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Preface

Over the last few years, the wavelet transforms in their multiple forms—continuous, 
discrete, real, and complex—have revolutionized the way we manage spectral and comput-
ing data for multi-resolution analysis, graph representation in trees, sub-representation 
of spectral bands in wavelet decomposition to an image, time series data to localization of 
time-meaning signals, spectrometry, and spectrograms data, and more. It can be used in 
numerous ways, which is attributable to its ability to complement Fourier transforms data 
in its spectral image while also providing a few advantages over Fourier transforms in terms 
of reduced calculations when analyzing particular frequencies. While it has many applica-
tions in Fourier analysis and dynamical systems, its main strengths lie in the interpretation 
of spectra in two-dimensional spectral images—searching for signals of a known, non-
sinusoidal shape. The wavelets play a significant role in the typical STFT/Morlet analysis. 
From a purely mathematical perspective, a wavelet series is a representation of a square-
integrable (real- or complex-valued) function by a certain orthonormal series created 
by wavelets. Notably, The Riesz theorem and other features of functional analysis about 
the convergence of various wavelet series that can be created after the generation of an 
appropriate wavelet are crucial to the consistency of these representations. However, this 
does not come without its fair share of challenges. We have observed a few problems with 
the wavelet transform, along with other functional transforms: the Mexican hat wavelet, 
Haar Wavelet, Daubechies wavelet, triangular wavelet, and many more.

Dr. Francisco Bulnes
Professor,

IINAMEI Director,
Head of Research Department in Mathematics and Engineering,

Tescha, Mexico
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Chapter 1

Analysis and Processing of
One-Dimensional Signals Using
Wavelet
Meriane Brahim, Rahmouni Salah and Tifouti Issam

Abstract

In recent years, wavelet analysis has become an effective and important
computational tool in signal processing and image processing applications. Wavelet
analysis is known for its successful approach to solving the problem of signal analysis
in both the time domain and frequency domain. The analysis of the nonstationary
signal generated by physical phenomena has posed a great challenge for various
conversion techniques. Transformation techniques such as Fourier transform (FT)
and short Fourier transform (STFT) fail to analyze nonstationary signals. But wavelet
transform (WT) techniques may be able to efficiently analyze both stable and unsta-
ble signals. WT is able to analyze one-dimensional signals, such as audio signals and
two-dimensional signals such as images. In this chapter, we discuss wavelet transduc-
tion techniques and their applications in detail and focus on the analysis and
processing of the wave-encoded laser signal as one-dimensional electrical signals and
its use in alarm systems. In the second stage, we filter the speech signal and determine
the fundamental frequencies using wavelet transformation.

Keywords: wavelet transform, nonstationary signal denoising, lasers sources, alarm
system, discrete wavelet transforms (DWT)

1. Introduction

This chapter introduces the study and realization of a laser barrier alarm system,
after the laser is obtained by an electronic device, the wireless control system is
connected to the control room to announce the application in real-time, the laser is used
in many application fields, from industry to medicine, it uses an alarm system to detect
and deter intruders. Basic security includes protecting the perimeter of a military base
or a safe distance in unsafe places or near a government place. The first stage secures
surrounding access points such as doors and windows; the second stage consists of
internal detection with motion detectors that monitor movements, there are several
types of products on the market, and the system you buy can be wired or wireless.
Wired systems use cables to connect each device to the central control panel. A wireless
system that runs on batteries and transmits its signals at a radio frequency, and there are
no cables. In this chapter, we rely on the realization of a coded laser barrier that is sent
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between two units, processing the signal, and comparing the agreed conditions, and in
order to be high accuracy, we suggest that we use wavelet transduction to process the
received signal and know the frequencies that achieve the activation of the alarm.

2. Warning and protection systems

Alarm and protection systems have been developed in many fields, in many areas
such as the military field, where lasers have been used for detection. Any attempt to
break through the wall of the military barracks. In addition to the technologies in this
field, we are working on the use of coded lasers, which means that we send pulses that
are very limited in frequency and periodicity, as well as in the number of pulses
during a pre-agreed period of time [1].

Laser pulses can be obtained through an electronic circuit with analog processing,
and to eliminate any noise in the receiving circuit, we filter the signal using wavelet
transformation, thanks to which we get high accuracy and an effective system that
works in real-time [2].

In addition to activating the alarm, this system can also work to send information
via radio waves to the control room so that the leadership can make decisions at the
same time [2, 3].

2.1 Photovoltaic barriers

Photovoltaic barriers are optical or electronic systems consisting of a sensor
(receiver) and a light source (emitter). The light source can be an ordinary lamp, an
infrared emitter (e.g., a pulse), LEDs, or a laser emitter (Figure 1) [2].

2.2 Laser barrier application

Single barriers consist of a separate interacting transmitter and receiver. Reflex
barriers and detectors combine sensor and light source in a single box. In reflex

Figure 1.
Photovoltaic barriers.
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barriers, the emitted light beam is returned by a reflector (prism, reflective sheet) to
the receiver [4]. Light barriers register an interruption in the light beam and convert
the information. If an object passes through the beam of an optoelectronic barrier, the
sensor generates a predefined electrical output signal. It triggers an alarm. Detectors
send a very fine infrared beam and react to the reflection of light from an object. The
maximum detection distance depends largely on the reflectance rate, shape, color, and
surface quality of the material [5–7].

3. System structure

The corresponding figure shows the stages of transmitting and processing infor-
mation that determines with high accuracy all the electronic circuits on which this
project depends, as it consists of a laser transmitter encoded between two transmitting
and receiving units, the processing stage, and the activation of the alarm with the
radio wave communication system (Figure 2).

3.1 Laser transmitter circuit

The corresponding circuit shows the electronic card responsible for producing the
laser pulses, with the possibility of changing the frequency and the periodic ratio [8]
(Figure 3).

Circuit diagram simulated in Crocodile Technology 607 (Figure 4).

3.2 Basic Astable 555 oscillator circuit

The 555 IC can be used to create a free-running as table oscillator to continuously
produce square wave pulses (Figure 5).

The previous electronic circuit generates square signals or pulses and this is related
to the values of the resistors and capacitors and depends on connecting the second
electrode with the sixth and separated between them by a special resistance for
discharging the capacitor through the seventh electrode.

Figure 2.
Configuration of the whole system.
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In the initial conditions, the tension between the poles of the capacitor is equal to
zero, and when the generator is connected, the capacitor starts charging in an expo-
nential equation until it reaches the value 2/3 Vcc. Then, the outlet voltage ceases. In
these conditions, the capacitor starts discharging until it reaches 1/3 Vcc, and this is
repeated. The process is repeated several times and this is called an unstable oscillator.

T ¼ t1 þ t2 (1)

t1 ¼ 0:69 R1 þ R2ð ÞC (2)

t2 ¼ 0:69:R2:C (3)

The output frequency of oscillations can be found by inverting the equation above
for the total cycle time giving a final equation for the output frequency of an Astable
555 Oscillator as:

F ¼ 1
T

(4)

Applied results of the transmission circuit obtained using an oscilloscope
(Figure 6).

The output signal can be controlled by connecting a direct polarizing diode
between the sixth and seventh poles so that we can determine the charging constant
and the discharging constant, which in turn controls the type of output signal
(Figure 7).

3.3 Laser receiver circuit

One of the advantages of the practical amplifier called IC LM 741 is the comparison
between the inverting and non-inverting input signals so that the output voltage is
symmetrical and varies according to the comparison process, and in this case, it works
in the nonlinear characteristic.

Figure 3.
Laser transmission circuit.
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Figure 4.
Simulation results of the laser transmitter circuit: (a) square electric signal, (b) pulse signal, and (c) rectangular
signal.

Figure 5.
555 oscillator.
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The practical amplifier may be used in the process of amplifying weak signals if it
operates in the linear characteristic so that the relationship between the input signal
and the output signal is fixed (Figure 8).

After receiving and processing the laser beam, we get the following signal
(Figure 9).

The signal obtained is either square, rectangular or pulsed, depending on the
transmission signal, and accordingly, the average value can be calculated as follows:

Figure 6.
The real results of the laser transmitter circuit—square electric signal.

Figure 7.
Transmitter circuit results—pulsed signal.
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E ¼ 1
T

ðT

0

E tð Þ:dt (5)

E ¼ 1
T

ðt1

0

E tð Þ:dtþ 0 (6)

E ¼ 1
T
E:t1 (7)

Figure 8.
Laser receiving circuit using comparator LM 741.

Figure 9.
Laser beam reception signal.
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Knowing that the mean value is proportional to the duration t1 then

E ¼ η:E (8)

η, the cyclic report.
The following circuit is to compare the average value of the main signal and the

reference voltage, to increase the accuracy by adding another practical amplifier and
some electronic components (Figure 10).

E ¼ 2:5V,V1 ¼ 2:3V,V2 ¼ 2:8V

So V1≺E≺V2 for this condition the alarm system is in the off state because no laser
beam cut between the two cards (transmission and reception).

3.4 Processing circuit

The main processing circuit consists of the following electronic components
(Figure 11).

The corresponding figure represents the printed circuit of the project using
Express PCB software and electronic components CMS (Figure 12).

The following figure shows the real picture of the project with the processing
circuit and data transmission using radio waves (Figure 13).

3.5 Experimental results

The figures above show the transmit and receive signal with duty cycles of
approximately 25 and 75%, respectively (Figures 14 and 15).

Emission signal
Reception signal +/� 12

Figure 10.
Comparison circuit with two amplifiers LM 741.
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4. Analysis of the reception signal by wavelet transformation

In recent years, wavelet transform (WT) has been relied upon as a radical alterna-
tive to signal processing, especially after the discovery of the problematic Fourier
theory, which focuses on the frequency domain, and given that most physical quanti-
ties are unstable here. It can be said that we need to develop methods of processing
and analysis, it can be said that in the seventies of the last century the wavelet theory
was used in several areas, such as noise removal, image improvement, classification of
audio signals, etc. [9]. Chu and Kim applied the Morlet wavelet transform to analyze
the effect of noise.

The wavelet theory depends on important properties in processing so that
the value of a window of the mother wave is proportional to the frequency of
the signal to be processed. There are two types of wavelet transports:
continuous (CWT) and discrete (DWT) existing transport processes. Both
transformations are continuous in time (analog), and with their help, analog signals
can be represented [10].

4.1 General theory of CWT

In this work, we only touched upon some of the basic equations, definitions, and
concepts of the wavelet transform, and a more rigorous mathematical treatment of
this topic can be found in [10, 11]. The time-continuous wavelet transform of f(t) is
defined as:

Figure 11.
Electronic circuit of the project.
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CWTψ f a, bð Þ ¼ 1ffiffiffi
a

p
ðþ∞

�∞

f tð Þ: ∗ψ t� b
a

� �
:dt (9)

where:

• CWTψ f a, bð Þ is the wavelet coefficient of the function f(t)

• Ψ(t) is the analyzing wavelet

• a (> 0) is the scale parameter

• b is the position parameter

Figure 12.
The mother card for the project.
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4.2 Temporal and spectral resolutions in the CWT

The signal processing in the time and frequency domain is very important so that
we can know the different frequency components, where we express the time resolu-
tion in the time domain σt, and the spectral resolution in the frequency domain σw
from CWT as:

Figure 13.
The final electronic card for the project.

Figure 14.
Experimental results for a pulsed signal.
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σ2t γð Þ ¼
ðþ∞

�∞

t� uγð Þ2 φγ tð Þ�� ��2dt (10)

Wavelets perform and deliver a high-accuracy scale-based analysis of specific
data [12]. They then find a wide range of applications and uses for these waves includ-
ing signal processing, mathematics, and numerical analysis, and for their good use in
signal and image processing, they are a radical alternative to the fast Fourier transform
where the DWT provides a time-frequency representation when a non-stationary tool is
needed for processing and analysis, DWT can be used. The study showed that discrete
wave delivery has a high performance in processing speech signals so far [9, 13].

A computer-assisted experiment (CAM) is not fundamentally different from a lab-
oratory experiment as it was traditionally performed using different measuring instru-
ments and laboratory equipment, but the computer integration in the processing of the
laser pulse receiving signal brings several advantages. The data acquisition process can
be automated, and the measurement results can be saved and processed easily and in a
very short time by various software tools. In addition, the presentation of the results in
graphic form is greatly simplified and their scientific analysis, which facilitates the
analysis and use of the wavelet transform on the obtained signal.

4.3 Acquisition of reception signal with CoolEdit

CoolEdit program is used to record electrical signals that are proportional to the
physical quantities to be processed and will be recorded in a one-dimensional matrix
at a sampling frequency of 64 kHz using a 16 transducer called the sampling period.

Te ¼ 1
Fe

¼ 1
64� 103 ¼ 0:015� 10�3s (11)

Figure 15.
Experimental results of a rectangular signal.
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The following design represents how to record the electrical signal from the
receiving circuit using computer-assisted experiments (Figure 16).

The signal obtained is considered to be a non-stationary signal and it is also made
up of several signals which cannot be recorded using the oscilloscope because it is
technically unable to track and oscillate instantaneous signals of very high frequency.
Response time, although it is very infinite, also take a slow-motion until it stabilizes,
and this is called differential vibration.

The molar figure shows the difference between the signal recorded by the cathode
oscilloscope and the one recorded by a computer-assisted experiment (Figures 17
and 18).

In the normal case, the signals resulting from the receiving circuit can be drawn
using the cathode oscilloscope, but it does not give us rapid changes that can only be
detected by using alternative devices. Computer-supported experiments were selected
and then we process the data, which is represented in one-dimensional arrays using
the MATLAB program. For these calculations we used the MATLAB cwt function.

After processing the stored matrix, we get the following figure, after applying the
wavelet transform with the selection of the Haar wavelet algorithm to analyze the
signal into several levels, where we can know the basic frequencies of the received
laser signal (Figure 19).

Figure 16.
Diagram of the proposed method.

Figure 17.
The results of the transmitter circuit by the oscilloscope.
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Figure 18.
Real results of the transmitter circuit by CoolEdit.

Figure 19.
Simulation results of wavelet transformation on the receiving signal at an increased frequency.
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The following figure shows how to deconstruct the signal obtained in the receiving
circuit, showing the frequency resulting from the differential vibration, which we
would not have obtained without applying the wavelet theory (Figure 20).

5. Denoising and enhancement speech signal using wavelet

After the development of the field of information processing and the discovery of
wavelet analysis, it became common to process signals and unstable physical quanti-
ties, such as speech analysis, and sound signature discovery by recognizing the basic
frequencies of letters. Wavelets proved successful in processing such signals, which is
an alternative to all methods. It was there before where it processes data in real-time
using time-wave resolution, waveforms rely on the Henning window [7]. Recognition
performance depends on frequency domain coverage. The goal of good speech recog-
nition is to increase the bandwidth of the wavelength without significantly affecting
the time accuracy. This can be done by collecting the white noise of the wave, which is
difficult to detect and remove by traditional methods.

5.1 Speech enhancement methods

There are many methods available to improve speech, reduce noise, and the
quality of audio signals, and each algorithm has a principle that it depends on in the
processing methodology, and this depends on the goals we want to reach. In this
chapter, we propose the corresponding layout, which enables us to filter the
audio signals and identify the frequencies that make up them, as shown in Figures 2
and 21.

Figure 20.
The Haar wavelet transform on the received signal.
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5.2 Detection of singularity of the impulse noise signal in CWT

For noise evaluation, the oscillation of the acoustic signals is regarded as a consid-
erable important metric. The CWT is often applied to detect the singularities of a
transient signal (Figures 22 and 23; Table 1).

In the general case, we can rely on three main frequencies to define letters and
words, after removing noise and applying wavelet transform. Practically, the third
frequency can be neglected because it may be close in several letters, and we are

Figure 21.
Speech enhancement method.

Figure 22.
Vowel A time domain.

0 500 1000 1500 2000 2500 3000 3500 4000
-50

0

50
spectre de voyelle A 

fréquence

edutilp
m

A

Figure 23.
The vowel A with the spectrum and the CWT.
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satisfied with only the first and second frequencies, especially if the noise is removed
at an acceptable rate.

The figure opposite shows the letter E after noise cancelation (Figure 24).

5.3 Enhancement vowel “A,” by the wavelets

The following figure shows the resulting multi-resolution vowel “A,” by the
wavelets (Figure 25).

Figure 24.
The vowel E with the spectrum and the CWT.

Frequency Hz Vowel Frequency F1 Frequency F2 Frequency F3

A 625 1491 2356

E 387 1985 2875

I 246 2018 3196

U 312 750 2079

O 313 756 2271

Table 1.
Shows the various frequencies for the vowel “A, E, I, U, O.”
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6. Conclusion

In this work, we relied on processing the data sent between a transmitter and
receiver, which were coded laser pulses that control a sophisticated warning system

Figure 25.
Vowel “A,” levels of decomposition by the wavelets: (A) original speech signal, (a1) appro 1, (d1) level 1, (a2)
appro 2, and (d2) level 2. A ¼ a1þ d1þ a2þ d2
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that can be used in a military field. In order for this system to be effective, we decided
to analyze the received signal by converting waves that have proven successful in
several fields. After deconstructing the received signal using wavelet transformation,
it can be said that the pulses are not as perfect as we expected, because in fact they
consist of several signals with different frequencies, and this leads to the lack of
dependence on this signal in controlling any system, especially if it requires high
accuracy or efficiency in Performance such as controlling the speed of the DC motor
or transmitting digital information by wireless communications, especially if it is a
high frequency.

The use of wavelet transform is not limited to electrical signal processing but can
be applied to improve sound quality, and this method depends on the signal threshold
that each waveform parameter of the signal is compared to a certain threshold. Using
wavelet transform to remove noise from a signal may require identifying which
components contain the noise, and then reconstructing the signal without those com-
ponents after eliminating them.

In contrast to the STFT transformation which has constant accuracy at all times
and at all frequencies, we can say that WT has good temporal accuracy and low-
frequency accuracy at high frequencies, and good frequency accuracy and low tem-
poral accuracy at low frequencies.

Wavelet decomposition is very similar to the Gabor transform: the speech signal is
written as a superposition of the displacement and expanding waves. The main fre-
quencies can be recognized in a short time and with great accuracy especially in word
recognition programs if we get rid of the noise in the audio signal and this is what we
discussed in this section where the wavelet transform can be used to reduce noise.

After applying the proposed algorithm, noise from speech signals was successfully
reduced by using wavelet transform. This method gives us a hands-on approach on
how to filter sound and recognize different frequencies.
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Chapter 2

Time Frequency Analysis for Radio
Frequency (RF) Signal Processing
Bingcheng Li

Abstract

In high-density radio frequency (RF) signal environments, receivers usually
acquire signals from multiple sources. These RF signals may be co-channel and co-
duration, which cause significant difficulties for processing them. Time-Frequency
analysis combined with a projection pursuits graph approach provides an effective
way to detect, separate, and classify these multiple source RF signals. Time-frequency
analysis includes a spectrogram approach and a scalogram approach. The feature
points on the instantaneous frequency function of a frequency modulation radio
frequency (FMRF) signal can be extracted from either the spectrogram or scalogram
of this FMRF signal. With the projection pursuits graph approach, these feature points
are grouped into time-frequency functions to represent the multiple components for
the separation, detection, and classification of this multisource FMRF signal.

Keywords: connected graph, time-frequency manifold, multisource signal separation,
projection pursuits, spectrogram, wavelet, scalogram

1. Introduction

In congested electromagnetic environments, the radio frequency (RF) signals a
receiver receives may include multiple time-frequency overlapped signals transmitted
from multiple emitters. Traditional RF signal processing techniques may have diffi-
culty separating and processing these multisource signals.

The instantaneous frequency function of an FMRF signal can be approximately
modeled by low-order polynomials. Chirplet transforms and polynomial chirplet
transforms have been investigated to process multisource FMRF signals [1–13]. These
approaches separate and process multisource cochannel FMRF signals effectively;
however, their implementations are expensive due to high dimensional transforms.

With a first-order polynomial approximation of the phase function of an FMRF
signal, the short-time Fourier transform approach provides a simple and low-cost
implementation for instantaneous frequency estimation. Unlike chirplet and polyno-
mial chirplet transforms which need to perform transforms from time to high dimen-
sional frequency and chirp spaces, the short-time Fourier transform approach creates
spectrograms and only needs to perform time to frequency transforms. Using fast
Fourier transforms, the short-time Fourier transform for a local window with size W
only needs O WlogWð Þ computations, which are much lower than utilizing chirplet or
polynomial chirplet transform approaches [14, 15].
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Spectrograms are created by a fixed window size Fourier transform. For a low-
frequency component, it needs a large window to capture enough changes for this
low-frequency component. However, for a high-frequency component, it needs a
small window to have a high time resolution. The constant window size for spectro-
gram cannot satisfy these conflict requirements. To address this issue, a natural
extension is to perform Fourier transforms with changeable window sizes. For high-
frequency components, small window sizes are used to perform transforms while
large window sizes are used for low-frequency transforms. This extension leads to the
wavelet transforming with constant weights in the window, creating a scalogram. The
weight functions could also be other functions that lead to different wavelet trans-
forms. For instance, choosing a Gaussian function creates Gabor or Morlet wavelet
transform.

Spectrograms or scalograms provide the time-frequency representation of a
multisource FMRF signal. Separating this multisource FMRF signal into each inde-
pendent source component needs further processing. The ridge points of spectro-
grams or scalograms over some thresholds generate the points for instantaneous
frequency functions. In this chapter, a connected graph will be introduced to extract
instantaneous frequency functions when they are not crossed with each other. When
the instantaneous frequency functions are crossed with each other, a projection-
pursuit approach is described to separate and extract these instantaneous frequency
functions.

2. A FMRF signal model and its spectrogram

In this section, an FMRF signal model with a single source is introduced, and a
SincðÞ function for its spectrogram is derived from this model with short-time Fourier
transforms. Then, this FMRF signal model and its spectrogram computation are
extended to multiple component FMRF signals.

2.1 An FMRF signal model with a single component

A single component FMRF signal is described by the following model,

s tð Þ ¼ A0 exp iφ tð Þð Þ þ n tð Þ (1)

where φ tð Þ is the instantaneous phase function of this FMRF signal and n tð Þ
represents additive white noises.

Another function to describe an RF signal is its instantaneous frequency function
f tð Þ. The frequency function f tð Þ and phase function φ tð Þ have differential and integral
relations are shown as follows,

f tð Þ ¼ d
dt

φ tð Þ and φ tð Þ ¼ φ0 þ
ð
f tð Þdt (2)

It is shown in Eq. (2) that the frequency function f tð Þ of an RF signal represents its
phase function φ tð Þ with only a constant phase uncertainty φ0. Due to this reason, in
this chapter, we will focus on applying the frequency functions to analyze and process
FMRF signals.
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The instantaneous frequency function f tð Þ is a one-dimensional manifold imbedded
into a two-dimensional time-frequency space.Without noises (n tð Þ ¼ 0), a single com-
ponent FMRF signal and its time-frequencymanifold are shown inFigure 1,where the left
side is an FMRF signal, and the right side is its time-frequencymanifold.

Since the time-frequency manifold of an FMRF signal is the representation of this
FMRF signal, we can use time-frequency manifolds to classify or recognize RF signals.
Also, the time-frequency manifolds of an FMRF signal provide an estimation of its
instantaneous frequencies.

2.2 Sinc() function of the time-frequency image or spectrogram of a single
component FMRF signal

The time-frequency image or spectrogram of an FMRF signal s tð Þ is the magnitude
of the short-time Fourier transform of s tð Þ,

I ω, tð Þ ¼
XW�1

τ¼0

A0 exp iφ tþ τð Þð Þe�jωτ þ nI ωð , tÞ
�����

����� (3)

where W is the window size of this short-time Fourier transform.
Expanding φ tþ τð Þ by its first-order Taylor series around t in a local window, we have

φ tþ τð Þ ¼ φ tð Þ þ c1 tð Þτ þ O τ2
� �

(4)

where c1 tð Þ ¼ dφ tð Þ
dt , which is the instantaneous frequency of s tð Þ at time t, and the

first-order Taylor expansion in (4) is a linear approximation to the phase function φ tð Þ
in its local window.

Under the linear approximation of a phase function, the time-frequency image or
spectrogram of s tð Þ can be derived from (3) and (4),

I ω, tð Þ ≈
XW�1

τ¼0

A0 exp iφ tð Þð Þe j c1 tð Þ�ωð Þτ þ nI ω, tð Þ
�����

�����

¼ A0 exp iφ tð Þð Þj j
XW�1

τ¼0

e j c1 tð Þ�ωð Þτ þ nI ω, tð Þ
�����

����� ¼
A0 sin

W c1 tð Þ � ωð Þ
2

� �

sin c1 tð Þ � ωð Þ=2½ � þ nI ω, tð Þ

��������

��������

Figure 1.
An FMRF signal (left) and its time-frequency manifold (right).
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Thus, we have approximated the spectrogram of an FMRF signal

I ω, tð Þ≈∣A0 sin W c1 tð Þ � ωð Þ=2ð Þ
sin c1 tð Þ � ωð Þ=2½ � þ nI ω, tð Þ∣ (5)

Eq. (5) shows that when noises nI ω, tð Þ are low, at a given time t, the spectrogram
of an FMRF signal is a Sinc() function in the frequency direction. This Sinc() function
reaches its maximum at the instantaneous frequency c1 tð Þ.

The spectrogram of the FMRF signal in Figure 1 is shown in Figure 2. Figure 2
shows the Sinc() patterns in the vertical (frequency) direction.

2.3 Spectrograms of multisource and cochannel multisource and cochannel
FMRF signals

The multisource and co-channel FMRF signals received by a receiver is modeled as

x tð Þ ¼ n tð Þ þ
XK

k¼1

sk tð Þ ¼ n tð Þ þ
XK

k¼1

ak exp iφk tð Þð Þ (6)

where, K is the number of sources for the FMRF signal, and n(t) is the noises of the
receiver.

Similar to (4), a linear approximation in a local window is used to approximate the
phases for the multisource FMRF signal,

φk tþ τð Þ ¼ φk tð Þ þ c1,k tð Þτ þ O τ2
� �

(7)

where c1,k tð Þ is the instantaneous frequency for the component signal sk tð Þ.
An equation to compute the spectrogram for the multisource FMRF signal is

derived by substituting (7) into (6),

I ω, tð Þ ¼ ∣
XK

k¼1

Ak sin
W c1,k tð Þ�ωð Þ

2

� �

sin c1,k tð Þ � ωð Þ=2½ � þ nI ω, tð Þ∣ (8)

where, nI ω, tð Þ is the spectrogram noises. (8) shows that when noises nI ω, tð Þ are
low, the spectrogram of this multisource FMRF signal is the magnitude of the
summation of multiple Sinc() functions.

Figure 2.
An FMRF signal and its time-frequency image (spectrogram).
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A multisource and cochannel FMRF signal is shown in Figure 3. The right side of
Figure 3 shows the spectrogram of this FMRF signal where the Sinc() function
patterns are distributed in the frequency direction.

3. A scalogram as an extension of spectrogram

It is shown in Section 2 that the spectrogram of an FMRF signal created by short-
time Fourier transform (STFT) demonstrates Sinc() patterns. In this section, we will
show that the wavelet transforms with a uniform window is a direct extension of the
STFT, so the scalogram generated by wavelet transforms is a direct extension of the
spectrogram.

3.1 Scalogram computaion of a single component FMRF signal

Define a rectangle window function

R tð Þ ¼ 1, 0≤ t< 1

0, otherwise

�
(9)

For a window size W, we have

R
t
W

� �
¼ 1, 0≤ t<W

0, otherwise

�
(10)

With the help of the window function R t
W

� �
, the STFT in (3) is written into the

following format,

I ω, tð Þ ¼
X∞
τ¼�∞

A0 exp iφ tþ τð Þð ÞR τ

W

� �
e�jωτ þ nI ωð , tÞ

�����

����� (11)

The computation of spectrograms in (11) is the same as that in (3). They both give
the same STFT for spectrogram computations by a uniform distributed weight
function R t

W

� �
with a fixed window size W.

When the window sizeW in (11) is chosen to be changed byW ¼ c
ω as frequency ω

changes,

Figure 3.
A multisource and cochannel FMRF signal and its spectrogram. The left is the FMRF signal, the middle is its
instantaneous frequency function, and the right is its spectrogram.
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I ω, tð Þ ¼
X∞
τ¼�∞

A0 exp iφ tþ τð Þð ÞR τ
c
ω

� �
e�jωτ þ nI ωð , tÞ

�����

����� (12)

where c is a constant.
Eq. (12) is a wavelet transform with a mother wavelet R τ

c

� �
e�jτ, and 1

ω is the scale of
the wavelet transform. A uniform distributed weight function is discussed in this
chapter. RðÞ can be a different weight function. If RðÞ is chosen to be a Gaussian
function, (12) will give Gabor or Morlet wavelet transform.

To distinguish scalogram from spectrogram, we change I ω, tð Þ to W ω, tð Þ to show
that the scalogram is generated by a wavelet transform. The scalogram of an FMRF
signal is calculated by the following equation.

W ω, tð Þ ¼
X∞
τ¼�∞

A0 exp iφ tþ τð Þð ÞR ωτ

c

� �
e�jωτ þ nW að , tÞ

�����

����� (13)

(11) and (13) show the close relationship between STFT and the wavelet trans-
form. The scale in the wavelet transform is inversely proportional to the frequency
while the scale STFT is fixed. In other words, the wavelet transform can be treated as
an adaptive STFT where the window size of the STFT (referred to as scale in the
wavelet transform) adapts to the frequency change of the STFT. When the frequency
is high, the window size is small so as to catch the high resolution in time. When the
frequency is low, the window size is large so as to obtain a high resolution in fre-
quency. In this sense, a wavelet transform usually creates a higher performance than
an STFT due to the wavelet’s adaptive properties.

Similar to the derivation of the spectrogram calculation by summation in (3), the
scalogram calculation can also be derived using wavelet transforms. Writing (13) into
a summation format creates the following expression,

W ω, tð Þ ¼
Xαω�1

τ¼0

A0 exp iφ tþ τð Þð Þe�jωτ þ nI ωð , tÞ
�����

����� (14)

The scalogram calculated by (13) is further simplified by substituting the FMRF
signal of (4) into (14),

W ω, tð Þ≈
Xαω�1

τ¼0

A0ejφ tð Þe j c1 tð Þ�ωð Þτ þ nI ω, tð Þ
�����

����� (15)

The ejφ tð Þ in (15) does not depend on τ. Thus, (15) can be written into another form,

W ω, tð Þ ¼ ∣ejφ tð Þ∣ A0

Xαω�1

τ¼0

e j c1 tð Þ�ωð Þτ þ e�jφ tð ÞnI ω, tð Þ
�����

����� ¼ A0

Xαω�1

τ¼0

e j c1 tð Þ�ωð Þτ þ e�jφ tð ÞnI ω, tð Þ
�����

�����
(16)

If noise term e�jφ tð ÞnI ω, tð Þ is denoted as nW ω, tð Þ, the wavelet transform in (16)
becomes,
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W ω, tð Þ ¼ ∣
A0 sin α

ω
c1 tð Þ�ω

2

� �

sin c1 tð Þ�ω
2

� � þ nW ω, tð Þ∣ (17)

Eq. (17) shows that similar to the spectrogram I ω, tð Þ, the scalogram W ω, tð Þ also
demonstrates the Sinc() properties near the instantaneous frequency c1 tð Þ. The differ-
ence is that the Sinc() function of the spectrogram I ω, tð Þ oscillates in an equal period
while the scalogram W ω, tð Þ oscillates in an increasing period as frequency increases.

