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Preface

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications 
illustrates the famous Monte Carlo methods and the computer simulation of random 
experiments in different areas of science. As such, the book will be of interest to all 
scholars, researchers, and undergraduate and graduate students in mathematics and 
science in general.

In applied mathematics, the name Monte Carlo is given to the method of solving 
problems by means of experiments with random numbers. This name, after the casino 
at Monaco, was first applied around 1944 to the method of solving deterministic 
problems by reformulating them in terms of a problem with random elements, which 
could then be solved by large-scale sampling. But, by extension, the term has come to 
mean any simulation that uses random numbers.

The development and proliferation of computers has led to the widespread use of 
Monte Carlo methods in virtually all branches of science, ranging from nuclear 
physics (where computer-aided Monte Carlo was first applied) to astrophysics, 
biology, engineering, medicine, operations research, and the social sciences.

The Monte Carlo method of solving problems by using random numbers in a 
computer, either by direct simulation of physical or statistical problems or by 
reformulating deterministic problems in terms of one incorporating randomness, 
has become one of the most important tools of applied mathematics and computer 
science. A significant proportion of articles in technical journals in such fields as 
physics, chemistry, and statistics contain articles reporting results of Monte Carlo 
simulations or suggestions on how they might be applied. Some journals are devoted 
almost entirely to Monte Carlo problems in their fields. Studies in the formation of the 
universe or of stars and their planetary systems use Monte Carlo techniques. Studies 
in genetics, the biochemistry of DNA, and the random configuration and knotting of 
biological molecules are studied by Monte Carlo methods. In number theory, Monte 
Carlo methods play an important role in determining primality or factoring of very 
large integers far beyond the range of deterministic methods. Several important new 
statistical techniques such as “bootstrapping” and “jackknifing” are based on Monte 
Carlo methods.

Hence, the role of Monte Carlo methods and simulation in all the sciences has 
increased in importance during the past several years. These methods play a central 
role in the rapidly developing subdisciplines of the computational physical sciences, 
computational life sciences, and other computational sciences. Therefore, the 
growing power of computers and evolving simulation methodology has led to the 
recognition of computation as a third approach for advancing the natural sciences, 
together with theory and traditional experimentation. Knowing that at the kernel 
of Monte Carlo simulation is random number generation.

Moreover, the book develops methods for simulating simple or complicated 
processes or phenomena. If the computer can be made to imitate an experiment or a 
process, then by repeating the computer simulation with different data, we can draw 
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statistical conclusions. Thus, a simulation of a spectrum of mathematical processes 
on computers was conducted. The result and accuracy of all the algorithms are truly 
amazing and delightful; hence, this confirms two complementary accomplishments: 
first, the triumphs of the theoretical calculations already established using different 
theorems and second, the power and success of modern computers to verify them.

Additionally, each time I work in the field of mathematical probability and Monte 
Carlo methods I find pleasure in tackling the knowledge, theorems, proofs, and 
applications of the theory. In fact, each problem is like a riddle to be solved, a 
conquest to be won, and I become relieved and extremely happy when I reach the 
end of the solution. This proves two important facts: first, the power of mathematics 
and its models to deal with such kinds of problems and second, the power of the 
human mind to understand such class of problems and to tame such wild concepts 
that are randomness, probability, stochasticity, uncertainty, chaos, chance, and 
nondeterminism.

I am truly astonished by the power of probability and these random techniques to 
deal with random data and phenomena, and this feeling and impression never left 
me from the first time I was introduced to this branch of science and  mathematics. 
I hope that in this book I am able to convey and share this feeling with readers. 
I hope also that readers will discover and learn about the concepts and applications 
of the probabilistic and Monte Carlo paradigm.

Abdo Abou Jaoudé, Ph.D.
Notre Dame University-Louaizé,

Zouk Mosbeh, Lebanon 

XIV



Chapter 1

The Paradigm of Complex
Probability and Thomas Bayes’
Theorem
Abdo Abou Jaoudé

“Simple solutions seldom are. It takes a very unusual mind to undertake analysis of
the obvious.”

Alfred North Whitehead.

“Nothing in nature is by chance… Something appears to be chance only because of
our lack of knowledge.”

Baruch Spinoza.

“Fundamental progress has to do with the reinterpretation of basic ideas.”
Alfred North Whitehead.

“Mathematics, rightly viewed, possesses not only truth but supreme beauty… ”

Bertrand Russell.

Abstract

The mathematical probability concept was set forth by Andrey Nikolaevich
Kolmogorov in 1933 by laying down a five-axioms system. This scheme can be
improved to embody the set of imaginary numbers after adding three new axioms.
Accordingly, any stochastic phenomenon can be performed in the set C of complex
probabilities which is the summation of the set R of real probabilities and the set
M of imaginary probabilities. Our objective now is to encompass complementary
imaginary dimensions to the stochastic phenomenon taking place in the “real”
laboratory in R and as a consequence to gauge in the sets R, M, and C all the
corresponding probabilities. Hence, the probability in the entire set C = R + M is
incessantly equal to one independently of all the probabilities of the input stochastic
variable distribution inR, and subsequently the output of the random phenomenon
in R can be evaluated totally in C. This is due to the fact that the probability in C is
calculated after the elimination and subtraction of the chaotic factor from the
degree of our knowledge of the nondeterministic phenomenon. We will apply this
novel paradigm to the classical Bayes’ theorem in probability theory.

Keywords: Chaotic factor, degree of our knowledge, complex random vector,
imaginary probability, probability norm, complex probability set

1. Introduction

The crucial job of the theory of classical probability is to compute and to assess
probabilities. A deterministic expression of probability theory can be attained by
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adding supplementary dimensions to nondeterministic and stochastic experiments.
This original and novel idea is at the foundations of my new paradigm of complex
probability. In its core, probability theory is a nondeterministic system of axioms
that means that the phenomena and experiments outputs are the products of chance
and randomness. In fact, a deterministic expression of the stochastic experiment
will be realized and achieved by the addition of imaginary new dimensions to the
stochastic phenomenon taking place in the real probability setR and hence this will
lead to a certain output in the set C of complex probabilities. Accordingly, we will be
totally capable to foretell the random events outputs that occur in all probabilistic
processes in the real world. This is possible because the chaotic phenomenon
becomes completely predictable. Thus, the job that has been successfully completed
here was to extend the set of real and random probabilities which is the setR to the
complex and deterministic set of probabilities which is C ¼RþM. This is
achieved by taking into account the contributions of the imaginary and comple-
mentary set of probabilities to the set R and that we have called accordingly the set
M. This extension proved that it was effective and consequently we were success-
ful to create an original paradigm dealing with prognostic and stochastic sciences in
which we were able to express deterministically in C all the nondeterministic
processes happening in the ‘real’ world R. This innovative paradigm was coined by
the term “The Complex Probability Paradigm” and was started and established in
my seventeen earlier publications and research works [1–17].

At the end, and to conclude, this research work is organized as follows: After the
introduction in section 1, the purpose and the advantages of the present work are
presented in section 2. Afterward, in section 3, the extended Kolmogorov’s axioms
and hence the complex probability paradigm with their original parameters and
interpretation will be explained and summarized. Moreover, in section 4, the com-
plex probability paradigm axioms are applied to Bayes’ theorem for a discrete
binary random variable and for a general discrete uniform random variable and
which will be hence extended to the imaginary and complex sets. Additionally, in
section 5, the flowchart of the new paradigm will be shown. Furthermore, the
simulations of the novel model for a discrete random distribution and for a contin-
uous stochastic distribution are illustrated in section 6. Finally, we conclude the
work by doing a comprehensive summary in section 7, and then present the list of
references cited in the current research work.

2. The purpose and the advantages of the current publication

The advantages and the purpose of this current work are to:

1.Extend the theory of classical probability to encompass the complex numbers
set, hence to bond the theory of probability to the field of complex variables
and analysis in mathematics. This mission was elaborated and initiated in my
earlier seventeen papers [1–17].

2.Apply the novel probability axioms and paradigm to the classical Bayes’
theorem.

3.Show that all nondeterministic phenomena can be expressed deterministically
in the complex probabilities set which is C.

4.Compute and quantify both the degree of our knowledge and the chaotic
factor of all the probabilities in the sets R, M, and C.

2
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5.Represent and show the graphs of the functions and parameters of the
innovative paradigm related to Bayes’ theorem.

6.Demonstrate that the classical concept of probability is permanently equal to
one in the set of complex probabilities; hence, no randomness, no chaos, no
ignorance, no uncertainty, no nondeterminism, no unpredictability, and no
disorder exist in:

C complex setð Þ ¼R real setð Þ þM imaginary set
� �

:

7.Prepare to implement this creative model to other topics in prognostics and to
the field of stochastic processes. These will be the job to be accomplished in my
future research publications.

Concerning some applications of the novel founded paradigm and as a future
work, it can be applied to any nondeterministic phenomenon using Bayes’ theorem
whether in the continuous or in the discrete cases. Moreover, compared with
existing literature, the major contribution of the current research work is to apply
the innovative paradigm of complex probability to Bayes’ theorem. The next figure
displays the major purposes and goals of the Complex Probability Paradigm (CPP)
(Figure 1).

3. The complex probability paradigm

3.1 The original Andrey Nikolaevich Kolmogorov system of axioms

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a
collection of elements {E1, E2, … } called elementary events and let F be a set of
subsets of E called random events [18–22]. The five axioms for a finite set E are:

Axiom 1: F is a field of sets.
Axiom 2: F contains the set E.
Axiom 3: A non-negative real number Prob(A), called the probability of A, is

assigned to each set A in F. We have always 0 ≤ Prob(A) ≤ 1.
Axiom 4: Prob(E) equals 1.

Figure 1.
The diagram of the Complex Probability Paradigm major goals.
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Axiom 5: If A and B have no elements in common, the number assigned to their
union is:

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ

hence, we say that A and B are disjoint; otherwise, we have:

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ � Prob A∩Bð Þ

And we say also that: Prob A∩Bð Þ ¼ Prob Að Þ � Prob B=Að Þ ¼ Prob Bð Þ � Prob A=Bð Þ
which is the conditional probability. If both A and B are independent then:
Prob A∩Bð Þ ¼ Prob Að Þ � Prob Bð Þ.

Moreover, we can generalize and say that for N disjoint (mutually exclusive)
events A1,A2, … ,A j, … ,AN (for 1≤ j≤N), we have the following additivity rule:

Prob ⋃
N

j¼1
A j

 !
¼
XN
j¼1

Prob A j
� �

And we say also that for N independent events A1,A2, … ,A j, … ,AN (for
1≤ j≤N), we have the following product rule:

Prob ⋂
N

j¼1
A j

 !
¼
YN
j¼1

Prob A j
� �

3.2 Adding the Imaginary Part M

Now, we can add to this system of axioms an imaginary part such that:
Axiom 6: Let Pm ¼ i� 1� Prð Þ be the probability of an associated complemen-

tary event in M (the imaginary part) to the event A in R (the real part). It follows
that Pr þ Pm=i ¼ 1 where i is the imaginary number with i ¼ ffiffiffiffiffiffi�1p

or i2 ¼ �1.
Axiom 7: We construct the complex number or vector z ¼ Pr þ Pm ¼

Pr þ i 1� Prð Þ having a norm zj j such that:

zj j2 ¼ P2
r þ Pm=ið Þ2:

Axiom 8: Let Pc denote the probability of an event in the complex probability
universe C where C ¼RþM. We say that Pc is the probability of an event A inR
with its associated event in M such that:

Pc2 ¼ Pr þ Pm=ið Þ2 ¼ zj j2 � 2iPrPm and is always equal to 1:

We can see that by taking into consideration the set of imaginary probabilities
we added three new and original axioms and consequently the system of axioms
defined by Kolmogorov was hence expanded to encompass the set of imaginary
numbers [1–17].

3.2.1 A concise interpretation of the original paradigm

As a summary of the new paradigm, we declare that in the universe R of real
probabilities we have the degree of our certain knowledge is unfortunately incom-
plete and therefore insufficient and unsatisfactory, hence we encompass in our
analysis the set C of complex numbers which integrates the contributions of both
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the real set R of probabilities and its complementary imaginary probabilities set
that we have called accordingly M [1–17]. Subsequently, a perfect and an absolute
degree of our knowledge is obtained and achieved in the universe of probabilities
C ¼RþM because we have constantly Pc = 1. In fact, a sure and certain predic-
tion of any random phenomenon is reached in the universe C because in this set, we
eliminate and subtract from the measured degree of our knowledge the computed
chaotic factor. Consequently, this will lead to in the universe C a probability
permanently equal to one as it is shown in the following equation: Pc2 = DOK�
Chf = DOK + MChf = 1 = Pc deduced from the complex probability paradigm.
Moreover, various discrete and continuous stochastic distributions illustrate in my
seventeen previous research works this hypothesis and innovative and original
model. The figure that follows shows and summarizes the Extended Kolmogorov
Axioms (EKA) or the Complex Probability Paradigm (CPP) (Figure 2).

