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Preface

Due to the huge advances in computational and modeling techniques, Bayesian
methods are becoming an increasingly important tool for analyzing various types of
data such as continuous, discrete and mixed data, time-series data, longitudinal data,
cross-sectional data, categorical data, survival data, missing data, high/ultrahigh-
dimensional data, and latent variable data. They are also widely applied in various
fields such as industry, agriculture, economics, engineering, medicine, biological
ecology, social science, data science, machine learning, and Al for statistical infer-
ences such as a parameter or non-parameter estimation, hypothesis testing, and
prediction.

A variety of Bayesian inference theories, methodologies, and computational tech-
niques have been developed due to the requirements for analyzing complicated data
and models. These include structural, semi-structured, and unstructured data, as
well as models without likelihoods or having a computing hard likelihood, times-
series models, parametric or non/semi-parametric models, large-scale graphical

or atmospheric models, network models, options pricing models, complex stochastic
models, latent variable models, multilevel models, dynamic factor analysis models
with/without time-varying parameters, high/ultrahigh-dimensional models, joint
modeling of longitudinal and survival data, complex computer models, and causal
inference models. Bayes factor computation, Bayesian variable selection, robust
Bayesian inference, variational Bayesian inference, resampling, approximation of
posterior distribution, approximate Bayesian computation, and debias methods

are all of significance. But challenges remain with the development of Al and data
mining requirements, such as how to balance computational time and statistical
efficiency, design efficient Bayesian computational algorithms and robust sampling
schemes for big/massive data, distributed data and streaming data, modeling and
inference, while protecting privacy and guarding against malicious attacks.

This book, which features the work of five excellent researchers in theory, methods,
models, algorithms and applications, has three sections and five chapters. Section I
introduces the development of Bayesian inference, including theory, methods,
algorithms and applications. Section II introduces Bayesian methods and includes

two chapters. In Chapter 2, Professor Mohammad-Djafari Ali presents a Bayesian
approach to solving inverse problems. In Chapter 3, Ph.D. candidate Ahmed Saadoon
Mannaa investigates the prior data conflict by modeling the parameters in the prior
distribution and comparing its standard deviation to that of the posterior distribution.
A robust Bayesian method is presented that addresses the prior data conflict by using
a set of prior distributions such as Weibull distribution and binomial distribution to
identify the behavior of the estimators based on the estimation comparison of regular
and robust Bayes methods via the integrated mean square error. The two chapters in
Section III focus on the application of the hierarchical Bayesian method and optimized
spectral acquisition in scattering experiments. In Chapter 4, Professor Bloetscher
Frederick uses the hierarchical predictive Bayesian method to solve the challenge of



“what to do when you have a complex question with numerous variables that are not
well understood?”. In Chapter 5, Alessio De Francesco, Luisa Scaccia, Marin Boehm and
Alessandro Cuusolo suggest a Bayesian inference approach based on real-time analysis
of experimental data and implemented as a series of steps in which the spectral mea-
surement is adjourned by summing to its successive acquisition runs, and the spectral
modeling is upgraded.

I was invited to edit this book after the publication of Bayesian Analysis for Hidden
Markov Factor Analysis Models, which I co-wrote with Yemao Xia, Xiaogian Zeng,
and Niansheng Tang, and my two previously edited books, Bayesian Inference on
Complicated Data and Data Clustering, published in 2020 and 2022, respectively.  am
very grateful to Ms. Karla Skuliber for her kind invitation to edit this book and for
providing me the chance to work with these authors. I sincerely hope this book will
be of great interest to statisticians, data analysts, data scientists, social scientists,
biologists, ecologists, and Al and machine learning researchers.

Niansheng Tang

Department of Statistics,

School of Mathematics and Statistics,
Yunnan University at Chenggong Campus,
Kunming, R. of China

XII



Section 1

Introduction







Chapter 1

Introductory Chapter:
Development of Bayesian Inference

Niansheng Tang and Ying Wu

1. Introduction

Bayesian inference derives from Bayesian theory, which depicts the probability of
occurrence of an event given some prior information. Due to the huge advances in
computational and modeling techniques, Bayesian inference has been increasingly
become an important tool for data analysis in the Bayesian framework and has widely
been applied to various fields, including social science, engineering, philosophy,
medicine, sport, law and psychology, for parameter/nonparameter estimation,
hypothesis test, and prediction. Various Bayesian methods including Markov chain
Monte Carlo, objective Bayesian method, subjective Bayesian method, approximate
Bayesian computation, and variational Bayesian methods have been developed to
make Bayesian inference on various problems such as large-scale image classification
and cluster analysis of microarray, and models including parametric, nonparametric,
semiparametric models, and other complicated models such as joint models of sur-
vival data and longitudinal data, graphical models, computer models, neural network
models, and spatial econometric models. In particular, in the big data era, various
Bayesian fronts including theories, methods, and computational algorithms have been
developed for accommodating the applications of Al and data science in recent years
[1], for example, the prior learning, Bayes factor evaluation, Bayesian variable selec-
tion, robust Bayesian inference, variational Bayesian inference, resampling, approxi-
mation of posterior distribution, approximate Bayesian computation, and debias
methods for high—/ultrahigh-dimensional data, multisource heterogeneous data,
imbalanced data, missing data, and data stream. But there are some challenging
problems, for example, how to balance the computational times and statistical effi-
ciency, design efficient Bayesian computational algorithm and robust sampling
schemes for big/massive data, distributed data and streaming data in the privacy
protection and the defense of malicious attacks framework, and modeling so that they
can adapt to the development of Al and the requirement of data mining, to be
addressed and solved for Bayesian inference. In what follows, we will introduce the
recent development and some topics of interest on Bayesian inference.

2. Bayesian estimation

For statistical models, Bayesian estimation is usually obtained from its posterior
distribution based on Bayes theory. In general, Bayesian estimation includes Bayesian
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estimation of parameters and nonparametric functions. For parametric Bayesian esti-
mation, we need first to specify the prior distribution of the parameter and then
evaluate its posterior mean/median (i.e., Bayesian estimation of parameter) from its
posterior distributions if the quadratic/mean-absolute loss function is used. For non-
parametric Bayesian estimation, we need first approximate nonparametric function
via some proper method such as B-splines and P-splines [2], i.e., parameterized
approximation to nonparametric function, which leads to a parameterized model, and
then employ Bayesian idea of parametric models to evaluate Bayesian estimates of
parameter and nonparametric function. In what follows, we introduce how to evalu-
ate Bayesian estimates of parameters or nonparametric functions in a relatively com-
plicated model (e.g., random effects model/latent variable model).

In a latent variable model with missing response data, we assume the following
form:

Yi = X,'/)) + Aa)i + &, n; = Hi’]i + Ffl‘ + €5, = 1,2, Y/ (1)

where Y; is ap x 1 vector of manifest variables including continuous and categor-
ical variables [3], X; is a p x ¢ matrix of covariates, w; is a » X 1 vector of latent
variables, ¢; and ¢; are the p x 1and r; x 1 vectors of measurement errors, respec-
tively, § is a g x 1 vector of unknown parameters, A is a p x r factor loading matrix,

T, .
w; = (an , .flT) in which #; and ¢; are the 1 X 1 and r, x 1 sub-vectors of w; and
r1 + 7, =7, respectively, Il and I" are »; x 71 and 71 X r; matrices of unknown param-
eters. It is also assumed that |[I — II| # 0, &; follows a normal distribution or an

unknown distribution, and yij‘s are subject to missingness, where I is a 7y x 71 identity
matrix,yij is the jth component of Y; fori =1,...,n,j = 1,... ,p.

In general, a simple and standard assumption for the distributions of ¢;, ¢;, and &
is to follow some parametric density family such as skew-normal/skew-t/skew-
normal-cauchy/skew-symmetric-Laplace distribution [2] or exponential family dis-
tribution [3] or normal distribution [4], or unequal time autoregression series or
their mixture. But this assumption may be unreasonable or too restrictive. To this
end, some alternative methods have been developed to relax their parametric distri-
bution assumption. For example, let ¢; or & follow an unknown distribution, which
is approximated by a Dirichlet process prior [2], spiked Dirichlet process prior [5],
truncated centered Dirichlet process prior [6], or a class of smooth densities that are
approximated by the semiparametric approach of Gallant and Nychka [7], or
unknown distribution with its quantiles specified leading to the well-known quantile
regression models, or a Bayesian neural network approach to learning unknown
distribution [8].

To introduce missing data, let 5 be an indicator of missing value y;;, i.e., §; = 1 if
¥ is observed, and &; = 0 if y; is missing. In this case, we usually need to assume a

missingness data mechanism, for example, missing at completely random or missing
at random or missing not at random (also called nonignorable missing), and then
specify a parametric or semiparmetric model for the considered missingness data
mechanism. For example, see Lee and Tang [4] for the logistic regression model, Kim
and Yu [9] and Tang, Zhao, and Zhu [10] for the exponential tilting model, and Wang
and Tang [11] for the probit regression model together with latent variables. Also, one
can train a missingness data mechanism model via a data-driven machine learning
method [12], which is a completely new and not yet studied topic, including its
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implementation, algorithm, and theories. We are working on this new and promising
topic, which may lead to a new research field.

To make Bayesian inference on the considered model (1), we need to specify a
prior distribution for unknown parameters or coefficients in approximating unknown
nonparametric functions. A standard assumption for unknown parameters is some
proper parametric distribution family such as normal distribution, gamma distribu-
tion, inverse gamma distribution, inverse Gaussian distribution, Wishart distribution,
and Beta distribution in which their hyperparameters are user prespecified. Their
misspecification or improper application may lead to unreasonable even misleading
parameter estimation. Bayesian inference based on these assumptions did not utilize
historical data and limits its popularity in that the usage of historical data may
improve the efficiency of parameter estimation. To address this issue, some relaxed
priors are considered, for example, see power prior, g-prior, normalized power prior
[13], calibrated power prior, dynamic power prior, and the power-expected-posterior
prior and the scale transformed power prior [14]. For a high-dimensional sparse
parametric model, we can assume a spike and slab prior for the parameter, which can
be hierarchically expressed as a mixture of a normal distribution and an exponential
distribution.

Let 91 be the set of unknown parameters associated with the distribution of ¢;, and
9, be the set of unknown parameters associated with the distributions of ¢ and &;, 93
be the set of unknown parameters associated with the distribution of §;, and denote
9 = {91, 92, 93}. Let 0 be a set of unknown parameters in {f, A, I, I', 9}. Denote
Y= {Yi, 1= 1, ey ﬂ}, Yobs = {Yi,obm i= 1, vee y n}, Ymis = {Yi,misa i= 1, ey n},
X={X;,i=1, ..,n},F={w;,i=1, ..., n}, where Y; ;s and Y; ;s are sub-vectors
of Y; corresponding to missing and observed values, respectively. Let D = {Yops, X}
and § = {8j,i = 1,...,n,j = 1,... ,p. If the marginal posterior distribution of ¢ given the
dataset D is

2(0)7(Y|0, F, X)x(F|92)(8|Y, 93dFdY micds
(Y obs|X) ’
(2)

ﬂ((|6|D) :’”(ea Fa Ymis, 5|D)dFdeisd5 = J

its posterior mean (i.e., Bayesian estimate) can be evaluated by

Jen(a)n(m, F, X)x(F|9,)7(3|Y, 85)dFAY misdd6
7(Yobs|X) ’
(3)

6 = E(6|D) = Jen(e\D)de =

where 7(0) is the prior distribution of 8, (Y6, F, X) is the probability density
function of Y given (X, B, A, 1), i.e., the likelihood function of 8 associated with the
considered latent variable model, z(F|9,) = IT’_,z(y;|&;, IL, T', 92)7(&;|9,) is the proba-
bility density of F, 7(Y ops|X) = [ 2(0)2(Y|0, F, X)2(F|92)7(8]Y, 93)dFAY 1nisddd is the
marginal likelihood of Y, given X, and #(5]Y, 93) is the probability density of § given
(Y, 95).

From Eq. (3), it is easily seen that evaluating 6 is almost impossible due to high-
dimensional integral involved. To address this issue, the well-known Markov chain

Monte Carlo (MCMC) algorithm is employed to approximate @ by sequentially
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drawing observations from the posterior distributions of components of 8 and

(F, Ymis, 6) via the Gibbs sampler together with the Metropolis-Hastings algorithm.
Denote z(0|Y, F, X, 8), #(Ymis|Yobs> F> X, 6, 6), and z(F|Y, 6, X) as the conditional
distributions of 6 given (Y,F, X,5), Ymis given (Yops, F, X, §), and F given (Y, 6, X),
respectively. The Gibbs sampler is implemented as follows. At the tth iteration of the

Gibbs sampler with the current observations {Q(t), F®), Yf;) 6(t)} of {0, F, Ypnis, 6},

is?
we sequentially draw i) ﬂ<t+1) from the conditional distribution z(8|Y, F, X, A, &), ii)
A" from the conditional distribution z(A|Y, F, X, #, 91), iii) IT**Y from the condi-
tional distribution z(I1|F, T, §,), iv) '+ from the conditional distribution
#z(T|F, 11, &), v) «9§t+1) from the conditional distribution z(9|Y, X, 5, A, F), vi) 19§t+1)
from the conditional distribution z(9;|F, I1, '), vii) Y&;l) from the conditional distri-
bution 7(¥ mis|Yobs» 8, X, B> A, F, 81), and viii) F**Y from the conditional distribution
#(F|Y, X, 0). The aforementioned conditional distributions may be some familiar
distributions from which observations can be directly drawn. But in some cases, these
conditional distributions may be some unfamiliar and rather complicated distributions
from which observations can be indirectly drawn. In this case, some alternative
approaches, for example, the Metropolis-Hastings algorithm, rejection sampling,
acceptance-rejection sampling, importance sampling, hybrid-jump-based sampling,
and reversible jump sampling, can be employed to sample observations from these
complicated distributions. The convergence of the above introduced Gibbs algorithm
can be monitored by the estimated potential scale reduction (EPSR) values associated
with the parameters [15], which are evaluated continuously as the iterations run. The
Gibbs sampler converges if the EPSR values of unknown parameters are less than 1.2.
Also, we can assess the convergence of the Gibbs sampler by plotting several parallel
sequences of observations drawn from different starting values of unknown parame-
ters against iterations.

Let {¢9<m), m=1, ...,M}, {F<m>, m=1, .., M} and {Y&") m=1, .., M} be M

is>
observations sampled from their corresponding conditional distributions via the
aforementioned Gibbs sampler after the Gibbs sampler algorithm converges, respec-
tively. Bayesian estimates of 0, F and Y s can be computed by

0=1:>0", —1\—4;9 : mis—Mm; oins (4)

m=1

respectively. Their corresponding standard deviations can be computed with their
corresponding sample covariance matrices of the observations. The details can refer to
the literature [7]. The above argument on Bayesian inference is a classical method.
However, for a high-dimensional parametric or nonparametric model, one needs
some new approaches to solve the computing time and efficiency and stability of
algorithm problem. In fact, when the dimension of covariate matrix is large and the
sample size is relatively small, i.e., the well-known “large p and small »” problem, the
Gibbs sampler is computationally expensive and has poor stability.

To solve this issue for a high-dimensional regression model, there are some novel
approaches developed for parameter/nonparametric function estimation in the
Bayesian framework, for example, see Bayesian Lasso, Bayesian adaptive Lasso,
Bayesian elastic net, and Bayesian L;/,. These approaches can be utilized to estimate
model parameters or nonparametric functions and are simultaneously used to select

6



Introductory Chapter: Development of Bayesian Inference
DOI: http://dx.doi.org/10.5772/intechopen.108011

variables in a high-dimensional regression model, which have received considerable
attention and extended to various models such as generalized linear models and linear
mixed models. In particular, to reduce the computational cost, various variational
Bayesian methods have been developed for various models in recent years. For exam-
ple, see linear mixed models [16] and reference therein. However, there are a lot of
unsolved problems. For example, for a complicated model, how to find the optimal
variational densities for approximating complicated posterior distributions? How to
extend/break the assumption of mean field that is a basic assumption in variational
analysis? How to utilize other divergence criteria rather than Kullback-Leibler diver-
gence to develop variational Bayesian theories?

3. Model comparison

Model comparison is widely used to select a plausible model to fit a given dataset
among all the considered candidate models. Various methods have been developed to
make model comparisons for many models such as linear/nonlinear regression
models, structural equation models, multilevel models, machine learning models, and
pattern recognition model in the Bayesian framework over the past years.

To select a better model among all the candidate models, we can adopt the well-
known best subset selection methods such as Akaike information criterion (AIC),
Bayesian information criterion (BIC), deviance information criterion (DIC), general-
ized information criterion (GIC), minimum description length (MDL), Hannan-
Quinn information criterion (HIC), and log scoring criterion (also called the condi-
tional predictive ordinate, i.e., CPO), which trade off a measure of model plausibility
and a measure of model complexity. Also, the Bayes factor [17] has been developed to
conduct Bayesian model comparison and is widely utilized to investigate the strength
of the evidence in favor of one model among two candidate models. The Bayes factor
for two competing models Hy and H; is defined as follows:

B — ”(Yobw 6|Hl)
10 — /o7 \°
”(Yobs, 5|HO)

where 7(Yobs, 6|Hr) = [ 7(Yobs, 6|0k )7(6)d6), is the marginal density of Hj, with
parameter vectors 6, and 7(6) is the prior density of 6, associated with model Hj, for
k = 0,1. In general, if the Bayes factor Byo > 1, the model H; is more plausible by the
observed data than the model Hy, which leads to the following model comparison rule:
Bio‘s value lying in the intervals (3,10), (10,30), (30,100), and (100,o0) yields mod-
erate, strong, very strong, and extreme evidence in favor of model Hy, respectively. It
is rather difficult to compute 7(Y,ps, 6|0;) due to the intractable high-dimensional
integral involved, thus computing the Bayes factor By is challenging. Many methods
have been proposed to compute marginal likelihoods 7 (Y b, 6|H}) or Bayes factors
[3]. For example, see importance sampling, path sampling, bridge sampling, Har-
monic mean method, random weight importance sampling, sequential Monte Carlo
method, and pareto-smoothed importance sampling leave-one-out cross-validation.

One serious defect of the Bayes factor for model comparison is that it is well
defined for improper priors of 6;‘s and is sensitive to the selection of the
hyperparameters in the priors. According to our experience, different priors together
with different sampling methods lead to different values of the Bayes factor, i.e.,
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different model comparison results. To this end, some modifications of the Bayes
factor have been proposed, for instance, the partial Bayes factor, the intrinsic Bayes
factor, and the fractional Bayes factor, which are subject to more or less arbitrary
selection of training samples, weights for averaging training samples, and fractions,
respectively. Also, some robust methods were developed to compute the sensitivity of
the marginal likelihoods via the simulation-based methods, called the automated prior
robustness method. Recently, some novel methods were proposed to deal with
improper priors in computing the Bayes factor. For example, see machine learning
method, i.e., first using a part of the dataset studied to train the Bayes factor/trans-
form the improper prior into a proper prior and then utilizing the remainder of the
dataset for model comparison, which provides a new idea for computing the Bayes
factor. The robustness of model comparison is a challenging topic, which is worth
further studying.
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Chapter 2

Bayesian Inference for Inverse
Problems

Ali Mohammad-Djafari

Abstract

Inverse problems arise everywhere we have indirect measurement. Regularization
and Bayesian inference methods are two main approaches to handle inverse problems.
Bayesian inference approach is more general and has much more tools for developing
efficient methods for difficult problems. In this chapter, first, an overview of the
Bayesian parameter estimation is presented, then we see the extension for inverse
problems. The main difficulty is the great dimension of unknown quantity and the
appropriate choice of the prior law. The second main difficulty is the computational
aspects. Different approximate Bayesian computations and in particular the
variational Bayesian approximation (VBA) methods are explained in details.

Keywords: inverse problems, hidden variable, hierarchical models, approximate
Bayesian computation, variational Bayesian approximation

1. Introduction

Inverse problems arise in many scientific and engineering applications. In fact,
almost always we want to infer on quantities, variables, distributions and functions
which are not directly observable. Inferring on a hidden variable f via the observation
of another variable g is the main objective in many scientific area [1-3].

