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Preface

This book discusses hydrogels, presenting pioneering studies on their use in modern 
“smart” applications, multiutility delivery platforms, 3D and 4D printing, and  
more.

Hydrogels have demonstrated great impact in many medical and biomedical fields in 
diagnostics and therapeutics (aesthetic medicine, tissue engineering, drug screening, 
cancer therapy, etc.). This book highlights the design and engineering of hydrogels 
for use as efficient drug carriers. It describes stimuli-responsive hydrogels, nanogels, 
and therapeutic release from 3D printed hydrogels.

The beneficial characteristics of hydrogels are very well known and include biode-
gradability, biocompatibility, porosity, elasticity, flexibility, and  biological properties 
similar to the extracellular matrix. This book discusses the latest advances in multi-
functional hybrid hydrogels with responsiveness to electric and magnetic fields and 
with applications in biomedicine. In combination with certain nanomaterials, hydro-
gels are considered a new class of materials that offers new opportunities for living 
organisms, such as machine interfacing for application biomedical engineering,  
soft robotics, soft electronics, and environmental and energy science.

Important aspects related to the hydrogel’s unique applications in tissue engineering 
and regenerative medicine are closely related to their self-healing power, interactive 
structure, low cost, non-toxicity, bio-adhesion, conductivity, elasticity, softness, 
swelling behavior, transparency, stimuli-responsive ability, and controlled release 
of various bioactive agents. As presented in the book, hydrogels represent versatile 
systems with desirable properties, such as viscoelasticity, degradability, biocompat-
ibility, and stimuli-responsiveness, being explored for 4D bioprinting of organs 
and tissues. However, present outcomes are far from manufacturing an outstanding 
human-scale tissue construct.

Hydrogels have potential to be combined with mesenchymal stem or stromal cells. 
These composites could represent valuable alternatives in tissue engineering, as is also 
discussed in the book.

Three-dimensional hydrogel networks, which tend to imbibe water, have hydro-
philic tendency and are excellent super-absorbent materials that still remain water 
insoluble.

Supramolecular hydrogels could be generated via spontaneous self-assembly with 
various peptides, proteins, or other biomolecules. These materials have attracted 
attraction as next-generation drug delivery substitutes to synthetic polymers.



IV

To conclude, hydrogels have proven adaptability and versatility, which makes them 
particularly interesting for the newest and most modern applications, even artificial 
intelligence. This book contributes to the understanding of hydrogels and their many 
beneficial uses.

Lăcrămioara Popa, Mihaela Violeta Ghica and Cristina Elena Dinu-Pîrvu
Faculty of Pharmacy,

“Carol Davila” University of Medicine and Pharmacy,
Bucharest, Romania
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Chapter 1

Introductory Chapter: Hydrogels in 
Comprehensive Overviews, Recent 
Trends on Their Broad Applications
Lăcrămioara Popa, Mihaela Violeta Ghica,  
Cristina Elena Dinu-Pîrvu and Elena-Emilia Tudoroiu

1. Introduction

Initial research of hydrogels started in 1894 when the usage of inorganic salts led to a 
colloidal gel [1]. Once they come into contact with fluids, hydrogels proceed to incorpo-
rate and expand to create a three-dimensional (3D) structure considering the presence 
of hydrophilic groups (amino, hydroxyl, carboxyl, and amide) in their structure [2].

Bemmelen was the first who established the term “hydrogel” to characterize hydro-
philic polymeric systems, with high efficiency to absorb huge amounts of water or other 
fluids (e.g., biological fluids) in their interstitial networks [3]. The first presence on 
the market for a 3D network is registered in 1949 when a hydrogel based on poly(vinyl 
alcohol) was crosslinked with formaldehyde, which was retailed with the name Ivalon, 
utilized as a biomedical implant [4]. The current definition of hydrogel was established 
on the groundbreaking work of Lim and Wichterle, who used in 1960 gels based on poly 
(2-hydroxymethyl methacrylate) to create soft contact lenses. This novelty represented 
the onset of hydrogel investigation for applications in the biological field [1].

2. Classification, source, and structure of hydrogels

The progress of these semisolid systems is characterized by three generations of 
hydrogels. The first one is represented by chemically crosslinked hydrogels that show 
excellent swelling and high mechanical stability. The second generation was influ-
enced by Kuhn’s research about the configuration of ionizable polymeric particles 
[5]. The last generation of hydrogels was encouraged by the stimuli-receptivity of 
the hydrogel second generation. Hence, smart hydrogels are stimuli-responsive with 
adjustable mechanical and physicochemical characteristics [6].

The water aspect in a hydrogel can establish the general permeation of nutrients 
into and biological products out of the hydrogel. When a moistureless hydrogel starts 
to swallow the water, primary particles of water that penetrate the cellular matrix will 
hydrate the most hydrophilic groups, which conduces to “primary bound water” [7]. 
Consequently, the polar parts hydrate, the network absorbs the water, and lets out 
hydrophobic groups that likewise connect with molecules of water; therefore, the water 
is hydrophobically bound, which means the “secondary bound water” [8]. Primary 
and secondary bounds of water usually link, and the resulting combination is named 

XII
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“total bound water.” After the hydrophobic and hydrophilic sites have been connected 
and linked water molecules, the structure will assimilate supplementary water, due to 
the osmotic power of the conformation chains to limitless dilution. The new swelling is 
neutralized by the physical and covalent crosslinks that go to a flexible structure retrac-
tion power. Accordingly, the hydrogel will attain an equilibrium swelling level [9]. The 
supplementary swelling water which is imbibed after the hydrophilic, hydrophobic, and 
ionic groups turn into saturated with linked water is named “free or bulk water.” This is 
estimated to saturate the space between the conformation conglomerates and the middle 
of the longer pores, blank spaces, or macropores [10]. As the hydrogel structure absorbs, 
if the structure crosslinks or chains are degradable, the hydrogel will start to decompose 
and dissolve, at a percentage that depends on its distribution. It is very important to 
mention that a hydrogel, which is used as a scaffold for tissue engineering can never be 
dehydrated, but the total water in the hydrogel consists of “bound” and “free” water [11].

The exclusive sources of hydrogels consist of two major groups: natural which com-
prises two principal classes based on polysaccharides and polypeptides (proteins) and 
the other group is artificial one, which is based on petrochemicals. Natural hydrogels are 
often manufactured through the addition of a few synthetic units to the natural parts. The 
synthetic way for the preparation of most synthetic hydrogels is represented by the mul-
tifunctional vinyl monomers that are free of radicals. Each monomer has a carbon double 
linkage where an effective center can disseminate to determine polymer chains [12].

Hydrogels result through chemical or physical crosslinking. Chemically cross-
linked systems present durable junctions, whilst physically cross-linked systems pres-
ent limited junctions [13]. The chemically crosslinking method involves monomers 
grafting on polymers’ backbone. On the other side, physical crosslinking generates 
reversible hydrogels [14] and includes the interaction between ions (e.g., hydrophobic 
association, hydrogen linkages, and polyelectrolyte complexation) [15]. Most of the 
physical gelation methods rely on the intrinsic features of the component polymers, 
which diminish the capacity to adjust the qualities of hydrogels, but gelation can be 
efficiently obtained without the necessity to change the polymer chains. The chemi-
cal path can be used to admit for more manageable and specific management of the 
crosslinking method, possibly in a dynamically and spatially detailed process [16].

Hydrogels can be prepared from each water-soluble polymer; there is a vast 
and various range of polymers that can be used to fabricate multiple hydrogels 
with particular properties. Thus, for their formulation, there are natural polymers 
(hyaluronic acid, chitosan, collagen, dextran, dextran sulfate, gelatin, alginic acid, 
fibrin, agarose, pectin, chondroitin sulfate, pullulan, carrageenan, polylysine, and 
carboxymethyl chitin), synthetic polymers (poly(ethylene glycol), poly(lactic acid), 
poly(lactic-glycolic acid), polycaprolactone, poly(hydroxy butyrate), poly(butylene 
oxide), poly(acrylic acid), polyacrylamide, and poly(glucosylethylmethacrylate), or 
any combination of natural and synthetic polymers [17, 18]. Consequently, depend-
ing on the polymeric composition, these semisolid systems can be homopolymeric (a 
single variety of monomer), copolymeric (two or more different monomer varieties), 
and multipolymer (known as interpenetrating polymer networks, IPNs, which are 
composed of two separate cross-linked natural or synthetic polymers) hydrogels [19].

3. Properties and applications of hydrogels

Hydrogels exhibit noteworthy physical, chemical, mechanical, and  biocompatible 
properties. Thus, due to their significant water volume, porosity, permeation, 
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biocompatibility, nontoxicity, and soft consistency, hydrogels firmly imitate natural 
living tissues, greater than any other group of synthetic biomaterials [20]. Besides these 
attractive features, hydrogels also exhibit other characteristics, such as versatility, low 
immunogenicity, availability, elastic structure, flexibility, responsiveness to stimuli, ten-
sile strength, conductivity, washability, cooling effect, tolerability, transparency, safety, 
and excellent adhesion on the skin surface and different mucosa; they are also nonoc-
clusive and nongreasy [21]. Therefore, hydrogels represent an exceptional substrate for 
utilization in cell culture due to their structural similarity to the extracellular matrix [3].

Regarding the technical properties of these semisolid systems, it can be mentioned 
the following: maximum stability and adherence in a swelling medium and also during 
storage; stability at neutral pH, odorless, colorless; suitable absorption rate and particle 
size; utmost biodegradability without toxic compounds generation; photostability, small 
soluble volume, re-wetting capacity, and the maximum absorbency under load [22].

Regarding all the outstanding properties that were highlighted above, hydrogels 
exhibit numerous applications in miscellaneous domains, extending from engineering 
to biological areas. Presently, the materials based on hydrogels mean a $22.1 billion 
market, with a substantial expansion to $31.4 billion by 2027. It is anticipated that the 
market for wearable sensors will reach $2.86 billion in 2025 and for medical sensors, 
$2.23 billion in 2027 [23]. The main applications of these 3D systems involve biomedi-
cal and pharmaceutical fields, bioanalysis, hygienic products, dyes, heavy metal ions 
elimination, artificial snow, pH sensors, agriculture, food industry, and supercapaci-
tors. Considering the biomedical and pharmaceutical fields, hydrogels can be used for 
3D bioprinting, tissue engineering, wound dressings, drug delivery systems, biosen-
sors, regenerative medicine, biomolecules and cells separation, diagnostics, contact 
lenses, cosmetic medicine, and barrier materials to manage biological adherence [24].

Nowadays, 3D bioprinting has a notable place between other techniques that 
develop tissue matrices, having considerable uses in the biomedical field (e.g., cancer 
therapy, tissue engineering, drug screening, or transplantation). Considering the sig-
nificant interest in this domain, the universal market had a noticeable increase, from 
$487 million in 2014 to $1.82 billion in 2022 [25]. Hydrogels are “soft biomaterials” 
utilized for the advancement of cell-laden networks, offering a conducive medium 
for cellular expansion. These 3D matrices can be created and printed into a range 
of forms, shapes, and sizes to accomplish the final product specifications [26]. 3D 
printing based on the nozzle is the most popular method to design hydrogel scaffolds. 
Viscous liquids are pushed out of the nozzle or syringe and solidified on a construc-
tion level. 3D structures are engineered layer by layer by sequential extruding matri-
ces that pursue a predesigned line created by computer modeling [27]. Hydrogels have 
become principal candidates for several applications due to the current evolution in 
the 3D bioprinting area. The outstanding feature of hydrogels is that they can be engi-
neered to imitate the extracellular matrix, with large applicability in tissue engineer-
ing, immunomodulation, or stem cell therapy for malignant diseases [28]. Hydrogels 
consist of 3D hydrophilic molecules that assure excellent water absorption; thus, 
they can encapsulate growth factors and nutrients into their hydrophilic network, 
mimicking the biological tissue. An adequate bioink for use in 3D bioprinting needs 
to satisfy certain conditions, such as bioactivity, cytocompatibility, and printability 
[29]. Regarding the polymers that make up the hydrogel structure, polysaccharides 
are extensively used to produce bioinks, such as cellulose, hyaluronic acid, alginate, 
pectin, chitosan, carrageenan, or agarose [30]. 3D bioprinted hydrogels have a large 
use for tissue bioprinting, including skin, muscles, bones, cartilages, neurons, cardiac 
fibers, and blood veins [31].
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Tissue engineering and regenerative medicine represent recent areas where 
hydrogels have found their applicability. Due to their biocompatibility, hydrogels can 
interact directly with biological tissues without causing any disturbance [32]. These 
scaffolds can consist of large pores that have the role to integrate living tissues, or 
they can be formulated to deteriorate, discharge growth factors, or generating pores 
in which human cells can infiltrate and multiply [33]. Hydrogels can be handled as 
space-filling agents, delivery vectors for bioactive substances, or 3D networks, which 
can regulate cells and stimuli to assure the expansion of vital tissue. Hydrogels as 
space-filling agents are used for bulking and to avoid adherence. Hydrogel platforms 
can be applied in many applications, such as angiogenesis, transplant cells, and 
organizing various human tissues (bone, cartilage, or muscles) [20].

The applicability of hydrogels in the wound healing domain as wound dressings is 
due to the excellent combination between their biocompatibility, high water content, 
and plasticity. Hydrogels can furnish a suitable moisture medium at the lesion site and 
at the same time allow acceptable gas exchange between the foreign medium and the 
lesions, promoting wound healing. Hydrogels have the ability to reduce the tempera-
ture of the lesion and their high water volume helps to alleviate the injured surface, 
especially if the wound is dry [34]. Moreover, hydrogels absorb a large amount of 
lesion exudate and sustain it away from the lesion bed. Due to their non-irritant and 
non-reactive behavior with human tissues, hydrogels are proper dressings for various 
types of cutaneous lesions. Hydrogels are flexible and soft semisolid systems, they are 
easy to apply and remove, being comfortable and soothing the pain for damaged skin 
tissues; therefore, hydrogel dressings are attractive for patients [35].

Hydrogel scaffolds for drug delivery have firmly developed in their style, increas-
ing further synthetic and covalently crosslinked networks to an extreme group 
of biomaterials platforms. Hydrogel drug release systems can be utilized for oral, 
transdermal, ophthalmic [36], vaginal, or rectal applications [21]. Particularly, 
these models can manage the drug carriers’ design and they can reach the condi-
tions of a specific application, or they can aid researchers to explicate the transport 
mechanisms, which control the release kinetics from innovative formulations [37]. 
By regionally drugging target tissues, hydrogel drug transporters furnish imperative 
safety advantages by diminishing drug exposure in off-target tissue. Exceptionally, 
cancer therapies rise to benefit remarkably from this type of hugely concentrated 
drug exposure. As long as hydrogels can narrowly target drug exposure, they can also 
maintain a constant delivery ratio of drugs over an extended period (from hours to 
months, according to the formulation) [38]. This prolonged drug delivery is notably 
favorable for decreasing the doses administrations needed to cure a patient over time 
which is promising for chronic disease treatment, which requests permanent medica-
tion (e.g., diabetes). This prolonged release kinetic offers particular conveniences 
to augment the efficiency of several therapies like vaccines for infectious diseases. 
Hydrogels can also integrate properly into soft tissues, performing as possible scaf-
folds for endogenous cells, which can promote their applicability in the field of 
regenerative applications [39].

Hydrogels also represent a main part of biosensors development because the 
necessity for adaptable chemical or biochemical sensors has raised greatly. Moreover, 
many hydrogel precursors are accessible from the industrial and ecological zones 
as platforms for sensor geometries. Different sensing mechanisms can be included 
for sensor progression [40]. A modification in resistance, conductance, and electric 
charge transmission represents the most commonly utilized procedures and fragile 
interactions like hydrogen linkage are also effective. Sensor geometries were also 



Introductory Chapter: Hydrogels in Comprehensive Overviews, Recent Trends on Their Broad...
DOI: http://dx.doi.org/10.5772/intechopen.108767

5

Author details

Lăcrămioara Popa*, Mihaela Violeta Ghica, Cristina Elena Dinu-Pîrvu  
and Elena-Emilia Tudoroiu
Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, 
Romania

*Address all correspondence to: lacramioara.popa@gmail.com

soft because the hydrogels were flexible and adjustable. Hydrogels are appealing 
systems to develop flexible biosensor matrices due to their fundamental properties 
and structural benefits [41]; thus, they contain elastic materials like polymer, car-
bohydrates, elastomer, biocompatible molecules, and additives. Hydrogels can also 
furnish a benign environment for better action of resulting devices. A fast inflow of 
substance into the hydrogel could be averted essentially. Signal transduction of these 
semisolid matrices is available through the internal space of them if an adequate sens-
ing medium is favorably imported. Hydrogel biosensors are extensively used in the 
biomedical field, especially for drug delivery [42].

4. Concluding remarks

Taking into account all the perspectives mentioned above, hydrogels had a 
 significant evolution, from traditional to innovative platforms, with an important 
impact in biomedical and pharmaceutical fields, including 3D bioprinting, tissue 
engineering, wound dressings, drug delivery scaffolds, and biosensors. Nevertheless, 
their huge potential is still being explored, because hydrogel represents versatile 
systems, with desirable properties, such as viscoelasticity, degradability, biocompat-
ibility, and stimuli-responsiveness, being presently explored for 4D bioprinting of 
organs and tissues, but the present outcomes are far away from manufacturing an 
outstanding human-scale tissue construct [43]. The primary challenge distributed by 
all researchers in this area of tissue engineering and regenerative medicine is ensur-
ing acceptable vascularization because the cell viability of the bioprinted materials 
in long term is closely related to vascularization. The major test is to incorporate the 
printed vascular matrix into a living host and to simulate the biological processes 
and conformational complexity of in vivo graft. The 4D bioprinting can lead to the 
formulation of vascularized models but expanding them into an entire organ is still a 
provocation and opened a new paradigm for future explorations [44].

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

Worldwide, cutaneous lesions care represents a daily challenge for the medical 
system, with an increasing prevalence from year to year (from ~5 million in 2005 
to about 8 million in 2018) and high costs for their treatment (between ~$28 billion 
and ~$97 billion). Injuries are the most frequent and destructive form of skin dam-
age, affecting patients’ quality of life. To promote wound healing, an ideal treatment 
involves proper dressings that can manage the local pain, inflammation, or infec-
tion. Passive or dry traditional dressings, such as cotton, gauze, or lint, have limited 
therapeutic actions and demand periodic replacement of the dressing. Therefore, 
an optimal alternative for advanced wound care is represented by hydrogels, one of 
the five classes of modern dressings, which assure excellent local moisture, due to 
their high ability to absorb a large volume of water inside their three-dimensional 
networks. Moreover, hydrogels possess suitable biocompatibility, biodegradability, 
porosity, elasticity, flexibility, and biological properties similar to the extracellular 
matrix. This chapter presents the main characteristics of the hydrogels and the recent 
research regarding the development of new hydrogel dressings, based on natural, 
semi-synthetic, or synthetic biopolymers, loaded with varied therapeutic agents to 
stimulate the tissue regeneration of different etiologies cutaneous lesions.

Keywords: different etiologies wounds, hydrogel dressings, wound healing, wound 
management, tissue regeneration, therapeutic agents sustained release

1. Introduction

With a length of ~2 m2 and weight of ~15% of the body mass, the skin represents 
a sophisticated tissues complex of the human body, being the largest and the heaviest 
organ [1]. Due to its optimal physicochemical characteristics, the skin is a dynamic 
and effective outermost barrier, defending the body against the external surroundings 
[2]. In addition to the role of physical protection, the skin is involved in the regulation 
of the body’s homeostasis, synthesis of vitamin D [3], and control of the temperature 
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and blood pressure. Furthermore, it impedes dehydration, maintains an optimal 
level of moisture and body nutrients, and exhibits self-healing properties [4]. Skin 
is also an essential sensory organ when it connects with the environment, and the 
stimulation is perceived on the human body as pain, temperature, and pressure [5]. 
Normal skin represents a stratified epithelium that is composed of three principal 
layers: epidermis, dermis, and subcutaneous tissue. The epidermis is made up of 
many cells, including melanocytes, Merkel, and Langerhans cells, but keratinocytes 
are the most numerous (~95%). This stratum has a thickness of 0.05–0.1 mm, and 
it does not contain blood vessels and sensory nerve endings [6]. Dermis represents 
a hard fibrous layer, due to its composition in collagen and elastic tissues. It is based 
on a supporting network that furnishes elasticity and toughness to the skin. Dermis 
exhibits a noticeable ability to absorb the water. Its thickness varies from 0.5 mm to 
5 mm or more according to the skin region. Compared to the epidermis, the dermis is 
vascularized [7]. Hypodermis (subcutaneous tissue) represents the profound stratum 
of the skin, and it is made of fat cells among which are found elastin fibers, collagen, 
nerves, lymphatic, and blood vessels. The main roles of this layer are to store energy, 
to thermally insulate the body, and to defend against physical trauma [8].

Being the main organ that interacts directly with the environment, the skin is 
principally disturbed by external agents, such as chemicals, microorganisms, UV and 
electromagnetic radiations, allergens, heat, pollution, and mechanical trauma [9]. On 
the other hand, the skin can also suffer various modifications due to behavioral fac-
tors (smoking, alcohol, and nutrition), physiological factors (obesity), demographic 
factors (age and gender), and pathological factors (numerous local and systemic 
diseases) [10, 11]. All these mentioned factors often generate a skin injury and a delay 
in the healing process, so the restoration of healthy and functional skin is still a big 
challenge for the medical community [12] and an increasing problem worldwide 
[13]. Depending on the degree of the skin damage, cutaneous lesions can necessitate 
a long-term treatment, which involves a huge financial cost for global healthcare 
systems [14]. Statistics showed that the number of people with skin injuries of differ-
ent etiologies worldwide is constantly growing from ~5 million in 2005, ~6 million in 
2015 to about 8 million in 2018, and the total costs for their medical care are estimated 
to be between ~$28 billion and ~ $97 billion. Taking into account the dynamics of the 
factors that cause damage to the skin tissue, in the coming years, the total costs for 
their treatment are expected to rise [15, 16]. From all types of wounds, chronic lesions 
have the highest incidence in the population. Thus, in developed countries, approxi-
mately 1–2% of people will suffer a chronic lesion during their lifetime [17]. The 
highest increase is in the case of injuries caused by diabetes because it is estimated 
that in 2025 there will be at least 400 million people with diabetes globally, most cases 
being in South Africa, Asia, and Africa. About 15–25% of these people will develop 
throughout their life one of the major complications of diabetes which is the diabetic 
foot ulcer [18].

Most often a wound is accompanied by pain that can vary from mild to severe 
depending on the degree of the skin impairment. Hence, the personal life qual-
ity of the patients is considerably affected because they have to limit their daily 
activities, which negatively influences their physical, psychological, and social 
conditions [19, 20].

Optimal wound management needs physicians to comprehend the etiology of  
the wound, its healing time and complexity, the mechanism of injury healing, and 
the factors which affect the skin regeneration to make the right decision regarding the 
most efficient treatment for a proper cutaneous tissue restoration [21]. Since ancient 
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times, the care of a lesion involves its cleaning and applying a patch (traditional 
dressing) that allows protection from the external environment, but it cannot absorb 
high amount of exudates and requires regular application that produces soreness when 
changing the patch; moreover, the common patch owns modest adhesive characteris-
tics and cannot furnish an adequate drainage for the injury. Consequently, the wound 
healing process is delayed, and the quality of the patient’s life is seriously affected [22]. 
Nowadays, those patches have been switched with new wound dressings (modern 
dressings) that function as a physical and defensive barrier, swallowing the exudate 
and facilitating the healing process [23]. Over the last few years, modern dressings 
have been developed, which include hydrogels, hydrocolloids, semi-permeable films, 
foams, and alginates [24]. Comparing to the traditional dressings, these modern 
wound dressings, due to their improved structure, have a high capacity to generate 
a moist environment all over the skin lesion and to keep it, promoting the healing 
process and the reepithelialization by developing the proliferation of fibroblasts and 
enhancing the synthesis of collagen [25]. Moreover, they are semi-permeable and 
highly absorbent dressings and semi-occlusive or occlusive that stimulate the granula-
tion tissue production and promote the epithelial cells movement from the injury 
margins to its center, providing an enlarged functionality [22].

Thus, this chapter highlights the main structural and functional properties of 
hydrogels, which are hydrophilic macromolecular networks, formed by crosslinking 
of diverse polymers, physically or chemically [26]. Also, this chapter presents recent 
studies regarding the broad applicability of hydrogels as bioactive dressings, which, 
after application to the wound bed and alleviate the pain, inflammation, and infec-
tion that generally follow a lesion [27]. Primary results consist of anatomical, func-
tional, and esthetic restoration of the skin, improving the patient’s quality of life [28].

2. Complexity of cutaneous lesions and skin regeneration process

Cutaneous lesions appear while the skin tissue is broken, or the cellular stability is 
imperiled under the action of physical, chemical, mechanical, and thermal agents or 
because of genetic diseases and metabolism-linked factors [29].

In the first instance, skin injuries can be clinically partitioned into acute and 
chronic injuries. Acute lesions are those wounds that often heal totally, with minimal 
scarring, in a period between 8 and 12 weeks [30]. Mainly, acute lesions can be pro-
duced by mechanical trauma; thus, these types of lesions can be classified inside one 
of these eight types: abrasions (it happens when a mechanical power scratches away a 
limited thickness of the skin) [31], avulsions (occurs when the primary layers of the 
skin are cut from the underlying fascia, for example, injury produced by animal bites) 
[32], contusions or bruises (fist leads to a contusion), crush wounds, cuts (knife or 
paper can cause a cut), fish hook injuries, incised wounds (it is the result of a surgical 
cut inside the skin) [33], and lacerations or tears (it means a break in the skin, which 
can be generated by a sharp object, for example, metal, glass, or wood) [34, 35]. Also, 
in the category of acute wounds are found burns and chemical lesions. On the other 
hand, chronic wounds heal slowly, their healing time exceeds 3 months, and they 
often reoccur. According to the Wound Healing Society, in this category of cutaneous 
lesions are included: pressure, venous, and arterial insufficiency, diabetic ulcers, and 
also malignant wounds [17].

Furthermore, from an etiological point of view, cutaneous lesions can be catego-
rized as follows: surgical wound, which is a mechanical lesion produced by surgical 
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incisions, for example, to eliminate tumors [36]. Traumatic injury is an accidental 
and a spontaneous lesion that can vary from a small wound, such as a scraped knee, 
to a serious injury, such as a gunshot lesion. Abrasions, lacerations, skin tears, bites, 
burns, crush, and stab injury are some examples of traumatic wounds [37]. Radiation 
lesion is the result of radiotherapy and surgery, two treatment methods that are 
generally used for the therapy of cancerous tumors, lesions whose delayed healing 
produces physiological and psychological stress to the patient [38]. Chemical and 
thermal injuries (burns) are produced by a diversity of factors such as radiation 
exposure, electricity, corrosive chemicals, or thermal agents [39]. In these types of 
injuries, it is very important to know how deep the wounds are and how much of the 
body surface is affected, all these for good management that can lead to a decrease 
of wounds healing time [40]. According to World Health Organization, there are 
reported globally every year more than 11 million burn wounds and their medical 
care passes $12 billion per year [41]. A lesion becomes malignant when cancerous cells 
attack the epithelium, penetrate blood and lymph vessels, and invade the epidermis; 
mostly, this type of wound produces death and necrosis of the tissue [42]. Melanoma 
is metastatic skin cancer, with an increased risk of death, produced by uncontrolled 
growth of melanocytes that spread abnormally in neighboring tissues. This type of 
cancer produces severe wounds, requiring special treatment for optimum treatment 
[43]. Psoriasis is an autoimmune disease, characterized by erythematous-scaly lesions 
(crumbly white peels on irritated skin background) on the scalp, elbow, and knees, 
lesions to the face caused by sun exposure, and lesions at the level of the inguinal, 
axillary, or interfacial skin folds [44]. A pressure ulcer (pressure lesion, pressure 
sore, decubitus ulcer, or bedsore) is a surface of localized disturbance to the skin and 
hidden tissue, and it is induced by pressure, shear, or rubbing. The main risk factors 
that can lead to a pressure ulcer are incomplete nutrition, peripheral vascular disease 
[45], elderly people, obesity, diabetes, inadequate posture, pregnancy, smoking, or 
an increased frequency of infection (osteomyelitis) [46]. The most frequent com-
plication of diabetes mellitus is diabetic foot ulcer, which affects 15–25% of diabetic 
patients. This is a condition that requires a long period for healing, or in some cases, 
it does not heal and can lead to infection, the major consequence being lower limb 
amputation [47, 48]. In close relation with diabetic foot ulcer is vascular ulcer, which 
is caused by disorders of the circulatory system; there are two principal types: venous 
ulcer (varicose ulcer) and arterial ulcer [49].

