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Preface

Matrix theory is a branch of mathematics that has been developing over many centu-
ries and has been successfully used in both theoretical research and applied science.

In a theoretical sense, matrix theory is a powerful tool used to develop research in 
such areas of mathematics as algebra, combinatorics, graph theory, statistics, and 
so on. It is also used to solve many engineering problems in the fields of acous-
tics, fluid dynamics, electromagnetics, solid mechanics, build technology, and 
communications.

This book consists of two sections. Section 1 contains six chapters devoted to the 
development of such fields of matrix theory as pencils of matrices, semi-infinite 
matrices, matrices with perturbed elements, the specific product of matrices, homo-
morphisms of matrices, and extension for informatics. 

In Chapter 1, H. Huang and M.-C. Tsai study the properties of matrices products 
related to the k-power preserver property. The authors introduce the subject and 
provide a literature review. The definitive theorem of Tsai is cited to emphasize the 
generality of results obtained in the author’s subsequent research. The generalization 
of theorems on the k -power linear preservers starts for the case of a set of general 
matrices on the field of complex numbers, which is proven for both the case of 
positive and negative powers of k. The preliminary theorem, generalizing the known 
theorem of Chan and Lim, is applied to prove the result. The fundamental theorem is 
proved for a variety of sets (spaces) of matrices, such as complex Hermitian matrices, 
symmetric matrices, positive definite matrices, diagonal matrices, and triangular 
matrices. All the considered cases differ by assumptions that apply to the properties 
of operators in the initial condition of the theorems. 

Chapter 2, by S. Zagorodnyuk, focuses on semi-infinite matrices, generalized eigen-
value problems, and orthogonal polynomials. The classical examples are Jacobi and 
Hessenberg matrices, which lead to orthogonal polynomials on the real line and to 
orthogonal polynomials on the unit circle. Pencils of semi-infinite matrices are related 
to various orthogonal systems of functions. The respective polynomials are defined 
as generalized eigenvectors of the pencil. The polynomials under investigation have 
a special orthogonality relation and they are useful for a series of physical and math-
ematical applications. The presented examples confirm that there is a certain relation 
to Sobolev orthogonal polynomials that is a challenge for further investigations.

In Chapter 3, A. Kazuo proposes the optimization matrix approach for the correct 
reordering of sentences in linguistics. The analysis starts with the usual methods 
based on the transformation of data characteristics that define the correctness of the 
transformed sentences. The chapter describes the maximal relative sequence evalua-
tion and applies it to resolve the problem of correcting the arrangement of the words. 
To do this effectively, additional means of evaluation, such as the recovery distance, 



should be used. To use this approach in a PC environment, the authors use Excel. 
However, even though the problem data are not big in size, the number of necessary 
columns grows drastically. A more effective approach consists of introducing tools 
that decrease the required amount of memory. The illustrated application of the lin-
earity matrix method confirms the effectiveness of the sentence reordering procedure 
in several examples. The evaluation of the obtained results demonstrates the possibil-
ity of using PC tools to check and correct big linguistic data.

In Chapter 4, A. N. Khimich et al. investigate the problems of weighted pseudoinverse 
matrices and weighted least squares (WLS). The first part of the chapter examines 
the sensitivity of the solution to the WLS problem with approximate initial data. The 
second part investigates the properties of a system of linear algebraic equations with 
approximate initial data and presents an algorithm for finding a weighted normal 
pseudosolution to the WLS problem with approximate initial data. The developed 
algorithm is extended for solving a WLS problem with symmetric positive semidefi-
nite matrices and an approximate right side. The third part of the chapter analyses 
the exactness of the numerical solution to the WLS problem with approximate initial 
data, discusses the software-algorithmic approaches for improving the accuracy of 
computer solutions, and estimates the total error of the solution to the WLS problem.

Chapter 5, by M. Hadish is devoted to the evaluation of the errors of periodic func-
tions by the Cesáro-Matrix product involving the conjugate Fourier series. The 
chapter presents an original approach related to the generalization of convergence of 
series that is not summarized in the classical sense. Evidence shows that the Cesáro-
Matrix approach is a powerful tool for obtaining the sum of series when both the 
usual matrix approach and Cesáro means are not applicable. The authors prove two 
theorems that generalize the classical results related to slowly convergent series. Some 
important corollaries, which are perspective for extraction of convergence for the spe-
cific slowly convergent series, follow from the theorems. This technique has potential 
use in many engineering problems in which the computations lead to the calculation 
of slowly convergent series.

In Chapter 6, by Ivan I. Kyrchei the notions of the MPCEP inverse and CEPMP inverse 
are expanded to quaternion matrices and introduced new generalized inverses, 
the right and left MPCEPMP inverses. Direct method of their calculations, that is, 
their determinantal representations are obtained within the framework of theory 
of quaternion row-column determinants previously developed by the author. In 
consequence, these determinantal representations are derived in the case of complex 
matrices.

Section 2, consisting of six chapters, focuses on practical medicine, information 
theory, heat transfer, and antenna synthesis as related to the formation of COVID-19’s 
genetic code, energy conversion processes, quantum information theory process-
ing, solving differential and linear equations, and branching solutions to nonlinear 
integral equations.

In Chapter 7, S. K. Lee and M. H. Lee propose the analytical justification of the 
parameters of the Covid-19 genetic code predicted experimentally. This is realized by 
involving the information theory proof based on the doubly stochastic matrix. The 
genetic code model is considered in the framework of two symmetric probabilistic 
IVXII



V

channels (DNA-RNA genetic code) with different parameters of input data, which 
differ from the classical ones proposed by E. Chargaff. Because the computational 
realization of the model was not implemented until now, the authors developed a 
simple solution using the information theory of doubly stochastic matrix over the 
Shannon symmetric channel. It was proved that DNA-RNA genetic code is some kind 
of block circulant jacket matrix. Moreover, the chapter explores the abnormal pat-
terns by block circulant, upper-lower, and left-right schemes that cover the distorted 
signal as well as the Covid-19 evolution.

In Chapter 8, G. Burel et al. demonstrate the application of linear algebra fundamentals 
to quantum information processing. It is shown that in many practical cases a matrix 
representation of the quantum systems is a powerful tool because it allows the use of 
linear algebra to better understand their behaviours and to better implement simula-
tion procedures. The authors focus on Joint EigenValue Decomposition (JEVD) for 
the development of quantum processing. The theoretical description of the method, 
which aims to find a common basis of eigenvectors of a set of matrices, is supported by 
the effective implementation of matrix-oriented programming languages (MATLAB 
or Octave). It is established how to determine the encoding matrix of a quantum code 
from a collection of Pauli errors that opens a perspective for future study related to the 
interception of quantum channels and identification of the quantum coder used by 
a non-cooperative transmitter. Using JEVD, the existence of a subspace of the whole 
Hilbert space, which captures the essence of the search process, is proved. In addition, 
an algorithm that allows us to check this result by simulation is given.

In Chapter 9, G. F. Crosta and G. Chen model three-phase, doubly fed induction 
(DFI) machines by the inductance matrices with related electric and magnetic quanti-
ties. It introduces the algebraic properties of the mutual (rotor-to-stator) inductance 
matrix, namely, its kernel, range, and left zero divisors. An exponential representa-
tion of an inductance matrix under suitable hypotheses is derived to obtain a simple 
recurrent formula for the powers of the corresponding infinitesimal generator. In 
addition, the transformation into an exponential form is derived axiomatically. The 
proof of the electric torque theorem is simplified owing to newly derived formula for 
the product of matrices that leads in relation to the Legendre transform. As a result, a 
simple realistic machine model with the broken three-fold rotor symmetry is dis-
cussed and some properties for the resulting mutual inductance matrix are obtained.

A new approach to solving a non-Fourier heat equation is developed by C. N. 
Mihăilescu et al. in Chapter 10. This leads to the necessity to check the validity/
limits of the integral transform technique on finite domains. The proposed technique 
is based on the eigenvalues and eigenfunctions of the respective matrices, and its 
applicability to both the laser and electron beam processing problems is examined. 
The advantage of the method is its ability to obtain a solution with a small number of 
iterations and high accuracy for the like Fourier equation. However, additional efforts 
are needed to apply the approach proposed for the non-Fourier heat equation that is 
explained by the slow convergence. One such effort is applying the extra-boundary 
conditions. To avoid the problem with convergence, a new mixed approach is elabo-
rated that provides the required characteristics of convergence.

In Chapter 11, M. Andriychuk focuses on the development of analytical-numerical 
methods for solving non-linear integral equations related to the generalized problem 
XIII
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of phase optimization. The definitive property of such equations is that they are 
non-linear because of the specificity of the problem under consideration; therefore, 
the non-uniqueness of solutions appears. To extract a set of solutions, the respective 
homogeneous non-linear integral equation that results in a non-linear eigenvalue 
problem is used. Effective numerical algorithms are developed to find the respective 
eigenvalues and eigenfunctions. The study of the eigenvalues’ peculiarities allows us 
to determine a set of points, in which the respective eigenvalues are equal to unity that 
determines the branching points of solutions. The total solution to the initial non-
linear equation can be presented in terms of the obtained eigenfunctions. The data 
of calculations testify to the ability of the proposed approach to finding solutions to 
non-linear integral equations numerically without large computations.

Chapter 12, by I. R. Ciric, focuses on the application of matrix differential equations 
for solving systems of linear algebraic equations. The accurate solutions were derived 
in terms of a new kind of an infinite series of matrices, which are truncated and 
applied repeatedly to approximate the solution. Each new term in these matrix series 
is obtained by multiplication on a matrix, which becomes as conditioned tending to 
the identity matrix that results in the effective applying the computations based on 
the iterative procedure. The solution method is flexible to change the initial problem’s 
parameters. Efficient computation of an approximate solution, applicable even to 
poorly conditioned systems, is demonstrated based on the alternate application of 
two different types of minimization of associated functionals. Large computation is 
not needed to obtain an approximate solution for large linear systems as compared to 
usual methods.

It is my great pleasure to thank all book authors for their enthusiasm, patience, and 
improvement of the chapters throughout the reviewing process. In addition, I express 
my sincere thanks to Ms. Jelena Vrdoljak for her professional support during the 
book’s preparation.

Mykhaylo Andriychuk,
Pidstryhach Institute for Applied Problemsof Mechanics and Mathematics, NASU,

Lviv Polytechnic National University,
Lviv, Ukraine
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Chapter 1

Linear K-Power Preservers and
Trace of Power-Product Preservers
Huajun Huang and Ming-Cheng Tsai

Abstract

Let V be the set of n� n complex or real general matrices, Hermitian matrices,
symmetric matrices, positive definite (resp. semi-definite) matrices, diagonal matri-
ces, or upper triangular matrices. Fix k∈n 0, 1f g. We characterize linear maps ψ :

V ! V that satisfy ψ Ak� � ¼ ψ Að Þk on an open neighborhood S of In in V. The k-power
preservers are necessarily k-potent preservers, and k ¼ 2 corresponds to Jordan
homomorphisms. Applying the results, we characterize maps ϕ,ψ : V ! V that

satisfy “tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
for all A∈V, B∈ S, and ψ is linear” or

“tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
for all A,B∈ S and both ϕ and ψ are linear.” The charac-

terizations systematically extend existing results in literature, and they have many
applications in areas like quantum information theory. Some structural theorems and
power series over matrices are widely used in our characterizations.

Keywords: k-power, power preserver, trace preserver, power series of matrices

1. Introduction

Preserver problem is one of themost active research areas inmatrix theory (e.g. [1–4]).
Researchers would like to characterize themaps on a given space ofmatrices preserving
certain subsets, functions or relations. One of the preserver problems concernsmaps ψ on
some setsV ofmatrices which preserves k-power for a fixed integer k≥ 2, that is,
ψ Ak� � ¼ ψ Að Þk for anyA∈V (e.g. [3, 5, 6]). The k-power preservers form a special class
of polynomial preservers. One important reason of this problem lies on the fact that the
case k ¼ 2 corresponds to Jordan homomorphisms.Moreover, every k-power preserver is
also a k-potent preserver, that is,Ak ¼ A imply that ψ Að Þk ¼ ψ Að Þ for anyA∈V. Some
researches on k-potent preservers can be found in [6–8].

Given a field , let Mn ð Þ, Sn ð Þ, Dn ð Þ, N n ð Þ, and T n ð Þ denote the set of n� n
general, symmetric, diagonal, strictly upper triangular, and upper triangular matrices
over , respectively. When  is the complex field , we may write Mn instead of
Mn ð Þ, and so on. Let Hn, Pn, and Pn denote the set of complex Hermitian, positive
definite, and positive semidefinite matrices, and Hn ð Þ ¼ Sn ð Þ, Pn ð Þ, and Pn ð Þ
the corresponding set of real matrices, respectively. A matrix space is a subspace of
Mm,n ð Þ for certain m, n∈þ. Let At (resp. A ∗ ) denote the transpose (resp. conjugate
transpose) of a matrix A.

3



In 1951, Kadison [9] showed that a Jordan ∗ -isomorphism on Mn, namely, a
bijective linear map with ψ A2� � ¼ ψ Að Þ2 and ψ A ∗ð Þ ¼ ψ Að Þ ∗ for all A∈Mn, is the
direct sum of a ∗ -isomorphism and a ∗ -anti-isomorphism. Hence ψ Að Þ ¼ UAU ∗ for
all A∈Mn or ψ Að Þ ¼ UATU ∗ for all A∈Mn by [[3], Theorem A.8]. Let k≥ 2 be a
fixed integer. In 1992, Chan and Lim ([5]) determined a nonzero linear operator ψ :

Mn ð Þ !Mn ð Þ (resp. ψ : Sn ð Þ ! Sn ð Þ) such that ψ Ak� � ¼ ψ Að Þk for all
A∈Mn ð Þ (resp. Sn ð Þ) (See Theorems 3.1 and 5.1). In 1998, Brešar, Martindale,
and Miers considered additive maps of general prime rings to solve an analogous
problem by using the deep algebraic techniques ([10]). Monlár [[3], P6] described a
particular case of their result which extends Theorem 3.1 to surjective linear
operators on B Hð Þ. In 2004, Cao and Zhang determined additive k-power preserver
on Mn ð Þ and Sn ð Þ ([11]). They also characterized injective additive k-power
preserver on T n ð Þ ([12] or [[6], Theorem 6.5.2]), which leads to injective linear k-
power preserver on T n ð Þ (see Theorem 8.1). In 2006, Cao and Zhang also character-
ized linear k-power preservers from Mn ð Þ to Mm ð Þ and from Sn ð Þ to Mm ð Þ
(resp. Sm ð Þ) [8].

In this article, given an integer k∈n 0, 1f g, we show that a unital linear map ψ :
V !W between matrix spaces preserving k-powers on a neighborhood of identity
must preserve all integer powers (Theorem 2.1). Then we characterize, for  ¼  and
, linear operators on sets V ¼Mn ð Þ, Hn, Sn ð Þ, Pn, Pn ð Þ, Dn ð Þ, and T n ð Þ that
satisfy ψ Ak� � ¼ ψ Að Þk on an open neighborhood of In in V. In the following descrip-
tions, P∈Mn ð Þ is invertible, U ∈Mn ð Þ is unitary, O∈Mn ð Þ is orthogonal, and
λ∈ satisfies that λk�1 ¼ 1.

1.V ¼Mn ð Þ (Theorem 3.4): ψ Að Þ ¼ λPAP�1 or ψ Að Þ ¼ λPAtP�1.

2.V ¼ Hn (Theorem 4.1): When k is even, ψ Að Þ ¼ U ∗AU or ψ Að Þ ¼ U ∗AtU.
When k is odd, ψ Að Þ ¼ �U ∗AU or ψ Að Þ ¼ �U ∗AtU.

3.V ¼ Sn ð Þ (Theorem 5.2): ψ Að Þ ¼ λOAOt.

4.V ¼ Pn or Pn ð Þ (Theorem 6.1): ψ Að Þ ¼ U ∗AU or ψ Að Þ ¼ U ∗AtU.

5.V ¼ Dn ð Þ (Theorem 7.1): ψ Að Þ ¼ ψ Inð Þdiag f p 1ð Þ Að Þ, … , f p nð Þ Að Þ
� �

, in which

ψ Inð Þk ¼ ψ Inð Þ, p : 1, … , nf g ! 0, 1, … , nf g is a function, and f i : Dn ð Þ ! 
i ¼ 0, 1, … , nð Þ satisfy that, for A ¼ diag a1, … , anð Þ, f 0 Að Þ ¼ 0 and f i Að Þ ¼ ai
for i ¼ 1, … , n.

6.V ¼ T n ð Þ (Theorem 8.4 for n≥ 3): ψ Að Þ ¼ λPAP�1 or ψ Að Þ ¼ λPA�P�1, in
which P∈ T n ð Þ and A� ¼ anþ1�j,nþ1�i

� �
if A ¼ aij

� �
.

Our results on Mn ð Þ and Sn ð Þ extend Chan and Lim’s results in Theorems 3.1
and 5.1, and result on T n ð Þ extend Cao and Zhang’s linear version result in [12].

Another topic is the study of a linear map ϕ from a matrix set S to another matrix
set T preserving trace equation. In 1931, Wigner’s unitary-antiunitary theorem [[3],
p. 12] says that if ϕ is a bijective map defined on the set of all rank one projections on a
Hilbert space H satisfying

4
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tr ϕ Að Þϕ Bð Þð Þ ¼ tr ABð Þ, (1)

then there is an either unitary or antiunitary operator U on H such that ϕ Pð Þ ¼
U ∗PU or ϕ Pð Þ ¼ U ∗PtU for all rank one projections P. In 1963, Uhlhorn generalized
Wigner’s theorem to show that the same conclusion holds if the equality
tr ϕ Pð Þϕ Qð Þð Þ ¼ tr PQð Þ is replaced by tr ϕ Pð Þϕ Qð Þð Þ ¼ 0⇔tr PQð Þ ¼ 0 (see [13]).

In 2002, Molnár (in the proof of [[14], Theorem 1]) showed that maps ϕ on the
space of all bounded linear operators on a Banach space B Xð Þ satisfying (1) for
A∈B Xð Þ, rank one operator B∈B Xð Þ are linear. In 2012, Li, Plevnik, and Šemrl [15]
characterized bijective maps ϕ : S! S satisfying tr ϕ Að Þϕ Bð Þð Þ ¼ c⇔tr ABð Þ ¼ c for a
given real number c, where S is Hn, Sn ð Þ, or the set of rank one projections.

In [[16], Lemma 3.6], Huang et al. showed that the following statements are
equivalent for a unital map ϕ on Pn:

1. tr ϕ Að Þϕ Bð Þð Þ ¼ tr ABð Þ for A,B∈Pn;

2. tr ϕ Að Þϕ Bð Þ�1
� �

¼ tr AB�1
� �

for A,B∈Pn;

3.ϕ Að Þ ¼ U ∗AU or U ∗AtU for a unitary matrix U.

The authors also determined the cases if ϕ is not assuming unital, the set Pn is
replaced by another set likeMn, Sn, T n, or Dn. In [[17], Theorem 3.8], Leung, Ng, and
Wong considered the relation (1) on infinite dimensional space.

Let Sh i denote the subspace spanned by a subset S of a vector space. Recently,
Huang and Tsai studied two maps preserving trace of product [18]. Suppose two maps
ϕ : V1 !W1 and ψ : V2 !W2 between subsets of matrix spaces over a field  under
some conditions satisfy

tr ϕ Að Þψ Bð Þð Þ ¼ tr ABð Þ (2)

for all A∈V1, B∈V2. The authors showed that these two maps can be extended
to bijective linear maps ~ϕ : V1h i ! W1h i and ~ψ : V2h i ! W2h i that satisfy
tr ~ϕ Að Þ~ψ Bð Þ� � ¼ tr ABð Þ for all A∈ V1h i, B∈ V2h i (see Theorem 2.2). Hence when a
matrix space V is closed under conjugate transpose, every linear bijection ϕ : V ! V
corresponds to a unique linear bijection ψ : V ! V that makes (2) hold (see Corollary
2.3). Therefore, each of ϕ and ψ has no specific form.

One natural question is to ask when the following equality holds for a fixed
k∈n 0, 1f g:

tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
: (3)

The second major work of this paper is to use our descriptions of linear k-power
preservers on an open neighborhood S of In in V to characterize maps ϕ,ψ : V ! V
under one of the assumptions:

1.equality (3) holds for all A∈V, B∈ S, and ψ is linear, or

2.equality (3) holds for all A,B∈ S and both ϕ and ψ are linear,

5
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for the sets V ¼Mn,Hn, Pn, Sn, Dn, T n, and their real counterparts. These results,
together with Theorem 2.2 and the characterizations of maps ϕ1,⋯,ϕm : V ! V (m≥ 3)
that satisfy tr ϕ1 A1ð Þ⋯ϕm Amð Þð Þ ¼ tr A1⋯Amð Þ in [18], make a comprehensive picture of
the preservers of trace of matrix products in the related matrix spaces and sets.

In the following characterizations,  ¼  or , P,Q ∈Mn ð Þ are invertible,
U ∈Mn ð Þ is unitary, O∈Mn ð Þ is orthogonal, and c∈n 0f g.

1.V ¼Mn ð Þ (Theorem 3.5):

a. When k ¼ �1, ϕ Að Þ ¼ PAQ and ψ Bð Þ ¼ PBQ, or ϕ Að Þ ¼ PAtQ and
ψ Bð Þ ¼ PBtQ .

b. When k∈n �1, 0, 1f g, ϕ Að Þ ¼ c�kPAP�1 and ψ Bð Þ ¼ cPBP�1, or ϕ Að Þ ¼
c�kPAtP�1 and ψ Bð Þ ¼ cPBtP�1.

2.V ¼ Hn (Theorem 4.2):

a. When k ¼ �1, ϕ Að Þ ¼ cP ∗AP and ψ Bð Þ ¼ cP ∗BP, or ϕ Að Þ ¼ cP ∗AtP and
ψ Bð Þ ¼ cP ∗BtP, for c∈ 1,�1f g.

b. When k∈n �1, 0, 1f g, ϕ Að Þ ¼ c�kU ∗AU and ψ Bð Þ ¼ cU ∗BU, or ϕ Að Þ ¼
c�kU ∗AtU and ψ Bð Þ ¼ cU ∗BtU, for c∈n 0f g.

3.V ¼ Sn ð Þ (Theorem 5.3):

a. When k ¼ �1, ϕ Að Þ ¼ cPAPt and ψ Bð Þ ¼ cPBPt.

b. When k∈n �1, 0, 1f g, ϕ Að Þ ¼ c�kOAOt and ψ Bð Þ ¼ cOBOt.

4.V ¼ Pn and Pn ð Þ (Theorem 6.4): ϕ Að Þ ¼ c�kU ∗AU and ψ Bð Þ ¼ cU ∗BU, or
ϕ Að Þ ¼ c�kU ∗AtU and ψ Bð Þ ¼ cU ∗BtU, in which c∈þ. Characterizations
under some other assumptions are also given as special cases of Theorem 6.2
(Huang, Tsai [18]).

5.V ¼ Dn ð Þ (Theorem 7.2): ϕ Að Þ ¼ PC�kAP�1, ψ Bð Þ ¼ PCBP�1 where P is a
permutation matrix and C ¼ Dn ð Þ is diagonal and invertible.

6.V ¼ T n ð Þ (Theorem 8.5): ϕ and ψ send N n ð Þ to N n ð Þ, D∘ϕð ÞjDn ð Þ and
D∘ψð ÞjDn ð Þ are characterized by Theorem 7.2, and D∘ϕ ¼ D∘ϕ∘D. Here D
denotes the map that sends A∈ T n ð Þ to the diagonal matrix with the same
diagonal as A.

The sets Mn, Hn, Pn, Sn, Dn, and their real counterparts are closed
under conjugate transpose. In these sets, tr ABð Þ ¼ A ∗ ,Bh i for the standard inner
product. Our trace of product preservers can also be interpreted as inner product
preservers, which have wide applications in research areas like quantum information
theory.
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2. Preliminary

2.1 Linear operators preserving powers

We show below that: given k∈n 0, 1f g, a unital linear map ψ : V !W between
matrix spaces preserving k-powers on a neighborhood of identity in V must preserve all
integer powers. Let þ (resp. �) denote the set of all positive (resp. negative) integers.

Theorem 2.1. Let  ¼  or . Let V ⊆Mp ð Þ and W ⊆Mq ð Þ be matrix spaces. Fix
k∈n 0, 1f g.

1.Suppose the identity matrix Ip ∈V and Ak ∈V for all matrices A in an open
neighborhood SV of Ip in V consisting of invertible matrices. Then

ABþ BA : A,B∈Vf g⊆V, (4)

A�1 : A∈V is invertible
� �

⊆V: (5)

In particular,

Ar : A∈Vf g⊆V, r∈þ, and (6)

Ar : A∈V is invertiblef g⊆V, r∈�: (7)

2. Suppose Ip ∈V, Iq ∈W, and Ak ∈V for all matrices A in an open neighborhood SV

of Ip in V consisting of invertible matrices. Suppose ψ : V !W is a linear map that
satisfies the following conditions:

ψ Ip
� � ¼ Iq, (8)

ψ Ak� � ¼ ψ Að Þk, A∈SV : (9)

Then

ψ ABþ BAð Þ ¼ ψ Að Þψ Bð Þ þ ψ Bð Þψ Að Þ, A,B∈V, (10)

ψ A�1
� � ¼ ψ Að Þ�1, invertible A∈V: (11)

In particular,

ψ Arð Þ ¼ ψ Að Þr, A∈V, r∈þ, and (12)

ψ Arð Þ ¼ ψ Að Þr, invertible A∈V, r∈�: (13)

Proof. We prove the complex case. The real case is done similarly.

1. For each A∈Vn 0f g, there is ϵ>0 such that Ip þ xA∈SV for all x∈ with

∣x∣< min ϵ, 1
∥A∥

n o
. Thus

Ip þ xA
� �k ¼ Ip þ xkAþ x2

k k� 1ð Þ
2

A2 þ⋯∈V: (14)

The second derivative
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d2

dx2
Ip þ xA
� �k����

x¼0
¼ k k� 1ð ÞA2 ∈V: (15)

Since k �∈ 0, 1f g, we have A2 ∈V for all A∈V. Therefore, for A,B∈V,

ABþ BA ¼ Aþ Bð Þ2 � A2 � B2 ∈V: (16)

In particular, A∈V implies that Ar ∈V for all r∈þ.
Cayley-Hamilton theorem implies that every invertible matrix A satisfies that

A�1 ¼ f Að Þ for a certain polynomial f xð Þ∈ x½ �. Therefore, A�1 ∈V, so that Ar ∈V for
all r∈�.

2.Now suppose (8) and (9) hold. The proof is proceeded similarly to the proof of
part (1). For every A∈V, there is ϵ>0 such that for all x∈ with

∣x∣< min ϵ, 1
∥A∥ ,

1
∥ψ Að Þ∥

n o
,

ψ Ip þ xA
� �� �k ¼ Iq þ xkψ Að Þ þ x2

k k� 1ð Þ
2

ψ Að Þ2 þ⋯∈W, (17)

ψ Ip þ xA
� �k� �

¼ Iq þ xkψ Að Þ þ x2
k k� 1ð Þ

2
ψ A2� �þ⋯∈W: (18)

since (17) and (18) equal, we have

ψ Að Þ2 ¼ ψ A2� �
, A∈V: (19)

Therefore, for A,B∈V,

ψ Aþ Bð Þ2
� �

¼ ψ Aþ Bð Þ2 (20)

We get (10): ψ ABþ BAð Þ ¼ ψ Að Þψ Bð Þ þ ψ Bð Þψ Að Þ. In particular ψ Arð Þ ¼ ψ Að Þr
for all A∈V and r∈þ.

Every invertible A∈V can be expressed as A�1 ¼ f Að Þ for a certain
polynomial f xð Þ∈ x½ �. Then ψ A�1

� � ¼ ψ f Að Þð Þ ¼ f ψ Að Þð Þ is commuting with ψ Að Þ.
Hence

2ψ A�1
� �

ψ Að Þ ¼ ψ A�1
� �

ψ Að Þ þ ψ Að Þψ A�1
� � ¼ ψ A�1Aþ AA�1

� � ¼ 2Iq: (21)

We get ψ A�1
� � ¼ ψ Að Þ�1. Therefore, ψ Arð Þ ¼ ψ Að Þr for all r∈�.

Theorem 2.1 is powerful in exploring k-power preservers in matrix spaces. Note
that every k-power preserver is a k-potent preserver. Theorem 2.1 can also be used to
investigate k-potent preservers in matrix spaces.

2.2 Two maps preserving trace of product

We recall two results about two maps preserving trace of product in [18]. They are
handy in proving linear bijectivity of maps preserving trace of products. Recall that if
S is a subset of a vector space, then Sh i denotes the subspace spanned by S.
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Theorem 2.2 (Huang, Tsai [18]). Let ϕ : V1 !W1 and ψ : V2 !W2 be two maps
between subsets of matrix spaces over a field  such that:

dim V1h i ¼ dim V2h i≥ max dim W1h i, dim W2h if g:
1.AB are well-defined square matrices for A,Bð Þ∈ V1 � V2ð Þ∪ W1 �W2ð Þ.

2. If A∈ V1h i satisfies that tr ABð Þ ¼ 0 for all B∈ V2h i, then A ¼ 0.

3.ϕ and ψ satisfy that

tr ϕ Að Þψ Bð Þð Þ ¼ tr ABð Þ, A∈V1, B∈V2: (22)

Then dim V1h i ¼ dim V2h i ¼ dim W1h i ¼ dim W2h i and ϕ and ψ can be extended to
bijective linear map ~ϕ : V1h i ! W1h i and ~ψ : V2h i ! W2h i, respectively, such that

tr ~ϕ Að Þ~ψ Bð Þ� � ¼ tr ABð Þ, A∈ V1h i, B∈ V2h i: (23)

A subset V of Mn is closed under conjugate transpose if A ∗ : A∈Vf g⊆V. A
real or complex matrix space V is closed under conjugate transpose if and only if V
equals the direct sum of its subspace of Hermitian matrices and its subspace of
skew-Hermitian matrices.

Corollary 2.3 (Huang, Tsai [18]). Let V be a subset of Mn closed under conjugate
transpose. Suppose two maps ϕ,ψ : V ! V satisfy that

tr ϕ Að Þψ Bð Þð Þ ¼ tr ABð Þ, A,B∈V: (24)

Then ϕ and ψ can be extended to linear bijections on Vh i. Moreover, when V is a vector
space, every linear bijection ϕ : V ! V corresponds to a unique linear bijection ψ : V ! V
such that (24) holds. Explicitly, given an orthonormal basis A1, … ,Aℓf g of V with respect
to the inner product A,Bh i ¼ tr A ∗Bð Þ, ψ is defined by ψ Aið Þ ¼ Bi in which B1, … ,Bℓf g
is a basis of V with tr ϕ A ∗

i

� �
B j

� � ¼ δi,j for all i, j∈ 1, … ,ℓf g.
Corollary 2.3 shows that when a matrix space V is closed under conjugate trans-

pose, every linear bijection ϕ : V ! V corresponds to a unique linear bijection ψ :
V ! V that makes (24) hold. The next natural thing is to determine ϕ and ψ that

satisfy tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
for a fixed k∈n 0, 1f g:

From now on, we focus on the fields  ¼  or .

3. k-power linear preservers and trace of power-product preservers on
Mn and Mn ð Þ

3.1 k-power preservers on Mn and Mn ð Þ

Chan and Lim described the linear k-power preservers onMn andMn ð Þ for k≥ 2
in [7, Theorem 1] as follows.

Theorem 3.1. (Chan, Lim [5]) Let an integer k≥ 2. Let  be a field with char ð Þ ¼ 0
or char ð Þ> k. Suppose that ψ : Mn ð Þ !Mn ð Þ is a nonzero linear operator such that
ψ Ak� � ¼ ψ Að Þk for all A∈Mn ð Þ. Then there exist λ∈ with λk�1 ¼ 1 and an invertible
matrix P∈Mn ð Þ such that
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ψ Að Þ ¼ λPAP�1, A∈Mn ð Þ, or (25)

ψ Að Þ ¼ λPAtP�1, A∈Mn ð Þ: (26)

(25) and (26) need not hold if ψ is zero or is a map on a subspace of Mn ð Þ. The
following are two examples. Another example can be found in maps on Dn ð Þ
(Theorem 7.1).

Example 3.2. The zero map ψ Að Þ � 0 clearly satisfies ψ Ak� � ¼ ψ Að Þk for all A∈Mn

but they are not of the form (25) or (26).
Example 3.3. Let n ¼ kþm, k,m≥ 2, and consider the operator ψ on the subspace

W ¼Mk⊕Mm of Mn defined by ψ A⊕Bð Þ ¼ A⊕Bt for A∈Mk and B∈Mm: Then
ψ Ak� � ¼ ψ Að Þk for all A∈W and k∈þ, but ψ is not of the form (25) or (26).

We now generalize Theorem 3.1 to include negative integers k and to assume the k-
power preserving condition ψ Ak� � ¼ ψ Að Þk only on matrices nearby the identity.

Theorem 3.4. Let  ¼  or . Let an integer k∈n 0, 1f g. Suppose that ψ :

Mn ð Þ !Mn ð Þ is a nonzero linear map such that ψ Ak� � ¼ ψ Að Þk for all A in an open
neighborhood of In consisting of invertible matrices. Then there exist λ∈with λk�1 ¼ 1 and
an invertible matrix P∈Mn ð Þ such that

ψ Að Þ ¼ λPAP�1, A∈Mn ð Þ, or (27)

ψ Að Þ ¼ λPAtP�1, A∈Mn ð Þ: (28)

Proof. We prove for the case  ¼ . The case  ¼  can be done similarly.
Obviously, ψ Inð Þ ¼ ψ Ikn

� � ¼ ψ Inð Þk.

1.First suppose k≥ 2. For each A∈Mn, there exists ϵ>0 such that for all x∈
with ∣x∣ < ϵ, the following two power series converge and equal:

ψ In þ xAð Þð Þk ¼ ψ Inð Þ þ x
Xk�1
i¼0

ψ Inð Þiψ Að Þψ Inð Þk�1�i
 !

þx2
Xk�2
i¼0

Xk�2�i
j¼0

ψ Inð Þiψ Að Þψ Inð Þ jψ Að Þψ Inð Þk�2�i�j
 !

þ⋯

(29)

ψ In þ xAð Þk
� �

¼ ψ Inð Þ þ xkψ Að Þ þ x2
k k� 1ð Þ

2
ψ A2� �þ⋯ (30)

Equating degree one terms above, we get

kψ Að Þ ¼
Xk�1
i¼0

ψ Inð Þiψ Að Þψ Inð Þk�1�i: (31)

Applying (31), we have

kψ Inð Þψ Að Þ � kψ Að Þψ Inð Þ ¼ ψ Inð Þkψ Að Þ � ψ Að Þψ Inð Þk ¼ ψ Inð Þψ Að Þ � ψ Að Þψ Inð Þ:
(32)
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Hence ψ Inð Þψ Að Þ ¼ ψ Að Þψ Inð Þ for A∈Mn, that is, ψ Inð Þ commutes with the range
of ψ .

Now equating degree two terms of (29) and (30) and taking into account that
k �∈ 0, 1f g, we have

ψ Inð Þk�2ψ Að Þ2 ¼ ψ A2� �
: (33)

Define ψ1 Að Þ ¼ ψ Inð Þk�2ψ Að Þ for A∈Mn. Then ψ1 A2� � ¼ ψ1 Að Þð Þ2 for all A∈Mn.

(31) and the assumption that ψ is nonzero imply that ψ Inð Þ 6¼ 0. So ψ1 Inð Þψ Inð Þ ¼
ψ Inð Þk ¼ ψ Inð Þ 6¼ 0. Thus ψ1 Inð Þ 6¼ 0 and ψ1 is nonzero. By Theorem 3.1, there exists
an invertible P∈Mn such that ψ1 Að Þ ¼ PAP�1 for A∈Mn or ψ1 Að Þ ¼ PAtP�1 for
A∈Mn. Moreover, ψ Inð Þ commutes with all ψ1 Að Þ, so that ψ Inð Þ ¼ λIn for a λ∈.
By In ¼ ψ1 Inð Þ ¼ ψ Inð Þk�1, we get λk�1 ¼ 1. Therefore, ψ Að Þ ¼ λψ 1 Að Þ. We get (27)
and (28).

1.Next Suppose k<0. For every A∈Mn, the power series expansions of

ψ In þ xAð Þð Þ�k and ψ In þ xAð Þk
� ��1

are equal when ∣x∣ is sufficiently small:

ψ In þ xAð Þð Þ�k ¼ ψ Inð Þ�1 þ x
X�k�1
i¼0

ψ Inð Þiψ Að Þψ Inð Þ�k�1�i
 !

þ⋯ (34)

ψ In þ xAð Þk
� ��1

¼ ψ Inð Þ�1 � xkψ Inð Þ�1ψ Að Þψ Inð Þ�1 þ⋯ (35)

Equating degree one terms of (34) and (35), we get

�kψ Inð Þ�1ψ Að Þψ Inð Þ�1 ¼
X�k�1
i¼0

ψ Inð Þiψ Að Þψ Inð Þ�k�1�i: (36)

Therefore,

�k ψ Að Þψ Inð Þ�1 � ψ Inð Þ�1ψ Að Þ
� �

¼ ψ Inð Þ
X�k�1
i¼0

ψ Inð Þiψ Að Þψ Inð Þ�k�1�i
 !

�
X�k�1
i¼0

ψ Inð Þiψ Að Þψ Inð Þ�k�1�i
 !

ψ Inð Þ

¼ ψ Inð Þ�kψ Að Þ � ψ Að Þψ Inð Þ�k ¼ ψ Inð Þ�1ψ Að Þ � ψ Að Þψ Inð Þ�1:

(37)

We get ψ Inð Þ�1ψ Að Þ ¼ ψ Að Þψ Inð Þ�1 for A∈Mn. So ψ Inð Þ�1 and ψ Inð Þ commute
with the range of ψ. The following power series are equal for every A∈Mn when ∣x∣ is
sufficiently small:

ψ In þ xAð Þð Þk ¼ ψ Inð Þ þ xkψ Inð Þk�1ψ Að Þ þ x2
k k� 1ð Þ

2
ψ Inð Þk�2ψ Að Þ2 þ⋯ (38)

ψ In þ xAð Þk
� �

¼ ψ Inð Þ þ xkψ Að Þ þ x2
k k� 1ð Þ

2
ψ A2� �þ⋯ (39)
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Equating degree two terms of (38) and (39), we get ψ Inð Þk�2ψ Að Þ2 ¼ ψ A2� �
: Let

ψ1 Að Þ≔ψ Inð Þk�2ψ Að Þ ¼ ψ Inð Þ�1ψ Að Þ. Then ψ1 Að Þ2 ¼ ψ1 A2� �
and ψ1 is nonzero.

Using Theorem 3.1, we can get (27) and (39).

3.2 Trace of power-product preserers on Mn and Mn ð Þ

Corollary 2.3 shows that every linear bijection ϕ : Mn ð Þ !Mn ð Þ corresponds
to another linear bijection ψ : Mn ð Þ !Mn ð Þ such that tr ϕ Að Þψ Bð Þð Þ ¼ tr ABð Þ
for all A,B∈Mn ð Þ. When m≥ 3, maps ϕ1,⋯,ϕm on Mn ð Þ that satisfy
tr ϕ1 A1ð Þ⋯ϕm Amð Þð Þ ¼ tr A1⋯Amð Þ for A1, … ,Am ∈Mn ð Þ are determined in [18].

If two maps on Mn ð Þ satisfy the following trace condition about k-powers, then
they have specific forms.

Theorem 3.5. Let  ¼  or . Let k∈n 0, 1f g. Let S be an open neighborhood of In
consisting of invertible matrices. Then two maps ϕ,ψ : Mn ð Þ !Mn ð Þ satisfy that

tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
, (40)

1. for all A∈Mn ð Þ, B∈ S, and ψ is linear, or

2. for all A,B∈ S and both ϕ and ψ are linear,

if and only if ϕ and ψ take the following forms:

a. When k ¼ �1, there exist invertible matrices P,Q ∈Mn ð Þ such that

ϕ Að Þ ¼ PAQ
ψ Bð Þ ¼ PBQ

�
or

ϕ Að Þ ¼ PAtQ
ψ Bð Þ ¼ PBtQ

�
A,B∈Mn ð Þ: (41)

b. When k∈n �1, 0, 1f g, there exist c∈n 0f g and an invertible matrix P∈Mn ð Þ
such that

ϕ Að Þ ¼ c�kPAP�1

ψ Bð Þ ¼ cPBP�1

 
or

ϕ Að Þ ¼ c�kPAtP�1

ψ Bð Þ ¼ cPBtP�1

 
A,B∈Mn ð Þ: (42)

Proof. We prove the case  ¼ ; the case  ¼  can be done similarly.
Suppose assumption (2) holds. Then for every A∈Mn ð Þ, there exists c∈n 0f g

such that In � cA∈ S, so that for all B∈ S:

tr Bk� � ¼ tr ϕ In � cAð Þ þ cϕ Að Þð Þψ Bð Þk
� �

¼ tr In � cAð ÞBk� �þ ctr ϕ Að Þψ Bð Þk
� �

:

(43)

Thus tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
for A∈Mn ð Þ and B∈ S, which leads to

assumption (1).
Now we prove the theorem under assumption (1), that is, (40) holds for all

A∈Mn ð Þ and B∈ S, and ψ is linear. Only the necessary part is needed to prove.
Let S0 ¼ B∈Pn : B1=k ∈ S

� �
, which is an open neighborhood of In in Pn. Define ~ψ :

S0 !Mn such that ~ψ Bð Þ ¼ ψ B1=k� �k
. Then (40) implies that
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tr ϕ Að Þ~ψ Bð Þð Þ ¼ tr ϕ Að Þψ B1=k
� �k� �

¼ tr ABð Þ, A∈Mn, B∈ S0: (44)

The complex span of S0 is Mn. By Theorem 2.2, ϕ is bijective linear, and ~ψ can be
extended to a linear bijection on Mn.

The linearity of ψ and (40) imply that for every B∈Mn, there exists ϵ>0 such
that In þ xB∈ S and the power series of In þ xBð Þk converges whenever ∣x∣ < ϵ. Then

tr ϕ Að Þ ψ Inð Þ þ xψ Bð Þð Þk
� �

¼ tr A In þ xBð Þk
� �

, A∈Mn, ∣x∣ < ϵ: (45)

1. First suppose k≥ 2. Equating degree one terms and degree k� 1ð Þ terms
on both sides of (45) respectively, we get the following identities for
A,B∈Mn:

tr ϕ Að Þ
Xk�1
i¼0

ψ Inð Þk�1�iψ Bð Þψ Inð Þi
 ! !

¼ tr kABð Þ, (46)

tr ϕ Að Þ
Xk�1
i¼0

ψ Bð Þiψ Inð Þψ Bð Þk�1�i
 ! !

¼ tr kABk�1
� �

: (47)

Let Ci : i ¼ 1, … , n2
� �

be a basis of projection matrices (i.e. C2
i ¼ Ci) in Mn. For

example, we may choose the following basis of rank 1 projections:

Eii : 1≤ i≤ nf g∪ 1ffiffiffi
2
p Eii þ Ejj þ δEij þ δEji
� �

: 1≤ i< j≤ n, δ∈ 1f , ig
� �

: (48)

By (40) and (47), for A∈Mn and i ¼ 1, … , n2,

tr kϕ Að Þψ Cið Þk
� �

¼ tr kACið Þ ¼ tr ϕ Að Þ
Xk�1
j¼0

ψ Cið Þ jψ Inð Þψ Cið Þk�1�j
 ! !

: (49)

By the bijectivity of ϕ,

kψ Cið Þk ¼
Xk�1
j¼0

ψ Cið Þ jψ Ið Þψ Cið Þk�1�j: (50)

Therefore, for i ¼ 1, … , n2,

0 ¼ ψ Cið Þ
Xk�1
j¼0

ψ Cið Þ jψ Inð Þψ Cið Þk�1�j
 !

�
Xk�1
j¼0

ψ Cið Þ jψ Inð Þψ Cið Þk�1�j
 !

ψ Cið Þ

¼ ψ Cið Þkψ Inð Þ � ψ Inð Þψ Cið Þk:
(51)

Since

tr Aψ Cið Þk
� �

¼ tr ϕ�1 Að ÞCk
i

� � ¼ tr ϕ�1 Að ÞCi
� �

, A∈Mn, i ¼ 1, … , n2, (52)
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the only matrix A∈Mn such that tr Aψ Cið Þk
� �

¼ 0 for all i∈ 1, … , n2
� �

is the zero

matrix. So ψ Cið Þk : i ¼ 1, … , n2
n o

is a basis of Mn. (51) implies that ψ Inð Þ ¼ cIn for

certain c∈n 0f g.
(46) shows that

ck�1tr ϕ Að Þψ Bð Þð Þ ¼ tr ABð Þ, A,B∈Mn: (53)

Therefore,

ck�1tr ϕ Að Þψ Bk� �� � ¼ tr ABk� � ¼ tr ϕ Að Þψ Bð Þk
� �

, A∈Mn, B∈ S: (54)

The bijectivity of ϕ shows that ck�1ψ Bk� � ¼ ψ Bð Þk for B∈ S, that is,

c�1ψ Bk� � ¼ c�1ψ Bð Þ� �k
, B∈ S: (55)

Notice that c�1ψ Inð Þ ¼ In. By Theorem 3.4, there is an invertible P∈Mn such that ψ
is of the form ψ Bð Þ ¼ cPBP�1 or ψ Bð Þ ¼ cPBtP�1 for B∈Mn. Consequently, we get (42).

2. Now suppose k<0. Then ψ Inð Þ is invertible. For every B∈Mn and sufficiently
small x, we have the power series expansion:

ψ Inð Þ þ xψ Bð Þð Þk

¼ In þ xψ Inð Þ�1ψ Bð Þ
� ��1

ψ Inð Þ�1
� �∣k∣

¼ In � xψ Inð Þ�1ψ Bð Þ þ x2ψ Inð Þ�1ψ Bð Þψ Inð Þ�1ψ Bð Þ þ⋯
� �

ψ Inð Þ�1
h i∣k∣

¼ ψ Inð Þk � x
X∣k∣

i¼1
ψ Inð Þ�iψ Bð Þψ Inð Þk�1þi

 !

þx2
X∣k∣

i¼1

X∣k∣þ1�i

j¼1
ψ Inð Þ�iψ Bð Þψ Inð Þ�jψ Bð Þψ Inð Þk�2þiþj

 !
þ⋯

(56)

Equating degree one terms and degree two terms of (45) respectively and using
(56), we get the following identities for A,B∈Mn:

tr ϕ Að Þ
X∣k∣

i¼1
ψ Inð Þ�iψ Bð Þψ Inð Þk�1þi

 ! !
¼ tr jkjABð Þ, (57)

tr ϕ Að Þ
X∣k∣

i¼1

X∣k∣þ1�i

j¼1
ψ Inð Þ�iψ Bð Þψ Inð Þ�jψ Bð Þψ Inð Þk�2þiþj

 ! !
¼ tr

k k� 1ð Þ
2

AB2
� �

:

(58)

(57) and (40) imply that

X∣k∣

i¼1
ψ Inð Þ�iψ Bk� �

ψ Inð Þk�1þi ¼ ∣k∣ψ Bð Þk, B∈ S: (59)

14

Matrix Theory - Classics and Advances



Let Fr Bð Þ denote the degree r coefficient in the power series of ψ Inð Þ þ xψ Bð Þð Þk.
Then (57) and (58) show that:

k� 1
2

F1 B2� � ¼ F2 Bð Þ, B∈Mn: (60)

Denote ψ1 Bð Þ≔ψ Bð Þψ Inð Þ�1. We discuss the cases k ¼ �1 and k 6¼ �1.

a. When k ¼ �1, (60) leads to

ψ B2� � ¼ ψ Bð Þψ Inð Þ�1ψ Bð Þ, B∈Mn: (61)

So ψ1 B2� � ¼ ψ1 Bð Þ2 for B∈Mn. Note that ψ1 Inð Þ ¼ In. By Theorem 3.4, there exists
an invertible P∈Mn such that ψ1 Bð Þ ¼ PBP�1 or ψ1 Bð Þ ¼ PBtP�1 for B∈Mn. Let
Q ≔P�1ψ Inð Þ. Then Q is invertible, and ψ Bð Þ ¼ PBQ or ψ Bð Þ ¼ PBtQ for B∈Mn.
Using (40), we get (41).

b. Suppose the integer k< � 1. Then (60) implies that

k� 1
2

ψ Inð Þ�1F1 B2� �� F2 B2� �
ψ Inð Þ�1

� �
¼ ψ Inð Þ�1F2 Bð Þ � F2 Bð Þψ Inð Þ�1, (62)

which gives

1� k
2

ψ Inð Þkψ B2� �� ψ B2� �
ψ Inð Þk

� �

¼ ψ Inð Þkψ Bð Þψ Inð Þ�1ψ Bð Þ � ψ Bð Þψ Inð Þ�1ψ Bð Þψ Inð Þk:
(63)

In other words, for B∈Mn:

ψ Inð Þk 1� k
2

ψ1 B2� �� ψ1 Bð Þ2
� �

¼ 1� k
2

ψ1 B2� �� ψ1 Bð Þ2
� �

ψ Inð Þk: (64)

Let B ¼ In þ xE for an arbitrary matrix E∈Mn. Then (64) becomes

ψ Inð Þk x �1� kð Þψ1 Eð Þ þ x2
1� k
2

ψ1 E2� �� ψ1 Eð Þ2
� �� �

¼ x �1� kð Þψ1 Eð Þ þ x2
1� k
2

ψ1 E2� �� ψ1 Eð Þ2
� �� �

ψ Inð Þk:
(65)

The equality on degree one terms shows that ψ Inð Þk commutes with all ψ1 Eð Þ.
Hence ψ Inð Þk commutes with the range of ψ . (??) can be rewritten as

tr
X∣k∣

i¼1
ψ Inð Þk�1þiϕ Að Þψ Inð Þ�i

 !
ψ Bð Þ

 !
¼ tr jkjABð Þ, A,B∈Mn: (66)

By Theorem 2.2, ψ is a linear bijection and its range is Mn. So ψ Inð Þk ¼ μIn for
certain μ∈.
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Now by (59), for B∈ S:

∣k∣ψ Inð Þψ Bð Þk � ∣k∣ψ Bð Þkψ Inð Þ

¼ ψ Inð Þ
X∣k∣

i¼1
ψ Inð Þ�iψ Bk� �

ψ Inð Þk�1þi
 !

�
X∣k∣

i¼1
ψ Inð Þ�iψ Bk� �

ψ Inð Þk�1þi
 !

ψ Inð Þ

¼ ψ Bk� �
ψ Inð Þk � ψ Inð Þkψ Bk� � ¼ 0

(67)

So ψ Inð Þ commutes with ψ Bð Þk for B∈ S. In particular, ψ Inð Þ commutes with

~ψ Bð Þ ¼ ψ B1=k� �k
for B∈ S0. The complex span of S0 is Mn, and ~ψ can be extended to a

linear bijection on Mn. Hence ψ Inð Þ ¼ cIn for certain c∈n 0f g. By (59), we get
ψ1 Bk� � ¼ ψ1 Bð Þk for B∈ S. Note that ψ1 Inð Þ ¼ In. By Theorem 3.4, there is an invert-
ible P∈Mn such that ψ1 Bð Þ ¼ PBP�1 or ψ1 Bð Þ ¼ PBtP�1. Then ψ Bð Þ ¼ cPBP�1 or
ψ Bð Þ ¼ cPBtP�1. Using (40), we get (42).

Remark 3.6 The following modifications could be applied to the proof of Theorem 3.5
for  ¼ :

1.Let S0 be the collection of matrices A ¼ QDQ�1, in which D is nonnegative diagonal
and Q ∈Mn ð Þ is invertible, such that A1=k ¼ QD1=kQ�1 ∈ S.

2.We may choose the following basis of rank 1 projections of Mn ð Þ to substitute (48):

Eii : 1≤ i≤ nf g∪ 1ffiffiffi
2
p Eii þ Ejj þ Eij þ Eji
� �

: 1≤ i< j≤ n
� �

∪ ω1Eii þ ω2Ejj þ Eij � Eji : 1≤ i< j≤ n
� �

,
(68)

in which ω1,ω2 are distinct roots of x2 � x� 1 ¼ 0:.
The arguments in the above proof will be applied analogously to maps on the other

sets discussed in this paper.

4. k-power linear preservers and trace of power-product preservers onHn

4.1 k-power linear preservers on Hn

We give a result that determine linear operators on Hn that satisfy ψ Ak� � ¼ ψ Að Þk
on a neighborhood of In in Hn for certain k∈n 0, 1f g

Theorem 4.1. Fix k∈n 0, 1f g. A nonzero linear map ψ : Hn ! Hn satisfies that

ψ Ak� � ¼ ψ Að Þk (69)

on an open neighborhood of In consisting of invertible matrices if and only if ψ is
of the following forms for certain unitary matrix U ∈Mn:

1.When k is even,

ψ Að Þ ¼ U ∗AU, A∈Hn; or ψ Að Þ ¼ U ∗AtU, A∈Hn: (70)
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2.When k is odd,

ψ Að Þ ¼ �U ∗AU, A∈Hn; or ψ Að Þ ¼ �U ∗AtU, A∈Hn: (71)

Proof. It suffices to prove the necessary part. Suppose (69) holds on an open
neighborhood S of In in Hn.

1. First assume k≥ 2. Replacing Mn by Hn in part (1) of the proof of Theorem 3.4
up to (33), we can prove that ψ Inð Þ commutes with the range of ψ , and
ψ1 Að Þ≔ψ Inð Þk�2ψ Að Þ is a nonzero linear map that satisfies ψ1 A2� � ¼ ψ1 Að Þ2 for
A∈Hn.

Every matrix in Mn can be uniquely expressed as Aþ iB for A,B∈Hn. Extend ψ1
to a map ~ψ : Mn !Mn such that

~ψ Aþ iBð Þ ¼ ψ1 Að Þ þ iψ1 Bð Þ, A,B∈Hn: (72)

It is straightforward to check that ~ψ is a complex linear bijection. Moreover, for
A,B∈Hn,

ψ1 ABþ BAð Þ ¼ ψ1 Aþ Bð Þ2
� �

� ψ1 A2� �� ψ1 B2� �

¼ ψ1 Aþ Bð Þ2 � ψ1 Að Þ2 � ψ1 Bð Þ2
¼ ψ1 Að Þψ1 Bð Þ þ ψ1 Bð Þψ1 Að Þ:

It implies that

~ψ Aþ iBð Þ2
� �

¼ ~ψ Aþ iBð Þ2, A,B∈Hn:

By Theorem 3.1, there is an invertible matrix U ∈Mn such that

a. ~ψ Að Þ ¼ UAU�1 for all A∈Mn, or

b. ~ψ Að Þ ¼ UAtU�1 for all A∈Mn.

First suppose ~ψ Að Þ ¼ UAU�1. The restriction of ~ψ on Hn is ψ1 : Hn ! Hn. Hence
for A∈Hn, we have UAU�1 ¼ UAU�1

� � ∗ ¼ U� ∗AU ∗ ; then U ∗UA ¼ AU ∗U for all
A∈Hn, which shows that U ∗U ¼ cIn for certain c∈þ: By adjusting a scalar if
necessary, we may assume that U is unitary. So ψ Inð Þk�2ψ Að Þ ¼ UAU ∗ . Then
ψ Inð Þk�1 ¼ In, so that ψ Inð Þ ¼ In when k is even and ψ Inð Þ∈ In,�Inf g when k is odd.
Thus ψ Að Þ ¼ UAU ∗ when k is even and ψ Að Þ ¼ �UAU ∗ when k is odd. Similarly for
the case ~ψ Að Þ ¼ UAtU�1. Therefore, (70) or (71) holds.

2.Now assume that k<0. Replacing Mn by Hn in part (2) of the proof of Theorem
3.4, we can show that ψ Inð Þ commutes with the range of ψ , and furthermore the
nonzero linear map ψ1 Að Þ≔ψ Inð Þ�1ψ Að Þ satisfies that ψ1 A2� � ¼ ψ1 Að Þ2. By
arguments in the preceding paragraphs, we get (70) or (71).
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4.2 Trace of power-product preservers on Hn

By Corollary 2.3, every linear bijection ϕ : Hn ! Hn corresponds to another linear
bijection ψ : Hn ! Hn such that tr ϕ Að Þψ Bð Þð Þ ¼ tr ABð Þ for all A,B∈Hn. When m≥ 3,
linear maps ϕ1,⋯,ϕm : Hn ! Hn that satisfy tr ϕ1 A1ð Þ⋯ϕm Amð Þð Þ ¼ tr A1⋯Amð Þ are
characterized in [18].

Theorem 4.2. Let k∈n 0, 1f g. Let S be an open neighborhood of In in Hn consisting of
invertible Hermitian matrices. Then two maps ϕ,ψ : Hn ! Hn satisfy that

tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
, (73)

1. for all A∈Hn, B∈ S, and ψ is linear, or

2. for all A,B∈ S and both ϕ and ψ are linear,

if and only if ϕ and ψ take the following forms:

a. When k ¼ �1, there exist an invertible matrix P∈Mn and c∈ 1,�1f g such that

ϕ Að Þ ¼ cP ∗AP
ψ Bð Þ ¼ cP ∗BP

�
A,B∈Hn; or

ϕ Að Þ ¼ cP ∗AtP
ψ Bð Þ ¼ cP ∗BtP

�
A,B∈Hn: (74)

b. When k∈n �1, 0, 1f g, there exist a unitary matrix U ∈Mn and c∈n 0f g such
that

ϕ Að Þ ¼ c�kU ∗AU
ψ Bð Þ ¼ cU ∗BU

 
A,B∈Hn; or

ϕ Að Þ ¼ c�kU ∗AtU
ψ Bð Þ ¼ cU ∗BtU

 
A,B∈Hn: (75)

Proof. Assumption (2) leads to assumption (1) (cf. the proof of Theorem 3.5). We
prove the theorem under assumption (1). It suffices to prove the necessary part.

1.When k≥ 2, in the part (1) of proof of Theorem 3.5, through replacing Mn by
Hn, complex numbers by real numbers, and Theorem 3.1 or Theorem 3.4 by
Theorem 4.1, we can prove that ϕ,ψð Þ has the forms in (75).

2.When k<0, in the part (2) of proof of Theorem 3.5, through replacingMn byHn
and complex numbers by real numbers, we can get the corresponding equalities
of (56) � (60) on Hn. The case k< � 1 can be proved completely analogously
with the help of Theorem 4.1.

For the case k ¼ �1, the equality corresponding to (60) can be simplified as

ψ B2� � ¼ ψ Bð Þψ Inð Þ�1ψ Bð Þ, B∈Hn: (76)

Let ψ1 Bð Þ≔ψ Inð Þ�1ψ Bð Þ. Then ψ1 : Hn !Mn is a nonzero real linear map that
satisfies ψ1 B2� � ¼ ψ1 Bð Þ2 for B∈Hn. Extend ψ1 to a complex linear map ~ψ : Mn !
Mn such that
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~ψ Aþ iBð Þ≔ψ1 Að Þ þ iψ1 Bð Þ, A,B∈Hn: (77)

Similarly to the arguments in part (1) of the proof of Theorem 4.1, we have

~ψ Aþ iBð Þ2
� �

¼ ~ψ Aþ iBð Þð Þ2 for all A,B∈Hn. Using Theorem 3.4 and the fact that

~ψ Inð Þ ¼ ψ1 Inð Þ ¼ In, we can prove that there is an invertible P∈Mn such that for all
B∈Hn, either ψ1 Bð Þ ¼ P�1BP or ψ1 Bð Þ ¼ P�1BtP. So

ψ Bð Þ ¼ ψ Inð ÞP�1BP, B∈Hn; or (78)

ψ Bð Þ ¼ ψ Inð ÞP�1BtP, B∈Hn: (79)

If ψ Bð Þ ¼ ψ Inð ÞP�1BP for B∈Hn, then ψ Inð ÞP�1BP ¼ ψ Inð ÞP�1BP
� � ∗ ¼

P ∗BP� ∗ψ Inð Þ, which gives

P� ∗ψ Inð ÞP�1
� �

B ¼ B P� ∗ψ Inð ÞP�1
� �

, B∈Hn: (80)

Hence P� ∗ψ Inð ÞP�1 ¼ cIn for certain c∈n 0f g: We have ψ Inð Þ ¼ cP ∗P so that
ψ Bð Þ ¼ cP ∗BP for B∈Hn. Similarly for the case ψ Bð Þ ¼ ψ Inð ÞP�1BtP. Adjusting c and P
by scalar factors simultaneously, we may assume that c∈ 1,�1f g. It implies (74).

Remark 4.3. Theorem 4.2 does not hold if ψ is not assumed to be linear. Let k be
a positive even integer. Let ~ψ : Hn ! Hn be any bijective linear map such that
~ψ Pn
� �

⊆Pn. For example, ~ψ may be a completely positive map of the form
~ψ Bð Þ ¼Pr

i¼1N
∗
i BNi for r≥ 2, N1, … ,Nr ∈Mn linearly independent, and at least one

of N1, … ,Nr is invertible. By Corollary 2.3, there is a linear bijection ϕ : Hn ! Hn
such that tr ϕ Að Þ~ψ Bð Þð Þ ¼ tr ABð Þ for all A,B∈Hn. Let ψ : Hn ! Hn be defined by

ψ Bð Þ ¼ ~ψ Bk� �1=k
: Then

tr ϕ Að Þψ Bð Þk
� �

¼ tr ϕ Að Þ~ψ Bk� �� � ¼ tr ABk� �
, A,B∈Hn:

Obviously, ψ may be non-linear, and the choices of pairs ϕ,ψð Þ are much more
than those in (74) and (75).

5. k-power linear preservers and trace of power-product preservers
on Sn and Sn ð Þ

5.1 k-power linear preservers on Sn and Sn ð Þ

Chan and Lim described the linear k-power preservers on Sn ð Þ for k≥ 2 in
[7, Theorem 2] as follows.

Theorem 5.1. (Chan, Lim [5]) Let an integer k≥ 2. Let  be an algebraic closed field
with char ð Þ ¼ 0 or char ð Þ> k. Suppose that ψ : Sn ð Þ ! Sn ð Þ is a nonzero linear
operator such that ψ Ak� � ¼ ψ Að Þk for all A∈Sn ð Þ. Then there exist λ∈ with λk�1 ¼ 1
and an orthogonal matrix O∈Mn ð Þ such that

ψ Að Þ ¼ λOAOt, A∈Sn: (81)
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We generalize Theorem 5.1 to include the case Sn ð Þ, to include negative integers
k, and to assume the k-power preserving condition only on matrices nearby the
identity.