Classically, the Bayesian methods have been developed for direct observation of a
quantity, its parametric modeling and the estimation of the parameters of the model.
Description and development of the Bayesian inference for the case of inverse prob-
lems is the main objective of this chapter. The chapter is organized as follows: First a
few inverse problems are mentioned, mainly in two categories: those described by
Ordinary Differential Equations (ODE) and Partial Differential Equations (PDE)’s and
those described with integral equations. Then, we will see that two main problems
arise: parameter estimation and inversion. First the Bayesian parameter estimation is
described and then the Bayesian inversion.

2. Inverse problems

To see easily the two categories of inverse problems, first a very simple example is
given. Consider the electrical circuit of Figure 1.
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dg(t) - - FlE) —a () et
O = Ligr), i(r) = Lg% — b (£(2) - g(1))

() + RCEWY — £(1) — g(w) + RCjwg(w) = F(w)

@)~ 52— e
RC=0 — H(w) = 1—}@,3 — h(t) =exp[—1/0] — [(#) = h{t) = f(¥)

Figure 1.
A simple electrical circuit example to show two different expressions of inverse problems modeling: Ordinary
differential equation (ODE) or Integral equation (IE).

Using the notations used on the figure, we can easily obtain the following ODE:

¢ +0%Y _f() &

Then, using the Fourier transform (FT), we obtain easily the following integral
equation:

o) = / FOh(t - ) de 2)

These two simple equations describe the same linear inverse problem, where we
can distinguish the following mathematical problems:

» Forward problem: Given the parameter @ of the system and the input, f (¢)
predict the output g(t).

* Parameter estimation: Given the input f (¢) and the output g(z), estimate the
parameter 6.

* System identification: Given the input f (¢) and the output g(¢), estimate the
impulse response (IR) of the system A (z).

* Inverse problems:

o Simple: Given the characteristics of the system (either the parameter 6 or
equivalently the impulse response 4(¢)) and the output g(¢) estimate the
input f (t);

o Blind: Given the output g(¢) estimate both the system, parameter 0 or the
impulse response 4 (), and input f (¢).
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For general vocabulary and examples, see [2, 4, 5].

2.1 Examples of linear inverse problems

Here, a few examples of classical inverse problems are listed.

2.1.1 Deconvolution

When the forward problem is a convolution operation:

g(t) = / F(Oh(t - 7)dr, 3)

the inverse problem is called Deconvolution (Figure 2). Figure 3 shows an example
of deconvolution problem which arise in radio astronomy.

2.1.2 Image vestoration

In many imaging systems, such as visual cameras, microscopes, telescopes or Infra
Red cameras, due to some limitations such as limited aperture or limited resolution,
the forward problem can be approximated by a 2D convolution equation:

gtey) = [[ F e~y ) ey, @)
The corresponding inverse problem is called image deconvolution or more often
image restoration. The example given in Figure 4, is the case of satellite imaging [6, 7].
g(t) £

",

Deconvolution

Figure 2.
Signal deconvolution problem.

g(x,y) flx,y)

Image
Restoration

Figure 3.
Image deconvolution or restoration inverse problem in sattelite imaging.

15
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g(r,¢)

Computed
Tomography
Image
Reconstruction ..

Figure 4.
Image reconstruction in CT. On the left, the projections g(r, ¢) and on the right the object f (x, y).

2.1.3 Image veconstruction in X ray computed tomography (CT)

In X-ray CT, assuming parallel geometry, where a ray is characterized by its angle
¢ and its distance r from the center of the object f (x, y) the relation between the data
g(r, @), called projections at angle ¢ and the function f (x, y), called object, is given by
the Radon transform:

glr, ) = //f(x,y)é(r —xcos¢ —ysing)dxdy. (5)

The inverse problem here is called Image reconstruction. A simulated example is
shown in Figure 4.

2.1.4 Fourier synthesis

In many imaging systems, when using FT, it is possible to model the inverse
problem with the following forward FT relation:

glev) = [[ flop)exp [ux +09) drdy, ©)

where the data, after an appropriate FT, can fill partially the Fourier domain g(u, v)
of the unknown interested function f (x, y) [8, 9]. Figure 5 shows the case of X-ray CT.

f(x,y)

Fourier
Synthesis
Image
Reconstruction

Figure 5.
Fourier synthesis (FS) inverse problems arising in many imaging systems. Here is illustrated the FS problem in
X-ray CT.
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2.1.5 General linear inverse problems

All the examples of the linear inverse problems listed above, can be summarized in
the following general form:

g(s) = / Fr)h(s,r) dr @)

where s can be either ¢, (x,y), (v, ¢) or (u, v) and r, respectively 7, (x',y'), (x,y)
and (x, y).

3. Bayesian parameter estimation

To introduce, in a very simple way, the Bayes rule for parameter estimation, we
consider the case where we have a set of data: g = {gl, ---,gn} where we assign them a
probability law p(g;|@) with a set of unknown parameters 6. The question now is how
to infer @ from those data. We can immediately use the Bayes rule:

_1lgbr®)
r(lg) = »(g) L(@)p(0) (8)

where:

* 1(0) £p(g]0) = Mip(g;|0) is called the likelihood, representing the uncertainty in
the data knowing the parameters;

* p(0) is called the prior or a priori, a probability law assigned to the parameters to
represent the prior knowledge (to the observation data) we may have on those

parameters;

¢ the denominator p(g)

pe) = [ pleloip(6)cs ©

is called the evidence.

So, the process of using the Bayes rule for parameter estimation can be summa-
rized as follows:

» Write the expression of the likelihood p(g|0)

* Assign the prior p(0) to translate all we know about @ before observing the data g

* Apply the Bayes rule to obtain the expression of the posterior law p(0|g)

* Use the posterior p(6|g) to do any inference on 6. For example:

o Compute its expected value, called Expected A Posteriori (EAP) or Posterior
Mean (PM):

17
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Opn = / Op(0g)do (10)

o Compute the value of @ for which the p(f|g) is maximum; Maximum A
Posteriori (MAP):

éMAp = arg t:’nalx {p@lg)} (11)

o Sampling and exploring [Monte Carlo methods]

0~p(0g)

which gives the possibility to obtain any statistical information we want to know about
0. For example, if we generate N samples {61, ---, 0y}, for large enough N, we have:

1 N
{0} & > 6, (12)
n=1

3.1 One parameter case

When @ is a scalar quantity, then, we can also do the following computations:

» Compute the value of Gy, such that:
P(0> Oneq) = P(0 < Orpeq) (13)

which is called the median value. Its computation needs integration:
OMed

p(6lg)do = Mp(eg) do (14)

OMed

* Compute the value 6,, called @ quantile, for which
p(9>9a)=1—p(9<9a)=/ p(0lg)d0 =1—a (15)
0o

* Region of high probabilities: [needs integration methods]

b
01, 6,] /6 p(0lg)do=1—a

1

Bayes rule and Bayesian estimation can be illustrated as follows:

p(gle)
4
EMAP
p(0)— Bayes | —p(flg) = § Opm
,é‘Med

Two main points are of great importance:
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* How to assign the prior p(@) in the second step; and
* How to do the computations in the last step.
This last problem becomes more serious with multi parameter case.
3.2 Multi-parameter case
If we have more than one parameter, then 8 = [0y, -+, Gn]/. The Bayes rule still holds:

_rglop@lg)
p(0lg) = T (16)

Now, again, we can compute:

* The Expected A Posteriori (EAP):

Oont — / op(0lg) do, (17)
but this needs efficient integration methods.

¢ The Maximum A Posteriori (MAP):

Onap = arg max {p(0lg)} (18)

but this needs efficient optimization methods.

* Sampling and exploring [Monte Carlo methods]
0 ~p(0lg)

but this needs efficient sampling methods.

* We may also try to localize the region of the highest probability:
PO <o) :/p(aLg)d0=1—a (19)
)

for a given small a, but this problem may not have a unique solution.

4. Bayesian inference for inverse problems

As described before, in inverse problems, the unknown f'is a function (of time,
space, wavelength, ...) and the observable quantity g is also another function which is
related to f via an operator g = H( f) + e. When discretized, they can be represented
by the great dimensional vectors f, g and g = H(f) + ¢, where ¢ represents all the
errors (measurement, model and discretization). When the operator is a linear one,
we have:
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Real word p(fIM) plglf, M) Observable
quantity of Prior Likelihood quantity
interest f — g
Inference — Measured
p[f|g,.ﬂ/i)0f piflg. M) plg|M) Data
Estimation f Posterior Bvidence g

~ plglf, M) p(£IM)
PUla M) =2 A

with p(g|M) = plg|f, M) p(FfIM)df

Figure 6.
Hllustration of the Bayesian inference for inverse problems.

g:Hf—i—e, (20)

where f is a vector of length #, H the known forward model matrix of size m x ,
and g and € two vectors of size m.
The Bayes rule for this case is written as:

p(fig, M) = P& ;fé)%"m 1)

where we introduce M to represent the model, p(g|f, M), called commonly the
likelihood, is obtained using the forward model (20) and the assigned probability law
of the noise p(€), p(f|, M) is the assigned prior model and p(f|g, M) the posterior
probability law. Figure 6 shows in a schematic way the main ingredients of the
Bayesian inference for inverse problems.

This even very simple linear model has been used in many areas: linear inverse
problems, compressed sensing, curve fitting and linear regression, machine
learning, etc.

In inverse problems such as deconvolution, image restoration, f represent the
input or original image, g represents the blurred and noisy image and H is the convo-
lution operator matrix. In image reconstruction in Computed Tomography (CT), f
represents the distribution of some internal property of an object, for example the
density of the material and g represents the radiography data and H is the radio-
graphic projection operator (discretized Radon transform operator).

In Compress Sensing, g is the compressed data, f is the uncompressed image and H
the compressing matrix. In machine learning, g are the data, H is a dictionary and f
represents the sparse coefficients of the projections of the data on that dictionary.

5. Hyperparameter estimation

When applying the Bayes rule, the main terms which are the likelihood and prior
depend on parameters, which cannot be fixed in practical situation. We may thus want
to estimate them from the data. In the Bayesian approach, this can be done easily:

_p&lf,00)p(f,02)p(0:)p(62) 22)
r(g)

p(f.61,62[g)
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Real word ,‘U(ﬂ?, M) p_(g|_f, 0, M) Observable
.0 Prior  Likelihood quantity g
’ Yl
. . =
Estimation Dat.
o pLf.0l9,M) o
! Joint Posterior g

p(f,0)g, M) xp(glf,0,M) p(f|0,M) p(0|M)

Figure 7.
Illustration of the Bayesian approach for inverse problems with unknown hyperparameters.

where p(6;) and p(6,) are the prior probability laws assigned to ; and 6, and often
p(0) =p(01)p(0,). We can then write more succinctly:

The scheme of this situation is illustrated in Figure 7.
From here, we have different directions for doing estimation:

5.1 Joint maximum a posteriori (JMAP)
Rewriting the expression of the joint posterior law:

p(f oLg P(g[f 01}7(g(faz p(g[f 0,) p(f 02 24)

where « means equal up to a constant factor which is 1/p(g). In this case, we can
try to optimize it with respect to its two arguments:

f,@ = arg max{p(f,0lg (25)
(6) - mss (1.
This can be done, for example, by alternate optimization:

f<k+1) = arg maxy {P (f 0" Lg) } 26
é(k+1) = arg maxo{P (f(k)’éLg)} -

When the optimization algorithm is successful, we have the optimal values of f

and 6. This method can be summarized as follows:

p(f.6lg)

Joint or alternate optimization B
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5.2 Marginalization over ¢

The main idea here is to consider 0 as a nuisance parameter. Thus, integrating it
out, we get

pifle) = [ pif.0lg)0 27)

which can be used to infer on f. Also, if we still want to get estimates of 6, we can

first obtain an estimate f for f and then, if needed, to use it as it is illustrated in the
following scheme:

p(f.0l9) |—| p(fle) =T — p6T,9) | —0

Joint Posterior Marginalize over 0

5.3 Marginalization over f

The main idea here is first find a good estimate for the parameters @ and then use it
for the inference on f. So, first obtain:

pl6le) = [ pif. o) (28)

which can be used to first estimate 6 and then use it. For example, the method
which is related to the Second type Maximum likelihood, first estimate @ by

0 = arg ;nax {p (9Lg) } (29)

and then use it with p (f 0, g) to infer on f' . For a flat prior model, p(0|g) xp(g|0)
which is called the likelihood and the estimator

0 = arg ;nax {p (9@) } = arg ;nax {p (g|9) } (30)

is called Maximum Likelihood (ML) and the whole approach is called ML of second
type. This method can be summarized as follows:

R —~

p(f.0lg) |—| plolg) |—08— p(fleg) |— 7

Joint Posterior Marginalize over f

The main difficulty in this approach is that, rarely we can have an analytical
expression for the first marginalization. To overcome this difficulty, many algorithms
have been proposed to compute f. One of them is called Expectation- Maximization
(EM) and its generalization (GEM). The main idea of these algorithms are summa-
rized in the following subsections:
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5.3.1 EM and GEM algorithms

To summarize these methods, we use the vocabulary of the main authors of EM
method, where f is considered as hidden variable, g as incomplete data, (g, f) as
complete data, Inp(g|0) incomplete data log-likelihood and Inp(g,f|0) as complete data
log-likelihood. Then, the following iterative algorithms describe the EM and GEM
algorithms.:

* EM Iterative algorithm:

E-step : Q(a, 9<k)) =E, (rgot) 0P E-f10)}

(31)
M-step : o" = arg maxo{Q(0,9<k_1))}
* GEM (Bayesian) algorithm:
~(k
E-step : Q(0,0< )> =E (fgek)){lnp(gfw Inp(0)}
(32)

M-step : @)Ue) = arg maxo{Q(H, é’(kil))}

These methods can be summarized in the following scheme:

»(f,0lg)| — [EM, GEM] — 6 — p(f|é,g) ~f

5.4 Variational Bayesian approximation

VBA is a powerful approach to do approximate Bayesian computation. It starts by
first obtaining the expression of the joint p( f,8|g) and then by approximating it with a
simpler probability law ¢(f, 8|g) which can be handled much easily for the computa-
tions. VBA can be summarized in the following steps:

 Approximate p(f,0|g) by q(f,0|g) = q,(f|g) 4,(0|g) and then continue

computations.
* To do this approximation, we need a criterion to qualify the approximation. The
standard criterion to measure the proximity of two probability laws p and ¢ is the

Kullback-Leibler (KL) criterion KL (¢(f,6\g) : p(f,0\g)).

¢ It is easy to show that:

KL(q : p) //qlnq/p //qlqzln 1192
33
=/q11nq1+/qzlnqz—/ qlnp (33)

= —H(q,) —H(q,) — <Inp>,
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* Alternate optimization of KL(q14,:p) with respect to ¢; and ¢, results to:

0:(f) xexp[(Inp(g,f,6: M), |

(34)
q,(0) o exp [(lnp(g,f,a;/\/(»ql(f)}

As KL(g1g2:p) is convex as a function of ¢; and ¢,, the algorithm converges (locally)
to the optimum solution. At the end, we have the expressions of ,(f) and ¢,(6) which
can, then, be used to infer on f and 6. VBA is summarized in the following scheme:

Variation ) .

— —
p(f,01g)| — Bayesian (f f
Approximation | 1,(0) — 0

In real applications, we choose parametric probability law for g4 (f) ¢,(), and so,
the iterations will be done on the parameters. What is interesting is that, choosing
appropriate parametric models for ¢,(f) and ¢, (@) we obtain either JMAP and GEM as
special cases.

* Case 1: Deterministic or degenerate expressions — Joint MAP

{ql(f@ =olrf) {{argmnf{pmw» -
qz(0|0) :5(0_0) 0= argmaxa{p(fﬁg;/\/o}
* Case 2: Degenerate expression for @ and marginal expression for f — EM
{ql(f) <p(f10,2) {Q(",é) = (Inp(f,0lg; M), (1a)
U = R (36)
4,(010) = 5(0 - 0) 0 = argmax{Q(0/6) }

* Case 3: ¢; and ¢; are chosen proportional to the marginals p (f 0,g; M) and
p (0]}', g ./\/l) . This is a very appropriate choice for inverse problems, in particular

cases where we use the exponential families and conjugate priors.

{ 9:(f) «p (flé,g; M) { Accounts for the uncertainties of 37)
7

1O «p(of.sM)

0 for f and vise versa.

In the following schemes these three cases are illustrated for comparison.

* JMAP Alternate optimization Algorithm:

0¥ — 6 —|f = argmax;{p(f.0g) } |- f — f
N y

0—06—|0= argmaxa{PG,oB)} ~f
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Real word p(f\ﬁziz,x\ﬁ).p(z|ﬂ_3.,JM) _p(_g_\j,ﬂl, M) Observable
Hierarchical Prior Likelihood .
f.z 0 quantity g
. . “—
Estimation . Dat
? = é p(j,z,e\g,f\/i) ;a
Jr Joint Posterior :

p(‘f’216|914'\/1) “p(g|f!811-"\/[) P(f|z, BQIJ\A) F(Z|HSJ-‘M) p(e‘JM)

Figure 8.
Hllustration of advanced Bayesian approach with hierarchical prior modeling with hidden variables.
* EM:
09 ~0—|  qf)=p(flhg) |—alf)—f
T ¥
| Q(6,0) = (Inp(f.0lg)).5
0—0—| _ [ alf)
6 = argmax4{Q(0,0)}
* VBA:

0 — 4,(0) — |4,(f)  exp [(Inp (£, 0l8)), 0| | = 02(F) — f
T N%
0 — 4,(0) — | 0.0 exp |(Inp(f.0l)),, 1 | | — 0:(F)

5.5 Hierarchical priors

One last extension is the case where f, itself depends on another hidden variable 2.
So that we have:

p(f.=,0g) xp(glf,0.)p(flz, 02)p(=|03)p(0), (38)

where 6 = (61, 6,,03). This situation is shown in Figure 8. Again, here, we may
only be interested to f or (f, 2) or to all the three variables (f, 2, §). Here too, we can
either use methods of JMAP, marginalization or VBA to infer on these unknowns.

6. Linear forward models and Gaussian case

Linear models are of importance. Gaussian prior laws are the most common and
the easiest ones to handle. Also, many non-linear problems can be approximated by
equivalent linear ones. Linear models with Gaussian prior laws are the easiest and
powerful tools for a great number of scientific problems. In this section, an overview
and some main properties are given.

6.1 Simple supervised case

Let consider the linear forward model we considered in previous section
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Lo )
KN € p(fleg) = N (10, 9T)
H
g plg|f,oe) = Ng|H f,vI)
p(flg. o5 0e) = N(F|7,Lwith f = [H'H+AI"'H'gand £ = v.[H'H + AI|7!

Figure 9.
Supervised linear Gaussian case.

g=Hf +e, (39)

and assign Gaussian laws to € and f which leads to:

Plelf) = NlHf v o exp |- g~ HFP

1 (40)
— _ L e
p(f) = N (f10, 1) o exp [ 20, /1 ]
Using these expressions, we get:
1 210
p(flg) o exp | —5 g — HfI* 5 - I |
v f (41)

Ve

1 .
o exp |~ ) | with J(F) = lg - HFIP +AIFIE, 2=
c f
which can be summarized as:
p(flg) = N (fIf. ) with f = [H'H + 1] "Hgand £ = o [HH+ 1], (42)

where 1 = fj—f This case is summarized in Figure 9.

This is the simplest case where we know exactly the expression of the posterior law
and all the computations can be done explicitly. However, for great dimensional
problems, where the vectors f and g are very great dimensional, we may even not be
able to keep in memory the matrix H and surely not be able to compute the inverse of
the matrix [H'H + AI]. In Section 9 on Bayesian computation, We will see how to do
these computations.