Based on contamination and postoperative infection risk, wounds can be classified 
in classes I, II, III, or IV. Class I or clean wound includes injuries that are infection-
free, although current bacteria on the skin contaminate the injury [50]. Class II or 
clean-contaminated wound involves injuries, which affect the respiratory and diges-
tive system, characterized by no loss of tissue fluid [51]. Class III or contaminated 
wound contains non-purulent inflammation and class IV or dirty/infected wound 
contains purulent inflammation [52].

According to appearance and injured tissue coloration, a wound can present 
necrotic tissue (characterized by a black or olive green coloration, often at pres-
sure ulcer) [53], sloughy tissue (characterized by yellow coloration, related with 
excess exudates, produced during the inflammatory stage) [54], granulation tissue 
(characterized by red or deep pink coloration, typical for proliferative phase) [55], 
epithelializing tissue (characterized by pink coloration and formation of a new 
epidermis; it develops in migratory and proliferative phases) [56], and infected 
(malodorous) tissue (characterized by red coloration, hot inflamed tissue, pus 
formation, and unpleasant odor) [57].
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An injury is classified according to complexity in simple and complex (compli-
cated). A simple wound affects the skin tissue without any complication. On the other 
hand, a complex wound leads to a major tissue loss and a complicated wound involves 
an infected complex wound [58, 59].

Conforming to the depth of injury or number of skin layers affected, a wound 
can be superficial, partial thickness, or deep dermal and full thickness. A superficial 
wound is characterized by affecting only the epidermal skin surface, with minimum 
scars and a short period for healing, less than 10 days [60, 61]. A partial thickness or 
deep dermal wound represents a type of injury that affects the epidermis and also 
the inner dermal layers, containing blood vessels, sweat glands, and hair follicles; it 
requires between 10 and 21 days for healing, with the formation of scar and reepithe-
lialization [62, 63]. A full thickness wound appears when hypodermis and also epider-
mal and dermal layers are damaged and the healing time is longer than the other two 
types of wounds (more than 21 days) [64, 65].

The regeneration of cutaneous lesions represents a fundamental physiological 
process that consists of a succession of cellular and biochemical events, which 
begin when a skin lesion occurs in order to reestablish the impaired tissue. The 
wound healing process involves more consecutive stages, but which still overlap: 
hemostasis, inflammation, proliferation, reepithelialization, and remodeling; 
therefore, skin tissue repair is one of the most complex processes that occur in the 
human body [66].

Multiple factors can delay the wound healing process, such as: different underly-
ing physiological diseases (diabetes mellitus, human immunodeficiency virus, tumor 
resection, after organ transplantation, inborn genetic immunodeficiencies, burns, 
hypoxia, and vascular and autoimmune disease or cancer), obesity, continuous 
infection, stress, elderly population, sex hormones, gender, smoking, and malnutri-
tion [67, 68]. Another cause for this delayed wound healing and epithelialization is 
represented by high levels of proteolytic enzymes and cytokines [69]. These factors 
lead to the production of a substantial amount of exudate [70], which decreases 
the mobility of lymphocytes and produces maceration of healthy tissue around the 
injury, the major problem which results being the inhibition of the wound repair 
process [71].

3. Bioactive hydrogel-based wound dressings

Traditionally, wound dressings have to protect lesions from physical impairment 
and secondary infection, to ensure thermal isolation, to be comfortable, and to be 
quickly changed by a new dressing, without producing any trauma on the lesion 
site, facilitating the dermal regeneration, playing a passive role in the evolution of 
the wound healing process [72]. Presently, these functions are constantly evolving. 
Medical healthcare systems demand for new “intelligent” products, which function 
not only as a protective barrier but also strongly promote the skin repair process 
[73]. Over the last few decades, there were developed numerous modern (advanced) 
wound dressings to stimulate the regeneration of cutaneous lesions, such as semi-per-
meable films and foams, hydrocolloids, alginates, hydrofibers, and hydrogels. These 
advanced products for optimal clinical management of skin wounds represent, in 
2019, about $7.1 billion of the international market, and their manufacture is expected 
to increase to about $12.5 billion in 2022 [74]. Of all these modern products, the most 
competitive candidate is represented by hydrogels.



Hydrogels - From Tradition to Innovative Platforms with Multiple Applications

14

3.1 Molecular structure of hydrogels

Hydrogels, also known as aquagels, are a three-dimensional (3D) and crosslinked 
network of polymer chains, which can absorb massive quantities of water and body 
fluids due to their hydrophilic functional groups (hydroxyl, carboxyl, amide, and 
amino), adhering to the polymeric backbone [75]. The term “hydrogel” has been 
invented for the first time in 1894 by van Bemmelen. Due to their 3D structure, the 
molecular weight goes to infinity. The fundamental feature that characterizes the 
molecular structure of the hydrogel is the mesh size. There are two ways to crosslink 
the hydrogels: physically through hydrogen bonds and chemically through covalent 
bonds. The main property of the hydrogel is the super-absorbent capacity of water 
molecules that diffuse into the hydrogel network [76].

The molecular structure of hydrogel loaded or not with a bioactive agent is 
illustrated in Figure 1.

The swelling hydrogel includes three major phases:

1. Primary bound water—the molecules of water adhere to the hydrophilic moieties 
from the hydrogel structure;

2. Secondary bound water—the molecules of water combine with the hydrophobic 
moieties from the hydrogel structure;

3. Free water—the molecules of water totally swell into the empty spaces from the 
hydrogel structure.

The swelling ratio varies in accordance with polymers’ content and the density of 
crosslinking [77].

3.2 Classification of hydrogels

Hydrogels products can be classified according to different measurable parameters 
as detailed below:

Figure 1. 
Molecular structure of hydrogel: (a) without bioactive agent, and (b) with bioactive agent.
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a. source: natural, synthetic, or hybrid (mixture of natural and synthetic polymers);

b. physical aspect: film, gel, matrix, or micro−/nanoparticles (microspheres) 
according to the method of the polymerization used in the preparation process;

c. dimensions: macro−/micro−/nanogel;

d. polymer composition: homopolymeric, heteropolymeric, copolymeric, hybrid, 
composites, or interpenetrating polymer network (IPNs);

e. network structure: permanent (chemical or irreversible crosslinking) or 
 non-permanent (physical or reversible crosslinking);

f. preparation method: copolymerization, complex coacervation, irradiation, or 
using enzymes;

g. sensitivity to stimuli: physical (pressure, sound, temperature, light, and mag-
netic and electric fields), chemical (pH, molecular species, solvent content, and 
ionic strength), or biochemical (enzymes, antigens, and ligands) stimuli;

h. polymer network charge: amphoteric, non-ionic, ionic (cationic and anionic), or 
zwitterion (polybetaines);

i. chains configuration: non-crystalline (amorphous), semi-crystalline, crystalline, 
hydrogen-bonded, or hydrocolloids;

j. physical properties: smart or conventional;

k. biodegradability: biodegradable or non-biodegradable;

l. sensitivity to environmental factors: temperature, electric and magnetic fields, 
sound, enzymes, pH, or light;

m. equilibrium swelling grade (SWD): low (20–50%), medium (50–90%), high 
(90–99.5%—these hydrogels exhibit proper biocompatibility and permeability, 
which make them the most suitable for use in the medical domain), or superab-
sorbent hydrogels (>99.5%) [78–80].

Regarding the network structure, hydrogels are mostly manufactured from 
crosslinking networks, so there are two major categories of hydrogels: physically 
and chemically crosslinked hydrogels. Physically crosslinked hydrogels have gained 
importance due to the fact that they are easy to produce because no crosslinking 
agents are used during the synthesis process; thus, these types of hydrogels are used 
in biomedical, pharmaceutical, and food industries. Many methods are used to gener-
ate physically crosslinked hydrogels: freeze-thawing, stereocomplex formation, ionic 
interaction, hydrogen bonding, maturation (heat-induced aggregation), noncovalent 
interaction, and thermoreversible gels [81]. Chemically crosslinked hydrogels pres-
ent covalent bonds in the middle of the polymeric network that generate permanent 
hydrogels formation. These types of hydrogels are formed through reactions between 
functional groups of polymeric chains. Many methods are used to generate chemically 
crosslinked hydrogels: condensation reactions, polymer–polymer crosslinking, high 
energy irradiation, enzymatic reaction, grafting, and radical polymerization [82].
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3.3 Functional and technical properties of hydrogels

Hydrogels are of huge interest for the development of new wound dressings due 
to their outstanding mechanical and biochemical traits (biocompatibility, biodegrad-
ability, hydrophilicity, and the porous structure similar to the extracellular matrix) 
[83]. They are composed of 90 wt% water and 10 wt% different nature biopolymers. 
This high water content produces soothing and cooling effects, which reduce the 
perceived pain. Hydrogels stimulate the healing process through their moisture 
exchanging actions, which generate a proper microclimate between the dressing and 
the injury bed [74]. Depending on their composition, hydrogel-based dressings pres-
ent a high power to swallow up to 1 kg of injury exudate per gram of dressing [84]. 
Thus, hydrogel-based dressings furnish optimal moisture on the lesion site, which has 
various advantages: to avoid the injury from drying out, to mitigate the pain percep-
tion, to damage the fibrin and dead tissues, and to allow the communication between 
target cells and growth factors [85].

Regarding the polymeric component, hydrogels can be produced from natural 
polymers (cellulose and its derivatives, collagen, hyaluronic acid, chitosan and its 
derivatives, gelatin, alginate, keratin, fibrin, pectin, elastin, dextran, chitin, and 
gums) and synthetic polymers (polyvinyl alcohol, polylactic acid, polyethylene 
oxide, polyglycolic acid, polyacrylic acid, poly ε-caprolactone, polyethylene glycol, 
polyacrylamide, vinyl acetate, N-vinyl-2 pyrrolidone, 2-hydroxyethyl methacrylate, 
methoxyl polyethylene glycol, ethylene glycol diacrylate, and poloxamer) [78, 83].

Hydrogels are colorless and odorless; they also exhibit the highest capacity to 
absorb fluids in saline medium, a high absorbency under load, low price, proper 
stability, and durability during the storage and in swelling conditions, neutral pH 
after swelling in water, nontoxicity, and photostability [75]. Hydrogels allow an excel-
lent mechanical safety, a suitable gases exchange (CO2 and O2), the stimulation of 
angiogenesis, and the absorption of local exudates; thus, epithelial cells can flourish, 
and the healing process accelerates to restore the skin layers with minimal scars. Also, 
hydrogels exhibit non-adhesive characteristics, malleability, and smoothness, so they 
are easy to applicate and remove without tissue impairment [86].

Moreover, the transparent structure of these dressings allows a suitable evalua-
tion of the wound healing progress, without the dressing being removed. Therefore, 
hydrogel-based dressings are the first option to treat dry, necrotic lesions, superficial 

Figure 2. 
The action mode of hydrogel-based dressing on cutaneous lesion for accelerating the wound healing process.
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injuries (burns and skin tears), surgical wounds, radiation burns, sloughy and 
dehydrated lesions, and shallow ulcers. Depending on the hydration level required by 
the lesion, hydrogel dressings need to be changed every 1–3 days [87]. The schematic 
illustration of the action mode of a hydrogel-based dressing on cutaneous lesion for 
accelerating the wound healing process is illustrated in Figure 2.

3.4  Recent studies regarding the development of new hydrogel-based dressings 
for damaged skin regeneration

Hydrogel-based dressings are bioactive dressings, which are extensively used 
to cure different etiologies wounds because they furnish an optimum pH, suitable 
exchange of gases, proper regulation of temperature, and adequate local moisture, 
accelerating the fibroblasts’ proliferation and angiogenesis [88]. These dressings 
present biomimetic characteristics, which make them suitable vehicles for sus-
tained release of various bioactive agents, such as plants extracts, growth factors, 
nucleotides, inorganic compounds, and analgesic, anti-inflammatory, anesthetic, 
or antimicrobial active substances, ideal for scaffolds that target the fundamental 
structures involved in the healing process of the injured skin. Therefore, hydro-
gel-based dressings can reduce, prevent, and treat the tissue maceration, pain, 
inflammation, and infection that usually accompany a skin lesion [87]. Recent 
studies regarding the development of new hydrogel dressings based on different 
polymers composition and bioactive agents for tissue regeneration are summa-
rized in Table 1.

4. Conclusions

Cutaneous lesions care leads to a vast socioeconomic burden, with a huge impact 
on the patient’s quality of life. Thus, this chapter presents a brief approach of hydro-
gels, which are the most outstanding competitors for the development of new wound 
dressings from all five classes of modern (advanced) dressings. Hydrogels have 
attracted the attention of researchers due to their particular 3D structure similar to 
the extracellular matrix, which has a high capacity to absorb large amounts of water 
and biological fluids, and which can also retain in their network external microorgan-
isms. These dressings assure optimal moisture at the wound site and a cooling effect, 
being so comfortable for the patient. Furthermore, hydrogels exhibit a self-healing 
power, interactive structure, biocompatibility, biodegradability, low cost, nontoxic-
ity, bioadhesion, conductivity, elasticity, softness, swelling behavior, transparency, 
stimuli-responsive ability, and controlled release of various bioactive agents. As a 
result of the last feature, this chapter also emphasizes recent studies regarding the 
development of new wound dressings manufactured using different polymeric sup-
ports loaded with various therapeutic agents to stimulate the regeneration of impaired 
skin tissues.
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Chapter 3

Hydrogel Biomaterials for Drug 
Delivery: Mechanisms, Design,  
and Drugs
Wanis Nafo

Abstract

Due to their unique physical and chemical properties, hydrogels have attracted 
significant attention in several medical fields, specifically, drug delivery applications 
in which gel-based nanocarriers deliver drug molecules to the region of interest in 
biological organs. For different drug delivery applications, hydrogel systems can be 
manipulated to provide passive and/or active delivery. Thus, several drug targeting, 
loading, and releasing mechanisms have been devised and reported in the literature. 
This chapter discusses these mechanisms and their efficacy with respect to different 
drug delivery applications. Furthermore, the drug dosage is dependent on the design 
and shape of the hydrogel systems, which in turn depend on the route of the drug 
administration. This chapter covers the types of hydrogel-based products applied 
via different routes of drug administration. Lastly, this chapter addresses different 
classifications of delivered drugs including small molecular weight drugs; therapeutic 
proteins and peptides; and vaccines.

Keywords: drug delivery, loading, targeting, releasing, routes of administration

1. Introduction

Hydrogels are three-dimensional polymeric networks that are utilized in various 
medical applications due to their unique properties: hydrophilicity, biodegradability, 
non-toxicity, and their controllable mechanical properties to mimic the mechanics 
of biological tissues [1, 2]. Furthermore, their structural properties exhibit similari-
ties with biological extracellular matrix components which makes them ideal for cell 
culture and growth [3].

From the mechanical perspective, the concentration of the polymer network 
in hydrogels controls, to large extent, their mechanical strength allowing them to 
mimic the mechanics of physiologically loaded tissues [4]. Consequently, due to 
their availability and relatively low cost, hydrogels have become an attractive option 
when developing quantitative techniques that measure the mechanics of biological 
tissues [5–8].

On structural level, hydrogels can be produced by chemical or physical cross-
linking. In chemical (permanent) hydrogels, the network is crosslinked with strong 
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covalent bonds that connect the molecular chains [9]. In physical (reversable) 
hydrogels, the gel’s molecular chains are connected with weaker forces such as 
hydrogen-bonding and ionic forces, thus, they can be easily dissolved by altering their 
environmental conditions (e.g., temperature, ionic strength, or pH of the gels [10]). 
These crosslinking methods allow the synthesis of multi-network hydrogels. For 
instance, hydrogels can be fabricated to have highly crosslinked rigid chains that are 
entangled with weakly crosslinked chains to provide a functional network system used 
in synthesizing biomaterials for several medical applications [11, 12].

One of the medical applications the hydrogels used in is contact lenses, mainly due 
to their unique physical properties and ease of processing; for example, Bauman  
et al. [13] developed Silicone Hydrogel lenses with nano-textured surface that mimics 
the surface of human cornea. Hydrogel lenses are also known for their wettability, a 
property necessary to avoid tear deposits [10], thanks to plasma treatment during the 
synthesis process [14]. Gas permeability is also a key characteristic of contact lenses to 
provide the cornea with efficient supply of oxygen at sufficient rates. Hydrogel lenses 
can be designed to meet this requirement thanks to their hydrated polymer matrix 
[10]. Hydrogels are also commonly used in wound dressing; they have been used in 
combination with other materials to form composite products efficient for different 
dressing applications; for example, a gauze impregnated with thermoplastic hydrogels 
allows for absorbing wound exudate while maintaining relative slimy consistency, as a 
result, it prevents adherence to the wound that normally results in pain during gauze 
changes [15]. Moreover, flexibility and transparency of hydrogels also made them 
an attractive option in wound dressing. While flexibility facilitates easy removal of 
the dressing products, transparency allows for continuous observation of the wound 
healing process [16].

Nowadays, delivery and release of drug molecules is receiving significant atten-
tion in many fields of medicine in which therapeutic drugs are loaded in polymer-
based-carriers. These carriers transport the drugs to the targeted location [17, 18]. 
The efficacy of gels as drug-carriers relies in their adjustable porosity through 
controlling the crosslinking density of their matrix. Their porous structure allows 
for drug loading and releasing with high efficiency [19, 20]. Numerous studies have 
been published on the potential applications of hydrogels in drug delivery focus-
ing on their mechanism, shape of the gel-carriers, and types of transported drugs. 
Therefore, this chapter, will discuss different drug loading and releasing mechanisms 
with respect to their corresponding medical application. Furthermore, the drug dos-
age is dependent on the design of the hydrogel systems, which in turn depend on the 
route of the drug administration (e.g., rectal, ocular, peroral, etc.), thus, this chapter 
will shed the light on the types of hydrogel-based carriers applied via different routes 
of drug administration. Lastly, this chapter will cover different classifications of the 
delivered drugs using gel-based delivery systems including small molecular weight 
drugs; therapeutic proteins and peptides; and vaccines.

2. Drug loading, targeting and releasing

2.1 Drug loading

Drug loading is an important property of a drug delivery system, and it is defined 
as the process of incorporating a drug into a carrier. The therapeutic agents can 
be introduced into gel-carriers by ionic interaction, dipole interaction, hydrogen 



33

Hydrogel Biomaterials for Drug Delivery: Mechanisms, Design, and Drugs
DOI: http://dx.doi.org/10.5772/intechopen.103156

bonding, physical encapsulation, covalent bonding, precipitation, or surface absorp-
tion. It’s common that more than a loading mechanism is used in drug delivery 
systems, and the ideal loading strategies are determined based on the compatibility 
between the physicochemical properties of the drug and the carrier.

The drug-loading process can take place during the formation of the carriers, or 
by incubating carriers into a concentrated drug solution to allow the loading through 
adsorption on their surface area [21]. However, this method has limited loading 
capacity, and the incubation time can influence the drug loading efficacy [22, 23]. In 
general, the entrapment and loading of drug molecules into polymer carriers depend 
on several characteristics: polymer and crosslinker concentrations, molecular weight 
of the polymer, and drug-polymer interactions [24–26]. The higher the polymer 
concentration the more efficient the drug entrapment is; at a high concentration, the 
polymer viscosity is increased, which delays the drug diffusion within the polymer 
particles [27]. Similarly, the high concentration of the crosslinker yields tangible 
increase in the loading efficiency [28]. Conversely, Fu et al., 2004 reported that 
the encapsulation efficiency decreases when the molecular weight of the polymer 
increases [29]. In protein based drugs, the interaction between the polymer and the 
drug molecules contribute to the entrapment efficiency; it increases if the protein 
molecules are entrapped into hydrophobic polymers, moreover, ionic interaction 
between the molecules and the polymer particles increase the efficiency of encapsula-
tion, specifically, in polymers that belongs to carboxylic end groups [30].

2.2 Targeting

The delivery of therapeutics by nanocarriers can be passive: transport of drug-
carrying nanoparticles through permeable vessels due to the enhanced permeability 
and retention (EPR) effect; or active: based on molecular recognition in which 
peripherally targeting moieties that interact with specific cell receptors [31].

In localized cancer therapy, the mechanism of passive targeting relies heavily 
on the tumor characteristics; tumor hypoxia causes rapid growth of leaky vessels, 
which increases the permeation of nano-delivery systems into the tumor, the lack of 
lymphatic filtration allows for the retention of these systems on the tumor’s interstitial 
space [32]. Moreover, this targeting strategy also depends on the carriers’ size; delivery 
systems larger than 50 kDa permeate through leaky vessels and retained in the tumor, 
smaller molecules are washed out quickly (very short circulation time) from the tumor 
[33]. The charge and the surface chemistry affect the circulation time of carriers; 
mononuclear phagocyte system (MPS) cells tend to opsonize largely hydrophobic and 
charged systems. Thus, water-soluble and neutral (or slightly anionic) compounds 
(e.g., Polyethylene Glycol) are used to coat the nanocarriers surface [31, 32, 34]. Active 
targeting also depends on the EPR effect to accumulate the delivery nanocarriers in 
the tumor region, however, the efficacy of this strategy capitalize on equipping the 
nanocarriers’ surface with ligands that bind to specific receptors of cancer cells, thus, 
enhancing the penetration and efficiency of the chemical therapeutics. Figure 1 
illustrates passive and active targeting strategies.

2.3 Drug releasing

Biodegradation of the nanocarriers is essential for the release of the drug mol-
ecules over extended periods of time (days or weeks). It is also crucial for the removal 
of delivery systems from the body [35]. The carrier size has an effect on the efficacy 
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of the releasing process; drug molecules loaded at or in proximity to the surface of 
small particles are released at a fast rate due to the large surface-to-volume ratio. On 
the other hand, slower release rates are associated with larger particles, neverthe-
less, more drug molecules can be loaded. Modulation of the drug release can also be 
controlled by the molecular weight of the gel composition; higher molecular weight 
tends to exhibit slower release rates [36, 37]. In general, the mechanism of releasing 
drugs is dependent on three main parameters: drug diffusion and dissolution, gel 
matrix design, and interaction between the drug and the gel matrix.

The transport of the therapeutic molecules out of the gel matrix is a complex 
process that depends on the dissolution and diffusion of the drug [38]. Several studies 
have been conducted to develop mathematical models that describe this process 
[39–41]. The basic equation of the dissolution rate as a function of diffusion can be 
described as [42].

 ( )sC C
h

dM DA
dt

= −  (1)

Where dM/dt is the rate of dissolution, A is the surface area of solid in contact 
with the dissolution milieu, D is the diffusion coefficient, sC  is the drug solubility, 
and C is the drug concentration at time t, and h is the diffusion boundary layer 
thickness at the solid’s surface. This equation shows that the dissolution rate is 
directly dependent on the surface area of the particle and the solubility of the drug. 
Conversely, larger thickness of the diffusion boundary layer reduces the dissolution 
rate. When the size of the nanocarriers is reduced from the micro-domain to nano-
domain, the surface area increases resulting in a higher rate of dissolution as 
reported in [43].

There are several mechanisms to release the drug, most common strategies are 
diffusion and swelling controlled. In diffusion-controlled delivery systems, drug 
molecules diffuse from a region of high drug concentration (reservoir) through 
the gel matrix or membrane. The design of these systems is commonly available 
as spheres, cylinders, slabs, or capsules. These systems can have a constant rate of 
release as described by Eq. (1), or their release rate can be proportional to the square 

Figure 1. 
Schematic illustration of active and passive delivery of drug molecules.
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root of time. In the latter case, the drug is usually dispersed or dissolved uniformly 
through the matrix of the hydrogel [10]. In swelling controlled systems, the drug 
is dispersed within carriers made of a glassy gel, and upon contact with biofluids, 
they swell beyond their boundary which results in the diffusion of the drug dur-
ing the relaxation of the gel chains, this process is known as anomalous transport 
[10, 44]. Illustrations of the two releasing mechanisms provided in Figure 2. The 
structure of the nanocarriers’ controls the release of the drugs; using hydrogels alone 
in synthesizing the nanocarriers can result into fast premature release of drugs and 
poor tunability [45]. Therefore, using additives can enhance the control of the drug 
delivery process; using Polydopamine (PDA) as an additive to the hydrogel materials 
in making the nanocarriers provides an on-demand capability to release the drug. In 
high glutathione (GSH) and acidic condition, the bond between the drugs and PDA 
experience weakening. This is a useful property to release the drugs in inflammatory 
areas or tumor cites where pH levels are low. While at neutral pH levels such as in 
normal tissues, the bond between the PDA and the therapeutic dugs is not affected 
[46–50]. Furthermore, PDA generates heat upon exposure to near infrared (NIR) 
laser, which makes it ideal for NIR triggered drug delivery [51].

3. Hydrogel administration

Besides long-term stability and release properties, passing the toxicity screen-
ing is essential for hydrogel formulations to be used in drug delivery. This is mainly 
due to the rise of inflammatory reactions that occur as a result of the degradation of 
synthetic polymers [52]. Therefore, achieving biocompatibility is necessary to use 
hydrogels in an environment of living organisms. Most in-vivo tests are conducted 
on animal models to provide reliable biomedical mimicry. As a result, several 

Figure 2. 
Schemes of drug release systems: (a) from a reservoir system; (b) from a matrix system.
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hydrogel-based drug delivery systems have been developed and approved for clini-
cal use through different administration routes. Currently, the common accessible 
routes of these systems are Oral [53], rectal [54], subcutaneous [55], transdermal 
[56], ocular [57], and intraperitoneal [58]. These administration routes are illustrated 
in Figure 3. Table 1 provides examples of gel-based products used in drug delivery 
through different administration routes.

3.1 Oral route

Oral administration currently is the most common and convenient for hydrogel drug 
delivery systems, thanks to their bioavailability and nontoxicity they provide [67, 68]. 

Route of 
administration

Shape Typical dimensions References

Oral Spherical beads;
Discs;
Nanoparticles

1 μm–1 mm
Diameters of 8 mm and thickness 
of 1 mm
10–1000 nm

[35, 60, 61]

Rectal Suppositories Conventional adult suppositories 
dimensions (32 mm in length) 
with central cavity of 7 mm and 
wall thickness of 1.5 mm

[62]

Transdermal Dressing Variable [63]

Subcutaneous Injection (hydrogel spacers 
in prostate cancer therapy)

N/A [64, 65]

Intraperitoneal Injection (hyaluronic 
acid hydrogel loaded with 
chemotherapeutics)

N/A [66]

Table 1. 
Types of hydrogel-based products applied via different routes of drug administration [10, 59].

Figure 3. 
In-vivo hydrogel-based drug delivery in most common routes of administration. The schematic illustration is 
reproduced from [59].
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However, such systems have limitations due to the metabolic effect these systems have 
on the living organism including but not limited to denaturation and reduction of epi-
thelial membrane permeability [52]. Delivery systems in this strategy are usually made 
from caprolactone, MPEG, itaconic acid pH-sensitive hydrogels as they were reported to 
have no signs of toxicity [68].

