗⋯⊗ ĥ

0ð Þ
2 ⊗ ÎL1

� �T
R ĥ

0ð Þ
N ⊗ ĥ

0ð Þ
N�1 ⊗⋯⊗ ĥ

0ð Þ
2 ⊗ ÎL1

� �
, (26)

Jĥ2,ĥ3,… ,ĥN
ĥ

1ð Þ
1

� �
¼ σ2d � 2 ĥ

1ð Þ
1

� �T
p 0ð Þ
1 þ ĥ

1ð Þ
1

� �T
R 0ð Þ

1 ĥ
1ð Þ
1

� �
: (27)

The minimization of the cost function yields

ĥ
1ð Þ
1 ¼ R 0ð Þ

1

� ��1
p 0ð Þ
1 : (28)

Using ĥ
1ð Þ
1 and ĥ

0ð Þ
i , i ¼ 3, … ,N, we can now compute ĥ

1ð Þ
2 . Then, the cost function

becomes

Jĥ1,ĥ3,… ,ĥN
ĥ

1ð Þ
2

� �
¼ σ2d � 2 ĥ

1ð Þ
2

� �T
p 1ð Þ
2 þ ĥ

1ð Þ
2

� �T
R 1ð Þ

2 ĥ
1ð Þ
2

� �
, (29)

where

p 1ð Þ
2 ¼ ĥ

0ð Þ
N ⊗ ĥ

0ð Þ
N�1 ⊗⋯⊗ ĥ

0ð Þ
3 ⊗ ÎL2 ⊗ ĥ

1ð Þ
1

� �T
p, (30)

R 1ð Þ
2 ¼ ĥ

0ð Þ
N ⊗ ĥ

0ð Þ
N�1 ⊗⋯⊗ ĥ

0ð Þ
3 ⊗ ÎL2 ĥ

1ð Þ
1

� �T
R ĥ

0ð Þ
N ⊗ ĥ

0ð Þ
N�1 ⊗⋯⊗ ĥ

0ð Þ
3 ⊗ ÎL2 ĥ

1ð Þ
1

� �
:

(31)

The minimization of the cost function yields
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ĥ
1ð Þ
2 ¼ R 1ð Þ

2

� ��1
p 1ð Þ
2 : (32)

All the other estimates ĥ
1ð Þ
i , i ¼ 3, 4, … ,N can be computed in a similar manner. By

further iterating up to iteration n, the estimates of the N vectors are obtained. This
minimization technique is called “block coordinate descent” [41].

4. LMS and NLMS algorithms for multilinear forms

The limitations of the Wiener filter (e.g., matrix inversion, statistics estimation)
can restrict the applicability of the previously presented approach in real-world situ-
ations (for example, in nonstationary conditions, or when real-time processing is
needed). Therefore, a better approach may be represented by adaptive filters. In this
context, the well-known least-mean-square (LMS) algorithm is among the most pop-
ular solutions, due to its simplicity. In the following, a family of LMS-based algorithms
for multilinear forms identification is presented.

By using the estimated impulse responses ĥi tð Þ, i ¼ 1, 2, … ,N, the corresponding
a priori error signals can be defined

eĥ2ĥ3 … ĥN
tð Þ ¼ d tð Þ � ĥ

T
1 t� 1ð Þxĥ2ĥ3 … ĥN

tð Þ, (33)

eĥ1ĥ3 … ĥN
tð Þ ¼ d tð Þ � ĥ

T
2 t� 1ð Þxĥ1ĥ3 … ĥN

tð Þ, (34)

⋮

eĥ1ĥ2 … ĥN�1
tð Þ ¼ d tð Þ � ĥ

T
N t� 1ð Þxĥ1ĥ2 … ĥN�1

tð Þ, (35)

where

xĥ2ĥ3 … ĥN
tð Þ ¼ ½ĥN t� 1ð Þ⊗ ĥN�1 t� 1ð Þ⊗⋯⊗ ĥ2 t� 1ð Þ⊗ IL1 �x tð Þ, (36)

xĥ1ĥ3 … ĥN
tð Þ ¼ ½ĥN t� 1ð Þ⊗ ĥN�1 t� 1ð Þ⊗⋯⊗ ĥ3 t� 1ð Þ⊗ IL2 ⊗ ĥ1 t� 1ð Þ�x tð Þ, (37)

⋮

xĥ1ĥ2 … ĥN�1
tð Þ ¼ ½ILN ⊗ ĥN�1 t� 1ð Þ⊗⋯⊗ ĥ2 t� 1ð Þĥ1 t� 1ð Þ�x tð Þ: (38)

We can easily check that eĥ2ĥ3 … ĥN
tð Þ ¼ eĥ1ĥ3 … ĥN

tð Þ ¼ … ¼ eĥ1ĥ2 … ĥN�1
tð Þ. Hence, the

LMS updates of the individual filters will be

ĥ1 tð Þ ¼ ĥ1 t� 1ð Þ � μĥ1

2
�
∂e2

ĥ2ĥ3 … ĥN
tð Þ

∂ĥ1 t� 1ð Þ
¼ ĥ1 t� 1ð Þ þ μĥ1

xĥ2ĥ3 … ĥN
tð Þeĥ2ĥ3 … ĥN

tð Þ,
(39)

ĥ2 tð Þ ¼ ĥ2 t� 1ð Þ � μĥ2

2
�
∂e2

ĥ1ĥ3 … ĥN
tð Þ

∂ĥ2 t� 1ð Þ
¼ ĥ2 t� 1ð Þ þ μĥ2

xĥ1ĥ3 … ĥN
tð Þeĥ1ĥ3 … ĥN

tð Þ,
⋮

(40)
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ĥN tð Þ ¼ ĥN t� 1ð Þ � μĥN

2
�
∂e2

ĥ1ĥ2 … ĥN�1
tð Þ

∂ĥN t� 1ð Þ
¼ ĥN t� 1ð Þ þ μĥN

xĥ1ĥ2 … ĥN�1
tð Þeĥ1ĥ2 … ĥN�1

tð Þ,
(41)

where μĥi
>0, i ¼ 1, 2, … ,N represent the step-size parameters. Relations (39–41)

describe the LMS algorithm for multilinear forms (LMS-MF). The initialization of the
estimated impulse responses could be

ĥ1 0ð Þ ¼ 1 0 ⋯ 0½ �T, (42)

ĥk 0ð Þ ¼ 1
Lk

1 1 ⋯ 1½ �T, k ¼ 2, 3, … ,N: (43)

The global filter estimate is obtained as

ĝ tð Þ ¼ ĥN tð Þ⊗ ĥN�1 tð Þ⊗⋯⊗ ĥ1 tð Þ: (44)

We may also identify the global impulse response using the classical LMS algorithm:

ĝ tð Þ ¼ ĝ t� 1ð Þ þ μĝx tð Þe tð Þ, (45)

e tð Þ ¼ d tð Þ � ĝ t� 1ð Þx tð Þ, (46)

where μĝ denotes the global step-size parameter, but this would involve a single long-
length adaptive filter.

When choosing the constant values of the step-size parameters from Eqs. (39)–
(41), we need to consider the compromise between convergence rate and steady-state
misadjustment. In certain cases, it can be more useful to have variable step-size
parameters. Hence, the update equations become

ĥ1 tð Þ ¼ ĥ1 t� 1ð Þ þ μĥ1
tð Þxĥ2ĥ3 … ĥN

tð Þeĥ2ĥ3 … ĥN
tð Þ, (47)

ĥ2 tð Þ ¼ ĥ2 t� 1ð Þ þ μĥ2
tð Þxĥ1ĥ3 … ĥN

tð Þeĥ1ĥ3 … ĥN
tð Þ, (48)

⋮

ĥN tð Þ ¼ ĥN t� 1ð Þ þ μĥN
tð Þxĥ1ĥ2 … ĥN�1

tð Þeĥ1ĥ2 … ĥN�1
tð Þ: (49)

Then, the a posteriori error signals can be defined as

εĥ2ĥ3 … ĥN
tð Þ ¼ d tð Þ � ĥ

T
1 tð Þxĥ2ĥ3 … ĥN

tð Þ, (50)

εĥ1ĥ3 … ĥN
tð Þ ¼ d tð Þ � ĥ

T
2 tð Þxĥ1ĥ3 … ĥN

tð Þ, (51)

⋮

εĥ1ĥ2 … ĥN�1
tð Þ ¼ d tð Þ � ĥ

T
N tð Þxĥ1ĥ2 … ĥN�1

tð Þ: (52)

After replacing Eq. (39) in Eq. (50), Eq. (40) in Eq. (51), and Eq. (41) in Eq. (52), and
then canceling the a posteriori error signals, we get
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eĥ2ĥ3 … ĥN
tð Þ 1� μĥ1

tð ÞxT
ĥ2ĥ3 … ĥN

tð Þxĥ2ĥ3 … ĥN
tð Þ

h i
¼ 0, (53)

eĥ1ĥ3 … ĥN
tð Þ 1� μĥ2

tð ÞxT
ĥ1ĥ3 … ĥN

tð Þxĥ1ĥ3 … ĥN
tð Þ

h i
¼ 0, (54)

⋮

eĥ1ĥ2 … ĥN�1
tð Þ 1� μĥN

tð ÞxT
ĥ1ĥ2 … ĥN�1

tð Þxĥ1ĥ2 … ĥN�1
tð Þ

h i
¼ 0: (55)

We assume that eĥ2ĥ3 … ĥN
tð Þ 6¼ 0, eĥ1ĥ3 … ĥN

tð Þ 6¼ 0, … , eĥ1ĥ2 … ĥN�1
tð Þ 6¼ 0. Hence, the

step-sizes become

μĥ1
tð Þ ¼ 1

xT
ĥ2ĥ3 … ĥN

tð Þxĥ2ĥ3 … ĥN
tð Þ , (56)

μĥ2
tð Þ ¼ 1

xT
ĥ1ĥ3 … ĥN

tð Þxĥ1ĥ3 … ĥN
tð Þ , (57)

⋮

μĥN
tð Þ ¼ 1

xT
ĥ1ĥ2 … ĥN�1

tð Þxĥ1ĥ2 … ĥN�1
tð Þ : (58)

In the numerators of Eqs. (56)–(58), the normalized step-size parameters
0< αĥi

< 1, i ¼ 1, 2, … ,N can be used to achieve a good compromise between
convergence rate and misadjustment. Some regularization constants denoted by
δĥi

>0, i ¼ 1, 2, … ,N are also introduced in the denominators of the step-sizes in
order to ensure robust adaptation. Consequently, we obtain the update equations of
the normalized LMS (NLMS) algorithm for multilinear forms (NLMS-MF):

ĥ1 tð Þ ¼ ĥ1 t� 1ð Þ þ αĥ1
xĥ2ĥ3 … ĥN

tð Þeĥ2ĥ3 … ĥN
tð Þ

δĥ1
þ xT

ĥ2ĥ3 … ĥN
tð Þxĥ2ĥ3 … ĥN

tð Þ , (59)

ĥ2 tð Þ ¼ ĥ2 t� 1ð Þ þ αĥ2
xĥ1ĥ3 … ĥN

tð Þeĥ1ĥ3 … ĥN
tð Þ

δĥ2
þ xT

ĥ1ĥ3 … ĥN
tð Þxĥ1ĥ3 … ĥN

tð Þ , (60)

⋮

ĥN tð Þ ¼ ĥN t� 1ð Þ þ
αĥN

xĥ1ĥ2 … ĥN�1
tð Þeĥ1ĥ2 … ĥN�1 tð Þ

δĥN
þ xT

ĥ1ĥ2 … ĥN�1
tð Þxĥ1ĥ2 … ĥN�1

tð Þ : (61)

The initialization of the individual impulse responses can be done using
Eqs. (42, 43). We may also identify the global impulse response using the regular
NLMS algorithm:

ĝ tð Þ ¼ ĝ t� 1ð Þ þ αĝx tð Þe tð Þ
xT tð Þx tð Þ þ δĝ

, (62)

where 0< αĝ ≤ 1 denotes the normalized step-size parameter, δĝ >0 represents the
regularization constant, and e tð Þ is defined in Eq. (46). However, this would involve a
single (long length) adaptive filter, with L ¼ L1L2⋯LN .
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5. Experimental results

The purpose of this section is to illustrate through simulations the improved
performance of the proposed solutions for the identification of multilinear forms. We
performed experiments involving MISO system identification. As input signals, we
used white Gaussian noises and AR(1) processes, obtained by filtering white Gaussian
noises through a first-order system with the transfer function 1= 1� 0:99z�1ð Þ. The
noise is white and Gaussian, having the variance equal to σ2w ¼ 0:01. We use two
different orders of the system (N ¼ 4 and N ¼ 5). The first individual impulse
response, h1, of length L1 ¼ 16, is formed using the first 16 coefficients of the first
network echo path from the ITU-T G168 Recommendation [42]. The second impulse
response, h2, of length L2 ¼ 8, is randomly generated from a Gaussian distribution,
whereas the other three impulse responses, h3, h4, and h5, of lengths L3 ¼ L4 ¼ 4 and
L5 ¼ 2, respectively, are obtained using an exponential decay based on the rule

h j,l j ¼ al j�1j , with j ¼ 3, 4, 5, where a j takes the values 0.9, 0.5, and 0.1, respectively.
Hence, the global impulse responses g, computed using Eq. (11), have lengths 2048,
when N ¼ 4, and 4096, when N ¼ 5. Figure 1 illustrates the individual impulse
responses h1, h2, h3, and h4, as well as the resulting global impulse response
g ¼ h4 ⊗h3 ⊗h2 ⊗h1, in the case when N ¼ 4.

The measure of performance is the normalized misalignment (in dB) for the

identification of the global impulse response, computed as 20 log 10 g � ĝ nð Þ�� ��
2= g
�� ��

2

h i
.

Figure 1.
Impulse responses used in simulations of the multiple-input/single-output (MISO) system identification scenario
(for N ¼ 4): (a) h1 (of length L1 ¼ 16) contains the first 16 coefficients of the first impulse response from G168
recommendation [42], (b) h2 (of length L2 ¼ 8) is a randomly generated impulse response, (c) h3 (of length
L3 ¼ 4) has the coefficients computed as h3,l3 ¼ 0:9l3�1, with l3 ¼ 1, 2, … ,L3, (d) h4 (of length L4 ¼ 4) has the
coefficients computed as h4,l4 ¼ 0:5l4�1, with l4 ¼ 1, 2, … ,L4, and (e) g (of length L ¼ L1L2L3L4 ¼ 2048) is the
global impulse response, which results based on Eq. (11).
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A sudden change in the sign of the coefficients of h1 is introduced in themiddle of each
experiment,with the goal of observing the tracking capabilities of the proposed algorithms.

First, we aim to show comparatively the performances of the LMS-MF and LMS
algorithms. When choosing the step-size parameter values, we need to take into
account the theoretical upper bound, which for the conventional LMS is 2= Lσ2x

� �
,

where σ2x is the input signal’s variance [40]. In practical scenarios, this limit may not
be usable, due to stability issues. The step-size parameters for the LMS-MF and LMS
algorithms were chosen in our simulations in such a manner that similar misalignment
values are obtained, in order to compare their convergence rate and tracking. The
largest value of the step-size parameter for the conventional LMS algorithm is chosen
close to its stability limit, such that the fastest convergence possible is obtained.

Figure 2 shows the case when N ¼ 4 and the input signals are white Gaussian
noises. The resulting global filter length is L ¼ 2048. It can be seen that the LMS-MF
achieves a higher convergence rate and faster tracking as compared to the conven-
tional LMS algorithm. Of course, when the value of the step-size parameter decreases,
the misalignment decreases, but at the same time, the convergence becomes slower.

Next, in Figure 3, N ¼ 4 and the input signals are highly-correlated AR(1) pro-
cesses. The performance gain of the LMS-MF with respect to the conventional LMS
algorithm in terms of both convergence rate/tracking and steady-state misalignment
is even higher in this scenario.

When the system order increases, the improvement in performance brought by
the LMS-MF is even more apparent. This can be seen in Figure 4, where N ¼ 5 and
the input signals are AR(1) processes. The resulting global impulse response length is
L ¼ 4096. It is easily observed that the proposed algorithm is superior to the conven-
tional LMS in terms of both convergence rate/tracking and misalignment.

Figure 2.
Performance of the LMS-MF and LMS algorithms (using different step-size parameters), for the identification of
the global impulse response g. The input signals are white Gaussian noises, N ¼ 4, and L ¼ 2048.
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Figure 3.
Performance of the LMS-MF and LMS algorithms (using different step-size parameters), for the identification of
the global impulse response g. The input signals are AR(1) processes, N ¼ 4, and L ¼ 2048.

Figure 4.
Performance of the LMS-MF and LMS algorithms (using different step-size parameters), for the identification of
the global impulse response g. The input signals are AR(1) processes, N ¼ 5, and L ¼ 4096.
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In the following, we aim to illustrate the performance of the NLMS-MF and NLMS
algorithms in the identification of the global system. Since the step-size parameter
does no longer have a constant value, the normalized algorithms can work better in
nonstationary environments. The fastest-convergence bound for the value of the
normalized step-size parameter of the conventional NLMS algorithm is 1 [40].

Figure 5 illustrates the case when the inputs are white Gaussian noises and N ¼ 4,
leading to a length of the global system of L ¼ 2048. Similar to the case of the LMS-
MF and LMS algorithms from Figure 2, it can be concluded that the performance of
the NLMS-MF algorithm is significantly better than the one of its conventional coun-
terparts. This is even more apparent in the case of smaller normalized step-size values.

The improvement offered by the proposed approach is even more significant for
correlated inputs. In Figure 6, the input signals are AR(1) processes. It is noticed that
even when the NLMS-MF algorithm uses lower values for the normalized step-sizes, it
can still outperform the NLMS algorithm working in the fastest convergence mode.

The same conclusion applies when the order N is increased. Figure 7 shows the
case when N ¼ 5 and, hence, the length of the global impulse response is L ¼ 4096.
Again, the NLMS-MF algorithm achieves a significantly better convergence rate and
tracking with respect to the conventional NLMS algorithm.

Next, we aim to show the influence of the normalized step-size values on the
performance of the proposed algorithm. In Figure 8, the order of the system is N ¼ 4
and the input signals are AR(1) processes. As it was expected, lower values of the
normalized step-sizes improve the misalignment, but at the cost of a slower conver-
gence and tracking.

The last experiment involving the NLMS-MF algorithm aims to show the perfor-
mance in the case when the normalized step-size parameters αi (i ¼ 1, 2, … ,N) take
different values for each individual filter. In Figure 9, the value of the normalized

Figure 5.
Performance of the NLMS-MF and NLMS algorithms (using different normalized step-size parameters), for the
identification of the global impulse response g. The input signals are white Gaussian noises, N ¼ 4, and L ¼ 2048.
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Figure 6.
Performance of the NLMS-MF and NLMS algorithms (using different normalized step-size parameters), for the
identification of the global impulse response g. The input signals are AR(1) processes, N ¼ 4, and L ¼ 2048.

Figure 7.
Performance of the NLMS-MF and NLMS algorithms (using different normalized step-size parameters), for the
identification of the global impulse response g. The input signals are AR(1) processes, N ¼ 5, and L ¼ 4096.
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Figure 8.
Performance of the NLMS-MF algorithm using different normalized step-size parameters (with equal values of
αi, i ¼ 1, 2, … ,N), for the identification of the global impulse response g. The input signals are AR(1) processes,
N ¼ 4, and L ¼ 2048.

Figure 9.
Performance of the NLMS-MF algorithm using different normalized step-size parameters (with different values of
αi, i ¼ 1, 2, … ,N), for the identification of the global impulse response g. The input signals are AR(1) processes,
N ¼ 4, and L ¼ 2048.
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step-size parameter for the first filter, of highest length, L1, is α1 ¼ 0:25, whereas the
other normalized step-sizes α j, j ¼ 2, 3, 4 are varied. The system order is N ¼ 4 and
the input signals are AR(1) processes. The compromise between convergence rate and
misalignment can be seen again. Since the convergence is mostly influenced by the
individual filter with the highest length [20], different values of the normalized
step-sizes may be used in different scenarios.

Due to the important improvement in performance brought by the adaptive
tensor-based LMS algorithms, observed through experiments, these algorithms may
represent appealing solutions for the identification of long-length separable system
impulse responses.

6. Conclusions

In this chapter, we have presented a decomposition-based approach for dealing
with the identification of high-dimension MISO systems. Unlike the conventional
method, which is based on the identification of the global system impulse response,
our solution focuses on regarding the system as an N-order tensor and thus estimating
N shorter filters. At the end, the solutions are combined (“tensorized” together) into
the original high-dimension tensor. Based on the tensor decomposition technique, an
iterative Wiener filter was proposed, along with a family of LMS-based algorithms
suitable for the identification of such systems, also called multilinear systems. In
addition to the lower computational complexity, the proposed solutions achieve supe-
rior performance as compared to their conventional counterparts from the point of
view of convergence rate, tracking capability, and steady-state misadjustment.
Experiments have also shown the performance improvement of the proposed adaptive
algorithms for multilinear forms in long-length system identification in different
scenarios, even for highly correlated input signals.
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Chapter 3

Evaluation of Principal Component
Analysis Variants to Assess Their
Suitability for Mobile Malware
Detection
Padmavathi Ganapathi, Shanmugapriya Dhathathri and
Roshni Arumugam

Abstract

Principal component analysis (PCA) is an unsupervised machine learning
algorithm that plays a vital role in reducing the dimensions of the data in building an
appropriate machine learning model. It is a statistical process that transforms the data
containing correlated features into a set of uncorrelated features with the help of
orthogonal transformations. Unsupervised machine learning is a concept of self-
learning method that involves unlabelled data to identify hidden patterns. PCA con-
verts the data features from a high dimensional space into a low dimensional space.
PCA also acts as a feature extraction method since it transforms the ‘n’ number of
features into ‘m’ number of principal components (PCs; m < n). Mobile Malware is
increasing tremendously in the digital era due to the growth of android mobile users
and android applications. Some of the mobile malware are viruses, Trojan horses,
worms, adware, spyware, ransomware, riskware, banking malware, SMS malware,
keylogger, and many more. To automate the process of detecting mobile malware
without human intervention, machine learning methods are applied to discover the
malware more precisely. Specifically, unsupervised machine learning helps to uncover
the hidden patterns to detect anomalies in the data. In discovering hidden patterns of
malware, PCA is an important dimensionality reduction technique that can be applied
to transform the features into PCs containing important feature values. So, by
implementing PCA, the correlated features are transformed into uncorrelated features
automatically to explore the anomalies in the data effectively. This book chapter
explains all the variants of the PCA, including all linear and non-linear methods of
PCA and their suitability in applying to mobile malware detection. A case study on
mobile malware detection with variants of PCA using machine learning techniques in
CICMalDroid_2020 dataset has been experimented. Based on the experimental
results, for the given dataset, normal PCA is suitable to detect the malware data points
and forms an optimal cluster.

Keywords: cyber security, dimensionality reduction, machine learning, mobile
malware, principal component analysis, variants of PCA
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1. Introduction

PCA is a statistical technique for compressing the content of large datasets into a
smaller number of summary indices that can be examined and evaluated more quickly.
Principal component analysis (PCA) is a multivariate statistical methodology that is
frequently utilized nowadays [1]. It is a factor analysis-based statistical method that is
widely used in the disciplines of pattern recognition and signal processing. It is a
dimensionality reduction technique that condenses a large number of variables into a
smaller set while maintaining the majority of the larger dataset. Because smaller
datasets are easier to examine and visualize, machine learning algorithms can assess
data more efficiently and rapidly without dealing with extra impediments.

PCA is also commonly employed in exploratory data analysis and prediction model
construction. It is frequently used for dimensionality reduction, which involves
projecting each data point onto only the first few principal components (PCs) in order
to obtain lower-dimensional data with the least amount of variance. The first PC is a
direction that lowers the predicted data variance. The ith PC minimizes the variance of
the projected data by being the inverse of the first i� 1 PC.

The primary components of the data covariance matrix can be proven to be
eigenvectors. As a result, Eigen decomposition of the data covariance matrix or sin-
gular value decomposition of the data matrix is typically used to extract primary
components. PCA, closely related to factor analysis, is the most fundamental of the
real eigenvector-based multivariate techniques. On the other hand, factor analysis
makes additional domain-specific assumptions about the underlying structure and
solves matrix eigenvectors. Canonical correlation analysis (CCA) is also tied to PCA.
PCA suggests a new orthogonal coordinate system for defining variance in a single
dataset, whereas CCA proposes coordinate systems for describing cross-covariance
across two datasets.

The purpose of the research is to explore and suggest a suitable type of PCA to reduce
the data dimensions, which helps to identify the malware data points significantly.

2. Concept of PCA

PCA attempts to project high-dimensional data onto the feasible smallest-
dimensional space. PCA takes into account the variance of each character because a
high attribute indicates good class separation, and so minimizes dimensionality. Image
processing, movie recommendation systems, and optimizing power distribution
across numerous communication channels are some of PCA real-world use cases. It
preserves the essential variables while rejecting the less important ones because it is a
feature extraction approach [2].

The mathematical concepts employed in the PCA are:

• Variance and covariance

• Eigenvalues and eigenvectors

2.1 Common terms used in PCA

The following are the standard terms widely used in the PCA are discussed
below:
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Dimensionality: The dimensionality of a dataset refers to the number of
characteristics or variables in it. It refers to the total number of columns in a
dataset.

Correlation: It expresses the degree to which two variables are intertwined. For
example, when one variable is changed, the other variable is also changed. The
correlation value can be anywhere between �1 and +1. If the variables are
inversely proportional to each other, the result is �1, and if they are directly
proportional to each other, the result is +1.

Orthogonal: As a result, the variables have no relationship with one another, and
their correlation is zero.

Eigen vectors: If Av is the scalar multiple of v and one has a non-zero vector v and
a square matrix M, then v is an eigenvector.

Eigen values: An Eigenvalue is a number that indicates the variance in a specific
direction.

Variance: A variance is used to calculate the fluctuation of data points dispersed
over the multidimensional graph. In mathematics, it is the average squared
deviation from the mean value. The following formula is used to determine
Var(x):

Var xð Þ ¼
P

Xi�XÞ2
�

N
(1)

Covariance: Covariance can determine the degree to which comparable
components from two sets of grouped data move in the same direction. It is used
to uncover relationships and correlations between dataset attributes in layman’s
terms. The following is the formula for calculating the Cov (x, y):

Cov xð Þ ¼
P

Xi � XÞ Yi � Y
� ��

N
(2)

Covariance matrix: The covariance matrix shows how two variables are related.
Principal components: The new set of data variables created from the original
dataset is referred to as PCs. The newly created data variables are pretty valuable
and self-contained. They have access to all of the essential data from the original
variables.

3. Principal components algorithm

As previously said, the PCs are the converted new characteristics or the result of
PCA. The total number of PCs in the dataset is equal or fewer than the total number of
original features. Some of the features of these primary components are as follows:

• The significant component must be a linear combination of the original features,
and these components must be orthogonal, meaning there must be no link
between the two variables.

• As the number of components increases from 1 to n, their relevance decreases,
showing that the PC1 is the most essential and the PCn is the least important.

49

Evaluation of Principal Component Analysis Variants to Assess Their Suitability…
DOI: http://dx.doi.org/10.5772/intechopen.105418



3.1 Steps involved in the PCA algorithm

To carry out the process of PCA the following are the five significant steps to be
followed [3]:

I. Standardization

II. Covariance matrix computation

III. Computation of eigenvectors and eigenvalues of the covariance matrix to
identify the PCs

IV. Feature vector creation

V. Recast the data along the axes of the PC

3.1.1 Standardization

This step normalizes a set of continuous beginning variables so that their effects on
the analysis are consistent.

Standardization is essential before PCA since it is sensitive to the variances of the
original variables. Suppose the initial variable ranges differ significantly. In that case,
the variables with more comprehensive ranges will outnumber those with smaller
ranges (for example, a variable ranging from 0 to 100 will outnumber a variable
ranging from 0 to 1), resulting in a skewed outcome. As a result, converting the
data to equal scales could be a possible solution to this issue. Subtracting the mean
and dividing by the standard deviation for each variable value can be done
numerically.

Z ¼ Value�mean
Standard deviation

(3)

After the standardization is complete, all variables will be changed to the
same scale.

3.1.2 Covariance matrix computation

The goal of this step is to determine how the variables in the input dataset differ
from the mean with each other and whether there is a link between them. Because the
variables may become so intertwined that they contain redundant information, the
covariance matrix is constructed to find these correlations.

The covariance matrix, a symmetric matrix with p� p entries, contains all possible
pairs of starting variables and their covariances (where p is the number of
dimensions). The covariance matrix for a three-dimensional dataset with three
variables x, y, and z is a 3 � 3 matrix of the form:

Cov x, xð Þ Cov x, y
� �

Cov x, zð Þ
Cov y,x

� �
Cov y, y

� �
Cov y, z

� �

Cov z,xð Þ Cov z, y
� �

Cov z, zð Þ
(4)
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The variances of each starting variable are shown on the main diagonal (top left
to bottom right) since a variable covariance with itself equals its variance (Cov(a,
a) = Var(a)). The entries of the covariance matrix are symmetric about the principal
diagonal because covariance is commutative (Cov(a,b) = Cov(b,a)). This shows that
the triangle’s upper and lower triangular parts are equal.

The following are the signs of covariance that are related to correlation:

• If the sign of covariance is positive, the two variables will rise or fall in lockstep
(i.e., correlated with each other)

• When the sign of covariance is negative, one variable rises while the other falls
(i.e., inversely correlated)

3.1.3 Computation of eigenvectors and eigenvalues of the covariance matrix to identify the
principal components

In order to uncover the underlying components of the data, eigenvectors and
eigenvalues are linear algebra concepts that must be computed from the covariance
matrix. Before go into the details of these themes, let us establish what “principal
components” mean.

PCs are new variables created by merging or linearly combining essential variables.
The new variables (i.e., primary components) are uncorrelated due to these combina-
tions, and the majority of the information from the initial variables is squeezed or
compressed into the first components. So, 10-dimensional data provides ten primary
components. However, PCA seeks to place as much information as possible in the first
component, then as little information in the second, and so on, until the result looks
like Figure 1 below.

One can minimize dimensionality without granting too much information by
splitting data into critical components and eliminating components with insufficient
data. The remaining components can be regarded as new variables. Because the
essential components are produced as linear combinations of the original variables,
they are less interpretable and have no significant relevance.

The data directions that explain the most variance, or the lines that include the
most data information, are considered essential components in geometric terms. In

Figure 1.
Principal components vs. percentage of explained variances.
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this case, the higher a line variance, the greater the dispersion of data points, and the
greater the dispersion along a line, the more information it retains. Put another way;
consider the essential components as additional dimensions that provide the proper
viewpoint for perceiving and processing data, making it easier to spot differences
between observations.

3.1.3.1 Constructing principal components with PCA

Because there are as many variables in the data as there are PCs, the first PC is
designed to provide the possible variance in the dataset.

The second major component is determined in the same fashion as the first, except
it must be uncorrelated (i.e., parallel to) and account for the following most signifi-
cant variance. This technique is repeated until the number of variables equals the
number of essential components.

3.1.3.2 Finding Eigen values and Eigen vectors

After one has determined the essential components, let us discuss eigenvalues and
eigenvectors. Remember that eigenvalues and eigenvectors are always obtained in
pairs, with one eigenvalue per eigenvector. In addition, the number is the same as the
number of data dimensions. There are three variables in a three-dimensional dataset.
Hence there are three eigenvectors with three corresponding eigenvalues. PCs are the
eigenvectors of the covariance matrix, and they are the directions of the axis with the
most variation. Eigenvalues are the coefficients associated with eigenvectors, whereas
eigenvalues are the coefficients attached to eigenvectors. The significant components
are ordered in order of significance by arranging the eigenvectors in order of their
eigenvalues, from highest to lowest.

Assume the dataset is two-dimensional, with two variables x and y, and the
covariance matrix eigenvectors and eigenvalues are:

v1 ¼ 0:6778736
0:7351785

λ1 ¼ 1:284028 (5)

v2 ¼ �0:7351785
0:6778736

λ2 ¼ 0:04908323 (6)

The outcome of sorting the eigenvalues in ascending order is > λ2 , suggesting that
the eigenvector of the first PC is v1 and the eigenvector of the second PC is v2. To find
the proportion of variance (information) that each component accounts for, divide
each component eigenvalue by the total eigenvalues. In the scenario mentioned above,
PC1 and PC2 are responsible for 96 and 4% of the data fluctuation.

3.1.4 Feature vector creation

The key components can be identified in order of importance by computing the
eigenvectors and sorting them by their eigenvalues in decreasing order. One must
decide whether to preserve all of these components or reject those with low eigen-
values and then use the remaining ones to construct the feature vector–matrix at this
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phase. As a result, the feature vector is just a matrix with the appropriate components
eigenvectors as columns. Because only p eigenvectors (components) are left out of n,
the final dataset will only have p dimensions.

Combining both eigenvectors v1 and v2 creates a feature vector, as seen in the
example above:

0:6778736 �0:7351785
0:7351785 0:6778736

� �
(7)

Alternatively, one can omit the less relevant eigenvector v2 and solely utilize v1 to
generate a feature vector:

0:6778736
0:7351785

� �
(8)

By eliminating the eigenvector v2, the final dataset dimensionality will be reduced
by one, resulting in a loss of information. The loss will be minimal because v2 only
carried 4% of the data, and v1 will keep 96% of the data.

The individual must decide whether to maintain all components or delete
those not as significant, like in the previous scenario. Because leaving out less
significant components is unnecessary if all one wants to do is explain the data in
terms of new uncorrelated variables (PCs) without attempting to reduce
dimensionality.

3.1.5 Recast the data along the axes of the principal component

The data from previous phases is unchanged except for standardization; all
required is to select the primary components and generate the feature vector; how-
ever, the input dataset is always in terms of the original axes (i.e., in terms of the
initial variables). The third phase, PCA, shifts data from the original axis to the ones
indicated by the significant components using a feature vector constructed from the
covariance matrix eigenvectors. This is done by multiplying the original dataset
transpose by the feature vector transpose. Therefore,

Final dataset ¼ feature vectorTstandardized original datasetT (9)

4. When to apply PCA?

PCA is widely applicable for unsupervised machine learning techniques, which
helps to reduce the dimensions of the large data where the dataset does not contain the
labelled column. The following are some of the situations where the PCA can be
applied [4]:

Case 1: One wants to limit the number of variables but cannot figure out
which ones to leave out entirely?
Case 2: One wants to make sure variables are unrelated to one another?
Case 3: One thought, if the independent variables are less interpretable?
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4.1 Properties of principal components

Suppose the number of primary variables that make up the PCs is less than or equal
to the number of variables or data points. In that case, the PCA is complete. The
following are the characteristics of primary components [5]:

• They are a set of primary data variables projected in various directions and have
qualities similar to those of the original variables.

• In machine learning and data science, dimensionality reduction is a common
technique.

• They are orthogonal.

• As one finds PC one by one, the variance or variation of the PCs reduces. This
means the first PC is the most volatile, while the last PC is the least volatile.

4.2 Applications of PCA

PCA has a wide range of applications, including the following:

• Face recognition

• Computer vision

• Image compression

• Bioinformatics

• Hidden pattern recognition

• Exploratory data analysis

• Noise filtering

• Finance, data mining, psychology, etc.

4.3 Pros and cons of principal component analysis

For any technique, there will be both positive and negative phases. Likewise, in
PCA, its advantages and limitations are the following [6].

4.3.1 Advantages of principal component analysis

Some of the advantages of PCA are:

• Easy to compute

• Speeds up the performance of machine learning algorithms
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• Counteracts the issues of high-dimensional data

• Remove correlated features

• Improves the accuracy of the algorithm

• Reduces overfitting

• Enhance visualization

4.3.2 Limitations of principal component analysis

Some of the limitations of PCA are:

• Independent variables become less interpretable

• Data standardization must perform before PCA

• The trade-off between information loss and dimensionality reduction

• Difficult to evaluate the covariance in an appropriate way

• It is sensitive to scale the features

• PCA is not robust against outliers

• PCA assumes a linear relationship between features

5. Variants of PCA

To overcome the limitations of PCA, there are different types of PCA are available
that suit for the appropriate type of data are listed below [7, 8]:

• Normal PCA

• Sparse PCA

• Randomized PCA

• Incremental PCA

• Kernel PCA

5.1 Normal PCA

PCA in Machine learning is applied for unsupervised learning to reduce the
dimension of the data from high dimensional space to low dimensional space. The
above section discusses the standard normal PCA, which applies to most of the
datasets as a default form of PCA using unsupervised learning. To construct any type

55

Evaluation of Principal Component Analysis Variants to Assess Their Suitability…
DOI: http://dx.doi.org/10.5772/intechopen.105418



of PCA especially for normal PCA the above discussed five significant steps are
involved for dimensionality reduction [9, 10]. The following sessions briefly discuss
the other variants of PCA in machine learning and its characteristics.

5.2 Sparse PCA

One of PCA significant flaws is that the PCs are dense in most circumstances,
implying that the majority of the loadings are non-zero. The model is difficult to
interpret since each significant component is a linear combination of all the original
variables. However, each axis may correspond to a specific gene in machine learning
tasks such as gene analytics. In such instances, one can readily analyse the model and
comprehend the physical meaning of the loading and the PCs if the majority of the
entries in the loadings are zeros. Sparse PCA is a variant of PCA that uses sparse
loading to build interpretable models. In Sparse PCA, each PC is a linear combination
of a subset of the original variables.

5.3 Randomized PCA

The PCs are estimated using the low-rank matrix approximation in traditional
PCA. However, this strategy becomes costly with large datasets and makes the entire
process challenging to scale. One can approximate the first K PCs faster than tradi-
tional PCA by randomizing how the dataset singular value decomposition occurs.

5.4 Incremental PCA

The above-described PCA variants need the entire training dataset to be stored in
memory. Incremental PCA can be employed when the dataset is too huge to fit in
memory. It divides the dataset into mini-batches, each of which can fit into memory,
and then feed each mini-batch to the incremental PCA algorithm one at a time.

5.5 Kernel PCA

A typical linear technique is PCA. It works well with linearly separable datasets.
However, if the dataset contains non-linear relationships, the results will be
unfavourable. Kernel PCA is a technique that uses the “kernel trick” to project linearly
inseparable data into a higher dimension where it may be separated linearly. Many
different kernels are commonly employed, including linear, polynomial, RBF, and
sigmoid.

6. Case study on variants of PCA in mobile malware detection

To explore the dimensionality reduction using normal PCA and its variants for
mobile malware detection in the CICMalDroid_2020 dataset [11] are experimented.
The dataset is taken from the University of New Brunswick (UNB), Canadian Insti-
tute of Cyber Security (CIC). The dataset consists of 11,598 records with 471 feature
attributes. The dataset commences with 17,341 Android samples gathered from
VirusTotal, the Contagio security blog, AMD, MalDozer, and other sources. Samples
were obtained between December 2017 and December 2018. Detecting Android apps
with malicious data points is crucial for cyber security specialists. There are five key
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categories in the dataset includes, Adware, Banking malware, SMS malware,
Riskware, and Benign are the different forms of malicious software. The experiment is
carried out in a Python Jupyter notebook environment using sklearn library [12–16].

6.1 Results of PCA in machine learning for mobile malware detection

The following are the outcomes of normal PCA and variants of PCA where the 471
feature dimensions are reduced into two PCs are visualized below. Figure 2 shows the
importing data into the Python Jupyter notebook environment.

Figure 3 shows the data pre-processing to check whether the data contains any
null values or not. Data pre-processing is an important step in the machine learning
process, and it helps to purify the irrelevant and undefined raw data into the relevant
defined form.

Figure 3 depicts that the dataset does not contain any null values, and it is fit for
further processing (i.e.) from the results value ‘0’indicates there are no null values in
the data.

Figure 4 shows the removal of duplicate data values to ensure the originality of the
dataset. Duplicate data leads to misinterpretation of the results.

Figure 2.
Data import—CICMalDroid_2020 dataset.

Figure 3.
Check if the data contains any null values or not.
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Figure 4 depicts that out of 11,598 records, 72 were duplicated, and the duplicated
records were dropped. After dropping the 72 duplicate records, now the dataset
consists of 11,526 instances with 471 features.

Figure 5 shows the data splitting for training and testing so that the machine
learning model can detect and cluster the mobile malware data points in the dataset.
Splitting the data for training and testing is a significant phase in the machine learning
process. So, the data will be adequately trained and provide the best results in testing,
which helps to derive a high efficacy rate.

Figure 5 explains that the dataset is divided into 70% for training and 30% for
testing (i.e.) out of 11,526 records, 8068 are used for training and 3458 samples are
used for testing the model. Now, the dataset is suitable to perform the PCA with the
machine learning technique.

Figure 6 shows the feature scaling; before applying PCA, one must scale the data
so that the data can be properly scaled within a particular range appropriately to
support data modelling. Without incorporating feature scaling, during the model
development the data takes more time to fit into the prescribed model form.

Figure 6, depicts the method for feature scaling using MinMaxScaler and standard
scalar to bring the scattered data points within a typical specified range. Hence, the
data is further applicable for PCA.

Figure 4.
Drop duplicate values.

Figure 5.
Train and test split.

Figure 6.
Feature scaling.
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Figure 7 shows the normal PCA method used in the dataset to reduce the 471
featured dimensions into two PCs. It also shows that from the explained variance PC1
has more information than PC2. Normal PCA is the default form of PCA, more
suitable for all kinds of data to reduce the dimensions effectively without any infor-
mation loss.

Figure 8 shows the normal PCA results of two PCs as PC1 and PC2.
Figure 8 represents that the total 471 features are reduced into two PCs PC1 and

PC2, without removing any of the data features. This helps to train the data and
develop the machine learning model effectively with less memory consumption.

Figure 9 shows the method of sparse PCA in mobile malware data. Similarly, the
sparse PCA is widely suited for sparse data so that the 471 data features are reduced
into two set of PCs PC1 and PC2.

Figure 10 shows the method of randomized PCA in mobile malware data. Ran-
domized PCA is suitable for big data processing so that the features are randomly
selected to derive the two set of PCs PC1 and PC2.