The comparison between spectrogram and scalogram is shown in Figure 4. In
Figure 4, the frequency of the FMRF signal is chosen as 10 kHz in the local window.
For the spectrogram, the window size is chosen as 20. For the scalogram, the window
size is selected to change from 18 to 22. At the center frequency 10 kHz, the mask size
of the scalogram is the same as the window size for spectrogram 20. Figure 4 shows
that the Sinc() function oscillates with the same frequency in the frequency direction
for spectrogram. However, the oscillation frequency for the scalogram increases from
low frequency to high frequency.

3.2 Scalogram computaion of a multisource FMRF signal

Similar to the computation of a single source FMRF signal, the scalogram compu-
tation of a multisource FMRF signal is given by replacing the fixed-size window
summation in (8) with the frequency-dependent window summation,

W ω, tð Þ ¼ ∣
XK

k¼1

Ak sin α
ω

c1,k tð Þ�ωð Þ
2

� �

sin
c1,k tð Þ�ωð Þ

2

� � þ nW ω, tð Þ∣ (18)

Eq. (18) shows that the scalogram of each component of a multisource FMRF
signal is a Sinc() function in the local frequency direction, which is similar to the
spectrogram.

Figure 4.
The Sinc() function for spectrogram and Scalogram.
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4. Connected graph approach for spectrogram and scalogram

Both spectrogram and scalogram are two-dimensional images and both have
similar Sinc() function properties. Their image processing techniques are also similar.
Therefore, only the spectrogram processing technique is introduced in this chapter to
demonstrate the connected graph approach for FMRF signal processing. The
scalogram processing is a straightforward extension.

4.1 Sparse cloud point representation of spectrograms

By binarizing a spectrogram, we can create a sparse cloud point representation (a
binary image) of this spectrogram and call it the sparse time-frequency map.
Thresholding and local maximum in the frequency direction can be used to create this
sparse time-frequency map

M ω, tð Þ ¼ I ω, tð Þ, if I ω, tð Þ> I ω� 1, tð Þ, I ω� 1, tð Þ and T
0, otherwise

�
(19)

An FMRF signal, its spectrogram, and its sparse time-frequency map is shown in
Figure 5. Figure 5 shows that the nonzero points in the sparse time-frequency map
created from the spectrogram of an FMRF signal form the time-frequency manifold that
represents this FMRF signal. Since the nonzero pixels are a very small portion of the
entire image of pixels and the connected graph approach, we are using only performs on
these nonzero pixels, this connected graph approach has a very low computational cost.

4.2 The spectrogram and sparse time frequency map of a Noisy FMRF signal

We have discussed the spectrogram and sparse time-frequency map with no noises
as shown in Figure 5. The spectrogram and its sparse time-frequency map for a noisy
FMRF signal is shown in Figure 6.

Figure 5.
An FMRF signal, and its spectrogram and sparse time-frequency map.
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Figure 6 shows that the spectrograms and time-frequency maps for very noisy
FMRF signals are similar to those without noises in Figure 5. The difference is that the
time-frequency maps for noisy signals add some extra noise pixels. These noise pixels
will be removed by the connected graph approach, however.

4.3 A graph approach for extracting time frequency manifolds

Figures 5 and 6 show that the sparse time-frequency map of an RF signal includes
the points on the time-frequency manifold of this RF signal. A connected graph
approach is used to extract this time-frequency manifold.

The graph to represent the sparse time-frequency map consists of nodes and
edges. Each node ni of the graph, corresponding to a nonzero pixel of the sparse
time-frequency map, is represented by three variables. The first two variables
x and y represent the pixel position for this node. The third member is a list of its
neighbor nodes that are used to build connected graphs. A node ni is defined with
C++ as

Two nodes are connected if they are neighbors. For the node ni, its neighbor nodes
are found by checking the distance between two nodes. n j is the neighbor of ni if
ni:x� n j:x
� �

∗ ni:x� n j:x
� �þ ni:y� n j:y

� �
∗ ni:y� n j:y
� �

< Threshold Distance.
Each node is connected to its neighbors but disconnected to non-neighbor points.

With this graph, the connected components can be found. Obviously, some connected
graphs are the time-frequency manifolds as the FMRF signal, while others could be
noises. Usually, small connected graphs are noises and can be removed.

Figure 6.
Spectrogram and sparse time-frequency map of an FMRF signal with different noise levels: the top is for signal to
noise ratio (SNR) = 6DB, and the bottom for SNR = 0 DB.
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The time-frequency manifolds for a two-source FMRF signal are extracted and
shown in Figure 7, where two connected graphs are displayed for the time-frequency
manifolds (red and blue) for two FMRF signals components.

Figure 7 shows that each individual component (red and blue) of the two-source
cochannel and co-duration FMRF signals can be extracted using the connected graph
approach.

4.4 Issues for the graph techniques

If the two components in a two-source FMRF signal are not connected to each
other in their sparse time-frequency map, the connected graph approach is capable of
extracting, separating, and classifying them, as is shown in Figure 7. However, when
two or multiple components are connected to each other, as shown in Figure 8, the
connected graph approach may not work well.

Figure 8 shows a two-source FMRF signal, its time-frequency manifold,
spectrogram, and the time-frequency manifolds extracted by the graph approach.

Figure 7.
A two-source mixed FMRF signal and its time-frequency manifolds. These time-frequency manifolds are extracted
by the connected graph approach from the sparse time-frequency map shown in the bottom right of Figure 5.

Figure 8.
A time-frequency manifold connected two source co-channel and co-duration FMRF signal, its time-frequency
manifolds, spectrogram, and extracted manifolds.
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One of these two source signals is a linear frequency modulation signal with a
negative sweep rate (frequency decrease), and the other one is a nonlinear
frequency modulation signal with a positive sweep rate (frequency increase). These
two source FMRF signals are overlapped in both time and spectral space and form
pulse-in-pulse signals. As is demonstrated in Figure 8, the connected graph
approach cannot separate these two connected time-frequency manifolds. This
inseparable problem causes serious issues for classifications and other RF signal
processing. In the next section, a projection pursuit approach will be discussed to
address this issue.

5. Projection pursuits approach for pulse-on-pulse FMRF signal
processing

When the time-frequency manifolds of two FMRF components are crossed with
each other, the spatial distance-based neighbor point definition has problems. These
problems and their possible solutions are shown in Figure 9.

In Figure 9, the left figure defines the neighbor points in the graph approach by
spatial distances. We call these neighbor points the spatial distance neighbor
points. In this definition, the two manifolds are inseparable. Different from the
spatial neighbor approach, a string neighbor point approach is used to build
time-frequency manifolds. Two points are neighbors if these two points are
spatial neighbors and if they are on the same string. The string neighbor approach is
shown on the right side of Figure 9. Figure 9 shows that the two manifolds are
separable with the string neighbor approach even though they are inseparable from
the spatial neighbor approach.

The projection pursuit approach is used to create string neighbor points. This
approach is implemented in the following two steps:

Step 1. Create a graph for the time-frequency map by the spatial distance
approach.

For each nonzero pixel, create a node ni . For M nonzero pixels, i ¼ 0 � M� 1ð Þ.
The x, y member of a node ni is the location of the pixel. The neighbor point set Ni of
this node are generated by the spatial distance approach.

Step 2. Refine the neighbor points of each node ni with the string approach.

Figure 9.
Spatial neighbors and string neighbors. Spatial neighbors are defined by spatial distances and string neighbors are
defined by both spatial distances and strings.
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At the location of each node ni, draw K lines l1, l2, … … lK with an increment angle
0, 180K , 2 ∗ 180

K , … … K � 1ð Þ ∗ 180
K to the horizon axis. Compute the projection to

l1, l2, … … lK for each node of the neighbor nodes Ni. For each li i ¼ 1 � Kð Þ, add the
top M (< number of nodes in NiÞ highest projections as the score Si. Choose lm so that
its score Sm is largest. Then remove the neighbor nodes that have low projection values
to lm. After all the removing operations, the remaining neighbor nodes are the string
neighbor nodes.

The above two steps are used to create string neighbor nodes. After the string
neighbor nodes of the graph are created, the same connected graph approach
discussed in Section 4 is used to create connected graphs and build the time-frequency
manifolds for the FMRF signals.

The test results for the projection pursuits approach are shown in Figure 10. The
right side of Figure 10 shows two-time-frequency manifolds extracted by the projec-
tion pursuits approach. The red line is the down sweep linear frequency modulation
component of this two-source FMRF signal while the white curve is the time-
frequency manifold of the down sweep nonlinear frequency modulation component.
It is shown from these test results that the projection pursuit approach is capable to
separate and extract the time-frequency manifolds of complicated multisource FMRF
signals (Figure 10).

6. Computational complexity analysis

Both spectrogram and scalogram approaches involve three components to perform
their FMRF signal processing: transformation from an FMRF signal to a two-
dimensional image, binarization of the image, and graph projection pursuit for
creating the manifold of the FMRF signal.

Assume that the length of the signal to process is N. For the spectrogram approach,
the transform from the FMRF signal to the spectrogram takes 0(NlogW) operations
for a wind size W. The image size is W*(N/W) = N. Thus, the binarization takes 0(N)
operations. Since the projection pursuits approach only processes a small fractional
number of points in the image, its computational cost is much lower than 0(N).
Putting the implementation of these three components together leads to the compu-
tational complexity 0(NlogW) for the spectrogram approach. Thus, the computation
cost for the binarization and graph pursuits approach could be ignored when
compared to the transform to create the spectrogram.

Figure 10.
A two-source mixed FMRF signal and its time-frequency manifolds extracted by graph and projection pursuits.
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For the scalogram approach, since the transform from the FMRF signal to its
scalogram image has a higher computational cost than the spectrogram approach and
the same methods as the spectrogram approach are used for the binarization and
graph projection pursuit, the computational complexity for the scalogram approach is
the same as the computational complexity of the scalogram generation from the FMRF
signal.

7. Conclusion

In this chapter, we introduce the spectrogram generation of an FMRF signal by
using short-time Fourier transforms. Then, the spectrogram computation approach is
extended to the scalogram computation by replacing the fixed size masks with fre-
quency dependent masks.

Both spectrograms and scalograms are images, and a projection pursuits approach
is introduced to process these images for separating and processing multisource
cochannel and co-site FMRF signals.

It is shown that the projection pursuits method is very efficient, and its computa-
tional cost can be ignored when compared to the spectrogram or scalogram genera-
tion. Also, the projection pursuits approach is robust. It can separate and extract both
non-connected and connected time-frequency manifolds for FMRF signal processing.
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Chapter 3

A Modern Review of Wavelet
Transform in Its Spectral Analysis
Francisco Bulnes

Abstract

The spectral analysis, in much aspects as are the wavelet transform in its numerous
versions and its relation with other transforms and special functions requires a special
review, since the exploration in the frequency domain to the wavelet transform is
more detailed and majorly more specific in different applications. For example, the
wavelet transform of special function can be very useful to create and design special
signal filters or, for example, to the interphase between reception-emission devices
with sensorial parts of the human body. Also the quantum wavelet transform is very
useful in the spectral study of traces of particles. Likewise, in this chapter, these
aspects are considered as an inherent property of the wavelet transform in the spectral
exploration of some phenomena. Finally, general results to the discrete case are given,
which is analyzed to the wavelet transform and its spectra.

Keywords: discrete Fourier transform, discrete wavelet transform, fast Fourier
transform, Gabor transform, short-time Fourier transform, spectra, quantum wavelet
transform, wavelet transform

1. Introduction

Likewise, we consider a set of functions

ψ1k,ψ2k, … ,ψnk, … ∈L2 Rð Þ, (1)

which define a Hilbert basis of square integrable functions [1]. Likewise, for each
j, k∈Z, the ψ jk represents dyadics and dilations of ψ , given by the functions:

ψ jk xð Þ ¼ 2
j
2ψ 2jx� k
� �

, (2)

∀j, k∈Z: Likewise, for a function ξ xð Þ∈L2 Rð Þ, and using the orthonormal
functions family, by completeness we have:

ξ xð Þ ¼
Xþ∞

�∞
cjkψ jk xð Þ, (3)

Then the convergence of the series will be understood to be convergence in norm.
Likewise, a representation of ξ xð Þ is known as a wavelet series with wavelet
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coefficients cjk: This implies that an orthonormal wavelet is self-dual. Then the wave-
let integral transform is the integral transform [2] given for1:

Wψξ ¼ 1ffiffiffiffiffiffi
aj jp
ðþ∞

�∞
�ψ

x� b
a

� �
ξ xð Þdx, (4)

Here a ¼ 2�j is the binary dilation or dyadic dilation, and b ¼ k2�j is the binary or
dyadic position. Then the wavelet transform can be modified depending on the
response treatments that are given. For example in the images compression through
impulse function x nð Þ ¼ δ n� nið Þ, for a discrete signal where impulse response can be
used to evaluate the image compression-reconstruction system, the wavelet transform
has been modified.

As has been said in different signal treatments, one of fundamental problems in
electronics is obtaining a sufficiently clean signal in the different processes of com-
munication, perception, and management of the signals in different continuous and
discrete domains. For example, in signal processing in accelerometers for gait analysis,
where actually is necessary to implement a good programming in real time for drones
or other devices of vehicles, even human body parts with accelerations process in fault
detections for design of low power pacemakers and also in ultrawideband in wireless
[3]; the cleaning of signal is fundamental.

The wavelet transforms as transformation should allow only changes in time
extension, but not shape. This could be affected by choosing suitable basis functions
that allow for this. For example, in numerical analysis, we can consider the scale factor
cn ¼ cn0, with the discrete frequency ηm ¼ mLcn0, having the wavelets (considering the
discrete formula with the basis wavelet):

Ψ k, n,m,ð Þ ¼ 1ffiffiffiffiffi
cn0

p Ψ
k�mcn0

cn0
L

� �
¼ 1ffiffiffiffiffi

cn0
p Ψ

k
cn0

�m
� �

L
� �

, (5)

where such discrete wavelets can be used through the discrete wavelet transform
version:

WD n,mð Þ ¼ 1ffiffiffiffiffi
cn0

p
XK�1

k¼0

w kð ÞΨ k
cn0

�m
� �

L
� �

, (6)

whose continuous (or analogic) is the standard wavelet transform:

W c, ηð Þ ¼ 1ffiffi
c

p
ðþ∞

�∞
w tð ÞΨ t� η

c

� �
dt, (7)

where c, is a scaling factor, and η, represents time shift factor. For the case (7) the
Fourier transformation of signal w kð Þ, is computed with the FFT. An adequate selec-
tion of a discrete scaling factor cnwill be necessary: Changes in the time extension are
expected to conform to the corresponding analysis frequency of the basis function,
based on the uncertainty principle of signal processing.

1 To recover the original signal w tð Þ, the first inverse continuous wavelet transform can be used:

ξ tð Þ ¼ χ�1
ψ
Ðþ∞
�∞

Ðþ∞
�∞ Wψξ a, bð Þ 1ffiffiffiffi

aj j
p ~ψ t�b

a

� �
db da

a2 :
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For example, the wavelet transform of Shannon function can be very useful to
creation of windows Ψ Sha ωð Þ, through functions Sha tð Þ, and with gate functions
Π xð Þ, useful in the signal analysis by ideal band-pass filters that define a decomposi-
tion known as Shannon wavelets. Also, for example, the complex-valued Morlet
wavelet is closely related to human perception, both hearing and the vision [4].

Likewise, the transition for “classical”wavelet transform (with some modifications
accepted) to quantum wavelet transform can be approached by factoring the classical
operators for the transformation into direct sums, direct products, and dot products of
unitary matrices. Likewise, the permutation matrices play a vital role [5].

2. From the signal resolution problems until biological-sensorial
perception

A fundamental property of the wavelet transform and the signal resolution
problem can be discussed and explored simultaneously in time and frequency
domains starting from the wavelet spectra:

W ωð Þ ¼ 1ffiffiffiffiffiffi
aj jp
ðþ∞

�∞
w

t� b
a

� �
e�jωtdt ¼

ffiffiffiffiffiffi
aj j

p
W aωð Þe�jωt, (8)

where W ωð Þ is the Fourier transform of the basic wavelet w tð Þ: If the wavelets
are normalized in terms of amplitude, the Fourier transforms of the wavelets with
different scales will have the same amplitude that is suitable for implementation of the
continuous wavelet transform using the frequency domain filtering. This property is
fundamental in the samples of frequency pulses of signal spectra, since it shows that a
dilatation t=a a> 1ð Þ of a function in the time domain produces a contraction aω, of its
Fourier transform, which are “spectral wavelets” corresponding. Likewise, the term
t=a has a metrology of frequency, which is equivalent to ω: However, in the technical
convention, this term is known as scale, since the term “frequency” is reserved for the
Fourier transform. Then the design of signal filters in frequency obey to the correla-
tion between the signal and the wavelets, in the time domain that can be written as the
inverse Fourier transform of the product of the conjugate Fourier transforms of the
wavelets and the Fourier transform of the signal:

Wξ a, bð Þ ¼
ffiffiffiffiffiffi
aj jp

2π

ðþ∞

�∞
Ξ ωð ÞW jωað Þe�jωtdω (9)

The Fourier transforms of the wavelets are referred to as the wavelet transform
filters. The impulse response of the wavelet transform filter

ffiffiffiffiffiffi
aj jp
W aωð Þ is the scaled

wavelet 1ffiffiffiffi
aj j

p w t
a

� �
: Therefore, the wavelet transform is a collection of wavelet trans-

form filters with different scales, a: Then we can relate the short-time Fourier trans-
form (STFT) [6] with the idea of the wavelets to determine the sinusoidal frequency
and phase content of local sections of a signal considering as changes over time. If we
introduce the Gaussian function, which can be regarded as a window function, then
the STFT is the Gabor transform. Here the Gabor atoms or functions used to build
from translations and modulations of generating function a family of functions are
constructed and characterized.
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Likewise, we can have direct applications of the STFT, to samples in real time of
the complex processes, which require a speed compute of data through direct relation
between machine and real-time domains in the measured and perception of the
phenomena. Likewise, the STFT is performed on a computer using the fast Fourier
transform (FFT), so both variables are discrete and quantized.

Secondly the Morlet transform is a Gabor transform consisting of a wavelet com-
posed of a complex exponential (carrier) multiplied by a Gaussian window (enve-
lope). This wavelet is closely related to human perception, both hearing [2] and vision.
Then the functions related with these bio-sensorial perceptions use Sha tð Þ functions as
special Gabor functions to discriminate steps of signal spectra in the perception and
create of a signal response audible or visible required to the eye organ, the iris of eye,
in the case of the vision and to audition, we have the audiphones that amplify the
sounds to equilibrate the lack of the eardrum or other parts of middle and inner ear to
perceive the sounds.

3. Some important results in discrete signal analysis

Let SN be the complex sphere of dimension N, and let

… , e�2Ωj, e�Ωj, 1, eΩj, e�2Ωj, … , (10)

be a linear basis of signals space in L2 K½ � that generates the subspace W, such that
∀w∈W is

w ¼
XN
n¼1

cne�nΩj, (11)

We define the space of nilpotent classes on E K½ �, (being E K½ � ¼ E1 ⊕ … ⊕En, [7] the
total discrete signal space) with the component:

N E K½ �
� � ¼ F∈D0 G0=K

� �jF ¼ 0
� �

, (12)

Proposition 3.1 [8, 9]. If z∈N E K½ �
� �

, and if β∈Hi n0,L2 K½ �� �
, (then)

zβ ¼ e�nΩjx m½ � ¼ p zð Þx n½ �, (13)

where x n½ � is a Gabor discrete function2.
Proof. Here

n0 ≃ n, n0 ≃ pI,

2 A discrete version of Gabor representation is

x tð Þ ¼ P∞
n¼�∞

P∞
m¼∞

Cnmgnm tð Þ,

with gnm tð Þ ¼ s t �mη0ð Þe�nΩjt:Similar to the DFT (discrete Fourier transformation) we have:

x kð Þ ¼P∞
n¼�∞

P∞
m¼∞Cnmgnm kð Þ,

where the Gabor basis functions are gnm kð Þ ¼ s k�mη0ð Þe�nΩjk:
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where pI is the unitary sphere p∩gI, where gI, ¼ g, g½ �: We demonstrate on the
dimension i, of the cohomological space Hi gI,L

2 K½ �� �
: If i ¼ n ¼ dimn0, then

Hi gI,L
2 K½ �� � ¼ n0 ∗ ⊗L2=n0L2, (14)

Therefore, z acts by I⊗ p zð Þ: Then p zð Þ acts for C⊗ πð Þp zð Þ:(Then)

I⊗ p zð Þð Þβ ¼ pC zð Þβ, (15)

As a special note, we have as a particular example an LTI system
L e�nΩj
� � ¼ H Ωð Þe�nΩj, where H Ωð Þ is a projection of the system function.
Likewise, the result to i ¼ rþ 1≤ n, then demonstrate for i ¼ r: Let C be the

periodic complex. Let α∈H ∗ Xi,QbZað Þ, such that α g⊗ υð Þgυ: Then α is the
homeomorphism

α : HomK pI,C
� �! HomK pI,L

2 K½ �� �
, (16)

Let X ¼ kerα, where specifically

X ¼ α∈HomK Cð ,L2 K½ �Þjα g⊗ υð Þ ¼ 0, ∀g∈U gð Þ , υ∈L2 k½ �� �
, (17)

Then we have

0 ! Xi ! C ! L2 ! 0, (18)

Now U gð Þ, is a U pI
� ��complex free under left translations. Therefore

Hi pI,C
� � ¼ 0, (19)

∀C ¼ E K½ � ⊗QbZa, thenð Þ
Hi pI,E K½ � ⊗QbZa
� � ¼ 0, (20)

∀j< n, and b � amod j: Then the long exact sequence of discrete cohomology for
this case of periodic complexes and N E K½ �

� ��complex is:

0 ! Hi pI,L
2 K½ �� �! Hiþ1 pI,X

� �! Hiþ1 pI,E K½ � ⊗QbZa
� �! 0, (21)

where such injection implies the result.
A study realized in signal and systems analysis on a linear system can be approxi-

mated in the time-frequency domain due to the composition of an analysis filter-bank,
a transfer matrix (sub-band model) and a synthesis filter-bank, which is a method
known as sub-band technique.

In the varying case, time-frequency representations of LTV systems have connection
with the Gabor expansion of signals through the corresponding integral equation. Then
we will have an integral equation with Gabor function. For example, a work realized in
that sense is the creation of 3D Gabor frame based in spatial spectral integral equation
designed to solve the scattering from dielectric objects embedded in a multilayer
medium. Likewise, this is based on the Gabor frame, as a new set of basic functions
(belonging to a basis) [10] together with a set of equidistant Dirac-delta test functions.
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Proposition 3.2. Exists an isomorphism given for the DFT that maps the proper
nilpotent classes of the system controlled under transformations of pI: Then DS-TFT is
the FFT.

Let DFT be the isomorphism of the discrete signals:

E K½ � ! ~E K½ �, (22)

where the explicit rule for any ∀υ∈L2 K½ � is

DFT υð Þ ¼ 1=Nð ÞDFT υð Þ ¼ DWT υð Þ, (23)

Then in each component of the space E K½ �, (E K½ � ¼ E1 ⊕ … ⊕En:) we have:

F kð Þ ¼ 0, (24)

where the DS-TFT satisfies in short-time interval. In each component, we have:

U pI
� �

HomK F,L2 K½ �� � ¼ χΛpξ, (25)

which exists FFT� υð Þ, such that

DWT υð Þ ¼ FFT υð Þ, (26)

More details of the demonstration can be consulted in [11].

4. Conclusions

In this introductory chapter, the various and several advantages of the wavelet
transform and its properties on the signal and system analysis have been shown,
considering different specialized window functions and the wavelet function basis.
Likewise, wavelet analysis is known for its successful approach to solving the problem
of signal analysis in both the time domain and frequency domain. Also, the analysis of
the nonstationary signal generated by physical phenomena has a great challenge for
various conversion techniques. In several studies, it has been shown that the transfor-
mation techniques such as Fourier transform and short Fourier transform fail to
analyze nonstationary signals. But wavelet transform methods may be able to effi-
ciently analyze both stable and unstable signals. All this the author develops with
precision and accuracy. In the Gabor transform, the resolution analysis considers the
uncertainty principles on nilpotent Lie groups and their corresponding algebras,
which were established in the propositions given through spectral analysis given in the
classes Hi pI,L

2 K½ �� �
,Hiþ1 pI,X

� �
, and Hiþ1 pI,E K½ � ⊗QbZa

� �
. A scheme with neural

network as components of a dynamical system can be proposed to demonstrate that
using neural networks and linear filters in cascade and/or feedback configurations, a
rich class of models of signaling and systematization in wide perspective and pro-
spective can be constructed, considering the different filters designed by the different
wavelet transform versions in short-time resolution or conventional resolution
improving the canonical Fourier transform resolution. The multi-resolution analysis
or multi-scale approximation can design a method considering practically the relevant
discrete wavelet transforms (DWT), which can be considered as a fundamental set of
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special functions to realize approximations to solutions of different processes in time
and the justification for the algorithm of the fast wavelet transform (FWT), for the
calculating methods develop started with good wavelet bases.
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Nomenclature

STFT Short-Time Fourier Transform
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
LTV Linear-Time Varying System
DS� TFT Discrete Short-Time Fourier Transform
w tð Þ Basic wavelet
W ωð Þ Fourier transform of the basic wavelet w tð Þ
ψ jk Dyadic and dilations of the wavelets
x n½ � Discrete signal. In the proposition 2.1, is a discrete Gabor function
E K½ � Discrete signal space. This space is a Hilbert space on the discrete

domain K: Its orthogonal decomposing is E K½ � ¼ E1 ⊕ … ⊕En: In the
case of wavelets, the components Ej j ¼ 1, 2, … , nð Þ are dyadic
translations and dilations of wavelet w kð Þ

DWT Discrete Wavelet Transform
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Chapter 4

Bases of Wavelets and
Multiresolution in Analysis on
Wiener Space
Claude Martias

Abstract

The multiresolution analysis is applied into the space of square integrable Wiener
functionals for extending well-known constructions of orthonormal wavelets in L2(R)
to this space denoted by L2 (μ), μ being the Wiener measure, as for instance Mallat’s
construction or furthermore Goodman–Lee and Tang construction. We also extend
the Calderon–Zygmund decomposition theorem into the L1(μ) framework. Even if L1-
spaces do not have unconditional bases, wavelets still outperform Fourier analysis in
some sense. We illustrate this by introducing periodized Wiener wavelets.

Keywords:Wiener functionals, Wiener space, wavelet, multiresolution analysis

1. Introduction

The wavelet transform for Wiener functionals has been considered by the
author and applied to diffusion processes and to the solutions to backward stochastic
equation in [1]. This application is a purely mathematical one; others, having
more practical aspect could be considered as an extension in networks domain
(see [2]) for instance or in detection of change and chronological series analysis [3, 4].
Extension of the well-known concept in finite dimension of wavelet transform to
analysis on Wiener space is one among many possible others, which could be useful
to infinite dimensional analysis. The chapter devotes to this extension, more
precisely, extension of multiresolution and bases of wavelets. We start by recalling
notion of multiresolution analysis, exclusively on the space of square integrable
Wiener functional. We follow the Mallat’s construction [5] and notice that an
extension to wavelets generated by a finite set of Wiener functionals can easily
be done if we follow arguments of Goodman–Lee–Tang [6]. We give an example
of multiresolution approximation generated by cardinal Hermite B-splines as in [6].
We complete our work by a study of unconditional bases for LP μð Þ, 1< p<∞, μ
being the Wiener measure. We start it by first proving an extension of the well-
known Calderon–Zygmund decomposition theorem. As L1-spaces do not have
unconditional bases, we introduce a notion of “periodized Wiener wavelets” and
show that wavelets still perform Fourier–Wiener analysis in some sense, as in finite
dimension [7].
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1.1 Multiresolution analysis in square Integrable Wiener Functionals

A multiresolution analysis in L2 μð Þ, the space of μ-square integrable Wiener
functionals, μ denoting the Wiener measure, consists of a sequence approximation
spaces Vj

� �
j∈ℤ, Vj ⊂L2 μð Þ ; these subspaces are assumed to be closed and satisfy the

following:

Vj ⊂Vj�1, for all j∈ℤ, (1)

the closed space generated by ⋃j∈ℤVj is L2 μð Þ, (2)

⋂j∈ℤVj ¼ 0f g: (3)

If we denote by
Q

j the orthogonal projection operator onto Vj, then (2) ensures

that lim j!∞
Q

jφ ¼ φ for all φ∈L2 μð Þ. There exist many ladders of spaces satisfying
(1)–(3) that nothing to have with multiresolution; the multiresolution aspect is a
consequence of the additional requirement

φ∈Vj⇔φ 2j:
� �

∈V0: (4)

That is, all the spaces are scaled versions of the central space V0. An example
corresponding to the Haar multiresolution analysis in real analysis (see [8, 9]) is the
following:

Vj ≔ φ∈L2 μð Þ; ∀k∈ℤ : φ 2je kð Þ,2jþ1e kþ1ð Þ½ ½ ¼ constant
n o

,

where e kð Þ, k∈ℤ (or ek, k∈ℤ, another notation) is a fixed orthonormal basis in the
Cameron – Martin space H defined by

H≔ h : 0, 1½ � ! ℝd=h tð Þ ¼
ð

0,t½ �
h0 sð Þds, hk kH

� �2 ≔
ð

0,1½ �
h0 sð Þ�� ��2ds<∞

( )
,

and the above interval in definition of Vj is in the sense of usual order relation of
functions. This example exhibits another feature that we require from a
multiresolution analysis: invariance of V0 under “ integer ” translations,

φ∈V0 ) φ :� ne0ð Þ∈V0,∀n∈ℤ: (5)

Because of (4) this implies that if φ∈Vj, then φ :–2jne0
� �

belongs to Vj for all n∈ℤ.
Finally, we require also that there exists ϕ∈V0 so that

ϕ0,n; n∈ℤ
� �

is an orthonormal basis in V0, (6)

where, for all j, n∈ℤ, ϕj,n ωð Þ≔ 2�j=2ϕ 2�jω–ne0
� �

. Together, (4) and (6) imply

that ϕj,n; n∈ℤ
n o

is an orthonormal basis for Vj for all j∈ℤ. In the example

given above, the possible choice for ϕ is the indicator Wiener functional for
0, e0½ �≔ ω∈W; 0≤ω sð Þ≤ e0 sð Þ, ∀s∈ 0, 1½ �f g, that is, ϕ ωð Þ ¼ 1 if ω∈ 0, e0½ �, interval in
the lattice space (W,≤), and ϕ ωð Þ ¼ 0 otherwise. We call ϕ the scaling Wiener
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functional of the multiresolution analysis. Note that ϕ depends on the choice of e0.
Hence, we will say that ϕ is the scaling Wiener functional in direction e0.