3.2 Rectal route

This route provides an alternative to intravenous and subcutaneous medication 
delivery. It has faster absorption of the medication through rectum’s blood vessels, 
which makes it ideal for therapeutics that have high bioavailability and shorter 
duration [69, 70]. Moreover, it provides a stable environment in which the drugs are 
released since this administration strategy bypasses the gastrointestinal tract. As a 
result, minimal alterations occur to the drug concentration when it reaches the  
circulation system [71]. Hydrogel-based delivery systems such as catechol-chitosan 
gels have shown excellent biocompatibility and were reported to have no toxicity 
in-vitro and in-vivo [54, 72].

3.3 Subcutaneous route

This route is very common in studies that involve animal models when developing 
gel-based injectable biomaterials such as alginate [73], gelatin [74], poly-acrylamide 
[75], ellagic acid [76], and pectin [77]. While these biomaterials have shown no toxic 
response when deployed in-vivo into the animal model, the majority of the studies 
have reported inflammatory effect due to the vascularized nature of the subcutaneous 
region that is associated with reactions against foreign moieties [78].

3.4 Transdermal route

In topical delivery, the therapeutics reach the circulation system through 
penetrating the skin layers; the drug passes through the startum corneum to 
deeper epidermis and dermis until it is absorbed by the dermal microcirculation 
[79, 80]. The hydrophilic nature of hydrogels allows them to hold considerable 
amounts of fluid content that ranges between 10% to 1000 times gels’ dry weight 
[81], which makes them ideal for carrying drugs such as insulin, theophylline, 
sodium fluoride, and progesterone and heparin. Transdermal hydrogel patches can 
provide a controlled rate of drug delivery in addition to providing a cooling effect 
at the location where they are applied [81]. Hydrogels can also be combined with 
bio-adhesives to prolong the therapeutic effect of the delivered drug when applied 
topically [82].

3.5 Intraperitoneal route

Intraperitoneal injections of hydrogel systems are considered a successful deliv-
ery strategy for various therapeutic agents. The injected hydrogels compounds can 
achieve efficient drug delivery while exhibiting anti-adhesiveness properties on the 
peritoneum [83]. Although intraperitoneal hydrogels were reported to be non-toxic 
[84], their hydrophilicity can compromise the concentration of the delivered pharma-
ceutical agents [58].
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4. Types of therapeutics delivered using hydrogels-based delivery systems

4.1 Small molecular weight drugs

Budhian et al. [85] categorized the release of this class of drugs into three stages; 
(i) initial burst, during which the drugs immediately released into the medium;  
(ii) induction, in which the release of drugs is gradual; and (iii) slow release, in which 
the release reaches a steady slow rate [85]. These stages are controlled by three unique 
properties of the gel in use to synthesize the delivery systems: hydrophobicity, surface 
coating, and particle size [35]. The lower the hydrophobicity the higher the release 
of drugs during the burst stage; for example, the percentage of released drugs after 
1 day is 45% for 220 nm strongly hydrophobic PLA particles, on the other hand, the 
release percentage is 70% for the same size of the moderately hydrophobic PLGA 
particles. The release stages are also affected by the surface coating of the nanopar-
ticles; coating PLGA particles reduces the number of drugs released by 40%. The rate 
of release and the initial burst are affected by the size of the particles; increasing the 
size decreases the total surface area which reduces the burst period, furthermore, the 
larger the size, the longer the pathways the drug molecules take during the diffusion 
which increases the induction period [85].

4.2 Therapeutic peptides and proteins

Among several peptides- and proteins-based therapeutics that are used in drug 
delivery, enzymes are the most studied class of drugs [86]; examples of such enzymes 
include L-asparaginase, cysteine desulfatase, cysteine oxidase, arginase, and arginine 
decarboxylase [87]. Currently, only a few protein- and peptide-based drugs have been 
used in medicinal setting. The clinical use of this class of drugs is hindered by several 
factors: enzymatic degradation, renal filtration, inefficient cell entry, accumulation 
in nontargeted organs, immune system response that causes allergic reaction, and 
protein inactivation due to intrinsic properties such as low stability in an environment 
of physiological pH and temperature [88].

A simple approach to overcome the elimination of this class of drugs is introduc-
ing it via injection to the targeted organ. However, this strategy has its own limita-
tions such as difficulty or delocation of the targeted site, drug toxicity, and long-term 
hospital setting administration [88]. Other delivery strategies were proposed such 
as microfabricated chips and implantable devices [89, 90]. While these strategies 
have shown promising results, their deployment and extraction require surgical 
intervention. To overcome these challenges and to stabilize the therapeutic proteins 
and peptides in the physiological environment, they are encapsulated into nanocar-
riers. This technique protects the enzymes from the degradation parameters imposed 
by the physiological environment while delivering different types of protein-based 
drugs [88].

Shimizu et al. [91] developed nanocarriers that efficiently encapsulates bone 
morphogenic proteins (BMPs), which have significant capability to convince bone 
formation. When BMPs are encapsulated by the developed nanocarriers, they pro-
vided sustained delivery of the BMPs over a time period of 14 days. In cancer therapy, 
polymersomes are used to deliver therapeutics; Danafar et al., 2016 investigated the 
delivery of drug molecules encapsulated into mPEG-PCL hydrogel nanocarriers in 
treating breast cancer. Their mPEG-PCL carriers provided suitable pH-dependent 
delivery of therapeutics to breast cancer cells [92].
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4.3 Vaccines

Establishing an immunological memory and provoking sufficient immune 
response are the two primary factors that determine the efficacy of a vaccine delivery 
system [93, 94]. The main administration routes of vaccine delivery systems are 
parenteral and non-parenteral. The first is administered using hypodermic needles 
inserted through subcutaneous, intramuscular, and intradermal routes [95, 96]. On 
the other hand, non-parenteral delivery systems capitalize on needle-free devices 
such as jet injectors, liquid, powder, and polymeric (including hydrogel) systems [97]. 
In hydrogel-based systems, gel particles encapsulate the vaccine molecules and deliver 
it through intramuscular, oral, and transcutaneous routes [98, 99]. In recent years, 
different hydrogel delivery systems were developed to increase the efficiency of the 
vaccine delivery, Table 2 summarizes these systems and their applications.

5. Conclusion

Drug carriers are revolutionary delivery systems in the field of medicine. While 
there have been several studies that reported different types of polymers that has 
been used to synthesize the carriers, hydrogel-based systems seem to be very promis-
ing due to their affordability, production simplicity, and their unique ability to load 
different types of drugs. Although several gel-based systems have been investigated, 
designed and IP-protected, it seems only limited number of these product has actually 
reached the market, which indicates the need for further investigations on improving 
the performance of current products and develop new ones. This chapter addressed 
different hydrogel-based drug delivery systems from different perspectives including 
mechanisms (loading, releasing, and targeting), design (shape and route of adminis-
tration), and the classes of delivery drugs. These elements are essential when design-
ing and investigating state-of-the-art hydrogel-based delivery systems.

Hydrogel 
based system

Applications References

Thermo-
sensitive

H5N1 Influenza vaccination; Ebolavirus glycoprotein antigen; 
prevention of ovine brucellosis

[100–102]

Capsules Oligopeptide antigen delivery [103]

Bio bullets Bacterial vaccines (Brucella Abortus strain RB51 live vaccine) [104]

Injections Swine H1N1 influenza killed vaccine; fibroblast growth factor (bFGF); 
codelivery of immune check point inhibitor and tumor vaccine

[105–107]

Nanogels and 
peptides

Adjuvant for the vaccine delivery systems for West Nile and respiratory 
syndrome viruses

[108, 109]

Micro-scale 
particles

Oral delivery of bovine serum protein; intramuscular delivery of 
“transmission blocking malaria” vaccine

[110, 111]

Gel patches Tetanus and diphtheria vaccination [112, 113]

Micro-needles Influenza vaccine; DNA vaccine against hepatitis B; Japanese 
encephalitis vaccine; and rabies vaccine

[114, 115]

Table 2. 
Hydrogel-based delivery systems and their applications.
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Abstract

The prominence of hydrogels in various fields of life sciences is due to their 
significant and functional three-dimensional biopolymeric networks, which tend 
to imbibe water due to -OH, -CONH2, -SO3H, -CONH,-COOR groups which have a 
hydrophilic tendency enabling them to be an excellent super absorbent and remain 
insoluble in water. Hydrogels can embed physiologically active molecules in their 
water-swollen network and are appealing materials for the controlled release of 
medicines. Several significant advancements in the realm of hydrogels for therapeu-
tic delivery have resulted from recent advances in organic and polymer chemistry, 
bioengineering, and nanotechnology. We offer our perspective on the state-of-the-art 
in the field in this chapter, focusing on several intriguing issues such as current trends 
in hydrogel-based drug delivery, stimuli-responsive hydrogels, nanogels, and thera-
peutic release from 3D printed hydrogels. We also discuss the obstacles that must be 
solved to promote translation from academia to the clinic, as well as our predictions 
for the future of this quickly changing field of research.

Keywords: hydrogel, nanogel, drug delivery, nanocarrier

1. Introduction

Recent innovations have statured hydrogels as noteworthy drug carriers which 
have found their eminent application in tumor drug delivery. As it has lesser side 
effects than the existing systemic chemotherapy and is known to be an accurate 
delivering agent at specific tumor sites. In addition to this, it has salient features like 
biocompatibility, biodegradability, and lower toxicity than nanoparticle carriers. 
This has paved the way for researchers to delve into and explore more on the func-
tionality of hydrogels. Smart hydrogels can respond to stimuli in the environment 
(e.g., heat, pH, light, and ultrasound), enabling in situ gelations and controlled drug 
release, which greatly enhances the convenience and efficiency of drug delivery [1]. 
The repeated monomers like homopolymers or copolymers containing hydrophilic 
polymer chains lead to the formation of hydrogels and these monomers are arranged 
in different ways, as shown in Figure 1 [3].

The (3D) network of hydrogels can intake water and remain swelled in any condi-
tion without dissolving in the medium. Hydrogel carrier is trending in drug delivery 
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due to their extended biocompatibility and tunable mechanical strength. Synthetic 
hydrogels are explored more because of their peculiarities like long life, higher capac-
ity for water absorption, and high gel firmness. These can be synthesized from purely 
synthetic materials and these are having defined structures that can be modified to 
yield tailorable degradability and functionality [4].

Hydrogels are good carriers of drug delivery, and it has resulted in the elevation 
of therapeutic outcomes tremendously, used in clinical arenas. The delivery of cells, 
molecules, and macromolecular drugs in hydrogel encapsulation via spatial and 
temporal delivery has improved. Improving the design for the hydrogel drug delivery 
has overcome the limitations partially and it results in the progression of a better 
carrier. Current trends and different types of hydrogel drug delivery with the transla-
tion to clinical use will be discussed in this chapter [5]. There is extensive research 
carried out on hydrogel drug delivery. To add on, properties for drug delivery systems 
that were under modification, in terms of the ligands and various polymer types are 
researched meticulously. A wonderful disposition of a positive results was shown in 
the ophthalmic field i.e., from comfortable contact lenses to biodegradable drug deliv-
ery, the applications in eye care have been enormous. These possess 90% water for the 
drug release for a long period to deliver small or large molecules [6]. Thus, a long road 
of success waits for hydrogels if they are observed, studied, experimented with, and 
translated to clinical research.

Figure 1. 
Chemical diversity of hydrogel polymer chains (adapted from [2]).
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2. Hydrogels for drug delivery: mechanism

Hydrogels are encompassed of 3-D hydrophilic polymer networks [7]. Since 
hydrogels have hydrophilic functional groups attached to the 3-D polymeric network 
they can absorb a huge volume of water [4]. The capability to hold water within the 
interconnected polymeric network aids them to swell and shrink appropriately and 
in turn, helps them in the application of drug delivery. Hydrogels possess porosity 
and compatibility with aqueous conditions hence they are considered highly promis-
ing materials for drug release [8]. Moreover, the tunable properties of hydrogels 
make them excellent materials for specific therapeutic applications such as oral drug 
administration, ocular route, nasal route, and transdermal route [9].

Hydrogels have the potential ability in oral drug delivery in particular for the 
delivery of macromolecules and hydrophilic drug molecules [10]. Hence the applica-
tion of hydrogels has been extended to the treatment of patients with cancer and 
diabetics. In oral drug delivery, the drug is delivered to the following specific sites: 
mouth, stomach, small intestine, and colon. Hydrogels with mucoadhesive ability are 
mainly used for this application (Figure 2) [9].

Nowadays the significance of protein and peptide drugs is increasing due to their 
potent action and high selectivity but the vital problem arises due to the enzymatic 
activity in the GI tract that results in the degradation of these drugs. However, studies 
have shown that hydrogels equip a platform that aids to deliver the drugs to specific 
sites in the GI tract and thus have significant importance in the delivery of protein 
and peptide drugs through the GI tract [10]. Crosslinked hydrogels can be used to 

Figure 2. 
(a) The drug-containing component is coated with a hydrogel membrane and, the drug concentration is greater 
in the center of the system, allowing for a constant rate of release in the reservoir delivery system; and (b) Matrix 
delivery allows for uniform drug dissolution or dispersion across the hydrogels 3D structure (adapted from [8]).
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safeguard drugs from detrimental conditions including low pH in the stomach and 
enzymes due to the crosslinked nature of networks. Controlled diffusion of water-
soluble drugs is possible in the hydrogel network. The density and chemical structure 
of the crosslinking agent determines mesh size [10]. An illustration of drug levels in 
the bloodstream is shown in Figure 3.

Another type of hydrogel called stimuli-responsive hydrogel is considered a 
potential substance for oral drug delivery. The peculiarities of stimuli-responsive 
hydrogel include the capability to respond to the changes in the environment, perme-
ability, swelling nature, and ability to control drugs. The major objective of controlled 
drug delivery is to maintain a stable concentration of dose in the blood which cannot 
be achieved through a traditional drug release mechanism [10].

The field of eye treatment is currently employing the characteristics of hydrogels 
to treat the health problems such as blinking, tear drainage, and low permeability of 
the cornea, and the method is known as ocular route drug delivery [9].

The transdermal route of administration is another way of using hydrogels in 
drug delivery. This method helps to avoid drug degradation, side effects, and aids 
in maintaining a steady drug release. It is important to note that in comparison with 
conventional ointments water holding hydrogels can provide a better feeling to the 
skin hence this is highly preferred [9].

In reality, designing and synthesizing environmentally sensitive hydrogels offers 
a lot of potential in healthcare and nanotechnology applications in the future. The 
creation of advanced materials that can specifically address applications in biomedical 
issues is important to the achievement of these materials. This progress will be made 
through the introduction of unique polymers or the modification of existing polymers.

3. Current trend in hydrogel based targeted drug delivery

3.1 Supramolecular hydrogels

Supramolecular hydrogels generated by the spontaneous self-assembly of 
peptides, proteins, and other biomolecules have recently gathered attraction as 

Figure 3. 
Illustration of drug level in the blood with repeated dosing (solid line) and controlled delivery dosing (dotted line)
(adapted with permission from [10]).
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next-generation drug delivery substitutes to synthetic polymers. Due to the compara-
tively expensive synthetic peptide hydrogels compared to synthetic polymer gels, 
self-assembling peptides are a promising class of supramolecular gelators for in vivo 
drug delivery that has been sluggish to catch on despite benefits in biocompatibility. 
Supramolecular hydrogels’ superior biocompatibility and simplicity of formulation in 
comparison with polymer hydrogels have sparked study into the self-assembly events 
that lead to gelation and how to engineer the emergent features of supramolecular gels 
to generate excellent drug delivery materials. The development of stimuli-responsive 
hydrogels for medication administration has gained the attention of researchers. 
Changes in pH, temperature, ionic strength, and also exposure to light, electric, and 
magnetic fields, are all examples of external stimuli that might cause drug release. 
pH-sensitive smart hydrogels have been widely used as self-regulating drug delivery 
systems.

The supramolecular hydrogel framework comprises non-covalent intermolecular 
interactions that collectively hold two or more molecular units. The non-covalent 
cross-linking of these hydrogels is a particularly appealing feature since it avoids the 
challenges of restricted drug loading capability and drug integration for use solely as 
implantable, which is the only option with a covalently cross-linked system. These 
hydrogels achieve drug loading and gelation concurrently in aqueous conditions with-
out the need for covalent cross-linking, in addition to providing the necessary physi-
cal stability for the hydrogels. Supramolecular hydrogels based on self-assembled 
inclusion complexes between cyclodextrins and biodegradable block copolymers have 
recently made headway in providing sustained and regulated release of macromo-
lecular medicines [8].

In recent times, supramolecular hydrogels that are responsive to biological stimuli 
have gained a significant amount of interest for their potential as smart materials. 
A macroscopic sensor could, for instance, be a stimulus-responsive gel-to-sol phase 
transition. In response to the stimulus-responsive gel-to-sol phase transition, a drug-
encapsulated supramolecular hydrogel could deliver the drug. However, supramo-
lecular hydrogels with a gel-to-sol phase change in response to biological stimuli must 
be developed under physiological settings to exploit the uses.

Supramolecular hydrogels are generally synthesized by heating followed by 
cooling a mixture of an LMWHG (low molecular weight hydrogelator) and an aq. 
solvent whereas external stimuli-triggered gelation enables the spontaneous synthesis 
of supramolecular hydrogels. Supramolecular hydrogels with high biocompatibility 
are desirable materials for medical and pharmaceutical applications. Nevertheless, 
the challenging preparation procedures for LMWHGs and the unavailability of very 
resistant supramolecular hydrogels restrict the potential possibilities of these materi-
als. Several studies have shown that various LMWHGs can be prepared within a few 
steps from commercially available chemicals.

The structural tailoring of LMWHGs allows for the development of a more strong 
supramolecular hydrogel. Small quantities of a dimer with a similar structure to 
LMWHG can be added to a supramolecular hydrogel to enhance its physical character-
istics. Supramolecular hydrogels with stimuli-responsive characteristics will be more 
beneficial. The formation of biological-stimuli-induced supramolecular hydrogels 
can be considered as a novel therapeutic technique based on the biological activity of 
self-assemblies. It is important to produce more specific and precise stimuli-responsive 
materials for the effective use of biological-stimuli-responsive supramolecular hydro-
gels [11]. The presence of competitive binders in the physiological surroundings, such 
as proteins or ions, is another factor to consider when designing supramolecular drug 
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delivery vehicles. Competing interactions can impact the supramolecular hydrogel’s 
mechanical characteristics and/or change the release profile of loaded medicines [12].

3.2 Multicomponent hydrogels

Hydrogels that were multi-functional and carriers of anti-cancer drugs are a typical 
example of the versatility of these delivery vehicles and their amenability to chemical 
modifications to enhance their therapeutic effects. The cytocompatibility and excellent 
biocompatibility of the materials make them promising materials in biological applica-
tions including drug delivery, wound healing, and tissue engineering. However, during 
the material selection process, the potential toxicity of the breakdown products may be 
neglected. For instance, amazingly (polyacrylamide) is a popular breast implant that 
is nontoxic and has a low rate of rejection. On the other hand, the breakdown product 
acrylamide has medium toxicity for the neurological system and kidneys and has been 
classified by the World Health Organization (WHO) as one of the suspect carcinogens.

It is necessary to examine the biocompatibility of hydrogels and their degradation 
products for medical applications. The invention of new cost-effective biomimetic 
materials or natural products from high throughput processing, such as hyaluronic acid, 
chitosan, gelatin, collagen, and so on, could improve material safety. Stimuli-responsive 
hydrogels, as a kind of smart materials, offer promise for tailored drug delivery. The 
hydrogel structures can be triggered automictically in response to diseased microenvi-
ronments and deliver cargos with better spatial/temporal resolution thanks to an elabo-
rate design. Nevertheless, uneven circulatory networks raised interstitial fluid pressure, 
and diffusion of target stimuli around the tumor microenvironment could result in 
unintended medication leaks and possibly off-target effects during transportation.

Furthermore, improper drug deposition in solid tumors can lead to drug resis-
tance and a significant reduction in therapeutic benefit. This field could be advanced 
by drug-loaded hydrogel capsules that react to target biomarkers. Hydrogel capsules 
with high specificity and permeability provide a new outlook for cancer therapy250, 
thanks to the modification of aptamers that target certain cells. Multi-triggered 
hydrogels with programmable functions are also a promising technique for overcom-
ing the challenges stated above and improving therapeutic effects. The off-target 
scenario might be considerably decreased if the medicine could be released in a 
planned logic operation in response to multiple disease/therapy-related parameters. 
A programmable ON/OFF switch is required for improving drug dose in various 
therapeutic circumstances. Incorporating cell regulators (such as peptides, proteins, 
and nucleic acids) into hydrogel frameworks to attract cancer cells inside and execute 
in situ contact-killing is another potential strategy that should be explored [13].

3.3 DNA-hydrogels

Active body regeneration scaffolds are obtained from the nucleic acid molecule of 
living organisms, sometimes these are known to be DNA nanostructures. Hydrogels 
that are made out of DNA have a uniqueness in the following characteristics; degrad-
ability, non-immunogenicity, high sensitivity, and drug delivery. The self-assembling 
of biomaterials works on the principle Watson–Crick base pairing and this is how 
the DNA hydrogels are formed. The unique mechanical and biochemical properties 
of DNA, along with its biocompatibility, make it a suitable material for the assembly 
of hydrogels with controllable mechanical properties and composition that could be 
used in several biomedical applications, including the design of novel multifunctional 
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biomaterials [14]. Recent studies reported that DNA hydrogels are responsive to 
stimuli such as; light, biomolecules, and temperature. This stimuli-responsive helps in 
improving the therapeutic field as well as may decrease the side effects. Table 1 below 
shows the two types of triggers; nonbiological and biological [15].

When a drug carrier holds features like upkeeping of intact bioactivity of drugs 
and inhibiting chemical and enzymatic degradation and improved retention effect it 
means a successful drug carrier. The benefited properties such as biocompatibility, 
available binding for cargos, easily triggered stimuli responsiveness, and effective 
active targeting ability uplifted DNA hydrogel. In a small loading efficiency, drug 
molecules and inorganic nanoparticles can be incorporated into the porous structured 
network [16]. Another highlight is to capture high performance in the deliveries of 
chemotherapy, immunotherapy, and gene by allowing the co-delivery agent with vari-
ous physicochemical properties [17]. To inhibit the permeation of enzymes a highly 
crosslinked cage or network is used to deliver nucleic acid drugs and this way will pro-
tect the biological activity of the proteins. The trending research on inorganic materi-
als delivery has inspired. Cutting down edge research has put down the obstacles 
and made the hydrogel drug delivery system a great progression stage over the past 
2 years. To fabricate DNA hydrogel in a low-cost method with a high yield end prod-
uct is a challenge in application. To overcome this challenge, it is necessary to check 
on the synthetic approach and it is very crucial to find a way in low-cost production 
for the same. Toward this end, a highly parallel gene synthesis method based on DNA 
microchips and specific oligonucleotide pool amplification was demonstrated. It led 
to a remarkable cost reduction for scale-up DNA production [18].

3.4 Stimuli-responsive hydrogels

For example, malignant tissue (pH 6.8) and endosomes/lysosomes (pH 5.5) are 
more acidic than normal tissue (pH 7.4), necessitating hydrogels that can deliver 
payload medications in response to a pH change. Several polymers have been inten-
sively explored for the construction of intelligent hydrogels throughout the last few 
decades. Because of their intrinsic biocompatibility, renewability, and availability, 
natural-resourced polysaccharide-constructed hydrogels have gotten a lot of attention, 
fueling the urge to use them as drug carriers. Many polysaccharide-based hydrogels, on 
the other hand, lack mechanical strength rigidity and are susceptible to rapid erosion, 
making them unstable. This makes it difficult to use polysaccharide hydrogels for 
medication administration. Physical diffusions, on the other hand, are commonly used 
to release medicines from gel matrices, which might result in premature burst release. 
It’s difficult to tailor drug delivery in a predictable and on-demand manner [19].

Nonbiological triggers Biological triggers

Light Antigens

pH Nucleic acid

Metal ions Enzymes

Temperature ATP

Reducing agents Biomolecules

Table 1. 
Different types of triggers [15].



Hydrogels - From Tradition to Innovative Platforms with Multiple Applications

58

Transitional changes occur in stimulus-responsive hydrogels in reaction to envi-
ronmental factors. The concentration of certain biomolecules such as enzymes can 
cause them to expand, shrink, degrade, or undergo a sol-gel phase transition if there 
is a change shown in the temperature, pressure, ionic strength, and insolvent. This 
type of hydrogels is particularly valuable for therapeutic delivery because of their 
unique ability to perform specialized activities, such as the release of drug and in situ 
gel formation, in response to tiny changes in ambient circumstances.

Stimuli-responsive hydrogels that change structural or mechanical properties in 
reaction to environmental cues/triggers are categorized as vital subgroups in hydro-
gels. These hydrogels are very beneficial in robotics and biological fields. Several 
stimuli including light, temperature, magnetic fields, electric field, pH, and chemical 
and biological triggers could be used to stimulate phase transition or stiffness change 
of these materials implying a wide range of applications in separation, drug delivery, 
sensing, bionic devices, regenerative medicine, and more.

Two types of bio-stimuli called endogenous stimuli that exist naturally within the 
bio-environment and exogenous biocompatible stimuli that activate smart func-
tionalities of the hydrogel system have been garnering attention for the building of 
bio-functional materials. pH value, metal ions, enzymes, redox environment, anti-
gen, and other endogenous stimuli are examples of endogenous stimuli. In wounds or 
bacterial infections, for instance, reactive oxygen species are produced, resulting in 
an oxidative environment; the exocellular pH of tumor tissues is lower than normal 
tissues caused by abnormal metabolism, particularly glycolysis overactivity; and lung 
cancer cells have a particular protein that could be recognized by antibody-function-
alized microgels. The application with the various stimuli is illustrated in Figure 4.

Hydrogels ingrained with efficient cross-linkers or chemical modifications will 
recognize abnormal signals in pathological or wounded tissues and accomplish 
endogenous initiation, resulting in automated and focused behaviors such as drug 
delivery, cell capture, or warning signal output, with proper designing. Light, 
temperature, magnetic fields, electric fields, ultrasonic waves, and other exogenous 
stimuli are examples. Exogenous stimuli-responsive hydrogels, in contrast to endoge-
nous stimuli-responsive hydrogels outlined above, are developed to function remotely 
and non-invasively [20].

It has been found that Magnetic nano-participles embedded in DNA hydrogels 
provide the networks with shape-adaptive and locomotion-controllable features. 
Light-guided fibroblast migration and angiogenesis were achieved using hydrogels 
treated with photo-caged RGD. The sensible integration of endogenous and exogenous 
stimuli-responsive units into a single hydrogel system could provide a comprehensive 
“toolbox” for customizing intelligent materials. The addition of programmable, 
multi-stimulus responsiveness enables the integration of multiple functionalities into a 
single hydrogel system, such as searching, recognizing, and curing. The gelator-gelator 
and gelator-solvent interactions are implicated in the stimuli-response pathway, which 
includes volume change, phase transition, and structural change.

3.5 Nanogels

The nanostructures comprising drug molecules with innovative structures 
represent the new frontier in the biological and medical fields. The application of 
nanogel in various biological fields is shown in Figure 5. The crosslinked polymer 
network with a three-dimensional structure and having a nanoscale size range are 
known to be nanogels. These nanogels can hold a large volume of water but they 
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will not dissolve in an aqueous medium [16]. They are common in spherical shape 
but they can vary in the synthetic strategies [22].

Nanogels have been identified recently by researchers and it has been used as a 
promising tool in response to the critical issues of intracellular delivery: due to their 
peculiar properties, including swelling behavior, nanogels can cross the cellular mem-
brane (clathrin-mediated endocytosis, caveolin-mediated endocytosis, phagocytosis, 

Figure 4. 
Stimuli-responsive hydrogels and their applications [13].

Figure 5. 
Schematic representation of nanogels in the various biological applications (adapted from [21]).
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and macropinocytosis) and release their cargo in the cytosol, avoiding the activation 
of immune responses. These can be fabricated using natural polymers, synthetic 
polymers, or a combination of both. The distinct characteristics of nanogels can be 
varied by their chemical composition [23].