Theorem 5.2. Let k∈n 0, 1f g. Let  ¼  or . Suppose that ψ : Sn ð Þ ! Sn ð Þ is a
nonzero linear map such that ψ Ak� � ¼ ψ Að Þk for all A in an open neighborhood of In in
Sn ð Þ consisting of invertible matrices. Then there exist λ∈ with λk�1 ¼ 1 and an
orthogonal matrix O∈Mn ð Þ such that

ψ Að Þ ¼ λOAOt, A∈Sn ð Þ: (82)

Proof. It suffices to prove the necessary part. In both k≥ 2 and k<0 cases, using
analogous arguments as parts (1) and (2) of the proof of Theorem 3.4, we get that
ψ Inð Þ commutes with the range of ψ , and the nonzero map ψ1 Að Þ≔ψ Inð Þk�2ψ Að Þ
satisfies that ψ1 A2� � ¼ ψ1 Að Þ2 for A∈Sn ð Þ. Then

ψ1 Að Þψ1 Bð Þ þ ψ1 Bð Þψ1 Að Þ ¼ ψ1 Aþ Bð Þ2 � ψ1 Að Þ2 � ψ1 Bð Þ2

¼ ψ1 Aþ Bð Þ2
� �

� ψ1 A2� �� ψ1 B2� �

¼ ψ1 ABþ BAð Þ:
(83)

In particular, ψ1 Að Þψ1 Arð Þ þ ψ1 Arð Þψ1 Að Þ ¼ 2ψ1 Arþ1� �
for r∈þ. Using induction,

we get ψ1 Aℓ
� � ¼ ψ1 Að Þℓ for all A∈Sn ð Þ and ℓ∈þ. By [26, Corollary 6.5.4], there is

an orthogonal matrix O∈Mn ð Þ such that ψ1 Að Þ ¼ OAOt. Since ψ Inð Þ commutes with
the range of ψ1, we have ψ Inð Þ ¼ λIn for certain λ∈ in which λk�1 ¼ 1. So ψ Að Þ ¼
λOAOt as in (82).

Obviously, in  ¼  case, (82) has λ ¼ 1 when k is even and λ∈ 1,�1f g when k is
odd.

5.2 Trace of power-product preservers on Sn and Sn ð Þ

Corollary 2.3 shows that every linear bijection ϕ : Sn ð Þ ! Sn ð Þ corresponds to
another linear bijection ψ : Sn ð Þ ! Sn ð Þ such that tr ϕ Að Þψ Bð Þð Þ ¼ tr ABð Þ for all
A,B∈Sn ð Þ. When m≥ 3, maps ϕ1,⋯,ϕm : Sn ð Þ ! Sn ð Þ that satisfy
tr ϕ1 A1ð Þ⋯ϕm Amð Þð Þ ¼ tr A1⋯Amð Þ are determined in [18].

We characterize the trace of power-product preserver for Sn ð Þ here.
Theorem 5.3. Let  ¼  or . Let k∈n 0, 1f g. Let S be an open neighborhood of

In in Sn ð Þ consisting of invertible matrices. Then two maps ϕ,ψ : Sn ð Þ ! Sn ð Þ satisfy
that

tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
, (84)

1. for all A∈Sn ð Þ, B∈ S, and ψ is linear, or

2. for all A,B∈ S and both ϕ and ψ are linear,

if and only if ϕ and ψ take the following forms:

a. When k ¼ �1, there exist an invertible matrix P∈Mn ð Þ and c∈n 0f g such that
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ϕ Að Þ ¼ cPAPt, ψ Bð Þ ¼ cPBPt, A,B∈Sn ð Þ: (85)

We may choose c ¼ 1 for  ¼  and c∈ 1,�1f g for  ¼ .

b.When k∈n �1, 0, 1f g, there exist c∈n 0f g and an orthogonal matrix O∈Mn ð Þ
such that

ϕ Að Þ ¼ c�kOAOt, ψ Bð Þ ¼ cOBOt, A,B∈Sn ð Þ: (86)

Proof. Assumption (2) leads to assumption (1) (cf. the proof of Theorem 3.5). We
prove the theorem under assumption (1). It suffices to prove the necessary part.

Obviously, Sn∩Hn ¼ Sn ð Þ and Sn∩Pn ¼ Pn ð Þ. Let S0≔ B∈Pn ð Þ : B1=k ∈ S
� �

,
which is an open neighborhood of In in Pn ð Þ and whose real (resp. complex) span is
Sn ð Þ (resp. Sn). Using an analogous argument of the proof of Theorem 3.5, and
replacingMn by Sn ð Þ, replacing the basis (48) ofMn by the following basis of rank 1
projections in Sn ð Þ:

Eii : 1≤ i≤ nf g∪ 1ffiffiffi
2
p Eii þ Ejj þ Eij þ Eji
� �

: 1≤ i< j≤ n
� �

, (87)

and replacing the usage of Theorem 3.4 by that of Theorem 5.2, we can prove the
case k≥ 2, and for k<0, we can get the corresponding equalities up to (60).

Define a linear map ψ1 : Sn ð Þ !Mn ð Þ by ψ1 Bð Þ≔ψ Bð Þψ Inð Þ�1.
When k ¼ �1, we get the corresponding equality of (61), so that ψ1 B2� � ¼ ψ1 Bð Þ2

for B∈Sn ð Þ. Similar to the proof of Theorem 5.2, we get ψ1 Brð Þ ¼ ψ1 Bð Þr for all
r∈þ. By [26, Theorem 6.5.3], there is an invertible matrix P∈Mn ð Þ such that
ψ1 Bð Þ ¼ PBP�1, so that ψ Bð Þ ¼ PBP�1ψ Inð Þ for B∈Sn ð Þ. Since ψ Bð Þ ¼ ψ Bð Þt, we get

P�1ψ Inð ÞP�t
� �

B ¼ B P�1ψ Inð ÞP�t
� �

, B∈Sn ð Þ: (88)

Therefore, P�1ψ Inð ÞP�t ¼ cIn for certain c∈n 0f g, so that ψ Bð Þ ¼ cPBPt for all
B∈Sn ð Þ. Consequently, we get (85). The remaining claims are obvious.

When k< � 1, using analogous argument as in the proof of k< � 1 case of
Theorem 3.5 and applying Theorem 5.2, we can get (86).

6. k-power linear preservers and trace of power-product preservers
on Pn and Pn ð Þ

In this section, we will determine k-power linear preservers and trace of power-
product preservers on maps Pn ! Pn (resp. Pn ð Þ ! Pn ð Þ). Properties of such
maps can be applied to maps Pn ! Pn and Pn ! Pn (resp. Pn ð Þ ! Pn ð Þ and
Pn ð Þ ! Pn ð Þ).

6.1 k-power linear preservers on Pn and Pn ð Þ

Theorem 6.1. Fix k∈n 0, 1f g. A nonzero linear map ψ : Pn ! Pn (resp. ψ :

Pn ð Þ ! Pn ð Þ) satisfies that
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ψ Ak� � ¼ ψ Að Þk (89)

on an open neighborhood of In in Pn (resp. Pn ð Þ) if and only if there is a unitary
(resp. real orthogonal) matrix U ∈Mn such that

ψ Að Þ ¼ U ∗AU, A∈Pn; or ψ Að Þ ¼ U ∗AtU, A∈Pn: (90)

Proof. We prove the case ψ : Pn ! Pn. The sufficient part is obvious. About the
necessary part, the nonzero linear map ψ : Pn ! Pn can be easily extended to a linear
map ~ψ : Hn ! Hn that satisfies ~ψ Ak� � ¼ ~ψ Að Þk on an open neighborhood of In. By
Theorem 4.1, we immediately get (90).

The case ψ : Pn ð Þ ! Pn ð Þ can be similarly proved using Theorem 5.2.

6.2 Trace of powered product preservers on Pn and Pn ð Þ

Now consider the maps Pn ! Pn (resp. Pn ð Þ ! Pn ð Þ) that preserve trace
of powered products. Unlike Mn and Hn, the set Pn (resp. Pn ð Þ) is not a
vector space. The trace of powered product preservers of two maps have the following
forms.

Theorem 6.2 (Huang, Tsai [18]). Let a, b, c, d∈n 0f g. Two maps ϕ,ψ : Pn ! Pn
satisfy

tr ϕ Að Þaψ Bð Þb
� �

¼ tr AcBd� �
, A,B∈Pn, (91)

if and only if there exists an invertible P∈Mn such that

ϕ Að Þ ¼ P ∗AcPð Þ1=a

ψ Bð Þ ¼ P�1BdP� ∗� �1=b
 

or
ϕ Að Þ ¼ P ∗ Atð ÞcP� �1=a

ψ Bð Þ ¼ P�1 Btð ÞdP� ∗
h i1=b

0
B@ A,B∈Pn: (92)

Theorem 6.3 (Huang, Tsai [18]). Given an integer m≥ 3 and real numbers
α1, … , αm, β1, … , βm ∈n 0f g, maps ϕi : Pn ! Pn (i ¼ 1, … ,m) satisfy that

tr ϕ1 A1ð Þα1⋯ϕm Amð Þαmð Þ ¼ tr Aβ1
1 ⋯Aβ1

m

� �
, A1, … ,Am ∈Pn, (93)

if and only if they have the following forms for certain c1, … , cm ∈þ with
c1⋯cm ¼ 1:

1.When m is odd, there exists a unitary matrix U ∈Mn such that for i ¼ 1, … ,m:

ϕi Að Þ ¼ c1=αii U ∗Aβi=αiU, A∈Pn: (94)

2.When m is even, there exists an invertible M∈Mn such that for i ¼ 1, … ,m:

ϕi Að Þ ¼
c1=αii M ∗AβiM

� �1=αi , i is odd,

c1=αii M�1AβiM� ∗� �1=αi , i is even,

0
@ A∈Pn: (95)
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Both Theorems 6.2 and 6.3 can be analogously extended to maps Pn ð Þ ! Pn ð Þ
without difficulties.

Theorem 6.2 determines maps ϕ,ψ : Pn ! Pn that satisfy (91) throughout
their domain. If we only assume the equality (91) for A,Bð Þ in certain
subset of Pn � Pn and assume certain linearity of ϕ and ψ , then ϕ and ψ
may have slightly different forms. We determine the case a ¼ c ¼ 1 and
b ¼ d ¼ k∈n 0f g here.

Theorem 6.4. Let k∈n 0f g. Let S be an open neighborhood of In in Pn. Two maps
ϕ,ψ : Pn ! Pn satisfy

tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
, (96)

3. for all A,B∈Pn, or

4. for all A∈ S, B∈Pn, and ϕ is linear,

if and only if there exists an invertible P∈Mn such that

ϕ Að Þ ¼ P ∗AP

ψ Bð Þ ¼ P�1BkP� ∗� �1=k
 

or
ϕ Að Þ ¼ P ∗AtP

ψ Bð Þ ¼ P�1 Btð ÞkP� ∗
h i1=k

0
@ A,B∈Pn: (97)

The maps ϕ and ψ satisfy (96)

1. for all A∈Pn, B∈ S, and ψ is linear, or

2. for all A,B∈ S and both ϕ and ψ are linear,

if and only if when k∈ �1, 1f g, ϕ and ψ take the form (97), and when
k∈n �1, 0, 1f g, there exist a unitary matrix U ∈Mn and c∈þ such that

ϕ Að Þ ¼ c�kU ∗AU
ψ Bð Þ ¼ cU ∗BU

 
or

ϕ Að Þ ¼ c�kU ∗AtU
ψ Bð Þ ¼ cU ∗BtU

 
A,B∈Pn: (98)

Proof. It suffices to prove the necessary part.
The case of assumption (1) has been proved by Theorem 6.2.
Similar to the proof of Theorem 3.5, assumption (2) implies assumption (1); assump-

tion (4) implies assumption (3). It remains to prove the case with assumption (3).
When k ¼ 1, assumption (3) is analogous to assumption (2), and we get (97).

Suppose k∈n 1, 0f g. Let ψ1 : Pn ! Pn be defined by ψ1 Bð Þ≔ψ B1=k� �k
. Let

S1 ≔ B∈Pn : B1=k ∈ S
� �

: Then (97) with assumption (2) becomes

tr ϕ Að Þψ1 Bð Þð Þ ¼ tr ABð Þ, A∈Pn, B∈S1: (99)

Let ~ψ : Hn ! Hn be the linear extension of ψ . By Theorem 2.2, ϕ can be extended
to a linear bijection ~ϕ : Hn ! Hn such that

tr ~ϕ Að Þ~ψ Bð Þk
� �

¼ tr ~ϕ Að Þψ1 Bk� �� � ¼ tr ABk� �
, A∈Hn, B∈ S: (100)
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By Theorem 4.2 and taking into account the ranges of ϕ and ψ , we see that when
k ¼ �1, ϕ and ψ take the form of (97), and when k∈n �1, 0, 1f g, ϕ and ψ take the
form of (98).

Theorem 6.4 has counterpart results for ϕ,ψ : Pn ð Þ ! Pn ð Þ and the proof is
analogous using Theorem 5.3 instead of Theorem 4.2.

7. k-power linear preservers and trace of power-product preservers
on Dn and Dn ð Þ

Let  ¼  or . Define the function diag : n ! Dn ð Þ to be the linear bijection
that sends each c1,⋯, cnð Þt to the diagonal matrix with c1, … , cn (in order) as the
diagonal entries. Define diag�1 : Dn ð Þ ! n the inverse map of diag.

With the settings, every linear map ψ : Dn ð Þ ! Dn ð Þ uniquely corresponds to a
matrix Lψ ∈Mn ð Þ such that

ψ Að Þ ¼ diag Lψdiag
�1 Að Þ� �

, A∈Dn ð Þ: (101)

7.1 k-power linear preservers on Dn and Dn ð Þ

We define the linear functionals f i : Dn ð Þ !  i ¼ 0, 1, … , nð Þ, such that for each
A ¼ diag a1, … , anð Þ∈Dn ð Þ,

f 0 Að Þ ¼ 0; f i Að Þ ¼ ai, i ¼ 1, … , n: (102)

Theorem 7.1. Let  ¼  or . Let k∈n 0, 1f g. Let S be an open neighborhood of In in
Dn ð Þ. A linear map ψ : Dn ð Þ ! Dn ð Þ satisfies that

ψ Ak� � ¼ ψ Að Þk, A∈ S, (103)

if and only if

ψ Að Þ ¼ ψ Inð Þdiag f p 1ð Þ Að Þ, … , f p nð Þ Að Þ
� �

, A∈Dn ð Þ, (104)

in which ψ Inð Þk ¼ ψ Inð Þ and p : 1, … , nf g ! 0, 1, … , nf g is a function such that
p ið Þ 6¼ 0 when k<0 for i ¼ 1, … , n. In particular, a linear bijection ψ : Dn ð Þ ! Dn ð Þ
satisfies (103) if and only if there is a diagonal matrix C∈Mn ð Þ with Ck�1 ¼ In and a
permutation matrix P∈Mn ð Þ such that

ψ Að Þ ¼ PCAP�1, A∈Dn ð Þ: (105)

Proof. For every A ¼ diag a1, … , anð Þ∈Dn ð Þ, when x∈ is sufficiently close to 0,
we have In þ xA∈ S and the power series of In þ xAð Þk converges, so that

ψ In þ xAð Þk
� �

¼ ψ In þ xAð Þk.

ψ In þ xAð Þk
� �

¼ ψ Inð Þ þ xkψ Að Þ þ x2
k k� 1ð Þ

2
ψ A2� �þ⋯ (106)
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ψ In þ xAð Þk ¼ ψ Inð Þ þ xkψ Inð Þk�1ψ Að Þ þ x2
k k� 1ð Þ

2
ψ Inð Þk�2ψ Að Þ2 þ⋯ (107)

So for all A∈Dn ð Þ:

ψ Að Þ ¼ ψ Inð Þk�1ψ Að Þ, (108)

ψ A2� � ¼ ψ Inð Þk�2ψ Að Þ2: (109)

The linear map ψ1 Að Þ≔ψ Inð Þk�2ψ Að Þ satisfies that

ψ1 A2� � ¼ ψ1 Að Þ2, A∈Dn ð Þ: (110)

By (101), let Lψ1
¼ ℓij
� �

∈Mn ð Þ such that diag�1 ψ1 Að Þð Þ ¼ Lψ1
diag�1 Að Þ� �

for
A∈Dn ð Þ. Then (110) implies that for all A ¼ diag a1, … , anð Þ∈Dn ð Þ:

Xn
j¼1

ℓija2j ¼
Xn
j¼1

ℓija j

 !2

, i ¼ 1, 2, … , n: (111)

Therefore, each row of Lψ1
has at most one nonzero entry and each nonzero entry

must be 1. We get

ψ1 Að Þ ¼ diag f p 1ð Þ Að Þ, … , f p nð Þ Að Þ
� �

(112)

in which p : 1, … , nf g ! 0, 1, … , nf g is a function. Suppose ψ Inð Þ ¼
diag λ1, … , λnð Þ. Then (108) implies that ψ Að Þ ¼ ψ Inð Þψ1 Að Þ has the form (104).
Obviously, ψ Inð Þk ¼ ψ Inð Þ and when k<0, each p ið Þ 6¼ 0 for i ¼ 1, … , n. Moreover,
when ψ is a linear bijection, (112) shows that ψ1 Að Þ ¼ PAP�1 for a permutation matrix
P. (105) can be easily derived.

7.2 Trace of power-product preservers on Dn and Dn ð Þ

In [18], we show that two maps ϕ,ψ : Dn ð Þ ! Dn ð Þ satisfy tr ϕ Að Þψ Bð Þð Þ ¼
tr ABð Þ for A,B∈Dn ð Þ if and only if there exists an invertible N ∈Mn ð Þ such that

ϕ Að Þ ¼ diag Ndiag�1 Að Þ� �
, ψ Bð Þ ¼ diag N�tdiag�1 Bð Þ� �

, A,B∈Dn ð Þ: (113)

When m≥ 3, the maps ϕ1, … ,ϕm : Dn ð Þ ! Dn ð Þ satisfying
tr ϕ1 A1ð Þ⋯ϕm Amð Þð Þ ¼ tr A1⋯Amð Þ for A1, … ,Am ∈Dn ð Þ are also determined in [18].

Next we consider the trace of power-product preserver on Dn ð Þ.
Theorem 7.2. Let  ¼  or . Let k∈n 0, 1f g. Let S be an open neighborhood of In in

Dn ð Þ. Two maps ϕ,ψ : Dn ð Þ ! Dn ð Þ satisfy that

tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
, (114)

1. for all A∈Dn ð Þ, B∈ S, and ψ is linear, or

2. for all A,B∈ S and both ϕ and ψ are linear,
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if and only if there exist an invertible diagonal matrix C∈Dn ð Þ and a permutation
matrix P∈Mn Fð Þ such that

ϕ Að Þ ¼ PC�kAP�1, ψ Bð Þ ¼ PCBP�1, A,B∈Dn ð Þ: (115)

Proof. Assumption (2) leads to assumption (1) (cf. the proof of Theorem 3.5). We
prove the theorem under assumption (1).

For every B∈Dn ð Þ, In þ xB∈ S and the power series of In þ xBð Þk converges when
x∈ is sufficiently close to 0, so that

tr ϕ Að Þψ In þ xBð Þk
� �

¼ tr A In þ xBð Þk
� �

(116)

Comparing degree one terms and degree two terms in the power series of the
above equality, respectively, we get the following equalities for A,B∈Dn ð Þ:

tr ϕ Að Þψ Bð Þψ Inð Þk�1
� �

¼ tr ABð Þ, (117)

tr ϕ Að Þψ Bð Þ2ψ Inð Þk�2
� �

¼ tr AB2� �
: (118)

Applying Theorem 2.2 to (117), ψ Inð Þ is invertible and both ϕ and ψ are linear
bijections. (117) and (119) imply that ψ B2� �

ψ Inð Þk�1 ¼ ψ Bð Þ2ψ Inð Þk�2. Let
ψ1 Bð Þ≔ψ Bð Þψ Inð Þ�1. Then ψ1 B2� � ¼ ψ1 Bð Þ2 for B∈Dn ð Þ. By Theorem 7.1 and
ψ1 Inð Þ ¼ In, there exists a permutation matrix P∈Mn Fð Þ such that ψ1 Bð Þ ¼ PBP�1 for
B∈Dn ð Þ. So ψ Bð Þ ¼ ψ Inð ÞPBP�1 ¼ PCBP�1 for C≔P�1ψ Inð ÞP∈Dn ð Þ. Then (114)
implies (115).

8. k-power injective linear preservers and trace of power-product
preservers on T n and T n ð Þ

8.1 k-power preservers on T n ð Þ

The characterization of injective linear k-power preserver on T n ð Þ can be derived
from Cao and Zhang’s characterization of injective additive k-power preserver on
T n ð Þ ([12] or [[6], Theorem 6.5.2]).

Theorem 8.1 (Cao and Zhang [12]). Let k≥ 2 and n≥ 3. Let  be a field with
char ð Þ ¼ 0 or char ð Þ> k. Then ψ : T n ð Þ↦T n ð Þ is an injective linear map such that
ψ Ak� � ¼ ψ Að Þk for all A∈ T n ð Þ if and only if there exists a k� 1ð Þth root of unity λ and
an invertible matrix P∈ T n ð Þ such that

ψ Að Þ ¼ λPAP�1, A∈ T n ð Þ, or (119)

ψ Að Þ ¼ λPA�P�1, A∈ T n ð Þ, (120)

where A� ¼ anþ1�j,nþ1�i
� �

if A ¼ aij
� �

.

Example 8.2. When n ¼ 2, the injective linear maps that satisfy ψ Ak� � ¼ ψ Að Þk for
A∈ T 2 ð Þ send A ¼ a11 a12

0 a22

� �
to the following ψ Að Þ:
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λ
a11 ca12
0 a22

� �
, λ

a22 ca12
0 a11

� �
, (121)

in which λk�1 ¼ 1 and c∈n 0f g:.
Example 8.3. Theorem 8.1 does not hold if ψ is not assumed to be injective. Let n ¼ 3

and suppose ψ : T 3 ð Þ ! T 3 ð Þ is a linear map that sends A ¼ aij
� �

3�3 ∈ T 3 ð Þ to one of
the following ψ Að Þ (c, d∈):

a11 ca12 0

0 a22 da23
0 0 a33

0
B@

1
CA,

a33 0 0

0 a11 0

0 0 a22

0
B@

1
CA,

a22 0 ca12
0 0 0

0 0 a11

0
B@

1
CA: (122)

Then each ψ satisfies that ψ Ak� � ¼ ψ Að Þk for every positive integer k but it is not
of the forms in Theorem 8.1.

We extend Theorem 8.1 to the following result that includes negative k-powers
and that only assumes k-power preserving in a neighborhood of In.

Theorem 8.4. Let  ¼  or . Let integers k 6¼ 0, 1 and n≥ 3. Suppose that ψ :

T n ð Þ ! T n ð Þ is an injective linear map such that ψ Ak� � ¼ ψ Að Þk for all A in an open
neighborhood of In in T n ð Þ consisting of invertible matrices. Then there exist λ∈ with
λk�1 ¼ 1 and an invertible matrix P∈ T n ð Þ such that

ψ Að Þ ¼ λPAP�1, A∈ T n ð Þ, or (123)

ψ Að Þ ¼ λPA�P�1, A∈ T n ð Þ: (124)

where A� ¼ anþ1�j,nþ1�i
� � ¼ JnA

tJn if A ¼ aij
� �

, Jn is the anti-diagonal identity.
Proof. Obviously ψ is a linear bijection. Follow the same process in the proof of

Theorem 3.4. In both k≥ 2 and k<0 cases we have ψ Inð Þ commutes with the range of
ψ , so that ψ Inð Þ ¼ λIn for λ∈ and λk�1 ¼ 1: Moreover, let ψ1 Að Þ≔ψ Inð Þ�1ψ Að Þ, then
ψ1 is injective linear and ψ1 A2� � ¼ ψ1 Að Þ2 for A∈ T n ð Þ: Theorem 8.1 shows that
ψ1 Að Þ ¼ PAP�1 or ψ1 Að Þ ¼ PA�P�1 for certain invertible P∈ T n ð Þ: It leads to (123)
and (124).

8.2 Trace of power-product preservers on T n and T n ð Þ

Theorem 2.2 or Corollary 2.3 does not work for maps on T n ð Þ. However, the
following trace preserving result can be easily derived from Theorem 7.2. We have
T n ð Þ ¼ Dn ð Þ⊕N n ð Þ. Let D Að Þ denote the diagonal matrix that takes the diagonal
of A∈ T n ð Þ.

Theorem 8.5. Let  ¼  or . Let k∈n 0, 1f g. Let S be an open neighborhood of In in
T n ð Þ consisting of invertible matrices. Then two maps ϕ,ψ : T n ð Þ ! T n ð Þ satisfy that

tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �
, (125)

1. for all A∈ T n ð Þ, B∈ S, and ψ is linear, or

2. for all A,B∈ S and both ϕ and ψ are linear,
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if and only if ϕ and ψ send N n ð Þ to N n ð Þ, D∘ϕð ÞjDn ð Þ and D∘ψð ÞjDn ð Þ are linear
bijections characterized by (115) in Theorem 7.2, and D∘ϕ ¼ D∘ϕ∘D.

Proof. The sufficient part is easy to verify. We prove the necessary part here. Let
ϕ0≔ D∘ϕð ÞjDn ð Þ and ψ 0≔ D∘ψð ÞjDn ð Þ. Then ϕ0,ψ 0 : Dn ð Þ ! Dn ð Þ satisfy
tr ϕ0 Að Þψ 0 Bð Þk
� �

¼ tr ABk� �
for A,B∈Dn ð Þ. So they are characterized by (115). The

bijectivity of ϕ0 and ψ 0 implies that ϕ and ψ must send N n ð Þ to N n ð Þ in order to
satisfy (125). Moreover, ϕ should send matrices with same diagonal to matrices with
same diagonal, which implies that D∘ϕ ¼ D∘ϕ∘D.

9. Conclusion

We characterize linear maps ψ : V ! V that satisfy ψ Ak� � ¼ ψ Að Þk on an open
neighborhood S of In in V, where k∈n 0, 1f g and V is the set of n� n general
matrices, Hermitian matrices, symmetric matrices, positive definite (resp. semi-
definite) matrices, diagonal matrices, or upper triangular matrices, over the complex
or real field. The characterizations extend the existing results of linear k-power pre-
servers on the spaces of general matrices, symmetric matrices, and upper triangular
matrices.

Applying the above results, we determine the maps ϕ,ψ : V ! V on the preceding

sets V that satisfy tr ϕ Að Þψ Bð Þk
� �

¼ tr ABk� �

1.for all A∈V, B∈ S, and ψ is linear, or

2.for all A,B∈ S and both ϕ and ψ are linear.

These results, together with Theorem 2.2 about maps satisfying tr ϕ Að Þψ Bð Þð Þ ¼
tr ABð Þ and the characterizations of maps ϕ1,⋯,ϕm : V ! V (m≥ 3) satisfying
tr ϕ1 A1ð Þ⋯ϕm Amð Þð Þ ¼ tr A1⋯Amð Þ in [18], make a comprehensive picture of the pre-
servers of trace of matrix products in the related matrix spaces and sets. Our results
can be interpreted as inner product preservers when V is close under conjugate
transpose, in which wide applications are found.

There are a few prospective directions to further the researches.
First, for a polynomial or an analytic function f xð Þ and a matrix set V, we can

consider “local” linear f -preservers, that is, linear operators ψ : V ! V that satisfy
ψ f Að Þð Þ ¼ f ψ Að Þð Þ on an open subset S of V. A linear f -preserver ψ on S also
preserves matrices annihilated by f on S, that is, f Að Þ ¼ 0 (A∈ S) implies
f ψ Að Þð Þ ¼ 0. When S ¼ V is Mn, B Hð Þ, or some operator algebras, extensive studies
have been done on operators preserving elements annihilated by a polynomial f ; for
examples, the results on Mn by R. Howard in [19], by P. Botta, S. Pierce, and W.
Watkins in [20], and by C.-K. Li and S. Pierce in [21], on B Hð Þ by P. Šemrl [22], on
linear maps ψ : B Hð Þ ! B Kð Þ by Z. Bai and J. Hou in [23], and on some operator
algebras by J. Hou and S. Hou in [24]. We may further explore linear f -preservers for
a multivariable function f x1, … , xrð Þ, that is, operator ψ satisfying
ψ f A1, … ,Arð Þð Þ ¼ f ψ A1ð Þ, … ,ψ Arð Þð Þ. The corresponding annihilator preserver
problem has been studied in some special cases, for example, on Mn for homogeneous
multilinear polynomials by A. E. Guterman and B. Kuzma in [25].
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Second, it is interesting to further investigate maps ϕ,ψ : V ! V that satisfy
tr f ϕ Að Þð Þg ψ Bð Þð Þð Þ ¼ tr f Að Þg Bð Þð Þ for some polynomials or analytic functions f xð Þ
and g xð Þ. This is equivalent to the inner product preserver problem
f ϕ Að Þð Þ ∗ , g ψ Bð Þð Þh i ¼ f Að Þ ∗ , g Bð Þh i when V is close under conjugate transpose.

More generally, given a multivariable function h x1, … , xmð Þ, we can ask what combi-
nations of linear operators ϕ1, … ,ϕm : V ! V satisfy that
tr h ϕ1 A1ð Þ, … ,ϕm Amð Þð Þ ¼ tr h A1, … ,Amð Þð Þð . The research on this area seems pretty
new. No much has been discovered by the authors.
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Chapter 2

Pencils of Semi-Infinite Matrices
and Orthogonal Polynomials
Sergey Zagorodnyuk

Abstract

Semi-infinite matrices, generalized eigenvalue problems, and orthogonal
polynomials are closely related subjects. They connect different domains in
mathematics—matrix theory, operator theory, analysis, differential equations, etc.
The classical examples are Jacobi and Hessenberg matrices, which lead to orthogonal
polynomials on the real line (OPRL) and orthogonal polynomials on the unit circle
(OPUC). Recently there turned out that pencils (i.e., operator polynomials) of semi-
infinite matrices are related to various orthogonal systems of functions. Our aim here
is to survey this increasing subject. We are mostly interested in pencils of symmetric
semi-infinite matrices. The corresponding polynomials are defined as generalized
eigenvectors of the pencil. These polynomials possess special orthogonality relations.
They have physical and mathematical applications that will be discussed. Examples
show that there is an unclarified relation to Sobolev orthogonal polynomials. This
intriguing connection is a challenge for further investigations.

Keywords: semi-infinite matrix, pencil, orthogonal polynomials, Sobolev
orthogonality, difference equation

1. Introduction

In this section, we will introduce the main objects of this chapter along with some
brief historical notes.

By operator pencils or operator polynomials one means polynomials of a complex
variable λ whose coefficients are linear bounded operators acting in a Banach space X:

L λð Þ ¼
Xm
j¼0

λ jA j, (1)

where A j : X ! X (j ¼ 0, … ,m), see, for example, [1, 2]. Parlett in ref. [3, p. 339]
stated that the term pencil was introduced by Gantmacher in ref. [4] for matrix
expressions, and Parlett explained how this term came from optics and geometry. In
this chapter, we shall be mainly interested in pencils of banded semi-infinite matrices
that are related to different kinds of scalar orthogonal polynomials. The classical
example of such a relation is the case of orthogonal polynomials on the real line
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(OPRL) and Jacobi matrices, see, for example, refs. [5, 6]. If pn xð Þ� �∞
n¼0 is a set of

orthonormal OPRL and J is the corresponding Jacobi matrix, then the following
relation holds:

J � xEð Þp! xð Þ ¼ 0, (2)

where p! xð Þ ¼ p0 xð Þ, p1 xð Þ, …� �T, is a vector of polynomials (here the superscript
T means the transposition), and E is the identity matrix (having units on the main
diagonal and zeros elsewhere). In other words, p! is an eigenfunction of the pencil
J � xE. It is surprising that mathematicians rarely talked about the relation (2) in such
a manner. The next classical example is the case of orthogonal polynomials on the
unit circle (OPUC) and the corresponding three-term recurrence relation, see ref.
[7, p. 159]. More recently there appeared CMV matrices, which are also related to
OPUC, see, for example, ref. [8]. We should notice that besides orthogonal polyno-
mials, there are other systems of functions that are closely related to semi-infinite
matrices. Here we can mention biorthogonal polynomials and rational functions, see,
for example, [9, 10] and references therein.

A natural generalization of OPRL is matrix orthogonal polynomials on the real line
(MOPRL). MOPRL was introduced by Krein in 1949 [11]. They satisfy the relation of
type (2), with J replaced by a block Jacobi matrix, and with p! replaced by a vector of
matrix polynomials. It turned out that MOPRL is closely related to orthogonal poly-
nomials on the radial rays in the complex plane, see refs. [12, 13]. We shall discuss this
case in Section 2.

Another possible generalization of relation (2) is the following one:

J5 � xJ3ð Þp! xð Þ ¼ 0, (3)

where J3 is a Jacobi matrix, and J5 is a real symmetric semi-infinite five-diagonal
matrix with positive numbers on the second subdiagonal, see ref. [14]. These poly-
nomials contain OPRL as a proper subclass. In general, they possess some special
orthogonality relations. These polynomials will be discussed in Section 3.

Another natural generalization of OPRL is Sobolev orthogonal polynomials, see a
recent survey in ref. [15]. During last years there appeared several examples of
Sobolev polynomials, which are eigenfunctions of pencils of differential or difference
operators. This subject will be discussed in Section 4.

Notations. As usual, we denote by ,,,þ, the sets of real numbers, complex
numbers, positive integers, integers, and nonnegative integers, respectively. By m,n
we mean a set of all complex matrices of size m� nð Þ. By  we denote the set of all
polynomials with complex coefficients. The superscript Tmeans the transposition of a
matrix.

By l2 we denote the usual Hilbert space of all complex sequences c ¼ cnð Þ∞n¼0 ¼
c0, c1, c2, …ð ÞT with the finite norm ∥c∥l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP∞
n¼0 cnj j2

q
. The scalar product of two

sequences c ¼ cnð Þ∞n¼0, d ¼ dnð Þ∞n¼0 ∈ l2 is given by c, dð Þl2 ¼
P∞

n¼0cndn. We denote

e!m ¼ δn,mð Þ∞n¼0 ∈ l2, m∈þ. By l2,fin we denote the set of all finite vectors from l2, that
is, vectors with all, but finite number, components being zeros.

By B ð Þ we denote the set of all Borel subsets of . If σ is a (non-negative)
bounded measure on B ð Þ then by L2

σ we denote a Hilbert space of all (classes of
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equivalences of) complex-valued functions f on  with a finite norm

∥f∥L2
σ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
 f xð Þj j2dσ

q
. The scalar product of two functions f , g∈L2

σ is given by

f , gð ÞL2
σ
¼ Ðf xð Þg xð Þdσ. By f½ � we denote the class of equivalence in L2

σ, which
contains the representative f . By P we denote a set of all (classes of equivalence
which contain) polynomials in L2

σ . As usual, we sometimes use the representatives
instead of their classes in formulas. Let B be an arbitrary linear operator in L2

σ with
the domain P. Let f λð Þ∈ be nonzero and of degree d∈þ, f λð Þ ¼Pd

k¼0dkλ
k, dk ∈.

We set

f Bð Þ ¼
Xd

k¼0
dkBk; B0≔E

�����
P

:

If f � 0, then f Bð Þ≔0jP .
If H is a Hilbert space then �, �ð ÞH and ∥ � ∥H mean the scalar product and the norm

in H, respectively. Indices may be omitted in obvious cases. For a linear operator A in
H, we denote by D Að Þ its domain, by R Að Þ its range, by Ker A its null subspace
(kernel), and A ∗ means the adjoint operator if it exists. If A is invertible then A�1

means its inverse. A means the closure of the operator, if the operator is closable. If A
is bounded then ∥A∥ denotes its norm.

2. Pencils J2Nþ1 � λNE and orthogonal polynomials on radial rays in the
complex plane

Throughout this section N will denote a fixed natural number. Let J2Nþ1 be a
complex Hermitian semi-infinite 2N þ 1ð Þ-diagonal matrix. Let pn λð Þ� �∞

n¼0, degpn ¼ n
be a set of complex polynomials, which satisfy the following relation:

J2Nþ1 � λnEð Þp! λð Þ ¼ 0, (4)

where p! λð Þ ¼ p0 λð Þ, p1 λð Þ, …� �T, is a vector of polynomials, and E is the identity
matrix. Polynomials, which satisfy (4) with real coefficients, were first studied by
Durán in ref. [16], following a suggestion of Marcellán. As it was already noticed in
the Introduction, these polynomials are related to MOPRL. Namely, the following
polynomials:

Pn xð Þ ¼

RN,0 pnN
� �

xð Þ RN,1 pnN
� �

xð Þ ⋯ RN,N�1 pnN
� �

xð Þ
RN,0 pnNþ1

� �
xð Þ RN,1 pnNþ1

� �
xð Þ ⋯ RN,N�1 pnNþ1

� �
xð Þ

⋮ ⋮ ⋱ ⋮
RN,0 pnNþN�1

� �
xð Þ RN,1 pnNþN�1

� �
xð Þ ⋯ RN,N�1 pnNþN�1

� �
xð Þ

0
BBB@

1
CCCA (5)

are orthonormal MOPRL [12, Theorem]. Here

RN,m pð Þ tð Þ ¼
X
n

p nNþmð Þ 0ð Þ
nN þmð Þ! t

n, p∈, 0≤m≤N � 1: (6)
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Conversely, from a given set Pn xð Þ ¼ Pn,m,j
� �N�1

m,j¼0
n o∞

n¼0
of orthonormal MOPRL

(suitably normed) one can construct scalar polynomials:

pnNþm xð Þ ¼
XN�1
j¼0

x jPn,m,j xN
� �

, n∈, 0≤m≤N � 1, (7)

which satisfy relation (4) [12]. Writing the corresponding matrix orthonormality
conditions for Pn and equating the entries on both sides, one immediately gets
orthogonality conditions for pn:

ð


RN,0 pn

� �
xð Þ,RN,1 pn

� �
xð Þ, … ,RN,N�1 pn

� �
xð Þ� �

dμ

RN,0 pm
� �

xð Þ
RN,1 pm

� �
xð Þ

⋮

RN,N�1 pm
� �

xð Þ

0
BBBBB@

1
CCCCCA
¼

¼ δn,m, n,m∈þ,

(8)

where μ is a N �Nð Þmatrix measure. In the case of real coefficients in (4), this
property was obtained by Durán in ref. [17].

Polynomials pn λð Þ� �∞
n¼0 also satisfy the following orthogonality relations on radial

rays in the complex plane [13]:

ð

LN

pn λð Þ, pn λεð Þ, … , pn λεN�1
� �� �

dW λð Þ

pm λð Þ
pm λεð Þ

⋮

pm λεN�1
� �

0
BBBBB@

1
CCCCCA
þ

þ pn 0ð Þ, p0n 0ð Þ, … , p N�1ð Þ
n 0ð Þ

� �
M

pm 0ð Þ
p0m 0ð Þ

⋮

p N�1ð Þ
m 0ð Þ

0
BBBBB@

1
CCCCCA
¼ δn,m, n,m∈þ,

(9)

where W λð Þ is a non-decreasing matrix-valued function on LNn 0f g; M∈N,N,
M≥0; LN ¼ λ∈ : λN ∈

� �
; ε is a primitive N-th root of unity. At λ ¼ 0 the integral

is understood as improper. Relation (9) can be derived from a Favard-type theorem in
ref. [12, Theorem], but in ref. [13] we proceeded in another way. Relation (9)
easily shows that the following classes of polynomials are included in the class of
polynomials from (4):

A.OPRL;

B. orthogonal polynomials with respect to a scalar measure on radial rays LN;

C. discrete Sobolev orthogonal polynomials on , having one discrete Sobolev
term.
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A detailed investigation of polynomials in the case Bð Þ was done by Milovanovi’c,
see ref. [18] and references therein. In particular, interesting examples of orthogonal
polynomials were constructed and zero distribution of polynomials was studied.
Discrete Sobolev polynomials from the case Cð Þmay possess higher-order differential
equations. This subject has a long history, see historical remarks in recent papers
[19, 20]. For polynomials (9) some simple general properties of zeros were studied in
ref. [21], while a Christoffel type formula was constructed in ref. [22]. In ref. [12]
there was studied a more general case of relation (4), with a polynomial h λð Þ instead
of λN .

3. Pencils J5 � xJ3 and orthogonal polynomials

Let J3 be a Jacobi matrix and J5 be a semi-infinite real symmetric five-diagonal
matrix with positive numbers on the second subdiagonal. A set Θ ¼ J3, J5, α, βð Þ,
where α>0, β∈, is said to be a Jacobi-type pencil (of matrices) [14]. With a
Jacobi-type pencil of matrices Θ one associates a system of polynomials pn λð Þ� �∞

n¼0,
which satisfies the following relations:

p0 λð Þ ¼ 1, p1 λð Þ ¼ αλþ β, (10)

and

J5 � λJ3ð Þp! λð Þ ¼ 0, (11)

where p! λð Þ ¼ p0 λð Þ, p1 λð Þ, p2 λð Þ,⋯� �T . Polynomials pn λð Þ� �∞
n¼0 are said to be asso-

ciated with the Jacobi-type pencil of matrices Θ.
Observe that for each system of OPRL with p0 ¼ 1 one can take J3 to be the

corresponding Jacobi matrix, J5 ¼ J23, and α, β being the coefficients of p1
(p1 λð Þ ¼ αλþ β). Then, this system is associated with Θ ¼ J3, J5, α, βð Þ. Let us mention
two other circumstances where Jacobi-type pencils arise in a natural way.

1. Discretization of a 4-th order differential operator. Ben Amara,
Vladimirov, and Shkalikov investigated the following linear pencil of
differential operators [23]:

py00
� �� λ �y00 þ cry

� � ¼ 0: (12)

The initial conditions are: y 0ð Þ ¼ y0 0ð Þ ¼ y 1ð Þ ¼ y0 1ð Þ ¼ 0, or y 0ð Þ ¼ y0 0ð Þ ¼
y0 1ð Þ ¼ py00

� �0 1ð Þ þ λαy 1ð Þ ¼ 0. Here p, r∈C 0, 1½ � are uniformly positive, while the
parameters c and α are real. Eq. (12) has several physical applications, which include a
motion of a partially fixed bar with additional constraints in the elasticity theory [23].
The discretization of this equation leads to a Jacobi-type pencil, see ref. [24].

2. Partial sums of series of OPRL. Let gn xð Þ� �∞
n¼0 (deggn ¼ n) be orthonormal

OPRL with positive leading coefficients. Let ckf g∞k¼0 be a set of arbitrary
positive numbers. Then polynomials

pn xð Þ≔ 1
c0g0

Xn
j¼0

c jg j xð Þ, n∈þ, (13)
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are associated with a Jacobi-type pencil [25, Theorem 1]. Polynomials pn are
normed partial sums of the following formal power series:

X∞
j¼0

c jg j xð Þ:

We shall return to such sums below.
From the definition of a Jacobi type pencil we see that matrices J3 and J5 have the

following form:

J3 ¼

b0 a0 0 0 0 ⋯
a0 b1 a1 0 0 ⋯
0 a1 b2 a2 0 ⋯
⋮ ⋮ ⋮ ⋱

0
BBB@

1
CCCA, ak >0, bk ∈, k∈þ; (14)

J5 ¼

α0 β0 γ0 0 0 0 ⋯
β0 α1 β1 γ1 0 0 ⋯
γ0 β1 α2 β2 γ2 0 ⋯
0 γ1 β2 α3 β3 γ3 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

0
BBBBBB@

1
CCCCCCA
, αn, βn ∈, γn >0, n∈þ: (15)

Set

un≔J3 e
!
n ¼ an�1 e

!
n�1 þ bn e

!
n þ an e

!
nþ1, (16)

wn≔J5 e
!
n ¼ γn�2 e

!
n�2 þ βn�1 e

!
n�1 þ αn e

!
n þ βn e

!
nþ1 þ γn e

!
nþ2, n∈þ: (17)

Here and in what follows by e!k with negative k we mean (vector) zero. The
following operator:

Af ¼ ζ

α
e!1 � β e!0

� �
þ
X∞
n¼0

ξnwn,

f ¼ ζ e!0 þ
X∞
n¼0

ξnun ∈ l2,fin, ζ, ξn ∈, (18)

with D Að Þ ¼ l2,fin is called the associated operator for the Jacobi-type pencil Θ. In the
sums in (18), only a finite number of ξn are nonzero. In what follows we shall always
assume this in the case of elements from the linear span. In particular, the following
relation holds:

AJ3 e
!
n ¼ J5 e

!
n, n∈þ:

Then

AJ3 ¼ J5: (19)

The matrices J3 and J5 define linear operators with the domain l2,fin, which we
denote by the same letters.
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For an arbitrary nonzero polynomial f λð Þ∈ of degree d∈þ, f λð Þ ¼Pd
k¼0dkλ

k,
dk ∈, we set f Að Þ ¼Pd

k¼0dkA
k. Here A0≔E

��
l2,fin

. For f λð Þ � 0, we set f Að Þ ¼ 0jl2,fin .
The following relations hold [14]:

e!n ¼ pn Að Þ e!0, n∈þ; (20)

pn Að Þ e!0, pm Að Þ e!0

� �
l2
¼ δn,m, n,m∈þ: (21)

Denote by rn λð Þf g∞n¼0, r0 λð Þ ¼ 1, the system of polynomials satisfying

J3 r
!

λð Þ ¼ λ r! λð Þ, r! λð Þ ¼ r0 λð Þ, r1 λð Þ, r2 λð Þ, …ð ÞT: (22)

These polynomials are orthonormal on the real line with respect to a (possibly
nonunique) nonnegative finite measure σ on the Borel subsets of  (Favard’s
theorem). Consider the following operator:

U
X∞
n¼0

ξn e
!
n ¼

X∞
n¼0

ξnrn xð Þ
" #

, ξn ∈, (23)

which maps l2,fin onto P. Here, by P we denote a set of all (classes of equivalence
which contain) polynomials in L2

σ . Denote

A ¼ Aσ ¼ UAU�1: (24)

The operator A ¼ Aσ is said to be the model representation in L2
σ of the associated

operator A.
Theorem 1.1 ([14]) Let Θ ¼ J3, J5, α, βð Þ be a Jacobi-type pencil. Let rn λð Þf g∞n¼0,

r0 λð Þ ¼ 1, be a system of polynomials satisfying (22) and σ be their (arbitrary)
orthogonality measure on B ð Þ. The associated polynomials pn λð Þ� �∞

n¼0 satisfy the
following relations:

ð


pn Að Þ 1ð Þpm Að Þ 1ð Þdσ ¼ δn,m, n,m∈þ, (25)

where A is the model representation in L2
σ of the associated operator A.

There appears a natural question: what are the characteristic properties of the operator
A? The answer is given by the following theorem.

Theorem 1.2 ([24, Corollary 1]) Let σ be a nonnegative measure on B ð Þ with
all finite power moments,

Ð
dσ ¼ 1,

Ð
 g xð Þj j2dσ >0, for any nonzero complex

polynomial g. A linear operator A in L2
σ is a model representation in L2

σ of the
associated operator of a Jacobi-type pencil if and only if the following properties
hold:

i. D Að Þ ¼ P;
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ii. For each k∈ℤþ it holds:

Axk ¼ ξk,kþ1x
kþ1 þ

Xk
j¼0

ξk,jx
j, (26)

where ξk,kþ1 >0, ξk,j ∈ (0≤ j≤ k);

iii. The operator AΛ0 is symmetric. Here, by Λ0 we denote the operator of the
multiplication by an independent variable in L2

σ restricted to P.

There is a general subclass of Jacobi-type pencils, for which elements much more
can be said about their associated operators and models [24]. Here we used some ideas
from the general theory of operator pencils, see ref. [1, Chapter IV, p. 163].

Let Θ ¼ J3, J5, α, βð Þ be a Jacobi-type pencil and A be a model representation in L2
σ

of the associated operator of Θ. By Theorem 1.2 we see that AΛ0 is symmetric:

AΛ0 u λð Þ½ �, v λð Þ½ �ð ÞL2
σ
¼ u λð Þ½ �,AΛ0 v λð Þ½ �ð ÞL2

σ
, u, v∈P: (27)

Suppose that the measure σ is supported inside a finite real segment a, b½ �,
0< a< b< þ∞, that is, σ n a, b½ �ð Þ ¼ 0. In this case, the operator Λ of the multiplica-
tion by an independent variable has a bounded inverse on the whole L2

σ. Using (27) we
may write:

Λ�1A λu λð Þ½ �, λv λð Þ½ �� �
L2
σ
¼ Λ�1 λu λð Þ½ �,A λv λð Þ½ �� �

L2
σ
, u, v∈P: (28)

Denote P0 ¼ ΛP and A0 ¼ AjP0
. Then

Λ�1A0f , g
� �

L2
σ
¼ Λ�1f ,A0g
� �

L2
σ
, f , g∈P0: (29)

Then A0 is symmetric with respect to the form Λ�1�, �� �
L2
σ
. Thus, in this case, the

operator A is a perturbation of a symmetric operator.
Consider two examples of Jacobi-type pencils which show that Sobolev orthogo-

nality is close to them.
Example 3.1. ([26]). Let σ be a nonnegative measure onB ð Þwith all finite power

moments,
Ð
dσ ¼ 1,

Ð
 g xð Þj j2dσ >0, for any nonzero complex polynomial g. The

following operator:

A p λð Þ½ � ¼ Λ0 p λð Þ½ � þ p 0ð Þ cλþ d½ �, p∈, (30)

where c> � 1 and d∈, satisfies properties ið Þ- iiið Þ of Theorem 1.2. Let J3 be the
Jacobi matrix, corresponding to the measure σ, and J5 ¼ J23. Define α, β in the following
way:

α ¼ 1
ξ0,1

ffiffiffiffiffiffi
Δ1
p , β ¼ � ξ0,1s1 þ ξ0,0

ξ0,1
ffiffiffiffiffiffi
Δ1
p : (31)

Here s j are the power moments of σ, while Δn≔det skþlð Þnk,l¼0, n∈þ, Δ�1≔1 are the
Hankel determinants. The coefficients ξk,j are taken from property (ii) of Theorem 1.2.
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Let Θ ¼ J3, J5, α, βð Þ. Denote by pn λð Þ� �∞
n¼0 the associated polynomials to the pencil Θ,

and denote by rn λð Þf g∞n¼0 the orthonormal polynomials (with positive leading
coefficients) with respect to the measure σ. Then

pn λð Þ ¼ 1
cþ 1

rn λð Þ � d
cþ 1

rn λð Þ � rn 0ð Þ
λ

þ c
cþ 1

rn 0ð Þ, n∈þ; (32)

rn λð Þ ¼ cþ 1ð Þpn λð Þ þ cþ 1ð Þd pn λð Þ � pn dð Þ
λ� d

� cpn dð Þ, n∈þ: (33)

In (32), (33) we mean the limit values at λ ¼ 0 and λ ¼ d, respectively. The
following recurrence relation, involving three subsequent associated polynomials,
holds:

λpn λð Þ ¼ pn dð Þ
cþ 1

cλþ dð Þ þ an�1pn�1 λð Þ þ bnpn λð Þ þ anpnþ1 λð Þ, n∈þ, λ∈ð Þ:
(34)

The following orthogonality relations hold:

ð

n df g
pn λð Þ, pn dð Þ� � cþ 1ð Þ2 λ

λ�d
� �2 �c� 1ð Þ λ cλþ dð Þ

λ� dð Þ2

�c� 1ð Þ λ cλþ dð Þ
λ� dð Þ2

cλþd
λ�d
� �2

0
BBBB@

1
CCCCA

pm λð Þ
pm dð Þ

 !
dσþ

þ pn dð Þ, p0n dð Þ� � 1 cþ 1ð Þd
cþ 1ð Þd cþ 1ð Þ2d2

 !
pm dð Þ
p0m dð Þ

 !
σ df gð Þ ¼ δn,m, n,m∈þ:

(35)

Polynomials pn λð Þ can have multiple or complex roots.
Suppose additionally that σ and J3 correspond to orthonormal Jacobi polynomials

rn λð Þ ¼ Pn λ; a, bð Þ (a, b> � 1) and c ¼ 0; d ¼ 1. In this case, the associated polynomial
pn (n∈þ):

pn λð Þ ¼ rn λð Þ � rn λð Þ � rn 0ð Þ
λ

, (36)

is a unique, up to a constant multiple, real n-th degree polynomial solution of the
following 4-th order differential equation:

� tþ 1ð Þt t� 1ð Þ2y 4ð Þ tð Þ þ t� 1ð Þ � aþ bþ 10ð Þt2 þ b� að Þtþ 4
� �

y 3ð Þ tð Þ
þ þ �3 2aþ 2bþ 8ð Þt2 þ aþ 9bþ 22ð Þtþ 3a� 3b

� �
y00 tð Þ

þ �6 aþ bþ 2ð Þtþ 2aþ 6bþ 8ð Þy0 tð Þ
þ þ λn t t� 1ð Þy00 tð Þ þ 2 2t� 1ð Þy0 tð Þ þ 2y tð Þ� �

¼ 0,

(37)

where λn ¼ n nþ aþ bþ 1ð Þ.
Moreover, there exists a unique λn ∈, such that differential Eq. (37) has a real n-

th degree polynomial solution.
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Example 3.2. ([25]). Recall that Jacobi polynomials P α,βð Þ
n xð Þ:

P α,βð Þ
n xð Þ ¼ nþ α

n

� �

2
F1 �n, nþ αþ β þ 1; αþ 1;

1� x
2

� �
, n∈þ,

are orthogonal on �1, 1½ � with respect to the weight w xð Þ ¼ 1� xð Þα 1þ xð Þβ,
α, β> � 1. Orthonormal polynomials have the following form:

bP α,βð Þ
0 xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2αþβþ1B αþ 1, β þ 1ð Þ
q ,

bP α,βð Þ
n xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ αþ β þ 1ð Þn!Γ nþ αþ β þ 1ð Þ
2αþβþ1Γ nþ αþ 1ð ÞΓ nþ β þ 1ð Þ

s
P α,βð Þ
n xð Þ, n∈:

Let c>0 be an arbitrary positive number. Set

Dα,β,c≔ x2 � 1
� � d2

dx2
þ αþ β þ 2ð Þxþ α� β½ � d

dx
þ c, (38)

ln,c≔cþ n nþ αþ β þ 1ð Þ: (39)

Define the following polynomials:

Pn α, β, c, t0; xð Þ≔
Xn

k¼0

1
lk,c
bP α,βð Þ
k t0ð ÞbP α,βð Þ

k xð Þ, n∈þ, (40)

where t0 ≥ 1 is an arbitrary parameter. Notice that normed by eigenvalues polyno-
mial kernels of some Sobolev orthogonal polynomials appeared earlier in literature,
see ref. [27].

Theorem 1.3. Let α, β> � 1; c>0, and t0 ≥ 1, be arbitrary parameters. Polynomials
Pn xð Þ ¼ Pn α, β, c, t0; xð Þ, from (40), are Sobolev orthogonal polynomials on :

ð1
�1

Pn xð Þ,Pn0 xð Þ,Pn0 0 xð Þð ÞMα,β,c xð Þ
Pm xð Þ
P0m xð Þ
P00m xð Þ

0
BB@

1
CCA t0 � xð Þ 1� xð Þα 1þ xð Þβdx ¼

¼ Anδn:m, n,m∈þ,

(41)

where An are some positive numbers and

Mα,β,c ¼¼
c

αþ β þ 2ð Þxþ α� β

x2 � 1

0
B@

1
CA c, αþ β þ 2ð Þxþ α� β, x2 � 1
� �

: (42)

For Pn α, β, c, 1; xð Þ the following differential equation holds:

Dαþ1,β,0Dα,β,cPn α, β, c, 1; xð Þ ¼ ln,0Dα,β,cPn α, β, c, 1; xð Þ, n∈þ, (43)

where Dα,β,c, ln,c are defined by (38), (39).

42

Matrix Theory - Classics and Advances



4. Pencils of banded matrices and Sobolev orthogonality

Let K denote the real line or the unit circle. The following problem was stated in
ref. [28], see also ref. [29]:

Problem 1. To describe all Sobolev orthogonal polynomials yn zð Þ� �∞
n¼0 on K, satisfying

the following two properties:
a. Polynomials yn zð Þ satisfy the following differential equation:

Ryn zð Þ ¼ λnSyn zð Þ, n ¼ 0, 1, 2, … , (44)

where R, S are linear differential operators of finite orders, having complex
polynomial coefficients not depending on n; λn ∈;

b. Polynomials yn zð Þ obey the following difference equation:

Ly! zð Þ ¼ zMy! zð Þ, y! zð Þ ¼ y0 zð Þ, y1 zð Þ, …� �T, (45)

where L,M are semi-infinite complex banded (i.e., having a finite number of non-
zero diagonals) matrices.

Relation (44) shows that yn is an eigenfunction of the operator pencil R� λS, while
relation (45) means that vectors of yn zð Þ are eigenfunctions of the operator pencil
L� zM. We emphasize that in Problem 1 we do not exclude OPRL or OPUC. They are
formally considered as Sobolev orthogonal polynomials with the derivatives of order
0. In this way, we may view systems from Problem 1 as generalizations of systems of
classical orthogonal polynomials (see, e.g., the book [30], and papers [20, 31, 32] for
more recent developments on this subject, as well as references therein). Related
topics are also studied for systems of biorthogonal rational functions, see, for example,
ref. [33]. Conditions að Þ, bð Þ of Problem 1 are close to bispectral problems, and in
particular, to the Bochner-Krall problem (see refs. [31, 34–36] and papers cited
therein).

One example of Sobolev orthogonal polynomials, which satisfy conditions of
Problem 1, we have already met in Example 3.2. In ref. [37] there was proposed a way
to construct such systems of polynomials. Let pn xð Þ� �∞

n¼0 (pn has degree n and real
coefficients) be orthogonal polynomials on a,b½ �⊆with respect to a weight function
w xð Þ:

ðb
a
pn xð Þpm xð Þw xð Þdx ¼ Anδn,m, An >0, n,m∈þ: (46)

The weight w is supposed to be continuous on a,bð Þ. Denote

Dξy xð Þ ¼
Xξ

k¼0
dk xð Þy kð Þ xð Þ, (47)

where dk and y are real polynomials of x: dξ 6¼ 0. Let us fix a positive integer ξ, and
consider the following differential equation:

Dξy xð Þ ¼ pn xð Þ, (48)
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where Dξ is defined as in Eq. (47), and n∈þ. The following assumption plays a
key role here.

Condition 1. Suppose that for each n∈þ, the differential Eq. (48) has a real n-th
degree polynomial solution y xð Þ ¼ yn xð Þ.

If Condition 1 is satisfied, by relations (46),(48) we immediately obtain that
yn xð Þ� �∞

n¼0 are Sobolev orthogonal polynomials:

ðb
a

yn xð Þ, y0n xð Þ, … , y ξð Þ
n xð Þ

� �
M xð Þ

ym xð Þ
y0m xð Þ
⋮

y ξð Þ
m xð Þ

0
BBBBB@

1
CCCCCA
w xð Þdx ¼ Anδn,m,

n,m∈þ,

(49)

where

M xð Þ≔

d0 xð Þ
d1 xð Þ
⋮

dξ xð Þ

0
BBB@

1
CCCA d0 xð Þ, d1 xð Þ, … , dξ xð Þð Þ, x∈ a,bð Þ: (50)

Moreover, if pn satisfy a differential equation, then yn satisfy a differential equa-
tion as well. Question: when Condition 1 is satisfied? An answer is given by the
following proposition.

Proposition 1 ([28, Proposition 2.1]) Let D be a linear differential operator of order
r∈, with complex polynomial coefficients:

D ¼
Xr

k¼0
dk zð Þ d

k

dzk
, dk zð Þ∈:

Let un zð Þf g∞n¼0, degun ¼ n, be an arbitrary set of complex polynomials. The fol-
lowing statements are equivalent:

(A) The following equation:

Dy zð Þ ¼ un zð Þ, (51)

for each n∈ℤþ, has a complex polynomial solution y zð Þ ¼ yn zð Þ of degree n;
(B) Dzn is a complex polynomial of degree n, ∀n∈ℤþ;
(C) The following conditions hold:

degdk ≤ k, 0≤ k≤ r; (52)
Xr
j¼0

n½ � jd j,j 6¼ 0, n∈þ, (53)

where d j,l means the coefficient by zl of the polynomial d j.
If one of the statements Að Þ, Bð Þ, Cð Þ holds true, then for each n∈þ, the solution

of (51) is unique.
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Observe that condition (53) holds true, if the following simple condition holds:

d0,0 >0, d j,j ≥0, j∈1,r: (54)

Thus, there exists a big variety of linear differential operators with polynomial coeffi-
cients that have property Að Þ. This leads to various Sobolev orthogonal polynomials.

In ref. [37] there were constructed families of Sobolev orthogonal polynomials on
the real line, depending on an arbitrary finite number of complex parameters.
Namely, we considered the following hypergeometric polynomials:

Ln xð Þ ¼ Ln x; α, κ1, … , κδð Þ ¼
¼δþ1Fδþ1 �n, 1, … , 1; αþ 1, κ1 þ 1, … , κδ þ 1; xð Þ, (55)

Pn xð Þ ¼ Pn x; α, β, κ1, … , κδð Þ ¼
¼δþ2Fδþ1 �n, nþ αþ β þ 1, 1, … , 1; αþ 1, κ1 þ 1, … , κδ þ 1; xð Þ,

α, β, κ1, … , κδ > � 1, n∈þ:
(56)

Here pFq is a usual notation for the generalized hypergeometric function, and δ is a
positive integer. These families obey differential equations. As for recurrence rela-
tions, they were only constructed for the case δ ¼ 1.

In ref. [29] a family of hypergeometric Sobolev orthogonal polynomials on the unit
circle was considered:

yn xð Þ ¼ �1ð Þρ
n!

xn2F0 �n, ρ; � ;� 1
x

� �
,

depending on a parameter ρ∈. Observe that the reversed polynomials to yn
appeared in numerators of some biorthogonal rational functions, see [38].

Let gn tð Þ� �∞
n¼0 be a system of OPRL or OPUC, having a generating function of the

following form:

G t,wð Þ ¼ f wð Þetu wð Þ ¼
X∞
n¼0

gn tð Þw
n

n!
, t∈, ∣w∣<R0, R0 >0ð Þ, (57)

where f , u are analytic functions in the circle jwj<R0f g, u 0ð Þ ¼ 0. Such generating
functions for OPRL were studied by Meixner, see, for instance, ref. [39, p. 273]. In the
case of OPUC, we do not know any such a system, besides znf g∞n¼0. Consider the
following function:

F t,wð Þ ¼ 1
p u wð Þð ÞG t,wð Þ ¼ 1

p u wð Þð Þ f wð Þetu wð Þ,

t∈, ∣w∣<R1 <R0, R1 >0ð Þ,
(58)

where p∈: p 0ð Þ 6¼ 0. In the case u zð Þ ¼ z, one should take R1 ≤ ∣z0∣, where z0 is a
root of pwith the smallest modulus. This ensures that F t,wð Þ is an analytic function of
two variables in any polydisk CT1,R1 ¼ t,wð Þ∈2 : jtj<T1, wj<R1j

� �
, T1 >0. In the

general case, since p u 0ð Þð Þ ¼ p 0ð Þ 6¼ 0, there also exists a suitable R1, which
guarantees that F is analytic in CT1,R1 . Expand the function F t,wð Þ in Taylor’s series by
w with a fixed t:
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F t,wð Þ ¼
X∞
n¼0

φn tð Þw
n

n!
, t,wð Þ∈CT1,R1 , (59)

where φn tð Þ are some complex-valued functions. Then the function φn tð Þ is a
complex polynomial of degree n, ∀n∈þ, see [28, Lemma 3.5]. Suppose that degp≥ 1,
and

p zð Þ ¼
Xd

k¼0
ckzk, ck ∈, cd 6¼ 0; c0 6¼ 0; d∈: (60)

Theorem 1.4 ([28, Theorem 3.7]) Let d∈, and p zð Þ be as in (60). Let gn tð Þ� �∞
n¼0

be a system of OPRL or OPUC, having a generating function G t,wð Þ from (57) and
F t,wð Þ be given by (58). Fix some positive T1,R1, such that F t,wð Þ is analytic in the
polydisk CT1,R1 . Polynomials

φn zð Þ ¼
Xn
j¼0

n
j

� �
b jgn�j tð Þ, n∈þ, (61)

where b j ¼ 1
p u wð Þð Þ
� � jð Þ

0ð Þ, have the following properties:

i. Polynomials φn are Sobolev orthogonal polynomials:

ð
φn tð Þ,φ0n tð Þ, … ,φ dð Þ

n tð Þ
� � eM

φm tð Þ
φ0m tð Þ
⋮

φ dð Þ
m tð Þ

0
BBBBB@

1
CCCCCA
dμg ¼ τnδn,m,

τn >0, n,m∈þ,

where

eM ¼ c0, c1, … , cdð ÞT c0, c1, … , cdð Þ:
Here dμg is the measure of orthogonality of gn.

i. Polynomials φn have the generating function F t,wð Þ, and relation (59) holds.

ii. Polynomials φn have the following integral representation:

φn tð Þ ¼ n!
2πi

∮ ∣w∣¼R2

1
p u wð Þð Þ f wð Þetu wð Þw�n�1dw, n∈þ, (62)

where R2 is an arbitrary number, satisfying 0<R2 <R1.
There are two cases of gn, which lead to additional properties of φn, namely, to

differential equations and recurrence relations. The next two corollaries are devoted
to them.