Figure 11 shows the method of incremental PCA in mobile malware data. Incre-
mental PCA is similar to randomized PCA, but it gradually increases the batch size to
reduce the total number of features into two set of PCs PC1 and PC2.

Figure 12 shows the method of kernel PCA in mobile malware data. Kernel PCA is
widely applicable for non-linear data modelling. It also helps to reduce the dimensions
of the data based on the kernel function like gamma etc. to derive the two or more sets
of PCs PC1and PC2.

In this case study, the 471 data features of CICMalDroid_2020 dataset is
transformed into two set of PCs PC1 and PC2 for all variants of PCA, depending upon
the suitability of the data values.

Figure 7.
Normal PCA.

Figure 8.
Normal PCA with PC1 and PC2.
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Figure 10.
Randomized PCA.

Figure 9.
Sparse PCA.
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6.2 Observations

Based on the results obtained from the variants of PCA for mobile malware detec-
tion depicts that for the given CICMalDroid_2020 dataset is discussed. It is a numer-
ical labelled data that highly supports normal standard PCA technique. It helps to
reduce the dimensions of the PCA from 471 features into two sets of PCs (PC1 and
PC2). It supports to processing the data model quickly and forms the clusters

Figure 11.
Incremental PCA.

Figure 12.
Kernel PCA.
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effectively. Figure 13 shows the group of clusters that discovered the five different
malware involved in the CICMalDroid_2020 dataset based on PC1containing huge
information about the dataset of normal PCA.

Table 1 shows the size of malware samples available under the category of
Adware, Banking malware, SMS malware, Riskware, and Benign.

Hence, the other variants of PCA, such as sparse PCA are applicable for sparse
data, randomized PCA and incremental PCA are suitable for big data processing and
kernel PCA is widely supported by non-linear data modelling. So, depending upon the
type of data and their accessibility, the appropriate type of PCA is incorporated into
machine learning algorithms specifically for unsupervised learning for dimensionality
reduction to develop a suitable predictive model. It also helps to identify the hidden
patterns of the data effectively.

7. Conclusion

This book chapter on “Evaluation of PCA Variants to assess their suitability for
Mobile Malware Detection” describes briefly the concept of PCA, the common

Figure 13.
Class of malwares in the CICMalDroid_2020 dataset.

Class Type of malware Size

1 Adware 1253

2 Banking malware 2100

3 SMS malware 3904

4 Riskware 2546

5 Benign 1795

Table 1.
CICMalDroid_2020 dataset—sample size
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terminologies involved in PCA, PCs in PCA, mathematical properties of PCA, steps
involved in PCA algorithm, explanation about the process of developing the PCA
model in a machine learning perspective, applications of PCA, advantages and limita-
tions of PCA. Different variants of PCA are experimented with a small case study by
exploring the various type of PCA. This helps to find out the suitable variant of PCA
for mobile malware detection in the CICMalDroid_2020 dataset based on the machine
learning framework. As an outcome, for the given dataset, the normal standard PCA
provides the appropriate results for the PCs to discover the malware data points
accurately. Thus, this chapter will be a ready reckoner for the learners to know about
the concept of PCA in machine learning, and its variants suitable for mobile malware
detection are discussed in detail.
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Chapter 4

Principal Component Analysis and
Artificial Intelligence Approaches
for Solar Photovoltaic Power
Forecasting
Souhaila Chahboun and Mohamed Maaroufi

Abstract

In recent years, renewable energy sources have experienced remarkable growth.
However, their spatial and temporal diversity makes their large-scale integration into
the current power grids difficult, as the balance between the electricity output and the
consumption must be maintained at all times. Therefore, it is important to focus on
the resources forecast to enhance the integration of renewable energy sources, such as
solar in this study. In this article, a comparative analysis of two main machine learning
methods was conducted for the prediction of the hourly photovoltaic output power.
Furthermore, since various factors, such as climate variables, can impact the solar
photovoltaic power and complicate the prediction process, the principal component
analysis was employed to investigate the interactions between the multiple predictors
and minimize the dimensionality of the datasets. The prevalent factors were then used
in the predictive models as inputs. This field research is very crucial because the
higher the prediction accuracy, the greater the profit for energy dealers and the lower
the costs for customers.

Keywords: photovoltaic power, machine learning, principal component analysis,
prediction

1. Introduction

The primary driver of the economic progress of a country is energy [1]. Recently,
renewable energy sources have become increasingly popular. Solar energy is gaining
popularity due to its low pollution, great energy efficiency, and adaptability [2].

However, the output power of solar energy is strongly impacted by weather and
other environmental factors, restricting its deployment on a broad scale. In the solar
power generating system, research on photovoltaic (PV) power generation prediction
is consistently one of the most prominent topics of study [3].

The most widely employed a physical model of forecasting is numerical weather
prediction. The numerical weather forecast model is computationally complex due to
the fluctuation and unpredictable character of the atmosphere. Therefore, as the area
of computer science expands and its ability to deal with non-linearity improves,
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machine learning offers a prospective advantage for renewable energy forecasting.
The precision of the input data and the machine learning techniques employed deter-
mine the efficiency of the predictive models [4]. Moreover, even if the input–output
data connection is complex, machine learning methods use historical data sets to
construct a relationship between them. As a result, it is essential to use appropriate
data to address the problem efficiently [5].

In recent years, a growing number of algorithms have been employed in the field
of PV prediction, resulting in ever-improving forecast accuracy. The present state of
PV forecasting techniques can be mainly summed up in Neural Network, Multivariate
Adaptive Regression Splines, Boosting, Bagging, K-nearest-neighbor etc. However,
the large number of variables and irrelevant or redundant information can make
forecasting difficult, necessitating a large amount of computer power and resulting in
inefficient and erroneous results. Feature reduction approaches are presented as a
solution to overcome this challenge [6].

This approach was adopted by a number of researchers. For instance, Souhaila
et al. [7] carried out a principal component analysis (PCA) to decrease the number of
interconnected variables. These dominant factors were then employed in the predic-
tive models as inputs. Qijun et al. [2] employed both PCA and Support Vector
Machine for PV power prediction. Malvoni et al. [8, 9] created a PV forecast model
based on a hybrid PCA– Least-squares support vector machine (LSSVM).

Given the challenges, mentioned above, related to the field of PV power prediction,
the aim of this study is to determine the most effective data and machine learning
algorithms for accurate PV power output forecast. Moreover, this study investigates the
impact of data pre-processing approaches, mainly Yeo-Johnson transformation (YJT),
correlation analysis, and PCA technique, on machine learning prediction accuracy. The
two main machine learning algorithms used in this study are Multiple Linear Regression
and Cubist Regression Finally, the most common error metrics and residual analysis
were used to assess the accuracy of the predictive models.

2. Data preparation

Data preparation is necessary to get the best results from machine learning algo-
rithms. Some machine learning algorithms require data to be in a specific format. As a
result, it is vital to arrange the data so that various machine learning algorithms have
the best chance of solving the studied problem. In our case, two techniques were
employed for data preparation namely Yeo-Johnson transformation (YJT) and corre-
lation analysis.

2.1 Data source

In this study, we used the PV power data from a PV power platform in Morocco,
having a total capacity of 6 KW. For the input data, we made advantage of a free data
source that gives solar energy and meteorological information. The inputs used in our
forecasting models are presented in Tables 1–3:

2.2 Yeo-Johnson transformation

In general, many data include variables with a non-normal distribution (gaussian).
However, they are frequently skewed in their distributions. Preprocessing the
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variables to make them more normal is common when dealing with such data. The
Box-Cox and Yeo-Johnson transformations (YJT) are two well-known methods for
this. Yeo and Johnson (2000) improved the Box-Cox transformation to create a one-
parameter family that can transform both positive and negative variables [10]. YJT is
defined by Eq. (1):

y λð Þ ¼

yþ 1ð Þλ � 1
λ

λ 6¼ 0 and y≥0

ln yþ 1ð Þ λ ¼ 0 and y≥0

� �yþ 1ð Þ2�λ � 1
� �

2� λ
λ 6¼ 2 and y<0

ln �yþ 1ð Þ λ ¼ 2 and y<0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(1)

Parameter Unit Symbol

Module Temperature °C Tm

Efficiency % Eff

Month — Month

Day — Day

Hour — Hour

Table 3.
Supplemental data.

Parameter Unit Symbol

Top of Atmosphere radiation Wh=m2 TOA

Global Horizontal irradiation Wh=m2 GHI

Beam Horizontal irradiation Wh=m2 BHI

Diffuse Horizontal irradiation Wh=m2 DHI

Beam Normal irradiation Wh=m2 BNI

Table 1.
Solar irradiation data.

Parameter Unit Symbol

Relative Humidity % RH

Wind Speed m=s WS

Ambient Temperature °C Tamb

Pressure hPa P

Table 2.
Meteorological data.
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This transformation is ideal for correcting left and right skew when λ> 1 and λ< 1
respectively, whereas when λ ¼ 1, the linear connection is established.

3. Materials and methods

3.1 Correlation analysis

The correlation between the parameters of the model has a significant impact on
the accuracy of the forecasted models. To simplify computations, the correlation of
different inputs with PV power generation was evaluated. The correlation matrix is
calculated with the help of the covariance Eq. (2) and correlation metrics Eq. (3).
Below are the equations:

cov a, bð Þ ¼ 1
N

XN
i¼1

xi � xð Þ � yi � y
� �

(2)

corr a, bð Þ ¼ cov x, yð Þ
s xð Þ � s yð Þ (3)

where x, y represent the means of the x and y values, respectively, and s represents
the standard deviation. It’s used to figure out how dispersed the data is around the
mean value.

3.2 Principal component analysis

The dataset must be pre-processed and dimensionally reduced before the training
of the machine learning models. Principal component analysis (PCA) is a dimension-
ality reduction and feature extraction technique based on linear transformations.
Using an orthogonal transformation, this approach converts correlated variables into
mutually uncorrelated variables. The major components calculated from the Eigen
vector of the covariance matrix can be lower or equal to the original variables. The
first principal components, which reflect a high correlation between input variables,
account for the majority of the variance [11].

3.3 Forecasting models

In this study, we decided to assess the efficiency of two popular machine learning
methods using the R software [12].

3.3.1 Multiple linear regression

Multiple Linear Regression (MLR) is a technique for predicting the power gener-
ated by solar PV panels using a range of predictor variables. The following is the
regression equation (see Eq. (4)):

Y ¼ β0 þ β1X1 þ β2X2 … ::þ βkXk (4)

where X1:X2, … ,Xn are predictor variables and β1,β2, … βn are their coefficients.
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3.3.2 Cubist regression

Cubist (CB) is a rule-based approach that uses building rules to generate regression
solutions. A rule is generated for each leaf in a regression tree, and it is linked to the
data it contains. The linear combination of rules that occurs when all rules are
constructed is used to make final predictions [13]. The CB model incorporates
boosting with training committees, which is comparable to the approach of boosting
by generating a sequence of trees with changed weights successively. The number of
neighbors of the CB model is used to modify the rule-based prediction. The models
created by two linear models in the CB model are written as follows in Eq. (5), [14]:

ŷpar ¼ 1� að Þ � ŷp þ a� ŷc (5)

where ŷc is the forecast of the current model and ŷp is the prediction of the parent
model.

3.4 Error metrics

We randomly divided the data into a training set and a testing one to evaluate the
investigated models and measure their prediction power. Eqs. (6)–(8) establish the
error metrics used to assess the accuracy of the predictive models.

R2 ¼ 1�
Pn

i¼1 Pouti � dPouti
� �2

Pn
i¼1 Pouti � Pout
� �2 (6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Pouti � dPouti
� �2s

(7)

MAE ¼ 1
n

Xn
i¼1

Pouti � dPouti
���

��� (8)

4. Results

4.1 Correlation analysis results

A correlation study was performed, as previously indicated, to check the connection
between the input variables and the output power, thereby selecting the closely related
factor parameters that should be kept as inputs to the prediction models (see Figure 1).

4.2 Principal component analysis results

As previously explained, PCA was used to determine the most essential data vari-
ables to be used in the training of the machine learning models. The variance distri-
bution of the principal components (PCs) (PC1–PC9) is depicted in the Scree plot in
Figure 2. According to the eigenvalues, the cumulative variance of PC1 through PC3 is
90.4%. As a result, the first three major components were recognized as the primary
model inputs and were sufficient for the development of our predictive models.
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The main variables of each of the PCs were selected from the top three variables in
Table 4 with a value greater than 0.60 [15]. GHI, BHI, and BNI were selected for PC1.
For PC2, Hour, Tm, and Eff were identified. Finally, only Tamb was chosen for PC3.

Figure 1.
Correlation matrix.

Figure 2.
Scree plot.
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4.3 Performance metrics

Tables 5 and 6 show the forecast performance results in the case of raw data and
reduced data resulting from PCA method.

Scatter plots (see Figure 3) reveal more information about the model’s effective-
ness. All points in a good model should be close to the diagonal line and have no
practical dependencies.

4.4 Residual analysis

The difference between the actual and expected values is known as residual. The
Residual vs. fitted values plot is the first plot in our residual analysis (see Figure 4). It
is one of the most used model validation graphs. This figure detects outliers and error

Factor PC1 PC2 PC3

Hour 0.01 0.98 0.16

Tm 0.47 0.68 0.33

Eff 0.28 0.60 0.10

Tamb 0.19 0.24 0.94

TOA 0.57 0.07 0.15

GHI 0.76 0.10 0.17

BHI 0.88 0.11 0.18

DHI 0.34 0.08 0.10

BNI 0.94 0.14 0.13

Table 4.
PCA results.

Algorithm Raw data Reduced data (PCA)

R2 RMSE (KW) MA (KW) R2 RMSE (KW) MAE (KW)

MLR 0.9016 0.6642 0.5036 0.9147 0.7894 0.6127

CB 0.9944 0.1575 0.1032 0.9914 0.2499 0.1597

Table 5.
Performance metrics results—Training phase 80%.

Algorithm Raw data Reduced data (PCA)

R2 RMSE (KW) MAE (KW) R2 RMSE (KW) MAE (KW)

MLR 0.8963 0.6780 0.5155 0.9218 0.7578 0.5922

CB 0.9807 0.2921 0.1830 0.9821 0.3622 0.2191

Table 6.
Performance metrics results—Testing phase 20%.
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dependencies. The precision of the forecast for that particular value is shown by the
distance from the x-axis (0 line).

Moreover, the Residual density plot, as shown in Figure 5, can be very informa-
tive. If the majority of the residuals are not grouped at zero, the model outputs will
likely be biased.

Finally, the last plot (Figure 6) is the residual boxplot. It depicts the distribution of
absolute residual values.

5. Discussion

Based on the results of the correlation analysis (see Figure 1), month, day, WS,
and P variables have the lowest correlation with the PV output power, whereas solar
irradiations and Tm have the strongest correlation with the PV power. Furthermore,
all of the variables have a negative correlation with RH parameter. As RH rises, the PV
power decreases. Moreover, the relationship between Tamb, Hour, Eff, and PV output

Figure 3.
Predicted versus observed values plots.

Figure 4.
Residuals versus observed values plot.
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power appears to be neither strong nor weak. As a result, we simplified the PV power
forecast method by removing the variables Month, Day, RH, P, and WS from the
input data and keeping other variables as the main inputs to our regression models.

The PCA method showed three major factor components that influence PV power
and reach up to 90.4% of the total variable variance. As a result, the PCA technique
was used to identify the most significant variables, which are then used in the pro-
posed models.

The results of performance metrics, on the other hand, in Tables 5 and 6, the CB
technique provided the best balance between the forecasted and observed values, with
an R2 = 98.21% in the testing phase and R2 = 99.14% in the training one. This is owing
to the fact that linear models lose accuracy when the dependencies are not linear, as is
the case with solar PV output. Moreover, by comparing the results obtained in the case
of raw data and reduced data resulting from the PCA analysis, the results are clearly
superior, demonstrating the critical importance of this dimensionality reduction
approach, which allows for cost and efficiency savings.

Figure 6.
Residual boxplot.

Figure 5.
Residual density.
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Moreover, the Figure 3 gives extra information on model efficiency in addition to
the error metrics presented above. All observed points should, in theory, be close to
the diagonal line, which is the case of the CB algorithm.

Finally, several plots have been presented above to help in the analysis of the
predictive models in terms of residuals. From the plot of residual vs. observed values
presented in Figure 4, the CB method obviously surpasses the MLR method in terms
of prediction accuracy, since residuals in CB are more localized around the x-axis than
in MLR.

In addition, compared to MLR, Figure 5 shows that residuals in CB are more
localized around zero. Furthermore, looking at the Residual boxplots in Figure 6, we
can see that CB has the smallest number of residuals compared to MLR, which has a
much larger range of residuals.

All the results obtained show the superiority of the CB algorithm in predicting the
PV power compared to the classical approach MLR.

6. Conclusions

In the sector of PV power forecasting, machine learning techniques within artifi-
cial intelligence offer a lot of potential. The main benefit of these approaches is their
ability to handle complex problems and take into consideration a large number of
input factors, However, it is worth noting that selecting an optimum number of input
variables is beneficial for successful machine learning, since large datasets can be
difficult to analyze and interpret. As a result, the PCA approach is critical, as it allows
for faster computations and storage space savings, as well as the removal of redundant
variables, multicollinearity, and noise.

Finally, the comparison of machine learning approaches for PV power forecasting
will aid energy suppliers in identifying the best algorithms for effectively and safely
handling PV-integrated power.

Nomenclature

BHI beam horizontal irradiation
BNI beam normal irradiation
CB cubist
DHI diffuse horizontal irradiation
Eff efficiency
GHI global horizontal irradiation
MAE mean absolute error
MLR multiple linear regression
P pressure
PCA principal component analysis
PV photovoltaic
RH relative humidity
RMSE root mean square
R2 R-squared
Tamb ambient temperature
Tm module temperature
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TOA top of atmosphere radiation
WS wind speed
YJT Yeo-Johnson transformation

Author details

Souhaila Chahboun* and Mohamed Maaroufi*
Mohammed V University in Rabat, Mohammadia School of Engineers, Rabat,
Morocco

*Address all correspondence to: souhaila_chahboun@um5.ac.ma and
maaroufi@emi.ac.ma

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

77

Principal Component Analysis and Artificial Intelligence Approaches for Solar…
DOI: http://dx.doi.org/10.5772/intechopen.102925



References

[1] Chahboun S, Maaroufi M. Novel
comparison of machine learning
techniques for predicting photovoltaic
output power. International Journal of
Renewable Energy Research. 2021;11(3):
1205-1214

[2] Qijun S, Fen L, Jialin Q, Jinbin Z,
Zhenghong C. Photovoltaic power
prediction based on principal component
analysis and support vector machine.
2016 IEEE Innovative Smart Grid
Technologies - Asia (ISGT-Asia); 2016;
815-820. DOI: 10.1109/ISGT-Asia.2016.
7796490

[3] Souhaila C, Mohamed M. Ensemble
methods comparison to predict the
power produced by photovoltaic panels.
Procedia Computer Science. 2021;191:
385-390. DOI: 10.1016/j.
procs.2021.07.049

[4] Moslehi S, Reddy TA, Katipamula S.
Evaluation of data-driven models for
predicting solar photovoltaics power
output. Energy. 2018;142:1057-1065

[5] Wu Y, Wu M, Bao L, Li C. Short-term
power forecasting of photovoltaic power
generation based on similar day and
improved principal component analysis.
Journal of Computers. 2020;31(5):187-197

[6] Ziane A, Necaibia A, Sahouane N,
Dabou R, Mostefaoui M, Bouraiou A,
et al. Photovoltaic output power
performance assessment and forecasting:
Impact of meteorological variables. Solar
Energy. 2021;220:745-757. DOI: 10.1016/
j.solener.2021.04.004

[7] Chahboun S, Maaroufi M. Principal
component analysis and machine
learning approaches for photovoltaic
power prediction: A comparative study.
Applied Sciences. 2021;11(17):7943. DOI:
10.3390/app11177943

[8] Malvoni M, De Giorgi MG,
Congedo PM. Photovoltaic forecast
based on hybrid PCA–LSSVM using
dimensionality reducted data.
Neurocomputing. 2016;211:72-83.
DOI: 10.1016/j.neucom.2016.01.104

[9] Malvoni M, De Giorgi MG,
Congedo PM. Forecasting of PV power
generation using weather input data-
preprocessing techniques. Energy
Procedia. 2017;126:651-658.
DOI: 10.1016/j.egypro.2017.08.293

[10] Atkinson AC, Riani M, Corbellini A.
The box–cox transformation: Review
and extensions. Statistical Science. 2021;
36(2):239-255

[11] Uribe DR. Short-Term Solar Power
Forecasting Using Different Machine
Learning Models. 2020

[12] R Core Team. R: A language and
environment for statistical computing. R
Foundation for Statistical Computing,
Vienna, Austria. 2018. Available online
at https://www.R-project.org/

[13] Fraccanabbia N, Da Silva RG,
Ribeiro MHDM, Moreno SR, Dos Santos
Coelho L, Mariani VC. Solar power
forecasting based on ensemble learning
methods. In: Proc Int Jt Conf Neural
Networks. 2020

[14] Zhou J, Li E, Wei H, Li C, Qiao Q,
Armaghani DJ. Random forests and
cubist algorithms for predicting shear
strengths of rockfill materials. Applied
Sciences. 2019;9(8):1-16

[15] Wuttichaikitcharoen P, Babel MS.
Principal component and multiple
regression analyses for the estimation of
suspended sediment yield in ungauged
basins of northern Thailand. Watermark.
2014;6(8):2412-2435

78

Advances in Principal Component Analysis



Chapter 5

Variable Selection in Nonlinear
Principal Component Analysis
Hiroko Katayama, Yuichi Mori and Masahiro Kuroda

Abstract

Principal components analysis (PCA) is a popular dimension reduction method
and is applied to analyze quantitative data. For PCA to qualitative data, nonlinear PCA
can be applied, where the data are quantified by using optimal scaling that nonlinearly
transforms qualitative data into quantitative data. Then nonlinear PCA reveals
nonlinear relationships among variables with different measurement levels. Using this
quantification, we can consider variable selection in the context of PCA for qualitative
data. In PCA for quantitative data, modified PCA (M.PCA) of Tanaka and Mori
derives principal components which are computed as a linear combination of a subset
of variables but can reproduce all the variables very well. This means that M.PCA can
select a reasonable subset of variables with different measurement levels if it is
extended so as to deal with qualitative data by using the idea of nonlinear PCA. A
nonlinear M.PCA is therefore proposed for variable selection in nonlinear PCA. The
method, in this chapter, is based on the idea in “Nonlinear Principal Component
Analysis and its Applications” by Mori et al. (Springer). The performance of the
method is evaluated in a numerical example.

Keywords: quantification, categorical data, modified PCA, stepwise selection,
cumulative proportion, RV-coefficient

1. Introduction

Principal components analysis (PCA) is a popular dimension reduction method
and is applied to analyze quantitative data. For PCA to qualitative data, the data are
quantified by using optimal scaling that nonlinearly transforms qualitative data into
quantitative data. The PCA with optimal scaling is called nonlinear PCA. Nonlinear
PCA reveals all qualitative variables uniformly as numerical variables by using optimal
scaling quantifiers in the analysis, that is, it can deal with nonlinear relationships
among variables with different measurement levels.

Using this quantification, we can consider variable selection in the context of PCA
for qualitative data. In PCA for quantitative data, Tanaka and Mori discussed a
method called modified PCA (M.PCA) that can be used to compute principal compo-
nents (PCs) using only a selected subset of variables that represents all of the vari-
ables, including those not selected [1]. Since M.PCA includes variable selection
procedures in the analysis, if we quantify all the qualitative variables by using the
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optimal scaling and then apply M.PCA to the quantified data, we can select a reason-
able subset of variables from the qualitative data.

In this chapter, we refer to Mori et al. [2] to revisit a variable selection problem in
PCA for qualitative data. The proposed method here (we call it nonlinear M.PCA or
NL.M.PCA) is an extension of M.PCA so as to deal with a mixture of quantitative and
qualitative data. In Section 2 we provide the overview of NL.M.PCA (optimization,
the original M.PCA and NL.M.PCA for qualitative data) based on studies by Mori et al.
[2], and in Section 3, we apply this method to the customer engagement data [3] to
show how it works in the real data and how you use the output from the method for
variable selection, and to evaluate the performance of the method.

2. Modified PCA for mixed measurement level data

2.1 Quantification of qualitative data

We must use a suitable quantification method in the context of PCA because we
here wish to consider a variable selection problem in PCA. One of the best methods is
the optimal scaling in nonlinear PCA. Nonlinear PCA is a method to deal with quali-
tative data, which estimates the parameters of PCA and quantifies qualitative vari-
ables simultaneously by alternating between estimation and quantification.
PRINCIPALS of Young et al. [4] and PRINCIPALS of Gifi [5] are algorithms for
nonlinear PCA. Here we use PRINCIPALS.

PRINCIPALS is an algorithm using the alternating least squares (ALS) algorithm as
follows: Let Y = (y1 y2 … yp) be a data matrix of n objects by p categorical variables and
let y j of Y be a qualitative vector with K j categories labeled 1, … ,K j. PRINCIPALS
minimizes the loss function

σL Z,A,Y ∗ð Þ ¼ tr Y ∗ � Ŷ
� �⊤ Y ∗ � Ŷ

� � ¼ tr Y ∗ � ZA⊤� �⊤
Y ∗ � ZA⊤� �

, (1)

where Y ∗ is an optimally scaled matrix form Y, Z is an n� r matrix of n
component scores on r 1≤ r≤ pð Þ components, and A ¼ a1 a2 … arf g is a p� r weight
matrix that gives the coefficients of the linear combinations. PRINCIPALS alternately
makes two estimations: the model parameters Z and A for ordinary PCA, and the data
parameter for optimally scaled data Y ∗ .

In the computation of PRINCIPALS, Y ∗ are standardized for each variable such as

to satisfy restrictions Y ∗⊤1n ¼ 0p and diag Y ∗⊤Y ∗

n

h i
¼ Ip. We denote the value θ

estimated the t-th iteration by θ tð Þ. Given the initial data Y ∗ 0ð Þ (the observed data Y
may be used as Y ∗ 0ð Þ after the above standardization), PRINCIPALS iterates the
following two steps:

• Model estimation step: By solving the eigenvalue problem (EVP) of the covariance
matrix of Y ∗ tð Þ (¼ S)

S� λI½ �a ¼ 0, (2)

where λ is the eigenvalues, obtain A tþ1ð Þ and compute Z tþ1ð Þ ¼ Y ∗ tð ÞA tþ1ð Þ. Update

Ŷ
tþ1ð Þ ¼ Z tþ1ð ÞA tþ1ð Þ⊤.
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• Optimal scaling step: Obtain Y ∗ tþ1ð Þ such that

Y ∗ tþ1ð Þ ¼ arg min
Y ∗ tð Þ

tr Y ∗ tð Þ � Ŷ
tþ1ð Þ� �⊤

Y ∗ tð Þ � Ŷ
tþ1ð Þ� �

(3)

for fixed Ŷ
tþ1ð Þ

by separately estimating y ∗
j for each variable j under the measure-

ment restrictions on each of the variables. That is, compute q tþ1ð Þ
j for nominal variables as

q tþ1ð Þ
j ¼ G⊤

jG j

� ��1
G⊤

j ŷ
tþ1ð Þ
j , (4)

where q j is a K j � 1 category score vector for y ∗
j and G j is an n� K j indicator

matrix

G j ¼ gjik
� �

¼
g j11 … g j1K j

⋮ ⋮ ⋮
gjn1 … gjnK j

0
B@

1
CA ¼ g j1 … gjK j

� �
, (5)

where

gjik ¼
1 if object i belongs to category k
0 if object i belongs to some other category k0 6¼ kð Þ,

�
(6)

and then the optimally scaled vector y ∗
j is obtained by y ∗

j =G jq j.

Re-compute q tþ1ð Þ
j for ordinal variables using the monotone regression [6]. For

nominal and ordinal variables, update y ∗ tþ1ð Þ
j ¼ G jq

tþ1ð Þ
j and standardize y ∗ tþ1ð Þ

j . For

numerical variables, standardize the observed vector y j and set y ∗ tþ1ð Þ
j ¼ y j.

These two steps alternately iterate until convergence, and y ∗
j obtained at conver-

gence is the quantified variable while A and Z are the solutions of PCA for qualitative
data.

2.2 Modified PCA

M.PCA of Tanaka and Mori [1] derives PCs that are computed using only a selected
subset but represent all of the variables, including those not selected. This means that
M.PCA naturally includes variable selection procedures in its estimation process.
Although there are several variable selection methods in PCA, we use M.PCA, because
a subset of variables selected by M.PCA can represent all the variables very well and it
is easy to incorporate the quantification method in Section 2.1 into M.PCA, which will
be described in Section 2.3.

Suppose we obtain an n� p data matrix Y that consists of numerical variables or
optimally quantified variables. Let Y be decomposed into an n� q submatrix Y1 and
an n� p� qð Þ submatrix Y2 1≤ q≤ pð Þ. Y is represented by r PCs, which is a linear
combination of a submatrix Y1, that is, Z ¼ Y1A, where r is the number of PCs
1≤ r≤ qð Þ. To derive A ¼ a1 … arð Þ, the following Criterion 1 based on Rao [7] and
Criterion 2 based on Robert and Escoufier [8] can be used:
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(Criterion 1) The prediction efficiency Y is maximized using a linear predictor in
terms of Z.

(Criterion 2) The closeness of configurations between Y and Z is maximized using
the RV-coefficient.

We denote the covariance matrix of Y ¼ Y1,Y2ð Þ as S ¼ S11 S12
S21 S22

� �
, where the

subscript i of S corresponds to Yi. The maximization criteria for the above Criterion 1
and Criterion 2 are given by the proportion P

P ¼
Xr
j¼1

λ j=tr Sð Þ, (7)

and the RV-coefficient

RV ¼
Xr
j¼1

λ2j=tr S2
� �( )1=2

, (8)

respectively, where λ j is the j-th eigenvalue with the order of magnitude of the
EVP

S211 þ S12S21
� �� λS11
� �

a ¼ 0: (9)

The solution is obtained as a matrix A, the columns of which consist of the
eigenvectors associated with the largest r eigenvalues of EVP (9), and Y1 that
provides the largest value of P or RV is the best subset of q variables among all possible
subsets of size q. Thus, to obtain a reasonable subset of variables with size q in PCA,
you apply M.PCA to the data and find the subset of size q, Y1, that has the largest P
or RV. The selected subset Y1 is reasonable in the sense of PCA because it contains
information that includes not only the selected variables Y1 but also the deleted
ones Y2.

2.3 Modified PCA for mixed measurement level data

M.PCA is a goodmethod to find a reasonable subset of numerical variables as described
in the previous section. To select variables frommixed measurement level data by using a
criterion in M.PCA, qualitative/categorical variables in the data should be quantified in an
appropriate manner. Based on the original idea in ref. [9], considering PRINCIPALS in
Section 2.1 and M.PCA in Section 2.2, it is easy to incorporate the quantification
(PRINCIPALS) intoM.PCA, because we can formulate M.PCA for qualitative data only by
replacing the EVP (2)) in theModel estimation step of PRINCIPALS by the EVP (9) to get
the model parametersA and Z for M.PCA. Thus, M.PCA and optimal scaling are

alternately executed until θ ∗ ¼ tr Y ∗ � Ŷ
� �⊤

Y ∗ � Ŷ
� � ¼ tr Y ∗ � ZA⊤� �⊤

Y ∗ � ZA⊤� �
is minimized. This is nonlinear M.PCA or NL.M.PCA.

Here, we rewrite the ALS algorithm of PRINCIPALS as follows—for given initial

data Y ∗ 0ð Þ ¼ Y ∗ 0ð Þ
1 , Y ∗ 0ð Þ

2

� �
from the original data Y, the following two steps are

iterated until convergence:
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• Model estimation step: From Y ∗ tð Þ ¼ Y ∗ tð Þ
1 , Y ∗ tð Þ

2

� �
, obtained A tð Þ by solving the

EVP (9).

Compute Z tð Þ from Z tð Þ ¼ Y ∗ tð Þ
1 A tð Þ. Update Ŷ

tþ1ð Þ ¼ Z tð ÞA tð Þ⊤.

• Optimal scaling step: Obtain Y ∗ tþ1ð Þ for fixed Ŷ
tþ1ð Þ

by separately estimating y ∗
j

(=G jq jÞ for each variable j under the measurement restrictions. Re-compute

Y ∗ tþ1ð Þ
j by an additional transformation to keep the monotonicity restriction for

ordinal variables and skip this computation for numerical variables.

Y ∗ ¼ Y ∗
1 , Y ∗

2

� �
obtained after convergence is an optimally scaled (quantified)

matrix of Y, and Y1 corresponding to Y ∗
1 is a subset to be selected and Y2 to Y ∗

2 is one
to be deleted.

NL.M.PCA procedure for fixed q is as described above, but since the variable
selection performs M.PCA calculation for q ¼ p, … , r and pCq times to find the best
Y1, there are three possible types of selection according to where the quantification is
implemented in the computation flow (see Fig. 4.1 in [2]).

The first type (Type 1) is that the quantification is performed only once at first,
that is, nonlinear PCA is applied to the data Y to obtain the quantified data Y ∗

, and
ordinary M.PCA selection is applied to Y ∗ . No more quantification is carried out in
the selection stage. The second type (Type 2) is that the quantification is carried out
every time after the best subset of size q is found in the selection stage. That is, the
quantified Y ∗

1 ,Y
∗
2

� �
based on the best subset of the size q found in the previous

selection is used to find the best subset of size q� 1 or qþ 1 in the next selection. The
third type (Type 3) is that the quantification is carried out for every temporary
Y1, Y2ð Þ in the section stage, that is, NL.M.PCA is performed whenever temporary
Y1, Y2ð Þ is given to compute its criterion value.

A reasonable subset of size q is given as Y1 corresponding to the best subset Y ∗
1

which is finally found at q when the selection procedure is terminated.

3. A numerical example

3.1 Data

The data we analyze here was gathered in the survey about the relationship
among customer engagement on “fashion,” “brand,” and “shop staff” [3]. The
questions (variables) are divided into three groups based on the purposes for con-
sumption: “Involvement” (16 variables), “Expectations” (35 variables), and “Values”
(34 variables). The total number of questions is 85 on a five-level scale and 825
responses are obtained. Ohyabu et al. [3] analyzed this data to find the structure of the
customer consciousness, but we use this data simply as sample data for variable
selection in PCA without considering the original purpose in ref. [3]. Here we
apply NL.M.PCA to the second question group “Expectation” (35 variables) to show
the performance of the proposed method. The questions asked in the survey are
indicated in the “Question” column of Table 1 and answers (responses) are shown in
Table 2.
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Group Item Question q = 25

About the
fashion

Q We would like to ask you about your thoughts and behaviors about
fashion.

Q1 I think about fashion by putting on clothes or choosing the clothes. �
Q2 I think about fashion by putting on clothes or choosing the clothes. �
Q3 I want to know about fashion by putting on clothes or choosing clothes. �
Q4 I’m enthusiastic when I think about fashion. �
Q5 I’m happy with thinking about fashion. �
Q6 I feel relaxed when I think about fashion. �
Q7 I’m proud of my fashions when I think about fashion. �
Q8 I spend a lot of one’s time when I think about the fashions.

Q9 I talk about fashion with my friends.

Q10 I’m checking about SNS or writing comment for fashion. �
Q11 I’m posting about a fashion to SNS. �

About the brand Q We would like to ask you about your thoughts and behaviors about
fashion brands.

Q12 I think about the brand by putting on clothes or choosing the clothes.

Q13 I think about the brand by putting on clothes or choosing the clothes. �
Q14 I want to know about the brand by putting on clothes or choosing the

clothes.
�

Q15 I’m enthusiastic when I think about the brand. �
Q16 I’m happy when I think about the brand.

Q17 I feel relaxed good when I think about the brand. �
Q18 I’m proud when I think about the brand. �
Q19 I spend a lot of one’s time when I think about the brand. �
Q20 I always use a specific brand when I wear or choose clothes.

Q21 I always use the brand when I clothes or choice of clothes. �
Q22 I’m checking about SNS or writing comment for the brand. �
Q23 I’m posting about a brand to an SNS of mine. �

About the shop
staff

Q We would like to ask you about your thoughts and behaviors about the
staff member

Q24 I think about the staff member by talking to other staff �
Q25 I think about staff members when I speak to other shop staff.

Q26 I want to know more about shop staff by speaking. �
Q27 I’m enthusiastic when I’m talking with staff members.

Q28 I’m happy when I’m talking with staff members. �
Q29 I feel relaxed when I’m talking with staff members. �
Q30 I’m proud when I’m talking with shop staff.

Q31 I spend a lot of time talking with shop staff. �
Q32 I always talk to the specific staff member when choosing clothes or

putting on clothes.
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3.2 Output from NL.M.PCA

Table 3 shows the output of NL.M.PCA when NL.M.PCA is applied to Expectation
data with r ¼ 5 of the number of PCs, proportion P as a criterion, and forward-
backward stepwise selection and type 3 quantifications as selection procedures.
The number q is the number of selected variables and the value P is the criterion value.
Y1|Y2 shows that the left side of each row is the question numbers to be selected Y1ð Þ
and the right side to be deleted Y2ð Þ. If you have a specific number q for variables to be
used, such as 20, 10, or 2/3 = 24, 1/2 = 18, you can use variables whose numbers are
displayed in Y1 at that q. If the number of variables to be used is not determined, the
proportion P can be used. For example, since the proportion P is 66.95% with all
35 variables, if you want to keep P up to 65%, looking at the row of P ¼ 0:6512 (i.e.,
q ¼ 20), you can use 20 variables in Y1. Alternatively, if the difference between the
proportion with all 35 variables and that with selected variables should be less than
1%, 25 variables can be used because 0:6695� 0:01 ¼ 0:6595, which is the P value at

Group Item Question q = 25

Q33 I always talk the specific staff member. �
Q34 I’m checking about the specific staff member of SNS or writing

comment for the brand.

Q35 I’m posting about the specific staff member to my SNS. �

Table 1.
35 questions in “expectation” and 25 selected ones (marked by � in the right column).

Table 2.
Expectation data (825 responses on 35 variables).
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q ¼ 25. Figure 1 shows the change of P for every q. This graph can be used to obtain
guidance on the determination of the number of variables. Looking at this graph, if
there is a large drop in P, the number of variables just before that point can be used
(for this data, no particular drop is observed).

When using RV, the same considerations are applied, and scatter plots are also
considered to see how close the configurations are.

Table 3.
Selection results (expectations, r ¼ 5, proportion P, forward-backward stepwise selection, Type 3).

Figure 1.
Change of the proportion P for every q (from 35 to 5).
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3.3 Results of variable selection

Here we select a subset of variables from 35 variables of Expectation data focusing
on the loss of proportion P. Suppose we want to keep it under 1%, q ¼ 25 which is
assigned from Table 3 and Figure 1. The selected variables are marked by � in the
right column of Table 1. As far as looking at the variables deleted from each block,
two variables {8, 9} from 11 variables in “fashion” block, three variables {12, 16, 20}
from 12 variables in “brand” block, and five variables {25, 27, 30, 32, 34} from 12
variables in “shop staff” block are deleted. That is, nine variables are selected from the
first two blocks and seven from the third block. It can be stated that the proposed
method selects a reasonable subset of variables. Comparing the number of deleted
variables in the three blocks, a slightly larger number of variables are removed from
the third block, so it is thought that questions on “shop staff” have little information
rather than those in the other two blocks and some of them have less significance on
the prediction efficiency. From this point of view, we can evaluate the usefulness of
each question in the questionnaire.

To evaluate the significance of variables, we observe howmany times each variable
is selected through the selection for q ¼ 35, … , 5. Extracting the variables selected
over 2=3 times (24 or more), for example, in the “fashion” block, variables {1, 6, 10,
11} were selected. Given the fact that the close-up questions are located close to each
other (1 to 3, recognition on fashion, 4 to 7—consciousness on fashion, 8 to 11—
activity on fashion), it is generally clear that NL.M.PCA using the proportion P selects
variables well-balanced from the close-up questions. Similarly, if the most frequently
selected variables (such as the above four items) are considered as the most important
questions, they should be involved in future surveys. If variables are selected a few
times, they should not be involved in the future. In such a way, there is a possibility to
use the selection results to evaluate the questionnaire itself.

4. Concluding remarks

We reconsider a variable selection problem in PCA for qualitative data based on
the idea of Mori et al. [2]. For the problem of how to deal with qualitative data, we
apply optimal scaling with the ALS algorithm [4] to the qualitative data. For the
variable selection in PCA, we use the criteria in M.PCA of Tanaka and Mori [1] for
optimally quantified data. That is, the proposed method is an extension of M.PCA by
implementing optimal scaling into M.PCA so as to select a subset of qualitative vari-
ables. Using this method, since the quantification is done separately for each variable,
we can select a subset of variables from mixed measurement level data.

We apply this method to real data from a customer engagement study [3] to select
a subset of qualitative variables by using a criterion that maximizes the prediction
efficiency. For a case where there is no preassigned number of variables to be selected,
it can be suggested to specify the number in such a way that the maximum loss of the
efficiency is not over a certain percentage.

As a result, variables are selected in a well-balanced manner from questions
asking similar contents, and the selected subset, therefore, provides as much infor-
mation as possible. It is expected that the nonlinear M.PCA works well for any mixed
measurement level data.
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Chapter 6

Space-Time-Parameter PCA for
Data-Driven Modeling with
Application to Bioengineering
Florian De Vuyst, Claire Dupont and Anne-Virginie Salsac

Abstract

Principal component analysis is a recognized powerful and practical method in
statistics and data science. It can also be used in modeling as a dimensionality reduc-
tion tool to achieve low-order models of complex multiphysics or engineering sys-
tems. Model-order reduction (MOR) methodologies today are an important topic for
engineering design and analysis. Design space exploration or accelerated numerical
optimization for example are made easier by the use of reduced-order models. In this
chapter, we will talk about the use of higher-order singular value decompositions
(HOSVD) applied to spatiotemporal problems that are parameterized by a set of
design variables or physical parameters. Here we consider a data-driven reduced order
modeling based on a design of computer experiment: from high-dimensional compu-
tational results returned by high-fidelity solvers (e.g. finite element ones), the
HOSVD allows us to determine spatial, time and parameters principal components.
The dynamics of the system can then be retrieved by identifying the low-order
discrete dynamical system. As application, we will consider the dynamics of deform-
able capsules flowing into microchannels. The study of such fluid-structure interac-
tion problems is motivated by the use of microcapsules as innovative drug delivery
carriers through blood vessels.