The properties like swelling and encapsulation and the prior response in the 
specifically targeted sites put them in the frontline of drug delivery and gene delivery. 
The nanosized gel can be synthesized by two approaches; top-down and bottom-up. 
Generating nanoparticles from large clusters of particles by different methods (physi-
cal, chemical) is known to be a top-down approach. The imperfections in particle 
surfaces can be a limitation of this method. The designing and arranging of molecules 
by direct polymerization of monomers and assembling of polymer precursors bond-
ing can be the bottom-up approach [24, 25]. In the biomedical application, nanogels 
size distribution with their stability is very important. The stability depends on the 
chemical composition of the polymer matrix and the crosslinking type of the polymer 
chains. In comparing the physical and chemical nanogels, physically crosslinked 
nanogels are weaker and have lesser stability, due to their stability and reproducibility 
the chemically crosslinked nanogels are much more attractive [26].

The schematic representation in Figure 6 shows that under a specific environmen-
tal condition the hydrogel loaded with the drug will start swelling or start shrinking 
and it leads to the release of a drug. This completely depends on the interaction of 
hydrophobic, hydrogen links, complexation, and/or coordination of drug molecules 
with the polymer chain networks [28]. The thermoresponsive polymeric nanogels 
allow the interaction of water molecules with hydrophilic groups help in swelling by 
maintaining its native structure. This occurs in the lower critical solution temperature 
(LCST), the removal of water content occurs during the hydrophobic nature. This 
further decreases the size of nanogel and the drug is released by the triggered temper-
ature stimuli [29, 30]. Nanogels can be used to incorporate small nanosized molecules 
such as drugs and fluorophores, proteins, peptides, nucleic acids. The nanogel can act 
as multi-drug carriers and nanostructured gels can encapsulate multi-agents too.

4. Translation to the clinic research

The vast area of the potential application of hydrogel formulations has overcome 
barriers of in vitro/pre-clinical studies and finally found fit into the market. It is very 

Figure 6. 
The schematic of drug release from the nanogel network (adapted from [27]).
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important to have the uniqueness and the salient feature to cover the clinical-stage 
studies. There is a lot of research going on in the background and some of them are 
in the pre-clinical stage. The time to fabricate these carriers for the delivery was not 
at all wasted and it has all been the best and the most versatile drug delivery. Here, in 
Table 2, the list on the research on different hydrogel carriers for exploring the new 
era of therapeutic delivery is shown.

5. Conclusions

Although myriad chemical moieties of the hydrogel are readily available for drug 
delivery. The specific problem related to hydrogel fabrication is the need to evaluate 
the polymer that can produce versatile hydrogels that is apt for a certain interven-
tion that mandates the final goal of the delivery system and route of administration. 
Understanding the influencing elements that influence swelling behaviors, hydrophi-
licity, biodegradability, biocompatibility, and targetability of the selected polymer 
is necessary for the development of a successful hydrogel-based delivery system. 
Hydrogels as targeted drug delivery have several advantages, including biocompat-
ibility, low toxicity, and good swelling behavior. There have been certain impediments 
in the processing of hydrogels depending on the chemical moieties of the gel-forming 
polymers and the route of administration, some limitations in the delivery of active 
pharmaceuticals, such as slow stimuli-sensitive hydrogel responsiveness, the possibil-
ity of rapid burst drug release, the possibility of drug reactivation, limited hydro-
phobic drug delivery, and low mechanical strength. Thus, the field of nanoscience is 

Study Hydrogel Application Additional effects

(29) Cardiac ECM in PBS Bulk delivery IM Improved cardiac differentiation of 
BADSCs

(30) Transglutaminase cross-
linked gelatin

Bulk delivery IM Improved retention and reduced fibrosis 
compared to ASC in PBS, improved MIT 
assay, decreased ANP and TNP mRNA

(31) Alginate hydrogel Microencapsulation 
IM

Decreased fibrotic area and increased 
infarct thickness

(32) PEG hydrogel Bulk delivery IM Improved retention

(33) RADA hydrogel Bulk delivery IM improved retention; hydrogel effect in 
itself better than BMMSCs; decreased 
fibrosis

(34) Alginate cross-linked 
with calcium glucuronate

Bulk delivery IM No difference in thickness, perfusion, or 
fibrosis

(35) Hyaluronate hydrogel Bulk delivery IM Improved retention, myocardial velocity, 
and strain

(36) RADA hydrogel Bulk delivery IM Decreased collagen content, infarct size, 
number of vessels, and decreased number 
of apoptotic MSCs

(37) TMTD alginate hydrogel Capsules delivered 
epicardially

Only decreased fibrosis in die hydrogel 
group

Table 2. 
Lists of the widespread practical applications of the hydrogel concept that have been translated to the clinical 
level.
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Abstract

Biopolymer based hydrogels are three-dimensional physically or chemically  
crosslinked polymeric networks based on natural polymers, with an intrinsic hydrophilic 
character due to their functional groups. They display high water content, softness, flex-
ibility, permeability, and biocompatibility and possess a very high affinity for biological 
fluids. These properties resemble those of many soft living tissues, which opens up many 
opportunities in the biomedical field. In this regard, hydrogels provide fine systems for 
drug delivery and sustained release of drugs. Moreover, biopolymer based hydrogels 
can be applied as coatings on medical implants in order to enhance the biocompatibility 
of the implants and to prevent medical conditions. In this chapter we review the latest 
achievements concerning the use of biopolymeric physical and chemically crosslinked 
hydrogels as well as hydrogel coatings as sustained drug release platforms.

Keywords: sustained release, drug delivery, biopolymers, hydrogels, hydrogel coating

1. Introduction

Gels can be defined as three-dimensional cross-linked polymeric networks which 
swollen in contact with a liquid. When the polymers forming the gel contain mainly 
hydrophilic functional groups, the liquid that causes the swelling is water, and the 
gel is called hydrogel [1]. Biopolymers are often used for the synthesis of hydrogels as 
the natural composition of the polymer leads to extremely high biocompatibility and 
potential applications in the biomedical field [2].

Hydrogels can be classified as physical hydrogels when the properties of the gel 
depend on chain entanglements and other interactions, mainly hydrogen bonds or 
hydrophobic interactions [3]. In this case, properties are highly dependent on chain 
molecular weight as well as concentration, as mobility of the chains modifies the 
structure of the hydrogel and therefore its physical properties. Water temperature, 
salt content, and pH can also affect the mobility of the chains and interactions and 
must be controlled [4].

Chemically crosslinked hydrogels present a much more stable structure than 
physical hydrogels. In chemical hydrogels, the polymeric chains are covalently bonded 
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using one or more crosslinking agents, using a chemical process [5]. In general, 
crosslinked hydrogels are less biocompatible than physical hydrogels, but this is 
compensated by other advantages: cross-linked hydrogels are insoluble, more stable, 
and rheological properties such as elasticity or viscosity, their pore size, and their 
degradation rate can be more optimized than with physical hydrogels.

Hydrogels can present different physical forms: from macrogels to micro and 
nanogels, which are particulate systems with similar chemical structure but different 
macroscopic size; implantable gels, with strong physical properties, or injectable gels, 
more fluids or composed of nano-microparticles which can pass through a needle; 
hydrogel coatings, where hydrogel nano or microlayer is immobilized on a surface; 
thermoresponsive or pH-responsive gels, where a trigger modulates the sol–gel 
properties, can be easily injected in a liquid form before gelation in physiological 
conditions [6].

Physical properties of physically and chemically crosslinked hydrogels, are similar 
to several soft biological tissues, and therefore they can be used as substitutes or 
supplements when the biological function of these soft tissues is compromised. Such 
hydrogels have been widely used as medical devices for different applications: in trau-
matology, as substitute or supplement of synovial fluid in osteoarthritis; in ophthal-
mology, as a substitute of aqueous humor during in cataract surgery; in esthetics and 
reconstructive surgery, as dermal fillers for rid correction and lipoatrophy for patients 
with VIH; in wound healing, as wound dressings to promote regeneration and healing 
of wounds [7].

The biomedical use of the hydrogels can be expanded by the employ of the 
hydrogels as a sustained release system. Concerning this the controlled release of 
pharmaceutical ingredients leads to important advantages as a control of the biodis-
ponibility, dose control, local delivery and less side effects [8]. This chapter aims to 
cover a general overview concerning the sustained drug release from hydrogels and 
hydrogel coatings. In that regard, Section 1 Introduction presents the topic and outlines 
the content of the chapter; Section 2 Mechanism of drug release form hydrogels, reviews 
the most significant theories on drug release mechanism; Section 3 Drug release from 
physical hydrogels summarizes the recent advances on the area; Section 4 Drug release 
from chemically cross-linked hydrogels revises the latest works on sustained release from 
chitosan, hyaluronic acid and other biopolymers; Section 5 Drug release from hydrogel-
based bioactive coatings introduces the most relevant concepts on drug release form 
coatings; finally Section 6 Conclusion synopsizes the content of this chapter.

2. Mechanism of drug release form hydrogels

The release of drugs from hydrogels can be achieved by different mechanisms 
such as swelling/deswelling, diffusion, and chemical mechanism. As previously 
mentioned, hydrogels are three-dimensional crosslinked polymeric networks that 
swelled in the presence of water. The crosslink can be physical (hydrophobic inter-
actions, electrostatic interactions and hydrogen bonding) or chemical (covalent 
bonding) and is responsible of the network structure of the hydrogel. Such networks 
display open spaces, the size of which is referred to as the mesh size of the hydrogel 
[9]. Importantly, the mesh size of the hydrogels is one of the main parameters that 
affect how drugs diffuse through the hydrogel network, being dependent on polymer 
and crosslinker concentrations, as well as external stimuli. The gelation of hydrogels 
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by polymerization means leads to network irregularities and polymer polydispersity 
upon formation, and as a result, the mesh size is usually heterogeneous. A number of 
approaches exist to determine the mesh size [9].

When the mesh is larger than the drug (rmesh/rdrug > 1), the drug release process is 
dominated by diffusion. Small drug molecules migrate freely through the network, 
and diffusion is largely independent of the mesh size. The diffusivity, D, in this 
situation depends on the radius of the drug molecule (rdrug) and the viscosity of the 
solution (η) via the Stokes–Einstein equation Eq. (1) [10]:

 
6 drug

RTD
rπη

=  (1)

where R is the gas constant and T is the absolute temperature.
When the mesh size is close to the drug size (rmesh/rdrug ≈ 1), the effect of steric hin-

drance on drug diffusion becomes relevant. Finally, for an extremely small mesh size 
and/or very large drug molecules (rmesh/rdrug < 1), strong steric hindrance immobilizes 
the drugs and it remains physically entrapped inside the network, unless the network 
degrades or the mesh size expands in response for example, to external stimuli.

Several methods accompanied by mathematical model development have been 
created in parallel to hydrogel technology, in order to predict drug release from the 
network. The drug release fitting models (i.e. the zero order equation; the first order 
equation; the Higuchi’s equation; the Korsmeyer-Peppas’ equation; the Hixon-Crowell’s 
equation, the Weibull equation, among others) are the most abundant, however, they 
are not predictive but simple mathematical fitting equations. In the last years, mecha-
nistic and statistical models are growing quite fast. Mechanistic models combining the 
mass transport with the system mechanics developed with a “fully coupled” approach 
considers the influence of the mass transport on the mechanics as well as the opposite, 
which makes this approach the only candidate to produce reliable first-principle models.

Statistical models, are receiving a lot of attention due to the consensus of the regu-
latory authority and the possibility to predict the hydrogels behavior, in the analyzed 
design space, regardless the complicate phenomenology, with quick and inexpensive 
experimental designs [11]. Recently, Wu and Brazel developed a method for the 
simulation of water uptake profile and drug release from homogeneous hydrogels. 
This model successfully predicted the initial burst release observed experimentally 
[12]. Sheth et al. developed a mathematical and computational model using time 
snapshots of diffusivity and hydrogel geometry data measured experimentally as 
inputs to predict release profiles of two model proteins of varying molecular weights 
from degradable hydrogels [13].

3. Drug release from physical hydrogels

Physical hydrogels are those formed by reversible and dynamic crosslinks 
grounded on noncovalent interactions. In this regard the network of physical hydro-
gels is reversibly held together by molecular entanglements, resulting from a dynamic 
competition between pro-assembly forces (for example, hydrophobic interactions, 
attractive electrostatic forces and hydrogen bonding) and anti-assembly forces (for 
example, solvation and electrostatic repulsion [3]. These interactions that occur in 



Hydrogels - From Tradition to Innovative Platforms with Multiple Applications

70

this type of hydrogels are usually weak. However, they are numerous and contribute 
to the presence of complex behaviors.

Polyampholytes may also be used to construct physical hydrogels, with ran-
domly dispersed cationic and anionic groups. The randomness leads to a wide 
distribution of strengths: The strong bonds serve as structural crosslinks, impart-
ing elasticity, whereas the weak bonds reversibly break and re-form, dissipating 
energy. Consequently, physical hydrogels have reversible liquid to solid transition, 
also called sol–gel transition, in response to different changes in environmental 
conditions such as temperature, ionic strength, pH, or others [14]. Since the  
interactions depend significantly on external stimuli, they allow hydrogels to  
be highly versatile concerning the environment, unlike covalently bonded  
materials [15].

Physical hydrogels can be engineered to undergo spontaneous biodegradation 
under physiological conditions, which constitutes another way of controlling the 
release of active molecules [16]. Degradation is typically mediated by hydrolysis 
[17, 18] or enzyme activity [19]. The erosion or loss of polymer mass through degrada-
tion, can take place simultaneously in the bulk or on the surface of the hydrogel. For 
a variety of hydrogels, the bulk and surface erosion can be tuned to obtain desirable 
release kinetics ranging from weeks to months. Bulk erosion occurs because of the 
permeability to water or degrading enzymes when the rate of diffusion of these 
agents is rapid compared to the rate of bond degradation. Surface erosion, in contrast, 
results when the rate of bond breakage is more rapid than the rate of enzyme or water 
diffusion from the exterior into the bulk of the gel [13].

Representatives of reversible physical hydrogels are the shear-thinning hydrogels 
which flow like low-viscosity fluids under shear stress during injection, but quickly 
recover their initial stiffness after removal of shear stress in the body [3]. Alginate 
hydrogels are shear-thinning, formed via electrostatic interactions between alginate 
and multivalent cations (for example, calcium and zinc). They can be readily injected 
via a needle after gelation in a syringe and have been used to achieve sustained local 
delivery of bioactive vascular endothelial growth factor (VEGF) in ischemic murine 
hindlimbs for 15 days [20, 21].

3.1 Peptide based physical hydrogels

Another example of physical hydrogels forming materials are the self-assem-
bling peptide systems, where amino acid-based chains undergo the sol–gel transi-
tion without the need of any chemical crosslinking agent. This property makes 
them useful materials to safely in situ encapsulate living cells or sensitive drugs, 
among others. In addition, this peptide-driven self-assembly into physical hydro-
gels is highly specific, sourced mainly by the biorecognition of peptide segments 
scattered among the macromolecular chains. They form dynamic well-defined, 
hierarchically organized 3D structures with reversibility of the assembly and disas-
sembly processes [22]. Another example are elastin-like polypeptides cross-linked 
via electrostatic interactions between their cationic lysine residues and anionic 
organophosphorus cross-linkers [23]. Non-covalent interactions between heparin 
and heparin-binding peptides and proteins can also be used to form hydrogels for 
growth factor delivery [24, 25].

Peptide self-assembly can also be achieved by taking advantage of interactions 
between metal cations and amino acid residues of the peptides. This was demon-
strated with gelation of a β-sheet-rich fibrillar hydrogel with zinc ions [26].
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3.2 Chitosan based physical hydrogels

Additional interesting example of physical hydrogels for drug release applications 
are pectin-chitosan hydrogels, which showed to be thermo-reversible and capable 
of prolonging the release of three different model hydrophobic drugs: mesalamin, 
curcumin and progesterone. In vitro drug-release studies revealed that lower percent-
age of pectin in the hydrogel led to slower release rates owing to smaller mesh size 
arising from stronger interactions between the polyelectrolytes. Also, the release was 
slower when the total polymer concentration was higher. Finally, a slower release in 
PBS solution compared to HCl solution was attributed to the fact that at pH 7.4, both 
polymers are charged, with strong electrostatic forces and consequently, smaller mesh 
size. At the molecular scale, the polymer chains can possess abundant binding sites 
for the drugs. DSC and FTIR analysis exhibited some interactions between the drugs 
and both chitosan and pectin that can contribute to the prolonged release of the drugs 
[27]. Another in situ-gelling hydrogel was formed with a polyelectrolyte complex, 
which showed a sustained release of insulin and avidin proteins [28].

4. Drug release from chemically cross-linked hydrogels

Crosslinking of biopolymers provide a stable and non-soluble biomaterial which 
preserves the properties of the original biopolymer and displays a longer durability. 
Consequently, the half-life time of the hydrogels is increased when performing its 
biological application [5].

Usually, biopolymer crosslinking can be accomplished in two ways: by direct 
addition of a cross-linking agent followed by formation of a the three-dimensional 
(3D) network, or by chemical modification of the biopolymer chains with functional 
groups suitable for crosslinking with a compatible cross-linker. The first approach 
takes advance of the functional groups already present in the biopolymer, typi-
cally amine (NH2), hydroxyl (-OH), carboxylic acid (-COOH), amide (-CONH-, 
-CONH2), thiol (-SH) or sulfate (-SO3H) groups [29]. Examples of cross-linkers 
are dialdehyde derivatives, NH2-PEG-NH2 molecules, COOH-PEG-COOH deriva-
tives, diglycidyl ether compounds, vinyl sulfone groups, etc. These agents cross-link 
through Michael-type addition, thiol exchange/disulfide cross-linking or Schiff-base 
processes among others [30]. In some case the addition of coupling agents such as 
carbodiimides derivatives, N-hydroxysuccinimide (NHS) or N-hydroxybenzo triazole 
(HOBt), is required for the cross-linking. In the second approach new active func-
tionalities are created in the biopolymer [31, 32] which are appropriate for a broad 
range of cross-linking processes such as azide–alkyne cycloadditions, Diels–Alder 
reactions, ultraviolet (UV) photoinitiated crosslinking, (meth)acrylation reactions 
[5, 32]. Examples of cross-linkers are oxanorbornadiene, cyclooctyne, maleimide, 
trans-cyclooctene, norbornene, PEG-di(meth)acrylates among others.

The crosslinking of biopolymers produces hydrogels with elastic and deformable 
structures and great topochemical accessibility which is able to accommodate differ-
ent kind of active molecules, such as drugs, for sustained release (Figure 1).

4.1 Chitosan based chemically crosslinked hydrogels

Chitosan (CHI) is a linear polysaccharide formed by arbitrarily allocated 
β-(1 → 4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine 
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(acetylated unit). Chitosan is one of the most versatile biopolymers due to its unique 
properties: biodegradability, biocompatibility, non-toxicity, antioxidant, anti-inflam-
matory, antifungal, and antibacterial “contact killing” [33]. Therefore the applicabil-
ity of this polysaccharide extends to a wide range of various biomedical areas, such as 
cosmetics, drug delivery, and tissue engineering, among others [34].

In this regard a covalently crosslinked chitosan hydrogel was produced Diels Alder 
reaction of furan and maleimide functionalized CHI. The resulting biopolymer held 
the typical pH sensitivity and antibacterial properties of non-functionalized CHI. 
The drug delivery capabilities of this system were evaluated with model drug antibi-
otic chloramphenicol (ClPh). Drug release experiment did not show an initial burst, 
which indicated that the ClPh was successfully encapsulated, whereas it displayed 
a sustained delivery of the drug with a complete release of the total amount of drug 
loaded (2.61 ± 0.036 mg ClPh/g hydrogel) after 4 hours [35].

CHI was also crosslinked with genipin (GP) to obtain biocompatible, antibacte-
rial and anti-inflammatory hydrogels with wound healing properties. Sustained 
release of acetylsalicylic acid (ASA), cefuroxime (CFX), tetracycline (TCN) and 
amoxicillin (AMX) from the hydrogels displayed a Pharmacologic Half Life t1/2 
values of 88 h, 62 h, 135 h, and 240 h for ASA, CFX, TCN and AMX respectively. 
These antibiotic releases generated antibacterial activity against Staphylococcus 
aureus and Escherichia coli that reached almost 100% bacterial reduction and 
an antibacterial efficacy R > 2. The synergistic anti-inflammatory activity was 
confirmed by the reduction in the amount of pro-inflammatory cytokines when 
ASA was mixed with CFX (5.39 ± 0.81 ng·mL−1 TNF-α), TCN (4.70 ± 0.21 ng·mL−1 
TNF-α and 49.06 ± 9.64 ng·mL−1 IL-8), and AMX (2.28 ± 0.36 ng·mL−1 TNF-α, 
14.84 ± 5.57 ng·mL−1 IL-8, and total IL-6 removal) [36].

Moreover, dialdehyde-β-cyclodextrin (DA-β-CD) crosslinked carboxymethyl 
chitosan (CMCS) hydrogels were prepared from carboxymethyl chitosan (CMCS) 
and periodate oxidized β-CD. Phenolphthalein (PhP), a formerly used laxative agent, 
[16] was selected as a model molecule to investigate the drug loading and sustained 
release capabilities of such hydrogels. PhP release results show that increasing cross-
linking rate between DA-β-CD and CMCS delays the drug liberation process. On the 
other hand, DA-β-CD/CMCS system displays faster releases, with a 50% release in 2 h 

Figure 1. 
Left: Image of a hydrogel based on crosslinked hyaluronic acid. Right: Scanning electron microscopy (SEM) 
picture of the hydrogel. Figure produced by the authors.
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and about 90% within 12 h, compared to CMCS crosslinked with glyoxal dialdehyde 
which only releases 19% of PhP after 24 h [37].

CHI based hydrogels (N-succinyl chitosan-g-Poly(acrylamide-co-acrylic acid) 
were synthesized by free radical mediated cross-linking of N-succinyl chitosan, 
acrylamide and acrylic acid [38]. Drug delivery capabilities of the system were tested 
by encapsulation of theophylline, a phosphodiesterase inhibiting drug used for the 
treatment of respiratory diseases. The drug release experiments showed a pH depen-
dent behavior. In this regard, at pH 1.2 the theophylline released rate was found to 
be between 14 and 24% whereas at pH 7.4 the release of the drug reached 67–93%. 
CHI itself has been used as a cross-linking agent for poly(acrylic acid). The result-
ing hydrogels display pH sensitive properties that have been exploited to control the 
release of antibiotic amoxicillin and anti-inflammatory drug meloxicam. Concerning 
this, the release rates of these molecules rise with increasing pH due to the disrup-
tion of hydrogen bonds between the hydrogel components and the drugs. As a result 
30%, ∼60% and ∼80% of amoxicillin is released after 800 min at pH 1.2, 6.8 and 7.4, 
respectively. The corresponding release data for meloxicam are ∼20%, ∼70% and 
∼90% at pH 1.2, 6.8 and 7.4, respectively [39].

4.2 Hyaluronic acid based chemically cross-linked hydrogels

Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan constituted by repeat-
ing disaccharide β-1,4-D-glucuronic acid–β-1,3 N-acetyl-D-glucosamine units that 
form hydrogels in aqueous solutions. This naturally occurring polysaccharide is found 
in connective tissues, skin, and synovial joint fluids of the human body. HA displays 
bio-functionality, biocompatibility, and physicochemical properties, such as visco-
elasticity and high-water retention. As a result hyaluronic acid is used for the treat-
ment of dry eye disease, dermatological conditions as well as a as a viscosupplement 
for the treatment of osteoarthritis [5].

Biocompatible antibacterial hydrogels of HA were synthetized by crosslinking HA 
solution with divinyl sulfone (DVS) followed by loading with antibiotic molecules. 
This way cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) loaded 
hydrogels displayed in vitro antibacterial activity against S. aureus. The antibacterial 
properties of the hydrogels were synergically enhanced by merging antibiotics with 
anti-inflammatory agent acetyl salicylic acid (ASA). Consequently it was observed 
an increase in the log10 reduction value (R) from 3.2, in the absence of ASA, to R 5.55 
when TCN or CFX were combined with ASA [40].

Hyaluronic acid was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) and 
loaded with quetiapine (QTP), an antipsychotic drug, and quercetin (QCT), a hyal-
uronidase (HAase) inhibitor that decreases the biodegradation of HA. Subcutaneous 
injection in rats of the system showed that the cHA hydrogel with QCT exhibited a 
lower maximum QTP concentration (Cmax. 782.6 ± 174.4 ng/mL) and longer half-
life (t1/2 23.5 ± 2.7 h) and mean residence time values (MRT 30.9 ± 3.9 h) compared 
to the hydrogel without QCT (Cmax. 1827.6 ± 481.3 ng/mL, t1/2 13.4 ± 4.9 h, MRT 
14.3 ± 4.8 h). These results demonstrated that HAase containing HA hydrogels are 
suitable systems for sustained drug delivery applications [41].

A thiol functionalized hyaluronic acid HA-SH was used, together with DMSO, 
for the fabrication of HA-SS-HA hydrogels. This system was loaded with antitumoral 
drugs such as doxorubicin (DOX), zinc phthalocyanine (ZnPc), and indocyanine 
green ICG, for implant post peritumoral administration. In vivo experiments vali-
dated that drug loaded hydrogel implant possessed satisfactory biocompatibility and 
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succeeded in long term sustained release of drugs. As a result the system to ensured 
high tumor aggregation efficiency and adequate tumor suppression [42]. Hyaluronic 
acid (HA) functionalized with thiol and hydrazide moieties has been combined with 
oxidized sodium alginate (ALG)to produced cross-linked hydrogels (HA/ALG). 
These materials display tunable physicochemical properties and drug release behavior 
as a function of the HA/ALG precursor concentration. In this regard for HA2/ALG2 
(2% w/v), HA3/ALG3 (3% w/v) and HA4/ALG4 (4% w/v) the yield stress of hydro-
gels were 1724, 4349 and 5306 Pa, and the degradation percentage were about 64%, 
51%, and 42% after 35 days incubation, respectively. Thus, in vitro cumulative release 
of Bovine serum albumin (BSA) for HA2/ALG2, HA3/ALG3 and HA4/ALG4 were 
79%, 72%, and 69% respectively for a 20 day release assay [43].

Near-infrared (NIR) light-triggered and reactive oxygen species (ROS)-
degradable hyaluronic acid hydrogels (HPTG) were synthesized through the 
formation of dynamic covalent acylhydrazone bonds. Such system was loaded with 
photosensitizer protophorphyrin IX (PpIX) and anticancer drug doxorubicin (DOX), 
to obtain a with light-tunable on-demand drug release for chemo-photodynamic 
therapy. In this regard NIR light irradiation generated ROS that induced the required 
degradation of hydrogel and subsequent on-demand DOX release for cascaded che-
motherapy. In vivo imaging-guided antitumor study using 4 T1 tumor- mouse model 
demonstrated that the treatment of DOX-loaded HPTG with laser irradiation nearly 
accomplished the suppression of tumor growth without noticeable regrowth [44].

Tyramine functionalized HA solutions were combined silk fibroin (SF) to produce 
a series of HA/SF hydrogels for application in cartilage tissue engineering an and drug 
delivery. These hydrogels were loaded with Vanillic acid (VA) or Epimedin C (Epi C), 
both with anti-catabolic, anti-inflammatory and anabolic effects on human cartilage 
cells. Hydrogels with HA20/SF80 polymeric ratios displayed the longest and the most 
sustained release profile with 70.1% release of VA after 60 days of release assay and 
54% release of Epi C after 7 days of release. Such behavior makes HA20/SF80 hydro-
gels a prospective material for the treatment of osteoarthritic joint conditions [45].