4. The complex probability paradigm applied to Bayes’ Theorem

4.1 The case of a discrete binary random variable

4.1.1 The probabilities and the conditional probabilities

We define the probabilities for the binary random variable A as follows [23–37]:
A is an event occurring in the real probabilities setR such that: Prob Að Þ ¼ Pr.
The corresponding associated imaginary complementary event to the event A in

the probabilities set M is the event B such that: Prob Bð Þ ¼ Pm ¼ i 1� Prð Þ.
The real complementary event to the event A in R is the event A such that:
A∪A ¼R and A∩A ¼ ∅ (mutually exclusive events)

Prob A
� � ¼ 1� Prob Að Þ ¼ 1� Pr ¼ Pm=i ¼ Prob Bð Þ=i

Figure 2.
The EKA or the CPP diagram.
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) Prob Bð Þ ¼ iProb A
� �

Prob Rð Þ ¼ Prob A∪A
� � ¼ Prob Að Þ þ Prob A

� � ¼ Pr þ 1� Prð Þ ¼ 1

The imaginary complementary event to the event B in M is the event B such
that:

B∪B ¼M and B∩B ¼ ∅ (mutually exclusive events)

Prob B
� � ¼ i� Prob Bð Þ ¼ i� Pm ¼ i� i 1� Prð Þ ¼ i� iþ iPr ¼ iPr ¼ iProb Að Þ

) Prob Að Þ ¼ Prob B
� �

=i ¼ �iProb B
� �

since 1=i ¼ �i.

Prob Mð Þ ¼ Prob B∪B
� � ¼ Prob Bð Þ þ Prob B

� � ¼ Pm þ i� Pmð Þ ¼ i

) Prob Rð Þ ¼ Prob Mð Þ/i = 1, just as predicted by CPP.
We have also, as derived from CPP that:
Prob A=Bð Þ ¼ Prob Að Þ ¼ Pr, that means if the event B occurs in M then the event

A, which is its real complementary event, occurs in R:
Prob B=Að Þ ¼ Prob Bð Þ ¼ Pm, that means if the event A occurs in R then the event

B, which is its imaginary complementary event, occurs in M:
Furthermore, we can deduce from CPP the following:
Prob A=B

� � ¼ iPr=i ¼ Pr ¼ Prob Að Þ, that means if the event B occurs in M then
the event A, which is its real correspondent and associated event, occurs in R:

Prob B=A
� � ¼ i 1� Prð Þ ¼ Pm ¼ Prob Bð Þ, that means if the event A occurs inR then

the event B, which is its imaginary correspondent and associated event, occurs inM:

Prob A=B
� � ¼ i 1� Prð Þ=i ¼ 1� Pr ¼ Prob A

� �
, that means if the event B occurs in

M then the eventA, which is its real correspondent and associated event, occurs inR:

Prob B=A
� � ¼ iPr ¼ i� Pm ¼ Prob B

� �
, that means if the event A occurs inR then

the event B, which is its imaginary correspondent and associated event, occurs inM:

Prob A=B
� � ¼ 1� iPr=i ¼ 1� Pr ¼ Prob A

� �
, that means if the event B occurs inM

then the event A, which is its real complementary event, occurs in R:

Prob B=A
� � ¼ i� i 1� Prð Þ ¼ iPr ¼ Prob B

� �
, that means if the event A occurs in R

then the event B, which is its imaginary complementary event, occurs in M:

4.1.2 The relations to Bayes’ theorem

Another form of Bayes’ theorem for two competing statements or hypotheses
that is, a binary random variable, is in the probability set R equal to:

Prob A=Bð Þ ¼ Prob B=Að ÞProb Að Þ
Prob Bð Þ ¼ Prob B=Að ÞProb Að Þ

Prob B=Að ÞProb Að Þ þ Prob B=A
� �

Prob A
� �

For an epistemological interpretation:
For proposition A and evidence or background B,

• Prob Að Þ is the prior probability, the initial degree of belief in A.

• Prob A
� �

is the corresponding initial degree of belief in not‐A, that A is false

• Prob B=Að Þ is the conditional probability or likelihood, the degree of belief in B
given that proposition A is true.

6
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• Prob B=A
� �

is the conditional probability or likelihood, the degree of belief in B
given that proposition A is false.

• Prob A=Bð Þ is the posterior probability, the probability of A after taking into
account B.

Therefore, in CPP and hence in C ¼RþM, we can deduce the new forms of
Bayes’ theorem for the case considered as follows:

Prob A=Bð Þ ¼ Prob B=Að ÞProb Að Þ
Prob Bð Þ ¼ Prob Bð ÞProb Að Þ

Prob Bð Þ ¼ PmPr

Pm
¼ Pr ¼ Prob Að Þ

¼ Prob B=Að ÞProb Að Þ
Prob B=Að ÞProb Að Þ þ Prob B=A

� �
Prob A

� �

¼ Prob Bð ÞProb Að Þ
Prob Bð ÞProb Að Þ þ Prob Bð ÞProb A

� �

¼ PmPr

PmPr þ Pm 1� Prð Þ ¼
PmPr

PmPr þ Pm � PmPr
¼ PmPr

Pm
¼ Pr ¼ Prob Að Þ

and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M:

And, its corresponding Bayes’ relation in M is:

Prob B=Að Þ ¼ Prob A=Bð ÞProb Bð Þ
Prob Að Þ ¼ Prob Að ÞProb Bð Þ

Prob Að Þ ¼ PrPm

Pr
¼ Pm ¼ Prob Bð Þ

¼ i N � 1ð Þ Prob A=Bð ÞProb Bð Þ
Prob A=Bð ÞProb Bð Þ þ Prob A=B

� �
Prob B

� �
" #

¼ i 2� 1ð Þ Prob Að ÞProb Bð Þ
Prob Að ÞProb Bð Þ þ Prob Að ÞProb B

� �
" #

¼ i
PrPm

PrPm þ Pr i� Pmð Þ
� �

¼ i
PrPm

PrPm þ iPr � PrPm

� �
¼ i

PrPm

iPr

� �
¼ i

Pm

i

� �

¼ Pm ¼ Prob Bð Þ

and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M. Note that N = 2 corresponds to the binary random
variable considered in this case.

Similarly,

Prob A=B
� � ¼ Prob B=A

� �
Prob A

� �

Prob B
� � ¼ Prob B

� �
Prob A

� �

Prob B
� � ¼ iPr 1� Prð Þ

iPr
¼ 1� Pr ¼ Prob A

� �

¼ N � 1ð Þ Prob B=A
� �

Prob A
� �

Prob B=A
� �

Prob A
� �þ Prob B=A

� �
Prob Að Þ

" #

¼ 2� 1ð Þ Prob B
� �

Prob A
� �

Prob B
� �

Prob A
� �þ Prob B

� �
Prob Að Þ

" #

¼ iPr 1� Prð Þ
iPr 1� Prð Þ þ iPrPr

¼ iPr 1� Prð Þ
iPr � iP2

r þ iP2
r
¼ iPr 1� Prð Þ

iPr
¼ 1� Pr ¼ Prob A

� �
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and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M:

And, its corresponding Bayes’ relation in M is:

Prob B=A
� � ¼ Prob A=B

� �
Prob B

� �

Prob A
� � ¼ Prob A

� �
Prob B

� �

Prob A
� � ¼ 1� Prð ÞiPr

1� Prð Þ ¼ iPr ¼ i� Pm ¼ P B
� �

¼ i
Prob A=B

� �
Prob B

� �

Prob A=B
� �

Prob B
� �þ Prob A=B

� �
Prob Bð Þ

" #

¼ i
Prob A

� �
Prob B

� �

Prob A
� �

Prob B
� �þ Prob A

� �
Prob Bð Þ

" #

¼ i
1� Prð ÞiPr

1� Prð ÞiPr þ 1� Prð Þi 1� Prð Þ
� �

¼ i
iPr

iPr þ i 1� Prð Þ
� �

¼ i
iPr

iPr þ i� iPr

� �
¼ i

iPr

i

� �
¼ iPr ¼ i� Pm ¼ P B

� �

and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M:

Moreover,

Prob A=B
� � ¼ Prob B=A

� �
Prob Að Þ

Prob B
� � ¼ Prob B

� �
Prob Að Þ

Prob B
� � ¼ iPrPr

iPr
¼ Pr ¼ Prob Að Þ

¼ Prob B=A
� �

Prob Að Þ
Prob B=A

� �
Prob Að Þ þ Prob B=A

� �
Prob A

� �

¼ Prob B
� �

Prob Að Þ
Prob B

� �
Prob Að Þ þ Prob B

� �
Prob A

� �

¼ iPrPr

iPrPr þ iPr 1� Prð Þ ¼
iPrPr

iP2
r þ iPr � iP2

r
¼ iPrPr

iPr
¼ Pr ¼ Prob Að Þ

and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M:

And, its corresponding Bayes’ relation in M is:

Prob B=A
� � ¼ Prob A=B

� �
Prob Bð Þ

Prob A
� � ¼ Prob A

� �
Prob Bð Þ

Prob A
� � ¼ 1� Prð Þi 1� Prð Þ

1� Prð Þ ¼ i 1� Prð Þ ¼ Prob Bð Þ

¼ i N � 1ð Þ Prob A=B
� �

Prob Bð Þ
Prob A=B

� �
Prob Bð Þ þ Prob A=B

� �
Prob B

� �
" #

¼ i 2� 1ð Þ Prob A
� �

Prob Bð Þ
Prob A

� �
Prob Bð Þ þ Prob A

� �
Prob B

� �
" #

¼ i
1� Prð Þi 1� Prð Þ

1� Prð Þi 1� Prð Þ þ 1� Prð ÞiPr

� �
¼ i

i 1� Prð Þ
i 1� Prð Þ þ iPr

� �

¼ i
i 1� Prð Þ

i� iPr þ iPr

� �
¼ i

i 1� Prð Þ
i

� �
¼ i 1� Prð Þ ¼ Prob Bð Þ

and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M:
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Furthermore,

Prob A=B
� � ¼ Prob B=A

� �
Prob A

� �
Prob Bð Þ ¼ Prob Bð ÞProb A

� �
Prob Bð Þ ¼ Pm 1� Prð Þ

Pm
¼ 1� Pr ¼ Prob A

� �

¼ N � 1ð Þ Prob B=A
� �

Prob A
� �

Prob B=A
� �

Prob A
� �þ Prob B=Að ÞProb Að Þ

" #

¼ 2� 1ð Þ Prob Bð ÞProb A
� �

Prob Bð ÞProb A
� �þ Prob Bð ÞProb Að Þ

" #

¼ Pm 1� Prð Þ
Pm 1� Prð Þ þ PmPr

¼ Pm 1� Prð Þ
Pm � PmPr þ PmPr

¼ Pm 1� Prð Þ
Pm

¼ 1� Pr ¼ Prob A
� �

and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M:

And, its corresponding Bayes’ relation in M is:

Prob B=A
� � ¼ Prob A=B

� �
Prob B

� �
Prob Að Þ ¼ Prob Að ÞProb B

� �
Prob Að Þ ¼ PriPr

Pr
¼ iPr ¼ i� Pm ¼ Prob B

� �

¼ i
Prob A=B

� �
Prob B

� �

Prob A=B
� �

Prob B
� �þ Prob A=Bð ÞProb Bð Þ

" #

¼ i
Prob Að ÞProb B

� �

Prob Að ÞProb B
� �þ Prob Að ÞProb Bð Þ

" #

¼ i
PriPr

PriPr þ Pri 1� Prð Þ
� �

¼ i
PriPr

iP2
r þ iPr � iP2

r

� �
¼ i

PriPr

iPr

� �
¼ iPr ¼ i� Pm ¼ Prob B

� �

and this independently of the distribution of the binary random variables A inR
and correspondingly of B in M:

Since the complex random vector in CPP is z ¼ Pr þ Pm ¼ Pr þ i 1� Prð Þ then:

) Prob A=Bð Þ þ Prob B=Að Þ ¼ Prob Að Þ þ Prob Bð Þ ¼ Pr þ Pm ¼ z1

And Prob A=B
� �þ Prob B=A

� � ¼ Prob Að Þ þ Prob Bð Þ ¼ Pr þ Pm ¼ z1

) Prob A=B
� �þ Prob B=A

� � ¼ Prob A
� �þ Prob B

� � ¼ 1� Prð Þ þ i� Pmð Þ ¼ z2

And Prob A=B
� �þ Prob B=A

� � ¼ Prob A
� �þ Prob B

� � ¼ 1� Prð Þ þ i� Pmð Þ ¼ z2

Therefore, the resultant complex random vector in CPP is:

Z ¼ P
2

j¼1
z j ¼ z1 þ z2 ¼ Pr þ 1� Prð Þ½ � þ Pm þ i� Pmð Þ½ � ¼ 1þ i ¼ 1þ N � 1ð Þi,

whereN = 2 corresponds to the binary random variable considered in this case. And,

Z
N ¼

P2

j¼1z j

N ¼ z1þz2
N ¼ 1þ N�1ð Þi

N ¼ 1
N þ 1� 1

N

� �
i ¼ PrZ þ PmZ ¼ 0:5þ 0:5i for N = 2 in

this case. Thus,
PcZ ¼ PrZ þ PmZ

i ¼ 0:5þ 0:5i
i ¼ 0:5þ 0:5 ¼ 1, just as predicted by CPP.

) PrZ ¼ PmZ=i ¼ 0:5

) Prob Z=N inRð Þ ¼ Prob Z=N inMð Þ=i ¼ 0:5.
To interpret the results obtained, that means that the two probabilities sets R

and M are not only associated and complementary and dependent but also

9

The Paradigm of Complex Probability and Thomas Bayes’ Theorem
DOI: http://dx.doi.org/10.5772/intechopen.98340



equiprobable, which means that there is no preference of considering one probabil-
ity set on another. BothR andM have the same chance of 0.5 = 1/2 to be chosen in
the complex probabilities set C ¼RþM.