The basic tenet of multiresolution analysis is that whenever a collection of closed
subspaces satisfy (1)–(6), then there exists an orthonormal Wiener wavelet basis

ψ j,k; j, k∈ℤ
n o

of L2 μð Þ,
ψ j,k ωð Þ≔ 2�j=2ψ 2�jω–ke0

� �
, such that, for all φ∈L2 μð Þ,

Y
j–1

φ ¼
Y
j

φþ
X
k∈ℤ

φ,ψ j,k

D E
μ
ψ j,k, (7)

where the bracket :, :h iμ denotes the scalar product in L2 μð Þ. For every j∈ℤ, define
Wj to be the complement orthogonal of Vj in Vj – 1. We have

Vj–1 ¼ Vj⊕Wj (8)

and

Wj⊥Wj0 if j 6¼ j0: (9)

It follows that, for j < j0,

Vj ¼ Vj0⊕ ⊕j 0ð Þ�1
k¼0 Wj 0ð Þ–k

� �
, (10)

where all these subspaces are orthogonal. By virtue of (2) and (3), this implies

L2 μð Þ ¼ ⊕
k∈ℤ

Wj, (11)

A decomposition of L2 μð Þ into mutually orthogonal subspaces. Furthermore, the
Wj spaces inherit the scaling property (4) from the Vj:

φ∈Wj⇔φ 2j:
� �

∈W0: (12)

Formula (7) is equivalent to saying that, for fixed j, ψ j,k; k∈ℤ
n o

constitutes an

orthonormal basis forWj. Because of (11), (2) and (3), this then automatically implies

that the whole collection ψ j,k; j, k∈ℤ
n o

is an orthonormal basis for L2 μð Þ. On the other

hand, (12) ensures that if ψ0,k; k∈ℤ
� �

is an orthonormal basis for W0, then

ψ j,k; k∈ℤ
n o

will likewise be an orthonormal basis for Wj, for any j∈ℤ. Construction

of ψ can be done as in the case of real analysis, using Fourier–Wiener transform
(see [10] for an introduction to this notion) in the place of Fourier transform [11].

Our task thus reduces to finding ψ ∈W0 such that the ψ :–ke0ð Þ constitute an
orthonormal basis forW0. Let us first write out some interesting properties of ϕ andW0.

1.Since ϕ∈V0 ⊂V�1, and the ϕ�1,n are an orthonormal basis in V�1, we have

ϕ ¼
X
n
cnϕ�1,n, (13)
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with

cn ¼ ϕ, ϕ�1,n

� �
μ
and

X
n

cnj j2 ¼ 1: (14)

we can rewrite (13) as either

ϕ ωð Þ ¼ 21=2
X
n
cnϕ 2ω–ne0ð Þ (15)

or

ϕ̂ ξð Þ ¼ 2�1=2
X
n

exp �in ξ, e0h iH=2
� �

ϕ̂ ξ=2ð Þ, (16)

where the convergence in either sum holds in L2 μð Þ—sense, ϕ̂ denoting the Fourier–
Wiener transform. Formula (16) can be rewritten as

ϕ̂ ξð Þ ¼ m0 ξ=2ð Þϕ̂ ξ=2ð Þ, (17)

where

m0 ξð Þ ¼ 2�1=2
X
n
cn exp �in ξ, e0h iH

� �
: (18)

Equality in (17) holds pointwise μ—almost everywhere.

2.The orthonormality of the ϕ :–ke0ð Þ leads to special properties for m0. We have

δk,0 ¼
ð

H

ϕ̂ ξð Þ�� ��2 exp ik ξ, e0h iH
� �

μ dξð Þ

¼
X
l

ð

ξ, e 0ð Þh i∈ 2πl, 2π lþ1ð Þ½ ½f g

ϕ̂ ξð Þ�� ��2 exp ik ξ, e0h iH
� �

μ dξð Þ

¼
X
l

exp �2πl2
� � ð

h, e 0ð Þh i∈ 0, 2π½ ½f g

ϕ̂ hþ 2πle0ð Þ�� ��2 exp ik h, e0h iH
� �

:

exp �2πl
ð

0, 1½ ½

e
0
sð Þdh sð Þ

2
64

3
75 μ dhð Þ

¼
ð

h, e 0ð Þh i∈ 0, 2π½ ½f g

X
l

ϕ̂ hþ 2πle0ð Þ�� ��2 exp ik h, e0h iH
� �

μ dhð Þ,

Implying
X
l

ϕ̂ hþ 2πle0ð Þ�� ��2 ¼ 2πð Þ�1μ� a:e:: (19)

Substituting (17) leads to
X
l

m0 ξþ πle0ð Þj j2 ϕ̂ ξþ πle0ð Þ�� ��2 ¼ 2πð Þ�1;
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Splitting the sum into even and odd l, using the periodicity of m0 and applying (19)
gives

m0 ξð Þj j2 þ m0 ξþ πe0ð Þj j2 ¼ 1 μ� a:e:: (20)

1.Let us now characterize W0. φ∈W0 is equivalent to φ∈V�1 and φ is orthogonal
to V0. Since φ∈V�1, we have

φ ¼P
n
λnΦ�1,n, with λn ¼ φ, ϕ�1,n

� �
μ
. This implies

φ̂ ξð Þ ¼ 2�1=2
X
n
λn exp �in ξ, e0h iH=2

� �
Φ̂ 2�1ξ
� � ¼ mφ 2�1ξ

� �
Φ̂ 2�1ξ
� �

, (21)

where

mφ ξð Þ ¼ 2�1
X
n
λn exp �in ξ, e0h iH

� �
; (22)

mφ is a 2πe0-periodic Wiener functional; convergence in (22) holds pointwise μ—a.
e.. The constraint “ φ orthogonal to V0 ” implies that φ is orthogonal to Φ0,k for all k,
that is,

ð

H

φ̂ hð Þð Þ Φ̂ hð Þ
� �

exp ik h, e0h iH
� �

μ dhð Þ ¼ 0

where zc denotes the conjugate complex of complex z, or

ð

h, e0h i∈ 0, 2π½ ½f g

exp ik h, e0h iH
� �X

l

φ̂ hþ 2πle0ð ÞΦ̂ hþ 2πle0ð Þ
� �

μ dhð Þ ¼ 0;

note that, out of the ordinary, we denoted by h∈H the integration variable.
Hence

X
l

φ̂ hþ 2πle0ð Þϕ̂ hþ 2πle0ð Þ
� �

¼ 0, (23)

where the series in (23) converges absolutely in L1 μð Þ. Substituting (17) and (21),
regrouping the sums for odd and even l (which we are allowed to do as we have an
absolutely convergence), and using (19) leads to

mφ hð Þ m0 hð Þ
� �

þmφ hþ πe0ð Þ m0 hþ πe0ð Þ
� �

¼ 0 μ� a:e:: (24)

Since m0 hð Þ
� �

and m0 hþ πe0ð Þ
� �

cannot vanish together on a set of nonzero

Wiener measure (because of (20)), this implies the existence of a 2πe0-periodic
Wiener functional ϴ so that

mφ hð Þ ¼ Θ hð Þ m0 hþ πe0ð Þ
� �

μ� a:e: (25)

51

Bases of Wavelets and Multiresolution in Analysis on Wiener Space
DOI: http://dx.doi.org/10.5772/intechopen.104713



and

Θ hð Þ þ Θ hþ πe0ð Þ ¼ 0 μ� a:e:: (26)

This last equation can be rewrite as

Θ hð Þ ¼ e i h, e0h iH
� �

ν 2hð Þ, (27)

where ν is a 2πe0-periodic Wiener functional.
Substituting (25, 27) into (21) gives

φ̂ ξð Þ ¼ exp i h, e0h iH=2
� �

m0 ξ=2þ πe0ð Þ
� �

ν ξð ÞΦ̂ ξ=2ð Þ: (28)

3.The general form (28) for the Fourier–Wiener transform of φ∈W0 suggests that
we take

Ψ̂ ξð Þ ¼ exp i h, e0h iH=2
� �

m0 ξ=2þ πe0ð Þ
� �

Φ̂ ξ=2ð Þ (29)

as a candidate for our wavelet. Forgetting convergence questions, (28) can indeed
be written as

φ̂ ξð Þ ¼
X
k

νk exp �ik ξ, e0h iH
� � !

Ψ̂ ξð Þ

or

φ ¼
X
k

νkΨ :–ke0ð Þ,

so that the Ψ :–ne0ð Þ are a good candidate for a basis ofW0. We need to verify that
the Ψ0,k are indeed an orthonormal basis forW0. First, the properties of m0 and Φ̂
ensure that (29) defines an L2 μð Þ-Wiener functional belonging toV�1 and orthogonal to
V0 (by the analysis above), so that Ψ∈W0. Orthonormality of the Ψ0,k is easy to check:
ð

H

Ψ hð Þ Ψ h–me0ð Þ
� �

μ dhð Þ ¼
ð

H

Ψ̂ ξð Þ�� ��2 exp im ξ, e0h iH
� �

μ dξð Þ

¼
ð

ξ, e0h i∈ 0, 2π½ ½f g

exp im ξ, e0h iH
� �X

l

Ψ̂ ξþ 2πle0ð Þ�� ��2μ dξð Þ:

Now
X
l

Ψ̂ ξþ 2πle0ð Þ�� ��2 ¼
X
l

m0 ξ=2þ πle0 þ πe0ð Þj j2 Φ̂ ξ=2þ πle0ð Þ�� ��2

¼ m0 ξ=2þ πe0ð Þj j2
X
n

Φ̂ ξ=2þ 2πne0ð Þ�� ��2

þ m0 ξ=2ð Þj j2
X
n

Φ̂ ξ=2þ πe0 þ 2πne0ð Þ�� ��2

¼ 2πð Þ�1 m0 ξ=2ð Þj j2 þ m0 ξ=2þ πe0ð Þj j2
� �

μ� a:e: by 1:19ð Þ� �

¼ 2πð Þ�1μ� a:e: by 1:20ð Þ� �
:
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Hence
Ð
H
Ψ hð Þ Ψ h–me0ð Þ

� �
μ dhð Þ ¼ δm,0. In order to check that the Ψ0,m are indeed a

basis for all W0, it then suffices to check that any φ∈W0 can be written as φ ¼P
nγnΨ0,n, with

P
n γnj j2 <∞, or

φ̂ ξð Þ ¼ γ ξð ÞΨ̂ ξð Þ, (30)

with γ a square integrable 2πe0-periodic Wiener functional. Let us return to (28).
We have φ̂ ξð Þ ¼ ν ξð ÞΨ̂ ξð Þ, with ν∈L2 μð Þ. By (22),

ð

H

mφ ξð Þ�� ��2μ dξð Þ ¼ π
X
n

λnj j2 ¼ π φk kμ
� �2

<∞:

On the other hand, by (25),

ð

H

mφ ξð Þ�� ��2μ dξð Þ ¼
ð

H

Θ ξð Þj j2 m0 ξþ πe0ð Þj j2μ dξð Þ

¼
ð

H

Θ ξþ πe0ð Þj j2 m0 ξþ πe0ð Þj j2μ dξð Þ, using 1:26ð Þ (31)

Now, with the change of variable h ¼ ξþ πe0 and with the help of stochastic
calculus we find for this integral

exp 1–π2
� �

=2
� � ð

H

Θ hð Þj j2 m0 hð Þj j2μ dhð Þ

¼ exp 1–π2
� �

=2
� � ð

H

Θ hð Þj j2 1� m0 hþ πe0ð Þj j2
� �

μ dhð Þ, using 1:20ð Þ,

¼ exp 1–π2
� �

=2
� � ð

H

Θ hð Þj j2μ dhð Þ

– exp 1–π2
� �

=2
� � ð

H

Θ hþ πe0ð Þj j2 m0 hþ πe0ð Þj j2μ dhð Þ:

Put: I≔
Ð
H
Θ ξþ πe0ð Þj j2 m0 ξþ πe0ð Þj j2μ dξð Þ. We hence have, combining (31) and

this last equality:

I ¼ exp 1–π2ð Þ=2½ � Ð
H
Θ hð Þj j2μ dhð Þ– exp 1–π2ð Þ=2½ �I, which implies

I ¼ exp 1–π2
� �

=2
� �

: 1þ expð 1–π2
� �

=2
� ��1

ð

H

Θ hð Þj j2μ dhð Þ:

Hence, νk kμ
� �2

¼ 2π φk kμ
� �2

<∞, and φ is of the form (30) with γ ∈L2 μð Þ and
2πe0-periodic. We have thus prove the following theorem.
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Theorem 1.1. If a ladder of closed subspaces Vj
� �

j∈ℤ in L2 μð Þ satisfies the condi-
tions (1)–(6), then there exists an orthonormal Wiener wavelet basis Ψj,k; j, k∈ℤ

� �
for L2 μð Þ such that

Πj�1 ¼ Πj þ
X
k

:,Ψj,k
� �

μ
Ψj,k: (32)

One possibility for the construction of the Wiener wavelet Ψ is,

Ψ̂ ξð Þ ¼ exp i ξ, e0h iH=2
� �

m0 ξ=2þ πe0ð Þ
� �

Φ̂ ξ=2ð Þ,

(with m0 as defined by (14) and (18)), or equivalently

Ψ ¼
X
n

�1ð Þnc�n�1Φ�1,n, (33)

Ψ ωð Þ ¼ 2�1=2 P
n

�1ð Þnc�n�1 Φ 2ω–ne0ð Þ, with convergence in this series in L2 μð Þ –
sense.

All the argument we hold for the proof of the above theorem is exactly the same
which can be found in any book on this subject (in the finite dimension case). We can
hence follow the Mallat’s construction [5], via a multiresolution analysis, of orthonor-
mal wavelets for μ-square integrable Wiener functionals. The reader can also take a
look on Meyer’s books [12, 13]. An extension to wavelets generated by a finite set of
Wiener functionals can easily be done following arguments of Goodman–Lee and
Tang paper [6]. We give now in next section an example of multiresolution approxi-
mation generated by cardinal Hermite B-splines in L2 μð Þ, as we can find it in [6] for
the one-dimensional case.

1.2 Multiresolution approximation generated by cardinal B-splines in L2 μð Þ

Let us first beginning with some recalls. For n, r positive integers, n even, such that
n≥ 2r, put

S
n
≔ f ∈Cn�r�1 ℝð Þ : f v,vþ1½ ½j ∈Pn�1, v∈ℤ
n o

, (34)

where Pn-1 is the class of polynomials of degree ≤ n–1. Functions in Srn are called
cardinal Hermite splines of degree≤ than n–1.

For j ¼ 0, … , r–1, let

Srn,j ≔ f ∈ Srn : f
kð Þ vð Þ ¼ 0, v∈ℤ, k ¼ 0, … , r–1, k 6¼ j

n o
: (35)

The space Srn,j has a basis consisting of integer translates of a function Nn,j ¼
Nr

n,j ∈ Srn,j, j ¼ 0, … , r–1, with minimal support �n=2–1þ r, n=2þ 1� r½ �, in the sense
that every f ∈ Srn,j has a unique representation of the form

f xð Þ ¼
X
v∈ℤ

cvNn,j x–vð Þ, x∈ℝ, (36)
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(see [14]). The functions Nn,j are called cardinal Hermite B-splines and their
Fourier transforms are given by (see [14])

N̂n,j uð Þ ¼ 2 sin u=2ð Þ½ �n Hr,j αn uð Þð Þ�� �� (37)

where Hr,j αn uð Þð Þ denotes the matrix obtained from the Hankel matrix Hr αn uð Þð Þ
of order r by replacing the jþ 1ð Þ th column by un, un�1, … , un�rþ1ð ÞT,

j ¼ 0, … , r–1, denoting by Hr αn uð Þð Þj j its determinant.
Consider the map K : ℓ2 ℤð Þr ! L2 μð Þ defined by the following:

K sð Þ ω :ð Þð Þ≔
X

j:0!r�1

X
v∈ℤ

sj vð ÞTvNn,j ω :ð Þð Þ,ω∈C 0, 1½ �ð Þ, (38)

T being a unitary operator on L2 μð Þ.

Theorem 2.1. The map K defined by (38) is an isomorphism of ℓ2 ℤð Þr onto a
subspace of L2 μð Þ.

This above theorem is an easy consequence of Theorem 4.1 in [6]. Let us denote by
~Srn μð Þ the range of K. This is a closed subspace of L2 μð Þ. Furthermore, ~Srn μð Þ ¼
Srn μð Þ∩L2 μð Þ where Srn μð Þ is the space deduced from Srn by the following:
φ∈ Srn μð Þ⇔φ ω tð Þð Þ∈ Srn, ω∈C 0, 1½ �ð Þ, t∈ 0, 1½ �. Therefore, if Dφ ωð Þ≔φ 2ωð Þ, we have
as in real analysis:

The closed space generated by ∪
m∈ℤ

Dm ~Srn μð Þ in L2 μð Þ contains the one generated

by ∪
m∈ℤ

Dm ~S1n μð Þ which is L2 μð Þ.
We also have:

∩
m∈ℤ

Dm ~Srn μð Þ ¼ 0f g:

Let Vm ≔Dm ~Srn μð Þ, m∈ℤ. Then, Vmð Þm∈ℤ is a multiresolution approximation of
L2 μð Þ. We shall call Vmð Þm∈ℤ a Wiener Hermite spline multiresolution approximation
of L2 μð Þ. We could go on and hence extend all results of T.N.T. Goodman, S.L. Lee
andW.S. Tang paper [6]. We now prefer in next section deal with unconditional bases
of Lp μð Þ.

1.3 Unconditional bases for Lp μð Þ

Orthonormal bases of wavelets in L2 μð Þ give good (i.e., unconditional) bases for
many other spaces than L2. We start by proving the following extension of Calderon–
Zygmund decomposition theorem. We denote in this section by ωj j for
ω∈W≔C0 0, 1½ �;ℝd

� �
the sup norm [15, 16].

Theorem 3.1. Assume φ to be a positive Wiener functional in L1 μð Þ.
Fix α>0. Then theWiener spaceW≔C0 0, 1½ �;ℝd

� �
can be decomposed as follows:

1.W ¼ G∪B with G∩B ¼ ∅;

2.On the “ good ” set G, φ ωð Þ≤ α μ - a. e.;
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3.The “ bad ” set B can be written as B ¼ ∪
k∈ℕ

Q k, where the Qk are non-

overlapping intervals in the Banach lattice W, and

α≤ μ Q kð Þ�1
ð

Q k

φ ωð Þ μ dωð Þ≤ 2α,∀k∈ℕ:

The proof of this theorem is identical with the proof of Theorem 9.1.1, p.289 of
chapter 9 in Daubechies book [8, 17]. Next, we define Calderon–Zygmund operators
for square integrable Wiener functionals and extend a classical property [18].

Definition3.2. A Calderon–Zygmund operator T on the Wiener space W is an
integral operator

Tφð Þ ωð Þ ¼
ð

H

K ω, ξð Þμ dξð Þ (39)

for which the integral kernels satisfies

K ω, ξð Þj j≤C= ω� ξj j, (40)

∇ωK ω, ξð Þk kH þ ∇ξK ω, ξð Þ�� ��
H ≤C= ω� ξj j, (41)

where the derivation symbol ∇ is the Malliavin derivative, and which defines a
bounded operator on L2 μð Þ.

Theorem 3.3. A Calderon–Zygmund operator on W is also a bounded operator
from L1 μð Þ to L1

weak μð Þ.
We recall below the definition of L1

weak μð Þ.
Definition 3.4. φ∈L1

weak μð Þ if there exists C>0 so that, for all α>0,

μ ω∈W= φ ωð Þj j≥ αf g≤C=α: (42)

Like the proof of Theorem 3.1, this theorem is the extension of Theorem 9.1.2, p.291,
chapter 9 in Daubechies book [8, 17]. We do not reproduce it as it is identical to the
proof of Theorem 9.1.2 in [8]. The infimum of all C for which (42) holds (for all α>0)
will be called φk kL1

weak
. Note that this notation is abusive as it is not a “ true ” norm.

Now, let T be a Calderon–Zygmund operator on W. As T maps L2 μð Þ to L2 μð Þ and
L1 μð Þ to L1

weak μð Þ, we can extend T to other Lp μð Þ-spaces by interpolation theorem of
Marcinkiewicz.

Theorem 3.5. If an operator T satisfies

Tφk kLq 1ð Þ μð Þweak ≤C1 φk kLp 1ð Þ μð Þ, (43)

φk kLq 2ð Þ μð Þweak ≤C2 φk kLp 2ð Þ μð Þ, (44)

where q1 ≤ p1, q2 ≤ p2, then for 1=p ¼ t=p1 þ 1–tð Þ=p2,
1=q ¼ t=q1 þ 1–tð Þ=q2, with 0< t< 1, there exists a constant K, depending on p1,q1,

p2,q2, and t, so that

Tφk kLq μð Þ ≤K φk kLp μð Þ:
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Here Lq μð Þweak stands for the space of all Wiener functionals φ for which

φk kLq μð Þweak ≔ inf C=μ ω; φ ωð Þj j≥ αf g≤Cα�q for all α>0f gð Þ1=q is finite.
The proof of this theorem can be found in E. Stein and G. Weiss [19] for the finite

dimensional case. Extension to Wiener functionals can easily be done from this proof.
Notice that with this theorem it only needs weaker bounds at the two extrema, and
nevertheless derives bounds on Lq μð Þ-norms (not Lq

weak μð Þ) for intermediate values q.
The Marcinkiewicz interpolation theorem implies that the L1 μð Þ ! L1

weak μð Þ-bound-
edness proved in Theorem 3.3 is sufficient to derive Lp μð Þ ! Lp μð Þ boundedness for
1< p<∞, as follows.

Theorem 3.6. If T is an integral operator with integral kernel K satisfying (40, 41),
and if T is bounded from L2 μð Þ to L2 μð Þ, then T extends to a bounded operator from
Lp μð Þ to Lp μð Þ for all p∈ 1,∞� ½.

Proof.

1.Theorem 3.3 proves that T is bounded from L1 μð Þ to L1
weak μð Þ; by Marcinkiewicz’s

theorem, T extends to a bounded operator from Lp μð Þ to Lp μð Þ for 1< p≤ 2.

2.For the range 2≤ p<∞, we use the adjoint T* of T, defined by

ð
T ∗φð Þ ωð Þ ψ ωð Þ

� �
μ dωð Þ ¼

ð
φ ωð Þ Tψð Þ ωð Þ

� �
μ dωð Þ:

It is associated with the integral kernel K0 ω, ξð Þ ¼ K ξ,ωð Þ
� �

, which also satisfies

the conditions (40, 41). This adjoint operator T* is exactly the adjoint operator used in
operator theory on Hilbert spaces. It follows from Theorem 3.3 that T* is bounded
from L1 μð Þ to L1

weak μð Þ, and hence by Theorem 3.5, that it is bounded from Lp μð Þ to
Lp μð Þ for 1< p≤ 2. Since for 1=pþ 1=q ¼ 1, T*: Lp μð Þ ! Lp μð Þ is the adjoint operator of
T: Lq μð Þ ! Lq μð Þ, it follows that T is bounded for 2≤ q<∞. More explicitly, for
readers unfamiliar with adjoints on Banach spaces,

Tφk kq ¼ supψ ∈Lp,, ψk k¼1

ð
Tφð Þ ωð Þ ψ ωð Þ

� �
μ dωð Þ

����
���� if 1=pþ 1=q ¼ 1ð Þ

¼ supψ ∈Lp, ψk k¼1

ð ð
φ ξð ÞK ω, ξð Þ ψ ωð Þ

� �
μ dξð Þ

� �
μ dωð Þ

����
����

¼ supψ ∈Lp, ψk k¼1

ð
φ ξð Þ T ∗ψð Þ ξð Þ μ dψð Þ

����
����

≤ supψ ∈Lp, ψk k¼1 φk kLq μð Þ T ∗ψk kLp μð Þ ≤C φk kLq μð Þ:

We now apply this to prove that a Wiener functional has some decay and some
regularity and if the Ψj,k ωð Þ≔ 2�j=2 2�jω–ke0

� �
, j, k∈ℤ, ω∈W, and where e0 belongs

to the Cameron–Martin space H, constitute an orthonormal basis for L2 μð Þ, then
the Ψj,k also provide unconditional bases for Lp μð Þ, 1< p<∞.

What we need to prove is that if φ ¼Pj,k∈ℤcj,kΨj,k ∈Lp μð Þ, thenP
j,k∈ℤεj,kcj,kΨj,k ∈Lp μð Þ for any choice of the εj,k ¼ �1 (see Preliminaries in [8]).

57

Bases of Wavelets and Multiresolution in Analysis on Wiener Space
DOI: http://dx.doi.org/10.5772/intechopen.104713



We will assume that ψ is continuously Malliavin differentiable on the lattice space
(W, |.|, ≤) where |.| denotes the sup norm, and that both ψ , ∇ψ decay faster than
1þ ωj jð Þ�1:

ψ ωð Þj j, ∇ψ ωð Þk kH ≤C 1þ ωj jð Þ�1�ε: (45)

Then Ψ∈Lp μð Þ for 1< p<∞, and φ ¼P
j, k
cj,kψ j,k implies that cj,k ¼

Ð
H
φ ωð Þψ j,k ωð Þ μ dωð Þ because of the orthonormality of the ψ j,k. We therefore want to

show that, for aby choice of the εj,k ¼ �1, Tε defined by

Tεφ ¼
X
j, k

εj,k φ, ψ j,k

D E
L2 μð Þ

ψ j,k

Is a bounded operator from Lp μð Þ to Lp μð Þ. First, we know that Tε is bounded from
L2 μð Þ to L2 μð Þ, since, denoting by :k kμ (resp. < .,. > μ) the norm (resp. the scalar
product) in L2 μð Þ,

Tεφk kμ
� �2

¼
X
j, k

εj,k φ,ψ j,k

D E
μ

����
����
2

¼
X
j, k

φ,ψ j,k

D E
μ

����
����
2

¼ φk kμ
� �2

,

so the Lp μð Þ-boundedness will follow by Theorem 3.5 if we can prove that Tε is an
integral operator with kernel satisfying (40, 41). This is the content of the following
lemma.

Lemma 3.7. Choose εj,k ¼ �1, and define K ω, ξð Þ≔P
j, k
εj,kψ j,k ωð Þ ψ j,k ξð Þ

� �
. Then

there exists C > 0 so that

K ω, ξð Þj j≤C ω� ξj j�1

and

∇ωK ω, ξð Þk kH þ ∇ξK ω, ξð Þ�� ��
H ≤C ω� ξj j�2:

Proof.

1.

K ω, ξð Þj j ≤
X
j, k

ψ j,k ωð Þ
���

��� � ψ j,k ξð Þ
���

���

≤C
X
j, k

2�j 1þ 2�jω–ke0
�� ��� ��1�ε

1þ 2�jξ� ke0
�� ��� ��1�ε

by 3:13ð Þ:

Find j 0ð Þ∈ℤ so that 2j 0ð Þ ≤ ω� ξj j≤ 2j 0ð Þþ1. We split the sum over j into two parts:
j< j0 and j≥ j 0ð Þ.

2.
P
k

1þ a� kj jð Þ�1�ε 1þ b� kj jð Þ�1�ε is uniformly bounded for all values of

a, b∈ℝ : in fact,
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X
k

1þ a� kj jð Þ�1�ε 1þ b� kj jð Þ�1�ε ≤
X
k

1þ a� kj jð Þ�1�ε

≤ sup0≤ a0 ≤ 1

X
k

1þ a0 � kj jð Þ�1�ε ≤ 2
X
l∈ℕ

1þ lð Þ�1�ε <∞:

Hence,
X
j≥ j 0ð Þ

X
k

2�j 1þ 2�jω–ke 0ð Þ�� ��� ��1�ε
1þ 2�jξ� ke 0ð Þ�� ��� ��1�ε

≤C
X
j≥ j 0ð Þ

2�j ≤C:2�j 0ð Þþ1 ≤4C ω� ξj j�1:

3.The part j< j 0ð Þ is a little less easy.
X

�∞< j≤ j 0ð Þ�1

2�j
X
k

1þ 2�jω–ke 0ð Þ�� ��� �
: 1þ 2�jξ� ke 0ð Þ�� ��� �� ��1�ε

¼
X

j≥�j 0ð Þþ1

2j
X
k

1þ 2jω–ke 0ð Þ�� ��� �
: 1þ 2jξ� ke 0ð Þ�� ��� �� ��1�ε

≤ 21þε
X

j≥ j 0ð Þþ1

2j
X
k

2þ 2jω–ke 0ð Þ�� ��� �
: 2þ 2jξ� ke 0ð Þ�� ��� �� ��1�ε

: (46)

Find k0 ∈ℤ so that k0 ≤ 2j ωj j þ ξj jð Þ=2≤ k0 þ 1 and define l ¼ k–k0. Then

2þ 2jω–ke 0ð Þ�� �� ¼ 2þ 2j ω� ξð Þ=2� le 0ð Þ þ 2j ωþ ξð Þ=2–k0e 0ð Þ� ��� ��
≥ 1þ 2j ω� ξð Þ=2–le 0ð Þ�� ��;

similarly,

2þ 2jξ� ke 0ð Þ�� ��≥ 1þ 2j ξ� ωð Þ=2–le 0ð Þ�� ��:

Consequently, with ω1 ≔ 2j ω� ξð Þ=2,
X
k

2þ 2jω–ke 0ð Þ�� ��� �
: 2þ 2jξ� ke 0ð Þ�� ��� �� ��1�ε

≤
X
l

1þ ω1 þ le 0ð Þj jð Þ: 1þ ω1 þ le 0ð Þj jð Þ½ ��1�ε ≤C 1þ ω1j jð Þ�1�ε,

so that

≤C
X

j≥�j 0ð Þþ1

2j 1þ 2j ω� ξj j=2� ��1�ε

≤C
X
j0 ≥ 1

2j
0�j 0ð Þ 1þ 2j

0–j 0ð Þ 1=2ð Þ2j 0ð Þþ1
� ��1�ε

as we have ω� ξj j≤ 2j 0ð Þþ1,

≤C2�j 0ð Þ X
j0 ≥ 1

2j
0
1þ 2j

0� ��1�ε

≤C02�j 0ð Þ ≤ 2C0 ω� ξj j�1:

(47)

It therefore follows that K ω, ξð Þj j≤C ω� ξj j�1
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4.For the estimates on ∇ωK and ∇ξK, we write

∇ωK ω, ξð Þk kH ≤
X
j, k

2�j ∇ψ 2�jω–ke0
� ��� ��

H ψ 2�jω–ke0
� ��� ��

≤C
X
j, k

2�2j 1þ 2�jω–ke0
�� ��� �

1þ 2�jξ� ke0
�� ��� �� ��1�ε

and we follow the same technique; we obtain.
∇ωK ω, ξð Þk kH, ∇ξK ω, ξð Þ�� ��

H ≤C ω� ξj j�2:∎
It therefore follows from the lines we write before the lemma the following

theorem [20, 21].