Polyethylene glycol (PEG)-HA was modified also with a small biologically active 
molecule, as dopamine, to fabricate a HD-PEG polymer. This polymer was crosslinked 
with α -cyclodextrin (α-CD) to afford a polypseudorotaxane supramolecular complex 
HD-PEG/α-CD. The system was loaded with poly(lactic-co-glycolic acid) (PLGA)/
donepezil microspheres (PDM) in order to evaluate the drug delivery capabilities 
of the system. The released amounts of donepezil, a drug used for the treatment of 
mental conditions, reaches 39.9% and 56.7%, after 7 and 14 days respectively. These 
results demonstrate that the HD-PEG/α-CD/PDM system could be used for the 
subcutaneous injection of long acting donepezil [46]. Similarly, poly(L-lactide-co-
glycolide) (PLGA) – dexamethasone (DEX) nanoparticles PLGADEX were combined 
with crosslinked HA for drug release applications. In this case the chemical crosslink-
ing occurred doubly, by mixing amino-hyaluronic acid and aldehyde-hyaluronic acid 
in the presence of genipin as a cross-linker agent. Drug delivery experiments showed 
full DEX release after 2 months for a HPLGADEX hydrogel [47].

Oxidized hyaluronic acid (OHA) was combined with carboxymethyl chitosan 
(CMC) via Schiff base reaction to fabricate a hydrogel (OHA-CMC) with antibacte-
rial and hemostatic activities. The drug delivery potential of the system was exploited 
by encapsulating PLGA-PEG nanoparticles of curcumin (CNP) and epidermal 
growth factor (EGF) that afforded a OHA-CMC/CNP/EGF hydrogel. This system 
displayed outstanding anti-inflammatory, antioxidant and cell migration-promoting 
effects in vitro and improved wound healing in vivo with optimal granulation tissue 
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formation, re-epithelialization, and skin appendage regeneration. The cumulative 
release percentage of CNP reached 55.3% on day 1, 75.5% on day 3 and ~ 90% after 
6 days of release experiment. EGF displayed a 28.6% of release on day 1, 51.3% on day 
2 and 88.1% in 9 days. These results demonstrate the potential of the hydrogel for the 
treatment of diabetic wound healing [48].

Finally, HA has been used as well as a biopolymer for the fabrication of a 3D print-
able dual-network hydrogel with drug delivery capabilities. For that acrylamide-mod-
ified HA was synthesized and subsequently mixed with folic acid and Fe3+ to form 
a physical crosslinking network. Afterwards acrylamide residues were polymerized 
by ultraviolet radiation affording a material suitable for wound dressing with high 
elasticity and fatigue resistance. The drug delivery properties were investigated using 
acetylsalicylic acid (ASA) as a drug model and resulted in a pH responsive hydrogels 
with the sustained release of ASA over 300 hours [49].

4.3 Other chemically cross-linked biopolymers

Lignin is a sustainable biopolymer derived from lignol precursors that has been 
historically related to the paper industry. Hydrogels of hardwood lignin (TCA) have 
been synthesized through crosslinking with poly(ethylene) glycol diglycidyl ether 
(PEGDGE) and loaded with paracetamol for drug release applications. Here, decreas-
ing amounts of crosslinker diminishes the interaction paracetamol - hydrogel network 
and, as a result, the release of paracetamol increases. In this regard, hydrogels produced 
with a lignin:PEGDGE 1:1 ratio displayed up to 30% of paracetamol release after 120 h 
assay. The release data follow a pseudo-Fickian behavior of diffusion when fitted to the 
Korsmeyer-Peppas model [50]. Furthermore, lignin polymers have been mixed with 
cellulose to generate drug delivery systems. Mechanical and sustained release perfor-
mances of these gels are tailored by varying the ratio of the precursors: cellulose, hard-
wood lignin (TCA), and epichlorohydrin (ECH) cross-linker. TCA containing hydrogels 
display the best release rate (>90%) for drug model paracetamol comparing to the 
pure cellulose hydrogels (~40%) after 7 hours of release experiment. This behavior is 
attributed to the lower affinity of paracetamol for lignin compared to cellulose [51].

Cellulose itself have been used for the fabrication of hydrogels with drug release 
properties. In this regard, carboxymethyl cellulose (CMC) functionalized with 
β-cyclodextrin and nucleic acids have been crosslinked by using of arylazopyrazoles 
(AAPs) and loaded with anti-cancer molecule Doxorubicin (DOX). The resulting 
hydrogel behaves as a functional matrix for the UV light mediated ON/OFF release DOX. 
Irradiation of the matrix provokes the photoisomerization of the trans-AAP to cis-AAP 
residues and the generation of the low-stiffness hydrogel that releases DOX. Therefore, 
the liberation of the DOX could be changed between ON and OFF states by oscillating 
the photoisomerization of the hydrogel by employing UV/Vis irradiation [52].

Xanthan is a heteropolysaccharide produced by fermentation from the bacteria 
Xanthomonas campestris with applications as thickening agent in food industry as well 
as pharmaceutical aid and release retarding polymer in drug delivery systems [53]. 
Hydrogels form this biopolymer have been produced by crosslinking oxidized xanthan, 
with a PEG hydrazine derivative through pH-responsive hydrazone linkages. The drug 
delivery properties of the hydrogel were assessed by performing release studies of the 
antitumoral drug Doxorubicin (DOX), at pH 5.5 (tumoral) and 7.4 (physiological). At 
pH 5.5 the cumulative release of DOX from 3, 4, and 5% hydrogels was 81.06, 61.98, 
and 41.67% respectively whereas the release at pH 7.4 was 47.43, 37.01, and 35.34% 
after 30 days of assay. Moreover DOX-loaded hydrogels possessed cytotoxicity against 
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A549 cells after exposure to DOX containing released media [54]. Curdlan is another 
example of polysaccharide produced by fermentation and with applications in the food 
industry. Phosphorylated curdlan (PC) was crosslinked with,4-butanediol diglycidyl 
ether (BDDE) and loaded with tetracycline (TCN) to fabricate hydrogels with drug 
delivery applications. Drug release profiles at equilibrium release (3.5 h), pH 6.8, 37°C 
reached 87% for hydrogels produced exclusively from phosphorylated curdlan (PC), 
whereas release from curdlan hydrogels achieved 48% of release [55].

Casein is a proline-rich, open-structured protein found in raw milk. It displays high 
hydrophilicity, good biocompatibility and a lack of toxicity that makes of it a potential 
candidate for hydrogel development. Casein can be chemically cross-linked with 
enzymes such as microbial transglutaminase (MTG). This feature was utilized to pro-
duced crosslinked casein -γ-polyglutamic acid (PGA) hydrogels in 1/5 and 1/9 ratio. Drug 
release experiments showed that both composition displayed similar release rate values 
for aspirin (~ 100% after 10 h), while 1/9 hydrogels possessed a higher release rate for 
vitamin B12, ~100% after nearly 12 h versus ~20% for 1/5 casein/γ-PGA hydrogels [56].

5. Drug release from hydrogel-based bioactive coatings

Historically, the development of medical implants has been a great concern 
for biomedical community. Besides, their need has risen dramatically due to the 
increased number of surgical procedures that are predicted to be even higher in 2030 
[57]. Thus, improving the performance of implantable biomaterials has become a 
high-priority trend, which is reflected in the large number of research realized to 
successfully meet the upward demand [58].

Implantable medical devices (e. g. coronary stents, cardiac pacemakers, prosthe-
ses, insulin pumps) are classified in four main groups: ceramics [59], polymers [60], 
composites [61], and metals [62]. Among them, metallic biomaterials as titanium and 
its alloys are of outmost interest thanks to their inert chemical and biological behavior 
in vivo [63]. Even so, their bioactivity can be improved creating coatings by surface 
modification techniques and thereby, add other beneficial properties [64].

The use of these bioactive coatings entails the development of an improved version 
of bioactive materials that modulates biological systems response by the establish-
ment of interactions with adjacent tissues and bones [65]. Nevertheless, these coatings 
require the most suitable physicochemical, mechanical, and biological functionality for 
a successful implantation and integration so as not to produce any counterproductive 
disorder in humans [66]. Therefore, it is imperative to develop functional bioactive coat-
ings onto the surface of biomaterials (Figure 2, produced by the authors) that combine 
biocompatibility [67], antibacterial [68], anti-inflammatory [69], self-healing [70], 
wound healing [71], bone tissue engineering [72], and osseointegration [73] properties.

Such features can be incorporated onto the surface of biomaterials by the use 
of biopolymer-based coatings, mostly based on hyaluronic acid and chitosan [74]. 
Moreover, these coatings acquire hydrogel-like three dimensional microstructure after 
crosslinking for bioactive agents delivery applications (Figure 3, produced by the 
authors). In such manner, bioactive properties that already possess biomaterials can 
be upgraded or even provide novel outstanding properties [75]. Specifically, hydrogel 
coatings take advantage of hydrogels peculiar ability of releasing in a controlled 
space–time manner to the therapeutic target the entrapped bioactive agents (drugs, 
proteins, peptides, growth factors, inorganic or polymeric nanoparticles, and nucleic 
acids) through their polymeric network [76].
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Bioactive agents controlled delivery reduces side effects in patients undergoing 
implant procedures. In addition, highly stable (from hours to months) hydrogel 
coatings with great loading ability provide a not sudden, uniform, and prolonged 

Figure 2. 
Bioactive properties of functional hydrogel coatings for biomaterials successful implantation. Figure produced by 
the authors.

Figure 3. 
Bioactive agents loading and controlled release ability from hydrogel-based coatings. Figure produced by the 
authors.
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release of specific low- to high-doses [77]. This way, therapeutic effect of bioactive 
substances is extended, and the over-excessed concentration peaks of conventional 
methods are diminished. These features endow hydrogel coatings with privileged 
pharmacokinetic profiles, which can be modulated for personalized therapies [78]. 
Further, hydrogel coatings do not need to modulate specific linkages to release bioac-
tive agents since their release mechanisms are mainly governed by simple diffusion, 
swelling, and degradation processes [79].

Nowadays, researchers are focusing their attention is the hinder of hydrogel 
coatings attachment to surfaces, which occurs due to hydrogels excessively huge 
swelling and macroscale thickness. One promising alternative approach to create 
highly adhesive hydrogel coatings with strong and resistant hydrogel-surface attach-
ment is the in situ hydrogel crosslinking onto the surface of biomaterials (Figure 4B, 
produced by the authors) [80]. This way, hydrogel crosslinking and hydrogel coating 
formation occurs almost at the same time, and thereby, all the active groups available 
in the structure of biopolymers react equitably with crosslinking agent and surface. 
Conversely, the conventional strategy of first synthesizing hydrogel followed by cova-
lent grafting to the surface (Figure 4A, produced by the authors) limits hydrogel-sur-
face adhesion since hydrogel formation consumed almost entirely reactive functional 
groups and therefore, few of them remain available for the subsequent linkage 
formation the surface. Additionally, although this method requires purification steps 
to eliminate toxic unreacted monomers, crosslinkers and initiators, common dialysis 
processes are used to easily remove these harmful molecules from coatings before 
their biomedical real-life application [1].

6. Conclusions

The number of works related to the development of novel biopolymer-based 
hydrogel systems, mainly those synthesized with hyaluronic acid and chitosan, 

Figure 4. 
A) Conventional and B) in situ crosslinking strategies to form hydrogel coating onto the surface of biomaterials. 
Figure produced by the authors.
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that promote the sustained release of bioactive agents increases year by year. In the 
current chapter we have summarized the recent accomplishments of biopolymer 
based physical and chemically crosslinked hydrogels, as well as hydrogel coatings for 
drug delivery and sustained release applications. The future perspectives in this field 
involve the development of hydrogel based medicines with specific temporal and 
spatial controlled release of drugs. Such medicines afford dose control, local delivery 
and reduced side effects that increase the efficacy and security of the treatment and 
the adherence of the patient to it. This strategy will lower pharmaceutical costs and 
improve the quality of life of the patient and the society overall.
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Chapter 6

Hybrid Hydrogels with  
Stimuli-Responsive Properties to 
Electric and Magnetic Fields
Jose Garcia-Torres

Abstract

Hydrogels are a promising type of soft material featuring great similarity to 
biological tissues due to their inherent characteristics, such as high-water content, 
flexibility, softness, or low elastic modulus. Imparting multifunctionality to hydrogels 
to be triggered by external stimuli is considered to have a high potential for innovative 
application in the biomedical field by regulatory agencies, such as FDA and EMA. 
Thus, functional hybrid systems based on the combination of nanomaterials and 
hydrogels are a new class of materials offering new opportunities for living organ-
isms-machine interfacing for application in a wide variety of fields ranging from 
biomedical engineering to soft robotics, soft electronics, environmental or energy 
science. The objective of this chapter is to review the latest advances in multifunc-
tional hybrid hydrogels with responsiveness to electric and magnetic fields and with 
applications in the biomedical field.

Keywords: hydrogels, nanomaterials, hybrid composites, stimuli-responsive,  
electric and magnetic field

1. Introduction

Human body is a complex system where multiple processes and reactions take 
place simultaneously to give an efficient system. A lot of functions in the body are 
regulated by chemical substances (e.g., proteins) but also by physical (e.g., electric 
fields, temperature, light, etc.) and mechanical stimuli, such as neuronal communica-
tion, embryo development, tissue repair after an injury, or heartbeat [1–3]. Scientists 
and engineers have been inspired by the natural world in general, but in the human 
body in particular, to develop materials with new functionalities and unique skills 
[4, 5]. Recently, hydrogels have been revealed as a promising new class of materials 
due to their intrinsic properties, such as high-water contents, high porosity, flex-
ibility, or biocompatibility, showing great similarities to biological systems as a result 
of the 3D porous polymeric structure [6, 7]. Hydrogel flexibility and elasticity are 
important to diminish the mechanical mismatch with living systems; meanwhile, 
the high-water contents provide a humid environment rich in ions, such as biological 
media. Hydrogels also show some other interesting properties, such as self-healing 
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and self-adhesive capacity, biocompatibility, and biodegradability [8, 9]. For all those 
reasons, hydrogels have been suitable for different biomedical applications, such as 
wound healing [10], passive drug delivery [11], or contact lenses [12]. However, one 
of the main drawbacks of hydrogels is the lack of bioactivity.

To overcome hydrogel’s inertness, hydrogels can be successfully modified with 
nanomaterials (e.g., metallic nanoparticles and carbon nanomaterials) to develop 
smart nanocomposite hydrogels with improved functionality [13–15]. Thus, nanoma-
terials can improve the mechanical properties of the nanocomposite hydrogels (e.g., 
stiffness, toughness, and ductility) but also confer physical properties (e.g., electrical 
conductivity, magnetism, thermal properties, etc.) to be able to respond to different 
stimuli, such as electric and magnetic fields, temperature, pH, light or biomolecules, 
among others. Hydrogel’s response is based on phase changes, change in stiffness, or 
change in volume in response to those stimuli [16]. These nanocomposite hydrogels, 
named as smart, intelligent, or stimuli-responsive, are being applied in a wide range 
of applications including bioelectronic devices (e.g., biosensors) [17, 18], energy and 
environmental science [19, 20], soft robotics [21, 22], or regenerative medicine  
[23, 24], with promising advances in all those fields. Moreover, these stimuli-respon-
sive hydrogels show the capacity to respond in a reversible and controllable way to 
different stimuli but also to adapt and conform onto curvilinear and dynamic surfaces 
improving their performance [25].

Due to the different length scales and physicochemical properties of the two 
main components of the stimuli-responsive composites—hydrogels, nanomaterials-, 
hybrid hydrogels with variable and tunable designs are being possible. Hydrogels 
have similar mechanical properties to biological tissues and they also mimic sev-
eral features of the extracellular matrix. They also have compliant and permeable 
structures that can be modified to suit the requirements to create not just a physical 
but also a chemically favorable environment [6, 7]. To obtain the characteristic 
three-dimensional hydrogel networks, with the abovementioned innate properties 
making them very interesting in comparison to other polymer groups, it is required 
to transform the liquid viscous precursor solution to the final gelled material by 
inducing crosslinking. The liquid-gel transition can be achieved either via physi-
cal (e.g., ionic crosslinking) or chemical (e.g., photo-crosslinking), leading to the 
formation of non-covalent and covalent hydrogels, respectively. Moreover, hydrogels 
can be classified as natural and synthetic depending on the source used to fabricate 
them [26]. Natural polymers have high interest due to their inherent biocompat-
ibility, low toxicity, and biodegradability. There are two main types, polysaccharides 
and fibrous proteins that are both components of the extracellular matrix, such as 
alginate (Alg), chitosan (CS), or collagen (Col), among others. Synthetic polymers, 
such as poly(ethylene glycol) (PEG), poly-(N-isopropylacrylamide) (PNIPAAM), 
poly(vinyl alcohol) (PVA), or poly(hydroxyethyl methacrylate) (PHEMA), have 
controllable and good mechanical properties but they lack bioactivity to promote 
cell-material interaction, the reason why they are required to be modified. On 
the other hand, the nanometric size of nanomaterials (<100 nm at least in one 
dimension) confers them higher specific surface areas compared to their bulk 
counterparts and very unique physical properties as they are size-dependent, such 
as the electronic, magnetic, and optical properties, due to the quantum size effect 
[27]. Nanomaterials are very versatile since they can be synthesized using differ-
ent materials (e.g., metals and metal oxides, carbons, polymers, etc.), sizes (e.g., 
0–100 nm), and shapes (e.g., nanoparticles, nanowires, nanotubes, 2D layers, etc.) 
and can be modified by combining different materials (e.g., core-shell structures) 
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or functionalized with biomolecules (e.g., peptides, enzymes) [28]. However, some 
requirements are needed for their application in the biomedical field, such as bio-
compatibility, non-cytotoxicity, and stability in biological media [29].

Stimuli-responsive hydrogels are able to respond to different stimuli that can be 
classified as endogenous—pH, enzymes, antigen—or exogenous—light, electric 
field, magnetic field—depending on if they are present at the implantation site or 
not, respectively. However, the most common form of classification is as chemical 
or physical stimuli if the changes in the hydrogels are induced by chemical entities 
(e.g., molecules and biomolecules) or physical variables (e.g., temperature, light, 
electricity, etc.). Chemical stimuli include molecules and biomolecules present in the 
environment where the hydrogel will be located. For example, reactive oxygen species 
(ROS) are generated in wounds, bacterial infections, or tumors creating a more 
oxidation environment. Or pH values are lower in cancerous cells than in normal 
cells due to abnormal metabolism. Thus, chemically responsive hydrogels must be 
designed to respond to changes in those (bio)molecules that sometimes are very 
low, making the development more difficult. Meanwhile, physical stimuli include 
magnetic and electric fields, temperature, light, or ultrasounds. Among them, electri-
cally- and magnetic-responsive hydrogels have been widely researched as they have 
the advantage to be remotely and non-invasively operated even in narrow and small 
areas. Moreover, the use of adjustable electric (e.g., voltage) or magnetic (e.g., field 
intensity) signals as stimulation sources make them even more interesting to develop 
hydrogels with reversibility and controllability compared with, for example, pH or 
temperature-responsive hydrogels. Thus, stimuli-responsive scaffolds capable of 
responding to either electric or magnetic fields have emerged as a promising technol-
ogy for biomedical applications, including drug delivery systems, tissue regeneration, 
or soft actuation. For this reason, in this chapter, the author will focus on electrically- 
and magnetic-responsive hydrogels.

2. Electrically-responsive hydrogels

Electroresponsive hydrogels have been the most studied among the physically 
stimuli-responsive hydrogels due to their broad applicability in many fields, such 
as bioelectronics (e.g., sensors), bioengineering (e.g., drug delivery systems and 
actuators), tissue engineering (e.g., bone regeneration), or soft robotics applications. 
They are able to undergo changes in their shape and size when swell/deswell under 
the application of an electric field. Very briefly, the deformation generated by the 
electric field can be explained by a combination of Coulombic, electrophoretic, and 
electroosmotic interactions. As a result of the migration of mobile ions from the elec-
trolyte under the applied field, the generated osmotic pressure increases or decreases 
causing hydrogel swelling or deswelling, respectively [30, 31]. Electrical conductiv-
ity has been conferred to the hydrogel mainly following two approaches—(i) The 
incorporation of conductive nanofillers, and (ii) the preparation of intrinsic conduc-
tive hydrogel networks. Multiple electroconductive fillers have been tested, such as 
metallic nanomaterials (e.g., nanoparticles (NP), nanorods (NR), and nanowires 
(NW)), made of noble metals, such as Au, Ag or Pt, carbon nanomaterials (e.g., car-
bon nanotubes (CNT) and graphene) or conducting polymers (CP) (e.g., polypyrrole 
(PPy), polyaniline (PANI), poly(3,4-ethylenedioxyhiophene) (PEDOT)) [32, 33]. 
Any of those materials can confer, apart from electrical conductivity, many other 
properties to develop multifunctional hydrogels. More recently, preparing inherently 
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conductive hydrogels using pure CP or blends with other synthetic/natural polymers 
has been outstanding [34, 35].

Regarding the first strategy, electrically conductive nanomaterials have been 
successfully employed to develop electrically-responsive hydrogels. Different hydrogel 
matrices either natural, Alg, CS, and Col, or synthetic, PVA, PEG, and PNIPAAM, 
have been used to incorporate the conductive fillers [32, 33]. These conductive nano-
materials that are nanometer-sized particles show different properties (e.g., electrical, 
optical, etc.) depending on the size, shape, and type of material that make them very 
useful to tailor hydrogel properties. Among the conductive fillers, metal nanomateri-
als in general, but Au and Ag in particular, have been by far the most employed. Gold 
shows excellent electrical, optical, and catalytic properties together with biocompat-
ibility, ease of functionalization, and resistance to oxidation; meanwhile, silver has 
a unique electrical, optical, chemical, and antibacterial properties to develop multi-
functional hydrogels. On the other hand, carbon nanomaterials, especially CNT and 
graphene, are also excellent conductive materials to incorporate into non-conductive 
hydrogels. Properties, such as high electrical conductivity, high strength, high specific 
surface area, or low density, have conferred them very interesting applicability within 
the biomedical field.

Regarding the second strategy, CP have been essential in the development of 
intrinsic conductive hydrogels. CP are conjugated polymer materials showing elec-
tronic conductivity due to the free motion of the delocalized π-electrons throughout 
the double bonds and aromatic rings present in the polymeric chain originating 
electrical pathways for charge carriers’ motion. The π-orbitals of these conjugated 
systems are overlapped along the chain that allows the delocalization of the electrons 
throughout the macromolecule’s backbone [36]. The most employed CP for con-
ductive hydrogels has been PANI, PPy, and PEDOT due to properties, such as high 
conductivity, high stability, biocompatibility, or water dispersibility [37]. However, 
their main drawback is their fragility and low mechanical strength. For this reason, 
CP have been mixed with other non-conductive natural and/or synthetic polymers 
to form interpenetrated (IPN) or semi-interpenetrated hydrogels (s-IPN) to improve 
the mechanical properties [38]. The addition of electrically conductive nanomaterials 
into the blended hydrogels has also been done to overcome the decrease in electrical 
conductivity attributed to the presence of the non-conductive polymer.

Researchers have employed different methodologies to develop electrically con-
ductive hydrogels—(i) blending, (ii) in situ formation, and (iii) covalent bonding 
(Figure 1). Blending has been one of the most used approaches to develop such hybrid 
hydrogels due to its simplicity and the wide range of nanomaterials that can be incor-
porated into the hydrogel. This method consists of mixing the hydrogel precursors 
with the colloidal NP suspension followed by crosslinking to entrap the NP within the 
hydrogel network. For example, Baei and collaborators fabricated a AuNP-chitosan 
(AuNP-CS) hydrogel for cardiac tissue engineering. Gold NP with a diameter of 7 nm 
were embedded in the hydrogel precursor solution by chemically reducing the tetra-
chloroauric acid (HAuCl4) with sodium citrate followed by chitosan crosslinking with 
β-glycerophosphate. The presence of the NP slightly increases the compressive modu-
lus from 6.1 kPa for the bare chitosan to 6.9 kPa for the AuNP-CS hydrogel. Moreover, 
they observed that the presence of the NP conferred electrical conductivity to CS in a 
value close to the native myocardium (0.13 S/m). The sole presence of the NP allowed 
detecting an increase in the cardiac differentiation-related markers (e.g., Nkx-2.5 and 
α-MHC) of the mesenchymal stem cells (MSC) seeded on the scaffold [43]. Navaei 
et al. successfully incorporated Au NRs into gelatine-methacrylate solution that after 
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UV-crosslinking led to hydrogels with improved properties for cardiac regeneration. 
The incorporation of Au NRs (16 ± 2 nm width and 53 ± 4 nm length) led to an increase 
in the mechanical and electrical properties compared to the pure hydrogel. This 
hydrogel induced excellent cell retention and proliferation resulting in the formation 
of cardiac tissue layers with beating behavior [44]. Carbon nanomaterials—CNT, gra-
phene oxide (GO)—have also been widely explored in electrically conductive hybrid 

Figure 1. 
(a) (I) Photograph of PVA/PEG hydrogel (top) and PVA/PEG/GO (bottom). (II) SEM image of the PVA/PEG/
GO hydrogel cross-section. Reproduced with permission from Ref. [39]. (b) (I) SEM image of the PEDOT/Alg 
hydrogel cross-section. (II) Transmission electron microscopy (TEM) micrographs with different magnifications 
(from low at the left to high at the right and bottom) of a stained PEDOT/Alg hydrogel. Adapted with 
permission from Ref. [40]. Copyright (2020) American Chemical Society. (c) (I) SEM image of the PPy/PAM/
CS hydrogel and (II) magnified SEM image showing the PPY NR embedded in the hydrogel. (III) Variation 
of the tensile modulus of PPy/PAM/CS hydrogels with various contents of CS. Adapted with permission from 
Ref. [41]. Copyright (2018) American Chemical Society. (d) (I) Scheme of the hydrogel showing the covalent 
crosslinking between the CS and PEG. SEM images of hydrogels (II) before and (III) after swelling. Scale bar: 
300 μm. Adapted with permission from Ref. [42]. Copyright (2016) American Chemical Society.
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hydrogels. Xiao and collaborators prepared a PVA/PEG/GO hybrid hydrogel with high 
electrical conductivity and mechanical strength (Figure 1A). First, PVA and PEG were 
dissolved in water at 90°C and cooled to room temperature. After that, GO was dis-
persed in water, subsequently added to the PVA-PEG solution and mixed until obtain-
ing a homogeneous distribution of GO. Finally, the crosslinking was obtained by the 
cyclic freezing-thawing method [39]. The blending method has also been employed 
to develop hybrid hydrogels between CP and insulating polymers either natural or 
synthetic to confer mechanical properties to the blended hydrogel. It is important 
to highlight that the electrical performance is normally directly proportional to the 
content of CP. For example, A. Puiggalí-Jou et al. fabricated an electrochemically 
active blended hydrogel between PEDOT and alginate biopolymer by an easy one-step 
process. After thoroughly mixing an aqueous PEDOT:PSS (poly(styrene sulfonate)) 
dispersion with a fixed amount of an Alg solution, the mixture was placed in a mold 
and immersed in a CaCl2 solution to crosslink Alg. As observed by the authors, both 
polymers showed high porosity and they were organized as segregated PEDOT- and 
Alg-rich regions (Figure 1B). The incorporation of curcumin as a model hydrophobic 
drug allowed demonstrating that the application of a negative potential allowed con-
trolling its release [40]. Gan et al. prepared an IPN based on CS and polyacrylamide 
(PAM) by UV photopolymerization [41]. First, CS was dissolved in deionized water 
followed by the addition of given amounts of the monomer (acrylamide (AM)), the 
crosslinking agent (e.g., N,N′-methylene bisacrylamide) (MBAM), and the initiator 
(e.g., ammonium persulfate (APS)). The mixture was crosslinked under UV irradia-
tion for 5 min. The resultant hydrogel also showed high porosity to allow its further 
modification with PPy NWs. Generally, two main drawbacks have been found with 
the blending methodology—(i) aggregation of the conductive nanomaterials or phase 
separation between insulating and CP leading to heterogeneous properties across the 
hydrogel limiting its electrical conductivity and weakening its mechanical strength 
and (ii) weak nanomaterial-polymer or CP-insulating polymer interaction hindering 
the full exploitation of nanomaterials or CP. Therefore, the surfactants, polymer-sta-
bilized dispersions, or functionalized nanomaterials are required to properly disperse, 
and therefore, process them into homogeneous hybrid hydrogels hindering, in most 
cases, their electrical properties [45].