Since C ¼RþM and Pc2 ¼ Pr þ Pm=ið Þ2 ¼ 1 ¼ Pc in CPP then:

Prob A=Bð Þ þ Prob B=Að Þ=i ¼ Prob Að Þ þ Prob Bð Þ=i ¼ Pr þ Pm=i ¼ 1 ¼ Pcz1

Prob A=B
� �þ Prob B=A

� �
=i ¼ Prob Að Þ þ Prob Bð Þ=i ¼ Pr þ Pm=i ¼ 1 ¼ Pcz1

Prob A=B
� �þ Prob B=A

� �
=i ¼ Prob A

� �þ Prob B
� �

=i ¼ 1� Prð Þ þ i� Pmð Þ=i ¼ 1 ¼ Pcz2

Prob A=B
� �þ Prob B=A

� �
=i ¼ Prob A

� �þ Prob B
� �

=i ¼ 1� Prð Þ þ i� Pmð Þ=i ¼ 1 ¼ Pcz2

That means that the probability in the set C ¼RþM is equal to 1, just as
predicted by CPP (Table 1).

4.1.3 The probabilities of dependent and of joint events in C ¼RþM

Additionally, we have:

Prob A∩Bð Þ ¼ Prob Að ÞProb B=Að Þ ¼ Prob Að ÞProb Bð Þ
¼ Prob Bð ÞProb A=Bð Þ ¼ Prob Bð ÞProb Að Þ
¼ PrPm ¼ PmPr ¼ iPr 1� Prð Þ

And,

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ � Prob A∩Bð Þ
¼ Pr þ Pm � PrPm

) Prob A∪Bð Þ ¼ Pr þ i 1� Prð Þ � Pr i 1� Prð Þ½ � ¼ Pr þ i� iPr � iPr þ iP2
r ¼ Pr þ i� 2iPr þ iP2

r

¼ Pr þ i 1� 2Pr þ P2
r

� � ¼ Pr þ i 1� Prð Þ2

So, if Pr ¼ 1) A ¼R and A ¼ ∅ and B ¼ ∅ and B ¼M) Prob A∪Bð Þ ¼ 1 ¼
Pr ¼ Prob Rð Þ, that means we have a 100% deterministic certain experiment A inR.

And if Pr ¼ 0) A ¼ ∅ and A ¼R and B ¼M and B ¼ ∅) Prob A∪Bð Þ ¼ i ¼
Prob Mð Þ, that means we have a 100% deterministic impossible experiment A in R.

Moreover,

Prob A∩B
� � ¼ Prob A

� �
Prob B=A

� � ¼ Prob A
� �

Prob Bð Þ ¼ 1� Prð Þ � i 1� Prð Þ
¼ Prob Bð ÞProb A=B

� � ¼ Prob Bð ÞProb A
� � ¼ i 1� Prð Þ � 1� Prð Þ

¼ i 1� Prð Þ2

Probability Sets Event Probability Complementary Event Probability

In R Prob Að Þ ¼ Pr Prob A
� � ¼ 1� Prob Að Þ ¼ 1� Pr

In M Prob Bð Þ ¼ Pm ¼ i 1� Prð Þ Prob B
� � ¼ i� Pm ¼ iProb Að Þ ¼ iPr

In C ¼RþM z1 ¼ Prob Að Þ þ Prob Bð Þ ¼ Pr þ Pm z2 ¼ Prob A
� �þ Prob B

� � ¼ 1� Prð Þ þ i� Pmð Þ
Deterministic
Probabilities in C

Pcz1 ¼ Prob Að Þ þ Prob Bð Þ=i
¼ Pr þ Pm=i ¼ 1

Pcz2 ¼ Prob A
� �þ Prob B

� �
=i

¼ 1� Prð Þ þ i� Pmð Þ=i ¼ 1

Table 1.
The table of the probabilities inR,M, and C:
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And,

Prob A∪B
� � ¼ Prob A

� �þ Prob Bð Þ � Prob A∩B
� �

¼ 1� Prð Þ þ Pm � i 1� Prð Þ2
) Prob A∪B

� � ¼ 1� Pr þ i 1� Prð Þ � i 1� Prð Þ2
¼ 1� Prð Þ 1þ i� i 1� Prð Þ½ � ¼ 1� Prð Þ 1þ iPrð Þ

So, if Pr ¼ 1) A ¼R and A ¼ ∅ and B ¼ ∅ and B ¼M) Prob A∪B
� � ¼

Prob ∅ð Þ ¼ 0, that means we have a 100% deterministic certain experiment A in R.
And if Pr ¼ 0) A ¼ ∅ and A ¼R and B ¼M and B ¼ ∅.
) Prob A∪B

� � ¼ Prob R∪Mð Þ ¼ Prob Cð Þ ¼ 1, that means we have a 100%
deterministic impossible experiment A in R.

In addition,

Prob A∩B
� � ¼ Prob Að ÞProb B=A

� � ¼ Prob Að ÞProb B
� � ¼ Pr � iPr

¼ Prob B
� �

Prob A=B
� � ¼ Prob B

� �
Prob Að Þ ¼ iPr � Pr

¼ iP2
r

And,

Prob A∪B
� � ¼ Prob Að Þ þ Prob B

� �� Prob A∩B
� �

¼ Pr þ iPr � iP2
r

¼ Pr 1þ i 1� Prð Þ½ �

So, if Pr ¼ 1) A ¼R and A ¼ ∅ and B ¼ ∅ and B ¼M:

) Prob A∪B
� � ¼ Prob R∪Mð Þ ¼ Prob Cð Þ ¼ 1, that means we have a 100% deter-

ministic certain experiment A in R.
And if Pr ¼ 0) A ¼ ∅ and A ¼R and B ¼M and B ¼ ∅) Prob A∪B

� � ¼
Prob ∅ð Þ ¼ 0, that means we have a 100% deterministic impossible experimentA inR.

Furthermore,

Prob A∩B
� � ¼ Prob A

� �
Prob B=A

� � ¼ Prob A
� �

Prob B
� � ¼ 1� Prð Þ � iPr ¼ Pr � i 1� Prð Þ

¼ Prob B
� �

Prob A=B
� � ¼ Prob B

� �
Prob A

� � ¼ iPr � 1� Prð Þ ¼ Pr � i 1� Prð Þ
¼ PrPm ¼ PmPr ¼ iPr 1� Prð Þ

And,

Prob A∪B
� � ¼ Prob A

� �þ Prob B
� �� Prob A∩B

� �

¼ 1� Pr þ i� Pmð Þ � PrPm

¼ 1� Pr þ iPr � PrPm

) Prob A∪B
� � ¼ 1� Pr þ iPr � Pr i 1� Prð Þ½ �

¼ 1� Pr þ iPr � iPr þ iP2
r ¼ 1� Prð Þ þ iP2

r

So, if Pr ¼ 1) A ¼R and A ¼ ∅ and B ¼ ∅ and B ¼M) Prob A∪B
� � ¼ i ¼

Prob Mð Þ, that means we have a 100% deterministic certain experiment A in R.
And if Pr ¼ 0) A ¼ ∅ and A ¼R and B ¼M and B ¼ ∅) Prob A∪B

� � ¼
1 ¼ Prob Rð Þ, that means we have a 100% deterministic impossible experiment A in
R (Table 2).
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Finally, we can directly notice that:

Prob A∩Bð Þ ¼ Prob A∩B
� �

¼ Prob Að ÞProb Bð Þ
¼ Prob A

� �
Prob B

� �

¼ PrPm ¼ PmPr ¼ iPr 1� Prð Þ

4.1.4 The relations to CPP parameters

The complex random vector z1 ¼ Pr þ Pm.
The complex random vector z2 ¼ 1� Prð Þ þ i� Pmð Þ.
Therefore, the resultant complex random vector is:
Z ¼P2

j¼1z j ¼ z1 þ z2 ¼ 1þ i ¼ 1þ 2� 1ð Þi ¼ 1þ N � 1ð Þi, where N = 2
corresponds to the binary random variable that we have studied in this case. Thus,

Z
N
¼ PrZ þ PmZ ¼ 1

N
þ 1� 1

N

� �
i ¼ 1

2
þ 1� 1

2

� �
i ¼ 0:5þ 0:5i

) PrZ ¼ 0:5 and PmZ ¼ 0:5i

The Degree of our knowledge or DOKz1 of z1 is: DOKz1 ¼ z1j j2 ¼ P2
r þ Pm=ið Þ2.

The Degree of our knowledge or DOKz2 of z2 is: DOKz2 ¼ z2j j2 ¼ 1� Prð Þ2 þ
i� Pm½ �=ið Þ2.
The Degree of our knowledge or DOKZ of Z

N is:

DOKZ ¼ Zj j2
N2 ¼

Zj j2
22
¼ 1þ ij j2

4
¼ 12 þ 12

4
¼ P2

rZ þ PmZ=ið Þ2 ¼ 0:5ð Þ2 þ 0:5i=ið Þ2

¼ 0:25þ 0:25 ¼ 0:5

The Chaotic Factor or Chf z1 of z1 is: Chf z1 ¼ 2iPrPm.
The Chaotic Factor or Chf z2 of z2 is: Chf z2 ¼ 2i 1� Prð Þ i� Pmð Þ.
The Chaotic Factor or Chf Z of Z

N is: Chf Z ¼ 2iPrZPmZ ¼ 2i 0:5ð Þ 0:5ið Þ ¼ �0:5.
The Magnitude of the Chaotic Factor or MChf z1 of z1 is: MChf z1 ¼ Chf z1

�� �� ¼
2iPrPmj j.

The Magnitude of the Chaotic Factor or MChf z2 of z2 is: MChf z2 ¼ Chf z2
�� �� ¼

2i 1� Prð Þ i� Pmð Þj j.
The Magnitude of the Chaotic Factor or MChf Z of Z

N is:

MChf Z ¼ Chf Z
�� �� ¼ 2iPrZPmZj j ¼ 2i 0:5ð Þ 0:5ið Þj j ¼ �0:5j j ¼ 0:5

Sets and Events Sets Intersection Sets Union

A, B Prob A∩Bð Þ ¼ PrPm Prob A∪Bð Þ ¼ Pr þ Pm � PrPm ¼ Pr þ i 1� Prð Þ2

A, B Prob A∩B
� � ¼ i 1� Prð Þ2 Prob A∪B

� � ¼ 1� Prð Þ 1þ iPrð Þ

A,B Prob A∩B
� � ¼ iP2

r Prob A∪B
� � ¼ Pr 1þ i 1� Prð Þ½ �

A, B Prob A∩B
� � ¼ PrPm Prob A∪B

� � ¼ 1� Pr þ iPr � PrPm ¼ 1� Prð Þ þ iP2
r

Table 2.
The table of the probabilities of dependent and of joint events in C ¼RþM:
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The probability Pcz1 in C ¼RþM of z1 is:

Pc2z1 ¼ Pr þ Pm=ið Þ2 ¼ Pr þ 1� Prð Þ2 ¼ 12 ¼ 1 ¼ Pcz1

The probability Pcz2 in C ¼RþM of z2 is:

Pc2z2 ¼ 1� Prð Þ þ i� Pmð Þ=i½ �2 ¼ 1� Prð Þ þ iPr=i½ �2 ¼ 1� Prð Þ þ Pr½ �2 ¼ 12 ¼ 1
¼ Pcz2

The probability PcZ in C ¼RþM of Z
N is:

Pc2Z ¼ PrZ þ PmZ=ið Þ2 ¼ 0:5þ 0:5i=ið Þ2 ¼ 12 ¼ 1 ¼ PcZ

It is important to note here that all the results of the calculations done above
confirm the predictions made by CPP.

4.1.5 Bayes’ theorem and CPP and the contingency tables

See Tables 3–7.

Intersection A A Total

B Prob A∩Bð Þ ¼ Prob Að ÞProb B=Að Þ
¼ Prob Bð ÞProb A=Bð Þ

Prob A∩B
� � ¼ Prob A

� �
Prob B=A

� �

¼ Prob Bð ÞProb A=B
� �

Prob Bð Þ

B Prob A∩B
� � ¼ Prob Að ÞProb B=A

� �

¼ Prob B
� �

Prob A=B
� � Prob A∩B

� � ¼ Prob A
� �

Prob B=A
� �

¼ Prob B
� �

Prob A=B
� � Prob B

� � ¼
i� Prob Bð Þ

Total iProb Að Þ ¼ Prob B
� �

iProb A
� � ¼ i 1� Prob Að Þ½ � ¼ Prob Bð Þ i

Table 3.
The table of Bayes’ theorem and CPP.

Probabilities in R B B

A Prob A=Bð Þ ¼ Prob Að Þ ¼ Pr Prob A=B
� � ¼ Prob Að Þ ¼ Pr

A Prob A=B
� � ¼ Prob A

� � ¼ 1� Pr Prob A=B
� � ¼ Prob A

� � ¼ 1� Pr

Total 1 1

Table 4.
The table of the real probabilities in R:

Probabilities in M A A

B Prob B=Að Þ ¼ Prob Bð Þ ¼ Pm Prob B=A
� � ¼ Prob Bð Þ ¼ Pm

B Prob B=A
� � ¼ Prob B

� � ¼ i� Pm Prob B=A
� � ¼ Prob B

� � ¼ i� Pm

Total i i

Table 5.
The table of the imaginary probabilities in M:
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4.2 The case of a general discrete uniform random variable

4.2.1 The probabilities and the conditional probabilities

Let us consider here a discrete uniform random distribution in the probability set
R to illustrate the results obtained for the new Bayes’ theorem when related to CPP.