Theorem3.8. If ψ is a Wiener functional continuously Malliavin differentiable and
ψ ωð Þj j, ∇ψ ωð Þk kH ≤C 1þ ωj jð Þ�1�ε, and if the ψ j,k ωð Þ≔ 2�j=2ψ 2�jω–ke0

� �
constitute an

orthonormal basis for L2 μð Þ, e0 ∈H being given, then the ψ j,k; j, k∈ℤ
n o

also constitute

an unconditional basis for all Lp μð Þ – spaces, 1< p<∞.

1.4 Periodized Wiener wavelets

Even if L1-spaces do not have unconditional bases, Wiener wavelets still
outperform Fourier Wiener analysis in some sense. To illustrate this, let us first
introduce “ periodized Wiener wavelets ”. Given a multiresolution Wiener analysis
with scaling Wiener functional ϕ and Wiener wavelet ψ , both with reasonable decay
(say, ϕ ωð Þj j, ψ ωð Þj j≤C 1þ ωj jð Þ�1�ε), we define

ϕper
j,k ωð Þ≔

X
l∈ℤ

ϕj,k ωþ le0ð Þ,ψper
j,k ωð Þ≔

X
l∈ℤ

ψ j,k ωþ le0ð Þ;

and

Vper
j ≔ closure of span ϕper

j,k ; k∈ℤ
n o

,

Wper
j ≔ closure of span ψ

per
j,k ; k∈ℤ

n o

First, notice that we have:
P

l∈ℤϕ ωþ le0ð Þ ¼ 1. In fact, put
φ ωð Þ≔Pl∈ℤϕ ωþ le0ð Þ. The conditions on ϕ (continuity and its “ reasonable decay ”)
ensure that φ is well defined and continuous. Moreover, we can write:

ϕ ωð Þ ¼
X
n∈ℤ

cnϕ 2ω–ne0ð Þ with cnð Þn ∈ℓ2 ℤð Þ:

Then,

φ ωð Þ ¼
X
l

X
n
cnϕ 2ω–2le0–ne0ð Þ ¼

X
l

X
m

cm�2lϕ 2ω–me0ð Þ

¼
X
m

X
j

cm�2j

 !
ϕ 2ω–me0ð Þ ¼

X
m
ϕ 2ω–me0ð Þ ¼ φ 2ωð Þ:

Hence, φ is continuous, periodic with period e0, and
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φ ωð Þ ¼ φ 2ωð Þ ¼ … ¼ φ 2nωð Þ ¼ …

It follows that φ is a constant Wiener functional. We then put:

X
l

ϕ ω–le0ð Þ ¼ c

SinceÐ
ϕ dμ ¼ 1, this constant is necessarily equal to 1. We deduce, for j≥0, ϕper

j,k ωð Þ ¼

2�j=2 P
l
ϕ 2�jω–ke0 þ 2�jle0
� � ¼ 2j=2, so that the Vper

j , for j≥0, are all identical one-

dimensional spaces, containing the constant functionals.
Similarly,

P
l
ψ ωþ l=2ð Þe0ð Þ ¼ 0. In fact,

P
l
ψ ωþ l=2ð Þe0ð Þ ¼

P
l

P
n

�1ð Þnc�nþ1ϕ 2ωþ le0–ne0ð Þ where the cn are the coefficients appearing in (13),

that is,

cn ¼ ϕ,ϕ�1,n

� � ¼
X
k,m

�1ð Þmþ1cmϕ 2ωþ ke0ð Þ k ¼ l–n,m ¼ �nþ 1ð Þ

¼ 0 because
X
m

c2m ¼
X
m
c2mþ1

 !
:

Hence, for j≥ 1≥ , Wper
j ¼ 0f g. We therefore restrict our attention to the Vper

j ,

Wper
j with j≤0. Obviously Vper

j , Wper
j ⊂Vper

j�1, a property inherited from the non-

periodized spaces. Moreover, Wper
j is still orthogonal to Vper

j , because

ð

H

Ψper
j,k ωð Þϕper

j,k0 ωð Þ μ dωð Þ ¼
X
l, l0∈ℤ

2�j
ð

H

ψ 2�jωþ 2�jle0–ke0
� �

ϕ 2�jωþ 2�jl0e0–k
0e0

� �� �
μ dωð Þ

¼
X
l, l0∈ℤ

2 jj j
ð

l0e0, l0þ1ð Þe 0ð Þ� �
Ψ 2 jj jωþ 2 jj j l–l0

� �
e0–ke0

� �
ϕ 2 jj jξ�k0e0
� �

μ dξð Þ,

because j≤0,

¼
X
r∈ℤ

ψ j,kþ2 jj jr,ϕj,k0
D E

μ
¼ 0:

It follows that, as in the non-periodized case, Vper
j�1 ¼ Vper

j ⊕Wper
j . The spaces Vper

j ,

Wper
j are all finite-dimensional: sinceΦj,kþm2 jj j ¼ Φj,k form∈ℤ, and the same is true for

Ψ, both Vper
j and Wper

j are spanned by the 2|j| Wiener functionals obtained from k ¼
0, 1, … , 2 jj j � 1. These 2|j| Wiener functionals are moreover orthonormal; in, for
example, Wper

j we have, for 0≤ k, k0 ≤ 2 jj j � 1,

Ψper
j,k ,Ψ

per
j,k0

D E
μ
¼
X
r∈ℤ

ψ j,kþ2 jj jr, ψ j,k0
D E

μ
¼ δk; k0 :
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We have therefore a ladder of multiresolution spaces, Vper
0 ⊂Vper

�1 ⊂Vper
�2 ⊂ … , with

successive orthogonal complementsWper
0 of Vper

0 in Vper
�1

� �
, Wper

1 , … , and orthonormal

bases ϕj,k; k ¼ 0, … , 2 jj j � 1
n o

in Vper
j , ψ j,k; k ¼ 0, … , 2 jj j � 1
n o

in Wper
j . Since the

closed space spanned by ∪
j∈�ℕ

Vper
j is L2 μð Þ (this follows from the corresponding non-

periodized version), the Wiener functionals in ϕper
0,0

n o
∪ ψ

per
j,k ;�j∈ℕ,k¼ 0, … , 2 jj j � 1

n o

constitute an orthonormal basis in L2 μð Þ. We will relabel this basis as follows:

ψ0 ωð Þ ¼ 1 ¼ ϕper
0,0 ωð Þ,ψ1 ωð Þ ¼ ψper

0,0 ωð Þ,ψ2 ωð Þ ¼ ψper
�1,0 ωð Þ,

ψ3 ωð Þ ¼ ψ
per
�1,1 ωð Þ, … ,

ψ2j ωð Þ ¼ ψ
per
�j,0 ωð Þ, … ,ψ2jþk ωð Þ ¼ ψ

per
�j,k ωð Þ ¼ ψ2j ω–k2

�je0
� �

for 0≤ k≤ 2j–1, … :

Then this basis has the following property.

Theorem 4.1. If φ is a continuous periodic Wiener functional with period e0, then
there exist αn ∈ℂ so that

lim N φ�
X

n¼0, … ,N

αnψn

�����

�����
∞

¼ 0, (48)

where :k k∞ denotes the norm of L∞ μð Þ.

Proof.
1.Since the ψn are orthonormal, we necessarily have αn ¼ φ,ψnh iμ. Define

SNφ ¼
X

n¼0, … ,N

φ,ψnh iμ:

In a first step we prove that the SN are uniformly bounded, that is,

SNφk k∞ ≤C φk k∞, (49)

with C independent of φ or N.

2.If N ¼ 2j, then S2j is the orthogonal projection operator on Vper
�j ; hence

S2jφ
� �

ωð Þ ¼
X

k¼0, … , 2 jj j�1

φ,ϕper
�j,k

D E
μ
ϕper
�j,k ωð Þ ¼

ð

H

Kj ω, ξð Þφ ξð Þ μ dξð Þ,

with Kj ω, ξð Þ ¼ P
k¼0, … , 2 jj j�1

ϕper
�j,k ωð Þ ϕper

�j,l ξð Þ
� �

:.

Consequently,

S2φk k∞ ≤ supω∈H

ð

H

Kj ω, ξð Þ�� �� μ dξð Þ

0
B@

1
CA φk k∞:
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Now,

supω∈H

ð

H

Kj ω, ξð Þ�� �� μ dξð Þ

≤ supω∈H

ð

H

X
k¼, , 2 jj j�1

X
l, l0 ∈ℤ

ϕ�j,k ωþ le0ð Þ
���

���: ϕ�j,k ξþ l0e0
� ����

��� μ dξð Þ

≤ supω∈H

ð

H

X
k¼0, … , 2 jj j�1

X
l∈ℤ

2j ϕ 2j ωþ le0ð Þ–ke0
� ��� ��: ϕ 2jξ–ke0

� ��� �� μ dξð Þ

≤Csupω0 ∈H

X
k¼0, … , 2 jj j�1

X
l∈ℤ

ϕ ω0 þ 2jle
��� ≤Csupω0 ∈H

X
m∈ℤ

ϕ ω0 þme0ð Þj j,

and this is uniformly bounded if ϕ ωð Þj j≤C 1þ ωj jð Þ�1�ε. This establishes (49) for
N ¼ 2j.

3. If N ¼ 2j þm, 0≤m≤ 2j–1, then

SNφð Þ ωð Þ ¼ S2jφ
� �

ωð Þ þ
X

k¼0, … ,m

φ,ψper
�j,k

D E
μ
ψ
per
�j,k ωð Þ:

Estimates exactly similar to those in point 2 show that the L∞ μð Þ-norm of the
second sum is also bounded by C φk k∞, uniformly in j, which proves (49) for all N.

4.Take now φ∈E ¼ ∪
j∈�ℕ

Vper
j . Then φ∈Vper

�J for some J > 0,

so that φ,ψper
�j,k

D E
μ
¼ 0 for j0 ≥ J, i.e., φ,ψ lh iμ ¼ 0 for l≥ 2J. Consequently, φ ¼ SNφ

ifN ≥ 2J, so that (48) clearly holds. Since E is dense in the space of continuous periodic
Wiener functionals equipped with the :k k∞-norm, the theorem follows.∎.

We deduce a similar theorem for L1 μð Þ.

Theorem 4.2. If φ∈L1 μð Þ, then lim N φ� P
n¼0, … ,N

φ,ψnh iμψn

�����

�����
μ

¼ 0.

Proof.
As we have the following:

φk kL1 μð Þ ¼ sup φ,ψh iμ
���

���=ψ continuous, periodic with period e0, ψk k∞ ≤ 1
n o

,

this leads immediately to

SNφk kL1 μð Þ ¼ sup SNφ,ψh iμ
���

���ψ continuous, e0–periodic, ψk k∞ ≤ 1
n o

¼ sup φ, SNψh iμ
���

���ψ continuous, e0–periodic, ψk k∞ ≤ 1
n o

≤C φk kL1 μð Þ (50)

by the uniform bound (49) and because φ,ψh iμ
���

���≤ φk kL1 μð Þ ψk k∞.
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Since E ¼ ∪ j∈�ℕV
per
j is dense in L1 μð Þ, the uniform bound (50) is sufficient to

prove the theorem.∎.
Remark. The ordering of the ψn is important in Theorems 4.1 and 4.2: we have a

Schauder basis, but not an unconditional basis.
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Section 3
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Spectral Sensing, Monitoring
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Chapter 5

Wavelet Transform-Spectrum
Sensing
Himanshu Monga, Dikshant Gautam and Saksham Katwal

Abstract

Spectrum sensing is a vital cognitive radio function that protects licensed users from
dangerous interference and finds accessible spectrum for better spectrum use. In
practice, however, multipath fading, shadowing, and receiver uncertainty frequently
degrade detection performance. Communication performance and continuity in cogni-
tive radio networks are heavily dependent on how well the spectrum sensing function is
implemented. The significance of selecting the right wavelet system is discussed.

Keywords: cognitive radio, spectrum sensing, multipath fading, shadowing, wavelet
system

1. Introduction

Spectrum sensing is crucial in cognitive radio technology for effective bandwidth
usage. The problem of interference between adjacent spectrums can be efficiently
avoided by carefully finding the spectrum boundaries. Increase the data rates in the
channel by adding bands and increasing the data rates in the channel. Various
attempts have been made. Wavelet Edge detection is a technique for accurately
detecting spectral boundaries [1]. The method that is extensively used nonetheless,
the system’s efficiency is quite low. Depending on the wavelet type utilized. After
analyzing the nature of peaks in the power spectral density of the spectrum, a spec-
trum sensing technique selects the best wavelet function for the supplied spectrum.
For the problem of edge detection, traditional solutions use a specific wavelet func-
tion, followed by energy detection or periodicity detection [2, 3]. However, a single
wavelet function cannot be employed efficiently for real-time spectrum data with
significantly different PSD properties.

1.1 Spectrum sensing

Cognitive Radio (CR) is a new technology that aims to solve the problem of
wasteful spectrum use by increasing idle spectrum usage in both time and space. CR
has the capacity to dynamically access the spectrum, determining which frequencies
are not in use, and reserving them for data transmission and reception. When com-
pared to traditional radio techniques, cognitive radio has a number of advantages,
such as the ability to activate several licensed frequency bands to allow an
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unconstrained secondary user to communicate with another CR in some spectrum
policy that defines some CR rules and limitations, and the ability to transmit data
simply by changing the operating factor without any changes to the hardware
components [4, 5]. Spectrum sensing is a vital step in the evolution of technology
Cognitive Radio, in which the major users are detected in that spectrum band to detect
spectrum holes and minimize unintended interference. Spectrum sensing can be done
in a variety of ways. The following three types of spectrum sensing techniques are
based on primary user availability.

Non-cooperative detection (Transmitter detection), cooperative detection, and
interference detection are the three types of detection. Wavelet-based spectrum sens-
ing algorithms are utilized for signal edge detection in transmitter detection, where
primary users are present to detect spectrum opportunities.

1.2 Wavelet transform

The wavelet theory is used to evaluate signals by breaking them down into their
constituents and basic functions. The wavelet transform can characterize the local
regularity of signals and is a mathematical tool for analyzing singularities and irregular
structures. In order to study the primary users, the wavelet transform approach for
spectrum detection in CR is well justified. Wavelets are useful for studying fluctua-
tions in signals and spectrum since they are described by both scale and position. The
concept of local regularity is used to convey scale, while a list of domains is used to
describe time aspects. The Continuous Wavelet Transform (CWT) is a two-parameter
wavelet function signal expansion [6].

When compared to other types of spectrum sensing techniques, this wavelet
transform technique takes much less time to detect whether the principal user is
consuming the spectrum or not. When the de-noising and compression processes are
at their center points, the disintegration is considered complete. Because only the
available frequency, i.e. spectrum holes in which the secondary user can communi-
cate, is denoted at each level of the wavelet decomposition.

2. Traditional spectrum sensing methods

Spectrum sensing is essentially a form of energy detection in which the presence or
absence of useful data in a specific frequency band is determined. The presence of
data indicates a rise in energy from the noise floor, or the presence of a noise-like
signal with higher-order periodicity. Traditional techniques work in narrowband and
use a set of FIR filters that are tuned for the frequency range in question. While this
strategy works well for narrow bandwidths, it becomes inefficient as the dynamic
range of Cognitive Radios’ functioning expands. This approach is quite difficult for
ultra-wideband cognitive radio systems. However, it is recommended that the reader
has first-hand knowledge of traditional methods in order to comprehend the proper-
ties of Wavelet-based algorithms so that the discussion is limited to those parts of
spectrum sensing that cannot be done using these methods.

2.1 Short-time fourier transform (STFT)

The “Windowed Fourier Transform” is another name for this approach. In general,
the Fourier Transform is a time-to-frequency domain transformation that yields time
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averaged values for distinct frequency components. While this technique is beneficial
for examining frequency components, it does not allow us to determine when they
occur. i.e. frequency localization in time is impossible. The entire signal is separated
into smaller segments (using an appropriate window function) and the Fourier
Transform is obtained for these intervals in a short-time Fourier transform.

While this method outperforms Fourier analysis in terms of results, it suffers from
limited frequency resolution, large volatility in the predicted power spectrum, and
high side lobes/leakages.

2.2 Periodogram

Until better methods were found to replace it, the Periodogram was one of the
most widely utilized Spectrum Sensing techniques. The infinite length sequence is
trimmed with a rectangular window function in this manner, and the FFT is obtained.
The square of the FFT yields a rough Spectral Density plot. The signals are abruptly
truncated, which is a fundamental flaw in this strategy. This produces a Dirichlet
Kernel in the frequency domain, which is defined by the width of the main lobe and
side lobes, as detailed in [7, 8]. As a result, spectral leakage occurs at the discontinu-
ities. Furthermore, time-frequency localization was not possible with this strategy.

2.3 Matched filter approach

This is a test method of detection. This is the quickest way to detect spectrum, but
it fails because it requires prior knowledge of the primary user’s modulation type,
pulse shaping, and packet format. Coherence requires precise timing and synchroni-
zation. However, temporal dispersion and Doppler shifts can occur as a result of
channel fading effects, affecting synchronization. In [9] there is a lot of information
about how to implement matching filters.

2.4 Cyclo-stationary feature detection

First-order periodicity can be applied to any observable regularity. Because of
modulation techniques or in the sent data. The signal gains a specific periodicity as a
result of source coding, which can be useful. Only nonlinear time-invariant trans-
formations of the time can be seen. Series [10]. Cyclostationarity is the name for this
form of second-order periodicity. The mean, autocorrelation, and other statistical
properties, in general, demonstrate a pattern of behavior This can be used to deter-
mine whether something is present or not a frequency band’s worth of data. The
advantage is that this is the only method that accurately measures spectral occupancy
in bands with very low SNR. The borders, on the other hand, cannot be precisely
specified. As a result, this technique, in combination with border detection, is fre-
quently utilized in the development of algorithms. Adoum and Jeoti [2] provides a full
explanation of how to compute the Cyclic Spectrum Density.

2.5 Multi taper spectrum estimation

In this strategy, the issues that plagued the Periodogram approach are partly
mitigated. Multiple orthogonal filters are used to limit spectral leakage and volatility
in the calculated power. Consider the signal X(n) = [x(n) x(n - 1) x(n - 2) …

x(n - M + 1)] T, which consists of M samples. These data points are used to create an
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orthogonal basis, and the expansion coefficients are modified using a set of values that
represent the way the spectrum tapers. Thomson [11] provides a more thorough
formulation. The average of numerous Periodograms with different windows can be
deduced as MTSE. As a result, each window shape displays distinct aspects of the
spectrum, while the average value smooths out the discontinuous points and reduces
spectral leakage. This solution suffers from expensive computations and the fact that
it cannot totally solve the Spectrum leakage problem, although better methods can.

2.6 Quadrature mirror filter banks

The entire wideband spectrum is separated into M-bands using this strategy. These
are predefined bands in which user activity is monitored using n stages of Quadrature
Mirror Filters tuned for the band, with M = 2n. As a result, as with the Matched Filter
Method, previous knowledge of the Primary user is required. However, because a set
of Filter banks is utilized, the same filters can be used for data reception after spectral
gaps have been detected [12]. As a result, they serve a dual purpose. In addition, the
tree structure aids in the reduction of computer complexity. The energy detection
process starts with only two filters in the first step. Thresholds are set to determine
whether or not to move on to the next step. The procedure of analyzing the sub-bands
is skipped if the signal energy is larger than the threshold. The difficulty with this
strategy is that free spectra will be wasted if the spectrum’s border does not corre-
spond with the designated pass-band of a particular filter. As a result, spectral holes
narrower than the pass-band of the last stage filter are not detectable using this
technique. Furthermore, the channel fading effects have a significant impact on its
performance.

These methodologies, as well as their faults, prompted researchers to develop a
domain transformation technique that could analyze both spatial and spectral data at
the same time. Wavelets developed as a promising concept with a lot of promise for
fixing the challenges described above. To a large extent, they helped with temporal
frequency localization. Their ability to respond to function discontinuities (singular-
ity) also enables researchers to use them in a variety of border detecting applications.
The mathematics of Wavelet Edge Detection is presented in the next section.

3. Wavelet theory of edge detection

Before getting into the analysis of Edge Detection with Wavelets, it’s a good idea to
give a quick overview of how the Wavelet theory came to be. This is followed by the
Edge Detection Technique in the following subsection.

Edges in the frequency spectrum are generated when a signal’s frequency changes.
This feature was utilized in the detection process. The wavelet transform is commonly
used on these sub-bands for detection and estimation of native spectral irregularities/
transitions, which carries significant information on Power Spectral Densities (PSDs)
and frequency locations [13]. The entire frequency range is divided into various sub-
bands, and the wavelet transform is generally used on these sub-bands for detection
and estimation of native spectral irregularities/transitions, which carries significant
information on PSDs and frequency locations. The wavelet transform has been
employed instead of the standard Fourier transform because it provides information
about the exact placement of different frequency locations and spectral densities.
Furthermore, the Fourier transform can only display the various frequency
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components, not their location. Edges representing transitions from empty to the
occupied band have been sought for in the spectral densities of all sub-bands. The
initial stage in wideband spectrum sensing is to determine the frequency position of
each channel in the RF spectrum. Regardless of the PSD’s actual shape, sharp variation
points (singularities) along the channel’s edges are expected [14]. The difficulty of
detecting these anomalies might be thought of as an edge detection problem.
Depending on the PSD level of each channel, the discovered spectrum bands have
now been categorized as occupied or unoccupied. The existence of an edge indicates
that the band contains PU.

PSD of the received signal can be written as:

fð Þ ¼
X

fð Þ þ fð Þ, f f0, fN½ � (1)

Where (f) & (f) are the signal and noise PSDs, respectively, within the nth band,
and (f) & (f) are the signal and noise PSDs, respectively. The wideband frequency
range is denoted by f [f0, fN]. This technique has worked well for ultra-wideband (3–
10GHz) CRs with a variety of narrowband incumbents and other users like as WiMAX
and Wi-Fi. Pros: Adapts quickly to changing PSD structures. Cons: Characterizing the
whole bandwidth was required at higher sampling rates.

4. Types and classification of wavelets

Wavelets are divided into two groups, as seen in Figure 1 [15]. Wavelets, which
are characterized by mathematical formulas that are continuous and infinite in nature,
are the first category [15]. They are also known as crude wavelets because they must
be converted to wavelet filters with a finite number of discrete points before they can
be used in any signal processing system. The Mexican hat wavelet (Figure 1) is a good
illustration of this sort of wavelet.

Wavelets that start off as filters with two points of definition in the initial state are
the second category of wavelets [15]. These wavelets form an approximation of a

Figure 1.
Types of Wavelet.
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continuous wavelet by interpolating and extrapolating more points from the starting
two points. The Daubechies 4 (Db4) wavelet, depicted in Figure 1 [15, 16], is a good
example of this type of wavelet.

Wavelets are widely used in a variety of scientific and technical sectors. They each
have different features that make them best suited for a specific use. The wavelet and
scaling functions of biorthogonal wavelets are symmetric. Because the human vision
system is more tolerant of symmetric faults than asymmetric errors, this characteristic
makes biorthogonal wavelets suitable for human vision perception [17]. Wavelet trans-
forms such as Haar, symlet, and Daubechies are known to have asymmetric errors.

Shannon wavelets feature a sharp localization and limitless frequency support. As a
result, they’re great for identifying events with specified frequencies [14, 18]. Two
key characteristics of Haar wavelets make them perfect for edge identification. The
first is that Haar wavelets maintain signal energy [19]. The second virtue is that Haar
wavelets are exactly reversible without edge effects [20], which is critical for edge
detection.

Coiflet wavelets are ideal in numerical analysis because of their high number of
vanishing moments and almost interpolating and linear phase low-pass within a given
passband [21]. They can also deal with fractals in signal processing because of their
almost interpolating and linear phase low-pass within a given passband.

The Daubechies wavelets are characterized by a high degree of regularity, many
vanishing moments, and approximate symmetry. Because the wavelets get smoother
as the vanishing moments grow, these characteristics are extremely desirable in signal
processing and data compression applications [22, 23]. In Section 6, an example of
Daubechies applicability for spectrum sensing is given.

The Morlet wavelet is frequently used in signals that are related to the environ-
ment, such as seismic vibrations. The Morlet wavelet’s ability to capture both ampli-
tude and phase features of a signal while maintaining the signal’s temporal aspect
makes it appealing in this application [24–26].

Patch and gap events are well-localized in Mexican hat wavelets. They also have a
lot in common with MUAPs (motor unit action potentials), hence they can be used in
EMG (electromyography) [27, 28].

5. Wavelet-based spectrum sensing

Wavelets are short-duration signals. Wavelets differ from sinusoids in theory
because, whereas sinusoids stretch from—to, wavelets have a finite beginning and
ending locations. The premise in wavelet-based spectrum sensing is that the CR
system receives a signal that spans N spectrum bands and that the CR must detect the
PSD (power spectrum density) levels and frequency positions of each band. Figure 2
[29] depicts a spectrum band between f0 and fN, with sub-band frequencies at f0, f1,
and fn. Shiann-Shiun et al. [30] defines the nth band in Figure 2 as follows:

Bn : f ∈Bn : fn� 1≤ f < fnf g, n ¼ 1, 2, … ,N: (2)

PSD of a CR system receiving an input signal:

Sr fð Þ ¼
XN
n¼1

α2nSn fð Þ þ Sω fð Þ, f ∈ f0, fN½ � (3)
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There are three different ways to apply the wavelet approach to spectrum sensing.
The continuous wavelet technique, discrete wavelet technique, and discrete wavelet
packet technique are examples of these. DWT (Discrete Wavelet Transform) and
CWT (Continuous Wavelet Transform) techniques are also used for reduced BER
with an increase in SNR in optical wireless systems which are based on On–Off keying
modulation (OOK) [31].

5.1 Continuous wavelet transform-based spectrum sensing

The spectrum sensing based on continuous wavelet (CWT) [29] assesses the sim-
ilarity between a signal and an analysis function. by making use of inner coefficients
multi-scale product and multi-scale sum are two methods for obtaining spectrum
sensing with continuous wavelets. Taking the multi-scale and wavelet transforms, and
then estimating the edges given in [29, 32], the multi-scale product technique includes
determining discontinuities in a signal’s PSD:

p fð Þ ¼
YJ

j¼1

W 0s ¼ 2jSr fð Þ (4)

where j is the scaling function’s upper limit; Sr(f) is the received signal’s PSD;
W

0
s = 2ʲ is the first-order derivative at scale s = 2ʲ, and p(f) is the multiscale product.
The spectral boundaries are assumed to be represented by discontinuities in the

PSD in this calculation. The energy is calculated for each sub-band to get the spectrum
occupancy.

The multi-scale sum technique [33] is based on the idea that various signals at
different scales have varying cross scales of information. This means that at different
scales, wavelet transformations convey information about the Lipschitz exponent at
acute variation spots. As a result, the multi-scale sum technique is employed to
preserve signal information at all scales while avoiding attenuation. The multi-scale
sum at the jth dyadic scale for a CWT is provided as:

XjSr fð Þ ¼
XJ

j¼1

W2jSr fð Þ (5)

Figure 2.
N frequency bands with piecewise smooth PSD.
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The following are the benefits and drawbacks of the continuous wavelet
transform-based spectrum sensing technique:

Advantages

i. CWT allows for enhanced transient localization and oscillatory behavior
characterization in a signal.

ii. Because of its fine-grained resolution, CWT is frequently used for singularity
detection.

iii. Because of its narrow sample scales, CWT has excellent fidelity in signal
analysis.

Disadvantages

i. Because CWT contains a lot of redundancy and is computationally
demanding, it’s frequently utilized for offline analysis.

ii. For an evaluated signal, CWT does not offer phase information.

iii. A perfect reconstruction of an original signal from CWT coefficients is
impossible.

5.2 Discrete Wavelet Transform (DWT) based spectrum sensing

The discrete wavelet transform (DWT) breaks down an input signal x[m] into
coarse and fine information. The decomposition, which allows the DWT to examine a
signal at multiple frequency bands and resolution, is accomplished by filtering the
time-frequency domain signal with successive high pass and lowpass filters [34, 35].
This can be stated mathematically as (Figure 3)

ylow k½ � ¼
X
m

x m½ �h0 2k�m½ � (6)

ylow k½ � ¼
X
m
x m½ �h0 2k�m½ � (7)

yhigh[k] is the high pass filter output and ylow[k] is the lowpass filter output. Mathe-
matically, the scaling (cj) and wavelet (dj) coefficients are represented in [36, 37] as:

Figure 3.
DWT Filter Bank.
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c j kð Þ ¼
X
m

h0 m� 2kð Þc jþ1 mð Þ (8)

dj kð Þ ¼
X
m

h1 m� 2kð Þcjþ 1 mð Þ (9)

Advantages and disadvantages of Discrete wavelet transform-based spectrum
sensing technique:

Advantages

i. By using a subset of coefficients to capture significant aspects of signals,
DWT enables the sparse representation of many natural signals.

ii. DWT achieves signal compression by providing a high-quality approximation
of a signal. This is accomplished by deleting several of its close-to-zero
coefficients.

iii. Because they have nonredundant orthonormal bases, DWT has flawless
reconstruction and is computationally efficient.

Disadvantages

i. Shift sensitivity is a problem with DWT, in which a change in the input signal
induces an unanticipated change in the transform coefficients.

ii. The DWT representation of signals in image processing suffers from
inadequate directionality, which impairs its optimality.

iii. DWT lacks phase information, which is critical for describing a function’s
amplitude and local behavior.

5.3 Discrete wavelet packet transform (DWPT) based spectrum sensing

The discrete wavelet packet transform (DWPT) works similarly to the discrete
wavelet transform, with the exception that the DWPT transform decomposes both the
approximation and detail spaces of a signal [38, 39]. The structure of the DWPT is
shown in Figure 4 [40]. As shown in Figure 4, DWPT decomposes a signal x[n] into
2 L sub-bands, where L is the decomposition level.

To perform spectrum sensing, the energy in each sub-band is calculated [40] and
compared to a threshold to determine if the sub-band is occupied or not by the
principal user. In Ref. [41, 42] gives the following formula for calculating the energy
in each sub-band:

E ¼ 1
T

ðT
0

X
j≥ j0

X
k

cj, kϕj, k tð Þ þ dj, kψ j:k tð Þ
" #

2dt (10)

E ¼ 1
T

X
j≥ j0

X
k

cj2, kþ d2j, kð Þ (11)

Advantages and disadvantages of Discrete wavelet Packet transform-based
spectrum sensing technique.
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Advantages

i. Because it decomposes both the high and low-frequency components of an
input signal, DWPT has more fidelity than DWT.

ii. Without assuming any statistical attribute of the signal, DWPT exhibits good
universality in adapting its transform to a signal.