Corollary 1 ([28]) In conditions of Theorem 1.4 suppose that gn tð Þ ¼ tn, n∈þ;
f wð Þ ¼ 1, u wð Þ ¼ w. Polynomials φn tð Þf g∞n¼0 satisfy the following recurrence relation:
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nþ 1ð Þ
Xd

k¼0
φnþ1�k tð Þ ck

nþ 1� kð Þ! ¼

¼ t
Xd

k¼0
φn�k tð Þ ck

n� kð Þ!

 !
, n∈þ,

(63)

where φr≔0, r!≔1, for r∈ : r<0.
Polynomials φn tð Þf g∞n¼0 obey the following differential equation:

t
Xd

k¼0
ckφ kþ1ð Þ

n tð Þ ¼ n
Xd

k¼0
ckφ kð Þ

n tð Þ
 !

, n∈þ:

Corollary 2 ([28]) In conditions of Theorem 1.4 suppose that gn tð Þ ¼ Hn tð Þ, n∈þ,
are Hermite polynomials; f wð Þ ¼ e�w

2
, u wð Þ ¼ 2w. Polynomials φn tð Þf g∞n¼0 satisfy the

following recurrence relation:

nþ 1ð Þ
Xd

k¼0
φnþ1�k tð Þ ck2k

nþ 1� kð Þ!þ 2
Xd

k¼0
φn�1�k tð Þ ck2k

nþ 1� kð Þ! ¼

¼ 2t
Xd

k¼0
φn�k tð Þ ck2k

n� kð Þ!

 !
, n∈,

(64)

where φr≔0, r!≔1, for r∈ : r<0; and

c0φ1 tð Þ þ 2c1φ0 tð Þ ¼ 2c0tφ0 tð Þ: (65)

Polynomials φn tð Þf g∞n¼0 obey the following differential equation:

Xd

k¼0
ckφ kð Þ

n tð Þ � 2t
Xd

k¼0
ckφ kþ1ð Þ

n tð Þ ¼ �2n
Xd

k¼0
ckφ kð Þ

n tð Þ
 !

, n∈þ: (66)

Observe that polynomials φn from the last two corollaries fit into the scheme of
Problem 1.

5. Conclusion

The theory of orthogonal polynomials is closely related to semi-infinite matrices,
as well as to their finite truncations. This interplay has shown its productivity in
classical results. Nowadays there appeared new kinds of orthogonality, such as
Sobolev orthogonality. It is not yet clear what kind of matrices can be attributed to
them. One of candidates is a pencil of matrices, since it appeared in examples. In
Section 3 there appeared a pencil of semi-infinite symmetric matrices, while in Section
4 it was a pencil of some banded matrices. In Section 2 we also met a pencil, but it was
more close to classical eigenvalue problems of single operators.

The above-mentioned examples of Sobolev orthogonal polynomials also showed
that pencils of differential equations appeared here in a natural way. Moreover, there
is a large number of differential operators, which have polynomial solutions with
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Sobolev orthogonality. This fact promises that Sobolev orthogonal polynomials can
find their applications in mathematical physics.

We think that Problem 1 is an appropriate framework for a search and a construc-
tion of new Sobolev orthogonal polynomials having nice properties. Notice that one
can produce such systems using classical OPRL or OPUC. The differential equation, if
it existed, is inherited by new systems of polynomials. The more complicated question
is the existence of a recurrence relation.

Besides new families of Sobolev orthogonal polynomials, it is of a big interest
finding classes of systems of Sobolev orthogonal polynomials, having recurrence
relations. One such a class (orthogonal polynomials on radial rays) was described in
Section 2. Thus, it looks reasonable to start not only from Sobolev orthogonality, but
from the other side, i.e., from recurrent relations. One such an example of derivation
was given by orthogonal polynomials on radial rays from Section 2.

Another possible way was given in Section 3, where we described Jacobi-type
pencils. The associated polynomials of a Jacobi type pencil have special orthogonality
relations. The associated operator yet has not a suitable functional calculus. As we
have seen, under some conditions this operator is a perturbation of a symmetric
operator. However, it is not clear how to calculate effectively a polynomial of this
operator.

In general, it is a classical situation that the operator theory stands behind special
classes of semi-infinite matrices and related objects. The operator theory of single
operators is well promoted and it is well recognized by any mathematician. It seems
that the theory of operator pencils is less known to the mathematical community.
This fact can explain the situation that pencils of semi-infinite matrices and related
polynomials appeared on a mathematical scene just recently. We hope that, as in the
classical case, these new orthogonal polynomial systems will shed some new light on
the theory of operator pencils.
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Chapter 3

Matrix as an Alternative Solution
for Evaluating Sentence
Reordering Tasks
Amma Kazuo

Abstract

Although sentence reordering is a popular practice in educational contexts its
scoring method has virtually remained ‘all-or-nothing’. The author proposed a more
psychologically valid means of partial scoring called MRS (Maximal Relative
Sequence) where a point is counted for each ascending run in the answer sequence
allowing gaps and the final score reflects the length of the longest sequence of
ascending elements. This scoring method, together with an additional consideration of
recovery distances, was woven into an executable programme, and then transplanted
to Excel without having to understand a programming language. However, the use of
Excel was severely limited by the number of columns available. This chapter reviews
the past practices of evaluating partial scoring of reordering tasks and proposes an
alternative solution LM (Linearity Matrix), also executable on Excel, with far smaller
consumption of columns and with the idea of calculating the recovery distances as
well as MRS scores. Although LM and MRS are different scoring procedures, they both
reflect psychological complexity of the task involved. Furthermore, LM is versatile as
to the adjustability of adjacency weights as an extended model of Kendall’s tau. Some
reflections on practical application are referred to as well as future directions of the
study.

Keywords: reordering, partial scoring, recovery distance, Excel, Kendall’s tau

1. Introduction

Sentence reordering is one of the popular tasks in reading comprehension [1, 2].
Regrettably, in the field of language testing, the scoring method, in practice, has been
overwhelmingly ‘all or nothing’, i.e., one can get a full score only if his/her answer
matches the correct sequence perfectly. ‘All or nothing’ is simple enough, but excludes
the idea of partial correctness, which Alderson, Percsich, and Szabo see as unfair [3].
There is no consideration of the difference in the test-taker’s degrees of performance.

Consider first a reordering task as an example of a reading comprehension ques-
tion. Text 1 is taken from Japan’s National Centre Examination (2013) with option [b]
being the correct answer [4]. The test-takers were told to choose the correct order of
the illustrations of a movie story they were presented.
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Which of the following shows the order of the scenes as they appear in the movie?

a½ � Að Þ ! Cð Þ ! Bð Þ ! Dð Þ
b½ � ∗ Að Þ ! Bð Þ ! Cð Þ ! Dð Þ
c½ � Bð Þ ! Dð Þ ! Að Þ ! Cð Þ
d½ � Bð Þ ! Að Þ ! Dð Þ ! Cð Þ

Text 1.
Sample reordering task for reading comprehension. *: correct answer; element codes are
rearranged for convenience.

According to the test manual, only [b] gets the point; the other options make no
point. The correct sequence [b] contains three continuous ascending runs: A-B, B-C,
and C-D, and three discrete ascending runs: A-C, A-D, and B-D. Of these six
sequences [a] satisfies 5 matches, [c] 3 matches, and [d] 4 matches. By another
criterion, [a] is reached by dislocating one element (either C or B) from the correct
sequence, [c] by two elements, and [d] by two elements. By either case, the three
distractors are gradable in terms of proximity to the correct sequence. The ‘All or
nothing’scoring method accepts only the perfect answer and ignores the differences in
the test-taker’s partially formed construct.

What should be sought is a rational evaluation method for a partial achievement of
item reordering tasks. This paper first reviews some past literature concerning this
issue, followed by an overview of a stretch of alternative measurement methods
developed by the author. The core issue is a new measurement scheme Linearity
Matrix (LM), which can compensate for the shortcomings of the present practices,
ensuring quicker and light-weight processing for non-specialists to handle.

2. Literature overview

Alderson, et al. examine four alternative methods to seek fairness and high dis-
criminability: (1) ‘Exact matching’, (2) ‘Previous’, (3) ‘Next’, and (4) ‘Edges’ [3].
They were all in a test stage and no clear conclusion was reached. Above all, these
methods were empirically designed on the basis of ad hoc assumptions. Of them (4)
‘Edges’ is a linear extension of (1) ‘Exact matching’, and (2) ‘Previous’ and (3) ‘Next’
are variations of ‘Adjacent matching’. ‘Exact matching’ requires each element to be
located exactly in the same position as in the correct answer. In option [a] of Text 1, A
and D will get points; the other options [c] and [d] will get no points because there is
no element in the correct position. In ‘Adjacent matching’ each of the three adjacent
pairs will get 1 point. None of the three distractors [a], [c], and [d] will get a point in
our example. But if we had an option

e½ � Cð Þ ! Dð Þ ! Að Þ ! Bð Þ

the initial pair C-D and the final pair A-B would each get 1 point.
Kendall’s coefficient tau is originally one of the measurement methods of

rank-order correlation [5]. Kendall’s tau is defined as:

tau ¼ ½number of concordant pairs�–½number of discordant pairs�ð Þ=
binomial of choosing 2 from n½ �
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In other words,

τ ¼ 4
P

P
n n� 1ð Þ � 1 (1)

where
P is the total number of items ranked after a given item by both rankings, and
n is the number of items

Kendall’s tau is a popular tool in evaluating correspondence between machine-
translated passages and human translations [6–8]. Papineni, Roukos, Ward and Zhu,
for example, measured tau for the degree of correspondence between the n-gram of
the reference text and that of the target text produced as a result of machine transla-
tion [9]. This study as well as other papers of the same interest deals with open-ended
elements for comparison where additions and reductions of words and phrases natu-
rally occur, hence irrelevant to the present scope of item reordering in which the
elements are closed.

Bollegala, Okazaki and Ishizuka’s ‘Average continuity’ [10] is a variation of
‘Adjacent matching’:

AC ¼ exp
1

k� 1
∙
Xk
i¼2

log Pi þ αð Þ
 !

(2)

where
k is the maximum number of continuous elements to be considered for calculation,
α is any small number (e.g., 0.001 in Bollegala, et al’s example),
and ‘precision of n continuous sentences’:

Pn ¼ m= N � nþ 1ð Þ (3)

where
n is the length of continuous elements,
m is the number of continuous elements in the correct order, and
N is the number of elements in the correct sequence.

For example, when evaluating an answer CDABE for a correct sequence ABCDE,
N = 5 (length of ABCDE), k = N = 5, m = 2 (count of CD and AB), and n = 2 (length of
CD or AB).

Their method is sensitive to continuously running elements such as CD or AB, or
ABCD in ABCDE with few disorderly elements. In our previous example of Text 1,
none of the distractors contains a sequence of elements long enough to get a Pn,
resulting invariably in AC =exp(log α).

Below is a simulation of AC against the exclusive permutations of five elements (A,
B, C, D, E) where the sample size is 120, given the correct sequence ABCDE. It is only
when the length of the continuous sequence is 4 (i.e., ABCD and BCDE) that the AC
value appears reasonable (= 0.407 when α = 0.001); otherwise, the values are gener-
ally low1. This tendency is enhanced when α takes a smaller value (Table 1)2.

Therefore, AC is not an appropriate measurement tool when shorter continuous
sequences (i.e., two or three consecutive elements such as AB and ABC) are not
infrequent. Furthermore, AC cannot count the cases where ascending elements are
not adjacent (e.g., ADBEC, where AC = 0.050)3.
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Lapata prepared all permutations of orders of eight sentences and calculated the
tau value for each text, and compared it with the human rating of comprehensibil-
ity [11]. She obtained a significant correlation coefficient of r = 0.45 (N = 64)
(p. 478). She also claimed that she confirmed that Kendall’s tau was able to predict
the text cohesion by measuring the reading time of the target texts. Although this
was one of the few studies validating the effect of randomised sentence order, the
final coefficient value alone is not convincing enough to ensure the effect of
particular text disturbance on comprehension. Other measurement methods for
evaluating disrupted orders could have been equally significant while comprising
substantial linguistic differences beneath the surface. Therefore, the next step of
this study would be to analyse how the target sequences of sentences are created
and organised.

In conclusion, both ‘Exact matching’ and ‘Adjacent matching’ are incomplete and
counter to intuition. The problem with ‘Exact matching’ is that it is sensitive to the
absolute location of elements, and relative sequence is out of consideration. This
scoring method may be appropriate for a question in which absolute location is
significant, e.g., topic sentence in a paragraph, and initial cause of sequential events.
However, if we consider a sequence of combined cause-effect instances, relative
locations should also be rewarded with partial points. In contrast, ‘Adjacent matching’
weighs much on local adjacency. Even though [e] gets 2 points, the two pairs are
twisted in relative order.

3. Maximal relative sequence

A new measurement method called ‘Maximal Relative Sequence’ (MRS) was
proposed by the author [12–15]. It was intended to capture the longest possible
sequence of ascending run within the answer while allowing gaps of adjacent
elements. The MRS score is the number of transitions, i.e., the number of elements
in the MRS–1. In an answer CDABE, for example, for which the correct sequence is
ABCDE, the longest possible ascending sequence or MRS is either CDE or ABE,
and the score is 2. Note that there may be multiple MRS for a single score. It is a
special case of Levenshtein distance [16] in the sense that there is no addition or
reduction of elements.

MRS is logically and psychometrically endorsed with reference to MED (Minimal
Edit Distance) in the following simple relationship.

MRSþMED ¼ full score ¼ number of elements½ � � 1 (4)

Alpha Mean AC SD of AC

0.001 0.087 0.057

0.0001 0.043 0.045

0.000001 0.012 0.020

0.00000001 0.004 0.015

Table 1.
Mean and SD of AC scores for all permutations of five elements. (A perfect sequence is excluded as an outlier).
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By MED we mean the minimal number of displacement of elements in the answer
sequence required to recover the correct sequence, i.e., the number of displacement
from the correct sequence to arrive at a certain answer sequence. Thus the MED for
BACDE is 1, and that for EDCBA is 4. Take CDABE, for example. It is reachable by
dislocating either (C and D) or (A and B) from the correct sequence ABCDE, with a
displacement count of two for each case. Since measuring MED is to count the number
of elements subject for displacement (e.g., C and D), counting the number of intact
elements (i.e., A, B, and E), namely, the elements for MRS is a complement to MED,
hence the Eq. (4). The more displacement from the correct sequence is involved, the
remoter the answer sequence is from the correct sequence, both logically and psycho-
metrically. Thus, measurement by MRS is practically equivalent to measurement by
MED, bearing an advantage over ‘Exact matching’ and ‘Adjacent matching’ with
respect to the cognitive load needed for recovery.

4. Maximal relative sequence with recovery distance

Talking about recovery, MRS is still a rough indicator of partial achievement,
however. The major flaw is that it does not consider the precise recovery distance of
the elements involved. Two answers BACDE and BCDEA would have the same MRS
score of 3 (or 1 displacement of A), but the degree of distortion from the correct
answer is obviously different. The author’s MRS + Dist model was an attempt of
incorporating the recovery distance, i.e., the total number of elements that the ele-
ments subject for recovery have to jump over [17, 18]. The final score will be calcu-
lated as follows:

Adjusted score ¼ MRS � 1� Penalty rate
� �� �

(5)

where
Penalty rate ¼ Recovery distance

� �
= Maximal recovery distance
� �

where
Maximal recovery distance ¼ n� n� 1ð Þ=2
where

n is the number of elements in the sequence.

Table 2 shows some sample recovery effects.

The author coded a script of computer programme using Xojo [19] enabling
machine calculation since calculating recovery distance seemed beyond ocular calcu-
lation. One reason for this complication was the need to handle crossing constraints. A
crossing constraint prevents redundant recovery moves. In the case of CDABE, the
correct procedure is:

Step 1 : CDABE! CABDE Distance ¼ 2ð Þ
Step 2 : CABDE! ABCDE Distance ¼ 2ð Þ

Total distance ¼ 4

However, if we started with C, the process would incur an unnecessary extra
movement:
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Step 1 : CDABE! DABCE Distance ¼ 3ð Þ
Step 2 : DABCE! ABCDE Distance ¼ 3ð Þ

Total distance ¼ 6

In the first step, C jumped over D, which jumped over C in the second step. This
redundancy has occurred because C jumped over an older element D when it moved
right, the relative order having been reversed, which had to be rectified in the second
step by making D jump over C. We need a set of constraints as follows:

No element can cross over an older element when moving right: (6)

No element can cross over a younger element when moving left: (7)

Figure 1 is a flow chart illustrating the procedure of calculating MRS (and Distance
as a supplement). The core mechanism of creating MRS is to concatenate ascending
elements in the answer sequence into a possible pair and connect its tail with the head
of another ascending pair. In the case of CDABE, the first seeds are CD, DE, AB, BE
and AE. Some of them grow into larger sequences CDE and ABE. The growth stops
here since no more concatenation is possible. These are the MRS and the count of
concatenation steps is the MRS score (= 2). A full set of codes is included in [18].

5. MRS by Excel

Resorting to a computer programme meant that the protocol turned opaque in a
black box. In order to secure transparency, the author devised an Excel spreadsheet
where he transplanted the computer programme to combinations of Excel
functions [20].

Readers can trace the concatenation steps in Sections 2 and 3 in Figure 2.
As for the recovery distance, the author introduced the use of Kendall’s tau instead

of a special computer programme [21]. Given a definition of tau as (1), P is the total
number of ‘behind’ elements. When the correct sequence is ABCDE and the target
sequence is CDABE, for example, the elements behind A in the ascending order in the
target sequence are B and E (2 elements); behind B comes E (1 element); behind C
come D and E (2 elements); behind D comes E (1 element). P, in this case, makes 6.

Answer MRS Elements
for recovery

Distance Penalty
rate

MRS + Dist

ABCED 3 E 1 0.1 3 � (1–0.1) = 2.7

ABECD 3 E 2 0.2 3 � (1–0.2) = 2.4

EABCD 3 E 4 0.4 3 � (1–0.4) = 1.8

CDABE 2 C, D 4 0.4 2 � (1–0.4) = 1.2

DCBAE 1 B, C, D 6 0.6 1 � (1–0.6) = 0.4

EDCBA 0 A, B, C, D 10 1 0 � (1–1) = 0

Table 2.
Sample recovery effects. (Bold letters indicate elements for recovery or ‘disruptors’).
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Since P indicates the number of elements that each element has to jump over to make
a complete reverse sequence (EDCBA), the maximum of P is

Pmax ¼ n� n� 1ð Þ=2 (8)

where
n is the number of elements.

Figure 1.
Flow chart of MRS algorithm.
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The answer CDABE is distant from the correct answer by dislocating C and D by 4
occasions of jumping over (Table 2), and it is still distant from the complete reverse
by additional 6 occasions of jumping over. It means the sum of recovery distance and
P is always constant, Pmax.

ABCDE �������! CDABE ��������!EDCBA

Items to 4 þ 6 ¼ 10

jump over ¼ Pmax

Therefore recovery distance can be calculated by tau. Figure 2 already includes the
column of Distance by tau.

Recovery distance ¼ 1� τð Þ � n� n� 1ð Þ=4 (9)

6. Linearity matrix

Despite the improved accessibility, a major problem with the Excel calculation is
its consumption of columns. If we follow the layout in Figure 2 the number of
columns required will soon reach the limit of 16,384 as we increase the size of the
sequence. It means n = 12 is the largest possible size. Table 3 shows the number of
entire columns required for n = 4 to n = 13, including columns for calculating recovery
distance by Kendall’s tau.

Yet another idea for representing the mechanism of MRS is to make use of a
matrix. Table 4 shows the framework of matrix (Linearity Matrix = LM) in which the
relationships of elements are indicated. The value ‘1’ indicates that the row element is
correctly followed by the column element. The value will be ‘0’ when the relative
order is disrupted. In Table 5 for CDABE, C-A, C-B, D-A and D-B are in the wrong
order. The sum of the values is Linearity Matrix score, representing the
wellformedness of the answer sequence.

The greatest advantage of LM is its efficiency in column consumption. When
transplanted to Excel the core part of LM requires n � (n–1)/2 columns, resulting in a

Figure 2.
Sample excel sheet of MRS and MRS + Dist.

n 4 5 6 7 8 9 10 11 12 13

C 54 102 198 390 774 1,542 3,078 6,150 12294 24582

Table 3.
Size of entire columns (C) required by MRS + Dist.
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small size of the entire columns (Table 6). Whereas MRS + Dist by Excel would need
3,080,634 columns (in theory) when n = 20, LM requires only 214.

An additional advantage of LM is that it can calculate the recovery distance by
counting the number of zero values. Since a pair with ‘1’ mark indicates an ascending
run, the sum of values (= LM) is equivalent to P of Kendall’s tau. It means that the
count of zero values represents the recovery distance. In Table 5, either C and D have
to jump over A and B or A and B have to jump over C and D. In either case, the
disruption is solved by removing the elements with zero values.

Furthermore, since zero marks are caused by the elements in incorrect positions,
these disruptors are subject to displacement for the entire sequence to be corrected.
Without these disruptors, the remaining elements should all be arranged in ascending
orders in any combination. Thus we can identify the elements of MRS by identifying a
minimal number of steps to remove disruptors. In Table 7, we can get B and E as MRS

A 1 1 1 1

B 1 1 1

C 1 1

D 1

E LM = 10

Table 4.
Linearity matrix for correct answer ABCDE.

C 1 0 0 1

D 0 0 1

A 1 1

B 1

E LM = 6

Table 5.
Linearity matrix for partially correct answer CDABE.

n 4 5 6 7 8 9 10 11 12 13

C 14 19 25 32 40 49 59 70 82 95

Table 6.
Size of entire columns (C) required by LM.

D 0 1 0 0

B 1 1 0

E 0 0

C 0

A LM = 3, Distance = 7

Table 7.
Linearity matrix for partially correct answer DBECA.
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by removing D, C and A; or B and C by removing D, E and A; or D and E by removing
B, C and A. These alternative MRSs are obtainable through different procedures, but the
count of removal steps stays the same. Tables 8–10 show the process of the first case.

The optimal strategy for removing the disruptors on Excel has not been found at
the moment, but we know in theory that LM provides information of both MRS and
recovery distance. By definition, LM counts all pairs of ascending order whereas MRS
picks up elements that can form the longest sequence. Therefore in the above sample
DE, BE, and BC are all counted for the LM score (=3) but only one of them constitutes
an MRS. Similarly, CBAED has also one MRS (CE, CD, BE, BD, AE, or AD), but
LM = 6. The different LM scores of the two sequences bearing the same MRS score
indicate that the internal structure is different.

As another potential LM can vary the weights for ascending pairs. We could value
larger weights for closer pairs and smaller weights for remoter pairs (Table 11 for the
correct sequence and Table 12 for a sample answer).

Figure 3 shows the correlation of scores between gradient LM and of MRS + Dist.
The data were taken from a test of reading comprehension in English as a foreign
language for Japanese university students (N = 149). They were asked to reorder eight
descriptions of events after watching a video of an expository story. The correlation
r = 0.950 and the coefficient of determination R2 = 0.902 suggest that LM is a highly
reliable alternative to MRS + Dist.

D 0 1 0

B 1 1

E 0

C

A LM = 3, Distance = 3

Table 8.
Linearity matrix after removing disruptor A (step 1).

D

B 1 1

E 0

C

A LM = 2, Distance = 1

Table 9.
Linearity matrix after removing disruptor D (step 2).

D

B 1

E

C

A LM = 1, Distance = 0

Table 10.
Linearity matrix after removing disruptor C (step 3).
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For part of the test-takers (N = 31), internal consistency was compared among
eight measurement methods where the reordering task was part of a larger reading
comprehension test including short-answer questions. Table 13 indicates that LM
methods are stable and can better capture the test-taker performance.

A 4 3 2 1

B 4 3 2

C 4 3

D 4

E Sum = 30

Table 11.
Linearity matrix for correct answer (n = 5) with gradient weights.

C 4 0 0 1

D 0 0 2

A 4 3

B 4

E Sum = 18

Table 12.
Linearity matrix for partially correct answer (n = 5) with gradient weights.

Figure 3.
Plot of scores by gradient LM and MRS + Dist. (The scores are standardised between 0 and 1. The oval represents a
density ellipse of probability 0.90.)

Binary Exact Adjacent MRS tau MRS + Dist LM flat LM gradient

0.273 0.534 0.479 0.624 0.559 0.560 0.675 0.670

Table 13.
Alpha coefficients of eight measurement methods.
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LM is even quicker in processing a vast amount of data than MRS. Table 14 shows
a processing time taken by four methods when n = 10. The data (size = 1000) was
randomly sampled from all permutations of 10 elements. The programmes for two
versions of LM were written by Xojo, the same programming language for MRS.
Distance in MRS + Dist used Kendall’s tau formula. Each value was an average of ten
trials.

It should also be noted that with LM the processing time did not deteriorate as the
number of elements increased. Figure 4 summarises the average processing time of
the four measurement methods for sequence length of n = 3 to n = 12.

7. Applications and limitations

We have seen so far theoretical considerations of evaluating item reordering
except for the analyses of correspondence of methods based on actual test results.
When constructing an evaluation scheme in reality, however, various non-theoretical
factors come in the way. Take an example from Alderson, et al.’s reordering question
called ‘Compaq task’ [3]. Text 2 is the original; Text 3 is what they regarded as
partially correct; Text 4 is an alternatively misplaced sequence of my invention. Item
codes are rearranged for convenience.

Machine MRS MRS + Dist LM flat LM gradient

MacBook Pro4 3.90 3.80 0.50 0.60

Mac Pro5 38.70 107.10 64.90 62.50

HP250 (Windows)6 19.45 15.56 14.45 14.45

Table 14.
Processing time of four measurement methods (s).

Figure 4.
Processing time(s) by sequence length.
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Að Þ A technician at Compaq Computers told of a frantic call he received on the helpline:

Bð Þ It was from a woman whose new computer simply would not work:

Cð Þ She said she’d taken the computer out of the box, plugged it in; and sat

there for 20 minutes waiting for something to happen:

Dð Þ The tech guy asked her what happened when she pressed the power switch:

Eð Þ The woman replied, ‘What power switch?’

Text 2:
Correct sequence:

Að Þ Same as Text 2½ �
Bð Þ Same as Text 2½ �
Dð Þ The tech guy asked her what happened when she pressed the power switch:

Eð Þ The woman replied, ‘What power switch?’

Cð Þ She said she’d taken the computer out of the box, plugged it in, and

sat there for 20 minutes waiting for something to happen:

Text 3:
‘Partially correct’sequence:

Að Þ Same as Text 2½ �
Bð Þ Same as Text 2½ �
Dð Þ The tech guy asked her what happened when she pressed the power switch:

Cð Þ She said she’d taken the computer out of the box, plugged it in; and sat there for

20 minutes waiting for something to happen:

Eð Þ The woman replied, ‘What power switch?’

Text 4:
Incorrect sequence:

Both Text 3 and Text 4 differ from the correct sequence by one dislocation of
statement (C). However, while Text 4 is completely unacceptable Text 3 sounds
much more acceptable, if not perfectly. The use of past perfective form in Text 3
refers back to the point that occurred before (D). The one dubious element is that the
tech guy’s question in (D) is slightly too specific, which could disrupt the natural flow
of discourse. More serious is the fact that Text 4 is much less acceptable than Text 3,
even though the recovery distance of Text 4 is shorter than that of Text 3. It means
that the recovery distance alone is not necessarily a predictor of penalty.

This type of task may be called an a priori (or jigsaw) task: test-takers must read
the fragments at sight and reconstruct the original passage. Because the fragments
contain a lot of linguistic clues such as tense, reference words, and definiteness
markers, the test-takers can use these clues to connect fragments. Yet another task
type (a posteriori task) requires test takers to read or hear the entire passage initially
and reconstruct the outline by selecting descriptions in the correct order. Alderson
et al.’s ‘Queen task’ is of this type. In fact, they admit that the a posteriori type might
be more appropriate as a measurement tool of reading comprehension (p. 442). Text
6, based on intact Text 5 [22], is another sample of this type where linguistic clues are
as much neutralised as possible.
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New neighbours

Mr and Mrs Smith married thirty years ago, and they have lived in the same house
since then. Mr Smith goes to work at eight o’clock every morning, and he gets home at
half past seven every evening, from Monday to Friday.

There are quite a lot of houses in their street, and most of the neighbours are nice.
But the old lady in the house opposite Mr and Mrs Smith died, and after a few weeks, a
young man and woman came to live in it.

Mrs Smith watched them for a few days from her window and then she said to her
husband, ‘Bill, the man in that house opposite always kisses his wife when he leaves in
the morning and he kisses her again when he comes home in the evening. ‘Why don’t
you do that too?’

‘Well,’ Mr Smith answered, ‘I don’t know her very well yet.’

Text 5:
Sample original passage

1ð Þ Mr Smith was a serious man:

2ð Þ An old lady died:

3ð Þ A young couple moved in:

4ð Þ Mrs Smith made repeated observations:

5ð Þ Mrs Smith requested a new action:

Text 6:

Outline items for a posteriori reordering:

In this paper, we examined the nature of MRS and LM. Both of them are still in an
incubation stage in language testing as well as other psychometric measurements. The
differential weighting for ascending pairs in gradient LM is a proposed model without
empirical evidence. There might be clusters of items to be fixed together. Alternative
exchanges of talks in dialogue (as in the Compaq task) are considered an example of high
adhesion whereas some kinds of discourse order may not be as adhesive. Nevertheless, it
is meaningful to attempt application of various measurement methods and validate
psychometric as well as semantic connectivity. For example, flat LMmight be suitable for
a task of recollecting historical events because reference to the chronological order of
events is relevant to all (or most) pairs. When reconstructing a story, in contrast, MRS or
gradient LMmight be a better tool, because local connections are considered more
important than remote connections, and the wellformedness of the story depends on how
much the completed sequence of items looks like a string of stories. Finally, describing
MRS bymatrix is space and time-saving. LM is like a ripple in the pond; if you observe the
wave on the shore you can detect where the stone was cast.
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Notes

1.The correlation of AC and MRS is 0.524, but 89% of AC scores are smaller than
0.1 while 51% of MRS is between 0.5 and 0.6 (Figure 5, created by JMP [23]). See
Section 2 for MRS.

2.When N = 5 (i.e., 5-element sequence), AC is severely affected by the value of α
(Table 15). See Sections 2 and 3 for MRS, MRS + Dist, and LM.

3.While AC = 0.050, MRS + Dist. = 0.350 and LM = 0.667. See Sections 2 and 3 for
MRS + Dist and LM.

4.MacBook Pro (8-core Apple M1, 16GB)/OS11.4/Xojo 2021r1

5.Mac Pro (2 � 2.4GHz 6-core Intel Xeon, 25GB, 1.3 MHz DDR3)/OS10.14/Xojo
2017r2.1

6.HP250G7–122 (Intel Core i5-8565U, 1.6GHz, 8GB RAM)/Windows10/Xojo
2021r1

Figure 5.
Comparison of AC and MRS ratings.

Alpha MRS MRS + Dist LM

0.001 0.524 0.368 0.268

0.0001 0.490 0.343 0.253

0.000001 0.416 0.288 0.218

0.00000001 0.350 0.241 0.186

Table 15.
Correlation of AC with MRS, MRS + Dist, and LM. (A perfect sequence is excluded as an outlier).
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Chapter 4

Weighted Least Squares
Perturbation Theory
Aleksandr N. Khimich, Elena A. Nikolaevskaya
and Igor A. Baranov

Abstract

The interest in the problem of weighted pseudoinverse matrices and the problem
of weighted least squares (WLS) is largely due to their numerous applications. In
particular, the problem of WLS is used in the design and optimization of building
structures, in tomography, in statistics, etc. The first part of the chapter is devoted to
the sensitivity of the solution to the WLS problem with approximate initial data. The
second part investigates the properties of a SLAE with approximate initial data and
presents an algorithm for finding a weighted normal pseudo solution of a WLS prob-
lem with approximate initial data, an algorithm for solving a WLS problem with
symmetric positive semidefinite matrices and an approximate right side and also a
parallel algorithm for solving a WLS problem. The third part is devoted to the analysis
of the reliability of computer solutions of the WLS problem with approximate initial
data. Here, estimates of the total error of the WLS problem are presented, and also
software-algorithmic approaches to improving the accuracy of computer solutions.

Keywords: weighted least squares problem, error estimates, weighted matrix
pseudoinverse, weighted condition number, weighted singular value decomposition

1. Introduction

The interest in the problem ofweighted pseudoinversematrices and theWLS problem
is largely due to their numerous applications. In particular, the problem of weighted least
squares is used in the design and optimization of building structures, in tomography, in
statistics, etc. A number of properties of weighted pseudoinverse matrices underlie the
finding of weighted normal pseudosolutions. The field of application of weighted
pseudoinverse matrices and weighted normal pseudosolutions is constantly expanding.

The definition of a weighted pseudoinverse matrix with positive definite weights
was first introduced by Chipman in article [1]. In 1968, Milne introduced the definition
of a skew pseudoinverse matrix in paper [2]. The study of the properties of weighted
pseudoinverse matrices and weighted normal pseudosolutions, as well as the construc-
tion of methods for solving these and other problems, are devoted to the works of Mitra,
Rao, Van Loan, Wang, Galba, Deineka, Sergienko, Ben-Israel, Elden, Wei, Wei, Ward
etc. Weighted pseudoinverse matrices and weighted normal pseudosolutions with
degenerate weights were studied in [3–5]. The existence and uniqueness of weighted
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pseudoinverse matrices with indefinite and mixed weights, as well as some of their
properties, were described in [6–8]. Application of the weighted pseudoinverse matrix
in statistics presented, for example, in [9, 10]. Many results on weighted generalized
pseudo-inversions can be found in monographs [11, 12]. Much less work is devoted to
the study of weighted pseudoinversion under conditions of approximate initial data.
These issues are discussed in [13–17]. Analysis of the properties of weighted
pseudoinverses and weighted normal pseudosolutions, as well as the creation of solution
methods for these and other problems, are described in [18–20].

When solving applied problems, their mathematical models will have, as a rule,
approximate initial data as a result of measurements, observations, assumptions,
hypotheses, etc. Later, during discretization (‘arithmetization’) of the mathematical
model, these errors are transformed into the errors of the matrix elements and the right
parts of the resolving systems of equations. The input data of systems of linear algebraic
equations and WLS problems can be determined directly from physical observations,
and therefore they can have errors inherent in all measurements. In this case, the
original data we have is an approximation of some exact data. And, finally, the initial
data of mathematical models formulated in the form of linear algebra problems can be
specified exactly in the form of numbers or mathematical formulas, but, given the finite
length of a machine word, it is impossible to work with such an exact model on a
computer. The machine model of such a problem in the general case will be approxi-
mate either due to errors in converting numbers from the decimal system to binary or
due to rounding errors in the implementation of calculations on a computer.

The task is to study the properties of the machine model and to form a model of the
problem and an algorithm for obtaining an approximate solution in a machine envi-
ronment that will approximate the solution of a mathematical problem. The key
question of numerical simulation is the reliability of the obtained machine solutions.

The most complete systematic exposition of questions related to the approximate
nature of the initial data in problems of linear algebra is given in the monographs
[21–24]. Various approaches to the study and solution of ill-posed problems were
considered, for example, in [25–28]. Problems of the reliability of a machine solution for
problems with approximate initial data, i.e. estimates of the proximity of the machine
solution to the mathematical solution, estimates of the hereditary error in the mathe-
matical solution and refinement of the solution were considered in the publications
[12, 26, 29–33]. Much less work has been devoted to the study of similar questions for
the WLS problem. The sensitivity analysis of a weighted normal pseudosolution under
perturbation of the matrix and the right-hand side is the subject of papers [16, 34–36].

The chapter is devoted to the solution of the listed topical problems, namely the
development of the perturbation theory for the WLS problem with positive definite
weights and the development of numerical methods for the study and solution of
mathematical models with approximate initial data.

2. Weighted least squares problem

2.1 Preliminaries

Let the set of allm� nmatrices is denoted by Rm�n. Given a matrix A∈Rm�n let AT

is the transpose of A, rank Að Þ is the rank of A,  Að Þ is the field of values of A and
 Að Þ is the null space of A. Additionally, let kk denote the vector 2-norm and the
consistent matrix 2-norm, and let I be an identity matrix.
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Given an arbitrary matrix A∈Rm�n and symmetric positive definite matricesM and
N of orders m and n, respectively, a unique matrix X ∈Rm�n, satisfying the conditions:

AXA ¼ A, XAX ¼ X, MAXð ÞT ¼MAX, NXAð ÞT ¼ NXA, (1)

is called the weighted Moore–Penrose pseudoinverse of A and is denoted by
X ¼ AþMN. Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then X satisfying conditions
(1) is called the Moore–Penrose pseudoinverse and is designated as X ¼ Aþ.

Let A# denote the weighted transpose of A, P and Q be idempotent matrices, and
�А ¼ Aþ ΔA be a perturbed matrix, i.e.,

A# ¼ N�1ATM: (2)

P ¼ AþMNA,Q ¼ AAþMN, �P ¼ �AþMN
�A, �Q ¼ �A�AþMN : (3)

Let x∈Rm, y∈Rn. The weighted scalar products in Rm and Rn are defined as
x, yð ÞM ¼ yTMx, x, y∈Rm and x, yð ÞN ¼ yTNx, x, y∈Rn, respectively. The weighted
vector norms are defined as:

xk kM ¼ x, xð Þ12M ¼ xTMx
� �1

2 ¼ M
1
2x

���
���, x∈Rm,

yk kN ¼ y, yð Þ12N ¼ yTNy
� �1

2 ¼ N
1
2y

���
���, y∈Rn:

(4)

Let x, y∈Rm and x, yð ÞM ¼ 0. Then the vectors x and y are called M-orthogonal, i.е.

M
1
2x- and M

1
2y-orthogonal. It is easy to show that.

xþ yk k2M ¼ xk k2M þ yk k2M, x, y∈Rm: (5)

The weighted matrix norms are defined as:

Ak kMN ¼ max
xk kN¼1

Axk kM ¼ M
1
2AN�

1
2

���
���,A∈Rm�n,

Bk kNM ¼ max
yk kM¼1

Byk kN ¼ N
1
2AM�

1
2

���
���,B∈Rn�m:

(6)

Lemma 1 (see in [37]). Let A∈Rm�n, rank Að Þ ¼ k, M and N are positive definite
matrices of orders m and n, respectively. Then, there are matrices U ∈Rm�m and
V ∈Rn�n, satisfying UTMU ¼ I and VTN�1V ¼ I such that.

A ¼ U
D 0

0 0

� �
VT, AþMN ¼ N�1V

D�1 0

0 0

 !
UTM, (7)

where D ¼ diag μ1, μ2, … , μkð Þ, μ1 ≥ μ2 ≥ … ≥ μk >0 and μ2i are the nonzero eigen-
values of the matrix A#A. The nonnegative values μi are called the weighted singular
values of A, moreover, Ak kMN ¼ μ1, AþMN

�� ��
NM ¼ 1

μk
.

The weighted singular value decomposition of A yields an M-orthonormal basis of
the vectors of U and an N�1-orthonormal basis of the vectors of V.
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2.2 Statement of the problem

In the study of the reliability of the obtained machine results, three linear systems
are considered. A system of linear algebraic equations with exact input data

Ax ¼ b: (8)

We will consider the corresponding weighted least squares problem with positive
definite weights M and N:

min
x∈C

xk kN,C ¼ xj Ax� bk kM ¼ min
� �

, (9)

where A∈Rm�n is a rank-deficient matrix and b∈Rm.
Along with (9), we consider the mathematical model with approximately specified

initial data.

min
x∈C

�xk kN,C ¼ �xj Aþ ΔAð Þ�x� bþ Δbð Þk kM ¼ min
� �

, (10)

where.

�А ¼ Aþ ΔA, �b ¼ bþ Δb, �x ¼ xþ Δx: (11)

Assume that the errors in the matrix elements and the right-hand side satisfy the
relations:

ΔAk kMN ≤ εA Ak kMN, Δbk kM ≤ εb bk kM: (12)

The problem for the approximate solution ��x of a system of linear algebraic equa-
tions with approximately given initial data

�A��x ¼ �bþ �r, (13)

where �r ¼ �A��x� �b is the residual vector.
The analysis of the reliability of the obtained solution includes an assessment of the

hereditary error x� �xk kN, computational error �x� ��xk kN and total error x� ��xk kN, as
well as the refinement of the obtained machine solution to a given accuracy.

2.3 The existence and uniqueness of a weighted normal pseudoinverse

Let linear manifold L be a nonempty subset of space R, closed with respect to the
operations of addition and multiplication by a scalar (if x and y are elements of L ∀α, β,
the αxþ βy is an element of L). Vector x is N-orthogonal to the linear manifold L
(x⊥NL) if x is N-orthogonal to each vector from L.

Lemma 2 (see in [38]). There exists a unique decomposition of vector x, namely
x ¼ x̂þ ~x, where x̂∈L, ~x⊥NL.

Let A is an arbitrary matrix. The kernel of matrix A, denoted by  (A), is the set of
vectors mapped into zero by А:  Að Þ ¼ x : Ax ¼ 0f g.

The set  Að Þ of images of matrix A is the set of vectors that are images of vectors
of the space R from the definition domain of A, i.e.  Að Þ ¼ b : b ¼ Ax, ∀xf g .
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Let L be a linear manifold in space R, N-orthogonal (M-orthogonal) complement
to L, denoted by L⊥N (L⊥M), defined as the set of vectors in R, each of which is
N-orthogonal (M-orthogonal) to L.

Remark 1. If x is a vector from R and xTNy ¼ 0 for any y from R, then x ¼ 0.
Theorem 1. Let A∈Rm�n, then  Að Þ ¼ ⊥ A#ð Þ.
Proof. Vector x∈ Að Þ, if and only if Ax ¼ 0. Hence, by virtue of Remark1, we

get x∈ Að Þ, if and only if yTMAx ¼ 0 for any y. Since yTMAx ¼ A#yð ÞTNx, we
get Ax ¼ 0 if and only if x is N-orthogonal to all the vectors of the form A#y.
Vectors A#y form  A#ð Þ. The required statement follows from here and from the
definition ⊥M Að Þ.

Theorem 2 (see in [38]). If A is an m� nmatrix and b is an m-dimensional vector,
then the unique decomposition b ¼ b̂þ ~b holds, where b̂∈ Að Þ and ~b∈ A#ð Þ.

Vector b̂ is a projection of b on to  Að Þ, and ~b is a projection of b on to  A#ð Þ.
Vectors b̂ and ~b are M-orthogonal. Hence, A#b ¼ A#b̂.

By Theorem 1, the following relations hold for the symmetric matrix A:  Að Þ ¼
⊥ Að Þ, Að Þ ¼ ⊥ Að Þ:

Theorem 3. Let A∈Rm�n, then  Að Þ ¼  AA#ð Þ,  A#ð Þ ¼  A#Að Þ,  Að Þ ¼
 A#Að Þ and  A#ð Þ ¼  AA#ð Þ .

Proof. It will be to establish that  A#ð Þ ¼  AA#ð Þ and  Að Þ ¼  A#Að Þ.
For this purpose, we will use Theorem 1. To prove the coincidence of  A#ð Þ and

 AA#ð Þ, note that AA#x ¼ 0 if A#x ¼ 0. On the other hand, if AA#x ¼ 0, then
xTAA#x ¼ 0, i.е. A#xk kM ¼ 0, which entails equality A#x ¼ 0. So, A#x ¼ 0 if and
only if xTAA#x ¼ 0. We can similarly establish that  Að Þ ¼  A#Að Þ.

Then let us prove the theorem about the existence and uniqueness of the solution
vector that minimizes the norm of the residual Ax� bk kM by the technique proposed
in [39] for the least-squares problem.

Theorem 4. Let A∈Rm�n, b∈Rm, b ∉  Að Þ. Then there exists a vector x̂, that
minimizes the norm of the residual Ax� bk kM and vector x̂ is a unique vector from
 A#ð Þ, that satisfies the equation Ax ¼ b̂, where b̂ ¼ AAþMNb is the projection of b
onto  Að Þ.

Proof. By virtue of Theorem 2, we get b ¼ b̂þ ~b, where ~b ¼ I � AAþMN

� �
b is

the projection of b on to  A#ð Þ. Since for every x,Ax∈ Að Þ and ~b∈⊥M Að Þ, then
b̂� Ax∈ Að Þ and ~b⊥b̂� Ax. Therefore

b� Axk k2M ¼ b̂� Axþ ~b
���

���
2

M
¼ b̂� Ax
���

���
2

M
þ ~b
���
���
2

M
≥ ~b
���
���
2

M
: (14)

This lower bound is attained since b̂ belongs to the set of images А, i.е. b̂ is an image
of some x0: b̂ ¼ Ax0.

Thereby, for this x0 the greatest lower bound is attainable:

b� Ax0k k2M ¼ b� b̂
���

���
2

M
¼ ~b
���
���
2

M
: (15)

It was shown earlier that

b� Axk k2M ¼ b̂� Ax
���

���
2

M
þ ~b
���
���
2

M
(16)
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and hence, the lower bound can only be attained for x ∗ , for which Ax ∗ ¼ b̂.
According to Theorem 2, each vector x ∗ , can be presented as a sum of two orthogonal
vectors: x ∗ ¼ x̂ ∗ þ ~x ∗ , where x̂ ∗ ∈ A#ð Þ, ~x ∗ ∈ Að Þ.

Therefore, Ax ∗ ¼ Ax̂ ∗ and hence, b� Ax ∗k k2M ¼ b� Ax̂ ∗k k2M. Note that

x ∗k k2N ¼ x̂ ∗k k2N þ ~x ∗k k2N ≥ x̂ ∗k k2N, (17)

where strict inequality is possible when x ∗ 6¼ x̂ ∗ (i.е. if x ∗ does not coincide with
its projection on to  A#ð Þ).

It was shown above, that x0 minimizes Ax� bk kM, if and only if Ax0 ¼ b̂, and
among the vectors that minimize Ax� bk kM, each vector with the minimum norm
should belong to the set of images A#. To establish the uniqueness of a minimum-
norm vector, assume that x̂ and x ∗ belong to  A#ð Þ and that Ax̂ ¼ Ax ∗ ¼ b̂.
Then x ∗ � x̂∈ A#ð Þ, however A x ∗ � x̂ð Þ ¼ 0, so x ∗ � x̂∈ Að Þ ¼ ⊥N A#ð Þ.

As vector x ∗ � x̂ is N-orthogonal to itself x ∗ � x̂k kN ¼ 0, i.е. x ∗ ¼ x̂.
Remark 2. There is another assertion that is equivalent to Theorem 4. There exists

an n-dimensional vector y such that

b� AA#yk kM ¼ inf
x

b� Axk kM: (18)

If

b� Ax0k kM ¼ inf
x

b� Axk kM, (19)

then x0k kN ≥ A#yk kN with strict inequality for x0 6¼ A#yk kN .
Vector y satisfies the equation AA#y ¼ b̂, here b̂ is the projection of b onto  Að Þ.
Theorem 5. Among all the vectors x that minimize the residual Ax� bk kM, vector

x̂, which has the minimum norm x̂ ¼ min xk kN, is a unique vector of the form

x̂ ¼ N�1ATMy ¼ A#y, (20)

satisfying the equation

A#Ax ¼ A#b, (21)

i.е. x̂ can be obtained by means of any vector y0, that satisfies the equation
A#AA#y ¼ A#b by the formula x̂ ¼ A#y0.

Proof. According to the condition of Theorem 3  A#ð Þ ¼  A#Að Þ. Since vector
A#b belongs to the set of images A#, it should belong to the set of images A#A and thus
should be an image of some vector xwith respect to the transformation A#A. In other
words, Eq. (21) (with respect to x) has at least one solution. If x is a solution of
Eq. (21), then x̂ is the projection of x on to  A#ð Þ, since Ax ¼ Ax̂ according to
Theorem 2. Since x̂∈ A#ð Þ, vector x̂ is an image of some vector y with respect to the
transformation A#: x̂ ¼ A#y.

Thus, we have established that there exists at least one solution of Eq. (21) in the
form of (20). To establish the uniqueness of this solution, we assume that x̂1 ¼ A#y1
and x̂2 ¼ A#y2 satisfy Eq. (21). Then A#A A#y1 � A#y2

� � ¼ 0, therefore,
A# y1 � y2
� �

∈ A#Að Þ ¼  Að Þ, where from the equality AA# y1 � y2
� � ¼ 0 follows.
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Therefore y1 � y2 ∈ AA#ð Þ ¼  A#ð Þ; hence, x̂1 ¼ A#y1 ¼ A#y2 ¼ x̂2.
Thus, there exists exactly one solution of Eq. (21) in the form (20). The proof of

Theorem 5 will be completed if we can show that by virtue of Theorem 1 the solution
found in the form (14) is also a solution of the equation Ax ¼ b̂, where b̂ is a weighted
projection of b on to  Að Þ, i.е. A#b ¼ A#b̂.

Theorem 4 establishes that there is a unique, from  A#ð Þ solution of the equation

Ax ¼ b̂: (22)

Hence, this unique solution satisfies the equation A#Ax ¼ A#b̂.
According to the equality A#b ¼ A#b̂ the unique solution of Eq. (22) belonging to

 A#ð Þ, should coincide with x̂ which is a unique solution of Eq. (21), which also
belongs to  A#ð Þ. Finally, vector x̂, mentioned in the proof of Theorem 5 exactly
coincides with the vector x̂ from Theorem 4. Using the representation of the Moore–
Penrose weighted pseudoinverse from [38].

AþMN ¼ A# A#AA#ð ÞþA#, (23)

we can formulate the following theorem for problem (9) in a shorter form.
Theorem 6. Let A∈Rm�n, then x ¼ AþMNb—is М-weighted least squares solution

with the minimum N-norm of the system Ax ¼ b.
Note that in [18] a slightly different mathematical apparatus was used to prove the

existence and uniqueness of theM-weighted least squares solution with the minimum
N-norm of the system Ax ¼ b.

3. Error estimates for the weighted minimum-norm least squares solution

3.1 Estimates of the hereditary error of a weighted normal pseudosolution

Consider some properties of the weighted Moore–Penrose pseudoinverse.
Lemma 3 (see in [16]). Let A,ΔA∈Rm�n, μi Að Þ and μi �A

� �
denote the weighted

singular values of A and �A respectively. Then,

μi Að Þ � ΔAk kMN ≤ μi �A
� �

≤ μi Að Þ þ ΔAk kMN : (24)

Lemma 4 (see [40]). Let A,ΔA∈Rm�n, rank �A
� � ¼ rank Að Þ and

ΔAk kMN AþMN

�� ��
NM < 1. Then

�AþMN

���
���
NM

≤
AþMN

�� ��
NM

1� ΔAk kMN AþMN

�� ��
NM

: (25)

Lemma 5. Let G ¼ �AþMN � AþMN, �А ¼ Аþ ΔA and rank �A
� � ¼ rank Að Þ. Then G can

be represented as the sum of three matrices G ¼ G1 þ G2 þG3, where

G1 ¼ ��AþMNΔAA
þ
MN, (26)

G2 ¼ � I � �Pð ÞN�1ΔATAþTMNNAþMN ¼ � I � �Pð ÞΔA# AþMN

� �#AþMN, (27)
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G3 ¼ �AþMN I �Qð Þ: (28)

Proof. Following [26], G can be represented as the sum of the following matrices.

G ¼ �Pþ I � �Pð Þ½ � �AþMN � AþMN

� �
Q þ I � Qð Þ½ � ¼

¼ �P�AþMNQ þ �P�AþMN I � Qð Þ � �PAþMNQ � �PAþMN I � Qð Þ þ I � �Pð Þ�AþMNQ þ
þ I � �Pð Þ�AþMN I � Qð Þ � I � �Pð ÞAþMNQ þ I � �Pð ÞAþMN I � Qð Þ:

(29)

Since.

�P�AþMN ¼ �AþMN, I � �Pð Þ�AþMN ¼ 0,AþMNQ ¼ AþMN,A
þ
MN I � Qð Þ ¼ 0, (30)

we obtain

G ¼ �AþMNQ þ �AþMN I � Qð Þ � �PAþMN þ I � �Pð Þ�AþMN ¼
¼ �AþMNQ � �PAþMN

� �
� I � �Pð ÞAþMN þ �AþMN I � Qð Þ: (31)

Consider each term in this equality separately

G1 ¼ �AþMNQ � �PAþMN ¼ �AþMNAA
þ
MN � �AþMN

�AAþMN ¼ �AþMN A� �A
� �

AþMN ¼ �AþMNΔAA
þ
MN :

(32)

To estimate the second term, we use properties (1)

AþMN ¼ AþMNA
� �

AþMN ¼ N�1 NAþMNA
� �TAþMN ¼

¼ N�1ATAþTMNNAþMN ¼ N�1 �ATAþTMNNAþMN �N�1ΔATAþTMNNAþMN:
(33)

Substituting (33) into the second term of (31) gives

G2 ¼ I � �Pð ÞAþMN ¼ I � �Pð Þ N�1 �ATAþTMNNAþMN �N�1ΔATAþTMNNAþMN

� �
: (34)

Since,

I � �Pð ÞN�1 �ATAþTMNNAþMN ¼ N�1 �ATAþTMNNAþMN � �AþMN
�AN�1 �ATAþTMNNAþMN ¼

¼ N�1 �ATAþTMNNAþMN �N�1 �ATAþTMNNAþMN ¼ 0
(35)

we obtain

G2 ¼ I � �Pð ÞAþMN ¼ � I � �Pð ÞN�1ΔATAþTMNNAþMN ¼ � I � �Pð ÞΔA# AþMN

� �#AþMN :

(36)

Finally,

G ¼ �AþMN � AþMN ¼ ��AþMNΔAA
þ
MN � I � �Pð ÞΔA# AþMN

� �#AþMN þ �AþMN I � Qð Þ: (37)

Lemma 6 (see in [41]). If rank �A
� � ¼ rank Að Þ ¼ k, then

�Q I �Qð Þ�� ��
MM ¼ Q I � �Q

� ��� ��
MM, (38)
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where Q and �Q are defined in (3).
Lemma 7. Let A,ΔA∈Rm�n, rank �A

� � ¼ rank Að Þ and ΔAk kMN AþMN

�� ��
NM < 1.

Then the relative estimate of the hereditary error of the weighted pseudoinverse
matrix has the form

�AþMN � AþMN

���
���
NM

AþMN

�� ��
NM

≤C
εAh

1� εAh
, (39)

where h ¼ h Að Þ ¼ Ak kMN AþMN

�� ��
NM and the estimate of the absolute error

�AþMN � AþMN

���
���
NM

≤C
εAhð Þ2

1� εAh
, (40)

moreover.
if A is not a full rank matrix, then C ¼ 3,
if m> n ¼ k or n>m ¼ k, then C ¼ 2,
if m ¼ n ¼ k, then C ¼ 1:
Proof. To obtain estimates, we use the results of Lemma 5:

�AþMN � AþMN ¼ ��AþMNΔAA
þ
MN � I � �Pð ÞΔA# AþMN

� �#AþMN þ �AþMN I � Qð Þ: (41)

Passing to the weighted norms, we obtain.

�AþMN � AþMN

���
���
NM

≤ �AþMNΔAA
þ
MN

���
���
NM
þ ΔA# AþMN

� �#AþMN

�� ��
NM þ �AþMN

�Q I � Qð Þ
���

���
NM

:

(42)

Using the results of Lemma 6, we can estimate the last summand

�AþMN
�Q I � Qð Þ

���
���
N
¼ �AþMN

�A�AþMN I � Qð Þ
���

���
N
≤ �AþMN

���
���
NM

�Q I � Qð Þ�� ��
MM

¼ �AþMN

���
���
NM

Q I � �Q
� ��� ��

MM:
(43)

According to (38) and (43), we can rewrite (42) in the form

�AþMN � AþMN

���
���
NM

≤ �AþMNΔAA
þ
MN

���
���
NM
þ ΔA AþMN

� �
AþMN

�� ��
NM þ AþMNQ I � �Q

� ��� ��
NM ≤

≤ �AþMN

���
���
NM

ΔAk kMN AþMN

�� ��
NM þ ΔAk kMN AþMN

�� ��2
NM þ �AþMN

���
���
NM

AþMN

�� ��
NM ΔAk kMN:

(44)

Using the results of Lemma 4, we obtain an estimate for the absolute error of the
weighted pseudoinverse matrix A.

�AþMN � AþMN

���
���
NM

≤
AþMN

�� ��
NM

1� ΔAk kMN AþMN

�� ��
NM

ΔAk kMN AþMN

�� ��
NM þ ΔAk kMN AþMN

�� ��
NM

�
þ

þ AþMN

�� ��
NM ΔAk kMN

�
¼ hεA

1� hεA
hεA þ hεA þ hεAð Þ ¼ C

hεAð Þ2
1� hεA

,C ¼ 1, 2, 3:

(45)
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To estimate the relative error, we have

�AþMN � AþMN

���
���
NM

AþMN

�� ��
NM

≤ 3 ΔAk kMN AþMN

�� ��
NM

1
1� ΔAk kMN AþMN

�� ��
NM

¼ C
hεA

1� hεA
,C ¼ 1, 2, 3:

(46)

Let us estimate the error of the weighted minimum-norm least squares solution.
Let us introduce the following notation:

α ¼ Δbk kM
Ak kMN xk kN

, β ¼ rk kM
xk kN Ak kMN

, γ ¼ �rk kM
Ak kMN xk kN

αl ¼ Δbk kM
Ak kMN xlk kN

,

βl ¼
rk kM

xlk kN Ak kMN
, γl ¼

�rlk kM
Ak kMN xlk kN

, γk ¼
�rkk kM

Ak kMN xk kN
:

(47)

Consider the following three cases.
Case 1. The rank of the original matrix A remains the same under its perturbation, i.e.,

rank Að Þ ¼ rank �A
� �

.
Theorem 7. Assume that ΔAk kMN AþMN

�� ��
NM < 1, rank �A

� � ¼ rank Að Þ. Then

x� �xk kN
xk kN

≤
h

1� hεA
2εA þ αþ hεAβð Þ, (48)

where h Að Þ ¼ Ak kMN AþMN

�� ��
NM is the weighted condition number of A, the

symbols kkMN and kk NM denote the weighted matrix norms defined by Eq. (4)–(6),
and AþMN is the weighted Moore–Penrose pseudoinverse.

Proof. The error estimate follows from the relation:

x� �x ¼ АþMN � �АþMN

� �
bþ �АþMN b� �b

� �
: (49)

For the error of the matrix pseudoinverse, we use the representation

�AþMN � AþMN ¼ ��AþMNΔAA
þ
MN � I � �Pð ÞN�1ΔATAþTMNNAþMN þ �AþMN I � Qð Þ: (50)

Then,

x� �x ¼ �AþMNΔAA
þ
MN þ I � �Pð ÞN�1ΔATAþTMNNAþMN � �AþMN I � Qð Þ

h i
bþ �AþMN b� �b

� � ¼

¼ �AþMNΔAA
þ
MNbþ I � �Pð ÞN�1ΔATAþTMNNAþMNb� �AþMN I �Qð Þbþ �AþMN b� �b

� �

¼ �AþMNΔAxþ I � �Pð ÞN�1ΔATAþTMNNx� �AþMN I �Qð Þb þ �AþMN b� �b
� �

(51)

Thus,

�x� x ¼ �AþMNΔAxþ I � �Pð ÞN�1ΔATAþTMNNx� �AþMN I � Qð Þbþ �AþMN b� �b
� �

: (52)
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Passing to the weighted norms yields

�x� xk kN ¼ �AMNΔAxþ I � �Pð ÞN�1ΔATAþTMNNx� �AþMN I � Qð Þbþ �AþMN b� �b
� ����

���
N
≤

≤ �AMNΔAx
�� ��

N þ I � �Pð ÞN�1ΔATAþTMNNx
�� ��

N þ k�A
þ
MN I � Qð Þbþ �AþMN b� �b

� �kN:
(53)

By taking into account the relations

I � Qð Þb ¼ I � Qð Þr ¼ r, r ¼ b� Ax, x ¼ AþMNb (54)

and applying Lemma 6, the weighted norm of each term in (27) can be rearranged
as follows

a.
�AþMNΔAx
���

���
N
¼ N1=2 �AþMNM

�1=2M1=2ΔAN�1=2N1=2x
���

���≤
≤ N1=2 �AþMNM

�1=2

���
��� M1=2ΔAN�1=2
�� �� N1=2x

�� �� ¼ �AþMN

���
���
NM

ΔAk kMN xk kN: ð55Þ

b.