A j is an event occurring in the real probabilities set R such that:

Prob A j
� � ¼ Prj ¼ 1

N
, ∀j : 1≤ j≤N

The corresponding associated imaginary complementary event to the event A j

in the probabilities set M is the event B j such that:

Prob B j
� � ¼ Pmj ¼ i 1� Prj

� � ¼ i 1� 1
N

� �
, ∀j : 1≤ j≤N

The real complementary event to the event A j in R is the event A j such that:

A j ∪A j ¼ A1 ∪A2 ∪⋯∪A j ∪ … ∪AN ¼R

and A j ∩Ak ¼ ∅, ∀j 6¼ k (pairwise mutually exclusive events)

Prob A j
� � ¼ 1� Prob A j

� � ¼ 1� Prj ¼ Pmj=i ¼ Prob B j
� �

=i ¼ 1� 1
N

Prob Rð Þ ¼ Prob A j ∪A j
� � ¼ Prob A1 ∪A2 ∪⋯∪A j ∪ … ∪AN

� �

¼ Prob A1ð Þ þ Prob A2ð Þ þ⋯þ Prob A j
� �þ⋯þ Prob ANð Þ

¼ N � Prob A j
� � ¼ N � 1

N
¼ 1

Complex probabilities in
C ¼RþM

A A

B z1 ¼ Prob A=Bð Þ þ Prob B=Að Þ
¼ Prob Að Þ þ Prob Bð Þ ¼ Pr þ Pm

z1 ¼ Prob A=B
� �þ Prob B=A

� �

¼ Prob Að Þ þ Prob Bð Þ ¼ Pr þ Pm

B z2 ¼ Prob A=B
� �þ Prob B=A

� �

¼ Prob A
� �þ Prob B

� �

¼ 1� Prð Þ þ i� Pmð Þ

z2 ¼ Prob A=B
� �þ Prob B=A

� �

¼ Prob A
� �þ Prob B

� �

¼ 1� Prð Þ þ i� Pmð Þ
Total = Resultant Complex
Random Vector

Z ¼ z1 þ z2 ¼ 1þ i Z ¼ z1 þ z2 ¼ 1þ i

Table 6.
The table of the complex probabilities in C ¼RþM:

Probability Pc in
C ¼RþM

A A

B Prob A=Bð Þ þ Prob B=Að Þ=i ¼ 1 ¼ Pcz1 Prob A=B
� �þ Prob B=A

� �
=i ¼ 1 ¼ Pcz2

B Prob A=B
� �þ Prob B=A

� �
=i ¼ 1 ¼ Pcz1 Prob A=B

� �þ Prob B=A
� �

=i ¼ 1 ¼ Pcz2

Table 7.
The table of the deterministic real probabilities in C ¼RþM:
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The imaginary complementary event to the event B j in M is the event B j

such that:

B j ∪B j ¼ B1 ∪B2 ∪⋯∪B j ∪ … ∪BN ¼M

and B j ∩Bk ¼ ∅, ∀j 6¼ k (pairwise mutually exclusive events)

Prob B j
� � ¼ i� Prob B j

� � ¼ i� Pmj ¼ i� i 1� Prj
� � ¼ i� iþ iPrj ¼ iPrj ¼ iProb A j

� � ¼ i
N

Prob Mð Þ ¼ Prob B j ∪B j
� � ¼ Prob B1 ∪B2 ∪⋯∪B j ∪ … ∪BN

� �

¼ Prob B1ð Þ þ Prob B2ð Þ þ⋯þ Prob B j
� �þ⋯þ Prob BNð Þ

¼ N � Prob B j
� � ¼ N � i 1� 1

N

� �
¼ i N � 1ð Þ

We have also, as derived from CPP that:
Prob A j=B j

� � ¼ Prob A j
� � ¼ Prj ¼ 1

N, that means if the event B j occurs in M then
the event A j, which is its real complementary event, occurs in R:

Prob B j=A j
� � ¼ Prob B j

� � ¼ Pmj ¼ i 1� 1
N

� �
, that means if the event A j occurs in R

then the event B j, which is its imaginary complementary event, occurs in M:

Prob A j=B j
� � ¼ Prob A j

� � ¼ 1� Prob A j
� � ¼ 1� Prj ¼ 1� 1

N, that means if the event
B j occurs inM then the eventA j, which is its real complementary event, occurs inR:

Prob B j=A j
� � ¼ Prob B j

� � ¼ i� Prob B j
� � ¼ i� Pmj ¼ iPrj ¼ i

N, that means if the
event A j occurs in R then the event B j, which is its imaginary complementary
event, occurs in M:

4.2.2 The relations to Bayes’ theorem

Bayes’ theorem for N competing statements or hypotheses that is, for N random
variables, is in the probability set R equal to:

Prob A j=B
� � ¼ Prob B=A j

� �
Prob A j

� �
Prob Bð Þ ¼ Prob B=A j

� �
Prob A j

� �
PN

k¼1Prob B=Akð ÞProb Akð Þ

Therefore, in CPP and hence in C ¼RþM, we can deduce the new forms of
Bayes’ theorem for the case considered as follows:

Prob A j=B j
� � ¼ Prob B j=A j

� �
Prob A j

� �

Prob B j
� � ¼ Prob B j

� �
Prob A j

� �

Prob B j
� � ¼ Prob A j

� �

¼ Prob B j=A j
� �

Prob A j
� �

PN
k¼1Prob B j=Ak

� �
Prob Akð Þ ¼¼

Prob B j
� �

Prob A j
� �

PN
k¼1Prob B j

� �
Prob Akð Þ ¼

Prob B j
� �

Prob A j
� �

Prob B j
� �PN

k¼1Prob Akð Þ

¼ Prob B j
� �

Prob A j
� �

Prob B j
� ��N

1
N

� � ¼ Prob A j
� � ¼ 1

N
, ∀j : 1≤ j≤N
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And, its corresponding Bayes’ relation in M is:

Prob B j=A j
� � ¼ Prob A j=B j

� �
Prob B j

� �

Prob A j
� � ¼ Prob A j

� �
Prob B j

� �

Prob A j
� � ¼ Prob B j

� �

¼ i N � 1ð Þ Prob A j=B j
� �

Prob B j
� �

PN
k¼1Prob A j=Bk

� �
Prob Bkð Þ

" #
¼ i N � 1ð Þ Prob A j

� �
Prob B j

� �
PN

k¼1Prob A j
� �

Prob Bkð Þ

" #

¼ i N � 1ð Þ Prob A j
� �

Prob B j
� �

Prob A j
� �PN

k¼1Prob Bkð Þ

" #
¼ i N � 1ð Þ Prob A j

� �
Prob B j

� �

Prob A j
� �� i N � 1ð Þ

" #

¼ Prob B j
� � ¼ i 1� Prob A j

� �� � ¼ i 1� 1
N

� �
, ∀j : 1≤ j≤N

Similarly,

Prob A j=B j
� � ¼ Prob B j=A j

� �
Prob A j

� �

Prob B j
� � ¼ Prob B j

� �
Prob A j

� �

Prob B j
� � ¼ Prob A j

� �

¼ N � 1ð Þ Prob B j=A j
� �

Prob A j
� �

PN
k¼1Prob B j=Ak

� �
Prob Ak

� �
" #

¼ N � 1ð Þ Prob B j
� �

Prob A j
� �

PN
k¼1Prob B j

� �
Prob Ak

� �
" #

¼ N � 1ð Þ Prob B j
� �

Prob A j
� �

Prob B j
� �PN

k¼1Prob Ak
� �

" #
¼ N � 1ð Þ Prob B j

� �
Prob A j

� �

Prob B j
� ��N 1� 1

N

� �

2
664

3
775

¼ N � 1ð Þ Prob B j
� �

Prob A j
� �

Prob B j
� �� N � 1ð Þ

" #

¼ Prob A j
� � ¼ 1� Prob A j

� � ¼ 1� 1
N
, ∀j : 1≤ j≤N

And, its corresponding Bayes’ relation in M is:

Prob B j=A j
� � ¼ Prob A j=B j

� �
Prob B j

� �

Prob A j
� � ¼ Prob A j

� �
Prob B j

� �

Prob A j
� � ¼ Prob B j

� �

¼ i
Prob A j=B j

� �
Prob B j

� �
PN

k¼1Prob A j=Bk
� �

Prob Bk
� �

" #
¼ i

Prob A j
� �

Prob B j
� �

PN
k¼1Prob A j

� �
Prob Bk

� �
" #

¼ i
Prob A j

� �
Prob B j

� �

Prob A j
� �PN

k¼1Prob Bk
� �

" #
¼ i

Prob A j
� �

Prob B j
� �

Prob A j
� ��N

i
N

� �

2
664

3
775 ¼ i

Prob A j
� �

Prob B j
� �

Prob A j
� �� i

" #

¼ Prob B j
� � ¼ i� Prob B j

� � ¼ i� i 1� 1
N

� �
¼ i 1� Prob A j

� �� �

¼ i 1� 1� 1
N

� �� �
¼ i

N
, ∀j : 1≤ j≤N
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Furthermore,

Prob A j=B j
� � ¼ Prob B j=A j

� �
Prob A j

� �

Prob B j
� � ¼ Prob B j

� �
Prob A j

� �

Prob B j
� � ¼ Prob A j

� �

¼ Prob B j=A j
� �

Prob A j
� �

PN
k¼1Prob B j=Ak

� �
Prob Akð Þ ¼

Prob B j
� �

Prob A j
� �

PN
k¼1Prob B j

� �
Prob Akð Þ ¼

Prob B j
� �

Prob A j
� �

Prob B j
� �PN

k¼1Prob Akð Þ

¼ Prob B j
� �

Prob A j
� �

Prob B j
� ��N

1
N

� � ¼ Prob A j
� � ¼ 1

N
, ∀j : 1≤ j≤N

And, its corresponding Bayes’ relation in M is:

Prob B j=A j
� � ¼ Prob A j=B j

� �
Prob B j

� �

Prob A j
� � ¼ Prob A j

� �
Prob B j

� �

Prob A j
� � ¼ Prob B j

� �

¼ i N � 1ð Þ Prob A j=B j
� �

Prob B j
� �

PN
k¼1Prob A j=Bk

� �
Prob Bkð Þ

" #
¼ i N � 1ð Þ Prob A j

� �
Prob B j

� �
PN

k¼1Prob A j
� �

Prob Bkð Þ

" #

¼ i N � 1ð Þ Prob A j
� �

Prob B j
� �

Prob A j
� �PN

k¼1Prob Bkð Þ

" #
¼ i N � 1ð Þ Prob A j

� �
Prob B j

� �

Prob A j
� �� i N � 1ð Þ

" #

¼ Prob B j
� � ¼ i 1� 1

N

� �
, ∀j : 1≤ j≤N

Moreover,

Prob A j=B j
� � ¼ Prob B j=A j

� �
Prob A j

� �

Prob B j
� � ¼ Prob B j

� �
Prob A j

� �

Prob B j
� � ¼ Prob A j

� �

¼ N � 1ð Þ Prob B j=A j
� �

Prob A j
� �

PN
k¼1Prob B j=Ak

� �
Prob Ak

� �
" #

¼ N � 1ð Þ Prob B j
� �

Prob A j
� �

PN
k¼1Prob B j

� �
Prob Ak

� �
" #

¼ N � 1ð Þ Prob B j
� �

Prob A j
� �

Prob B j
� �PN

k¼1Prob Ak
� �

" #
¼ N � 1ð Þ Prob B j

� �
Prob A j

� �

Prob B j
� ��N 1� 1

N

� �

2
664

3
775

¼ N � 1ð Þ Prob B j
� �

Prob A j
� �

Prob B j
� �� N � 1ð Þ

" #

¼ Prob A j
� � ¼ 1� 1

N
, ∀j : 1≤ j≤N
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And, its corresponding Bayes’ relation in M is:

Prob B j=A j
� � ¼ Prob A j=B j

� �
Prob B j

� �

Prob A j
� � ¼ Prob A j

� �
Prob B j

� �

Prob A j
� � ¼ Prob B j

� �

¼ i
Prob A j=B j

� �
Prob B j

� �
PN

k¼1Prob A j=Bk
� �

Prob Bk
� �

" #
¼ i

Prob A j
� �

Prob B j
� �

PN
k¼1Prob A j

� �
Prob Bk

� �
" #

¼ i
Prob A j

� �
Prob B j

� �

Prob A j
� �PN

k¼1Prob Bk
� �

" #
¼ i

Prob A j
� �

Prob B j
� �

Prob A j
� ��N

i
N

� �

2
664

3
775 ¼ i

Prob A j
� �

Prob B j
� �

Prob A j
� �� i

" #

¼ Prob B j
� � ¼ i

N
, ∀j : 1≤ j≤N

Since the complex random vector in CPP is z ¼ Pr þ Pm ¼ Pr þ i 1� Prð Þ then:

) Prob A j=B j
� �þ Prob B j=A j

� � ¼ Prob A j=B j
� �þ Prob B j=A j

� �

¼ Prob A j
� �þ Prob B j

� � ¼ Prj þ Pmj

¼ 1
N
þ i 1� 1

N

� �
¼ z j, ∀j : 1≤ j≤N

) Prob A j=B j
� �þ Prob B j=A j

� � ¼ Prob A j=B j
� �þ Prob B j=A j

� �

¼ Prob A j
� �þ Prob B j

� � ¼ P ∗
rj þ P ∗

mj

¼ 1� 1
N

� �
þ i
N
¼ z ∗

j , ∀j : 1≤ j≤N

Therefore, the resultant complex random vectors in CPP of the uniform discrete
random distribution are:

ZU ¼
XN
j¼1

z j ¼ z1 þ z2 þ⋯þ zN ¼ Nz j ¼ N
1
N
þ i 1� 1

N

� �� �
¼ 1þ N � 1ð Þi

Z ∗
U ¼

XN
j¼1

z ∗
j ¼ z ∗

1 þ z ∗
2 þ⋯þ z ∗

N ¼ Nz ∗
j ¼ N 1� 1

N

� �
þ i
N

� �
¼ N � 1ð Þ þ i

And,

ZU
N ¼

PN

j¼1z j

N ¼ Nz j

N ¼ z j ¼ 1
N þ 1� 1

N

� �
i ¼ PrjZU

þ PmjZU
. Thus,

PcjZU
¼ PrjZU

þ PmjZU
i ¼ 1

N þ
1� 1

Nð Þi
i ¼ 1

N þ 1� 1
N ¼ 1, just as predicted by CPP.