Keywords: HOSVD, spatio-temporal parametrized problem, approximation,
reduced-order model, bioengineering, fluid-structure interaction, deformable
capsules, dynamical system, machine learning, artificial intelligence

1. Introduction

Manufactured deformable microcapsules are intended to be used as drug carriers
within the human vascular network to deliver drugs at specific targets (tumors, etc.).
In order to design reliable capsules, one can make help of numerical simulation and
high performance computing. The transportation of such capsules into microchannels
is a three-dimensional fluid-structure interaction (FSI) problem involving a fluid flow
within a confined environment and the deformation of hyperelastic membranes [1, 2].
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The behavior of the capsule depends on dimensionless parameters such as the capil-
lary number denoted by Ca and the aspect ratio a=ℓ between the capsule radius a and
the channel characteristic length ℓ. The parameter vector μ ¼ Ca, a=ℓð Þ, for which a
capsule steady shape exists, lies in a bounded domain D⊂2. We look for the time
evolution of the capsule shape under a Lagrangian description. From an initial shape
X, we are interested in determining the capsule position x X, t, μð Þ in the microchannel
domain Ω∈3 at time t for a parameter vector μ∈D. By denoting u the displacement
vector from the initial position, we have

x X, μ, tð Þ ¼ X þ u X, μ, tð Þ (1)

with u X, μ, 0ð Þ ¼ 0. The governing equations of the FSI problem include both
kinematics and motion equations. At the membrane, we have equilibrium of the
mechanical forces (mechanical equilibrium of the membrane and viscous stresses
from the fluid). By denoting v the vector field of velocity at the membrane, the system
of differential algebraic equations in abstract form reads

_u ¼ v, (2)

v ¼ F μ u,Xð Þ: (3)

Practically, there are different candidate computational approaches to discretize
this system of equations. First, the initial capsule membrane has to be discretized by
using a finite element triangular mesh made of nodes Xif gIi¼1. Regarding time
discretization, in [2], an explicit time scheme is used and the velocity field is determined
by the use of a boundary integral method (BIM) coupled with a finite element method
(FEM). A numerical stability condition imposes the use of small time steps. For a
given parameter μ, the time evolution of capsule dynamics on the time intervals of
interest generally requires hours of CPU time. To better understand the membrane
behavior with respect to μ, a design of computer experiment (DoCE) is done: from a
set of J parameter samples of μ j ∈D, j ¼ 1, … , J, a spatio-temporal solution is computed
for each μ j, leading to a database of shape solutions under the form of a third-order
tensor

T x ¼ x Xi, μ j, t
n

� �� �
i¼1,… ,I,j¼1,… ,J,n¼0,… ,N,

∈3I�J� Nþ1ð Þ (4)

using a triangular finite element discretization of the membrane, a time
discretization tn ¼ nΔt (assuming that the time step is constant) and the parameter
samples μ j. Typically, for practical computations, I ¼ O 1000ð Þ, N ¼ O 10000ð Þ and
J ¼ O 100ð Þ, so that the tensor database becomes rather huge (about O 10ð Þ gigabytes).
Of course, one can only store the solutions at coarser times steps and reduce N to
O 100ð Þ but the database remains rather big even in this case.

From this data tensor, one can imagine different use cases leading to different tools:

1.Data exploration and knowledge extraction;

2.Real-time rendering of capsule dynamics for better understanding;

3.Data-driven modeling of capsule dynamics in the whole parameter domain.
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First and second items can be achieved by means of data dimensionality reduction.
This leads to a lower storage of data in memory as well as a lower numerical com-
plexity of processing and manipulation. In this chapter, we will consider a Higher
Order Singular Value Decomposition (HOSVD), which is a generalization of Principal
Analysis Component (PCA) to tensors. The third item involves a model-order
reduction (MOR) methodology. From computed data, we would like to derive a
lightweight dynamical system that reproduces the data and, even more, that is able to
accurately estimate solutions for different parameter values μ. Data-driven model-
order reduction first makes use of data-dimensionality reduction by a low-order
tensor decomposition of the solutions according to some suitable spatial, temporal and
parameter reduced bases (see [3]). In our application, this will give the truncated
decomposition (where the solutions are here seen as functions):

~x X, μ, tð Þ ¼ X þ
XK

k¼1

XL
ℓ¼1

XM
m¼1

akℓmφk Xð Þψℓ μð Þωm tð Þ (5)

for some expansion coefficients akℓm and some spatial functions φk, parameter
functions ψℓ and temporal functions ωm with ωm 0ð Þ ¼ 0 ensuring x X, μ, 0ð Þ ¼ X.
The truncation ranks K, L and M are expected to be small enough (K≪ I, L≪ J and
M≪N). Discretized shape solutions returned by the Full-Order computational Model
(FOM) are stored into a third-order tensor of data T x. Let ~T x denote the truncated
tensor expansion related to (5). It reads:

~T x ¼ A0 ⊗ eN þ
XK

k¼1

XL
ℓ¼1

XM
m¼1

akℓmΦk ⊗Ψℓ ⊗wm≈T x (6)

where A0 ∈I�J, A0� �
ij ¼ Xi, eN ¼ 1, … , 1ð ÞT ∈N,Φk ∈I, Ψℓ ∈J and wm ∈N.

In this chapter, we will seamlessly use the functional representation or the tensor one.
From this reduced form, we will then apply a kernel-based Dynamic Mode

Decomposition (k-DMD, see [4]) to derive a dynamical system able to predict the
capsule shape evolution over time for any value of the parameter μ. This will be
developed in the next sections.

2. Higher-order singular value decomposition and truncation

2.1 Compact HOSVD

The higher-order singular value decomposition (HOSVD) of a tensor is a specific
orthogonal Tucker decomposition. The classical computation of a HOSVD was
introduced by L. R. Tucker [5] and further developed by L. De Lathauwer et al. [6].
Robust computations or improvements have been since proposed [6–8]. For a tensor
T of order d, the idea is to compute the singular value decomposition of each factor- k
flattening T kð Þ of a tensor T , i.e. a “matricisation” of the tensor where the rows of the
matrix are related to the k-th dimension.

In our case, we consider a third-order tensor and successive spatial, parameter and
temporal flattening to find the singular vectors. The spatial tensor flattening
T Xð Þ ∈I� J:Nð Þ of the tensor T x � A0 ⊗ eN

� �
is

93

Space-Time-Parameter PCA for Data-Driven Modeling with Application to Bioengineering
DOI: http://dx.doi.org/10.5772/intechopen.103756



T Xð Þ
� �

ip ¼ x Xi, μ j, t
n

� �
�Xi, p ¼ jþ n� 1ð ÞJ (7)

(meaning that the μ and t dimensions are stacked in columns in the matrix). The
SVD of T Xð Þ provides rx nonzero singular values with rx corresponding singular
orthonormal vectors Φk, k ¼ 1, … , rx. Similarly the parameter flattening leads to a
rank rμ with rμ modes Ψℓ, ℓ ¼ 1, … , rμ and the time flattening a rank rt with rt modes
wm, m ¼ 1, … , rt. The tuple rX, rμ, rt

� �
is the multilinear rank of T x. Then tensor T x

can be written as

T x ¼ A0 ⊗ eN þ
XrX
k¼1

Xrμ
ℓ¼1

Xrt
m¼1

akℓmΦk ⊗Ψℓ ⊗wm: (8)

2.2 Approximation

Among the applications, HOSVD can be used to define a low-order approximation
of tensors. The so-called truncated HOSVD [9–11] consists in truncating the
expansion (8) at a given multilinear rank K,L,Mð Þ, K ≤ rX, L≤ rμ, M≤ rt, leading to
(6). Let mlrank Tð Þ denote the multilinear rank of the tensor T . It has been shown that
the approximation (6) returns a quasi-optimal solution of the nonlinear non-convex
least-square problem

min
~T

1
2
∥T x � ~T ∥2F (9)

(here ∥:∥F is the Frobenius norm for tensors) subject to mlrank ~T
� �

¼ K,L,Mð Þ.
The truncation ranks can be determined a priori according to the classical relative
information content (RIC) of the SVD theory.

Eq. (6) can already be used as a compressed representation of the data, allowing
for a lower storage complexity and a simpler manipulation, with low information loss
if the RIC is high.

3. Reduced-order modeling of capsule dynamics

Eq. (6) provides a summarization of the family of spatio-temporal capsule shape
solutions in the time interval t0, tN

� �
. Unfortunately, this algebraic model has no

predictability capability for time t> tN. To derive a predictable time-dependent model
from the data tensor T x, one has to derive a differential system that approximates the
FSI system of Eqs. (2) and (3). The HOSVD reduction can thus be valued in the
context of model-order reduction.

Consider of parameter vector of interest μ∈D. The capsule position approximate
solution (5) can be rewritten as

~x X, μ, tð Þ ¼ X þ
XK

k¼1
aμ,k tð Þφk Xð Þ (10)

with
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aμ,k tð Þ ¼
XL
ℓ¼1

XM
m¼1

akℓmψℓ μð Þωm tð Þ: (11)

Let aμ tð Þ be the vector-valued function

aμ tð Þ ¼ aμ,1 tð Þ, … , aμ,K tð Þ� �T ∈K : (12)

We would like to derive a differential system of unknowns aμ tð Þ. Since
x X, μ, 0ð Þ ¼ X, we have the natural initial condition aμ 0ð Þ ¼ 0. Practically, from
expansion (8), we can compute coefficients aμ,k tð Þ at discrete times tn, and have thus
access to the list of coefficient vectors

anμ ¼ aμ tnð Þ, n ¼ 0, … ,N: (13)

A dynamical reduced-order model consists in determining (or approximating) a
Lipschitz continuous mapping Fμ : K ! K such that

a0μ ¼ 0, anþ1μ ≈Fμ anμ
� �

∀n∈0, … ,N � 1 (14)

from the data anμ
n oN

n¼0
. We get a low-order discrete dynamical system. Note that,

here, we do not search for parameters of a model, but for the equations of the model
themselves. Since the problem of finding such a mapping is infinite dimensional, one
has to restrict the search to a mapping in a (suitable) finite dimensional functional
space.

4. Koopman theory and dynamic mode decomposition

4.1 Koopman operator for discrete dynamical systems

Koopman theory is a powerful mathematical framework that re-expresses a gen-
eral nonlinear discrete dynamical system as the knowledge of a linear (infinite
dimensional) operator, the so-called Koopman operator or compositional operator.
Today it is commonly used in machine learning and data-driven model-order reduc-
tion methodologies [4, 12]. Let us assume a discrete dynamical system in the form

anþ1 ¼ F anð Þ, n∈ (15)

for a Lipschitz continuous mapping F from d to d. Let g be a function of a
Banach space X, g : d ! . So we have g anþ1ð Þ ¼ g ∘Fð Þ anð Þ. The Koopman operator
related to F is defined as

Kg ¼ g ∘F ∀g∈X: (16)

Then we have

g anþ1
� � ¼ Kgð Þ anð Þ: (17)
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The knowledge of K includes the knowledge of F. Indeed, by taking the particular
observables gi að Þ ¼ a � ei, i ¼ 1, … , d where ei is the i-th vector of the canonical basis
of d, we retrieve anþ1ð Þi ¼ Fi anð Þ, i.e. the i-th equation of (15). Of course, the linear
Koopman operator acts on an infinite-dimensional functional space, so it is impossible
to determine it exactly. However, one can search for an approximate Koopman
operator ~K that acts on an approximate finite-dimensional space ~X ⊂X.

The concept of (nonlinear) observables is to have a sufficiently large set of
independent nonlinear functions of the state vector and measurements of them in
order to identify the mapping F. A natural question of interest is what are the best
observables to choose. There is no absolute answer to this question, and the choice
may depend on the underlying Physics. Without any a priori knowledge on the
system of equations, one can use basis functions of a universal approximators like
polynomials, Fourier or kernel-based functions for example.

4.2 Dynamic mode decomposition

The simplest choice of observables is the linear functions gi að Þ ¼ a � ei, i ¼ 1, … , d.
It leads to the search of a finite-dimensional approximation A of T from the full
state vector data. The matrix A can be searched as the solution of the least square
minimization problem

min
A∈Md ð Þ

1
2
∥Y � AX∥2F (18)

where X ¼ a0,a1, … ,aN�1
� �

and Y ¼ a1, a2, … , aN
� �

. Assuming N ≥ d, the solution

is given by A ¼ YXT XXT� ��1
. The least square problem (18) can be eventually

regularized for better conditioning by a Tykhonov regularization term [13, 14]. This
practical approach of Koopman operator approximation is referred to as the dynamic
mode decomposition (DMD) [4, 12]. This provides a linear dynamical model

anþ1 ¼ Aan (19)

starting from a given initial condition a0. The solution of (19) which is an ¼ Ana0

is bounded for any initial condition a0 as soon as ρ Að Þ≤ 1.

5. Kernel-based identification of dynamical systems

In the case of a strongly linear dynamical system, the linear model (19) can be not
accurate enough. We have to include suitable nonlinear observables in the data and
the model. In this section, observables are selected from kernel-based approximations
[15]. Then we use the variant kernel-DMD (k-DMD, [4]) approach to identify F.

A real-valued function k on d � d is called a positive definite kernel function if it
is symmetric and if the following property holds:

∀m∈⋆, ∀ zif gmi¼1 ∈ d� �m
, ∀ αif gmi¼1 ∈m,

Xm
i¼1

Xm
j¼1

αiα j k zi, z j
� �

≥0: (20)
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In other words, the square matrix K ¼ k zi, z j
� �� �

i¼1,… ,m,j¼1,… ,m is positive semi-

definite. A standard kernel function is for example the Gaussian one

k z, z0ð Þ ¼ exp � 1
2
∥z � z0∥2

σ2

� �
(21)

for a given parameter σ >0.

5.1 Kernel-based interpolation

Kernel functions can be used for interpolation in spaces of arbitrary dimension. Let
g : d !  be a continuous function and assume that we know the values of g zið Þ at
particular points zi, i ¼ 1, … ,m. Then one can define an interpolator Ig of g defined as

Ig zð Þ ¼
Xm
j¼1

α j k z, z j
� �

(22)

where the coefficient vector α ¼ α1, … , αmð ÞT is determined such that the interpo-
lation property

Ig zið Þ ¼ g zið Þ ∀i∈ 1, … ,mf g: (23)

holds. The interpolation conditions clearly lead to the solution of the symmetric
linear square system of size m

Kα ¼ b (24)

where b ¼ g z1ð Þ, … , g zmð Þð ÞTÞ. Assuming that K is positive definite, then Eq. (24)
has a unique solution. Let

ki zð Þ ¼ k z, zið Þ, i ¼ 1, … ,m (25)

and V ¼ span k1, … , kmð Þ. Considering any function ~g∈V, it is easy to check that
~g ¼ I~g. One can derive the interpolation error

∥g � Ig∥L∞ ¼ ∥g � ~g þ ~g � Ig∥L∞

¼ ∥g � ~g þ I~g � Ig∥L∞

≤∥g � ~g∥L∞ þ ∣kI ∣k ∥g � ~g∥L∞

(26)

so that

∥g � Ig∥L∞ ≤ 1þjkI jkð Þ inf
~g∈V

∥g � ~g∥L∞ : (27)

The interpolation error is controlled by the best approximation error multiplied by
a stability constant depending on the norm of the interpolation operator.

5.2 Use of kernel features and k-DMD

Let us go back to the parameterized dynamical system of interest (14) and consider
a point cloud a jð Þ

� �m
j¼1 of sample states in the admissible reduced state space X ⊂K .

The functions
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k j að Þ ¼ k a,a jð Þ
� �

(28)

can be seen as features and thus be used as suitable nonlinear observables to
approximate the Koopman operator. From any known full state vector anμ at time tn,
we build the vector of observables

κ anμ
� �

¼ k1 anμ
� �

, k2 anμ
� �

, … , km anμ
� �� �T

: (29)

By definition of the Koopman operator, we have ki anþ1μ

� �
¼ ki ∘Fð Þ anμ

� �
¼

Kkið Þ anμ
� �

. Then we look for a finite-dimensional approximation Aμ of the Koopman

operator K in the sense

κ anþ1μ

� �
≈Aμ κ anμ

� �
∀n∈ 0, … ,N � 1f g (30)

The matrix Aμ is searched as the minimum of the least square problem

min
A∈MMm ð Þ

1
2
∥Yμ � AXμ∥2F (31)

where the entry and output data matrices are now Xμ ¼
κ a0μ
� �

, κ a1μ
� �

, … , κ aN�1μ

� �h i
and Yμ ¼ κ a1μ

� �
, κ a2μ
� �

, … , κ aNμ
� �h i

. We get the

dynamical system κ anþ1μ

� �
¼ Aμ κ anμ

� �
with a specified initial condition κ a0μ

� �
.

Let us emphasize that the computational variables are now the κ anμ
� �

. But we still

need the full state variables an to determine the displacements or the capsule shapes.
The full state can be retrieved for example by interpolation: taking gi að Þ ¼ a � ei, we get

aμ
� �nþ1

i ≈Igi anþ1μ

� �
¼
Xm
j¼1

α j
� �

i ki anþ1μ

� �
(32)

with interpolation coefficients vectors α j
� �m

j¼1 such that

a ið Þ ¼
Xm
j¼1

α j k j a ið Þ
� �

∀i∈ 1, … ,mf g (33)

(linear system of dimension m� K). The coefficient vectors α j can be computed
once for all.

5.3 Including the full state vector and the constants into the features

The k-DMD approach can be improved by including the full-state vector aμ itself
into the input feature vector. Moreover, if the kernel functions are not able to per-
fectly reproduce the constant ones, for accuracy reasons it is justified to add the
constants into the features. Considering the augmented vector η aμ

� �
of observables
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η aμ
� � ¼

aμ
κ aμ
� �

1

2
64

3
75∈Kþmþ1, (34)

we look for a dynamical system in the form

anþ1μ ¼ Aμ η anμ
� �

≈Fμ anμ
� �

(35)

with a constant rectangular matrix Aμ of size K � K þmþ 1ð Þ to identify. The
first advantage is that the output vector is the full state itself. The second one is
the number of elements of Aμ which is less than m2 as soon as K K þmþ 1ð Þ≤m2.
In this case, there are less coefficients to identify. The input and output matrices
now are

Xμ ¼ η a0μ
� �

, η a1μ
� �

, … , η aN�1μ

� �h i
, Yμ ¼ a1μ,a

2
μ, … ,aNμ

h i
: (36)

Assuming N ≥ K þmð Þ, the rectangular matrix Aμ solution of the least square
problem

min
A∈MK,Kþmþ1 ð Þ

1
2
∥Yμ � AXμ∥2F (37)

is computed as Aμ ¼ YμXT
μ XμXT

μ

� ��1
.

5.4 Summary and whole algorithm

We give a summary of the model-order reduction algorithm:

1.Input data: third-order tensor T x (4) made of capsule shape solutions of size
3I � J � N þ 1ð Þ.

2.HOSVD + truncated approximation: compute (8) and get the truncated
approximation with the truncated multilinear ranks K,L,Mð Þ:

~T x ¼ A0 ⊗ eN þ
XK

k¼1

XL
ℓ¼1

XM
m¼1

akℓmΦk ⊗Ψℓ ⊗wm (38)

3. Online stage: choose a parameter vector μ. From (13), compute the data
coefficients aμ tnð Þ ¼ anμ (see Eq. (13)) from (11). Choose a kernel function k :, :ð Þ,
choose m and the centers a jð Þ, j ¼ 1, … ,m. Assemble the observables η anμ

� �
and

assemble the matrices Xμ and Yμ (Eq. (36)). Compute the k-DMD matrix Aμ ¼

YμXT
μ XμXT

μ

� ��1
. Get the reduced-order dynamical system (35) with a0μ ¼ 0 as

initial value.
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6. Numerical results for capsule dynamics

The algorithm is applied to a problem of a deformable capsule flowing into a
square-based microchannel (typical for microfluidic channels created by soft lithog-
raphy) with a mean inflow velocity V [1, 2]. Related works and variant ROM
approaches on this topic can be found in [14, 16]. The capsule dynamics is simulated
by the full-order fluid–structure interaction solver Cite [1]. The fluid solver is based
on the solution of the Stokes equations and a nonlinear Neo-Hookean law is used for
the membrane. The initial capsule is spherical, corresponding to the shape at rest. The
sphere is discretized with a finite element mesh made of I ¼ 2562 vertices.

6.1 Study for a particular parameter couple Ca, a=ℓð Þ

The objective of this subsection being to illustrate the methods on an example and
show how to apply them, we only consider the snapshot FOM solutions for
Ca, a=ℓð Þ ¼ 0:1, 0:9ð Þ for the sake of simplicity and brevity. Figure 1 shows both
membrane shapes and positions in the channel at different instants.

At each time tn ¼ nΔt, where the time step is equal to Δt ¼ 0:04, a snapshot is
saved and stored in the database. Note that all time quantities are non-
dimensionalized by the factor ℓ=V. The resulting generated data matrix is used as the
entry matrix for the ROM learning process. Then a truncated SVD is applied to get the
spatial POD modes. In Figure 2, the four first eigenmodes Φk are plotted (more
precisely this is a superposition of each mode onto the original spherical shape for a
better visualization and understanding of their influence). Based on, the graphics
k↦1� RIC kð Þ plotted in log scale in Figure 3, we decide to use a truncation rank K
equal to K ¼ 10, returning a relative information content of about 1� 3:5� 10�5.

Then a reduced-order dynamical system for the capsule time evolution is searched.
In this example, we compare two models: the first one is the affine approximation
(denoted by ROM-A)

anþ1μ ¼ Aμanμ þ bμ (39)

with the matrix A and the vector b to identify. It is equivalent to consider the
vector of features η að Þ ¼ a, 1ð ÞT. The second nonlinear model is built from the
observable vector η að Þ ¼ a, κ að Þ, 1ð ÞT with the recurrent time scheme

anþ1μ ¼ Aμη anμ
� �

(40)

Figure 1.
Example of a microcapsule dynamics within a square-base channel for (Ca, a=ℓ) = (0.1, 0.90). Shapes and
locations of the initially spherical capsule are shown at t ¼ 0 (in transparency), 0.4, 2.8, 5.2, 7.6.
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Figure 2.
SVD: Four first spatial principal components computed by the HOSVD. Each mode has been added on the initial
spherical shape and amplified by a factor 2 for better visualization. Higher-order modes show oscillations at the
rear of the capsule.

Figure 3.
SVD: Plot of k↦1� RIC kð Þ, where RIC kð Þ represents the relative information content at truncation rank k.
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(ROM-B). For ROM-B, the Gaussian kernel function (21) is used. The standard
deviation parameter σ in (21) is chosen as σ ¼ max n∥anμ∥ ¼ ∥aNþ1μ ∥2. In both cases
ROM-A and ROM-B, the determination of the matrix Aμ by minimization of the least
square problem (37) leads to a very small residual. In Figure 4, the logarithm of the
relative time residual

n↦ log 10 ∥anþ1μ � Aμη anμ
� �

∥2=∥anþ1μ ∥2
� �

(41)

is plotted for each ROM model. One can observe values between 10�14 and 10�8.
The residual for ROM-B appears to be slightly smaller than that of ROM-A thanks to
the added nonlinear terms. A surprising result is that the affine ROM-A model returns
rather accurate results whereas the fluid–structure interaction problem is intrinsically
nonlinear. In order to study the stability of the model ROM-A, in Figure 5 we plot the
complex eigenvalues of the square matrix Aμ. We observe that all the eigenvalues have
a modulus less or equal to one. One of the eigenvalues is equal to 1 exactly up to Double
Precision roundoff errors, meaning that there is a physical invariant in the system. It is
known that the capsule volume is kept constant during time, because of the
incompressibility of the fluid. For ROM-A, since anþ1μ ¼ Aμanμ þ b and a0μ ¼ 0, we have

anμ ¼ An
μa

0
μ þ

Xn�1

k¼0
Ak

μb ¼
Xn�1

k¼0
Ak

μb: (42)

The matrix Aμ is observed to be diagonalizable in ℂ. There is an invertible matrix
Pμ such that Aμ ¼ PμΛμP�1μ where Λμ is the diagonal matrix of the eigenvalues. Since it
is observed that ρ Λμ

� � ¼ 1, we have

∥anμ∥≤Cond Pμ

� �
n∥b∥, ∀n∈, (43)

Figure 4.
Matrix identification. Log of the normalized residual n↦ log 10 ∥anþ1μ � Aμη anμ

� �
∥2=∥anþ1μ ∥2

� �
for both ROM-A

and ROM-B.
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showing that the coefficients in the PCA space grow at most linearly in time.
In Figure 6, we compare the computed capsule shapes and positions in the

channel for the computed FOM capsules obtained at different times: t ¼ 0, 0:4, 2:8,
5:2 and 7:6. What can be observed is that the ROM-B model returns very satisfactory
results where the shape solutions fully overlap the FOM ones’at the eye norm’. Finely,
we plot in Figure 7 the time evolution of the errors in the capsule 3D shape of the
ROM solutions as compared to the FOM solutions. The difference between the shapes
are quantified by εShape tð Þ, the ratio between the modified Hausdorff distance (MHD)
computed between the FOM shape SFOM tð Þ and the ROM shape SROM tð Þ and the
channel characteristic length ℓ:

εShape tð Þ ¼ MHD SFOM tð Þ,SROM tð Þð Þ
ℓ

: (44)

The modified Hausdorff distance measures the maximum value of the mean
distance between the two shapes to compare [17]. The ROM-A and ROM-B

Figure 5.
Matrix identification. Eigenvalues of the computed matrix Aμ plotted in the complex plane for the ROM-A model.
One of the eigenvalue is 1 up to round-off error.

Figure 6.
Sequence of cross-section capsule shapes and positions in the microchannel from the initial spherical shape shown in
light green at the beginning of the channel: Comparison of the FOM solutions (gray dots) and of the solutions
computed from the dynamical k-DMD reduced-order model (dark green solid line) at the same instants as in
Figure 1: t ¼ 0, 0:4, 2:8, 5:2, 7:6.
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models return very accurate solutions with maximum 0.1% error. It is also
observed that the ROM-B models is slightly more accurate than the affine
approximation.

6.2 HOSVDon thewhole data tensor and errormeasurements on thewhole database

Now the consider the whole database made of 55 samples in the parameter domain.
In Figure 8 we plot the location of the 55 chosen samples in the plane Ca, a=ℓð Þ. The
design zone of interest corresponds to capsule shapes that can reach a steady state
after a certain time.

A SVD is first performed on the μ-flattening of the data tensor T x. In Figure 9, we
plot the four first parameter (normalized) eigenmodes in the parameter domain.

Figure 7.
(a) Comparison of the time evolution of the shape error between the affine DMD model (ROM-A with K ¼ 10)
and the kernel-based one (ROM-B with K ¼ 10, M ¼ 5). One can observe a maximum error less than 0.1% in
both cases. (b) Sensitivity analysis of the parameter σ (∥aNþ1∥2 ¼ 667:14.)
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These modes give an idea on the dependency of the capsule shapes with respect to the
parameters. To complete the analysis, we show in Figure 10 the spectrum of the
singular values for the μ-flattening matrix. One can observe a rather fast decay of the
singular values especially for the ten first modes.

Figure 9.
HOSVD: The first four parameter eigenmodes in the parameter domain, computed from the μ-flattening of the
data cube.

Figure 8.
Samples of the design of experiment in the parameter space Ca, a=ℓð Þ. The zone of interest corresponds to capsule
shapes that reach a steady state after a certain time.
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Next, we perform the SVD of the time t-flattening matrix of T x. The SVD
provides us temporal eigenmodes. In Figure 11, the four first temporal eigenmodes
ωm, m ¼ 1, … , 4 are plotted. The first one appears to be the linear function while the
others add details especially in the transient zone of the capsule dynamics. The
spectrum of the singular values again shows a fast decay especially for the six first
modes.

To conclude this section, we have tested the accuracy of both ROM-A and ROM-B
on the whole database. For each sample, we have derived a ROM model, i.e. a low-
order dynamical system formulated in the PCA space. Then we have compared the
ROM solution to the FOM solution by calculating εShape between the two capsule
shapes. In Figure 12, the heat maps of εShape are plotted for ROM-A and ROM-B. One
can observe a uniform accuracy over the whole parameter domain, with errors less
than 0.1%, thus showing the efficiency of the approach. Reported computational
speedups are between 5000 and 10,000 using ROM models. A computer with two
Intel Xeon GOLD 6130 CPU (2.1 Ghz) has been used for the numerical tests.

Figure 10.
Spectrum of the singular values of the μ-flattening matrix.

Figure 11.
HOSVD. Left: First four temporal eigenmodes computed from the SVD decomposition of the t-flattening data
tensor. Right: Spectrum of the singular values.
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7. Discussion

Having shown how to apply the affine DMD and k-DMDmodels and the very high
precision in prediction that they offer, we now would like to provide some further
comments and remarks on model order reduction and DMD-type approaches.

7.1 Kolmogorov n-width

The method is efficient if the spectrum of singular values decays rapidly, leading to
a small truncation rank K. If the spectrum decays slowly, there are two possible
reasons for that: either the entropy (variety) of information in the data is high, or the
solutions do not live in a linear space but rather on a nonlinear manifold. To fix the
problem, one can proceed by performing a preliminary clustering of the data, scan-
ning the parameter dimension. One can either use standard clustering techniques such
as K-means, or a multidimensional scaling (MDS) approach. Then for each cluster,
one can consider again a HOSVD and reduced-order approach suitable for each
element of the cluster.

7.2 Selection of the kernel functions and kernel interpolation points

As already mentioned, the choice of the kernel function depends on the
applications, on the behavior of solutions and/or on the underlying Physics.
Without any a priori information, one can use universal approximation kernels like
the Gaussian one. The accuracy of the results will also strongly depends on the
choice of the kernel interpolation points a jð Þ. The sampling a jð Þ

� �m
j¼1 has to correctly

fill in the admissible space, or at least the state-space trajectory of interest. There are
different possible strategies. A first candidate is the use of a clustering approach
applied to the state-space data. The points a jð Þ are then the centroids of each cluster.
But one can consider more sophisticated approaches like a greedy iterative approach
that controls the interpolation error on the data. At each iteration an interpolation
point a jð Þ is added at the location of worst interpolation error, considering all the
sample solutions.

Figure 12.
Heat maps of the modified Hausdorff distance between the FOM solutions and the ROM ones at dimensionless time
Vt=ℓ ¼ 10. Left: ROM-A, right: ROM-B. Errors are less than 0.1%.
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7.3 Interpretation in terms of a recurrent neural network

Let us remark that the approach can be reinterpreted as a (supervized) two-layer
recurrent artificial neural network (RNN) (Figure 13) [18]. The first layer consists in
generating the features ki aμ

� �
. The second layer is a linear matrix–vector multiplica-

tion using the matrix Aμ.

8. Conclusions

In this chapter, the higher-order singular value decomposition has been proved to
be a flexible and valuable tool in the data-driven reduced-order modeling of
solutions of space–time-parameter problems, which are today at the heart of many
industrial applications. The methodology has been tested on a problem of fluid–
structure interaction of a deformable microcapsule flowing into a microchannel.
Stokes equations have been used in the fluid whereas a nonlinear hypereleastic law has
been used for the membrane. Different shape solutions computed by the full-order
model have been stored into a third-order tensor. First, HOSVD allows us to
compute spatial, temporal and parameter principal components and at the same
time to compress the data. We get a low-order representation of the solutions with a
shared spatial reduced basis. Spatial principal components are observed to provide
suitable details in the shape solutions. The modes are arranged in decreasing order of
importance according to the relative information content criterion. Next, additional
ingredients such as kernel approximation and kernel-based dynamic mode decompo-
sition are used to determine a reduced-order dynamical system for any parameter
vector in the admissible parameter domain. The resulting low-dynamical system can
be seen as an encoded recurrent neural network set into the PCA space. The approach
allows us to explore the different shape solutions and visualize their evolution in the
channel in real time.

Figure 13.
Interpretation of the method as a recurrent neural network (RNN) in the PCA space.
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Nomenclature

SVD Singular value decomposition
HOSVD Higher-order singular value decomposition
PCA Principal component analysis
MOR Model order reduction
FOM Full order model
ROM Reduced order model
FSI Fluid–structure interaction
DoCE Design of computer experiment
POD Proper orthogonal decomposition
RIC Relative information content
DMD Dynamic mode decomposition
k-DMD Kernel-based dynamic mode decomposition
MHD Modified Hausdorff distance
RNN Recurrent neural network
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Chapter 7

Principal Component Analysis in
Financial Data Science
Stefana Janićijević, Vule Mizdraković and Maja Kljajić

Abstract

Numerous methods exist aimed at examining patterns in structured and
unstructured financial data. Applications of these methods include fraud detection,
risk management, credit allocation, assessment of the risk of default, customer ana-
lytics, trading prediction, and many others, creating a broad field of research named
Financial data science. A problem within the field that remains significantly under-
researched, yet very important, is that of differentiating between the three major
types of business activities—merchandising, manufacturing, and service based on the
structured data available in financial reports. It can be argued that, due to the inherent
idiosyncrasies of the three types of business activities, methods for assessment of the
risk of default, methods for credit allocation, and methods for fraud detection would
all see an improved performance if reliable information on the percentage of entities’
business activities allocated to the three major activities would be available. To this
end, in this paper, we propose a clustering procedure that relies on Principal Compo-
nent Analysis (PCA) for dimensionality reduction and feature selection. The proce-
dure is presented using a large empirical data set comprising complete financial
reports for various business entities operating in the Republic in Serbia, that pertain to
the reporting period 2019.

Keywords: data science, principal component analysis, random forest algorithm,
financial data, financial reporting

1. Introduction

The established financial reporting system within an entity is the basic source
of information on its financial position and results. The economic and financial
globalization of the world market has emphasized the importance of high quality
financial reporting. For the business decision-making process, financial and audit
reports are the main source of information, as they contain information on finan-
cial position, business results, changes in equity, cash-flows and other reliable
information [1]. Development of the capital market and the increase in the num-
ber of interested parties (investors) created even higher demand of reliable, on
time and fair financial statements as the main results of financial reporting. The
regulation of the relationship between the state and society, owners of capital and
management, various stakeholders and society, and others; has been further

113



improved by a quality financial reporting and audit process. However, in order to
fulfill their main purpose for all interested parties, financial statements must
provide information that is true, objective, comprehensible, comparable and uni-
form [2]. In the first place, financial statements have to be publicly available,
which is usually regulated by law. For example, Law on Accounting of the
Republic of Serbia prescribes that all business entities have to submit their finan-
cial reports to the competent institution which later publishes them on the official
internet site [3]. Information contained in financial statements can be used for
numerous purposes. For example, other business entities can use them in the
process of making business, financial, investment and other decisions. Likewise,
banks and financial institutions can use them in order to approve loans or assess
investment risks related to the certain business entity. However, financial infor-
mation contained in financial statements are not processed and represent a raw
data that should be analyzed in order to assess the performance of a certain
business entity. Aside Notes to financial statements, as one of the qualitative
statements that business entities prepare and report, all other statements are
quantitative in nature and offer hundreds of pieces of data. Therefore, it is of
great importance to perform certain type of analysis on the collected data in order
to gain a solid basis for business decision making process. Analysis of financial
statements is one of the most common methods of assessing business perfor-
mance. The main goal of conducting the analysis of financial statements is to
obtain information on the performance of the observed company, i.e. liquidity,
profitability and solvency. Measuring financial performance using compiled and
disclosed financial statements is a quantitative analysis of the position of the
observed company, including the way in which the company uses the capital
invested in business. High quality analysis of the performance of the observed
entity provides a comprehensive image of the business, including meeting the
information needs of stakeholders. The authors [4] point out in their paper that
the analysis of financial performance is crucial in determining the efficiency in
terms of the use of available resources. Likewise, an entity owners will be able to
assess management skills and decisions that have been made in previous, as well
as in current reporting period, so that they could analyze entities strengths,
weaknesses and therefore improve their overall performance [5–7].

Some pieces of data disclosed in financial statements have informational power to
be used on their own, such as Total assets, Sales revenue, or Net result. However,
informational power of data increases when they are put into relation with other
pieces of data. Therefore, financial statements analysis using ratios has been one of the
most commonly used methods of assessing business performance. Financial ratio is a
relative magnitude of two (or more) selected numerical values taken from financial
statements. For example, relation between Net result and Equity will provide infor-
mation on how much dollars of profit an entity earns for each dollar invested in
equity. Results of financial statements analysis can be used to compare performance of
a certain entity over a period of time, or for comparison with other entities within the
industry. However, since financial statements analysis takes time and there are
numerous financial ratios that analysts could use (and the fact that most of these ratios
are correlated), the number of ratios that are being calculated and assessed should be
reduced so that an analyst could focus on several of them without losing data that
could be relevant for the analysis [8]. One of the methods that can be used is Principal
Component Analysis (PCA), which reduces number of observed variables for any
further, regression, or any other type of analysis [9]. PCA analysis has found its
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numerous purposes in different industries, for example, in image compressing [9–11],
as well as in biometrics or “bioimaging” where physical characteristics of a person are
used for its identification with application on communication devices and security
systems.

The significance of PCA results is reflected in the fact that they can be used for
more effective and efficient analysis of performance of certain entity, or for all
business entities within a certain industry, or if analyzed financial data is related to
whole economy, than results could be used for the analysis of all entities within it. The
main advantages of PCA are precision of results; reduction of time needed for the
analysis and evaluation of results; as well as reduction of related costs and efforts of
the analyst.

With the development of technology, we have gained the ability to generate
massive amounts of data. The use of correct methodologies for data analysis has
become essential when dealing with complex financial challenges. In this paper, we
discuss the theory underlying PCA. This type of analysis is one of the most used
statistical tools in the field of financial data analysis. To ensure that the proper method
is used for the analysis, theoretical knowledge and an comprehension of statistical
methods are essential.

1.1 General postulates of PCA

PCA is primarily designed as a statistical technique that selectively reduces the
dimensionality of data in complex data sets while preserving maximum variance.
Since research in the financial sector involves both a large amount of data and a large
number of variables simultaneously, it is difficult for us to perform analysis for this
type of data.

Visualization techniques are only useful in two or three dimensional spaces, and
single-variable analysis does not provide precise results due to overlapping variance.
To achieve dimensionality reduction, it is necessary to generate principal components,
i.e., a new set of variables containing a linear combination of the original variables.
PCA can be used for a variety of tasks. A very small number of components are
sufficient to cope with the variability of a data set. Since the number of components is
reduced by using principal components, the complexity of the analysis itself is also
reduced by avoiding analyzing a large number of output variables.

The standard PCA procedure takes as its starting point a data set in which m
numerical variables are observed for each n individuals. These data are defined
by the vectors x1, … , xm or n�m of the data matrix X. The jth column is the vector
x j resulting from the jth variable. Linear combinations of columns for an X matrix
with maximum variance are calculated as

Pm
j¼1c jx j ¼ Xc. Here c stands for the

vector of constants c1, c2, … cm. The variants of such a linear combination are
obtained as var Xcð Þ ¼ c0Mc. Here M stands for an exemplary covariance matrix.
Finding a linear combination with maximum variance is the same as finding a m
dimensional vector c that maximizes the quadratic form c0Mc. For this reason, it is
necessary to enter another constraint, which is usually unit norm vectors. Such
vectors require c0c ¼ 1. This problem is the same as maximizing c0Mc� λ c0c� 1ð Þ,
where λ represents the Lagrange multiplier. Equating it to the zero vector gives the
following equation:

Mc� λc ¼ 0⇔Mc ¼ λc (1)
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This equation is valid even when the eigenvectors are multiplied by �1. Here, c is
the eigenvector and λ is the corresponding eigenvalue for the covariance matrix M.
We need the largest λ1, the largest eigenvalue, and the corresponding eigenvector c1.
Eigenvalues are defined by the corresponding eigenvector c : var Xcð Þ ¼ c0Ma ¼ λc0c ¼
λ. The covariance matrix M is a symmetric m�m matrix and has exactly m real
eigenvalues. λk k ¼ 1, … ,mð Þ can be defined together with the corresponding
eigenvectors to form a set of vectors that are orthonormal. An example of this is
c0mcm ¼ 1 if m ¼ m0. The eigenvectors of M are used to obtain up to m linear combina-
tions of Xck ¼

Pm
j¼1cjkx j that maximize the variances. The fact that the covariance

between the two linear combinations of Xck and Xck0 is obtained from c0kMck ¼
λkc0kck ¼ 0 if k0 6¼ k, leads to results of uncorrelatedness [12]. Linear combinations of
Xck represent the principal component of a data set. There are several PCA terms used
for specific values. Elements of linear combinations Xck are called principal compo-
nent scores (PCA scores) and eigenvectors ck are also called principal component loads
(PCA loads). These contain a generic element x ∗

ij ¼ xij � x j, where x ∗
j represents the

observed value for variable j.
The n�m matrix labeled X ∗ contains columns with centered variables x ∗

j ,
resulting in the following equation:

n� 1ð ÞM ¼ X ∗ 0X ∗ (2)

1.2 Premises of PCA

For the final outcome of the PCA assessment to be successful and significant,
numerous conditions must be met. Initially, it is crucial that the data entered are
uninterrupted and that variables should be measured on an interval or ratio scale. This
condition must be met because PCA tests important correlation patterns for these
variables.

Another crucial requirement is that the relationships between the individual pairs
of variables are linear. If there are nonlinear relationships between the individual pairs
of variables, appropriate data transformation techniques, such as logarithmic trans-
formations, should be considered. Presumptions for PCA are filling missing values
with not null values, outliers handling, and normalization scaling. All outliers should
be filtered out prior to analysis, as they can bias the results by affecting the magnitude
of the correlation.

To obtain more accurate estimates for the correlation population parameters, a
large sample size is required. The data sets must be linear in order to be formed. The
basic principle of PCA is that high variance must be taken into account, while vari-
ables with lower variance can be considered noise and are not taken into account. All
variables must be processed at the same level of measurement.