Disadvantages

i. In a DWPT, the high-pass coefficients oscillate around signal singularities.

ii. The nonlinear frequency perception phenomena are ignored by DWPT in
voice recognition.

Advantages and disadvantages of wavelet-based spectrum sensing technique.
Wavelets, like any other spectrum sensing technology, have advantages and

disadvantages. However, when it comes to dynamic frequency management, the
benefits of wavelet sensing techniques exceed the drawbacks. The following are some
of the benefits of wavelet-based spectrum sensing:

i. Wavelet-based methods are used to accomplish significant data compression.
As a result of this compression, the number of sensing measures required is
reduced, enhancing estimate speed and lowering the communication power
required for transmission. In terms of power source longevity, a reduction in
necessary transmission power is a significant benefit for mobile
communication devices.

ii. Wavelet-based estimates for sharp-featured sources have the advantage
of having fewer side-lobes and thus fewer leakages than most older
methods.

Figure 4.
DWT Structure.
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iii. Wavelets have a strong ability to modify the time-frequency window to retain
orthogonality, allowing them to identify dynamic changes in statistical
parameters in any spectrum.

iv. The effect of noise and interference on the signal can be reduced by using a
variable time-frequency window design.

v. The tuning capability and flexibility of wavelet bases are used to mitigate
channel problems such as inter-symbol interference (ISI) and inter-carrier
interference (ICI).

Wavelets do not require a cyclic prefix or guard bands in OFDM applications,
making them more efficient than the Fourier transform in terms of spectrum
consumption.

The following are some of the drawbacks of wavelet-based spectrum sensing:

i. Frequency selection is not natural.

ii. Requires modification to carry signal phase information.

iii. Requires the creation of filters that implement the required wavelet to meet
very strict criteria.

iv. The higher the level of decomposition in the discrete wavelet transform and
discrete wavelet packet transform, the more complicated the system
becomes.

6. Conclusions

A number of traditional spectrum sensing methods have been studied in this
chapter, and their disadvantages have been highlighted. The use of Wavelets’ unique
properties in Spectrum Sensing has also been explained. A Wavelet Theory of Edge
Detection analysis has also been presented. Wavelet categorization has also been
briefly addressed. Finally, wavelet-based spectrum sensing was explored, as well as
numerous ways to apply the wavelet technique to spectrum sensing, as well as their
benefits and drawbacks. Wavelets-based spectrum sensing approach merits, short-
comings, and applications have also been examined.
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Appendices and nomenclature

Assume a frequency band of interest, as illustrated in Figure 2, that is further
subdivided into N sub-bands, each having its frequency bounds at f0 < fn. The
objective is to find any empty areas between two neighboring sub-bands so that a
secondary user can use them without interfering with the primary. In the absence of
noise, the normalized power spectral density (PSD) in each sub-band is:

ðFi
Fi�1

Si fð Þdf ¼ Fi� Fi� 1 (A1)

Power Spectral density of observed signal r(t):

Sr fð Þ ¼
XN
n¼1

α2nSn fð Þ þ Sω fð Þ, f ∈ f0, fN½ � (A2)

Where α2n indicates the signal power density within the nth band and Sn(f) is PSD
of each sub-band. PSD inside each sub-band is estimated as:

¼ 1
Fi� Fi� 1

ðFi

Fi�1

Sr fð Þdf (A3)

The wavelet transform properties are used to identify the frequency boundaries
between successive sub-bands. The following is a one-scale dilation of the wavelet
functions ψ s:

ψ s fð Þ ¼ 1
s
ψ

f
s

� �
(A4)

The continuous wavelet transform is defined as:

WsSr fð Þ ¼ Srψ s fð Þ (A5)

It gives localized information about Sr(f) at fine scales, and we must identify its first
and second derivatives to find abnormalities in it. The first derivative is as follows:

Ws1Sr fð Þ ¼ s
d
df

Srψ sð Þ fð Þ (A6)
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The second derivative is:

Ws2Sr fð Þ ¼ s2
d2
df2

Srψ sð Þ fð Þ (A7)

Different scales propagate edges and discontinuities. With dyadic scales s = 2j �2,
1–1, 2, 3 … j, the CWT is obtained. The multi-scale product of the J CWT gradients is
used to follow the propagation of edges and discontinuities over multiple scales:

p fð Þ ¼
YJ

j¼1

W 0s ¼ 2jSr fð Þ (A8)
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Chapter 6

Monitoring the Condition of
Railway Tracks Using a
Convolutional Neural Network
Hitoshi Tsunashima and Masashi Takikawa

Abstract

Condition monitoring of railway tracks is effective for the sake of an increase in
the safety of regional railways. This study proposes a new method for automatically
classifying the type and degradation level of track fault using a convolutional neural
network (CNN), which is a machine learning method, by imaging car body accelera-
tion on a time-frequency plane by continuous wavelet transform. As a result of
applying this method to the data measured in regional railways, it was possible to
classify and extract the sections that need repair according to the degree of
deterioration of the tracks, and to identify the track fault in those sections.

Keywords: railway, track, condition monitoring, wavelet, convolutional neural
network

1. Introduction

Maintenance of railway tracks is essential for the safe operation of trains. Railway
operators conduct track inspections using track geometry cars and track maintenance
crews. However, regional railway operators, who carry fewer passengers, often lack
the personnel and funds to conduct adequate track inspections. The monitoring of
railway track geometry from an in-service vehicle has become increasingly attractive
over the past decade [1].

To address this problem, a system that can monitor the track condition inexpen-
sively and frequently using a device incorporating sensors and a global navigation
satellite system (GNSS) unit, which is installed on in-service trains, has been devel-
oped [2, 3]. The system calculates root mean square (RMS) values from the vertical
acceleration, lateral acceleration, and roll angular velocity of the car body. To select
sites for repair, we adopt the method of prioritizing sites with the highest numerical
values.

The acceleration RMS is closely related to the general health of the track [4]. In
Ref. [5], RMS values are used to identify track irregularities for longitudinal level,
alignment, cross-level. However, monitoring based on RMS values alone is not suffi-
cient. Without frequency information, it is difficult to identify the type of track fault.
Furthermore, since the amount of data generated by constant measurement is
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enormous, it is necessary to automate the analysis in order to monitor and predict the
track condition efficiently.

In this study, we propose a method to classify the types of track faults automati-
cally by means of machine learning, using a CNN trained on images created via a
CWT from the vibration acceleration on the time-frequency plane. A continuous
wavelet transform (CWT) is a transformation technique that emphasizes certain
portions of the waveform by suppressing other portions as it proceeds by multiplying
a target waveform using a mother wavelet [6]. A convolutional neural network
(CNN) is a class of deep neural networks. It is widely used for image recognition.

To verify the effectiveness of the algorithm we developed, we first describe the
results of simulating the vibration of a car body when passing over a faulty track.
Next, we describe the results of diagnosing track faults from the vertical vibration
acceleration data of a car body measured by a regional railway.

2. Literature review of track condition monitoring using machine
learning techniques

It should be necessary for railway operators to control track irregularity, such as
vertical rail profiles, lateral alignment, gauge, cross-level, twist (depicted in Figure 1)
properly. Track irregularities cause vehicle vibrations that degrade the rider’s comfort
and increase the risk of derailments. Track irregularities are strongly correlated with
vehicle vibrations. Thus, it can be possible to estimate general trends of the track
condition by analyzing vehicle vibrations.

Although track geometry measurement systems using in-service vehicles are
becoming increasingly attractive around the world [2, 7–9], the repeated checking of
the same track provides the information regarding track geometry degradation, which
can be fed back to the track maintenance section for taking essential actions. The use
of vehicle responses in the track geometry assessment process allows identifying of

Figure 1.
Track structure and irregularities.
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critical defects, which could not have been identified from geometry parameters, and
thus, improve the maintenance operations.

Tsunashima et al. proposed techniques of condition monitoring of railway tracks
based on time-frequency analysis [10]. They compared the performance of Hilbert-
Huang transforms (HHT) and CWT for identifying track faults from car body vibra-
tion. It is shown that the feature of track fault can be identified in time-frequency
plane.

Tsunashima proposed a classifier based on a machine learning technique for iden-
tifying track faults automatically from measured car body vibration [5]. It is shown
that the degradation of track can be classified in the feature space consisting of car
body vibration RMS.

Faghih-Roohi et al. proposed a deep convolutional neural network for the analysis
of image data for the detection of rail surface defects [11]. They explored the effi-
ciency of the proposed deep convolutional neural network for the detection and
classification of rail surface defects.

Zheng et al. proposed a multi-object detection method based on a deep
convolutional neural network that can achieve non-destructive detection of rail sur-
face and fastener defects [12]. A defect detection model based on Mask R-CNN and
ResNet framework was utilized to detect the surface defects.

Jin et al. proposed a machine learning framework based on wavelet scattering
networks and neural networks for identifying railhead defects [13].

Alvarenga et al. proposed an embedded system for online detection and location of
rails defects based on eddy current [14]. They proposed a new method to interpret
eddy current signals by analyzing their wavelet transforms through a convolutional
neural network.

3. Effect of track faults on time-frequency plane

3.1 Overview of the simulation

When a train runs on a track, vibrations that correspond to the track geometry are
generated [15, 16]. Therefore, in this study, to verify the relationship between the type
of track fault and the car body vibration acceleration, and to evaluate the effectiveness
of time-frequency analysis in detecting track faults, we simulated the occurrence of
track faults, calculated the vertical vibration acceleration of the car body, and then
applied a CWT, a method of time-frequency analysis, to the results.

3.2 Continuous wavelet transform (CWT)

A CWT is a method that simultaneously detects the frequency and time charac-
teristics of an unsteady signal, by comparing the original signal with dilated and
translated versions of a small wavelike function called the mother wavelet. Using this
method, it is possible to view the amplitude and frequency information of the vibra-
tion acceleration as an image. In this study, we used theMorlet wavelet, which offers a
relatively good balance between localization of time and frequency, as the mother
wavelet [17] (see Appendix A).

This technique is well suited for analyzing unsteady signals, such as x tð Þ those that
exhibit sudden variation, and is defined as follows:
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Wψ a, bð Þ ¼
ð∞
�∞

1ffiffiffi
a

p ψ ∗ t� b
a

� �
x tð Þdt, (1)

where, variables a and b correspond to the dilatation and location parameters,
respectively, they translate the mother wavelet ψ tð Þ by a time shift b in time, and by
1=a in frequency. indicates the complex conjugate of ψ .

3.3 Vehicle model used in the simulation

The vehicle model used in the simulation is shown in Figure 2 [10]. The vehicle
model consists of a total of seven rigid bodies: one car body, two bogies, and four
wheelsets. The car body and bogie were assigned two degrees of freedom (DOF) for
bounce and pitch, and the wheelset was assigned one DOF for the bounce. The
vehicle’s parameters were obtained from measurement data from a regional railway
vehicle equipped with an onboard sensing device.

3.4 Simulation conditions

In the simulation, the vehicle model was run at 60 [km/h] for 500 [m], and the
results were output for the section between 100 [m] and 350 [m]. We set rail joint
faults (joint depressions) at 4 points; otherwise, the track was assumed to be straight.
To set the rail joint faults, we used the function model shown in Figure 3 [18].

The geometry of the modeled track are represented by

y ¼ Ae�
1
2ð Þ x

kð Þ2 , (2)

and

y2 ¼
1
2

x
k

� �2
� A: (3)

Figure 2.
Vehicle model [10].
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The track geometry used in the simulation is shown in Figure 4. At the 150 [m]
and 200 [m] points, we set depths of A ¼ 15 mm½ � and 30 mm½ �, respectively, to
simulate joint depressions, which are depressions in the top surface of the railhead
that occur at track joints.

In both cases, we set the depression length k ¼ 83:5 mm½ �. For comparison, at the
250 [m] and 300 [m] points, we set a gentler dip in track geometry by setting depths
of A ¼ 15 mm½ � and 30 mm½ �, respectively, but with length k ¼ 1670 mm½ �. The
values of A and k were determined with reference to generally occurring track
displacement. The car body vibration acceleration was assumed to occur directly
above the center of the front bogie of the vehicle model. The simulation was
performed at a sampling frequency of 200 [Hz].

3.5 Simulation results

The simulated vertical vibration acceleration of the car body is shown in Figure 5a.
The figure shows that characteristic vibrations corresponding to the track geometry
are generated at the points where the track faults were set. Figure 5b shows the result
of the CWT of the simulated vertical vibration acceleration. The color bar indicates
the magnitude of the amplitude in the time-frequency plane.

At 150 [m] and 200 [m], the points where the joint depressions were simulated,
vibrations in the frequency band of 15–30 [Hz] were detected due to the impulse-like
track geometry, and variations depending on depth A can be seen in the CWT images.
In addition, at 250 [m] and 300 [m], the points where gentler dips in the track
geometry were set, vibrations in the frequency band of 0–5 [Hz] were detected, and
variations depending on depth A can be seen in the CWT images. These results

Figure 3.
Track fault model.

Figure 4.
Track geometry with different faults.
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demonstrate that the CWT images are effective for identifying track faults, since the
features of the CWT images change markedly depending on the type and level of
degradation.

4. Monitoring the condition of railway track using a convolutional neural
network

4.1 Track condition monitoring system

Figure 6 shows the track condition monitoring system developed and applied for
regional railway lines in Japan [2].

Accelerometers and rate gyros in the onboard sensing device measure the car body
vibration. A GNSS receiver detects the location and speed of the train. Collected data
are transmitted to the data server in the monitoring center continuously via a mobile
phone network.

The diagnostic software analyses the collected data and results are fed back to the
railway operators through online channels via tablet computers. The diagnostic results
are used to facilitate the maintenance work of railway operators.

Convolutional neural networks are a method used in the field of machine learning
called deep learning and are particularly suitable for image recognition. In this study,

Figure 5.
Simulated car body vertical acceleration and its CWT image.
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we examined the effectiveness of classifying longitudinal level irregularities and joint
depressions automatically, using a diagnostic algorithm, we constructed based on a
convolutional neural network trained on CWT images generated from vertical vibra-
tion acceleration data from a car body. The diagnostic procedure is shown in Figure 7.

Figure 6.
Track condition monitoring system [2].

Figure 7.
Diagnostic procedure.
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5. Identification of the condition of railway track using vertical vibration
acceleration data measured from an actual car body

5.1 Overview of diagnosis

The car body’s vertical acceleration with track faults was collected in a regional
railway line using the track condition monitoring system. The input data for the
classifier consists of vertical vibration acceleration measurements from an
onboard sensing device in a car body, which are then converted into images
using a CWT. Figure 8 shows an example of converting the measurements into a
CWT image.

The vibration characteristics of the joint depression at the distance of 25.82 [km]
appear in the 10–30 [Hz] frequency range. The vibration characteristics of the
longitudinal level irregularities around 25.95 [km] appear in the 0–5 [Hz] frequency
range.

5.2 Images used for training and evaluation

In this study, we investigated the following three types of diagnoses:

• Classification of images into three types: longitudinal level irregularity, joint
depression, and normal.

Figure 8.
Measured car-body vertical acceleration and its CWT image.
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• Classification of the degradation level of longitudinal level irregularity into
normal, medium, and large.

• Classification of the degradation level of joint depression into normal, medium,
and large.

Examples of images used for each task are shown in Figures 9–11. The images were
created with an aspect ratio of 1:1 (150 � 150 pixels), which is optimal for training.

For diagnosing the level of degradation of longitudinal level irregularities, in cases
where the one-side amplitude of the vibration acceleration was normal, images of car
body acceleration of 0–0:5 m=s2½ � were used. To diagnose medium degradation,
images of 0:8–1:2 m=s2½ � were used, and to diagnose large degradation, images of
1:5 m=s2½ � or greater were used.

For diagnosing the level of degradation of joint depressions, in cases where the
one-side amplitude of the vibration acceleration was normal, images of body

Figure 9.
CWT images of faulty track.
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acceleration of 0 to were used. To diagnose medium degradation, images of
2:5–3:5 m=s2½ � were used, and to diagnose large degradation, images of 4:5 m=s2½ � or
greater were used.

5.3 Identification of longitudinal level irregularities and joint depressions

5.3.1 Configuration of the trained convolutional neural network

We prepared a total of 300 images: 100 normal images, 100 images
with a longitudinal level irregularity, and 100 images with a joint depression.
We set aside 80% of the images for training and 20% for evaluation as shown in
Figure 9.

Figure 12 shows the configuration of the trained convolutional neural network
(see Appendix B). In the figure, the name of the process and the size (vertical �
horizontal � channels) before processing are indicated above each layer, and the size
after processing is indicated below the layer.

The Convolution layer applies the convolution operation to the image,
representing it in matrix form; the Max pooling layer performs information
compression; the Affine layer combines information from different layers,
and the Output layer outputs a set of probabilities indicating how well the image
matches the three types of training image data. The number of training sessions was
set to 50.

Figure 11.
CWT images of the different levels of a degraded track (joint depression).

Figure 10.
CWT images of the different levels of a degraded track (track irregularity).
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5.3.2 Diagnosis results

Figure 13 shows the results of using images for evaluation to discriminate longitu-
dinal level irregularity track faults versus joint depression track faults versus normal
track. The overall accuracy rate was 98.3%, demonstrating that convolutional neural
networks are effective for the classification of track faults.

5.4 Identification of the degradation level of longitudinal level irregularities

5.4.1 Configuration of the trained convolutional neural network

In order to classify the degradation level of longitudinal level irregularities into
three types: normal, medium, and large, we prepared a total of 300 images: 100
normal, 100 medium, and 100 large. We set aside 80% of the images for training and

Figure 13.
Detection accuracy for the type of track fault.

Figure 12.
Network configuration.
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20% for evaluation. The network configuration and the number of training sessions
were the same as in Section 5.3.

5.4.2 Diagnosis results

Detection results using the trained model are shown in Figure 14. The overall
accuracy rate was 98.3%, demonstrating that the level of longitudinal level irregularity
can be classified with high accuracy into normal, medium, and large.

5.5 Classification of the degradation level of joint depression

5.5.1 Configuration of the trained convolutional neural network

In order to classify the degradation level of joint depression into three types:
normal, medium, and large, we prepared a total of 300 images: 100 normal, 100
medium, and 100 large. We set aside 80% of the images for training and 20% for
evaluation. The network configuration and the number of training sessions were the
same as in Section 5.3.

Figure 14.
Detection accuracy for the different levels of a degraded track (track irregularity).

Figure 15.
Detection accuracy for the different levels of a degraded track (joint depression).
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5.5.2 Diagnosis results

Detection results using the trained model are shown in Figure 15. Some incorrect
diagnoses were made in the images of normal and medium joint depression. However,
the overall accuracy was 96.7%, which was sufficient to classify the level of joint
depression, demonstrating that the diagnostic algorithm we developed is effective for
the diagnosis of joint depression.

6. Investigation of CWT images that were diagnosed incorrectly

Figure 16 shows an example of an image that was diagnosed incorrectly. The right
side of Figure 16a was diagnosed as normal, even though it shows joint depression.

Figure 16.
CWT images that were diagnosed incorrectly.
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Conversely, the left side of Figure 16a shows an image that was diagnosed correctly as
a joint depression. Comparing those, the feature representing the joint depression is
extremely small in the incorrectly diagnosed image. This reveals that an incorrect
diagnosis can occur when the features are extremely small.

The right side of Figure 16bwas diagnosed as normal, even though it shows a large
track irregularity. Conversely, the left side of Figure 16b shows an image that was
diagnosed correctly as a large track irregularity. The reason for the incorrect diagnosis
was that the large amplitude of the vertical acceleration, shown in red color, was
appeared at the bottom of the CWT image.

7. Conclusion

In this study, we proposed a method to classify the type and level of track faults
automatically using a convolutional neural network trained on car body vibration
acceleration measurements converted into images using a CWT, a well-known
method of time-frequency analysis. The algorithm we developed was used to perform
the diagnosis of track conditions on actual measurements.

The results demonstrated that it is possible to diagnose the type and level of
degradation of track faults with high accuracy.

In future work, we plan to improve the algorithm to estimate the locations of track
faults accurately in actual measurements and monitor the condition of railway tracks
in more detail.

Acknowledgements

This research was funded by Nihon University Research Grant for Social Imple-
mentation (19-006) (2019). We would like to thank Editage (www.editage.jp) for
English language editing.

Conflict of interest

The authors declare no conflict of interest.

Abbreviations

CWT continuous wavelet transform
RMS root mean square
CNN convolutional neural network
HHT Hilbert–Huang transform
GNSS global navigation satellite system

A. Appendix

A CWT is a method that simultaneously detects the frequency and time charac-
teristics of an unsteady signal, by comparing the original signal with dilated and
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translated versions of a small wavelike function called the mother wavelet. The CWT
computes the inner products of a continuous signal with a set of continuous wavelets
according to the following equation

Wψ a, bð Þ ¼
ð∞
�∞

1ffiffiffi
a

p ψ ∗ t� b
a

� �
x tð Þdt, (A1)

where, variables a and b correspond to the dilatation and location parameters,
respectively, they translate the mother wavelet ψ tð Þ by a time shift b in time, and by
1=a in frequency. ψ ∗ indicates the complex conjugate of ψ .

In this study, we used the real-valued Morlet wavelet (Figure 17) as the mother
wavelet ψ tð Þ.

ψ tð Þ ¼ e�
t2
2 cos 5tð Þ: (A2)

B. Appendix

A Convolutional Neural Network (CNN) is a well-known deep learning architec-
ture. There are numerous variants of CNN architectures. The basic components of
CNN consist of convolutional layer, pooling layer, and fully-connected layers [19].

B.1 Convolution Layer

The objective of the convolution operation is to extract the significant features
from the input image. The convolution layer is composed of several convolution
kernels which are used to compute different feature maps. The feature maps are

Figure 17.
Real-valued Morlet wavelet.
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generated by the convolution operation with the filter that acts as the feature extractor
as follows.

I2 x, yð Þ ¼
XN
j¼�N

XN
i¼�N

F i, jð ÞI1 x� i, y� jð Þ: (A3)

where I1 x, yð Þ: pixel value of input image at x, yð Þ, I2 x, yð Þ: pixel value of output
image at x, yð Þ, F i, jð Þ: filter coefficient.

B.2 Pooling layer

The Pooling layer is responsible for reducing the spatial size of the feature maps.
This is to decrease the computational power required to process the data through size
reduction. It is useful for extracting dominant features. There are two types of
Pooling: Max Pooling and Average Pooling. Max Pooling returns the maximum value
from the portion of the image. On the other hand, Average Pooling returns the
average value. In this study, Max Pooling were used. Figure 18 shows the example of
the Max Pooling operation.

B.3 Activation function

Rectified linear unit (ReLU) is one of the most famous activation functions. In this
study, the following function is used to adjust the output of the Pooling Layer.

y ¼ 0 x≤0ð Þ
x x>0ð Þ

�
(B1)

where x is the input of the activation function. The simple operation of the
activation function makes the faster computation than sigmoid or hyperbolic tangent
functions.

Softmax function defined by

yi ¼
exiPn
k¼1exk

i ¼ 1, 2,⋯, nð Þ, (B2)

was used in output layer. Where n indicates the number of classification.

Figure 18.
Max pooling.

100

Recent Advances in Wavelet Transforms and Their Applications



B.4 Fully connected layer

In fully connected layers, the neuron applies a linear transformation to the input
vector through a weights matrix. In this study, an Affine transformation was used in
fully connected layer.

B.5 Loss function

The loss function is the function that computes the distance between the current
output of the algorithm and the expected output. In this study, we employed the
categorical cross-entropy, which is well suited to classification tasks.
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Chapter 7

Image Restoration and
Noise Reduction with
Context-Dependent Wavelet
Graph and ADMM Optimization
Jinn Ho, Shih-Shuo Tung and Wen-Liang Hwang

Abstract

We represent the image noise reduction and restoration problems as
context-dependent graphs and propose algorithms to derive the optimal graphs by the
alternating direction method of multipliers (ADMM) method. An image is spatially
decomposed into smooth regions and singular regions, consisting of edges and
textures. The graph representing a smooth region is defined in the image domain,
while that representing a singular region is defined in the wavelet domain. The
optimal graphs are formulated as the solutions of constrained optimization problems
over sparse graphs, where the sparseness is imposed on the edges. The graphs on the
wavelet domain are solved in a hierarchical layer structure. The convergence and
complexity of the algorithms have been studied. Simulation experiments demonstrate
that the results of our algorithms are superior to the state-of-the-art algorithms for
image noise reduction and restoration.

Keywords: image restoration, image denoising, graph, ADMM, wavelet

1. Introduction

We consider the inverse problem of deriving the original image x∈RN from an
observation y∈RN, expressed as

y ¼ Hxþ n, (1)

where H is an N �N matrix and n � N 0N�1, σIN�Nð Þ is a vector of independent
and identically distributed (i.i.d.) Gaussian random variables with standard deviation
σ. We further assume that the point spread function H is known. By imposing prior
information on the desired image, given as

x̂ ¼ argmin
x

1
σ2

∥y�Hx∥2 þ penalty xð Þ, (2)
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where the first term is the data fidelity term for the Gaussian observation model
and the second term is the regularization term, measuring the penalty of a solution
that deviated away from the prior knowledge of the desired image. The modeling of
the desired image is at the core of the approach [1–4]. The primary challenge of
solving the problem is to recover the local high-frequency information of edges and
texture in the original images that are not present in the observation.

If H is the identity matrix, problem (1) is called the noise reduction problem. The
solutions vary with what type of noise is contaminated in the observation [5]. If the
noise is white Gaussian noise, the state-of-the-art algorithms for the problem are
BM3D [6], WBN [7], and DRUNet [8]. BM3D utilizes the tight frame representation
of an image, where atoms of the frame are derived from image patches. WBN is a
graphical probabilistic model of a weighted directed acyclic graph (DAG) in the
wavelet domain. Different from BM3D andWBN, DRUNet is a deep learning method.
It is a flexible and powerful deep CNN denoiser and the architecture is the combina-
tion of U-Net [9] and ResNet [10]. It not only outperforms the state-of-the-art
deep Gaussian denoising models but also is suitable to solve plug-and-play image
restoration.

If H is a blur singular matrix, problem (1) is called the image restoration problem.
In the optimization-based method, the best image restoration performance both sub-
jectively and objectively was derived from the algorithm IDD-BM3D [11]. It utilizes
sparse synthetic and analytic models and de-couples the problem into blur inverse and
noise reduction sub-problems, each of which is solved by a variational optimization
approach. In deep learning, DPIR [8] replaces the denoising sub-problem of model-
based optimization with a learning-based CNN denoiser prior which is DRUNet. By
iteratively solving the data sub-problem and a prior sub-problem to restore the image.

In this chapter, we also present a restoration algorithm that combines the noise
reduction algorithm with the proximal point method [12]. The primary technical
contributions of our methods are the context-dependent graphical representations
and the algorithms to derive the optimal graphs of each representation. Finding the
optimal graph in a combinatorial way is extremely difficult and likely an NP-hard
problem [13, 14]. Unlike the combinatorial approach, we impose constraints on edges
and include edges in the optimal graph only when the constraints on the edges are
active. This renders a computationally solvable optimization problem and the solution
is a graph with only a small number of active edges.

Based on local content in an image, the context-dependent representation divides
the image into singular and smooth areas. Singular areas, consisting of edges or
texture, are represented and processed differently from the smooth areas. The graphs
of singular areas are constructed based on the persistence and sparsity of wavelet
coefficients of the image. The persistence is imposed on the inter-scale edges so that
the solution at one scale can be used to confine that in adjacent scales. Meanwhile, the
sparsity is imposed on the intra-scale edges that preserve the edges in which end nodes
have similar intensity. In contrast, a graph of a smooth area is in the image domain
and has only sparse intra-scale edges.

The algorithm to derive the optimal graphs, called graphical ADMM, is based on
the alternating direction method of multipliers (ADMM) method [15, 16]. It is an
efficient and robust algorithm since it breaks a complicated problem into smaller
pieces, each of which is easier to handle. In our case, the node update is separated
from the edge update in the optimization. In addition, for wavelet graphs, graphical
ADMM approximates the multi-scale optimization problem into a sequence of
sub-problems; each can be efficiently solved by convex optimization methods.
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The chapter is organized as follows. In Section 2, we present the models and the
construction for the context-dependent graphs. In Section 3, we formulate the noise
reduction problem as a graph optimization model and present the graphical ADMM
method to derive optimal graphs. In Section 4, the image restoration problem is
formulated as the proximal point method that reduces the problem into a sequence of
noise reduction problems, each being solved by the method in Section 3. In Section 5,
experimental results and the principal differences between our and the compared
methods are also discussed. Section 6 contains concluding marks.

2. Context-dependent graphical models

An image is comprised of features of edges, texture, and smooth areas. A common
approach to obtain a good image processing result is to treat different features with
different approaches [17, 18]. Following this approach, an image is partitioned into
two types of blocks. A block containing an edge point or texture is a singular block,
while the others are smooth blocks. To keep the flow, we delay the partitioning
method of an image, which is described in part A of Section 5, but this is not necessary
to accurately partition an image to achieve the performance demonstrated in this
chapter. The singular and smooth blocks were handled with different graph optimi-
zation approaches: a singular block is in the wavelet domain, while a smooth block is
in the image domain. In the wavelet domain, a singular block is represented by several
weighted graphs, one corresponding to an orientation. If the wavelet transform has
three orientations, LH, HL, and HH, then one graph is for LH sub-bands, another for
HL sub-bands, and the third for HH sub-bands. The graph for one orientation is
constructed as follows.

Each wavelet coefficient is associated with a node. Edges are comprised of inter-
scale and intra-scale edges. An inter-scale edge connecting nodes in adjacent scales can
direct either from a coarse scale to a finer scale or vice versa. The inter-scale edges are
built-in and data-independent; they are constructed based on the wavelet persistence.
In contrast, an intra-scale edge connecting nodes of the same scale is un-directed,
data-dependent, and determined based on the sparseness from the graph optimization
algorithm. Regularizations have been imposed on inter-scale edges to preserve the
persistence of wavelet coefficients across scales and on intra-scale edges to preserve
the similarity of wavelet coefficients on nodes at the two ends of an edge.

2.1 Inter-scale edges

Since wavelets can characterize singularities, representing singularities with
wavelets can facilitate the restoration of edges and texture in an image. The persis-
tence property of wavelets means that the wavelet coefficients dependency and cor-
relations across scales. Thus, inter-scale edges were constructed to link the wavelet
coefficients of the same orientation and locations at adjacent scales. Moreover, the
correlations of wavelet coefficients from a coarser scale to a finer scale are different
from that from a finer scale to a coarser scale. There are two types of inter-scale
edges—coarse-to-fine and fine-to-coarse. The coarse-to-fine inter-scale correlation is
derived based on the statistical result by Simoncelli [19], who analyzed the correlation
between the dyadic wavelet coefficients in a coarse scale to those at the same location
and orientation at the immediate finer scale in a natural image. The coarse-to-fine
inter-scale correlation of wavelet coefficient wpi at a coarse scale and wavelet
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coefficient wc at the immediate finer scale can be represented in terms of minus log-
probability as

k1w2
i

w2
pi

, (3)

where k1 is a parameter. Thus, given the wavelet coefficients wpi at the coarse
scale, Eq. (3) gives the minus log probability of the wavelet coefficient wi at the same
location and orientation at the immediate fine scale.