Analogously, Z
∗
U
N ¼

PN

j¼1z
∗
j

N ¼ Nz ∗j
N ¼ z ∗

j ¼ 1� 1
N

� �þ i
N ¼ P ∗

r

��
Z ∗
U
þ P ∗

m

��
Z ∗
U
. Thus,

Pc ∗ jZ ∗
U
¼ P ∗

r

��
Z ∗
U
þ

P ∗
mjZ ∗

U
i ¼ 1� 1

N

� �þ i
N
i ¼ 1� 1

N þ 1
N ¼ 1, just as predicted by CPP.

Since C ¼RþM and Pc2 ¼ Pr þ Pm=ið Þ2 ¼ 1 ¼ Pc in CPP then:
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) Prob A j=B j
� �þ Prob B j=A j

� �
=i ¼ Prob A j

� �þ Prob B j
� �

=i ¼ Prj þ Pmj=i

¼ 1
N
þ

1� 1
N

� �
i

i
¼ 1

N
þ 1� 1

N
¼ 1 ¼ Pc j, ∀j : 1≤ j≤N

) Prob A j=B j
� �þ Prob B j=A j

� �
=i ¼ Prob A j

� �þ Prob B j
� �

=i ¼ Prj þ Pmj=i

¼ 1
N
þ

1� 1
N

� �
i

i
¼ 1

N
þ 1� 1

N
¼ 1 ¼ Pc j, ∀j : 1≤ j≤N

) Prob A j=B j
� �þ Prob B j=A j

� �
=i ¼ Prob A j

� �þ Prob B j
� �

=i ¼ P ∗
rj þ P ∗

mj=i ¼ 1� Prj
� �þ i� Pmj

� �
=i

¼ 1� 1
N

� �
þ

i
N

� �

i
¼ 1� 1

N
þ 1
N
¼ 1 ¼ Pc ∗j , ∀j : 1≤ j≤N

) Prob A j=B j
� �þ Prob B j=A j

� �
=i ¼ Prob A j

� �þ Prob B j
� �

=i ¼ P ∗
rj þ P ∗

mj=i ¼ 1� Prj
� �þ i� Pmj

� �
=i

¼ 1� 1
N

� �
þ

i
N

� �

i
¼ 1� 1

N
þ 1
N
¼ 1 ¼ Pc ∗j , ∀j : 1≤ j≤N

That means that the probability in the set C ¼RþM is equal to 1, just as
predicted by CPP.

Additionally, we have:

Prob A j ∩B j
� � ¼ Prob A j

� �
Prob B j=A j

� � ¼ Prob A j
� �

Prob B j
� �

¼ Prob B j
� �

Prob A j=B j
� � ¼ Prob B j

� �
Prob A j

� �

¼ PrjPmj ¼ PmjPrj

Moreover, we have:

Prob A j ∪B j
� � ¼ Prob A j

� �þ Prob B j
� �� Prob A j ∩B j

� �

¼ Prj þ Pmj � PrjPmj

) Prob A j ∪B j
� � ¼ Prj þ i 1� Prj

� �� Prj i 1� Prj
� �� � ¼ Prj þ i� iPrj � iPrj þ iP2

rj ¼ Prj þ i� 2iPrj þ iP2
rj

¼ Prj þ i 1� 2Prj þ P2
rj

� �
¼ Prj þ i 1� Prj

� �2

So, if Prj ¼ 1 then Prob A j ∪B j
� � ¼ Prj ¼ 1 ¼ Prob Rð Þ, that means we have a 100%

deterministic certain experiment A j in R.
And if Prj ¼ 0 then Prob A j ∪B j

� � ¼ i, that means we have a 100% deterministic
impossible experiment A j in R.

4.2.3 The relations to CPP parameters

The first complex random vector is: z j ¼ Prj þ Pmj ¼ 1
N þ 1� 1

N

� �
i, ∀j : 1≤ j≤N.

Therefore, the first resultant complex random vector is:

ZU ¼
XN
j¼1

z j ¼ z1 þ z2 þ⋯þ zN ¼ Nz j ¼ N
1
N
þ 1� 1

N

� �
i

� �
¼ 1þ N � 1ð Þi

And, ZU
N ¼ PrjZU

þ PmjZU
¼
PN

j¼1z j

N ¼ Nz j

N ¼ z j ¼ 1
N þ 1� 1

N

� �
i.
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The second complex random vector is: z ∗
j ¼ P ∗

rj þ P ∗
mj ¼ 1� 1

N

� �þ i
N ,

∀j : 1≤ j≤N.
Therefore, the second resultant complex random vector is:

Z ∗
U ¼

XN
j¼1

z ∗
j ¼ z ∗

1 þ z ∗
2 þ⋯þ z ∗

N ¼ Nz ∗
j ¼ N 1� 1

N

� �
þ i
N

� �
¼ N � 1ð Þ þ i

And, Z
∗
U
N ¼ P ∗

r

��
Z ∗
U
þ P ∗

m

��
Z ∗
U
¼
PN

j¼1z
∗
j

N ¼ Nz ∗j
N ¼ z ∗

j ¼ 1� 1
N

� �þ i
N.

The Degree of our knowledge or DOKz j of z j is:

DOKz j ¼ z j
�� ��2 ¼ P2

rj þ Pmj=i
� �2 ¼ 1

N

� �2

þ 1� 1
N

� �2

¼ 1þ N � 1ð Þ2
N2 , ∀j : 1≤ j≤N

The Degree of our knowledge or DOKz ∗j of z
∗
j is:

DOKz ∗j ¼ z ∗
j

���
���
2
¼ P ∗

rj

� �2
þ P ∗

mj=i
� �2

¼ 1� 1
N

� �2

þ 1
N

� �2

¼ 1þ N � 1ð Þ2
N2 , ∀j : 1≤ j≤N

The Degree of our knowledge or DOKZU of ZU
N is:

DOKZU ¼
ZUj j2
N2 ¼

1þ N � 1ð Þij j2
N2 ¼ P2

r

��
ZU
þ PmjZU

i

� �2

¼ 1
N

� �2

þ 1� 1
N

� �2

¼ 1þ N � 1ð Þ2
N2

The Degree of our knowledge or DOKZ ∗
U
of Z ∗

U
N is:

DOKZ ∗
U
¼ Z ∗

U

�� ��2
N2 ¼

N � 1ð Þ þ ij j2
N2 ¼ P ∗

r

��2
Z ∗
U
þ

P ∗
m

��
Z ∗
U

i

 !2

¼ 1� 1
N

� �2

þ 1
N

� �2

¼ 1þ N � 1ð Þ2
N2

⇔DOKz j ¼ DOKz ∗j ¼ DOKZU ¼ DOKZ ∗
U

The Chaotic Factor or Chf z j
of z j is:

Chf z j
¼ 2iPrjPmj ¼ 2i 1

N

� �
i 1� 1

N

� � ¼ �2 N�1ð Þ
N2 since i2 ¼ �1, ∀j : 1≤ j≤N.

The Chaotic Factor or Chf z ∗j of z
∗
j is:

Chf z ∗j ¼ 2iP ∗
rj P

∗
mj ¼ 2i 1� 1

N

� �
i 1

N

� � ¼ �2 N�1ð Þ
N2 since i2 ¼ �1, ∀j : 1≤ j≤N.

The Chaotic Factor or Chf ZU
of ZU

N is:

Chf ZU
¼ 2iPrjZU

PmjZU
¼ 2i

1
N

� �
i 1� 1

N

� �
¼ �2 N � 1ð Þ

N2

The Chaotic Factor or Chf Z ∗
U
of Z ∗

U
N is:
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Chf Z ∗
U
¼ 2iP ∗

r

��
Z ∗
U
P ∗
m

��
Z ∗
U
¼ 2i 1� 1

N

� �
i

1
N

� �
¼ �2 N � 1ð Þ

N2

⇔Chf z j
¼ Chf z ∗j ¼ Chf ZU

¼ Chf Z ∗
U

The Magnitude of the Chaotic Factor or MChf z j
of z j is:

MChf z j
¼ Chf z j

���
��� ¼ �2 N � 1ð Þ

N2

����
���� ¼

2 N � 1ð Þ
N2 , ∀j : 1≤ j≤N

The Magnitude of the Chaotic Factor or MChf z ∗j of z
∗
j is:

MChf z ∗j ¼ Chf z ∗j

���
��� ¼ �2 N � 1ð Þ

N2

����
���� ¼

2 N � 1ð Þ
N2 , ∀j : 1≤ j≤N

The Magnitude of the Chaotic Factor or MChf ZU
of ZU

N is:

MChf ZU
¼ Chf ZU

���
��� ¼ �2 N � 1ð Þ

N2

����
���� ¼

2 N � 1ð Þ
N2

The Magnitude of the Chaotic Factor or MChf Z ∗
U
of Z ∗

U
N is:

MChf Z ∗
U
¼ Chf Z ∗

U

���
��� ¼ �2 N � 1ð Þ

N2

����
���� ¼

2 N � 1ð Þ
N2

⇔MChf z j
¼ MChf z ∗j ¼MChf ZU

¼ MChf Z ∗
U

The probability Pcz j in C ¼RþM of z j is:

Pc2z j
¼ Prj þ Pmj=i
� �2 ¼ 1

N
þ 1� 1

N

� �
i

i

� �2
¼ 1

N
þ 1� 1

N

� �2
¼ 12 ¼ 1 ¼ Pcz j , ∀j : 1≤ j≤N

The probability Pc ∗z ∗j in C ¼RþM of z ∗
j is:

Pc ∗z ∗j

���
2
¼ P ∗

rj þ P ∗
mj=i

� �2
¼ 1� 1

N

� �
þ

i
N

i

� �2
¼ 1� 1

N
þ 1
N

� �2
¼ 12 ¼ 1 ¼ Pc ∗z ∗j ,∀j : 1≤ j≤N

The probability PcjZU
in C ¼RþM of ZU

N is:

Pc2
��
ZU
¼ PrjZU

þ PmjZU

i

� �2

¼ 1
N
þ 1� 1

N

� �
i

i

� �2
¼ 1

N
þ 1� 1

N

� �2
¼ 12 ¼ 1 ¼ PcjZU

The probability Pc ∗ jZ ∗
U
in C ¼RþM of Z ∗

U
N is:

Pc ∗ j2Z ∗
U
¼ P ∗

r

��
Z ∗
U
þ
P ∗
m

��
Z ∗
U

i

 !2

¼ 1� 1
N

� �
þ

i
N

i

� �2
¼ 1� 1

N
þ 1
N

� �2
¼ 12 ¼ 1

¼ Pc ∗ jZ ∗
U

⇔Pcz j ¼ Pc ∗z ∗j ¼ PcjZU
¼ Pc ∗ jZ ∗

U
¼ 1
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It is important to note here that all the results of the calculations done above
confirm the predictions made by CPP.

5. Flowchart of the complex probability and Bayes’ theorem prognostic
model

The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model where X is between the lower bound Lb and the upper
bound Ub:

6. The new paradigm applied to discrete and continuous stochastic
distributions

In this section, the simulation of the novel CPP model for a discrete and a
continuous random distribution will be done. Note that all the numerical values
found in the paradigm functions analysis for all the simulations were computed using
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the 64-Bit MATLAB version 2021 software. It is important to mention here that two
important and well-known probability distributions were considered although the
original CPPmodel can be applied to any stochastic distribution beside the studied
random cases below. This will lead to similar results and conclusions. Hence, the new
paradigm is successful with any discrete or continuous random case.