6.2 Unsupervised case or hyperparameter estimation

In the previous section, we considered the linear models with Gaussian priors with
known parameters v. and v In many practical situations these parameters are not
known, and we want to estimate them too. For this, we can assign them too prior laws.
As the variances are positive quantities and using the concept of conjugate priors, we
can assign then Inverse Gamma priors:
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{P(Us) = Ig(vf|a€0,ﬂ€0)
(43)

plvp) = Ig(”f|afo’ﬂfo)

and using the likelihood p(g|f,v.) = N (g|Hf,v.I) and the prior p (f|vf) =
N (f|0,v¢I), we can easily obtain the expressions of the following conditional poste-
rior laws:

P(ng, Ve, f}f) = N(_ﬂf, E) with :
f=HH+M] Hg (44)
S—o [HH+], =0 /i

and

{p(veLg,ﬂ = 76 (ve|a, Be)
(45)

p(rlg.f) =70 (vplae. By )

where all the details and in particular the expressions for &, ,Be, ag, /} ¢ can be found
in [10].

As we can see, the expressions of f' and ¥ are the same as in the previous case,
except that the values of 0., 0f and 7 have to be updated. They are obtained from the
conditionals p(v.|g,f) and p (v¢|g, f) which depend on f. This shows that we can
propose an iterative algorithm in two steps: Determine the expression of p (flg, v, vf)
and using the values of in the previous iteration, we can propose an estimate for f, and
then, using p(v.|g,f) and p (vfg,f), we can give estimates for 9. and ¢ which can

again be used in the first step. It is interesting to know that all the three approaches of
JMAP, GEM and VBA for this cas follow exactly this same iterative algorithm. The

only differences will be in the update values of a., Be, ay, ,Bf and the choice of the
estimators (MAP or PM) of 0. and o .
This case is also summarized in Figure 10.

p(vs) = ZG (vr|ag, By)

p(flvr) = N(£10,v1)

p(f,v5,velg) o<« N(g|H f,0:T) N (£10,0.T)IG (ve| e, Be ) IG (vy |y, By}

Figure 10.
Bayesian inference scheme in linear systems and Gaussian priors. The posterior is also Gaussian, and all the
computations can be done analytically.
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7. Non-Gaussian priors

Very often, assuming that the noise is Gaussian is valid in many applications, but a
Gaussian prior may not be adequate. Thus, the case of Non-Gaussian priors is of great
importance. A very well known example is the case of Generalized Gaussian:

(f) x exp {—yZ\fjﬂ : (46)
j

The case of § = 2 is the Gaussian case, > 2 gives the Super-Gaussian and f <1 is
called Sub-Gaussian. Its particular case § = 1 results to what is called Double Exponen-
tial (DE) prior law:

p(f) anp[ yZLf I] o exp [—7|[fl,] (47)

which, when using with a Gaussian likelihood, results to:
1 .
p(flg) «exp {—5](/:)} with
1
I =5lg—H fI’+Alfll, 4=

From this, we can see that the computation of MAP solution needs an appropriate
optimization algorithm and the computations of the Posterior Mean (PM) or Posterior
Covariance (PCov) or any other expectations become more difficult. However, as we
will see later, VBA can be used to do approximate computations.

Another example is the Total Variation (TV) regularization method [11-14] which
can be interpreted as choosing the prior

(48)

r(f) “eXP[ }’Z|f —f 4l | & exp [~7IIDf||,] (49)

where D is the first order difference matrix.
This prior with a Gaussian model for noise results to:

rflg) x exp {—%](f)} with
Jf) =3 lg -~ HfIP +2Df s 2=

One last example is using the Cauchy or more generally the Student-t distribution
as the prior:

(50)

p(f) ocexp[ yZln(1+f> } (51)
which results to:
p(flg) oexp {— %f f )} with
) €2 o2 (52)
) =5lg-BFP+aY I (1+£3)", d=p..
j
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These three examples are of great importance. They have been used in
the framework of MAP estimation and thus the optimization of the criteria J(f) for
many linear inverse problems. However, the computation of other Bayesian
estimators and uncertainty quantification (UQ) need again specific approximate
solutions.

8. Hierarchical prior models

Even if simple Gaussian and non-Gaussian priors used in previous sections are of
great importance and use in many applications, still they have, in many cases,
limitations. For example, when we know that the signals have impulsive shapes or
discontinuous or are piecewise continuous. The same limitations when we know, for
example, that the images are composed of homogeneous regions with specified con-
tours, or even, that the object under the test is composed of a limited number of
homogeneous materials. Hierarchical models push farther these limitations of simple
prior models. In the following, we consider three families of such hierarchical
models: Sparsity aware models, Scaled Mixture models and Gauss-Markov-Potts
models [10, 15-17].

8.1 Sparsity awarded hierarchical models

An easy way to consider the hierarchical sparsity awarded priors is to introduce a
hidden variable, z and so consider the following Forward and prior models:

{g-Hf—i—e,

f=Dz+¢, =z sparse modeled by Double Exp (DE) 3)

with
r(glf) = N(g|Hf ,vI)
p(flz) = N(f|Dz,vel) — (54)
p(®) = DE(fly) o« exp [—7ll=]l,]

Then, we have to find the expression of the joint posterior law p(f, z|g) :
p(f.5lg) x exp[-J(f,%)] with

1 1 (55)
J(f>z) = ZTHg — Hf|; +27|[f — Dz|)5 +7|lll;
e £

from which we can infer on f and = [10, 16, 18-22].
For the unsupervised case, we can add the appropriate priors:

() =76 (lay.. 5,
p(e) = TG (velac,, Be,) (56)
p(ve) = 79 (velac,. p; )

and thus obtain:
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P(f2,7,0e,0¢g) x exp [ (f, 2,7, Ve, v¢)]  with
1 2, 1 2
TUF %0005 1) = 5§ — HE I} + - ~ Dl + 7l +

(@), +n/2)Iny + 5, /v +
(ttey +m/2) Inve + f,, /v +
(az, +7/2) Inve + B fve

(57)

It is interesting to note that the alternate optimization of this criterion gives the
ADMM like algorithms [23-25] with the main advantage that here we have direct
updates of the hyperparameters.

8.2 Scaled mixture models

Scaled Gaussian Mixture (SGM) models have been used in many applications to
model rare events by their heavier tails with respect to Gaussian. They are also used in
sparse signals modeling. A general SGM is defined as follows:

S(f) = / N(F10,0) p,,(v]6) do (58)

where the variance of the Gaussian model NV (f]0,v) is assumed to follow the
mixing probability law p_ (v|@). Between many possibilities for this mixing pdf is
Inverse-Gamma which results to Student-t:

S(fly) = / N(F10,0) TG0, v) do (59)
which have been extended to more general case:

S(fla, ) = / N(F10,0)TG(0a, ) do (60)

This pdf models have been used with success in many developments in Bayesian
approach for inverse problems by:

piflanp) =11 [ N (F,10,0,)70(0s o) o, (61
or

p(fla, p) = /N(ﬂO,vZ)ZQ(v|a,ﬂ) dv (62)

Scaled Gaussian mixture models have been used extensively for modeling sparse
signals. However, it happens very often that the signals or images are not sparse directly,
but their gradients are, or more generally in a transformed domain such as Fourier or
Wavelet domains. We have used these models extensively in hierarchical way:

g =Hf +e,

p(zj|vz]_) :N(zj\O,vzj), (63)
f=Dz+{, xzsparse Student —

p (vzj) =173 (UZ]. \azo,ﬁz())
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where D represents any linear transformations and D™ applied of f transform:s it to
a sparse vector 2.
The whole relations of the likelihood and priors are summarized in below:

p&lf) = N(glHf ;v )
p(flz) = N (f|Dz,vel)
p(Z‘UZ) = N(Z|O’ Vz)

p(02) = TG (v, sy bz, ) (64)
J

p(vé‘) = Ig(ve|aeo; ﬂgo)

p(:) = 76 (vela., )

and the corresponding joint posterior of all the unknowns writes:

p(f’z’ Uz Ve, vf&) X €Xp [7](faz, Uz, Ve, ‘1)5)}
1 2 1 2 =1
J(F o200, ves06) = 5 - llg = HFI3 + 5 —[If — Ds + || V.7
20, 20,

Zj(azo + 1) lnvzj +ﬁzo/vz]-+
(ac, +m/2)Inve + f,, [ve + (az, +n/2) Inve + ;. [ve

2
[+
2

(65)

Looking at this expression, we see that we have:

* Quadratic optimization with respect to f and z;

* Direct analytical expressions for the updates of the hyperparameters v, and vg;

* Possibility to compute posterior mean and quantify uncertainties analytically via VBA.

A final case we consider is the case of Non-stationary noise and sparsity enforcing
prior in the same framework.

p(€i|v€i) = N(€i|0’ Uc,'),
p(vé‘i) = Zg(vf?,- |a€0,ﬂgo)
p(z]-\vzj) = N(zj|0,vzj>, (66)

p (vzj) =1G (vzj |(xZO,/)’ZO)
Again here, all the expressions of likelihood and priors can be summarized as follows:

rglf) =NglHf,V.)
r(flz) = N(f|Ds,vel)
p(z|vz) :N(z|0>vz)

P(Uz) = HIg<vZ;“aZo’ﬁzo) (67)
J

P(US) = E[Ig(vezmeo:ﬁeo)

p(ve) = Ig<v§|a§z’ﬁ§z)

and the joint posterior of all the unknowns become:

g=Hf +¢€, enon stationary — {

f=Dz+¢, zsparse Student —
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P(f>2, 05,0, 0¢|g) x exp [—](f, 2, 0z, Ve, Ve)]
-1 2 1 =
J(fs2s0esvesve) = |V g = HF)||, +5-If ~ Dell + [Vt
Zj(azO + 1) Invg; + B, /vs,+ (68)

> (e + DInve + B, fve+
(agez + n/2) Inv, +ﬂ§z/v§

2
|+
2

The following scheme shows graphically this case.

[“CW ﬁ@o] {“Zm ﬁzoJ [“t‘-o’ IBEOJ

g=Hf+e [ o el o]
p(f,z,vz,0e,0¢|9) < N(g|H f,veI)N (f|Dz,0:1)N (2|0, V)
Ig(’“ﬂ‘xzﬂf ﬁZ(:)Ig(I)t‘I“ﬂV ﬁc‘u)Ig(f-’H“r:;r ﬁﬁz:

8.3 A four level hierarchical model

To account separately for the measurement and forward modeling error, a more
detailed and four level hierarchical model has been proposed:

go =Hf +¢&, modeling error (69)

{g =g, +€, measurement error
f=Dz+¢, Prior model

which accounts for two terms of errors (variable splitting) and Sparsity enforcing
in Transformed domain prior: f = Dz + ¢ with 2 sparse, modeled itself by Normal-IG.
This model is presented graphically here.

[“Cz' IBGT:J [“ﬁu’ 15g0J [“Zm ﬁzoj [‘%Of Beo

v
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In this model, there are three error terms: € the observation error, ¢ the forward
modeling error and ¢ the transform domain modeling error. These are detailed in the

following:

* g =g, +e¢,:€is assumed to be Gaussian:

p(ngO’vf) N(g@'o,l)g ) Ig(v€|a€o!ﬂeo)
* g, =Hf + & ¢ is assumed to be Student-t:

p(golf>ve) = N(goHS, V), Ve = diaglve],
pve) =L (vg) = IL,TG (% \a:z)ﬂéz)’
* f =Dz +¢,¢ is assumed to be Gaussian:
p(f1z.06) = N (fID=,v¢ 1), p (0¢) = 76 vela, i, )
* zis assumed to be sparse and thus modeled via Normal-IG:

p(=lvs) = N(2]0, Vy), V, = diag[v,]
{ p(v:) = HA]‘rzlp (vzj> = HI}[:1Ig (vzj|a2ro’ﬁz0)

which results in:
P (f:80>% Ves Ve, 0:|g) « exp [—] (f, 80555 Ve, Ve, 02 )| (70)
with

1 e
T 80031 v0s02002) = 5,18 ~ 8ol + (o + D nw + 2

2HV_I/Z(gO Hf) H +Z {ag +1) Inv, +ﬂ§]

2 ﬁCo (71)
+g|lf—DZ||2+(a§0+1) lnl)g“rv—é
HV -1/2 HerZ (@, + 1) Invg, + &
Zj

Using then the JMAP approach with an alternate optimization strategy needs the
following optimization steps:

2
* with respect to f: J(f) :%HV?/Z(gO —Hf)”2 +ﬁ|{f — D3|

2
* with respect to go: ] (g,) = Hi —|—%HV;1/2@0 —Hf)H2

* with respect to z: /(%) If — D=5 +1]|v; 1/22H2

21};
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* with respect to v, : =5 Lllg— g0||2 (@ +1) Inv, + +L

* with respect to v, : J (v;,) =3 HV;1/2(gO —Hf)Hz + Zﬁ\il[(agz +1) Inv;, +%}

* with respect to vg : J (v¢) = 21; If — Dz|)5 + (ag, +1) Inv; Jriﬂ

— 2 ﬂz
to, (o) =3IV e+ s (o + Do, +2]

This approach has the following main advantages and limitations.
Advantages:

* All the optimization are either quadratic or explicit
* Quadratic optimizations can be done efficiently

* For great dimensional problems, the needed operators H, H', D and D’ can be
implemented on GPU

* For Computed Tomography, efficient GPU implementation of these operators
have been done in our group for 2D and 3D CT.

Limitations:
* Huge amount of memory is needed for f, go, v and v,

* No easy way to study the global convergence of the algorithm.

* The number of hyper-hyperparameters (a,, f., ), (agz, p éz) , (ago, ﬂCo) s (A9, By
to be fixed is important. However, the results are not so sensitive to these
parameters.

8.4 Gauss-Markov-Potts models

To introduce the Gauss-Markov-Potts model, let us have a look at the images in
Figure 11.

The question we want to answer is: which prior model can be more appropriate for
these images? One way, to answer to this question is either look at the histogram of the
pixels or the pixels of the gradient images. Then, if we take one typical line of the
gradient or one typical line of the image itself and draw them as a 1D-signal, we obtain
the cases in Figure 12.

From these two figures, we see that for some cases, a Gaussian or generalized
Gaussian may be very good models. But, for other cases, if we want to explicitly
account for the presence of the contours, we can introduce a binary hidden variable to
represent it. Finally, for the last example of the image in Figure 10 and its
corresponding typical line in Figure 11, we need to introduce a hidden variable
which encodes the following fact that:
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Figure 11.
Different images with different charactevistics in different imaging systems.

‘ )
i
I{j\ fl

S
VIV VW

|
¥

"

Gaussian Generalized Gaussian
p(filfi-1) e exp [—alfi — fi-1/*] p(filfi-1) < exp [—alfj — fi-1l?]
F.\u i
1 P e
.W"L b e L“_ = A e ! ™| LN-ML‘ R h]
b | | iy ik |
A 'h | |
| P | L | r,\,'r
Lanl
Piecewize Gaussian Mixture of GM
p(laj.fi-1) = N (1 - 4)fj-1,F) Pl =K) = N (g, 0f)

Figure 12.
Different possible prior modeling in velation to the different images of Figure 11.

In NDT applications of CT, the objects are, in general, composed of a finite number
of materials, and the voxels corresponding to each material are grouped in compact
regions.

How to model this prior information?

To answer to this question, first consider such an image f () with its segmentation
z(r) and contours ¢() as shown in Figure 13.

As it can be seen, we introduced two hidden variables z(r) and ¢ (r), the first
representing the segmentation and the second the contours of the image. z(r) takes
the integer values {k = 1, ---,K}, each presented by a different color and ¢(r) a binary
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-

fr) z(r) (v

Figure 13.
An image of an object composed of homogeneous compact vegions, its segmentation and the contours of thoses regions.

value {0, 1}. The second can easily be obtained from the first. So, from now, we
consider only z(7).
As each value of g represents a homogeneous material, we can translate this by:

p(f()|z(r) = k,my,v) = N (my,v1) (72)

encoding the fact that inside each homogeneous material, i.e.; all the pixels
having z(r) = k, represent a homogenous material characterized by the two
parameters f (1, v). This results to:

p(f(r) = ZP(Z(V) = k)N (my,, v,) Mixture of Gaussians (73)
)

which shows the mixture of Gaussian model of the pixel values. See also Figure 14.
The next step is to propose a probability distribution for z. As we want a compact-
ness of the regions, a Markov modeling is appropriate:

ple(r)|z(v),r €V(r)) x exp |-y Z 5(z(r) —=z(r")) (74)
v eV(r)
A Potts Markov model is still more appropriate:

p((r),r€Q)x exp |—7 Z Z 5(z(r) —=(r')) (75)

reQvr eV(r)

f(r) z(r) € {1,.., K}

Figure 14.

A metalic object with a default area inside it: Black pixels represent air, white pixels metal and gray pixels the
defaults area. On left image these ave codes by colors (z = 1 represents air, z = 2 represents metal and z = 3
represents default area.
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flz Gaussian iid f|z Markov
z Potts-Markov z Potts-Markov

(MIG with Hidden Potts) (MGM with hidden Potts)

Figure 15.
Two proposed gauss-Markov-Potts models used in many NDT applications.

where Q represents all pixels of the image.
Thus, to each pixel of the image is associated 2 variables f (r) and z(r) with the
following possible properties:

* flz Gaussian iid, % iid: Mixture of Gaussians
* flz Gauss-Markov, % iid: Mixture of Gauss-Markov

* flz Gaussian iid,  Potts-Markov: Mixture of Independent Gaussians, (MIG with
Hidden Potts)

* flz Markov, 2 Potts-Markov: Mixture of Gauss-Markov, (MGM with hidden
Potts)

From these four different cases, we consider two which are illustrated in Figure 15.
Using the notations on this figure, and noting by f all the pixels of the image,

by % all the pixels of the segmented image, and by @ all the parameters

{ve, (s mp,vp), k =1, ---,K}, we can write:

r(f,2,0g) xpglf,ve)p(flz, m,v)p(z|y, a)p(0) (76)

where
m={mp,k=1, - ,K},v={vp,k=1, - ,K},a={a, k=1, - ,K},0 ={v.,,m,v,alphab}

The expressions of p(g|f,v.), p(f|z,m,v) and p(z|y, a) have been given before.
We need to define p(@) which can be chosen as the conjugate priors: Dirichlet for a,
Gaussian for m and Inverse-Gamma for all the variances.

Direct computation and use of p(f, 2, 0|g; M) is too complex, because we
do not have analytical expression for the proportionality term of the joint
probability law:

r(f,=,0lg) xp(glf,=,0)p(flz,0)p(z)p(0) (77)
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As we have three sets of variables f, z and 8, we can use different schemes, for
example a Gibbs sampling scheme:

fr~r(fe0.8) —2~p(slf.0.8) — 0~ (0 2.g) (78)

with:

« Sample f from p (f|§, 0, g) «p(glf.0)p (f|§, é)

Needs optimisation of a quadratic criterion.

* Sample z from p (z]f, 9,g) xp (g[f,é, é)p(z)

Needs sampling of a Potts Markov field.

* Sample @ from p (H[f,é,g) xp (g[f, agl)p (f|£7., (my, vk))p(O)

More details and other schemes such as JMAP and VBA can be found in Refs. [26].

To illustrate an example of application, we considered a NDT application, where a
metalic object is tested to detect a default inside it. As, the problem was, not only to
detect the default, but also to characterize its shape and size, an X-ray computed
tomography (CT) with only two projections is proposed and used. This problem is
illustrated in Figure 16.

The mathematical part of this very ill-posed inverse problem is the following;

Given the functions g;(x) and g>(y) find the image f (x, y).

This problem also arise in probability theory and statistics, where f (x, y) is a joint
distribution and g;(x) and g>(y) its two marginals. We know that this problem has
infinite number of solutions: f (x,y) = g;(x)g,(y)Q(x,y) where Q(x,y) is called a
Copula:

/Q(x,y)dx =1and /Q(x,y)dy =1

fxy)

() = flx,y)dx

g1(x) = f(x,y)dy
Figure 16.
A non destructive testing (NDT) application where f (x, y) has to be reconstructed from its marginals g, (x)

and g,(y).
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So, any arbitrary copula function defines a solution. The problem is ill-posed and
we need to use any possible prior information to try to obtain a unique or acceptable
solution. The probabilistic solution we proposed is illustrated in Figure 17.