An alternative methodology to synthesize the conductive hybrid hydrogels avoid-
ing aggregation is the in situ formation of the conductive material within the hydrogel 
to improve their interaction and therefore integration. Although this approach is 
dependent on the type of conductive material, generally is based on homogeneously 
mixing both the conductive (nano)material and the hydrogel precursors followed 
by the formation of the (nano)materials and crosslinking of the hydrogel. More 
specifically, metallic nanomaterials can be incorporated by in situ process by mix-
ing the metal ions with the hydrogel precursors. One important point is achieving a 
homogeneous dispersion of ions before the metallic NPs are grown in the hydrogel. 
For example, Dolya and colleagues have reported the in situ formation of Au NP 
within PAM hydrogels following a one-step process. This step consisted of dissolving 
AM, MBAAM, and APS involved in the hydrogel formation together with HAuCl4, 
poly(ethyleneimine) (PEI), and the ionic liquid (IL) ethyl-3-methylimidazolium 
ethylsulfate as a gold precursor, reducing and stabilizing agent, respectively. The 
formation of the hydrogel and Au NP took place simultaneously by heating the 
solution at 80°C for 30 min. Results show that hydrogels have high porosity and Au 
NP are better dispersed and stabilized within the hydrogel when PEI and IL form a 
shell around the NP preventing their aggregation. While the lack of aggregation was 
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observed by UV-Vis spectroscopy, better immobilization was detected through kinetic 
studies of the release of unbound charged compounds [46]. Au NP have been success-
fully synthesized within many natural (e.g., pectin and κ-carrageenan) and synthetic 
(e.g., poly(N-vinylpyrrolidone) (PVP), PEG, etc.) hydrogels following the in situ 
method [47]. Incorporation of CP inside a hydrogel can also be achieved by in situ 
polymerization. First, CP monomers are incorporated either with hydrogel precur-
sors or after crosslinking by immersing it into the monomer solution and followed by 
introducing the oxidative reagents (e.g., APS, ferric ions, etc.) to initiate the polym-
erization. Thus, Gan et al. incorporated PPy NW inside a PAM/CS hydrogel by first 
immersing the template hydrogel into a pyrrole (Py) solution and second adding the 
ferric chloride as oxidation agent. The PPy NW, clearly observed by scanning electron 
microscopy (SEM), enhanced the mechanical properties of the PAM/CS hydrogel 
(Figure 1C) [41]. Or Hur and coworkers reported the fabrication of an interpen-
etrated network of agarose and PPy by pyrrole polymerization within the agarose gel. 
First, the authors mixed an agarose aqueous solution with CuCl2 as an oxidizing agent 
at 40°C. After that, they added a pyrrole monomer to initiate polymerization within 
the solution. The temperature was decreased down to room temperature to induce 
agarose gelation, while PPy formation still took place. The addition of the monomer 
helped to get a homogeneous distribution between agarose and PPy. They developed 
an electrically conductive hydrogel with self-healing and stretchability [48]. Wu et al. 
showed the preparation of a conductive hydrogel composed of gelatin methacrylate 
(GelMA) and PANI. First, GelMA was prepared by UV photopolymerization using 
irgacure 2959 as initiator. After that, the hydrogel was immersed first in an HCl and 
APS solution for 4 h followed by immersion in a hexane solution containing the ani-
line monomer for another 4 h for the polymerization to take place. No significant dif-
ferences in terms of mechanical properties, swelling, and cell adhesion were observed 
between the bare GelMA and the GelMA/PANI hydrogel except for an increase in the 
electrical conductivity of the latter [49]. In situ polymerization can also be achieved 
by electropolymerization in which an electrical potential or current plays the role of 
an oxidative reagent inducing polymerization within the template hydrogel [50].

Finally, another strategy to improve even more the interaction between 
the hybrid hydrogel components (e.g., nanomaterials and polymers), which is 
normally weak if the previous strategies are used, is through covalent bonding. 
Here, a covalent bond is formed between the different materials to, for example, 
stabilize the NP inside the hydrogel but also to boost the chemical and biological 
properties of the hybrid hydrogel. Skardal et al. synthesize hyaluronic acid (HA), 
gelatin, and Au NP hydrogels using non-functionalized and thiol-functionalized 
NP. What they observed is a significant increase in the hydrogel stiffness when the 
functionalized NP were used, which they attributed to the covalent bond formed 
with the hydrogel matrix [51]. This methodology has also been explored with 
carbon nanomaterials. For example, poly(acrylic acid) (PAA) has been grafted 
onto CNT surface for the promotion of neuron differentiation. First, the authors 
treated CNT with 4 M nitric acid by reflux to increase surface hydrophilicity. After 
that, those CNT were dispersed by sonication for 30 min in an acrylic acid-acetone 
solution followed by the addition of 2′-azobisisobutyronitrile (AIBN) to obtain 
the PAA. They successfully induced selective differentiation of MSC into neurons 
[52]. Dong et al. created a covalent bond between a chitosan-graft-aniline tetra-
mer (CS/AT) and a dibenzaldehyde-terminated poly(ethylene glycol) (PEG/DA) 
to obtain a covalent IPN that they used as drug delivery for cardiac regeneration 
(Figure 1D) [42].
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2.1 Biomedical applications

One of the main applications of hybrid hydrogels with electrical conductivity 
is in the tissue engineering field where hydrogels aim to restore the electrical/elec-
trochemical intercommunication between cells and tissues. These hybrid hydrogel 
scaffolds have been developing for many tissues especially electroactive ones, such as 
cardiac, nerve, skeletal muscle, bone, or cartilage. Baei et al. developed a Au NP/CS 
hydrogel for cardiac tissue engineering. The authors seeded MSC onto the hydrogels, 
and although they did not observe any significant difference in cell density, mor-
phology, and distribution between bare chitosan and Au NP/CS hydrogels they did 
observe higher levels of cardiac markers, such as alpha myosin heavy chain (α-MHC) 
and homeobox protein Nkx-2.5, indicating that the presence of Au NPs electrically 
stimulating the differentiation of MSC into cardiac cells (Figure 2A) [43]. Gan et al. 
also developed an electrically conductive hydrogel based on PAM, CS, and different 
amounts of PPy NR as previously explained for skin regeneration. After seeding the 
scaffolds with muscle myoblasts, the authors analyzed their morphology, adhesion, 
and proliferation under different electrostimulation voltages (0–900 mV). They found 
out that not only the incorporation of PPy NR had a clear effect on proliferation and 
elongation (e.g., 20 v/v% PPy NR led to the highest cell aspect ratio) but also the 
application of an electric voltage promoted cell activity and elongation (e.g., 300 mV 
showed the highest elongation) (Figure 2A) [41].

Drug delivery has also been widely studied due to the possibility to control the 
release of the drug out of the conductive hydrogels by the application of different 
electrical signals (e.g, voltage). A. Puiggalí-Jou et al. fabricated Alg/PEDOT hydrogels 
incorporating curcumin (CUR) as a hydrophobic model drug during the hydrogel 
fabrication process. Interestingly, the authors showed a different release profile 
depending on the applied voltage (0, +1 V, −1 V). Thus, they observed a higher 
release when −1 V was applied during 2 h to the hydrogel (e.g., ~25%) compared to 
the 0 V (e.g., ~3%) or + 1 V (e.g., ~8%), indicating a controlled release of curcumin 
(Figure 2B) [40]. Cho et al. also developed a collagen-CNT hydrogel containing a 
nerve growth factor (NGF). First, a solution containing the collagen and the NGF was 
prepared followed by mixing with a COOH-functionalized CNT suspension. Then, 
the mixture was poured into a mold and heated to induce crosslinking. The hydrogels 
were electrically stimulated immersing them in PBS solution at 37°C and by applying 
a voltage of 0.5 V for 2 h per day. The application of the voltage led to an increase in 
the NGF release during the same period of time. Thus, the 5% collagen hydrogel led to 
a 10-fold increase compared to the non-stimulated one. Moreover, collagen content in 
the hydrogel had an effect on the drug release observing a higher release in the order 
5% > 1% > 0.5% > 20% collagen. The authors attributed the lower release of the 20% 
collagen hydrogel to the presence of electrical insulating regions limiting the electrical 
stimulation [54].

Although less studied, these electrically-responsive hydrogels have been also 
applied for wound healing or as actuators. For example, the hydrogel PAM/CS/PPy 
was observed to induce skin reparation in in vivo experiments with rats. The authors 
observed that the wound closed with new epithelial tissue and hair in lesser days than 
with PAM/CS hydrogels. The good results were attributed to the electroactivity of PPy 
promoting the electrical communication between cells that at the end controls tissue 
growth (Figure 2C) [41]. On the other hand, Yang et al. developed electrically active 
hydrogels by incorporating GO into a poly(2-acrylamido-2-methylpropanesulfonic 
acid-co-acrylamide) (AMPS-co-AM) hydrogel to be used as actuator under an 
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Figure 2. 
(a) (I) Fluorescence micrographs of C2C12 cells seeded on PPy/PAM/CS hydrogels and electrostimulated at 
different electric potentials. (II) Proliferation of cells evaluated by MTT analysis and (III) cell aspect ratio as a 
function of hydrogel composition and applied voltage. Adapted with permission from Ref. [41]. Copyright (2018) 
American Chemical Society. (b) Release profile of curcumin from Alg/PEDOT/CUR and Alg/CUR hydrogels 
by (I) passive diffusion (0 V) and (II) by applying a voltage of −1 V. Adapted with permission from Ref. [40]. 
Copyright (2020) American Chemical Society. (c) (I) Scheme showing the implantation of hydrogels onto skin 
defects on rats. (II) Photos of the defects treated with PAM/CS, PAM/CS/PPy, and PAM/CS/PPy loaded with 
EGF at different time periods. (III) Graph showing the wound closure percentage. Adapted with permission from 
Ref. [41]. Copyright (2018) American Chemical Society. (d) (I) Optical photographs of the electro-responsive 
bending behaviors of (I) poly(AMPS-co-AAm) (blank) and (II) rGO/poly(AMPS-co-AAm) hydrogels. Adapted 
with permission from Ref. [53]. Copyright (2017) American Chemical Society.
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electric field. The preparation of the composite hydrogel, which was performed in a 
two-step process, allowed a good dispersion of the GO leading to a hybrid hydrogel 
with improved electrical and mechanical properties. An electric field originated the 
deformation (e.g., bending) of the hydrogel that was reversible and repeatable when 
a cyclic electric field was applied showing great potential as a remotely controlled 
electro-responsive actuator (Figure 2D). The authors explained the actuation based 
on the different osmotic pressure between hydrogel’s inside and outside as a conse-
quence of ionic flux created during the application of the electric field [53].

3. Magnetic-responsive hydrogels

Hydrogels with magnetic responsiveness have also recently received great attention 
to developing the next generation of stimuli-responsive hydrogels that possess unique 
functional structures with controllability, actuation, and spatiotemporal response 
properties controlled by an external magnetic field. Such magneto-responsive 
hydrogels have also been used in a multitude of applications in the biomedical field, 
such as enhancement of cell growth and differentiation for tissue regeneration, drug 
delivery controlled by magnetic fields, magnetic hyperthermia for the treatment of 
cancer or magnetic actuators [55]. Magnetic nanomaterials are composed of magnetic 
elements (e.g., Fe, Co, and Ni) and their oxides (e.g., Fe3O4, Fe2O3, and CoFe2O4) [56], 
and although widely investigated in terms of their physical, structural, and magnetic 
properties, little is still known about their full potential impact on the biomedical 
field. Among those nanomaterials, magnetite (Fe3O4) has become the most used for 
medical applications not only because of its biocompatibility and non-cytotoxicity 
but also for its tunable magnetic properties [55]. Thus, the size of the NP has an effect 
on the induced magnetic moment and the magnetic properties (e.g., ferromagnetic, 
superparamagnetic, etc.), which in turn can be used to control their orientation and 
accumulation, or aggregation, within the hydrogel. For example, NP aggregation 
affects the biological fate of the magnetic NP that prevents their internalization 
into the cells and therefore their further excretion, increasing their cytotoxicity. 
Therefore, it is essential to control the chemical (e.g., composition) and physical 
(e.g., size, shape, etc.) characteristics of magnetite NP since they impact the former 
properties. For more details, see reference [55].

As with the electrically conductive hydrogels, magnetic nanocomposite hydro-
gels can also be fabricated by following the same strategies—(i) blending, (ii) in 
situ precipitation, and (iii) covalent bonding. Again, blending methodology has 
been widely employed for its simplicity since the polymer and the magnetic nano-
materials are physically mixed followed by the polymer chains crosslinking to get 
the hydrogel network. Sapir et al. successfully developed a magneto-responsive 
hydrogel by properly dispersing magnetite NP by sonication in an Alg solution and 
followed by crosslinking with Ca2+ ions. The magnetic NP, ranging from 5 to 20 nm, 
did not seem to have any significant effect on the physicochemical properties of the 
hydrogel, such as porosity, stability, and wetting, as the NP were perfectly embed-
ded within the polymer network but the mechanical and magnetic properties were 
improved. However, some NP aggregation was observed [57]. Fuhrer and cowork-
ers developed a more complex magnetic hydrogel formed by the incorporation of 
4-vinylbiphenyl functionalized carbon-cobalt core-shell NP into an aqueous solution 
containing 2-hydroxy-ethyl-methacrylate (HEMA), ethylene glycol dimethacrylate 
(EGDMA), and styrene-maleic anhydride (SMA). A rheology additive (tetramethyl 
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ethylenediamine) and a crosslinker (APS) were added and the reaction took place 
in a casting mold for 1 h at room temperature (Figure 3A). Although the magnetic 
properties of the nanomagnets were not reported, the authors did observe an influ-
ence of an external magnetic field on cell differentiation [58].

In situ precipitation was employed as a method to avoid NP aggregation since first a 
mixture of the metal salts (e.g., FeCl2 and FeCl3), precursors of Fe3O4, were better mixed 
within the polymeric solution before cross-linking. After that, formation of magnetite 
was achieved by precipitating the Fe2+ and Fe3+ ions with NaOH following the reaction:

 + + −+ + → +2 3
3 4 2Fe 2Fe 8OH Fe O 4H O  (1)

Albertsson et al. fabricated a hemicellulose magnetic hydrogel by a one-step 
method. First, O-acetyl-galactoglucomannan and epichlorohydrin (crosslinking 
agent) were dissolved in NaOH followed by the addition of an aqueous solution of 
the metal salts (FeCl3·6H2O, FeCl2 (Fe3+:Fe2+ molar ratio = 2:1)). Different concentra-
tions were added to incorporate variable amounts of magnetite (5, 10, and 15%). The 
crosslinking reaction and the magnetite formation simultaneously took place at 60°C 
for 20 min. The resultant hydrogel contained Fe3O4 NP with an average size of 5.8 nm 
conferring a superparamagnetic behavior to the hydrogel. Moreover, it was observed 
that the higher the Fe3O4 content, the higher the magnetization of the hydrogel. The 
presence of the magnetic NP also improved the mechanical properties but a decreased 
swelling ratio, thermal stability, and pore size was observed as magnetite content 
increased [62]. Another example by Miyazaki et al. was the in situ incorporation of 
Fe3O4 NP within chitosan hydrogels with different crosslinking degrees achieved 
changing molar ratios of the crosslinker (glutaraldehyde) from 0.5 to 30 with respect 
to the amino groups in chitosan. The authors immersed the hydrogels with differ-
ent crosslinking densities in a 0.1 M FeCl2 solution for 6 h at room temperature to 
allow hydrogel swelling and Fe2+ diffusion into it. After that, hydrogels were dipped 
into 0.5 M NaOH solution at 60° to precipitate the magnetic NP. An influence of the 
hydrogel network structure on magnetite growth was observed. On one hand, the 
amount of Fe3O4 generated in the hydrogel decreased as the crosslinking density 
increased, which they attributed to the lower swelling meaning that the Fe2+ intake 
was impeded. On the other hand, larger crystallite sizes were obtained as the cross-
linking degree was increased. The authors did not show the magnetic properties of 
the hydrogels but they did analyze the influence of an alternating magnetic field in 
heat generation for hyperthermia applications. The heat generation was enhanced 
in hydrogels with higher crosslinking due to the larger crystallite and particle sizes 
and despite the lower amount of magnetite [63]. Zhou et al. also fabricated hydrogels 
based on PVA or PVA/PNIPAAM and containing Fe3O4 NP as the magnetic material. 
The one-step process consisted of mixing a PVA or PVA/PNIPAAM solution with the 
Fe2+/Fe3+ ions followed by dropwise addition into an alkaline NH3 solution to obtain 
the magnetite NP and crosslink the PVA chains in the form of beads (Figure 3B). PVA 
played different roles, the stabilizer to avoid magnetite aggregation and the matrix 
to support the NP. On the other hand, the Fe3O4 NP interacted with the hydroxyl 
groups of PVA via hydrogen bonds favoring also gelation. Although the authors did 
not provide the size of the magnetite NP, they did report their superparamagnetic 
behavior indicating a nanometric size. They finally incorporated congo red inside the 
magnetic scaffold to be used as a drug delivery system. They found out a different 
profile release with and without an applied magnetic field [59].
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Figure 3. 
(a) (I) Photo of the magnetic hydrogel with a dog-bone shape. (II) TEM image of the carbon-coated metal 
nanomagnets. (III) TEM image of the nanomaterials incorporated into the hydrogel. Reproduced with permission 
from Ref. [58]. (b) (I) Images of magnetic PVA hydrogels in the form of beads. (II) Magnetization-magnetic 
field curves for the hydrogels with different magnetic contents at 300 K. Adapted with permission from Ref. [59]. 
Copyright (2012) American Chemical Society. (c) (I) Scheme showing the synthesis of CoFe2O4 NP coated with 
citric acid (CA) (CoFe2O4@CA) and 3-methacryloxypropyltrimethoxysilane (MTS) and the corresponding 
hydrogels MBA-FHG and NP-FHG. TEM images of the (II) CoFe2O4 NP coated with and (III) the swollen and 
freeze-dried magnetic hydrogel. Adapted with permission from Ref. [60]. Copyright (2011) American Chemical 
Society. (d) Scheme showing the experimental procedure to align the magnetic particles and collagen fibres: (a) 
Liquid collagen suspension with neurons (orange) and magnetic NP (red). (b) Placement of the suspension onto 
coverslips and allowed to solidify with (bottom) or without (top) magnetic field. (c) Final scheme of the random 
and aligned hydrogels. SEM image of (II) the random distribution of magnetic NPs within collagen hydrogel and 
(III) the magnetic strings in the hydrogel solidified under a magnetic field. Adapted with permission from Ref. 
[61]. Copyright (2016) American Chemical Society.
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A third strategy to incorporate magnetic NP has been covalent bonding, which 
implies the formation of a covalent bond between the functionalized magnetic 
nanomaterials and the polymer chains. Although this method usually involves more 
complicated steps and is more time-consuming, the advantage is the prevention of 
NP leaching out from the hydrogel network. For example, PAA and methacrylic 
surface-functionalized CoFe2O4 NP were employed to assure a covalent bonding 
between them. First, the CoFe2O4 NP were synthesized by precipitation from a CoCl2 
and FeCl3 (1:2 molar ratio) solution after alkalinization and stabilized with citric 
acid and tetramethylammonium hydroxide in water. And second, functionalization 
was obtained after mixing the NP first with NH4OH solution (25%) and second with 
3-methacryloxypropyltrimethoxysilane (MTS) allowing the reaction (e.g., conden-
sation of siloxane groups onto particle surface) to take place at room temperature 
for 15 h. The resultant particles were single-crystalline and had an average size of 
12.2 ± 0.23 nm, resulting in a pseudo-superparamagnetic behavior. Finally, the 
authors synthesized different PAA hydrogels with the citric acid- and methacrylic-
functionalized CoFe2O4 NP to investigate the effect of the particle-to-polymer 
interaction (hydrogen bonding in citric acid- and covalent bonding in methacrylic-
functionalized particles) on the hydrogel magnetic and mechanical properties 
[64]. Another example was the formation of covalently bonding hydrogels between 
siloxane-functionalized CoFe2O4 NP and the PVA matrix (Figure 3C). The procedure 
was very simple as they first mixed the monomer (AAM) and the functionalized 
CoFe2O4 NP followed by the crosslinker (N,N,N′,N′-tetramethylethylenediamine) 
and the initiator (ammonium peroxodisulfate). The reaction proceeded at room 
temperature for 2 h. The magnetic NP had a size around 12 nm showing a superpara-
magnetic behavior. Moreover, they also showed that the hydrogel swelling was lower 
when the NP were covalently bonded to the hydrogel compared to the NP physical 
entrapped [60].

In all previous strategies, a more or less homogeneous but random distribution of 
the magnetic NP can be achieved. Recently, the development of complex hydrogels 
architectures has grown by controlling the spatial distribution and orientation of the 
magnetic nanomaterials within the hydrogel scaffold by using an external magnetic 
field. Normally, the magnetic nanomaterials are mixed with the hydrogel precursors 
and subsequently aligned by placing the mixture in an external magnetic field. The 
nanomaterials become magnetized and reorient along the magnetic field direction. 
This anisotropic and well-ordered structure is then fixed by crosslinking the precur-
sor solution into the hydrogel. Although this approach can be applied to magnetic 
nanomaterials with different shapes (e.g., NP, NR, and NW), magnetic NP have 
been extensively used for the preparation of such anisotropic hydrogels [61, 65]. For 
example, Fe3O4 NP have been successfully aligned within the hydrogel precursor 
solution containing AM (monomer), MBAM (crosslinker), APS (initiator), and 
tetraethylethylenediamine (accelerator) using a static magnetic field. After that, 
the hydrogel formation was triggered by increasing temperature up to 50°C. Such 
alignment led to an enhanced magnetothermal effect under an external alternating 
magnetic field compared to the disordered hydrogel [66]. Or Antman-Passig and 
Shefi embedded Fe3O4 NP in a collagen fiber suspension, aligned the NP into strings 
under an external magnetic field, which also forced the alignment of the fibers, and 
finally, collagen was allowed to solidify keeping the magnetic field (Figure 3E). The 
seeded neurons had normal electrical activity and viability and their growth was 
induced and controlled along the fibers and NP string direction acting as a physical 
cue for the cells [61].
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3.1 Biomedical applications

These magnetically-responsive hydrogels have enabled a wide range of potential 
applications in the biomedical field, such as tissue engineering, drug delivery, artifi-
cial muscles, soft actuators, and magnetic hyperthermia, among others. Tissue engi-
neering has been one of the fields where magnetic hydrogels have been widely applied 
covering a wide range of tissues, such as bone, cartilage, cardiovascular, or neuronal 
tissues. The ultimate aim of scaffolds is to foster the natural reparative process by 
guiding the new tissue formation and recovering their functionality, where mul-
tiple biochemical, biophysical, and biological cues need to be controlled. Magnetic 
hydrogels are key in this discipline since hydrogel architectures can be magnetically 
controlled in a way to confer directionality and or concentration gradient mimicking 
complex anisotropic tissues. Moreover, these hydrogels can be remotely actuated 
with external magnetic fields inducing mechanical deformation within the scaffold 
(e.g., magnetomechanical stimulation or mechanotransduction effect), which has an 
impact on cell behavior (e.g., growth, migration, proliferation, and differentiation). 
For example, Huang et al. have reported an effective regeneration of cartilage using 
magnetic hydrogels composed of PVA, hydroxyapatite particles, and maghemite 
(Fe2O3) NP. The incorporation of the NP improved not only the mechanical properties 
of the hydrogel but also induced the proliferation and differentiation of the seeded 
MSC into the chondrogenic lineage [67]. Other approaches have applied either static 
or time-varying magnetic fields to the cells-containing hydrogels. Thus, Brady et al. 
developed a three-layer agarose-Fe3O4 hydrogel with a stiffness gradient that was 
achieved using a different agarose concentration in each layer (1, 2, and 3 wt.%). 
Bovine chondrocytes were embedded in each layer under the application of a 500 
mT static magnetic field (Figure 4A). After 14 days of magnetic stimulation, they 
observed an increase in both strain and sulphated glycosaminoglycan content from 
the 1 wt.% agarose layer to the 3 wt.% agarose layer [68]. Fuhrer and collaborators 
also observed that the application of a non-continuous (2 s on, 10–225 s off) 800 mT 
magnetic field to the Fe3O4-styrene-maleic anhydride hydrogel seeded with MSC 
induced their chondrogenic differentiation without the need of any other chondro-
genesis transcription factors [58].

More recently, magnetic hydrogels with anisotropic architectures have been 
fabricated trying to mimic native tissues. For example, an anisotropic collagen-agarose 
bilayer containing Fe3O4 NP was obtained when a 2 mT magnetic field was applied 
during hydrogel formation. Collagen fibers aligned as a consequence of the NP align-
ment parallel to the field direction but only in the layer where the agarose content was 
lower (0.5 w/v%). The layer with the higher agarose concentration (1 w/v%) hindered 
collagen and magnetite NP alignment. The authors observed that seeded chondrocytes 
in the anisotropic scaffolds expressed more collagen type II when compared with the 
isotropic hydrogels [72]. These anisotropic structures were also recently explored by 
Araújo-Custódio et al. who reported the fabrication of gelatin hydrogels containing 
rod-shaped cellulose nanocrystals decorated with magnetite NP that were aligned by 
applying a static magnetic field (108 mT). The hydrogel, that tried to mimic tendon 
tissue, showed a directional structure with anisotropic mechanical properties being 
the storage modulus higher in the direction parallel to the rod long axis. This anisot-
ropy also had an impact on the embedded cells as it induced an elongated morphology 
and a directional growth again on the rod long axis (Figure 4B) [69].

Another application where magnetic nanocomposite hydrogels have been 
investigated is drug delivery due to the possibility to release the drug on demand 
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Figure 4. 
(a) Live/dead stain images (dead cells (red), live cells (green)) showing the cell viability of chondrocytes 
embedded into the different layers of the agarose-Fe3O4 NP hydrogel at different times (I) day 1, (II) day 7 
and (III) day 14. Reproduced with permission from Ref. [68]. (b) (I) SEM images of isotropic and anisotropic 
hydrogels. Scale bar = 10 μm. (II) Confocal microscope images showing the effect of isotropic and anisotropic 
hydrogels on cell alignment (red, cytoskeleton; blue, nucleus). Adapted with permission from Ref. [69]. Copyright 
(2019) American Chemical Society. (c) (I) Graph showing the amount of congo red loaded onto the hydrogels 
with different magnetic contents with time. (II) Graph showing the release profiles of the hydrogels with different 
magnetic contents over time with and without applied magnetic field. Adapted with permission from Ref. [59]. 
Copyright (2012) American Chemical Society. (d) (I) Photo of the Alg/PEDOT/Fe3O4 NP hydrogel. (II) Graph 
showing the variation of temperature of the Alg/PEDOT/Fe3O4 NP hydrogel with time subjected to an alternating 
magnetic field (200 Hz, 8 kA m−1). Adapted with permission from Ref. [70]. Copyright (2021) American 
Chemical Society. (E) (I) Image of the hydrogel without (left) and with an applied magnetic field (right). 
(II) SEM images of the hydrogel in the undeformed and deformed states. Scale bar: 500 μm. Reproduced with 
permission from Ref. [71].
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and at certain concentrations when magnetic fields are applied. Moreover, the 
delivery of the therapeutic drug in situ to the specific target can be done remotely. 
In this line, Mahdavinia and collaborators fabricated a magnetic IPN hydrogel 
network containing k-carrageenan and PVA as well as FeSO4 and FeCl3 to precipi-
tate Fe3O4 NP by adding NH3. After that, diclofenac sodium as a model drug was 
added to the previous mixture and further crosslinked by the freezing-thawing 
method followed by immersion in K+ solution. The hydrogel, that showed a 
superparamagnetic behavior with magnetization saturation values between 3.4 
and 8.2 emu/g depending on the magnetite content, was subjected to an alternate 
magnetic field with variable strength in the range 100–500 G. They observed a 
controlled diffusion of the drug such that the higher the magnetic field was, the 
higher the amount of diclofenac sodium released. They attributed this behavior 
to the higher mechanical stress conferred as the magnetic field increased [73]. 
Another example by Zhou et al. showed that the amount of congo red loaded onto 
the hydrogels was the same independently of the amount of magnetite inside the 
PVA hydrogel. However, they did observe a change in the amount of congo red 
released in the absence and presence of a static magnetic field. After 500 min, the 
released content was around 55% with no magnetic field and around 42% with 
the applied magnetic field for the hydrogel with the lowest amount of magnetite 
(Figure 4C) [59].