6.1 Simulation of the discrete binomial probability distribution

The probability density function (PDF) of this discrete stochastic distribution is:

f xð Þ ¼ NCxpxqN�x ¼
N
x

� �
pxqN�x, for Lb ¼ 0ð Þ≤ x≤ Ub ¼ Nð Þ

I have taken the domain for the binomial random variable to be:
x∈ Lb ¼ 0,Ub ¼ N ¼ 10½ � and ∀k : 1≤ k≤ 10 we have Δxk ¼ xk � xk�1 ¼ 1, then:
x ¼ 0, 1, 2, … , 10.

Taking in our simulation N ¼ 10 and pþ q ¼ 1, p ¼ q ¼ 0:5 then:
Themean of this binomial discrete random distribution is: μ ¼ Np ¼ 10� 0:5 ¼ 5.
The standard deviation is: σ ¼ ffiffiffiffiffiffiffiffiffi

Npq
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10� 0:5� 0:5
p ¼ ffiffiffiffiffiffi

2:5
p ¼ 1:58113883… .

The median is Md ¼ μ ¼ 5.
The mode for this symmetric distribution is = 5 = Md = μ.
The cumulative distribution function (CDF) is:

CDF xð Þ ¼ Prob X ≤ xð Þ ¼
Xx

k¼0
f k;Nð Þ ¼

Xx

k¼0
NCkpkqN�k ¼

Xx

k¼0
10Ckpkq10�k,

∀x : 0≤ x≤ N ¼ 10ð Þ

Note that:
If x ¼ 0) X ¼ Lb ) CDF xð Þ ¼ Prob X ≤0ð Þ ¼ f X ¼ Lb;Nð Þ ¼ NC0p0qN�0 ¼

qN ¼ 0:510 ffi 0.

If x ¼ N ¼ 10) X ¼ Ub ) CDF xð Þ ¼ Prob X ≤ xð Þ ¼ Px¼N
k¼0

NCkpkqN�k ¼

pþ qð ÞN ¼ 1N ¼ 110 ¼ 1 by the binomial theorem.
The real probability Prj xð Þ is:

Prj xð Þ ¼ CDF xð Þ ¼
Xx

k¼0
f k;Nð Þ ¼

Xx

k¼0
NCkpkqN�k ¼

Xx

k¼0
10Ckpkq10�k,

∀x : 0≤ x≤ N ¼ 10ð Þ

) Prob A j=B j
� � ¼ Prob A j=B j

� � ¼ Prob A j
� � ¼ Prj xð Þ ¼

Xx

k¼0
10Ckpkq10�k

The imaginary complementary probability Pmj xð Þ to Prj xð Þ is:

Pmj xð Þ ¼ i 1� Prj xð Þ
� � ¼ i 1� CDF xð Þ½ � ¼ i 1�

Xx

k¼0
f k;Nð Þ

" #

¼ i 1�
Xx

k¼0
NCkpkqN�k

 !
¼ i

XN

k¼xþ1
NCkpkqN�k ¼ i

X10

k¼xþ1
10Ckpkq10�k,

∀x : 0≤ x≤ N ¼ 10ð Þ
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) Prob B j=A j
� � ¼ Prob B j=A j

� � ¼ Prob B j
� � ¼ Pmj xð Þ ¼ i

X10

k¼xþ1
10Ckpkq10�k

 !

The real complementary probability P ∗
rj xð Þ to Prj xð Þ is:

P ∗
rj xð Þ ¼ 1� Prj xð Þ ¼ Pmj xð Þ=i ¼ 1� CDF xð Þ ¼ 1�

Xx

k¼0
f k;Nð Þ ¼

XN

k¼xþ1
NCkpkqN�k

¼
X10

k¼xþ1
10Ckpkq10�k, ∀x : 0≤ x≤ N ¼ 10ð Þ

) Prob A j=B j
� � ¼ Prob A j=B j

� � ¼ Prob A j
� � ¼ P ∗

rj xð Þ ¼
X10

k¼xþ1
10Ckpkq10�k

The imaginary complementary probability P ∗
mj xð Þ to Pmj xð Þ is:

P ∗
mj xð Þ ¼ i� Pmj xð Þ ¼ i� i 1� Prj xð Þ

� � ¼ iPrj xð Þ ¼ iCDF xð Þ ¼ i
Xx

k¼0
f k;Nð Þ

" #

¼ i
Xx

k¼0
10Ckpkq10�k, ∀x : 0≤ x≤ N ¼ 10ð Þ

) Prob B j=A j
� � ¼ Prob B j=A j

� � ¼ Prob B j
� � ¼ P ∗

mj xð Þ ¼ i
Xx

k¼0
10Ckpkq10�k

The complex probability or random vectors are:

z j xð Þ ¼ Prj xð Þ þ Pmj xð Þ ¼
Xx

k¼0
10Ckpkq10�k

 !
þ i 1�

Xx

k¼0
10Ckpkq10�k

 !

¼
Xx

k¼0
10Ckpkq10�k þ i

X10

k¼xþ1
10Ckpkq10�k

 !
, ∀x : 0≤ x≤ N ¼ 10ð Þ

z ∗
j xð Þ ¼ P ∗

rj xð Þ þ P ∗
mj xð Þ ¼ 1� Prj xð Þ

� �þ i� Pmj xð Þ
� � ¼ 1� Prj xð Þ

� �þ iPrj xð Þ

¼ 1�
Xx

k¼0
10Ckpkq10�k

 !
þ i

Xx

k¼0
10Ckpkq10�k

 !

¼
X10

k¼xþ1
10Ckpkq10�k

 !
þ i

Xx

k¼0
10Ckpkq10�k

 !
, ∀x : 0≤ x≤ N ¼ 10ð Þ

The Degree of Our Knowledge of z j xð Þ:

DOK j xð Þ ¼ z j xð Þ
�� ��2 ¼ P2

rj xð Þ þ Pmj xð Þ=i
� �2 ¼

Xx

k¼0
NCkpkqN�k

 !2

þ 1�
Xx

k¼0
NCkpkqN�k

 !2

¼ 1þ 2iPrj xð ÞPmj xð Þ ¼ 1� 2Prj xð Þ 1� Prj xð Þ
� � ¼ 1� 2Prj xð Þ þ 2P2

rj xð Þ

¼ 1� 2
Xx

k¼0
NCkpkqN�k

 !
þ 2

Xx

k¼0
NCkpkqN�k

 !2

¼ 1� 2
Xx

k¼0
10Ckpkq10�k

 !
þ 2

Xx

k¼0
10Ckpkq10�k

 !2

, ∀x : 0≤ x≤ N ¼ 10ð Þ

:
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DOK j xð Þ is equal to 1 when Prj xð Þ ¼ Prj Lb ¼ 0ð Þ ¼ 0 and when Prj xð Þ ¼
Prj Ub ¼ 10ð Þ ¼ 1.

The Degree of Our Knowledge of z ∗
j xð Þ:

DOK ∗
j xð Þ ¼ z ∗

j xð Þ
���

���
2
¼ P ∗

rj xð Þ
h i2

þ P ∗
mj xð Þ=i

h i2

¼ 1� Prj xð Þ
� �2 þ i� Pmj xð Þ

i

� �2
¼ 1�

Xx

k¼0
NCkpkqN�k

 !2

þ
Xx

k¼0
NCkpkqN�k

 !2

¼ 1þ 2iPrj xð ÞPmj xð Þ ¼ 1� 2Prj xð Þ 1� Prj xð Þ
� � ¼ 1� 2Prj xð Þ þ 2P2

rj xð Þ

¼ 1� 2
Xx

k¼0
NCkpkqN�k

 !
þ 2

Xx

k¼0
NCkpkqN�k

 !2

¼ 1� 2
Xx

k¼0
10Ckpkq10�k

 !
þ 2

Xx

k¼0
10Ckpkq10�k

 !2

, ∀x : 0≤ x≤ N ¼ 10ð Þ

¼ DOK j xð Þ

:

DOK ∗
j xð Þ is equal to 1 when Prj xð Þ ¼ Prj Lb ¼ 0ð Þ ¼ 0 and when Prj xð Þ ¼

Prj Ub ¼ 10ð Þ ¼ 1.
The Chaotic Factor of z j xð Þ:

Chf j xð Þ ¼ 2iPrj xð ÞPmj xð Þ ¼ �2Prj xð Þ 1� Prj xð Þ
� � ¼ �2Prj xð Þ þ 2P2

rj xð Þ

¼ �2
Xx

k¼0
NCkpkqN�k

 !
þ 2

Xx

k¼0
NCkpkqN�k

 !2

¼ �2
Xx

k¼0
10Ckpkq10�k

 !
þ 2

Xx

k¼0
10Ckpkq10�k

 !2

, ∀x : 0≤ x≤ N ¼ 10ð Þ

Chf j xð Þ is null whenPrj xð Þ ¼ Prj Lb ¼ 0ð Þ ¼ 0andwhenPrj xð Þ ¼ Prj Ub ¼ 10ð Þ ¼ 1.
The Chaotic Factor of z ∗

j xð Þ:

Chf ∗
j xð Þ ¼ 2iP ∗

rj xð ÞP ∗
mj xð Þ ¼ 2i 1� Prj xð Þ

� �
i� Pmj xð Þ
� � ¼ �2 1� Prj xð Þ

� �
Prj xð Þ

¼ �2Prj xð Þ þ 2P2
rj xð Þ

¼ �2
Xx

k¼0
NCkpkqN�k

 !
þ 2

Xx

k¼0
NCkpkqN�k

 !2

¼ �2
Xx

k¼0
10Ckpkq10�k

 !
þ 2

Xx

k¼0
10Ckpkq10�k

 !2

, ∀x : 0≤ x≤ N ¼ 10ð Þ

¼ Chf j xð Þ

Chf ∗
j xð Þ is null when Prj xð Þ ¼ Prj Lb ¼ 0ð Þ ¼ 0 and when Prj xð Þ ¼

Prj Ub ¼ 10ð Þ ¼ 1.
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The Magnitude of the Chaotic Factor of z j xð Þ:

MChf j xð Þ ¼ Chf j xð Þ
���

��� ¼ �2iPrj xð ÞPmj xð Þ ¼ 2Prj xð Þ 1� Prj xð Þ
� � ¼ 2Prj xð Þ � 2P2

rj xð Þ

¼ 2
Xx

k¼0
NCkpkqN�k

 !
� 2

Xx

k¼0
NCkpkqN�k

 !2

¼ 2
Xx

k¼0
10Ckpkq10�k

 !
� 2

Xx

k¼0
10Ckpkq10�k

 !2

, ∀x : 0≤ x≤ N ¼ 10ð Þ

MChf j xð Þ is null when Prj xð Þ ¼ Prj Lb ¼ 0ð Þ ¼ 0 and when Prj xð Þ ¼
Prj Ub ¼ 10ð Þ ¼ 1.

The Magnitude of the Chaotic Factor of z ∗
j xð Þ:

MChf ∗
j xð Þ ¼ Chf ∗

j xð Þ
���

��� ¼ �2iP ∗
rj xð ÞP ∗

mj xð Þ
¼ �2i 1� Prj xð Þ

� �
i� Pmj xð Þ
� � ¼ 2 1� Prj xð Þ

� �
Prj xð Þ ¼ 2Prj xð Þ � 2P2

rj xð Þ

¼ 2
Xx

k¼0
NCkpkqN�k

 !
� 2

Xx

k¼0
NCkpkqN�k

 !2

¼ 2
Xx

k¼0
10Ckpkq10�k

 !
� 2

Xx

k¼0
10Ckpkq10�k

 !2

, ∀x : 0≤ x≤ N ¼ 10ð Þ

¼MChf j xð Þ

MChf ∗
j xð Þ is null when Prj xð Þ ¼ Prj Lb ¼ 0ð Þ ¼ 0 and when Prj xð Þ ¼

Prj Ub ¼ 10ð Þ ¼ 1.
At any value of x: ∀x : Lb ¼ 0ð Þ≤ x≤ Ub ¼ N ¼ 10ð Þ, the probability expressed

in the complex probability set C ¼RþM is the following:

Pc2j xð Þ ¼ Prj xð Þ þ Pmj xð Þ=i
� �2 ¼ z j xð Þ

�� ��2 � 2iPrj xð ÞPmj xð Þ
¼ DOK j xð Þ � Chf j xð Þ
¼ DOK j xð Þ þMChf j xð Þ
¼ 1

then,

Pc2j xð Þ ¼ Prj xð Þ þ Pmj xð Þ=i
� �2 ¼ Prj xð Þ þ 1� Prj xð Þ

� �� �2 ¼ 12 ¼ 1

⇔Pcj xð Þ ¼ 1 always:

And

Pc ∗j xð Þ
���
2
¼ P ∗

rj xð Þ þ P ∗
mj xð Þ=i

h i2
¼ 1� Prj xð Þ

� �þ i� Pmj xð Þ
i

� �� �2

¼ z ∗
j xð Þ

���
���
2
� 2i 1� Prj xð Þ

� �
i� Pmj xð Þ
� � ¼ z ∗

j xð Þ
���

���
2
� 2iP ∗

rj xð ÞP ∗
mj xð Þ

¼ DOK ∗
j xð Þ � Chf ∗

j xð Þ
¼ DOK ∗

j xð Þ þMChf ∗
j xð Þ

¼ 1
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then,

Pc ∗j xð Þ
���
2
¼ P ∗

rj xð Þ þ P ∗
mj xð Þ=i

h i2

¼ 1� Prj xð Þ
� �þ i� Pmj xð Þ

i

� �� �2

¼ 1� Prj xð Þ
� �þ i� i 1� Prj xð Þ

� �
i

� �� �2

¼ 1� Prj xð Þ
� �þ iPrj xð Þ

i

� �� �2

¼ 1� Prj xð Þ
� �þ Prj xð Þ
� �2 ¼ 12 ¼ 1⇔Pc ∗j xð Þ ¼ 1 always

Hence, the prediction of all the probabilities and of Bayes’ theorem in the universe
C ¼RþM is permanently certain and perfectly deterministic (Figure 3).