1.3 Features extraction in PCA

Eq. (2) associates the eigenvalue decomposition of the covariance matrix M and
the singular value decomposition of the matrix X ∗ with the centered column data. For
dimension n�m and rank r, where it must be r≤ min n,mf g, the matrix Y can be
calculated as follows:

Y ¼ ULA0 (3)
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Where U and A represent the matrices n� r and m� r containing orthonormal
columns U0U ¼ Ir ¼ A0A, where Ir represents the identity matrix r� r. L is the r� r
diagonal matrix. The columns A are also called right singular vectors and represent
eigenvectors for the m�m matrix Y 0Y associated with its non-zero eigenvalues.
Columns U are also called left singular vectors and represent eigenvectors for the n�
n matrix YY 0 associated with its non-zero eigenvalues. Singular values of Y represent
diagonal elements of the matrix, denoted by L. These elements are non-negative
square roots for the non-zero eigenvalues of the two matrices Y 0Y and YY 0. We
consider that the diagonal elements are sorted from the largest to the smallest element,
which determines the order of the columns U and A, except for singular values that
are equal [12]. This is true in all cases except when the singular values are equal. If we
assume that Y ¼ X ∗ , then the right singular vectors for the matrix X ∗ are vectors ck of
principal component loads. Because of the orthogonality of columns A, columns
X ∗A ¼ ULA0A ¼ UL are the principal components for X ∗ . The types of these princi-
pal components are obtained by squaring the singular values of X ∗ and dividing by
n� 1. This results in the following equation:

n� 1ð ÞM ¼ X ∗ 0X ∗ ¼ ULA0ð Þ0 ULA0ð Þ ¼ ALU0ULA00 ¼ AL2A0 (4)

Here L2 stands for a diagonal matrix with one square of the singular values. With
this equation we get the eigenvalue decomposition for the matrix n� 1ð ÞM. The
singular value decomposition for the X ∗ matrix with the data centered in the column
is equivalent to PCA. Taking the rank r in the matrix Y, which has the magnitude n�
m, the matrix Yq, which has the same magnitude but the second rank q<R and whose
elements reduce the sum of squared differences with the corresponding elements of Y,
is obtained as:

Yq ¼ UqLqA0q (5)

Here Lq stands for the diagonal matrix of dimensions q� q, which contains the
first largest diagonal element q of L and Uq. Aq stands for the matrices n� q and m� q
obtained by keeping the q columns in U and A. The number of rows n from the rank r
of the matrix X ∗ defines the scatter plot from the number n of points in the r
dimensional subspace ℝm, where the beginning of the gravity center for the scatter
plot is located. It follows that the best approximation of the n points in this scatterplot
in the q dimensional subspace, obtained by using X ∗

q rows, is given by this equation.
That means that the sum of the squared distances between the given points in each
scatterplot is minimal, as in Pearson’s original approach [13]. The q axis system defines
the main subspace. It can be concluded that PCA is a dimensionality reduction method
where a set of m original variables can be replaced by a given set of q variables. In the
case of q ¼ 2 or Q ¼ 3, it is possible to make a graphical approximation for n points in
the scatter plot, and it is very often used to visualize the whole data set. A very
important aspect is that the results are incremental in their dimensions.

The variability associated with the set of retained principal components can be
used to ensure the quality of any q dimensional approximation. The trace, i.e. the sum
of the diagonal elements, of the covariance matrix M is equal to the sum of the
variances of the m variables. It is possible to achieve this with the help of matrix
theory results. It is easy to prove that this number is also the sum of the variances of all
m principal components. Consequently, the proportion of the overall variation
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accounted for by a given principal component is a standard measurement of its quality
and it’s equal to:

π j ¼
λ jPm
j¼1λ j

¼ λ j

tr Mð Þ0 (6)

The trace of M is labeled tr Mð Þ. Due to the incremental behavior of principal
components, we can speak of a proportion of the total variance explained by a setM of
principal components, which is usually expressed as a percentage of the total variance
and is accounted for:

X
j∈M

π j � 100% (7)

It is a common approach to use a pre-specified percentage of the total variance to
determine how many principal components to keep, but graphical constraints often
lead to keeping only the first two or three principal components. The percentage of
total variance is a basic tool for measuring the quality of these low-dimensional
graphical representations of the data set.

The biggest problem is the number of components needed to obtain a sufficient
number of variances while achieving a reduction in dimensionality. There are several
ways to determine the components, and one of them is to set a threshold.

The next very popular approach is the “Scree Plot” [14], where the components are
arranged on the X-axis from largest to smallest with respect to their eigenvalues. In
this way, we can see a very large difference between important and less important
components. The only drawback to this approach is that it is subjective in determining
the correct number of components.

The most popular method is parallel analysis [15], where PCA is performed with as
many variables as the original data set includes. The average eigenvalues between the
original data set and the simulated data set are measured. Any values from the original
data that are lower than the data in the simulated set are discarded.

1.4 Sparse PCA

PCA has many advantages. In terms of maximizing variance in Q dimensions, PCA
provides the best possible representation of a m dimensional data set in q dimensions
q<m. However, the new variables it defines are often linear functions of all the m
original variables, which is a downside. Multiple variables with not so simple
coefficients are common for larger m, making the components difficult to read. A
number of PCA adjustments have been proposed to facilitate interpretation of the q
dimensions while limiting the loss of variance that results from not using the principal
components themselves. There is a compromise between interpretability and
variance. Two types of adjustments are briefly outlined below.

Factor analysis is a method that is often combined with PCA and it inspires the
concept of rotating principal components [16]. Assume that Aq is the m� q matrix
whose columns are the loadings of the first q of the principal components. Then XAq is
the n� qnq matrix whose columns are the scores of the first q of the principal
components for the n observations. Let us assume that T is an orthogonal q� qmatrix.
Multiplying Aq by T causes orthogonal rotation of the axes within the space spanned
by the first q of principal components, resulting in Bq ¼ AqT, a m� q matrix whose
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columns are the charges of the q rotated principal components. XBq is an n� q matrix
containing the associated values of the rotated principal components. Any orthogonal
matrix T can be used to rotate the components, but it is preferable to make the rotated
components easy to understand. For this reason, T is chosen to maximize simplicity. A
variety of such criteria have been proposed, some of which involve non-orthogonal
rotation. The criterion where an orthogonal matrix T is chosen for maximizing

Q ¼Pq
k¼1

Pm
j¼1b

4
jk � 1

m

� � Pm
j¼1b

2
jk

� �2� �
, where bjk is the j, kð Þth member of Bq, is

probably the most commonly used. No variance is lost when considering the rotated q
dimensional space, since the sum of the variances of the q rotated components is the
same as the sum of the variances of the unrotated components. Successive maximiza-
tion of the non-rotated principal components is lost, which means that the sum of the
variances of the q rotated components is the same as the sum of the variances of the
non-rotated components. A disadvantage of rotation is the necessary choice between
different rotation criteria, although this choice often makes less difference than the
choice of the number of components to rotate. If q is increased by 1, the rotated
components may look substantially different. That is because this does not happen in
principal components with defined non-rotated nature.

Another method of simplifying the principal components is to limit the charges of
the new variables. This is called adding a constraint. There are several variants of this
strategy, one of which uses LASSO linear regression [17], that represents least absolute
shrinkage and selection operator. In this approach, SCoTLASS components are dis-
covered, solving the same optimization problem as PCA, but with the additional
constraint

Pm
j¼1 cjk
�� ��≤ τ, where tuning parameter is τ. The constraint has no effect for

τ>
ffiffiffiffi
m
p

, and principal components are generated; however, more charges are pushed
to zero at a lower value, which simplifies the interpretation. These simplified compo-
nents must have less variation than the corresponding number of principal compo-
nents, and multiple values of τ are often examined to find a reasonable compromise
between added simplicity and loss of variance. One distinction between rotation and
constraint techniques is that the second has the advantage that some loadings in linear
functions are set exactly to zero for interpretation, whereas this is usually not the case
with rotation. Sparse variants of PCA are type of adjustments in which many coeffi-
cients are zero, and numerous studies of such principal components have been
conducted in recent years. Hastie et al. [18] provides a good overview of this work.

1.5 Robust PCA

PCA is inherently sensitive to the occurrence of outliers and thus to large errors in
data sets [19]. As a result, efforts have been made to define robust variants of PCA,
and the terminology RPCA has been used to refer to several approaches to this
problem. Huber’s early work focused on robust alternatives to covariance or correla-
tion matrices and how they could be used to generate robust principal components
[20]. The demand for methods to process very large data sets sparked renewed
interest in robust PCA variants. This led to PCA research lines, especially in areas such
as machine learning, image processing, web data analysis, and many others.

Wright et al. [21] defined RPCA as the sum of two n�m components, a low-rank
component L and a sparse component S in an n�m data matrix X. Identifying the
matrix components of X ¼ Lþ S that minimize a linear combination of two separate
component norms was defined as a convex optimization task and calculated as:
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min
L, S

Lk k ∗ þ λ Sk k1 (8)

where Lk k ∗ ¼
P

rσr Lð Þ is the nuclear norm of L, and λ Sk k1 ¼
P

i
P

j sij
�� �� is the l1

norm of matrix S.

2. Related work

PCA was first introduced into mechanics by [22], as an analogue of the axis
theorem. It was later named “PCA” by [23]. The range of applications in finance and
economics is extensive. Take as an example [24], who used PCA to document three
factor structures. Stock and Watson [25] used PCA to monitor economic development
and activity, as well as the inflation index. Egloff et al. [26] used PCA as a way to
analyze the dimensions of inconsistent dynamics. Volatility is a statistical measure
that can be used to determine these inconsistencies using a two-factor volatility
model. This includes long-term and short-term fluctuations in the volatility structure.
Baker and Wurgler [27] used PCA to measure investors sentiment, i.e., their positive
or negative view. This was done according to the principle of the number of sentiment
proxies before Baker, [28] created the policy uncertainty index. This index represents
potential risks in the near future.

The most important item in the construction of PCA is the estimation of the
eigenvalues of the covariance matrix sample. Anderson andWeeks [29] and Anderson
[30] showed that sample eigenvalues were consistent when dealing with asymptom-
atic sentiment proxy results. Waternaux [31] proved that similar results are obtained
with simple eigenvalues as long as there is a fourth moment in the data. In addition to
the discussions in the [32] book, [33] was able to establish the asymptotic distribution
of eigenvectors using generalized assumptions.

However, this PCA approach to eigenvalues has some downsides. The first prob-
lem is certainly dimensionality, which can be noticed when the cross sectional
dimension grows simultaneously with the sample in the same period. Then inconsis-
tencies occur. Another problem arises from linear data types that do not include
nonlinear patterns. A third problem [34] arises from the dependence of the asymp-
totic theory on fixed assumptions for the analysis. For these reasons, we have a
problem when we use PCA for reimbursement data. Most of the time, we need years
of data to make an assumption, which in turn leads to other problems, such as
permanence and consistency of non-fixed parameters. This type of data has backlogs
and volatility times often vary.

These problems stimulate the improvement in this field and motivate the devel-
opment of tools for PCA methods. The approach to the problem, where the number of
occurances grows in fixed time periods, touches all the listed downsides. Theoreti-
cally, it is known that as the frequency of the sample increases, the estimated variance
and covariance increase. This is true until the microstructure of the market begins to
take effect. Incidentally, this is not a serious problem if we choose a sampling fre-
quency of minutes, which we use as opposed to the below one second time interval
most often used for liquid stocks. A high frequency asymptotic analysis with the cross-
sectional dimension is expected as the time interval increases sharply. This high
frequency asymptotic framework allows us to perform non-parametric analysis as
well as independent, non-static and analysis without underlying parameters as is the
case with low frequency processes.
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Asymptotic theory is very common in many contexts. Jacod et al. [13] and
Jacod and Podolskij [35] also dealt with one problem that we deal with in this paper,
where the cross sectional dimensions are invariant and the process is continuous.
Mykland and Zhang [36] designed an alternative theory to the one put forward by
[37], that discuss inference for volatility function dependence. It is based on the
aggregation of local estimates and uses a finite number of blocks. Saha et al. [38]
considered the expected values of the integrated covariance matrix under conditions
where there is an error measure and the matrix is large containing high frequency
data. Tao et al. [39] addressed work on the convergence rate. Jacod and Rosenbaum
[40] analyzed estimators, composed of aggregating functions of estimates. They
did so using integrated quarticity estimation. Heinrich and Podolskij [41]
discussed empirical covariate matrices of Brownian integrals. Here is discussed
the measurement of the leverage effect and its evaluation by the integrated correlation
method [42].

PCA analysis can be used in analysis of financial data for different purposes. For
example [43] used it to identify the type of impact on grouped impact factors, such
as assessing the quality of accounting information and facilitating the process of
financial analysis conducted by different users. On the other hand, [44] used PCA
to assess the impact of the evolution of Finnish standards on IFRS (International
Financial Reporting Standards). Finally [45] used PCA analysis to determine the
macroeconomic impact on the profitability of Romanian listed companies, using data
from 1997 to 2007, and identified following indicators: liquidity, solvency, and firm’s
dimension.

When it comes to the use of PCA analysis in financial statements analysis,
four papers that focus on Romanian listed companies will be reviewed first. All
papers emphasize the importance of using PCA analysis in the analysis of key
financial ratios. In the first paper author [46] analyzed the data of 16 initial variables
which he grouped into 3 new variables (general efficiency indicator, indicator in
correlation with historical debts of companies and development indicator (given
long-term debt and deferred income). Those three variables where able to explain
96.72% of initial variability. In the second paper, [47] analyzed data for 2010
including initially seven indicators of standard financial analysis and they reduced
them to only two (which explain 94% of initial variability). In third paper, [48]
used data from the stock exchange in the period 2006–2011 to identify the main
components of financial statements which explain 79.08% of initial variability. The
same group of indicators has been used by [43] on research sample that consisted of
111 companies from Madrid stock exchange and 32 companies from Eurostoxx50 for
reporting periods 2005–2007. Research results showed that those six indicators
explained 87% of total variance, with the first two indicators at app 44% of total
variance.

3. Case study—PCA and cluster analysis in financial accounting data

3.1 Research methodology

In order to provide an answer on defined research question, 3.013 medium and
large business entities were selected by random and used as a research sample. Finan-
cial statements for 2019 reporting period have been downloaded manually from the
official website of the Business Registers Agency (BRA). BRA is a state administrative
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body that collects financial statements and corresponding audit reports of business
entities that operate within the territory of the Republic of Serbia. Information
published by BRA is used for financial analysis of business entities and as a basis of
decision-making process. Afterwards, data from the pdf files containing financial
statements have been copied and recorded in pre-set up tables in Excel files. Namely,
medium and large business entities in the Republic of Serbia have an obligation to
prepare and disclose full set of financial statements, consisting of balance sheet,
income statement, cash-flow statement, statement of changes in equity and notes to
financial statements. Since all previously mentioned statement, except notes to finan-
cial statements, are quantitative in nature, they were used for this research. Values
originally disclosed in RSD, as the reporting currency, were converted into euros by
using the average exchange rate of euros on the balance sheet date (31st December).
Values of each financial statement line is presented in thousands, and therefore they
are presented as such in this research [49].

Financial statement item lines in official financial statements are marked by
corresponding automatic data processing number (in Serbian: Automatska obrada
podataka—AOP), that belongs to the national nomenclature system. These markings
are used in order to perform control of mathematical calculations before each financial
statement is accepted for publishing by BRA. They also serve as an instrument of
connecting data and information regarding the same financial statement item
presented in financial statements. Balance sheet items cover automatic data processing
numbers from 0001 to 0465; income statement from 1001 to 1071; statement of cash-
flows from 3001 to 3047; and statement of changes in equity from 4001 to 4252.
Table 1 shows the formulas used for the calculation of the selected financial indicators
that will be used in this research. Having in mind that these variables will be used in
order to differentiate business entities to three major types of business activities, these
variables have been selected by a common sense.

Variables Derived from

Fixed assets in total assets AOP2/AOP71

Percent sales of merchandise in total operating revenue AOP1002/AOP1001

Percent sales of products and services in total operating revenue AOP1009/AOP1018

Percent cost of merchandise sold in total operating expenses AOP1019/AOP1018

Percent cost of material in total operating expenses AOP1023/AOP1018

Percent fuel and energy cost in total operating expenses AOP1024/AOP1018

Percent wage cost in total operating expenses AOP1025/AOP1018

Percent productive service cost in total operating expenses AOP1026/AOP1018

Percent depreciation cost in total operating expenses AOP1027/AOP1018

Percent raw material in total assets AOP45/AOP71

Percent WIP in total assets AOP46/AOP71

Percent finished products in total assets AOP47/AOP71

Percent WIP and finished products in total assets (AOP46 + AOP47)/AOP71

Percent merchandise in total assets AOP48/AOP71

Table 1.
Calculation of selected financial indicators.
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3.2 Algorithm

Data preparation is a key process in data analysis. The basic preparation and
cleaning procedures are:

• Preparing a copy of the table

• Adding new attributes

• Conversion of column types

• General data cleaning and adjustment

Specifically, the cleaning includes the following items:

• Editing date variables—the most common formatting problems

• Recoding of zeros/missing values

• Decoding categorical variables using labels and hot encoding

• Arranging outliers

• Application of normalization/standardization/ log transformation

• Calculating descriptive statistics—mean, median, mode, standard deviation,
variance, rank, etc.

• Calculating inferential statistics - distributions, t-value, p-value, frequencies,
cross-tabulations, correlation, covariance, etc.

More advanced techniques include:

• Coding:

Categorical variables are labeled as character variables and must be converted to a
factor type for modeling purposes. Queues perform this task.

• Outliers:

For numeric variables, we can identify deviations numerically by the value of the bias.

• Normalization/logarithmic transformation:

One of the techniques to normalize the biased distribution is logarithmic transfor-
mation. First, a new variable is created, while later the value of the bias of this new
variable is calculated and printed.

• Standardization:

One of the standardization techniques is that all characteristics are centered
around zero and have approximately the variance of one unit. Scaling is used so that
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the variable is converted. The result is that these variables are standardized with a
mean of zero.

As part of the preparation for PCA, firstly missing values from the dataset were
filled with zeros. After that, the data was scaled by using a standard scaler, which
standardizes features by removing the mean and scaling to unit variance. The
preprocessed dataset, was then used for:

• PCA

• Sparse PCA

• Robust PCA

All three of the PCA methods were instanciated with the number of components
set to 7. After PCA, the now transformed data went through several clustering
methods for the purpose of comparing results. The clustering methods that were used
for each PCA are:

• K-means clustering

• Agglomerative clustering

• BIRCH clustering

• Gaussian Mixture

• Spectral clustering

Furthermore, each of the clustering methods were executed with just the
preprocessed data, without PCA, also for the purpose of comparing results.

Algorithm 1: Principal Component Analysis.

procedure:
Data preparation: X  X ∗

Compute dot product matrix: X ∗ 0X ∗  n� 1ð ÞM
Eigenanalysis: AL2A0  X ∗ 0X ∗

Compute eigenvectors: U  X ∗AL
Keep first 7 components: U7  u1⋯u7½ �
Compute 7 features: Y  Ud

0X
end procedure.

4. Results and discussion

4.1 Comparative results—total variance explained

This chapter discusses the outcomes of PCA and cluster analysis. The initial vari-
ables that load on the principal components are studied. Correlations or covariances
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between the original variables and the principal components correlate with the load-
ings. The variable loadings are contained in a loading matrix, which is created by
multiplying the eigenvector matrix by a diagonal matrix containing the square root of
each eigenvalue. The entries are determined by the component extraction method
used. Non-standardized loadings show the covariance between mean-centered vari-
ables and standardized component values, regardless of whether the extraction is
based on the singular value decomposition of the matrix or the eigenvalue decompo-
sition of the covariance matrix.

The eigenvalue decomposition of the correlation matrix results in the
standardized charges. The correlations between the original variables and the
component scores are represented by these loadings. Because they always vary
between �1 and 1 and are independent of the scale used, standardized charges are
easy to read. In most cases, a threshold is set and only variables with loadings above
this threshold are examined.

The total variance presents sum of variances of principal components. The ratio
between the variance of principal component and the total variance is the fraction of
variance explained by a principal component.

Figure 1 shows total variance explained by using three methods of PCA. The
steepest increase belongs to the PCA line, which cumulative explained variance is
app. 87%. This line is almost parallel to the line from Sparse PCA which cumulative
explained variance is 83%. However, when it comes to Robust PCA line it has been
noticed that cumulative explained variance is only app. 26% and the increase of values
is minimal.

PCA: The highest fraction of explained variance among these variables is 32%, and
the lowest one is 5%. Cumulative explained variance is 86% (see Table 2).

Figure 1.
Total variance explained.
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Sparse PCA: The highest fraction of explained variance among these variables is
21%, and the lowest one is 5%. For instance, variables together explain 83% of the total
variance (see Table 3).

Robust PCA: The highest fraction of explained variance among these variables is
21%, and the lowest one is 0%. For instance, variables together explain 25% of the
total variance (see Table 4).

PCA is the best approach for this kind of data, regarding number of features.

Factors Total % of variance Cumulative %

Factor 0 4.491515 32.082248 32.082248

Factor 1 2.540717 18.147978 50.230226

Factor 2 1.269778 9.069843 59.300069

Factor 3 1.243867 8.884762 68.184831

Factor 4 0.961330 6.866641 75.051473

Factor 5 0.867145 6.193891 81.245364

Factor 6 0.760536 5.432398 86.677761

Table 2.
PCA total variance explained.

Factors Total % of variance Cumulative %

Factor 0 3.078591 21.989939 21.989939

Factor 1 2.186255 15.616108 37.606047

Factor 2 1.698036 12.128828 49.734874

Factor 3 1.757003 12.550022 62.284897

Factor 4 1.047037 7.478832 69.763729

Factor 5 1.062211 7.587224 77.350953

Factor 6 0.809469 5.781923 83.132875

Table 3.
Sparse PCA total variance explained.

Factors Total % of variance Cumulative %

Factor 0 3.035926 21.685184 21.685184

Factor 1 0.454951 3.249650 24.934834

Factor 2 0.108168 0.772628 25.707462

Factor 3 0.020284 0.144884 25.852346

Factor 4 0.006630 0.047355 25.899701

Factor 5 0.000018 0.000128 25.899829

Factor 6 0.000000 0.000000 25.899829

Table 4.
Robust PCA total variance explained.
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4.2 Communalities

The amount of variance in each variable considered is represented by the commu-
nalities. The variance in each variable explained by all components or factors is
estimated using the initial communalities.

The percent fuel and energy cost in total operating expenses is given here with 88%
variance. The percent productive service cost in total operating expenses is given here
with 75% variance. The percent finished products in total assets here is 75% of the
estimated variance (see Table 5).

The percent fuel and energy cost in total operating expenses here is 91% variance.
The percent finished products in total assets here is 80% of the estimated variance.
The percent productive service cost in total operating expenses here is 74% variance
(see Table 6).

Columns Communality

Percent merchandise in total assets 0.159427

Percent sales of merchandise in total operating revenue 0.222216

Percent cost of merchandise sold in total operating expenses 0.224299

Percent sales of products and services in total operating revenue 0.236318

Fixed assets in total assets 0.347415

Percent cost of material in total operating expenses 0.411423

Percent raw material in total assets 0.426201

Percent WIP and finished products in total assets 0.449704

Percent depreciation cost in total operating expenses 0.683213

Percent wage cost in total operating expenses 0.729997

Percent WIP in total assets 0.731771

Percent finished products in total assets 0.745349

Percent productive service cost in total operating expenses 0.752027

Percent fuel and energy cost in total operating expenses 0.880639

Table 5.
PCA communalities.

Columns Communality

Percent merchandise in total assets 0.191833

Percent sales of products and services in total operating revenue 0.227810

Percent sales of merchandise in total operating revenue 0.260545

Percent cost of merchandise sold in total operating expenses 0.263888

Fixed assets in total assets 0.354743

Percent cost of material in total operating expenses 0.407825

Percent raw material in total assets 0.417451

Percent WIP and finished products in total assets 0.451553

Percent depreciation cost in total operating expenses 0.555661

127

Principal Component Analysis in Financial Data Science
DOI: http://dx.doi.org/10.5772/intechopen.102928



The percent wage cost in total operating expenses here is 82% variance. The
percent sales of merchandise in total operating revenue here is 79% of the estimated
variance. The percent cost of merchandise sold in total operating expenses here is 74%
variance (see Table 7).

Figure 2 presents the amount of variance for each considered variable represented
by the communalities. From the aspect of PCA and Sparse PCA it can be noticed that
variable Percent fuel and energy cost in total operating expenses and variable Percent
finished products in total assets have significant estimated variance. When it comes to
Robust PCA, variance of 82% refers to the variable Percent wage cost in total operat-
ing expenses. From the economic point of view first two variables could be used to
distinguish type of three major business activities. Mainly, the amount of fuel and
energy cost will differ between business activities. It is expected that production
entities will have higher values of fuel and energy costs because plant, machinery and
equipment will require energy to operate. Also, merchandise entities will probably
have higher values of fuel and energy costs compared to other services having in mind

Columns Communality

Percent wage cost in total operating expenses 0.695148

Percent WIP in total assets 0.719447

Percent productive service cost in total operating expenses 0.742714

Percent finished products in total assets 0.800108

Percent fuel and energy cost in total operating expenses 0.911274

Table 6.
Sparse PCA communalities.

Columns Communality

Percent WIP in total assets 0.200472

Percent merchandise in total assets 0.317793

Percent finished products in total assets 0.333984

Percent depreciation cost in total operating expenses 0.345393

Percent fuel and energy cost in total operating expenses 0.349862

Percent sales of products and services in total operating revenue 0.365996

Percent raw material in total assets 0.433737

Percent WIP and finished products in total assets 0.444081

Percent cost of material in total operating expenses 0.519423

Fixed assets in total assets 0.651365

Percent productive service cost in total operating expenses 0.680299

Percent cost of merchandise sold in total operating expenses 0.745842

Percent sales of merchandise in total operating revenue 0.789024

Percent wage cost in total operating expenses 0.822730

Table 7.
Robust PCA communalities.
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fuel spent for transportation of merchandise and energy needed for operation of their
facilities. Second variable Percent finished products in total assets is also expected to
be used for differentiation since only production entities will have this balance sheet
line in their financial statements. Main surprise might be third variable Percent wage
cost in total operating expenses, since most entities have very similar share of total
wage costs in total operating expenses. Namely, although official state records showed
that average wages differ across industries, management of companies usually plan
operating expenses and their structure.

4.3 Clustering

The best approach for the PCA/Clustering combination regarding high level of
Silhouette Index and Cluster Sizes are: K-means/Robust PCA and Spectral/Robust
PCA. The Davies Bouldin Index implies that a smaller value gives better clustering.
This produces the idea that no cluster has to be similar to another, and that object
inside clusters are very uniformly distributed (see Table 8).

Figure 2.
Amount of variance represented by the communalities.

Clustering/PCA method Cluster sizes Silhouette index Davies bouldin index

K-means/No PCA (1345, 932, 733) 0.30208710358306756 1.5444364169813884

K-means/PCA (1353, 934, 723) 0.3637346841903855 1.3405097768944103

K-means/Sparse PCA (1356, 939, 715) 0.36307616530243575 1.3418713066940657

K-means/Robust PCA (1209, 944, 857) 0.5193200382282146 0.7834359567299072

Agglomerative/no PCA (1151, 935, 924) 0.27839422485839554 1.7150687814273013

Agglomerative/ PCA (1225, 962, 823) 0.31642069773357084 1.4995739243069988
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5. Conclusion

This chapter was focused on the use of Principle component analysis in financial
data science. Research has been conducted that included 3013 medium and large
business entities and their financial statements from 2019 reporting period. PCA has
been used in order to differentiate between the three major types of business
activities - merchandising, manufacturing, and service. Therefore, 14 financial ratios
have been selected by common sense and further analyzed according to their signifi-
cance in dimensionality reduction. Results of clustering gave 7 new variables: 1. cost of
merchandise sold in total operating expenses, and cost of material in total operating
expenses; 2. fuel and energy cost in total operating expenses, and sales of product and
services in total operating revenue; 3. wage costs in total operating expenses, and sales
on merchandise in total operating revenue; 4. productive service cost in total operat-
ing expanses, and fixed assets in total assets; 5. depreciation cost in total operating
expenses, and merchandise in total assets; 6. raw material in total assets, and WIP and
finished products in total assets; 7. finished products in total assets, and WIP in total
assets. These groups of variables were able to explain 86.7% of initial variability.
Compared to the results of authors previously mentioned in literature review, it can
be concluded that percentage is within the range of reached results. When it comes to
initial communalities which estimated the variance in each variable, three financial
ratios that had the highest percentage were: fuel and energy cost in total operating
expenses (original PCA—88%, sparse PCA—91%); productive service cost in total
operating expenses (original PCA—75%, sparse PCA—74%); and finished products in
total assets (original PCA 75%, sparse PCA—80%). Although these ratios showed the
best results, it has to be mentioned that there is a correlation between all of financial
ratios used in analysis and therefore results would be different when ratios are used.

Clustering/PCA method Cluster sizes Silhouette index Davies bouldin index

Agglomerative/sparse PCA (1888, 893, 229) 0.31642069773357084 1.4995739243069988

Agglomerative/robust PCA (1311, 878, 821) 0.4593880561940543 0.9274868826361716

Birch/no PCA (1151, 935, 924) 0.27839422485839554 1.7150687814273013

Birch/ PCA (1225, 962, 823) 0.31642069773357084 1.4995739243069988

Birch/sparse PCA (1225, 962, 823) 0.31642069773357084 1.4995739243069988

Birch/robust PCA (1317, 867, 826) 0.45631070311567473 0.9348852316431389

Gaussian mixture/no PCA (1336, 992, 682) 0.17495781525891207 2.1078218204567496

Gaussian mixture/ PCA (1161, 1155, 694) 0.2539355374019169 1.6227017939395394

Gaussian mixture/sparse PCA (1161, 1155, 694) 0.2539355374019169 1.6227017939395394

Gaussian mixture/robust PCA (1467,784, 759) 0.28455634384131373 1.1919962215015028

Spectral/no PCA (2994, 8, 8) 0.460433642421337 0.9718901349784725

Spectral/PCA (3001, 7, 2) 0.5399338738262545 0.6856986473871954

Spectral/sparse PCA (3001, 7, 2) 0.5399338738262545 0.6856986473871954

Spectral/robust PCA (1346, 920, 744) 0.5146721760042233 0.7917964357887189

Table 8.
PCA with different clustering methods.
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Nomenclature

m number of numerical variables
n individuals
x vector
X data matrix
j number of columns
Xc linear combinations
c vector of constants
M covariance matrix
λ lagrange multiplier
U matrix with orthonormal colums—eigenvectors
A matrix with singular vectors
L diagonal elements of the matrix
L2 diagnal matrix with one square of the singular values
r rank of the matrix
q dimensional subspace
tr trace of matrix
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Chapter 8

Determining an Adequate Number
of Principal Components
Stanley L. Sclove

Abstract

The problem of choosing the number of PCs to retain is analyzed in the context
of model selection, using so-called model selection criteria (MSCs). For a prespecified
set of models, indexed by k ¼ 1, 2, … ,K, these model selection criteria (MSCs) take
the form MSCk ¼ nLLk þ anmk, where, for model k, LLk is the maximum log
likelihood, mk is the number of independent parameters, and the constant an is an ¼
ln n for BIC and an ¼ 2 for AIC. The maximum log likelihood LLk is achieved by
using the maximum likelihood estimates (MLEs) of the parameters. In Gaussian
models, LLk involves the logarithm of the mean squared error (MSE). The main
contribution of this chapter is to show how to best use BIC to choose the number of
PCs, and to compare these results to ad hoc procedures that have been used. Findings
include the following. These are stated as they apply to the eigenvalues of the
correlation matrix, which are between 0 and p and have an average of 1. For
considering an additional PCk + 1, with AIC, inclusion of the additional PCk + 1 is
justified if the corresponding eigenvalue λkþ1 is greater than exp �2=nð Þ: For BIC,
the inclusion of an additional PCk + 1 is justified if λkþ1 > n1=n, which tends to 1
for large n: Therefore, this is in approximate agreement with the average
eigenvalue rule for correlation matrices, stating that one should retain dimensions
with eigenvalues larger than 1.

Keywords: reduction of dimensionality, principal components, model selection
criteria, information criteria, AIC, BIC

1. Introduction and background

1.1 Introduction

Sometimes, researchers know how many principal components (PCs) they need.
For example, to construct an optimal scatterplot, the scores of the sample on the first
two principal components will be used to obtain an optimal plot. For an optimal three-
dimensional scatterplot, the scores on the first three principal components will be
used. In many applications, however, the researchers will question how many princi-
pal components they need. This chapter discusses the application of various methods
to the problem of reduction of dimensionality, in the sense of choosing an adequate
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number of principal components to retain to represent a dataset. The methods
discussed include ad hoc methods, likelihood-based methods, and model selection
criteria (MSCs), especially Akaike’s information criterion (AIC) and Bayesian infor-
mation criterion (BIC). This chapter applies the concepts of [1, 2] to this particular
problem.

1.2 Background

To begin the discussion here, we first give a short review of some general back-
ground on the relevant portions of multivariate statistical analysis, which may be
obtained from textbooks such as [3] or [4].

1.3 Sample quantities

Let x1,x2, … , xn denote a sample of n p-dimensional random vectors

xi ¼ x1i, x2i, … : xpi
� �0, i ¼ 1, 2, … , n: (1)

Here, the transpose (0) means that the vectors are being considered as column
vectors. The sample mean vector is

x ¼
Xn
i¼1

xi=n: (2)

The p� p sample covariance matrix is denoted by

S ¼
Xn
i¼1

xi � xð Þ xi � xð Þ0= n� 1ð Þ: (3)

1.4 Population quantitites

The sample covariance matrix S estimates the true covariance matrix Σ of the
random variables

X1,X2, … ,Xp:

The true covariance matrix is

X
¼ σu,v½ �u,v¼1,2,… ,p, (4)

where

σuv ¼ C Xu,Xv½ �, (5)

the covariance of Xu and Xv, for u 6¼ v, u, v ¼ 1, 2, … , p: For u ¼ v, we have
C Xv,Xv½ � ¼ V Xv½ �, the variance of Xv.
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1.5 Principal components

The principal components of Σ are defined as uncorrelated linear combinations of
maximal variance. Let us elaborate on this brief definition. First, a linear combination,
say LC, of the p variables can be expressed as the vector product a0x of two vectors a
and x, that is,

LC ¼ a0x ¼ a1x1 þ a2x2 þ⋯þ apxp: (6)

Here, the vector a is a vector of scalars a1, a2, … , ap :

a0 ¼ a1 a2 … ap
� �

: (7)

These a j are the coefficients in the linear combination. Such linear combinations
are called variates. Principal components are also called latent variables.

The variance V of a linear combination LC is

V LC½ � ¼ V a0X½ � ¼ a0Σa: (8)

This is estimated as a0Sa: This is to be maximized over a: The derivative with
respect to the vector a is

∂a0Sa=∂a ¼ Sa: (9)

The solution is not unique: If a is a solution to this set of equations, so is ca, where c
is any scalar constant. Therefore, a constraint is required to obtain a meaningful
solution. A reasonable such constraint is the condition a0a ¼ 1, that is, the squared
length of the vector a equals 1. This is of course equivalent to the length of a, the
quantity

ffiffiffiffiffiffiffi
a0a
p

, being equal to 1.
A function incorporating the constraint, the Lagrangian function, is

L S, a; λð Þ ¼ a0Saþ λ 1� a0að Þ: (10)

The partial derivatives of the function L with respect to a and λ are

∂L=∂a ¼ 2Sa� 2λa (11)

and

∂L=∂λ ¼ ∂λ 1� a0að Þ=∂λ ¼ 1� a0a: (12)

Setting these partial derivatives equal to zero gives the simultaneous linear
equations

Sa ¼ λa, (13)

and the equation

a0a ¼ 1: (14)

The simultaneous linear equations can be written as
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Sa� λa ¼ 0, (15)

where 0 is the zero vector, the vector whose elements are all zeroes. Factoring out
a on the right, we obtain

S� λIð Þa ¼ 0: (16)

For nontrivial solutions, the determinant of the coefficient matrix S� λI must be
zero, that is, we must have det S� λIð Þ ¼ 0: This condition is a polynomial equation of
degree p in λ. Denote the p roots by λ1 ≥ λ2 ≥ ⋯ ≥ λp: These roots are the eigenvalues
(also called latent values). Their sum is the trace of S; their product is the determinant
of S:

The corresponding Eigen equations are

Sa j ¼ λ ja j, j ¼ 1, 2, … , p: (17)

1.5.1 Values of PCs in terms of Xs

The jth principal component (PC), C j, is the linear combination of the form

C j ¼ a0jx ¼ a1jx1 þ a2jx2 þ⋯þ apjxp, (18)

where a0j ¼ a1j, a2j, … , apj
� �

: That is to say, for j ¼ 1, 2, … , p, the value of the jth
PC for Individual i is cji ¼ a0jxi, i ¼ 1, 2, … , n:.

The equation for the jth PC in terms of the vector x ¼ x1x2 … xp
� �0 is c j ¼

a0jx, j ¼ 1, 2, … , p: Let c be the p-vector of values of the p PCs. Then, c ¼ A0x, where

A ¼ a1 a2 … ap
� �

is the p� p matrix whose columns are the eigenvectors.

1.5.2 Values of Xs in terms of PCs

The inverse relation is

x ¼ A0�1 c ¼ Bc, (19)

where

B ¼ A0�1, (20)

where B is the matrix of loadings of the Xv on the PCs C j: Actually, A is an
orthonormal matrix (meaning that its columns are of length one and are pairwise
orthogonal), so A�1 ¼ A0: Thus, B ¼ A: Therefore,

x ¼ A0�1 c ¼ Ac: (21)

Letting a vð Þ0 be the vth row of the matrix A, that is,

a vð Þ0 ¼ av1, av2, … , avp
� �

, (22)
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we have, for v ¼ 1, 2, … , p, the representation of each variable Xv in terms of the
variables C1,C2, … ,Cp that are the principal components,

Xv ¼ av1C1 þ av2C2 þ⋯þ avpCp: (23)

In terms of the first k PCs, this is

Xv ¼ av1C1 þ av2C2 þ⋯þ avkCk þ εv, ∗ð Þ (24)

where the error εv is

εv ¼ avkþ1Ckþ1 þ avkþ2Ckþ2 þ⋯þ avpCp: (25)

The covariance matrix can be represented in terms of its principal idempotents a ja0j as

S ¼
Xp

j¼1
λ ja ja0j: (26)

It follows as a result of this representation that the best approximation of rank k to
S is the eigenvalue weighted sum of the first k principal idempotents,

S kð Þ ¼
Xk
j¼1

λ ja ja0j: (27)

The weights are all non-negative, recalling that, for a symmetric matrix, such as a
covariance matrix, the eigenvalues are non-negative.

2. Some ad hoc arithmetic procedures for determining an appropriate
number of PCs

2.1 Procedure based on the average of the eigenvalues

The mean λ of the eigenvalues is the sum over the number

λ ¼
Xp

j¼1
λ j=p: (28)

The sum of the eigenvalues turns out to be equal to the trace of the covariance
matrix; therefore, the mean eigenvalue is equal to the trace divided by p:

One procedure for deciding on the number of PCs to retain is to retain those for
which the eigenvalues are greater than average, that is, greater than λ: When working
in terms of the correlation matrix, this average value is 1. To see this, recall that the
correlation matrix is a special case of the covariance matrix, namely, the correlation
matrix is the covariance matrix of the standardized variables. It is often preferable to
work in terms of the correlation matrix rather than the covariance matrix, to control
the effects of different units of measurement and different variances. If a variable has
high variance relative to the other variables, the PC will be pulled in the direction of
the variable with large variance.
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When S is taken to be the sample correlation matrix, the trace of the matrix is
simply p, and therefore, the mean λ of the eigenvalues is 1.

2.2 An ad hoc arithmetic procedure based on retaining a prescribed proportion of
the total variance

Another ad hoc procedure is to retain a number of PCs sufficient to account for a
prescribed proportion, say, 90% of the total variance, that total variance being trace
S ¼Pp

j¼1 λ j: The Figure 90% is of course somewhat arbitrary, so it might be good to
have some somewhat more objective criteria based on the pattern of the eigenvalues.

2.3 Procedure based on the decrease of the eigenvalues

Another procedure—a graphical procedure—is to plot λ1, λ2, … , λp against
1, 2, … , p: The λs are in decreasing order, so one then looks for a dropoff—an elbow—

in the curve and retains a number of PCs corresponding to the point before the
leveling off of the curve, if it does indeed take an elbow shape. Such a plot, of the
eigenvalues versus 1, 2, … , p, is called a scree plot, “scree” being the debris at the foot
of a glacier (or, more generally, a collection of broken rock fragments at the base of
crags, mountain cliffs, volcanoes, or valley shoulders).

3. Model selection criteria AIC and BIC for the number of PCs

Let us now delve a bit further into mathematical statistics and consider some more
objective, numerical criteria, in particular, the information criteria AIC and BIC. Let
us see what a Gaussian model would imply about AIC and BIC. The maximum log
likelihood for the model (*) approximating the p variables in terms of k PCs is

2πð Þ�np=2 ∣̂Σk

���
�n=2

C n, p, kð Þ, where C n, p, kð Þ is a constant depending upon the sample

size, n, the number of variables, p, and k, the Model k being considered, k ¼
1, 2, … ,K, and ∣Σk∣ denotes the determinant of the residual covarance matrix Σk:

The determinant of the covariance matrix is the product of the eigenvalues,

∣Σ∣ ¼
Yp

j¼1 λ j: (29)

For a model based on the first k PCs, the determinant of the residual covariance
matrix is the product of the remaining, smaller eigenvalues, Πp

j¼kþ1λ j:

The model selection criterion AIC—Akaike’s information criterion [5–7]—is based
on an estimate of the logarithm of the cross-entropy of the K proposed models with a
null model. That is, for alternative models indexed by k ¼ 1, 2, … ,K, AICk is an
estimate of the log cross-entropy of the proposed Model k with the null model. The
cross-entropy of the distribution with the probability density function q xð Þ relative to
a distribution with the probability density function p xð Þ is defined as H p, qð Þ ¼
�Ep ln q Xð Þ½ � ¼ � Ð ln q xð Þp xð Þ dx:

The Bayesian information criterion (BIC) [8] is based on a large-sample estimate
of the posterior probability ppk of Model k, k ¼ 1, 2, … ,K: More precisely, BICk is an
approximation to �2 ln ppk:
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Formulated in this way, these model selection criteria (MSCs) are, thus, smaller-is-
better criteria and take the form

MSCk ¼ �2 ln max Lk þ anmk, k ¼ 1, 2, … ,K, (30)

where Lk is the likelihood for Model k, an ¼ ln n for BICk, an ¼ 2 (not depending
upon n) for AICk, and mk is the number of independent parameters in Model k: The
first term is a lack-of-fit (LOF) term, and the second term is a penalty term based on
the number of parameters used. With AIC, the penalty is two units per parameter;
with BIC, the penalty is ln n units per parameter. For n≥ 8, In n exceeds 2: for sample
sizes greater than 7, the penalty per parameter with BIC exceeds that for AIC. There-
fore, relative to AIC, BIC tends to favor more parsimonious models—models with a
smaller number of parameters.