I � �Pð ÞN�1ΔATAþTMNNx
�� ��

N ¼ N1=2 I � �Pð ÞN�1=2N�1=2ΔATM1=2M�1=2AþTMNN
1=2N1=2x

�� ��

≤ N1=2 I � �Pð ÞN�1=2
�� �� M1=2ΔAN�1=2

�� �� N1=2AþMNM
�1=2

�� �� N1=2x
�� ��

¼ I � �Pð Þ�� ��
NN ΔAk kMN AþMN

�� ��
NM xk kN ð56Þ

c. Using Lemma 6, and (28) we can write

�AþMN
�Q I � Qð Þb

���
���
N
¼ �AþMN

�A�AþMN I �Qð Þr
���

���
N
≤ �AþMN

���
���
NM

�Q I � Qð Þ�� ��
MM rk kM

¼ �AþMN

���
���
NM

Q I � �Q
� ��� ��

MM rk kM
(57)

where

Q I � �Q
� ��� ��

MM ¼ AAþMN I � �Q
� ��� ��

MM ¼ M1=2AAþMN I � �Q
� �

M�1=2
�� �� ¼

¼ M�1=2 MAAþMN

� �T I � �Q
� �

M�1=2

���
��� ¼

¼ M�1=2 AþMN

� �T AT � �AT
� �

M1=2M1=2 I � �Q
� �

M�1=2

���
��� ¼

¼ M�1=2 AþMN

� �TΔATM I � �Q
� �

M�1=2

���
���≤ M�1=2 AþMN

� �TΔATM1=2

���
��� ¼

¼ M1=2ΔAN�1=2N1=2AþMNM
�1=2

���
���≤ M1=2ΔAN�1=2

�� �� N1=2AþMNM
�1=2

�� ��≤

≤ ΔAk kMN AþMN

�� ��
NM:

(58)

Substituting this result into (31) gives the inequality

�AþMN
�Q I �Qð Þb

���
���
N
≤ �AþMN

���
���
NM

ΔAk kMN AþMN

�� ��
NM rk kM: (59)
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d. �AþMN b� �b
� ����

���
N
¼ N1=2 �AþMNM

�1=2M1=2 b� �b
� ����

���≤
N1=2 �AþMNM

�1=2

���
��� M1=2 b� �b

� ��� �� ¼ �AþMN

���
���
NM

b� �b
� ��� ��

M ð60Þ

Taking into account I � �P
�� ��< 1, and applying Lemma 4, we obtain the following

weighted-norm estimate for the relative error

x� �xk kN
xk kN

≤
�AþMN

���
���
NM

ΔAk kMN xk kN
xk kN

þ ΔAk kMN AþMN

�� ��
NM xk kN

xk kN
þ

þ
�AþMN

���
���
NM

AþMN

�� ��
NM ΔAk kMN rk kM

xk kN
þ

�AþMN

���
���
NM

Δbk kM
xk kN

≤

≤ �AþMN

���
���
NM

ΔAk kMN þ ΔAk kMN AþMN

�� ��
NMþ

þ
�AþMN

���
���
NM

AþMN

�� ��
NM ΔAk kMN rk kM

xk kN
þ

�AþMN

���
���
NM

Δbk kM
xk kN

≤

≤
AþMN

�� ��
NM Ak kMN

1� ΔAk kMN AþMN

�� ��
NM

2
ΔAk kMN

Ak kMN
þ Δbk kM

Ak kMN xk kN

�
þ

þ AþMN

�� ��
NM Ak kMN

ΔAk kMN

Ak kMN

rk kM
Ak kMN xk kN

�
≤

≤
h Að Þ

1� h Að ÞεA 2εA þ Δbk kM
Ak kMN xk kN

þ h Að ÞεA rk kM
xk kN Ak kMN

� �
:

(61)

as required.
Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then the estimates of the hereditary

error of normal pseudosolutions of systems of linear algebraic equations follow from
next theorem.

Theorem 8 (see in [32]). Let║ΔА║║Аþ║< 1, rank �A
� � ¼ rank Að Þ ¼ k. Then

x� �xk k
xk k ≤

h
1� hεА

2εА þ εbk þ hεА
b� bkk k
bkk k

� �
, (62)

where bk is the projection of the right-hand side of problem (8) onto the principal
left singular subspace of the matrix A [42], i.е., bk ∈ Im A, h ¼ h Að Þ ¼ Ak k Aþk k is
condition number of A, the symbol kk , unless otherwise stated, denotes the Euclidean
vector norm and the corresponding spectral matrix norm, Аþ is the Moore–Penrose
pseudoinverse.

Case 2. The rank of the perturbed matrix is larger than that of the original matrix A,
i.e.rank �A

� �
> rank Að Þ ¼ k.

Define the idempotent matrices:

P ¼ AþMNA,Q ¼ AAþMN, �Pk ¼ �Ak
þ
MN

�A, �Qk ¼ �A�Ak
þ
MN, (63)

where k is the rank of A.
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Theorem 9. Assume that ΔAk kMN AþMN

�� ��
NM < 1

2, rank �A
� �

> rank Að Þ ¼ k. Then

x� �xkk kN
xk kN

≤
h

1� 2hεА
2εА þ αþ hεАβð Þ: (64)

where h Að Þ ¼ Ak kMN AþMN

�� ��
NM is the weighted condition number of A, the sym-

bols kkMN and kk NM denote the weighted matrix norms defined Eq. (4)–(6), and AþMN
is the weighted Moore–Penrose pseudoinverse.

Proof. The desired estimate is derived using the method of [32], which is based on
the singular value decomposition of matrices. Specifically, �А is represented as a
weighted singular value decomposition:

�А ¼ �U �D�VT
: (65)

Along with (38), we consider the decomposition

�Аk ¼ �U �Dk �V
T, (66)

where �Dk is a rectangular matrix whose first k diagonal elements are nonzero and
equal to the corresponding elements of �D, while all the other elements are zero.

The weighted minimum-norm least squares solution to problem (10) is approxi-
mated by the weighted minimum-norm least squares solution �xk to the problem

min
x∈C

�xk kN,C ¼ xj �Ak�x� �b
�� ��

M ¼ min
n o

: (67)

The matrix �Ak is defined by (48) and has the same rank k as the matrix of the
unperturbed problem.

Thus, the error estimation of the least-squares solution for matrices with a
modified rank is reduced to the case of the same rank. This fact is used to estimate
x� �xkk kN= xk kN . The error of the weighted pseudoinverse matrix then becomes:

Gk ¼ �Pk þ I � �Pkð Þ½ � �Ak
þ
MN � AþMN

� �
Q þ I � Qð Þ½ � ¼ �Pk

�Ak
þ
MNQ þ �Pk

�Ak
þ
MN I � Qð Þ�

��PkAþMNQ � �PkAþMN I � Qð Þ � I � �Pkð Þ�Ak
þ
MNQ þ I � �Pkð Þ�Ak

þ
MN I � Qð Þ�

� I � �Pkð ÞAþMNQ þ I � �Pkð ÞAþMN I � Qð Þ ¼ �Ak
þ
MNQ � �PkAþMN

� �
� I � �Pkð ÞAþMNþ

þ�Ak
þ
MN I � Qð Þ ¼ �Ak

þ
MNAA

þ
MN � �Ak

þ
MN

�AAþMN � I � �Pkð ÞAþMN þ �Ak
þ
MN I � Qð Þ ¼

¼ �Ak
þ
MN A� �A
� �

AþMN � I � �Pkð ÞAþMN þ �Ak
þ
MN I � Qð Þ,

(68)

Applying Lemma 5 yields

Gk ¼ �Ak
þ
MN � AþMN ¼ ��Ak

þ
MNΔAA

þ
MN � I � �Pkð ÞN�1ΔATAþTMNNAþMN þ �Ak

þ
MN I �Qkð Þ:

(69)

For the error of the WLS solution, we obtain

�xk � x ¼ �Ak
þ
MNΔAxþ I � �Pkð ÞN�1ΔATAþTMNNx� �Ak

þ
MN I � Qkð Þbþ �Ak

þ
MN b� �b
� �

:

(70)
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Passing to the weighted norms and applying Lemma 4 gives

x� �xkk kN
xk kN

≤
�Ak
þ
MN

���
���
NM

ΔAk kMN xk kN
xk kN

þ ΔAk kMN AþMN

�� ��
NM xk kN

xk kN
þ

þ
�Ak
þ
MN

���
���
NM

AþMN

�� ��
NM ΔAk kMN rk kM

xk kN
þ

�Ak
þ
MN

���
���
NM

Δbk kM
xk kN

≤

≤ �Ak
þ
MN

���
���
NM

ΔAk kMN þ ΔAk kMN AþMN

�� ��
NMþ

þ
�Ak
þ
MN

���
���
NM

AþMN

�� ��
NM ΔAk kMN rk kM

xk kN
þ

�Ak
þ
MN

���
���
NM

Δbk kM
xk kN

≤

≤
AþMN

�� ��
NM Ak kMN

1� ΔAkk kMN AþMN

�� ��
NM

2
ΔAk kMN

Ak kMN
þ Δbk kM

Ak kMN xk kN

�
þ

þ AþMN

�� ��
NM Ak kMN

ΔAk kMN

Ak kMN

rk kM
Ak kMN xk kN

�

: (71)

Let estimate ΔAk ¼ A� �Ak:

ΔAkk kMN ¼ �Ak � A
�� ��

MN ¼ �Ak � �Aþ ΔA
�� ��

MN ≤ �Ak � �A
�� ��

MN þ ΔAk kMN ¼

¼ �U
0 0

0 Dkþ1

0
@

1
A�VT

������

������
MN

þ ΔAk kMN ≤ 2 ΔAk kMN:

(72)

Moreover, the theorem condition ΔAk kMN AþMN

�� ��
NM < 1

2 leads to
ΔAkk kMN AþMN

�� ��
NM < 1, which is necessary for expression (51) to be well defined. In

view of this, (51) yields estimate (33) for the error of the minimum-norm weighted
least squares solution.

Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then the estimates of the hereditary
error of normal pseudosolutions of systems of linear algebraic equations for case
rank �A

� �
> rank Að Þ ¼ k follows from next theorem.

Theorem 10 (see in [32]). Let ΔAk k Aþk k< 1
2, rank �A

� �
> rank Að Þ ¼ k. Then

x� �xkk k
xk k ≤

h
1� 2hεА

2εА þ εbk þ hεА
b� bkk k
bkk k

� �
: (73)

Case 3. The rank of the original matrix is larger than that of the perturbed matrix, i.e.,
rank Að Þ> rank �A

� � ¼ l.
By analogy with (33), we define the idempotent matrices:

Pl ¼ Al
þ
MNA,Ql ¼ AAl

þ
MN, �P ¼ �AþMN

�A, �Q ¼ �A�AþMN, (74)
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Theorem 11. Assume that rank Að Þ> rank �A
� � ¼ l, ΔAk kMN

μl
< 1

2. Then,

xl � �xk kN
xlk kN

≤
μ1=μl

1� 2 ΔAk kMN=μl
2εA þ αl þ μ1

μl
εАβl

� �
, (75)

where μi are the weighted singular values of A.
Proof. Along with (9), we consider the problem

min
x∈C

xlk kN,C ¼ xj Alx� bk kM ¼ min
� �

(76)

with the matrix Al ¼ UDlVT of rank l.
Similarly, writing (27) for problems (10) and (54), whose matrix ranks coincide,

we obtain

Gl ¼ �AþMN � Al
þ
MN ¼ ��AþMNΔAAl

þ
MN � I � �Pð ÞN�1ΔATAl

þT
MNNAl

þ
MN þ �AþMN I � Qlð Þ, (77)

�x� xl ¼ �AþMNΔAxþ I � �Pð ÞN�1ΔATAl
þT
MNNx� �AþMN I � Qlð Þbþ �AþMN b� �b

� �
: (78)

Applying Lemma 4 and passing to the weighted norms yields the estimate

xl � �xk kN
xk kN

≤ �AþMN

���
���
NM

ΔAk kMN þ ΔAk kMN Al
þ
MN

�� ��
NMþ

þ
�AþMN

���
���
NM

Al
þ
MN

�� ��
NM ΔAk kMN rk kM

xk kN
þ

�AþMN

���
���
NM

Δbk kM
xk kN

≤

≤
Al
þ
MN

�� ��
NM Ak kMN

1� ΔAlk kMN Al
þ
MN

�� ��
NM

2
ΔAk kMN

Ak kMN
þ Δbk kM

Ak kMN xk kN

�
þ

þ Al
þ
MN

�� ��
NM Ak kMN

ΔAk kMN

Ak kMN

rk kM
Ak kMN xk kN

�
,

(79)

which implies (52). This completes the proof of Theorem 11.
For approximately given initial data, the rank of the original matrix should be

specified as the numerical rank of the matrix (see in [28]).
Specifically, ifM ¼ I∈Rm�m and N ¼ I∈Rn�n, then the estimates of the hereditary

error of normal pseudosolutions of systems of linear algebraic equations for case
rank Að Þ> rank �A

� � ¼ l follows from next theorem.

Theorem 12 (see in [32]). Let rank Að Þ> rank �A
� � ¼ l, ΔAk k

μl
< 1

2. Then

xl � xk k
xlk k ≤

μ1=μl
1� 2 ΔAk k=μl

2εA þ εbl þ εА
μ1
μl

b� blk k
blk k

� �
, (80)

where xl is the projection of the normal pseudosolution of problem (8) onto the
right principal singular subspace of the matrix A of dimension l, bl is projection of the
right-hand side b onto the principal left singular subspace of dimension l of the matrix
A, μi is singular values of the matrix А.
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3.2 Estimates of the hereditary error of a weighted normal pseudosolution for full
rank matrices

For matrices of full rank, it is essential that their rank does not change due to the
perturbation of the elements if the condition ΔAk kMN AþMN

�� ��
NM < 1 is met.

In addition, in what follows we will use the following property of matrices of full
rank [28]

AþMN ¼ ATMA
� ��1

ATM for m≥ n and AþMN ¼ N�1AT AN�1AT� ��1
for n≥m: (81)

If m≥ n, then problem (9) is reduced to a problem of the form

min
x∈Rn

Ax� bk kM: (82)

For such a problem, the following theorem is true.
Theorem 13. Let ΔAk kMI AþMN

�� ��
IM < 1, m> n ¼ k. Then

x� �xk k
xk k ≤

h
1� hεA

εA þ Δbk kM
Ak kMI xk k þ hεA

rk kM
xk k Ak kMI

� �
, (83)

where h ¼ Ak kMI AþMN

�� ��
IM.

Proof. To prove Theorem 13, as before, we will use relation (49). By (81)
�P ¼ �AþMN

�A ¼ I, so that from (50) we have the equality

�AþMN � AþMN ¼ ��AþMNΔAA
þ
MN þ �AþMN I � Qð Þ, (84)

using which we obtain (83).
If n≥m, then problem (9) is reduced to a problem of the form

min
x∈C

xk kN,C ¼ xjAx ¼ bf g (85)

and the following theorem holds for it.
Theorem 14. Let ΔAk kIN AþMN

�� ��
NI < 1, n>m ¼ k. Then

x� �xk kN
xk kN

≤
h

1� hεA
2εA þ Δbk k

Ak kIN xk kN

� �
, (86)

where h ¼ Ak kIN AþMN

�� ��
NI.

Proof. Since in this case Q ¼ AAþMN ¼ I, then the expression for �AþMN � AþMN by
(81) takes the form

�AþMN � AþMN ¼ ��AþMNΔAA
þ
MN � I � �Pð ÞN�1ΔATAþTMNNAþMN : (87)

Further calculations are similar to the previous ones. As a result, we come to
estimate (86).

Remark 3. The relationship between the condition number of the problem with
exact initial data h(A) and the condition number of the matrix of the system with
approximately given initial data h �A

� �
is established by the estimates
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σk � ΔAk kMN ≤ �σk ≤ σk þ ΔAk kMN, σ1 � ΔAk kMN ≤ �σ1 ≤ σ1 þ ΔAk kMN,

σ1 � ΔAk kMN

σk þ ΔAk kMN
≤

�σ1
�σk

≤
σ1 þ ΔAk kMN

σk � ΔAk kMN
,
1� εA
1þ εAh

≤
h Аð Þ
h �Аð Þ ≤

1þ εA
1� εAh

,
(88)

which are easy to obtain for the weighted matrix norm based on the perturbation
theory for symmetric matrices.

Lemma 7. Let A,ΔA∈Rm�n, rank �A
� � ¼ rank Að Þ and ΔAk kMN AþMN

�� ��
NM < 1. Then

the estimate of the relative error of the condition number of the matrix A has the form

�h� h
h

����
����≤ εA

1þ h
1� εAh

(89)

where h ¼ h Að Þ ¼ Ak kMN AþMN

�� ��
NM is weighted condition number of matrix A,

�h ¼ �h Að Þ ¼ �A
�� ��

MN
�AþMN

���
���
NM

is weighted condition number of the perturbed matrix
�A ¼ Aþ ΔA.

Proof of Lemma 7 is easy to obtain using the inequality (25).

Theorem 15. Let ΔAk kMN
�AþMN

���
���
NM

< 1, ΔAk kMN ≤ ε�A �A
�� ��

MN, rank
�A
� � ¼ rank Að Þ.

Then,

�x� xk kN
�xk kN

≤
h �A
� �

1� h �A
� �

ε�A
2ε�A þ

Δbk kM
�A
�� ��

MN �xk kN
þ h �A
� �

ε�A
�rk kM

�xk kN �A
�� ��

MN

 !
, (90)

where h �A
� � ¼ �A

�� ��
MN

�AþMN

���
���
NM

is weighted matrix condition number �A, the

symbols kkMN and kkNM denote the weighted matrix norms defined by Eq. (4)–(6)
and AþMN is the weighted Moore–Penrose pseudoinverse.

Thus, estimates of the hereditary error, the right-hand side of which is determined
by approximate data, can be obtained without inequalities (88). Estimates similar to
(90) can be obtained for all the previously considered cases.

Remark 4. Under the conditions of Theorem 15, using the inequality

x� �xk kN
xk kN

≤
x� �xk kN
�xk kN

1þ x� �xk kN
xk kN

� �
(91)

and inequality (90) we arrive at the estimate in the following theorem.

Theorem 16. Let ΔAk kMN
�AþMN

���
���
NM

< 1, ΔAk kMN ≤ ε�A �A
�� ��

MN, rank
�A
� � ¼ rank Að Þ.

Then

�x� xk kN
xk kN

≤
β

1� β
, β ¼ h �A

� �

1� h �A
� �

ε�A
2ε�A þ

Δbk kM
�A
�� ��

MN �xk kN
þ h �A
� �

ε�A
�rk kM

�xk kN �A
�� ��

MN

 !
:

(92)

Estimates similar to (92) can be obtained for all the previously considered cases.
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4. Research and solution of the WLS problem with approximate initial
data

4.1 Investigation of the properties of WLS problem with approximate initial data

In the study of the mathematical properties of the weighted least squares problem
with approximate initial data associated with computer realization as an approximate
model in (10), (11) we will understand exactly the computer model of the problem.
We will assume that the error of the initial data ΔA, Δb, in this case, contains in
addition to everything, the error that occurs when the matrix coefficients are written
to the computer memory or its computing.

Matrix of full rank within the error of initial data, we assume a matrix that
cannot change the rank of ΔA change in its elements.

Matrix of full rank within the machine precision, we assume a matrix that
cannot change the rank when you change the elements within the machine precision.

Lemma 8. If rank Að Þ ¼ min m, nð Þ, and

ΔAk kMN AþMN

�� ��
NM < 1, (93)

Then rank �A
� � ¼ rank Að Þ.

Proof. For proof, let, for example, rank Að Þ ¼ m . Taking equal ΔAk kMN ¼ ε, in
equality (93) can be rewritten as ε

μm
< 1, which is equivalent

μm � ε>0: (94)

Let �μm—m-weighted singular value of perturbed matrix �A ¼ Aþ ΔA. According to
Lemma 3, we can write �μm ≥ μm � ε. Then, taking into account (94), we obtain
�μm ≥ μm � ε>0.

Therefore rank �A
� �

≥m, whence we come to the conclusion that rank �A
� � ¼ m, i.е.

rank �A
� � ¼ rank Að Þ.

Taking into account the results of Lemma 8, the computer algorithm for studying
rank completeness is reduced to checking the two relations

ε�Ah �A
� �

< 1, (95)

1:0þ 1
h �A
� � 6¼ 1:0 (96)

where h �A
� � ¼ �A

�� ��
MN

�AþMN

���
���
NM

is weighted condition number of matrix �A.

The fulfillment of the first condition (95) guarantees that the matrix has a full rank
and is within the accuracy of the initial data, and the second (96), which is performed
in floating-point arithmetic, means that the matrix has a full rank within the machine
precision.

Under these conditions, the solution of the machine problem exists, it is unique
and stable. Such a machine problem should be considered as correctly posed within
the accuracy of initial data.

Otherwise, the matrix of the perturbed system may be a matrix, not full rank and,
therefore, the machine model of the problem (10), (11) should be considered as ill-
posed. A key factor in studying the properties of a machine model is the criterion of
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the correctness of the problem. Thereby, a useful fact is that the condition for study-
ing the machine model of problem (96) includes the value inverse to h �A

� �
. As a result,

for large condition numbers of conditionality does not occur an overflow in order.
And the disappearance of the order for 1:0=h �A

� �
for large condition numbers is not

fatal: the machine result is assumed to be equal to zero, which allows us to make the
correct conclusion about the loss of the rank of the matrix of the machine problem.

To analyze the properties of a machine model of problems with matrices of
incomplete rank under conditions of approximate initial data, a fundamental role is
played definition of the rank of a matrix.

The rank of the matrix in the condition of approximate the initial data (effective
rank or δ -rank) is

rank A, δð Þ ¼ min
A�Bk kMN ≤ δ

rank Bð Þ: (97)

This means that the δ-rank of the matrix is equal to the minimum rank among all
matrices in the neighborhood A� Bk kMN ≤ δ.

From [28] that if r δð Þ is the δ-rank of the matrix, then

μ1 ≥ … ≥ μr δð Þ > δ≥ μr δð Þþ1 ≥ … ≥ μp, p ¼ min m, nð Þ: (98)

The practical algorithm for finding δ—rank can be defined as follows: find the
value of r is equal to the largest value of i, for which the inequality is fulfilled

δ

μi
< 1, μi 6¼ 0, i ¼ 1, 2:: (99)

Using the effective rank of a matrix, can always find the number of a stable
projection that approximates the solution or projection

To analyze the rank of a matrix of values within the machine precision value δ can
be attributed to machine precision, for example, setting it equal macheps Bk k.

4.2 Algorithm for finding a weighted normal pseudosolution of the weighted
least squares problem with approximate initial data

The algorithm is based on weighted singular value decomposition of matrices
(Lemma 1).

Let A∈Rm�n and rank Að Þ ¼ k,M- and N-positive-defined matrices of order m and
n, respectively.

To solve the ill-posed problems in the formulation (10), (11), the algorithm for
obtaining an approximate normal pseudosolution of system (9), depending on the
ratio of the ranks of the matrices A and �A is reduced to the following three cases.

1. If the rank of the matrix has not changed rank �A
� � ¼ rank Að Þ ¼ k, an

approximate weighted normal pseudosolution is constructed by the formula

�x ¼ �AþMN
�b, (100)

where �AþMN is represented as a weighted singular value decomposition (7).
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In this case, the weighted normal pseudosolution of system (9) is approximated by
the weighted normal pseudosolution of system (10) and, if ΔAk kMN AþMN

�� ��
NM < 1,

then the error of the solution is estimated by formula (48).

If the rank of the matrix is complete and conditions (95), (96) are satisfied, the
rank of the matrix does not change, and to estimate the error, one can use
formulas (100), (48).

2.Matrix rank increased rank �A
� �

> rank Að Þ ¼ k . An approximate weighted normal
pseudosolution is constructed by the formula

�xk ¼ �Ak
þ
MN

�b: (101)

Weighted pseudoinverse matrix �Ak
þ
MN is defined as follows

�Ak
þ
MN ¼ N�1 �V �Dþk �UTM, (102)

where �Dk is a rectangular matrix, the first k diagonal elements of which are
nonzero and coincide with the corresponding elements of the matrix �D from (7),
and all other elements are equal to zero.

In this case, the weighted normal pseudosolution of system (9) is approximated
by the projection of the weighted normal pseudosolution of system (10) onto the
right principal weighted singular subspace of dimension k of the matrix �A and, if
ΔAk kMN AþMN

�� ��
NM < 1

2, then the error of the solution is estimated by formula
(64).

3. If the rank of the matrix has decreased rank Að Þ> rank �A
� � ¼ l, an approximation

to the projection of a weighted normal pseudosolution of problem (9) is
constructed using formula (100). In this case, the projection of the weighted
normal pseudosolution of system (9) onto the principal right weighted singular
subspace of dimension l of the matrix A is approximated by the weighted normal
pseudosolution of system (10) and, if ΔAk kMN

μl
< 1

2, the projection error is estimated
by formula (75).

Remark 5. If the rank of the original matrix is unknown, then the δ-rank should be
taken as the projection number in (101). In this case, it is guaranteed that a stable
approximation is found either to a weighted normal pseudosolution or to a projection,
respectively, with error estimates.

If the rank of the original matrix is known, then it is guaranteed to find an
approximation to the weighted normal pseudosolution with appropriate estimates.

Remark 6. Because of the zero columns in the matrix Dþ, only the largest first n
columns of the matrix U can actually contribute to the product (100). Moreover, if
some of the weighted singular numbers are equal to zero, then less than n columns of
U are needed. If kp is the number of nonzero weighted singular numbers, then U can
be reduced to the sizes m� kp, Dþ—to the sizes kp� kp, VT—up to size kp� n.
Formally, such matrices U and V are not M-orthogonal and N�1-orthogonal, respec-
tively, since they are not square. However, their columns are weighted orthonormal
systems of vectors.
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5. Analysis of the reliability of computer solutions to the WLS problem
with approximate initial data

5.1 Estimates of the total error of a weighted normal pseudosolution for matrices
of arbitrary rank

Estimates of the total error take into account both the hereditary error due to the
error in the initial data and the computational error due to an approximate method for
determining the solution to the problem. In this case, the method of obtaining a
solution is not taken into account. The computational error can be a consequence of
both an approximate method of obtaining a solution and an error due to inaccuracy in
performing arithmetic operations on a computer. The residual vector �r ¼ �A��x� �b takes
into account the overall effect of these errors.

Let us obtain estimates for the total error of the weighted normal pseudosolution
using the previously introduced notation (47). Let us consider three cases.

Case 1. The rank of the original matrix A remains the same under its perturbation, i.e.,
rank Að Þ ¼ rank �A

� �
.

Theorem 17. Assume that ΔAk kMN AþMN

�� ��
NM < 1, rank �A

� � ¼ rank Að Þ ¼ k and let
�x∈ �A#� �

. Then

�x� ��xk kN
xk kN

≤
h

1� hεА
2εА þ αþ hεАβ þ γð Þ: (103)

Proof. For the hereditary error, in this case, estimate (48) holds.
To estimate the computational error �x� ��x, we use the relation

�A �x� ��xð Þ ¼ �r ¼ �bk � �A��x, (104)

where�bk is projection of the vector �b on the main left weighted singular subspace
of the matrix �A, i.е. �bk ∈ �A

� �
.

Considering that �x� ��x∈ �A#� �
and the fact that �AþMN

�A is a projector in  �A#� �
, we

have

�AþMN
�A �x� ��xð Þ ¼ �x� ��x ¼ �AþMN�r: (105)

From this, we obtain an estimate of the computational error

�x� ��xk kN
�xk kN

≤ �A
�� ��

MN
�AþMN

���
���
NM

�rk kM
�bk
�� ��

M

: (106)

An estimate of the total error of the normal pseudosolution follows from the
relations

x� ��xk kN
xk kN

≤
x� �xk kN
xk kN

þ �x� ��xk kN
xk kN

, (107)

�x� ��xk kN
xk kN

≤ Ak kMN
�AþMN

���
���
NM

�rk kM
bkk kM

(108)
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and estimates (48), (25). The theorem is proved.
Case 2. The rank of the perturbed matrix is larger than that of the original matrix A,

i.e., rank �A
� �

> rank Að Þ ¼ k.
If ΔAk kMN AþMN

�� ��
NM < 1, then from [26], it follows that the rank of the perturbed

matrix cannot decrease.
Theorem 18. Assume that ΔAk kMN AþMN

�� ��
NM < 1

2, rank �A
� �

> rank Að Þ ¼ k and
let�x∈ �A#

k

� �
. Then

x� ��xk kN
xk kN

≤
h

1� hεA
2εA þ αþ hεAβ þ γkð Þ: (109)

Proof. To estimate the computational error �xk � ��xk kN, we use the fact that
�Ak�xk ¼ �bk. Then for arbitrary vector �x∈ �A#

k

� �

�Аk �xk � ��xð Þ ¼ �rk ¼ �bk � �Ak��x, �Ak
þ �Аk �xk � ��xð Þ ¼ �Ak

þ
�rk: (110)

Considering the fact that xk � ��x∈ �Αk
#� �
, and operator �Ak

þ
MN

�Ak is the projection
operator in  �Αk

#� �
, we obtain

�Ak
þ
MN

�Ak �xk � ��xð Þ ¼ �xk � ��x ¼ �Ak
þ
MN�rk, �xk � ��x ¼ �Ak

þ
MN�rk: (111)

Hence follows an estimate of the computational error for the projection of the
normal pseudosolution

�xk � ��xk kN
�xkk kN

≤ �Ak
�� ��

MN
�Ak
þ
MN

���
���
NM

�rkk kM
�bk
�� ��

M

: (112)

The estimate of the total error follows from the inequalities

x� ��xk kN
xk kN

≤
x� �xkk kN

xk kN
þ �xk � ��xk kN

xk kN
,

�xk � ��xk kN
xk kN

≤
Ak kMN

�Ak
þ
MN

���
���
NM

�rkk kM
bkk kM

(113)

and estimates (25), (64).
Case 3. The rank of the original matrix is larger than that of the perturbed matrix, i.e.,

rank Að Þ> rank �A
� � ¼ l.

Consider the case when the condition ΔAk kMN AþMN

�� ��
NM < 1 not satisfied and the

rank of the perturbed matrix can decrease.
Theorem 19. Assume that rank Að Þ> rank �A

� � ¼ l, ΔAk kMN
μl

< 1
2 and let �x∈ Im �A#� �

.
Then

xl � ��xk kN
xlk kN

≤
μ1=μl

1� 2 ΔAk kMN=μl
2εA þ αl þ μ1

μl
εAβl þ γl

� �
(114)

Proof. For the proof, along with problem (9), consider the problem

min
x∈C

xlk kN,C ¼ xj Alx� bk kM ¼ min
� �

(115)

Matrix Theory - Classics and Advances

92



With matrix Al ¼ UΣlVT with rang l.
The estimate of the computational error in this case will be

�x� ��xk kN
�xk kN

≤ �A
�� ��

MN
�AþMN

���
���
NM

�rk kM
�bl
�� ��

M

: (116)

The estimate of the total error follows from the inequalities

xl � ��xk kN
xlk kN

≤
xl � �xk kN
xlk kN

þ �x� ��xk kN
xlk kN

,
�x� ��xk kN
xk kN

≤
Ak kMN

�Al
þ
MN

���
���
NM

�rlk kM
blk kM

, (117)

obvious relationships Ak kMN ¼ Alk kMN, Al
þ
MN

�� ��
NM ¼ 1=μl, estimates of the

hereditary error (75) and the inequality ΔAlk kMN ≤ 2 ΔAk kMN .

5.2 Estimates of the total error of the weighted normal pseudosolution for
matrices of full rank

In the following Theorems 20 and 21, the weighted pseudoinverse AþMN is
represented in accordance with the properties of the full rank matrix (81).

Theorem 20. Let ΔAk kMI AþMN

�� ��
IM < 1, m> n ¼ k and ��x∈R �A#� �

: Then

x� ��xk k
xk k ≤

h
1� hεА

εА þ Δbk kM
Ak kMI xk k þ hεА

rk kM
Ak kMI xk k þ

�rkk kM
Ak kMI xk k

� �
: (118)

Proof. The estimate of the computational error is determined by formula (106),
namely

�x� ��xk k
�xk k ≤ �A

�� ��
MN

�AþMN

���
���
NM

�rk kM
�bk
�� ��

M

: (119)

The estimate for the total error (118) follows from the inequalities

x� ��xk k
xk k ≤

x� �xk k
xk k þ �x� ��xk k

xk k ,
�x� ��xk k
xk k ≤ Ak kMI

�AþMN

���
���
IM

�rk kM
bkk kM

(120)

and estimates for the pseudoinverse matrix (25) and the hereditary error (83).
Theorem 21. Let ΔAk kIN AþMN

�� ��
NI < 1, n>m ¼ k and ��x∈R �A#� �

. Then

x� ��xk kN
xk kN

≤
h

1� hεА
2εA þ Δbk k

Ak kIN xk kN
þ �rk k

bkk k
� �

, (121)

The proof of Theorem 21 is similar to the proof of the previous theorem, taking
into account the estimate for the hereditary error (86).

Remark 7. Here, we did not indicate a method for obtaining an approximate
weighted normal pseudosolution ��x, satisfying the conditions of the theorems. Algo-
rithms for obtaining such approximations are considered, for example, in Section 4.2.

Remark 8. Along with estimates (103), (109), (114), (118), (121), error estimates
can be obtained, the right-hand sides of which depend on the input data of systems of
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linear algebraic equations with approximately given initial data. For example, the
following theorem holds.

Theorem 22. Let ΔAk kMN
�AþMN

���
���
NM

< 1, and ��x∈R �A#� �
. Then, for the total error

of the normal pseudosolution, the following estimate is fulfilled

x� ��xk kN
�xk kN

≤
h �A
� �

1� h �A
� �

ε�А
2ε�А þ

Δbk kM
�A
�� ��

MN �xk kN
þ h �A

� �
ε�A

�rk kM
�A
�� ��

MN �xk kN
þ �rk kM

�bk
�� ��

M

 !
:

(122)

Estimate (122) can be obtained from the inequality

x� ��xk kN
�xk kN

≤
x� �xk kN
�xk kN

þ �x� ��xk kN
�xk kN

(123)

and estimates (90), (106).
If the weighted pseudoinverse matrix is known or its weighted singular value

decomposition is obtained during the process of solving the problem, then a practical
estimate of the computational error can be obtained using (104). When calculating
the residual �r ¼ �bk � �А��x, the explicit form of the projection operator onto R �А

#� �
is

used.
In conclusion, we note that the determining factor for obtaining estimates is the

use of a weighted singular value decomposition [37] and the technique of reducing the
problem of estimating the error of a pseudosolution to an estimate of the error [32] for
problems with matrices of the same rank. Based on the results obtained, an algorithm
for finding the effective rank of matrices can be developed, as well as an algorithm for
calculating stable projections of a weighted normal pseudosolution.

5.3 Software-algorithmic methods for increasing the accuracy of computer
solutions

The numerical methods we have considered for solving systems of linear algebraic
equations and WLS problems have one common property. Namely, the actually cal-
culated solution (pseudosolution) is exact in accordance with the inverse analysis of
errors [43] for some perturbed problem. These perturbations are very small and are
often commensurate with the rounding errors of the input data. If the input data is
given with an error (measurements, calculations, etc.), then usually they already
contain significantly larger errors than rounding errors. In this case, any attempt to
improve the machine solution (pseudosolution) without involving additional infor-
mation about the exact problem or errors of the input data errors will be untenable.

The situation changes significantly if a mathematical problem with accurate input
data is considered. Now the criterion of bad or good conditionality of the computer
model of the problem depends on the mathematical properties of the computer model
of the problem and the mathematical properties of the processor (length of the
computer word), and it becomes possible in principle to achieve any given accuracy of
the computer solution. In this case, as follows from estimates (48), (64), (75), (83),
(86), it is obviously possible to refine the computer solution by solving a system with
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increased bit depth, in particular, using the GMP library [44] for implementation of
computations with arbitrary bit depth.

To predict the length of the mantissa (machine word) that provides a given
accuracy for a solution (joint systems), you can use the following rule of thumb: the
number of correct decimal significant digits in a computer solution is μ� α, where μ is
the decimal order of the mantissa of a floating-point number ε, α is the decimal order
of the condition number. Thus, knowing the conditionality of the matrix of the system
and the accuracy of calculations on a computer, it is possible to determine the required
bit depth to obtain a reliable solution.

The GMP library is used to work on integers, rational numbers and floating-point
numbers. The main feature of the library is the bitness of numbers (precision) is
practically unlimited. Therefore, the main field of application is computer algebraic
calculations, cryptography, etc. The functions of the GMP library allow not only
setting the bit depth at the beginning of the program and performing calculations with
this bit depth, but also changing the bit width as needed in the computation process,
i.e. execute different fragments of the algorithm with different bit depths.

The library’s capabilities were tested in the study of solutions to degenerate and ill-
conditioned systems in [45].

6. Conclusions

In the framework of these studies, estimates of the hereditary error of the
weighted normal pseudosolution for matrices of arbitrary form and rank are obtained,
including when the rank of the perturbed matrix may change. Three cases are consid-
ered: the rank of the matrix does not change when the data is disturbed, the rank
increases and the rank decreases. In the first case, the weighted normal
pseudosolution of the approximate problem is taken as an approximation to the
weighted normal pseudosolution, in the other two, the problem is reduced to the case
when the ranks of the matrices are the same. Also, the estimates of the error for the
weighted pseudoinverse matrix and the weighted condition number of the matrix are
obtained, the existence and uniqueness of the weighted normal pseudosolution are
investigated and proved. Estimates of the total error of solving the weighted least
squares problem with matrices of arbitrary form and rank are established.

The results obtained in the perturbation theory of weighted least squares problem
can be a theoretical basis for further research into various aspects of the WLS problem
and the development of methods for calculating weighted pseudoinverse matrices and
weighted normal pseudosolutions with approximate initial data, in particular, in the
design and optimization of building structures, in tomography, in the calibration of
viscometers, in statistics. The results of the research can be used in the educational
process when reading special courses on this section of the theory of matrices.
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Chapter 5

A Study on Approximation of a
Conjugate Function Using
Cesàro-Matrix Product Operator
Mohammed Hadish

Abstract

In this chapter, we present a study of the inaccuracy estimation of a function ~ζ
conjugate of a function ζ (2π-periodic) in weighted Lipschitz spaceW Lp, p≥ 1, ξ ωð Þð Þ,
by Cesàro-Matrix (CδT) product means of its CFS1. This chapter is divided into seven
section. The first section contains introduction of our chapter, the second section, we
introduce some basic definitions and notations. In the third section lemmas and the
fourth section contains our main theorems and proofs. In the fifth section, we intro-
duce corollaries, the sixth section contains particular cases of our results and the last
section contains exercise of our chapter.

Keywords: weighted Lipschitz class, error approximation, Cesàro (Cδ) means, Matrix
(T) means CδT product means, conjugate Fourier series, generalized Minkowski’s
inequality

1. Introduction

The studies of estimations of conjugate of functions in different Lipschitz classes
and Hölder classes using single summability operators, have been made by the
researchers like [1–4] etc. in past few decades. The studies of estimation of error of
cojugate of functions in different Lipschitz classes and Hölder classes using different
product operator, have been made by the researchers like [5–12] etc. in recent past.

In this problem, we andeavour consider more sophisticated class of function in
contemplation of reach at the best estimation of function ~ζ conjugate of a function ζ
2π � periodicð Þ by trigonometric polynomial of degree more than λ. It can be paid
attention the results procure thus far in the route of present work could not lay out the
best approximation of the function also, in this work, we have used Cesàro-Matrix
CδT
� �

of product operators which is developed here in order to work using more
generalized operator. It is important to mention here that CδT is the more generalized
product operator than the product operators Cesàro-Harmonic CδH

� �
, Cesàro-N-

örlund CδNp
� �

, Cesàro-Riesz CδNp
� �

, Cesàro-generalized Nörlund CδNpq
� �

and

1 CFS denotes Conjugate Fourier series and we use this abbreviation throughout the paper.
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Cesàro-Euler CδH
� �

and furthermore C1H, C1Np, C1Npq, C1Eq and C1E1 product
operators are the special cases of CδT for δ ¼ 1.

Therefore, we establish two theorems so obtain best inaccuracy estimation of a
function ~ζ, conjugate to a 2π-periodic function ζ in weighted W Lp, ξ ωð Þð Þ space of its
CFS. Here we shall consider the two cases (i) p> 1 and (ii) p ¼ 1 in order to get the
Hölder’s inequality satisfied. Our theorems generalizes six previously known results.
Thus, the results of [5, 8–12] becomes the special cases of our theorem. Some
inportant corollaries are also obtained from our theorems.

Note 1 The CFS is not necessarily a FS.2

Example 1 The series

X∞
λ¼2

‍ sin λxð Þ
log λ

� �

conjugate to the FS

X∞
λ¼2

‍ cos λxð Þ
log λ

� �

is not a FS (Zygmund [13], p. 186).
From above example, we conclude that, a separate study of conjugate series in the

present direction of work is quite essential.

2. Definitions and notations

2.1 Lipschitz class

Let C2π is a Banach space of all periodic functions with period 2π and continuous on
the interval 0≤ x≤ 2π under the supremum norm.

The best λ-order error approximation of a function ~ζ∈C2π is defined by

Eλ
~ζ
� � ¼ inf

tλ
∥~ζ � tλ∥,

where tλ is a trigonometric polynomial of degree λ (Bernstein [14]).
Let us define the Lp space of all 2π-periodic and integrable functions as

Lp 0, 2π½ �≔ ~ζ : 0, 2π½ � !  :

ð2π
0
‍ ~ζ xð Þ�� ��p dx<∞

� �
, p≥ 1:

Now, ∥:∥p is defined as

∥~ζ∥p ¼
1
2π

Ð 2π
0 ‍ ~ζ xð Þ�� ��p dx

n o1
p

for 1≤ p<∞

ess sup
x∈ 0, 2πð Þ

∣~ζ xð Þ∣ for p ¼ ∞:

8>><
>>:

2 FS denotes Fourier series and we use this abbreviation throughout the paper.
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We define the following Lipschitz classes of function

ζ∈Lipα if Lipα≔ ζ : 0, 2π½ � !  :jζ xþ ωð Þ � ζ xð Þj¼ O ωαð Þf g

for 0< α≤ 1;

ζ∈Lip α, pð Þ if Lip α, pð Þ≔ ζ∈Lp 0, 2π½ � : ∥ζ xþ ωð Þ � ζ xð Þ∥p ¼ O ωαð Þ
n o

for p≥ 1, 0< α≤ 1;

ζ∈Lip α, ξ ωð Þð Þ if Lip α, ξ ωð Þð Þ≔ ζ∈Lp 0, 2π½ � : ∥ζ xþ ωð Þ � ζ xð Þ∥p ¼ O ξ ωð Þð Þ
n o

for p≥ 1, 0< α≤ 1& β≥0;

ζ∈W Lpξ ωð Þð Þif W Lpξ ωð Þð Þ≔ fζ∈Lp 02π½ � : ζ xþ ωð Þ � ζ xð Þð Þ sin β ω

2

� ����
���
p
¼ O ξ ωð Þð Þg

where ξ ωð Þ>0 and increasingwithω>0 andLp space of all 2π-periodic and integrable
functions. Under above assumptions for α∈ 0, 1ð �, p≥ 1,ω>0, we observed that

W Lp, ξ ωð Þð Þ ���!β¼0
Lip ξ ωð Þ, pð Þ �����!ξ ωð Þ¼ωα

Lip α, pð Þ ���!p!∞
Lipα:

Remark 1 If ξ ωð Þ
ω is non-increasing; then

ξ π
λþ1ð Þ
π

λþ1
≤ ξ 1

λþ1ð Þ
1

λþ1
i.e., ξ π

λþ1
� �

≤ πξ 1
λþ1
� �

.

2.2 Some important single summability

Let

X∞
λ¼0

‍vλ (1)

be an infinite series such that sk ¼
Pk

m¼0‍vm. Let

σηr ¼
Xr

k¼0
‍

r� kþ η� 1

r� k

� �

rþ η

r

� � sk, for η> � 1: (2)

If lim λ!∞σ
η
λ ¼ s then we say that the series (1) is C, ηð Þ summable to s or summable

by Cesàro mean of order η.If we take η ¼ 0 in (2), C, ηð Þ summability reduces to an
ordinary sum and if we take η ¼ 1, then C, ηð Þ summability reduces to C, 1ð Þ
summability or Cesàro summability of order 1.

Let

tE
q

λ ¼
1

1þ qð Þλ
Xλ

k¼0
‍ λ

k

� �
1

qk�λ
sk, q>0:
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If lim λ!∞tE
q

λ ¼ s then we say that the series (1) is E, qð Þ summable to s or summable
by Euler mean E, qð Þ (Hardy [15]). If q ¼ 0, E, qð Þmethod reduces to an ordinary sum
and if q ¼ 1, E, qð Þmeans reduces to E, 1ð Þmeans.

An infinite series (1) with the sequence sλf g of its partial sums is said to be

summable by harmonic method (Riesz [16] or simply summable N, 1
λþ1

� �
to sum s,

where s is a finite number, if the sequence to sequence transformation

tλ ¼ 1
log λ

Xλ
v¼0

‍ sv
λ� vþ 1

as λ! ∞:

Let pλ
� �

be a sequence of constants, real or complex and let

Pλ ¼
Xλ

k¼0
‍pk, Pλ 6¼ 0ð Þ:

Let

tNp

λ ¼
1
Pλ

Xλ

k¼0
‍pλ�ksk ¼

1
Pλ

Xλ

k¼0
‍pksλ�k: (3)

If

lim
λ!∞

tNp

λ ¼ s

then we say that the series (1) is N, pλ
� �

summable to s or summable by Nörlund
N, pλ
� �

means.
Let pλ

� �
and qλ

� �
, be two sequences of constants, real or complex such that

Pλ ¼ p0 þ p1 þ … þ pλ;P�1 ¼ p�1 ¼ 0, (4)

Qλ ¼ q0 þ q1 þ … þ qλ;Q�1 ¼ q�1 ¼ 0: (5)

Rλ ¼
Xλ

k¼0
‍pkqλ�k 6¼ 0 for all λ: (6)

Convolution of the two sequences pλ
� �

and qλ
� �

, is defined as

Rλ ¼ p ∗ qð Þλ ¼
Xλ

k¼0
‍pkqλ�k:

We write

tNpq

λ ¼ 1
Rλ

Xλ

k¼0
‍pλ�kqksk;

then the generalized Nörlund means Np,q
� �

of the sequence sλf g is denoted by the
sequence tpqλ . If tpqλ ! s, as λ! ∞ then, the series (1) is said to be summable to s by
Np,q method and is denoted by sλ ! s Np,q

� �
([17]).

104

Matrix Theory - Classics and Advances



Let pλ
� �

be a sequence of real constants such that p0 >0, pλ ≥0 and

Pλ ¼
Pλ

v¼0‍pv 6¼ 0, such that Pλ ! ∞ as λ! ∞.
If

tλ ¼ 1
Pλ

X
‍pvsv ! s, as λ! ∞,

then we say that sλf g is summable by N, pλ
� �

means and we write

sλ ¼ s N, pλ
� �

,

where sλf g is the sequence of λth partial sum of the series (1).
Let T ¼ lλ,kð Þ be an infinite triangular matrix satisfying the conditions of regularity

[18] i.e.,

Pλ
k¼0

‍lλ,k ¼ 1 as λ! ∞

lλ,k ¼ 0 for k> λ

Pλ
k¼0

‍∣lλ,k∣ ≤M, a finite constant

8>>>>>>><
>>>>>>>:

(7)

The sequence-to-sequence transformation

tTλ ~ζ; x
� �

≔
Xλ

k¼0
‍lλ,ksk ¼

Xλ

k¼0
‍lλ,λ�ksλ�k

defines the sequence tTλ ζ; xð Þ of triangular matrix means of the sequence sλf g
generated by the sequence of coefficients lλ,kð Þ.

If tTλ ~ζ; x
� �! s as λ! ∞ then the infinite series

P∞
λ¼0‍vλ or the sequence sλf g is

summable to s by triangular matrix (T-method) [13].

2.3 CδT product means

we define CδT means as

tC
δT

λ
~ζ; x
� �

≔
Xλ
r¼0

‍
λ� rþ δ� 1

δ� 1

� �

δþ λ

δ

� �
Xr

k¼0
‍lr,ksk ~ζ; x

� �
(8)

If tC
δT

λ
~ζ; x
� �! s as λ! ∞, then

P∞
λ¼0‍vλ is summable to s by CδT method.

Note 2 Since Cδ and T both are regular then CδT method is also regular.
Remark 2 The special cases of CδT means: CδT transform reduces to

i. CδH transform if lλ,k ¼ 1
λ�kþ1ð Þ log λþ1ð Þ;

ii. CδNp transform if lλ,k ¼ pλ�k
Pλ

where Pλ ¼
Pλ

k¼0‍pk 6¼ 0;
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iii. CδNp transform if lλ,k ¼ pk
Pλ
;

iv. CδEq transform when aλ,k ¼ 1
1þqð Þλ

λ

k

� �
qλ�k;

v. CδE1 when lλ,k ¼ 1
2λ

λ

k

� �
;

vi. CδNpq transform if lλ,k ¼ pλ�kqk
Rλ

where Rλ ¼
Pλ

k¼0‍pkqλ�k.

In above special case (ii), (iii), and (vi) pλ and qλ are two non-negative monotonic
non-increasing sequences of real constants.

Remark 3 C1H, C1Np, C1Npq, C1Eq and C1E1 transforms are also the special cases of
CδT for δ ¼ 1.

Example 2 we consider

1� 1574
X∞
λ¼1

‍ �1573ð Þλ�1 (9)

The λth partial sum of the series (9) is given by

sλ ¼ �1573ð Þλ, ∀λ∈0

we take lλ,k ¼ 1
787ð Þλ

λ

k

� �
786ð Þλ�k, then

tTλ ¼ lλ,0s0 þ lλ,1s1 þ … þ lλ,λsλ

¼ 1

787ð Þλ
λ

0

 !
786ð Þλ �

λ

1

 !
786ð Þλ�1:1573þ … þ

λ

λ

 !
�1573ð Þλ

" #

¼ 1

787ð Þλ �787ð Þλ

¼
1, λ is even

�1, λ is odd

(

(10)

in above example, we see the series is summable neither by Cesàro means nor
Matrix means, but summable by Cesàro-Matrix.

Thus, CδT means is more powerfull and effective than single Cδ and T means.
Example 3 we consider another infinite series

1� 6þ 30� 150þ 750� 3750þ 18750� … (11)

The λth partial sum of the series (11) is given by

sλ ¼ �5ð Þλ,∀λ∈0
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we take lλ,k ¼ 1
3λ

λ

k

� �
2λ�k, then

tTλ ¼ lλ,0s0 þ lλ,1s1 þ … þ lλ,λsλ

¼ 1
3λ

λ

0

 !
2λ �

λ

1

 !
2λ�1:5þ … þ

λ

λ

 !
�5ð Þλ

" #

¼ 1
3λ
�3ð Þλ

¼
1, λ∈ 2m : m∈Zf g
�1, λ∈ 2mþ 1 : m∈Zf g

(

(12)

in above example, we see the series is summable neither by Cesàro means of order
one nor Matrix means, but summable by Cesàro-Matrix.

2.4 Notations

~K
CδT
λ ¼ 1

2π

Xλ
r¼0

‍
rþ δ� 1

δ� 1

� �

δþ λ

δ

� �
Xr

k¼0
‍lr,r�k cos r� kþ 1

2

� �
ω

sin ω
2

(13)

ϱ ¼ integral part of
1
ω

� �

ψ x,ωð Þ ¼ ζ xþ ωð Þ � ζ x� ωð Þ

We use the following in our work.

1
sin ω

2

� � ≤ π

ω
, 0<ω≤ π (14)

sinω≤ω,ω≥0 (15)

∣ cos λω∣ ≤ 1, ∀ω∈ (16)

Zygmund ([13]).
Note 3 Following conditions are used in the proof of the main results

lλ,λ�k � lλþ1,λþ1�k ≥0 for 0≤ k≤ λ

Lλ,k ¼
Pλ
r¼k

‍lλ,λ�r and Lλ,0 ¼ 1, ∀λ∈0

8><
>:

: (17)

Remark 4 Considering the matrix T ¼ lλ,kð Þ as

lλ,k ¼
2018� 2019ð Þk
2019ð Þλþ1 � 1

, 0≤ k≤ λ

0, k> λ

8><
>:

,
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we can observe that (7, 17) satisfied.
Remark 5 Function ζ denotes a conjugate to a 2π-period and Lebesgue integrable

function and this notation is used throughout the chapter.

3. Lemmas

For the proof of our theorems, following lemmas are required:
Lemma 3.1 If conditions (7, 17) hold for lλ,kf g, then

∣~KCδT
λ ωð Þ∣ ¼ O

1
ω

� �
∀δ≥ 1, 0<ω≤

π

λþ 1
:

Proof. For 0<ω≤ π
λþ1, using (14, 15, 16)

∣~KCδT

λ ωð Þ∣ ¼ 1
2π

Xλ
r¼0

‍
rþ δ� 1

δ� 1

� �

δþ λ

δ

� �
Xr

k¼0
‍lr,r�k

cos r� kþ 1
2

� �
ω

sin
ω

2

���������

���������

≤
1
2π

Xλ
r¼0

‍

rþ δ� 1

δ� 1

 !

δþ λ

δ

 ! Xr

k¼0
‍lr,r�k

∣ cos r� kþ 1
2

� �
ω∣

∣ sin
ω

2
∣

≤
1
2ω

Xλ
r¼0

‍

rþ δ� 1

δ� 1

 !

δþ λ

δ

 ! Xr

k¼0
‍lr,r�k

¼ 1
2ω

Xω
r¼0

‍ rþ δ� 1ð Þ!
δ� 1ð Þ!r! �

δ!λ!

δþ λð Þ!Lr,0

¼ λ!δ

2ω δþ λð Þ!
Xλ
r¼0

‍ rþ δ� 1ð Þ!
r!

since Lr,0 ¼ 1

¼ λ!δ

2ω δ! δþ 1ð Þ⋯ δþ λð Þ
δ� 1ð Þ!
0!

þ δ!

1!
⋯þ λþ δ� 1ð Þ!

λ!

� �

≤
λ!δ

2ω δ! δþ 1ð Þ⋯ δþ λð Þ � λþ 1ð Þ δ! δþ 1ð Þ⋯ δþ λ� 1ð Þ
λ!

¼ δ

2ω
� λþ 1
δþ λ

≤
δ

2ω

¼ O
1
ω

� �
for all δ≥ 1:
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Lemma 3.2 If conditions (7, 17) holds for lλ,kf g, then

~K
CδT
λ ωð Þ

���
��� ¼ O

1
λþ 1ð Þω2

� �
∀δ≥ 1,

π

λþ 1
≤ω≤ π:

Proof. For π
λþ1 ≤ω≤ π, using (14), lr,r�k ≥ lrþ1,rþ1�k ≥ lrþ1,r�k and Lϱþ1,0 ¼ 1.

~K
CδT

λ ωð Þ
���

��� ¼ 2πð Þ�1
Xλ
r¼0

‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

Xr

k¼0
‍lr,r�k

cos r� kþ 1
2

� �
ω

sin
ω

2

�������������

�������������

¼ O
1
ω

� �
Re
Xλ
r¼0

‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

Xr

k¼0
‍lr,r�kei r�kþ1

2ð Þω

�������������

�������������

(18)

Now we consider

Xλ
r¼0

‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

Xr

k¼0
‍lr,r�kei r�kþ1

2ð Þω

�������������

�������������

≤
Xϱ

r¼0
‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

Xr

k¼0
‍lr,r�keι r�kð Þω

�������������

�������������

þ
Xλ
r¼ϱþ1

‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

Xϱ

k¼0
‍lr,r�kei r�kð Þω

�������������

�������������

þ
Xλ
r¼ϱþ1

‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

Xr

k¼ϱþ1
‍lr,r�kei r�kð Þω

�������������

�������������

¼ Λ1 þ Λ2 þ Λ3, say
� �

:

(19)
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Now,

Λ1 ≤
Xϱ

r¼0
‍

rþ δ� 1

δ� 1

0
B@

1
CA

δþ λ

δ

0
B@

1
CA

Xr

k¼0
‍lr,r�k ei r�kð Þω�� ��

≤
Xϱ

r¼0
‍

rþ δ� 1

δ� 1

0
B@

1
CA

δþ λ

δ

0
B@

1
CA

Lr,0

¼
Xϱ

r¼0
‍ rþ δ� 1ð Þ!

δ� 1ð Þ!r! �
δ!λ!

δþ λð Þ! since, Lr,0 ¼ 1

¼ λ!

δþ 1ð Þ… δþ λð Þ δ!
Xϱ

r¼0
‍ rþ δ� 1ð Þ!δ

r!

¼ λ!

δþ 1ð Þ… δþ ϱð Þ… δþ λð Þ 1þ δþ δ δþ 1ð Þ
2!

þ … þ ϱþ δ� 1ð Þ!
ϱ! δ� 1ð Þ!

� �

≤
λ!

δþ 1ð Þ… δþ ϱð Þ… δþ λð Þ ϱþ 1ð Þ δ δþ 1ð Þ… δþ ϱ� 1ð Þ
ϱ!

� �

¼ ϱ! ϱþ 1ð Þ… λ

δþ ϱð Þ… δþ λ� 1ð Þ �
δ

δþ λ
� ϱþ 1

ϱ!

≤
δ

δþ λ
� ϱþ 1ð Þ

≤
δ

δþ λ
� 1

ω
þ 1

� �

¼ O
1

ω λþ 1ð Þ 1þ ωð Þ
� �

for all δ≥ 1:
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Changing the order of summation and applying Abel’s transformation inΛ2, we have

Λ2 ¼
Xϱ

k¼0
‍
Xλ
r¼ϱþ1

‍

rþ δ� 1

δ� 1

 !

δþ λ

δ

 ! lr,r�kei r�kð Þω

�����������

�����������

¼ 1
δþ λ

δ

 !
�����
Xϱ

k¼0
‍
" Xλ�1

r¼ϱþ1
‍

rþ δ� 1

δ� 1

 !
lr,r�k �

rþ δ

δ� 1

 !
lrþ1,rþ1�k

 !Xr
ν¼0

‍ei ν�kð Þω
( )

þ
λþ δ� 1

δ� 1

 !
lλ,λ�k

Xλ
ν¼0

‍ei ν�kð Þω �
δþ ϱ

δ� 1

 !
lϱþ1,ϱþ1�k

#�����

¼ O ω�1
� � 1

ηþ λ

η

 !
Xϱ

k¼0
‍
"�����
Xλ�1
r¼ϱþ1

‍
rþ δ� 1

δ� 1

 !
lr,r�k �

rþ δ

δ� 1

 !
lrþ1,rþ1�k

 !�����

þ
λþ δ� 1

δ� 1

 !
lλ,λ�k

�����

�����þ
δþ ϱ

δ� 1

 !
lϱþ1,ϱþ1�k

�����

�����

#

¼ O ω�1
� � 1

δþ λ

δ

 !
Xϱ

k¼0
‍
"

δþ ϱ

δ� 1

 !
lϱþ1,ϱþ1�k þ

δþ λ� 1

δ� 1

 !
lλ,λ�k þ

δþ λ� 1

δ� 1

 !
lλ,λ�k

þ
δþ ϱ

δ� 1

 !
lϱþ1,ϱþ1�k

#

¼ O ω�1
� � 1

δþ λ

δ

 !
Xϱ

k¼0
‍

δþ ϱ

δ� 1

 !
lϱþ1,ϱþ1�k þ

δþ λ� 1

δ� 1

 !
lλ,λ�k

" #

¼ O ω�1
� � λ!

δþ 1ð Þ… δþ λð Þ
Xϱ

k¼0
‍½ δ δþ 1ð Þ… δþ ϱð Þ… δþ λð Þ
δþ ϱþ 1ð Þ… δþ λð Þ ϱþ 1ð Þ! lϱþ1,ϱþ1�k

þ δ δþ 1ð Þ… δþ λ� 1ð Þ δþ λð Þ
δþ λð Þ λ! lλ,λ�k�

¼ O ω�1
� � λ!

δþ 1ð Þ… δþ λð Þ �
δ δþ 1ð Þ… δþ λð Þ

λþ 1ð Þ!
Xϱ

k¼0
‍ lϱ,ϱ�k þ lλ,λ�k
� �

¼ O
1

ω λþ 1ð Þ Lϱ,0 þ Lλ,0
� �� �

¼ O
1

ω λþ 1ð Þ
� �

:
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Applying Abel’s transformation in Λ3, we have

Λ3 ¼
�����
Xλ
r¼ϱþ1

‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

" Xr�1

k¼ϱþ1
‍ lr,r�k � lr,r�kþ1ð Þ

Xk
ν¼0

‍ei r�νð Þω þ lr,0
Xr
ν¼0

‍eι r�νð Þω

�lr,r�τ�1
Xϱ

ν¼0
‍ei r�νð Þω

�����

#

¼ O ω�1
� � Xλ

r¼ϱþ1
‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

Xr�1

k¼ϱþ1
‍ lr,r�k � lr,r�kþ1ð Þ

�����

�����þ lr,0 þ lr,r�ϱ�1

" #

¼ O ω�1
� � Xλ

r¼ϱþ1
‍

rþ δ� 1

δ� 1

0
@

1
A

δþ λ

δ

0
@

1
A

�lr,r�ϱ þ lr,1jþlr,0 þ lr,r�ϱ�1j
� �

¼ O ω�1
� � 1

δþ λ

δ

0
@

1
A

Xλ
r¼ϱþ1

‍
rþ δ� 1

δ� 1

0
@

1
Alr,r�ϱ

¼
O ω�1
� � λ!

δþ 1ð Þ… δþ λð Þ

� δ δþ 1ð Þ… δþ λð Þ
λ! δþ λð Þ

δ… δþ ϱð Þ
ϱþ 1ð Þ! lϱþ1,1 þ … þ δ… δþ λ� 1ð Þ

λ!
lλ,λ�ϱ

� �

¼ O ω�1
� � λ!

δþ 1ð Þ… δþ λð Þ �
δ δþ 1ð Þ… δþ λð Þ

λ! δþ λð Þ lϱþ1,1 þ lϱþ2,2 þ … lλ,λ�ϱ
� �

¼ O ω�1
� � δ

δþ λ
lϱþ1,1 þ lϱþ1,2 þ … þ lϱþ1,λ�ϱ
� �

¼ O
1

ω λþ 1ð Þ
� �

Lϱþ1,1

¼ O
1

ω λþ 1ð Þ
� �

:
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Combining Λ1, Λ2 and Λ3 we have,

Λ1 þ Λ2 þ Λ3 ¼ O
1

ω λþ 1ð Þ � 1þ ωð Þ
� �

þ O
1

ω λþ 1ð Þ
� �

þ O
1

ω λþ 1ð Þ
� �

¼ O
1

λþ 1ð Þ 1þ 3
ω

� �� �

¼ O
1

λþ 1
� 3þ π

ω

� �

(20)

(Let 1+3
ω ≤ k

ω for ω fixed kmin ¼ 3þ π)
Now, from (19, 20) we get

~K
CδT
λ ωð Þ

���
��� ¼ O

1
λþ 1ð Þω2

� �

4. Main theorems

Theorem 4.1 The error approximation of ~ζ in W Lp, ξ ωð Þð Þ, p> 1ð Þ, by CδT means of
its CFS is given by

∥tC
δT

λ
~ζ; x
� �� ~ζ xð Þ∥p ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �
,

where 0≤ β< 1
p and condition (17) holds and positive increasing function ξ ωð Þ

satisfies the following conditions:

ξ ωð Þ
ωβþ1�σ is non‐decreasing; (21)

ð π
λþ1

0
‍ λ�σ ∣ψ x,ωð Þ∣ sin β ω

2

� �
ξ ωð Þ

 !p

dω

( )1
p

¼ O λþ 1ð Þσ�1
p

� �
, for β< σ <

1
p
; (22)

ξ ωð Þ
ω

is non‐decreasing; (23)

and
ðπ

π
λþ1

‍ ω�η∣ψ x,ωð Þ∣ sin β ω
2

� �
ξ ωð Þ

 !p

dω

( )1
p

¼ O λþ 1ð Þη�1
p

� �
, (24)

where 1
p < η< β þ 1

p for η being an arbitrary number and pþ q ¼ pq.
Conditions (22, 24) hold uniformly in x.
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Conditions (22, 24) can be verified by using the fact that ψ x,ωð Þ∈W Lp, ξ ωð Þ� �

and ψ x,ωð Þ
ξ ωð Þ is bounded function.