On the other hand, the fine-to-coarse inter-scale correlation is derived from the
theoretical result of wavelet singularity, analyzed by Mallat and Hwang [20]. Let wi
and wci be wavelet coefficients corresponding to the same singularity at different
scales. Then, wi and wci have the same sign and the correlation, in terms of the ratio of
the modulus of wavelet coefficients, from wci at a fine scale to wi at the immediate
coarser scale can be expressed as

∣wi∣
∣wci∣

¼ wi

wci
¼ 2αþ

1
2, (4)

where α is the Lipschitz of the singularity. If the singularity is a step edge, then α is
0. The exponent αþ 1

2 in Eq. (4) depends on how a wavelet is normalized. Here, the
wavelet is normalized to have unit 2-norm.1 Eq. (4) can also be expressed in terms of
minus log-probability as

k2 wi � 2αþ
1
2wci

� �2
, (5)

where k2 is a parameter. If the type α of the singularity is known, given the wavelet
coefficient at the finer scale, wci, Eq. (5) gives the minus log-probability of the wavelet
coefficient wi at the coarse scale. Since step edges are the most salient features to be
recovered from an image, in this chapter, we set α to 0.

2.2 Intra-scale edges

A coherent or similar structure can be used to leverage the quality of the restora-
tion [2, 21]. This is the principle behind the success of BM3D and the example-based
approach in image processing [22]. Many similarity metrics have been proposed to
derive the coherent structure, such as the mutual information, the kernel functions,
and the Pearson’s correlation coefficient. In this chapter, the Pearson’s correlation
coefficient is modified for some technical concern to derive the intra-scale correlation
of random variables X and Y :

d X,Yð Þ ¼ max 0,
E X � μXð Þ Y � μYð Þf g

σXσY

� �
þ q, (6)

where μX, σXð Þ and μY , σYð Þ are the mean and the standard deviation of X and Y,
respectively, and q>0 is the offset, introduced to avoid d X,Yð Þ ¼ 0 in inequality
constraints in Eq. (8). The value of d X,Yð Þ lies in q, 1þ q½ �, measuring the similarity of

1 If the wavelet is normalized to have unit 1-norm, then the exponent of Eq. (4) should be α.
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X and Y. The smaller d X,Yð Þ is, the more the independence of X and Y and the less
likely X and Y have coherence structure. As shown in Figure 1, the coherence
structure in an image is measured on all the coefficients of intra-scale edges in which
endpoints take the same locations within a block in a sub-band.

The intra-scale edges are determined based on the sparsity constraint aiming to
preserve the edges in which end nodes have similar values. The number of the edges is
determined by the parameter:

d yh, yl
� �

∣xh � xl∣ ≤ r, (7)

where d yh, yl
� �

is defined in Eq. (6) and obtained from the observation image, and
xh and xl are the coefficients at the h-th and l-th nodes, respectively. If the observed
values yh and yl are similar, the value of d yh, yl

� �
is large, then ∣xh � xl∣ would be small

to satisfy the constraint. This preserves the intensities between xh and xh. Only the
edges satisfying Eq. (7) are retained in the optimal graph. In the following, dh,l is used
to simplify the notion d yh, yl

� �
in Eq. (7).

2.3 Graph construction

The aforementioned are integrated and summarized for our context-dependent
representation of an image. An image is divided into blocks. Each block is classified as
either a singular block or a smooth block. A singular block is then represented with the
dyadic wavelet transform, where the scale is sampled following a geometrical
sequence of the ratio of 2 and the spatial domain is not down-sampled. The dyadic
wavelet transform of an image is comprised of four sub-bands, LL, LH, HL, and HH,
with the last three being the orientation sub-bands. A singular block is associated with

Figure 1.
An illustrative example of how the metric dh,l is measured. There are 12 blocks in a sub-band. All the intra-scale
edges between the h-th and the l-th nodes are collected. The coefficients on the h-nodes form the random variable X
and those on the l-th nodes form the random variable Y. dh,l is then measured based on Eq. (6).
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three graphs—one for each orientation sub-bands. Since smooth blocks can be well
restored in the image domain, the wavelet transform is not applied to the blocks and
a smooth block is associated with a graph in the image domain. Each graph,
associated with a singular block or a smooth block, is constructed independently of
other graphs. Figure 2 illustrates an example of graph representation for a block of
four pixels.

3. Optimal graphs for noise reduction

The noise reduction problem corresponds to problem (1), where H is the identity
matrix. Since each graph is solved independently of the other graphs, the following
discussion is focused on one graph. A graph can be associated with a singular block or
a smooth block.

3.1 Singular blocks

Let yi and xi be the wavelet coefficients associated to the i-th node in a sub-band of
the observation image and the original image, respectively. Its parent node is denoted

Figure 2.
A block of four pixels can be a smooth block (top) or a singular block (bottom). A smooth block is processed in the
image domain. A singular block is in the wavelet domain, where a multi-scale graph is associated with each
orientation. The blue and green are built-in directed inter-scale edges and the red are un-directed intra-scale edges.
The inter-scale edge connects nodes at the same locations and orientation but at scales next to each other. The green
edge is coarse-to-fine, linking a node to its parent, while the blue edge is fine-to-coarse, linking a node to its child.
The intra-scale edges are determined by graphical ADMM, which decomposes the node update and edge update in
the optimization.
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as p ið Þ and child node is c ið Þ. Let zh,l be the variable defined on the intra-scale edge that
connects the h-th and l-th nodes, which are at the same scale and orientation. The
optimal wavelet graph can be derived by solving

min xi,zk,l
yi � xi
� �2

2σ2
þ k1x2i

x2p ið Þ
þ k2 xi �

ffiffiffi
2

p
xc ið Þ

� �2" #

dh,l∣zh,l∣ ≤ r,
zh,l ¼ xh � xl,

8>>>><
>>>>:

(8)

where r, σ, k1, and k2 are non-negative parameters and the constraints are designed
as explained under Eq. (7), where r controls the number of edges in the optimal graph.
If a node is at the coarsest scale 2J, where J is the number of decomposition of the
wavelet transform, it does not have a parent node and the second term in the object of
Eq. (8) is zero; the third term is set to zero for a node at the finest scale 21 as it does not
have a child node.

Problem (8) has a convenient matrix representation. Let x ¼ xi½ � and z ¼ zh,l½ � be
the vectors of variables on nodes and intra-scale edges, respectively. Then, the linear
constraints between zh,l and xh and xl in Eq. (8) can be expressed as

A xTzT
� �T ¼ 0, (9)

where A is a matrix with elements either �1, 1, or 0. Let A ¼ AxAz½ �. If follows
that

A xTzT
� �T ¼ Axxþ Azz: (10)

Each row of Ax has one element which value is 1 and another element which value
is �1 and the rest of value 0. Meanwhile, each row of has one element of values and
the rest of value . Let λ ¼ λh,l½ �≥02 and μ be the vectors of Lagrangian variables
associated to inequality constraints and the equality constraints in Eq. (8), respec-
tively. The augmented Lagrangian of Eq. (8) is

Lρ x, z, λ, μð Þ ¼
X
i

yi � xi
� �2

2σ2
þ k1x2i

x2p ið Þ
þ k2 xi �

ffiffiffi
2

p
xc ið Þ

� �2" #

þμT Axxþ Azzð Þ þ ρ

2
Axxþ Azzk k2 þ

X
h, l

λh,ldh,l∣zh,l∣� r1Tλ,
(11)

where 1 is a vector with all members being 1; and ρ>0 are fixed parameters.
The ADMM algorithm intends to blend the decomposability of dual ascent with the

superior convergence properties of the method of multipliers. Here, ADMM is used to
derive the optimal graph by separating the node and edge update. Graphical ADMM
derives the saddle points of

max
λ≥0, μ

min
x, z

Lρ x, z, λ, μð Þ (12)

2 Let λ ¼ λh,l½ �. Then, λ≥0 if and only if λh,l ≥0 for all h and l.
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by iterating the following updates:

xkþ1 ¼ arg min
x

Lρ x, zk, λk, μk
� �

;

zkþ1 ¼  arg min
z

Lρ xkþ1, z, λk, μk
� �� �

;

λkþ1
h,l ¼ ≥0 λkh,l � ε r� dh,ljzkþ1

h,l j
h i� �

;

μkþ1 ¼ μk þ ρ Axxkþ1 þ Azzkþ1� �
;

8>>>>>>>>>><
>>>>>>>>>>:

(13)

where  and ≥0 are the orthogonal projections to satisfy constraints d j,l zh,lk k1 ≤ r
and λh,l ≥0, respectively; and ε>0 is the stepping size for the dual ascent of Lagrang-
ian variables λ. The first and second updates in Eq. (13) update the node variables and
edge variables, respectively. The update of the dual variables λ is derived based on the
necessary conditions at an optimum of Eq. (8) that

λh,l ≥0;

λh,l r� dh,ljzkþ1
h,l j

� �
¼ 0:

(
(14)

The third update in Eq. (13) has the following interpretation. If r� dh,ljzkþ1
h,l j

� �
>0,

then λkh,l will decrease and keep its value to be non-negative by . The value of λh,l can
be repeatedly decreased by increasing the iteration number k until either λh,l ¼ 0 or

r� dh,ljzkþ1
h,l j

� �
¼ 0, where the edge is active, and the optimal conditions (14) satisfy.

At optimum, either the Lagrangian associated with an edge is zero or the constraint on
the edge is active. Only the active edges are retained in the graph. Since the number of
active edges is sparse, the edges in the optimal graph are sparse. The solutions for the
updates rules for primal variables are derived in Sections 3.1 and 3.2, respectively.

3.2 Smooth blocks

A smooth block is processed in the image domain, where each pixel is associated
with a node in a graph. Problem (8) becomes finding the optimal graph by solving

min xi,zh,l
P

i
yi � xi
� �2

2σ2
dh,l∣zh,l∣ ≤ r,
zh,l ¼ xh � xl:

8>>><
>>>:

(15)

The optimal graph can be derived by a method similar to that for a singular block.

3.3 Update edges

The update rule for edge variables z is to solve, with fixed x, λ, and μ,

min zLρ x, z, λ, μð Þ
dh,l∣zh,l∣ ≤ r:

�
(16)
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If only the terms in Eq. (3) relevant to the optimization variables, zh,lf g, are
concerned, Eq. (16) becomes

min
P

h,l �μTh,lzh,l þ
ρ

2
xh � xl � zh,lð Þ2 þ λh,ldh,ljzh,lj

� �

∣zh,l∣ ≤
r
dh,l

,

8><
>:

(17)

because dh,l is non-zero as defined in Eq. (6). Equation (17) indicates that each
edge variable can be updated independently of the others.

We first solve Eq. (17) without the constraint and obtain the solution uh,l of

argmin
zh,l

�μTh,lzh,l þ
ρ

2
xh � xl � zh,lð Þ2 þ λh,ldh,ljzh,lj

� �
, (18)

by soft-thresholding with

uh,l ¼
xh � xl þ

μh,l
ρ

� λh,l
ρ

dh,l, if xh � xl þ
μh,l
ρ

≥
λh,l
ρ

dh,l;

xh � xl þ
μh,l
ρ

þ λh,l
ρ

dh,l, if xh � xl þ
μh,l
ρ

≤ � λh,l
ρ

dh,l;

0, otherwise:

8>>>><
>>>>:

(19)

It is then followed by orthogonally projecting uh,l to satisfy the constraint by
solving

min
zh,l

1
2

zh,l � uh,lð Þ2

∣zh,l∣ ≤
r
dh,l

:

8>><
>>:

(20)

Eq. (20) can be solved by a sequence of soft-thresholding operations. The
algorithm is sketched as follows. First, we check whether ∣uh,l∣ ≤ r

dh,l
. If it is, uh,l is the

solution. Otherwise, we begin with a small γ and solve

zþh,l ¼ argmin
zh,l

1
2

zh,l � uh,lð Þ2 þ γ∣zh,l∣: (21)

The solution is the soft-thresholding as

zþh,l ¼
0, if ∣uh,l∣ ≤ γ;

1� γ

∣uh,l ið Þ∣
� �

uh,l, otherwise:

8<
: (22)

If ∣zþh,l∣ ≤
r
dh,l
, zh,l is updated to zþh,l, the algorithm stops. Otherwise, γ is increased and

Eq. (22) is solved again. Since increasing γ decreases ∣zþh,l∣, this algorithm always stops
and updates the edge variable zh,l to meet the constraint.

The complexity to update edge variables is analyzed. If the number of pixels of a
block is n and if the dyadic wavelet transform takes J scales, then the number of edge
constraints on a singular block is O Jn2

� �
and the number of edge constraints on a
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smooth block is O n2ð Þ. Let K1 be the maximum number of iterations to derive the
solution for Eq. (20) for all graphs. The complexity of one edge update is
O K1n2 jJFjþ3jJW jJð Þð Þ, where 3 is the number of orientations, ∣JF∣ and ∣JW ∣ are numbers
of singular blocks and smooth blocks, respectively.

3.4 Update nodes

The node update for a singular block is more complicated than that for a smooth
block because a graph for a singular block has a multi-scale structure, where adjacent
scales are linked by inter-scale edges.

3.5 Singular blocks

To update the nodes x in a singular block is to solve the augmented Lagrangian
function (3) via

arg min
x

Lρ x, z, λ, μð Þ, (23)

for given z, λ, and μ. This is not a convex problem because the second term in
Eq. (3) is non-convex.

Our approach is to decompose the problem based on the scale parameter into a
sequence of sub-problems. Each scale is associated with two convex sub-problems:
one is a coarse-to-fine sub-problem and the other is a fine-to-coarse sub-problem. The
coarse-to-fine sub-problem assumes the parent nodes at scale 2sþ1 were updated
earlier, while the fine-to-coarse sub-problem assumes the child nodes at scale 2sþ1

were updated earlier. Let k be the current iteration number. The course-to-fine sub-
problem updates the nodes at scale 2s by minimizing3

X
i

yi � xi
� �2

2σ2
þ k1x2i

xkp ið Þ
h i2

2
64

3
75þ

X
h, l

μk�1
h,l zk�1

h,l � xh � xlð Þ� �þ ρ

2
zk�1
h,l � xh � xlð Þ� �2h i

:

(24)

On the other hand, the fine-to-coarse sub-problem updates the nodes at scale by
minimizing4

X
i

yi � xi
� �2

2σ2
þ k2 xi �

ffiffiffi
2

p
xkc ið Þ

� �2" #
þ
X
h, l

μk�1
h,l zk�1

h,l � xh � xlð Þ� �þ ρ

2
zk�1
h,l � xh � xlð Þ� �2h i

:

(25)

The node update problem (23) can then be approximated by repeatedly solving the
coarse-to-fine iteration followed by the fine-to-coarse iteration. The coarse-to-fine
iteration solves a sequence of the coarse-to-fine sub-problems beginning at the

3 The second term at below is zero, when 2s is the coarsest scale.
4 The second term below is zero when nodes are at the finest scale.
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coarsest scale. In contrast, the fine-to-coarse iteration solves a sequence of the fine-to-
coarse sub-problems beginning at the finest scale.

Problems (24) and (25) can be efficiently solved. The objectives in the sub-
problems are strictly convex functions because their Hessian matrices are positive
definite (as can be observed from the inverse matrix of Eqs. (26) and (27)) and, thus,
the optimal solution of each is unique. The closed-form solutions of the sub-problems
can be derived as follows.

For convenience, we omit all the superscript index in Eqs. (24) and (25) and let As
x

and As
z denote the sub-matrices of Ax and Ax, respectively. As

x and As
z retain only the

rows and columns in Ax and Ax corresponding to the nodes and edges at scale 2s,
respectively. We also let xs, zs, and μs denote the vectors of nodes, edges, and
Lagrangian variables at scale 2s. The closed-form solution of xs of the coarse-to-fine
sub-problem is

1
σ2 I þ CT

sþ1Csþ1 þ ρ As
x

� �TAs
x

h i�1 1
σ2

ys � As
x

� �T
μs � ρAs

zzs
� �� �

for s 6¼ J;

1
σ2 I þ ρ As

x

� �TAs
x

h i�1 1
σ2

ys � As
x

� �T
μs � ρAs

zzs
� �� �

for s ¼ J;

8>>><
>>>:

(26)

where Csþ1 is a diagonal matrix which diagonal element at i, ið Þ is
ffiffiffiffi
k1

p
ffiffi
2

p
∥xp ið Þ∥

and 2J is

the coarsest scale. On the other hand, the closed-form solution of xs for the fine-to-
coarse sub-problem is

1
σ2 þ 2k2
� �

I þ ρ As
x

� �TAs
x

h i�1 1
σ2

ys þ 2
ffiffiffi
2

p
k2xs�1 � As

x

� �T
μs � ρAs

zzs
� �� �

for s≥ 2;

1
σ2 I þ ρ As

x

� �TAs
x

h i�1 1
σ2

ys � As
x

� �T
μs � ρAs

zzs
� �� �

for s ¼ 1;

8>>><
>>>:

(27)

The complexity of the matrix inversion in Eqs. (26) and (27) is low since As
x is a

sparse matrix and each row of As
x has at most one 1 and one �1 and the rest are zero.

The complexity of the sparse matrix inversion in Matlab is proportional to the
number of non-zero elements in the matrix. Thus, one iteration of either coarse-to-
fine or fine-to-coarse of a graph takes the complexity O Jnð Þ, where J is the number of
decomposition and n is the number of pixels at a scale.

3.6 Smooth blocks

The node update for a smooth block can be analytically derived from the problem
(15) at the condition that zh,lf g is given. If the superscript index is omitted, the
closed-form solution is

1
σ2

I þ ρAT
xAx

� ��1 1
σ2

y� As
x

� �T
μ� ρAzzð Þ

� �
, (28)

where Ax and Az are defined in Eq. (10). The complexity of the inversion of the
sparse matrix 1

σ2 I þ ρAT
xAx is propositional to the non-zero elements in the matrix,

which is O nð Þ, where n is number of pixels in a block.
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If an image has ∣JW ∣ singular blocks and ∣JF∣ smooth blocks, and if J is the number
of wavelet decompositions, the total complexity of node updates of the image is
O n 3K2JjJW j þ jJFjð Þð Þ, where K2 is the maximum number of iterations of coarse-to-
fine and fine-to-coarse node update for a singular block.

Graphical ADMM consists of a sequence of updating the primal and dual variables
and the complexity of the algorithm is dominated by the primal variable updates. Our
analysis of one iteration of Eq. (13) for node updates and edge updates indicates that
the costs are O n 3K2JjJW j þ jJFjð Þð Þ and O K1n2 3jJW jJþjJFjð Þð Þ, respectively, where n is
the number of pixels in a block.

4. Optimal graphs for image restoration

There are various image restoration methods [23]. Here, we use the proximal
approach proposed in [24] and [12]. The method smartly reduces the image
restoration problem into a sequence of noise reduction problems. Since graphical
ADMM for noise reduction is efficient, it can be adopted to derive the optimal graphs
for image restoration. Like for noise reduction, a graph is handled independently of
the other graphs. The following discussion is focused on deriving the optimal graph
for a block.

Let h xð Þ be the objective function

1
2
∥y�Hx∥2, (29)

with a known blur kernel H; x0 is the vector of the current restored image. The
proximity function is defined as

dH x, x0ð Þ ¼ β

2
∥x� x0∥2 � 1

2
∥Hx�Hx0∥2: (30)

The parameter β is chosen so that dH x, x0ð Þ is strictly convex with respect to x. This
implies that its Hessian βI �HTH is a positive definite matrix, which can be achieved
by choosing β> λmax HTH

� �
(the maximal eigenvalue of the matrix HTH). The

proximal objective is defined as

~h x, x0ð Þ ¼ h xð Þ þ dH x, x0ð Þ: (31)

Simplifying the above objective, we have the following simpler form by removing
∥Hx∥ from the proximal objective as

~h x, x0ð Þ ¼ β

2
∥x� x0 þ 1

q
HT y�Hx0ð Þ

� �
∥2 þ K (32)

where K contains terms unrelated to x. Since x0, q,H, y are given, the proximal
objective can be regarded as a noise reduction problem with the observation
vector, x0 þ 1

qH
T y�Hx0ð Þ. Thus, ~h x, x0ð Þ can be the first term in noise reduction

problem (8) and the algorithm for noise reduction can be used to derive the optimal
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graph via separating the node and edge updates following Eq. (13) and procedures in
Section 3.

5. Experiments and comparisons

We consider several image denoising and deblurring scenarios used as the bench-
marks in state-of-the-art algorithms for performance evaluations and comparisons. The
setting of experiments is given as follows. The experiments were conducted on images in
Sets I and II in Figure 3. Set I contains six gray-scaled natural images, Einstein, Boat,
Barbara, Lena, Cameraman, and House. The size of each image is 512� 512 or 256� 256,
downloaded from the USC-SIPI image database [25]; and Set II contains six gray-scaled
textures. Some of them were taken from the Brodatz texture set. Through all experi-
ments, each image is divided into 16 equal-sized blocks. A singular block is decomposed
into four scales dyadic wavelet transformwith the CDF 9/7 wavelet filters. Since the CDF
9/7 filters are close to orthogonal wavelet filters, the noise variance at any sub-band can
be set to σ2, the variance of noise in the image domain [7].

5.1 Noise reduction performance

Our noise reduction performance was compared against that of BM3D, WBN, and
DRUNet. The perceptual quality of the methods is shown in Figure 4. The Lena image
of BM3D over-smooths the highlighted area of hat, which is rich in edges and textures.
Similarly, textures in the highlighted area of hat in DRUNet are smooth. The image of
WBN, on the contrary, under-smooths the highlighted smooth area around the chin
and shoulder of Lena. These artifacts have been amended by graphical ADMM, as
shown in Figure 4f.

The quantity comparisons, measured by the peak-signal-to-noise ratio (PSNR), of Set
I and Set II are shown in Tables 1 and 2, respectively. The testing environments were
images contaminated with the noise of variances, σ2. As shown, the deep learning-based
method (DRUNet) achieves the highest score in almost all environments. However, in
the optimization-based methods (BM3D, WBN, proposed), graphical ADMM achieves
unanimously the highest score in all environments.

Figure 3.
The images in set I (first row) and set II (second row). Set I contains six gray-scaled natural images and set II
contains six gray-scaled textures.
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5.2 Image restoration performance

Table 3 presents five-point spread functions (PSFs) used for image restoration in
literature [11]. Each PSF was normalized to have unit 1-norm before it was used to

Figure 4.
Comparisons of the denoised Lena images derived by BM3D, WBN, DRUNet, and graphical ADMM. The noise
standard deviation is set at σ ¼ 25: (a) the original 512� 512 Lena image; (b) the noised image; (c) the result of
BM3D; (d) the result of WBN; (e) the result of DRUNet; and (f) the result of graphical ADMM. Graphical
ADMM preserves both the smooth and edged areas in the original image, as shown in the highlighted areas.
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Image Method PSNR

σ ¼ 10 σ ¼ 15 σ ¼ 20 σ ¼ 25 σ ¼ 30 σ ¼ 35

Einstein BM3D 34.4392 33.0331 32.1694 31.4186 30.8709 30.3777

WBN 34.4848 33.0821 32.3429 31.4728 30.9178 30.4109

512� 512 Proposed 34.5013 33.1005 32.3544 31.4862 30.9306 30.4255

DRUNet 34.9948 33.6019 32.7411 32.1092 31.5952 31.1622

BM3D 33.8883 32.1067 30.8554 29.8356 29.0954 28.2992

Boat WBN 33.9095 32.1369 30.8874 29.8561 29.1273 28.3285

512� 512 Proposed 33.9241 32.1504 30.9063 29.8772 29.1416 28.3410

DRUNet 34.4264 32.7123 31.5194 30.5768 29.8391 29.1826

BM3D 34.9567 33.0666 31.7376 30.7176 29.7049 28.8879

Barbara WBN 34.9643 33.0831 31.7515 30.7332 29.7233 28.4571

512� 512 Proposed 34.9704 33.1012 31.7735 30.7468 29.7458 28.4675

DRUNet 35.2115 33.4389 32.1951 31.2341 30.4275 29.7520

BM3D 36.6367 34.8782 33.0567 32.5501 31.6531 31.0301

Lena WBN 36.6354 34.8886 33.3048 32.4488 31.5617 30.9148

512� 512 Proposed 36.6447 34.8960 33.3065 32.5632 31.6744 31.1022

DRUNet 36.4431 34.9269 33.8363 32.9669 32.2285 31.6072

BM3D 34.1355 31.8449 30.3797 29.4118 28.5516 27.8758

Cameraman WBN 34.1637 31.8675 30.5629 29.5723 28.7274 28.0487

256� 256 Proposed 34.1668 31.8776 30.5732 29.5804 28.7335 28.0614

DRUNet 34.9927 32.9133 31.5788 30.6079 29.8462 29.2131

BM3D 36.6638 34.9028 33.7349 32.9084 32.1240 31.5103

House WBN 36.8538 34.9302 33.7620 32.9363 32.1571 31.5390

256� 256 Proposed 36.8665 34.9367 33.7742 32.9420 32.1643 31.5404

DRUNet 37.4420 35.8267 34.7084 33.9251 33.2517 32.6733

Table 1.
Comparisons of the PSNRs of the noise reduction methods on noisy images with the noise of standard deviation σ in
set I.

Image Method PSNR

σ ¼ 10 σ ¼ 15 σ ¼ 20 σ ¼ 25 σ ¼ 30 σ ¼ 35

F0 BM3D 32.5200 30.3213 28.8595 27.7279 26.7751 25.9243

WBN 32.6212 30.4143 28.9314 27.8087 26.8644 26.0136

512� 512 Proposed 32.6338 30.4365 28.9572 27.8276 26.8867 26.0345

DRUNet 33.7186 31.7164 30.2770 29.1838 28.3420 27.6675

BM3D 29.3575 26.3832 24.3540 22.8154 21.6195 20.6102

F3 WBN 29.5361 26.5738 24.5363 23.0236 21.8514 20.9144
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blur an image. The performance was compared with the state-of-the-art methods,
IDD-BM3D and DPIR. To have fair comparisons, both methods used the same initial
images in each experiment. The visual quality of the restored images is shown in
Figure 5 and the blue and red boxes are magnifications of the highlighted areas in the

Image Method PSNR

σ ¼ 10 σ ¼ 15 σ ¼ 20 σ ¼ 25 σ ¼ 30 σ ¼ 35

512� 512 Proposed 29.5464 26.5896 24.5554 23.0467 21.8722 20.9364

DRUNet 30.0832 27.2371 25.3141 23.8812 22.7516 21.8235

BM3D 29.8987 27.3043 25.6216 24.3522 23.4010 22.5878

F7 WBN 30.1253 27.3765 25.6782 24.4186 23.4862 22.6574

512� 512 Proposed 30.1470 27.3932 25.6914 24.4375 23.5002 22.6786

DRUNet 30.8467 28.2704 26.5578 25.3201 24.3751 23.6274

BM3D 34.0075 32.4024 31.2442 30.311 29.5213 28.7919

g3 WBN 34.0384 32.4566 31.2517 30.3472 29.5506 28.8064

512� 512 Proposed 34.0415 32.4734 31.2570 30.3613 29.5712 28.8115

DRUNet 34.2632 32.7016 31.6367 30.7665 30.0146 29.3556

BM3D 31.3155 29.0087 27.4678 26.3278 25.4362 24.7034

p3 WBN 31.3385 29.0274 27.4936 26.3414 25.4535 24.7153

512� 512 Proposed 31.3520 29.0475 27.5102 26.3588 25.4763 24.7274

DRUNet 31.9992 29.7159 28.1847 27.0464 26.1412 25.3947

BM3D 31.5652 29.5789 28.3481 27.4696 26.7822 26.2039

r3 WBN 31.6362 29.6675 28.4277 27.5486 26.8774 26.2745

512� 512 Proposed 31.6521 29.6836 28.4672 27.5665 26.9013 26.3020

DRUNet 31.8651 29.9371 28.7082 27.8162 27.1131 26.5323

Table 2.
Comparisons of the PSNRs of the noise reduction methods on set II texture images.

Blur Kernel Formulation size

h1 1
1þd2xþd2y

15� 15

h2 Uniform 9� 9

h3 1

4

6
4

1

2
6666664

3
7777775
� 1, 4, 6, 4, 1½ �

5� 5

h4 Gaussian (σ ¼ 1:6) 25� 25

h5 Gaussian (σ ¼ 0:4) 25� 25

Table 3.
Blur kernels for experiments. The dx and dy in h1 are, respectively, the horizontal and vertical distances of a pixel
to the center of the blur kernel.
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image. Compared with the original images, the overall perceptual quality of the
images of IDD-BM3D and DPIR appear over-smoothed, whereas graphical ADMM
preserves more image details, leading to better perceptual quality. Graphical ADMM
can preserve more details because it uses the multi-scale approach in treating the
texture and edge regions. The wavelet persistence property allows information at
coarse scales to pass to fine scales and vice versa. As a result, graphical ADMM yields
shaper results in recovering singular points in images.

The quantity comparison is shown in Figure 6, where the performance
improvement of graphical ADMM over IDD-BM3D was measured by the ISNR
(increased signal-to-noise ratio) [26]. The ISNR quantitatively assesses the
restored images with known ground truths. Let y, x, and x0 be the vector
representations of the observation, the restored image, and the ground truth,
respectively; the ISNR is defined as

Figure 5.
Comparisons of the deblurred images. The blue and red boxes are the magnified areas in the image. (a) the original
512� 512 boat image; (b) the blurred image with blur kernel h4; (c) the image of IDD-BM3D; (d) the image of
DPIR; and (e) the image of graphical ADMM. The overall perceptual quality of our image is better since that of
IDD-BM3D and DPIR are over-smoothed.
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10 log 10
∥y� x0∥2

∥x� x0∥2
: (33)

The higher the ISNR value of a restored image, the better the restoration quality of
the image. The ISNR gain of graphical ADMM over that of IDD-BM3D is defined as

ISNR graphical ADMMð Þ‐ISNR IDD‐BM3Dð Þ, (34)

and the ISNR gain of DPIR over that of IDD-BM3D is defined as

ISNR DPIRð Þ‐ISNR IDD‐BM3Dð Þ: (35)

Figure 6a and c show the ISNR gain of DPIR over IDD-BM3D in Set I and Set II,
respectively. Figure 6b and d show the ISNR gain of graphical ADMM over IDD-
BM3D in Set I and Set II, respectively. Let us take Figure 6b as an example. At a noise
level, each image in Set I was first blurred by a kernel in Table 3. The result was added
to white noise to obtain a noisy blurred image. This procedure generated thirty noisy
blurred images since Set I contains six images and Table 3 has five blur kernels. Each
noisy blurred image was deblurred. The ISNR gain of the image obtained by graphical
ADMM and that by IDD-BM3D was calculated. The thirty ISNR gains were then used
to calculate the mean and standard derivation, as shown in Figure 6. The mean ISNR

Figure 6.
Average and standard deviation of the ISNR gain of DPIR over IDD-BM3D and graphical ADMM over IDD-
BM3D. Each image is blurred and then added to white noise of standard deviation indicated by the noise level. The
image was then deblurred. An ISNR gain was calculated from the de-blurred images. The circled point and bar of
a measurement at a noise level are the average and standard deviation, respectively, of thirty ISNR gains of natural
images from set I ((a) DPIR over IDD-BM3D and (b) graphical ADMM over IDD-BM3D) and texture images
from set II ((c) DPIR over IDD-BM3D and (d) graphical ADMM over IDD-BM3D). As shown, the curves of
ISNR gain increase steadily and progressively when the noise level increases.
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gain of graphical ADMM increases steadily and progressively over IDD-BM3D, as the
noise level increases.