6.1.1 The Complex Probability Cubes.

In the first cube (Figure 4), the simulation of DOK and Chf as functions of each
other and of the random variable X for the binomial probability distribution can be
seen. The thick line in cyan is the projection of the plane Pc2(X) = DOK(X) –
Chf(X) = 1 = Pc(X) on the plane X = Lb = lower bound of X = 0. This thick line starts
at the point J (DOK = 1, Chf = 0) when X = Lb = 0, reaches the point (DOK = 0.5,
Chf = �0.5) when X = 5, and returns at the end to J (DOK = 1, Chf = 0) when
X = Ub = upper bound of X = 10. The other curves are the graphs of DOK(X) (red)
and Chf(X) (green, blue, pink) in different simulation planes. Notice that they all

Figure 3.
The graphs of all the CPP parameters as functions of the random variable X for this discrete binomial
probability distribution.

27

The Paradigm of Complex Probability and Thomas Bayes’ Theorem
DOI: http://dx.doi.org/10.5772/intechopen.98340



have a minimum at the point K (DOK = 0.5, Chf = �0.5, X = 5). The point L
corresponds to (DOK = 1, Chf = 0, X = Ub = 10). The three points J, K, L are the same
as in Figure 3.

In the second cube (Figure 5), we can notice the simulation of the real probability
Pr(X) inR and its complementary real probability Pm(X)/i inR also in terms of the
random variable X for the binomial probability distribution. The thick line in cyan is
the projection of the plane Pc2(X) = Pr(X) + Pm(X)/i = 1 = Pc(X) on the plane
X = Lb = lower bound of X = 0. This thick line starts at the point (Pr = 0, Pm/i = 1) and
ends at the point (Pr = 1, Pm/i = 0). The red curve represents Pr(X) in the plane
Pr(X) = Pm(X)/i in light grey. This curve starts at the point J (Pr = 0, Pm/i = 1,
X = Lb = lower bound of X = 0), reaches the point K (Pr = 0.5, Pm/i = 0.5, X = 5), and
gets at the end to L (Pr = 1, Pm/i = 0, X = Ub = upper bound of X = 10). The blue curve
represents Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i = 1 = Pc(X). Notice the
importance of the point K which is the intersection of the red and blue curves at X = 5
and when Pr(X) = Pm(X)/i = 0.5. The three points J, K, L are the same as in Figure 3.

In the third cube (Figure 6), we can notice the simulation of the complex
probability z(X) in C ¼RþM as a function of the real probability Pr(X) = Re(z)

Figure 4.
The graphs of DOK and of Chf and of Pc in terms of X and of each other for this binomial probability
distribution.
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in R and of its complementary imaginary probability Pm(X) = i � Im(z) in M, and
this in terms of the random variable X for the binomial probability distribution. The
red curve represents Pr(X) in the plane Pm(X) = 0 and the blue curve represents
Pm(X) in the plane Pr(X) = 0. The green curve represents the complex probability
z(X) = Pr(X) + Pm(X) = Re(z) + i � Im(z) in the plane Pr(X) = iPm(X) + 1 or z(X)
plane in cyan. The curve of z(X) starts at the point J (Pr = 0, Pm = i, X = Lb = lower
bound of X = 0) and ends at the point L (Pr = 1, Pm = 0, X = Ub = upper bound of
X = 10). The thick line in cyan is Pr(X = Lb = 0) = iPm(X = Lb = 0) + 1 and it is the
projection of the z(X) curve on the complex probability plane whose equation is
X = Lb = 0. This projected thick line starts at the point J (Pr = 0, Pm = i, X = Lb = 0)
and ends at the point (Pr = 1, Pm = 0, X = Lb = 0). Notice the importance of the point
K corresponding to X = 5 and z = 0.5 + 0.5i when Pr = 0.5 and Pm = 0.5i. The three
points J, K, L are the same as in Figure 3.

6.2 Simulation of the continuous standard Gaussian normal probability
distribution

The probability density function (PDF) of this continuous stochastic
distribution is:

Figure 5.
The graphs of Pr and of Pm/i and of Pc in terms of X and of each other for this binomial probability
distribution.
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f xð Þ ¼ d CDF xð Þ½ �
dx

¼ 1ffiffiffiffiffi
2π
p exp �x

2

2
� �

, for �∞< x<∞

and the cumulative distribution function (CDF) is:

CDF xð Þ ¼ Prob X ≤ xð Þ ¼
ðx

�∞
f tð Þdt ¼

ðx

�∞

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

The domain for this standard Gaussian normal variable is considered in the
simulations to be equal to: x∈ Lb ¼ �4,Ub ¼ 4½ � and I have taken dx ¼ 0:01.

In the simulations, the mean of this standard normal random distribution is
μ ¼ 0.

The variance is σ2 ¼ 1.
The standard deviation is σ ¼ 1.
The median is Md ¼ 0.
The mode for this symmetric distribution is = 0 = Md = μ.
The real probability Prj xð Þ is:

Figure 6.
The graphs of Pr and of Pm and of z in terms of X for this binomial probability distribution.
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Prj xð Þ ¼ CDF xð Þ ¼
ðx

�∞

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt ¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt, ∀x : �4≤ x≤4

) Prob A j=B j
� � ¼ Prob A j=B j

� � ¼ Prob A j
� � ¼ Prj xð Þ ¼

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

The imaginary complementary probability Pmj xð Þ to Prj xð Þ is:

Pmj xð Þ ¼ i 1� Prj xð Þ
� � ¼ i 1� CDF xð Þ½ � ¼ i 1�

ðx

�∞
f tð Þdt

2
4

3
5

¼ i
ðþ∞

x

f tð Þdt
2
4

3
5 ¼ i

ðþ∞

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5 ¼ i

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5,

∀x : �4≤ x≤4

) Prob B j=A j
� � ¼ Prob B j=A j

� � ¼ Prob B j
� � ¼ Pmj xð Þ ¼ i

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5

The real complementary probability P ∗
rj xð Þ to Prj xð Þ is:

P ∗
rj xð Þ ¼ 1� Prj xð Þ ¼ Pmj xð Þ=i ¼ 1� CDF xð Þ ¼ 1�

ðx

�∞
f tð Þdt ¼

ðþ∞

x

f tð Þdt

¼
ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt, ∀x : �4≤ x≤4

) Prob A j=B j
� � ¼ Prob A j=B j

� � ¼ Prob A j
� � ¼ P ∗

rj xð Þ ¼
ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

The imaginary complementary probability P ∗
mj xð Þ to Pmj xð Þ is:

P ∗
mj xð Þ ¼ i� Pmj xð Þ ¼ i� i 1� Prj xð Þ

� � ¼ iPrj xð Þ ¼ iCDF xð Þ ¼ i
ðx

�∞
f tð Þdt

¼ i
ðx

�4
f tð Þdt

2
4

3
5 ¼ i

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5, ∀x : �4≤ x≤4

) Prob B j=A j
� � ¼ Prob B j=A j

� � ¼ Prob B j
� � ¼ P ∗

mj xð Þ ¼ i
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
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The complex probability or random vectors are:

z j xð Þ ¼ Prj xð Þ þ Pmj xð Þ ¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dtþ i 1�
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5

¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5þ i

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5, ∀x : �4≤ x≤4

z ∗
j xð Þ ¼ P ∗

rj xð Þ þ P ∗
mj xð Þ ¼ 1� Prj xð Þ

� �þ i� Pmj xð Þ
� �

¼ 1�
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5þ i

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5

¼
ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5þ i

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5, ∀x : �4≤ x≤4

The Degree of Our Knowledge of z j xð Þ:

DOK j xð Þ ¼ z j xð Þ
�� ��2 ¼ P2

rj xð Þ þ Pmj xð Þ=i
� �2 ¼

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

þ 1�
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

¼ 1þ 2iPrj xð ÞPmj xð Þ ¼ 1� 2Prj xð Þ 1� Prj xð Þ
� � ¼ 1� 2Prj xð Þ þ 2P2
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, ∀x : �4≤ x≤4

:

DOK j xð Þ is equal to 1 when Prj xð Þ ¼ Prj Lb ¼ �4ð Þ ¼ 0 and when Prj xð Þ ¼
Prj Ub ¼ 4ð Þ ¼ 1.

The Degree of Our Knowledge of z ∗
j xð Þ:

DOK ∗
j xð Þ ¼ z ∗

j xð Þ
���

���
2
¼ P ∗

rj xð Þ
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� �2 þ i� Pmj xð Þ
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, ∀x : �4≤ x≤4

¼ DOK j xð Þ

:

DOK ∗
j xð Þ is equal to 1 when Prj xð Þ ¼ Prj Lb ¼ �4ð Þ ¼ 0 and when Prj xð Þ ¼

Prj Ub ¼ 4ð Þ ¼ 1.
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The Chaotic Factor of z j xð Þ:

Chf j xð Þ ¼ 2iPrj xð ÞPmj xð Þ ¼ �2Prj xð Þ 1� Prj xð Þ
� � ¼ �2Prj xð Þ þ 2P2
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¼ �2
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�4
f tð Þdt
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4
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2
4

3
5
2

¼ �2
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, ∀x : �4≤ x≤4

Chf j xð Þ is null when Prj xð Þ ¼ Prj Lb ¼ �4ð Þ ¼ 0 and when Prj xð Þ ¼
Prj Ub ¼ 4ð Þ ¼ 1.

The Chaotic Factor of z ∗
j xð Þ:

Chf ∗
j xð Þ ¼ 2iP ∗

rj xð ÞP ∗
mj xð Þ ¼ 2i 1� Prj xð Þ

� �
i� Pmj xð Þ
� � ¼ �2 1� Prj xð Þ

� �
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, ∀x : �4≤ x≤4

¼ Chf j xð Þ

Chf ∗
j xð Þ is null when Prj xð Þ ¼ Prj Lb ¼ �4ð Þ ¼ 0 and when Prj xð Þ ¼

Prj Ub ¼ 4ð Þ ¼ 1.
The Magnitude of the Chaotic Factor of z j xð Þ:

MChf j xð Þ ¼ Chf j xð Þ
���
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� � ¼ 2Prj xð Þ � 2P2

rj xð Þ

¼ 2
ðx

�4
f tð Þdt

2
4

3
5� 2

ðx

�4
f tð Þdt

2
4

3
5
2

¼ 2
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5� 2

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

, ∀x : �4≤ x≤4

MChf j xð Þ is null when Prj xð Þ ¼ Prj Lb ¼ �4ð Þ ¼ 0 and when Prj xð Þ ¼
Prj Ub ¼ 4ð Þ ¼ 1.

The Magnitude of the Chaotic Factor of z ∗
j xð Þ:
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, ∀x : �4≤ x≤4

¼MChf j xð Þ
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MChf ∗
j xð Þ is null when Prj xð Þ ¼ Prj Lb ¼ �4ð Þ ¼ 0 and when Prj xð Þ ¼

Prj Ub ¼ 4ð Þ ¼ 1.
At any value of x: ∀x : Lb ¼ �4ð Þ≤ x≤ Ub ¼ 4ð Þ, the probability expressed in the

complex probability set C ¼RþM is the following:

Pc2j xð Þ ¼ Prj xð Þ þ Pmj xð Þ=i
� �2 ¼ z j xð Þ

�� ��2 � 2iPrj xð ÞPmj xð Þ
¼ DOK j xð Þ � Chf j xð Þ
¼ DOK j xð Þ þMChf j xð Þ
¼ 1

then,

Pc2j xð Þ ¼ Prj xð Þ þ Pmj xð Þ=i
� �2 ¼ Prj xð Þ þ 1� Prj xð Þ

� �� �2 ¼ 12 ¼ 1

⇔Pcj xð Þ ¼ 1 always:

And

Pc ∗j xð Þ
���
2
¼ P ∗

rj xð Þ þ P ∗
mj xð Þ=i

h i2
¼ 1� Prj xð Þ

� �þ i� Pmj xð Þ
i

� �� �2

¼ z ∗
j xð Þ

���
���
2
� 2i 1� Prj xð Þ

� �
i� Pmj xð Þ
� � ¼ z ∗

j xð Þ
���

���
2
� 2iP ∗

rj xð ÞP ∗
mj xð Þ

¼ DOK ∗
j xð Þ � Chf ∗

j xð Þ
¼ DOK ∗

j xð Þ þMChf ∗
j xð Þ

¼ 1

then,

Pc ∗j xð Þ
���
2
¼ P ∗

rj xð Þ þ P ∗
mj xð Þ=i

h i2

¼ 1� Prj xð Þ
� �þ i� Pmj xð Þ

i

� �� �2

¼ 1� Prj xð Þ
� �þ i� i 1� Prj xð Þ

� �
i

� �� �2

¼ 1� Prj xð Þ
� �þ iPrj xð Þ

i

� �� �2

¼ 1� Prj xð Þ
� �þ Prj xð Þ
� �2 ¼ 12 ¼ 1⇔Pc ∗j xð Þ ¼ 1 always

Hence, the prediction of all the probabilities and of Bayes’ theorem in the
universe C ¼RþM is permanently certain and perfectly deterministic
(Figure 7).