Proof. The λth partial sums of the CFS is denoted by sλ ~ζ; x
� �

, and is given by

sλ ~ζ; x
� �� ~ζ xð Þ ¼ 1

2π

ðπ
0
‍ψ x,ωð Þ cos λþ 1

2

� �
ω

sin ω
2

dω,

one can consult [13] for detailed work on FS and CFS.
Denoting CδT means of sλ ~ζ : x

� �� �
by tC

δT
λ

~ζ : x
� �

, we get

tC
δT

λ
~ζ; x
� �� ~ζ xð Þ ¼

Xλ
r¼0

‍

λ� rþ δ� 1

δ� 1

 !

δþ λ

δ

 !
Xr

k¼0
‍lr,k sk ~ζ; x

� �� ~ζ xð Þ� �

¼ 1
2π

ðπ
0
‍ψ x,ωð Þ

Xλ
r¼0

‍

rþ δ� 1

δ� 1

 !

δþ λ

δ

 !
Xr

k¼0
‍lr,r�k

cos r� kþ 1
2

� �
ω

sin
ω

2

� � dω

(25)

¼ Ð π0 ‍ψ x,ωð Þ~KCδT
λ ωð Þ dω By the notation 13ð Þ� �

¼ Ð π
λþ1
0 ‍ψ x,ωð Þ~KCδT

λ ξð Þ dωþ Ð ππ
λþ1
‍ψ x,ωð Þ~KCδT

λ ωð Þ dω

¼ I1 þ I2, say

(26)

Applying (14), Lemma 3.1, Hölder’s inequality and second mean value theorem for
integral, we have

I1 ¼ O 1ð Þ
ð π

λþ1

0
‍ ω�σ ∣ψ x,ωð Þ∣ sin β ω

2

� �
ξ ωð Þ

 !p

dω

( )1
p

�
ð π

λþ1

0
‍ ξ ωð Þ

ω�σþ1 sin β ω
2

� �
 !q

dω

( )1
q

¼ O λþ 1ð Þσ�1
p �

ð π
λþ1

0
‍ ξ ωð Þ
ωβþ1�σ

� �q

dω
� �1

q
" #

¼ O λþ 1ð Þσ�1
p λþ 1ð Þβþ1

p�σξ
π

λþ 1

� �� �

¼ O λþ 1ð Þβξ 1
λþ 1

� �� �

(27)

in view of condition (22) and p�1 þ q�1 ¼ 1 and Remark 1.
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Again using Lemma 3.2, Hölder’s inequality and (14), we have

I2 ¼ O
1

λþ 1

� �ðπ
π

λþ1

‍ ∣ψ x,ωð Þ∣
ω2 dω

¼ O
1

λþ 1

ðπ
π

λþ1

‍ ω� η∣ψ x,ωð Þ∣ sin β ω
2

� �
ξ ωð Þ

 !p

dω

( )1
p

�
ðπ

π
λþ1

‍ ω�1ξ ωð Þ
ω�ηþ1þβ

� �q

dω

( )1
q

¼ O λþ 1ð Þ�1þη�1
pξ

π

λþ 1

� �
λþ 1
π

� � ðπ
π

λþ1

‍ω� βþ1�ηð Þq dω

 !1
q

2
4

3
5

¼ O λþ 1ð Þη�1
pξ

π

λþ 1

� �
λþ 1ð Þβþ1�η�1

q

� �

¼ O λþ 1ð Þβξ 1
λþ 1

� �� �

(28)

in view of (23, 24) the second mean value theorem for integrals, 0< η< β þ 1
p, pþ

q ¼ pq and Remark 1.
Collecting (26)-(28), we get

tC
δT

λ
~ζ, x
� �� ~ζ xð Þ

���
��� ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �
:

Now, using Lp-norm of a function, we get

tC
δT

λ
~ζ, x
� �� ~ζ xð Þ

���
���
p
¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

Now, we establish the following theorem for the case p ¼ 1:
Theorem 4.2 The inaccuracy estimation of ~ζ∈W L1, ξ ωð Þ� �

, by CδT product operatior
of its CFS is given by

∥tC
δT

λ
~ζ; x
� �� ~ζ xð Þ∥1 ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �
,

where 0≤ β< 1, provided (17) holds and increasing function ξ ωð Þ>0 satisfies
conditions (21) to (24) of Theorem 4.1 for p ¼ 1, β< σ < 1 and 1< η< β þ 1.

Proof. Following the proof of Theorem 4.1, for p ¼ 1, i.e., q ¼ ∞, we have

I1 ¼ O
ð π

λþ1

0
‍

ω�σ ∣ψ x,ωð Þ∣ sin β ω

2

� �

ξ ωð Þ

0
@

1
A dω� ess sup

0<ω≤ π
λþ1

ξ ωð Þ
ω�σþ1 sin β ω

2

� �

�������

�������

8><
>:

9>=
>;

¼ O λþ 1ð Þσ�1
� �

ess sup
0<ω≤ π

λþ1

ξ ωð Þ
ωβ�σþ1

����
����
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¼ O λþ 1ð Þσ�1
� � ξ

π

λþ 1

� �

π
λþ1
� �β�σþ1

8>><
>>:

9>>=
>>;

¼ O λþ 1ð Þβξ 1
λþ 1

� �� �
(29)

in view of conditions (21, 22) for p ¼ 1,

I2 ¼ O
1

λþ 1

� �ðπ
π

λþ1

‍ ∣ψ x,ωð Þ∣
ω2 dω

¼ O
1

λþ 1

ðπ
π

λþ1

‍
ω�η∣ψ x,ωð Þ∣ sin β ω

2

� �

ξ ωð Þ dω

8<
:

9=
;� ess sup

π
λþ1≤ω≤ π

ξ ωð Þ
ω�ηþβþ2

����
����

¼ O λþ 1ð Þη�2ξ π

λþ 1

� �
λþ 1ð Þ2þβ�η
π2þβ�η

 !" #

¼ O λþ 1ð Þβξ π

λþ 1

� �� �

(30)

in view of (21, 22). Collecting (28) and (29), we get

∣tC
δT

λ
~ζ; x
� �� ~ζ xð Þ∣ ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �
(31)

finally from (31),

∥tC
δT

λ
~ζ; x
� �� ~ζ xð Þ∥1 ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

in view of Remark 1.

5. Corollaries

Corollary 5.1 The inaccuracy estimation of ~ζ∈Lip ξ ωð Þ, pð Þ class by CδT means of its
CFS is given by

tC
δT

λ
~ζ, x
� �� ~ζ xð Þ

���
���
p
¼ O ξ

1
λþ 1

� �� �

where, CδT is as defined in (8).
Proof. Considering β ¼ 0 in Theorem 4.1, we can obtain the proof.
Corollary 5.2 The inaccuracy estimation of ~ζ∈Lip α, pð Þ space by CδT product means

of its CFS is given by

tC
δT

λ
~ζ, x
� �� ~ζ xð Þ

���
���
p
¼ O λþ 1ð Þ�α½ �
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where, CδT is as defined in (8).
Proof. If we consider β ¼ 0& ξ ωð Þ ¼ ωα in Theorem 4.1, we can obtain the proof.
Corollary 5.3 The error estimate of ~ζ in Lipα 0< α< 1ð Þ class by CδT product means of

its CFS is given by

tC
δT

λ
~ζ, x
� �� ~ζ xð Þ

���
���
p
¼ O λþ 1ð Þ�α½ �

where, CδT is as defined in (8).
Proof. If we take β ¼ 0& ξ ωð Þ ¼ ωα & p! ∞ in Theorem4.1,we can obtain the proof.
For α ¼ 1, we can write an independent proof to obtain

tC
δT

λ
~ζ, x
� �� ~ζ xð Þ

���
���
∞
¼ O

log λþ 1ð Þ
λþ 1

� �

Corollary 5.4 The error estimate of ~ζ∈W Lp, ξ ωð Þð Þ class by CδH means

tC
δH

λ ¼
Xλ
r¼0

‍
λ� rþ δ� 1

δ� 1

� �

δþ λ

δ

� � log rþ 1ð Þð Þ�1
Xr

k¼0
‍ 1
r� kþ 1ð Þ sk,

of the CFS is given by

∥tC
δH

λ
~ζ; x
� �� ~ζ xð Þ∥p ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

provided CδT defined in (8) and ξ ωð Þ satisfies the conditions (21) to (24).
Corollary 5.5 The error estimate of ~ζ∈W Lp, ξ ωð Þð Þ class by CδNp means

tC
δNp

λ ¼
Xλ
r¼0

‍
λ� rþ δ� 1

δ� 1

� �

δþ λ

δ

� � 1
Pr

Xr

k¼0
‍pr�ksk,

of the CFS is given by

∥tC
δNp

λ
~ζ; x
� �� ~ζ xð Þ∥p ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

provided CδT defined in (8) and ξ ωð Þ satisfies the conditions (21) to (24).
Corollary 5.6 The error estimate of ~ζ∈W Lp, ξ ωð Þð Þ class by CδNpq means

tC
δNpq

λ ¼
Xλ
r¼0

‍
λ� rþ δ� 1

δ� 1

� �

δþ λ

δ

� � 1
Rr

Xr

k¼0
‍pr�kqksk,
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of the CFS is given by

∥tC
δNpq

λ
~ζ; x
� �� ~ζ xð Þ∥p ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

provided CδT defined in (8) and ξ ωð Þ satisfies the conditions (21) to (24).
Corollary 5.7 The error approximation of ~ζ∈W Lp, ξ ωð Þð Þ class by CδNp means

tC
δNp

λ ¼
Xλ
r¼0

‍
λ� rþ δ� 1

δ� 1

� �

δþ λ

δ

� � 1
Pr

Xr

k¼0
‍pksk,

of the CFS is given by

∥tC
δNp

λ
~ζ; x
� �� ~ζ xð Þ∥p ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

provided CδT defined in (8) and ξ ωð Þ satisfies the conditions (21) to (24).
Corollary 5.8 The error estimate of ~ζ∈W Lp, ξ ωð Þð Þ class by CδEq means

tC
δEq

λ ¼
Xδ
r¼0

‍
δ� rþ δ� 1

δ� 1

� �

δþ δ

δ

� � 1
1þ qð Þr

Xr

k¼0
‍ r

k

� �
qr�ksk,

of the CFS is given by

∥tC
δEq

λ
~ζ; x
� �� ~ζ xð Þ∥p ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

provided CδT defined in (8) and ξ ωð Þ satisfies the conditions (21) to (24).
Corollary 5.9 The error estimate of ζ∈W Lp, ξ ωð Þð Þ class by CδE1 means

tC
δE1

λ ¼
Xλ
r¼0

‍
λ� rþ δ� 1

δ� 1

� �

δþ λ

δ

� � 1
2r
Xr

k¼0
‍ r

k

� �
sk,

of the FS is given by

∥tC
δE1

λ
~ζ; x
� �� ~h xð Þ∥p ¼ O λþ 1ð Þβξ 1

λþ 1

� �� �

provided CδT defined in (8) and ξ ωð Þ satisfies the conditions (21) to (24).
Remark 6 The corollaries for 5.1 to 5.9 can also be obtained for the special cases

C1H,C1Np, C1Npq, C1 ~Np,C1Eq and C1E1 all things considered Remark 3.
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6. Particular cases

The following special cases of our theorems for δ ¼ 1 are.
6.1. If we take Remark 1 ivð Þ and β ¼ 0, ξ ωð Þ ¼ ωα, 0< α≤ 1 in our theorem, then

the Theorem 2 of [8] become a special case of our theorem.
6.2. If β ¼ 0, ξ ωð Þ ¼ ωα, 0< α≤ 1& p! ∞ in our theorem, then the Theorem 3.3

of [9] become a special case of our result.
6.3. If we consider Remark 2 ivð Þ then the main Theorem 2.2. of [5] become a

special case of our result.
6.4. The Theorem 2 of [10] become a special case of our result.
6.5. If we consider Remark 2 ivð Þ then the Theorem 3.1 of [11] become a special

case of our result.
6.6. If we consider Remark 2 iið Þ then the main Theorem 1 of [12] become a special

case of our result.

7. Exercise

Q. 7.1. Prove that the infinite series 1� 4038
P∞

j¼1‍ �4038ð Þ j�1 is neither summa-

ble by matrix means(T) nor Cesáro means of order one C1� �
but it summable by CδT

means for δ ¼ 1.
Q. 7.2. Prove that a function f is 2π-periodic and Lebesgue integrable then the error

approximation of f in Lipα class by CδT product means of its Fourier series is given by

En fð Þ ¼
O nþ 1ð Þ�α½ �, 0≤ α< 1

O nþ 1ð Þ�1 log nþ 1ð Þf g
h i

, α ¼ 1,

(

where CδT is as defined in (8) and provided (17) holds.
{Hint: see [19]}.
Q. 7.3. Consider the matrix T ¼ an,kð Þ as

an,k ¼
2� 3k

3nþ1 � 1
, 0≤ k≤ j

0, k> n

8<
: ,

check all conditions of T method as defined in (7) and also satisfies condition (17).
[Hint: see [19]].

Q. 7.4. If the conditions of (7) and (17) holds for aλ,kf g, then prove that

2πð Þ�1
Xλ
r¼0

‍
rþ δ� 1

δ� 1

� �

δþ λ

δ

� �
Xr

k¼0
‍lr,r�k

cos r� kþ 1
2

� �
ω

sin ω
2

���������

���������
¼

O λþ 1ð Þ,∀δ≥ 1, 0<ω≤
π

λþ 1

O
1

λþ 1ð Þω2

� �
, ∀δ≥ 1,

π

λþ 1
≤ω≤ π:

8>><
>>:
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Chapter 6

Quaternion MPCEP, CEPMP, and
MPCEPMP Generalized Inverses
Ivan I. Kyrchei

Abstract

A generalized inverse of a matrix is an inverse in some sense for a wider class of
matrices than invertible matrices. Generalized inverses exist for an arbitrary matrix
and coincide with a regular inverse for invertible matrices. The most famous general-
ized inverses are the Moore–Penrose inverse and the Drazin inverse. Recently, new
generalized inverses were introduced, namely the core inverse and its generalizations.
Among them, there are compositions of the Moore–Penrose and core inverses,
MPCEP (or MP–Core–EP) and EPCMP (or EP–Core–MP) inverses. In this chapter,
the notions of the MPCEP inverse and CEPMP inverse are expanded to quaternion
matrices and introduced new generalized inverses, the right and left MPCEPMP
inverses. Direct method of their calculations, that is, their determinantal representa-
tions are obtained within the framework of theory of quaternion row-column deter-
minants previously developed by the author. In consequence, these determinantal
representations are derived in the case of complex matrices.

Keywords: Moore–Penrose inverse, Drazin inverse, generalized inverse, core-EP
inverse, quaternion matrix, noncommutative determinant

1. Introduction

The field of complex (or real) numbers is designated by  (). The set of all m� n
matrices over the quaternion skew field

 ¼ h0 þ h1iþ h2jþ h3kji2 ¼ j2 ¼ k2 ¼ ijk ¼ �1, h0, h1, h2, h3 ∈
� �

,

is represented by m�n, while m�n
r is reserved for the subset of m�n with

matrices of rank r. If h ¼ h0 þ h1iþ h2jþ h3k∈, its conjugate is h ¼ h0 � h1i�
h2j� h3k, and its norm ∥h∥ ¼

ffiffiffiffiffi
hh

p
¼

ffiffiffiffiffi
hh

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 þ h21 þ h22 þ h23

q
. For A∈m�n, its

rank and conjugate transpose are given by rank Að Þ and A ∗ , respectively. A matrix
A∈n�n is said to be Hermitian if A ∗ ¼ A. Also,

• Cr Að Þ ¼ c∈m�1 : c ¼ Ad,d∈n�1� �
is the right column space of A;

• Rl Að Þ ¼ c∈1�n : c ¼ dA,d∈1�m� �
is the left row space of A;
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• N r Að Þ ¼ d∈n�1 : Ad ¼ 0
� �

is the right null space of A;

• N l Að Þ ¼ d∈1�m : dA ¼ 0
� �

is the left null space of A.

Let us recall the definitions of some well-known generalized inverses that can be
extend to quaternion matrices as follows.

Definition 1.1. The Moore–Penrose inverse of A∈n�m is the unique matrix A† ¼ X
determined by equations

1ð Þ AXA ¼ A; 2ð Þ XAX ¼ X; 3ð Þ AXð Þ ∗ ¼ AX; 4ð Þ XAð Þ ∗ ¼ XA: (1)

Definition 1.2. The Drazin inverse of A∈n�n is the unique Ad ¼ X that satisfying
Eq.(2) from (1) and the following equations,

5ð Þ Ak ¼ XAkþ1, 6ð Þ XA ¼ AX,

where k ¼ Ind Að Þ is the index of A, i.e. the smallest positive number such that

rank Akþ1
� �

¼ rank Ak
� �

. If Ind Að Þ≤ 1, then Ad ¼ A# is the group inverse of A. If

Ind Að Þ ¼ 0, then A# ¼ A† ¼ A�1.
A matrix A satisfying the conditions ið Þ, jð Þ, … is called an i, j, …f g-inverse of A,

and is denoted by A i,j,…ð Þ. In particular, A 1ð Þ is called the inner inverse, A 2ð Þ is called the
outer inverse, and A 1,2ð Þ is called the reflexive inverse, and A 1,2,3,4ð Þ is the Moore–Penrose
inverse, etc.

Note that the Moore–Penrose inverse inducts the orthogonal projectors PA ¼ AA†

and QA ¼ A†A onto the right column spaces of A and A ∗ , respectively.
In [1], the core-EP inverse over the quaternion skew field was presented similarly

as in [2].
Definition 1.3. The core-EP inverse of A∈n�n is the unique matrix A† ¼ X which

satisfies

X ¼ XAX, Cr Xð Þ ¼ Cr Ad
� �

¼ Cr X ∗ð Þ:

According to [3], (Theorem 2.3), for m≥ Ind Að Þ, we have that A◯† ¼ AdAm Amð Þ†:
In a special case that Ind Að Þ≤ 1, A◯† ¼ A◯# is the core inverse of A [4].

Definition 1.4. The dual core-EP inverse of A∈n�n is the unique matrix A◯† ¼ X for
which

X ¼ XAX, Rl Xð Þ ¼ Rl Ad
� �

¼ Rl X ∗ð Þ:

Recall that, A◯† ¼ Amð Þ†AmAd for m≥ Ind Að Þ.
Since the quaternion core-EP inverse A† is related to the right space Cr Að Þ of

A∈n�n and the quaternion dual core-EP inverse A† is related to its left space Rl Að Þ.
So, in [1], they are also named the right and left core-EP inverses, respectively.

Various representations of core-EP inverse can be found in [1, 5–7]. In [8], conti-
nuity of core-EP inverse was investigated. Bordering and iterative methods to find the
core-EP inverse were proved in [9, 10], and its determinantal representation for
complex matrices was derived in [2]. New determinantal representations of the
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complex core-EP inverse and its various generalizations were obtained in [11]. The
core-EP inverse was generalized to rectangular matrices [12], Hilbert space operators
[13], Banach algebra elements [14], tensors [15], and elements of rings [3]. Combining
the core-EP inverse or the dual core-EP inverse with the Moore–Penrose inverse, the
MPCEP inverse and CEPMP inverse were introduced in [16] for bounded linear
Hilbert space operators.

In the last years, interest in quaternion matrix equations is growing significantly
based on the increasing their applications in various fields, among them, robotic
manipulation [17], fluid mechanics [18, 19], quantum mechanics [20–22], signal
processing [23, 24], color image processing [25–27], and so on.

The main goals of this chapter are investigations of the MPCEP and CEPMP
inverses, introductions and representations of new right and left MPCEPMP inverses
over the quaternion skew field, and obtaining of their determinantal representations
as a direct method of their constructions. The chapter develops and continues the
topic raised in a number of other works [28–33], where determinantal representations
of various generalized inverses were obtained.

The remainder of our chapter is directed as follows. In Section 2, we introduce of
the quaternion MPCEP and CEPMP inverses and give characterizations of new gen-
eralized inverses, namely left and right MPCEPMP-inverses. In Section 3, we com-
mence with introducing determinantal representations of the projection matrices
inducted by the Moore–Penrose inverse and of core-EP inverse previously obtained
within the framework of theory of quaternion row-column determinants and, based
of them, determinantal representations of the MPCEP, CEPMP, and left and right
MPCEPMP inverses are derived. Finally, the conclusion is drawn in Section 4.

2. Characterizations of the quaternion MPCEP, CEPMP, and MPCEPMP
inverses

Analogously as in [16], the MPCEP inverse and CEPMP inverse can be defined for
quaternion matrices.

Definition 2.1. Let A∈n�n. The MPCEP (or MP-Core-EP) inverse of A is the unique
solution A†,◯† ¼ X to the system

X ¼ XAX, XA ¼ A†AA◯†A, AX ¼ AA◯†:

The CEPMP (or Core-EP-MP) inverse of A is the unique solution A◯† ,† ¼ X to the
system

X ¼ XAX, AX ¼ AA◯† AA†, XA ¼ A◯† A:

We can represent the MPCEP inverse and CEPMP inverse, by [16], as

A†,◯† ¼ A†AA◯†, (2)

A◯† ,† ¼ A◯† AA†: (3)

According to our concepts, we can define the left and right MPCPMP inverses.
Definition 2.2. Suppose A∈n�n. The right MPCEPMP inverse of A is defined as
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A†,◯† ,†,r ¼ A†AA◯† AA†:

The left MPCEPMP inverse of A is defined as

A†,◯† ,†,l ¼ A†AA◯† AA†:

The following gives the characteristic equations of these generalized inverses.
Theorem 2.3. Let A,X∈n�n. The following statements are equivalent:

i. X is the right MPCEPMP inverse of A.

ii.
X ¼ A†,◯† PA: (4)

iii. X is the unique solution to the three equations:

1:X ¼ XAX, 2:XA ¼ A†,◯† A, 3:AX ¼ AA◯† PA: (5)

Proof. ið Þ½ �↦ iið Þ½ �. By Eq. (2) and the denotation of PA, it is evident that

A†,◯† ,†,r ¼ A†AA◯† AA† ¼ A†,◯† PA:

ið Þ½ �↦ iiið Þ½ �. Now, we verify the condition (5). Let X ¼ A†,◯† ,†,r ¼ A†AA◯† AA†.
Then, from the Definition 1.1 and the representation (2), we have

XAX ¼ A†AA◯† A A†AA†
� �

AA◯† AA† ¼ A†AA◯† AA†A
� �

A◯† AA† ¼

¼ A†A A◯† AA◯†
� �

AA† ¼ A†AA◯† AA† ¼ X,

XA ¼ A†AA◯† AA†A
� � ¼ A†,◯† A,

AX ¼ AA†A
� �

A◯† AA† ¼ AA◯† PA:

To prove that the system (5) has unique solution, suppose that X and X1 are two
solutions of this system. Then XA ¼ A†,◯† A ¼ X1A and AX ¼ AA◯† PA ¼ AX1, which
give X AXð Þ ¼ XAð ÞX1 ¼ X1AX1 ¼ X1. Therefore, X is the unique solution to the
system. □

The next theorem can be proved in the same way.
Theorem 2.4. Let A,X∈n�n. The following statements are equivalent:

i. X is the left MPCEPMP inverse of A.

ii.
X ¼ QAA

◯† ,†: (6)

iii. X is the unique solution to the system:

1:X ¼ XAX, 2:AX ¼ AA◯† ,†, 3:XA ¼ A◯† A:
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3. Determinantal representations of the quaternion MPCEP and *CEPMP
inverses

It is well known that the determinantal representation of the regular inverse is
given by the cofactor matrix. The construction of determinantal representations of
generalized inverses is not so evident and unambiguous even for matrices with com-
plex or real entries. Taking into account the noncommutativity of quaternions, this
task is more complicated due to a problem of defining the determinant of a matrix
with noncommutative elements (see survey articles [34–36] for detail). Only now, the
solving this problem begins to be decided thanks to the theory of noncommutative
column-row determinants introduced in [37, 38].

For arbitrary quaternion matrix A∈n�n, there exists an exact technique to
generate n row determinants (ℜ-determinants) and n column determinants
(ℭ-determinants) by stating a certain order of factors in each term.

Definition 3.1. Let A ¼ aij
� �

∈n�n.

• For an arbitrary row index i∈ In, the ith ℜ-determinant of A is defined as

rdetiA≔
X
σ ∈ Sn

�1ð Þn�r aiik1aik1 ik1þ1 … aik1þl1 i
� �

… aikr ikrþ1 … aikrþlr ikr
� �

,

in which Sn denotes the symmetric group on In ¼ 1, … , nf g, while the permutation
σ is defined as a product of mutually disjunct subsets ordered from the left to right by
the rules

σ ¼ i ik1 ik1þ1 … ik1þl1ð Þ ik2 ik2þ1 … ik2þl2ð Þ… ikr ikrþ1 … ikrþlrð Þ,
ikt < iktþs, ik2 < ik3 <⋯< ikr , ∀ t ¼ 2, … , r, s ¼ 1, … , lt:

• For an arbitrary column index j∈ In, the jth ℭ-determinant of A is defined as the
sum

cdet jA ¼
X
τ∈ Sn

�1ð Þn�r a jkr jkrþlr
⋯a jkrþ1 jkr

� �
⋯ ajjk1þl1⋯a jk1þ1 jk1

a jk1 j

� �
,

in which a permutation τ is ordered from the right to left in the following way:

τ ¼ jkrþlr⋯ jkrþ1 jkr

� �
⋯ jk2þl2⋯ jk2þ1 jk2

� �
jk1þl1⋯ jk1þ1 jk1 j

� �
, jkt < jktþs, jk2 < jk3 <⋯< jkr :

It is known that all ℜ- and ℭ-determinants are different in general. However, in
[37], the following equalities are verified for a Hermitian matrix A that introduce a
determinant of a Hermitian matrix: rdet1A ¼ ⋯ ¼ rdetnA ¼ cdet1A ¼ ⋯ ¼
cdetnA≔detA∈:

D-Representations of various generalized inverses were developed by means of the
theory of ℜ- and ℭ-determinants (see e.g. [28–31]).

The following notations are used for determinantal representations of generalized
inverses.

Let α≔ α1, … , αkf g⊆ 1, … ,mf g and β≔ β1, … , βkf g⊆ 1, … , nf g be subsets with
1≤ k≤ min m, nf g. Suppose thatAα

β is a submatrix ofA∈m�n whose rows and
columns are indexed by α and β, respectively. Then,Aα

α is a principal submatrix ofA
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whose rows and columns are indexed by α. IfA is Hermitian, then Aj jαα stands for a
principal minor of detA. The collection of strictly increasing sequences of 1≤ k≤ n
integers chosen from 1, … , nf g is denoted by
Lk,n ≔ α : α ¼ α1, … , αkð Þ, 1≤ α1 <⋯< αk ≤ nf g: For fixed i∈ α and j∈ β, put
Ir,m if g≔ α : α∈Lr,m, i∈ αf g, Jr,n jf g≔ β : β∈Lr,n, j∈ βf g.

Let a:j and a ∗
:j be the jth columns, ai: and a ∗

i: be the ith rows of A and A ∗ ,
respectively. Suppose that Ai: bð Þ and A:j cð Þ stand for the matrices obtained from A by
replacing its ith row with the row vector b∈1�n and its jth column with the column
vector c∈m, respectively.

Based on determinantal representations of the Moore–Penrose inverse obtained in
[28], we have determinantal representations of the projections.

Lemma 3.2. [28] If A∈m�n
r , then the determinantal representations of the

projection matrices A†A≕QA ¼ qAij
� �

n�n
and AA†≕PA ¼ pAij

� �
m�m

can be expressed as

follows

qAij ¼
P

β∈ Jr,n if gcdeti A ∗Að Þ:i _a:j
� �� �β

βP
β∈ Jr,n

A ∗Aj jββ
¼
P

α∈ Ir,n jf grdet j A ∗Að Þ:j _a:ið Þ
� �α

αP
α∈ Ir,n A

∗Aj jαα
, (7)

pAij ¼
P

α∈ Ir,m jf grdet j AA ∗ð Þ j: €ai:ð Þ
� �α

αP
α∈ Ir,m AA ∗j jαα

¼
P

β∈ Jr,m if gcdeti AA ∗ð Þ:i €a:j
� �� �β

βP
β∈ Jr,m

AA ∗j jββ
, (8)

where _a:i and _a:j, €ai: and €a:j are the ith rows and the jth columns of A ∗A∈n�n and
AA ∗ ∈m�m, respectively.

Recently, D-representations of the quaternion core-EP inverses were obtained in
[1] as well.

Lemma 3.3. [1] Suppose that A∈n�n, Ind Að Þ ¼ k and rank Ak
� �

¼ s. Then A† ¼
a†,rij

� �
and A† ¼ a†,lij

� �
possess the determinantal representations, respectively,

a†,rij ¼
P

α∈ Is,n jf grdet j Akþ1 Akþ1
� � ∗� �

j:
âi:ð Þ

� �α

αP
α∈ Is,n Akþ1 Akþ1

� � ∗���
���
α

α

, (9)

a†,lij ¼
P

β∈ Js,n if gcdeti Akþ1
� � ∗

Akþ1
� �

:i
a^:j
� �� �β

β

P
β∈ Js,n

Akþ1
� � ∗

Akþ1
���

���
β

β

, (10)

where âi: is the ith row of Â ¼ Ak Akþ1
� � ∗

and a^:j is the jth column of A
^ ¼

Akþ1
� � ∗

Ak.

Theorem 3.4. Let A∈n�n
s , Ind Að Þ ¼ k and rank Ak

� �
¼ s1. Then its MPCEP

inverse A†,† ¼ a†,†ij

� �
is expressed by componentwise
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a†,†ij ¼
P

α∈ Is1,n jf grdet j Akþ1 Akþ1
� � ∗� �

j:
v 1ð Þ
i:

� �� �α

αP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

(11)

¼
P

β∈ Js,n if gcdeti A ∗Að Þ:i u 1ð Þ
:j

� �� �β
βP

β∈ Js,n
A ∗Aj jββ

P
α∈ Is1,n

Akþ1 Akþ1
� � ∗���

���
α

α

, (12)

where

v 1ð Þ
i: ¼

X
β∈ Js,n if gcdeti A ∗Að Þ:i ~a:lð Þ

� �β
β

� �
∈1�n, l ¼ 1, … , n, (13)

u 1ð Þ
:j ¼

X
α∈ Is1,n jf grdet j Akþ1 Akþ1

� � ∗� �
j:
~a f :
� �� �α

α

� �
∈n�1, f ¼ 1, … , n,

and ~a:l and ~a f : are the lth column and the fth row of ~A ¼ A ∗Akþ1 Akþ1
� � ∗

.

Proof. By (2), we have

a†,†ij ¼
Xn

l¼1
qila

†,r
lj : (14)

Using (7) and (9) for the determinantal representations of QA ¼ A†A ¼ qij
� �

and

A†, respectively, from (14) it follows

a†,†ij ¼
Xn

l¼1
Xn

f¼1

P
β∈ Js,n if gcdeti A ∗Að Þ:i _a:f

� �� �β
βP

β∈ Js,n
A ∗Aj jββ

�
P

α∈ Is1,n jf grdet j Akþ1 Akþ1
� � ∗� �

j:
âl:ð Þ

� �α

αP
α∈ Is1,n

Akþ1 Akþ1
� � ∗���

���
α

α

¼

¼
Xn

l¼1
Xn

f¼1

P
β∈ Js,n if gcdeti A ∗Að Þ:i e:f

� �� �β
βP

β∈ Js,n
A ∗Aj jββ

~afl

P
α∈ Is1,n jf grdet j Akþ1 Akþ1

� � ∗� �
j:
el:ð Þ

� �α

αP
α∈ Is1,n

Akþ1 Akþ1
� � ∗���

���
α

α

,

where e:f and el: are the fth column and the lth row of the unit matrix In, âl: is the

lth row of Â ¼ Ak Akþ1
� � ∗

, and ~afl is the (fl)th element of ~A ¼ A ∗Akþ1 Akþ1
� � ∗

.

If we denote by

v 1ð Þ
il ≔

Xn

f¼1

X
β∈ Js,n if g

cdeti A ∗Að Þ:i e:f
� �� �β

β
~afl ¼

X
β∈ Js,n if g

cdeti A ∗Að Þ:i ~a:lð Þ
� �β

β

the lth component of a row-vector v 1ð Þ
i: ¼ v 1ð Þ

i1 , … , v 1ð Þ
in

h i
, then

Xn

l¼1
v 1ð Þ
il

X
α∈ Is1,n jf g

rdet j Akþ1 Akþ1
� � ∗� �

j:
el:ð Þ

� �α

α

¼
X

α∈ Is1,n jf g
rdet j Akþ1 Akþ1

� � ∗� �
j:

v 1ð Þ
i:

� �� �α

α

:
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So, we have (11). By putting

u 1ð Þ
fj ≔

Xn

l¼1
~afl

X
α∈ Is1,n jf g

rdet j Akþ1 Akþ1
� � ∗� �

j:
el:ð Þ

� �α

α

¼
X

α∈ Is1,n jf g
rdet j Akþ1 Akþ1

� � ∗� �
j:
~a f :
� �� �α

α

as the fth component of a column-vector u 1ð Þ
:j ¼ u 1ð Þ

1j , … , u 1ð Þ
nj

h iT
, it follows

Xn

f¼1

X
β∈ Js,n if g

cdeti A ∗Að Þ:i e:f
� �� �β

β
u 1ð Þ
fj ¼

X
β∈ Js,n if g

cdeti A ∗Að Þ:i u 1ð Þ
:j

� �� �β
β
:

Hence, we obtain (12). □
Determinantal representations of a complex MPCEP inverse are obtained by

substituting row-column determinants for usual determinants in (11)–(12).

Corollary 3.5. Let A∈n�n
s , Ind Að Þ ¼ k and rank Ak

� �
¼ s1. Then its MPCEP

inverse A†,† ¼ a†,†ij

� �
has the following determinantal representations

a†,†ij ¼
P

α∈ Is1,n jf g Akþ1 Akþ1
� � ∗� �

j:
v 1ð Þ
i:

� �����
����
α

αP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

¼
P

β∈ Js,n if g A ∗Að Þ:i u 1ð Þ
:j

� ����
���
β

βP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

,

where

v 1ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i ~a:lð Þ
�� ��β

β

2
4

3
5∈1�n, l ¼ 1, … , n,

u 1ð Þ
:j ¼

X
α∈ Is1,n jf g

Akþ1 Akþ1
� � ∗� �

j:
~a f :
� �����

����
α

α

2
4

3
5∈n�1, f ¼ 1, … , n,

(15)

and ~a:l and ~a f : are the lth column and the fth row of ~A ¼ A ∗Akþ1 Akþ1
� � ∗

.

Theorem 3.6. Let A∈n�n
s , Ind Að Þ ¼ k and rank Ak

� �
¼ s1. Then its CEPMP

inverse A†,† ¼ a†,†ij

� �
has the following determinantal representations
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a†,†ij ¼
P

α∈ Is,n jf grdet j AA ∗ð Þ j: v 2ð Þ
i:

� �� �α
α

P
α∈ Is,n AA ∗j jαα

P
β∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

(16)

¼
P

β∈ Js1,n if gcdeti Akþ1
� � ∗

Akþ1
� �

:i
u 2ð Þ
:j

� �� �β
β

P
α∈ Is,n AA ∗j jαα

P
β∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

, (17)

where

v 2ð Þ
i: ¼

X
β∈ Js1,n if g

cdeti Akþ1
� � ∗

Akþ1
� �

:i
â:lð Þ

� �β
β

2
4

3
5∈1�n, l ¼ 1, … , n,

u 2ð Þ
:j ¼

" X
α∈ Is,n jf g

rdet j AA ∗ð Þ j:

�
â f :
�� �α

α

#
∈n�1, f ¼ 1, … , n:

(18)

Here â:l and â f : are the lth column and the fth row of Â ¼ Akþ1
� � ∗

Akþ1A ∗ .

Proof. The proof is similar to the proof of Theorem 3.4 by using the representation
(3) for the CEPMP inverse.

Corollary 3.7. Let A∈n�n
s , Ind Að Þ ¼ k and rank Ak

� �
¼ s1. Then its CEPMP

inverse A†,† ¼ a†,†ij

� �
has the following determinantal representations

a†,†ij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: v 2ð Þ
i:

� ����
���
α

α

P
α∈ Is,n AA ∗j jαα

P
β∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

¼
P

β∈ Js1,n if gcdeti Akþ1
� � ∗

Akþ1
� �

:i
u 2ð Þ
:j

� �� �β
β

P
α∈ Is,n AA ∗j jαα

P
β∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

,

where

v 2ð Þ
i: ¼

X
β∈ Js1,n if g

Akþ1
� � ∗

Akþ1
� �

:i
â:lð Þ

���
���
β

β

2
4

3
5∈1�n, l ¼ 1, … , n,

u 2ð Þ
:j ¼

X
α∈ Is,n jf g

AA ∗ð Þ j: â f :
� ����

���
α

α

2
4

3
5∈n�1, f ¼ 1, … , n:

(19)

Here â:l and â f : are the lth column and the fth row of Â ¼ Akþ1
� � ∗

Akþ1A ∗ .

Theorem 3.8. Let A∈n�n
s , Ind Að Þ ¼ k and rank Ak

� �
¼ s1. Then its right

MPCEPMP inverse A†,†,†,r ¼ a†,†,†,rij

� �
has the following determinantal representations
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a†,†,†,rij ¼
P

α∈ Is,n jf grdet j AA ∗ð Þ j: ϕ 1ð Þ
i:

� �� �α
α

P
α∈ Is,n AA ∗j jαα

� �2P
β∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

¼ (20)

¼
P

β∈ Js1,n if gcdeti Akþ1
� � ∗

Akþ1
� �

:i
ψ 1ð Þ
:j

� �� �β
β

P
β∈ Is,n AA ∗j jββ

� �2P
α∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
α

α

, (21)

where

ϕ 1ð Þ
i: ¼

X
β∈ Js1,n if g

cdeti Akþ1
� � ∗

Akþ1
� �

:i
û:lð Þ

� �β
β

2
4

3
5∈1�n, l ¼ 1, … , n,

ψ 1ð Þ
:j ¼

X
α∈ Is,n jf g

rdet j AA ∗ð Þ j: û f :
� �� �α

α

2
4

3
5∈n�1, f ¼ 1, … , n:

Here û:l and û f : are the lth column and the fth row of Û ¼ U2AA ∗ , and the matrix U2

is constructed from the columns (18).
Proof. Owing to (4), we have

a†,†,†,rij ¼
Xn
t¼1

a†,†it ptj: (22)

Applying (8) for the determinantal representation of PA ¼ AA† ¼ pij
� �

and (17)

for the determinantal representation of A†,† in (22), we obtain

a†,†,†,rij ¼
Xn

t¼1

P
β∈ Js1,n if gcdeti Akþ1

� � ∗
Akþ1

� �
:i

u 2ð Þ
:t

� �� �β
β

P
α∈ Is,n AA ∗j jαα

P
β∈ Is1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

�
P

α∈ Is,n jf grdet j AA ∗ð Þ j: €at:ð Þ
� �α

αP
α∈ Is,n AA ∗j jαα

¼

¼
Xn

l¼1
Xn

f¼1

P
β∈ Js1,n if gcdeti Akþ1

� � ∗
Akþ1

� �
:i
e:f
� �� �β

β

P
β∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

ûfl �
P

α∈ Is,n jf grdet j AA ∗ð Þ j: el:ð Þ
� �α

αP
α∈ Is,n AA ∗j jαα

� �2 ,

where e:f and el: are the fth column and the lth row of the unit matrix In, and ûfl is

the (fl)th element of Û ¼ U2AA ∗ . The matrix U2 ¼ u 2ð Þ
:1 , … ,u 2ð Þ

:n

h i
is constructed from

the columns (18). If we denote by

ϕ 1ð Þ
il ≔

Xn

f¼1

X
β∈ Js1,n if g

cdeti Akþ1
� � ∗

Akþ1
� �

:i
e:f
� �� �β

β
ûfl

¼
X

β∈ Js1,n if g
cdeti Akþ1

� � ∗
Akþ1

� �
:i
û:lð Þ

� �β
β
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the lth component of a row-vector ϕ 1ð Þ
i: ¼ ϕ 1ð Þ

i1 , … ,ϕ 1ð Þ
in

h i
, then

Xn

l¼1
ϕ 1ð Þ
il

X
α∈ Is,n jf g

rdet j AA ∗ð Þ j: el:ð Þ
� �α

α
¼

X
α∈ Is,n jf g

rdet j AA ∗ð Þ j: ϕ 1ð Þ
i:

� �� �α
α
:

Therefore, (20) holds.
By putting

ψ 1ð Þ
fj ≔

Xn

l¼1
âfl

X
α∈ Is,n jf g

rdet j AA ∗ð Þ j: el:ð Þ
� �α

α
¼

X
α∈ Is,n jf g

rdet j AA ∗ð Þ j: û f :
� �α

α

�

as the fth component of a column-vector ψ 1ð Þ
:j ¼ ψ 1ð Þ

1j , … ,ψ 1ð Þ
nj

h iT
, it follows

Xn

f¼1

X
β∈ Js1,n if g

cdeti Akþ1
� � ∗

Akþ1
� �

:i
e:f
� �� �β

β
ψ 1ð Þ
fj ¼

X
β∈ Js1,n if g

cdeti Akþ1
� � ∗

Akþ1
� �

:i
ψ 1ð Þ
:j

� �� �β
β
:

Thus, Eq. (21) holds.

Corollary 3.9. Let A∈n�n
s , Ind Að Þ ¼ k and rank Ak

� �
¼ s1. Then its right

MPCEPMP inverse A†,†,†,r ¼ a†,†,†,rij

� �
has the following determinantal representations

a†,†ij ¼
P

α∈ Is,n jf g AA ∗ð Þ j: ϕ 1ð Þ
i:

� ����
���
α

α

P
α∈ Is,n AA ∗j jαα

� �2P
β∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
β

β

¼
P

β∈ Js1,n if g Akþ1
� � ∗

Akþ1
� �

:i
ψ 1ð Þ
:j

� ����
���
β

β

P
β∈ Is,n AA ∗j jββ

� �2P
α∈ Js1,n

Akþ1
� � ∗

Akþ1
���

���
α

α

,

where

ϕ 1ð Þ
i: ¼

X
β∈ Js1,n if g

Akþ1
� � ∗

Akþ1
� �

:i
û:lð Þ

���
���
β

β

2
4

3
5∈1�n, l ¼ 1, … , n,

ψ 1ð Þ
:j ¼

X
α∈ Is,n jf g

AA ∗ð Þ j: û f :
� ����

���
α

α

2
4

3
5∈n�1, f ¼ 1, … , n:

Here û:l and û f : are the lth column and the fth row of Û ¼ U2AA ∗ , and the matrix U2

is constructed from the columns (19).

Theorem 3.10. Let A∈n�n
s , Ind Að Þ ¼ k and rank Ak

� �
¼ s1. Then its left

MPCEPMP inverse A†,†,†,l ¼ a†,†,†,lij

� �
has the following determinantal representations
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a†,†,†,lij ¼
P

α∈ Is1,n jf grdet j Akþ1 Akþ1
� � ∗� �

j:
ϕ 2ð Þ
i:

� �� �α

αP
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

¼ (23)

¼
P

β∈ Js,n if gcdeti A ∗Að Þ:i ψ 2ð Þ
:j

� �� �β
β

P
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

, (24)

where

ϕ 2ð Þ
i: ¼

X
β∈ Js,n if g

cdeti A ∗Að Þ:i ~v:tð Þ
� �β

β

2
4

3
5∈1�n, t ¼ 1, … , n,

ψ 2ð Þ
:j ¼

X
α∈ Is1,n jf g

rdet j Akþ1 Akþ1
� � ∗� �

j:
~v f :
� �� �α

α

2
4

3
5∈n�1, f ¼ 1, … , n,

and ~v:l and ~v f : are the lth column and the fth row of ~V ¼ A ∗AV1, where the matrix
V1 is determined from the rows (13).

Proof. Due to (6),

a†,†,†,lij ¼
Xn
t¼1

qita
†,†
tj : (25)

Using (7) for the determinantal representation of QA ¼ A†A ¼ qij
� �

and (9) for

the determinantal representation of A†,† in (14), we obtain

a†,†,†,lij ¼
Xn

t¼1

P
β∈ Js,n if gcdeti A ∗Að Þ:i _a:tð Þ

� �β
βP

β∈ Js,n
A ∗Aj jββ

�
P

α∈ Is1,n jf grdet j Akþ1 Akþ1
� � ∗� �

j:
v 1ð Þ
t:

� �� �α

αP
β∈ Js,n

A ∗Aj jββ
P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

¼
Xn

t¼1
Xn

f¼1

P
β∈ Js,n if gcdeti A ∗Að Þ:i e:f

� �� �β
β

P
β∈ Js,n

A ∗Aj jββ
� �2 ~vft

�
P

α∈ Is1,n jf grdet j Akþ1 Akþ1
� � ∗� �

j:
et:ð Þ

� �α

αP
α∈ Is1,n

Akþ1 Akþ1
� � ∗���

���
α

α

,

where ~vft is the (ft)th element of ~V ¼ A ∗AV1 and the matrix V1 is constructed
from the rows (13). If we put

ϕ 2ð Þ
it ≔

Xn

f¼1

X
β∈ Js,n if g

cdeti A ∗Að Þ:i e:f
� �� �β

β
~vft

¼
X

β∈ Js,n if g
cdeti A ∗Að Þ:i ~v:tð Þ

� �β
β
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as the lth component of a row-vector ϕ 2ð Þ
i: ¼ ϕ 2ð Þ

i1 , … ,ϕ 2ð Þ
in

h i
, then

Xn
t¼1

ϕ 2ð Þ
it

X
α∈ Is1,n jf g

rdet j Akþ1 Akþ1
� � ∗� �

j:
et:ð Þ

� �α

α

¼
X

α∈ Is1,n jf g
rdet j Akþ1 Akþ1

� � ∗� �
j:

ϕ 2ð Þ
i:

� �� �α

α

,

then Eq. (23) holds. If we denote by

ψ 2ð Þ
fj ≔

Xn
t¼1

~uft
X

α∈ Is1,n jf g
rdet j Akþ1 Akþ1

� � ∗� �
j:
et:ð Þ

� �α

α

¼

¼
X

α∈ Is1,n jf g
rdet j Akþ1 Akþ1

� � ∗� �
j:
~u f :
� �α

α

�

the fth component of a column-vector ψ 2ð Þ
:j ¼ ψ 2ð Þ

1j , … ,ψ 2ð Þ
nj

h iT
, then

Xn

f¼1

X
β∈ Js,n if g

cdeti A ∗Að Þ:i e:f
� �� �β

β
ψ 2ð Þ
fj ¼

X
β∈ Js,n if g

cdeti A ∗Að Þ:i ψ 2ð Þ
:j

� �� �β
β
:

Hence, we obtain (24). □
Corollary 3.11. Let A∈n�n

s , Ind Að Þ ¼ k and rank Ak
� �

¼ s1. Then its left

MPCEPMP inverse A†,†,†,l ¼ a†,†,†,lij

� �
has the following determinantal representations

a†,†,†,lij ¼
P

α∈ Is1,n jf g Akþ1 Akþ1
� � ∗� �

j:
ϕ 2ð Þ
i:

� �����
����
α

αP
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

¼

¼
P

β∈ Js,n if g A ∗Að Þ:i ψ 2ð Þ
:j

� ����
���
β

β

P
β∈ Js,n

A ∗Aj jββ
� �2P

α∈ Is1,n
Akþ1 Akþ1

� � ∗���
���
α

α

,

where

ϕ 2ð Þ
i: ¼

X
β∈ Js,n if g

A ∗Að Þ:i ~v:tð Þ
�� ��β

β

2
4

3
5∈1�n, t ¼ 1, … , n,

ψ 2ð Þ
:j ¼

X
α∈ Is1,n jf g

Akþ1 Akþ1
� � ∗� �

j:
~v f :
� �����

����
α

α

2
4

3
5∈n�1, f ¼ 1, … , n,

and ~v:t and ~v f : are the tth column and the fth row of ~V ¼ A ∗AV1, where the matrix
V1 is determined by (13).
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4. Conclusions

In this chapter, notions of the MPCEP and CEPMP inverses are extended to
quaternion matrices, and the new right and left MPCEPMP inverses are introduced
and their characterizations are explored. Their determinantal representations are
obtained within the framework of the theory of noncommutative column-row deter-
minants previously introduced by the author. Also, determinantal representations of
these generalized inverses for complex matrices are derived by using regular deter-
minants. The obtained determinantal representations give new direct methods of
calculations of these generalized inverses.
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Chapter 7

The COVID-19 DNA-RNA Genetic
Code Analysis Using Double
Stochastic and Block Circulant
Jacket Matrix
Sung Kook Lee and Moon Ho Lee

Abstract

We present a COVID-19 DNA-RNA genetic code where A ¼ T ¼ U ¼ 31% and
C ¼ G ¼ 19%, which has been developed from a base matrix C U;A G½ � where C, U,
A, and G are RNA bases while C, U, A, and T are DNA bases that E. Chargaff found
them complementary like A ¼ T ¼ U ¼ 30%, and C ¼ G ¼ 20% from his experimen-
tal results, which implied the structure of DNA double helix and its complementary
combination. Unfortunately, they have not been solved mathematically yet. There-
fore, in this paper, we present a simple solution by the information theory of a doubly
stochastic matrix over the Shannon symmetric channel as well as prove it mathemat-
ically. Furthermore, we show that DNA-RNA genetic code is one kind of block
circulant Jacket matrix. Moreover, general patterns by block circulant, upper-lower,
and left-right scheme are presented, which are applied to the correct communication
as well as means the healthy condition because it perfectly consists of 4 bases.
Henceforth, we also provide abnormal patterns by block circulant, upper-lower, and
left-right scheme, which cover the distorted signal as well as COVID-19.

Keywords: COVID-19 DNA-RNA, E. Chargaff, DNA-RNA genetic code, double
stochastic matrix, symmetric channel, block circulant jacket matrix, general pattern,
abnormal pattern

1. Introduction

In 1950, Chargaff's two rules [1] were presented. One is that the percentage of
adenine is identical to that of thymine as well as the percentage of guanine is identical
to that of cytosine, which gives a hint of the composition of the base pair for the
double-strand DNA molecule. The other is that base complementarity is effective for
each DNA strand, which gives an explanation for the overall characteristics of funda-
mental bases. To make an example of COVID-19 DNA, its four bases are satisfied with
these two rules analogous to A ¼ T ¼ 31% and C ¼ G ¼ 19%. In 1953, it was discov-
ered that DNA has a double helix structure [2, 3], which results in an optimal and
economical genetic code [4].
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A RNA base matrix C U;A G½ � was based on stochastic matrices [5], which results
in the genetic code [6, 7]. A symmetric capacity is calculated by applying the Markov
process to these doubly stochastic matrices, which suggested the symmetry between
Shannon [8] and RNA stochastic transition matrix C U;A G½ �, which is defined as

below. A square matrix of P ¼ pij
� �

is stochastic, whose entries are positive as well as

its sum in rows and columns is equal to one or constant. In other words, if the sum of
all its elements in rows and columns is equal to one or invariable, it is double stochas-
tic, which is able to describe the time-invariant binary symmetric channel. For the
input xn and the output xnþ1, two states e0 and e1 are able to depict Markov processes
on an individual basis, which are indicated by two binary symbols “0” and “1”,
accordingly. The output signal is affected by the input signal whose information is fed
into given a certain error probability. Assume that these channel probabilities α and β
are less than a half, whose error probabilities have been kept steady over a time-
variant channel for a wide variety of transmitted symbols such as

P xnþ1 ¼ 1jxn ¼ 0f g ¼ p01 ¼ α,P xnþ1 ¼ 0jxn ¼ 1f g ¼ p10 ¼ β: (1)

In addition, its Markov chain is homogeneous. P represents a 2 � 2 homogeneous
probability transition matrix defined as

P ¼ p00 p01
p10 p11

� �
¼ 1� α α

β 1� β

� �
¼ 1� p p

p 1� p

� �

p¼0:5
¼ 1

2
1 1

1 1

� �
, (2)

whose two error probabilities are identical similarly to α ¼ β ¼ p over a binary
symmetric channel. This paper proceeds as below. First of all, we derive the RNA
stochastic entropy by applying it to the Shannon entropy in Section 2. Next, we make
an estimate of the variance of RNA in Section 3. Then, the binary symmetric channel
entropy is derived in Section 4. Henceforth, two user capacity is made an estimate of
over symmetric interference channel in Section 5. Afterward, the construction scheme

Organism Taxon %A %G %C %T A / T G / C %GC %AT

Maize Zea 26.8 22.8 23.2 27.2 0.99 0.98 46.1 54.0

Octopus Octopus 33.2 17.6 17.6 31.6 1.05 1.00 35.2 64.8

Chicken Gallus 28.0 22.0 21.6 28.4 0.99 1.02 43.7 56.4

Rat Rattus 28.6 21.4 20.5 28.4 1.01 1.00 42.9 57.0

Human Homo 29.3 20.7 20.0 30.0 0.98 1.04 40.7 59.3

Grasshopper Orthoptera 29.3 20.5 20.7 29.3 1.00 0.99 41.2 58.6

Sea urchin Echinoidea 32.8 17.7 17.3 32.1 1.02 1.02 35.0 64.9

Wheat Triticum 27.3 22.7 22.8 27.1 1.01 1.00 45.5 54.4

Yeast Saccharomyces 31.3 18.7 17.1 32.9 0.95 1.09 35.8 64.4

E. coli Escherichia 24.7 26.0 25.7 23.6 1.05 1.01 51.7 48.3

φX174 PhiX174 24.0 23.3 21.5 31.2 0.77 1.08 44.8 55.2

Covid-19 SARS-CoV-2 29.9 19.6 18.4 32.1 0.93 1.07 38.0 62.0

Table 1.
Ratio of bases [1, 9–11].
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is proposed, which is enabled to create RNA genetic codes in Section 6. Later, a
symmetric genetic Jacket block matrix is examined in Section 7. Hereupon, general
patterns of block circulant symmetric genetic Jacket matrices are looked into in
Section 8. In the end, this paper comes to a conclusion in Section 9.

Table 1 makes the description of the ratio of bases for several organisms [1, 9–11],
which shows that the ratios are constant among the species.

2. Analytical approach to RNA stochastic entropy

In [1, 5, 12, 13], stochastic complementary RNA bases are given for the genetic
code. On the assumption that C ¼ G ¼ 19%, A ¼ T ¼ U ¼ 31%, P denotes the
transition channel matrix expressed by

P ¼
C U

A G

" #
¼

0:19 0:31

0:31 0:19

" #
: (3)

On the condition that the RNA base matrix C U;A G½ � for the Markov process
described by two independent probabilities of its corresponding source varies from
0:19p to 0:31p, the transition channel matrix P is defined by

P ¼
0:19p 1� 0:19p

1� 0:19p 0:19p

" #
¼

0:5 1� 0:5

1� 0:5 0:5

" #
¼

0:5 0:5

0:5 0:5

" #
: (4)

By comparison with Eq. (12), we have.

0:19p ¼ 1� 0:19p (5)

where p is 2.631.
Applying in a similar fashion to the rest of (4),

P ¼
0:31p 1� 0:31p

1� 0:31p 0:31p

" #
¼ 0:500 1� 0:500

1� 0:500 0:500

� �
¼ 0:5 0:5

0:5 0:5

� �
, (6)

where 0.31p = 1-0.31p, where p is 1.613.
In order to make a double stochastic matrix by adding (6) to (4),

2P ¼ 0:5 0:5

0:5 0:5

� �
þ 0:5 0:5

0:5 0:5

� �
¼ 1 1

1 1

� �
: (7)

Applying in a similar way to (3),

2P ¼ 2
C U
A G

� �
¼ 2

0:19 0:31

0:31 0:19

� �
¼ 0:38 0:62

0:62 0:38

� �
: (8)

If P is a random variable for source probability p corresponding to the first symbol
event, we reach the entropy function [8] represented by
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H2 Pð Þ ¼ p log 2
1
p

� �
þ 1� pð Þ log 2

1
1� p

� �
: (9)

The last column of Table 2 shows the result of Eq. (9). Figure 1 portrays the curve
of Shannon and RNA Entropy. Make a mental note to make sure that a vertical tangent
can be drawn when p = 0 and p = 1 on account of the fact that

d
dp

p log 2
1
p

� �
þ 1� pð Þ log 2

1
1� p

� �� �
¼ log 2

1
p

� �
� 1� log 2

1
1� p

� �
þ 1

� �
log 2e

¼ log 2
1
p

� �
� log 2

1
1� p

� �
¼ 0,

(10)

P -log2p - plog2p H2(p)

0.3800 1.3959 0.5305 0.9580

0.3900 1.3585 0.5298 0.9648

0.4000 1.3219 0.5288 0.9710

0.4100 1.2863 0.5274 0.9765

0.4200 1.2515 0.5256 0.9815

0.4300 1.2176 0.5236 0.9858

0.4400 1.1844 0.5211 0.9896

0.4500 1.1520 0.5184 0.9928

0.4600 1.1203 0.5153 0.9954

0.4700 1.0893 0.5120 0.9974

0.4800 1.0589 0.5083 0.9988

0.4900 1.0291 0.5043 0.9997

0.5000 1.0000 0.5000 1.0000

0.5100 0.9714 0.4954 0.9997

0.5200 0.9434 0.4906 0.9988

0.5300 0.9159 0.4854 0.9974

0.5400 0.8890 0.4800 0.9954

0.5500 0.8625 0.4744 0.9928

0.5600 0.8365 0.4684 0.9896

0.5700 0.8110 0.4623 0.9858

0.5800 0.7859 0.4558 0.9815

0.5900 0.7612 0.4491 0.9765

0.6000 0.7370 0.4422 0.9710

0.6100 0.7131 0.4350 0.9648

0.6200 0.6897 0.4276 0.9580

Table 2.
Shannon entropy for probability p.
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which is maximized when p reaches a half because its derivative becomes 0.
Therefore,

log 2
1
p

� �
� log 2

1
1� p

� �
¼ 0) 1

p

� �
� 1

1� p

� �
¼ 0: (11)

Then, we reach

p ¼ 1� p) p ¼ 1
2
: (12)

For the RNA base matrix C U;A G½ �, its symmetric entropy is calculated as

H2 Pð ÞRNA ¼ p log 2
1
p

� �
þ 1� pð Þ log 2

1
1� p

� �
¼ 0:9790, (13)

when p is either 0.38 or 0.62. By the way, the Shannon entropy is calculated as

H2 Pð ÞShannon ¼ p log 2
1
p

� �
þ 1� pð Þ log 2

1
1� p

� �
¼ 1, (14)

when p reaches a half.
Table 2 shows Shannon Entropy for probability p over a binary symmetric

channel.
Figure 1 gives a comparison between Shannon and RNA Entropy for probability p

under the RNA base matrix C U;A G½ �.

Figure 1.
Comparison between Shannon and RNA entropy for probability p.
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3. Derivation of variance for the RNA base matrix C U;A G½ �

The variance for RNA random variable X is denoted by V Xð Þ is the square of the
mean, which is expressed by

E Xf g ¼ a ¼ 0:5: (15)

Therefore, for a random variable X, the variance is obtained such as

V Xð Þ ¼ E X � að Þ2
n o

¼ E X2� �� 2aE Xf g þ E a2
� �

¼ E X2� �� 2a2 þ a2 ¼ E X2� �� a2 ¼ σ2:
(16)

Case I. Upper source probability 0.62

σ2upper ¼ 0:62ð Þ2 � 0:5ð Þ2 ¼ 0:13: (17)

Case II. Lower source probability 0.38

σ2lower ¼ 0:5ð Þ2 � 0:38ð Þ2 ¼ 0:10: (18)

If X1 and X2 are the independent random variables, on an individual basis, its
expectation and variance are

E X1f g ¼ a1, V X1f g ¼ σ21: (19)

E X2f g ¼ a2, V X2f g ¼ σ22: (20)

Therefore, we reach

E X1 � a1ð Þ X2 � a2ð Þf g ¼ E X1 � a1ð Þf gE X2 � a2ð Þf g ¼ 0: (21)

Assuming that X1 and X2 are independent random variables, the sum of its
variances is calculated as

V X1 þ X2f g ¼ E X1 þ X2 � a1 � a2ð Þ2
n o

¼ E X1 � a1ð Þ2
n o

þ 2E X1 � a1ð Þ X2 � a2ð Þf g þ E X2 � a2ð Þ2
n o

¼ V X1f g þ V X2f g ¼ σ21 þ σ22 ¼ 0:13þ 0:10 ¼ 0:23,

(22)

which is approximately 23% corresponding to the difference betweenA =U andC =G.
It means that RNA entropy cannot reach the Shannon entropy because the probabilities of
its bases are 23% away from a half that is exactly identical to the sum of its variances.

4. RNA complement base matrix C U;A G½ � for symmetric noise
immune-free channel

If over a noise immune-free binary symmetric channel the bases of RNA genetic
code C U;A G½ � are complementary such as C ¼ U and A ¼ G, the conditional
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probability P b jjai
� � ¼ Pi,j makes description of this channel, whose maximum amount

of information can be transmitted as depicted in Figure 2. On the assumption that C
and G are one’s complement of its corresponding error probability as well as A and U
are interference signals, the matrix [8] for this channel is made description of by

p Xð Þ½ �1�2 P½ �2�2 ¼ α 1� α½ � C U
A G

� �
¼ p Yð Þ½ �1�2 ¼ p Y1ð Þ p Y2ð Þ½ �: (23)

Under the condition that p and 1-p are the selection probability α ¼ 0ð Þ and α ¼ 1ð Þ
over the uniform channel on an individual basis, the mutual information is defined by

I X;Yð Þ ¼ H Yð Þ �H YjXð Þ: (24)

From Eq. (23), we are confronted with

α 1� α½ � �C log 2C �U log 2U
�A log 2A �G log 2G

� �
¼ α 1� α½ � �U log 2U �C log 2C

G log 2G �A log 2A

� �
, (25)

where

H YjXð Þ ¼ �αC log 2C� αA log 2A� 1� αð ÞU log 2U � 1� αð ÞG log 2G
¼ �U log 2U � G log 2G ¼ �C log 2C� A log 2A ¼ 0:9790,

(26)

where A = U = 0.31 and C = G = 0.19.
Therefore, its capacity is derived as

CRNA ¼ max I X;Yð Þjp¼0:38 or 0:62 ¼ H Yð Þ �H YjXð Þ ¼ 1� 0:9790 ¼ 0:021, (27)

i.e. H Yð Þ ¼ �p log 2p� 1� pð Þ log 2 1� pð Þ ¼ �0:38 log 20:38� 0:62 log 20:62 ¼ 1.
while Shannon capacity is derived as

CShannon ¼ max I X;Yð Þjp¼0:5 ¼ H Yð Þ �H YjXð Þ ¼ 1� 1 ¼ 0: (28)

In Figure 3, we compare Shannon and RNA capacity for probability p. As fore-
mentioned in Section 3, if only if under the ideal circumstance, Shannon capacity can

Figure 2.
Complementary bases of RNA genetic code C U;A G½ � over noise immune-free binary symmetric channel.
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be reached. In other words, the difference between Shannon and RNA capacity exists,
which is identical to the sum of variances of RNA base random variables because they
are unable to become a half over a symmetric channel.