Unsupervised Bayesian estimation:

r(f,=,0g) xpglf,=,0)p(flz,0)p(0)

A summary of the results is given in Figure 18 where the proposed method

result.
|
E [
alf flz % q
g=Hf+e iid Gaussian iid q(r) € {0,1}
glf ~ N(Hf,2I) or or 1=68(z(r) —z(r")
Gaussian Gauss-Markov Potts binary
Forward model | Gauss-Markov-Potts Prior Model | Auxilary
Figure 17.

Probabilistic Bayesian method for the NDT image resonstruction problem.

b) Backprojection c) Filtered BP

| —
1

d) GM+Line process 7 e) GM+Line process

1

f) Gauss-Markov-Potts 35 g) Gauss-Markov-Potts Z h) Gauss-Markov-Potts g

Figure 18.

Probabilistic Bayesian method for the NDT image resonstruction problem. a) Shows the original image f, b) is the
result of Back-projection, c) is the result of filtered Back-projection, d) and e) are the result of a Markov model
with hidden line process, and f), g) and h) show the vesults of the gauss-Markov-Potts method.
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9. Bayesian computation

As we could see, very often, we can find the expression of the posterior law
p(flg), sometimes exactly as is the case of the linear models with Gaussian priors in
the previous section, but often up to the normalization constant (the evidence term)

p(g) in:
1 1
r@g) rg)

This term is not necessary for Maximum A Posteriori (MAP) but it is needed for
Expected A Posteriori (EAP) and for doing any other expectation computation.

This is the case, almost in all Non-Gaussian prior models or Non-Gaussian noise
models or the Non-Linear forward models. In this chapter, a few cases are considered
more in detail. Even in the Gaussian and linear case which is the simplest case, and we
have analytical expressions for almost everything, the computational cost for large
scale problems brings us to search for approximate but fast solutions.

r(flg) = ——=relfir(f) = ——=r&f) (79)

9.1 Large scale linear and Gaussian models

As we could see in previous chapter, the linear forward model g = Hf + € with
Gaussian noise and Gaussian prior is the simplest case where we can do all the
computations analytically.

r(g) =N (glHfy,oeH H +0.I),

plf) = N(g|HFf, v ) p(fle) =N (fli", 2) with :

- ¢ 1 1y (80)
() = N (flf o> ofI) f=fo+HH+A 'H(g-Hf,)
S = [HH+ ) 2=
vt
The trick here is, for example, for computing f to use the fact that
1
pleif)exp | 51l - H IR
1 2
p(f)  exp [—21, vuzl (81)
¥
1 . 1 2 2 Ve
Pl  exp | 5,1 with () =3 lg — HFIP + 13 4= 2
€ ¥

and, as the mean and the mode of a Gaussian probability law are the same, we can use:

f:arg;nax{](f)} withJ(f) = |lg — Hf|* + 2[f | (82)

and so the problem can be cast as an optimization problem of a quadratic criterion
for which there are a great number of algorithms. Let here to show the simplest one
which is the gradient based and so needs the expression of the gradient:

40



Bayesian Inference for Inverse Problems
DOT: http://dx.doi.org/10.5772/intechopen.104467

VJ(f) = —2H'(g — Hf ) + 2if (83)

which can be summarized as follows:

f(O) =0

(84)
f(k+1) :f(k) + (X{H, (g _ Hf(k)) + Zif(k)}
As we can see, at each iteration, we need to be able to compute the forward
operation H f and the backward operation H'5g where 6g = g-Hf . This optimization
algorithm needs to write two programs:

» Forward operation H f
* Adjoint operation H'6g

These two operations can be implemented using High Performance parallel pro-
cessors such as Graphical Processor Units (GPU).

The computation of the posterior covariance is much more difficult. There are a
few methods: The first category is the methods which use the particular structure of
the matrix H and H'H or HH' as we can use the matrix inversion lemma and see that

S = [HH+M " =ol—H[HH +1" (85)

For example, in a signal deconvolution problem, the matrix H has a Toeplitz
structure and so have the matrices H'H and HH’ which can be approximated by
Circulant matrices and be diagonalized using the Fourier Transform.

The second, more general, is to approximate ¥ by a diagonal matrix, which can
also be interpreted as to approximate the posterior law p(f|g) by a separable

q(f) =jq (f j) . This brings us naturally to the Approximate Bayesian Computation

(ABC). But, before going to the details of ABC methods, let consider the case where

the hyperparameters of the problem (parameters of the prior laws) are also unknown.
To be able to do the computation, we need mainly to compute the determinant of the

matrix v (HH' + I for p(g) and the inverse of the matrices [H'H + AI] or [HH' + 17'1].

9.2 Large scale computation of the posterior covariance

Computing the determinant of the matrix vy HH' 4 v.I for p(g) and the inverse of

the matrices [H'H + AI| or, [HH' + A~'I| which are needed for uncertainty quantifi-
cation, are between the greatest subjects of open research for Big Data problems.
Here, we consider a few cases.

9.2.1 Structured matrices

One solution is to use the particular structure of these matrices when possible.
This is the case for deconvolution or image restoration, where these matrices have
Toeplitz or Bloc-Toeplitz structures which can be well approximated by Circulant or
Bloc-Circulant matrices and diagonalized using Fourier Transform (FT) and Fast FT
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(FFT). The main idea here is using the properties of the circulant matrices: If H is a
circulant matrix, then

H = FAF (86)

where F is the DFT or FFT matrix and F' the IDFT or IFFT and A is a diagonal
matrix whose elements are the FT of the first line of the circulent matrix. As the first
line of that circulent matrix contains the samples of the impulse response, the vector
of the diagonal elements represents the spectrum of the impulse response (transfer
function). Using this property, we have:

1

[H'H + 1) ' = [FAFFA+A " = [FA’F+ ) =F[A? + ] 'F (87)

9.2.2 Sampling based methods

Second solution is generating samples from the posterior law and use them to
compute the variances and covariances. So, the problem is how to generate a sample
from the posterior law

pifle) = N (fIf.£)  with:
f=Ffo+[HH+H (g — Hf ) (88)

S—oHH Y, 2=

vf
One solution is to compute the Cholesky decomposition of the covariance matrix
3 = AA', generate a vector, u ~ N (u|0,1) and then generate a sample f = Au + f
[27]. We can compute f' by optimizing
1
1) = g~ HF I+ Al £,

A=k (89)
vr

but the main computational cost is the Cholesky factorization.

Another approach, called Perturbation-Optimization [28, 29] is based on the fol-
lowing property:

If we note x = f + [H'H + AIl "H'(g — Hf) and look for its expected and covari-
ance matrix, it can be shown that:

{ E{x} :f (90)
=2

Cov [x]
So, to generate a sample from the posterior law, we can do the following:
* Generate two random vectors e; ~ N (¢f]0,v¢1) and g ~ N (4]0, v,1);
* Define g = g + €, and f = f + ¢ and optimize
1(F) =31~ HFIP +3|ff £ o)
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« The obtained solution f") = arg min 7 {] (f) } is a sample from the desired

posterior law.

By repeating this process for a great number of times, we can use them to obtain
good approximations for the posterior mean f and the posterior covariance 3 by

computing their empirical mean values. We need however fast and accurate optimi-
zation algorithms.
10. References to examples of applications
The above mentioned methods have been used with success in different applications:
* Medical imaging and Computed tomography (CT) [30-36].
* Diffraction tomography and Microwave imaging [37-42].
* 3D Computed Tomography [18, 22, 43]
* Acoustical imaging [44-49]
* Hyperspectral imaging [50]
* Spectrometry [51]
* Eddy current tomography [52]
* Non destructive testing applications [53]
* Emission Tomography [54]
* SAR imaging [55]

* Chronobiological time series [56]

11. Conclusions

Mainly, in this chapter, first we described inverse problems and gave a few classi-
cal examples such as deconvolution, image restoration, computed tomography X-ray
image reconstruction, Fourier synthesis inversion problem which arise in many imag-
ing systems. Then, we mentioned that there are two classes of methods for inverse
problems: deterministic regularization and Bayesian inference methods. Then, we
started by describing the Bayesian parameter estimation. The main parts of the chap-
ter is focused on Bayesian inference for inverse problems. We saw that the main
difficulty is the great dimension of unknown quantities and the appropriate choice of
the prior law. For this, first we described many simple and hierarchical prior models
which are used in real applications. For the second main difficulty, which is the
computational aspects, we described different approximate Bayesian computations
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(ABC) and in particular the variational Bayesian approximation (VBA) methods and
showed how to use these methods, for example for hyperparameter estimation or for
large scale inverse problems.
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Chapter 3
Robust Bayesian Estimation

Ahmed Saadoon Mannaa

Abstract

Bayes methods in statistical inference are one of the important methods, and most
of the research and messages tend to use the Bayes method in the estimation process.
The regular Bayes method does not meet this problem, so in this thesis it is possible to
verify the existence of prior data conflict by modeling the parameters of the prior
distribution and then comparing the standard deviation of the prior distribution with
the standard deviation of the posterior distribution, if the value of the standard
deviation of the prior distribution is greater than the deviation. The standard distri-
bution for the posterior distribution, it means that there is a problem of prior data
conflict. Then we used an approach to solve this problem through a set of prior
distributions called this approach by the robust Bayesian method, to identify the
behavior of the estimators, two types of failure models were used, the first Weibull
distribution to match it with continuous data. The second is a (Binomial) distribution
to match the discrete data, the regular Bayes method is compared with the robust
Bayesian method by using integrated mean square error (IMSE). In the Weibull
distribution, the scale parameter (0) and the survival function were estimated for two
simulation experiments, the first was in the case of prior data unconflict the second
was in the case of prior data conflict, so the simulation results showed that the robust
Bayes method is the best by using the comparison criterion integrated mean square
error (IMSE). On the practical side, real data were collected from Al-Manathira
Hospital of the Najaf Health Department for the deaths of heart attack patients for
2018, the time of admission of the patient to the hospital until death was recorded,
which is the time Exit where a sample of (15) patients was collected and the test of
goodness of fit showed that the data follow a Weibull distribution with two parame-
ters, the robust Bayes method was used to estimate the scale parameter and the
survival function. As for the Binomial distribution, the parameter (P) and survival
function were estimated for two experiments from the first simulation, which was in
the case of prior data unconflict, as for the second experiment, it was in the case of
prior data conflict. The simulation results showed that the robust Bayes method is the
best by using the comparison criterion (IMSE). On the practical side, real data were
collected from Yarmouk Teaching Hospital on breast cancer patients’ mortality from
2010 to 2017, and the test of goodness of fit showed that the data follow a Binomial
distribution, the robust Bayes method was used to estimate the parameter (P) and
survival function.

Keywords: robust Bayesian, prior data conflict, survival function, iLuck model,
regular Bayesian, Weibull distribution, binomial distribution
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1. Introduction

Both the reliability function and the survival function have the same property,
which is the measurement of the life span of a particular system or organism. In
systems and equipment, it is called the reliability function, but for the organism, it is
called the survival function.

Sometimes, especially in the analysis of survival functions, the failure events
are few, so we need to include prior information, which can be used by the Bayes
method. When merging the prior information with the observations to obtain the
posterior distribution according to the Bayes rule, a problem may appear to us,
which is the problem of prior data conflict with views, in regular Bayes method,
this problem is not checked and is not addressed and thus unreal estimators are
obtained, In this thesis, we will use an approach to address this problem, which is
the prior data conflict problem, and thus this method is called the Robust Bayes
Procedure.

What is meant by the prior data conflict is when the information of the prior
distribution is combined with the distribution of observations, which may cause us
this problem, meaning that the data under study are less homogeneous when the
information of the prior distribution is combined with it, and thus we obtain unreal
estimations without realizing.

In analyzing the problem, the researcher relied on two models of failure, the first
model is the Weibull distribution with two parameters to match the continuous data,
the second model is the Binomial distribution to match the discrete data to identify the
behavior of the capabilities in these two types of data and the appropriateness of the
robust methods to deal with the existence of the problem prior data conflict.

2. Robust Bayesian procedure

We also noted earlier that the concept of Bayes theory depends on prior informa-
tion so that prior information is combined with the distribution of observations
according to the Bayes rule, for the purpose of obtaining the posterior distribution,
from here we may have a problem, which is a problem that prior data conflict.
Whereas prior data they are the default values that are assumed for the parameters of
the prior distribution, to find out this problem by updating the parameters of the prior
distribution through two methods, namely Expected Conditional or Canonical Expo-
nential Family and provided that the prior distribution is conjugate prior, after
obtaining the prior distribution with the updated parameters, we extract the posterior
distribution and then extract the standard deviation of the distribution if the value of
the standard deviation of the prior distribution is greater than the standard deviation
of the posterior distribution, then this means that there is a problem of prior data
conflict, Thus, this problem can be addressed through the steps that we will explain
later, This method is called the robust Bayesian method [1].

After the default values for the parameters of the prior distribution are chosen, the
standard deviation of the prior distribution and the posterior distribution are
extracted. If the value of the standard deviation of the prior distribution is greater
than the standard deviation of the posterior distribution, this means that there is a
problem of prior data conflict and provided that the posterior distribution is conjugate
prior, this is the method that will be used in this chapter to verify the prior data
conflict.
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There are other ways to verify the prior data conflict that we did not used in this
chapter, for example (Conflict checks based on relative belief, Connections between
the relative belief and score checks and Other approaches to prior-data conflict
checking) [2].

Then we move on to addressing the problem of prior data conflict through the
proposal presented by (Walter and Augustin; 2009), this is for the purpose of gener-

ating a set of prior parameters, in short (HO = [n%n%x {yo, yo} ) , So that this model
that generates a set of prior parameters is called generalized iLuck-model and there-
fore we will get a set of posterior distributions, And then a Bayes estimator is obtained

according to the type of loss function used, and thus this method is called the robust
Bayesian method [3].

3. Weibull distribution

The Weibull distribution was used in 1951 by researcher Waldi Weibull in many
experiments related to the reliability in the mechanical aspect and survival in the
human aspect.

The emergence of this distribution, especially in the Second World War, and its
wide applications in the field of reliability and life tests, was the focus of the attention
of a number of researchers in this field, great in theory and practice.

The probability density function (pdf) for a two-parameter Weibull distribution is
in the following form [4]:

#

f(t) = gtﬁ_le_ﬁ;9>0,t>0 1)

Since:

p: shape parameter.

0: Scale parameter.

The formula for the (CDF) cumulative function is:

Ft)=1—e0 ()
The formula for the survival function is:
S(t)y=e"" 3)

and the formula for moment #* is:

M, — Ofr (1 + %) (4)

3.1 Bayesian estimation of scale parameter for Weibull distribution

Suppose we have a sample that follows the Weibull distribution shown in Eq. (1)
and the appropriate prior distribution for the parameter (0) is inverse gamma
distribution according to the following formula [5]:
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£(0/a,b) = rt(’—a)eale% (5)

By using the Bayes rule, we get the posterior distribution, as shown below [6]:

£(tr, ta, ..o ta/0, B)E(0/2, b) ©

£0/t) =<
J f(ty, t, ..., tn/0, B)E(0/a, b)dO
0

> (a+n)

n B n
(St +b ot 1, ()
r(a+n)

Since:

f
£(0/t) ~ Inverse Gamma(a + n, t(t) + b)

Eq. (6) represents the posterior distribution for the parameter (8), and according
to the squared loss function, the Bayesian estimator for the parameter () is the mean

of the posterior distribution, as in the following steps [7]:

E(0/t) =6

(a+n)
(OB
(a+n) :
M 9—(a+n)—1+1e——(’(‘zjb)d6

By using the transformation:
(z(t) +b)
0 y v

- TE® +D)* f2(t) +b\ " _ (z(t) +b)
G_J ra+n) ( ) ¢’ dy

Lety =

~ (a+n—a-n+1) § —(a+n)+2
SRCUE a1 R
5 y

r(a+n)
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oo

A_(T(t)+b) a+n—2 _—
0= r(a—i—n)ly e dy
5 _ (t(t) +b)
e—mr(a—kn—l)
5_ (t(t) +b)
0= rn-1 ?

3.2 Bayesian estimation of survival function for Weibull distribution

From Eq. (6), according to the squared loss function, the Bayesian estimator for
the survival function is [8]:

§(t) = J S(t) £(0/t) do
0

. B b I 'c(t) a+n
S0 = <b +T(t) + tf) ®

3.3 Checking for prior data conflict for Weibull distribution

Suppose we have a sample that follows a Weibull distribution according to the
Eq. (1) and the prior distribution suitable for the scale parameter (0) is Inverse
Gamma because it is a conjugate prior and as in the Eq. (5) [9].

Then we need to update the parameters of the prior distribution so that it is
n°>1,y%> 0 instead of the parameters (a, b), through two methods we get the prior
distribution as shown in the following steps [10]:

The first method: It is the Expected Conditional method, as shown in the
following steps:

b

E(e/a’b> :yo :a—l

b
:—0:>b:n0y°,n°:a—1:>a=n0+1
n

Then the prior distribution with the updated parameters can be written in the
following form:

0 0)n0+1 0.0

f(@/noyo) « (: y o (n°+1) -1~ (9)

(% +1)

Since:

y°: Pre-guessing the scale parameter.

n®: Pre- guessing the sample size.

The second method: In this method, the prior distribution can be determined
with parameters (n°,y°) through the following steps:

The first step: writing the model in the form of canonical exponential family and
as shown below [10]:

f(x/0) = a(x) exp (y.t(x) — nb(y) (10)
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n - ; R
f/0,p) - p [T = (1)
i=1
n B 1 n
a(x) = p" [[ 6w =—5.7(t) =Dt bw) = In(6)
i=1

i=1

The second step: constructing the prior distribution with parameters (n°, y°)
through the following form:

f(\p/no,yo)dqfoc exp {no [yo.\p —b(y)] }dy (12)
f(w/n° y%)dy o« exp {nO {YO <— %) —In (9)} }dw
av|_1
do| o
0,0
£(6/n° y°)do = f(y/n°,y°) i—g’deoc exp {— HBY - nolne}e—l2
£(6/n°,y°) cc0 (1"+1)-1e~3" (13)

For the purpose of testing whether or not there is a problem of prior data conflict,
we extract the standard deviation of the prior distribution and the standard deviation
of the posterior distribution.

After we get the prior distribution with the updated parameters, we extract the
standard deviation, as in the following steps:

M, = J 0"f(6/n°% y°)do
0

n%+1 %
— w ef(n0+1)71+re7$de
" or(n% +1)

0

By using the transformation:

0..0\n%+1-n’—2+4r+1
M. — (1‘1 y ) J\Zn°+27r72efz dz
r r(n® + 1)

0
M, — (@)

oy Y o

After that, we extract the posterior distribution through the Bayes rule, as shown
in the following steps:
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n0+1
(n%°) —(n0+1)-1, %% p\Pn o1 O
=) g e ()T, e
f(e\t) = r(n0+1) (9) 1

(noyo)n0+1 0 %0 B\ "yn 0}

ef(n +1)-1,- P P15 do
Jr(n°+1) e v (g) ILterd
0

n041
noyo) + 0 pTa (n04ns1)—1 _(noyo”(t»
(F(11°—+1)BnHi:1ti g~ (n* 1)1
- O T 0,0
(noyo)“ n ,p-1 —(n%+n+1)—1 (0904
o BTt |6 (% +n+1) 15—
0
97(n0+n+1)71e7(“oy(1+“)> e*(n0+n+1)7lef("0yoe“(‘))

T o * n®+n+1
J 97(n°+n+1) 71e7(n0y00+r(t))de r(n0+n+10) J (noyo + T(t)) 97 (n°+n+1) 7lei(n0y00+r(t))de
(n°y°+‘t(t))n i F(no +n+ 1)
0

0
 (n%° + (t))" +nt1 (womer) 1 )
~ r(n%+n+1) 0 € (15)

£(6\t) ~IG(n® + n+ 1,n°y° + 7(t))

After we get the posterior distribution and according to the above equation, we
extract the standard deviation, as in the following steps:

n®+n+1 0.0
M, — (I‘IOYO + T(t)) ‘lkei(no+n+1)71+re7(n ‘/'e+r(t)>
r(n® 4+ n+1)
By using the transformation:
0,0 t 0,0 t 0,0 t
ORI R I R t)
0 zZ z
(n%° +=(6)™ " T 0y () T, (0 +2(0)
M, = ef———~dz
r(n® +n+1) z 7?
n®4+n+1-n®—n—24r41 %
_ (nOYO +T(t)> o n°+n—r —7
M. = r(n® +n+1) J (2) e dz
0
0,0 )"
Mr:Mr(no—kn—r—%l) (16)

r(n® +n+1)

(n%y° + T(t))2

(n° 4+ n)*(n® +n — 1) an

s.d posterior =

The above equation represents the standard deviation of the posterior distribution,
after that the comparison is made between the value of the standard deviation of the
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prior distribution with the standard deviation of the posterior distribution. If the value
of the standard deviation of the prior distribution is greater than the value of the
standard deviation of the posterior distribution, this means that there is a problem of
prior data conflict.