Note that

ppk ≈C exp �BICk=2ð Þ, (31)

where C is a constant. Thus, BIC values can be converted to values on a scale of
0–1. This is done by exponentiating –BICk=2, summing the values, and dividing by
the sum. That is,

ppk ≈ exp �BICk=2ð Þ=
XK
j¼1

exp �BIC j=2
� �

: (32)

To relate the maximum likehood to the eigenvalues, note that for the PC model,

�2 ln max Lk ¼ n ln Πp
j¼kþ1 λk ¼ n

Xp

j¼kþ1
ln λk: (33)

The model selection criteria can be written as

MSCk ¼ Deviancek þ Penaltyk, (34)

where Deviancek ¼ n In max Lk is a measure of lack of fit and Penaltyk ¼ anmk.
Inclusion of an additional PC is justified if the criterion value decreases, that is, if
MSCkþ1 <MSCk: For PCs, this is

n
Xp

j¼kþ2
ln λ j þ kþ 1ð Þan < n

Xp

j¼kþ1
ln λ j þ kan: (35)

This is

an < n ln λkþ1 ¼ ln λnkþ1
� �

, (36)

or

exp an½ �< λnkþ1, (37)

or
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λkþ1 > exp an=n½ � (38)

or

λkþ1 > exp �an=n½ �: (39)

Thus, for AIC, the inclusion of the additional PCkþ1 is justified if λkþ1 is greater
than exp �2=nð Þ:

For BIC, the inclusion of an additional PCkþ1 is justified if

λkþ1 > exp ln n=nð Þ ¼ exp ln nð Þ½ �1=n ¼ n1=n: (40)

The quantity n1=n tends to 1 for large n: Therefore, this procedure is in approximate
agreement with the average eigenvalue rule for correlation matrices, stating that one
should retain dimensions with eigenvalues larger than 1.

4. Examples

4.1 An artifical example

The synthesis/analysis paradigm can be useful for understanding a problem. This
means synthesizing (simulating) a dataset, so that you know the model and parameter
values, and then applying your analysis method to see how well it performs. In the
present context, it is interesting to simulate a dataset of measurements of rectangles,
with variables length (L) and width (W) and also some functions of those such as
perimeter = 2 L + 2W and difference = L–W. In one synthesis, we took L to be Normal
with a mean of 10 and a variance of 1, W was Normal with a mean of 10 and a
variance of 1, PERI = 2 L + 2 W plus N(0,1) error, and DIFF = L–W plus N(0,1) error.
The eigensystem was computed, and as expected, it is noted that there are two large
eigenvalues, with subsequent ones dropping off a lot in value and being close to zero.
The eigenvalues of the correlation matrix were 1.91, 1.83, 0.21, and 0.05.

4.2 A real example

Next, we consider the principal component analysis of a sample from the Los
Angeles (LA) Heart Study. This was a long-term study, 1947–1972. It was a study
among Civil Servants of Los Angeles county. LA civil servants, 2252, randomly
selected, ages 21–70, received a battery of examinations for “routine” cardiovascular
disease (CVD) risk factors.

The variables include age, systolic blood pressure (SYS), diastolic blood pressure
(DIAS), weight (WT), height (HT), and coronary incident, a binary variable indicat-
ing whether the individual had a coronary incident during the course of the study.
Blood pressure is reported as a bivariate variable, (SYS, DIAS). SYS is the pressure
when the heart pumps, and DIAS is the pressure when the heart relaxes.

In the textbook [9], data for a sample of n ¼ 100 men were studied. (Data on the
same variables for another sample of 100 men are also given in [9]. Results can be
compared and contrasted between the two samples.) Although, of course, the empha-
sis in the Heart Study was on explaining and predicting the coronary incident variable,
here, we focus on the first five variables, their representation in terms of a smaller
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number of PCs, and the interpretations of the PCs. we did the PC analysis; it was not
in the LA Heart Study or the textbook.

We used Minitab statistical software for the analysis. Aspects of the analysis are
shown as follows.

The lower-triangular portion of the correlation matrix for the five variables is
shown in Table 1. The highest correlation is 0.835, between SYS and DIAS. The next
highest correlation, 0.426, is between HT and WT.

4.3 Principal component analysis in the example

Note that an eigenvector can be multiplied by �1, changing the signs of all its
elements. In the following, this is done with PC1 so that SYS and DIAS have positive
loadings. Our interpretations, related to the scientific/medical context of the study,
are BPtotal, SIZE, AGE, OVERWT, and BPdiff and are written below the eigenvec-
tors. The interpretations are based on which loadings are large and which are small,
that is, on the relative sizes of the loadings. Taking 0.6 as a cutoff point, in PC1, SYS
and DIAS have loadings above this, while the other variables have loadings less than
this (in fact, less than 0.4), so PC1 can be interpreted as an index of total BP. In PC2,
the variables WT and HT have large loadings with the same sign, so PC2 can be
interpreted as SIZE (Tables 2 and 3).

AGE SYS DIAS WT

SYS 0.342

DIAS 0.354 0.835 <= NOTE highest r of 0.835 is btw SYS and DIAS

WT �0.009 0.261 0.308

HT �0.332 �0.088 �0.099 0.426 <= NOTE next highest r of 0.426 is btw HT and WT

Correlations: AGE, SYS, DIAS, WT, HT.
Cell Contents: Pearson correlation.

Table 1.
Correlation matrix of five variables—LA heart data.

Eigenanalysis of the correlation matrix

Eigenvalue 2.1894 1.5382 0.6617 0.4485 0.1621

Proportion 0.438 0.308 0.132 0.090 0.032

Cumulative 0.438 0.746 0.878 0.968 1.000

Variable PC1 PC2 PC3 PC4 PC5

AGE �0.394 �0.365 0.800 �0.269 0.005

SYS �0.615 0.050 �0.342 �0.174 0.687

DIAS �0.624 0.063 �0.291 �0.049 �0.721
WT �0.252 0.616 0.373 0.642 0.078

HT 0.117 0.694 0.141 �0.695 �0.051
Principal component analysis: AGE, SYS, DIAS, WT, HT.

Table 2.
PCs of heart data.

147

Determining an Adequate Number of Principal Components
DOI: http://dx.doi.org/10.5772/intechopen.104534



As above, denote the eigensystem in terms of the eigenpairs

λv, avð Þ, v ¼ 1, 2, … , p: (41)

Then, the eigensystem equations are

S av ¼ λv av, v ¼ 1, 2, … , p: (42)

Here, S is taken to be the correlation matrix. Let 10v ¼ 0 0⋯ 1⋯ 0⋯ð Þ, the
vector with 1 in the vth position and zeroes elsewhere. The covariance between a
variable Xv and a PC Cu is C Xv,Cu½ � ¼ C 10vX, a0u X

� � ¼ 10Σ au ¼ 10v λu au ¼ λuauv,
where auv is the vth element of the vector au: The coefficient of correlation is
Corr Xv,Cu½ � ¼ C Xv,Cu½ �=SD Xv½ � SD Cu½ � ¼ λu auv=σv

ffiffiffiffiffi
λu
p ¼ ffiffiffiffiffi

λu
p

auv=σv: When the
covariance matrix used is the correlation matrix, each standard deviation σv ¼ 1, and
therefore, this correlation is

ffiffiffiffiffi
λu
p

auv: A correlation of size greater than 0.6 corre-
sponds to more than 0:62 � 100% ¼ 36% of variance explained. The variable Xv has a
correlation higher than 0.6 with the component Cu if its loading in Cu, the value auv,
is greater than 0.6 /

ffiffiffiffiffi
λu
p

: These values are appended to Table 4. Loadings larger than

Variable PC1 PC2 PC3 PC4 PC5

AGE 0.394 �0.365 0.800 �0.269 0.005

SYS 0.615 0.050 �0.342 �0.174 0.687

DIAS 0.624 0.063 �0.291 �0.049 �0.721
WT 0.252 0.616 0.373 0.642 0.078

HT �0.117 0.694 0.141 �0.695 �0.051
Interpretations (edited in to the computer output):

BPtotal SIZE AGEindex OVERWT BPdiff

Table 3.
PC1 is multiplied by �1.

Variable PC1 PC2 PC3 PC4 PC5

AGE 0.394 �0.365 0.800 �0.269 0.005

SYS 0.615 0.050 �0.342 �0.174 0.687

DIAS 0.624 0.063 �0.291 �0.049 �0.721
WT 0.252 0.616 0.373 0.642 0.078

HT �0.117 0.694 0.141 �0.695 �0.051
Eigenvalue, λ 2.1894 1.5382 0.6617 0.4485 0.1621

Square root,
ffiffiffi
λ
p

1.48 1.24 0 .81 0.67 0.40

0:6=
ffiffiffi
λ
p

0.40 0 .48 0.74 0.90 1.50

Interpretations BPtotal SIZE AGE OVERWT BPdiff

Table 4.
Loadings corresponding to correlations > 0:6 are boldface.
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this cutoff value are in boldface. (The cutoff point of 0.6 is somewhat arbitrary; one
might use, for example, a cutoff of 0.5.)

One can also focus on the pattern of loadings within the different PCs for the
interpretation of the PCs. To reiterate this process and the interpretations, we have the
following:

PC1: SYS and DIAS have large loadings with the same sign; we interpret PC1 as
BPindex, or BPtotal.

PC2: WT and HT have large loadings with the same sign; we interpret PC2 as the
man’s SIZE.

PC3: Only AGE has a large loading, so we interpret PC3 simply as AGE.
PC4: WT and HT have large loadings with opposite signs; we interpret PC4 as

OVERWEIGHT.
PC5: SYS andDIAShave large loadingswith opposite signs;we interpret PC5 asBPdrop.
We continue to marvel at how readily interpretable the PCs are. This simplicity is

attained even without using a factor analysis model and using rotation to simplify the
pattern of the loadings.

4.4 Employing the criteria in the example

To compare and contrast the methods, Table 5 shows the eigenvalues and the
results according to the various criteria for deciding on the adequate number of PCs.
According to the rule based on the average eigenvalue, the dimension is retained if its
eigenvalue is greater than 1 (when working in terms of the correlation matrix). For
BIC, the kth PC is retained if

n ln λk > � an, (43)

where an ¼ ln n: Here, n ¼ 100 and ln n ¼ ln 100, approximately 4.61. For AIC,
the kth PC is retained if n ln λk > � 2: In this example, the methods agree on retaining
k ¼ 2 PCs.

We feel thatwe should remark that, though it is the case that twoPCs are suggested, the
fourth and fifth PCs do have simple and interesting interpretations. It is just that they do
not improve the fit verymuch. The third PC is essentially a single variable, age.

5. Discussion

The focus here has been on determining the number of dimensions needed to
represent a complex of variables adequately. The algebraic solution devolves upon the

No. of PCs, k λk λk > 1? ln λk N ln λk for BIC: N ln λk > � 4:61? for AIC: N ln λk > � 2?

1 2.19 Yes 0.78 78.36 Yes Yes

2 1.54 Yes 0.43 43.06 Yes Yes

3 0.66 No �0.41 �41.29 No No

4 0.45 No �0.80 �80.18 No No

5 0.16 No �1.82 �181.95 No No

Table 5.
Estimating the number of PCs by various methods.
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analysis of properties of the covariance matrix of the variables, especially through its
eigensystem.

5.1 Regression on principal components

Next, we consider applying principal component analysis in the context ofmultiple
regression. In this context, there is, of course, a response variable Y and explanatory
variables X1,X2, … ,Xp: One may transform the Xs to their principal components, as
this may aid in the interpretation of the results of the regression. In addition, the
number of significant regression coefficients may be decreased. In such regression on
principal components (see, e.g., [10]), however, one should not necessarily eliminate
the principal components with small eigenvalues, as they may still be strongly related
to the response variable.

The value of the Bayesian information criterion for Model k is

BICk ¼ �2LLk þmk ln n, (44)

for alternative models indexed by k ¼ 1, 2, … ,K, where LLk is the maximum log
likelihood for Model k, that is, LLk ¼ max lnLk and mk is the number of independent
parameters in Model k: For linear regression models with Gaussian-distributed errors,
�2LLk ¼ Const:þ n lnMSEk and so BIC takes the form

BICk ¼ n lnMSEk þmk ln n, (45)

where here MSEk is the maximum likelihood estimate (MLE) of the mean squared
error (MSE) of Model k, with divisor n, of the error variance.

The total number of subsets of p things is 2p: Therefore, with p explanatory
variables, there are 2p alternative models—“subset regressions”—(including the
model where no explanatory variables are used and the fitted value of Y is simply yÞ:
For example, if there are three Xs, the eight subsets are X1 alone, X2 alone, X3 alone,
(X1, X2Þ, X1,X3ð Þ, X2,X3ð Þ, X1,X2,X3ð Þ, and the empty set. It would usually seem to
be expedient to evaluate all 2p regression models—regressions on all 2p subsets of
principal components, using adjusted R-square, AIC, and/or BIC rather than reducing
the number of models considered by regressing on only a few principal components.
That is, in the context of regression on principal components, it is probably wise not to
reduce the number of principal components, for, as stated above, it is conceivable that
some principal components with small eigenvalues may nevertheless be important in
explaining and predicting the response variable.

5.2 Some related recent literature

Other researchers have considered the problem of the choice of the number of
principal components. For example, Bai et al. [11] examined the asymptotic consis-
tency of AIC and BIC for determining the number of significant principal components
in high-dimensional problems. The focus in this chapter has not necessarily been on
high-dimensional problems.

Some various applications from recent literature involving choosing the number of
principal components include the following. The method presented here could
possibly be applied in these applications.
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For example, a good book on the topic of model selection and testing, covering
many aspects, is [12]. In recent years, various econometricians have examined the
problems of diagnostic testing, specification testing, semiparametric estimation, and
model selection. In addition, various researchers have considered whether to use
model testing and model selection procedures to decide upon the models that best fit a
particular dataset. This book explores both the issues with application to various
regression models, including models for arbitrage pricing theory. Along the
lines of model selection criteria, the book references, e.g., [8], the foundational paper
for BIC.

Next, we mention some recent papers, which show applications of model selection
in various research areas.

One such paper is [13], an application of principal component analysis and other
methods to water quality assessment in a lake basin in China.

Another is [14], on feature selection for classification using principal component
analysis.

As mentioned, a particularly interesting application of principal component anal-
ysis is in regression and logistic regression. We have mentioned the paper [10] on
using principal component analysis in regression, taking several principal components
to replace the set of explanatory variables. Another interesting application is in [15],
on using principal components in logistic regression.

6. Conclusions

The problem of choice of the number of principal components to use to represent a
complex of variables—a multivariate sample—has been considered in this chapter.

In addition to some ad hoc arithmetic criteria, Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC) have been applied here to the choice of
the number of principal components to represent a dataset. The results have been
compared and contrasted with ad hoc criteria such as retaining those principal com-
ponents that explain more than an average amount of the total variance. The use of
BIC is seen to correspond rather closely to the rule of retaining PCs whose eigenvalues
are larger than average.
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Chapter 9

Spatial Principal Component
Analysis of Head-Related Transfer
Functions and Its Domain
Dependency
Shouichi Takane

Abstract

In this chapter, the Principal Component Analysis (PCA) was adopted to spatial
variation of Head-Related Transfer Function (HRTF) or its corresponding inverse
Fourier Transform, called Head-Related Impulse Response (HRIR), in order to
compactly represent their spatial variation. This is called the Spatial PCA (SPCA).
The SPCA was carried out for a database of HRTFs in all directions by selecting the
domain as one of the HRIRs, the complex HRTFs, the frequency amplitudes of
HRTFs, log-amplitudes of HRTFs, and complex logarithm of HRTFs. The minimum
phase approximation was incorporated for the frequency amplitudes and log-
amplitudes of HRTFs. Comparison of the accuracies in both time and frequency
domains taking into account their influence on subjective evaluation showed that the
log-amplitudes and complex logarithm of HRTFs are suitable for the SPCA of HRTFs.

Keywords: spatial principal component analysis, head-related transfer function,
head-related impulse response, domain, compact representation

1. Introduction

1.1 Head-related transfer function (HRTF)

Head-Related Transfer Function (HRTF) is defined as an acoustic transfer func-
tion from sound acquired at a center point when a listener is absent to that acquired at
the listener’s ear [1] in a free field (a field without any reflection). A sample of its
illustration is depicted in Figure 1. As in Figure 1(a), a microphone is located at the
center of a subject’s head with the subject absent. The output YA zð Þ is obtained as the
response to the input X zð Þ by using the z-transform as follows:

YA zð Þ ¼M zð Þ �HA zð Þ � S zð Þ � X zð Þ, (1)

where M zð Þ and S zð Þ are system functions corresponding to the microphone and
loudspeaker, respectively. As in Figure 1(b), the same microphone is located at the
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subject’s ear. The output YE zð Þ is also obtained as the response to the same input X zð Þ
fed to the same loudspeaker as follows:

YE zð Þ ¼M zð Þ �HE zð Þ � S zð Þ � X zð Þ: (2)

the z-transform of HRTF, H zð Þ, is acquired from YA zð Þ and YE zð Þ as follows:

H zð Þ ¼ YE zð Þ
YA zð Þ ¼

HE zð Þ
HA zð Þ : (3)

Computation of Eq. (3) eliminates the system functions ofM zð Þ and S zð Þ when the
same microphone and loudspeaker are used for the acquisition of the HRTF, except
the case that either of these system functions has zeros. The HRTF is obtained as
H zð Þjz¼ exp jωð Þ where j is imaginary unit, ω ¼ 2πf is the angular frequency and f is the
frequency. Time domain representation (impulse response) corresponding to H zð Þ is
called as the Head-Related Impulse Response (HRIR).

The HRTF varies due to the sound source position and has strong individuality in
both objective and subjective senses. Therefore a set of HRTFs is ideally acquired
individually in all sound source directions. While a study considering the efficient
sampling scheme of the HRTF measurement exists [2], data size of such set of HRTFs
may become numerous. There also exist many datasets involving the HRTFs (HRIRs)
of multiple subjects in multiple sound source directions [3–6], but the individualiza-
tion using these datasets seems difficult.

1.2 Virtual auditory display (VAD) utilizing head-related transfer functions

Virtual Auditory Displays (VADs), which is a device or an equipment for presen-
tation of an audition in certain sound field to a listener, have been developed since

Figure 1.
Definition of head-related transfer function. (a) Obtaining the response YA zð Þ at the center of a subject’s head with
the subject absent. (b) Obtaining the response at the ear YE zð Þ.
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1990s [7]. On the other hand, the primitive form of the VADs was proposed in 1960s
[1] and Morimoto et al. applied the theory into practice in 1980 [8]. Some of the VADs
are known to be based on the synthesis of transfer functions involving the Head-
Related Transfer Functions (HRTFs). They require the real-time processing on their
variation due to the movement of the listener and/or the sound sources. Takane et al.
proposed a theory of VAD named ADVISE (Auditory Display based on VIrtual SpherE
model) [9], and reported an elemental implementation of the VAD based on ADVISE
[10]. The listener’s own HRTFs in all directions are ideally essential in order to carry
out the synthesis. Moreover, various implementations of VADs exist based on the
synthesis of binaural sound signals using the HRTFs, [7, 11–13]. Taking into account a
set of HRTFs acquired for an individual in all directions, its data size must be as
compact as possible with their synthesis accuracy achieved to some extent.

A possible approach to the compact representation for spatial variation of an
individual HRTF is modeling. Haneda et al. proposed the Common Acoustical-Pole
and Zero (CAPZ) model [14]. In the CAPZ model, it is assumed that the poles in
HRTFs are independent of sound source positions while their zeros are dependent on
them. They indicated that the spatial variation of the HRTFs of a dummy head was
modeled in acceptable accuracy. Based on this model, Watanabe et al. proposed the
interpolation method and this method showed good interpolation accuracy [15]. The
CAPZ model is useful for the compact representation of the HRTFs since the source-
position-independent poles makes the total number of coefficients for the representa-
tion of the HRTFs with their spatial variation. The data amount decreased by using the
CAPZ model, however, is up to 50% relative to the case that all HRTFs in all directions
are represented by the FIR filters with fixed length.

1.3 Head-related transfer functions and principal component analysis

Another promising method for the compact representation of HRTFs is the Prin-
cipal Component Analysis (PCA) [16, 17]. In some studies, the PCA has an alternative
name, the spatial feature extraction method [18–20]. Both have their theoretical basis
on the PCA or the Singular Value Decomposition (SVD). In these researches, the
spatial variation of HRTFs is modeled by using small number of principal components
or eigenvectors. Xie called the PCA adopted to the dataset(s) of HRTFs the Spatial
PCA (SPCA) of HRTFs [19]. The author uses this name after Xie in this chapter. As a
result of the SPCA, a HRTF in a certain direction is represented as the linear combi-
nation of relatively small number of fixed Principal Components (PCs), meaning that
these components do not change according to the sound source positions against the
listener. The coefficients for the PCs represent such variation. This property has a
potential for effective real-time processing concerning their spatial variation due to
dynamic factors. The VAD that can synthesize the HRTFs from multiple sound
sources in real-time is currently available, for example by using the computational
power of the Graphics Processing Units (GPUs) [21].

Many researches have been carried out on the SPCA of HRTFs [16–20], but there
are some differences among these studies. One of the obvious differences is the
domain to execute the SPCA. Kistler et al. applied the log-amplitude of the HRTF to
the SPCA [17], Chen et al. applied the complex-valued frequency spectrum [18], and
Xie applied the amplitude of the HRTF with the assumption of the minimum phase
approximation [19]. On the other hand, Wu et al. applied the HRIRs [20]. Xie sur-
veyed and summarized those results in his book [22]. These studies indicate that the
SPCA can be successively and commonly adopted by using each domain. In contrast,
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the use of different domains may bring about the different properties in the results of
the SPCA. If the HRTF/HRIR can be reconstructed by using the smallest number of
PCs in a certain domain, the SPCA in that domain may bring about the most compact
representations. There exists a study with the similar purpose. Liang et al. compared
between the SPCA of the linear and logarithmic magnitudes of the HRTFs [23]. The
conclusion of this research was that the SPCA on the linear magnitudes of the HRTFs
was better than that on their logarithmic magnitudes in the reconstruction accuracy of
their monaural loudness spectra. However, their used HRTFs were limited only in
horizontal plane, and they only dealt with two domains with the assumption of the
minimum phase approximation. Furthermore, Takane proposed the new domain for
the SPCA, the complex logarithm of the HRTFs [24].

In this chapter, all domains dealt with the previous researches are picked up
together and the compactness brought by the SPCA using each domain is compared.

2. SPCA of HRTFs/HRIRs

2.1 Outline

The SPCA of HRTFs/HRIRs is outlined in this section. It is a matter of course that
the SPCA of HRTFs/HRIRs is based on the PCA.

1.Spatial average of a certain set of M vectors gm m ¼ 1,⋯,Mð Þ is calculated as
follows:

gav ¼
1
M

XM
m¼1

gm: (4)

2.Covariance matrix, denoted as R, is obtained by calculating the following
equation:

R ¼ 1
M

XM
m¼1

gm � gav
� � � gm � gav

� �H
: (5)

It is noted that H indicates the Hermitian transpose. The size of the matrix R is
N �N, where N indicates the size of the vector gm.

3.The computed matrix R is decomposed into N pairs of PCs (eigenvectors) and
eigenvalues by solving the following eigenvalue problem:

R � qk ¼ λk � qk: (6)

As a result, a set of the eigenvalues and principal components (PCs), λk and
qk k ¼ 1,⋯,Nð Þ, is obtained. Note that λk are sorted from their largest to
smallest, i. e., λ1 ≥ λ2 ≥ λ3 ≥⋯≥ λN, and the PCs are also arranged to the
corresponding eigenvalues.

4.By using the matrix Q with qk in its column vector, the weighting vector, wm,
corresponding to the m-th vector gm is calculated as follows:
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wm ¼ QH gm � gav
� �

: (7)

As a result of the SPCA, the weight wm is approximated by using q1 �
qK 1≤K ≤Nð Þ as follows:

wmð ÞK ¼ QH
K gm � gav
� �

, (8)

where Q K is a matrix with its column vectors q1 � qK . Length of the vector wmð ÞK
becomes K.

In the above-mentioned procedure, the vectors and matrices are assumed to have
complex values. The Hermitian transpose H is changed to the simple transpose, T, if
the values of them are real. The value m reflects the sound source position, and also
the individuals if the HRTFs/HRIRs of multiple individuals are used for assembling
the covariance matrix.

The m-th vector, gm, is reconstructed by using the PCs as follows:

gm
� �

K ¼ QK � wmð ÞK þ gav: (9)

The computed vector, gm
� �

K in Eq. (9), becomes acceptable approximation when
K <N, but this may have acceptable accuracy in principle when the Cumulative
Proportion of Variance (CPV) R2 Kð Þ is close to 1.0. The CPV is defined by using the
eigenvalues of the covariance matrix, λk k ¼ 1,⋯,Nð Þ, as follows:

R2 Kð Þ ¼
PK

k¼1λkPN
k¼1λk

, (10)

where N is the total number of components, equals to the length of the vector
gm m ¼ 1,⋯,Mð Þ.

2.2 Domains used for the SPCA of the HRTFs/HRIRs

Five domains were applied to the assembly of the covariance matrix, based on the
previous researches. Kistler et al. applied the log-amplitudes of the HRTF [17], Xie
dealt the amplitudes of the HRTF [19]. The minimum-phase approximation was
assumed in these studies. Chen et al. dealt the complex HRTF spectrum [18], and
Takane propsed the usage of the complex logarithm of HRTF [24]. At last, Wu et al.
applied the time domain representation of the HRTFs, i. e., HRIRs [20]. The domains
used in these studies are treated as the modeling “domains” in this chapter. The
domain “I” corresponds to the application of the HRIR to the SPCA, the domain “C”
corresponds to the application of the complex HRTF, The domain “F” corresponds to
that of the amplitude of the HRTF, the domain “L” corresponds to that of the loga-
rithm of the HRTF amplitude, and the domain “CL” corresponds to that of the
complex logarithm of the HRTF. This is summarized in Table 1.

The m-th HRIR and HRTF are respectively expressed as hm and Hm, and Hm is
further decomposed into its amplitude and phase components as follows:

Hm ¼ Am exp jΘmf g, (11)

where j is the imaginary unit. The complex logarithm of Hm can be written as
follows:
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logHm ¼ logAm þ j � unwrap Θm½ � ¼ Lm þ j � unwrap Θm½ �: (12)

Here the imaginary part of logHm, equal to the phase of the HRTF, is assumed to
be unwrapped [24]. The logarithm of the HRTF amplitude vector is defined as L,
i.e.,Lm � logAm. It is obvious in the domains C, F, L and CL that the frequency
spectrum has the following symmetric relations:

Hm kð Þ ¼ H ∗
m N � kð Þ, logHm kð Þ ¼ logHm N � kð Þð Þ ∗ , (13)

Am kð Þ ¼ Am N � kð Þ, Lm kð Þ ¼ Lm N � kð Þ k ¼ 1,⋯,Nð Þ, (14)

where Hm kð Þ, Am kð Þ, Lm kð Þ are the k-th component of the vectors Hm, Am and Lm,
respectively, and * denotes the conjugate. The relations in Eqs. (13) and (14) indicate
that the vector lengths can be almost halved in these domains. When the covariance
matrices assembled in the domains I, C, F, L and CL are respectively denoted as R Ið Þ,
R Cð Þ, R Fð Þ, R Lð Þ and R CLð Þ, the size of R Ið Þ is N �N, while those of R Cð Þ, R Fð Þ, R Lð Þ and
R CLð Þ are N=2ð Þ þ 1ð Þ � N=2ð Þ þ 1ð Þ. In this point, the domains C, F, L and CL have the
advantage in the compactness compared with the domain I. On the other hand,
components of R Cð Þ and R CLð Þ are complex while those of the covariance matrices in
the other domains are real.

The domains I, C, F, L and CL mean that hm, Hm, Am, Lm and logHm are
respectively the used domains for the SPCA. When their approximations are obtained

by using the first K PCs, they are respectively denoted as h Ið Þ
m

� �
K
, H Cð Þ

m

� �
K, A Fð Þ

m

� �
K
,

L Lð Þ
m

� �
K and logH CLð Þ

m

� �
K. The vectors concerning the HRIR or the HRTF are calculated

by using the ones estimated via the SPCA in each domain:

Domain I: From h Ið Þ
m

� �
K
, H Ið Þ

m

� �
K is obtained by using Fast Fourier Transform

(FFT), and A Ið Þ
m

� �
K
is the amplitude corresponding to H Ið Þ

m

� �
K .

Domain C: From H Cð Þ
m

� �
K, A Cð Þ

m

� �
K
is obtained by computing the corresponding

amplitude. After the length of the vector H Cð Þ
m

� �
K is increased by applying the relation

of Eq. (13), h Cð Þ
m

� �
K
is obtained by using inverse FFT (IFFT).

Domain F: From A Fð Þ
m

� �
K
, H Fð Þ

m

� �
K is estimated by computing the following

equation with its minimum phase components Θ Fð Þ
m

� �
K calculated using Hilbert

transform [25]:

Domain Name

HRIR I

HRTF C

Amplitude of HRTF F

Log-amplitude of HRTF L

Complex logarithm of HRTF CL

Table 1.
Names of five domains expressing modeling conditions for the SPCA.
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H Fð Þ
m

� �
K
¼ A Fð Þ

m

� �
K
exp j Θ Fð Þ

m

� �
K

n o
: (15)

After the length of the vector H Fð Þ
m

� �
K is increased by applying the relation of

Eq. (14), the IFFT of H Fð Þ
m

� �
K reveals the estimates of HRIR, denoted as h Fð Þ

m

� �
K
.

Domain L: From L Lð Þ
m

� �
K, A Lð Þ

m

� �
K
is obtained by calculating the following equation:

A Lð Þ
m

� �
K
¼ exp L Lð Þ

m

� �
K

n o
: (16)

Then as in the domain F, H Lð Þ
m

� �
K is estimated by computing its minimum phase

components Θ Kð Þ
m

� �
K using Hilbert transform as follows:

H Lð Þ
m

� �
K
¼ A Lð Þ

m

� �
K
exp j Θ Lð Þ

m

� �
K

n o
: (17)

After the length of the vector H Lð Þ
m

� �
K is increased by applying the relation of

Eq. (14), the IFFT of H Lð Þ
m

� �
K reveals the estimates of HRIR, denoted as h Lð Þ

m

� �
K
.

Domain CL: From logH CLð Þ
m

� �
K, H CLð Þ

m

� �
K is obtained by calculating the following

equation:

H CLð Þ
m

� �
K
¼ exp logH CLð Þ

m

� �
K

n o
: (18)

The following procedure is the same as the domain C. A CLð Þ
m

� �
K
is obtained by

computing the corresponding amplitude. After the length of the vector H CLð Þ
m

� �
K is

increased by applying the relation of Eq. (13), h CLð Þ
m

� �
K
is obtained by using inverse

FFT (IFFT).

3. Relation between number of PCs and accuracy

3.1 Conditions of analysis

A database of HRIRs of KEMAR HATS (Head And Torso Simulator) provided by
Media lab. of MIT [26] was used. Liang et al. used the same data in their study with the
similar purpose to the one in this chapter. While they used the HRTFs only in hori-
zontal plane [23], all data in this database involving 710 pairs of HRIRs (total: 1420)
with sampling frequency of 44.1 kHz were used for the investigation in this chapter.
Number of HRIRs is 1420, corresponding to M in Eqs. (4) and (5).

The initial delay in each response was extracted, then 256 sample points were taken
as the data for the analysis, windowing with latter half of 512-points Blackman-Harris
window function adjusting its peak at that of the HRIR. The SPCA was executed by
constructing the covariance matrices from the HRIRs (called as domain I), the HRTFs
(domain C), the amplitude of HRTFs (domain F), the log-amplitude of HRTFs
(domain L), and the complex logarithm of HRTFs (domain CL). The HRTFs/HRIRs in
all directions (710 directions�2 ears) were used, and the average vector (Eq. (4)) and
the covariance matrix (Eq. (5)) were calculated in each case.
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3.2 Cumulative proportion of variance (CPV)

When the PCA is generally utilized for some data, the Cumulative Proportion of
Variance (CPV), R2 Kð Þ, defined as Eq. (10), is used for the reference indicating how
much variance is covered by using the first K PCs. The change of the CPV with PC(s)
in each domain was plotted in Figure 2. It is found out from this figure that the CPV is
monotonically increased and converges to 1.0 as the number of component(s) is
increased in all domain. Among five domains, the domain CL has the largest CPV
value for the first PC. The domain C has the fastest increase of the CPV against the
number of PC(s), and its CPV value for the domain C is almost the same as that for the
domain CL when the number of components is more than 7. In contrast, the domain L
has the slowest increase, especially when the number of components is more than 15.
This means that relatively large number of PCs is required to cover a certain propor-
tion of variance in data.

Reference values in the CPV, more than which all the corresponding PCs are
discarded, varied in the previous studies. Kistler et al. set this value to 0.90 [17], Chen
et al. and Wu et al. set to 0.999 [18, 20], and Xie set this to about 0.98 [19]. Direct
comparison of these values is impossible since the amount of data and analyzing
purposes were different in those studies, but all of these values are more than 0.9.
Therefore the least numbers of components to cover four values of the CPV, 0.90,
0.95, 0.99 and 0.999 for five domains are indicated in Table 2. Seeing Table 2, the
domain CL has the smallest values among five domains in all of the CPV values, and
the domain C has almost the same property. This means that the variance in the spatial
variation of HRTFs can be covered by using relatively small number of PCs in these
domains. The domains F and L also have smaller number of PCs when the set CPV
value is small. In these domains the major PCs having large corresponding eigenvalues
cover the major part of variance in data. The required number of PCs increases in the
domain L when the set CPV value is large. Varying the CPV values from 0.90 to 0.999,
the required number of PCs becomes five to six times in the domains I, C, F and CL,
while more than ten times are required in the domain L.

Figure 2.
Change in cumulative proportion of variance (CPV) with number of components in SPCA for five domains.
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3.3 Reconstruction accuracy in time and frequency domains

The CPV is known to be an effective criterion for the coverage of variance with a
certain number of PCs. However, comparison of the CPVs among five domains is
impossible since the covariance matrices as the target for the PCA are different from
each other. Therefore, the reconstruction accuracy, defined as the accuracy between
the original HRTFs/HRIRs and the ones reconstructed with a certain number of PCs in
five domains. In this chapter, the following two measures were computed in order to
evaluate the reconstruction accuracy for the SPCA in five domains in both time and
frequency domains:

Signal-to-Deviation Ratio (SDR): Signal-to-Deviation Ratio (SDR) is defined as
the level difference between the energy (Euclid norm) of the original impulse
response and that of the deviation:

SDR h, ĥ
h i

¼ 10 log 10
hj jj j

h� ĥ
���

���
���

���
dB½ �, (19)

where h and ĥ respectively indicate the original and the reconstructed HRIRs, �j jj j
indicates the Euclid norm of the vector. The larger SDR corresponds to the closer ĥ to h.

Spectral Distortion (SD): Spectral Distortion (SD) is defined as standard devia-
tion in log-amplitudes of two frequency spectra, as follows:

SD A, Â
h i

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N f

XN f�1

k¼0
20 log 10

A kð Þ
Â kð Þ

�����

�����

vuut dB½ �, (20)

where A and Â are the frequency amplitude spectrum of the original and the
reconstructed responses, respectively, and A kð Þ and Â kð Þ are the k-th components of
the vectors A and Â, respectively. The value of N f is the number of frequency bin

closest to 20 kHz. The smaller SD corresponds to the closer Â to A.
Calculating the SDRs for the domains F and L, the corresponding original impulse

responses are ones constructed with its minimum phase approximation, which are
different from the ones in the domains I, C and CL. It is noted that the SDRs in each
domain were computed as how much the reconstructed impulse response differs from
the desired one. Such a treatment was not related to the calculation of SDs since the
SD is defined by using only magnitude of the original and the reconstructed HRTFs.

Domain CPV

0.90 0.95 0.99 0.999

I 8 10 20 39

C 4 6 11 20

F 5 7 14 31

L 6 11 32 78

CL 2 4 12 39

Table 2.
The least number of PCs to cover the CPV in each case.
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3.3.1 Changes of SDR and SD with source direction

Examples of the changes of the SDR with the source direction are plotted in
Figures 3–6. Figures 3–6 are figures for the SDR and the SD, respectively. For the
elevation, elevation angles of 0°, 90° and � 90° respectively correspond to the hori-
zontal plane, above and below the subject. The lines were plotted in these figures with
20° interval from �40° to 80°, namely the 6 lines are in each figure. For the azimuth
angles, their arrangements are the same as the original data [26], i. e., 0°, 90°, 180°
and 270° respectively correspond to the front, right, back, and left of the subject. In
each figure, number of components in each domain was set to the least value satisfy-
ing two of the CPVs in Table 2. The first value is 0.95 in Figures 3 and 5, and the
second is 0.999 in Figures 4 and 6.

Figure 3.
Change of SDR in source azimuth at various elevation in each cases with number of PCs set to the least value achieving
the cumulative proportion of variance of 0.95 in Table 2. (a) Domain I (No. of PCs = 10). (b) Domain C
(No. of PCs = 6). (c) Domain F (No. of PCs = 7). (d) Domain L (No. of PCs = 11). (e) Domain CL (No. of PCs = 4).
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Seeing these figures, macroscopic tendency in the change of the SDR and SD with
the number of PCs is similar: the larger CPV value brings about the larger SDR and
smaller SD, and these values are roughly the same when the CPV values is set equal
among five domains. In contrast, it should be emphasized that the values of SD for the
domains L and CL are smaller than those in the other domains, as shown in Figure 5
(d), (e) and 6(d), (e). The domains using the real and complex logarithm may give
relatively smaller distortions in frequency domain.

Seeing the properties in time domain according to Figures 3 and 4, the values of SDR
are gradually higher when the CPV value is larger. When the azimuth corresponds to the
contralateral side (around 250° � 300°) and especially at the lower elevation angles (less
than 0°), the relatively smaller SDR values are found out also commonly in all domains In

Figure 4.
Change of SDR in source azimuth at various elevation in each cases with number of PCs set to the least value achieving
the cumulative proportion of variance of 0.999 in Table 2. (a) Domain I (No. of PCs = 39). (b) Domain C (No. of
PCs = 20). (c) Domain F (No. of PCs = 31). (d) Domain L (No. of PCs = 78). (e) Domain CL (No. of PCs = 39).
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these azimuths and elevation angles, the relatively larger SD values are also observed, as
shown in Figures 5 and 6. Xie stated the same points in his articles [19, 22]. In those range
of directions, the HRIRs are very small in their energy because of the subject’s head
making a “shadow”making the sound from the sound source hard to reach especially in
the high frequency range [1]. As a result, the HRIRs in those directions are relatively
difficult to be reconstructed with a small number of PCs.

3.3.2 Spatial average of SDR and SD

In order to show the macroscopic tendencies of the relation between reconstruc-
tion accuracies and domains, accuracies in time and frequency domains with number

Figure 5.
Change of SD in source azimuth at various elevation in each cases with number of PCs set to the least value achieving
the cumulative proportion of variance of 0.95 in Table 2. (a) Domain I (No. of PCs = 10). b) Domain C (No. of
PCs = 6). (c) Domain F (No. of PCs = 7). (d) Domain L (No. of PCs = 11). (e) Domain CL (No. of PCs = 4).
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of PCs set to K are computed in a certain domain X (X = I,C,F,L,CL), the overall
average of SDR and SD were calculated by using the following equations:

AvSDR X,Kð Þ ¼ 10 log 10
1
M

XM
m¼1

10SDR hm, h Xð Þ
mð ÞK½ �=10

( )
, (21)

AvSD X,Kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

SD Am, A Xð Þ
m

� �
K

h in o2

vuut : (22)

Figure 6.
Change of SD in source azimuth at various elevation in each cases with number of PCs set to the least value
achieving the cumulative proportion of variance of 0.999 in Table 2. (a) Domain I (No. of PCs = 39). b) Domain
C (No. of PCs = 20). (c) Domain F (No. of PCs = 31). (d) Domain L (No. of PCs = 78). (e) Domain CL (No. of
PCs = 39).
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Changes of the average SDR and SD with number of component(s) K in each case
are plotted in Figure 7 respectively. It is clearly found from these figures that the
reconstruction accuracy improves (the larger SDR and the smaller SD) commonly in
all domains as the number of PC(s) increases. This means that the CPV corresponds to
the tendency of the average accuracies in both time and frequency domains. However,
these values are different among five domains. Seeing Figure 7(a), the largest average
SDR is achieved with the domain C in most of number of PCs. The domains I and F
have the similar tendency, and the domains L and CL are the lowest SDR values when
the number of PC(s) is more than 5. On the other hand, as shown in Figure 7(b), the
domains L and CL have exceptionally the lowest SD in almost all number of PCs. The
domains L and CL has the best accuracy in frequency domain. The third lowest
average SD is obtained in the domain C, and the value is almost the same as in the
domains L and CL when the number of PCs are relatively large (≥35).