Some other applications of magnetic hydrogels are magnetic hyperthermia 
as experimental cancer therapy or soft actuators to develop artificial muscles. 
Magnetic hyperthermia, which basically consists of the delivery of heat when a 
high frequency oscillating magnetic field is applied, has been investigated into 
magnetic nanocomposite hydrogels. For example, Puiggalí-Jou et al. observed that 
when an alternating magnetic field (frequency = 200 kHz) was applied to a Alg/
PEDOT/Fe3O4 NP hydrogel, the temperature increased from room temperature 
to around 50°C after a few minutes, which was attributed to the presence of the 
magnetic NP (Figure 4D) [70]. More recently, hydrogels with ordered structures 
like the one fabricated by aligning magnetite NP with a PAM hydrogel have also 
shown magnetothermal effect but direction-dependent. When the magnetic NP 
chains were aligned parallel to the applied field, the heating rate and the plateau 
temperature were higher than the values achieved with the non-ordered hydrogels 
[66]. Magnetically responsive hydrogels can also be used as soft actuators due to 
the change in volume, shape, or position they experience in response to a magnetic 
field. Thus, Zhao et al. developed an Alg hydrogel crosslinked with adipic acid dihy-
drazide (AAD) and containing magnetite NP with a diameter around 10 nm. The 
application of a magnetic field (38 A/cm2) induced deformation of the hydrogel 
with a volume change of 70% (Figure 4E) [71]. Zhou et al. developed the amphi-
philic pentablock copolymer PAA-PC5MA-PEO-PC5MA-PAA (PC5MA: poly(5-
cholesteryloxypentyl methacrylate), PEO: poly(ethylene oxide)) and the Fe3O4 NP 
that were directly bonded to the carboxylic groups of PAA. These magnetic hydro-
gels were bent under the application of a magnetic field [74]. Recently, significant 
efforts have been put into developing dual electric- and magnetic-responsive 
hydrogels with even enhanced properties compared to the single stimuli-responsive 
systems. For example, Liu et al. fabricated a flexible hydrogel containing CNT, PPy 
NP, and iron oxide with electrical conductivity and magnetic properties with potential 
applicability as biosensor and bioactuator [75]. Or Garcia-Torres and collaborators 
synthesized an Alg/PEDOT/Fe3O4 hydrogel for magnetic hyper thermia application 
and simultaneous measurement of temperature [70].
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4. Conclusions

In this chapter, the author has reviewed recent developments in electric- and 
magnetic-responsive hydrogels from the perspective of materials and properties 
and applications. Many hydrogels have been employed so far for the fabrication of 
the hybrid systems comprising natural (e.g., Alg and Col) and synthetic polymers 
(e.g., PVA and PEG) but mainly a mixture of different polymers to improve the 
performance of the interpenetrated hydrogel obtained. The different strategies 
to confer hydrogels with electric and magnetic responsiveness—blending, in situ 
precipitation, covalent bonding—have been presented. The different methodolo-
gies allowed modifying the structure of the hydrogels (e.g., different distribution 
of the NP within the hydrogel framework) and therefore their properties. The main 
applications for the electric- and magnetic-stimuli hydrogels have been presented, 
including tissue engineering, drug delivery, and actuation. It has been shown that the 
unique presence of the nanomaterials either with electrical conductivity or magnetic 
properties already improved cell adhesion, proliferation, and differentiation, but it 
was enhanced even more when the hydrogel was either electrically or magnetically 
stimulated. These hydrogels can also be used as drug delivery systems with the ability 
to control the amount of drug release just by modifying the applied signal (e.g., 
voltage and magnetic field strength). Thus, this field is rapidly emerging with new 
electric- and magnetic-responsive hybrid hydrogels providing significant advances 
in the biomedical field. And it has been possible thanks to the versatility in the main 
components—hydrogels, nanomaterials—providing unique features and properties 
to the hybrid hydrogels.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 7

Mesenchymal Stem/Stromal Cells 
and Hydrogel Scaffolds for Tissue 
Engineering
Leisheng Zhang and Zhihai Han

Abstract

Hydrogels are splendid biomaterials and play a critical role in multiple applications 
for disease management via offering a microenvironment for drug metabolism 
and exerting the bonding effect attribute to the preferable physical and chemical 
properties. State-of-the-art renewal has indicated the combination of hydrogels with 
mesenchymal stem/stromal cells (MSCs), which are heterogeneous populations with 
unique hematopoietic-supporting and immunoregulatory properties. For decades, 
we and other investigators have demonstrated the promising prospects of MSCs in 
regenerative medicine, and in particular, for the administration of recurrent and 
refractory disease. Very recently, we took advantage of the hydrogel/MSC composite 
for the applications in osteoarthritis, burn wounds, and refractory wounds associated 
with diabetic foot as well. Strikingly, the composite showed superiority in continuous 
improvement of the biological functions of the injured areas over hydrogels or MSCs, 
respectively. Collectively, hydrogel-based biomaterials are of importance for disease 
treatment and the accompanied regenerative medicine. Therefore, in this chapter, we 
will summarize the latest updates of hydrogel/MSCs composite in tissue engineering 
and put forward the direction of hotspot issues in the future including hydrogel/MSC 
and hydrogel/MSC-exosome in preclinical and clinical studies.

Keywords: mesenchymal stem/stromal cells, exosomes, hydrogel scaffolds,  
tissue engineering, regenerative medicine

1. Introduction

Mesenchymal stem/stromal cells (MSCs) have been acknowledged as medicinal 
signaling cells as well as the most important niche cells in the microenvironment, 
and possess advantaged properties such as immunomodulatory capacity, hema-
topoietic-supporting effect and multi-lineage differentiation potential towards 
adipocytes, osteoblasts and chondrocytes, which thus hold promising prospects for 
tissue engineering and regenerative medicine [1–3]. MSCs were first isolated from 
bone marrow in the 1960s, and followed by various stromal fractions of adult tissues 
[4, 5], perinatal tissues [6–8], and even derived from stem cells [9–11]. For decades, 
due to the limitation of unique biomarkers and the wide range of cell sources, MSCs 
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are recognized as heterogeneous populations with great heterogeneity in cellular 
phenotypes and transcriptome characteristics [12–14]. Generally, MSCs with 
diverse origins mainly function via direct- or trans-differentiation, paracrine or 
autocrine, homing, dual immunomodulation, neovascularization, and constitutive 
microenvironment [4, 15, 16]. To date, more than 1340 MSC-based clinical trials 
have been registered for various disease treatment according to the ClinicalTrials.
gov website. For instance, we and other investigators have indicated the therapeutic 
effects of MSCs upon multiple refractory and recurrent disorders including acute 
graft-versus-host diseases (aGVHD) [17], aplastic anemia [18, 19], osteoarthritis 
[11, 20], critical limb ischemia (CLI) [9], acute-on-chronic liver failure (ACLF) 
[21], Parkinson’s syndrome [22], acute myocardial infarction (AMI) [23], rheu-
matoid arthritis (RA) [24], and coronavirus disease 2019 (COVID-19) [15, 25]. It’s 
noteworthy that the variation of the therapeutic efficacy of MSCs upon acute liver 
failure and aGVHD has also been respectively observed by Zhang et al. and us, 
which further indicated the necessity and urgency of developing tissue engineer-
ing including biomaterials, three-dimensional (3D) printing, and MSC-based gene 
therapy [26, 27].

Simultaneously, state-of-the-art updates have further suggested the preferable 
application of biomaterial/MSC composite as well [11, 28, 29]. Of the current natural 
extracellular matrices (ECMs), hydrogels have been regarded as the most promising 
alternative biomaterials attribute to their excellent swelling property and the resem-
blance to soft tissues [11, 30]. In particular, synthetic biomimetic hydrogels with 
appropriate mechanical behavior and predictable biodegradation property can be 
easily synthesized and modulated for facilitating the biological phenotypes and bio-
applications of the encapsulated MSCs such as adhesion, migration, differentiation, 
proliferation, and apoptosis [30]. For instance, Gwon et al. and Huang et al. reported 
the influence of heparin-hyaluronic acid (HA) hydrogel upon cellular activity and 
hydrogel scaffolds for the differentiation of adipose-derived stem cells, respectively 
[30, 31]. Very recently, we took advantage of the HA hydrogel/MSC composite and 
demonstrated the reinforced cell vitality of human pluripotent stem cell-derived 
MSCs (hPSC-MSCs) over monolayer-cultured MSCs for chondrogenesis and the 
management of osteoarthritis rabbits [11].

Herein, we summarize the current progress in MSCs or MSC-derived exosomes 
and hydrogel scaffold for tissue engineering, and in particular, the potentially 
reinforcing or attenuating effects of hydrogel scaffold with unique biochemical and 
biophysical properties upon the MSC-based cytotherapy for regenerative medicine.

2. The cell sources of MSCs for tissue engineering

Not until 2006, the International Society for Cellular Therapy (ISCT) defined 
the preliminary criteria of defining multipotent MSCs including adherent property, 
multi-lineage differentiation capacities in vitro towards adipocytes, osteoblasts, 
and chondrocytes, together with high-levels of mesenchymal biomarker expression 
(CD73, CD90, and CD105) whereas minimal expression of hematopoietic or endo-
thelial markers (CD31, CD34, and CD45) [32]. After that, numerous studies aiming at 
dissecting the similarities and differences in biological phenotypes and biofunctions 
as well as transcriptome characteristics of MSCs derived from adult tissue, perinatal 
tissue, and PSCs have been extensively conducted (Table 1).
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2.1 Adult tissue-derived MSCs

As mentioned above, adult tissue-derived MSCs hold vast prospect in tissue repairing 
and organ reconstruction [3]. To date, massive literatures have reported the isolation and 
identification of MSCs from various adult tissues such as adipose tissue, bone marrow, 
synovium, dental pulp, peripheral blood, muscle tendon, and menstrual blood [40, 41]. 
According to the ClinicalTrials.gov website, a total of 1096 trials have been registered 
worldwide against disorders such as acute respiratory distress syndrome (ARDS), CLI, 
AMI, anoxic or hypoxic brain injury, moderate-to-severe Crohn’s disease, idiopathic pul-
monary fibrosis (IPF), and COVID-19. For example, a phase I interventional trial was 
led by Dr. Jesus JV Vaquero Crespo in Puerta de Hierro University Hospital was aiming to 
evaluate the security of local administration of autologous bone marrow-derived MSCs 
(BM-MSCs) in traumatic injuries of the spinal cord (NCT01909154), which was consis-
tent with another study by Geffner and their colleagues [42]. In details, 12 participants 
received 1 × 108 BM-MSCs by intrathecal injection (subarachnoid and intramedullary), 
and another 3 × 107 BM-MSCs by subarachnoid administration after 3 months depend-
ing on centromedullary post-traumatic injury. The safety outcomes of the patients were 
evaluated according to vital signs (ECG, blood pressure, and heart rate) and possibility 
of adverse reaction (headache, meningeal irritation, and infectious complications). The 
secondary outcomes were quantized from the view of sensitivity recovery (e.g., surface 
sensitivity and pain sensitivity), level of chronic pain, neurophysiological parameters, 
maximum cystometric capacity, and the decrease in volume and hyperintensity of intra-
medullary lesions. Very recently, Oraee-Yazdani et al. further verified that BM-MSCs in 
combination with autologous Schwann cell co-transplantation was safe and effective for 
treating 11 patients of spinal cord injury (SCI), and in particular for spinal cord regen-
eration during subacute period [43].

Notably, cutting-edge advances have also put forward the variations and limita-
tions of adult tissue-derived MSCs in both preclinical and clinical studies [1, 14, 44]. 

Classification Type of scaffold Disease Applications Reference

Adult tissue-
derived MSCs

PF-127 hydrogel/
AD-MSC

Diabetic wound 
healing

Preclinical 
study

Kaisang et al. [33]

AdhHG 
hydrogel/G-MSCs

Craniofacial bone 
tissue regeneration

Preclinical 
study

Hasani-Sadrabadi 
et al. [34]

HPCH-PCL-nHA 
hydrogel/BM-MSC

Massive bone 
defects

Preclinical 
study

Ji et al. [35]

Perinatal tissue-
derived MSCs

PF-127 hydrogel/
UC-MSC-exo

Chronic diabetic 
wound healing

Preclinical 
study

Yang et al. [36]

Chitosan 
hydrogel/P-MSC-exo

Hindlimb ischemia Preclinical 
study

Zhang et al. [37]

Collagen/UC-MSCs POF Clinical study Ding et al. [38]

Pluripotent 
stem cell-
derived MSCs

HA hydrogel/
PSC-MSCs

Osteoarthritis Preclinical 
study

Zhang et al. [11]

Hydrogel/
iPSC-MSCs

Endometrial injury Preclinical 
study

Ji et al. [39]

Table 1. 
Representative applications of HA/MSC-based scaffold in tissue engineering.
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For example, among the indicated adult tissue-derived MSCs, BM-MSCs are recog-
nized as the widest application in clinical practices whereas with inherent disadvan-
tages such as ethical risk, pathogenic risk, invasive pain, replicative senescence and 
individual diversity for cell source, and in particular, the limitation in healthy donors 
and declined long-term ex vivo amplification further restrict the large-scale applica-
tion in future [11, 44]. Interestingly, despite the variations in signatures and functions, 
we recently verified the potential conservative properties in adipose tissue-derived 
stem cells (AD-MSCs) from type 2 diabetics and healthy donors [4]. However, mul-
tifaceted diversity among BM-MSCs, AD-MSCs, dental pulp stem cells (DPSCs), and 
supernumerary teeth-derived apical papillary stem cells (SCAP-Ss) were observed by 
investigators in the field [16, 45–47].

2.2 Perinatal tissue-derived MSCs

Perinatal tissues are abundant sources of MSCs and extracellular matrix with a 
wide range of therapeutic purposes in tissue engineering, which thus act as particu-
larly interesting candidates for regenerative medicine [48, 49]. To date, a variety of 
perinatal tissue-derived MSCs have been identified such as placental-derived MSCs 
(P-MSCs), umbilical cord-derived MSCs (UC-MSCs), cord blood-derived MSCs 
(CB-MSCs) [49, 50], amniotic-derived MSCs (A-MSCs) [51], amniotic fluid-derived 
MSCs (AF-MSCs) [52], decidua-derived MSCs (D-MSCs) [53], and chorionic villi-
derive MSCs (CV-MSCs) [54]. Of the aforementioned perinatal tissue-derived MSCs, 
UC-MSCs are promising sources with preferable properties in long-term proliferation 
in vitro and immunoregulation, and most of all, without ethical risks and limita-
tion in supply, and thus hold great prospect for large-scale clinical investigation and 
investigational new drug (IND) purposes [18, 44]. Up to November 11th of 2021, a 
total of 317 interventional clinical trials have been registered for the administration 
of numerous refractory diseases by UC-MSC infusion such as diabetic nephropathy, 
heart failure, perianal fistulas with Crohn’s disease, lumbar discogenic pain, chronic 
obstructive pulmonary disease (COPD), Duchenne muscular dystrophy (DMD), and 
cerebral hemorrhage sequela (CHS) according to ClinicalTrials.gov website.

Similarly, other types of MSC sources are of equal importance in offering “seeds” 
for tissue engineering and regenerative medicine (e.g., umbilical cord, placenta, 
amniotic membrane, and amniotic fluid). For instance, Liu and the colleagues took 
advantage of A-MSCs and conducted intragastric administration and intraperitoneal 
injection for the management of hydrogen peroxide-induced premature ovarian fail-
ure (POF) model. As expected, POF mice with A-MSC transfusion in bilateral ovaries 
revealed increased estrogen levels, decreased follicle-stimulating hormone level, and 
evaluated ovarian index and fertility rate, which collectively suggested the ameliora-
tive effects of MSCs in improving the follicular microenvironment and recovering 
ovarian function in POF [55].

2.3 Pluripotent stem cell-derived MSCs

Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced 
pluripotent stem cells (iPSCs), possess self-renewal and multi-lineage differentia-
tion potential, which thus provide advantaged “seeds” for disease modeling and drug 
validation as well as unprecedented opportunities for cytotherapy against intractable 
diseases [56–58]. Since the year of 2005, a number of literatures have reported the 
generation of MSCs from ESCs and iPSCs [59, 60]. Strikingly, the PSC-derived MSCs 
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(PSC-MSCs) revealed multifaceted superiority over those derived from adult tissues 
such as unlimited source, homogeneity, large-scale generation without pathogenic 
or ethical risks, and in particular, PSC-MSCs could be used for exploring the early 
development and molecular mechanism of MSCs [10, 53, 61, 62]. Notably, current 
studies have suggested the considerable efficacy of MSCs or MSC-derived exosomes 
in preclinical application including experimental inflammatory bowel disease (IBD) 
[63, 64], allergic tracheal inflammation (e.g., asthma and anaphylactic rhinitis) [65], 
experimental autoimmune encephalitis (EAE) of multiple sclerosis [66], lupus nephri-
tis [67], acute colitis [68], kidney fibrosis [69], and hematopoietic reconstitution [70].

Generally, there are three strategies for PSC-MSC generation including monolayer 
induction, PSCs and stromal cell coculture and the embryoid body (EB) models. 
However, most of the existing strategies with drawbacks such as laborious manipula-
tions (e.g., handpicking and scraping), time-consuming (3–8 weeks), low efficacy 
(approximately 5–20%), cell sorting (e.g., CD73+ and CD105+), and serial passages  
[10, 71, 72]. For instance, Wei et al., Deng et al., Vainieri et al., Wang et al., and Tran et 
al. reported the elevated generation of PSC-MSCs by modulating intracellular JAK-STAT 
[9], IKK/NF-κB [73], PDGF-BB [74], bone morphogenetic protein 4 (BMP) [68], and 
ABB (activin A, 6-bromoindirubin-3′-oxime, and BMP4) [75] signaling pathways in 
feeder or serum-free model, respectively. Notably, we recently took advantage of the 
Msh homeobox 2 (MSX2) and small molecule library-based cell programming strategies 
for high-efficient induction of PSC-MSCs within 2 weeks, respectively [9–11]. Even 
though the convenience in practice as well as the promising prospects in tissue engineer-
ing and regenerative medicine [76, 77], the potential risks of PSCs attribute to genome 
editing and their inherent characteristics such as tumorigenicity, heterogeneity, and 
immunogenicity should cause enough attention [56, 78, 79].

3. Hydrogels/MSCs scaffolds for tissue engineering

The therapeutic effects of MSC transplantation largely attributed to the paracrine 
including soluble factors and extracellular vehicles (e.g., exosome and secretome), 
which could be rapidly sequestered and cleared [80]. Hydrogels are ideally suited 
for MSCs cultivation and are adequate to offer splendid delivery platforms, enhance 
vehicles retention rates and thus enhance immunomodulation and tissue regeneration 
after in vivo transplantation (Figure 1, Table 1) [80–82].

3.1 Hydrogels/MSCs scaffolds for wound healing

Wound healings are regulated by series of events with overlapping phases, which 
represent an intractable issue in clinical practice [83, 84]. State-of-the-art renewal 
has indicated the prospective applications of hydrogel in combination with MSCs or 
MSC-derived exosomes in skin wound healing, and in particular, the recurrent and 
refractory cutaneous types (Table 1) [83, 85]. Of them, chronic refractory wounds are 
disorders attribute to multifactorial comorbidity with characteristics of inflammation 
and impaired vascular networks, which eventually result in unfavorable prognosis 
due to the lack of effective treatments [36, 86]. Recently, Yang and the colleagues 
topically applied UC-MSC-derived exosomes encapsulated into the thermosensitive 
PF-127 hydrogel (hydrogel/MSC-exo) and demonstrated that hydrogel/MSC-exo 
scaffold significantly upregulated expression of multiple cytokines (e.g., VEGF and 
TGFβ-1), enhanced regeneration of granulation tissue and accelerated wound closure 
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rate in a streptozotocin-induced diabetic rat model, which was further verified by 
another study in a streptozotocin-induced diabetic model with hydrogel/AD-MSC 
composite [33, 36]. Marusina et al. and Xin et al. reported the influence of tunable 
bio-inert poly (ethylene glycol)-based hydrogels and microporous annealed par-
ticle hydrogels on MSCs and the optimization of cell-degradable hydrogels/MSCs 
delivery for wound re-epithelialization [81, 87]. Zhang et al. took advantage of the 
bioluminescence imaging (BLI) technology and further demonstrated the thera-
peutic effects of prostaglandin E2 (PGE2) and chitosan (CS) hydrogel (PGE2 + CS 
hydrogel) in a murine wound healing model via modulating the M1 and M2 para-
digms of macrophage activation [88]. Meanwhile, a full sheet consisting of A-MSCs 
on thermoresponsive polymers have been considered as advantaged skin substitute 
for the management of burn wounds [89]. Collectively, these studies suggested that 
hydrogel-based MSC/MSC-exo therapy represent a novel therapeutic approach for 
refractory cutaneous regeneration of chronic wounds.

3.2 Hydrogels/MSCs scaffolds for osteoarticular diseases

Despite the dramatic progress in bone reconstruction, the osteoarticular diseases 
and bone regeneration in clinical practices are still challenging [82]. Hydrogels 
have been extensively investigated in numerous osteoarticular diseases (e.g., osteo-
arthritis) and bone regeneration (e.g., craniofacial bone tissue) largely attribute 
to the high cell compatibility [34]. For example, Ji et al. recently combined MSCs 
with a newly synthesized hybrid scaffold consisting of thermosensitive hydroxy-
propyl chitin hydrogel (HPCH) and 3D-printed nano-hydroxyapatite (nHA)/poly 

Figure 1. 
Illustration of hydrogel/MSC-based cytotherapy for tissue engineering.
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(ε-caprolactone) (PCL) for bone regeneration. Strikingly, they found the vascu-
larization and osteogenesis and immunomodulation of encapsulated MSCs as well 
as cytokine secretion of macrophages were collectively orchestrated in bone defect 
mice model [35].

Osteoarthritis (OA) is recognized as the most prevalent chronic joint disease, 
which increases in prevalence with age and resultant in functional loss or decline in 
quality of life, and in particular, act as a major socioeconomic cost worldwide and a 
leading musculoskeletal cause of impaired mobility in individuals over 65-year-old 
[90, 91]. Despite joint replacement is an effective strategy for symptomatic end-stage 
disease, yet most of the functional outcomes are poor and the lifespans of prostheses 
are largely limited [91, 92]. Current studies have shown that MSC-based cytotherapy 
are promising for osteoarticular disease administration. For example, Portron et 
al. and Merceron et al. found that the in vivo chondrogenic potential of AD-MSCs 
encapsulated in a cellulose-based self-setting hydrogel (Si-HPMC) preconditioned by 
hypoxia (5% oxygen) was significantly enhanced compare to that in the control (20% 
oxygen) group, which was confirmed by subcutaneous transplantation of AD-MSCs 
with an injectable hydrogel in rabbits [93, 94]. Very recently, our group also found 
that the application of hyaluronic acid (HA) hydrogel/PSC-MSCs and HA hydrogel/
hydroxyapatite/UC-MSC (HA/HAP/UC-MSC) composite with reinforced efficacy 
upon OA rabbits and mice, respectively (Table 1) [11]. It’s noteworthy that Chung 
and their colleagues have systematically explored and detailed dissected the efficacy 
of articular cartilage repair in vivo by combining UC-MSCs with various hydrogels 
such as alginate, pluronic, HA, and chitosan. They finally concluded that HA hydro-
gel/UC-MSC composites resulted in preferable cartilage repair and collagen orga-
nization pattern, which were similar to adjacent uninjured articular cartilage [95]. 
Additionally, the gingival MSC-laden photocrosslinkable hydrogels were also con-
firmed with preferable biocompatibility, biodegradability, and osteoconductivity for 
craniofacial bone tissue engineering in rat peri-implantitis model as well [34]. Taken 
together, the biodegradable and biocompatible hydrogels can serve as advantaged 
scaffolds and supply structural integrity for cellular organization and morphogenic 
guidance of hydrogel scaffold-laden MSCs [88].

3.3 Hydrogels/MSCs scaffolds for reproductive diseases

Premature ovarian failure (POF) is a refractory disorder with declined fertility 
in females [96, 97]. In 2019, Yang and their colleagues took advantage of collagen 
scaffold loaded with UC-MSCs (collagen/UC-MSCs) and verified the efficacy in POF 
mice via increasing estrogen (E2) and ovarian volume, and promoting granulosa cell 
proliferation and ovarian angiogenesis [96]. Similarly, Ding et al. reported the rescue 
of E2 concentrations and activation of follicles in the dormant ovaries of premature 
ovarian failure (POF) patients with long history of infertility after transplantation of 
collagen/UC-MSC scaffold (Table 1) [38].

As to premature ovarian insufficiency (POI), an intractable endocrine disease that 
severely restricts the reproductive and physiological function of females and resultant 
in menopausal symptoms, a series of literatures have suggested the ameliorative effect 
of hydrogel/MSC composite or hydrogel/MSC-derived microvesicles/secretomes via 
facilitating angiogenesis, enhancing granulosa cell generation and steroidogenesis, 
and accelerating follicular regeneration [98–101]. Notably, Li et al. have summa-
rized the current renewal of the therapeutic effects and molecular mechanisms of 
MSC-based cytotherapy in both preclinical research and clinical trials [102].



Hydrogels - From Tradition to Innovative Platforms with Multiple Applications

116

3.4 Hydrogels/MSCs scaffolds for vascular diseases

Peripheral arterial diseases (PAD) are severe medical conditions, which are char-
acterized by blood vascular blockage and low limb Doppler signals and commonly 
associated with hind-limb ischemia or critical limb ischemia (CLI) [103]. For decades, 
we and other investigators have primarily suggested the therapeutic of MSCs or MSC-
derived exosomes in hind limb ischemia models by alleviating the severity, promoting 
angiogenesis, and enhancing immunomodulation [9, 104, 105]. In recently years, 
a certain number of outstanding researchers turned to injectable hydrogels such as 
self-assembled Nap-GFFYK-Thiol hydrogel, nitric oxide-releasing hydrogels, and 
the novel hydrogel composed of pooled platelet lysate (PL) to enhance the efficacy 
of MSCs or derivations upon peripheral artery diseases (PADs) [37, 106–108]. For 
example, Lee et al. found that fucoidan was adequate to improve the bioactivity and 
vasculogenic potential of MSCs in hind limb ischemia murine with chronic kidney 
disease (CKD) whereas Nammian et al. further compared the variations of efficacy 
between BM-MSCs and AD-MSCs for CLI [109, 110]. Notably, Ding and their col-
leagues systematically dissected an injectable nanocomposite hydrogel consisting of 
chitosan, gelatin, β-glycerophosphate and Arg-Gly-Asp (RGD) peptide for potential 
applications of facilitating vascularization and tissue engineering [111]. Collectively, 
the aforementioned studies suggest that hydrogel/MSC-based composites occupy a 
greater angiogenic potential over single hydrogel- or MSC-based treatment for PADs.