A second way to get the standard deviation of the posterior distribution is through
the following steps:

Through the following form which represents the posterior distribution:

n’4n+1
£f(0/t) = (no}zo :._:(t)_)F 5 *(n°+n+1)71e,<"°‘ﬂ+<t))
r(n n

Compensation for:

0,0
t
n:ny +T()’nn:n0+n
n® +n

The posterior distribution becomes as follows:

n.n (nn n)nn+1 —(n"+1)—-1 _nyt

From the above, we conclude that f(6/t) = £(6/n"y") this means that the standard
deviation of the prior distribution and the standard deviation of the posterior distri-
bution will be according to the following formula:

o ]G0
s.d prior = 01 (19)
2
s.d posterior = % (20)

3.4 Standard error for mean

The indicator was employed for the purpose of testing the problem of prior data
conflict. If the value of the standard error of the mean of the prior distribution is greater
than the standard error of the mean of the posterior distribution, then this means that
there is a problem of prior data conflict, and its formula is in the following form:

SEx.prior = S'dL\/;lor (21)
SE;.posterior = s.d posterior (22)
<P =

3.5 Address the problem of prior data conflict for Weibull distribution

Although this problem is represented by the prior data conflict problem, we can
use a model to address the prior data conflict problem, This is done through the use of
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a set of prior parameters and according to the proposal presented by (Quaeghebeur
and Cooman; 2005) [11], In short []° = n% [ZO’ )70} , Another proposal was submitted
(Walter and Augustin; 2009) In order to obtain a set of prior parameters, in brief

1° = »°, 7% [XO, )70} , In general, the model presented to obtain a set of prior

parameters is called (Generalized iLuck-Model), after that we get a set of posterior
distributions, as shown below [3]:

(Iloyo)goJrl n0y0

o/’ y’) = et @ e 23
0-0\n°+1 oo

lOmy") = gy o e o1

n+1

n’y’ ) o

o) = UL o @9
—0-0\0°+1 "

fa(0/,0%5°) = (r(ﬁyolne(“"ﬂwe% (26)

Since:
n%:Minimum.
n°: Maximum.
y’: Minimum.
y°: Maximum.

The above equations represent a set of the prior distributions obtained through the
iLuck-Model, after that we extract the posterior set of distributions according to the
following steps:

The first posterior distribution: From Eq. (23) and by using the Bayes rule, we
get the first posterior distribution, as in the following equation:

(gozo +1(t)
r(n® +n+1)

2050459

>g°+n+l (
0~ (go+n+l)—1e770 (27)

f1(0\t) =

The above equation represents the first posterior distribution which is the Inverse
Gamma distribution and by taking advantage of the properties of the Inverse Gamma
distribution we get the central moments as in the following equation:

(goz‘) + T(t)) r

M= =
" r(n®+n+1)

r(go—l-n—r—l-l) (28)

The second posterior distribution: From Eq. (24) and by using the Bayes rule we
get the second posterior distribution as in the following equation:

n%%° + 1(t) il (0 1 (2%5%4(0)
fz(e\t) :( r(noJrnJ)rl) 0 (E +“+1) e R

(29)
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In short:
£,(8\t) ~ IG(n° + n + 1,n%5° + (t))

The above equation represents the second posterior distribution, which is the
Inverse Gamma distribution, and by taking advantage of the properties of the Inverse
Gamma distribution we get the central moments as in the following equation:

_0—0+ t r
r:%f@%n—rﬂ) 30

The third posterior distribution: From Eq. (25) and by using the Bayes rule, we
get the third posterior distribution as in the following equation:

n0y0+r[t))

)ﬁ0+n+1
e*(go+n+1>71ef—( 5 (31)

(ﬁOXO +1(t)

£3(0\0) = r(@ +n+1)

£3(0\t) ~ IG(ﬁO +n+1,1%° + 'c(t))

The above equation represents the third posterior distribution which is the Inverse
Gamma distribution and by taking advantage of the properties of the Inverse Gamma
distribution we get the central moments as in the following equation:

OXO + 't:(t))r
s

Mr:< Y r(f®+n—r+1) (32)

n
r(n

The fourth posterior distribution: From Eq. (26) and by using the Bayes rule we
get the fourth posterior distribution as in the following equation:

%9 n%+n+1 N
(n ;E_;r (t)) 5 e_(20+n+1)_1e,(ﬂoyo[+(t))
r(n” +n+

f4(6\t) = (33)

f4(0\t) ~IG(2° + n+ 1,8°%° + 7(t))

The above equation represents the fourth posterior distribution which is the
Inverse Gamma distribution and by taking advantage of the properties of the Inverse
Gamma distribution we get the central moments as in the following equation:

(%0 + (b))

—0 .
r_F(ﬁ0+n+1)F(n +n-r+1) (34)

After taking the arithmetic mean of the posterior distributions we get the
iLuck-Model [10]:

n%y% + 7(t
%)4() if 7(t) >y°
y" = lower (y") = notn - (35)
= n%° + 1(t) .
ﬁ 1 T(t) <X
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n%y° +1(t) if 7(t) <y°

7 = uper(y”) =4 AP i (36)
EO}_’O + T(t) if —(t) > 0
O o iftT y

Egs. (35), (36) represent a generalized iLuck-Model, a model that represents the
lower bound and the model that represents the upper bound is chosen based on the
value of 7(t) the estimator we obtain will be in the form of an interval. Therefore we
will take the average for that period and from the above the posterior distribution will
be in the following form:

£(6/nmy™) = o ("1 (37)
m _ lower(n®) +uper(n®) . lower(y") + uper(y")

n 2 24 2

3.6 Robust Bayesian estimation for scale parameter for Weibull distribution

From Eq. (37) and by using the squared loss function, we get a Bayes estimator for
the scale parameter as follows [12]:

E(0/0™,7™) = Orop
Orob = Y™ (38)
3.7 Robust Bayesian estimation for survival function for Weibull distribution

From Eq. (37) and by using the squared loss function we get a Bayes estimator for
the survival function as follows [12]:

$(t) = JS(t) £(0/t) do
0

m\n"+1 % o
S(t) = M J oS-+ )1 40
r(n™ + 1)
0
my,m 1% m,m
S(t) = M J 6*(“"1*1)*15(" yn i)
r(n™ + 1)
0
By using the transformation:
nmy™ 4 th nMym 4 P nmym 4
letz:%ée:(yiz);m = 7(57272”

oo

R mm)n"+1 m,m p\y —(n"+1)-1 m,m ]
50 = ") J((UY +t)> Ly )

r(n™ + 1) z ¢ 72
0
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Q _ (nmym>nm+l m_m )] _(nm+1)°o ™ gz
S(t)—m(n y +t) J(Z) e dz
0
m.,m n™+1
~ _ n™y
Stun(®) = (o) (39)

4. The experimental side of the Weibull distribution

In this section, Weibull distribution data will be generated by using the R program
to estimate the scale parameter and the survival function in the prior data conflict, as
shown in the following Tables 1-4:

Through Tables 1 and 2 the simulation results showed that the robust Bayesian
estimator is the best through the comparison standard (IMSE) in the case of prior data
conflict. From the above, the robust Bayesian estimator will be applied to the real data
to estimate the scale parameter and the survival function.

5. Real data description for Weibull distribution

Real data of a size of (15) for heart attack patients were collected from Al-
Manathira General Hospital of the Najaf Health Department for the year 2018, as the
time of admission of the patient to the hospital until discharge was recorded and that
all of them were in a state of death upon discharge. This data is complete data,
ti = (2,1,1,1,1,2,1,3,7,1,2,10,7,1,1), as these times are in days.

Model p=2 n° Best
y° Lower Upper
Lower Upper 2 5
6 m pdf pdf,,
1 1.5 2 1.5 10 0.008738 0.004018 Robust Bayesian
20 0.004564 0.002699
40 0.002184 0.001634
2 2 3 2 10 0.006128 0.002333
20 0.003421 0.001845
40 0.001539 0.001094
3 2.5 4 2.5 10 0.004801 0.001671
20 0.002811 0.001428
40 0.001295 0.000895

Table 1.

Integrated mean square error (IMSE) of the probability density function (pdf) for the Weibull distribution in the

case of prior data conflict.
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Model p=2 n®
Lower upper
2 5
¥ o n S(v Stab (1) Best
Lower Upper
1 15 2 15 10 0.005332 0.002705 Robust Bayesian

20 0.002894 0.001948

40 0.001570 0.001263

2 2 3 2 10 0.004891 0.002070

20 0.002916 0.001729

40 0.001462 0.001120

3 2.5 4 2.5 10 0.005310 0.002075

20 0.002802 0.001591

40 0.001412 0.001050

Table 2.
Integrated mean square ervor (IMSE) of the survival function for the Weibull distribution in the case of prior data conflict.

B=2 no
y° Lower Upper
6 8
lower upper Orob Standard deviation prior Standard deviation posterior
16 20 16.10352 280.4339 242.4159
Table 3.

Estimation of the scale parameter of the Weibull distribution in the case of prior data conflict.

B=2 n®
y° Lower Upper
6 8
lower upper t Seob(t)
16 20 1 0.937227322
2 0.772418759
3 0.561586411
7 0.050817125
10 0.003284835
Table 4.

Estimation of the survival function of the Weibull distribution in the case of prior data conflict.
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6. Binomial distribution

It is one of the discrete distributions in which the experiment can be repeated for
(n) times so that the probability of success is (p) and the probability of failure is (1-p),
so that the probability density function has the following formula [13]:

fx) = ()P —p)" S x=0,1, .,m (40)
and the average is:
E(x) = np (41)
The variance is:
o’ =np(1 - p) (42)

6.1 Bayesian estimation for parameter p for binomial distribution

Suppose we have a sample that follows the Binomial distribution shown in the
Eq. (40) and the appropriate prior distribution is the Beta distribution according to
the following formula [13]:

f(p/a,b) p*'(1-pfho<p<1 (43)

1
- B(eB)

To obtain the posterior distribution according to the Bayes rule as follows:

f(Xl, X25 ooy XD/P)f(P/O" ﬁ)

(p/x) = -
[ £, 30/ E 0 )t

0
(ZI% 1x> pR(1-p) 2 e (1P

n

1 N B o
J (Z?lx) P (1~ p)" il p (1 - p)

pZi:1X+a_1(1 — p)n_21:1x+ﬁ_l
1 n n
J p i:1x+a71(1 _ P)nfzizlxﬂifldp

Since:

=]

I
N

1
:B(cx—i—s,n—i—ﬁ—s)p

oH»s—l(l _ P)IH*B*S*I (44)
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From Eq. (44) and by using the squared loss function we get a Bayes estimator for
parameter (p) as follows:

E(p/s)=p
a+s

natp )

p:

6.2 Bayesian estimation for survival function for binomial distribution

Through Eq. (44) and by using the squared loss function we get a Bayes estimator
for the survival function as follows [11] (Figures 1 and 2):

S(¢) = [SE(p/s)dp
1

) = farenrp g AP
st - 3 (*)pa-pr
a 1
30 = Ba+s, i +p—s) ]z“;j!(nn! i) jPa+s+j_l(1 —p)" P gp
1
S(t) = CE 3 p jitj!(nni - lpﬁsﬂl(l _ ppths gy

Survival Function

o
=] = Robust Survival
«© —
Qo
=
o
=
w
-
o
L
o
= o
o

Figure 1.
It shows the behavior of the survival function by using the vobust Bayes estimator, which is decreasing as the value of
(t) increases, and this is consistent with the statistical theory [11].

63



Bayesian Inference - Recent Advantages

Survival Function

o
— Robust Survival
-

08

Six)
0.6
1

04

0.2

0.0

Figure 2.
It shows the behavior of the survival function of a binomial distribution which is decreasing and this is consistent
with the statistical theory [13].

1

. 1 - n! - ;
S(t) = : - J atsH=l(1 — p)tPsTitlg
®) B(a—i—s,n—I—B—s)]z_;]!(n—])!op 1-p) P
Multiply and divide by:
Bla+s+j,2n+p—s—j)
1
. 1 1 n! B(a+s—|—j,2n+ﬁ—s—j)J etio1
S t — A+S+] 1
® B(q+s,n—|—[3—s)j§:;j!(n—j)![}((x—|—s—|—j,2n+[3—s—j) P (
0
_P)2n+ﬁ—s—j—ldp
. 1 = n! . .
S(t) = > Bla+s+j,2n+p—s—j (46)

pla+s,n+p—s) = jl(n —j)!

6.3 Checking of prior data conflict for binomial distribution

Suppose that we have a sample that follows the binomial distribution and in short
x ~ bin (n,p) and as shown in the Eq. (40) then we need to determine the prior
distribution through two methods [14]:

The first method: It is the Expected Conditional method we have previously
explained this method so we go through the following steps [9]:

o
a+p

E(p/a,B) =y° =
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«
y° :F,wheren0 =a+p

o
yo:F:Nx:noyo,no:nOyO+BéB:nO(1—yO)

Then we substitute the parameters a = n°y?, p = n°(1 — y°) with the prior
distribution to get the prior distribution with the updated parameters:

1
B(n%y%,n0(1-y?))

The second method: In this method the prior distribution can be determined with
the updated parameters through two steps, which are as follows [10]:

The first step: If the model can be written in the form of canonical exponential
family, as shown below:

f(p/n%y?) = p"y' 11— p)n (1) (47)

f(x/p) = a(x) exp (y-7(x) — nb(y))
f(s/p) = (I;) p(l-p"”

= (e (2 )s-ni-ma-pn} (4)

a0 = (2)ow=n (£-). 50 = s.b(w) = ~In(1 - p)

The second step: the prior distribution can be built by using the following model:
f(y/n% y°)dy o« exp {n"[y".y — b(y)] }dy

f(w/n° y°)dy o exp {no [yo In (ﬁ) +In(1- p)] }d\p

EHRTE
dp| p(l-p)

f(p/n%y°)dp = f(w/n%y°)

d\p‘
dp
1
x exp {n°y° In(p) + (2° ~n%y") (1 - p)} ;T —dp

Then the prior distribution with the updated parameters is:

1

NeTrTrme LA AR

f(p/n’,y%) =

From the above equation, we extract the standard deviation of the prior distribu-
tion, as follows:
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1
1 0,0 0 0
M, = pry 11— )’ (1) 1gp
04,0 0 1_ 0 J
B(n%y®,n°(1-y°)) )

1
= ﬁ(noyo,no (1 — YO)) B(noyo T, nO0 (1 B yo))

_ (%’ +0°(1-y%)) r(n’y° +1)r(n’(1-y°))
r(n%y0)r(n®(1-y°)) = r(n’y® +r+n°(1-y))
)

B r(n®) r(n%?° +r)

r(n%y°)r(n° + r) (50)
o ya=y)
s.d prior = 01 (51)

From Eq. (47) and by using the Bayes rule, we extract the posterior distribution as
shown in the following steps:

R N o) LA p)™ (1)1

f(p/s) =
J (O)pa-pm ; "Y' 11— p)" ) " dp
0

s B(ny% n®(1—-y°))

Pn°y°+sfl (1- p)n" (1-y°)+n—s-1

1
Jpn°y°+s—1(1 . p)n°(17y°)+n7571dp
0

1

n%y%+s-1
B(n%y° +s,n%(1—y°) + n—s) (

1— P)no (1,y0)+n,s,1 (52)

P

Eq. (52) represents the posterior distribution, after that we extract the standard
deviation of the posterior distribution as follows:

1
1 0,0 0 0
Mr — n°y°+s+r—1 1— n (17y )Jrnfsfl d
ﬁ(n°y0+s,n0(1—y°)+n—s)Jp -p) P
0

" p(noy® —&-s,no(i ) B B(n’y° +s+1,n°(1—y°) +n—s)
r(nOyO +s+n° (1 — yo) +n-— s) F(noyo +s+ r)r(no (1 . yo) ino S)
= r(noyo + S)F(no(l - YO) +n— s) * p(noyo +s+r+ n°(1 _ yo) e S)
_ r(n® +n) r(n%y° +s+r)

= r(n® +n -+ r)r(noyo T s)

(53)

Since

f(p/s) = f(p/n",y")
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Then the standard deviation of the posterior distribution is according to the
following formula:

NN Al )
s.d posterior = ] (54)
6.4 Address the problem of prior data conflict for binomial distribution
In the part on the distribution of Weibull, how to solve this problem was
explained, so we will enter the following steps [3]:
1 nOy%4s— EO 1-y° | +n—s-1
fi(p/s) = p"Y " (1-p) () (55)
ﬁ(gOXO +s,n0 (1 — XO) +n-— s)
1 050 0(1_79
f — n'y +s—1 1—p)2 (1—y )+n—s—1 6
2(p/s) Py -5 m0(1—7°) +n—3)" (1-p) (56)
1 = _ a0 1-y° ) 4+n—s—
f3(p/s) = P () )
ﬁ(ﬁOXO +s,n° (1 - XO) +n-— S)
_ 1 1099 4s—17q _ y0°(1-7°)+n—s-1
fa(p/s) = p (1-p) (58)

B(n%y° +5,0°(1—y°) +n—s)

The first posterior distribution: From Eq. (55) and by using the Bayes rule, we
get the posterior distribution, as in the following equation:

. 1 0y 51, \0° (I—XU)+n—s—1
fl(p/S)_ﬁ(gozo—i-s,go(l—yo)+n—S>p e 1(1 P) (59)

The above equation represents the first posterior distribution which is the Beta
distribution and by using the properties of the Beta distribution we get the central
moments, as in the following equation:

r(n® + n) r(goyo +s+ r)
M, = — (60)
r(n® +n+ r)r(gozo + s)

The second posterior distribution: From Eq. (56) and by using the Bayes rule, we
get the second posterior distribution, as in the following equation:

1
B(n’y° +5,n°(1-5°) +n—s)

f, (P/S) = p20?0+sfl(1 _ P)Eo (17§0)+n7s71 (61)

The above equation represents the second posterior distribution, which is the Beta
distribution, and by using the properties of the Beta distribution, we get the central
moments, as in the following equation:
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r(n® 4+ n) r(n’y° +s+r)

M; = r(n® 4+ n+r)r(ny° +s)

(62)

The third posterior distribution: From Eq. (57) and by using the Bayes rule, we
get the third posterior distribution, as in the following equation:

_ 1 0y04s—1,,  \0° (1fz°)+nfsfl
f3(P/S) - ﬁ(ﬁozo—l—s,ﬁo(l—zo) —|—n—s)P e 1(1 P) (63)

The above equation represents the third posterior distribution, which is the Beta
distribution, and by using the properties of the Beta distribution, we get the central
moments, as in the following equation:

r(n® +n) r(ﬁozo +s+ r)

M, = (64)

r(n® +n+ r)r(ﬁOXO + s)

The fourth posterior distribution: From Eq. (58) and by using the Bayes rule, we
get the fourth posterior distribution, as in the following equation:

ﬁ°y°+s—1(1 _ p)ﬁo(l—y°)+n—s—1 (65)

tfa(p/s) = P

B(n%y° +5,0°(1—y°) + n—s)

The above equation represents the fourth posterior distribution, which is the Beta
distribution, and by using the properties of the Beta distribution, we get the central
moments, as in the following equation:

S+r
o ) (66)

After taking the average of the posterior distributions, we get the iLuck-Model
[10]:

%% + 7(x
5—107()% 7(x) > y°

y* = lower(y") = n”+n - (67)
B oy () 2(x) <y°
n’+n Y

Lyo +1(x) if T(x) <y°
n oy n’ +n - 63
y" = uper(y") = 0050 4 7(x) . . (68)
W lf T(X) > y

Egs. (67), (68) represent a generalized iLuck-Model, a model that represents the
lower bound and the model that represents the upper bound is chosen based on the
value of T(x), the estimator we obtain will be in the form of an interval Therefore, we
will take the average for that period, and from the above, the posterior distribution
model will be in the final form and as in the following equation:
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1
p(nmy™, nm (1 - y™))
- lower(n®) 4 uper(n®) . lower(y") + uper(y")
= 5 y =
2 2

fp/n™y") = p™Y (1 — () (69)

6.5 Robust Bayesian estimation for parameter for binomial distribution

From Eq. (69) and by using the squared loss function, we get the robust Bayesian
estimator for parameter (P) as follows [15]:

E(p/n™,y™) = Prop
nmym
nmym 4+ pm (1 _ ym)

Prob = (70)

6.6 Robust Bayesian estimation for survival function for binomial distribution

From Eq. (69) and by using the squared loss function, we get a Bayesian estimator
for the survival function, as follows [15]:

amzj£@ﬁ@mmP
0
1

~ 1 n n' . s m m
Stob(x) = Y P p) I 1 )™ () g
b(%) Blamy™, nm (1 ym) ij!(nJ)’lp(l p)" P (1 -p) P

1

~ 1 n n! mom | ; m m i
Sm x) = - _ J nmy™+j—1 1— n' (1—y )+n—]—1d
b( ) ﬁ(nmym,nm(l_ym) ]ijl(n_])|op ( P) P

Multiply and divide the equation by:

B(n™y™ +j,n™ (1 —y™) +n —j)
. o p(amym a1y in) |
n! 7Y™ 450" (Lo y™) =) [ mggag (gt eaitg
Wme«wwgbmfwMww+xwm—wwm—»ﬁ - P

Smb (X) = ﬁ (

0

“ 1 I n! m..m . ..m m :
SROb(X):ﬁ(nmym,nm(l—ym));j!(n_j)!ﬁ(n y +).n (1_Y )+n_l>

(71)

7. The experimental side of the binomial distribution

In this section, Binomial distribution data will be generated by using the R program
to estimate the (P) parameter and the survival function in the prior data conflict, as
shown in the following tables:
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Through Tables 5 and 6 the simulation results showed that the robust Bayesian
estimator is the best through the comparison standard (IMSE) in the case of prior data
conflict. From the above, the robust Bayesian estimator will be applied to the real data
to estimate the (P) parameter and the survival function for the Binomial distribution.