5. Two user capacity over symmetric interference channel

Figure 4 makes the description of the environment of the binary symmetric
channel with the RNA base matrix C U;A G½ � as well as that of the symmetric inter-
ference channel for two users where two independent messages W1 and W2 with the
common message set Wi are transmitted. Assume that C = G = 19% and A = U = 31%
where C = H 11 is the direct signal and its corresponding interference signal is U = H 12

for Y1. Analogously, the direct signal for the second user Y2 is G = H22 and its
corresponding interference signal is A = H21.

Figure 3.
Shannon and RNA capacity vary with probability p.

Figure 4.
Two-user symmetric Interference Channel. (a) Strong Interference Channel. (b) Weak Interference Channel.
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H11 ¼ H12 ¼ hd
ffiffiffiffiffiffiffiffiffiffi
PSNR

p
,

H12 ¼ H21 ¼ hc
ffiffiffiffiffiffiffiffiffiffi
PSNR

p
:

The relationship between the input and output for two user symmetric channel is
described as follows [14],

Y1 ¼ hd
ffiffiffiffiffiffiffiffiffiffi
PSNR

p
X1 þ hc

ffiffiffiffiffiffiffiffiffiffi
Pα
SNR

p
X2 þ Z1, (29)

Y2 ¼ hc
ffiffiffiffiffiffiffiffiffiffi
Pα
SNR

p
X1 þ hd

ffiffiffiffiffiffiffiffiffiffi
PSNR

p
X2 þ Z2, (30)

where the powers of input symbols X1, X2, and additive white Gaussian noise
(AWGN) terms Z1 and Z2 are normalized to unity. Analogous to the definition of the
degree of freedom (DoF), the total GDoF metric d(α) is defined as

d αð Þ ¼ lim
PSNR!∞

C PSNR, αð Þ
log PSNRð Þ , (31)

where C (PSNR, α) is the sum-capacity parameterized by PSNR and α. Here α is the
ratio (on the decibel scale) of cross channel strength compared to straight channel
strength and PSNR indicates the ratio (on the decibel scale) of signal to the noise.
Importantly, in order to find the achievable DoF, take the limit of Eq. (31) by letting
PSNR go to infinity. Make a mental note of theDoFmetric resembling to that at the point
α =1. Thus, the GDoF curve gives a significant hint for optimal interference manage-
ment strategies, which has been made use of most successfully to estimate the capacity
of two-user interference channel to contain a constant gap in [14]. To take an example,
for RNA genetic code, assuming that its bases C = G = 19% and A = T = U = 31%, this
symmetric interference channel for two users can be analyzed in strong and weak
interference region as below. The noise immune channel is described as below where X1

and X2 denote the input symbols while Y1 and Y2 denote the output symbols

Y1 ¼ CX1 þUX2, (32)

Y2 ¼ GX1 þ AX2: (33)

Case 1. Strong Interference region.
Figure 4 (a) makes the description of the channel in a strong interference regime,

where its receivers have to try to decode the interfering signal in order to recover its
desired signal. The general condition for a strong interference signal is represented by,

C<A,U >G: (34)

Regretfully, it is still challenging to propose the scheme achieving a symmetric rate
as well as being upper-bounded unlike in the weak interference region.

Case 2. Weak Interference region.
Figure 4 (b) makes the description of the channel in a very weak interference

regime, where its receivers do not need to try to decode any portion of the interfer-
ence signal by regarding it as noise. This scheme is enabled to achieve a symmetric
rate per user as below [14],

R ¼ min
1
2
log 1þ INRþ SNRð Þ þ 1

2
log 2þ SNR

INR

� �
� 1, log 1þ INRþ SNR

INR

� �
� 1

� �
:

(35)
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The upper bound on the symmetric capacity is,

CSym ≤ min
1
2
log 1þ SNRð Þ þ 1

2
log 1þ SNR

1þ INR

� �
, log 1þ INRþ SNR

1þ INR

� �� �
:

(36)

Letting A = T = U = 31%, C = G = 19%, i.e. INR = 31 and SNR = 19, we are
confronted with the symmetric achievable rate such as

R ¼ min
1
2
log 2 1þ 31þ 19ð Þ þ 1

2
log 2 2þ 19

31

� �
� 1, log 2 1þ 31þ 19

31

� �
� 1

� �

¼ min 2:83þ 0:69� 1, 5:02� 1f g ¼ min 2:53, 4:02f g ¼ 2:52:
(37)

Analogously, the symmetric capacity is made the description of by

Csym ≤ min
1
2
log 2 1þ 19ð Þ þ 1

2
log 2 1þ 19

31

� �
, log 2 1þ 31þ 19

31

� �� �

≤ min 2:16þ 0:34, 5:02f g≤ min 2:50, 5:02f g ¼ 2:50:

(38)

Following the above steps, in a weak interference regime, by treating interference
as noise, the symmetric capacity is close to its achievable capacity such as

Csym ¼ R: (39)

Figure 5 makes the description of the weak and strong interference region where
the leftmost indicates a very weak interference region while the rightmost suggests a
very strong interference region.

Analysis:
In 1948, Shannon proposed the code generation method by exploiting the random

codebook in point-to-point communication with inverse Gaussian distribution
(Gaussian distribution variance towards infinity is called inverse Gaussian) to achieve
the channel capacity, which is described as follows [8],

C ¼ 1
2
log 2 1þ S

N

� �
, (40)

where the signal power is S and the noise power is N.
The point-to-point channel capacity is

CAWGN ¼ log 2 1þ S
N

� �
, (41)

where the signal power is S and the noise power is N.
From Eq. (31), the degree of freedom is [14].

DoF ¼ lim
x!∞

1þ S
N

1þ S
N

 !
¼ 1, (42)
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And the achievable rate is orthogonalized as

XK
i¼1

Ri ¼ log 2 1þ
PK

i¼1Pi

N

 !
, (43)

where K means the number of users.
For two users,

2R ¼ log 2 1þ 2
P
N

� �
¼ log 2 1þ 2SNRð Þ: (44)

Therefore, the achievable rate is,

R ¼ 1
2
log 2 1þ 2SNRð Þ: (45)

SNR = 19 and SNR = 31 case:

The capacity : C ¼ 1
2
log 2 1þ 19

31

� �
¼ 1

2
log 2 1þ 0:61ð Þ ¼ 0:34 (46)

Achievable rate :

2R ¼ log 2 1þ 2
19
31

� �� �

2R ¼ log 2 2:22ð Þ
2R ¼ 1:15

R ¼ 0:57

(47)

Figure 5.
Generalized degree of freedom for Gaussian Channel (W curve).
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And the degree of freedom,

DoF ¼ lim
SNR!∞

R
log 2 2SNRð Þ

� �
≈

1
2

log 2 1þ 2SNRð Þ
log 2 2SNRð Þ

� �
≈

1
2
: (48)

On the condition that the ratio α ¼ log 2INR
log 2SNR is fixed and the strength of the signal is

much larger than that of interference and noise, it is able to treat interference as noise.
Therefore, the achievable rate is represented by

R ¼ log 2 1þ SNR
1þ INR

� �
: (49)

From Eq. (49), the DoF is represented by [14].

DoF ¼ lim
SNR!∞

R

log 2
SNR

1þ INR

� �

0
BB@

1
CCA ¼

log 2
SNR

1þ INR

� �

log 2 SNRð Þ

0
BB@

1
CCA≈

log 2
SNR
INR

� �

log 2 SNRð Þ

0
BB@

1
CCA

¼ log 2 SNRð Þ � log 2 INRð Þ
log 2 SNRð Þ

� �
¼ 1� log 2 INRð Þ

log 2 SNRð Þ
� �

¼ 1� αð Þ:

(50)

In the conventional binary symmetric channel, p is a random variable and a large
amount of resources are used up to make an estimate of p corresponding to the given
channel. By the way, p can be determined deterministically for the RNA base matrix
C U;A G½ �, which is either 0.38 or 0.62. Because the specific value of p is given, the
channel estimation should be investigated. The reason why the specific numerical
values are selected is that for the RNA model, its maximum channel capacity is
maintained even if p is determined deterministically, the variance of signal is not
large, and a generalized DoF’s point of view shows a reasonable performance in the W
curve. In the actual implementation, the receiver has to be satisfied with the 1-α = p
shown in Figure 2. Under this circumstance, signal strength and the interference
intensity are important to analyze the given channel where strong interference envi-
ronment and weak interference environment are classified according to α. To take an
example, if α = 1-p = 0.38, we need to analyze the strong interference channel. If
α = 1-p = 0.62, we need to analyze the weak interference channel. This p estimation is
able to minimize performance degradation in the binary symmetric channel while
significantly reducing computational complexity. The GDoF curve of two user inter-
ference symmetric channel in Figure 5 is the highly recognizable “W” curve shown
that it greatly improves understanding of interference channel by identifying two
regimes. From the abovementioned example, over the symmetric channel, when
α = 0.62, the signal is relatively stronger than interference. By the way, when α = 0.38,
signal is relatively weaker than interference.

6. RNA genetic code constructed by block circulant jacket matrix

A block circulant Jacket matrix (BCJM) is defined by [7, 12, 13, 15].
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ð51Þ

where C0 and C 1 are the Hadamard matrix.
The circulant submatrices are 2 � 2 matrices, whose entries are moved by block

diagonal cyclic shifts. These submatrices are block circulant Jacket matrices. The
BCJM C4 is defined by

C4 ≜ I0 ⊗C00 þ I1 ⊗C1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}, (52)

where I0 ¼
1 0

0 1

� �
, I1 ¼

0 1

1 0

� �
,C00 ¼

1 1

1 �1

� �
, and C1 ¼

1 �1
�1 �1

� �
,

while ⊗ is the Kronecker product.
From Eq. (52), the genetic matrix C U;A G½ �3 generates RNA sequences such as

[12, 13].

P1 ¼ C U
A G

� �
, P2 ¼ C U

A G

� �
⊗

C U
A G

� �
, P3 ¼ C U

A G

� �2
⊗

C U
A G

� �
,

(53)

where ⊗ denotes the Kronecker product. RNA consists of the sequence of 4 bases
whereC,U,A, andG indicate cytosine, uracil, adenine, andguanine, on an individual basis.

According to the theory of noise-immunity coding, for 64 triplets, by comparing
them with strong roots and weak roots, it is able to construct a mosaic gene matrix
C U;A G½ �3. If any triplet belongs to one of the strong roots, it is substituted for 1. In
an analogous fashion, if any triplet is included with one of the weak roots, it is
replaced with �1. Here, the strong roots are CC,CU,CG,AC,UC,GC,GU,GGð Þ and
CA,AA,AU,AG,UA,UU,UG,GAð Þ are the weak roots, which results in the singular
Rademacher matrix R8 is in Table 3 [6, 16].

A novel encoding scheme is proposed as

ð54Þ
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The Eq. (54) gives a hint of the DNA double helix.
Make a mental note to ensure that

R8 ≜ I0 ⊗C0 ⊗P2 þ I1 ⊗C1 ⊗P2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}, (55)

where I0 ¼
1 0

0 1

� �
, I1 ¼

0 1

1 0

� �
,C0 ¼

1 1

�1 1

� �
,C1 ¼

1 �1
�1 �1

� �
, and P2 is

the double stochastic permutation matrix represented by P2 ¼
1 1

1 1

� �
. Eq. (54) has a

series of redundant rows which just repeat and are able to be canceled. From the
Rademacher matrix R8, one version of its mosaic gene matrices can be reached as

R08 ¼

1 1 1 1 1 1 �1 �1
�1 �1 1 1 �1 �1 �1 �1
1 1 �1 �1 1 1 1 1

�1 �1 �1 �1 �1 �1 1 1

0
BBB@

1
CCCA: (56)

Furthermore, by canceling the repeated column from Eq. (56) by means of
CRISPR, another version of the mosaic gene matrices can be reached as Eq. (57),
which is a singular RNA matrix.

ð57Þ

000
(0)

001
(1)

010
(2)

011
(3)

100
(4)

101
(5)

110
(6)

111
(7)

000
(0)

CCC
000

CCU
001

CUC
010

CUU
011

UCC
100

UCU
101

UUC
110

UUU
111

001
(1)

CCA
001

CCG
000

CUA
011

CUG
010

UCA
101

UCG
100

UUA
111

UUG
110

010
(2)

CAC
010

CAU
011

CGC
000

CGU
001

UAC
110

UAU
111

UGC
100

UGU
101

011
(3)

CAA
011

CAG
010

CGA
001

CGG
000

UAA
111

UAG
110

UGA
101

UGG
100

100
(4)

ACC
100

ACU
101

AUC
110

AUU
111

GCC
000

GCU
001

GUC
010

GUU
011

101
(5)

ACA
101

ACG
100

AUA
111

AUG
110

GCA
001

GCG
000

GUA
011

GUG
010

110
(6)

AAC
110

AAU
111

AGC
100

AGU
101

GAC
010

GAU
011

GGC
000

GGU
001

111
(7)

AAA
111

AAG
110

AGA
101

AGG
100

GAA
011

GAG
010

GGA
001

GGG
000

Table 3.
[C U;A G]3 code [6, 16].
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where C0 ¼
1 1

�1 1

� �
and C1 ¼

1 �1
�1 �1

� �
. These matrices are able to be

expanded into the DNA double helix or the RNA single strand, which indicates the
process by that DNA replicates its genetic information for itself, which is transcribed
into RNA and used to synthesize protein for its translation. Therefore,

R004 ≜ I0 ⊗C0 þ I1 ⊗C1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}, (58)

where C0 has eigenvalues such that λ 1ð Þ
1 ¼ 1þ i and λ 1ð Þ

2 ¼ 1� i, and their
eigenvectors ς1 ¼ 1 �ið ÞT and ς2 ¼ 1 ið ÞT, correspondingly. In addition, C1 has

eigenvalues such that λ 2ð Þ
1 ¼

ffiffiffi
2
p

and λ 2ð Þ
2 ¼ �

ffiffiffi
2
p

where their eigenvectors ς1 ¼
�1þ ffiffiffi

2
p

1
� �T and ς1 ¼ �1� ffiffiffi

2
p

1
� �T on an individual basis [3, 17]. Then,

R004 ⊗P2 ) R8 ¼ R4�2k , (59)

where k = 1.

7. Symmetric genetic jacket block matrix

It is demonstrated that the genomatrices are constructed based on the kernel
C A;U G½ � and the mosaic genomatrices C A;U G½ �3 are built by a series of Kronecker
products, which are expanded by permuting the 4 bases C, A, U, and G on their
locations in the matrix.

7.1 Permutation scheme from upper to lower

Following this scheme, we are confronted with 24 variants of genomatrices, which
distinguish them from each other by replacing their subsets by the kernel C A;U G½ �.
To take an analogous instance, by applying the upper-low scheme to [C A;U G], the
standard genetic code is expanded into U C A G½ �T ⊗ U C A G½ �⊗
U C A G½ �T, where T is the transpose. Analogous to Eq. (56), one version of
variants of genomatrices is constructed as

ð60Þ
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Eq. (60) is also another version of variants of genomatrices by a series of
Kronecker product on [1 1 1 1]T, which is expanded into Eq. (61) indicating the
process transcribing from R8 DNA to R4

″ RNA.

ð61Þ

Example 7.1. If A = U, C = G, we are confronted with six versions of variants of the
genomatrices constructed by a series of Kronecker product of the kernel C A;U G½ �.

A C

U G

" #
¼

�1 1 �1 1

�1 �1 1 1

�1 1 �1 1

�1 �1 1 1

2
666664

3
777775

¼ 1 0½ �⊗
1

1

" #
⊗
�1 1

�1 �1

" #
þ 0 1½ �⊗

1

1

" #
⊗
�1 1

1 1

" #
,

(62)

which is expanded into Eq. (63) and Eq. (64). These are other versions of variants
of genomatrices.

A G

U C

" #
¼

�1 �1 �1 1

�1 1 1 1

�1 �1 �1 1

�1 1 1 1

2
666664

3
777775

¼ 1 0½ �⊗
1

1

" #
⊗
�1 �1
�1 1

" #
þ 0 1½ �⊗

1

1

" #
⊗
�1 1

1 1

" #
, (63)

G U

C A

" #
¼

1 1 �1 �1
1 �1 1 �1
1 1 �1 �1
1 �1 1 �1

2
666664

3
777775

¼ 1 0½ �⊗
1

1

" #
⊗

1 1

1 �1

" #
þ 0 1½ �⊗

1

1

" #
⊗
�1 �1
1 �1

" #
, (64)

C U

G A

" #
¼

1 1 1 �1
1 �1 �1 �1
1 1 1 �1
1 �1 �1 �1

2
666664

3
777775

¼ 1 0½ �⊗
1

1

" #
⊗

1 1

1 �1

" #
þ 0 1½ �⊗

1

1

" #
⊗

1 �1
�1 �1

" #
, (65)
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C A

G U

" #
¼

1 �1 1 �1
1 1 �1 �1
1 �1 1 �1
1 1 �1 �1

2
6666664

3
7777775

¼ 1 0½ �⊗
1

1

" #
⊗

1 �1
1 1

" #
þ 0 1½ �⊗

1

1

" #
⊗

1 �1
�1 �1

" #

, (66)

G A

C U

" #
¼

1 �1 �1 �1
1 1 1 �1
1 �1 �1 �1
1 1 1 �1

2
6666664

3
7777775

¼ 1 0½ �⊗
1

1

" #
⊗

1 �1
1 1

" #
þ 0 1½ �⊗

1

1

" #
⊗
�1 �1
1 �1

" #

: (67)

Eq. (62–67) are six versions of variants of genomatrices, which indicate six half
pairs expanded from symmetric RNA genetic matrices by an upper-lower scheme. In
other words, they are constructed by rotating the block in the direction from upper to
low or vice versa.

7.2 Permutation scheme from left to right

Following this scheme, we are confronted with 6 variants of genomatrices, which
distinguish them from each other with the kernel C A;U G½ �. To take an analogous
instance, by applying the left-right scheme to C A;U G½ �, the standard genetic code is
expanded into R8

ð68Þ
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Eq. (68) is also another version of variants of genomatrices by a series of
Kronecker product on [1 1;1 1], which is expanded into Eq. (69) indicating the process
transcribing from R8 DNA to R4

″ RNA.

ð69Þ

Example 7.2. If A = U, C = G, we are confronted with six versions of variants of the
genomatrices constructed by a series of Kronecker product of the kernel C A;U G½ �.

C G

U A

0
@

1
A ¼

1 1 1 1

1 �1 1 �1

1 �1 1 �1

�1 �1 �1 �1

0
BBBBBBB@

1
CCCCCCCA

¼
1

0

0
@

1
A⊗ 1 1ð Þ⊗

1 1

1 �1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ

0

1

0
@

1
A⊗ 1 1ð Þ⊗

1 �1

�1 �1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2
664

3
775,

(70)

which is expanded into Eq. (71) and Eq. (72). These are other versions of variants
of genomatrices.

G C

U A

" #
¼

1 1 1 1

1 �1 1 �1

�1 1 �1 1

�1 �1 �1 �1

2
66666664

3
77777775

¼
1

0

" #
⊗ 1 1½ �⊗

1 1

1 �1

" #
þ

0

1

" #
⊗ 1 1½ �⊗

1 �1

�1 �1

" #

, (71)

U A

C G

" #
¼

�1 �1 �1 �1
1 �1 1 �1
1 �1 1 �1
1 1 1 1

2
6666664

3
7777775

¼
1

0

" #
⊗ 1 1½ �⊗

�1 �1
1 �1

" #
þ

0

1

" #
⊗ 1 1½ �⊗

1 �1
1 1

" #

, (72)
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A U

G C

" #
¼

�1 �1 �1 �1
�1 1 �1 1

�1 1 �1 1

1 1 1 1

2
666664

3
777775

¼
1

0

" #
⊗ 1 1½ �⊗

�1 �1
�1 1

" #
þ

0

1

" #
⊗ 1 1½ �⊗

�1 1

1 1

" #
, (73)

G C

A U

" #
¼

1 1 1 1

�1 1 �1 1

�1 1 �1 1

�1 �1 �1 �1

2
666664

3
777775

¼
1

0

" #
⊗ 1 1½ �⊗

1 1

�1 1

" #
þ

0

1

" #
⊗ 1 1½ �⊗

�1 1

�1 �1

" #
, (74)

C G

A U

" #
¼

1 1 1 1

�1 1 �1 1

1 �1 1 �1
�1 �1 �1 �1

2
666664

3
777775

¼
1

0

" #
⊗ 1 1½ �⊗

1 1

�1 1

" #
þ

0

1

" #
⊗ 1 1½ �⊗

1 �1
�1 �1

" #
: (75)

Eqs. (70)-(75) are 6 versions of variants of genomatrices, which indicate six half
pairs expanded from symmetric RNA genetic matrices by the left-right scheme. In
other words, they are constructed by rotating the block in the direction from upper to
low or vice versa.

7.3 Block Circulant jacket matrix

Construct a block matrix C½ �N by Jacket matrices C0½ �p and C1½ �p such as

C½ �N ¼
C0 C1

C1 C0

� �
where its order N is 2p. This matrix is called block circulant if only

if C0CRT
1 þ CRT

1 C0 ¼ 0½ �N, where RT is the reciprocal transpose. In other words, C½ �N is
a block circulant Jacket matrix (BCJM) [12, 13, 15, 18]. From the fact that C0CRT

0 ¼
p I½ �p and C1CRT

1 ¼ p I½ �p, C0 and C1 are Jacket matrices. Look back on the fact that C½ �N
is a Jacket matrix if only if C½ � C½ �RT ¼ NIN, where RT is the reciprocal transpose.
Therefore, C½ � is a Jacket matrix if only if

C½ � C½ �RT ¼ C0 C1

C1 C0

� �
C0 C1

C1 C0

� �RT

¼
2p I½ �p C0CRT

1 þ CRT
1 C0

C0CRT
1 þ CRT

1 C0 2p I½ �p

 !
¼ NIN,

(76)

where RT is the reciprocal transpose. Therefore, Eq. (76) results in plenty of BCJMs.
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Example 7.3. Two 2 � 2 matrices are given such as

C0 ¼
1 1

1 �1

� �
,C1 ¼

a �a
�1=a �1=a

� �
:

It is easy to know that C0CRT
0 ¼ 2 I½ �2 and C1CRT

1 ¼ 2 I½ �2 are satisfied. Therefore, C0

and C1 are Jacket matrices.
Moreover,

C0CRT
1 þ CRT

1 C0 ¼
1 1

1 �1

� � �1=a �a
�1=a �a

� �
þ a �a
�1=a �1=a

� �
1 1

1 �1

� �
¼ 0½ �2: (77)

8. General pattern of block circulant symmetric genetic jacket matrix

We present 24(=4 � 4C2) DNA classes of genomatrices with their own character-
istics. The main kernel of Eq. (78) is

E|{z}
Position

⊗ I0 ⊗Að Þ þ I1 ⊗Bð Þf g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Main Body Kernel

⊗ F|{z}
Extending

: (78)

Eq. (58) is an RNA pattern by the main kernel. By applying an upper-lower or left-
right scheme to the genetic matrix, the position matrix E creates the patterns analogous
to Eq. (61, 69). Analogously, by applying the upper-lower and left-right scheme to the
genetic matrix, the extending matrix F creates the patterns analogous to Eq. (60, 68).

South Korea’s national flag stands for different symbols of trigrams and Yin-Yang
located in its middle, which is analogous to that of Figure 6. We present 24 versions of
variants of genomatrices, which distinguish from each other by replacing their subsets

with the kernel shown in Figure 6 like its left-hand side
1

0

� �
⊗ 1 1½ �, its right-hand

Figure 6.
General pattern by block circulant, upper-lower, and left–right scheme: Normal case.
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side
0

1

� �
⊗ 1 1½ �, its upper position 1 0ð Þ⊗ 1

1

� �
, its lower position

0 1ð Þ⊗ 1

1

� �
, and its center part I0 ⊗C0 þ I1 ⊗C1, on an individual basis.

From the fact that 1 0ð Þ⊗ 1

1

� �
$ 0 1ð Þ⊗ 1

1

� �
and

1

0

� �
⊗ 1 1ð Þ $

0

1

� �
⊗ 1 1ð Þ, upper symmetric genetic matrices are complementary with lower

ones while left ones are complementary with right ones.
In addition, the pattern is created by block circulant, upper-lower, and left–right

scheme on the ½ symmetric block, which are analyzed in three cases.
Case 1. Block circulant scheme

C U

A G

" #
¼

1 1 1 �1
�1 1 �1 �1
1 �1 1 1
�1 �1 1 �1

2
6664

3
7775

¼
1 0

0 Adiag

" #
⊗

1 1

�1 1

" #
þ

0 1

1 0

" #
⊗

1 �1
�1 �1

" #
:

(79)

U C

G A

" #
¼
�1 1 1 1
�1 �1 1 �1
1 1 �1 1
�1 1 �1 �1

2
6664

3
7775

¼
1 0

0 1

" #
⊗
�1 1

�1 �1

" #
þ

0 1

AAnti�diag 0

" #
⊗

1 1

1 �1

" #
:

(80)

Case 2. Upper-lower scheme

U G

A C

" #
¼
�1 �1 1 1
�1 1 �1 1
�1 �1 1 �1
�1 1 1 1

2
6664

3
7775

¼ 1 0½ �⊗
1

1

" #
⊗
�1 �1
�1 1

" #
þ 0 AUpper
� �

⊗
1

1

" #
⊗

1 1

�1 1

" #
:

(81)

U C

A G

" #
¼
�1 1 1 1
�1 �1 1 �1
�1 1 1 1
�1 �1 �1 1

2
6664

3
7775

¼ 1 0½ �⊗
1

1

" #
⊗
�1 1

�1 �1

" #
þ 0 ALower
� �

⊗
1

1

" #
⊗

1 1

1 �1

" #
:

(82)
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Case 3. Left-right scheme

A U

C G

" #
¼

�1 �1 �1 �1
1 �1 1 �1
1 1 �1 1

1 �1 1 1

2
666664

3
777775

¼
1

0

" #
⊗ 1 1½ �⊗

�1 �1
1 �1

" #
þ

0

ALeft

" #
⊗ 1 1½ �⊗

1 1

1 �1

" #
:

(83)

U A

G C

" #
¼

�1 �1 �1 �1
�1 1 �1 1

1 �1 1 1

1 1 �1 1

2
666664

3
777775

¼
1

0

" #
⊗ 1 1½ �⊗

�1 �1
�1 1

" #
þ

0

ARight

" #
⊗ 1 1½ �⊗

1 �1
1 1

" #
:

(84)

Eq. (79) is a block circulant while Eq. (80) is not. Meanwhile, one part of
Eq. (81, 82) is upper-lower symmetric while the other is not. By the way, one part of
Eq. (83, 84) is left–right symmetric while the other part is not. Figure 7 shows a
certain pattern constructed by a series of the product of C A;U G½ � as well as a
distorted pattern in comparison with that in Figure 6. Therefore, these are called
sickness pattern, which can cover COVID-19.

Figure 7.
Abnormal pattern by block circulant, upper-lower, and left–right scheme.
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To take an analogous instance,

C U
A G

� �
) A B

C D

� �
, (85)

Make a mental note to ensure.
Case 1. A 6¼ D, B ¼ C and A ¼ D, B 6¼ C:
Case 2. A ¼ C, B 6¼ D and A 6¼ C, B ¼ D:
Case 3: A ¼ B, C 6¼ D and A 6¼ B, C ¼ D:
From the aforementioned processes, we are confronted with six half symmetric

blocks such as
C U
A G

� �
,

U C
G A

� �
,

U G
A C

� �
,

U C
A G

� �
,

A U
C G

� �
, and

U A
G C

� �
:

9. Conclusion

We show the experimental results of C = G = 19% and A = U = T = 31% for the
COVID-19 with the RNA base matrix C U;A G½ �, which are expanded into our math-
ematical proof based on the information theory of doubly stochastic matrix. RNA
entropy cannot reach the Shannon entropy because the probabilities of its bases are
23% away from a half that is exactly identical to the sum of its variances. In other
words, there is a difference between Shannon capacity and RNA capacity, which is
identical to the sum of variances of RNA base random variables because they are
unable to become a half over a symmetric channel. We present a straightforward way
of laying out a mathematical basis for double helix DNA in the process of reverse
transcription from RNA to DNA, which is straightforward and explicit by
decomposing a DNA matrix into sparse matrices which have non-redundant columns
and rows. And we introduce a general pattern by block circulant, upper-lower, and
left–right scheme, which is applied to the correct communication as well as means the
healthy condition because it perfectly consists of 4 bases. Furthermore, we introduce
an abnormal pattern by block circulant, upper-lower, and left–right scheme, which
covers the distorted signal as well as COVID-19. The Equation 57, RNA matrix is the
same as the Reference [12] USA patent MIMO Comm. definition 3.1 matrix.
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Chapter 8

Joint EigenValue Decomposition
for Quantum Information Theory
and Processing
Gilles Burel, Hugo Pillin, Paul Baird, El-Houssaïn Baghious
and Roland Gautier

Abstract

The interest in quantum information processing has given rise to the development
of programming languages and tools that facilitate the design and simulation of
quantum circuits. However, since the quantum theory is fundamentally based on
linear algebra, these high-level languages partially hide the underlying structure of
quantum systems. We show that in certain cases of practical interest, keeping a handle
on the matrix representation of the quantum systems is a fruitful approach because it
allows the use of powerful tools of linear algebra to better understand their behavior
and to better implement simulation programs. We especially focus on the Joint
EigenValue Decomposition (JEVD). After giving a theoretical description of this
method, which aims at finding a common basis of eigenvectors of a set of matrices, we
show how it can easily be implemented on a Matrix-oriented programming language,
such as Matlab (or, equivalently, Octave). Then, through two examples taken from
the quantum information domain (quantum search based on a quantum walk and
quantum coding), we show that JEVD is a powerful tool both for elaborating new
theoretical developments and for simulation.

Keywords: quantum information, quantum coding, quantum walk, quantum search,
joint eigenspaces, joint eigenvalues, joint eigenvectors

1. Introduction

The field of quantum information is experiencing a resurgence of interest due to
the recent implementation of secure transmission systems [1] based on the teleporta-
tion of quantum states in metropolitan networks and in the context of satellite trans-
missions, further underscored by the development of quantum computers. A new
path for intercontinental quantum communication opened up in 2017 when a source
onboard a Chinese satellite made it possible to distribute entangled photons between
two ground stations, separated by more than 1000 km [2, 3]. Experiments using
optical fibers [4] and terrestrial free-space channels [5] have also proved that the use
of quantum entanglement can be achieved over large distances.
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Quantum programming languages, such as Q# [6] have been developed to facili-
tate the design and simulation of quantum circuits. The underlying quantum theory is
quite complex and often counter-intuitive due to the fact that it relies on linear algebra
and tensor products—for instance, the state of a set of three independent qubits
(quantum bits) is not described by a 3-dimensional vector, as would be the case for
classical bits, but by a 23-dimensional vector which lives in a Hilbert space constructed
by tensor products of lower-dimensional spaces. Therefore, these programming lan-
guages are helpful for people who do not need to bother with the underlying theory.

However, since the quantum theory is fundamentally based on linear algebra,
there are cases of practical interest for the researcher in which keeping a handle on the
matrix representation of the quantum systems is a fruitful approach because it allows
the use of powerful tools of linear algebra to better understand their behavior and to
better implement simulation programs.

In this chapter, our objective is to illustrate how the concept of Joint EigenValue
Decomposition (JEVD) can provide interesting results in the domain of quantum
information. The chapter is organized as follows. In Section 2, we give some mathe-
matical background and in Section 3, we provide basic elements to understand quan-
tum information. Then, in Section 4, we show an example of the application of JEVD
to quantum coding, more precisely we propose an algorithm, based on JEVD, to
identify a quantum encoder matrix from a collection of given Pauli errors. Finally, in
Section 5, we show that JEVD is a powerful tool for the analysis of a quantum walk
search. More precisely, we prove that, while the quantum walk operates in a huge
state space, there exists a small subspace that captures all the essential elements of the
quantum walk, and this subspace can be determined thanks to JEVD.

2. Mathematical background

2.1 Matrices and notations

We note UT the transpose of a matrix U and U ∗ the transpose conjugate of U.
H is the normalized Hadamard 2� 2 matrix and HN the N �N Hadamard matrix

obtained by the Kronecker product (defined in the next subsection):

H ¼ 1ffiffiffi
2
p 1 1

1 �1

� �
and HN ¼ H⊗ n N ¼ 2nð Þ (1)

IN is the N �N identity matrix (which will sometimes be noted I when its
dimension is implicit).

In the domain of quantum information processing, we mainly have unitary matri-
ces. A square matrix U is unitary [7] if U ∗U ¼ UU ∗ ¼ I. The columns of a unitary
matrix are orthonormal and its eigenvalues are of norm 1. If the unitary matrix is real,
its eigenvalues come by conjugate pairs.

We call “shuffle matrix” the permutation matrix Pa,b which represents the permu-
tation obtained when one writes elements row by row in an a� b matrix and reads
them column by column. For instance, set a ¼ 2 and b ¼ 3. If one writes the elements
1, 2, 3, 4, 5, 6 row by row in a 2� 3 matrix and reads them column by column, the
order becomes 1, 4, 2, 5, 3, 6. Then the shuffle matrix is the permutation matrix such
that 1 4 2 5 3 6ð Þ ¼ 1 2 3 4 5 6ð ÞP2,3. The inverse of Pa,b is Pb,a ¼ Pa,bð ÞT.
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Gn is the n� n Grover diffusion matrix defined by [8]:

Gn ¼ �In þ 2θnθTn (2)

where θn the n� 1ð Þ vector is defined by θn ¼ 1 1 ⋯ 1½ �T= ffiffiffi
n
p

. It is easy to see
that Gnθn ¼ θn. Therefore, θn is an eigenvector of Gn with eigenvalue þ1. We can also
see that for any vector v orthogonal to θn we have Gnv ¼ �v. It follows that Gn has two
eigenvalues, �1 and þ1, and the dimensions of the associated eigenspaces are n� 1
and 1.

2.2 Kronecker product

The Kronecker product, denoted by ⊗ , is a bilinear operation on two matrices. If
A is a k� lmatrix and B is a m� nmatrix, then the Kronecker product is the km� ln
block matrix C below:

C ¼ A⊗B ¼
a11B ⋯ a1lB
⋮ ⋱ ⋮

ak1B ⋯ aklB

0
B@

1
CA (3)

Assuming the sizes are such that one can form the matrix products AC and BD, an
interesting property, known as the mixed-product property, is:

A⊗Bð Þ C⊗Dð Þ ¼ ACð Þ⊗ BDð Þ (4)

The Kronecker product is associative, but not commutative. However, there exist
permutation matrices (the shuffle matrices defined in the previous subsection) such
that, if A is an a� a square matrix and B a b� b square matrix, then [9]:

A⊗Bð ÞPa,b ¼ B⊗Að ÞPb,a (5)

2.3 Singular value decomposition, image, and kernel

The Singular Value Decomposition (SVD) of an m� n matrix A is [7]:

A ¼ USV ∗ (6)

where U and V are unitary matrices, and S is diagonal. The diagonal of S contains
the Singular Values, which are real nonnegative numbers, ranked by decreasing order.
The sizes of the matrices are U m�mð Þ, S m� nð Þ and V n� nð Þ. The SVD is a very
useful linear algebra tool because it reveals a great deal about the structure of a matrix.

The image and the kernel of A are defined by:

Im Að Þ ¼ y∈m : y ¼ Ax for somex∈nf g (7)

ker Að Þ ¼ x∈n : Ax ¼ 0f g (8)

When used in an algorithm, the notation null will also be used for a procedure that
computes a matrix whose columns are an orthonormal basis of the kernel of A.

The complement of a subspace A within a vector space H is defined by:
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Að Þc ¼ y∈H : x ∗ y ¼ 0forallx∈Af g (9)

In an algorithm, if the columns of A are an orthonormal basis of A then the
columns of B ¼ null A ∗ð Þ provide an orthonormal basis of Að Þc.

The rank of A is its number of nonzero singular values. When programmed on a
computer determination of the rank must take into account finite precision arith-
metic, which means that “zero” is replaced by “extremely small” (less than a given
tolerance value). Let us note r ¼ rank Að Þ. We have

dim Im Að Þð Þ ¼ r (10)

dim ker Að Þð Þ ¼ n� r (11)

An orthonormal basis of ker Að Þ is obtained by taking the last n� r columns of the
matrix V.

2.4 Joint eigenspaces and joint eigenvalue decomposition (JEVD)

The eigenvalue decomposition of a unitary matrix A is:

A ¼ VDV ∗ (12)

where D is a diagonal matrix, the diagonal of which contains the eigenvalues, and
V is a unitary matrix whose columns are the eigenvectors.

Let us note EA
λ the eigenspace of an operator A associated with an eigenvalue λ: The

joint eigenspace EA,B
λ,μ is:

EA,B
λ,μ ¼ EA

λ ∩E
B
μ (13)

A property of great interest in quantum information processing is that within EA,B
λ,μ

(and even within any union of joint eigenspaces) the operators A and B commute.
Determination of the joint eigenspace on a computer may be determined through

the complement, because:

EA
λ ∩E

B
μ ¼ EA

λ

� �c∪ EB
μ

� �c� �c
(14)

Using Matrix-oriented programming languages, such as Matlab or Octave, this
requires only a few lines. Let us note Aλ and Bμ matrices whose columns are ortho-
normal bases of EA

λ and EB
μ and :½ � the horizontal concatenation of matrices. The

following computation procedure provides a matrix C whose columns are an ortho-
normal basis of EA,B

λ,μ :

C ¼ null null Aλð Þ null Bμ

� �� �� �
(15)

However, it is not efficient in terms of complexity and in the next sections we will
propose faster computational procedures, adapted to each context.

A lower bound on the dimension of a joint eigenspace can be obtained as follows.
Let us note n the dimension of the full space. We have, obviously:

172

Matrix Theory - Classics and Advances



dim EA
λ ∪E

B
μ ≤ n (16)

and we know that:

dim EA
λ ∪E

B
μ ¼ dim EA

λ þ dim EB
μ � dim EA

λ ∩E
B
μ (17)

Combining both equations, we obtain:

dim EA,B
λ,μ ≥dim EA

λ þ dim EB
μ � n (18)

3. Quantum information principles

A quantum system is described by a state vector ψj i∈N, where N is the dimen-
sion of the system. Since in the quantum formalism states ψj i and γ ψj i are equivalent,
for any nonzero complex number γ, the state is usually represented by a normed
vector and the global phase is considered irrelevant.

As long as it remains isolated, the evolution of a quantum system is driven by the
Schrödinger equation. The latter is a first-order differential equation operating on the
quantum state. Its integration shows that the quantum states at times t1 and t2 are
linked by a unitary matrix U such that ψ2j i ¼ U ψ1j i. The norm is preserved because U
is unitary.

The second kind of evolution, called “measurement,” may occur if the system
interacts with its environment. A measurement consists of the projection of the state
onto a subspace of N . When the measurement is controlled, it consists in defining a
priori a decomposition of the state space into a direct sum of orthogonal subspaces
⊕
i
Hi. The measurement randomly selects one subspace. The result of the measure-

ment is an identifier of the selected subspace (for instance, its index i). After mea-
surement, the state is projected ontoHi. If Pi is the projection matrix ontoHi, then the
state becomes Pi ψj i (which is then renormalized because the projection does not
preserve the norm). The probability of Hi being selected is the square norm of Pi ψj i.

It is worth noting that a measurement may destroy a part of quantum information
(because usually, a projection is an irreversible process), while the unitary evolution is
reversible, and as such, preserves quantum information. Consequently, measurements
must be used with extreme caution—how to design the system and the measurement
device to measure only what is strictly required and not more is one of the difficult
problems encountered in quantum information processing.

Quantum systems of special interest for quantum information processing are
qubits (quantum bits) and qubit registers. A qubit belongs to a 2D quantum system
with state a normed vector of 2. To highlight links with classical digital computation,
it is convenient to note 0j i and 1j i for the orthonormal basis of 2. Physically any 2D
quantum system can carry a quantum bit. For instance, the spin of an electron is a 2D
quantum system, and the spins up and down can be associated with the basic states 0j i
and 1j i. A general qubit has an expression:

ψj i ¼ α0 0j i þ α1 1j i (19)

where α0 and α1 are complex numbers subject to α0j j2 þ α1j j2 ¼ 1.
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A qubit register is a 2n-D quantum system which, for convenience, is usually
referred to as a standard orthonormal basis noted
0:::00j i, 0:::01j i, 0:::10j i, … , 1:::11j if g and then, by analogy with classical digital

processing, n is the number of qubits. For instance, for n ¼ 2 the basis is
00j i, 01j i, 10j i, 11j if g, where abj i ¼ aj i⊗ bj i, and the quantum state of the register is:

ψj i ¼
X

a, bð Þ∈ 0, 1f g2
γab abj i (20)

Note that, contrary to classical digital registers, the qubits are usually not separa-
ble, hence the register must be considered as a whole. We say that the qubits are
entangled. However in the special case where the coefficients γab can be decomposed
in the form γab ¼ αaβb the state can be written as a tensor product of the states of two
qubits, which can be considered separately. Then, we have:

ψj i ¼ α0 0j i þ α1 1j ið Þ⊗ β0 0j i þ β1 1j ið Þ (21)

4. Application of JEVD to quantum coding

4.1 Principle of quantum coding

The objective of quantum coding is to protect quantum information [10]. In the
classical domain, the information can be protected using redundancy—for instance, if
we want to transmit bit 0 on a noisy communication channel, we can instead transmit
000 (and, similarly, transmit 111 instead of 1). On the receiver side, if one error has
occurred on the channel, for instance, if the second bit is false, we receive 010 instead
of 000, from which we can still guess that the most probable hypothesis is that the
transmitted word was 000. Of course, if there were two errors the transmitted word
could have been 111, but it is assumed that the probability of error is low, hence two
errors are less likely than one error. More elaborated channel codes have been pro-
posed, but fundamentally they are all based on the idea of adding redundancy and
assuming that the probability of channel error is low.

In the quantum domain, it is impossible to use redundancy because it is impossible
to copy a quantum state (this is due to the “no-cloning theorem” [11]). However, we
can use entanglement to produce the quantum equivalent of classical redundancy. The
principle of quantum coding is shown in Figure 1. Assume we want to protect the
quantum state ψj i of a k-qubit register. We add r ancillary qubits initialized to 0j i to
form an n-qubit register (n ¼ kþ r). The encoder is represented by a unitary 2n � 2n

Figure 1.
Principle of quantum coding.
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matrix U. Then, errors may occur on the encoded state: they are represented by a
unitary matrix E. The decoder is represented by another unitary matrix U ∗ which is
the transpose conjugate of the encoding matrix. Finally, we measure the last r qubits
of the decoded state, and, depending on the result of the measurement, we apply the
appropriate restoration matrix Uc (which is a unitary matrix of size 2k � 2k) to the
k-qubit register composed of the first k qubits of the decoded state.

As an illustration, let us consider n ¼ 2, k ¼ 1 and the very simple quantum
encoder shown in Figure 2. It is a basic quantum circuit known as the CNOT quantum
gate, and it is represented by the unitary matrix below:

U ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA (22)

A quantum error on a qubit is described by a 2� 2 unitary matrix. It is convenient to
decompose the error as a linear sum of the identity and the Pauli matrices below [12]:

Z ¼
1 0

0 �1

 !
X ¼

0 1

1 0

 !
Y ¼

0 i

�i 0

 !
(23)

Let us consider that an error may appear on the first encoded qubit and that this
error, if present, is represented by the unitary Pauli matrix X. Then, the error matrix
which acts on the encoded state is:

E ¼ X⊗ I ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA (24)

It is easy to check that:

F ¼ U ∗EU ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0
BBB@

1
CCCA ¼ X⊗X (25)

The state at the input of the encoder is α0α1½ �T ⊗ 10½ �T ¼ α0 0 α1 0½ �T. The state at
the output of the decoder is, therefore, 0 α1 0 α0½ �T.

Figure 2.
CNOT quantum gate.
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Measuring the second qubit on the output of the decoder consists in decomposing
the state space into a direct sumH0⊕H1 of two subspaces spanned by 00j i, 10j if g and
01j i, 11j if g. The result of the measurement will be either 0 or 1 (index of the selected

subspace), and by analogy with classical decoding, this result will be called the “syn-
drome.” The projections on these subspaces are 00½ �T and α1α0½ �T. Then the proba-
bility to obtain syndrome 1 is 1.

The measurement then projects the state onto H1. Note that in this particular case,
the information is preserved by the projection. Then, applying the operator Uc ¼ X to
the projected state restores the initial state.

Similarly, if there is no error, we can see that F is the identity matrix, then the
projections on the subspaces are α0α1½ �T and 00½ �T. In that case, the syndrome is 0
and the state is projected ontoH0. Correction is done by applying the operator I to the
projected state, which is equivalent to doing nothing.

The very simple code used above, as an illustration, cannot correct more complex
errors (for instance, an error Z on the first qubit). However, there exist efficient
quantum codes, such as the Steane code [13], and the Shor code [14]. A remarkable
result of quantum coding theory is that a linear combination of correctable errors is
correctable [15].

Figure 3 shows the Steane Encoder, which is a n ¼ 7, k ¼ 1, t ¼ 1ð Þ quantum
encoder. This means that it encodes k ¼ 1 qubits on n ¼ 7 qubits and it is able to
correct any error occurring on t ¼ 1 encoded qubits. It is built with Hadamard
(Eq. (1)) and CNOT (Eq. (22)) quantum gates. From this circuit description, it is
possible to obtain the coding matrix U.

4.2 Determination of encoder matrix using JEVD

The problem we address can be stated as follows (see Figure 1 for the notations)—
given a list of n independent Pauli errors Ei with corresponding diagonal outer errors
Fi, determine the unitary operator U (quantum encoder) such that:

U ∗EiU ¼ Fi ∀i∈ 1, … , nf g (26)

This equation shows that the columns of U are the eigenvectors of Ei. Specification
of the code by a small set of Pauli errors is very convenient and the interest of

Figure 3.
Steane encoder.
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automatic determination of matrix U is to allow further simulations of the behavior of
the quantum code in various configurations.

To illustrate and validate the approach that will be developed below, let us
consider the collection of n ¼ 7 Pauli errors shown in Table 1. Here, to be able to
check the results, this collection has been chosen to correspond to the Steane encoder
(Figure 3), while in a standard application of the method, it would be given a priori.
The interest is that here we can compute the encoder matrix from the circuit and this
will allow us to check that our method produces the correct encoder matrix.

We use n independent equations in which each Fi is a tensor product of I and Z
only (including only one Z). Therefore, matrices Fi are diagonal, and their diagonal
elements are þ1 and �1 in equal numbers.

Figure 4 shows the diagonals of the matrices Fi (each row corresponding to one
diagonal). Values �1 and þ1 are represented, respectively, by black and white dots.

Since matrix U does not depend on i in Eq. (26) its columns are joint eigenvectors
of the Ei. For instance, in the example above, the 20th column of U is a joint
eigenvector of E1, E2, … , E7 associated to eigenvalues þ1,þ1,�1,þ1,þ1,�1,�1 (see
Figure 4). In the general case, the set of n eigenvalues corresponding to the column c
of U is easily obtained by taking the binary representation of c� 1 with the mapping
0! þ1 and 1! �1.

Now, let us consider the determination of column c of U. We know that it is a
vector spanning a joint eigenspace of the Ei corresponding to a given set of eigen-
values λi, i ¼ 1, … , nf g. For each Ei let Ai denote the 2n � 2n�1 matrix whose ortho-
normal columns span the eigenspace associated to λi and Bi the 2n � 2n�1 matrix whose
orthonormal columns span the kernel of Ai (which corresponds to the eigenspace
associated to �λi).

Let Yk denote the joint eigenspace corresponding to eigenvalues λ j, j ¼ 1, … , k
� �

with k∈ 1, … , nf g. We propose Algorithm 1 to efficiently compute the column of U. It
computes a series of matrices Yk whose columns are an orthonormal basis of Yk.
Obviously, the searched column of U is Yn. For the moment, let us consider that K cð Þ=1
(the optimal value will be discussed later).

Ei Fi

Z⊗Z⊗Z⊗Z⊗Z⊗Z⊗Z Z⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I

X⊗X⊗ I⊗ I⊗ I⊗X⊗X I⊗Z⊗ I⊗ I⊗ I⊗ I⊗ I

X⊗ I⊗X⊗ I⊗X⊗ I⊗X I⊗ I⊗Z⊗ I⊗ I⊗ I⊗ I

X⊗ I⊗ I⊗X⊗X⊗X⊗ I I⊗ I⊗ I⊗Z⊗ I⊗ I⊗ I

Z⊗Z⊗ I⊗ I⊗ I⊗Z⊗Z I⊗ I⊗ I⊗ I⊗Z⊗ I⊗ I

Z⊗ I⊗Z⊗ I⊗Z⊗ I⊗Z I⊗ I⊗ I⊗ I⊗ I⊗Z⊗ I

Z⊗ I⊗ I⊗Z⊗Z⊗Z⊗ I I⊗ I⊗ I⊗ I⊗ I⊗ I⊗Z

Table 1.
Collection of Pauli errors.

Figure 4.
Diagonals of matrices Fi.
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if K cð Þ ¼ 1 then
∣ Y1 ¼ A1

end
fork ¼ K cð Þ þ 1 ton do

Ck ¼ B ∗
k Yk�1

Zk ¼ null Ckð Þ
Yk ¼ Yk�1Zk

��������

Algorithm 1: Algorithm for determination of a joint eigenspace.

The sizes of the matrices are decreasing with k:
Ck: 2n�1 � 2n�kþ1 Zk: 2n�kþ1 � 2n�kYk: 2n � 2n�k.
The intuitive ideas under the algorithm are the following:

• Ck ¼ B ∗
k Yk�1: The orthonormal basis of Yk�1 is projected on the kernel of Ak. The

components of the projected vectors are expressed in the orthonormal basis Bk of
that kernel. Consequently, Im Ckð Þ is the projection of Yk�1 on the kernel of Ak,
expressed in that kernel.

• A matrix Zk whose columns are an orthonormal basis of the complement of this
projection is determined.

• Finally, the components of the basis vectors are restored to the original space by
Yk ¼ Yk�1Zk

Let us prove that the matrices Yk have orthonormal columns. This is obviously the
case for k ¼ 1. Then, by recursion, we have:

Y ∗
k Yk ¼ Z ∗

k Y
∗
k�1Yk�1Zk ¼ I (27)

Now, let us prove, by recurrence, that Im Ykð Þ ¼ Yk.
Obviously, this is the case for k ¼ 1. Assume this is the case for k� 1. We have:

Im Ykð Þ⊂ Im Yk�1ð Þ ¼ Yk�1 (28)

We have also:

B ∗
k Yk ¼ B ∗

k Yk�1Zkð Þ ¼ B ∗
k Yk�1

� �
Zk ¼ CkZk ¼ 0 (29)

Then

Im Ykð Þ⊂ ker B ∗
k

� � ¼ Im Akð Þ (30)

From Im Ykð Þ⊂Yk�1 and Im Ykð Þ⊂ Im Akð Þ we deduce Im Ykð Þ⊂Yk.
Conversely, assume that a vector x belongs to Yk. Because Yk ⊂Yk�1 there exists a

vector b such that x ¼ Yk�1b and because x∈ Im Akð Þ we have also B ∗
k x ¼ 0
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Then

B ∗
k Yk�1b ¼ 0) Ckb ¼ 0) ∃a : b ¼ Zka

Therefore x ¼ Yk�1b ¼ Yk�1Zka ¼ Yka) x∈ Im Ykð Þ ) Yk ⊂ Im Ykð Þ.
After execution of the algorithm to determine each column of U, there

remains an indetermination because the joint eigenvectors (i.e., the columns of U) are
determined up to a phase factor. This has no consequence on the performance of
the quantum code. However, if we want to fix this residual indetermination, we
proposed a fast and simple procedure in ref. [16]. The procedure requires an
additional set of n Pauli errors in which each additional Fi is a tensor product of I and
X only. As an example, for the Steane code, we use Table 2.

After these remaining differences have been removed, we obtain an estimated
matrix U that is equal to the true matrix, up to a global phase (Figure 5). However,
this remaining indetermination does not matter because, as said before, the global
phase has no significance in quantum physics. Here we have chosen the global phase
so that the encoder matrix is real.

Ei Fi

X⊗X⊗X⊗X⊗X⊗X⊗X X⊗ I⊗ I⊗ I⊗ I⊗ I⊗ I

Z⊗ I⊗Z⊗Z⊗Z⊗Z⊗Z I⊗X⊗ I⊗ I⊗ I⊗ I⊗ I

Z⊗Z⊗ I⊗Z⊗Z⊗Z⊗Z I⊗ I⊗X⊗ I⊗ I⊗ I⊗ I

Z⊗Z⊗Z⊗ I⊗Z⊗Z⊗Z I⊗ I⊗ I⊗X⊗ I⊗ I⊗ I

X⊗ I⊗ I⊗ I⊗X⊗ I⊗ I I⊗ I⊗ I⊗ I⊗X⊗ I⊗ I

X⊗ I⊗ I⊗ I⊗ I⊗X⊗ I I⊗ I⊗ I⊗ I⊗ I⊗X⊗ I

X⊗ I⊗ I⊗ I⊗ I⊗ I⊗X I⊗ I⊗ I⊗ I⊗ I⊗ I⊗X

Table 2.
Additional Collection of Pauli errors.

Figure 5.
Estimated Matrix U for the Steane encoder.
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Figure 5 shows the matrix computed by our method. We have checked that it is
equal to the matrix directly computed from the circuit description.

The programmer may speed up the computation by taking into account the fact
that when computing columns c of U, some matrices Yk have already been computed
for other columns and can be reused. For instance, in Figure 4, we see that the joint
eigenvalues corresponding to columns 19 and 20 are the same, except the last one.
Then, when computing column 20, we can set K 20ð Þ ¼ n in Algorithm 1 instead of the
default value K 20ð Þ ¼ 1, because the Yn�1 for column 20 is the same as for column 19.
More generally, Algorithm 2 written in pseudo-Octave code computes the optimal
values of the K cð Þ.

K ¼ 1 1½ �
for k ¼ 2 to n do
| K ¼ reshape K; k ∗ ones 1, 2k�1

� �� �
1 2k
� �� �

end

Algorithm 2: Algorithm for computation of the optimal values K cð Þ.
For instance, for n ¼ 3 the algorithm produces K ¼ 1 3 2 3 1 3 2 3½ �.

5. Application of JEVD to quantum walk search

5.1 Principle of quantum walk search

Let us consider a particle that can move on a graph. In the classical world, at the
time t this particle is localized at a node of the graph. It can then randomly choose
one of the edges linked to this node to reach one of the adjacent nodes at a time tþ 1.
The repeated iteration of this process is the concept of classical random walk.

A quantum walk [17] relies also on a graph, but contrary to the classical walk,
here the particle may be located at many nodes at the same time and can choose
many edges simultaneously. At the time t, the state of the particle is then described by
a state vector ψ tj i and the evolution between times t and tþ 1 is given by a
unitary matrix U ¼ SC such that ψ tþ1

�� � ¼ U ψ tj i. The unitary matrices C and S
represent, respectively, the choice of the edges and the movement to the
adjacent nodes.

In the following, we will consider graphs associated with hypercubes [18]. We will
note n the dimension of the hypercube and N ¼ 2n the number of nodes. Figure 6
shows the graph corresponding to a hypercube of dimension n ¼ 3. It is convenient to
label the nodes by binary words. In quantum language, these binary words κ are also
used to label the basis vectors of the so-called position space HS .

The quantum state lives in a Hilbert space built by the tensor product of the
position spaceHS (corresponding to the nodes) and the coin spaceHC (corresponding
to the possible movements along the edges) H ¼ HS ⊗HC . The dimensions of these
state spaces are Ne ¼ nN, N and n.

It is usual to define C as [19]:

C ¼ IN ⊗Gn (31)
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where Gn is the n� n Grover diffusion matrix defined in Section 2. Matrix C
obtained for n ¼ 3 is shown on Figure 7.

The structure of S is more complex. It is convenient to first define it in HC ⊗HS

and then to transpose it to H using the shuffle matrix P ¼ Pn,N (defined in
subsection 2.2). Then:

S ¼ PŜPT (32)

where

Ŝ ¼ diag Ŝ1, … , Ŝn
� �

and Ŝd ¼ I⊗ n�dð Þ⊗X⊗ I⊗ d�1ð Þ (33)

Figure 6.
Hypercube for n ¼ 3.

Figure 7.
Matrices C (left) and O (right) for n ¼ 3.
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The last equation just means that, because a movement along direction d corre-
sponds to an inversion of the dth bit in κ, the shift operator permutes the values
associated to nodes that are adjacent along that dimension.

A quantum walk search can be described by repeated application of a unitary
evolution operator Q, which can be written:

Q ¼ UO (34)

Here O is the oracle, which aims at marking the solutions. An example of oracle
structure is shown in Figure 7. It is a block-diagonal matrix, whose blocks are �Gn
when they correspond to a solution and In otherwise. Denote M the number of
solutions and assume thatM≪N (otherwise the quantum walk search would serve no
purpose because the probability of rapidly finding a solution with a classical search
would be high). In the example shown in the figure, there areM ¼ 2 solutions (located
at positions 1 and 4 on Figure 6).

Let t denote the number of iterations until a measurement is performed. Starting
from an initial state ψ0j i, repeated iterations lead to the state ψ tj i ¼ Qt ψ0j i which is
then measured. The theory of quantum walk search [19] shows that the probability of
success (that is the probability of obtaining a solution by measurement) oscillates as a
function of t. This means that theoretical tools which help to understand and simulate
quantum walk search lead to the development of methods to determine the optimal
time of measurement.

In the sequel, we will show that JEVD is a fruitful tool in this context. Indeed, set E
to be the union of the joint eigenspaces of U and O, and E its complement. Inside E,

the operators commute. So, if we note with index E the restrictions of the operators to
E, we have:

Q2
E ¼ UEOEð Þ UEOEð Þ ¼ UEO2

EUE ¼ U2
E (35)

Then, inside E, there is no significant difference between the effective quantum
walk Q and the uniform quantum walk U, because, after each pair of successive
iterations, the evolution is identical. Since the uniform quantum walk has no reason to
converge to a solution, we deduce that the interesting part of the process lives in the
complement of E, that is in E.

After establishing results about the dimensions of the eigenspaces of U and O,
we will show that the concept of joint eigenspaces allows us to establish an upper
bound on the dimension of the complement, with the remarkable result that this
dimension grows only linearly with n. Then, we propose an algorithm for efficient
computation of the joint eigenspaces and, finally, use it to check our theoretical
upper bound.

5.2 Eigenspaces of U and O

Set

F ¼ HN ⊗ In (36)

Then matrix F diagonalizes S:
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FSF ¼ HN ⊗ Inð ÞPN,nŜPn,N HN ⊗ Inð Þ (37)

¼ Pn,N In ⊗HNð ÞŜ In ⊗HNð ÞPN,n (38)

¼ PTdiag … ,HNŜdHN, …
� �

P (39)

The latter term is diagonal because the mixed product property, H2 ¼ I and
HXH ¼ Z, shows that:

HNŜdHN ¼ I⊗ n�dð Þ⊗Z⊗ I⊗ d�1ð Þ (40)

Once more, using the mixed product property, we can also prove that F keeps C
unchanged, that is:

FCF ¼ C (41)

The diagonal of FSF is the concatenation of the binary representation of the
numbers 0 to N � 1 with the mapping 0! þ1ð Þ and 1! �1ð Þ. That is:

FSF ¼ diag S0, … , Sκ, … , SN�1ð Þ (42)

Note that the diagonal of Sκ contains k times �1 and n� k times þ1 (where k is the
Hamming weight of κ).

Then, because F2 ¼ I, FUF is a block diagonal matrix:

FUF ¼ FSFð Þ FCFð Þ (43)

¼ diag … , Sκ, …ð ÞC (44)

Block κ is then

Uκ ¼ SκGn (45)

We have:

dim EUκ� ≥dim ESκ ,Gnþ,� (46)

≥dim ESκþ þ dim EGn� � n (47)

≥ n� kð Þ þ n� 1ð Þ � n (48)

≥ n� k� 1 (49)

and

dim EUκþ ≥dim ESκ ,Gn�,� (50)

≥dim ESκ� þ dim EGn� � n (51)

≥ kþ n� 1ð Þ � n (52)

≥ k� 1 (53)

Then, there is only room left for at most 2 eigenvalues, specifically, at most a pair
of conjugate ones.
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Assume that this pair of eigenvalues exists. Since the diagonal of Gn contains
�1þ 2

n, the trace of Uκ is:

trace Uκð Þ ¼ n� kð Þ þ1ð Þ þ k �1ð Þð Þ �1þ 2
n

� �
(54)

¼ �nþ 2kþ 2 1� 2
k
n

� �
(55)

The sum of the eigenvalues is equal to the trace and we already have eigenvalue �1
with multiplicity n� k� 1 and eigenvalue þ1 with multiplicity k� 1. The sum of
these n� 2 eigenvalues is �nþ 2k. Then the sum of the two missing eigenvalues must
be 2 1� 2 k

n

� �
. Let us denote them by λk and λ ∗

k . We must have Re λkð Þ ¼ 1� 2 k
n. Then,

since λkj j ¼ 1 we have

λk ¼ 1� 2
k
n

� �
þ i

2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k n� kð Þ

p
(56)

Considering the eigenvalues of �Gn and In it is trivial to show that the dimensions
of the eigenspaces of the oracle are:

dim EO
� ¼M and dim EO

þ ¼ Ne �M (57)

5.3 Upper bound on the dimension of the complement

The eigenvalues of U belong to �1,þ1, λk, λ ∗
k

� �
where k∈ 1, n� 1½ �. Then, there

are 2þ 2 n� 1ð Þ ¼ 2n eigenspaces of U.
For j∈ 1, 2n½ � let α j be the dimensions of these eigenspaces and β j the dimensions of

their intersections with EO
þ. An eigenvector of U is in an intersection if and only if it is

orthogonal to EO
�. Then, because the dimension of EO

� is M, we have β j ≥ α j �M.
Consequently

X2n
j¼1

β j ≥
X2n
j¼1

α j � 2nM (58)

Obviously, we have
P2n

j¼1α j ¼ Ne, so that

X2n
j¼1

β j ≥Ne � 2nM (59)

It follows that the dimension of the complement has an upper bound:

dim Ec ≤ 2nM (60)

This is a remarkable result—despite the fact that the dimension of the Hilbert
space grows exponentially (Ne ¼ n2n), the dimension of the complement grows only
linearly with n.
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5.4 Fast computation of the joint eigenspaces

5.4.1 Introduction

To check our theoretical upper bound, we propose an efficient algorithm for fast
computation of the joint eigenspaces.

We have to compute orthonormal bases of joint eigenspaces of U and O. The
dimension of EO

� is small, hence, it makes sense to define it by an orthonormal basis
generating the eigenspace. However, the dimension of EO

þ is large (greater than Ne=2).
Hence, it is computationally more efficient to define it by an orthonormal basis of its
complement (which is EO

�). Indeed dim EO
�≪dim EO

þ. We then have to design an
algorithm adapted to each case.