3.5 Hydrogels/MSCs scaffolds for digestive diseases

Gastroparesis is characterized by pyloric dysfunction, vomiting, severe nausea, 
delayed gastric emptying and impaired fundamental structures, which is related with 
consume of enteric neurons and interstitial cells of Cajal [112]. Meanwhile, stem cell 
therapy has also been extensively explored in inflammatory bowel diseases (IBDs) 
including ulcerative colitis (UC) and Crohn’s disease (CD) in both preclinical studies 
and clinical trials [113–115]. State-of-the-art updates have indicated the mitigatory 
effects of MSCs in gastrointestinal diseases such as acute ulcerative colitis and perianal 
CD [8, 10, 68, 116]. For example, we recently reported the spatio-temporal metab-
olokinetics and efficacy of placenta-derived MSCs (P-MSCs) on intractable CD with 
enterocutaneous fistula in mice via simultaneously accelerating neovascularization and 
downregulating reactive oxygen species (ROS) [8]. Interestingly, Joddar et al. conducted 
delivery of the MSC-alginate/gelatin/poly-l-lysine hydrogel atop stomach grafts facing 
the luminal side, and confirmed the significant advance towards the entire tissue-
engineered “microgels” or “gastric patch” [112]. Of note, the therapeutic effects of MSCs 
via systemic administration are still contradictory largely due to the localization in the 
lungs, which is confirmed by the outcomes of two clinical trials with BM-MSC trans-
plantation [117, 118]. Therefore, the local administration of hydrogel/MSC or hydrogel/
MSC-exosomes are promising alternatives for resolving refractory digestive diseases.

4. Conclusions

Tissue engineering is an inveterate and promising area in the field of regenerative 
medicine, which also has long-lasting limitations in engineering and regenerating 
tissues. MSCs of different origins are splendid “seeds” for the efficient administration 
of various refractory and recurrent diseases. As mentioned above, MSCs as well as the 
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released extracellular vesicles (EVs) reveal substantial therapeutic effect in numerous 
pathophysiological conditions and potentially reconstructing an extensive range of 
diseased or damaged tissues and organs in tissue regeneration engineering, which 
have been predominantly demonstrated from pre-clinical or clinical in vitro and in 
vivo studies. MSC-encapsulated hydrogel scaffolds demonstrate enhanced cell vitality 
and committed differentiation, prolonged fundamental and operational consistency, 
which thus hold promising prospects for tissue engineering and the resultant regen-
erative medicine. Meanwhile, the exosomes and other nano-scale secretions released 
from the multivesicular MSCs encapsulated into appropriative hydrogel formula-
tions (e.g., HA, nHAP, PLGA, pDA, and FHE) have manifested higher therapeutic 
potential in both fundamental research and clinical application. Overall, the current 
progress of regenerative medicine will extensively benefit from the “advantaged” 
artificial hydrogel/MSC-based cytotherapy in the near future.
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Appendices and nomenclature

MSCs mesenchymal stem/stromal cells
aGVHD acute graft-versus-host diseases
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CLI critical limb ischemia
ACLF acute-on-chronic liver failure
AMI acute myocardial infarction
RA rheumatoid arthritis
COVID-19 coronavirus disease 2019
ECMs extracellular matrices
HA hyaluronic acid
PSC-MSCs pluripotent stem cell-derived MSCs
BM-MSCs bone marrow-derived MSCs
ARDS acute respiratory distress syndrome
IPF idiopathic pulmonary fibrosis
DPSCs dental pulp stem cells
UC-MSCs umbilical cord-derived MSCs
P-MSCs placental-derived MSCs
AF-MSCs amniotic fluid-derived MSCs
A-MSCs amniotic-derived MSCs
D-MSCs decidua-derived MSCs
CV-MSCs chorionic villi-derive MSCs
COPD chronic obstructive pulmonary disease
CHS cerebral hemorrhage sequela
DMD Duchenne muscular dystrophy
POF premature ovarian failure
EAE experimental autoimmune encephalitis
IBD inflammatory bowel disease
ESCs embryonic stem cells
iPSCs induced pluripotent stem cells
nHA nano-hydroxyapatite
CKD chronic kidney disease
PADs peripheral artery diseases
CD Crohn’s disease
UC ulcerative colitis
IUA intrauterine adhesions
PGE2 prostaglandin E2
ROS reactive oxygen species
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Chapter 8

Smart Polymer Hydrogels as
Matrices for the Controlled Release
Applications in Agriculture Sector
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Abstract

Synthetic polymer hydrogels and modified natural polymer hydrogels are widely
and increasingly used in agriculture, health care textiles, effluent treatment, drug
delivery, tissue engineering, civil concrete structure, etc. Among them, the use of
hydrogels in agricultural and horticultural sectors as matrices for the controlled release
of water, various primary and secondary nutrients has drawn significant attraction from
researchers, scientists, and industry persons due to their smartness with reference to
controlled release characteristics based on plant requirement. Since the use of these
hydrogels for controlled release application ensures the minimum utilization of water
and plant nutrients in fields. Besides, this will bring down the overloading of fertilizer,
soil contamination, and water pollution such as eutrophication, nitrate pollution, and
micronutrient imbalance. This chapter is focused on the class of hydrogels that are used
for the controlled release application in the agricultural and horticultural sectors as
matrices, the possible methods of fine-tuning their structures for improving their
fertilizer uptake and release behavior, safety aspects, and environmental issues.

Keywords: swellability, controlled release, reusability, environmental protection,
water conservation

1. Introduction

The smart polymers hydrogels are the class of functional polymers, which finds
extensive use [1, 2] in diverse areas like agricultural, medical, pharmaceutical, effluent
treatment, textile, etc. They have physicochemically crosslinked three-dimensional
network, which are derived from water-soluble acrylic monomers, crosslinkers and
natural pre-polymers. These smart hydrogels are capable of imbibing and retaining
water or aqueous fluids such as urine, blood, electrolyte solution, etc. to the extent of
200 g to 1–2 kg of fluids without dissolving [3–5]. This hydrophilic nature of hydrogel
leads to managing drought conditions in arid and semi-arid regions as a matrix for the
controlled release of water and fertilizers [5]. To serve this, polymers with different
chemical architecture are essential for diverse soil characteristics [5].

Agrochemicals such as primary and secondary fertilizers are used to hike crop
yield with substantial quality foodstuff [6]. However, the traditional method of
growing foodstuffs using synthetic fertilizers will not ensure a high-quality
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environment [6]. Depending on the method of application and climatic conditions,
about 90% of conventionally applied fertilizers never reach their objectives to realize
the desirable biological response at the precise time and in the quantities required [6].
Such a mode of application provides a higher initial concentration than required for
quick results. The conventional method of fertilizer amendment provides an initial
concentration far above that required for immediate results to ensure the availability
of sufficient nutrients. But such overdosing will result in waste of fertilizers [6] and
produce undesirable side effects in the environment. Hence, there is a need for more
controlled application of fertilizer, affording lower amounts of active ingredients
without diminishing the efficacy. Controlled-release formulations were used to main-
tain an effective local concentration of active ingredients in the soil and to reduce
runoff [6]. Besides, the application frequency required in the growing season could be
minimized through controlled release technology. The controlled release was defined
[6] as a technique or a method by which water or active chemicals were made
available to a specified target at a definite rate and duration designed to accomplish an
intended effect [7–15]. The method of choice to achieve controlled release in a partic-
ular application depends on the cost, release rate, potency and properties of the active
compounds [14–16]. This chapter addresses the synthesis, characterization and con-
trolled release applications of synthetic and natural polymer modified hydrogels in
agriculture as matrices [16], different types of hydrogel used for controlled release,
advantages, limitations and challenges.

2. Synthesis of hydrogels for controlled release

The smart hydrogels with controlled release characteristics have been prepared
either from water-soluble acrylic monomers, crosslinkers and modified natural poly-
mer by grafting.

2.1 From hydrophilic monomers

The hydrogels with good swelling ability are synthesized from water-soluble
hydrophilic acrylic monomers such as acrylamide, acrylic acid, acrylates, itaconic
acid, etc. using suitable initiators and crosslinkers through radical or photochemical
polymerization methods [17]. This will be achieved either by solution or suspension or
emulsion or bulk polymerization methods [17]. Free-radical polymerization mecha-
nism is predominantly employed to synthesize hydrogel using olefinic monomers. The
initiation of monomers is carried out by the initiators such as peroxides (benzoyl or
t-butyl peroxides), azo-compounds (azobisisobutyronitrile) and persulphates.
Peroxides and peroxy compounds can facilitate ambient temperature polymerization
under the influence of tetramethylene diamine, sodium metabisulfite/ferrous salts,
triethylamine, etc. [17, 18]. Benzyl alcohol, ethanol, water, and ethanol-water
mixtures are commonly used solvents to achieve solution polymerization. The
monomers (Table 1), cross-linkers (Table 2) and natural polymers (Table 3) that
are used for hydrogel synthesis are given in the respective Tables.

2.2 Modification of natural pre-polymers

Water swellable hydrophilic hydrogel polymer can also be synthesized by
performing appropriate chemical modification of natural polymers such as gelatin,
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starch, alginate, cellulose, chitosan, pectin, etc. via grafting using acrylic monomers. In-
situ incorporation of micronutrient (boron) on acrylic acid grafted guar gum-based
hydrogel [19], acrylic monomers grafted chitosan hydrogel [20], urea loaded cellulose
[21], carboxymethylcellulose-hydroxyethylcellulose cross-linked with citric acid [22],
etc. can also be used as matrices for the controlled release of fertilizers and water in
agricultural field.

3. Characterization

3.1 Analytical methods

The potential applicability [23] of smart polymers are gauged based on their
chemical structure, the extent of chemical and physical crosslinking, crosslink density,
mechanical properties, degrees of swelling (hydrophilicity), release characteristics,
hydrophobicity, surface morphology, biodegradability, biocompatibility, glass-
transition temperature, thermal stability, photo-stability, bio-resorbability,

Chemical structure of monomers

Hydroxyethyl acrylates (HEA)

Hydroxyethyl methacrylates (HEMA)

2-Vinylpyridine (VP)

N-Isopropylacrylamide (NIPAm) N-vinyl-2-pyrrolidone (NVP)
N-acroylpyrrolidone (ANVP)

2-Aminoethyl methacrylate (AEM)

2-oxazoline (OZ) Methacrylic acid(MAA)

Sodium – 2 sulfoxyethyl methacrylate (SSM)

Methyl methacrylate (MMA)

2-Acrylamido-2-methylpropane sulfonic acid (AMPS)

Itaconic acid (IA)

Sodium styrene sulfonate (SSS) 2-methacryloyloxyethyl trimethylammonium chloride

Acrylic acid(AA) Acrylonitrile (AN)
Acrylamide (Am)

Table 1.
Typical monomers used for hydrogel synthesis.
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interaction with biological fluids, environmental sensitivity, dielectric properties,
toxicity, the toxicity of the degraded products, etc. For instance, the nature of func-
tional groups, crystallization deformation of polymers, biodegradation, moisture
uptake properties, nature of interactions between components are evaluated using
Fourier Transform Infrared Analysis (FTIR) and Nuclear Magnetic Resonance (NMR)
spectroscopy. The modification after polymerization such as chemical composition,
grain size, the extent of crosslinking, pore size, pore volume are evaluated using
Atomic Force Microscopy (AFM) or Scanning Electron Microscopy (SEM) and X-ray
diffraction analysis. The oxidative thermal degradation, glass transition temperature,
lifetime prediction, melting point, etc. are assessed through Thermal Analysis (TGA
and DSC). The mechanical characteristics such as tensile strength and elastic moduli
and strain are evaluated using a tensile-compressive tester.

3.2 Swelling measurements

The swelling ability of hydrogel is a significant characteristic for field application.
The absorption capacity of the hydrogel can be evaluated [23] gravimetrically at
successive time intervals using tea-bag, sieves, centrifugal, volumetric, microwave,
gravimetric, NMR, DSC methods based on the required precision. The extent of
swelling (DS) was measured using Eq. (1) by performing triplicate measurements.

DS ¼ Wt �W0

W0
(1)

Chemical structures of crosslinkers

N,N'-Methylenebisacrylamide (N, N1MBA)

Ethylene glycol dimethacrylate (EGDM)

Trimethylol propane trimethacrylate (TMPTA)

Divinylbenzene (DVB)

Triallylamine (TA)

Glutaraldehyde (GA)

1,4-butanediol dimethacrylate (BDDM)

Tetraallylethoxy ethane (TAEE)

Table 2.
Typical crosslinkers used for hydrogel synthesis.
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The weight of dried (W0) and swollen polymers Wtð Þ at a particular time are
measured gravimetrically.

3.3 Absorption under load (AUL)

The extent of water absorption under load is determined by performing AUL of
hydrogel samples [24] using the Eq. (2). The AUL test will display the absorption capacity
of smart polymer hydrogel under stressed conditions (load) and ionic strength.

AUL g=gð Þ ¼ W2 �W1

W1
(2)

W1 and W2 represents weight of dry and swollen hydrogel respectively.

3.4 Fertilizer uptake and release studies

The quantum of fertilizer absorption and release characteristics of smart hydrogels
are measured based on Eq. (3). The percentage release of fertilizer from the loaded

Chemical structures of natural polymers

Pectin

Chitosan

Guar gum

Gelatin

Table 3.
The representative natural pre polymers used for hydrogel synthesis.
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hydrogels are measured gravimetrically [12]. This procedure was followed for every
two-day interval to ensure maximum fertilizer release. The percentage of urea/potash
release was calculated [12] using Eq. (3).

Percentage of fertilizer released ¼
ΔWð Þn� 100� n� 1ð Þ � 2½ �=2þ Pn�1

i¼1
ΔWð Þi

Wo
(3)

The amount of fertilizer released from the hydrogel in 2 and ith ml are represented
by W0 and (ΔW)i respectively. The number of nutrient releases at different time
intervals for the single experiment is denoted by the term “n”.

3.5 Transport kinetics

The rate of nutrient absorption by the plants depends on various parameters such
as plant age, nature of fertilizers, and the concentration of fertilizers. However, the
micronutrients are supplied as chelates or complexes (using synthetic complexing
agents such as salicylic, lactic, formic, citric, succinic, propionic, ascorbic, tartaric and
gluconic acids and their sodium, potassium and ammonium salts. Amino acids such as
glutamine cysteine, glycine, and lignosulfonates can also be used as complexing agents
[25]. The water, nutrients uptake and release behavior of hydrogels are regulated by
their chemical constituents namely sulfonic acid, amide, hydroxyl, amine, carboxylic
acid, carboxylate groups, etc.

The uptake and release mechanisms are clearly understood by analyzing the trans-
port kinetics. The movement of solvent and solute either into or out of hydrogel is also
regulated by the shrinking and swelling of hydrogels. The second-order kinetic model
[Eq. (4)] was used to explain the swelling of hydrogel [23].

dM
dt

¼ ks M∞ �Mð Þ2 (4)

where, M: uptake at time t, M∞: uptake at equilibrium condition, and ks: kinetic
rate constant.

The swelling rate (SR), and swellability (St) and StþΔtð ) at time ‘t’ and ‘t+Δt’
respectively are measured using the Eq. (5).

SR ¼ StþΔt � St
Δt

(5)

3.6 Diffusion

A random molecular process causes the movements of solvent or solute molecules
from one part to another part of hydrogels. Further, this movement is also influenced
by temperature, pressure, solute size and viscosity. Generally, in hydrogel water
molecules diffusion is connected to the extent of polymer-solvent interactions. Based
on hydrogel relaxation rate, the diffusion is categorized as non-Fickian and Fickian
[26], and the power-law Eq. (6) is used to evaluate the penetration characteristics of
solvent into the hydrogel [26].
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Mt ¼ ktn (6)

The value of diffusion exponent (n) is ranged from 0.5 to 1 and the parameter k
represents the rate constant.

3.7 Fickian and non-Fickian

The diffusion mechanism [26] of solution in the hydrogel during network collapse
or swelling was analyzed using Fick’s law. Fickian diffusion was noticed when the
operating temperature of the system was greater than the glass transition temperature
(Tg) of the hydrogel. Fickian type diffusion was also predicted if the solvent diffusion
rate (Rdiff) was slower than hydrogel relaxation rate (Rrelax) i.e., (Rdiff <<Rrelax).
Besides, the diffusion distance and the square root of time were found to have a direct
relationship [Eq. (7)]

Mt ¼ kt1=2 (7)

The value of ‘n’ provides the diffusion characteristics, for instance, if n = 0.5 in
Eq. (6) Fickian diffusion is followed, and the ‘n’ values lie between 1 and 0.5 non-
Fickian (anomalous) transport mechanism is followed. Further, non-Fickian model
was noticed below glass transition of the hydrogel.

4. Application of hydrogel in agriculture field

The substantial foodstuff production requires an adequate amount of primary and
secondary nutrients [6] along with water during cultivation. To achieve expected
yield farmers used to feed an additional amount of fertilizers than the required
quantity [6] during each amendment. However, 90% of the applied fertilizers are
going as waste due to different climatic conditions and the application method [6]. An
excess dose of fertilizers leads to economic losses, toxicity problems and effects
on aquatic organisms [6] which cause uninvited effects such as water and soil
pollution. Hence, there is a necessity to adopt the method, which facilitates the
controlled release of fertilizers without affecting efficacy. An execution of controlled
release using polymer based matrix is being used for a long time [6]. The loaded
fertilizers have been released through chemical cleavage of the polymer-active agents
or by depolymerization reaction (originated other factors) [6]. However, the
implementation of a controlled release technique for the particular application
depends on the factors namely release rate, cost, effectiveness and properties of
synthetic fertilizers.

4.1 Advantages

In agricultural field, smart hydrogels have discharged numerous applications [27]
and the notable merits are minimum use of fertilizers and water through controlled a
release mechanism. The list of noteworthy advantages of hydrogel amendment in the
soil is displayed in Figure 1. However, hydrogels used for the controlled release of
fertilizers and water in the field must have
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a. High water retaining ability with slow-release behavior

b. Excellent efficiency

c. Appreciable permeability and infiltration rate

d. Highly stable enough under various environmental conditions for the prolonged
use

e. Reduced frequency of irrigation

f. Ability to undergo biodegradation without affecting soil fertility

g. Enhanced plant growth in arid and semiarid conditions

The use of smart hydrogels in agricultural sector have attracted great attention as
water management material in soil and matrices for the controlled release of primary and
secondary fertilizers. The release rates of hydrogels [23, 27] are depends on the functional
groups that are present in the polymer, functionality of crosslinker, pH, temperature,
ionic strength of the medium, etc. Besides, the incorporation of natural pre-polymers in
synthetic polymer hydrogel will bring down the operation cost, since they are readily
available at a low cost and highly biodegradable. Nevertheless, natural polymer incorpo-
ration may induce a few limitations such as the lack of solubility of monomers in aqueous

Figure 1.
Advantages of hydrogel in field.
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and non-aqueous solvents during hydrogel synthesis [16]. This characteristic behavior
will result in excess utilization of pre-polymers to enhance agricultural yield.

The additional expected physicochemical and mechanical properties from the syn-
thesized hydrogel for field applications are good stability during swelling (without
dissolving), photostability, ability to uptake and hold maximum water with good swell-
ing rate, particle size, maximum fertilizer uptake, porosity, odorless, neutral pH, color-
less, low residual monomer content, non-toxicity, biodegradability without yielding
toxic reside, and low cost [28, 29]. However, it should be remembered that the synthesis
of hydrogel with all these features is difficult to achieve. However, some of its features
namely porosity, stimuli responsiveness (pH and temperature), residual monomer con-
tent and swellability [30–32] are fine-tunable. The extent of hydrogel swellability,
which are amended in the soil can be fine-tuned based on the requirement by making
modification in the functional groups such as �NH2, �COOH, �OH, �CONH2,
�CONH� and –SO3H. Besides, osmotic pressure, movable counter ions and capillary
effect have also influenced swelling and release phenomena [33]. During swelling, the
process of water uptake by the hydrogel will follow multiple steps that include hydra-
tion of polar hydrophilic and hydrophobic groups leading to the formation of primary
and secondary bound water respectively. Meanwhile, infinite dilution of the hydrogel
network will be resisted by the formation of either chemical or physical cross-links.
Hence, the water molecules that are entering into the network during the initial and
equilibrium stages are known as total bound and bulk water/free water respectively.
During swelling these water molecules shall occupy the gaps available between chains
and the midpoint of pores. The quantum of water uptake by the hydrogel networks is
influenced by various parameters such as temperature, pH, nature of interactions, etc.
that exist between networks and water molecules [33]. The list of representative
hydrogels that are used as water-retaining agents and matrices for the controlled release
of nitrate, potash, phosphate fertilizers are presented in Tables 4–7.

Representative hydrogel Reference

Starch-modified poly(acrylic acid) [15]

Hydrogels based on polyacrylamide and natural cashew tree gum [34]

Wheat straw cellulose hydrogel based hydrogel [35]

Hyaluronate-Hydroxyethyl acrylate blend [36]

Acrylic acid and acrylamide copolymers [37]

Polyacrylamide based hydrogel [38]

Guar gum-g-poly(sodium acrylate) [39]

Radiation induced crosslinked polyacrylamide [40]

Glycerol and poly(vinyl alcohol) hydrogel [41]

Gum ghatti-poly(acrylic acid–aniline) hydrogels [42]

Acrylamide and hyper-branched polyethyleneimine based hydrogel [43]

Acrylic acid-co-acrylic amide based hydrogel [44]

Poly(acrylamide-co-acrylic Acid)/AlZnFe2O4 [45]

Poly(ethylene glycol) and Poly(acrylate) copolymer [46]

Partially neutralized acrylic acid and NVP [47]

Oxyethylene segments of poly(ester-amide) and poly(tartaramide) [48]
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Representative hydrogel Reference

Aluminum sulfate octadecahydrate crosslinked carboxymethyl cellulose and aluminum
sulfate octadecahydrate crosslinked starch

[49]

Modified poly(ethylene glycol) crosslinked with poly(sodium acrylate) [50]

Poly(acrylic acid) grafted on carboxymethyl chitosan copolymer [51]

Table 4.
Hydrogel used as soil conditioner and water retention material in soil.

Typical hydrogel Reference

Microwave-mediated biochar-hydrogel composites [52]

Polyvinylpyrrolidone (PVP)/carboxylmethyl cellulose [53]

Acrylamide and acrylic acid based hydrogels [54]

Glutaraldehyde crosslinked chitosan-poly(vinylalcohol) hydogel [55]

Borassus aethiopum starch and Maesopsis eminii hydrogels [56]

Poly(acrylonitril)-based poly acrylic acid hydrogels, [57]

Acrylamide and N-hydroxymethyl acrylamide hydrogel [58]

Natural rubber, cassava starch crosslinked by glutaraldehyde hydrogel [59]

Starch phosphate carbamate hydrogel [60]

Starch cross-linked acrylic acid and acrylamide hydrogel [61]

Poly (acrylamide-co-acrylic acid)/kaolin gel [62]

Poly(maleic anhydride-co-acrylic acid) hydrogel [63]

Poly(acrylic acid)/attapulgite/sodium humate composite hydrogel [64]

Poly(acrylamide) and methylcellulose based hydrogels [65]

N,N1-MBA crosslinked acrylic acid [12]

Table 5.
Representative Hydrogel used for the controlled release of nitrogen fertilizer.

Chemical nature of hydrogel Reference

Biodegradable Gelatin-Tapoica/polyacrylamide [66]

N,N'-MBA crosslinked starch hydrogel [67]

Poly(vinyl alcohol)/chitosan crosslinked with glutaraldehyde [68]

Methylcellulose and hydroxypropyl methylcellulose based hydrogel [69]

Arabic gum-based hydrogel [70]

Pine resin backbone based hydrogel [71]

Clay-based nanocomposites hydrogel [72]

κ-carrageenan-based hydrogel [73]

poly(lactic acid)/cellulose-based hydrogel composite [74]

poly(acrylic acid-co-acrylamide)/kaolin hydrogel [75]

Table 6.
Typical hydrogels used as matrices for the controlled release of potassium.
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4.2 Effects of hydrogel amendment

Smart hydrogel amendment in the soil during cultivation process will alter the
hydraulic conductivity and pore size of soil to some extent due to water absorption
[85, 86]. However, it will improve residual and saturated water content, which results
in the reduction of subsequent water loss and infiltration due to percolation, this will
facilitate aeration in soil due to expansion and contraction of hydrogel through
absorption and evaporation [85]. The suitability of hydrogel for semi-arid and arid
regions was due to the release of water and fertilizers with reference to environmental
temperature, which results in increased survival [85] of plants. Besides, the hydrogel
amendment has reduced the uptake of toxic metals and soil salinity by plants [87, 88].

4.3 Safety aspect and environmental concern

The practical applicability of hydrogel in field applications is dependent on safety,
toxicity and eco-friendly degradability under soil conditions after its service and other
environmental issues. Most of the hydrogels used in agricultural sector have stable
service life (5–7 years), but their degradability is suspected. Hydrogels amended in the
soil will experience stress from various factors such as microbes, light, pH, tempera-
ture, etc. The degradability of hydrogels depends on their structures and other envi-
ronmental factors such as intensity of light, soil microbes, heat, pH, etc. The
degradability of hydrogels could be attained by incorporating favorable functional
groups such as ester, amide, urethane, anhydride, glycocidic (ether), urea, ortho-
ester, carbonate, etc. in the backbone. The degradation sequence of polymers have
predicted as anhydride > ester> orthoester> carbonate> urea>urethane> ether [89].

The monomers of hydrogels are known to be toxic and carcinogenic, but the
polymer derived from the same monomers are proved to be non-toxic [18]. This
characteristic behavior could be attributed to low boiling point and the low molecular
weight of acrylic monomers and crosslinkers, which may effortlessly enter into the
human body through skin absorption and inhalation [90, 91]. The studies have also
recorded that these acrylic monomers imposed wide a range of health effects such as

Name of the hydrogel Reference

Carboxymethyl cellulose based hydrogel [76]

Alginate-cellulose nanofibers–poly(vinyl alcohol) hydrogel [77]

Hybrid nanocomposite banana peel cellulose and layered double hydroxides nano-sheets [78]

Carboxymethyl starch-g-polyacrylamide [79]

pH sensitive sodium alginate, acrylic acid, and acrylamide based hydrogel [80]

Biodegradable crosslinked acrylic acid based hydrogel [81]

sulfonated-carboxymethyl cellulose, acrylic acid and polyvinylpyrrolidone based hydrogel [82]

Poly(acrylic acid) and sugarcane bagasse hydrogel [83]

Poly(vinylalcohol)-phosphate gels [84]

Alginate-graft-polyacrylamide hydrogel [13]

Table 7.
Representative hydrogels used for the controlled release of phosphate fertilizer.
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skin and eye irritation, allergic action, asthma, nerves problem, internal organ toxicity
and impacts on fertility [90, 91]. The contentious exposures of acrylates will yield
acrylic acid [90, 91] in the human body during metabolic activity. However, the
crosslinked hydrogels will not cause any harmful effects on living organisms due to
their insolubility and non-volatile nature [90, 91].

5. Conclusions

The chapter is focused on the development of smart hydrogels derived from
synthetic monomers and natural pre-polymer for agricultural application as water
retaining material and matrices for the controlled release of fertilizers. However, in
the majority of the report, the mechanical properties of those hydrogels are not good
enough for prolonged application in the field. Hence, this chapter addressed the route
in which the mechanical properties of such hydrogel are fine-tuned. Besides, it
focused on the typical hydrogels that are used for the controlled release of water, urea,
potash and phosphate fertilizers, their advantages in the field, effects on the hydraulic
conductivity of soil and their safety aspects.
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Hydrogels are well-defined structures that do not dissolve in water. They have many 
uses, especially in biomedicine. This book provides a comprehensive overview of 

hydrogels, including their characteristics and applications in medical devices, drug 
delivery, robotics, “smart” applications, and more.
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