Model n’
lower
2
y° P K n P/“Tf P/f;fmb Best
Lower upper

1 0.2 0.4 04 5 10  0.006340  0.005353  Robust Bayesian Estimator
10 20 0.002334  0.002143
20 40 0.000830 0.000799

2 0.3 0.5 0.5 5 10 0.006121 0.005225
10 20  0.002207  0.002041
20 40 0.000832 0.000802

3 0.4 0.6 0.6 5 10 0.005728 0.004898
10 20 0.002369  0.002206
20 40 0.000770 0.000743

Table 5.

The integrated mean squave error (IMSE) of the probability mass function (pmf) for the binomial distribution in
the case of prior data conflict.

Model

n
Lower
2
Y p k n S(x) Stob (%) Best
Lower Upper
1 0.2 0.4 04 5 10  0.034387  0.027765 Robust Bayesian Estimator
10 20 0.024367  0.022128
20 40  0.018268  0.017509
2 0.3 0.5 0.5 5 10 0.034540  0.028961
10 20 0.024535  0.022408
20 40  0.016549  0.015884
3 0.4 0.6 06 5 10 0.032064  0.026952
10 20 0.022817  0.021020
20 40  0.016745  0.016075
Table 6.

The integrated mean square error (IMSE) of the survival function for the binomial distribution in the case of prior

data conflict.
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8. Real data description for the binomial distribution
Mortality data for patients with breast cancer were collected from Yarmouk

Teaching Hospital for the period from 2010 to 2017, and the data collected are as
follows (Tables 7-9):

Year 2010 2011 2012 2013 2014 2015 2016 2017
X; 3 4 2 3 2 4 1 0
Table 7.

The real data for the binomial distribution.

y° n®
Lower upper
4 6
Lower Upper Prob Standard deviation prior Standard deviation posterior
0.3 0.6 0.603595 0.042 0.006646
Table 8.

Robust Bayesian estimator for parameter (P) of the binomial distribution.

y° n’
Lower upper
4 6
Lower Upper X Sob (x)
0.3 0.6 0 1
1 0.999
2 0.996
3 0.994
4 0.986
Table 9.

Robust Bayesian estimator for survival function of the binomial distribution.
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Chapter 4

Applications of Hierarchical
Bayesian Methods to Answer
Multilayer Questions with Limited
Data

Frederick Bloetscher

Abstract

There are many types of problems that include variables that are not well defined.
Seeking answers to complex problems that involve many variables becomes
mathematically challenging. Instead, many investigators use methods like principal
component analysis to reduce the number of variables, or linear or logistic regression
to rank the impact of the variables and eliminating those with the limited impact.
However, eliminating variables can create a loss of integrity, especially for variables
that might be associated with low likelihood but have high impact events. The use of
hierarchical Bayesian methods resolves this issue by utilizing the benefits of informa-
tion theory to help answer questions by incorporating a series of prior distributions for
a number of variables used to solve an equation. The concept is to create distributions
for the range and likelihood for each variable, and then create additional distributions
to define the mean and shape values. At least three levels of analysis are required, but
the hierarchical solution can include added levels beyond the initial variables (i.e.,
distributions related to the priors for the shape parameters). The results incorporate
uncertainty, variability, and the ability to update the confidence in the values of the
variables based on the receipt of new data.

Keywords: predictive Bayesian, hierarchical, Drake, infrastructure, dose-response,
risk, extreme events

1. Introduction

Suppose you have a complex question with numerous variables that are not well
understood. The challenge that confronts us all is that such situations are not
unusual—there are many examples of situations where there are numerous variables
that can contribute to occurrences in our world, whether these occurrences involve
medical issues, infrastructure issues, or science questions. Statistical methods have
been developed to address limited information, but most do not permit the
incorporation of new information except Bayesian methods.
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The development of Bayesian methods that include priors that can be updated
with new data or can respond as a result of added data overcomes initial limitations
of most models. Bayesian methods developed as a result of information theory,
assuming that the absolute or unconditional probability density function p(x) on X
is the underlying distribution found through curve-fitting. Priors can be determined
based on any combination of subjective or numeric information in the absence of
real data, or as data are collected, including parameters such as the mean, variance,
and range. Utilization of the observations from the prior data leads to the posterior
probability function, which incorporates observations from x in the sample space S,
although revealing additional information about the true content of the sample
space S is subject to the influence of the proper prior distribution assumptions
for x [1-3].

Many Bayesian practitioners stop with the posterior function, but the ability to
develop true statistical inference requires further effort to create a predictive Bayesian
solution. The Bayesian posterior methods were used in prior studies [2-12]. Predictive
Bayesian methods are an extension of traditional Bayesian approaches, in which
unconditional distributions for the quantity of interest are found by integrating over
probabilities of parameters of the distribution for the quantity of interest, incorporat-
ing both uncertainty and variability in the quantity of interest. They have been termed
“believed probabilities.”

Press [13] noted that there are advantages to the predictive Bayesian approach.
Practical experience and subjectivity can be accounted for explicitly by fitting known
or subjective data to a probability function that can be updated as added information
becomes available [13]. Predictive Bayesian methods continually improve the statisti-
cal inference based on increased amounts of data (hence more data should advance
the understanding of statistical relationships and provide greater confidence in the
prior and therefore the solution). The predicted distributions are also important for
checking goodness of fit of the resulting predictive model to actual data. However, the
analysis can become problematic when the information is so scarce that the analysis
yields nothing useful [11].

The use of Monte Carlo methods makes the solutions easier. Through randomized
sampling, the resulting predictions are simulated from the posterior predictive distri-
bution, which is the distribution of the unobserved future results based on prior
observed data. The more confidence that exists with the priors, the more likely results
of likely outcomes can be derived.

However, many times Bayesian methods have been limited to situations where
there are one or two variables that contribute to an outcome. While high-quality
answers can be derived, the design of the algorithm often oversimplifies the real world
where many variables may contribute to the outcome. The ability to incorporate many
variables that are unknown or uncertain makes the calculations intractable in the
traditional Bayesian processes.

Equally important is the ability to study the events, where multiple variables may
impact the probability and impact of a given consequence. Regression models are
often used, along with principal component analysis to address such situations. How-
ever, both rely on complete data sets, and for many situations, the lack of complete
data may be extensive. Examples include much of the public or municipal infrastruc-
ture that we rely on so heavily for a functioning society, health risks or impacts,
natural disaster risk, and extreme event prediction. This is where hierarchical appli-
cation to Bayesian methods has value.
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2. Methods

Multiple variables create greater challenges. The concept is to create a distribution
with shape and location parameters for each variable, then create distributions to define
the mean and shape values (priors). Each of those distributions can be solved with
MCMC methods to create a predictive distribution. That predictive distribution can be
sampled and multiplied (or added) to the results of all other variables solved and
sampled similarly. The assignment of distributions need not stop with the priors for
shape location and location. Those parameters also can be assigned a distribution, and
likewise those (and so on). Model parameters create a structure or a series of levels that
look like a hierarchy, whereby the priors of a given solution are dependent on priors to
those variable distributions and integrate that information across levels simultaneously
[12], thereby separating the observed variability into parts attributable to both random
and true differences [13-15]. Each investigation will have a different series of variables,
each with different associated variables, priors, and priors of the priors.

Allenby et al. [16] stated that hierarchical Bayesian models are really “the combi-
nation of two things: i) a model written in hierarchical form that is ii) estimated using
Bayesian methods.” Shaddick et al. [17] consider there are to be at least three levels:
(1) the observation or measurement level, (2) the underlying process level, and (3)
the parameter level. Kruschke and Vanpaemel [18] noted that hierarchical Bayesian
data analysis involves “describing data by meaningful mathematical models and allo-
cating credibility to parameter values that are consistent with the data and with prior
knowledge.” Using Bayesian methods, hierarchical Bayesian models can yield esti-
mates of the true effects at each level of the hierarchy [14, 19]. By considering the
results across all levels, hierarchical Bayesian models can be used to rigorously inte-
grate information with a complex underlying structure [14], resulting in a tendency to
shrink differences when multiple variables are incorporated [20]. An important aspect
of the hierarchical approach is that the model is usually a flexible version of a base
model [21], and if needed, the models allow for adding extra levels depending on the
hyperparameters [22].

Applying Bayesian prediction and weighting in a unified approach to Bayesian
regression models can account for complex design features under the framework of
multilevel regression and poststratification [23-25]. Weighting in a hierarchical model
can be used as an extension of linear or logistic regression models. Methods for
hierarchical functional data typically require that all curves are observed over or
standardized to fall in the same region [26-28]. While classical weighting usually relies
on many user-defined choices for regression that is difficult to codify [29], the
Bayesian approach allows prior information to be incorporated and the distributions
automatically adjusted [30, 31].

MCMC allows the user to approximate aspects of posterior distributions that
cannot be directly calculated (e.g., random samples from the posterior, posterior
means, etc.). There are examples of current applications of this approach. Draper [32]
considered Bayesian hierarchical Poisson regression models, Wang et al. [33]
created hierarchical Bayesian model developed for predicting monthly residential per
capita electricity consumption at the state level across the United States, and Maddala
et al. [34] studied the relationship of income elasticity on energy demand in the
United States by applying a dynamic linear regression model under Bayesian frame-
work. Roman et al. [35] and Neil and Fenton [36] used hierarchical Bayesian model for
evaluation of treatments for Covid-19.
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There are limits to hierarchical Bayesian model. The first is the underlying
resulting model assumption may be wrong [14, 31]. Thais et al. [37] noted that
“ill behaved likelihoods” at the lower levels in the hierarchy may create either exces-
sive concentration about a mean or noninformative results. Rouder et al. [38] note
that although hierarchical linear models are suitable in several domains, they rarely
make good models of psychological process. Heller and Gharamani [39] note the
algorithm provides no guide to choosing the “correct” number of clusters.

As a result, Shaddick et al. [18] note that Bayesian hierarchical models are an
extremely useful and flexible framework in which to model complex relationships and
dependencies in data, while Kruschke and Vanpaemel [17] suggest they provide
flexibility in designing models that are appropriate for describing the data at hand that
can provide a complete representation of parameter uncertainty (i.e., the posterior
distribution) that can be directly interpreted. Some examples on how to create a
hierarchical Bayesian model are helpful to demonstrate the process.

3. Applications
3.1 Example 1: Drake equation

Since 1959, SETT has yet to find an alien signal. Two questions arise as a result—
what is the probability of there being life in the galaxy, and why have not we received
a response to our transmissions? In 1959, a US astronomer, Frank D. Drake, a NASA
employee who carried out the first SETI radio telescope experiments, outlined an
equation for finding communicable civilizations [40, 41]:

N =RL (1)

Which was later expanded to :pr neff.f. L.

where N is the number of communicable civilizations, R is the rate at which stars
are born in the galaxy, f,, is the fraction of stars with planetary systems, 7, is the
number of planets that might hold life, f; is the fraction of planets with life, f; is the
fraction of planets with life that have evolved, f, is the number of civilizations of
evolved civilizations with the ability to communicate, and L is the length of time over
which the communication is possible. An additional factor named C is a recent sug-
gestion for colonization [42]. Bloetscher [3] suggested that the factor 7, actually
comprises four factors: planet size (PS), presence of a moon (M), location within the
“Goldilocks” or habitable zone (HZ), and the correct star type (ST), creating four
unknowns from one. None of the 7-12 factors is fully known, so no specific answer on
the likelihood of intelligent life on another planet communicating with Earth is possi-
ble. However, hierarchical Bayesian methods can be used to investigate the probabil-
ity of intelligent life on another planet communicating with Earth. This approach
involves the assignment of probability distributions to the underlying factors and
using those to develop an MCMC protocol to determine the final predictive solution
[3]. Subjective data, shown in Table 1, were included when little or no data were
available to specify the parameters of these distributions [3]. Then probability distri-
butions were assigned to the prior parameters within the initial distributions to deter-
mine the location and scale parameters of the factor distribution (Table 2). The
subjective information serves to create these prior distributions until such time as real
data are developed or become available [3].
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Parameter Mean (10,000-samples)
R 31.89
fp 0.4392
ST 0.4433
PS 0.2586
HZ 0.3170
M 0.3768
fl 0.5013
fi 0.5016
fc 0.4956
L 4641
C 0.2219
MCMC | Average for N 24.64
Table 2.

Monte Carlo vesults for parameters used in MCMC.

For the Drake equations, a distribution for N was developed through using the
Hierarchical Monte Carlo distributions for the factors of the equation run 10,000
times (see Figure 1). A series of Hierarchical Monte Carlo algorithms were developed
for each parameter, and the means were inserted into a Monte Carlo Markov Chain
program that uses a Metropolis-Hastings algorithm with a Gibbs sampler to develop a
final probabilistic result [43-49] that was solved for N. Based on suggestions by Glade
et al. [50] and Maccone [51], the target MCMC distribution was proposed to be log-
normal. Given the uncertainly involved, the standard deviation used for the target
distribution was assumed to be the square root of 6, after Wu et al. [52]. Given a
multivariate distribution, like the example above, Gibbs sampling breaks down the
problem by drawing samples for each parameter directly from that parameter’s

Galofafl) Galffel) Ulefw) PN Gelw/op)GalPfed) Ulefw) UPRA]  Uiedw URN Uisf) UBN Ulafp) VBN Uil RN Uisd) ) Ga(hfaB)  Ule/d) UIRA)

QOOO0OQOOO0O00 QOO0 OO

Ga(R/a,B) Ba(fp/ &.8) a{na/o.p) (Be(sT/ee ) Bo(ps/ec B\  Ba(HZicL ) uffifn) Ba(Mice,B) Ba(flee ) .~ Ba(feep 3 Ba{C/of)

Drake Equation, Number of Concurrent Communicable Civilizations (N/R.fp,ne,ST,PS,HZ,fi,M,fl.fc,L,C)

Figure 1.
Development of HPB for Drake.
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Figure 2.

Results for the probability of N using the Monte Carlo calculation of the factors placed into a MCMC predictive
Bayesian MATLAB calculation. Note that the number of other planets is constantly small despite three options as
noted above (veproduced from Bloetcher [3]).

conditional distribution or the probability distribution of a parameter given a specific
value of another parameter [53].

The solution is shown in Figure 2 (red data points). Of importance, there is nearly
a 50% probability that we are alone in the galaxy. The graph indicates that there is a
95% probability that there are less than 100 communicating civilizations concurrent
with Earth, and a 99% that there are 1000 such civilizations.

3.2 Example 2: dose response

The use of predictive Bayesian methods for dose-response relationships has
also been investigated by a number of authors [10-12, 54-56]. Beaudequin et al. [57]
developed QMRA with the use of hierarchical Bayesian networks to address the
data paucity, combine quantitative and qualitative information including expert
opinion, and the ability to offer a systems approach to characterize complexity.
They outlined how the Bayesian networks are the current method of choice for
determining the risk to human health from exposure to pathogens because of their
ability to separate risk and uncertainly, predict outcomes, and deal with poorer
quality data [57]. Hence, as subjective data are incorporated, the prior distributions
self-adjust [58]. Bloetscher et al. [9] used six sets of Cryptosporidium data to show
how the dose-response function changes with new, additional data. As a result
of new data, the dose-response is expected to improve, demonstrating that
the process can be applied to other organisms. In addition, the paper creates a
Predictive Bayesian MCMC solution for the Pareto II distribution with two uncertain
parameters.

Given the unlikelihood of reinfection during a single incident (due to a short
period of time), the likelihood of infection can be described by the binomial distribu-
tion. As such, a binomial function is used to represent the probability of exposure.
Figure 3 shows the conceptual model with three levels of probability distributions.
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Figure 3.
Conceptual visk model for cryptosporidium.

Because of the intrinsic difficulty in solving a predictive Bayesian equation with
multiple embedded distributions through double integration, an analytical mathe-
matical solution is not achievable. Instead, a probabilistic solution was developed
using a Markov Chain Monte Carlo (MCMC) program developed in MATLAB18®
with uncertain values for a and k. Six different models of 10,000 iterations were run,
each model including an additional dataset and the prior for « increased to account for
the additional data.

When compared with the beta-Poisson models developed by Haas et al. [59], the
predictive Bayesian equation derived in this study is less conservative by a factor of
over 10 than the beta-Poisson model used by Haas et al. [59] (see Figure 4). However,
the beta-Poisson does not accept new data, and therefore cannot be updated, is the
likely explanation for the difference.

3.3 Example 3: infrastructure

Public water and sewer utility systems are created to develop safe, reliable, and
financially self-supporting potable water and sanitary sewage systems, which will
meet the water and sewerage needs of the areas served by the utility, to ensure that
existing and future utility facilities are constructed, operated, and managed with high
reliability and are compatible with the area’s future growth. To gain efficiencies in
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Figure 4.

Dose—response function for C. Parvum—All six datasets compared with beta-Poisson. The beta-Poisson is the most
conservative of the sets. Once the last three datasets (TAMU, UC, and More) are added; all provide the same graph
(reproduced from Bloetscher, et al. 2020).

operation, these new facilities must be developed in accordance with the latest tech-
nical and professional standards to protect the health, safety, and welfare of the
citizens served now or in the future.