5.4.2 Intersection of two eigenspaces defined by orthonormal bases

Let us consider a matrix A whose columns are an orthonormal basis of an
eigenspace of U, and a matrix B whose columns are an orthonormal basis of EO

�.
Set p and q to be the number of columns of these matrices (their number of rows
being Ne). We want to compute an Ne � r matrix J whose columns are an
orthonormal basis of the joint eigenspace (whose dimension we have set to be r).
We propose the algorithm below, which is a straightforward adaptation of Theorem 1
in ref. [20].

First, we compute the p� q matrix C below:

C ¼ A ∗B (61)

Then, we compute the SVD of C:

C ¼ UcScV ∗
c (62)

Denote by sk the singular values (the diagonal elements of Sc) and determine r such
that sk ≥ 1� ε for k ¼ 1, … , r, and sk < 1� ε for k> r. Here ε≪ 1 is a very small positive
value introduced to take into account the presence of small errors due to computer
finite precision arithmetic. Finally:

J ¼ AUc : , 1 : rð Þ (63)

Or, equivalently, J ¼ BVc : , 1 : rð Þ.

5.4.3 Intersection of two eigenspaces, one of them being defined by an orthonormal basis of
its complement

Let us consider a matrix A whose columns are an orthonormal basis of an
eigenspace of U, and a matrix B whose columns are an orthonormal basis of the
complement of EO

þ (that is E
O
�). First, we compute the p� qmatrix C (Eq. (61)). Then,

we compute the p� r matrix (r≤ p) Z below:

Z ¼ null C ∗ð Þ (64)
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and we obtain an Ne � r matrix J whose columns are an orthonormal basis of EU,O
λ,þ

from:

J ¼ AZ (65)

The justification of the algorithm is as follows. The q columns of C are a basis of the
projection of Im Bð Þ into Im Að Þ, the components being expressed in the basis of Im Að Þ
The complement of Im Cð Þ in Im Að Þ is the desired intersection (expressed in Im Að Þ).
The columns of Z are an orthonormal basis of this intersection. Finally, Eq. (65)
restores the components in the original space.

5.5 Simulation results

Consider a hypercube of dimension n ¼ 7 withM ¼ 3 solutions located at nodes
2, 8, 9. The dimension of the state space is then Ne ¼ n2n ¼ 896. From the discussion
above, we know that the dimension of the complement is upper bounded by 2nM ¼ 42.

The algorithm gives us the dimensions of the joint eigenspaces of U and O
(Table 3). The sum of the dimensions of the joint eigenspaces is then

P2n
j¼1β j ¼ 858,

from which we obtain the dimension of the complement:

dim Ec ¼ Ne �
X2n
j¼1

β j ¼ 38 (66)

We can see that, as expected, this dimension (dim Ec ¼ 38) is much smaller than
the dimension of the original state space (Ne ¼ 896). We can also check that it is less
than the theoretical upper bound (2nM ¼ 42), as expected.

6. Conclusions

The recent growth of research on quantum communications and quantum infor-
mation processing opens new challenges. In this chapter, we have shown that matrix

λO λU dimEO,U
λO,λU

�1 any λk or λ ∗k 0

þ1 λ0 ¼ þ1 321

þ1 λ1 or λ ∗1 4

þ1 λ2 or λ ∗2 18

þ1 λ3 or λ ∗
3 32

þ1 λ4 or λ ∗4 32

þ1 λ5 or λ ∗5 18

þ1 λ6 or λ ∗
6 4

þ1 λ7 ¼ �1 321

Table 3.
Joint eigenspaces of O and U for n ¼ 7 and M ¼ 3 solutions located at nodes 2, 8, 9.
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theory concepts, such as JEVD, are powerful tools to propose new theoretical results as
well as efficient simulation algorithms.

In the domain of quantum coding, we have shown how to determine the encoding
matrix of a quantum code from a collection of Pauli errors. On a more speculative note
to be part of future work concerning interception of quantum channels, it might also
be useful to identify the quantum coder used by a noncooperative transmitter.

In the domain of quantum walk search, thanks to JEVD we have proved that there
exists a small subspace of the whole Hilbert space which captures the essence of the
search process, and we have given an algorithm that allows us to check this result by
simulation.
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Chapter 9

Transformation Groups of the
Doubly-Fed Induction Machine
Giovanni F. Crosta and Goong Chen

Abstract

Three-phase, doubly-fed induction (DFI) machines are key constituents in energy
conversion processes. An ideal DFI machine is modeled by inductance matrices that
relate electric and magnetic quantities. This work focuses on the algebraic properties
of the mutual (rotor-to-stator) inductance matrix Lsr: its kernel, range, and left zero
divisors are determined. A formula for the differentiation of Lsr with respect to the
rotor angle θr is obtained. Under suitable hypotheses Lsr and its derivative are shown
to admit an exponential representation. A recurrent formula for the powers of the
corresponding infinitesimal generator A0 is provided. Historically, magnetic
decoupling and other requirements led to the Blondel-Park transformation which, by
mapping electric quantities to a suitable reference frame, simplifies the DGI machine
equations. Herewith the transformation in exponential form is axiomatically derived
and the infinitesimal generator is related to A0. Accordingly, a formula for the product
of matrices is derived which simplifies the proof of the Electric Torque Theorem. The
latter is framed in a Legendre transform context. Finally, a simple, “realistic”machine
model is outlined, where the three-fold rotor symmetry is broken: a few properties of
the resulting mutual inductance matrix are derived.

Keywords: mutual inductance matrix, Blondel-Park transformation, exponential
representation, infinitesimal generator, zero divisors, circulants, broken symmetry

1. Introduction

Three-phase, doubly-fed induction (DFI) machines have a long history [1–4] and
continue to be key constituents in energy conversion processes [5, 6]. Motivation for
modeling a DFI generator comes from the need to deal with intermittency in the
primary energy supply (e.g., the wind field) and with uncertainty in the load (i.e., the
grid). Similarly, the modeling and control of a DFImotor can improve the efficiency
and reliability of electric-to-mechanical work conversion. The equations modeling the
ideal DFImachine have been studied for more than a century. Results in modeling and
control [7–13], including those which derive from numerical simulation, demonstrate
how attention to theDFImachine is being continuously paid. In essence, the ideal three-
phase machine model centers on two matrices, on which this work focuses: the rotor-to-
stator mutual inductance matrix, Lsr :½ �, which depends on the “rotor angle” θr and
characterizes the machine itself, and the Blondel-Park transformation matrix, K :½ �,
191



which depends on another angle and describes a change of variables, from the abcf g
reference frame (Section 2) to the dq0f g reference frame (Section 4). Both matrices,
Lsr :½ � and K :½ �, appear in the Electric Torque Theorem (ETT) which relates mechanical
to electrical variables and as such represents the raison d’être of the DFImachine. Stated
in the abcf g frame, the ETT is a straightforward application of energy balance, once a
Legendre transformation (Section 5.2) has been introduced and co-energy accordingly
defined. Instead, the proof, in fact the translation of the ETT in the dq0f g frame
(Section 5.3), requires all relevant properties of Lsr :½ � and K :½ � to be known. For this
reason, in Section 3 the kernel, the range (Proposition 1), the classical adjoint and the
left zero divisors (Proposition 3) of Lsr :½ � are determined. Derivation benefits from Lsr :½ �
being a circulant matrix [14] (Lemma 1) and from its eigenvalues representing the
discrete Fourier transform of a 3-sequence [15] (Proposition 2). Special attention need
two constant matrices,A0 and its square (Lemma 2), because they relate differentiation
of Lsr with respect to θr to multiplication (Theorem 1). In a suitable subspace of 3, Lsr
admits an exponential representation (Theorem 2) with A0 as infinitesimal generator.
Section 4 is devoted to K :½ �: its structure, as well as its exponential representation with
generator�A0, is inferred by satisfying, in sequence, a list of requirements (Proposition
4 and Theorem 4). The key formula for the product of matrices (Theorem 5) is then
applied to prove the ETT in the dq0f g frame in one step (Theorem 6). An attempt is
finally made in Section 6 to deal with a “realistic”machine model, where the three-fold
rotor symmetry is broken: the b and c rotor axes are misaligned by angles ϵb and ϵc. To
second-order in ϵb and ϵc there exists a constant B which relates differentiation to
multiplication of the approximate inductance matrix (Proposition 7).

2. The ideal doubly-fed induction machine

Definition 1. (Three-phase, ideal DFI machine) [3, 4]. A three-phase DFImachine is
said ideal whenever its stator and rotor windings exhibit three-fold symmetry. More-
over, magnetomotive forces and flux waves created by the windings are sinusoidally
distributed and windings give rise to a linear electric network.

Remark 1. (Neglected phenomena). Higher harmonics, hysteresis, and eddy currents
are excluded by the model. Deviations from three-fold symmetry will be addressed in
Section 6.

Notation. ( abcf g frames). The most natural frames where three-phase stator and
rotor voltages and currents can be represented are the abcf g frames. For example, the
stator currents are an ordered triple which one agrees to represent as a vector

j
!

abcf gs ¼ jas jbs jcs
� �Trs ∈3, (1)

whose components are functions of time t∈T. A similar notation will hold for
other electric quantities. Unless otherwise specified, all vectors are understood in 3.

Hp. (Function class). Dependence of all quantities of interest on time is assumed as
smooth as required.

Definition 2. (Balanced triple). An abcf g current triple is balanced or is a trivial
zero sequence, whenever

ja þ jb þ jc ¼ 0, ∀t∈T: (2)
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Such sequences define the subspace B⊂3, a plane through the origin; the

corresponding notation is j
!

B ∈B.
Notation.
θr t½ �∈ 0, 2π½ Þ is the electric rotor angle at a time t, formed by the rotor ar axis with

respect to the stator as axis.
βr t½ �∈ 0, 2π½ Þ is the electric rotor angle at a time t, formed by d axis with respect to

the rotor ar axis (Section 4).
βs t½ �∈ 0, 2π½ Þ is the electric rotor angle at a time t, formed by d axis with respect to

the stator as axis (Section 4).

j
!0

abcf gr ≔
Nr
Ns

j
!

abcf gr is the stator-referred (ständer-bezogen) vector of rotor currents,
where Nr and Ns are the rotor and stator turns.

A boldface, roman capital denotes a matrix in M Nrow,Ncol½ � of Nrow ≥ 2ð Þ rows
�Ncol ≥ 2ð Þ columns.

a ∗
m,n is the cofactor of entry m, nf g in A∈M N,N½ �, where Nrow ¼ Ncol ¼ N ≥ 2ð Þ.
a ∗
m,n

� �
is the corresponding matrix.

adj A½ � is the matrix adjoint to A∈M N,N½ �, obtained by transposing a ∗
m,n

� �
.

u!)(v! is the dyadic product of the column vector u! by the row vector v!, both ∈3.
13 is the 3� 3 identity matrix.
The end of a Proof is marked by ⊳⊲, that of a general statement or of a Remark

by ◊.
The electrical network equations which describe the dynamics of the three-phase,

ideal DFI machine are well-known [3, 4], as a consequence they are omitted.

3. Group properties of the mutual inductance matrix

By letting φ � 2
3 π, the rotor-referred (läufer-bezogene) form of the mutual induc-

tance matrix is [3, 4]

Lsr θr½ � ¼
cos θr½ � cos θr þ φ½ � cos θr � φ½ �

cos θr � φ½ � cos θr½ � cos θr þ φ½ �
cos θr þ φ½ � cos θr � φ½ � cos θr½ �

2
64

3
75 (3)

Given Lsr θr½ � one defines the stator-referred (ständer-bezogen) rotor-to-stator
mutual inductance matrix

L0sr θr½ �≔
Nr

Ns
LmsLsr θr½ � , (4)

where Lms >0ð Þ is a constant parameter. Hereinafter, the dependence of the
involved matrices and of related quantities on θr will be shown only if mandatory. The
following properties hold because rows two and three of Lsr are right shift-circular
permutations of the first row and because all row-wise (and column-wise) sums of Lrs
vanish.

Proposition 1. (Eigenvalues of Lsr and their implications).

• The eigenvalues of Lsr are μ0 ¼ 0, μ� ¼ 3
2 e
�iθr .
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• det Lsr½ � ¼ 0, ∀θr,

• dim Ker Lsr½ �½ � ¼ 1 and Ker Lsr½ � ¼ j
!

∈3j j1 ¼ j2 ¼ j3
n o

≔Ksr, ∀θr.

• dim range Lsr½ �½ � ¼ 2 and range Lsr½ � ¼ B, ∀θr,

Remark 2. (Orthogonal decomposition of 3). The last two properties in the list translate
the orthogonal decomposition

3 ¼ Ker Lsr½ � ⊕ range Lsr½ �

¼ Ksr ⊕ B

j
! ¼ j

!
Ksr

þ j
!

B

, (5)

where the straight line Ksr : j1 ¼ j2 ¼ j3
� �

is the normal to the plane
B : j1 þ j2 þ j3 ¼ 0

� �
of Eq. (2).

Lemma 1 (Eigenvalues of a permutation matrix, pp. 65–66 of M. Marcus and H.
Minc’s textbook [14]). For a general N ≥ 2ð Þ and for an N �N matrix P, a.k.a.
“circulant”, which results from the right shift-circular permutation of the first row
c0 cN�1 cN�2 … c1½ �, one denotes ϵ≔ ei2π=N and introduces the polynomial ψ :½ � of
degree N � 1 in the complex variable ζ

ψ ζ½ �≔
XN�1
n¼0

cnζn : (6)

The possibly multiple eigenvalues μkj0≤ k≤N � 1f g of P are obtained by letting
ζ ¼ ϵm and evaluating ψ ϵm½ � for m ¼ 1, 2, … ,N. Since ϵm ≔ ei2πm=N, there exists only
one value of m, denoted by ℓ, at which all powers of ϵ appearing in ψ :½ � are equal:
ϵℓ ¼ ϵ2ℓ ¼ ϵ3ℓ ¼ … ¼ ϵ N�1ð Þℓ ¼ 1. Such value is ℓ ¼ N. Therefore

ψ ϵN
� � ¼

XN�1
n¼1

cn ¼ ψ ϵ0
� �

when ℓ ¼ N : (7)

If the additional property

XN�1
n¼1

cn ¼ 0 (8)

is exhibited by the rows of P, then

ψ ϵN
� � ¼ 0 ¼ μ0 : (9)

Such eigenvalue is algebraically (and geometrically) simple.
Remark 3. (Features of ψ :½ �, k and n). The polynomial ψ :½ � shall not be confused with

any of the polynomials annihilated by P. There is no correspondence between the
eigenvalue label k and the ordering of powers induced by m.

Proof of Proposition 1. Since Lsr θr½ � is a circulant matrix of the sequence c0 c2 c1f g
194

Matrix Theory - Classics and Advances



Lsr θ½ � ¼
c0 c2 c1
c1 c0 c2
c2 c1 c0

2
64

3
75 (10)

and

c0 þ c1 þ c2 ¼ 0 , ∀θr ∈ 0, 2π½ � , (11)

then Lemma 1 applies with N ¼ 3. Hence ℓ ¼ 3. In the first place, μ0 is indepen-
dent of θr. Next, one verifies the other two eigenvalues, μ� ¼ 3

2 e
�iθr , are respectively

returned by ψ ϵ½ � and by ψ ϵ2½ ] and do instead depend on θr. The property
dim Ker Lsr½ �½ � ¼ 1 derives from the algebraic simplicity of μ0 ¼ 0. From Eq. (11) one
deduces Ker Lsr½ � ¼ Ksr. The properties of range Lsr½ � are not independent of those of
Ker Lsr½ �: namely, they follow from orthogonality, as highlighted by Eq. (5). ⊳⊲

Proposition 2. (Eigenvalues of a circulant as the discrete Fourier transform of a
3-sequence [15]). Let ϵ be as in Lemma 1. The discrete Fourier transform
b 3ð Þ≔ b0 b1 b2f g of a 3-sequence c 3ð Þ≔ c0 c1 c2f g is obtained, in terms of row
vectors, by

b0 b1 b2ð Þ ¼ c0 c1 c2ð Þ �
1 1 1

1 ϵ ϵ2

1 ϵ2 ϵ

2
64

3
75≔ c0 c1 c2ð Þ � T : (12)

The circulant P c 3ð Þ� �
assembled from c 3ð Þ is diagonalized by T according to

P c 3ð Þ
h i

¼ T�1 �
b0 0 0

0 b1 0

0 0 b2

2
64

3
75 � T : (13)

Application to Lsr of Eq. (10) requires a permutation of the first row:

μ0 μ1 μ2ð Þ ¼ c0 c2 c1ð Þ �
1 0 0

0 0 1

0 1 0

2
64

3
75 � T : (14)

Lemma 2 (The matrix A0 and its properties). Let the matrix A0 be defined by

A0 ≔
1ffiffiffi
3
p

0 �1 1

1 0 �1
�1 1 0

2
64

3
75 : (15)

Its properties are the following.

• (Determinant, rank, eigenvalues, eigenspaces).

detA0 ¼ 0 ; rank A0½ � ¼ 2 , (16)

λ0 ¼ 0 , λ1 ¼ �i , λ2 ¼ þi : (17)
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There is an eigenspace of dimension one, X0 A0½ �, which corresponds to λ0:

X0 A0½ � ¼ Ker A0½ � ¼ Ker Lsr½ � ¼ Ksr: (18)

• (Left zero divisors). The constant, nontrivial left zero divisors of A0 are given by
dyads

Z c!
h i
¼ c!Þð1! (19)

where ck, k ¼ 1, 2, 3, are real constants with ck 6¼ 0 for at least one k.

• (Dyadic representation). The matrix A0 admits no “algebraic” dyadic
representation of the form

A0 ¼ a!Þðb! falseð Þ (20)

with constant ak, bk ∈, k ¼ 1, 2, 3.

• (Sign reversal). There exists no left zero divisors of A0 which, added to A0,
reverses its sign.

• (Recurrent formula for powers of A0). Given A0 and

A2
0 ¼ �13 þ

1
3
1
!Þð1!, (21)

the powers of A0 are obtained from

An
0 ¼ �1ð Þ1þ n�3ð Þ%4ð Þ=2A2� n�2ð Þ%2

0 , n≥ 3, (22)

where n� 3ð Þ%4 stands for the remainder from integer division of n� 3ð Þ by 4
and the “/” (slash) denotes division between integers; similarly, n� 2ð Þ%2 stands for
the remainder from integer division of n� 2ð Þ by 2.

Proof of Lemma 2. The properties described by Eqs. (16)-(19) are immediately
verified, as well as the nonexistence of an algebraic dyadic representation. The state-
ment about sign reversal is proved by contradiction. To obtain the recurrent formula
for powers of A0 one computes A3

0 (¼ �A0) and A4
0 (=�A2

0), then one examines the
higher powers A0 and the sequence formed by their signs. Since the sequence has
period 4 and reads ��þþ��þþ⋯, then the exponents of both A0 and �1ð Þ in
Eq. (22) can be determined. ⊳⊲

Remark 4, to Lemma 2.

• Let a!Þ in Eq. (20) be replaced by ∇Þ, then there exists a C1, divergence-free

vector field f
!

giving rise to the “differential” dyadic representation of A0

A0 ¼ 1ffiffiffi
3
p ∇Þð f!: (23)

The system of first-order linear partial differential equations to which f
!

is the
solution is obtained by comparing like terms in the arrays.
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• As already noticed in the proof, A0 cannot be a left zero divisor of itself. (In fact,
A2

0 is given by Eq. (21)).

• Obviously, there is no way of including n ¼ 0 in any recurrent formula for the
powers of A0, of which Eq. (22) is an example because det A0½ � ¼ 0.

• As one can easily verify, the eigenvalues of A2
0 are λ0 ¼ 0, λ1 ¼ �1. The latter has

algebraic multiplicity α1 ¼ 2 and geometric multiplicity γ1 ¼ 1. As a consequence,
its eigenspace, X 1 A2

0

� �
, not only has a dimension α1 � γ1 þ 1 ¼ 2 but complies with

X 1 A2
0

� � ¼ B (24)

as well. In other words, by recalling Eqs. (5), (18), and (21),

A2
0 ¼ �13↾B or A2

0 � ψ! ¼ �ψ!B, ∀ψ!∈3 (25)

i.e., A2
0 coincides with �13 restricted to the subspace B. ◊

Proposition 3. (The matrix Lsr :½ �: trigonometric decomposition and classical adjoint; the
left zero divisors of Lsr :½ �, their kernel and range).

• (The matrices C and S). Lsr θr½ � is a linear combination of trigonometric functions
according to

Lsr θr½ � ¼ C cos θr½ � þ S sin θr½ �, (26)

where C and S are the constant, 3� 3 matrices

C ¼ 3
2
13 � 1

2
1
!Þð1! ; S ¼

0 �1 1

1 0 �1
�1 1 0

2
64

3
75

ffiffiffi
3
p

2
: (27)

• (Relations between A0, C and S).

C ¼ � 3
2
A2

0, S ¼ 3
2
A0: (28)

• (The classical adjoint matrix). The classical adjoint to Lsr θr½ � (� transpose of the
cofactor matrix) is

adj Lsr θr½ �½ � ¼ 3
4
1
!Þð1! , ∀θ∈ 0, 2π½ � : (29)

• (Left divisors as dyads). If f k :½ �, k ¼ 1, 2, 3, denote real-valued functions of class
CM 0, 2π½ �ð Þ (for some M), one of which, at least, does not vanish identically, then
a left zero divisor Z (linker Nullteiler) of Lsr is a rank one dyad

Z f
!

θ½ �
h i

¼ f
!

θ½ �Þð1! (30)

forming an algebra Zf g � ℨ.

• (Kernel of the Z’s).
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Ker Z½ � ¼ B , ∀Z∈ℨ: (31)

Proof of Proposition 3. The identification of C and S follows from expanding the
cos :� 2

3 π
� �

entries in Lsr. In order to determine adj Lsr½ � one starts from a relation
which is one of the many formulas due to Laplace [16]

adj A½ � �A ¼ det A½ �1N ¼ A � adj A½ � (32)

and holds for a general A∈M N �N½ �; then one recalls det Lsr½ � ¼ 0 and the θr-
invariance of μ0 of Eq. (9): one can thus compute the classical adjoint to either
constant matrix, C or S, whichever is simpler to deal with; the result is the dyad on the
right side of Eq. (29), a result which holds ∀θr. The search for left zero divisors of Lsr
as dyads like that of Eq. (30) is suggested by Eqs. (29) and (32) because adj Lsr½ � must
be a zero divisor of Lsr. The most general form of a left zero divisor Z is inferred from
Eq. (11): since all column-wise sums of Lsr vanish, the columns of Z must be equal.
Therefore such divisor, if non-trivial, has rank one and is obtained from the dyadic
product of Eq. (30). Finally, Eq. (32) and the orthogonal decomposition Eq. (5) imply

Ker adj Lsr½ �½ � ¼ Ker Z½ � ¼ range Lsr½ � ¼ Bð Þ : (33)

Ker Lsr½ � ¼ range adj Lsr½ �½ � ¼ range Z½ � ¼ Ksrð Þ : (34)

⊳⊲
Remark 5. (Duality; divisors; other properties of Lsr).

• From Eqs. (32–34) one says Lsr and adj Lsr½ � are dual to each other.

• The constant, nontrivial left zero divisors of Lsr are those of Eq. (19). By
consistency, the matrices C and S of Eq. (26) not only have the same classical
adjoint as Lsr θr½ � has but have all and the same zero divisors, because Eq. (26)
holds ∀θr.

• Right zero divisors are obtained by transposing the left ones.

• Nonexistence of the representation of Eq. (20) prevents A0 it from being a left
zero divisor of Lsr :½ �. Nor can A0 be, as Eqs. (28) and (22) show, a divisor of either
C or S taken separately.

• If Lsr stands for the subspace of functions f
!

:½ �∈ C0 0, 2π½ �ð Þ� �3
complying with

∮Lsr θr½ � � f
!

θr½ �dθr ¼ 0
!
, and if a kð Þ

m , m ¼ 0, 1, 2,⋯, b kð Þ
m , m ¼ 1, 2,⋯, are the cosine

and, respectively, the sine Fourier coefficients of the (real-valued) components

f k :½ �, k ¼ 1, 2, 3 of f
!

:½ �, then

f
!

∈Lsr⇔ a 1ð Þ
1 ¼ a 2ð Þ

1 ¼ a 3ð Þ
1

n o
and b 1ð Þ

1 ¼ b 2ð Þ
1 ¼ b 3ð Þ

1

n on o
: (35)

◊
Remark 6. (The physical meaning of Lsr, C and S). As Eq. (5) suggests, given any

instantaneous current vector j
!

t½ �∈3, left multiplication by Lsr θr t½ �½ � returns a bal-
anced current triple j

!
B t½ �∈B. This follows from the three-fold symmetry of the ideal
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DFI machine, mirrored by the structure of Lsr :½ �. Moreover, the C term of Eq. (26)
represents the opposite of reactive torque, whereas the S term represents active
torque.◊

Theorem 1. (Differentiation of Lsr with respect to θr). Let A0 and Z c!
h i

be respec-

tively given by Eqs. (15) and (19). Then the derivative of Lsr with respect to θr is the
set-valued map

A0 þ Z c!
h i� �

� Lsr θr½ �∈ ∂Lsr

∂θr

� �
θr½ �: (36)

Notation: a convenient notation is ∂Lsr
∂θr

� �
θr½ � �M θr½ �.

Proof of Theorem 1. Differentiation of Lsr θr½ � as represented by Eq. (26), and the
use of Eq. (28) yield

∂Lsr

∂θr

� �
θr½ � ¼ 3

2
A0 cos θr½ � þ 3

2
A2

0 sin θr½ �: (37)

One seeks for a constant matrix B1 which complies with

3
2
A0 cos θr½ � þ 3

2
A2

0 sin θr½ � ¼ B1 � C cos θr½ � þ B1 � S sin θr½ �: (38)

The application of Eq. (22) leads to

B1 ¼ A0: (39)

Then, the whole set of constant matrices B complying with ∂Lsr
∂θr

B � Lsr is obtained by

adding to B1 a left zero divisor Z c!
h i

as of Eq. (19)

B ¼ A0 þ Z c!
h i

: (40)

The result justifies the notation for ∂Lsr
∂θr

of Eq. (36) as a set-valued map. ⊳⊲

The above Eq. (36) means ∂Lsr θr½ �
∂θr
� j
!¼ A0 þ Z c!

h i� �
� Lsr θr½ � � j

!
, ∀ j
!

∈3. In spite

of this last relation, the search for an exponential representation of Lsr :½ � and for a one-
parameter (θr) group acting on the whole of 3 is ill-posed. Namely, Lsr 0½ � is not
invertible, hence one cannot normalize Lsr by Lsr 0½ � and no unit element of the group
can be defined. To a greater extent, the search for a generator for the group would
make no sense. Nonetheless, an exponential representation is obtained in the
subspace B.

Theorem 2. (Exponential representations on B). If j
!

∈B then the following hold.

Lsr θr½ � � j
!¼ 3

2
eθrA0 � j

!
, ∀ j
!

∈B (41)

and

M θr½ � � j
!¼M 0½ � � eθrA0 � j

!
, ∀ j
!

∈B (42)
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with

M 0½ � ¼ 3
2
A0: (43)

Proof of Theorem 2. A matrix J θr½ � is sought for, which, like Lsr θr½ �, splits into a
cos :½ � and a sin :½ � term as in Eq. (26) and, unlike Lsr :½ �, satisfies J 0½ � ¼ 13. As Eqs. (28)
suggest, one solution is

J θr½ � ¼ 13 cos θr þ 2
3
S sin θr ¼ 2

3
Cþ 1

2
1
!
�

1
!� �

cos θr þ 2
3
S sin θr :

�
(44)

Next, one requires θr-differentiation to coincide with the multiplication of J :½ � by a
constant matrix H

∂J
∂θr

� �
θr½ � ¼ H � J θr½ � : (45)

By identifying terms like trigonometric functions one obtains the pair

H ¼ 2
3
S ;

2
3
H � S ¼ �13

� �
i:e: H2 � j

!¼ �13 � j
!

, ∀ j
!

∈B
n o

: (46)

One solution, modulo left zero divisors, comes from the properties of A2
0 in

Eq. (25):

H ¼ A0 : (47)

Hence J θr½ � ¼ eθrA0 . The proposed representation of Lsr :½ � is

Lsr θr½ � ¼ 3
2
eθrA0 � 1

2
1
!Þð1! cos θr : (48)

Consistency with ∂Lsr
∂θr

:½ � implies

∂Lsr

∂θr

� �
θr½ � ¼ 3

2
A0 � J θr½ � þ 1

2
1
!Þð1! sin θr : (49)

Since j
!

∈B, then the rightmost dyads in Eqs. (48) and (49) return 0
!
when right

multiplied by j
!
. Replacing A0 in Eq. (47) by the B of Eq. (40) does not change the

results (Eqs. (48) and (49)) because

eθrZ c!½ � � j
!¼ 0

!
, ∀ j
!

∈B , ∀Z c!
h i

∈ℨ : (50)

⊳⊲
Theorem 3. (Symmetry properties).

LTrs
sr θr½ � ¼ Lsr �θr½ � (51)
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MTrs θr½ � ¼ �M �θr½ � (52)

Lsr, A0½ � ¼ 0: (53)

Proof of Theorem 3. The first two relations are immediate. The third one follows
from the representation of Lsr as linear combination of powers of A0 according to
Eqs. (26) and (28). ⊳⊲

4. The Blondel-Park transformation and the rotation group

4.1. Axiomatics of the transformation

The Kirchhoff voltage and current laws bring redundancy into the abcf g frame
representations. In order to remove said redundancy, another frame, called dq0f g, is
introduced, where only two components of a vector shall matter, the direct one, d,
and the quadrature component, q.

Definition 3. (The dq0 frame). Let dq0f g denote a reference frame for electric
quantities of axes d and q, subject to five specifications.

d:1Þ The new frame shall be suitable to represent both stator-referenced and rotor-
referenced quantities.

d:2Þ The component of a stator-referenced quantity with respect to both the direct
or d axis and the stator as axis shall be represented by the same function of angle,
evaluated at arguments which differ by βs. Similarly for variables pertaining to the
rotor ar: the phase difference shall be βr.

d:3Þ The above angles are related by

βs ¼ βr þ θr: (54)

d:4Þ The quadrature or q axis shall be orthogonal to d in the L2 0, 2π½ �ð Þ sense: if wd :½ �
and wq :½ � are the d- and q-components of a (generally complex-valued) signal w! :½ �
which depends on η, then:

Ð 2π
0 wd η½ � ∗wq η½ �dη ¼ 0.

d:5Þ The third entry w0 :½ � of a vector w! :½ � in the dq0f g frame shall be equal to the
sum of its abcf g components. (For this reason, such a sum is called “zero sequence”,
or Nullfolge, and may be trivial or not).

Problem 1. (The abcf g to dq0f g transformation problem [3, 4, 6]). Find a transfor-
mation K :½ � that maps a vector w!abc (a physical quantity) from the abcf gs and,
respectively, the abcf gr frames to a vector w!dq0 in the dq0f g frame, as specified by
Definition 3 and

K:1Þ is invertible and linear;
K:2Þ conserves instantaneous electric power;
K:3Þ has the same functional form for both stator and rotor quantities,
K:4Þ depends at most on one real parameter, an “electric angle”, which may be

different for stator or rotor quantities;
K:5Þ is of class C1 at least with respect to that parameter;
K:6Þmagnetically decouples flux linkages [6].
Proposition 4. (Matrix representation). A solution to Problem 1 which applies to a

three-phase machine exists and is the Blondel-Park [1, 2, 7] transformation K :½ �
201

Transformation Groups of the Doubly-Fed Induction Machine
DOI: http://dx.doi.org/10.5772/intechopen.102869



K η½ �≔
ffiffiffi
2
3

r cos η½ � cos η� φ½ � cos ηþ φ½ �
� sin η½ � � sin η� φ½ � � sin ηþ φ½ �

1ffiffiffi
2
p 1ffiffiffi

2
p 1ffiffiffi

2
p

2
6664

3
7775, (55)

where η stands for an electrical angle. One has

w!dq0 t½ � ¼ K η t½ �½ � �w!abc t½ � (56)

and w0 t½ � ¼ wa þ wb þwcð Þ t½ �, ∀t and, if w! t½ � has a period 2π, ∮wd t½ �wq t½ �dt ¼ 0.
Proof of Proposition 4. The structure of K :½ � can be inferred by satisfying, in

sequence, requirements K:1, K:2, K:6, d:4, d:5. The Ansatz

K η½ � ¼ K0 � eηF, (57)

where K0 � K 0½ � and F is a constant matrix, is shown to be consistent with all
requirements, hence the entries of K0 and F can be identified. No further details can
be provided for reasons of space. ⊳⊲

Remark 7 to Proposition 4. (On the exponential representation of K η½ �). As a result of
work at proving Proposition 4,K η½ � defines a one-parameter (η) group of unitary (power
preserving) transformations, represented by Eq. (57). Since K0 is invertible, then

R η½ �≔K�10 �K η½ � (58)

and R 0½ � is the unit element. The existence of the composition law is implied by the
Ansatz. Obviously, det K η½ �½ � ¼ 1 implies det R η½ �½ � ¼ 1, ∀η. ◊.

Theorem 4. (Infinitesimal generator). The infinitesimal generator F of K :½ � is K0-
similar to the opposite of the infinitesimal generator A3 of rotations about the x̂3 axis
of 3 according to

F ¼ �K 0½ ��1 �A3 �K 0½ � (59)

and is related to the A0 of Eq. (41) by

F ¼ �A0: (60)

Proof of Theorem 4. From Eq. (55)

dK η½ �
dη
¼

ffiffiffi
2
3

r � sin η½ � � sin η� 2π
3

� �
� sin ηþ 2π

3

� �

� cos η½ � � cos η� 2π
3

� �
� cos ηþ 2π

3

� �

0 0 0

2
666664

3
777775

(61)

and the constant matrix B satisfying dK η½ �
dη ¼ B �K! η½ � reads

B ¼
0 1 0

�1 0 0

0 0 0

2
64

3
75 ¼ �A3 : (62)
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Next, the infinitesimal generator of R :½ � Eq. (58) is identified according to

dR η½ �
dη
¼ K�10 � B �K η½ � ¼ K�10 � B �K0 � R η½ �≔F � R η½ �: (63)

In other words, the matrix F≔K�10 � B � K0 is the sought for infinitesimal generator
of the group R :½ �. This proves Eq. (59). The relation between F and B is to be expected
(e.g., § 2.5 of Altmann’s textbook [17]). Finally, Eq. (60) follows from direct
verification. ⊳⊲

4.2. The product of matrices formula

Theorem 5. (The formula). Equations (54), (57) and (42) imply

K βs½ � �
∂Lsr

∂θr

� �
θr½ � � K βr½ ��1 ¼ K0 �M 0½ � �K�10 ¼

3
2
A3 : (64)

Proof of Theorem 5. The proof branches out according to which current triple is
being dealt with.

• (Balanced current triple � trivial zero sequence). Let j
!

abcf g ∈B, then, by Eqs. (42),
(57), and (60) and applying transposition

K βs½ � �
∂Lsr

∂θr

� �
θr½ � �K βr½ ��1 ¼ K βs½ � �M θr½ � �K βr½ ��1 ¼ K0 � e�βsA0 �M βr þ θr½ � �K�10 ¼

¼ K0 �M �βs þ βr þ θr½ � �K�10 ¼ K0 �M 0½ � �K�10 ¼
3
2
A3:

(65)

• (General current triple). For general j
!

abcf g ∈3 no exponential representation is
available. In analogy with Eq. (26) one identifies the constant matrices P,Q and

R giving rise to K η½ � ¼
ffiffi
2
3

q
P cos ηþ

ffiffi
2
3

q
Q sin ηþ 1ffiffi

3
p R. The productM θr½ � �K�1 βr½ �,

after simplification, turns out to be an affine function of cos θr þ βr½ � and
sin θr þ βr½ � which in turn depend on angle sums: products of the involved
matrices hide an addition formula for angles on which trigonometric functions
depend. Taking Eq. (54) into account, left multiplication by K βs½ � leads to a
polynomial in cos βs½ � and sin βs½ � with coefficients like P � C �Q Trs, R � C � PTrs

and so forth. All βs-dependent terms in the polynomial disappear. Eventually, the
only non-zero term is 2

3P � C �Q Trs ¼ 3
2A3, a constant. ⊳⊲

Remark 8. (Prior results). To the best of the authors’ knowledge, the role of the
Blondel-Park transformation in realization theory was pointed out by J.L. Willems [8],
who derived the exponential representation of K :½ � while obtaining a time-invariant
system from time-varying electric machine equations. The group properties of K :½ �
have been known for some time (e.g., [9], p. 1060). Instead, the relation of F to A0, at
least in the form of Eq. (60), the relation between exponential representations of K :½ �
and Lsr :½ �, and the roles played by the left zero divisors of Lsr :½ � and by the subspace B,
seem to have been overlooked so far.◊
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5. Electric torque

5.1. The electric torque law in the abcf g frame

From the principles of analytical mechanics, the following relation can be deduced
[3, 4] for the ideal DFI machine in generator mode. The relation involves previously
defined quantities, namely stator and rotor currents and a machine parameter, the
L0sr :½ � of Eq. (4), and a quantity, the electric torque T el,g, which has not yet been
mentioned herewith. As a consequence, the relation can be regarded as the physical
“law” which defines T el,g.

Definition 4. (Electric torque in the abcf g frame). Let the ideal DFI machine have P

poles and be described by current vectors j
!

abcf gs and j
!0

abcf gr. The electric torque in
generator mode is defined by

T el,g ¼ �P
2

j
! Trs

abcf gs �
∂L0sr θr½ �
∂θr

� j
!0

abcf gr : (66)

The relevance of Eq. (66) sits in the link it establishes between electric quantities and
a mechanical one: in generator mode, it is the torque produced by, usually a working
fluid, on the DFImachine shaft which, through a suitably excited rotor, gives rise to
electric currents in the stator coils; in motor mode power flow frommachine coils to the
shaft is reversed. All machine control laws rely on Eq. (66) in order to be implemented.

5.2. Co-energy and the Legendre transform

Ansatz. (Internal energy). If S is entropy and T is temperature, then the first
differential of internal energy U of an electric machine with one mechanical degree of

freedom, θm, at constant volume V and numbers of moles N
!
, is

dU ¼ TdSþ j
!� dλ! � T el,mdθm, (67)

where λ
!
is the vector of flux linkages, T el,m is mechanical torque in motor mode

(opposite to that in generator mode), and θm is the shaft angle.
A consequence of the Ansatz is the following.
Proposition 5. (Relation between motor torque and internal energy).

T el,m ¼ � ∂U
∂θm

� �

S,V,N
!
,λ
! : (68)

Definition 5. (Legendre transform of energy with respect to flux linkage). Let Λ⊂ IR3

be a subset where U is at least twice differentiable and convex with respect to λ
!
and

let p! denote the variable conjugate to λ
!
. Then the Legendre transform Y of energy U

with respect to λ
!
is defined by

Y S,V,N
!
, p!, θm

h i
≔ sup

λ
!
∈Λ

p! � λ! � U S,V,N
!
, λ
!
, θm

h i� �
: (69)
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Remark 9. (Conjugate variables; motor torque; differential geometric setting).

• p! coincides with j
!

and one has

Y þU ¼ j
!� λ!: (70)

• Motor torque can thus be rewritten as

T el,m ¼ ∂Y
∂θm

� �

S,V,N
!
, j
!: (71)

• The extensive variables on which energy depends are S, N
!
, λ
!
and θm, and as such

are coordinates of the dynamical system’s manifold N . Instead, the intensive

variables T, μ! (vector of chemical potentials), j
!

and T el,m belong to the system’s
co-tangent bundle T ∗N [11, 13]. Upon a multivariate Legendre transformation,
as many extensive variables can be replaced by their conjugates, which are
intensive variables.◊

Remark 10. (Y vs. W 0
fld). By identifying U with “the energy Wfld stored in the

coupling fields” of an electric machine having P poles, the rotor of which forms the
mechanical angle θm in the stator frame, one has the following relations:

• the electrical angle θr is related to the mechanical angle θm by θr ¼ P
2 θm

(multiplier effect of P);

• usually [3, 4] T el,m is related to “co-energy” W 0
fld j
!

abcf gs, θr
h i

by

T el,m ¼
∂W 0

fld j
!

abcf gs, θr
h i

∂θm
¼ P

2

∂W 0
fld j
!

abcf gs, θr
h i

∂θr
: (72)

In other words,

W 0
fld ¼ Y

���
S,V,N

!
, j
! : (73)

◊
Remark 11. (Models of real machines). The relation between Y and torque applies to

any machine and can, in principle, deal with any functional dependence between λ
!

and j
!
. Nonlinear λ

!
j
!h i

relations [9, 10, 12] become of interest when saturation of the

magnetic circuit has to be modeled. Hysteresis and the related energy losses pose
further difficulties. ◊

5.3. The electric torque theorem in the dq0f g frame

Translating Eq. (66) into the dq0f g relies on relations between K :½ �-transformed
current vectors which involve all three angles, βs , βr , θr. Translation is made
remarkably simpler by Theorem 5.
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Theorem 6. (Electric torque in the dq0 frame). For an ideal DFImachine, the electric
torque in generator mode and in the dq0f g-frame is the following bilinear form for the
matrix A3:

T el,g ¼ �P
2

3
2

Nr

Ns
Lms jds jqs ✓
h i

�A3 �
j0dr
j0qr
✓

2
64

3
75 (74)

which simplifies to

T el,g ¼ þP
2

3
2

Nr

Ns
Lms jds j0qr � jqs j0dr

� �
: (75)

Proof of Theorem 6. It suffices to combine Eqs. (66), (56) and (64). The matrix A3

makes the 3rd entries of current vectors not relevant (✓). ⊳⊲

6. A “realistic”machine model

Real machines deviate from the hypotheses which have led to the relatively simple
form of the equations discussed so far. A satisfactory model shall account for one or
more of the following features:

(a) the effects of tooth saliency and slots on the linked fluxes,

(b) deviations from three-fold symmetry,

(c) the instantaneous dependence of self-and mutual inductances on current,
when the magnetic material is not linear,

(d) memory effect in a non-linear, hysteretic magnetic material.

Models which, step-wise, account for features að Þ to dð Þ are “realistic” in the sense
of Fitzgerald and Kingsley [3]. Features listed under að Þ are relatively simple to model
if three-fold symmetry is assumed: very briefly, higher harmonics are introduced
which, because of linearity, can be dealt with separately. Instead, broken symmetry
may be of some interest: the model outlined herewith focuses on feature bð Þ and
consists of constructing a “realistic” mutual inductance matrix, then determining its
algebraic (determinant, eigenvalues) and analytical (θr-derivative) properties.

Definition 6. (Broken symmetry in the rotor). At fixed θr the rotor ar axis forms
angles θr, θr � φ and θr þ φ with the as, bs and cs axes respectively. With ϵb and ϵc
satisfying

0≤
3ϵb
2π

����
���� ,

3ϵc
2π

����
����< < 1 (76)

the rotor br axis forms angles θr þ φþ ϵb, θr þ ϵb and θr � φþ ϵb with the as, bs
and cs axes respectively. Similar relations hold for the rotor cr axis in terms of ϵc.

As a consequence the mutual inductance matrix is
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Lsr θr; ϵb, ϵc½ � ¼
cos θr½ � cos θr þ φþ ϵb½ � cos θr � φþ ϵc½ �

cos θr � φ½ � cos θr þ ϵb½ � cos θr þ φþ ϵc½ �
cos θr þ φ½ � cos θr � φþþϵb½ � cos θr þ ϵc½ �

2
64

3
75 : (77)

Because of broken symmetry, Lsr θr; ϵb, ϵc½ � is no longer circulant. However, its
column-wise entries add to zero and the following properties hold.

Proposition 6. (Kernel, adjoint, zero divisors for general ϵb and ϵc).

Ker Lsr θr; ϵb, ϵc½ �½ � ¼ Ksr , Z f
!

θ½ �
h i

¼ f
!

θ½ �Þð1! ,

adj Lsr θr; ϵb, ϵc½ �½ �∈ℨ , Ker adj Lsr θr; ϵb, ϵc½ �½ �½ � ¼ B :
(78)

To second order in ϵb and ϵc, Lsr θr; ϵb, ϵc½ � is approximated by

Lsr θr; ϵb, ϵc½ �≃G 2ð Þ
ϵb,ϵc ¼

¼ C 2ð Þ
ϵb,ϵc cos θr½ � þ S 2ð Þ

ϵb,ϵc sin θr½ � þ C 1ð Þ
ϵb,ϵc cos θr½ � þ S 1ð Þ

ϵb,ϵc sin θr½ � ,
(79)

where the four new matrices have to be defined. C 2ð Þ
ϵb,ϵc and S 2ð Þ

ϵb,ϵc are obtained from
C and S of Eq. (27) when their second columns are multiplied by 1� 1

2 ϵ
2
b

� �
and their

third columns are multiplied by 1� 1
2 ϵ

2
c

� �
. Similarly, C 1ð Þ

ϵb,ϵc and S 1ð Þ
ϵb,ϵc derive from

splitting the cos θr½ � and sin θr½ � terms in the following matrix

0 �ϵb sin θr þ φ½ � �ϵc sin θr � φ½ �
0 �ϵb sin θr½ � �ϵc sin θr þ φ½ �
0 �ϵb sin θr � φ½ � �ϵc sin θr½ �

2
64

3
75 C 1ð Þ

ϵb,ϵc cos θr½ � þ S 1ð Þ
ϵb,ϵc sin θr½ �: (80)

As a consequence, a property can be stated about the derivative of G 2ð Þ
ϵb,ϵc .

Proposition 7. (Differentiation as multiplication). At least to second order in ϵb and
ϵc, there exists a matrix B, independent of θr, by which the differentiation of G 2ð Þ

ϵb,ϵc is
represented as multiplication

∂G 2ð Þ
ϵb,ϵc

∂θr

 !
θr½ � � j
!¼ B �G 2ð Þ

ϵb,ϵc θr½ � � j
!

, ∀ j
!

∈3 : (81)

Such matrix complies with

B2 � C 2ð Þ
ϵb,ϵc þ C 1ð Þ

ϵb,ϵc

� �
¼ � C 2ð Þ

ϵb,ϵc þ C 1ð Þ
ϵb,ϵc

� �
: (82)

In particular, to 1st order in ϵb and ϵc

B2 � Cþ C 1ð Þ
ϵb,ϵc

� �
¼ � Cþ C 1ð Þ

ϵb,ϵc

� �
: (83)

7. Conclusion

In view of the large amounts of power converted from electric to mechanical or
vice-versa, mathematical methods for electric machinery have to undergo continuous
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investigation and, possibly, improvement. Model errors, although “small” in relative
terms, may translate into large amounts of mishandled power. To date, control
methods and the corresponding algorithms are satisfactory in the low frequency (tens
of Hz) range: better performance is needed to deal with the higher (thousands of Hz)
frequency components of a transient [18]. This work has focused on the basics of the
ideal DFI machine model, where linearity and three-fold symmetry are the main
features. As a result, the electric torque theorem has been stated in the dq0f g frame

without any restriction on the j
!
’s. The product of matrices formula has accordingly

simplified the proof. Some of the properties derived in the ideal case have been shown
to hold even if symmetry is broken.
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Chapter 10

A New Approach to Solve
Non-Fourier Heat Equation via
Empirical Methods Combined with
the Integral Transform Technique
in Finite Domains
Cristian N. Mihăilescu, Mihai Oane, Natalia Mihăilescu,
Carmen Ristoscu, Muhammad Arif Mahmood
and Ion N. Mihăilescu

Abstract

This chapter deals with the validity/limits of the integral transform technique on finite
domains. The integral transform technique based upon eigenvalues and eigenfunctions
can serve as an appropriate tool for solving the Fourier heat equation, in the case of both
laser and electron beam processing. The crux of the method consists in the fact that the
solutions by mentioned technique demonstrate strong convergence after the 10 eigen-
values iterations, only. Nevertheless, the methodmeets with difficulties to extend to the
case of non-Fourier equations. A solution is however possible, but it is bulky with a weak
convergence and requires the use of extra-boundary conditions. To surpass this difficulty,
a newmix approach is proposed with this chapter resorting to experimental data, in order
to support a more appropriate solution. The proposedmethod opens in our opinion a
beneficial prospective for either laser or electron beam processing.

Keywords: non-Fourier equation, integral transforms technique, eigenfunctions and
values, experimental data

1. Introduction

1.1 Mathematical background

The heat equation can be solved in a simpler mode via the Fourier heat equation,
which involves the propagation of heat waves with infinite speed. This hypothesis is in
particular valid for many applications, such as laser-metal interaction in the frame of
two-temperature model [1, 2].

The solution of Fourier equations can be inferred using different mathematical
techniques via Green function, integral, Laplace transform, or complex analysis. The
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predictions of the solutions given by the mentioned methods are of analytical or
semianalytical nature and confirm the experimental data for certain situations such as
laser–metal interaction.

One basically assumes that the heat waves propagation speed is inversely propor-
tional to the square root of the relaxation time. A smaller relaxation time leads to higher
heat speed waves, resulting in a good Fourier approximation. If one requires however a
more accurate description of experimental data, one should introduce a more exact
method to solve the non-Fourier equation involving a finite heat wave speed.

A mixed solution of the non-Fourier equation combines the theoretical method of
finite integral transforms with information from experimental data. Thus, two addi-
tional boundary conditions can be imposed, which will lead to a semianalytical solu-
tion of the non-Fourier equation. The finite domains of the integral transform method
for Fourier equations are eigenfunctions and values, which reach after 10 iterations a
quite conform solution for the Fourier equation [3–6]. This method is applied to the
non-Fourier equation, and the final form is obtained, with the support of experimen-
tal results.

A new heat transfer model was adopted in order to unify the thermal field distri-
bution in both laser and electron beam processing. An analytical solution using non-
Fourier heat equation has been developed corresponding to boundary conditions in
the case of material processing. The model has been compared with the experimental
data obtained using an in-house developed facility. A simplified and easy-to-use
model via MATHEMATICA software stands for the novelty of the current work.

2. Non-Fourier equation

The non-Fourier equation is hyperbolic and can be written as:

∂
2T
∂r2
þ 1

r
∂T
∂r
þ ∂

2T
∂z2
þ 1
r2

∂
2T
∂φ2 �

1
γ

∂T
∂t
� τ0

γ

∂
2T
∂t2
¼ �P r,φ, z, tð Þ

K
: (1)

Here,T is target temperature, r is the radial coordinate, z is the spatial coordinate
on the direction of laser beam propagation, t is time, τ0 is relaxation time, and γ is
thermal diffusivity. P stands for the source term, φ is the angular coordinate, while K
is the target thermal conductivity. For a simple general solution, one assumes a
cylindrical target with angular symmetry, under irradiation with a Gaussian laser
beam with the center at r = z = 0. In this case, the temperature does not depend on φ:

∂T
∂φ
¼ 0: ¼ >T ¼ T r, z, tð Þ: (2)

The corresponding boundary conditions are:

K
∂T r, z, tð Þ

∂r
jr¼b þ hT b, z, tð Þ ¼ 0: (3)

Here r = b is the cylinder radius, while h is the heat transfer coefficient. The
boundary conditions for the z coordinate are:

K
∂T r, z, tð Þ

∂z
jz¼0 � hT r, 0, tð Þ ¼ 0, (4)
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and

K
∂T r, z, tð Þ

∂z
jz¼a þ hT r, a, tð Þ ¼ 0, (5)

where a is the cylinder length. We will pass on the effective solution of the
equation. The operator Dr was defined as:

Dr ¼ ∂
2

∂r2
þ 1

r
∂

∂r

� �
: (6)

This applies to Eq. (1) with the boundary conditions:

∂
2Kr

∂r2
þ 1

r
∂Kr

∂r
þ μ2Kr ¼ 0, (7)

and

K
∂Kr r, z, tð Þ

∂r
jr¼b þ hKr b, z, tð Þ ¼ 0: (8)

Eqs. (7) and (8) corroborate to Eq. (9):

h
K
J0 μibð Þ � μiJ1 μibð Þ ¼ 0: (9)

One can deduce, based upon the theory of finite integral transforms, the
eigenfunction ~K r r, μið Þ corresponding to the eigenvalue μi:

~Kr r, μið Þ ¼ JO μirð Þr 1
Ci

, (10)

where the normalization constant is given by:

Ci rð Þ ¼
ðb
0
r K2

r r, μið Þdr ¼ b2

2μ2i

h2

k2
þ μ2i

 !
J20 μibð Þ: (11)

One defines:

~T μi,z, t
� � ¼ 1

Ci

ðb
0
T r, z, tð Þr J0 μi rð Þdr, (12)

and

~P μi, z, tð Þ ¼ 1
Ci

ðb
0
P r, z, tð Þ r J0 μirð Þdr: (13)

Eq. (1) in this case converts to:

�μ2i � ~T þ
∂
2~T
∂z2
� 1
γ

∂~T
∂t
� τ0

γ

∂
2~T
∂t2
¼ �

~P
K
: (14)
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One obtains for z coordinate via similar mathematical calculation:

∂
2Kz

∂z2
þ λ2Kz ¼ 0, (15)

and

K
∂KZ

∂z
� h Kz

� �

z¼0
¼ 0, (16)

as well as:

K
∂KZ

∂z
þ h Kz

� �

z¼a
¼ 0: (17)

The � and + signs for h in Eqs. (16) and (17) denote the target heat absorption and
emission, respectively. One has:

Kz z, λð Þ ¼ cos λ zð Þ þ h
λK

sin λ zð Þ, (18)

and

2 cot λ ja
� � ¼ λ jk

h
� h
λ jk

: (19)

Here, λj denotes eigenvalues along the z-axis. From theory [7], it follows:

~Kz z, λ j
� � ¼ 1

C j
Kz z, λ j
� �

, (20)

and

C j ¼
ða
0
K2

z z, λ j
� �

dz: (21)

Note that Eqs. (12) and (13) discuss the eigenvalues along the r-axis, only. After
introducing the eigenvalues along the z-axis, one can step ahead to generalize
Eqs. (12) and (13) as:

T μi, λ j,t
� � ¼ 1

CiC j

ða
0

ðb
0
T r, z, tð ÞrKr μi, rð ÞKz λ j, z

� �
drdz, (22)

and

P μi, λ j, t
� � ¼ 1

CiC j

ða
0

ðb
0
P r, z, tð ÞrKr μi, rð ÞKz λ j, z

� �
drdz: (23)

Eq. (1) becomes now:

μ2i þ λ2j

� �
T þ 1

γ

∂T
∂t
þ τ0

γ

∂
2T
∂t2
¼ P

K
: (24)
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We next applied the direct and inverse Laplace integral transform to solve Eq. (1)
in relation to time. C[1] and C[2] stand for the normalizing coefficients with respect to
the experimental data. The results are as follows:

T r, z, t, τ0ð Þ ¼
X10
i¼1

X10
j¼1

P μi, λ j
� �

μ2i þ λ2j
þ C 1½ �℮

� 1
γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
γ2
�4 μ2

i
τ0
γ �4 λ2

j
τ0
γ

p� �
∙t

2τ0
γ þ C 2½ �

℮

� 1
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
γ2
�4 μ2

i
τ0
γ �4 λ2

j
τ0
γ

p� �
t

2τ0
γ

2
66666664

3
77777775

Kr μi, rð ÞKz λ jÞ, z
� �� �

:

(25)

and

T μi, λ j
� � ¼ 1

CiC j

ða
0

ðb
0
P r, z, tð Þ rKr μi, rð ÞKz λ j, z

� �
drdz: (26)

We finally mention that for an intermediate point in the experimental curve, one has:

T r, z, tð Þ ¼ T τ0,C 1½ �,C 2½ �, r, z, tð Þ: (27)

With the boundary conditions:

T r, z, 0,C 1½ �,C 2½ �, τ0ð Þ ¼ 22°C: (28)

T r, z,∞,C 1½ �,C 2½ �, τ0ð Þ ¼ 22°C: (29)

3. Two-temperature model in the non-Fourier version

The two-temperature model (TTM) is based upon two coupled equations:

ATe
∂Te

∂t

� �
þ Kτ0

γ

∂
2Te

∂t2

� �
¼ K

∂
2Te

∂x2
þ ∂

2Te

∂y2
þ ∂

2Te

∂z2

� �
� G Te � Tið Þ þ Pa r!, t

� �
,

(30)

Ci
∂Ti

∂t

� �
¼ G Te � Tið Þ: (31)

Here Te and Ti stand for the electron and phonon temperatures, respectively. G is

the coupling factor between electrons and phonons. Pa r!, t
� �

is the heat source, which is

induced via laser-metal interaction. The interaction could be considered of either clas-
sical or steady-state quantum mechanical type. A is the electron heat capacity, and K is
the thermal conductivity of the metal. According to Ref. [8], G can be determined from:

G ¼ π2mNv2

6τTi

Te

Ti

� �4

�
ðTe=Td

0
x4= ex � 1ð Þ� �

dx, (32)

wherem is the electron mass, N is the conduction electron density, v is the velocity
of sound in the metal, τ is the electron–phonon collision time, and TD is the Debye
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temperature. The exact data for each metal (Cu, Ag, Al, or Fe) are available from text
books and current literature (e.g., [8–10]). As for all metals, Ci > >A, one may
assume, in a first approximation, that:

K
∂
2Te

∂x2
þ ∂

2Te

∂y2
þ ∂

2Te

∂z2

� �
� Ci

∂Ti

∂t
� Kτ0

γ

∂
2Te

∂t2

� �
¼ �Pa r!, t

� �
: (33)

According to the Nolte model [2], one has:

Ti ¼ κTe, (34)

where

κ ¼ τL
τL þ τi

: (35)

Here, τi is the lattice cooling time while τL is the pulse duration time. Conse-
quently, one has:

∂Ti

∂t
¼ κ

∂Te

∂t
: (36)

Eq. (3) can be rewritten as:

K
∂
2Te

∂x2
þ ∂

2Te

∂y2
þ ∂

2Te

∂z2

� �
� Ciκ

∂Te

∂t
� Kτ0

γ

∂
2Te

∂t2

� �
¼ �Pa r!, t

� �
: (37)

It follows that:

∂
2Te

∂x2
þ ∂

2Te

∂y2
þ ∂

2Te

∂z2

� �
� 1
γ

∂Te

∂t
� τ0

γ

∂
2Te

∂t2

� �
¼ �
�Pa r!, t

� �

K
(38)

with

γ ¼ K
Ciκ

: (39)

Under the most general form, the heat source reads as:

Pa ¼
X

m,n
Imn y, zð Þ αmne�αmnxð Þ 1� rSmnð Þ þ rSmnδ xð Þ þ qcÞ H tð Þ �H t� t0ð Þð Þ: (40)

Here, Imn y, zð Þ stands for the laser transverse mode {m,n} while αmn is the linear
absorption coefficient, and rSmn is the surface absorption coefficient. The quantum
corrections (qc) are steady state for the respective mode. H stands for the step
function, and t0 for the exposure time. One model explains the continuous laser beam
irradiation, while the other one, more realistic in our opinion, illustrates the laser
beam in pulse form. The equivalence between the two models requires therefore that
the intensity versus time plot should cover the same area.

In order to make a comparison with experiments, one needs besides analytical
description, concrete numerical values. The next step is therefore to estimate the
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eigenvalues, numerically. For this purpose, Eq. (7) can be solved using the integral
transform technique, and eigenfunctions and eigenvalues could be calculated. One has
three differential equations as follows (K represents the eigenfunctions, while
λ, μ, and ξ are the eigenvalues) [5]:

∂
2Kx

∂x2
þ λ2i Kx ¼ 0, (41)

∂
2Ky

∂y2
þ μ2jKy ¼ 0, (42)

∂
2Kz

∂z2
þ ξ2kKz ¼ 0: (43)

The final solutions could be achieved on the basis of Eqs. (41)–(43):

Kx ¼ cos λixð Þ þ h
Kλi

sin λixð Þ, (44)

Ky ¼ cos μ jy
� �

þ h
Kμ j

sin μ jy
� �

, (45)

Kz ¼ cos ξkzð Þ þ h
Kξk

sin ξkzð Þ: (46)

The boundary conditions are:

∂Kx

∂x
� hKx

K

� �

x¼0
¼ 0;

∂Kx

∂x
þ hKx

K

� �

x¼a
¼ 0, (47)

∂Ky

∂y
þ hKy

K

� �

y¼0
¼ 0;

∂Ky

∂y
þ hKy

K

� �

y¼b
¼ 0, (48)

∂Kz

∂z
þ hKz

K

� �

z¼0
¼ 0;

∂Kz

∂z
þ hKz

K

� �

z¼c
¼ 0: (49)

Here, a, b, and c are the metal sample dimensions. As for the boundary conditions,
the eigenvalues (h is the heat transfer coefficient) can be inferred from Eqs. (47) to
(49), as:

2 cot λiað Þ ¼ λiK
h
� h
Kλi

, (50)

2 cot μ jb
� �

¼ μ jK
h
� h
Kμ j

, (51)

2 cot ξkcð Þ ¼ ξkK
h
� h
Kξk

: (52)
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The solution is obtained via integral transform technique as:

T x, y, z, t,C 1½ �,C 2½ �, τ0ð Þ

¼P
10

i¼1

P10
j¼1

P10
k¼1

P μi, λ j,ξk
� �

μ2i þ λ2j þ ξ2k
þ C 1½ �℮

� 1
γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
γ2
�4 μ2

i
τ0
γ �4 λ2

j
τ0
γ �4 ξ2

k
τ0
γ

p� �
∙t

2τ0
γ þ C 2½ �

℮

� 1
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
γ2
�4 μ2

i
τ0
γ �4 λ2

j
τ0
γ �4ξ2k

τ0
γ

p� �
∙t

2τ0
γ

2
66666666664

3
77777777775

� Kx μi, xð ÞKy λ j, y
� �

Kz ξk, zð Þ� �

(53)

The advantage of Eq. (53) in our model is related to a quick converging series.
Thus, after 10 iterations, the solution’s accuracy reaches already 10�2 K in the case of
thermal distribution [11].

4. Experimental details

The experimental setup is operated by a Nd:YAG pulsed laser source (λ = 355 nm)
(Surelite II from Continuum), generating pulses of 6 ns duration with (130 � 0.6) mJ
energy at a frequency repetition rate of 10 Hz. The laser beam had a spatial top-hat
distribution. The laser beam was focused onto the metallic target surface by a lens
with 240 mm focal lengths. An Al bulk target of (10 � 10 � 5) mm3 was used in
experiments. The laser fluence was set at �7.5 J/cm2 to surpass the ablation threshold
but also to avoid the excessive plasma formation. A crater of 18 μm depth was dig into
the sample after the application of 1000 subsequent laser pulses, as checked up by a
Vernier Caliper instrument. During the multipulse laser irradiation, the thermal dis-
tribution was monitored on the sample back side via a FLUKA thermocouple
connected to a computer having Lab view software, while the sample was irradiated at
the top. All experiments were performed on an in-house developed equipment at
Laser Department, National Institute for Laser, Plasma and Radiation Physics
(INFLPR), Magurele, Romania.

5. Results and discussion

Experiments and simulations were carried out during the heating of a metallic
target. The boundary conditions were described by Eq. (28). In all figures, the exper-
imental data are plotted with dots while the simulations are represented by a
continuous line. Relaxation time,τ0, was assumed 0.5 ps (Figure 1), 1 ns (Figure 2),
and 1 μs (Figure 3), respectively. For simulation, a heat transfer coeffi-
cient = 3 � 10�7 W mm�2 K�1 was selected. As known [12–14], for a very low heat
transfer coefficient, the eigenvalues are positive very small numbers, resulting in a
linear thermal distribution curve, as visible in Figures 1–3.
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Figure 1.
Time evolution of temperature for a relaxation time of 0.5 ps: experiments (dotted line) vs. simulation (continuous
line).