4. Discussion

In the previous section, the SDR and SD computed in five domains were compared.
It was shown that the larger number of PCs brings about the accurate reconstruction
of HRTFs and HRIRs in all domains. As differences in domains in the SPCA of HRTFs
and HRIRs, the average SDR has the largest value in the domain C, and the average SD
has the smallest value in the domains L and CL for almost any given number of
components. Since the HRTFs and HRIRs are used for the sound signals at the
listener’s both ears, it is essential to take their subjective evaluation into account. Most
of the previous researches dealt with both the objective and subjective evaluation
[17, 19, 27, 28]. However, three investigations can be found, in which the relation of
the subjective evaluation to the SDR and SD values. Hanazawa et al. reported the
results of a hearing experiment in which the relation between the accuracy of the
interpolated HRIRs with their proposed method and the sound localization perfor-
mance when the sound stimuli convoluted with them were presented [29]. They
showed that around 6 dB in SDR had insignificant difference from the performance
when the sound stimuli convoluted with the original HRIRs. Takane et al. also carried

Figure 7.
Changes of (a) average SDR and (b) average SD with number of component(s) in five domains. For SDR, five
lines respectively corresponds to AvSDR I,Kð Þ, AvSDR C,Kð Þ, AvSDR F,Kð Þ, AvSDR L,Kð Þ and
AvSDR CL,Kð Þ, and for SD, they respectively corresponds to AvSD I,Kð Þ, AvSD C,Kð Þ, AvSD F,Kð Þ,
AvSD L,Kð Þ and AvSD CL,Kð Þ K ¼ 1,⋯, 40ð Þ. Note that average SDR is calculated with its reference to the
minimum phase HRIRs in the domains F and L.
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out an experiment to evaluated his proposed estimation method of HRIRs from the
impulse responses obtained in ordinary room with reflection [30]. The results showed
that the subjects did not detect significant difference between the stimuli synthesized
from the estimated and the original HRIRs when the SDR between them was more
than about 20 dB. Nishino et al. investigated the interpolation accuracy of HRTFs in
the median plane, although they did not carry out the subjective evaluation. The least
(best) accuracy of their interpolation method is 2 dB in average SD [31]. Considering
these researches, the least numbers of PCs to achieve the average SDR more than
20 dB and the average SD less than 2 dB were checked from the results of the SDR and
SD computation. The results are shown in Table 3. It is found out from Table 3 that
number of PCs satisfying each condition has contrastive feature. The domains I, C and
F have relatively small numbers satisfying the condition of average SDR > 20 dB,
meaning that these domain can reconstruct the HRIRs in relatively high accuracy with
small numbers of PCs. On the contrary, The domains L and CL have relatively small
numbers satisfying the condition of average SD < 2 dB, meaning that these domains
can reconstruct the amplitude of HRTFs relatively high accuracy with small numbers
of PCs. The domain C has the balanced property in both time and frequency domain
accuracies.

It is known that the frequency-domain spectral features in the HRTFs are impor-
tant for the sound localization especially in the median plane [1, 32]. Iida et al. pro-
posed a parametric model of the HRTF focused on the peaks and notches in the
frequency domain, and showed that the first and second lowest notches (called N1
and N2, respectively) in their frequency spectra contribute to the subjects’ perceived
elevation [33]. These results may state that the local frequency domain features may
cause the difference in the listener’s perceived direction, and the reconstruction accu-
racy in frequency domain must be well taken into account to avoid such potential
difference. These researches support the accuracy in frequency domain is more
important than that in time domain. Based on such subjective properties together with
the objective properties shown in this chapter, the domain L and CL are suitable for
the SPCA of the HRTFs more than the other domains. On the other hand, the domains
L and CL require relatively large number of PCs to achieve the CPV values when the
CPV is closer to 1. The previous researches indicate that the reconstruction with
relatively small number of PCs could make the HRTFs/HRIRs without audible differ-
ence [17, 19, 27, 28], therefore it is expected that the domains L and CL can bring
about the acceptable subjective evaluation with small number of PCs. The difference
in the domains for the SPCA must be investigated more in detail especially based on
the subjective evaluation, which is one of the future studies concerning the contents of
this chapter.

Domain Average SDR > 20 dB Average SD < 2 dB

I 19 44

C 7 22

F 19 39

L 25 14

CL 25 14

Table 3.
The least number of components to achieve average SDR > 20 dB and average SD < 2 dB in each domain.
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5. Summary

In this chapter, the SPCA of the HRTFs was introduced, and its dependency on the
domains, in which the covariance matrices are calculated, was investigated. The
following points are the summary of the findings in this chapter:

• The SPCA can be carried out commonly for all domains, i. e., the HRIRs (domain
I), the (complex) HRTFs (domain C), the amplitude spectrum of HRTFs
(domain F), logarithm of the amplitude spectrum of HRTFs (domain L), and the
complex logarithm of HRTFs (domain CL).

• For the domains except the domain I, the covariance matrices can be sized down
to about 1/4 of the covariance matrix assembled for the domain I, according to
the symmetric property of the frequency spectrum.

• The domains I, C and F have relatively small numbers of PCs in order to achieve
high time domain accuracy.

• The domains L and CL have relatively small numbers of PCs in order to achieve
high frequency domain accuracy.

• Considering the influence on the subjective evaluation of the reconstructed
HRTFs/HRIRs with their SPCA, the domains L and CL, bringing about relatively
high accuracy in frequency domain, are more suitable for the SPCA of the
HRTFs.
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Chapter 10

Prediction Analysis Based on
Logistic Regression Modelling
Zaloa Sanchez-Varela

Abstract

The chapter aims to show an application of logistic regression modelling for
prediction analysis in the offshore industry. The different variables shown in dynamic
positioning incident reports are analysed and processed using logistic regression
modelling. The results of the models are then analysed, showing which data influence
the loss of positioning and human errors and how the model can be interpreted.
Afterwards, and based on the obtained models, operational limits can be proposed to
reduce downtimes and thus improve the safety of the operations and the productivity
of the offshore operations when using dynamic positioning systems.

Keywords: regression modelling, dynamic positioning, offshore, drilling,
human error

1. Introduction

A dynamic positioning (DP) system is a piece of automation in which data from
wind, currents and ship motions are taken from different sensors. After analysing
them, a signal is sent to thrusters and rudders to compensate for those movements.
This system seeks two main goals depending on the nature of the operations in
progress: maintaining a given position or moving a vessel along a pre-set track.

The DP system has been in use for many decades, and its applications are primarily
used in the offshore industry. The complexity and high accuracy requested for the
different offshore operations make the dynamic positioning system a valuable tool for
this sector.

However, rarely does such a sophisticated automated system always performs
smoothly. The study of the incidents reported by vessels is vital to discover any
failures that could be corrected and to improve the safety of DP operations.

The International Marine Contractors Association (IMCA) is, without any doubt, one
of the most prolific authors to the cause of safety in DP operations. They have published
different recommendations to the industry, along with guidelines for operations, sensors,
and personnel. It is also important to mention the collection of DP incidents that IMCA
has published since 1994. The high volume of DP incidents reported anonymously, and
carefully published by IMCA, has been the base of this research.

In this chapter, the focus is set on the research of the incidents reported to IMCA
from 2011 until 2015. During this period, the reports presented by IMCA were of the
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event-tree type, showing information regarding water depth, the configuration of the
DP system and meteorological information. Before this period, the event trees lacked
some of these data; and since 2015, the reports presented were just a sample and did
not include all the incidents reported.

However, the reports collected can contribute to understanding the common pat-
terns that can be found in the different incidents, thus finding an interpretation that
could help improve the safety of these operations. Periods of downtime can mean a
considerable amount of money loss. In some cases, the incident can lead to catastrophic
consequences, leading to the loss of the ship and even pollution of the environment.

In this context, the research presented in this chapter aims to propose a mathe-
matical model using logistic regression, which could help predict under which condi-
tions an incident can occur. Furthermore, the condition of the incident can be
determined beforehand, and as such, the likelihood of having an incident ending in an
excursion can be modelled.

At the same time, and knowing that perhaps the human error is the easiest of all
mistakes to correct, the model will be determined once again taking into account
whether a human error was the cause of the incident or not, and the resulting models
will be compared.

2. State of the art

2.1 DP elements

Any DP system always has seven segments or elements, namely: controller, DP
console, Dynamic Positioning Operator (DPO), position reference systems (PRS),
motion reference units (MRU), propulsion and power supply. Each element will be
described in this section.

The central element is the controller, composed of computers or processors, which
sets a two-way communication with all other DP elements via the vessel network.

The system is controlled with the help of the DP console, which contains opera-
tional controls, buttons, screens and a manual joystick.

The DP console is controlled by a Dynamic Positioning Operator (DPO) who
should be fully certified to conduct DP operations.

To acquire information on the position of the rig, PRS are used. In DP drilling
operations, several PRS provide additional accuracy [1]. Usually, a drilling rig will
select dual differential global navigation satellite system (DGNSS) and hydro-acoustic
positioning references (HPR), usually of the long-baseline type. Taut wires are only
used in shallow waters, as they are not available in deep water [2].

The motions of the vessel are monitored with different sensors. The yawing is
monitored with the help of one or more gyrocompasses which send information about
the heading. Different MRU help send information about surge and sway.

The wind and current are also monitored for course and speed, and this informa-
tion is sent to the controller. There are different wind sensors in different positions
onboard the rig to avoid errors due to windscreens, turbulences provoked by struc-
tures, and other obstacles.

With all this information, the controller can predict the movement on the vessel
and send a proper command to the propellers and thrusters (pitch, revolutions per
minute, azimuth, rudder angle) to counter-rest the forces and maintain the rig in the
desired position.
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A vital part of the DP system is the power supply. Diesel, alternators, switch-
boards, cabling, propulsion motors and power-management form part of the power
system related to the DP operations [3].

2.2 The use of dynamic positioning systems in drilling operations

Drilling operations take place over a wellhead. The primary purpose of the DP
system is to maintain the position of the drilling vessel so that the riser/stack angle
containing the drill string is close to zero, compensating for currents or tidal flow if
necessary [4]. This angle is the one measured between the riser (on the top) and the
wellhead or lower marine riser package (LMRP) [3]. This function is known as riser
angle or riser follow mode. The DPO monitors the riser difference angle through
sensors located around the LMRP. A watch circle system is created so the DPO can
monitor the movements of the vessel. When the rig is moving, different levels of
alarm are set to ensure the safety of the operations at all times [4].

The main risk in any DP operation is losing position (which is known in drilling
operations as an excursion) during operations. Therefore, the DPO should react in a
short time to correct or mitigate the consequences of this loss [5].

To maintain the position of the drilling riser, the system consists of a closed-loop
control function that receives information from different sensors that measure wind,
currents, heading and position. It sends a command to the propulsion units to counter
rest the forces that, according to the information, tend to take the vessel out of
position.

The desired position is input by the DPO, who supervises the operation in the
Human Machine Interface (HMI), also known as the DP console. The DPO operator is
a certified officer of the watch who has followed a training and certification scheme to
cover this board position [6].

Finding which variables and in which way and measure they affect an incident
having a human cause can help focus on the riskiest situations and improve the safety
of drilling operations. From the results obtained, it would be possible to propose
operational limits to improve the safety of drilling operations.

DP drilling incidents have been the object of different academic research. In 2011,
Haibo Chen [7] published a paper where he introduced the safety of DP operations
based on a barrier model. Previously the same research team had already published an
article about the safety of such units [8].

The most interesting approach to the human factors in DP incidents has been
proposed by Chae [9], while formal safety assessment was applied to them [10]. Dong
[11] focused his research on the incidents that had taken place during offshore loading
operations. Overgard [12] also researched the human element during DP incidents.

3. Objectives

There are two main objectives in this chapter.
The first main objective of this paper is to find the mathematical expression that

determines the probability of an incident ending in an excursion during DP drilling
operations.

With the developed model obtained from this research, drilling companies and
other authorities can review their management manuals and propose some effective
measures to reduce the probability of loss of position while conducting DP drilling
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operations. The excellent results obtained by the presented model avail the reliability
of this technique.

The second main objective would be to determine whether the model remains the
same when there is a human error or not, that is, to determine if the human error can
alter the proposed model.

4. Methodology

The first step for applying a regression modelling technique is to have a database
with different variables. The variables do not need to follow a normal distribution in
the database, which is a condition for other prediction techniques.

In our example, data was gathered from the IMCA station-keeping incidents
corresponding to 2011 to 2015. The cases that took place while drilling operations were
in progress were selected, 50 in total.

The data described in the event tree was carefully read, and a database was
developed, including the following variables, as shown in Table 1.

Some of these variables had to be treated to be used in this research. Thus, the
following variables were obtained, shown in Table 2.

Once the database was created, some missing values were observed for some of the
variables. These cases were eliminated to uniform the sample without distorting the
values by performing bootstrapping.

A descriptive statistic of each variable is performed before researching the binary
logistic regression models.

4.1 Binary logistic regression model

The binary logistic regression technique will provide the probability that a given
variable, called the dependent variable, will have a given value based on the values of
the other variables, called independent variables.

For our example, the dependent variable will be an excursion. The excursion will
have a value of zero if there is no loss of position and a value of 1 if there is an
excursion.

The rest of the variables will be considered independent variables. These variables
can be quantitative or categorical. In our example, except for the variables water
depth, percentage of thrusters online and percentage of generators online, which are
all quantitative, the rest of the independent variables are categorical. Due to this,
when using a statistical program, it manipulates its values internally to produce as
many variables as there are categories minus one. For example, Wind sensors have
five categories, and the program produces four variables: Windsensors (i), i = 1, 2, 3,
4. These new variables are dichotomic: the value 1 indicates the presence of a quality,
and the value 0 its absence.

The statistical program (in our example, SPSS), considering the values for each
case in the independent variables, calculates the probability of excursion for each of
them. As this probability varies between 0 and 1, the closer to 0 will mean the most
negligible probability of excursion, and the closer to 1 will mean a more significant
probability of excursion. Thus, each case is assigned a probability p. This is important
to interpret the coefficients in the regression. There has been a recodification, and no
information has been lost.
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The choice of the variables is made by the selected method: Forward Wald. This
method is based on adding or removing variables from the model by using two
statistics: the score of Rao and the Wald statistic.

The score of Rao allows to compare for each independent variable Xj the null
hypothesis: Ho = Bj = 0; that is, the regression coefficient B associated with the
variable in the model is null. The variable that presents the minimum associated p-
value provided it is always less than 0.05, for the proposed independent variable will
be selected to enter the model.

Also, for the Wald statistic, the null hypothesis can be compared Ho: Bj = 0, but in
this case, it is for the independent values that are already selected and have entered
the model.

A variable with a p-value associated with the Wald statistic bigger than 0.1 will be
eliminated, as this is by default the option of the program.

Variable Description

Year In which year did the incident happen.

Water-depth (in metres) Indicates the water depth at which the drilling operations took place.

Number of thrusters online The number of thrusters that were online in the DP system.

Number of thrusters
stand-by

The number of thrusters that are not online in the DP system, but which
are ready to be selected at any time.

Number of generators online The number of generators that were online in the DP system

Number of generators
stand-by

The number of generators that are not online in the DP system, but which
are ready to be selected at any time.

Bus tie Whether it was open or closed.

DGNSS The number of DGNSS systems that are selected in the DP system

HPR The number of hydroacoustic systems that are selected in the DP system

Taut wire The number of taut wires in use during the operations

Inertia system The number of inertia systems in use during the drilling operations

Gyros The number of gyros that were in use during the drilling operations

MRU The number of MRU that were in use during the drilling operations

Wind sensors The number of wind sensors that were in use during the drilling operations

Wind force The force in knots of the wind blowing when the incident happened

Wind direction The direction of the wind in degrees

Current speed The speed of the current in knots when the incidents happened

Current direction The direction of the current in degrees

Wave height The height of the waves in metres

Visibility The visibility that there was while the incident happened.

Main cause The leading cause, as defined by the classification presented by IMCA

Secondary cause The secondary cause, if present, as defined by the classification presented
by IMCA

Excursion Whether an excursion took place or not.

Table 1.
Variables from the database.
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According to the criteria exposed above, there will be several steps in which
independent variables will be entered and eliminated.

At step 0, only the constant is introduced to the model. For this constant, it is
essential to measure B (the regression coefficient), the estimated standard error in the
estimation (SE), the Wald statistic and its degrees of freedom (df) and the associated
p-value. When this p-value is less than 0.1, the constant is considered to be significant.

All the independent variables are out of the model at this step. One variable has to
be selected to enter the model in step 1. The variable with the smaller p-value associ-
ated with the score of Rao, provided it is less than 0.05, will be selected. It should be
considered that the variables created from a categorical variable should be considered
as a whole.

If two or more variables have the same p-value, the score should then be consid-
ered, choosing the variable with the bigger score to enter the model in Step 1.

Once the variable enters the model, we should study the Wald statistic, given by:

Wald ¼ B=SEð Þ2 (1)

If its p-value is above 0.1 (output value, POUT), then the corresponding variable
would be eliminated (as a whole in the case of the categorical variables). It is always
eliminated before the new variable is selected.

After this, another variable would be selected (or not) to enter the model in the
next step. Suppose no variable can be selected due to the p-values of the score of Rao.
In that case, the process is terminated, and the model is presented with a mathemat-
ical formula, given as:

Z ¼ B1X1 þ … þ BqXq þ B0 (2)

being q the number of independent variables, and B the regression coefficients of
the independent variables included in the model.

This model would explain the probability of the dependent value to be 1, that is,
the possibility of an incident having a loss of position. The parameters that must be
estimated are the regression coefficients B0, B1, … , Bq.

The column SE presents the standard error for estimating these coefficients, which
is necessary for calculating the Wald statistic.

Variable Description

Percentage of
thrusters online

The number of thrusters online divided by the total number of thrusters online
and stand-by.

Percentage of
generators online

The number of generators online, divided by the total number of generators
online and stand-by

Visibility This variable was categorised using the following criteria: Poor when the visibility
is less than two nautical miles, Moderate between 2 and 5 nautical miles, Good
above five nautical miles [13].

Human cause When either the main or secondary causes have a human origin, then 1 is
inserted, for the rest of the cases, 0 is inserted indicating no human cause.

Period The first period is from 2011 till 2013. The second period is from 2014 to 2015.

Table 2.
Variables created from existing variables.
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From here, the probability p of a case having an excursion is given by:

p ¼ 1= 1þ e �Zð Þ
� �

(3)

So the probability p for each case can be obtained. When the value p is less than
0.5, it will indicate that the model classifies this case in the first group (not having
excursion), and when the value is bigger than 0.5, then the model predicts the case to
have an excursion:

Moreover, the probability of not having any loss of position is:

q ¼ 1� p (4)

Furthermore, the relative ratio is defined as:

p=q ¼ 1= 1þ e �Zð Þ
� �� �

= 1� 1= 1þ e �Zð Þ
� �� �

¼ 1= 1þ e �Zð Þ
� �� �

= 1þ e �Zð Þ � 1
� �

= 1þ e �Zð Þ
� �� �

¼ 1=e �Zð Þ ¼ e Zð Þ
(5)

Then, the mean relative ratio can be obtained. According to the definition of
relative ratio, the i-th incident will be more likely to occur if P/Q > 1.0, while another
incident will be more prone to be associated with not having an excursion when this
ratio P/Q < 1.0.

4.2 Goodness of fit

It is not enough to give the model, as the goodness of fit must be checked to decide
whether the model is good or not.

We have estimated the possibility of an incident having or not an excursion, but
this does not necessarily need to be real. According to the model, the case can have a
more significant possibility of belonging to the first group (no excursion) and yet
belong to the second group (excursion). It is a bigger problem when the probabilities
are close to 0.5. In this case, there is an error, the difference between the observed
probability and the estimated probability Ei = p observedi – p estimatedi, where
pi = can take the values 1 or 0, depending on whether the case belongs or not to the
second group.

Evidencing the goodness of fit is checking how probable the obtained results for
the estimated model are. It is based on comparing the number of cases that belong to
the second group (excursion = yes) with the expected number if the model is valid.
This expected number is the product of the total of cases in the sample by the
estimated probability of belonging to the second group.

The statistic -2Log Likelihood (abbreviated -2LL) is used for this fit. When the -
2LL results in low values, the likelihood is significant; the closer to zero, the bigger the
likelihood.

Also, the following statistic can be used to compare the observed probabilities with
the estimated from the model:

Z2 ¼
Pn

i¼1E
2
i

pestimatedi 1� pestimatedi
� � (6)
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They both follow a chi-square distribution with n-2 degrees of freedom under the
hypothesis that the model adjusts to the observed data. It shows the percentage of
correctly classified cases after the model has been defined.

When the percentage of correctly classified cases is high, it is expected to provide
good results when predicting whether any incident will have an excursion or not.

5. Results

5.1 Descriptive statistics

All 42 cases were included in the analysis. There were no missing cases. 13 had a
position loss from these cases, meaning 31% of the total.

5.1.1 Water depth

The mean water depth is 1409 � 112 metres, the minimum 37 metres and the
maximum 2838 metres. The distribution of this variable does not follow the normality.

5.1.2 Percentage of thrusters online

The mean usage of thrusters is 93 � 2 per cent, with a minimum of 50% and a
maximum of 100%. The distribution is not normal.

5.1.3 Percentage of generators online

The mean percentage of generators is 65 � 3%, with a minimum of 33.33% and a
maximum of 100%. This distribution is not normal.

5.1.4 DGNSS

In 3 cases (7%), there is only 1 DNGSS online, in 27 cases (64%), there are 2
DGNSS in function), in 7 cases (17%), there are 3 DGNSS online, and in 5 cases, there
are 4 DGNSS working online (12%). The mean value is 2.33� 0.79. This distribution is
not normal.

5.1.5 HPR

In 4 cases (10%), there was no HPR functioning; in 17 cases, there was 1 HPR
working (40%), and in 21 cases, there were 2 HPRs in function (50%). Thus, the mean
is set at 1.40 � 0.67. This distribution is not normal.

5.1.6 Taut wire

There are 38 cases in which the taut wire is not used (91%), while in 3 cases, there
is one taut wire in use (7%), and in 1 case, two taut wires were being used (2%). The
mean is 0.12 � 0.395.
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5.1.7 Inertia system

In 40 cases (95%), this system is not used, while in 2 cases (5%), they are using it.
The mean is then 0.05 � 0.216. This distribution is not normal.

5.1.8 Gyros

In 1 case, only two gyros were used (2.5%), in 40 cases, three gyros were used
(95%), and in 1 case, four gyros were used (2.5%). The mean value is 3 � 0.221.

5.1.9 MRU

In 4 cases, there were 2 MRUs in use (9.5%), while in 38 cases, there were 3 MRUs
in use (90.5%). The mean value is 2.90 � 0.297.

5.1.10 Wind sensors

In 1 case, there was only one wind sensor online (2%), in 10 cases, there were two
wind sensors (24%), in 26 cases, there were three wind sensors (62%), and in 5 cases,
there were four wind sensors (12%). The mean is 2.83 � 0.660.

5.1.11 Wind force

The mean wind force is 16 � 1.88 knots, the minimum one and the maximum 55
knots metres. The distribution of this variable does not follow the normality.

5.1.12 Current speed

The mean current speed is 1.9 � 0.23 knots. The minimum is 0.3, and the maxi-
mum is 6 knots. This distribution is not normal.

5.1.13 Wave height

The mean wave height is 1.88 � 0.3 metres. The minimum is 0.1, and the maxi-
mum is 9.5 metres. This distribution is not normal.

5.1.14 Visibility

In 2 cases, the visibility was poor (5%), in 4 cases, it was moderate (9%), and in 36
cases, the visibility was good (86%).

5.1.14.1 Human cause

The human nature of the cause is considered when either the main cause or the
secondary cause is human. There are 33 cases (78.6%) without human cause, while 9
cases (21.4%) were having a human error origin. The incidents end in an excursion in
10 cases (76.9%) when there is no human cause, and in 3 cases (23.1%) when there is a
human cause. When there is not a loss of position, incidents without a human cause
occur in 23 cases (79.3%), and incidents with a human cause happen in 6 cases
(20.7%).
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5.2 Binary logistic regression model: Dependent variable: excursion

As a previous stage, the variables are introduced in the model one by one to check
their significance for explaining the answer. These variables are listed in Table 3.

Considering these results, the following variables are selected to enter the model:
Water-depth, percentage of generators online, Wind force and Wave height.

In step 0, when the variables are not yet in the equation, the more significant
(having the smallest p-value) is the percentage of generators, so this is the variable
that enters the equation in step 1. After this, in step 2, the variable water-depth is also
included in the equation. The different statistics can be observed in Table 4.

The following expression defines the model:

Causal factor B Wald p-value Odds Ratio (Exp(B)) IC 95%

lower upper

Water depth �0.001 4.645 0.031 0.999 0.998 1.000

Percentage of thrusters Not in the equation

Percentage of generators 0.047 8.057 0.005 1.048 1.015 1.082

DGNSS Not in the equation

HPR — 0.000 1.000 — — —

Taut wire — 0.000 1.000 — — —

Inertia system Not in the equation

Gyros Not in the equation

MRUs �22.373 0.000 0.999 0.000 0.000 —

Wind sensors — 5.389 0.145 — — —

Wind force 0.078 5.084 0.024 1.081 1.010 1.156

Force Beaufort Not in the equation

Wind direction Not in the equation

Current speed Not in the equation

Current direction Not in the equation

Wave height 0.437 3 0.081 1.549 0.947 2.532

Visibility ordinal Not in the equation

Table 3.
Individual results in step 1 for each independent variable when the forward (Wald) binary regression model is
performed, being excursion the dependent variable.

Variables in the equation B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Water depth (m) �0.001 0.001 4.498 1 0.034 0.999 0.998 1.000

Percentage of generators online 0.051 0.018 7.732 1 0.005 1.052 1.015 1.091

Constant �2.641 1.378 3.676 1 0.055 0.071

Table 4.
Variables in the equation in step 2. All variables are in step 2.
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Z ¼ �2:641� 0:001∙Waterdepthþ 0:051∙Perc:ofgenerators (7)

The mean ratio can then be expressed as:

p
q
¼ e�2:64∙e�0:001∙Waterdepth∙e0:051∙Percentageofgenerators (8)

Alternatively, using the Odds Ratio (column Exp(B):

p
q
¼ e�2:64∙0:999Waterdepth∙1:052Percentageofgenerators (9)

In Table 5, the values obtained from the binary regression model, Z, P and P/Q,
for each incident can be found.

The goodness of fit is given by the -2LL statistic and the percentage of correctly
classified cases. This statistic has a value of 42.732 for Step 1 and 37.510 for Step 2. This
indicates that the goodness of fit is improved in Step 2 of the model.

Out of the 42 valid cases, 29 were not ending in an excursion, while 13 had a loss of
position.

In Step 1, after the variable percentage of generators was included in the equation,
it was obtained that from the 29 cases without excursion, according to the model,
there are 25 cases correctly classified (86.2% of the total) and that from the ones

Incident Water-
depth

Percentage of
generators

Z P P/Q P
estimated

P
observed

E

1 338 66.67 0.42117 0.603763187 1.523743 1 0 1

2 1700 50.00 –1.79100 0.142950164 0.166793 0 0 0

3 1860 50.00 –1.95100 0.124444359 0.142132 0 0 0

4 744 33.33 –1.68517 0.156412089 0.185413 0 0 0

5 750 66.67 0.00917 0.502292484 1.009212 1 0 1

6 1656 50.00 –1.74700 0.148425985 0.174296 0 0 0

7 1656 50.00 –1.74700 0.148425985 0.174296 0 0 0

8 1656 62.50 –1.10950 0.247964116 0.329724 0 0 0

9 1900 50.00 –1.99100 0.120151107 0.136559 0 0 0

10 1782 50.00 –1.87300 0.133194979 0.153662 0 0 0

11 1782 50.00 –1.87300 0.133194979 0.153662 0 0 0

12 1782 50.00 –1.87300 0.133194979 0.153662 0 0 0

13 1782 50.00 –1.87300 0.133194979 0.153662 0 0 0

14 1782 57.14 –1.50886 0.181107803 0.221162 0 0 0

15 2465 50.00 –2.55600 0.072024433 0.077615 0 0 0

16 1718 50.00 –1.80900 0.140759028 0.163818 0 0 0

17 1233 42.86 –1.68814 0.156020605 0.184863 0 0 0

18 1340 50.00 –1.43100 0.19294292 0.239070 0 0 0

19 1700 100.00 0.75900 0.681136584 2.136139 1 0 1

20 1700 100.00 0.75900 0.681136584 2.136139 1 0 1
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having a loss of position, seven are correctly classified (53.8% of the total). There are
25 + 7 = 32 cases out of 42 that are correctly classified, representing 76.2% of the
studied incidents.

In Step 2, when the variable water-depth is included in the equation, for the inci-
dents not having excursion, the number of correctly-classified cases is maintained, and
for the cases with excursion, there is an improvement in the number of correctly
classified cases, which are now 8 (61.5% of the total). In this second step, there are now
33 cases correctly classified, whichmeans 78.6% of the studied incidents. There has been
an evident improvement in the model with the addition of the variable water depth.

Figure 1 graphically shows the model predictions for loss of position for different
values of water-depth and percentage of generators.

The relative ratio can show the prediction for loss of position for the different main
causes, as shown in Figure 2. The dashed line allows us to appreciate better those
mean values above 1, which show a higher likelihood of having a loss of position. The
main causes that are more prone to end in an excursion are environmental, computer
and human.

Incident Water-
depth

Percentage of
generators

Z P P/Q P
estimated

P
observed

E

21 1250 50.00 –1.34100 0.207345657 0.261584 0 0 0

22 880 50.00 –0.97100 0.274681226 0.378704 0 0 0

23 2460 100.00 –0.00100 0.499750000 0.999000 0 0 0

24 2090 50.00 –2.18100 0.101469718 0.112929 0 0 0

25 1710 100.00 0.74900 0.678960765 2.114884 1 0 1

26 1300 50.00 –1.39100 0.199248161 0.248826 0 0 0

27 1437 50.00 –1.52800 0.178286498 0.216969 0 0 0

28 2838 37.50 –3.56650 0.027478187 0.028255 0 0 0

29 450 50.00 –0.54100 0.367954987 0.582166 0 0 0

30 315 100.00 2.14400 0.895106767 8.533503 1 1 0

31 798 50.00 –0.88900 0.291316235 0.411067 0 1 –1

32 2506 66.67 –1.74683 0.148447474 0.174326 0 1 –1

33 2118 42.86 –2.57314 0.070887218 0.076296 0 1 –1

34 38 66.67 0.72117 0.672864607 2.056838 1 1 0

35 108 66.67 0.65117 0.657274071 1.917783 1 1 0

36 959 100.00 1.50000 0.817574476 4.481689 1 1 0

37 854 100.00 1.60500 0.832716044 4.977860 1 1 0

38 1850 100.00 0.60900 0.647712655 1.838592 1 1 0

39 2100 100.00 0.35900 0.588798341 1.431897 1 1 0

40 37 100.00 2.42200 0.918489603 11.26837 1 1 0

41 1710 100.00 0.74900 0.678960765 2.114884 1 1 0

42 54 50.00 –0.145 0.463813380 0.865022 0 1 –1

Table 5.
Values obtained from the binary regression model, Z, P and P/Q, for each incident.
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The distribution of the mean relative ratio among the human cause or not of the
incident is shown in Figure 3. The dashed line shows the value 1; above this value, the
incidents are more prone to have a loss of position according to the prediction model.
In this case, the incidents without a human cause have a bigger likelihood to end in a
loss of position.

5.3 Model stratified by human cause

Of the 42 selected cases, 9 have a main or secondary cause with a human origin,
and 33 have no evidence of human causality.

Figure 1.
Prediction chart showing the trends for wind force and percentage of generators according to the prediction model,
for cases with no human cause.

Figure 2.
Mean relative ratio for each main cause group.

187

Prediction Analysis Based on Logistic Regression Modelling
DOI: http://dx.doi.org/10.5772/intechopen.103090



There are no significant changes in the means of the variables when they are split
into the subgroups human cause no and human cause yes, except for the variable
percentage of thrusters, where it can be observed that the mean is 97.46 � 1.48%
when there is no human cause, and 74.54 � 6.89% when there is a human cause.

5.3.1 No human cause

The 33 cases where there is no human cause are selected.
In the preliminary stage, the variables are introduced in the model one by one to

check their significance for explaining the answer. The variables are presented in
Table 6.

Considering these results, the following variables are selected to enter the model:
Percentage of generators and Wind force.

In step 0, when the variables are not yet in the equation, the more significative
(with less p-value) is wind force (score 7.085, p-value 0.008), so this is the variable
that enters the equation in step 1. After this, in step 2, the variable water depth is also
included in the equation (score 5.436, p-value 0.02). The different statistics obtained
in Step 2 can be observed in Table 7.

The following expression defines the model:

Z ¼ �6:223þ 0:051∙Perc:ofgeneratorsþ 0:12∙Windforce (10)

The relative mean ratio of excursion can then be expressed as:

p
q
¼ e�6:223∙e0:051∙Percentageofgenerators∙e0:12∙Windforce (11)

Alternatively, using the Odds Ratio (column Exp(B):

p
q
¼ e�6:223∙1:052Percentageofgenerators∙1:128Windforce (12)

Figure 3.
Distribution of the mean relative ratio among the existence or not of a human cause for the incident.
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In Table 8, the values obtained from the binary regression model, Z, P and P/Q,
for each incident can be found.

The goodness of fit is given by the -2LL statistic and the percentage of correctly
classified cases. This statistic has a value of 33.453 for Step 1 and 28.147 for Step 2. This
indicates that the goodness of fit is improved in Step 2 of the model.

Out of the 33 valid cases, 23 were not ending in an excursion, while ten had a loss
of position.

In Step 1, after the variable wind force was included in the equation, it was
obtained that from the 23 cases without excursion, according to the model, all of them
were correctly classified (100% of the total) and that from the ones having a loss of

Causal factor n B Wald p-value Odds Ratio (Exp(B)) IC 95%

lower upper

Water-depth 33 Not in the equation

Percentage of thrusters 33 Not in the equation

Percentage of generators 33 0.039 4.757 0.029 1.04 1.004 1.078

DGNSS 33 Not in the equation

HPR 33 Not in the equation

Taut wire 33 Not in the equation

Inertia system 33 Not in the equation

Gyros 33 Not in the equation

MRUs 33 22.547 0.000 0.999 6192653647 0.000 —

Wind sensors 33 Not in the equation

Windforce 33 0.090 4.368 0.037 1.095 1.006 1.191

Force Beaufort 33 Not in the equation

Wind direction 33 Not in the equation

Current speed 33 Not in the equation

Current direction 33 Not in the equation

Wave height 33 0.393 2.641 0.104 1.481 0.922 2.378

Visibility ordinal 33 Not in the equation

Table 6.
Individual results in step 1 for each independent variable when the forward (Wald) binary regression model is
performed, being excursion the dependent variable and selection variable human cause = 0 (no human cause).

Variables in the equation B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Percentage of generators online 0.051 0.024 4.344 1 0.037 1.052 1.003 1.104

Windforce 0.120 0.061 3.876 1 0.049 1.128 1.001 1.271

Constant �6.223 2.371 6.889 1 0.009 0.002

Table 7.
Variables in the equation in step 2.

189

Prediction Analysis Based on Logistic Regression Modelling
DOI: http://dx.doi.org/10.5772/intechopen.103090



Incident Percentage of
generators

Wind
force

Z P P/Q P
estimated

P
observed

E

1 66.67 25.00 0.17717 0.544177004 1.193834 1 0 1

4 33.33 5.00 –3.92317 0.019394704 0.019778 0 0 0

5 66.67 15.00 –1.02283 0.264476518 0.359576 0 0 0

6 50.00 12.00 –2.233 0.096825971 0.107206 0 0 0

7 50.00 22.00 –1.033 0.262502905 0.355938 0 0 0

8 62.50 19.00 –0.7555 0.319624061 0.469776 0 0 0

9 50.00 10.00 –2.473 0.07777279 0.084331 0 0 0

10 50.00 4.00 –3.193 0.039429997 0.041049 0 0 0

11 50.00 19.00 –1.393 0.198929256 0.248329 0 0 0

12 50.00 15.00 –1.873 0.133194979 0.153662 0 0 0

13 50.00 12.00 –2.233 0.096825971 0.107206 0 0 0

14 57.14 18.00 –1.14886 0.24069737 0.316998 0 0 0

16 50.00 9.00 –2.593 0.069590289 0.074795 0 0 0

17 42.86 12.00 –2.59714 0.069322712 0.074486 0 0 0

18 50.00 2.00 –3.433 0.0312799 0.03229 0 0 0

19 100.00 4.00 –0.643 0.3445687 0.525713 0 0 0

20 100.00 13.00 0.437 0.607543959 1.548056 1 0 1

21 50.00 8.00 –2.713 0.0622106 0.066337 0 0 0

23 100.00 5.00 –0.523 0.372151001 0.592740 0 0 0

24 50.00 8.00 –2.713 0.0622106 0.066337 0 0 0

25 100.00 11.00 0.197 0.549091337 1.217744 1 0 1

27 50.00 6.00 –2.953 0.049594915 0.052183 0 0 0

29 50.00 16.00 –1.753 0.14766921 0.173253 0 0 0

30 100.00 50.00 4.877 0.992437784 131.2364 1 1 0

31 50.00 45.00 1.727 0.849028285 5.623757 1 1 0

32 66.67 11.20 –1.47883 0.185604206 0.227904 0 1 –1

33 42.86 18.00 –1.87714 0.132717725 0.153027 0 1 –1

34 66.67 26.00 0.29717 0.573750554 1.346044 1 1 0

35 66.67 18.00 –0.66283 0.340104178 0.515391 0 1 –1

37 100.00 55.00 5.477 0.995835559 239.1282 1 1 0

38 100.00 13.00 0.437 0.607543959 1.548056 1 1 0

39 100.00 7.00 –0.283 0.42971844 0.75352 0 1 –1

41 100.00 1.00 –1.003 0.268351995 0.366777 0 1 –1

Table 8.
Values obtained from the binary regression model, Z, P, and P/Q, for each incident without human cause.
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position, four are correctly classified (40% of the total). There are 23 + 4 = 27 cases out
of 33 that are correctly classified, representing 66.7% of the studied incidents.

In Step 2, when the variable percentage of generators is included in the equation,
for the incidents not having excursion, the number of correctly-classified cases has
become 20, representing 87% of the total. There is an improvement in the number of
correctly classified cases for the excursion cases, which are now 5 (50% of the total).
In this second step, there are now 25 cases correctly classified, which means 75.8% of
the studied incidents. Although, there has been an evident downgrade in the predic-
tion of the model with the addition of the variable percentage of generators, the
prediction for the cases with loss of position has improved.

In Figure 4, it can be seen how the model predicts a loss of position for more
significant values of wind force and of the percentage of generators.

The relative ratio can show the prediction for loss of position for the different main
causes, as shown in Figure 5. The dashed line allows us to appreciate better those
mean values above 1, which show a higher likelihood of having a loss of position. The
main causes that are more prone to end in an excursion, according to this new model,
are environmental and references.

5.3.2 Human cause

The 9 cases where there is no human cause are selected.

Figure 4.
Prediction chart showing the trends for wind force and percentage of generators according to the prediction model,
for cases with no human cause.
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Figure 5.
Mean relative ratio for each main cause group, for the model obtained for the incidents without human cause,
obtaining the likelihood of a loss of position.

Causal factor n B Wald p-value Odds Ratio (Exp(B)) IC 95%

lower upper

Water depth 9 �0.006 0.912 0.34 0.994 0.981 1.007

Percentage of thrusters 9 Not in the equation

Percentage of generators 9 1.341 0 0.999 3.824 0 —

DGNSS 9 Not in the equation

HPR 9 — 0 1 — — —

Taut wire 9 Not in the equation

Inertia system 9 Constant value

Gyros 9 Constant value

MRUs 9 Constant value

Wind sensors 9 Not in the equation

Windforce 9 Not in the equation

Force Beaufort 9 Not in the equation

Wind direction 9 Not in the equation

Current speed 9 Not in the equation

Current direction 9 Not in the equation

Wave height 9 Not in the equation

Visibility ordinal 9 Not in the equation

Table 9.
Individual results in step 1 for each independent variable when the forward (Wald) binary regression model is
performed, being excursion the dependent variable and selection variable human cause = 1 (human cause).
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In the preliminary stage, the variables are introduced in themodel one by one to check
their significance for explaining the answer. The variables are presented inTable 9.

Considering these results, only the variable water depth is selected to enter the
model.

In step 0, when the variable is not yet in the equation, it is considered significative
(score 5.248, p-value 0.022), so it enters the equation in step 1. The different statistics
obtained in Step 1 can be observed in Table 10.

It can be observed that the p-value associated with the Wald statistic is bigger than
0.1, which means that this variable does not explain the model with the desired
significance, and so it must be rejected.

Out of the nine valid cases, six were not ending in an excursion, while three were
losing position.

In Step 1, after the variable water-depth was included in the equation, it was
obtained that from the 6 cases without excursion, according to the model, there
were 5 cases correctly classified (83.3% of the total) and that from the ones having
a loss of position, two are correctly classified (66.7% of the total). There are
5 + 2 = 7 cases out of 9 that are correctly classified, representing 77.8% of the studied
incidents.

6. Discussion

The first approximation to the regression model was to include the variables one
by one to determine which variables could explain the answer.

It was interesting that the categorical variables did not explain the model. How-
ever, the data analysis could suggest that, had the sample been more prominent, they
could have influenced the result. This study aimed not to distort the sample by
performing a bootstrapping, not only because of the possible distortion of the sample
but also because of the complication implied when the variables do not follow a
normal distribution. The sample size is considered to be representative of the period
of study.

With the first approach, the variables that could explain the probability of an
excursion are determined to be: water-depth, percentage of generators online, Wind
force and Wave height. The first two variables belong to the DP system configuration,
and the last two are related to meteorological conditions.