Public infrastructure has been poorly rated by the American Society of Civil
Engineers [60-65], and most public officials acknowledge the deterioration of the
infrastructure we rely on daily. Part of the challenge is that many jurisdictions have
limited information about their systems, and little data to use to justify spending of
specific project. Hence the infrastructure tends to deteriorate further each year as
local officials opt to limit budgets in the absence of good needs data. As a result, state
and local governments currently spend about 1.8% of its GNP on infrastructure, as
compared with 3.1% in 1970 [66]. Twice as much was spent 40 years ago, and a large
portion of today’s costs are for growth as opposed to repair and replacement. Asset
management is supposed to help this meet this challenge.

An asset management program consists of determining the selected area of study,
type of system, and the quality of data used for evaluation. The question is how to
collect data that might be useful to a utility that does not involve a lot of destructive
testing on buried infrastructure that is costly and inconvenient. When creating an
asset management plan, missing data are perceived to be a huge problem, especially
when the event data (breaks in pipe as an example) are not tracked. The lack of
tracking makes it difficult to determine which factors are the critical ones. Many
utilities lack the resources for examining buried infrastructure, so other methods of
data collection are needed. The concept in Bloetscher et al. [67] was to develop a
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means to acquire data on the assets for a condition assessment (buried pipe is not
visible and cannot really be assessed). What was found was that for buried infra-
structure, much more information was known than anticipated. For one thing, most
utilities have a pretty good idea about the pipe materials. Employee memory can be
very useful, even if not completely accurate. In most cases, the depth of pipe is fairly
similar—the deviations may be known. Soil conditions may be useful—there is an
indication that aggressive soil causes more corrosion in ductile iron pipe, and most soil
information is readily available. Groundwater is usually known, and if a saltwater
interface of a pollution plume exists, it can be mapped and evaluated for impact on
pipe. Tree roots will wrap around water and sewer pipes, so their presence is detri-
mental. Trees are easily noted from aerial photographs. Roads with heavy truck traffic
create more vibrations in the soil, causing rocks to move toward the pipe and joints to
flex. So, with a little research, there are at least six variables known.

All variable information can be compiled into tables. There is also a need to track
events or consequences—breaks, flooding etc.—that would indicate a failure, which is
required for predicting future maintenance needs and the most at-risk assets. Finally,
the data along with the consequence can be used to predict where the breaks might
occur in the future based on past experience. If the break history for a water system,
flood records for a stormwater system, or sewer pipe condition from televising is
known, the impact of these factors can be developed via a linear regression algorithm.
For logistic of linear regression, XLStat® can be used for the statistical analysis. The
linear regression algorithm can then be used as a predictive tool to help identify assets
that are mostly likely to become a problem.

Data need to be kept up as things change, but exact data are not needed.

An example of this type of effort is shown for a medium-sized city in Florida in
Figures 5-7. The City’s GIS system was mined for the purposes of this project.

Data were retrieved and reviewed to address missing data and clear errors. Nearly
10,000 pipe segments remained. Categorical information on trees, vibrations, soil
type, and pipe type is added. Noncategorical data for pipe size, length, and age

were also entered. Note that with 10,000 pipe sections and less than 600 breaks, many

Breaks / Standardized coefficients
(95% conf. interval)

015

01

Pompano

0.05

Soil Basinger-Urban Land-Immokalee-

HighTraffi
Trees Y
PVC

GS

HODPE

Standardized coefficients
AC
ol

-0.05

=0.1

Variable

Figure 5.
Impact of factors on leaks.
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Comparison of predictive and actual breaks over 10 years (correlation desirable).

pipes have no breaks in their history. The linear regression function for XLStat®
was used to create equation to identify the factors associated with each variable
and the amount of influence that each exerts (see Figure 5). In this case, the
equation was:

Breaks = —3.54427E — 03 — 6.5187E — 03 « DIA + 2.607E — 03 Age 2)

It should be noted that this utility has three main types of pipe, installed at three
completely different eras. Because the correlation between pipe type and age was
high, and likewise pipe type and diameters, other factors that might impact leaks in
other communities were not obvious, so other communities would need to recreate
this analysis for their situation.

Figure 6 outlines how the predictive equation correlated for the City’s potable
water distribution system (well within one standard deviation). Figure 7 is a GIS map
of pipe vulnerability based on the data. Red pipe is the highest priority to schedule for
replacement.

The concept should apply to any utility, although the results and factors of concern
will be slightly different for each utility. Also, in smaller communities, many variables
(ductile iron pipe, PVC pipe, soil condition ... ) may be so similar that attempts to
differentiate factors may be unproductive.

The analysis indicated two things—that age and AC pipe were correlated.

But what if none of this information is fully known? Many of the indicators of
failure can be tracked through the information that is required to be included in the
as-built drawings, but what if they are not available? Loss on institutional knowledge
through retirements can cost the utility much information on actual pipe diameter,
pipe depth, age, and breaks given many utilities do not have extensive work order
systems. Other information that might be useful is condition that maintenance crews
may have knowledge of. A hierarchical Bayesian model could be developed to address
these concerns. Where the pipe is actually known, the categorical variable would be
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Pipe risk—Red pipe is the highest risk for this community, while blue pipes ave the lowest risk.

set to 1. Otherwise, a beta distribution could be developed with a “confidence
mean”—we think it is ductile iron, but it might be PVC or cast iron. The same with
pipe diameters, etc. As new variables are developed, confidence could be added and
priors adjusted. Criticality could be a distribution as well. Figure 8 shows what an
infrastructure assessment Hierarchical Predictive Bayesian model might look like
(realizing it might extend far more widely). Currently, research is underway to
develop such models, but the data required to create and utilize the models are often
lacking even in the most sophisticated organizations.
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Figure 8.
Partial diagram of potential hievarchical predictive Bayesian infrastructure risk model.

4. Conclusions

Going back to the beginning of the chapter, “What to do when you have a complex
question with numerous variables that are not well understood?” It would appear that
the use of hierarchical predictive Bayesian models is a solution to address the chal-
lenge. While there may be circumstances where these methods may not work (psy-
chology), for issues such as infrastructure and completely unknown questions such as
the Drake equation, the methods seem ideally situated to shed light on the solution in
a probabilistic form. The outcome of these methods provides a probability of a given
answer—not a specific answer—at different levels of confidence. Uncertainty and
variability are by the nature of being a probabilistic answer already included in the
solutions. This is why added data can improve the likelihood of a given solution while
reducing the potential for less likely solutions. Like the Drake equation solution, the
dose-response example is an example of such a process. Infrastructure would be as
well—as more data are created, the solutions become more robust and uncertainty is
reduced. The results permit us to make better decisions as the data improve our
understanding.
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Chapter 5

Bayesian Inference as a Tool to
Optimize Spectral Acquisition in
Scattering Experiments

Alessio De Francesco, Luisa Scaccia, Martin Bohem
and Alessandro Cunsolo

Abstract

Nowadays, an increasing number of scattering measurements rely on the use of
large-scale research facilities, which is usually granted after highly competitive peer-
reviewing and typically for short-time lapses. The optimal use of the allocated time
requires rigorous estimates on the reliability of the data analysis, as inferred from the
limited statistical accuracy of the measurement. Bayesian inference approaches can
significantly help this endeavor by providing investigators with much-needed guid-
ance under challenging decisions on experimental time management. We propose
here a method based on the real-time data analysis of running experiments, which
fully exploits the core strengths of Bayes theorem. The procedure is implemented in
sequential steps in which the spectral measurement is adjourned by summing to it
successive acquisition runs, and the spectral modeling is upgraded accordingly. At
each stage, the statistical accuracy of the measurement improves, and a more
grounded joint posterior distribution is drawn and used as a prior in the subsequent
data acquisition stage. The gradual reduction in the model parameters’ uncertainty
down to the targets set a priori by experimenters provides a quantitative “success
criterion,” which helps prevent oversampling during acquisition. A similar “on the
fly” data modeling, might substantially change the way large-scale facilities operate.

Keywords: Bayesian inference, neutron and X-ray scattering, spectroscopy, MCMC
methods, Bayes theorem, Brillouin neutron scattering

1. Introduction

Nowadays, fundamental and applied research in Condensed Matter Physics relies
heavily on the use of large research infrastructures. These include continuous or
spallation neutron sources or X-rays synchrotron facilities present today worldwide.
Often, sources of neutrons and X-rays are indeed found in the same geographical
place, given the recognized complementarity of these two powerful spectroscopic
techniques for the study of matter. This is the case of the European Photon and
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Neutron (EPN) campus in Grenoble, France, which hosts the Institut Laue-Langevin
(ILL) [1], and the European Synchrotron Research Facility (ESRF) [2]. Similarly, both
neutron and X-ray facilities are hosted by the Rutherford Appleton Laboratory in
Ozxfordshire, UK, (ISIS and Diamond, respectively) [3, 4], by the Paul Sherrer Institut
in Villigen, Swiss (SINQ and SLS) [5, 6], and soon by the city of Lund, Sweden (ESS
and Max IV Laboratory, respectively) [7, 8]. Large-scale facilities are accessible to
scientists for beam-time allocation through a highly competitive proposal selection
carried out by expert panels through peer-review processes. Based on this peer-review
outcome, the number of days (or even hours) assigned to an experiment is thoroughly
pondered. It readily appears how critical is to establish an optimal experimental
strategy enabling to gather the most informative and precise data out of an approved
measurement. For this purpose, one needs to evaluate not only the ideal number of
samples and related physical and chemical conditions, but frequently (if not always, in
neutron scattering experiments) the time needed for a certain number of ancillary
measurements that are mandatory to achieve a clean set of data. These include accu-
rate measurements of the resolution function, the background signal, and spurious
intensity effects, in which the raw measurement needs to be precisely corrected for.
Therefore, an optimal use of the beam time assigned to an experiment would greatly
benefit from a quantitative criterion to take sensible decisions during the measure-
ment. Here, we propose a simple method to achieve such a criterion based on Bayesian
statistics and its inferential capabilities [9-11]. In Section 2, we briefly describe an
inelastic neutron or X-ray measurement and the main concerns rising when deciding
its duration. In Section 3, we focus on the output of a Brillouin Neutron scattering
(BNS) experiment: the spectrum of density fluctuations of a system; in particular, we
show how one can use a Bayesian approach to model this observable. In the same
section, we recall a fundamental property of the Bayes theorem that makes it suited to
a recursive use for data analysis purposes. To demonstrate the potentialities of this
approach, we reproduce the results of a typical BNS measurement by generating
simulated experimental spectra. We then summarize the results of an on-the-fly data
modeling of these spectra, which enables us to draw a joint posterior distribution for
the adopted model parameters eventually guiding the decision on when conveniently
stop a spectral acquisition.

Such a running analysis should establish the premises for developing a Measure-
ment Integration Time Optimizer (MITO), a computational tool to assist scattering
experiments in large-scale research facilities. In Section 4, we will shortly mention
aspects of the approach described which deserves attention or caution; finally, in
Section 5, conclusions and possible perspectives are outlined.

2. Neutron and X-ray scattering measurements

The main outcome of neutron and X-ray scattering measurements is the rate N of
neutrons or photons scattered at an angle 20 with energy changed by an amount %o,
and ultimately captured by an array of detectors intercepting a finite solid angle. Aside
of instrumental factors such as flux, detector efficiency, or detector sensitive area, the
intensities recorded by the detectors depend on the physicochemical properties of the
sample via its spectrum of density fluctuation, S(Q, E) [12], which conveys insights on
the structure (positions) and the dynamics (movements) of the atoms in the sample.

Obviously, the longer the detector counting, the more accurate the spectral shape
determination. In fact, the number of neutron (x-ray) counted within an integration
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time ¢, Nit, obeys to a Poisson distribution, its standard deviation thus being v/N. As
the integration time ¢ increases, the counting statistics improves as the relative exper-

imental errors (~ 1/v/N =1/ \/Iﬁ) decreases. Hence, the chance to detect interesting
details of the spectral shape ultimately depends, of course, on the sample properties,
but also on the accuracy of the intensity measurement. A difficulty to be faced in
typical INS spectral acquisitions is that the measurement might be terminated prema-
turely, that is, before providing the information sought for. This possibility appears
especially penalizing if the counting statistics achieved is not accurate enough, the
spectral features not well-defined, or the signal sought for very weak. Conversely,
data can also be integrated longer than strictly needed to capture the effect under
scrutiny. In this case, further prolonging the counting would not complement the
insight of the measurement significantly, and, beyond some time lapse, would not
even improve its quality. Even worse, it could jeopardize the ultimate success of the
experiment due to the time waste, which could prevent the accomplishment of the full
experimental plan.

Without digging into computational details, here we outline a strategy to support
experiments with a Bayesian protocol providing useful assistance in the measure-
ment’s planning and decision making. This will help investigators to determine when
the integration time of a spectral acquisition can be safely stopped, either because all
useful information was gathered, or because the predetermined target established for
relative uncertainties was reached. For the sake of simplicity, we will focus on an
exemplary inelastic neutrons scattering (INS) case, with the implicit assumption that
the method can be safely extended to X-rays scattering (IXS), in fact being generally
valid for any spectroscopy measurement. We stress that the case we are considering is
very likely also the most demanding in terms of computational effort for reasons that
will be briefly illustrated later in this chapter.

3. Inelastic neutron scattering

As mentioned, the general aim of an INS measurement is to measure the spectrum
of density fluctuations S(Q, E), which conveys insights on positions and movements
of the atoms in a sample. Oversimplifying, depending on the spectrometer we use to
determine it, we can have access to different aspects of S(Q, E), either relating to
collective movements of atoms (e.g., acoustic waves, structural relaxation processes),
single-particle ones (e.g., translational diffusion, rotations, librations ... ), or both. To
measure S(Q, E) of a given system one can use two different types of neutron spec-
trometers: triple axis spectrometers (TAS) and time-of-flight (TOF) ones.

Here, we assume to execute measurements with a TOF spectrometer [13] where
S(Q, E) surfaces are sampled, ideally, for each Q and E values simultaneously [14]. The
rate of neutrons scattered at the different scattering angles 20 (see Appendix A) and
impinging on the sensitive area of the detector after a time (of flight) ¢ defines the time-
dependent intensity function I(20,¢). The latter is converted into an intensity I(Q, E),
which is a function of the momentum, Q, and the energy, E = fw, exchanged between
sample and probe particles, with 7 and @ being the reduced Planck constant and the
exchanged frequency, respectively. In Appendix A, a sketch of the BRISP spectrometer
and few hints about the principles of the TOF technique are shortly recalled.

Aside from instrumental effects such as energy resolution and signal background,
I(Q, E) is proportional to S(Q, E), which is the physical variable, INS (and IXS)
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investigators usually seek for. To sample and gather this intensity function with
adequate counting statistics, providing us the needed information, a certain acquisi-
tion time is required, which depends on the characteristics of the instruments (inci-
dent neutron flux, detector efficiency, resolution ...) and on the scattering properties
of the sample. These are embodied in its double differential cross section d’c/dQAE
[12, 14] defined as the number of neutrons deviated in a second into the small solid
angle AQ subtended by a detector along the 20 direction, with final energy included
in the interval between E and E + AE [14]. More explicitly:

B d*c
"~ dQdE

N JAQAE. (1)
where ] represents the incident flux of neutrons.

To summarize, the image of the S(Q, E) is being built up as the measurement runs,
and the larger the acquisition time, the more precise is the S(Q, E) rendering. To avoid
data loss of the entire measurement in case of instrument failure, the measurement is
usually split into different sub-runs which, for the sake of simplicity we will hereafter
assume to have the same acquisition time.

3.1 A Brillouin neutron scattering measurement

Once the S(Q, E) surface is measured, different constant Q cuts of it are deter-
mined by interpolation. As an example of a typical INS measurement outcome, in
Figure 1 we show the spectrum of liquid silver at Q = 6nm ! measured with the
Brillouin spectrometer BRISP [15] at the High Flux Reactor of the Institut Laue
Langevin (Grenoble, France) [16, 17]. The spectral intensity has the typical shape of
the spectrum from a disordered samples, which consists of a central peak broadened
around the elastic energy E = 0 sided by a pair of inelastic peaks shifted from the
elastic energy by an amount of +#®;, which defines the energy of the excitation. The

%1073

s
n

I[(Q.E) (arbit. units)

05

0
E(meV)

Figure 1.

Dygnuamic structure factor of liquid silver measured on the Brillouin spectrometer BRISP at a momentum transfer
Q = 6 nm™* and an incident energy E, = 83.9 meV. The experimental data points ave affected by resolution
broadening. The dashed dot line is a fit obtained from an oversimplified model: A central Loventzian line is
summed to a damping harmonic oscillators (DHO) function to describe the inelastic excitations [16].
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peaks sitting at positive and negative energy are respectively the well-known Stokes
and Anti-Stokes lines of a Brillouin spectrum [18].

3.2 Modeling through a Bayesian approach

Let us assume that measured data can be described by a chosen model specified by
the vector ® = (64, 65, -+, 0,,), whose generic component 6,, is a model parameter. For
the sake of generality, we include the possibility that some ® components, instead of
being the parameter of a well-identified model, designate instead one model option
among several competitive ones whose reliability is to be concurrently tested [10, 19].
The vectory = (yl, Vo>t yn) indicates instead the measured dataset with # being the
sample size that is the number of data points. With this notation in mind, we can
express the Bayes theorem [20] as follows:

(o) = U, @

where P(O]y) is the posterior distribution of the parameters built according to the
experimental outcome, P(®) is the prior distribution (or simply prior) of the parame-
ters, that is, that in one’s hands before any data measurement, P(y|®) is the likelihood of
the data, that is, the probability of observing the data conditional on a certain parameter
vector, and P(y) is the marginal probability of the data, which plays the role of normal-
izing constant, so that Eq. (2) has a unit integral over the variable ®. We stress that the
prior probability includes all our initial knowledge (or ignorance) and can be more or
less informative depending on the preliminary insight we got on the problem at hand.
Bayes’ theorem is therefore a prescription on how to learn from experience, insofar as it
gives a golden rule to update one’s beliefs in light of the accrued data.

Now let us imagine to have achieved a portrayal of S(Q, E) of a given sample from
a measurement run of a certain duration ¢;. We can ideally try to fit this first rough
S(Q, E). This will provide a first joint multi-dimensional posterior distribution of the
parameter vector ®, which likewise improves our knowledge of model parameters
with respect to the prior we started with. It is meaningful to think about this posterior
as an updated prior to feed back into the Bayes theorem, as we keep gathering new
data in the experiment.

Unfortunately, the posterior distribution has no explicit analytical expression, thus
being of hardly any use to feed back in the Bayes theorem again. We then measure a
second run, which, with no loss of generality, can be assumed for simplicity of the
same duration t; = t; of the first one. New data can be certainly add to the old ones to
get a new, more accurate, dataset.

Upon indicating data gathered during the first and second run, respectively, as
¥y = 12 y,) andy' = (¥1,95 -+, ), we can formally express the posterior distri-
bution of the parameters vector, conditionally on the complete collection of data, as

P(Bly,y) = W 3)

which is a mere formulation of the Bayes theorem. We observe how the prior we
have now is just the posterior distribution for the vector parameter ® having already
observed the dataset .
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The datasets y’ and y being independent, we have that P(y'|®,y) = P(y'|®) and
P(y'ly) = P(y'). On the other hand, we can apply again the Bayes theorem to get
P(Bly) = P(y|®)P(®)/P(y). Doing the substitutions, Eq. 3 becomes:

R UL

(4)

Once again, y" and y being independent, we have P(y'|®)P(y|®) = P(y’,y|®) and
P(y")P(y) = P(y',y) for the property of the joint probability of independent variables.
Eq. (4) becomes:

P(Oly.y) = w (5)

We finally observe that the posterior probability for the vector © given the datasets
¥’ and y can be obtained via Eq. (3) provided the posterior we derived after the first
measurement is used as a new prior. This is equivalent to using as a prior the one we
started with, yet multiplied for the likelihood pertinent to (inclusive of) all data
collected thus far.