Figure 2.
Time evolution of the temperature for a relaxation time of 1 ns: experiments (dotted line) vs. simulation
(continuous line).

Figure 3.
Time evolution of the temperature for a relaxation time of 1 μs: experiments (dotted line) vs. simulation
(continuous line).
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The best agreement between theory and experiment was achieved for a relaxation
time, τ0, of 0.5 ps, as visible from Figure 1. We note that this is in accordance with
available literature on subject [15].

6. Conclusions and outlook

The two-temperature model was generalized to the case of the non-Fourier
approach via the electron-phonon relaxation time. Boundary conditions, Eq. (28) for
heating and Eq. (29) for cooling, were considered to this purpose. The obtained
solutions prove useful for experimental data analysis. The mathematical method
belongs to the eigenvalues and functions family, while details on software are avail-
able from Ref. [6].

The exact nature of the metallic target (in our case aluminum) could be detected
from the electron-phonon relaxation time using integral transform technique mix via
acquired experimental data. The method can be extended to any experimental sample
(metal) with the high accuracy.
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Chapter 11

Advanced Methods for Solving
Nonlinear Eigenvalue Problems of
Generalized Phase Optimization
Mykhaylo Andriychuk

Abstract

In the process of solving the problems of generalized phase optimization the
necessity to apply an eigenvalue approach often appears. The practical statement of
the optimization problems consists of using the amplitude characteristics of functions
that are sought. The usual way of optimization is deriving the Euler equation of the
functional, which is used as criterion of optimization. As a rule, such equation is an
integral one. It is worth pointing out that the integral equations of the generalized
phase optimization are nonlinear ones. The characteristic property of such equations
is non-uniqueness of solutions and their branching or bifurcation. The determination
of branching solutions leads to the investigation of the corresponding homogeneous
equations and the respective eigenvalue problem. This problem is nonlinear because
of specificity of the statement of the optimization problem. The study of the above
problem allows us to determine a set of points, in which the respective eigenvalues are
equal to unity that determines the branching points of solutions. The data of calcula-
tions testify to the ability of the approach proposed to determine the solutions of
nonlinear equations numerically with not large computations.

Keywords: nonlinear optimization, variational approach, radiation characteristic,
nonlinear eigenvalue problem, bifurcation of solutions, computational modeling

1. Introduction

The nonlinear eigenvalue approach is used in this chapter for the study of the
properties to solutions of the generalized phase problem related to the synthesis of
radiation systems through the incomplete data. Such incompleteness is considered
here in the example of an indeterminate phase characteristic of function, which
characterizes the radiation of the plane antenna arrays.

The problems with an indeterminate phase of the wave field arise in various
applications and are widely described in the literature. The most well-known of these
is the so-called phase problem (see, for example, [1–4]). It consists in restoring the
phase distribution (argument) of the Fourier transform of a finite function by its
amplitude (module) given (measured) along the entire real axis. This problem belongs
to the classical problems of recovery (identification) and requires the conditions of
existence of a unique solution.
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In this chapter, another class of inverse problems is considered, and it can be
termed optimization (design) problems. In sense of the Fourier transform, this can be,
for example, the problem of finding such a finite complex function, the modulus of its
Fourier transform satisfies a certain requirement (e.g., is close to a given positive
function). As a rule, such requirements are formulated in the variational form, as the
minimization of certain functionals. Obviously, such a formulation does not require a
uniform solution. On the contrary, the existence of many solutions is often desirable
because the above allows many degrees of freedom to determine an appropriate
solution. The characteristic applications of such phase optimization problems include
the theory of power transmission lines, field converters, antennas and resonators. The
first works dealing with nonlinear inverse problems of such type appeared in the
second part of the last century (see, for instance [5–10]).

In mathematical terms, problems of this type are reduced to the nonlinear integral
equations of Hammerstein type [11–13]. They contain a linear kernel and a nonlinear
multiplier that depends on a complex unknown function as an integrand. As a rule,
the argument (phase) of this function appears there separately from the module.
Similar equations are found in the literature in the context of the mentioned phase
problem [14, 15]. They have different solutions, and the study of their structure and
process of branching or bifurcation is an interesting mathematical problem [16].

Due to their nonlinearity, the problems under consideration require the develop-
ment and application of special analytical and numerical methods for their solving.
Along with the iterative methods that simulate the physical processes of field formation,
the various modifications of Newton’s method could be the most promising in this
direction [17]. One such modification, which uses solving the nonlinear eigenvalue
problems and searching for the zero curves of respective determinants, is proposed in
this Chapter. It allows simultaneously with the finding of the branch of solutions to
detect the presence of branching points on it and to determine them approximately,
provided by this the initial approximations for more accurate calculation.

The nonlinear eigenvalue problems arise in pure and applied mathematics, as well
as in the different areas of science that investigate the nonlinear phenomena [18, 19].
A variety of analytical-numerical methods have been elaborated till now for solving
the nonlinear problems in acoustics, electrodynamics, fluid dynamics and other areas
of applied science [20, 21]. The methods, developed until that time, were focused
mainly on solving one-dimensional problems. The difficulties of analytical and com-
putational nature appear if to apply them to a multidimensional problem. The method
of implicit function is one of effective tools that been applied for solving the two- and
three-dimensional nonlinear eigenvalue problem in the last two decades [22–24]. The
extension of this method, which leads to solving the Cauchy problem (21) and (22),
we apply in Section 3 to solve the nonlinear two-dimensional eigenvalue problem.

2. The operators of direct electrodynamics problem

In the physical relation, the radiation system represents the plane array with the
rectangular or hexagonal placement of radiators. Firstly, we consider the array with
the rectangular ordering of separate elements (Figure 1a).

Consider a plane rectangular array consisting of N2 �M2 ¼ 2N þ 1ð Þ � 2Mþ 1ð Þ
identical elements (radiators), which are located in the xOy plane of the Cartesian
coordinate system equidistantly for each of the coordinates. Since the radiators are
identical, it is possible to formulate the synthesis problem not for the whole three-
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dimensional vector directivity pattern (DP), but only for some complex scalar func-
tion f x1, x2ð Þ that is termed as the array multiplier. This function for a rectangular
equidistant array has the form [25]:

f x1, x2ð Þ ¼ AI �
XN
n¼�N

XM
m¼�M

Inmei c1nx1þc2mx2ð Þ (1)

where I ¼ Inm,�N ≤ n≤N,�M≤m≤Mf g is a set of excitations (currents) in the
array’s elements, x1 ¼ sin θ cosφ= sin α1, x2 ¼ sin θ sinφ= sin α2 are the generalized
angular coordinates, c1 ¼ kd1 sin α1, c2 ¼ kd2 sin α2, k ¼ 2π=λ is wave number, d1 and
d2 are the distances between radiators along the Ox axis and Oy axis respectively, α1
and α2 are the angular coordinates, within which the desired power DP P x1, x2ð Þ is not
equal to zero (P x1, x2ð Þ � 0 outside these angles). The function f x1, x2ð Þ possesses
2π=c1�periodicity with respect to x1 and 2π=c2� periodicity with respect to x2. Let us
denote the region of change of coordinates x1 and x2 on one period as Ω ¼
x1, x2ð Þ :jx1j≤ π=c1, jx2j≤ π=c2f g. Below, the function f x1, x2ð Þ is termed as the DP of

array.
A similar formula can be derived for the array with the hexagonal placement of

separate elements (Figure 1b)

f x1, x2ð Þ ¼ AI �
XM2

m¼�M2

XN1 mð Þ

n¼�N1 mð Þ
Inmei c1nx1þc2mx2ð Þ (2)

whereM ¼ 2M2 þ 1 is quantity of the linear subarrays, then N ¼ 2N1 mð Þ þ 1 is the
number of elements in the m�th subarray.

Eqs. (1) and (2) for DP f x1, x2ð Þ represent the result of a linear operator A, which
acts on a complex-valued space HI ¼ CN2�M2 (rectangular case) or HI ¼ CN0�M (hex-
agonal case) to the space of complex functions of two variables defined in the domain
Ω. The value N0 determines the number of elements in the central linear subarray in
the hexagonal case.

Assume that the desired power DP P s1, s2ð Þ is not equal to zero in some regions
G⊆Ω, and it is equal to zero outside. The optimization problem is formulated as the
minimization problem of the functional

σα Ið Þ ¼ P� AIj j2�� ��2
f þ α Ik k2I (3)

where �k k f and �k kI determine the norms in the space of DPs and space of currents
respectively, which are defined by the inner products

Figure 1.
The placement of elements for the considered arrays. a) rectangular. b) hexagonal.
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fk k2f ¼ f 1, f 2
� �

f ¼
ðð

Ω

f 1 x1, x2ð Þf 2 x1, x2ð Þdx1dx2 (4)

Ik k2I ¼ I1, I2ð ÞI ¼
4π2

c1c2

XN
n¼�N

XM
m¼�M

I1nmI2nm (5)

here the values f 2 x1, x2ð Þ and I2nm are conjugated to f 2 x1, x2ð Þ and I2nm.
The nonlinear integral equation for the complex vector Iof currents in space HI,

which is derived using the necessary condition of the minimum of functional (3), has
the form [26].

αIþ 2A ∗ jAIjAIð Þ � 2A ∗ PAIð Þ ¼ 0 (6)

Here A ∗ is the operator adjoint to A, its form is defined by equality AI, fð Þ f ¼
I,A ∗ fð ÞI. Using the inner products (4), (5) and Eq. (1) we obtain.

A ∗ fð Þnm ¼
c1c2
4π2

ðð

Ω

f x1, x2ð Þe�i c1nx1þc2mx2ð Þdx1dx2, n ¼ �N, �N þ 1… ,

N � 1,N,m ¼ �M, �Mþ 1, … ,M� 1,M:

(7)

If to act by operator A on both the parts of (6), we get a nonlinear integral equation
of Hammerstein type for the function f

αf þ 2AA ∗ jf jfð Þ � 2AA ∗ Pfð Þ ¼ 0 (8)

The kernel of the AA ∗ operator for the rectangular array is defined as

K c1, c2, x1, x10, x2, x20ð Þ ¼ K1 c1, x1, x10ð ÞK2 c2, x2, x20ð Þ, (9)

where

K1 x1, x01, c1
� � ¼ c1

π

sin N2c1 x1 � x01
� �

=2
� �

sin c1 x1 � x01
� �

=2
� � (10)

K2 x2, x02, c2
� � ¼ c2

π

sin M2c2 x2 � x02
� �Þ=2� �

sin c2 x2 � x02
� �Þ=2� � (11)

The kernel of the AA ∗ operator for the hexagonal array is more complicated
because we can not to present it in the form of two multipliers

K c1, c2, x1, x01, x2, x
0
12

� � ¼ sin c1 N1 0ð Þ � 1=2ð Þ x1 � x01
� �� �

sin 1=2c1 x1 � x01
� �� � þ

þ2
XM2

m¼1
cosmc2 x2 � x02

� �
sin c1 N1 mð Þ � 1=2ð Þ x1 � x01

� �� �

sin 1=2c1 x1 � x01
� �� � , N1 mð Þ is odd,

2
XN1 mð Þ

n¼1
cos c1 n� 1=2ð Þ x1 � x01

� �� �
, N1 mð Þ is even:

8>>>>><
>>>>>:

(12)
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The kernels (9) and (12) of the integral Eq. (8) are real and degenerate. Since
Eqs. (6) and (8) are nonlinear ones, both may have a non-unique solution. The
number of solutions and their properties is studied according to the method proposed
in [16, 27]. In the practical applications, the solution of Eqs. (6) and (8) is performed
by the method of successive approximations. The convergence of the method depends
on the parameter α, desired DP P x1, x2ð Þ, as well as the parameters c1and c2contained
in the kernels (9) and (12).

3. Search for the bifurcation curves

We should use the linear integral equation to define the bifurcation curves
according to [16]. Based on this equation, we pass to the respective eigenvalue prob-
lems, solutions of which allow us to find the characteristic values of parameters c1 and
c2 in the kernel of equation, at which the bifurcation appears.

3.1 Description of procedure

The linear equation

αf ¼ 2AA ∗ Pfð Þ (13)

is used to study the properties of Eq. (8).
In contrast to a similar equation for the amplitude DP synthesis problem [25],

Eq. (8) does not have a trivial nonzero initial solution f 0 for all parameters c1 and c2; the
trivial solution f 0 is zero for it, so in contrast to the problem of synthesis by amplitude
DP, we are not talking about the branching of solutions, but about their bifurcation.

The problem of finding bifurcation curves is reduced to the corresponding eigen-
value problem. The equation for eigenfunctions and corresponding eigenvalues,
which refers to (13), is

g x1, x2ð Þ ¼ 2λα�1
ðð

Ω

g x01, x
0
2

� �
K1 c1, x1, x01
� �

K2 c2, x2, x02
� �

dx01dx
0
2 (14)

As stated by the branching theory of solutions of the nonlinear equations [16], the
bifurcation points can be those values of c1and c2 at which Eq. (14) has nonzero solutions.

Using the properties of the degeneracy of the kernel AA ∗ , we reduce Eq. (14) to
the equivalent system of the linear algebraic equations (SLAE). The coefficients of
matrix of this equation depend on the parameters c1 and c2 analytically. To this end,
the equations for eigenfunctions corresponding to (13) are written as

g x1, x2ð Þ ¼
XN
n¼�N

XM
m¼�M

xnmei c1nx1þc2mx2ð Þ (15)

where

xnm ¼ c1c2
4π2

ðð

Ω

P x01, x
0
2

� �
g x01, x

0
2

� �
e�i c1nx01þc2mx02ð Þdx01dx02 (16)
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Multiplying both the parts of (15) on P x01, x
0
2

� �
e�i c1kx01þc2lx02ð Þ at k ¼ �N, �N þ

1, … ,N � 1,N, l ¼ �M, �Mþ 1, … ,M� 1,M and integrating over the domain Ω,
we obtain a system of linear algebraic equations to determine the quantities xnm

xkl ¼
XN
n¼�N

XM
m¼�M

a klð Þ
nm c1, c2ð Þxnm, k ¼ �N, �N þ 1, … ,N � 1,N,

l ¼ �M, �Mþ 1, … ,M� 1,M,

(17)

where

a klð Þ
nm ¼

c1c2
4π2

ðð

Ω

P x1, x2ð Þe�i c1 n�kð Þx1þc2 m�lð Þx2ð Þ½ dx1dx2 (18)

and matrix of the coefficients a klð Þ
nm is self-adjoint and Hermitian.

Thus, we obtained a two-parameter nonlinear spectral problem corresponding to a
homogeneous SLAE (17). This problem can be given as

EM � AM c1, c2ð Þð Þx ¼ 0 (19)

whereAM is the matrix of coefficients a klð Þ
nm , EM is a unit matrix of dimensionN2 �M2.

For the system (19), the equality

Ψ c1, c2ð Þ ¼ det EM � AM c1, c2ð Þ½ � ¼ 0 (20)

must be met to have a non-zero solution.
One can easy to make sure that the function Ψ c1, c2ð Þ is real. Moreover, since

AM c1, c2ð Þ is the Hermitian matrix, then EM � AM c1, c2ð Þ is Hermitian too. The deter-
minant of the Hermitian matrix is a real number [28]. Thus, Ψ c1, c2ð Þ is a real function
of real arguments c1and c2.

Consequently, the problem to find the eigenvalues of Eq. (14) or to determine the
solution of the equivalent SLAE (19) is reduced to finding zeros of function Ψ c1, c2ð Þ.

If to consider the equation Ψ c1, c2ð Þ ¼ 0 as a problem of determining an implicit
function c2 ¼ c2 c1ð Þ in the vicinity of some point c1, we get Cauchy problem [29].

dc2
dc1
¼ Ψc1

0 c1, c2ð Þ
Ψc2
0 c1, c2ð Þ (21)

c2 c 0ð Þ
1

� �
¼ c 0ð Þ

2 (22)

To retrieve the initial conditions (22) we pass to an auxiliary one-dimensional
nonlinear spectral problem if to substitute c2 by c2 ¼ γc1 in Eq. (20) with some real
parameter γ. As a result, we get the one-dimensional eigenvalue problem

EM � AM c1, γc1ð Þð Þ~x � EM � ~AM c1ð Þ
� �

~x ¼ 0 (23)

Eq. (20), which corresponds to Eq. (23), is

Ψ c1, γc1ð Þ ¼ det EM � ~AM c1ð Þ
� � ¼ 0 (24)
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Let c 0ð Þ
1 be the solution of the Eq. (24), then c 0ð Þ

1 , c 0ð Þ
2

� �
¼ c 0ð Þ

1 , γc 0ð Þ
1

� �
is the point

that corresponds to eigenvalue λ0 ≈ 1 of Eq. (15). By solving Eqs. (21) and (22) in a

small vicinity of point c 0ð Þ
1 , c 0ð Þ

2

� �
, we find the spectral curve of the matrix-function

AM c1, c2ð Þ, which is the curve c2 c1ð Þ defining a set of the bifurcation points.
The eigenfunctions of Eq. (14) are defined as the eigenvectors of matrix AM c1, c2ð Þ

using the resulting solution of the Cauchy problem with the sought solutions Ψ c1, c2ð Þ.
In this procedure, a four-dimensional matrix AM c1, c2ð Þ is reduced to a two-
dimensional one by the relevant renouncement of its elements.

3.2 Defining the area of nonzero solutions

Due to the peculiarity of the problem statement according to desired power DP
P x1, x2ð Þ, Eq. (8) has zero solution at arbitrary values of the parameters c1, c2, α. From
an engineering point of view, this is a significant drawback, but for some desired DPs
P x1, x2ð Þ it is possible to fix an area of parameters c1, c2, α at which a nonzero solution
exists. At the small c1 and c2, the kernel (9) is given approximately in the form

K c1, c2, x1, x01, x2, x
0
2

� �
≈

M2N2c1c2
π2

(25)

Assuming that f x1, x2ð Þ is constant, the integral Eq. (8) can be rewritten as (usually
for small c1 and c2 f x1, x2ð Þ≈ const).

π2α

2M2N2c1c2
¼
ð1

�1

ð1

�1
P x1, x2ð Þdx1dx2 � 4 f x1ð , x2Þj j2 (26)

The area of integration Ω in Eq. (8) is reduced in the last formula to the area
�1, 1½ � � �1, 1½ � because of definition of both the arguments x1, x2 and parameters c1, c2.

Taking into account that f x1, x2ð Þj j2 is positive, we get the following relationship
between the function P x1, x2ð Þ and the parameters c1, c2, and α:

ð1

�1

ð1

�1
P x1, x2ð Þdx1dx2 � π2α

2M2N2c1c2
>0 (27)

Finally, considering the case P x1, x2ð Þ � 1, we obtain:

c1c2 >
π2α

8M2N2
(28)

In fact; inequality (28) determines the area of parameters c1, c2, α, where nonzero
solutions exist. In Figure 2, the dependence curves c2 ¼ c2 c1ð Þ for three different
values M2 and N2 are shown. The results are given for array with the number of
elementsM2 ¼ N2 ¼ 3 (curve 1),M2 ¼ N2 ¼ 5 (curve 2) andM2 ¼ N2 ¼ 11 (curve 3).
The area of values c1 and c2, where the existence of zero solutions is possible,
according to the estimate (28) is located below and to the left of the presented curves.
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As can be seen, the area of zero values decreases significantly with increasing N2and
M2. The obtained results testify that the zero solutions of Eq. (8) for a given constant
power DP can exist either at a small value c1c2 corresponding to low frequencies (at a
given size of array), or at the values of c1 that significantly exceeding c2 and vice versa.
The last case corresponds to arrays with a large difference in distance of elements
along the coordinate axes. Such arrays are usually rarely used in practice.

3.3 Determination of bifurcation lines

3.3.1 The case of rectangular array

The finding of bifurcation lines of the nonlinear Eq. (8) was performed for the array
containing N2 ∗M2 ¼ 11∗ 11 ¼ 121 radiators for the desired power DP P x1, x2ð Þ ¼ 1 at
Λc ¼ c1, c2ð Þ, 0< c1, c2 ≤ 2f g for the different values of the parameter α in (3).

The search for bifurcation lines can be performed directly by investigating the
properties of the determinant (20) as a function of the parameters c1 and c2. In
addition, the function (20) depends on the parameter α; so the set of its eigenvalues
also depends on this parameter, i.e. the set of spectral curves that separate the areas of
zero and nonzero solutions.

The behavior of the corresponding curves when changing the parameter α is shown
in Figure 3. The behavior of the determinant (24) depending on the parameters c1and c2
at α ¼ 0:5 is given in Figure 3a; and in Figure 3b–d, the intersection of this function
with a plane Ψ c1, γc1ð Þ ¼ 0 is illustrated at the different α. This results in a set of curves
that correspond to a set of spectral lines separating the area of zero and nonzero
solutions. At a fixed size of array, the area where zero solutions can exist expands if the
parameter α increases, this area is located below the left of the first curve.

The curves marked by number 1 correspond to the solutions with constant (zero or
even) phase DP; curves with number 2 correspond to the solutions with phase DP that

Figure 2.
The curves c2 ¼ c2 c1ð Þ at the different M2 and N2 .
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is even with respect to the Ox1 axis, and odd with respect to the Ox2 axis, and curves
numbered by 3 correspond to the solutions with a phase DP odd with respect to two
coordinate axes. The proposed procedure is quite approximate, it does not allow to
separate the curves that correspond to different types of solutions and thus identify
the areas where there is a nonzero solution for the synthesized power DP with the
specified phase property.

The method of implicit function proposed in [23] and developed for plane array in
[30] is devoid of this drawback.

At the first step of this method, a series of one-dimensional eigenvalue problems is
solved, by this the different values of parameter γ are prescribed by the relation c2 ¼
γc1and a one-dimensional problem is solved with respect to c1. In Figures 4 and 5, the
first four eigenvaluesof the problem at γ ¼ 1:0 and γ ¼ 0:2 are shown. The values

c ið Þ
1 , c ið Þ

2 ¼ c ið Þ
1

� �
, i ¼ 1, 2, 3, 4, at which λi ¼ 1, are the bifurcation points in the plane

c1Oc2. By this, the set of points c1, c2ð Þat which the eigenvalue λ ið Þ ¼ 1 is determined
approximately from the graphical data.

The next step is to refine the values c ið Þ
1 , c ið Þ

2

� �
by solving the transcendental

Eq. (20), and the point c ið Þ
1 , c ið Þ

2

� �
, which is considered as the initial approximation.

Figure 3.
The spectral curves of Eq. (19) at the different α.
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In the final step, the bifurcation curve in the plane c1, c2ð Þ is determined by solving

Eqs. (21) and (22), after specification of the values c ið Þ
1 , c ið Þ

2

� �
. In Figure 6, the bifur-

cation curves c 1ð Þ
1 , c 1ð Þ

2

� �
– c 4ð Þ

1 , c 4ð Þ
2

� �
that correspond to the first four eigenvalues are

shown. The curve with number 1 corresponds to the solution with the zero (even)
phase of the created DP. This curve corresponds to that is marked by 1 in Figure 3b.

There are no nonzero solutions with such a phase property for the values c1 and c2
above and to the right of this curve. Curves 2 and 20 correspond to solutions in which
the phase DP is symmetric about one axis and asymmetric about the other axis
(obviously, for a plane array, there are two such curves and they are antisymmetrical).
Curve 2 corresponds that is marked by 2 in Figure 3b. The curve with number 3

Figure 4.
The first eigenvalues at the ray c1 ¼ c2, α ¼ 0:5.

Figure 5.
The first eigenvalues at the ray c2 ¼ 0:2c1, α ¼ 0:5.
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corresponds to a solution with a phase DP antisymmetrical (odd) with respect to both
the axes. The location of the areas of zero and non-zero solutions is the same as in
Figure 3b. It should be noted that the problem of refining the roots of Eq. (20) is the
most time-consuming in computational relation because refining the roots of this
equation requires a series of computational experiments with different values

c ið Þ
1,0, c

ið Þ
2,0

� �
of initial parameters close to approximate values.

3.3.2 The case of hexagonal array

Firstly, we consider the procedure of determination of bifurcation curves by
finding zero lines of determinant (24). The results, similar to those are presented in
Figure 3a and b for the rectangular array, are shown in Figures 7 and 8. One can
see that the behavior of function Ψ c1, c2ð Þ is more complex than in the case of
rectangular array. The obtained graphs testify that the solutions with other different
behavior of phase arg f x1, x2ð Þð Þ of the DP appear additionally. One such solution is
marked by number 4. Other solutions appear when parameters c1 and c2 increase at
the fixed α.

Search of the bifurcation curves is carried out similarly to the case of rectangular
array. The numerical results are presented for the array with Ntot ¼ 61 elements for
the desired power DP N0 x1, x2ð Þ ¼ 1 at Λc ¼ c1, c2ð Þ, 0< c1, c2 ≤ 2:0f g for the different
values of α in the functional (3). At the first step, the one-dimensional eigenvalue
problems were solved at the different values of parameter γ. In Figure 9, the first four
eigenvalues are shown at γ ¼ 1:0, and in Figure 10, they are shown at γ ¼ 0:2. Similar
to the case of rectangular array, the points, in which λi ¼ 1 are moved to right and

the distance between them increases at γ ¼ 0:2. The values c ið Þ
1 , c ið Þ

2 ¼ γc ið Þ
1

� �
, where

Figure 6.
The bifurcation curves corresponding to set c ið Þ

1 , c ið Þ
2

� �
, i ¼ 1, … , 4, N2 ¼ M2 ¼ 11.
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i ¼ 1, 2, 3, 4, are the bifurcation points in the plane c1, c2ð Þ. The points c ið Þ
1 , c ið Þ

2

� �
, for

which the eigenvalues λ ið Þ ¼ 1 are determined approximately in this step.

The specification of values c ið Þ
1 , c ið Þ

2

� �
by solving Eq. (20) is carried out in the next

step, and the points c ið Þ
1 , c ið Þ

2

� �
of the graph data from the Figures 9 and 10 are

used as initial approximations. The usual numerical half-division method is used for
this goal.

The bifurcation points c ið Þ
1 , c ið Þ

2

� �
, i ¼ 1, 2, 3, 4 for the first four eigenvalues in the

rays, c2 ¼ γc1 are shown in Figure 11. The respective curves of bifurcations, which are
obtained by solving Eqs. (21) and (22), are shown in Figure 12. As in the case of a
rectangular array, to obtain the necessary data, we should carry out precise
computations.

Figure 8.
Zero lines of determinant (24) for the hexagonal array, α ¼ 0:5.

Figure 7.
The surface of determinant (24) values for the hexagonal array, α ¼ 0:5.
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4. The engineering applications

The results presented in this Section demonstrate how the knowledge about the
point of bifurcation obtained as the solutions of the nonlinear eigenvalue problems
allows us to understand better the process of bifurcation and how to get the solutions,
which are the most optimal in sense of the used criterion of optimization.

4.1 The method of successive approximations

The properties of solutions to Eq. (8) obtained by using the method of successive
approximation are related directly with the properties of phase characteristic of the

Figure 9.
The first eigenvalues for the ray c1 ¼ c2 at α ¼ 0:5.

Figure 10.
The first eigenvalues for the ray c2 ¼ 0:2c1, α ¼ 0:5.
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eigenfunctions, which are determined at solving the eigenvalue problem. Prescribing
the initial approximation f 0 for the iterative process for solving Eq. (8) with the
specified property of the phase arg f 0, we could receive the solution of Eq. (8) with the
same phase property in the wide range of characteristic parameters c1 and c2. This is
important for the engineering design of arrays having the fixed phase characteristics
of radiation in the defined range of frequencies.

The method of successive approximations

f nþ1 � β f n þ 1� βð ÞB f n
� � ¼ 0, n ¼ 0, 1, 2, … (29)

is used for solving Eq. (8) with a set of specific physical parameters of array. In the
last formula,

Figure 11.
The bifurcation points at the rays c2 ¼ γc1.

Figure 12.
The bifurcation curves in the plane c1, c2ð Þ.
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B fð Þ ¼ 2
α

AA ∗ P � fð Þ � fj j2 � f
� �h ih i

(30)

Parameter β∈ 0, 1½ � in (29) is used to accelerate the convergence of iterative
process. To substantiate the condition of convergence of the iterative process (29), we
apply Theorem 2.6.2 [26] (p. 133), which states that the operator AA ∗ be contraction
one. This requirement is met when the inequality

α> 2kAA ∗ f N0 � fj j2
� �h i

k (31)

met. The results of numerical calculations show that condition (31) is
overestimated and for some values of the problem parameters the iterative process
(29) converges for values αthat do not satisfy the estimate (31).

4.2 The case of rectangular array

In Figure 13, the dependence of the convergence of the iterative process (29) on
the value of parameter α for a desired power DP P x1, x2ð Þ ¼ 1 at the fixed values β ¼
0:1, c1 ¼ c2 ¼ 2:0, the number of radiators M2 �N2 ¼ 11 � 11 ¼ 121 is shown. The
required accuracy ε ¼ 10�3.

The results of solving the optimizing problem for this desired power DP at α ¼ 0:5
are shown in Figure 14. The approximation quality to a desired DP P significantly
depends on the parameters c1 and c2 at both fixed N2 and M2. The mean-square
deviation (MSD) (the first term in (3)) is equal to 0.0847 for c1 ¼ c2 ¼ 1:0, and it is
equal to 0.0075 for c1 ¼ c2 ¼ 3:14.

The synthesized DP ∣f ∣for larger c1, c2 has not only a more optimal mean-square
approximation, but it is also closer to the shape of the desired DP P. The optimal
amplitudes ∣Inm∣ of currents in the array’s elements are close to constant at such
parameters c1 and c2.

When solving the optimizing problem for desired power DP of a more complex
form, the quality of the approximation significantly depends on both the parameter α

Figure 13.
The character of convergence of iterative process (29) at the different α, M2 ¼ N2 ¼ 11.
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and the type of initial approximation for the phase of a given DP. The results are
shown for the desired power DP

P x1, x2ð Þ ¼ ∣ sin πx1ð Þ � sin πx2ð Þ∣, � 1≤ x1 ≤ 1, � 1≤ x2 ≤ 1 (32)

at c1 ¼ c2 ¼ 3:14 and α ¼ 0:2 in Figure 15. Despite the fact that the shape of desired
DP P x1, x2ð Þ is more complex that in the previous example, decrease of α (from 0.5 to
0.2) and simultaneous increase of c1 and c2 (from 1.0 to 3.14) allows us to get the
amplitude ∣f x1, x2ð Þ∣ of created DP, which is very close to the P x1, x2ð Þ. The optimal
distribution of currents’ amplitudes ∣Inm∣ (Figure 15b) approaches the shape of the
created DP.

We have used an additional optimization parameter β in Eq. (29), which, as shown
by the results of numerical calculations, accelerates the convergence of iterative pro-
cess significantly. In Figure 16, the results of the study of the influence of this
parameter on the rate of convergence at a fixed value of the parameter α ¼ 0:5 are
shown. The results are given for the desired power DP P x1, x2ð Þ ¼ 1 at c1 ¼ c2 ¼ 2:0.
In order to achieve the accuracy 10�3 of calculations, one needs 157 iterations at β ¼
0:01. If parameter β increases to a certain value, the number of iterations decreases
significantly, so at β ¼ 0:05, β ¼ 0:10, β ¼ 0:15, β ¼ 0:20, and β ¼ 0:25 one requires

Figure 14.
The created power RP ∣f ∣ (a) and optimal distribution of currents ∣Inm∣ (b) at c1 ¼ c2 ¼ 1:0.

Figure 15.
The created power RP fj j2 at c1 ¼ c2 ¼ 3:14.

238

Matrix Theory - Classics and Advances



62 iterations, 37 iterations, 28 iterations, 20 iterations, and 16 iterations, respectively.
At the subsequent increase, the number of required iterations begins to increase and
already at β ¼ 0:30 the iterative process begins to diverge. Numerical calculations
show that the limit valueof β, at which the iterative process (29) begins to diverge,
significantly depends on the value of the parameter α. So, if this parameter decreases,
the threshold value of β increases. The dependence of the convergence on the array’s
parameters (c1, c2,M2,N2, d1, d2) is not so significant.

The values of the functional (3) for the created DP with different phases are shown
in Figure 17. The solid curve corresponds to the phase DP even with respect to two
axes, the dotted curve corresponds to phase DP even with respect to one axis and odd
with respect to the other, the dashed curve corresponds to the phase DP odd with
respect to both the axes.

Figure 16.
The convergence of iterative process (29) for the different β.

Figure 17.
The values of functional (3) versus the phase of created DP.
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One can see that the values of functional at the fixed c (frequency) significantly
depend on the phase of the created DP. The value σ ¼ 0:2 is achieved for the “even-
even” solution at c ¼ 0:79, for the “even-odd” solution at c ¼ 0:71 and for the “odd-
odd” solution at c ¼ 0:625. That is, within the used criterion, the latter type of solution
is 21% better than the first one. From this fact, it follows that at a fixed distance
between the radiators for the desired DP P x1, x2ð Þ ¼ 1, the number of array’s elements
can be reduced by 21% with the same value of MSD. A similar situation is observed for
the characteristics of DP at σ ¼ 0:1, i.e. “odd-odd” solution is better on 19.4% than
“even-even”.

4.3 The case of hexagonal array

The results of solution of the optimization problem for two given power DPs
P1 x1, x2ð Þ � 1 and

P2 x1, x2ð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21 � x22

p
, x21 þ x22 ≤ 1,

0, x21 þ x22 > 1,

(
(33)

in the form of body of rotation are shown in Figures 18 and 19 at α ¼ 0:5.
As previously, the optimization problem consists of solving Eq. (8) by the method

of successive approximation (29). The MSD (the value of the first term in (3)) for the
first desired DP is equal to 0:3774, and it is equal to 0:2218 for the second desired DP.

Similar to the case of rectangular array, the approximation quality to the desired
DP P depends on both the parameters c1, c2, and α. The characteristic of MSD of DPs
for α at the different c1 on the ray c2 ¼ 1:118c1 is shown in Figures 20 and 21. The
chosen relation between c1 and c2 provides the regularity of the array’s geometry, and
as the numerical computations have shown, gives the ability to get the close charac-
teristics of radiation in the planes x1and x2.

The largest MSD for the P1 is achieved at α ¼ 1:0 for c1 ¼ 0:5, and it is equal to
1:96443, it diminishes almost linearly if parameter α decreases. The largest MSD for
DP P2 is equal to 1:43685. One should note that the value of MSD diminishes if α

Figure 18.
The amplitude of created DP fj j2 for P1 at c1 ¼ 2:0, c2 ¼ 2:236.
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decreases, but the norm Ik kHI
of current growth that is unacceptable from the

engineering point of view.
The approximation quality to the desired DP depends also on the type of initial

data, which are prescribed for the iterative process (29). The dependence of the values
of functional (3) on the parity of phase of the initial approximation f 0 for the DP P1 is
shown in Figure 22. The results are shown for four types of initial approximation: odd
with respect to both the axes (dotted curve), even with respect to the Ox1 axis and odd
with respect to the Ox2 axis (dashed curve), odd with respect to the Ox1 axis and even
with respect to the Ox2 axis (dash-dot curve), and even with respect to both the axis
(solid curve). The initial approximation f 0, corresponding to the even phase with
respect to both the axis, is optimal for this DP, moreover the values of σα for the small
values of parameters c1 and c2 differ significantly, but starting from c1 ¼ 0:8 this
difference does not exceed 10%.

Figure 19.
The amplitude fj j2 of created DP for P2 at c1 ¼ 2:0, c2 ¼ 2:236.

Figure 20.
The MSD versus the parameter α for the DP P1.
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The dependence of convergence of the iterative process (29) on the parameter α at
the fixed β ¼ 0:1 is shown in Figure 23. As in the case of a rectangular array, the
iterative process converges most slowly at α ¼ 1:5, one needs 67 iterations to achieve
the accuracy that is equal to 10�3. The number of iterations decreases if α diminishes.
For example, one needs 30 iterations to achieve the same accuracy at α ¼ 0:2.

The dependence of convergence on the parameter β is studied too. The necessary
number of iterations that needs to achieve the accuracy 10�3at β ¼ 0:01, β ¼ 0:05,
β ¼ 0:10, β ¼ 0:15, β ¼ 0:20, and β ¼ 0:30 (curves 1–6 respectively) is shown in
Figure 24. It is substantiated that the iterative process converges most slowly at β ¼
0:01, it is necessary 152 iterations to achieve the prescribed accuracy. The most
optimal among the considered β is β ¼ 0:20, one needs 20 iterations only to achieve

Figure 21.
The MSD versus parameter α for DP P2.

Figure 22.
The values of σα versus the initial approximation of initial approximation for the iterative process (29).

242

Matrix Theory - Classics and Advances



the above accuracy. The iterative process becomes slow at the subsequent growth of β.
For example, one needs 37 iterations to achieve this accuracy; the iterative process
(29) becomes convergent at β>0:40. This testifies that in the process of computations
one should to limit by non-large values of β (β≤0:20) that guarantees the conver-
gence and considerably grows its speed on the contrast with small β (β≤0:01).

More information about the problem under investigation one can find in [30–34].

5. Conclusions

The problem of finding the solutions to the nonlinear integral equations and their
properties is reduced to nonlinear two-dimensional eigenvalue problems that lead to

Figure 23.
The convergence of iterative process (29) versus α.

Figure 24.
The convergence of iterative process (29) versus number of iteration, α ¼ 0:5.
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the subsequent application of an implicit function method for solving the Cauchy
problem for the linear differential equation. The area of non-zero solutions to the
above equations is determined by involving the solving transcendental equation,
which is got by equating to zero of determinant related to the eigenvalue problem. The
results of solving the nonlinear eigenvalue problems are applied subsequently for
specification of the bifurcation points and obtaining the bifurcation curves. The
approach does not depend on the form of operator determining the radiation proper-
ties of physical system (plane rectangular and hexagonal arrays). The obtained results
are the constructive basis on which a series of practical engineering problems of
optimization was solved numerically.
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Chapter 12

Using Matrix Differential
Equations for Solving Systems of
Linear Algebraic Equations
Ioan R. Ciric

Abstract

Various ordinary differential equations of the first order have recently been used
by the author for the solution of general, large linear systems of algebraic equations.
Exact solutions were derived in terms of a new kind of infinite series of matrices
which are truncated and applied repeatedly to approximate the solution. In these
matrix series, each new term is obtained from the preceding one by multiplication
with a matrix which becomes better and better conditioned tending to the identity
matrix. Obviously, this helps the numerical computations. For a more efficient com-
putation of approximate solutions of the algebraic systems, we consider new differ-
ential equations which are solved by simple techniques of numerical integration. The
solution procedure allows to easily control and monitor the magnitude of the residual
vector at each step of integration. A related iterative method is also proposed. The
solution methods are flexible, permitting various intervening parameters to be
changed whenever necessary in order to increase their efficiency. Efficient computa-
tion of a rough approximation of the solution, applicable even to poorly conditioned
systems, is also performed based on the alternate application of two different types of
minimization of associated functionals. A smaller amount of computation is needed to
obtain an approximate solution of large linear systems as compared to existing
methods.

Keywords: matrix equations, large linear algebraic systems, solution by numerical
integration

1. Introduction

Exact analytic expressions in the form of infinite series of matrices for the solution
of linear systems of algebraic equations were derived in [1] by integrating associated
ordinary differential equations. These differential equations were obtained using a
quadratic functional related to the system of algebraic equations and describe the
orthogonal trajectories of the family of hypersurfaces representing the functional.
More convergent matrix series were presented in [2] which can be applied to approx-
imate the solution of the system of equations. Solution of linear systems based on the
numerical integration of differential equations has originally been formulated in [3].
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In Section 2 of the present book chapter, we use recently derived highly conver-
gent series formulae for matrix exponentials [3] in order to construct improved
iterative methods for solving approximately large systems of algebraic equations. In
Section 3, we use novel functionals that allow to formulate differential equations
which lead to a substantial increase in the efficiency of the solution process [4].
Independently of the starting point, the paths of integration of these equations con-
verge all to the solution point of the system considered. At each step of the numerical
solution, one passes, in fact, from one path to a slightly different one due to compu-
tation errors. The procedure does not require to find accurately an entire path but only
the solution point which is common to all the paths. This is why we apply the simple
Euler method [5] to integrate the differential equations. The computation errors are
now determined by the magnitude of the second derivative of the position vector with
respect to the parameter defining the location along the path. A related iterative
method [6] is also described. In Section 4, two different kinds of minimization of the
system functionals are applied alternately for quick computation of a rough solution
of large linear systems [7].

2. Matrix series formulae for the solution of linear algebraic systems

Consider a system of equations written in matrix form as

Ax� b ¼ 0 (1)

where A∈Rn�n is an arbitrary nonsingular matrix, b∈Rn is a given n-dimensional
vector and x ¼ x1, x2, … , xnð ÞT is the unknown n-dimensional vector, with T indicat-
ing the transpose. Assume that x is a continuous function of the real variable v over a
certain interval and associate to (1) the vector differential equation of the first order

dx
dv
¼ f vð Þ Ax� bð Þ (2)

where f vð Þ is a continuous function to be chosen.

2.1 Exact analytic expressions for the solution of (2)

Imposing the condition x voð Þ ¼ xo, xo being a chosen position vector, (2) has a
unique solution over a specified interval [4], namely,

x vð Þ ¼ xo þ e�Ag voð Þ
X∞

k¼0

Ak

kþ 1ð Þ! g vð Þð Þkþ1 � g voð Þð Þkþ1
h i

Axo � bð Þ (3)

where g vð Þ � Ð f vð Þdv is a primitive of f vð Þ, i.e., f vð Þ ¼ dg=dv:If f vð Þ is taken to be
f vð Þ ¼ 1=v, then g vð Þ ¼ ln v: Choosing vo ¼ 1 gives g voð Þ ¼ 0 and (3) becomes now

x vð Þ ¼ xo þ ln vð Þ
X∞

k¼0

A ln vð Þk
kþ 1ð Þ! Axo � bð Þ (4)

Over the interval v∈ 0, 2ð Þ, x vð Þ can also be expressed in the form [3]
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x vð Þ ¼ xo � 1� vð Þ I þ
X∞

k¼1

1� vð Þk
kþ 1

I � Að Þ I � A
2

� �
⋯ I � A

k

� �" #
Axo � bð Þ (5)

I denoting the identity matrix of order n. The solution of (1) is theoretically
obtained for v ¼ 0, the series being in general extremely low convergent. Since the
rate of convergence of the series in (5) is very small for v very close to the value
corresponding to the solution of (1), i.e., v ¼ 0, this formula should be applied
repeatedly for a v not too close to zero, v∈ (0,1), until a satisfactory small distance to
the solution x 0ð Þ is reached.

2.2 Highly convergent series iteration formulae

Practical formulae for an approximate solution of (1) can be derived by using
matrix series that are much more convergent than the one in (5). This can be done by
writing (4) in the form

x vð Þ ¼ xo þ A�1 eA ln v � I
� �

Axo � bð Þ (6)

and by expressing the matrix exponential in terms of series of superior
convergence given recently in ref. [3]. Very close to the solution v ¼ 0, say for
v ¼ e�N,N≫ 1 , we have eA ln v ¼ e�NA and with [3]

e�NA � I ¼ �10�qcqNA I þ
X∞

k¼1

�1ð Þk10�qk
kþ 1

I þ cqNA
� �

"

� I þ cqNA
2

� �
⋯ I þ cqNA

k

� �# (7)

where q > 0 and cq � 1= ln 1þ 10�qð Þ , we get

x e�N
� � ¼ xo � 10�qcqN I þ

X∞

k¼1

�1ð Þk10�qk
kþ 1

I þ cqNA
� �"

� I þ cqNA
2

� �
⋯ I þ cqNA

k

� ��
Axo � bð Þ

(8)

In order to perform numerical computations, the number of terms in the series
has to be appropriately chosen. To have a small cq in (8) one has to take a small q.
For q = 0.5, e.g., cq ¼ 3:639409. One may start with N = 15 which would require
to retain about 50 terms in this alternating series to get a rough approximation
of x e�15ð Þ. The computation is repeated with the new xo taken to be the preceding
x e�N
� �

until an acceptable accuracy of the solution of (1) is reached.
Much more convergent formulae are constructed if we apply in (6) the

expansion [3]
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e�NA ¼ 1þ 10�qð Þ�p I þ p!

(
Pp
k¼1

10�qk

k! p� kð Þ! I � cqNA
p

� �
I � cqNA

p� 1

� �
⋯ I � cqNA

p� kþ 1

� �

�10� pþ1ð ÞqcqNA I � cqNA
� �

I � cqNA
2

� �
⋯ I � cqNA

p

� �
1

pþ 1
I

�

þp!P
∞

k¼1

�1ð Þk10�qk
kþ 1ð Þ kþ 2ð Þ⋯ kþ pþ 1ð Þ I þ cqNA

� �
I þ cqNA

2

� �
⋯ I þ cqNA

k

� �#)
,

(9)

p ¼ 1, 2, …

The multiplication with A�1 from (6) is avoided by arranging the first summation
in (9) in terms of powers of A and by taking into account that

p!
Xp

k¼1

10�qk

k! p� kð Þ! ¼ 1þ 10�qð Þp � 1 (10)

It is obvious that using (9) leads to computations with amuch smaller number of terms
retained in the series for a given N. With the same amount of computation we obtain an
x e�N
� �

which is much closer to the exact solution x 0ð Þ of the system of equations (1).

3. Methods of numerical integration

In this Section, we use special kinds of functionals that lead to the construction of
differential equations which allow a substantial increase in the efficiency of the solu-
tion of large linear algebraic systems.

3.1 Vector differential equations and their application to the solution of (1)

Consider a functional of the form

F xð Þ ¼ Ax� bk kα (11)

associated to (1) where α is a positive real number to be chosen. A real variable
v, v>0, v∈ vo, vSð Þ, is now defined by

F x vð Þð Þ ¼ F x voð Þð Þ h vð Þ (12)

where h vð Þ is an appropriately selected real function with definite first and second
derivatives in vo, vSð Þ, vo corresponding to a starting point x voð Þ � x 0ð Þ, with h voð Þ ¼ 1,
and vS corresponding to the solution vector of (1) x vSð Þ � xS, with h vSð Þ ¼ 0.
Denoting F x 0ð Þ� � � Fo, we have

Fo
dh
dv
¼ α Ax� bk kα�2 AT Ax� bð Þ� �T dx

dv
(13)
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Thus,

dx
dv
¼ Fo

α

dh
dv

AT Ax� bð Þ
Ax� bk kα�2 AT Ax� bð Þ�� ��2 (14)

which is the differential equation to be integrated from v ¼ vo to v ¼ vS. The
second derivative of x is

d2x
dv2
¼ Fo

α

d2h
dv2

AT Ax� bð Þ
Ax� bk kα�2 AT Ax� bð Þ�� ��2

þ Fo

α

� �2 dh
dv

� �2 1

Ax� bk k2 α�1ð Þ AT Ax� bð Þ�� ��2

� Ax� bk k2
AT Ax� bð Þ�� ��2

(
ATA� 2

AAT Ax� bð Þ�� ��2

AT Ax� bð Þ�� ��2 I

" #
þ 2� αð ÞI

)
AT Ax� bð Þ

(15)

From (11) and (12) we get a useful relationship,

Ax� bk k ¼ Fo h vð Þð Þ1=α (16)

that allows to simply monitor the magnitude of the residual vector of (1) during
the computation process.

As explained in the Introduction we apply the Euler method for the solution of
(14) and compute successively

x iþ1ð Þ ¼ x ið Þ þ η
dx
dv

� �

x¼x ið Þ
, i ¼ 0, 1, 2,… (17)

where η is the step size. In the absence of any hint about a good starting point x 0ð Þ

corresponding to v ¼ vo, we have used the point along the normal from the origin x ¼ 0
to the surface F xð Þ ¼ const in (11) which is the closest to the solution point xS [8], i.e.,

x 0ð Þ ¼ bk k2
ATb
�� ��2 A

Tb (18)

The function h vð Þ and the parameter α are chosen such that the first and the second
derivatives of x in (14) and (15) remain finite when v! vS, i.e., when the residual
Ax� bk k ! 0, while the errors evaluated with the second derivative are kept reason-

ably small along the interval of integration v∈ vo, vSð Þ. For each h vð Þ, α is determined
by imposing the condition that the second derivative in (15) tends to zero as
Ax� bk k ! 0. To decide on the value of α for a given h vð Þ, we require to have a good

rate of decrease of Ax� bk k at the beginning of the computation process, for instance
to have (see (11) and (12))

Ax 1ð Þ � b
�� ��
Ax 0ð Þ � bk k ¼ h ηð Þð Þ1=α ffi 0:8 (19)
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when η ¼ 0:1. Finally, to solve (1), we determine the actual step size to be used for
the numerical solution such that the errors at the beginning of the computation
process are small, say

η2

2
1

x 1ð Þk k
d2x
dv2

����
����
x¼x 0ð Þ

<0:01 (20)

If the magnitude of the residual vector, which is computed at each step, does not
decrease anymore the computation is continued with a new cycle of integration by
applying (17) with x 0ð Þ replaced by a new starting point, i.e.,

x newð Þ ¼ x lastð Þ � Ax lastð Þ � b
�� ��2

AT Ax lastð Þ � b
� ����

���
2

� AT Ax lastð Þ � b
� �

(21)

where x lastð Þ is the position vector from the preceding step. x newð Þ is the closest point
to xS along the normal to the surface F xð Þ ¼ const taken at x lastð Þ[8]. Subsequent cycles
of integration are performed in the same way until a satisfactory approximate solution
of (1) is obtained. If the difference between x newð Þ and x lastð Þ is insignificant we find the
point along the normal to F xð Þ ¼ const, taken at x newð Þ, where F has a minimum and,
then, apply (21) again. It should be noted that as one approaches the solution point the
direction of the gradient AT Ax� bð Þ tends to become more and more perpendicular to
the direction of xS � x and, thus, the residual Ax� bk k and the relative error
x� xSk k= xSk k will not decrease any more as expected. This is why the computation

has to be continued by opening a new cycle of integration. For systems with higher
condition numbers, this happens more quickly.

Numerical experiments obtained using h vð Þ ¼ 1� v with α ¼ 0:45 and also using
h vð Þ ¼ 1� vð Þ2 with α ¼ 0:9 shows that only two up to five integration cycles with a
step size of 0.1 are needed in order to get an accuracy of about 1% for the solution of
systems with condition numbers up to 100.

3.2 A related iterative method

The basic idea of this method is to find, starting from a point x 0ð Þ, a point x 1ð Þ along
the gradient of a functional (11) associated with the general system (1), such that the
magnitude of the new residual vector is an established fraction of its initial value,
Ax 1ð Þ � b
�� �� ¼ τ Ax 0ð Þ � b

�� ��, τ< 1. Instead of performing an integration as in Section
3.1, one proceeds iteratively, i.e.,

Ax iþ1ð Þ � b
�� �� ¼ τ Ax ið Þ � b

�� ��, i ¼ 0, 1, 2,… (22)

for each iteration the starting point being the point found in the preceding
iteration, with τ maintained as tight as possible at the same value. To do this, we
impose that F xð Þ in (11) varies from x ið Þ to x iþ1ð Þ in the same way for each iteration,
namely,
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F xð Þ ¼ F x ið Þ
� �

h vð Þ (23)

where h vð Þ is now a real function of a real variable, monotone decreasing in the
interval v∈ vo, vo þ η½ �, vo ≥0, η>0, with definite first and second derivatives, and
with h voð Þ ¼ 1 such that

F x iþ1ð Þ
� �

¼ F x ið Þ
� �

h vo þ ηð Þ, i ¼ 0, 1, 2,… (24)

Then, from (11),

F x iþ1ð Þ� �

F x ið Þð Þ ¼
Ax iþ1ð Þ � b
�� ��α

Ax ið Þ � b
�� ��α ¼ τα (25)

and

τ ¼ h vo þ ηð Þð Þ1=α (26)

x iþ1ð Þ is computed as

x iþ1ð Þ ¼ x ið Þ þ η
dx
dv

� �

v¼vo
(27)

i.e., with (14) where Fo is replaced with F x ið Þ� �
,

x iþ1ð Þ ¼ x ið Þ þ η

α

dh
dv

� �

v¼vo

Ax ið Þ � b
�� ��2

AT Ax ið Þ � b
� ����

���
2

� AT Ax ið Þ � b
� �

, i ¼ 0, 1, 2,…

(28)

in which, taking into account (21), one has to have η=αð Þ dh=dvð Þv¼vo
���

���< 1. This

expression corresponds to the first step in the numerical integration by Euler’s method
of the differential Eq. (14), starting from x ið Þ with a step η, or to the first two terms of
the Taylor series expansion of x vo þ ηð Þ:

The starting value x 0ð Þ and the function h vð Þ are chosen in the same way as in
Section 3.1. For selected ratios η=α the iteration cycle continues as long as the residual
Ax ið Þ � b
�� �� decreases at a proper rate. Theoretically, to make Ax ið Þ � b

�� �� ¼
ε Ax 0ð Þ � b
�� �� with ε≪ 1 one would need to conduct ln εð Þ= ln τ iterations. Since
computation errors are introduced at each iteration (as in the Euler method), the
initially chosen value of τ cannot be maintained the same as the iterative process
continues. An approximate solution of (1) is obtained at the end of the iteration cycle
as before, applying (21). Subsequent iteration cycles are performed with the starting
point in each cycle being the point determined in the preceding cycle.

Numerical results were generated using, as in the method presented in Section 3.1,
h vð Þ ¼ 1� v but with η=α ¼ 0:2 and h vð Þ ¼ 1� vð Þ2 with η=α ¼ 0:1. Now, in both
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cases, vo ¼ 0, η=αð Þ dh=dvð Þv¼0 ¼ �0:2 in (28), and τ ffi 0:8: A substantial increase in τ,
approaching τ ¼ 1, or oscillations of its value during the first few iterations show that
the computation errors evaluated from (15) (with Fo replaced by Ax� bk kα) are too
big. In such a situation, one has to decrease the factor η=αð Þ dh=dvð Þv¼0 in (28), i.e., to
decrease η=α for a given h vð Þ, which leads to an increase of τ and a decrease of
1=2ð Þη2 d2x=dv2

�� ��
v¼vo . For accuracy of 1% for the solution of (1), one needs a number

of three to six short iteration cycles, with about eight iterations per cycle, for systems
with condition numbers below 100. Of course, as in the previous method, an
increased number of iteration cycles is required to reach the same accuracy for the
solution of poorly conditioned systems.

Remarks. One can easily see that x iþ1ð Þ in (28) can be expressed in the form

x iþ1ð Þ ¼ x 0ð Þ þ
Xi
ℓ¼0

x ℓð Þ
d , i ¼ 0, 1, 2,… (29)

where

x ℓð Þ
d � x ℓþ1ð Þ � x ℓð Þ ¼ η

α

dh
dv

� �

v¼vo

Ax ℓð Þ � b
�� ��2

AT Ax ℓð Þ � b
� ����

���
2

� AT Ax ℓð Þ � b
� �

(30)

with the solution of (1) given by the infinite series

xS ¼ x 0ð Þ þ x 0ð Þ
d þ x 1ð Þ

d þ x 2ð Þ
d þ⋯ (31)

x ℓð Þ
d in (30) can also be written as

x ℓð Þ
d ¼

η

α

dh
dv

� �

v¼vo

b ℓð Þ
���

���
2

ATb ℓð Þ
���

���
2 A

Tb ℓð Þ (32)

where

b ℓð Þ ¼ Ax ℓ�1ð Þ
d � b ℓ�1ð Þ, ℓ ¼ 1, 2,… ;

b 0ð Þ ¼ Ax 0ð Þ � b
(33)

This shows that the difference x ℓð Þ
d is a “rough approximation” to the solution

of a system (1) whose right-hand side is, at each iteration, just the residual vector
of the system in the preceding iteration, which decreases in magnitude from one
iteration to the next. Thus, the method presented in this Section represents a
practical, concrete implementation of the well-known idea of successive
approximations/perturbations [9].

To search for a possible increase in efficiency, more general functionals of the form

F xð Þ ¼ F Ax� bk kð Þ (34)
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could be tested, where F and its first derivative are finite and continuous at all the
points within the interval of integration. Now the corresponding (14) is

dx
dv
¼ Fo

dh
dv

dF
d Ax� bk k
� ��1 Ax� bk k

AT Ax� bð Þ�� ��2

� AT Ax� bð Þ
(35)

Note. The paths of integration in the methods presented can be looked at as being
the field lines of a Poissonian electrostatic field in a homogeneous region bounded by a
surface of constant potential F xð Þ ¼ Axo � bk kα and with a zero potential at the
solution point, F xSð Þ ¼ 0. In the particular case of α ¼ 2 the ratio of the volume
density of charge within the region to the material permittivity is constant, namely,
�2Pn

i¼1
Pn

k¼1a
2
ik where aik are the entries of A. By altering this electrostatic field one

could eventually make quicker the approach to the solution point along the integration
path.

4. Method of alternate minimizations

This simple method is based on the property of a functional of the form (34)
associated with a general system of equations (1) to allow not only to minimize the
value of the functional but also the distance to the solution point of (1). Using only
minimizations along ordinary gradients of the functional is not efficient unless the
system is very well-conditioned.

For computing efficiently an approximate solution of general, large linear systems
of algebraic equations, we propose in this Section the alternate application of minimi-
zations of a functional and of the distance to the solution point, along the direction of
the gradient of the functional.

Consider the functional in (34) where F is a real function defined for all x from a
chosen starting point x sð Þ to the solution point xS of (1), monotone decreasing with
Ax� bk k, F 0ð Þ ¼ F xSð Þ. The gradient of F xð Þ is

∇F xð Þ ¼ dF Ax� bk kð Þ
d Ax� bk k

AT Ax� bð Þ
Ax� bk k (36)

i.e., in the direction of the vector AT Ax� bð Þ.
The minimum of F xð Þ along a straight line through x sð Þ in the direction defined by

an n-dimensional vector d is found from the condition that x� x sð Þ ¼ λd, where λ is a
scalar to be determined, and AT Ax� bð Þ are perpendicular. This gives λ and x for the
minimum of F xð Þ, namely,

x dð Þ
min F ¼ x sð Þ �

Adð ÞT Ax sð Þ � b
� �h i

Adk k2 d (37)

The point at which F xð Þ is minimum along the normal taken at x sð Þ is determined

by replacing d with AT Ax sð Þ � b
� �

in (37),
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xmin F ¼ x sð Þ �
AT Ax sð Þ � b
� ����

���
2

AAT Ax sð Þ � b
� ����

���
2 A

T Ax sð Þ � b
� �

(38)

The minimum distance between the solution point xS and a point x along the
direction of the gradient of F xð Þ taken at x sð Þ is at

x ¼ x sð Þ þ μAT Ax� bð Þ (39)

where the scalar μ is determined by requiring the distance x� xSk k to be
minimum. This gives μ and x for this minimum, namely,

xminD ¼ x sð Þ � Ax sð Þ � b
�� ��2

AT Ax sð Þ � b
� ����

���
2 A

T Ax sð Þ � b
� �

(40)

which depends only on the residual vector and on AT Ax� bð Þ at the point x sð Þ,
independently of the form of F .

As already mentioned, repeated minimizations using only (38) are not efficient for
solving a general system (1). The same is true when using only (40). To obtain an
approximate solution of (1), we apply the formulae (40) and (38) alternately, the
starting point x sð Þ being each time the point determined in the preceding minimiza-
tion. As in Section 3, when there is no indication about a convenient first starting
point x sð Þ, one can use the origin x sð Þ ¼ 0: Only a few iterations, up to ten, are needed
for a solution with a relative error ~x� xSk k= xSk k of about 1% for systems with
condition numbers of up to 100.

The procedure is surprisingly efficient for a rough solution even for very ill-
conditioned systems. For example, for the system Hx ¼ b where H is the Hilbert
matrix of order eight and whose solution is xS ¼ 1, 1, … , 1½ �T [10], a solution of 6%
accuracy is obtained with a starting point x sð Þ ¼ 0 by performing only seven alternate
minimizations (40), (38), with no equilibration or regularization preoperated on the
system. By comparison [10], for the Gauss elimination method, the accuracy is only
40.6%, for the Gauss elimination with equilibration 9.15%, and for the Householder
method with equilibration 5.6%.

Experimental results show that, as the new point x given by (40), (38) becomes
closer to the solution point xS, the direction AT Ax� bð Þ of the gradient in (36), i.e., of
the correction terms in (40) and (38), becomes more and more orthogonal to the
direction of x� xS. This causes the magnitude Ax� bk k of the residual vector of (1)
and the relative difference x� xSk k= xSk k to not significantly decrease anymore. To
progress with the computation one can intercalate minimizations of F xð Þ along direc-
tions that are different from that of AT Ax� bð Þ. By numerical testing, it is observed
that x� x 0ð Þ, where x 0ð Þ is the original starting point, has at this stage, in most cases, a
significant component along the direction of x� xS. Thus, one can use such a mini-
mization direction to try to improve the solution accuracy.

5. Conclusions

Highly convergent iteration formulae for solving general, large linear systems of
algebraic equations are derived from exact analytic solutions of particular differential
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equations based on new, accurate series representations of the matrix exponential
recently published in ref. [3]. Specialized differential equations which make it possible
to monitor and control the computation errors and the decrease of the magnitude of
the residual vector Ax� bk k of (1) at each stage of the computation procedure are
constructed and integrated numerically to approximate the solution of these systems.
Two methods of the solution have been presented in this book chapter and the
simplest Euler method is applied for the numerical integration of the vector differen-
tial equations. In the first method cycles of integration are used, each cycle starting
from a convenient value of the unknown and continuing until the rate of decrease of
Ax� bk k becomes too small. The second method is an iterative method where a fixed

rate of decrease of Ax� bk k is imposed at the beginning of the iteration cycles. In this
method, only the first step in the Euler method is computed at each iteration and each
cycle of iteration is conducted until there is no significant change in the magnitude of
the residual vector. These two methods are highly efficient for large systems with
condition numbers below 100 since only up to six cycles with less than ten steps per
cycle are necessary to get a solution accuracy of 1%, at each step within a cycle having
to compute two matrix-vector multiplications. The method in Section 3.2 seems to be
more efficient for systems with bigger condition numbers. The number of cycles of
integration/iteration increases with the condition number and preconditioning should
be done for ill-conditioned systems before attempting to apply the methods presented
in this work.

The iterative method of alternate minimizations presented in Section 4 is intended
for computing quickly a rough approximation of the solution of linear systems of
equations. In this method, preequilibration or preregularization/preconditioning
are not required to obtain useful results even for systems with poorly conditioned
matrices.

The present Book Chapter has been intended to constitute a review of the work
done so far on the subject matter. It describes the proposed new methods for an
approximate solution of large linear algebraic systems using appropriately chosen
matrix functionals and shows the procedures for constructing the concrete solution
algorithms. At this stage, the results presented are only validated by preliminary
numerical experiments which indicate the efficiency of the proposed procedures for
deriving approximate/rough solutions of large systems. More numerical experiments
involving systems with higher condition numbers, as well as theoretical results, will be
presented in future work. It is my hope that other researchers will be attracted to this
new area and rigorous theoretical results will also be established (theorems, etc.).
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