However, when all of them are entered into the model, we obtained that only the
first two explain the answer, while the other two could not improve the model
already created. Although, this could give an idea of the less importance of the
meteorological variables when explaining the excursion, it should not be

Variables in the equation B S.E. Wald df Sig. Exp(B) 95% C.I.for EXP(B)

Lower Upper

Waterdepth –0.006 0.007 0.912 1 0.340 0.994 0.981 1.007

Constant 5.592 6.426 0.757 1 0.384 268.187

Table 10.
Variables in the equation in Step 1. It can be observed that the independent variable, with a p-value of 0.34,
cannot be considered to have any relation with the loss of position or not.
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forgotten that the meteorology, and especially the wind force (which creates waves
with a height that is proportionally correlated to the force in knots), can also
influence the probability of a unit having a loss of position while performing DP
drilling operations.

The two selected independent variables, water-depth and percentage of genera-
tors, can explain the probability of losing position. This possibility will increase when
the water depth has small values and the percentage of generators has significant
values. These results are very interesting from the operator’s point of view, as the
lower values of water depths have traditionally been a common drilling ground where
DP was not necessary, and other methods were used to achieve the position keeping.
This could partly explain the problems of DP station keeping incidents when the
drilling operations take place in shallow waters.

Studying the mean relative ratios for each main cause group, it is interesting to
note that the model can explain environmental-, computer- and human-caused inci-
dents more precisely than other causes. Within the group of human causes, the
incidents without a human cause have a better prediction using the proposed model.

In general, this model correctly classifies 79% of the incidents, which is considered
to be a very good prediction overall.

When the data is split into subgroups defined by the existence or not of a human
cause, it can be seen how themean percentage of thrusters is significantlymore
prominent for the cases where there is no human cause and smaller when there is a
human cause. However, it does not explain whether the probability of an excursion is
bigger or smaller for any of the subgroups. However, it can suggest that it would be a
significant variable when the dependent variable is used to determine the possibility of a
human error.

Always taking the general regression model from above into account, the
regression model for the subgroup without human cause proposes the percentage of
generators and wind force as variables that could explain the model. Wave height is
not significant (although with a p-value of 0.104, it could be said that it is at the edge
of being significant), and the water depth does not even enter the equation.

The fact that water depth was not even entering the equation when considered
individually suggests it does not influence the probability of excursion when the cause
is not human.

When studying the cases in the subgroup human cause, we obtain that the only
variable that could explain the model is water depth. However, its p-value is bigger than
0.1, after entering the equation and because of this, it is rejected. In the iteration of the
model, it can be seen how when this variable is included, the percentage of cases that
are correctly classified decreases for the first group (no excursion). At the same time,
the percentage of correctly-classified cases improves for group 2 (excursion). Probably
the comparatively small number of cases (only 9 out of the 42 cases in total) contribute
to the decision of rejecting this variable from the equation. Nonetheless, it suggests that
this variable can be expected to be added to the model when a bigger sample is studied.

7. Conclusions

The purpose of this chapter was to determine the mathematical expression that
explains the possibility of a loss of position during DP drilling operations.

With a sample of 42 incidents from 2011 till 2015, it was determined that the
mathematical expression for the binary logistic regression model is shown in Eq. 9.
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The loss of position of an incident depends on the water depth and the percentage of
generators used.

With this model, it can be determined that the probability of loss of position will
increase when the water-depth has small values and the percentage of generators has
bigger values.

Having considered that the percentage of cases correctly classified by the model
which takes into account both variables percentage of generators online and water-
depth is high (78.6%), it is expected to provide excellent results when predicting
whether any incident will have a loss of position or not.

Once this model has been determined, the secondary objective of this paper was to
find and compare the mathematical expression, taking into account whether the
nature of the cause leading to the incident was human or not.

With a sample of 33 incidents without human cause, it was determined that the
mathematical expression for determining the probability of loss of position is given in
Eq. 13. This model can determine that the probability of having an excursion increases
as the percentage of generators and the wind force have bigger values.

The percentage of cases correctly classified by the model according to this sample
is high (75.8%), and it can be expected to provide excellent results when predicting
whether an incident that has no human origin will have a loss of position or not.

The sample of the incidents with human cause was relatively small (9 cases only),
so no independent variable could explain the model within a confidence interval of
10%. However, the variable water-depth, which appears above in the general model,
and does not appear in the model for the cases without human cause, can be suspected
to explain the model, although it will be necessary to perform further research on a
bigger sample to obtain significant results.
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Nomenclature

-2LL -2LogLikelihood, statistic used to define the goodness of fit of a model
B regression coefficients of the independent variables in the model
DGNSS Differencial Global Navigation Satellite System
DP dynamic positioning
DPO dynamic positioning operator
E Error between the estimated probability and the observed probability
HMI Human Machine Interface
HPR Hydro-acoustic Positioning References
IMCA International Marine Contractors Association
LMRP lower marine riser package
MRU motion reference units
p probability that the dependent variable will obtain a value 1
p/q Mean relative ratio of the probability of the variable to obtain a value of 1
POUT output value
PRS position reference systems
q probability that the dependent variable will obtain a value 0
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SE standard error
Wald Statistic used to determine whether a variable is contributing to defining

the model or not
Z formula defining the model
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Chapter 11

On the Use of Modified
Winsorization with Graphical
Diagnostic for Obtaining a
Statistically Optimal Classification
Accuracy in Predictive
Discriminant Analysis
Augustine Iduseri

Abstract

In predictive discriminant analysis (PDA), the classification accuracy is only
statistically optimal if each group sample is normally distributed with different group
means, and each predictor variance is similar between the groups. This can be
achieved by accounting for homogeneity of variances between the groups using the
modified winsorization with graphical diagnostic (MW-GD) method. The MW-GD
method involves the identification and removal of legitimate contaminants in a train-
ing sample with the aim of obtaining a true optimal training sample that can be used to
build a predictive discriminant function (PDF) that will yield a statistically optimal
classification accuracy. However, the use of this method is yet to receive significant
attention in PDA. An alternative statistical interpretation of the graphical diagnostic
information associated with the method when confronted with the challenge of dif-
ferentiating between a variable shape in the groups of the 2-D area plot remains a
problem to be resolved. Therefore, this paper provides a more comprehensive analysis
of the idea and concept of the MW-GD method, as well as proposed an alternative
statistical interpretation of the informative graphical diagnostic associated with the
method when confronted with the challenge of differentiating between a variable
shape in the groups of the 2-D area plot.

Keywords: winsorization, informative graphical diagnostic, optimal training sample,
predictive discriminant analysis, statistically optimal classification accuracy

1. Introduction

Binary classification when compared to multiple classification has wide range of
real-world applications in many areas of human endeavors, such as criminal justice,
education, medicine, email analysis, human resources management, pattern
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recognition, energy and environmental management, financial data analysis and eco-
nomics, production systems management and technical diagnosis, marketing among
others. Where the classification criterion comprises one or several predictor variables
along with a categorical criterion, such a prediction will require the use of a predictive
discriminant analysis (PDA). PDA is still the optimal method when the cost of
misclassifying groups is clearly different and when there is greater interest in the
accuracy of classifying separate groups. In most cases, evaluating the proportion of
correct classification of a predictive discriminant function (PDF) in all sub-
populations is equivalent to the estimation of the actual hit rate, P að Þ [1, 2]. That is, P að Þ

is the expected proportion of correct classification when a PDF that is built from a
given training sample is validated on training samples from the sample population. In
PDA, to improve or optimize classification accuracy or actual hit rate, researchers
often rely on feature selection methods. The aim of feature selection methods in PDA
is to choose the best subset of important predictor variables that will effectively
reduce the intricacy of the PDF, thus facilitate interpretation, enhance or optimize the
classification accuracy, and reduce the training time. Nevertheless, the promise of
optimizing classification accuracy using variable selection methods is almost always
unfulfilled, because the derived PDF is often obtained from a training sample that
does not meet near optimal condition [1, 3–6]. The actual hit rate of a PDF may be
considered statistically optimal only if the assumptions of normality and/or homoge-
neity of variances are taken into account [5, 7]. This means that having a better subset
is not a guarantee for achieving a statistically optimal classification accuracy.

In general, the task of enhancing or improving classification accuracy was exam-
ined in two ways. Several researchers use feature or variable selection techniques to
select the best subset of predictors to construct a classification model. In addition to
conventional feature selection techniques, including the stepwise and all possible
subset methods [4, 8, 9]. Some widely known and used methods include the principal
component analysis (PCA) used to obtain a set of low-dimensional features from a
large set of features [10, 11]. The branch and bound technique which uses a greedy
procedure to obtain the best subset [12], the genetic search algorithm [13, 14], the
shrinkage methods [10, 15], the particle swarm optimization (PSO) approach which is
a meta-heuristic technique used to enhance classification accuracy [16], representa-
tive methods based on dictionary learning (DL) for classification [17–19], support
vector machines (SVMS) [20], and the hyper parameter tuning approach [21, 22]. We
have the sequential analysis approach as well [23]. The heteroscedastic discriminant
analysis merged with feature selection [24] and the modified leave-one-out (LOOCV)
cross-validation method used as an alternative to the all-possible subset method [25].
A PDF’s classification accuracy is only statistically optimal if each group sample is
normally distributed with different group means, and each predictor variance is
similar between the groups [7]. None of these basic assumptions regarding the valid-
ity/reliability of the PDF are considered by any of the above methods. To address
these gaps in feature selection techniques, other investigators are seeking alternatives
to robust PDA by replacing conventional estimators with robust estimators. Some
variants of these alternative methods include the dimensionality reduction/feature
extraction for outlier detection (DROUT) [26], the minimum covariance determinant
(MCD) [27], S-estimators [28], one-step M-estimator (MOM), and winsorized one-
step M-estimator (WMOM) [29]. These other methods concentrate on building a
robust PDF for deviations due to the presence of outliers in the training sample.
Besides the presence of outliers in most training samples, there are also hidden
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influential observations resulting either from an incorrect distributional assumption
or an inherent variability of the dataset [30]. Oftentimes, these hidden influential
observations are not considered by any of the above methods for optimizing an actual
hit rate. Consequently, the PDF’s solution obtained by either of the two approaches
may be optimal but not statistically optimal. To overcome the problem of hidden
influential observations, Iduseri and Osemwenkhae [6] proposed a novel method for
attaining an optimal training sample. Their method otherwise known as modified
winsorization with graphical diagnostic (MW-GD) method yielded a PDF’s solution
which was statistically optimal for both the training sample that gave rise to it and for
other training samples from the same population. However, the graphical diagnostic
associated with this new method may be difficult to interpret if there are no signifi-
cant differences between a variable shape in the groups of the 2-D area plot, and yet
there is evidence of hidden influential observations in the training sample.

This paper provides a more comprehensive analysis of the idea and concept of the
MW-GD method, as well as proposed an alternative statistical interpretation of the
informative graphical diagnostic associated with the method when confronted with
the challenge of differentiating between a variable shape in the groups of the 2-D area
plot. The remaining sections of this paper are organized as follows. Sections 2 and 3
discuss the problems posed by the presence of outliers and legitimate contaminants in
the training sample that yields the PDF, the concept of statistical optimality of the
PDF classification accuracy, and the robustness of PDF, respectively. Section 4
describes in details the idea and concept of the modified winsorization with a graph-
ical diagnostic for obtaining a statistically optimal training sample, as well as presents
the proposed alternative statistical or numerical interpretation of the informative
graphical diagnostic. Section 5 presents the results and discussions based on the
application of two real life samples, while Section 6 presents the conclusions.

2. Outliers and legitimate contaminants in PDA

In PDA, an outlier is an observation which is not a member of a group, and is often
indicative of an incorrect measurement or an incorrect allocation of the unit or
observation. Such an outlying observation can cause severe problems that even the
robustness of PDA may not overcome. Over the last two decades, many articles have
been published about detecting outliers in discriminant analysis (DA) [31–38]. In
PDA, a popular means of treating outliers is to construct multiple PDFs with assumed
outliers added and with assumed outliers removed [1]. The primary issue with this
method is whether potential outliers should be remove one at a time, two at a time, or
all at a time. With the SPSS DISCRIMINANT procedure, the chi-squared distribution
is used to establish the typicality probability. These typicality probabilities are used to
identify potential outliers in the context of PDA. However, Huberty and Olejnik [1]
pointed out that when the group covariance matrices are not equal, the unit typicality
probabilities are difficult to interpret because different distance metrics are used in
the calculation. A common distance index used for detecting outliers or influential
observations in the context of PDA is the Mahalanobis distance [39] which is also
calculated as a byproduct in SPSS DISCRIMINANT procedure.

However, there are also hidden influential observations (or legitimate contami-
nants) resulting either from an incorrect distributional assumption (i.e., when the
data turns out with a different structure than originally assumed) or an inherent
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variability of the dataset, see Osborne [30], and Iglewicz and Hoaglin [40] for more
details. While hidden influential observations may actually belong to a training sam-
ple, but if not distributed randomly may reduce normality which often leads to
violation of sphericity and multivariate normality assumptions in PDA. Hidden influ-
ential observation can also adversely affect the quality of the PDA solution and its
generality. But how to identify and remove hidden influential observations before
building a classification model (particularly in the PDA) has not receive any signifi-
cant attention in the literature by statisticians or by methodologist and therefore not
by any substantive researchers. Besides, the SPSS typicality or Mahalanobis index may
not be able to identify hidden influential observations because their unit often belongs
to a different group compared to outliers.

Therefore, much emphasis should be placed on cleaning the training sample to
ensure that it meets its near-optimum condition by removing all legitimate contami-
nants from the training sample. This method is similar to optimizing decision trees (in
particular classification trees) which consists in reducing the amount of impurity—see
Myatt [41] for details. In the context of PDA, it will improve the similarity of each
predictor variable variance between groups, thus improving the approximation of the
true shape. This will in no doubt guarantee the statistical optimality of the PDF
solution or classification accuracy.

3. Statistical optimality of a PDF classification accuracy

A PDF’s classification accuracy is only statistically optimal if each group sample is
normally distributed with different group means, and each predictor variance is
similar between the groups [5, 7]. In addition to the above requirements, it is
recommended that there be at least four to five times as many cases as predictors in
order to produce more accurate estimates. Note that in PDA, the failure of the training
sample to meet the assumption of normality can result in a decrease in efficiency and
accuracy—see Lachenbruch [42] as cited in Klecka [43]. However, a minor violation
of this assumption will not decrease the accuracy of the classification. As long as the
distributions of predictors are reasonably comparable, the estimation of most multi-
variate parameters does not require multivariate normality [44]. Moreover, under the
central limit theorem, there is no need to worry about the assumption of normality as
long as each group sample contains a very large number of observations. As a general
rule, a PDF will still perform strongly against non-normality as long as the smallest
group has over 20 cases, and the number of predictors is less than six [45]. Due to
these robustness properties of PDA, researchers are barely concerned about the
assumption of normality.

But where non-normality is due to outliers and/or hidden influencing observations
other than skewness, violating this assumption has serious consequences, because
PDA is very sensitive to outliers [45]. Likewise, more cases could be classified into the
group with greater dispersion when the assumption of equality of variance-covariance
matrices is not tenable [45]. In addition, the likelihood of belonging to a group may be
distorted, and the PDF may also not be able to separate the groups as much as possible
[43]. The accuracy of the discriminant weights estimates may be reduced if the
variances of the predictors are not all similar between groups. They may be precise but
not unbiased [46]. When the homogeneity of variance test is significant, it indicates
that the training sample is contaminated with outliers and/or hidden influence
observations, and the significance tests are unreliable [3, 45]. It is apparent from the
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foregoing that, if the assumption of homogeneity of variances is not satisfied, it is
probable that the assumption of multivariate normality is not equally satisfied. This
suggests that multivariate normality and homogeneity of variance assumptions can be
taken into account if outliers and hidden influential observations are completely
removed from a training sample. The practice of researchers relying on the robustness
properties of PDA without checking for outliers and hidden influential observations,
which may hinder maximal separation between the groups seems to be a norm. This
practice is further encouraged by the general acceptance of a hit rate of 25% above
that of chance. Assuming that you get a 95% hit rate, it is certain that you will not care
about the two basic assumptions of PDA.

Whereas the reason for such good performance might be that the data support
simple linear or quadratic separation boundaries. The general belief that linear classi-
fiers are robust to minor violations of its basic assumptions (in particular is the
assumption of multivariate normality) is often not tenable. Studies have shown that
the reliability of a PDF solution is dependent upon adherence to the underlying
assumptions [5]. The primary objective of PDA is classification, and if the percentage
of correct classifications is not satisfactory, it is likely that variances in predictors are
not similar across groups. That is to say the training sample is not statistically optimal.
Therefore, it is necessary to adopt a screening method that will effectively identify
and remove legitimate contaminants from training samples before using them to build
a PDF. Iduseri and Osemwenkhae [6] proposed the modified winsorization with
graphical diagnostic (MW-GD) method to identify and remove legitimate contami-
nants from training samples. The MW-GD method produced a statistically optimal
training sample when applied to a real dataset, and the resulting PDF yielded a hit rate
that was statistically optimal. As a result, the uncertainty about the PDF’s actual hit
rate was greatly reduced. However, the informative graphical diagnostic associated
the proposed method may be difficult to interpret if there are no significant differ-
ences between a variable shape in the groups of the 2-D area plot.

This paper proposes an alternative statistical interpretation of the informative
graphical diagnostic when confronted with the challenge of differentiating between a
variable shape in the groups of the 2-D area plot.

4. Identification and removal of legitimate contaminants in PDA

4.1 Correction for bias of discriminant weights in PDA

In general, extreme scores or outliers bias estimates of any parameter. One notable
way to correct for bias is to change the data by changing the scores so as to reduce the
impact of the extreme scores or adjust the shape of the distribution. Notable variants
of changing the scores method include transforming the data, trimming the data and
winsorizing the data. However, in PDA, where one is interested in differences
between set of variables or groups, transformation may not be a good choice to correct
for bias of discriminant weights. This is because, transformation can change the units
of measurements, which may in turn affects the interpretation of the data because the
data now relate to a different construct compared to the original data [47]. Similarly,
trimming of data seemed odd since one could just discard lots of data. To overcome
these inherent drawbacks associated with both methods, the winsorization method
was adopted. These approach involves replacing a percentage of the highest score with
the next highest score in the data and the same percentage of the lowest score are

203

On the Use of Modified Winsorization with Graphical Diagnostic for Obtaining…
DOI: http://dx.doi.org/10.5772/intechopen.104539



replaced with the next lowest score in the data. One major challenge with this method
is that even the next higher or lowest score might still be an extreme score. Another
variant of the winsorization involves replacing extreme score with a score three
standard deviations from the mean. This variant of winsorization also suffers a major
drawback. As noted by Field [47], the standard deviation will be biased by extreme
scores, so this means that you are replacing scores with a value that has been biased by
extreme scores. To address the observed shortcomings of both variants of the
winsorization method, Iduseri and Osemwenkhae [6] proposed the modified
winsorization with graphical diagnostic (MW-GD) method. The method proved very
effective in identifying and removing legitimate contaminants.

4.2 The modified winsorization with graphical diagnostic (MW-GD) method

In this section, the modified winsorization with graphical diagnostic (MW-GD)
method originally proposed by Iduseri and Osemwenkhae [6] is presented. In addi-
tion, a proposed alternative statistical interpretation of the informative graphical
diagnostic associated with MW-GD method when confronted with the challenge of
differentiating between bar shapes of the 2-D area plot is also presented. The MW-GD
method, which involves a three-step procedure, will effectively identify and eliminate
legitimate contaminants from predictor variables so that their variances between the
groups are similar. The aim is to ensure that the training sample, Dt

N satisfies the basic
assumptions (particularly the assumption of homogeneity of variances) of the PDA.
The three steps procedure produced an optimal training sample that was used to
construct a PDF whose percentage of correct classification was not only statistically
optimal for the training sample that produced it, but also for other training samples
from the same population.

4.2.1 Algorithm for the modified winsorization with graphical diagnostic (MW-GD)

Let Dt
N ¼ x1, x2,⋯, xN½ �∈ℜP�N be a training sample matrix that comprises N

observations set xi, yi
� �� �n

i¼1, obtained from a real dataset using any of the conven-
tional feature selection techniques, where xi ∈ 1, 2,⋯,Pf g denote the corresponding
predictor variable label, yi ∈ 1, 2,⋯,Kf g denote the corresponding group label, P is the
number of predictor variables, and K is the number of groups.

Step 1: Identification of the predictor variables with legitimate contaminants.
For the training sample, Dt

N the scores or observations of the predictor variables,
X1,⋯,XN are first arranged in ascending order so that the extreme scores at both ends
can be identified. For each predictor variable in the unordered training sample, Dt

N, a
pair of score (i.e., the most extreme and the least extreme scores initially identified at
both ends of each distribution) is deleted and replaced with the median value, before
the mean of the remaining scores is calculated. The median value was adopted in order
to satisfy the assumption of independence of all cases. The median is a position
average independent from all other cases, whereas the mean depends on all other
cases. Consequently, substituting the identified influential observations with their
median value takes into account the assumption that all observations must be inde-
pendent. This process is repeated for other lower pairs of extreme values and stops
when five modified winsorized means are obtained for each predictor variable. When
the modified winsorized means values are plotted, the predictor variable with bar
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shapes that are not similar between groups in the 2-D area plot becomes the predictor
variable with legitimate contaminants.

Step 2: Removing legitimate contaminants from the identified predictor variables.
To determine what percentage of winsorization is required to eliminate the legiti-

mate contaminants, the modified winsorization process is repeated only for the pre-
dictive variable(s) identified with the legitimate contaminants until the highest hit
rate is attained, thus obtaining a near optimal training sample given as:

Dt
N optimalð Þ ¼ x1, x2,⋯, xP½ � (1)

Step 3: Obtaining a statistically optimal hit rate.
The optimal training sample of Eq. (1), was then used to build the optimized PDF,

Z optð Þ given as:

Z optimalð Þ ¼ u1X1 þ u2X2 þ⋯þ uPXP

¼ η Dt
N optimalð Þ

� � (2)

where Z optimalð Þ is the optimized PDF, ui are the discriminant weights, Xi are the

predictor variables and η Dt
N optimalð Þ

� �
shows that the PDF is constructed with an

optimal training sample.
To get a statistically optimal hit rate, let:

d j ¼ 1 if Ẑ j ¼ Z j

0 otherwise

(
(3)

where Ẑ j is the predicted response for the jth observation in the optimized training
sample, Z j is the value for the jth observation in the optimized training sample.
Therefore, a statistically optimal hit rate for the optimized PDF in (2) is given as:

P að Þ ¼ 1
Nt

XNt

j¼1
d j

 !
� 100 (4)

where Nt is the total number of cases over all groups in the optimized training
sample. If we redefine d j as:

d j ¼ 1 if Ẑ
�j ¼ Z j

0 otherwise

(
(5)

where Ẑ
�j

is the predicted response for the jth observation computed with the jth
observation removed from the training sample. The leave-one-out cross-validation
(LOOCV) estimate of the optimized hit rate (4) is given by:

P̂
að Þ
LOOCV ¼

1
N

XNv

j¼1
d j

 !
� 100 (6)

where nv is the number of validation samples.
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4.3 The proposed alternative statistical interpretation for the informative
graphical diagnostic

As described in Step 1 of Section 4.2.1, the graphical representation of the modified
winsorized means makes it possible to easily identify the predictor variable(s) whose
variance is not significantly similar between the groups. If the variance of a predictor
variable is not similar between groups, the bars representing the modified winsorized
mean values for the variable in the 2-D area plot will not have similar shape. Such a
variable is interpreted to be the identified variable that contains legitimate contami-
nants. This means that the more the shape of the bars differ between the groups, the
easier it is to interpret the 2 D area plot. It is therefore necessary to provide an
alternative interpretation when it is difficult to differentiate between a variable shape
in the groups of the 2-D area plot. Therefore, a simple statistical or numerical inter-
pretation is proposed for the informative graphical diagnosis when it is difficult to
differentiate between a variable shape in the groups of the 2-D area plot. This alter-
native numerical interpretation consists of the following two simple steps:

Step 1: Fitting the modified winsorized means values to a linear regression model.
For each group, the modified winsorized means and their corresponding

winsorized percentage values for each predictor variable are fitted to a linear
regression model given as:

Y11 ¼ aþ b11X

⋮

Y1P ¼ aþ b1PX

(7)

and

Y21 ¼ aþ b21X

⋮

Y2P ¼ aþ b2PX

(8)

where, Y11,⋯,Y1P and Y21,⋯,Y2P are the modified winsorized mean values for the
P predictor variables in groups 1 and 2, respectively, and X is the corresponding
winsorized percent values.

Step 2: Obtaining the absolute difference between the corresponding regression
coefficients for the groups.

The absolute difference between the obtained regression coefficients (i.e., the
slope) in group 1 and 2 is computed as:

δabs ¼ b1i � b2i, i ¼ 1,⋯, p (9)

where the subscripts 1 and 2 represents groups 1 and 2. The predictor variable that
has an absolute difference of 0.75 or greater will be the variable identified with
legitimate contaminants. In PDA, if two samples are equal in size, there is always a
50/50 chance. Most researchers would accept a classification accuracy of 25% greater
than that caused by chance. Hence, the choice of 0.75 as the decision boundary.
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5. Computational results and discussion

5.1 Using the modified winsorization with graphical diagnostic (MW-GD)
method

To evaluate the effectiveness of the modified winsorization with graphical diag-
nostic (MW-GD) method, two real samples (see [6] for the two data sets) were
considered with the second used as a validation sample. The first training sample is
from a renowned financial journal, among Japanese business leaders, which can be
compared to the Economist, Financial Times, and Business Week in Europe and the
United States of America. This dataset contains 50 observations from each of the two
groups of Japanese financial institutions, each bank being evaluated using the follow-
ing seven performance indexes: (1) return on total assets (= total profits/average total
assets), (2) labor profitability (= total profits/total employees), (3) equity to total
assets (= total equity/average total assets), (4) total net working capital, (5) return on
equity (= earnings available for common/average equity), (6) cost-profit ratio (= total
operating expenditures/total profits), and (7) bad loan ratio (= total bad loans/total
loans). However, taking into account the beneficial effect of feature selection and
outlier detection as a preprocessing step, a best subset and critical value of
Mahalanobis distance were first obtained using the SPSS stepwise method, and its
compute command for critical value of Mahalanobis distance. The stepwise approach
produced a best subset which comprises return on total assets (X1), labor profitability
(X2), equity to total assets (X3), and bad loan ratio (X7). The SPSS output of the
constructed PDF based on the training sample of four variables given by:

Z ¼ 0:005X1 þ 0:006X2 þ 0:004X3 þ 0:005X7 (10)

Thus, the classification accuracy of the PDF, Z (10) and its LOOCV estimate are
given by Eqs. (11) and (12).

P að Þ ¼ 1
Nt

XNt

j¼1
d j

 !
� 100 ¼ 86:0% (11)

P̂
að Þ
LOOCV ¼

1
N

Xnv
j¼1

d j

 !
� 100 ¼ 85% (12)

While the two critical values from the SPSS outputs for 0.95 and 0.99 used as the
probabilities in the IDF.CHISQ function with four predictor variables were given as:

COMPUTEcritical ¼ IDF:CHISQ 0:95, 4ð Þ ¼ 9:49

COMPUTEcritical ¼ IDF:CHISQ 0:99, 4ð Þ ¼ 13:28

The Mahalanobis distance values for all cases, as reported in the case wise statistics
table, were all lower than the two critical values. This means that there are neither
outliers nor hidden influential observations in the dataset or training sample. Next,
the MW-GD algorithm was applied to the training sample, Dt

N consisting of four
predictor variables.
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At step 1 of the MW-GD method, a total of five modified winsorized means for the
four predictor variables were obtained. The summary of the winsorized means values
is presented in Table 1.

To provide a meaningful interpretation of Table 1, the modified winsorized means
or averages for both groups, as shown in Table 1, were plotted with a 2D area plot in
Excel Package. The process involves entering the first variable X1 modified winsorized
averages for both groups into Excel spreadsheet in pairs (with X1 values for group 1
and 2 occupying the first 2 columns from row 1 to row 6), followed by variable X2

(with X2 values for group 1 and 2 occupying column 3 to column 4 from row 8 to 13),
followed by variables X3 and X7 proceeding downward in steps. The graphical repre-
sentation is presented in Figure 1.

Groups No. of replaced sample points Modified winsorized mean values Winsorized %

X1 X2 X3 X7

1 0 428.70 329.48 536.34 821.32 0

2 421.08 317.32 533.90 824.50 4

4 415.50 307.60 533.70 827.40 8

6 412.28 298.32 533.56 830.36 12

8 408.90 290.30 534.46 833.62 16

10 406.20 282.70 535.42 835.56 20

2 0 341.50 177.20 368.46 778.70 0

2 335.24 173.20 366.92 785.80 4

4 329.66 169.16 365.20 790.74 8

6 324.76 166.68 362.94 794.22 12

8 319.86 166.22 360.68 797.30 16

10 315.44 165.94 358.66 800.12 20

Table 1.
Modified winsorized means for up to five pairs of winsorized values.

Figure 1.
Graphical representation of the modified winsorized mean values in Table 1.
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A cursory look at Figure 1 shows that the winsorized average values for the four
predictor variables in both groups represented by the 2-D area plot have similar shape
(or have similar variances within the groups) except for predictor variable X2. Also, in
Figure 1, the bar shape of the predictor variable X2 in group 1 looks like a rectangle
whereas in group 2 it looks like a trapezium. The observed difference in the shape of the
variable X2 bar indicates that variable X2 does not have similar variances in the groups,
and therefore becomes the only variable with legitimate contaminants. It therefore
means that the training sample does not satisfy the assumption of homogeneity of
variances. This finding was corroborated by the result of the Box M test for equality of
variance-covariance matrices for this training sample, which was significant. Apart
from manually replacing the extreme values on both ends with the median value, for
each percentage of winsorization using R aggregate () function, the average calculation
time needed to generate each row result for groups 1 and 2 in Table 1 was 2 seconds.

At step 2 of the MW-GD method, the modified winsorization process was
performed for only variable X2. For each percent of winsorization, a PDF is
constructed using all four predictor variables. The summary of hit rate results for each
percent of winsorization is presented in Table 2. Table 2 shows that the highest hit
rate of 97.00 was achieved when 5 data points at both ends of the data were replaced
by the median value. This means that all the legitimate contaminants in variable X2

was completely replaced at 20% winsorization. In other words, at 20% winsorization,
the lack of homogeneity of variances observed in the variable X2 was taken into
account, thus obtaining a near optimal training sample, DN optð Þ:

The optimized training sample, DN optð Þ was then used to construct a PDF. The SPSS
output for the obtained PDF is given as:

Zopt ¼ 0:003X1 þ 0:018X2 þ 0:001X3 þ 0:004X7 (13)

Thus, the PDF, Zopt (13) hit rate and its LOOCV estimate are given by Eqs. (14)
and (15).

P að Þ ¼ 1
Nt

XNt

j¼1
d j

 !
� 100 ¼ 97:0% (14)

P̂
að Þ
LOOCV ¼

1
N

Xnv
j¼1

d j

 !
� 100 ¼ 91% (15)

% of winsorization No. of replaced sample points % of training sample correctly classified

4 2 85.00

8 4 88.00

12 6 91.00

16 8 94.00

20 10 97.00a

24 12 96.00
aOptimal winsorization occurs at 20% with hit rate = 97.00%.

Table 2.
Summary of hit rate results for each percent of modified winsorization for predictor variable, X2.
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In addition to the dataset from Japanese banks, a second real dataset was used to
validate the first sets of results (11), (12), (14), and (15). This validation sample was
obtained from the academic records of junior secondary school (JSS) 2, University
Demonstration Secondary School (UDSS), University of Benin, Nigeria. The dataset
contains 30 observations for both classes: Science and Art. The dataset consists of
average scores for the three consecutive terms obtained for eleven (11) subjects,
including English Language (X1), Mathematics (X2), Integrated Science (X3), Social
Studies (X4), Introductory Technology (X5), Business Studies (X6), Home Economics
(X7), Agricultural Science (X8), Fine Art (X9), Physical and Health Education (X10),
and Computer Studies (X11). Using the SPSS stepwise method, a subset of three
variables comprising introductory technology (X5), physical and health education
(X10), and computer science (X11) was obtained. The SPSS output for the PDF is
given as:

Z ¼ 0:135X5 � 0:102X10 þ 0:058X11 (16)

Thus, the PDF, Z (16) hit rate and its LOOCV estimate are given by Eqs. (17) and (18).

P að Þ ¼ 1
Nt

XNt

j¼1
d j

 !
� 100 ¼ 85:0% (17)

P̂
að Þ
LOOCV ¼

1
N

Xnv
j¼1

d j

 !
� 100 ¼ 83% (18)

Also, the two critical values from the SPSS outputs for 0.95 and 0.99 used as the
probabilities in the IDF.CHISQ function with three predictor variables were given as:

COMPUTEcritical ¼ IDF:CHISQ 0:95, 4ð Þ ¼ 7:81

COMPUTEcritical ¼ IDF:CHISQ 0:99, 4ð Þ ¼ 11:34

The Mahalanobis distance values for all cases, as reported in the case wise statistics
table, were all lower than the two critical values. This means that there are neither
outliers nor hidden influential observations in the dataset or training sample. Once
again, the proposed algorithm is applied to this second training sample, Dt

N consisting
of three predictor variables.

At step 1 of the MW-GD method, a total of five modified winsorized means for the
three predictor variables were obtained. The summary of the modified winsorized
means values is presented in Table 3.

Again, to interpret Table 3, the modified winsorized means or averages for both
groups, as shown in column three of Table 3, were plotted with a 2D area plot in Excel
Package. The graphical representation is presented in Figure 2.

A cursory look at Figure 2 shows that the winsorized average values for the four
predictor variables in both groups represented by the 2-D area plot have similar shape
(or have similar variances within the groups). The similar shape shown by the three
variables in each group indicates that there are no legitimate contaminants in the
training sample, Dt

N. This implies that the fit between the training sample, Dt
N and the

basic assumptions of PDA is sufficient (in particular is the assumption of homosce-
dasticity) to construct a PDF whose hit rate can be said to be statistically optimal.
Therefore, for this dataset, the MW-GD algorithm ends at step 1. The initial training
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sample of three variables obtained from the second real dataset using SPSS stepwise
method is therefore an optimal training sample.

5.2 Using the proposed alternative statistical interpretation for the informative
graphical diagnostic

If the modified winsorized means for each variable in Table 1 are denoted as the
independent variable Y Y ¼ Y1,Y2,Y3,Y4ð Þ, and the winsorized percent as the
dependent variable X, then the six pairs of values for X (0, 4, 8, 12, 16, 20) and Y1

Groups No. of replaced sample points Modified winsorized mean values Winsorized %

X5 X10 X11

1 0 67.27 69.77 73.30 0.00

2 67.40 70.07 73.43 6.67

4 67.43 70.17 73.60 13.33

6 67.47 70.13 73.67 20.00

8 67.53 70.13 73.70 26.67

10 67.60 70.17 73.73 33.33

2 0 51.47 62.40 63.93 0.00

2 51.27 62.53 63.97 6.67

4 51.07 62.70 63.73 13.33

6 50.97 62.83 63.60 20.00

8 50.77 63.00 63.50 26.67

10 50.73 63.23 63.30 33.33

Table 3.
Winsorized means for up to five pairs of winsorized values.

Figure 2.
Graphical representation of winsorized mean values in Table 3.
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(428.70, 421.07, 415.50, 412.28, 408.90, 406.20) are in good accordance to a regres-
sion model.

At step 1 of the proposed alternative statistical interpretation for the informative
graphical diagnostic, each of the six values of the modified winsorized means for the
four variables in groups 1 and 2 with the six values of the winsorized percent are fitted
to a linear regression model. The summary of the obtained values of the regression
coefficient, b for the four fitted regression models each for groups 1 and 2 are
presented in Table 4.

At step 2 of the proposed alternative approach, an absolute difference between the
obtained regression coefficients (i.e., the slope) for each variable in group 1 and 2 was
also obtained. The summary of the absolute values is presented as the last row ofTable 4.

The two step approach of the proposed alternative method was repeated using the
data of Table 3. The summary of the obtained values of the regression coefficient, b
for the three fitted regression models each for groups 1 and 2, and the summary of the
absolute values is presented as the last row of Table 5.

A cursory look at Table 4 shows that the regression coefficient (�2.316) of X2 in
group 1 is notably lower than the corresponding regression coefficient (�0.569) of
variable X2 in group 2, and the regression coefficients obtained for the variables X1, X3,
and X7 in group 1 and in group 2, respectively. Also, the value of 1.8 which is the absolute
difference between the regression coefficients of X2 in group 1 and in group 2 is signifi-
cantly greater than the decision boundary value of 0.75. This indicates that the variable
X2 does not have similar variances in groups formed by the dependent, and thus becomes
the variable identified with legitimate contaminants. In Table 5, the values of the
regression coefficients for the three variables in groups 1 and 2 are equivalently equal.
Also, the values of the absolute difference between the regression coefficients of variable
X5, X10, and X11 in group 1 and in group 2 are all equal, and significantly lower than the

Group Regression coefficients, b

X1 X2 X3 X7

1 �1.088 �2.316 �0.022 0.725

2 �1.295 �0.569 �0.500 1.036

δabs ¼ b1i � b2i 0.2 1.8 0.5 0.3

Table 4.
Regression coefficients, b of fitted regression model to Table 1 data.

Group Regression coefficients, b

X5 X10 X11

1 0.009 0.009 0.013

2 �0.023 0.024 �0.020
δabs ¼ b1i � b2i 0.0 0.0 0.0

Table 5.
Regression coefficients, b of fitted regression model to Table 3 data.
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decision boundary value of 0.75. This indicates that there are no legitimate contaminants
in variable X5, X10, and X11, respectively. This therefore implies that the fit between the
validation sample, Dt

N and the basic assumptions of PDA is sufficient to construct a PDF
whose hit rate can be said to be statistically optimal.

6. Conclusions

This paper addresses the issue of achieving a statistically optimal classification
accuracy in PDA by first achieving an optimal training sample. For the first real
dataset, a training sample of four variables was obtained using the SPSS stepwise
method. The training sample gave a hit rate of 86.0%. When all legitimate contami-
nants in one of the four variables have been identified and eliminated using the MW-
GD method, an optimal training sample was achieved. The optimized training sample
was used to construct the PDF, Zopt (13) which gave a classification accuracy of 97.0%
when tested on the initial training sample of four variables. This significant increase in
classification accuracy suggests that the use of the WM-GD method seems to effec-
tively enhance the similarity of each predictor variable variances between groups,
thus taken into account the basic assumptions needed to achieve a statistically optimal
classification accuracy. Using the second real dataset, a training sample of three vari-
ables was obtained and used to construct the PDF, Z (16), which yielded 85.0% hit
rate. When the modified mean values of the three variables were plotted, the bar
shape of the three variables in the two groups was similar. This means that the PDF, Z
(16) hit rate of 85.0% cannot be increased further because the training sample that
gave birth to it was statistically optimal.

The uniqueness of the MW-GD method lies in its ability to effectively identify and
eliminate legitimate contaminants in one or several predictor variables, thus resolving
any significant differences in the variances of the predictor variables between the
groups. In other words, the MW-GD method is unique in its ability to sufficiently
account for the basic assumptions required to achieve statistically optimal classifica-
tion accuracy in PDA. As a result, an optimal training sample obtained from the first
real dataset gave a statistically optimal hit rate of 97.0% compared to an initial maxi-
mum hit rate of 86.0%. For the second real dataset, the method was successful in
confirming the optimality of the initial training sample obtained using the SPSS
stepwise method. Similarly, the graphical diagnostic was able to identify the predictor
variable(s) whose variance was not similar within the groups. Consequently, the
graphical diagnostic associated with the proposed method could be used as an alter-
native graphical test of homogeneity of variances in PDA.

Another important contribution to the MW-GD method in this paper was the
proposed alternative statistical interpretation for the graphical diagnostic associated
with the MW-GD method demonstrated in Subsection 5.2. This proposed alternative
statistical interpretation proved very effective in terms of identifying the variable
with legitimate contaminants, and could serve as a useful alternative tool for
identifying variables with legitimate contaminants in the event of any difficulties in
differentiating between a variable shape in the groups of the 2-D area plot.