We can thus apply Eq. (5) in a recursive fashion to analyze on the fly neutron
scattering data as we collect them. We would like to determine the most appropriate
total acquisition time based on solid statistical arguments and with the prospect of
inferring something about the quality of the data collected. The ultimate goal would be
to have the possibility of ending the acquisition when the maximum level of informa-
tion that can be obtained from the measurement has already been reached. Further
prolonging the acquisition would not bring any extra relevant information. Certainly
deciding when the measurement can reasonably be interrupted is at the discretion of
the experimenter who may still want a specific precision from the measurement.

3.3 Simulation of a Brillouin neutron scattering experiment

Let us imagine to perform a BNS measurement. The instrument will acquire
scattering intensity for a certain time, splitting such an acquisition in separate runs of
the same duration. We can focus now on the spectrum corresponding to a constant Q
cut of the S(Q, E) we are measuring. To visualize this, we can generate simulated
experimental data as they were actually measured. Table 1 provides the parameters

Parameter Value
A, 33
o) 4
Q, 8
I 0.8
I, 1
A 10
A, 5
Table 1.

Absolutes parameter values for the model from which the simulated datasets were drawn.
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setting used in the simulation study. These otherwise arbitrary parameter values are
chosen to reproduce a typical spectrum collected in a neutron or X-ray scattering
measurement on an amorphous system. More specifically, we have tuned the param-
eters so to obtain barely resolved inelastic contributions to the spectrum, which is a
typical problem faced in routine measurements. Indeed, because of the limited
instrument resolution and finite counting statistics, whenever the excitation features
are not sufficiently sharp, that is, adequately separated and broadened by small
damping, they can blend to each other and partially merge into the dominant central
peak, which makes their detection challenging. In these cases, the limited acquisition
time of a single measurement become an even more constraining factor. Therefore,
the chosen parameter set is suitable to mimic a typical scenario encountered in scat-
tering studies on disordered systems. In Figure 2, we show one of these datasets
randomly generated using the following simple model:

S(Q,E) = R(E)® S(Q,E) (6)

where ® indicates the convolution product, R(E) = ﬁc exp (— %) is the instru-

ment resolution function, assumed to have a zero-centered Gaussian profile with a2
variance, which in the present case gives a FWHM = 3.1 meV. Once again, we suppose
to use the BRISP spectrometer with an incident energy Eo = 80 meV, as achieved by
using the (004) reflection from a Pyrolytic Graphite monochromator [15]. The
dynamic structure factor is here approximated as:

E

2
S(Q.E) = A(Q)S(E) + [n(E) + 1] = {Z %Ak(Q)DHOk(Q, E)} )
k=1

where §(E) is the Dirac Delta function describing the elastic response of the
system modulated by an intensity factor A.(Q), DHO;, are k inelastic contributions to
the spectrum described by Damped Harmonic Oscillator (DHO) functions [21],

14

[(Q.E) (arbit. units)
& @ ® © M

N

Figure 2.

Generated spectrum as dvawn from the model in Eqs. (6) and (7) at a Q value of 5 nm™*. This spectrum simulates
the data as they could appear after a very short acquisition run. The plotted quantity is in fact the scattered
intensity, to which the dynamic structure factor is proportional.
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n(E) = (eF/ksT — 1) s the Bose factor expressing the detailed balance condition, kg is
the Boltzmann constant, and we have chosen the temperature T=1337 K. Finally, the
simulated experimental data points are corrupted by an additive random fluctuation

e(Q,E):
9(Q,E) =S(Q,E) + ¢(Q,E), (8)

with £(Q, E) ~ NV (0,625(Q, E)), for any Q and E, where the symblol ~ means
“distributed according to,” N denotes the Gaussian distribution and ¢ is a constant
factor to be estimated on the experimental data.

We can then generate as many experimental runs as we wish and sum them as
usually done. When a scattering measurement is actually performed in the large-scale
facilities above mentioned, the beam time granted to researchers is probably the most
critical requisite for a successful experiment. The number of equal duration measure-
ment runs on a given sample provides the total time allotted for that sample. In
Figure 3, we show data as they result from the sum of 20 runs of identical integration
time to qualitatively visualize the improvement in data precision and spectral shape
definition that can be achieved by enhancing the counting statistics through a factor
20 increase of the acquisition time.

We will try now to fit our experimental data using a Bayesian Markov Chain
Monte Carlo (MCMC) [22] algorithm equipped with a Reversible Jump option (R])
[23], as explained in detail in Refs. [10, 11]. This algorithm allows to draw values from
a distribution which is only known up to a normalization constant and thus to simu-
late the joint posterior distribution of the parameter vector of the model, ©, as defined
in Eq. 7. The analytical evaluation of the normalization constant is in fact usually really
hard if not impossible at all. We again stress that in this simplified model the number %
of inelastic components contributing to the spectrum is in itself a free model param-
eter to be estimated conditionally on available data. Notice that the R] option allows
the MCMC algorithm to explore models with different numbers k of inelastic compo-
nents with k = 1... Ry, kmax being the maximum number of excitations allowed. As a
first step, the first measurement run is best fitted by the model and the first-level

12 " T .

10

Q.E) (arbit. units)

R
0 Lo :

-10 -5

0
E (meV)

Figure 3.
Sum of 20 generated spectra as drawn from the model in Egs. (6) and (7).
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posterior distribution of the model parameters vector is thus obtained. Once the
corresponding marginal distribution P(k|y) has been computed, the best-fit model
conditional to the first experiment run can be determined. After a second run of data
y' is available, this is added to the previous one and the MCMC algorithm is used on
the complete data to obtain a new joint posterior P(®|y, y’). Parameter estimates from
the first run can be used as starting values to speed up convergence. The process
repeats itself as new runs become available.

Here below (Figures 4-6) we show the posterior distribution for some of the
model parameters when the data are analyzed considering 5, 10, 20, 40 and finally 60
runs. We emphasize again that at each step we are applying the Bayes theorem,
feeding back the posterior we obtained at a previous step as a prior (new knowledge
about the data) for the following step. The likelihood is enriching itself more and more
as long as we acquire new data. In the present example, the algorithm finds as best
model the one with two inelastic modes as it should be desirable since the generation
model is the one in Eq. (7). In fact because of the random error added to simulate a
real experimental dataset, especially if the inelastic modes are chosen to have fre-
quencies close to each other and/or large damping, it is not straightforward to find the
number of modes predicted by the model whatever is the amount of data considered.

Figure 4 clearly demonstrates that the posterior distribution for the inelastic shifts Q;
and €, of the spectrum get sharper upon increasing the number of runs considered in the
analysis. The distribution becomes better shaped, peaked, and symmetric providing, of
course, a better estimate of the model parameters. Still, if we take the mean of the posterior
distribution for Q; (or for Q,) after 40 runs and we compare it with the one obtained after
60 runs, the difference between these two means is about 1%; when comparing instead the
mean after 5 runs with the mean after 60 runs, the difference amounts to less than 3%
which very likely is already smaller than experimental uncertainties typically reported in
dispersion curves displayed by scientific papers. Similar considerations hold for the other
two parameters defining the damped harmonic oscillators, namely the peak amplitudes A,
and A; and the dampings I'y and I'; (Figures 5 and 6) [24].

In Figures 7 and 8, the best fit after 5 runs and 60 runs sum spectra is shown along
with the estimated DHO components and the central elastic contribution.

In Figure 9, we report the posterior distribution function for the number of the
detected inelastic modes as a function of the number of runs considered in the

P(ly)

P(|y)

Qy (meV)

Figure 4.
Posterior distribution of the two excitation frequencies as estimated from the Bayesian analysis after 5 (green), 10
(purple), 20 (yellow), 40 (brown), and 60 (blue) experimental runs.
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Figure 5.
Posterior distribution of the dampings of the two excitations as estimated from the Bayesian analysis after 5, 10,
20, 40, and 60 experimental runs.

e 1.2

Figure 6.
Posterior distribution of the amplitudes of the two excitations estimated from the Bayesian analysis after 5, 10, 20,
40, and 60 experimental runs.

analysis. It is evident that as the experimental evidence becomes more precise, the
probabilities associated with a higher number of modes progressively vanish.

To conclude we briefly draw the reader’ attention on the necessity to assess
convergence of the MCMC algorithm before using its output for inferential purposes.
In literature, a great deal of effort has been spent in developing convergence diagnos-
tic tools for MCMC. Some of these tools are specifically intended to check conver-
gence of the Markov chain to the stationary distribution, or to check for convergence
of summary statistics, such as sample means, to the corresponding theoretical quanti-
ties. For a recent review of the subject, see Ref. [25]. Although many convergence
criteria and stopping rules with sound theoretical foundation have been proposed, in
practice MCMC users often decide convergence by applying empirical diagnostic
tools, in particular graphical methods. The most common graphical convergence
diagnostic method is the trace plot, which is a time series plot showing the values of
the model parameters at each sweep against the sweep numbers. The trace plot
enables to visualize the capability of the Markov chain in exploring the parameter
space. For example, the presence of flat bits reveals that the MCMC algorithm gets
stuck in some part of the parameter space and is a symptom of slow convergence. This
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Figure 7.
Simulated spectra (blue dots) at a Q value of 5 nm™" as obtained summing 5 runs dvawn by the model in Eq. (7).
The best-fit model (ved curve) to the drawn data and the estimated DHO components (black and green line) are

also shown. The dash dot magenta line is the estimated elastic central component.
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Figure 8.

Simulated spectra (blue dots) at a Q value of 5 nm™" as obtained summing 60 runs drawn by the model in

Eq. (7). The best-fit model (red curve) to the drawn data and the estimated DHO components (black and green
line) are also shown. The dash dot magenta line is the estimated elastic central component.

happens when too many proposals are rejected consecutively. On the other hand,
when proposals are too easily accepted, the algorithm may move slowly not exploring
the parameter space in an efficient way. In this case, the trace plots would show visible
trends or changes in spread, implying that stationarity has not been reached yet. Often
Bayesian statisticians refer to a “hairy caterpillar” when describing trace plots and
what they should look like. In Figure 10, we report trace plots for the excitation
frequencies and for the number of inelastic modes in the spectrum. Another helpful
graphical method is the running mean plot, which shows parameters’ time-average
estimates against the iterations. This line plot should stabilize to a fixed value as
iteration increases (Figure 11).
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Top panel: Posterior distribution function for the number k of inelastic modes detected in the simulated Brillouin
spectrum as a function of acquisition time. From top to bottom, the results after 5, 10, 20, 40, and 60 experimental
runs. Bottom panel: As in the top panel but at the very top of the figure the posterior of k after only 1 run also is
shown. In the insets, two different priors P(k) are shown. In the top panel a uniform prior for k is plotted. In the
bottom panel, a modified (see text) binomial prior distribution has been chosen for comparison.
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Left panel: Trace plot for the excitation frequencies in the spectrum obtained summing 20 experimental runs. Right
panel: Trace plot for the number k of DHOs for the same data.
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Figure 11.

Left panel: Q, , time-average estimates as a function of algorithm sweep. Right panel: Cumulative occupancy
fraction for the most visited models.

4. A few caveats and additional remarks

For some neutron scattering techniques, the raw data are not immediately avail-
able for a reliable lineshape analysis since collected intensities are affected by many
spurious contributions. Indeed, the intensity ultimately detected contains, beside the
genuine signal from sample, the unwanted ones coming from the empty cell, multiple
scattering, sample environment, background; furthermore, it partly results from
misguiding effects such as sample auto-shielding and detector efficiency. The impor-
tance or even the presence of such spurious effects changes for different neutron
techniques; in this perspective, dedicated considerations and suitable adjustments to
the recursive method proposed might be required. Data in the test discussed here are
assumed to be already corrected for all these effects, that is, already cleaned from any
unwanted contribution. Therefore, this is an ideal case, which might be not always
straightforward applicable. Differently a reducing data routine has to be performed in
advance. Nevertheless, depending on the technique an effort might be done to recog-
nize some quality parameter to draw out the same conclusions that we can get from
the model parameters we have seen here above. It is also true that in other neutron
techniques, the possibility to reduce the data rapidly letting them available for an on
the run analysis is preventing the problems here aforesaid and this is even more true
for IXS.

Overall, the results of the test discussed are not surprising, as an improvement of
the statistical accuracy expectedly enhances the precision of the parameters’ determi-
nation. Nonetheless, this simple analysis shows how informed decisions about ending
or continuing a measurement can be taken based on quantitative grounds. The
knowledge of an entire multi-dimensional joint posterior distribution, the evolution of
its mode, and overall shape upon increase of the acquisition time could help us to
establish not only if data collected are sufficiently integrated but if further counting
can enhance the measurement’s insight. To this purpose, we can illustrate briefly an
example slightly different from the one proposed before. Let us assume that the
dynamic structure factor features two pairs of inelastic peaks (shoulders), for exam-
ple, not only the one observed in the previous example, but, as normally the case for
liquids [16, 26], an additional one which, for some reason, does not emerge clearly
from the spectral shape. For instance, at low Q°s, the first pair can be completely
submerged by the resolution tails, while at larger Q°s, the paired modes can become
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highly damped barely standing out from the background, while, at even larger Q°s,
they can move out of the energy window covered. Furthermore, if the counting
statistics is poor, the marginal posterior distribution for the number of modes can
convey ambiguous information and, in some instances, the presence of the second
pair of inelastic modes can be overlooked. With an on-line analysis of spectra under
collection, one can likely appreciate the possible evolution of such a distribution upon
increasing the integration time. For instance, at the early stages of the experiment
such a distribution may lead to infer a single pair of inelastic modes, while two (or
more) pairs can be inferred as the measurement progresses. However, the incorpora-
tion of the Occam’s razor principle [11, 27] in the Bayes theorem represents a safe
antidote against the risk of overparametrization, especially when the counting statis-
tics is still poor. This can be sufficient to keep the value of k from exceeding its true
value, which in this example is known to be 2. Figure 9 (top panel) illustrates how the
posterior distribution of the number of modes k evolves as a function of the integra-
tion time. This trend has a straightforward explanation if one considers the gradually
improving of statistical accuracy. At the beginning of the measurement, the algorithm
could struggle to establish the true value of k assigning not negligible probability to
models with a redundant number of modes. As the data are further harvested, the
posterior distribution becomes more accurate and the number of modes converges to
the most plausible one (i.e., # = 2). In Figure 9 (bottom panel), we show the evolu-
tion of the posterior distribution of & as a function of the measurement acquisition
time when a different prior for k is chosen. Since we have simulated experimental
runs from a model with two DHOs, in this specific case, we know that the best model
to fit the data must have two inelastic modes. Therefore, the chosen prior is a modified
binomial distribution which privileges a solution with two inelastic modes. In this
case, the prior was:

P(k) = (k’”“x B 1) (1 — )61 9)

where K4y is the maximum number of modes contemplated by the model and we
set # = 0.3. With this z value, the variable (k — 1) ~ Bin(ky, — 1; 7) and the different
values of the prior are reported in Figure 9 (inset of bottom panel). In this figure, we
have included also the results obtained by considering only a single experimental run.

Figure 12.
Posterior distribution function for the number k of inelastic modes detected in the spectrum after only one
experimental run.
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Figure 13.
Posterior distribution for the lower excitation frequency after one experimental run and 60 runs.

It appears that, when we have a firm prior knowledge about the system at hand, the
posterior distribution converges to its asymptotic value even faster. In fact after five
experimental runs we obtain a probability P(k = 2) already close to 90%. In Figure 12,
we show instead the values of the posterior distribution for k attained after a single
experimental run. When, as in this case, the counting statistics is really poor the
probabilities associated to values of k different from the expected value, that is, the
one of the generating model (k = 2) is not negligible. Finally, the evolution of the
posterior for the low-frequency excitation shift strikingly emerges from Figure 13 in
which we compare the results obtained either after a single run or after 60 runs.

5. Conclusions and perspectives

This chapter deals with a topic of pivotal interest for scattering experiments at
large-scale research infrastructures, as the optimal use of the usually short beamtime
allocated for the measurement. The analysis of simulated measurements presented
here demonstrates that the assistance of a Bayesian inference protocol can provide a
decisive advantage in the decision making and time optimization processes of routine
inelastic scattering experiments, and, more in general, of any scattering or diffraction
measurement. Specifically, we considered a prototypical neutron scattering study split
into shorter acquisition runs; Bayesian inference is used to analyze partial acquisitions
obtained by summing an increasing number of individual runs to ultimately guide the
investigator in his/her difficult decision on when to stop the beam counting. Such a
decision is based upon previously established success criteria, as the achieved evi-
dence for a physical phenomenon affecting the spectral shape, or the met targets in
the experimental uncertainties associated with a given lineshape modeling. In this
perspective, the development of a dedicated Measurement Integration Time Opti-
mizer protocol could be especially beneficial, as it would provide conventional neu-
tron or X-ray investigations with real-time Bayesian inference assistance. We believe
that the availability of a similar on-the-fly data analysis tool can drastically minimize
the time wasted in beamtime measurement, also holding the potential for a drastic
revision of the beamtime allocation process. In fact, with this novel data analysis tool,
decisions on beamtime assignment can be taken on the ground of spectral simulations
in which the spectra to be successively measured can be analyzed as obtained with
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different integration times. We anticipate that these novel inference tool can mark a
discontinuity in the workflow of typical scattering experiments at large-scale research
facilities.

Appendix A

Time-of-Flight neutrons instruments are a class of spectrometers which allows
measuring inelastic neutron scattering, providing insights into the dynamics of mat-
ter. In Figure 14, we show, as an example, BRISP, a direct geometry Brillouin spec-
trometer once installed in the reactor hall of the High Flux Reactor of ILL. The
neutrons scattered by the sample are collected by a highly pixeled detector covering a
certain angular range. The scattering angle 20 is defined as the angle between the
direct beam axis and the direction of the scattered neutrons (Figure 15). A Fermi
chopper device splits the continuous beam coming from the monochromator into 10
us bursts of neutrons and fixes for each burst an initial reference time. The wavevector
ko, hence the energy E of the neutrons impinging on the sample, are known and so is
the time to such incident neutrons take to fly from the reference initial time to the
sample position. The detector electronics suitably synchronized with the chopper
provides us a measure of the total time-of-flight ¢,,r from the reference time to a

Monochromator|  Shytter|  Monitor 1 | Honeycomb ~ Monitor 2

{comvergng) COlimator

2 ¢
o & A TR TN

| Diaphragm  Fermi chopper
Background chopper Detector vacuum fube
'Soller collimator Under vacuum

Figure 14.

Sketch of the Brillouin spectrometer BRISP. A monochromatized continuous beam, severely collimated is converted
in a pulsed beam by a Fermi chopper which labels each pulse with an initial reference time as the starter in a
running race. Once the neutrons interact with the sample they are scattered and finally collected by 2 D-pixeled
detector. Reproduced from ref. [28].

sample n: Iy

n: ko

Figure 15.

Sketch of the kinematic scattering triangle. Incident neutrons characterized by a wavevector ko are scattered by a
sample with a wavevector k,. The angle 20 between the incident and the scattered radiation is the scattering angle.
The vector Q =Kko-Kk, is the transferred momentum in the scattering process.
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specific pixel and of course the position and hence the distance traveled by each
scattered neutron. If we call #; the time the scattered neutron takes to fly from an
interacting atom in the sample to a specific detector pixel we have that:

L L
Lo =to +t1:v—0+l)—1 (10)
0 1

where L, L1 are the distances between the chopper and the sample and between
the sample and the detector, respectively, and v¢ and v; are the initial and final
velocities of the incident and scattered neutron.

From Eq. (10) it is straightforward to obtain the energy E; with which the neutron
reaches the detector and then the energy E = fiw transferred from the probe particle
to the sample. It is, in fact:

2
2
1 1 L 1 L
Elimv%—m<—1L> —m|—1 (11)
to

and

E:El—E():fla) (12)
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Abbreviations

BNS Brillouin neutron scattering

MITO Measurement Integration Time Optimizer
INS inelastic neutron scattering

IXS inelastic X-ray scattering

BRISP BRillouin spectrometer

DHO damped harmonic oscillator

MCMC Markov Chain Monte Carlo

RJ reversible jump

TOF Time Of Flight
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