5.3 Discussions

DRUNet and DPIR are deep learning methods and the training data with a noise
level of σ ranges from 0 to 50. In the experiments, they have the best performance in
quantity comparisons but graphical ADMM is the best in visual quality. For learning-
based methods, the training data is important and related to the performance. The
inferred results are data-driven and not interpretable. If the training data is less or the
distribution of the testing data is not similar to training, the performance will be
worse. If the artifacts occurred in the results, we do not know how it happened
because the network is just composed of many coefficients trained from the training
data. At the same time, the time cost for training is very high. These are all the
drawbacks of learning-based methods. However, the optimization-based methods are
not limited to the training data. The results are derived from the objective function
and interpretable. In addition, they are more stable in practical applications. So, there
is a trade-off between learning and optimization-based methods.

For the optimization-based methods, the experiments have demonstrated the
advantages of graphical ADMM in both the noise reduction and image restoration
tasks over the compared methods. Recall that BM3D and IDD-BM3D adopt the
image-dependent tight frame representations. IDD-BM3D also combines the
analytic and synthetic optimization methods by de-coupling the noise reduction
problem and the image restoration problem. This yields a game-theoretical
approach that two formulations are used to minimize a single objective function.
The solution adopted by IDD-BM3D is a Nash equilibrium point. TheWBN represents
an image as a multi-scale probabilistic DAG and adopts the belief propagation to
derive the MAP solution.

The advantages of graphical ADMM lie in the context-dependent decompositions
of an image horizontally in space and vertically along the scales in handling the image
details. The spatial decomposition allows our method to overcome the cons of under-
smoothing the smooth areas in WBN and keeps the pros of WBN that preserves sharp
edges. Meanwhile, graphical ADMM is much more efficient than the time-consuming
belief propagation adopted in WBN.

The mixture of data-dependent and data-independent edges in wavelet graph
construction is a significant feature of our method. The intra-scale edges are
determined by a data-dependent adaptive process, which imposes sparseness by
keeping the edges which end nodes have similar coefficients in the optimal graph.
The inter-scale edges are data-independent, built-in to leverage the wavelet
persistence property. The inter-scale edges, passing information of singularities from
finer scales to coarser scales and vice versa, can preserve more texture and edges in
original images. This distinguishes our algorithm from BM3D and IDD-BM3D,
which encode structure in atoms of a dictionary and select a few atoms for image
representation.

6. Conclusions

We present a novel approach by combining spatial decomposition, vertical (multi-
scale) decomposition, and ADMM optimization in a graphical framework for image
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noise reduction and restoration tasks. The graphical ADMMmethod has demonstrated
that its results are superior to those of state-of-the-art algorithms. We also demon-
strated that mixing data-dependent and data-independent structures in a graph rep-
resentation can leverage the sparseness and persistence of a wavelet representation.
Rather than adopting a combinatorial approach to derive an optimal graph, we
showed that the graph can be derived by a numerically tractable optimization
approach. In addition, we showed that the optimization problem is well coupled with
our graph representation, and can be decomposed into a sequence of convex sub-
problems, with each having an efficient closed-form solution. This opens a new
perspective of combining a mixture of data-adaptive and data-independent struc-
tures, hierarchical decomposition, and optimization algorithms in modeling,
representing, and solving more image processing tasks.
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Chapter 8

Application to Medical Image
Processing
Anthony Y. Aidoo, Gloria A. Botchway
and Matilda A.S.A. Wilson

Abstract

Medical images are often corrupted by white noise, blurring and contrast defects.
Consequently, important medical information may be degraded or completely masked.
Advanced medical diagnostics and pathological analysis utilize information obtained
from medical images. Consequently, the best techniques must be applied to capture,
compress, store, retrieve and share these images. Recently, the wavelet transform
technique has been applied to enhance and compress medical images. This review
focuses on the trends of wavelet-based medical image processing techniques. A sum-
mary of the application of wavelets to enhance and compress medical images such as
magnetic resonance imaging (MRI), computerized tomography (CT), positron emis-
sion tomography (PET), single photon emission computed tomography (SPECT), and
X-ray is provided. Morphological techniques such as closing, thinning and pruning are
combined with wavelets methods to extract the features from the medical images.

Keywords:

1. Introduction

The goal of this chapter is to provide a review of the applications of wavelets to
medical imaging. The focus will be on medical image denoising and compression.
Advanced medical diagnostics utilize information obtained from technologies such as
magnetic resonance imaging (MRI), computerized tomography (CT), positron
emission tomography (PET), single photon emission computed tomography (SPECT),
and X-ray [1, 2]. However, such images are corrupted by white noise, blurring and
contrast defects. Consequently, important medical information may be degraded or
completely masked. Recently, wavelet-based techniques have been applied to achieve
superior image denoising and economical image compression.

1.1 Wavelet properties in medical imaging: multiresolution analysis

A multiresolution analysis is a decomposition of the Hilbert space H ¼ L2 Rð Þ
into a chain of closed subspaces V j

� �
, j∈Z which form a sequence of successive

approximation subspaces of H such that the following hold:
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1.V j ⊂V jþ1 for all j∈Z

2.⋃∞
j¼�∞V j is dense in L2 Rð Þ and ⋂∞

j¼�∞V j ¼ 0f g.

3. f xð Þ∈V j ⇔ f 2xð Þ∈V jþ1 for all j∈Z

4. f xð Þ∈V j ⇔ f x� kð Þ∈V j for all j, k∈Z

5.Each subspace V j is spanned by integer translates of a single function f xð Þ. That
is, for any f ∈L2 Rð Þ and any k∈Z; f xð Þ∈V0, f x� kð Þ∈V0. All subspaces are
therefore scaled versions of the central space V0.

6.(6) There exists a function ψ xð Þ, belonging to V0, such that the sequence
ψ x� kð Þ; k∈Zð Þ forms a Riesz basis or unconditional basis for V0. Using the
result that an orthonormal basis can always be generated out of a given Riesz
basis, Riesz basis can be replaced by orthonormal basis.

1.2 Wavelet properties in medical imaging: wavelet bases

One of the special qualities of wavelets which is exploited in medical image analy-
sis is the ability to construct L2 bases which are simply dilations and translations of a

single compactly supported function given by ψ j,k ¼ 2�j=2ψ x=2 j � k
� �n o

where

j, k∈Z. This enables any image function f to be represented by:

f ¼
X
j∈Z

X
k∈Z

c j,kψ j,k (1)

2. Undecimated wavelet transform

Conventional methods for medical image enhancement have very limited versatility
in application and their use could lead to the loss of important medical image features of
interest. This could be highly fatal inmedical imaging applications [3]. The undecimated
discrete wavelet transform (UDWT) method is a wavelet transform algorithm without
the downsampling operations, resulting in both the original signal and the approxima-
tion and detailed coefficients having same length at each level of decomposition. The
basic algorithm of the conventional UDWT is that it applies the transform at each point
of the image and saves the detailed coefficients and uses the approximation coefficients
for the next level. The size of the coefficients array does not diminish from level to level.
This decomposition operation is further iterated up to a higher level. Various denoising
methods using the DWT provide robust computational methods in denoising digital
medical images. The only issue with the DWT is that it is shift variant. This
disadvantage can may be ameriorated by using the UDWT to achieve shift invariance.

3. Image enhancement: wavelets and medical image denoising

Medical images are usually corrupted by noise inherrent in the processes of acqui-
sition, trasmission, and retrieval [4, 5]. In particular, medical images such as those
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obtained from MRI or X-rays are often complicated by random noise that occurs
during the image acquisition stage [6]. Wavelet-based techniques overcome most of
these limitations. The objective of enhancement is to remove the effects of signal
degradation caused by the signal processing. Noise may be removed by smoothing the
signal by subjecting it to a low-pass filter. Sharpening to remove blur is used to
identify more detailed features by applying a high-pass filter.

3.1 Wavelets methods

With its inherrent properties of multiresolution structure, application of wavelets
to medical images converts the noisy image in the time domain into the wavelet
transform domain. Subsequently, essential image detail information is compressed
into large coefficients that are retained at different resolution scales. The small coeffi-
cients represent the noise in the image as well as any redundant information. In
medical image analysis, the boundary line between “large” and “small” coefficients is
crucial since it determines whether the noise is significantly removed in addition to
crucial detail being preserved.

3.2 Hybrid methods for medical image denoising

Spatial filters have the tendency of blurring images since the technique smoothens
data in order to remove niose [7]. Tackling this problem by relying on wavelet
transform alone sometimes does not satisfactorily address the image enhancement
problem since wavelet tranform methods are plagued by oscillations, shift variance,
aliasing and lack of directionality. Three methods that are combined with wavelets
significantly eliminate the problems listed above the medical image enhancement
outcomes considered here.

3.2.1 Total variation denoising

Total variation (TV) regularization is a deterministic method that minimizes the
effect of discontinuities in image processing [8]. The TV technique is endowed with
the power of preserving and even enhancing the edges. The use of TV for image
denoising assumes that the observed image is made up of the sum of a piecewise
smooth image and guassian noise.

A real valued function f xð Þ, representing a signal is sampled using the partition
P ¼ �∞< x0 < x1 < … < xn, n∈f g of the interval x0, x½ �. The TV T f of f over the
interval is defined by:

T f xð Þ ¼ sup
Xn
i

j f xið Þ � f xi�1ð Þj: �∞< x0 < x1 < … < xn, n∈

( )
(2)

If lim x!∞T f xð Þ is finite, then f is of bounded variation. The TV of an L1 function f
of several variables, in an open subset Ω of n, is defined as by:

T f xð Þ ¼ sup
ð

Ω
f xð Þdivϕ xð Þdx : ϕ xð Þ∈C1

c Ωð ,nÞ, ϕk kL∞ Ωð Þ ≤ 1
� �

(3)
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If f is a differentiable function defined on a bounded open domain Ω⊂n this
reduces to:

T f xð Þ ¼
ð

Ω
∣∇f xð Þ∣dx (4)

Definition 3.1 The total variation of an image is defined by the duality: for u∈L1
loc the

total variation is given by T f ¼ sup �divϕdx : ϕ∈C∞
c Ω;N� �

, jϕ xð Þj≤ 1∀x∈Ω
� �

.
This hybrid approach used here represents a noisy image in a simplified form by

Eq. (1). The reconstruction of u xð Þ reduces to the optimization problem of minimizing
the function

E uð Þ ¼ λ

2
u� zk k2L2 Ωð Þ þ R uð Þ (5)

(see for example [9]). Here, the parameter λ>0 and R uð Þ is the regularization
functional defined on the domain Ω. The disadvantage of this method is that despite
removing noise adequately, it removes essential details from the image [8]. Since the
efficiency of the method is controlled by the choice of the regularization functional,
this is usually costly in medical imaging. The use of the TV of the image function
below ameliorates this problem.

R uð Þ ¼ Tz uð Þ ¼
ð

Ω
∣Δu∣dx (6)

It leads to sharper reconstruction of the original image by both removing the
imbedded noise and better preservation of its edges [10, 11]. TV minimization scheme
takes the geometric information of the original images into account, and this helps to
preserve and sharpen the edges significantly [11].

3.2.2 The wavelet-total variation method

Proposition 1 [12] Let K ¼ p∈L2 Ωð Þ : ÐΩp xð Þu xð Þdx≤Tz uð Þ∀u∈L2 Ωð Þ� �
. If Tz is

considered as a functional over the Hilbert space L2 Ωð Þ, we have ∂Tz uð Þ ¼
p∈K :

Ð
Ωp xð Þu xð Þdx ¼ Tz uð Þ� �

.
Proof 1 If p∈K and

Ð
Ωp xð Þu xð Þdx ¼ Tz uð Þ then p∈ ∂Tz uð Þ. Clearly for any v∈L2 Ωð Þ

we have Tz vð Þ ¼ supp∈K

Ð
Ωp xð Þu xð Þdx. Tz vð Þ≥ ÐΩp xð Þv xð Þdx ¼ Tz uð Þ þÐ

Ω v xð Þ � u xð Þð Þp xð Þdx. Conversely, if p∈ ∂Tz uð Þ, then for any t>0 and v∈N, with
Tz tuð Þ ¼ tTz uð Þ since Tz is positively one-homogeneous, we have: tT vð Þ ¼ Tz vð Þ≥Tz uð Þ þÐ
Ωp xð Þ tv xð Þ � u xð Þð Þdx. Dividing by t and letting t ! ∞↦ leads to Tz vð ÞÐΩp xð Þv xð Þdx.
Hence p∈K. On the other hand, letting t ! 0 gives Tz uð Þ≤ ÐΩp xð Þu xð Þdx.

Method Sensitivity Specificity Accuracy PSNR

TV 79.0% 80.0% 91.7% 30.97%

TV and UDWT 82.5% 93.3% 97.0% 42.80%

Table 1.
TV vs TV and UDWT.
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The wavelet TV scheme represents the components of the function by orthogonal
wavelet basis. The wavelet coefficients are then selected to achieve the goals of
denoising and enhancement (Table 1). Figure 1 shows the results on the chest radio-
graph images.

The Python 2.7 code is given below.

"""A code to implement a wavelet denoising and morphological enhancement
"""
#import math
#import numpy as np

import cv2
import mat ot as plt import pywt
kernel=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
img1=cv2.imread('JPCLN001.jpg') coeff1=pywt.wavedec2(img1, 'bior1.3')
coeff11=pywt.waverec2(coeff1,'db2')
erosion1=cv2.erode(coeff11,kernel,iterations=2)
opening1=cv2.dil te(erosion1,kernel,iterations=3)
oinv1=1-opening1
fig 1=plt.figure()
fig 1.suptitle('Original, Decomposed and Reconstructed CR Images with Nodules')

Figure 1.
(Column 1) Original chest images with nodules, (column 2) wavelet decomposition of images in column 1,
(column 3) reconstructed images from the decomposed images.
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plt.subplot(331),plt.imshow(img1),plt.title('a'),plt.xticks([]),plt.yt icks([])
plt.subplot(332),plt.imshow(coeff1[0]),plt.title('d'),plt.xticks([]),p lt.yticks([])
plt.subplot 333),plt.imshow(coeff11),plt.title('g'),plt.xticks([]),plt .yticks([])
fig 1.savefig('1CR i ages with nodules, decomposed and reconstructed.png')
fig 3=plt.figure()
fig 3.suptitle('Decomposed nodule images eroded, opened and inversed')
plt.subplot(331),plt.imshow(erosion1),plt.title('a'),plt.xticks([]),pl t.yticks([])
plt.subplot(332),plt.imshow(opening1),plt.title('d'),plt.xticks([]),pl t.yticks([])
plt.subpl t(333),plt.imshow(oinv1),plt.title('g'),plt.xticks([]),plt.y
ticks([])
fig 3.savefig('1Decomposed nodule images eroded, opened and inversed.png')

3.2.3 Mathematical morphology

Mathematical morphology (MM) is a technique for extracting image components
of interest Dilation and erosion are the two basic operations in mathematical
mophology as well as thinning, opening, closing, and prunning. Wavelets combined
with MM has recently been used to improve chest radiographs [13].

Definition 3.2 Erosion and Dilation: Let E be the Euclidean space, let A : E⊆ℤ2 ! ℤ
be an image and B : ℤ2 ! 0, 1f g be a structuring element. The translation of a set C by a
point z ¼ z1, z2ð Þ, denoted by Cð Þz is defined as Cð Þz ¼ a∣a ¼ cþ z, c∈A. The erosion of A
by B, denoted by A⊖Bð Þ, is expressed as

A⊖Bð Þ ¼ z∣ Bð Þz ⊆A, (7)

ie. The set of all pixel locations z in the image plane where Bð Þz is contained in A.
Definition 3.3 The dilation of A by B is denoted by A⊕Bð Þ and is expressed as

A⊕Bð Þ ¼ z∣ B̂
� �

z ⋂A 6¼ ∅, (8)

where B̂ ¼ w∣w ¼ �b, for b∈B is the reflection of B.
This indicates the set of all pixel locations z in the image plane where the

intersection of B̂ with A is not empty [14].
Erosion shrinks an image or a region A by a template or a structuring element B.

Dilation expands an image or a region A by a template or a structuring element B. The
dilation process consists of obtaining the reflection of B about its origin and then
shifting this reflection by some displacement x.

Other effects can be obtained by applying erosion and dilation in a loop. Closing
and opening are two examples of basic erosion and dilation combinations.

3.3 Opening and closing

Definition 3.4 The opening of A by B, denoted by A ∘B, is simply erosion of A by B,
followed by dilation of the result by B, that is,

A ∘Bð Þ ¼ A⊖Bð Þ⊕B: (9)

134

Recent Advances in Wavelet Transforms and Their Applications



Visually, opening smoothens contours, breaks narrow isthmuses and eliminates
small islands.

Definition 3.5 The closing of A by B, denoted by A •B, is a dilation followed by an
erosion and is given as

A •Bð Þ ¼ A⊕Bð Þ⊖B: (10)

Closing smoothens the contours, fills narrow gulfs and eliminates small holes. It is based
on these operations that other operations are derived.

3.4 Thinning and pruning

The thinning operation is related to the hit-or-miss transform and it can be
expressed in terms of it. The thinning operation is derived by translating the origin of
the structuring element to each possible pixel position in the image and comparing it
with the underlying image pixels at each such position. Pruning is a post-processing
technique that follows thinning. It removes parasitic components known as spurs
which are unwanted branches, from the thinned image. There are specific structuring
elements used for pruning.

Combined with MM wavelets can be used to decompose a fingerprint image in
order to extract the areas with details. The results of this approach is shown in
Figures 2 and 3.

Algorithm 1

Denoising the fingerprint image
1. Load fingerprint image.
2. Convert the greyscale fingerprint image into a binary image.
3. Decompose image using wavelets into detailed and approximated parts.
4. Reconstruct the fingerprint image using the detailed parts of the

decomposed image and set the approximated part to zero.

Algorithm 2

Processing the image for feature extraction
1. Load denoised image.
2. Perform a binary closing on the image to close all insignificant holes in

the image.
3. Thin image.
4. Prune the result to remove spurs and spikes.
5. Extract features.

3.4.1 Wavelet K-SVD approach

The wavelet tranform technique (for image denoising) has several advantages such
as sparsity, multiresolution structure, and similarity with human vision. Recently, it
has been combined with K-Singular Valued Decomposition (K-SVD) algorithm, and
an adaptive learning over the wavelet decomposition of a noisy medical image has
resulted [15].
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4. Wavelet based compression methods for storing medical images

In medical image compression, a mathematical transform is applied to the digital
data. This is intended to compress the data for efficient storage, transmission, and

Figure 3.
Morphological operations applied to fingerprint images: (a) original image, (b) binary closing of image, (c)
thinned image, (d) prunned image.

Figure 2.
Wavelet analysis and synthesis of image: (a) original image, (b) decomposed image, (c) reconstructed image.
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retrieval. Compression involves coding and image approximation and helps to reduce
the quantity of information, improve the transmission rate and reduce the size of the
equipment and storage space required. Data compression requires the choice of a
transform such that as many of the transformed data as possible vanish. The ability to
localize basis functions in wavelet applications make them suitable for compression.
In addition to this property of wavelets, a wavelet decomposition of an image capital-
izes on its multiresolution structure, a recursive method to compute the wavelet
transform of an image [16]. The three components of the wavelet tranform based
image are image decomposition, quantization, and decompression.

4.1 Hybrid methods for medical image compression

The DWT combined with vector quantization methods have recently be shown to
achieve superior results in medical image compression than wavelet alone technique.
For example, Ammah and Owusu [17] proposed an efficient medical hybrid image
decompression technique for ultrasound and MRI images. The method consists of first
preprocessing the image by noise removal. This is follwed by filtering the image using
the DWT with hard thresholding. The image is subsequently vector quantized and
then Huffman encoded. The inverse operations are then applied to obtain the
decompressed image.

The metrics used to evaluate the efficiency of the compression methods are the
compression ratio (CR) and the peak signal to noise ratio (PSNR) given by:

CR ¼ I x, yð Þ
I0 x, yð Þ (11)

and

PSNR ¼ 20 log 10
255

RMSE

� �
(12)

where the RMSE is the root mean squared error.
Using a new class of splinewavelet filters, more effective data compression techniques

have been devised to compressmassive quantities ofmedical image data leading to amore
economical storage process and enhancedmedical image quality when retrieved. Com-
binedwith other methods, the inherrent properties of wavelets such as sparsity and
multiresolution structure produce superior medical image data compresssion results than
the competition. CRs for threemost usedmethods are is shown inTable 2.

5. Conclusion

Modern radiology techniques are essential in advanced medical diagnostics and
pathological analysis [18]. Applications of the wavelet tranform for medical imaging

Method DWT (Haar) [17] DWT (dB) [17] DWT and MM

CR 7.40% 21.86% 21.90%

Table 2.
Compression ratios.
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techniques and current advances in research in this direction has been highlighted in
this chapter. This includes the combination of the standard wavelet techniques with
TV, MM and other methods.
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Chapter 9

Straight Rectangular Waveguide
for Circular Dielectric Material
in the Cross Section and for
Complementary Shape of the
Cross Section
Zion Menachem

Abstract

This chapter presents wave propagation along a straight rectangular waveguide for
practical applications where there are two complementary shapes of the dielectric
profile in the cross section. In the first case, the cross section consists of circular
dielectric material in the center of the cross section. In the second case, the cross
section consists of a circular hollow core in the center of the cross section. These
examples show two discontinuous cross sections and complementary shapes that
cannot be solved by analytical methods. We will explain in detail the special technique
for calculating the dielectric profile for all cases. The method is based on Laplace and
Fourier transforms and inverse Laplace and Fourier transform. In order to solve any
inhomogeneous problem in the cross section, more than one technique can be pro-
posed for the same mode-model method. We will explain in detail how and where the
technique can be integrated into the proposed mode-model. The image method and
periodic replication are needed for fulfilling the boundary condition of the metallic
waveguide. The applications are useful for straight rectangular waveguides in milli-
meter regimes, where the circular dielectric material is located in the center of the
cross section, and also for hollow waveguides, where the circular hollow core is
located in the center of the cross section.

Keywords: wave propagation, dielectric profiles, rectangular waveguide, circular
dielectric material, circular hollow core

1. Introduction

We begin with a review of numerical and approximate methods for the modal
analysis of general optical dielectric waveguides with emphasis on recent develop-
ments as published in [1]. Six groups of methods were reviewed: the finite-element
method, the finite-difference method, the integral-equation method, methods based
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on series expansion, approximate methods based on separation of variables, and
methods that do not fit the above groups.

The use of wavelet-like basis functions for solving electromagnetics problems is
demonstrated in [2]. The modes of an arbitrarily shaped hollow metallic waveguide
use a surface integral equation and the method of moments. A class of wavelet-like
basis functions produces a sparse method of moments. A technique for efficient
computation of an integral wavelet transform of a finite-energy function on a dense
set of the time-scale domain is proposed [3] by using compactly supported spline
wavelets. Application of principal component analysis and wavelet transform to
fatigue crack detection in waveguides is proposed in [4]. Ultrasonic guided waves are
a useful tool in structural health monitoring applications that can benefit from built-in
transduction, moderately large inspection ranges, and high sensitivity to small flaws.
An accurate full-wave integral formulation was developed [5] for the study of inte-
grated planar dielectric waveguide structures with printed metalized sections, which
are of practical interest for millimeter-wave and submillimeter-wave applications. An
advantageous finite element method for the rectangular waveguide problem was
developed [6] by which complex propagation characteristics may be obtained for
arbitrarily shaped waveguides. The finite-element method has been used to derive
approximate values of the possible propagation constant for each frequency. The
impedance characteristics of the fundamental mode in a rectangular waveguide were
computed using this finite element method. The extension to higher-order elements is
straightforward, and by modifications of the method it is possible to treat other types
of waveguides as well, e.g., dielectric waveguides with impedance walls and open
unbounded dielectric waveguides properties treating the region of infinity.

A comprehensive study of the design and performance of a multilayer dielectric
rod waveguide with a rectangular cross section is proposed in [7]. The design is
comprised of a high permittivity core encased by a low permittivity cladding. A
mathematical model was proposed to predict the fundamental mode cutoff frequency
in terms of the core dimensions and the core and cladding permittivity. The model is
useful for design purposes and it offers an excellent match to full-wave electromag-
netic simulation results.

The characteristics of the effective-medium-clad dielectric waveguides, including
dispersion, cross-polarization, crosstalk between parallel waveguides, bending loss,
and wave leakage at the crossing, have been comprehensively investigated and
measured [8].

Mode matching has been done at all the air and dielectric interfaces and thus the
characteristic equations have been derived [9]. Two ratios are introduced in the
characteristic equations and the new set of characteristic equations thus obtained are
then plotted and graphical solutions are obtained for the propagation parameters
assuming certain numerical values for the introduced ratios.

A fundamental and accurate technique to compute the propagation constant of
waves in a dielectric rectangular waveguide was proposed [10]. The formulation is
based on matching the fields to the constitutive properties of the material at the
boundary.

The method of lines for the analysis of dielectric waveguides was proposed [11].
These waveguides are uniform along the direction of propagation, are loss-free and
passive. Hybrid-mode dispersion curves, field and intensity distributions for
integrated optical waveguides were presented.

The problem of normal waves in a closed regular waveguide of arbitrary cross
section has been considered [12]. It was reduced to a boundary value problem for the
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longitudinal components of the electromagnetic field in Sobolev spaces. The solutions
were defined using the variational formulation of the problem. The problem was
reduced to the study of an operator function. The properties of the operators involved
in the operator function were examined. Theorems were proved concerning the dis-
crete character of the spectrum and the distribution of characteristic numbers of the
operator function on the complex plane. The completeness of the system of Eigen- and
associated vectors of the operator function was investigated.

TE-wave propagation in a hollow waveguide with a graded dielectric layer using a
hyperbolic tangent function is proposed in Ref. [13]. General formulas for the electric
field components of the TE-waves, applicable to hollow waveguides with arbitrary
cross sectional shapes were presented. The exact analytical results for the electric field
components were illustrated in the special case of a rectangular waveguide. The exact
analytical results for the reflection and transmission coefficients are valid for wave-
guides of arbitrary cross sectional shapes. The obtained reflection and transmission
coefficients are in exact asymptotic agreement with those obtained for a very thin
homogeneous dielectric layer using mode-matching and cascading. The proposed
method gives analytical results that are directly applicable without the need of mode-
matching, and it has the ability to model realistic, smooth transitions.

Rectangular waveguides were the earliest mode of transmission lines used for
compact systems like radars and inside equipment shelters [14]. An air-filled rectan-
gular waveguide WR-90 is simulated using HFSS simulation software to obtain dif-
ferent parameters. The electric and magnetic field patterns are analyzed: intrinsic
impedance and wavelength for the first four modes of the waveguide are also
obtained.

The diffraction of electromagnetic waves by rectangular waveguides with a longi-
tudinal slit has been simulated [15]. The results allow determining the patterns of
change in frequency bands in which the structure can be used as a directional coupler
and as a power divider when changing the number of slots, their sizes and provisions.
Modeling the characteristics of such kinds of structures allows predicting the creation
of directional couplers and power dividers with high integral characteristics.

Several methods of propagation along the straight waveguides were developed,
based on Maxwell’s equations. A transfer matrix function for the analysis of electro-
magnetic wave propagation along the straight dielectric waveguide with arbitrary
profiles has been proposed in Ref. [16].

In this chapter, the main objective is to generalize the mode model method [16] in
order to solve also complicated and practical problems of circular dielectric material
and a circular hollow core in the center of the cross section of the rectangular wave-
guide. It is important to distinguish between the mode-model method and the pro-
posed technique. The proposed technique deals only with calculating the dielectric
profile in the cross section of the inhomogeneous case. In order to solve any inhomo-
geneous problem in the cross section, more than one technique can be proposed for
the same mode-model method. The technique proposed in this chapter will refer to
two interesting practical applications. In the first case, the cross section consists of
circular dielectric material in the center of the cross section. In the second case, the
cross section shows the complementary shape of the cross section of the first case, as
an example of a hollow waveguide in which the circular hollow core is located in the
center of the cross section. These examples show two discontinuous cross sections and
complementary shapes that cannot be solved by analytical methods. We will explain
in detail the special technique for calculating the dielectric profile in all cases. After
receiving the expressions of the proposed technique for each inhomogeneous problem
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in the cross section, we will explain how and where the technique can be integrated
into the proposed mode-model. The second objective is to find the relevant parame-
ters in order to obtain the Gaussian behavior of the output field in the interesting
cases of circular dielectic material and a circular hollow core in the rectangular cross
section.

2. Complementary shapes in the cross section for different applications

The wavelet transform creates a representation of the signal in both the time and
frequency domain in order to allow efficient access to localized information about the
signal. A set of waveforms comprising a transform is called a basis function. Fourier
transforms use only sine and cosine waves as their basis functions, namely a signal is
decomposed into a series sine and cosine functions or wavelets by the FFT. Examples
for the applications of wavelet transform are demonstrated in [2–5]. The proposed
method in this chapter is based on the Fourier transform that creates a representation
of the signal in the frequency domain. Two complicated and complementary shapes
are given in this section.

Figure 1(a) and (b) shows two complementary shapes of profiles in the cross
section of the straight rectangular waveguide and their relevant parameters. The
circular dielectric material in the center of the cross section is shown in Figure 1(a)
and the circular hollow core in the center of the cross section is shown in Figure 1(b).
The two examples are demonstrated as a response to a half-sine (TE10) input-wave
profile. These two different complementary shapes of the cross section are demon-
strated for two different applications. The first example (Figure 1(a)) is useful in
millimeter regimes where the circular dielectric material is located in the center of the
cross section. The second example (Figure 1(b)) is useful in the millimeter regimes
where the circular hollow core is located in the center of the cross section.