Finally, two real training samples have been used. Consequently, the validity of the
experimental results is limited to the scope of the datasets used. Therefore, this paper
believes that more experimental results are needed in order to reach a final conclusion
on the efficiency of the MW-GD method compared to classical alternatives known to
improve classification accuracy in PDA.
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Nomenclature

Dt
N this is the complete list of objects used in building the predictive

discriminant function (PDF)
Dt

N this is the complete list of objects without outliers and hidden influential
observation used in building the predictive discriminant function (PDF)

K the number of groups or categorical criterion
N total number of cases over all groups in a dataset
Nt total number of cases over all groups in the optimized training sample
nv the number of validation samples
P the number of predictor variables
P að Þ this is the percentage of cases on the diagonal of the confusion matrix, or

simply the percent of correct classification
p̂ að Þ this is the hit-rate obtained by applying a rule based on a particular

training sample to future samples taken from the same population
p̂ að Þ
LOOCV

this is the leave-one-out cross-validation (LOOCV) estimate of the opti-
mized hit rate

Xi predictor variables
ui discriminant weights
Z a predictive discriminant function (PDF) created by a linear combina-

tion of observable variables
Z Optimalð Þ an optimized predictive discriminant function (PDF) created by a linear

combination of observable variables without outliers and hidden influ-
ential observations

Z j value for the jth observation in the optimized training sample
Ẑ j predicted response for the jth observation in the optimized training

sample

Ẑ
�j predicted response for the jth observation calculated with the jth obser-

vation removed from the training sample

Author details

Augustine Iduseri
Department of Statistics, University of Benin, Benin City, Nigeria

*Address all correspondence to: augustine.iduseri@uniben.edu

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

214

Advances in Principal Component Analysis



References

[1] Huberty CJ, Olejnik S. Applied
Manova and Discriminant Analysis.
Hoboken, New Jersey: John Wiley and
Sons Inc.; 2006. p. 406

[2] Iduseri A, Osemwenkhae JE. On
estimation of actual hit rate in the
categorical criterion predicting process.
Journal of the Nigerian Association of
Mathematical Physics. 2014;28(1):461-468

[3] Huberty CJ. Applied Discriminant
Analysis. New York: Willey and Sons;
1994

[4] Thompson B. Stepwise regression and
stepwise discriminant analysis need not
apply here: A guidelines editorial.
Educational and Psychological
Measurement. 1995;55(4):525-534

[5] Uray M. Incremental, robust, and
efficient linear discriminant analysis
learning [thesis]. Graz, Austria: Institute
for Computer Graphics and Vision, Graz
University of Technology; 2008

[6] Iduseri A, Osemwenkhae JE. A new
approach for improving classification
accuracy in predictive discriminant
analysis. Annals of Data Science. 2018;
5(3):339-357. DOI: 10.1007/s40745-018-
0140-9

[7] Croux C, Filzmoser P, Joossen K.
Classification efficiencies for robust
linear discriminant analysis. Statistica
Sinica. 2008;18:581-599

[8] Draper NR, Smith H. Applied
Regression Analysis. New York: Wiley;
1981

[9] Huberty CJ. Problems with stepwise
methods: Better alternatives. In:
Thompson B, editor. Advances in Social
Science Methodology. Vol. 1. Greenwich,
CT: JIA Press; 1989. pp. 43-70

[10] Bertrand C, Ernest F, Hao HZ.
Principles and Theory for Data Mining
and Machine Learning. Springer Series in
Statistics. New York: Springer; 2009.
pp. 569-576. DOI: 10.1007/978-0-
387-98135-2

[11] Chiang LH, Russell EL, Braatz RD.
Fault Detection and Diagnosis in
Industrial Systems. New York: Springer;
2001

[12] Hand DJ. Branch and bound in
statistical data analysis. Journal of the
Royal Statistical Society: Series D (The
Statistician). 1981;30(1):1-13

[13] Siedlecki W, Sklansky J. A note on
genetic algorithms for large-scale feature
selection. Pattern Recognition Letters.
1989;10(50):335-347

[14] Huerta EB, Duval B, Hao J. A hybrid
LDA and genetic algorithm for gene
selection and classification of microarray
data. Neurocomputing. 2010;73:
2375-2383

[15] Tibshirani R. Regression shrinkage
and selection via the LASSO. Journal of
the Royal Statistical Society: Series B:
Methodological. 1996;58(1):267-288.
DOI: 10.1111/j.2517-6161.1996.tb02080.x

[16] Shih-Wei L, Shih-Chieh C. A particle
swarm optimization approach for
enhancing classification accuracy rate of
linear discriminant analysis. Applied Soft
Computing. 2009;9(3):1008-1015. DOI:
10.1016/j.asoc.2009.01.001

[17] Jiang Z, Lin Z, Davis LS. Learning a
discriminative dictionary for sparse
coding via label consistent K-SVD. In:
Proceedings of the 24th IEEE
International Conference on Computer
Vision and Pattern Recognition (CVPR);
Colorado Springs, CO, USA; 20–25

215

On the Use of Modified Winsorization with Graphical Diagnostic for Obtaining…
DOI: http://dx.doi.org/10.5772/intechopen.104539



June 2011. pp. 1697–1704. DOI:10.1109/
CVPR.2011.5995354

[18] Yang M, Zhang L, Feng X, Zhang D.
Fisher discrimination dictionary learning
for sparse representation. In:
Proceedings of the IEEE International
Conference on Computer Vision
(ICCV); Barcelona, Spain; 6–13
November 2011. pp. 543–550. DOI:
10.1109/ICCV.2011.6126286

[19] Kong S, Wang D. A brief summary
of dictionary learning based approach
for classification [Internet]. 2012.
Available from: http://arxiv.org/pdf/
1205.6544 [Accessed: 2021-12-06]

[20] Mary-Huard T, Robin S, Daudin J. A
penalized criterion for variable selection
in classification. Journal of Multivariate
Analysis. 2007;98:695-705. DOI:
10.1016/j.jmva.2006.06.003

[21] Daud M, Muhammad A, Affindi B,
Retno V. Improving classification
algorithm on education dataset using
hyperparameter tuning. Procedia
Computer Science. 2022;197:538-544.
DOI: 10.1016/j.procs.2021.12.171

[22] Naman SB, Abhishek DP,
Jegadeeshwaran R, Kaushal AK,
Rohan SG, Atharva MK. A Bayesian
optimized discriminant analysis model
for condition monitoring of face milling
cutter using vibration datasets. Journal
of Nondestructive Evaluation. 2022;5(2):
021002. DOI: 10.1115/1.4051696

[23] Osemwenkhae JE, Iduseri A.
Efficient data-driven rule for obtaining
an optimal predictive function of a
discriminant analysis. Journal of the
Nigerian Association of Mathematical
Physics. 2011;18:373-380

[24] Stąpor K, Smolarczyk T, Fabian P.
Heteroscedastic discriminant analysis
combined with feature selection for

credit scoring. Statistics in Transition
New Series. 2016;17(2):265-280

[25] Iduseri A, Osemwenkhae JE. An
efficient variable selection method for
predictive discriminant analysis.
Annals of Data Science. 2015;2(4):
489-504

[26] Nguyen HV, Gopalkrishnan V.
Feature extraction for outlier detection
in high-dimensional spaces. Journal of
Machine Learning Research. 2010;10(2):
252-262

[27] Alrawashdeh MJ, Muhammad
Sabri SR, Ismail MT. Robust linear
discriminant analysis with financial
ratios in special interval. Applied
Mathematical Sciences. 2012;6:
6021-6034

[28] Lim YF, Syed Yahaya SS, Idris F,
Ali H, Omar Z. Robust linear
discriminant models to solve financial
crisis in banking sectors. In: Proceedings
of the 3rd International Conference on
Quantitative Sciences and Its
Applications; Langkawi, Kedah; 12–14
August 2014. pp. 794–798. DOI:10.1063/
1.4903673

[29] Syed Yahaya SS, Lim Y, Ali H,
Omar Z. Robust linear discriminant
analysis. Journal of Mathematics and
Statistics. 2016;12(14):312-316. DOI:
10.3844/jmssp.2016.312.316

[30] Osborne J, Amy O. The power of
outliers (and why researchers should
always check for them). Practical
Assessment, Research and Evaluation.
2004;9(6):1-8

[31] Campbell NA. Shrunken estimators
in discriminant and canonical variate
analysis. Journal of the Royal Statistical
Society: Series C: Applied Statistics.
1980;29(1):5-14. DOI: 10.2307/2346404

216

Advances in Principal Component Analysis



[32] Campbell NA. Robust procedures in
multivariate analysis II: Robust canonical
variate analysis. Journal of the Royal
Statistical Society: Series C: Applied
Statistics. 1982;31(1):1-8. DOI: 10.2307/
2347068

[33] Gomez MJ, DeBenzo Z, Gomez C,
Marcano E, Torres RH. Comparison of
methods for outlier detection and their
effects on the classification results for a
particular data base. Analytica Chimica
Acta. 1990;239:229-243

[34] Critchley F, Vitiello F. The influence
of observations on misclassification
probability estimates in linear
discriminant analysis. Biometrika. 1991;
78:677-690

[35] Sadek RF. Influence of outliers in
classification analysis [thesis]. Anthens:
University of Georgia; 1992

[36] FungWK. On the equivalence of two
diagnostic measures in discriminant
analysis. Communications in Statistics -
Theory and Methods. 1998;27:1923-1935.
DOI: 10.1080/03610929808832199

[37] Riani M, Atkinson AC. A unified
approach to outliers, influence, and
transformations in discriminant
analysis. Journal of Computational
and Graphical Statistics. 2001;10(3):
513-544. DOI: 10.1198/
106186001317114965

[38] Acuña E, Rodríguez C. An empirical
study of the effect of outliers on the
misclassification error rate. IEEE
Transactions on Knowledge and Data
Engineering. 2004;17:1-21

[39] Mahalanobis PC. On the generalized
distance in statistics. In: Proceedings of
the 12th National Institute of Science;
India. 1963. pp. 49-55

[40] Iglewicz B, Hoaglin DC. How to
Detect and Handle Outliers. ASQC Basic
References in Quality Control.
Milwaukee, Wis: ASQC Quality Press;
1993

[41] Myatt GJ. Making Sense of Data: A
Practical Guide to Exploratory Data
Analysis and Mining. U. S. A.: A John
Willey and Sons, Inc., Publication; 2007

[42] Lachenbruch PA. Discriminant
Analysis. New York: Hafner; 1975

[43] Klecka WR. Discriminant Analysis.
London: Sage Publications, Berverly
Hills; 1980. p. 61

[44] Ashcraft AS. Ways to evaluate the
assumption of multivariate normality.
In: Paper Presented at the Annual
Meetings of the Southwestern
Psychological Association; New Orleans,
LA. 1998

[45] Tabachnick BG, Fidell LS. Using
Multivariate Statistics. 5th ed. USA:
Pearson Education, Inc.; 2007. p. 382

[46] Hayes AF, Cai L. Using
heteroskedasticity-consistent standard
error estimators in OLS regression: An
introduction and software
implementation. Behavior Research
Methods. 2007;39(40):709-722

[47] Field A. An Adventure in Statistics:
The Reality Enigma. London: SAGE
Publications Ltd.; 2016. pp. 315-321

217

On the Use of Modified Winsorization with Graphical Diagnostic for Obtaining…
DOI: http://dx.doi.org/10.5772/intechopen.104539





Chapter 12

Mode Interpretation of
Aerodynamic Characteristics of
Tall Buildings Subject to Twisted
Winds
Lei Zhou and Kam Tim Tse

Abstract

Hills alter wind properties not only by accelerating the wind flow but also by
changing the flow direction. Therefore, the wind profile near mountainous terrain
continuously exhibits both wind speed and wind direction variation along with the
vertical height, and is generally referred to as a twisted wind profile (TWP). The
aerodynamic properties of the tall building exposed to TWP are significantly different
from those exposed to a conventional wind profile (CWP) and thus generate the
twisted-wind effect. The spatial–temporal aerodynamic feature of a tall building
under unsteady wind is highly complicated, and the associated flow field is a random
and obscure high-dimensional dynamic system. To elucidate the fundamental mecha-
nism involved in TWP, principal orthogonal analysis (POD) is employed to identify
the pressure and flow patterns. Moreover, the extracted modal features can be used to
physically interpret the coherent structure and dynamical patterns hidden in the
surface pressure field or the turbulent flow field. This mode interpretation of
aerodynamic characteristics of tall building provides a better understanding of the
underlying mechanism of the twisted-wind effect.

Keywords: mode interpretation, aerodynamic properties, pressure pattern, flow
pattern, spatial–temporal feature, twisted-wind effect, POD; tall building

1. Introduction

Due to nonuniform geometric features of mountainous topography (e.g., slope and
curvature), hills can significantly modify wind properties not only by accelerating the
wind flow but also by altering the flow direction. As a result, wind profiles in the
proximity of hills exhibit both wind speed and direction variation with height, which are
generally referred to as twisted wind profiles (TWP), as shown in Figure 1 [1–4]. Tall
buildings built in hilly landforms, such as in Hong Kong and Japan, have a high proba-
bility of being attacked by the topography-induced twisted wind. The varying wind
directions in a twisted wind profile can produce a highly non-uniform flow field around
a building. Exhibiting varying degrees of flow separation and reattachment as well as
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varying vortex structures along with the building height. A non-uniform flow field can
induce irregular pressure distribution on the external walls of a building and, thus,
asymmetric wind loads. Asymmetric wind loads can increase the torsional loading and
hence affect sway and twist responses, which are usually only minor considerations
when designing buildings in conventional wind profiles. In addition, an increased cor-
relation between wind load components will occur because the wind turbulence associ-
ated with a twisted wind profile spans from the windward face to the side face along
with the height of a building as a result of the changing wind angles [5–8]. Thus, in
comparison to the conventional wind profile (CWP), the aerodynamic
characteristics and flow field in the presence of TWP become more complicated,
forming a random and nonlinear high-dimensional dynamic system with obscure and
elusive features [9, 10].

Therefore, it is of great importance to conduct a deep and systematic investigation
on the pressure patterns and flow patterns of tall buildings exposed to the twisted
wind instead of only focusing on the micro aerodynamic features but neglecting to
reveal the mechanism. This approach is expected to provide a better understanding
and physical interpretation of the twisted-wind effect; thus, it can further provide
theoretical guidance to ensure wind safety and to optimize the control measures of
wind-induced responses for tall buildings built in mountainous terrain.

To extract the spatial-spectral features and dynamic characteristics from the ran-
dom pressure field, reduced-order models (ROMs) are recommended as an effective
way [11, 12]. The goal of ROMs is to search for a relatively straightforward low-
dimensional system to represent a chaotic, high-dimensional system through a process
of decomposition, truncation, and error estimation [13]. As one of the most typical
and effective ROMs models, Proper Orthogonal Decomposition (POD) is a multivar-
iate statistical technique that aims to extract the dominant patterns from the inter-
correlated and dependent original observations [14]. The principle of POD is to find a
set of the optimal orthogonal bases called principal components in a second-order
statistic sense, and then describe the important information by the superposition of
the product of the POD base and modal coefficients [15]. POD has numerous advan-
tages like extracting the most important information, compressing the data dimen-
sionality, eliminating noise interference, and more importantly, identifying the
structures and patterns contained in the seemingly disordered original observations.
As a result, POD has been widely and successfully applied in the fields of both fluid

Figure 1.
Schematics of twisted wind (TWP).
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mechanics and wind engineering to capture coherent structures and pressure patterns
contained in the flow field and the associated pressure field [16–19]. However, almost
all previous studies have only addressed the topic regarding modal identification of
the aerodynamic characteristics of tall buildings exposed to conventional wind pro-
files, Barely no study to date examines that under TWP [20, 21]. It is evident that the
aerodynamic properties under TWP are significantly changed and they are not be
simply equivalent to the case of CWP with a certain wind incident angle. Thus, it is
necessary to identify the coherent structure and interpretate the structures hidden in
the aerodynamic features of a tall building, specifically for twisted wind. Additionally,
the POD technique is believed to facilitate deep understanding and physical insight
into the unique flow and pressure patterns in the presence of twisted wind. This mode
interpretation tool is thus helpful to elucidate the underlying aerodynamic interaction
mechanism between TWP and tall buildings.

The remaining parts of this paper are organized as follows. Section 2 introduces the
methodology of POD and the related notion/notations. Section 3 describes how we
used wind tunnel testing and numerical simulation methods to obtain wind pressure
and flow field data; Section 4 illustrates the POD analysis results on the wind pressure,
and compares the pressure pattern between CWP and TWP cases; Section 5 shows the
POD analysis results on the flow field, and compares the flow patterns between CWP
and TWP cases. Section 6 gives concluding remarks on the mode interpretation of the
aerodynamic characteristics of tall buildings subject to twisted winds as well as rec-
ommendations on future work.

2. Methodology

A brief description of the POD principle for the velocity/pressure field is presented
here, and more details about the theoretical derivation and practical application can be
found in [19].

For moment ti, velocity or pressure components f i xmð Þ at a monitored location m
are arranged in a vector qi to formulate a snapshot, the total number of velocity
snapshots N with sampling interval Δt can then be assembled in matrix QN. The Time-
average field Q should be firstly subtracted from the instantaneous velocity or pres-
sure field to obtain the zero-centered fluctuating matrix Q 0N .

qi ¼

f i x1ð Þ
f i x2ð Þ
⋮

f i xmð Þ
⋮

f i xMð Þ

2
666666666664

3
777777777775

(1)

QN ¼ q1, q2, q3⋯qN
� �

(2)

Q 0N ¼ QN �Q (3)

Where x1 x2 ⋯ xmf g signify the position of the monitored mesh points, and M is
the total number of the monitored points.
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The purpose of POD is to determine a set of orthogonal bases, and equivalently
express q0i as the superposition of the product of the POD base and corresponding
modal coefficients.

q0i ¼
Xn

k¼1
akiφk (4)

To identify POD basis, a covariance matrix C is formulated as C ¼ Q 0N
TQ 0N, and

the eigenvalue and eigenvector can be obtained by solving the eigenfunction of matrix
C as follows,

Cφk ¼ λkφk (5)

where the eigenvalue λk reflects the energy contribution of each POD mode and is
arrayed in descending sequence, eigenvector φk represents the POD modes and any
two of them are orthogonal to each other spatially.

Modal coefficients A ¼ aki½ � k ¼ 1, 2, 3⋯n; i ¼ 1, 2, 3⋯Nð Þ are determined by
projecting the original fluctuating velocity or pressure field onto the POD modes as
follows,

A ¼ ΦTQ 0N (6)

where the spatial POD mode Φ ¼ φ1 φ2 … φn½ � and the temporal modal
coefficient A ¼ aki½ � k ¼ 1, 2, 3⋯n; i ¼ 1, 2, 3⋯Nð Þ .

3. Data resources

3.1 Wind pressure data resources

Pressure measurement testing was carried out on a rectangular tall building, of
cross-Section 180 mm � 60 mm (Breadth�Depth) and height of H = 600 mm. The
pressure distribution on the 1:400 scaled building model was measured using a
DSM3400 synchronous multi-pressure sensing system (SMPSS). Figure 1 shows
arrangement details of the pressure taps and experimental setup. Pressure taps were
arranged in 14 rows�12 columns on the windward/leeward surfaces and in 14 rows �4
columns on side surfaces. The sampling frequency and duration were 330 Hz and 90 s
respectively. In this study, the approaching wind perpendicularly attacking the rela-
tively wider and narrower surface of the building correspond to two different working
conditions, i.e., angle of attack (AOA) of 0 degree and 90 degrees respectively.

The three targeted wind profiles have similar distributions of velocity and turbu-
lence but different twisted angle profiles. Specifically, the wind speed and turbulence
intensity profiles follow power-law functions with exponents of 0.11 and � 0.24. The
maximum twisted angles are 0°, 15° and 30°, thus the profiles are respectively labeled
CWP, TWP15 and TWP30. It should be noted that variation of twisted angles with
height for TWP15 and TWP30 conforms with the negative power curve expressed in
Eqs. (7) and (8), and as given in [22].

θ15 zð Þ ¼ 15� exp �0:0976� z=25ð Þð Þ (7)
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θ30 zð Þ ¼ 30� exp �0:106� z=25ð Þð Þ (8)

where θi zð Þ represents the twisted angle measured at the height z; the subscript i
denotes the maximum twisted angle of TWP, herein, i = 15 and 30.

Three types of wind fields (CWP, TWP15 and TWP30), were generated in a wind
tunnel by using passive simulating facilities. As shown in Figure 2(b) and (c), to
replicate the twisted wind, the wooden vane system was placed 5 m upstream away
from the central axis of the building model, and the windward ends of the single
wooden vane were isolated 1 m from each other. It should be noted that the wooden
vane employed in this study was adjustable, indicating that the wooden strip at a certain
height could be offset at any desired angle. Moreover, to compensate for the dissipation
near the wind tunnel ground, three rows of roughness elements were rotated at a
certain angle are set in a stagger arrangement and placed between the wooden vane

Figure 2.
Experimental setup and details: (a) distribution of pressure taps on building model; (b) TWP test arrangement in
wind tunnel; (c) section plan of the experimental setup.
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system and the building model. To determine the region with uniform twisted flow
properties, a grid measurement system constituted by blue dash lines was utilized to
monitor the flow features at each grid point. After trial and error, it turned out that the
targeted twisted wind can maintain consistent flow properties within a rectangular
region (shaded in orange) with dimensions of 1.5 m � 2.0 m (width �length) around
the turntable center. zref indicates the reference height which is located at the building
roof (z = 0.6 m); Uref denotes the reference velocity and equals 6.2 m/s; Iref represents
the reference turbulence intensity and equals 6.9%. According to the reference wind
speed Uref and building breath B, the Reynolds number is calculated as Re = 2.55 � 104.

3.2 Flow field data resources

3.2.1 Inflow turbulence generation

Appropriately replicating the inflow turbulence features is a requisite for obtaining
accurate LES simulation results. In this study, the narrowband synthesis random flow
generator (NSRFG) technique is utilized to simulate inflow turbulence by generating
time history series of the fluctuating velocity. Turbulence integral scales (see Eqs.(9)–
(11)) conform to those in wind codes (AIJ, 2004; ESDU 85020, 2001), which are also
identical to the setting given in [7]; the velocity distribution in the frequency domain
corresponds to the von Karman spectrum (see Eqs. (12)–(14)), which can reflect
typical spectral features of the turbulent ABL flow in a wind tunnel. The superimpo-
sition of the zero-mean fluctuating component and the mean wind profile formulate
the initial inflow boundary condition. For specific implement procedures, one can
refer to the work of [23]. Note that the profiles of wind speed, turbulence intensity
and twisted angle are consistent with the setting in the wind tunnel.

Lu zð Þ ¼ 100 � λL � z
30λL

� �0:5

(9)

Lv zð Þ ¼ 0:5
σv
σu

� �3

Lu zð Þ (10)

Lw zð Þ ¼ 0:5
σw
σu

� �3

Lu zð Þ (11)

Su fð Þ ¼ 4 IuUð Þ2 Lu=Uð Þ
1þ 70:8 fLu=U

� �2h i5=6 (12)

Sv fð Þ ¼
4 IvUð Þ2 Lv=Uð Þ 1þ 188:4 2fLv=U

� �2h i

1þ 70:8 2fLv=U
� �2h i11=6 (13)

Sw fð Þ ¼
4 IwUð Þ2 Lw=Uð Þ 1þ 188:4 2fLw=U

� �2h i

1þ 70:8 2fLw=U
� �2h i11=6 (14)

where λL is the scaled ratio; L(z), I(z) and S(z) are the turbulence integral scale,
turbulence intensity and power spectral respectively. The subscripts u, v and w denote
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the components of the physical quantities in the along-wind, crosswind, and torsional
directions respectively; f is the frequency.

3.2.2 Numerical simulation details

The computational domain and boundary conditions are illustrated in Figure 3.
The building model is scaled to 1/400 with dimensions of 180 mm (breadth) � 60 mm
(depth) � 600 mm (height) and set as wall condition. The calculation domain covers
the ranges of 20H in the streamwise direction, 16H in the crosswind direction and 8H
in the vertical direction. In this study, the wind incident angle of 90 degree exactly
corresponds to the side ratio case of 3:1, where the flow phenomenon is more complex.

The structured hexahedral grids were utilized to mesh the outer calculation domain,
while for the inner region, an O-shaped grid with good orthogonality was employed.
Additionally, local mesh refinement was performed near the building surface and wake
region to better capture the significant features of the shear layer and recirculation zone.
For example, 10 layers were imposed on the building wall to simulate the near-wall
velocity gradient. The normal growth rate of the mesh within the boundary layer was
1.02, while for the grids was relatively far away from the external surface boundary, the
growth rate was 1.1. To ensure y+ in the most region was around 1, the distance from the
building wall to the center of the first layer was set as Δy/B = 2.0 � 10–4. The mesh
scheme and distributions around the building are illustrated in Figure 4.

Figure 3.
The boundary conditions of the computational domain for CWP and TWP.

Figure 4.
Mesh scheme and distributions around building: (a) perspective view of 3D mesh distribution; (b) side view of the
local 2D mesh (y = 0); (c) top view of the local 2D mesh (z/H = 0.5).
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LES with the NSRFG-generated inflow boundary condition was adopted in this
study to evaluate the effect of different wind profiles on a tall building. The numerical
solver used herein is the commercial CFD code FLUENT. The finite volume method
(FVM) was employed to solve the governing equations. SIMPLEC algorithm, initially
proposed by [24], was adopted to solve the pressure–velocity coupling scheme. The
convection and diffusion terms are discretized using the second-order upwind
scheme. The temporal discretization scheme is the implicit time-stepping method.
The time step in this paper was set as Δt = 5 � 10–5 to ensure the courant number in
most calculation region is less than one.

3.3 Validation of the simulated TWP and numerical results

The flow properties of the targeted, experimental and numerical wind profiles at
the building location for CWP, TWP15 and TWP30 are compared in Figure 5. For
better comparison, these three types of wind flow have identical wind speed and

Figure 5.
Flow properties of the targeted, experimental and numerical wind profiles at the location of building for CWP,
TWP15 and TWP30: (a) normalized wind speed and turbulent intensity profile; (b) twisted angle profile; (c)
power spectrum.
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turbulence intensity profile but different twisted angle profiles. Thus, only one set of
data is provided in Figure 5(a). Evidently, both the numerically and experimentally
replicated wind profiles agree well with the targeted result. The simulated twisted
wind conditions, TWP15 and TWP30, had the largest twisted angle at the ground
level, which is about 15°and 30°, and both of them well conformed to the targeted
variation trend in the vertical direction as expressed in Eqs. (7) and (8). The longitu-
dinal wind velocity spectrum at the reference height is in good agreement with the
von Karman spectrum within a relatively wide scope, including the inertial subrange,
as shown in Figure 5(c).

The distribution of the pressure coefficients along the circumference of the build-
ing at a height of z = 2/3H obtained by LES and wind tunnel test are compared in
Figure 6 for cases CWP and TWP30. Affected by twisted flow, the location of the
largest positive pressure and stagnation point is moved towards the right-side of the
building on the windward side. When exposed to CWP, the pressure distributions on
the left- and right- side surfaces of the building are symmetrical, while under TWP,
significant differences are noted both for mean and fluctuating coefficients. The most
distinctive discrepancy of the mean pressure between CWP and TWP30 occurs at the
right-side surface of the building, simply because it becomes partially windward when
the building is exposed to the twisted wind. A similar phenomenon can also be
observed for the fluctuating pressure with the largest difference 86.84% appearing at
monitoring point 22. Notably, wind twisting can significantly magnify the mean Cp

while greatly weakening the fluctuating Cp on the right-side surfaces.
Generally, the pressure distribution obtained in LES at 2/3 height of building

shows reasonably good agreement with its counterpart in wind tunnel testing, espe-
cially for mean Cp. As a result, although small discrepancies exist, the numerical
methods used in this study can still provide reliable and reasonable results for the
evaluation of the twisted-wind effect.

Figure 6.
Mean and fluctuating pressure coefficients at height of z = 2/3H obtained by LES and experiment under CWP and
TWP30.
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4. POD analysis of surface pressure

The rectangular building with AOA of 0°and 90°represents two different side ratio
cases, in which the twisted wind can exert remarkably different effects on the pres-
sure pattern. As a result, to better understand the fluid–structure interaction mecha-
nism, POD was employed to identify the pressure patterns hidden in the fluctuating
pressure field on the building surface.

4.1 Mode energy distribution

The energy contributions of the dominant modes and the normalized cumulative
number of modes are presented in Figure 7. Affected by twisted flow, the fluctuating
energy of each pressure mode was reduced to a certain degree, especially for the
dominant modes. The energy proportion of the first mode in the case of 0°AOA was
larger than that in the case of 90°AOA for the two different flow types CWP and
TWP30. Moreover, the difference in the energy percentage between the dominant
modes for the case 0° AOA was much more significant in comparison with that of 90°
AOA. For example, the fluctuating energy occupied by the first mode of CWP with 0°
AOA was around 33%, more than twice that of the second mode. This observation can
be attributed to the fact that a tall building with a larger side ratio can produce more
complicated flow motion, topology, and behavior. As a result, to reach 90% of the
total energy, only the first 5% modes were needed for case 0°AOA, but much larger
modes of 24% were needed for the 90° AOA case.

4.2 PSD of the modal coefficients

The power spectral density of the first two POD modes coefficients for the 0° and
90° AOA cases are compared in Figure 8. Generally, the twisted flow had a larger
effect on the low-frequency region than the high-frequency region for the first mode,
while this observation was exactly the opposite for the second mode.

In the case of 0°AOA, as marked by a rectangle in Figure 8(a1), the low-frequency
shift mode dominated the first pressure pattern for case CWP while it became less
pronounced for case TWP30. The second POD mode of case CWP was distinctively
controlled by the vortex shedding phenomenon with the peak appearing at f11 ≈ 0.1.

Figure 7.
Energy contributions of (a) dominant modes; (b) normalized cumulative number of modes.
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However, the twisted wind reduces this peak energy, indicating that the Karman
vortex motion is weakened in the presence of TWP.

In the case of 90°, as shown in Figure 8(b1), although the multi-peak region can be
observed in the PSD of the first-order mode for the two wind profiles, it should be
noted that the shift mode only appeared in the case of CWP. The second mode under
CWP is controlled by two types of vortices shedding behavior with f21 = 0.04 and
f22 = 0.102, and as a result, these two different flow motions around a large aspect
ratio building (3:1) can be speculated to be leading-edge vortex shedding (LEVS) and
trailing-edge vortex shedding (TEVS) respectively [25]. The existence of twisted flow
significantly changes the energy magnitude, the main frequency and the number of
peaks. For example, in the case of TWP30, there was only one pronounced peak,
whose energy was slightly reduced but the frequency increased to f31 = 0.048. Thus, it
is reasonable to surmise that the second mode of TWP 30 is highly related to alternate-
edge vortex shedding (AEVS) [25, 26].

4.3 POD pressure pattern

The first two POD modes of the pressure field on the building surface for case
CWP and TWP30 with 0°AOA are shown in Figure 9. When exposed to CWP, the
first mode pattern had a similar distribution with the mean pressure filed on the

Figure 8.
Power spectral density of the first two POD mode coefficients for two AOA cases of (a) 0°; (b) 90°.
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building surface as depicted in Figure 8, which implies that the first POD mode
possibly corresponds to the low-frequency shift mode. Moreover, it is reasonable to
deduce that the second asymmetrical mode shape well captured the fluctuating prop-
erties induced by the periodic vortex shedding.

In the presence of twisted wind, the POD mode pattern on the building surfaces
became asymmetric and non-uniform. It was evident that the vertical varying wind
direction had a noticeable influence on the mode shape on the leeward surface.
Specifically, the first mode shape was significantly deflected towards the right side
near the downstream region (see black dash circle). However, the second mode shape
indicated that twisted flow can amplify the positive region near the left-side surface
but shrink the negative area near the right-side surface, as indicated by the dashed
rectangle in Figure 9 (a2) and (b2). The possible reason could be that the conical
vortex near the left side was enhanced but suppressed near the right side on the
appearance of TWP.

The first two POD modes of the pressure field on the building surface for case
CWP and TWP30 with 90°AOA was shown in Figure 10. Under CWP, a shift mode
can also be observed for the first POD mode. Notably, the pressure pattern on the left
and right sides are symmetrically distributed, but experiences an initially upward and
then downward process from the windward edge to the leeward edge. Such finding
indicates that flow separation and reattachment simultaneously occur at the side

Figure 9.
The first two POD modes of surface pressure field at 0°AOA for (a) CWP; (b) TWP30.
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surface of the building with side ratio of 3:1. Similar to the 0°AOA case, the asym-
metrical second mode of CWP is strongly related to the vortex shedding phenomenon.
Affected by TWP, the continuous varying wind directions along the building height
cause the reattachment location on the right-side surface to move upstream (see the
red dash circle), however, that on the left-side surface becomes weaker (see blue dash
circle). This observation indicates that the conical vortex near the left side is signifi-
cantly weakened and merges into the wake flow. Overall, TWP has a distinctively
different impact on the mode shape of buildings with different aspect ratios.

5. POD analysis of flow field

In this section, the wind incident angle of 0 degree is studied, which exactly
corresponds to the side ratio case of 3:1, because in this case, the flow phenomenon is
more complex. To identify the mechanisms that underlie the twisted-wind effect and
elucidate the essential difference of the flow patterns under CWP and TWP, POD
analysis was conducted on fluctuating velocity field at different horizontal planes
(z = 1/6H, 1/2H and 5/6H) in the near-wake, and the spatial distribution and temporal
evolution of the mode patterns were systematically compared for these two cases.

Figure 10.
The first two POD modes of surface pressure field at 90°AOA for (a) CWP; (b) TWP30.
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5.1 Mode energy contribution

Figure 11 shows the energy contributions of the dominant POD modes and cumu-
lative energy of the first three modes. Under CWP, the kinetic energy contribution of
the first two POD modes was the most prominent, and both exceeded 15%, while that
of the third-order mode sharply decreased to below 10%. The largest cumulative
energy proportion of the first three modes (46.71%) appeared at the middle plane
z = 1/2H, where the coherent structure was less affected by the free end and the
ground effect. This observation is consistent with the finding reported in [20].
Affected by the twisted flow, the energy proportion taken by main POD modes was
relatively uniform, especially at the mid-height of the building, and for increasing
height, the cumulative energy percentages of the first three main modes gradually
decreased from 34.95% to 28.60%.

5.2 POD flow pattern

The first three POD mode patterns of wake velocity field into horizontal plane 1/2
H under CWP and TWP30 are depicted in Figures 12 and 13 respectively. For CWP,

(a) (b)

(c)

Figure 11.
Energy contributions of dominant POD modes and cumulative energy of the first three modes. (a) z1=1/6 H.
(b) z2=1/2 H. (c) z3=5/6 H.
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the contour of the u component was asymmetrically distributed while that of the v
component was a symmetry to the centerline. The first two POD modes were similar
(i.e., streamline pattern) but had an opposite sign, and as a result, can be recognized as
a pair of conjugate modes. The third mode was found to have a series of vortices
arrayed along the streamwise direction with alternating rotation direction. These
observations confirm the findings reported in the previous POD investigation on the
wake flow of a cylinder [27, 28].

To further disclose the temporal and spectral characteristics of the main underlying
modes in the velocity fields, the PSD of the first three POD mode coefficients at the
mid-height plane of the building were analyzed and compared for CWP and TWP30 as
shown in Figure 14. As can be observed, there were several peaks for the first two POD
modes while the most pronounced one appeared at f11 = 0.04 and f12 = 0.11(see blue
arrow), these manifests that although coherent structures were composed of different
sizes of vortices, the most dominant types were the LEVS and TEVS. The third mode
had the main frequency of 0.11, and more importantly, its modal shape was regularly
distributed and closely resembled the Karman vortex. Subsequently, it is reasonable to
speculate that the third mode is highly related to the TEVS phenomenon.

Figure 12.
The first three POD mode patterns of the wake velocity field at horizontal plane of 1/2 H under CWP (a) contour
of u component; (b) contour of v component; (c) streamline pattern.
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Under twisted flow, as shown in Figure 13, the mode topology and configuration
were both largely modified, moreover, the vortex shedding was no longer aligned
with the centerline but deviated towards the wind twisted direction. The vortex
structures of the first two modes were very similar along and nearly had the same
frequency of f3 = 0.048 (marked by green arrow in Figure 13(c)). This finding
indicates that a pair of conjugate modes were well captured, with a high possibility to
be controlled by the AEVS coherent structure. The twisted flow made the third mode
shape less regular than that of CWP, and no distinctive peak was noted in this case.

To fully reveal the POD mode from a three-dimensional perspective, the mode
results extracted from the velocity field at another horizontal plane z = 1/6 H under
CWP and TWP30 are provided in Figures 15 and 16. It was found that the mode
results at the plane near to the ground level z = 1/6 H basically shared a similar
symmetrical distribution pattern to that of plane z = 1/6 H for the case of CWP and
TWP30, despite some discrepancies (e.g., mode shape, magnitude and streamline)
still being observed between these two horizontal planes due to the existence of the
ground effect. An interesting observation is that because the twisted wind had a
maximum twisted angle near the ground level, the twisted degree of the wake

Figure 13.
The first three POD mode patterns of the wake velocity field at horizontal plane of 1/2 H under TWP30 (a)
contour of u component; (b) contour of v component; (c) streamline pattern.
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streamline pattern was much larger in the horizontal plane of z = 1/6 H than that of
plane of z = 1/2 H, as indicated by the blue arrow in Figure 13(a3) and 16(a3).

As can be seen in Figures 15 and 16, the distribution of mode pattern at the vertical
plane x = 0.12 m exhibited symmetrical properties along the centerline y = 0 for the case
of CWP, possibly related to the “quadrupole” wake pattern. In the case of TWP30,
these POD modes deviated towards the approaching wind twisting direction, namely,
the distribution was concentrated in the positive direction of the y-axis. It should be
noted that in comparison with the CWP case, the distribution range and amplitude of
the POD mode of w velocity were significantly amplified for the case of TWP30. This
indicated that the interaction between the vertical velocity components at different
heights in the flow field was more intense, which could explain the increase of the
aerodynamic correlation of the local wind loads in the vertical direction.

5.3 Correlation of modal coefficients

Figure 17 shows the correlation of the first three POD mode coefficients at two
horizontal planes (z1 = 1/6H and z2 = 1/2H) for CWP and TWP30.The x- and y-axis
represent the modal coefficients of ith mode (i = 1,2 and 3) at the bottom height plane
and mid-height plane respectively. For CWP, the phase-plane trajectory of the first
three modes all exhibit a circular distribution (see the red dash line), thus, the

Figure 14.
Power spectral density of the first three modes for CWP and TWP30. (a) Mode 1. (b) Mode 2. (c). Mode 3.
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correlation of the same mode at different heights of the building is very close to zero,
indicating that the coherent structure at these two locations is relatively independent.
Conversely, affected by twisted flow, the distribution of the modal coefficients
exhibits an inclined elliptic shape with a largely amplified correlation coefficient (see
the black dash line). For example, the first predominant mode at these two different
horizontal planes has the largest correlation coefficient Cor = 0.50, indicating that the
predominant coherent structure simultaneously controls the flow motion at the bot-
tom and middle planes. Notably, the correlation coefficients of the first mode
(Cor = 0.50) and the second mode (Cor = 0.45) are very close to each other, demon-
strating the existence of conjunction modes at the middle height of the building z2 = 1/
2H, as demonstrated in Figure 17(a1) and (b1).

6. Conclusions

This study aims to investigate the essential mechanism of nonlinear dynamic
systems, i.e., the random pressure field and the flow field over a tall building

Figure 15.
The first three POD mode patterns of the wake velocity field at horizontal plane of 1/6 H under CWP (a) contour
of u component; (b) contour of v component; (c) streamline pattern.
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submerged in the turbulent boundary layer. The POD method is employed to extract
the spatial/spectral features of the pressure pattern and flow pattern, and thus pro-
vides a physical mode interpretation of the aerodynamic characteristics of tall build-
ings subject to twisted winds. The primary conclusions are as follows:

1.POD can successfully extract the pressure mode and flow mode as well as capture
the energy and spectral features of the dominant modes under the influence of
CWP and TWP. The difference between the coherent structure in the twisted
flow and the conventional flow is revealed, and the root cause of the influence of
the twisted wind on the wind force and aerodynamic correlation of the high-rise
building model is explained from the perspective of mode pattern.

2.For the pressure pattern, the first mode has a similar distribution to the mean
pressure field, and is found to correspond to the low-frequency shift mode.
While the second mode reveals various vortex shedding phenomena (i.e.,
Karman vortex, LEVS, TEVS, AVES) for the 0°and 90° cases. Compared with
CWP, TWP largely modifies the pressure distribution, the power spectral feature

Figure 16.
The first three POD mode patterns of the wake velocity field at horizontal plane of 1/6 H under TWP30 (a)
contour of u component; (b) contour of v component; (c) streamline pattern.
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and the energy proportion of the dominant modes, and this modification in the
POD mode pattern causes the twisted flow to have a significantly different
impact on the aerodynamic properties of buildings. Specifically,

i. In the case of 0°AOA, when exposed to CWP, the first mode pattern has
a similar distribution to the mean pressure field, implying that the first
POD mode corresponds to the low-frequency shift mode. Whereas the
second mode shape presents the asymmetrical feature, which possibly
reflects the fluctuating properties induced by the periodic wake
shedding. In the presence of twisted wind, the POD mode pattern on
building surfaces is significantly modified, whose distribution appears
more asymmetric and non-uniform. It is evident that the vertical
varying wind direction has a more noticeable influence on the mode
shape on the leeward surface than on the windward surface. Specifically,
the first mode shape severely deflects towards the right side near the
downstream region, while the second mode shape indicates that twisted
flow could amplify the positive region near the left-side surface but
shrink the negative area near the right-side surface. Such phenomena
could be also observed for the second mode shape distributed on the side
surfaces. This observation demonstrates that the conical vortex near the
left side is greatly enhanced while it is largely suppressed near the right
side, as highlighted by the black circle.

ii. In the case of 90°, under CWP, a shift mode is also observed for the first
POD mode. Notably, the pressure pattern on the left and right sides are

Figure 17.
Correlation of the first three POD mode coefficients of two horizontal planes at height of z = 1/6H and 1/2H for
(a) CWP; (b) TWP30.
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symmetrically distributed, but experience an initially upward and then
downward process from the windward edge to the leeward edge. Such
finding indicates that flow separation associated with flow reattachment
simultaneously occurs at the side surface of a building with a large side
ratio of 3:1. Similar to the 0° wind incident angle case, the asymmetrical
second mode of CWP is highly related to the vortex shedding
phenomenon. Affected by TWP, the continuous varying wind directions
along the building height cause the reattachment location on the right-
side surface moves forward, while that on the left-side surface basically
disappears. Overall, the TWP has a similar influence on the mode shape
of the windward and leeward surfaces for buildings attacked by 0°and
90° approaching wind.

3.For the flow pattern, its spatial–temporal features under CWP and TWP are
successfully captured by POD. The main mode pattern of CWP is found to be
controlled by the ILEVS and TEVS phenomenon, which corresponds to
frequencies of f11 = 0.04 and f12 = 0.102 respectively. Whereas, the predominant
PODmode of TWP is highly related to AEVS with a frequency of f3 = 0.048. This
modal pattern is reported to twist towards the wind direction with a more
regular shape, even though it becomes less intense. Moreover, the spanwise
correlation of the main POD mode at two planes of different heights is also
significantly enhanced by TWP.

The study has comprehensively revealed the potential mechanisms of the twisted-
wind effect that underlies the pressure field and flow field of tall buildings exposed to
TWP. The mode interpretation of aerodynamic characteristics is expected to shed
light on the fluid-induced interaction between twisted flows and tall buildings, and
provides a better understanding of the underlying mechanism of the twisted-wind
effect. The obtained conclusions facilitate useful references for designing and
constructing tall buildings in hilly terrain where twisted wind occurs frequently, and
more importantly, for TWP-induced vibration control measures.
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Nomenclature

AOA Angle of attack
ABL Atmospheric boundary layer
CWP Conventional wind profile
TWP Twisted wind profile
MTA Maximum twisted angle at ground level
POD Proper orthogonal decomposition
ROMs Reduced-order models
SMPSS Synchronous multi-pressure sensing system
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