The main objective is to generalize the mode model method [16] in order to also
solve complicated problems of circular dielectric material and a circular hollow core in
the rectangular cross section. All the mathematical development relates to the fre-
quency domain. The main points are given in Appendix A.

It is important to separate between mode-model method and the proposed tech-
nique. The proposed technique refers only to calculating of the dielectric profile in the

Figure 1.
Complementary shapes of profiles in the cross section of the straight rectangular waveguide and their relevant
parameters. (a) Circular dielectric material in the center of the cross section. (b) A circular hollow core in the
center of the cross section.
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cross section of the inhomogeneous problem. In order to solve any inhomogeneous
problem in the cross section, more than one technique can be proposed for the same
mode-model method. After receiving the expressions of the proposed technique for
eace inhomogeneous problem in the cross section, we will explain how and where the
technique can be integrated into the proposed mode-model. The second objective is to
find the relevant parameters in order to obtain the Gaussian behavior of the output
field in the interesting cases of circular dielectic profile and circular hollow profile in
the rectangular cross section.

The method is based on Maxwell’s equations for the computation of output fields at
each point along the straight waveguide. This method relates the wave profile at the
output to the input wave in the Laplace space. A Laplace transform is necessary to
obtain convenient and simple input–output connections of the fields. The method
consists of Fourier coefficients of the transverse dielectric profile and of the input–
output profile. Thus, the accuracy of the method depends on the number of the modes
in the system.

The output transverse field profiles are computed by the inverse Laplace and
Fourier transforms. The output components of the electric field are given finally by

Ex ¼ Dx þ α1M1M2f g�1 Êx0 � α2M1Êy0

� �
, (1)

Ey ¼ Dy þ α1M3M4
� ��1 Êy0 � α3M3Êx0

� �
, (2)

Ez ¼ D�1
z Êz0 þ

1
2s

GxEx0 þGyEy0

� �� 1
2

GxEx þGyEy
� �� �

, (3)

where Ex0 ,Ey0 ,Ez0 are the initial values of the corresponding fields at z = 0, i.e.,

Ex0 ¼ Ex (x, y, z = 0), and Êx0 , Êy0 , Êz0 are the initial-value vectors.
The modified wave-number matrices are given by

Dx � K 0ð Þ þ k2oχ0
2s

Gþ jkox
2s

NGx, Dy � K 0ð Þ þ k2oχ0
2s

Gþ
jkoy
2s

MGy,

Dz � K 0ð Þ þ k2oχ0
2s

G,

(4)

where the diagonal matrices K 0ð Þ, M, and N are given by

K 0ð Þ
n,mð Þ n0,m0ð Þ ¼ k2

o � nπ=að Þ2 � mπ=bð Þ2 þ s2
h i

=2s
n o

δnn0δmm0 ,

M n,mð Þ n0,m0ð Þ ¼ mδnn0δmm0 , N n,mð Þ n0,m0ð Þ ¼ nδnn0δmm0 ,
(5)

and where

α1 ¼
koxkoy
4s2

, α2 ¼ jkox
2s

, α3 ¼
jkoy
2s

,

M1 ¼ NGyD�1
y , M2 ¼ MGx, M3 ¼ MGxD�1

x , M4 ¼ NGy:

(6)

Similarly, the other components of the magnetic field are obtained. The output
transverse field profiles are given by the inverse Laplace and Fourier transforms, as
follows
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Ey x,y, z
� � ¼

X
n

X
m

ðσþj∞

σ�j∞

Ey n,m, sð Þ exp jnkoxxþ jmkoyyþ sz
h i

ds, (7)

where the inverse Laplace transform is calculated according to the Salzer method
[17, 18]. The inverse Laplace transform is performed in this study by a direct numer-
ical integration on the Laplace transform domain by using the method of Gaussian
Quadrature. The integration path in the right side of the Laplace transform domain
includes all the singularities.

ðσþj∞

σ�j∞

esζEy sð Þds ¼ 1
ζ

ðσþj∞

σ�j∞

epEy p=ζð Þdp ¼ 1
ζ

X15
i¼1

wiEy s ¼ pi=ζ
� �

, (8)

where wi and pi are the weights and zeros, respectively, of the orthogonal poly-
nomials of order 15. The Laplace variable s is normalized by pi=ζ in the integration
points, where Re pi

� �
>0 and all the poles should be localized on their left side on the

Laplace transform domain. This approach of a direct integral transform does not
require as in other methods, to deal with each singularity separately.

The relation between the functions f (t) and F (p) is given by

f tð Þ ¼ 1
2πj

ðσþj∞

σ�j∞

eptF pð Þdp: (9)

The function F(p) may be either known only numerically or too complicated for
evaluating f(t) by Cauchy’s theorem. The function F(p) behaves like a Polynomial
without a constant term, in the variable 1/p, along (σ � j∞, σ þ j∞). One may find f(t)
numerically by using new quadrature formulas (analogous to those employing the
zeros of the Laguerre polynomials in the direct Laplace transform). A suitable choice
of pi yields an n-point quadrature formula that is exact when p2n is any arbitrary
polynomial of the 2n(th) degree in x � 1=p, namely

1
2πj

ðσþj∞

σ�j∞

epρ 1=pð Þdp ¼
Xn
i¼1

Ai nð Þρ2n 1=pi
� �

: (10)

In Eq. (10), xi � 1=pi are the zeros of the orthogonal polynomials pn xð Þ �
Π x� xið Þ where

1
2πj

ðσþj∞

σ�j∞

ep
1
p

� �
pn

1
p

� �
1
p

� �i

dp ¼ 0, (11)

i = 0,1,… ,n � 1 and Ai nð Þ correspond to the Christoffel numbers. The normaliza-
tion Pn 1=pð Þ � 4n� 2ð Þ 4n� 6ð Þ, … , 6pn 1=pð Þ, for n≥ 2, produces all integral coeffi-
cients. Pn 1=pð Þ is proven to be �1ð Þne�ppndn ep=pnð Þ=dpn. The numerical table gives us
the values of the reciprocals of the zeros of Pn xð Þ or pi nð Þ, the zeros of Pn xð Þ, or 1=pin,
and the corresponding Christoffel numbers Ai nð Þ. By using these quantities in the
quadrature formula that represents in Eq. (10), then the “Christoffel numbers” are
given by

Ai nð Þ � 1
2πj

ðσþj∞

σ�j∞

epLi nþ 1ð Þ 1
p

� �
dp: (12)
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A sufficient condition for Eq. (12) to hold is obviously the “Orthogonality” of
1=pð Þpn 1=pð Þ with respect to any “arbitrary” ρ 1=pð Þ (see Eq. (11)). The points 1=pi are
denoted by 1= pi

� �n and they are the “zeros” of a certain set of “orthogonal poly-
nomials” in the variable 1/p. By using these quantities in the “quadrature formula”
we can obtain theoretically “exact accuracy” for “any polynomial” in 1/p up to the
16(th) degree.

A Fortran code is developed using NAG subroutines (The Numerical Algorithms
Group (NAG)) [19].

The proposed technique will introduce details for all the interesting cases of a
discontinuous cross section, as shown in Figure 1(a) and (b).

3. Calculation of the different inhomogeneous profiles

This section explains the proposed technique for calculating the dielectric profile
for the two different inhomogeneous and complicated shapes of the cross section, as
shown in Figure 1(a) and (b).

3.1 Calculation for circular dielectric material in the center of the cross section

The technique is based on Fourier transform and uses the image method and
periodic replication for fulfilling the boundary conditions of the metallic
waveguide. Periodicity and symmetry properties are chosen to force the boundary
conditions at the location of the walls in a real problem, by extending the
waveguide region (0≤ x≤ a, and 0≤ y≤ b) to regions that are four-fold larger
(�a≤ x≤ a, and �b≤ y≤ b). The elements of the matrix g(n,m) are calculated for an
arbitrary profile in the cross section of the straight waveguide according to Figure 2
(a) and (b).

The dielectric profile g x, yð Þ is calculated according to ε x, yð Þ ¼ ε0 1þ g x, yð Þð Þ and
according to Figure 2(a) and (b) where g x, yð Þ ¼ g0. The specific case of circular
dielectric material in the center of the cross section is shown in Figure 2(b) by using
the image method. We obtain

Figure 2.
The image method for (a) an arbitrary profile in the cross section, and (b) the specific case of circular dielectric
material in the center of the cross section.
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g n,mð Þ ¼ g0
4ab

ða
�a
dx
ðb
�b

exp �j kxxþ kyy
� �� �

dy

¼ g0
4ab

ðx12
x11
dx
ðy12
y11

exp �j kxxþ kyy
� �� �

dyþ
ð�x11

�x12
dx
ðy12
y11

exp �j kxxþ kyy
� �� �

dy

(

þ
ð�x11

�x12
dx
ð�y11

�y12

exp �j kxxþ kyy
� �� �

dyþ
ðx12
x11
dx
ð�y11

�y12

exp �j kxxþ kyy
� �� �

dy

)

¼ g0
4ab

ðx12
x11
dx
ðy12
y11

exp �j kxxþ kyy
� �� �

dyþ
ðx11
x12

� dx
ðy12
y11

exp �j �kxxþ kyy
� �� �

dy

(

þ
ðx11
x12

� dx
ðy11
y12

� exp �j �kxx� kyy
� �� �

dyþ
ðx12
x11
dx
ðy11
y12

� exp �j kxx� kyy
� �� �

dy

)

¼ g0
4ab

ðx12
x11

exp j kxxð Þ½ �dx
ðy12
y11

exp j kyy
� �� �

dyþ
ðx12
x11

exp j kxxð Þ½ �dx
ðy12
y11

exp �j kyy
� �� �

dy

(

þ
ðx12
x11

exp �j kxxð Þ½ �dx
ðy12
y11

exp j kyy
� �� �

dyþ
ðx12
x11

exp �j kxxð Þ½ �dx
ðy12
y11

exp �j kyy
� �� �

dy

)

¼ g0
4ab

ðx12
x11
dx
ðy12
y11

exp �j kxxþ kyy
� �� �

dyþ
ðx12
x11
dx
ðy12
y11

exp j kxx� kyy
� �� �

dy

(

þ
ðx12
x11
dx
ðy12
y11

exp j kxxþ kyy
� �� �

dyþ
ðx12
x11
dx
ðy12
y11

exp �j kxx� kyy
� �� �

dy

)

¼ g0
2ab

ðx12
x11

exp jkxx
� �þ exp �jkxx

� �� �
dx
ðy12
y11

cos kyy
� �

dy

( )
:

(13)

If y11 and y12 are functions of x, then we obtain

g n,mð Þ ¼ g0
abky

ðx12
x11

sin kyy12 xð Þ� �� sin kyy11 xð Þ� �� �
cos kxxð Þdx

¼ 2g0
amπ

ðx12
x11

sin
mπ

2b
y12 xð Þ � y11 xð Þ� �h i

cos
mπ

2b
y12 xð Þ þ y11 xð Þ� �h i

cos
nπ
a
x

� �
dx,

(14)

where kx ¼ nπð Þ=a, and ky ¼ mπð Þ=b.
The radius of the circle is given by r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a=2ð Þ2 þ y� b=2ð Þ2

q
, thus for the

specific case of the cross section (Figure 1(a)) and according to the image method, we
obtain.

y11 xð Þ ¼ b=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x� a=2ð Þ2

q
, (15)

y12 xð Þ ¼ b=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x� a=2ð Þ2

q
(16)
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The dielectric profile for the cross section (Figure 1(a)) is given by.

g n,m 6¼ 0ð Þ ¼ 2g0
amπ

ðx12
x11

sin
mπ

2b
y12 xð Þ� y11 xð Þ� �h i

cos
mπ

2b
y12 xð Þ þ y11 xð Þ� �h i

cos
nπ
a
x

� �
dx,

(17)

g n,m ¼ 0ð Þ ¼ g0
ab

ðx12
x11

y12 xð Þ � y11 xð Þ� �
cos

nπ
a
x

� �
dx, (18)

where y12 xð Þ � y11 xð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x� a=2ð Þ2

q
and y12 xð Þ þ y11 xð Þ ¼ b.

The cyclic matrix G is given as follows. The Fourier transform is applied to the
transverse dimension

g kx, ky
� � ¼ F g x, yð Þf g ¼

ð

x

ð

y
g x, yð Þe�jkxx�jkyydxdy: (19)

The components are organized in a vectorial notation as follows

E ¼

E�N,�M

⋮
E�N,þM

⋮
Eþn,þm

⋮
EþN,þM

2
666666666664

3
777777777775

: (20)

The Fourier components of the dielectric profile are calculated in the Fourier
space. The convolution operation

g ∗E ¼
XN

n0¼�N

XM
m0¼�M

gn�n0,m�m0En0,m0

( )
(21)

is written in a matrix form as GE where

g n,mð Þ n0,m0ð Þ ¼ gn�n0,m�m0 (22)

and the matrix order is (2 N + 1)(2 M + 1), where E is the electric field.
The convolution operation is expressed by the cyclic matrix G which consists of

Fourier components of the dielectric profile gnm. Thus, the cyclic matrix G is given by
the form

G ¼

g00 g�10 g�20 … g�nm … g�NM

g10 g00 g�10 … g� n�1ð Þm … g� N�1ð ÞM
g20 g10 ⋱ ⋱ ⋱
⋮ g20 ⋱ ⋱ ⋱
gnm ⋱ ⋱ ⋱ g00 ⋮
⋮

gNM … … … … … g00

2
666666666664

3
777777777775

: (23)
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The derivative of the dielectric profile is given by

gx n,mð Þ ¼ 2g0
amπ

ðx12
x11

sin
mπ

2b
y12 xð Þ � y11 xð Þ� �h i

cos
mπ

2b
y12 xð Þ þ y11 xð Þ� �h i

cos
nπ
a
x

� �
dx,

(24)

where y11 and y12 are given according to Eqs (15) and (16). Similarly, we can
calculate the value of gy n,mð Þ, where gy x, yð Þ ¼ 1=ε x, yð Þð Þ dε x, yð Þ=dyð Þ.

3.2 Calculation for the circular hollow core in the center of the cross section

Figure 3(a)–(c) shows the extending of the waveguide region in all cases to a
four-fold larger region, according to the image method. The image method and
periodic replication are needed for fulfilling the boundary condition of the metallic
waveguide. Figure 3(a) shows the hollow waveguide where the circular hollow core is
located in the center of the cross section. This figure represents an example of the
complementary shape of Figure 3(c). Figure 3(b) shows the cross section entirely
filled with the dielectric material. Figure 3(c) shows the cross section where the
circular dielectric material is located in the center.

Note that the problem shown in Figure 3(a) is more complicated than the problem
shown in Figure 3(c), and the technique for solving this inhomogeneous problem in
the cross section based on the image method is not effective for the specific case
shown in Figure 3(a). Thus the proposed technique for calculating the dielectric
profile of this problem is based on the fact that this figure represents an example of
the complementary shape of Figure 3(c).

In order to solve any inhomogeneous problem in the cross section (e.g., Figure 3
(a) and (c)), more than one technique can be proposed for the same mode-model
method.

The proposed technique to calculate the dielectric profile for the cross section as
shown in Figure 3(a) for hollow waveguide is based on subtracting the dielectric
profile of the waveguide with the dielectric material in the core (Figure 3(c)) from
the dielectric profile of the waveguide filled entirely with the dielectric material
(Figure 3(b)).

Figure 3.
Extending the waveguide region in all cases to a four-fold larger region, according to the image method. (a) The
hollow waveguide where the circular hollow core is located in the center of the cross section. (b) The cross section
entirely filled with dielectric material. (c) Circular dielectric material is located in the center of the cross section.

150

Recent Advances in Wavelet Transforms and Their Applications



4. Numerical results

This section presents several examples for the different geometries of two specific
examples of the complementary shapes of dielectric profile in the cross section, as
shown in Figure 1(a) and (b). The solutions are demonstrated as a response to a half-
sine (TE10) input-wave profile.

A comparison with the known transcendental Equation [20] according to
Figure 4(a) is given in order to examine the validity of the theoretical model. The
known solution for the dielectric slab modes based on the transcendental Equation
[20] is given as follows:

Ey1 ¼ j
kz
ε0

sin νxð Þ 0< x< t (25)

Ey2 ¼ j
kz
ε0

sin νtð Þ
cos μ t� a=2ð Þð Þ cos μ x� a=2ð Þ½ � t< x< tþ d (26)

Ey3 ¼ j
kz
ε0

sin ν a� xð Þ½ � tþ d< x< a, (27)

where ν �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o � k2z

q
and μ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εrk

2
o � k2z

q
result from the transcendental equation

a� d
d

� �
dμ
2

tan
dμ
2

� �
� tνð Þ cot tνð Þ ¼ 0: (28)

The solution obtained for the wave profile ((25)–(27)) describes a symmetrical
mode of the dielectric slab. This mode is substituted as an input wave at z = 0 to the
solution of the proposed theoretical model Eq. (2).

The comparison between the theoretical model (Eq. (2)) and the transcendental
equation (Eqs (25)–(27)) is shown in Figure 4(b) for the dielectric slab in a rectan-
gular metallic waveguide (Figure 4(a)) and the convergence of our theoretical results
is shown in Figure 4(c).

Figure 4.
(a) A dielectric slab in a rectangular metallic waveguide. (b) A comparison between the theoretical model
(Eq. (2)) and the transcendental equation (Eqs (25)–(27)) according to Ref. [20], where a = 2b = 2 cm,
d = 3.3 mm, εr= 9, and λ= 6.9 cm. (c) The convergence of our theoretical results.
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The comparison is demonstrated for every order (N = 1, 3, 5, 7, and 9). The orderN
determines the accuracy of the solution. The convergence of the solution is verified by
the criterion for the Ey component of the fields.

The convergence of the solution is verified by the criterion

C Nð Þ � log
max jENþ2

y � EN
y j

� �

∣max ENþ2
y

� �
� min EN

y

� �
∣

8<
:

9=
;, N ≥ 1: (29)

where the number of the modes is equal to 2N þ 1ð Þ2. The order N determines the
accuracy of the solution.

Figure 5.
The output field where the circular dielectric material is located in the center of the cross section of the straight
rectangular waveguide, where a = b = 20 mm, and r = 2.5 mm, r is the radius of the circular dielectric material,
and for (a) εr = 3, for (b) εr = 5, for (c) εr = 7, and for (d) εr = 9. (e) The output field in the same cross section of
the results (a)–(d) for x-axis and where y = b/2 = 10 mm, for the values of εr = 3, 5, 7, and 9, respectively. The
other parameters are a = b = 20 mm, k0 = 167 1/m, λ = 3.75 cm, and β =58 1/m.

152

Recent Advances in Wavelet Transforms and Their Applications



If the value of the criterion (Eq. (29)) is less than�2, then the numerical solution is
well converged. When N increases, then Ey Nð Þ approaches Ey. The value of the
criterion between N = 7 and N = 9 is equal to �2.38 ≃ �2, namely a hundredth part.
Comparison between the theoretical mode-model (Eq. (2)) and the known model [20]
shows good agreement.

Figure 5(a)–(e) shows the output field where the circular dielectric material is
located in the center of the cross section of the straight rectangular waveguide, where
a = b = 20 mm, εr = 3, 5, 7, 9, for r = 2.5 mm, where r is the radius of the circular
dielectric material. The output field in the same cross section of the results Figure 5
(a)–(d) are shown in Figure 5(e) for the x-axis and where y = b/2 = 10 mm, for the

Figure 6.
The output field where the circular dielectric material is located in the center of the cross section of the straight
rectangular waveguide, where a = b = 20 mm, and r = 2 mm, where r is the radius of the circular dielectric
material, and for (a) εr = 3, for (b) εr = 5, for (c) εr = 7, and for (d) εr = 9. (e) The output field in the same cross
section of the results (a)–(d) for x-axis and where y = b/2 = 10 mm, for the values of εr = 3, 5, 7, and 9,
respectively. The other parameters are a = b = 20 mm, k0 = 167 1/m, λ = 3.75 cm, and β = 58 1/m.
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values of εr = 3, 5, 7, and 9, respectively. Figure 6(a)–(e) demonstrates the output
fields by changing only the parameter of the radius of the circular dielectric material
from r = 2.5 to r = 2. The other parameters are a = b = 20 mm, k0 = 167 1=m, λ = 3.75 cm,
and β = 58 1=m.

Figure 7(a)–(e) shows the output field where the circular hollow core is located in
the center of the cross section of the straight rectangular waveguide, where
a = b = 20 mm, εr = 1.5, 1.6, 1.7, 1.8, for r = 2.5 mm, where r is the radius of the
circular hollow core. The output field in the same cross section of the results Figure 7
(a)–(d) are shown in Figure 7(e) for x-axis and where y = b/2 = 10 mm, for the values
of εr = 1.5, 1.6, 1.7, and 1.8, respectively. Figure 8(a)–(e) demonstrates the output

Figure 7.
The output field where the circular hollow core is located in the center of the cross section of the straight
rectangular waveguide, where a = b = 20 mm, and r = 2.5 mm, where r is the radius of the circular hollow core,
and for (a) εr = 1.5, for (b) εr = 1.6, for (c) εr = 1.7, and for (d) εr = 1.8. (e) The output field in the same cross
section of the results (a)–(d) for x-axis and where y = b/2 = 10 mm, for the values of εr = 1.5, 1.6, 1.7, and 1.8,
respectively. The other parameters are a = b = 20 mm, k0 = 167 1/m, λ = 3.75 cm, and β = 58 1/m.
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fields by changing only the parameter of the radius of the circular hollow core from
r = 2.5 to r = 2. The other parameters are a = b = 20 mm, k0 = 167 1/m, λ = 3.75 cm, and
β = 58 1/m.

By increasing only the dielectric constant from εr = 3 to εr = 9, according to Figures
5(a)–(e) and 6(a)–(e), and from εr = 1.5 to εr = 1.8, according to Figures 7(a)–(e) and
8(a)–(e), the Gaussian shape of the output transverse profile of the field increased,
the TE10 wave profile decreased, and the relative amplitude of the output field
decreased.

We can predict the waveguide parameters (εr and r) for obtaining the Gaussian
behavior of the output field in all case. The cross section in the first interesting

Figure 8.
The output field where the circular hollow core is located in the center of the cross section of the straight rectangular
waveguide, where a = b = 20 mm, and r = 2 mm, where r is the radius of the circular hollow core, and for (a) εr
= 1.5, for (b) εr = 1.6, for (c) εr = 1.7, and for (d) εr = 1.8. (e) The output field in the same cross section of the
results (a)–(d) for x-axis and where y = b/2 = 10 mm, for the values of εr = 1.5, 1.6, 1.7, and 1.8, respectively.
The other parameters are a = b = 20 mm, k0 = 167 1/m, λ = 3.75 cm, and β =58 1/m.
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case consists of circular dielectric material in the center of the cross section (Figure 1
(a)). The cross section in the second interesting case consists of a circular hollow core in
the center of the cross section (Figure 1(b)). The output results refer to the same
parameters a = b = 20 mm, k0 = 167 1/m, λ = 3.75 cm, and β = 58 1/m. According to the
results of the first case, in order to obtain the Gaussian behavior, the values of εr = 3, 5, 7,
9 and r = 2 or r = 2.5 are needed. In the second case, in order to obtain the Gaussian
behavior, the values of εr = 1.5, 1.6, 1.7, and 1.8 and r = 2 or r = 2.5 are needed.

These results are strongly affected by the different parameters εr and r, and for the
same other parameters of k0 = 167 1/m, λ = 3.75 cm, β = 58 1/m, and the dimensions of
the rectangular cross section.

5. Conclusions

The wavelet transform creates a representation of the signal in both the time and
frequency domain in order to allow efficient access of localized information about the
signal. A set of waveforms comprising a transform is called a basis function. Fourier
transforms use only sine and cosine waves as their basic functions, namely a signal is
decomposed into a series of sine and cosine functions or wavelets by the FFT. Exam-
ples for the applications of wavelet transform are demonstrated in [2–5]. The pro-
posed method in this chapter is based on the Fourier transform that creates a
representation of the signal in the frequency domain.

Two specific examples of complementary shapes of dielectric profile in the cross
section were introduced in this chapter. In the first case, the cross section consists of
circular dielectric material in the center of the cross section. In the second case, the
cross section shows the complementary shape of the cross section of the first case, as
an example of a hollow waveguide in which the circular hollow core is located in the
center of the cross section.

Note that the problem shown in Figure 3(a) is more complicated than the problem
shown in Figure 3(c), and the technique for solving this inhomogeneous problem in
the cross section based on the image method is not effective for the specific case
shown in Figure 3(a). The proposed technique for calculating the dielectric profile of
the problem shown in Figure 3(a) is based on the fact that this figure represents an
example of the complementary shape of Figure 3(c).

In order to solve any inhomogeneous problem in the cross section
(e.g., Figure 3(a) and (c)), more than one technique can be proposed for the same
mode-model method.

The proposed technique to calculate the dielectric profile for the cross section as
shown in Figure 3(a) for hollow waveguide is based on subtracting the dielectric
profile of the waveguide from the dielectric material in the core (Figure 3(c)) from
the dielectric profile of the waveguide filled entirely with the dielectric material
(Figure 3(b)).

Figures 5(a)–(e) and 6(a)–(e) demonstrate the output fields, where the circular
dielectric material is located in the center of the cross section of the straight
rectangular waveguide, where the parameter r refers to the radius of the circular
dielectric material. Figures 7(a)–(e) and 8(a)–(e) demonstrate the output fields,
where the circular hollow core is located in the center of the cross section of the
straight rectangular waveguide, where the parameter r refers to the radius of the
circular hollow core. The other parameters are a = b = 20 mm, k0 = 167 1/m, λ
= 3.75 cm, and β = 58 1/m.
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By increasing only the dielectric constant from εr = 3 to εr = 9, according to Figures
5(a)–(e) and 6(a)–(e), and from εr = 1.5 to εr = 1.8, according to Figures 7(a)–(e) and
8(a)–(e), the Gaussian shape of the output transverse profile of the field increased, the
TE10 wave profile decreased, and the relative amplitude of the output field decreased.

We can predict the waveguide parameters (εr and r) for obtaining the Gaussian
behavior of the output field in all cases. The output results refer to the same parame-
ters a = b = 20 mm, k0 = 167 1/m, λ = 3.75 cm, and β = 58 1/m. According to the results
of the first case, in order to obtain the Gaussian behavior, the values of εr = 3, 5, 7, 9
and r = 2 or r = 2.5 are needed. In the second case, in order to obtain the Gaussian
behavior, the values of εr = 1.5, 1.6, 1.7, and 1.8 and r = 2 or r = 2.5 are needed.

The results are strongly affected by the different parameters εr and r, and for the
same other parameters of k0 = 167 1/m, λ = 3.75 cm, β = 58 1/m, and the dimensions of
the rectangular cross section.

The applications are useful for straight rectangular waveguides in millimeter
regimes, where the circular dielectric material is located in the center of the cross
section, and also for hollow waveguides, where the circular hollow core is located in
the center of the cross section.

Appendix A

The wavelet transform creates a representation of the signal in both the time and
frequency domain in order to allow efficient access of localized information about the
signal. A set of waveforms comprising a transform is called a basis function. Fourier
transforms use only sine and cosine waves as its basic functions, namely a signal is
decomposed into a series sine and cosine functions or wavelets by the FFT. Examples
for the applications of wavelet transform are demonstrated in [2–5]. The proposed
method in this chapter is based on the Fourier transform that creates a representation
of the signal in the frequency domain. The main points of the proposed method and
the proposed technique are:

1.A Laplace transform is necessary to obtain convenient and simple input–output
connections of the fields. The method consists of Fourier coefficients of the
transverse dielectric profile and of the input–output profile. Thus, the accuracy
of the method depends on the number of the modes in the system.

2.The Laplace transform

~a sð Þ ¼ L a ζð Þf g ¼
ð∞
ζ¼0

a ζð Þe�sζdζ, (30)

is applied on the z-dimension, where a zð Þ represents any z-dependent variables
of the wave equations.

3.A Fourier transform is applied on the transverse dimension

g kx, ky
� � ¼ F g x, yð Þf g ¼

ð

x

ð

y
g x, yð Þe�jkxx�jkyydxdy, (31)

and the differential equations are transformed to an algebraic form in the
(ω, s, kx, ky) space.
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4.The method of images is applied to satisfy the conditions n̂� E ¼ 0 and n̂ �
∇� Eð Þ ¼ 0 on the surface of the ideal metallic waveguide walls, where n̂ is a
unit vector perpendicular to the surface. The dielectric profile, g x, yð Þ, is defined
inside the waveguide boundaries, 0≤ x≤ a and 0≤ y≤ b. In order to maintain the
boundary conditions without physical metallic walls, a substitute physical
problem is constructed with infinite transverse extent. The periodicity and the
symmetry properties are chosen to force the boundary conditions at the location
of the walls in the real problem. This is done by extending the waveguide region
0≤ x≤ a, 0≤ y≤ b to a four-fold larger region. Hence, the following relations
are yielded

g �x, yð Þ ¼ g x,�yð Þ ¼ g x, yð Þ ¼ g �x,�yð Þ, (32)

Ex x,�yð Þ ¼ �Ex x, yð Þ , Ex �x, yð Þ ¼ Ex x, yð Þ: (33)

The region�a≤ x≤ a, � b≤ y≤ b is then further extended to infinity by periodic
replication, g xþ 2ℓa, yþ 2kbð Þ ¼ g x, yð Þ, where �∞<ℓ, k<∞. The field
components are periodically, namely, Ex xþ 2ℓa, yþ 2kbð Þ ¼ Ex x, yð Þ for
�∞<ℓ, k<∞. The substitution of the physical problem is equivalent to the
original problem in the region 0≤ x≤ a, 0≤ y≤ b, and satisfies the same
boundary conditions on the boundary of this region. The discrete Fourier
transform series is given with kx ¼ nπ=a and ky ¼ mπ=b, and the transverse
wavenumbers are given by kox ¼ π=a, and koy ¼ π=b, where a and b are the
transverse dimensions of the rectangular boundaries. We substitute kx ¼ nkox
and ky ¼ mkoy, where the integers n and m are truncated by �N ≤ n≤N and
�M≤m≤M, respectively. The orders N and M determine the accuracy of the
solution.

5.The output transverse field profiles are given by the inverse Laplace and Fourier
transforms, as follows

Ey x, y, z
� � ¼

X
n

X
m

ðσþj∞

σ�j∞

Ey n,m, sð Þ exp jnkoxxþ jmkoyyþ sz
h i

ds, (34)

where the inverse Laplace transform is calculated according to the Salzer
method [17, 18].

6.The main objective is to generalize the mode model method [16] in order to solve
also complicated and practical problems of circular dielectic material and a
circular hollow core (Figure 1(a) and (b)) in the center of the cross section of
the rectangular waveguide.

7.The second objective is to find the relevant parameters in order to obtain the
Gaussian behavior of the output field in the interesting cases of circular dielectic
material and a circular hollow core in the rectangular cross section.
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