6.2.1 The complex probability cubes

In the first cube (Figure 8), the simulation of DOK and Chf as functions of each
other and of the random variable X for the standard Gaussian normal probability
distribution can be seen. The thick line in cyan is the projection of the plane
Pc2(X) =DOK(X) – Chf(X) = 1 = Pc(X) on the plane X = Lb = lower bound of X =�4.
This thick line starts at the point J (DOK = 1, Chf = 0) when X = Lb =�4, reaches the
point (DOK = 0.5, Chf = �0.5) when X = 0, and returns at the end to J (DOK = 1,
Chf = 0) when X = Ub = upper bound of X = 4. The other curves are the graphs of
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DOK(X) (red) and Chf(X) (green, blue, pink) in different simulation planes. Notice
that they all have a minimum at the point K (DOK = 0.5, Chf = �0.5, X = 0). The
point L corresponds to (DOK = 1, Chf = 0, X = Ub = 4). The three points J, K, L are
the same as in Figure 7.

In the second cube (Figure 9), we can notice the simulation of the real proba-
bility Pr(X) in R and its complementary real probability Pm(X)/i in R also in terms
of the random variable X for the standard Gaussian normal probability distribution.
The thick line in cyan is the projection of the plane Pc2(X) = Pr(X) + Pm(X)/i = 1 =
Pc(X) on the plane X = Lb = lower bound of X =�4. This thick line starts at the point
(Pr = 0, Pm/i = 1) and ends at the point (Pr = 1, Pm/i = 0). The red curve represents
Pr(X) in the plane Pr(X) = Pm(X)/i in light grey. This curve starts at the point J
(Pr = 0, Pm/i = 1, X = Lb = lower bound of X = �4), reaches the point K (Pr = 0.5,
Pm/i = 0.5, X = 0), and gets at the end to L (Pr = 1, Pm/i = 0, X = Ub = upper bound of
X = 4). The blue curve represents Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i
= 1 = Pc(X). Notice the importance of the point K which is the intersection of the red
and blue curves at X = 0 and when Pr(X) = Pm(X)/i = 0.5. The three points J, K, L are
the same as in Figure 7.

In the third cube (Figure 10), we can notice the simulation of the complex
probability z(X) in C ¼RþM as a function of the real probability Pr(X) = Re(z)
in R and of its complementary imaginary probability Pm(X) = i � Im(z) in M, and
this in terms of the random variable X for the standard Gaussian normal probability
distribution. The red curve represents Pr(X) in the plane Pm(X) = 0 and the blue
curve represents Pm(X) in the plane Pr(X) = 0. The green curve represents the
complex probability z(X) = Pr(X) + Pm(X) = Re(z) + i � Im(z) in the plane

Figure 7.
The graphs of all the CPP parameters as functions of the random variable X for the continuous standard
Gaussian normal distribution.
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Pr(X) = iPm(X) + 1 or z(X) plane in cyan. The curve of z(X) starts at the point J
(Pr = 0, Pm = i, X = Lb = lower bound of X = �4) and ends at the point L (Pr = 1,
Pm = 0, X = Ub = upper bound of X = 4). The thick line in cyan is
Pr(X = Lb = �4) = iPm(X = Lb = �4) + 1 and it is the projection of the z(X) curve on
the complex probability plane whose equation is X = Lb = �4. This projected thick
line starts at the point J (Pr = 0, Pm = i, X = Lb = �4) and ends at the point (Pr = 1,
Pm = 0, X = Lb = �4). Notice the importance of the point K corresponding to X = 0
and z = 0.5 + 0.5i when Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same
as in Figure 7.

7. Conclusion and perspectives

In the current research work, the original extended model of eight axioms
(EKA) of A. N. Kolmogorov was connected and applied to the classical Bayes’
theorem. Thus, a tight link between this theorem and the novel paradigm was
achieved. Consequently, the model of “Complex Probability” was more developed
beyond the scope of my seventeen previous research works on this topic.

Figure 8.
The graphs of DOK and of Chf and of Pc in terms of X and of each other for the standard Gaussian normal
probability distribution.
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Additionally, as it was proved and verified in the novel model, before the
beginning of the random phenomenon simulation and at its end we have the chaotic
factor (Chf and MChf) is zero and the degree of our knowledge (DOK) is one since
the stochastic fluctuations and effects have either not started yet or they have
terminated and finished their task on the probabilistic phenomenon. During the
execution of the nondeterministic phenomenon and experiment we also have:
0.5 ≤ DOK < 1, �0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. We can see that during
this entire process we have incessantly and continually Pc2 = DOK – Chf =
DOK + MChf = 1 = Pc, that means that the simulation which behaved randomly and
stochastically in the set R is now certain and deterministic in the probability set
C ¼RþM, and this after adding to the random experiment executed in R the
contributions of the set M and hence after eliminating and subtracting the chaotic
factor from the degree of our knowledge. Furthermore, the real, imaginary, com-
plex, and deterministic probabilities that correspond to each value of the random
variable X have been determined in the three probabilities sets which are R, M,
and C by Pr, Pm, z and Pc respectively. Consequently, at each value of X, the novel
Bayes’ theorem and CPP parameters Pr, Pm, Pm=i, DOK, Chf, MChf, Pc, and z are
surely and perfectly predicted in the complex probabilities set C with Pcmaintained
equal to one permanently and repeatedly. In addition, referring to all these obtained
graphs and executed simulations throughout the whole research work, we are able

Figure 9.
The graphs of Pr and of Pm/i and of Pc in terms of X and of each other for the standard Gaussian normal
probability distribution.
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to quantify and to visualize both the system chaos and stochastic effects and influ-
ences (expressed and materialized by Chf and MChf) and the certain knowledge
(expressed and materialized by DOK and Pc) of the new paradigm. This is without
any doubt very fruitful, wonderful, and fascinating and proves and reveals once
again the advantages of extending A. N. Kolmogorov’s five axioms of probability
and hence the novelty and benefits of this inventive and original model in the fields
of prognostics and applied mathematics that can be called truly: “The Complex
Probability Paradigm”.

Furthermore, it is very crucial to state that using CPP, conditional probabilities,
and Bayes’ theorem, we have linked and joined and bonded the events probabilities
sets R with R, M with M, R with M, M with R,R with C, M with C, and C
with C using precise and exact mathematical relations and equations. Moreover, it is
important to mention here that the novel CPP paradigm can be implemented to any
probability distribution that exists in literature as it was shown in the simulation
section. This will lead without any doubt to analogous and similar conclusions and
results and will confirm certainly the success of my innovative and original model.

As a future and prospective research and challenges, we aim to more develop the
novel prognostic paradigm conceived and to implement it to a large set of random
and nondeterministic events like for other probabilistic phenomena as in stochastic
processes and in the classical theory of probability. Additionally, we will apply CPP

Figure 10.
The graphs of Pr and of Pm and of z in terms of X for the standard Gaussian normal probability distribution.
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to the random walk problems which have huge and very interesting consequences
when implemented to chemistry, to physics, to economics, to applied and pure
mathematics.

Nomenclature

R real set of events
M imaginary set of events
C complex set of events
i the imaginary number where i ¼ ffiffiffiffiffiffi�1p

or i2 ¼ �1
EKA Extended Kolmogorov’s Axioms
CPP Complex Probability Paradigm
Prob probability of any event
Pr probability in the real set R
Pm probability in the imaginary set M corresponding to the real

probability in R
Pc probability of an event in R with its associated complementary

event in M
z complex probability number = sum of Pr and Pm = complex random

vector
DOK = zj j2 the degree of our knowledge of the random system or experiment,

it is the square of the norm of z
Chf the chaotic factor of z
MChf magnitude of the chaotic factor of z
N number of random vectors
Z the resultant complex random vector =

PN
j¼1z j

DOKZ ¼ Zj j2
N2

the degree of our knowledge of the whole stochastic system

Chf Z ¼ Chf
N2

the chaotic factor of the whole stochastic system

MChf Z magnitude of the chaotic factor of the whole stochastic system
ZU the resultant complex random vector corresponding to a uniform

random distribution
DOKZU the degree of our knowledge of the whole stochastic system

corresponding to a uniform random distribution
Chf ZU

the chaotic factor of the whole stochastic system corresponding to
a uniform random distribution

MChf ZU
the magnitude of the chaotic factor of the whole stochastic system
corresponding to a uniform random distribution

Pc ZUj probability in the complex probability set C of the whole stochastic
system corresponding to a uniform random distribution

39

The Paradigm of Complex Probability and Thomas Bayes’ Theorem
DOI: http://dx.doi.org/10.5772/intechopen.98340



Author details

Abdo Abou Jaoudé
Department of Mathematics and Statistics, Faculty of Natural and Applied Sciences,
Notre Dame University-Louaize, Lebanon

*Address all correspondence to: abdoaj@idm.net.lb

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

40

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



References

[1] Abou Jaoude, A., El-Tawil, K., &
Kadry, S. (2010). "Prediction in Complex
Dimension Using Kolmogorov’s Set of
Axioms", Journal of Mathematics and
Statistics, Science Publications, vol. 6
(2), pp. 116-124.

[2] Abou Jaoude, A. (2013)."The
Complex Statistics Paradigm and the Law
of Large Numbers", Journal of
Mathematics and Statistics, Science
Publications, vol. 9(4), pp. 289-304.

[3] Abou Jaoude, A. (2013). "The Theory
of Complex Probability and the First
Order Reliability Method", Journal of
Mathematics and Statistics, Science
Publications, vol. 9(4), pp. 310-324.

[4] Abou Jaoude, A. (2014). "Complex
Probability Theory and Prognostic",
Journal of Mathematics and Statistics,
Science Publications, vol. 10(1),
pp. 1-24.

[5] Abou Jaoude, A. (2015). "The
Complex Probability Paradigm and
Analytic Linear Prognostic for Vehicle
Suspension Systems", American Journal of
Engineering and Applied Sciences,
Science Publications, vol. 8(1),
pp. 147-175.

[6] Abou Jaoude, A. (2015). “The
Paradigm of Complex Probability and the
Brownian Motion”, Systems Science and
Control Engineering, Taylor and Francis
Publishers, vol. 3(1), pp. 478-503.

[7] Abou Jaoude, A. (2016). “The
Paradigm of Complex Probability and
Chebyshev’s Inequality”, Systems Science
and Control Engineering, Taylor and
Francis Publishers, vol. 4(1), pp. 99-137.

[8] Abou Jaoude, A. (2016). “The
Paradigm of Complex Probability and
Analytic Nonlinear Prognostic for Vehicle
Suspension Systems”, Systems Science
and Control Engineering, Taylor and
Francis Publishers, vol. 4(1), pp. 99-137.

[9] Abou Jaoude, A. (2017). “The
Paradigm of Complex Probability and
Analytic Linear Prognostic for Unburied
Petrochemical Pipelines”, Systems
Science and Control Engineering, Taylor
and Francis Publishers, vol. 5(1),
pp. 178-214.

[10] Abou Jaoude, A. (2017). “The
Paradigm of Complex Probability and
Claude Shannon’s Information Theory”,
Systems Science and Control
Engineering, Taylor and Francis
Publishers, vol. 5(1), pp. 380-425.

[11] Abou Jaoude, A. (2017). “The
Paradigm of Complex Probability and
Analytic Nonlinear Prognostic for
Unburied Petrochemical Pipelines”,
Systems Science and Control
Engineering, Taylor and Francis
Publishers, vol. 5(1), pp. 495-534.

[12] Abou Jaoude, A. (2018). “The
Paradigm of Complex Probability and
Ludwig Boltzmann's Entropy”, Systems
Science and Control Engineering, Taylor
and Francis Publishers, vol. 6(1),
pp. 108-149.

[13] Abou Jaoude, A. (2019). “The
Paradigm of Complex Probability and
Monte Carlo Methods”, Systems Science
and Control Engineering, Taylor and
Francis Publishers, vol. 7(1),
pp. 407-451.

[14] Abou Jaoude, A. (2020). “Analytic
Prognostic in the Linear Damage Case
Applied to Buried Petrochemical Pipelines
and the Complex Probability Paradigm”,
Fault Detection, Diagnosis and
Prognosis, IntechOpen. DOI: 10.5772/
intechopen.90157.

[15] Abou Jaoude, A. (July 7th 2020).
“The Monte Carlo Techniques and The
Complex Probability Paradigm”,
Forecasting in Mathematics - Recent
Advances, New Perspectives and
Applications, Abdo Abou Jaoude,

41

The Paradigm of Complex Probability and Thomas Bayes’ Theorem
DOI: http://dx.doi.org/10.5772/intechopen.98340



IntechOpen. DOI: 10.5772/
intechopen.93048.

[16] Abou Jaoude, A. (2020). “The
Paradigm of Complex Probability and
Prognostic Using FORM”, London Journal
of Research in Science: Natural and
Formal (LJRS), London Journals Press,
vol. 20(4), pp. 1-65. Print ISSN:
2631-8490, Online ISSN: 2631-8504,
DOI: 10.17472/LJRS, 2020.

[17] Abou Jaoude, A. (2020). “The
Paradigm of Complex Probability and The
Central Limit Theorem”, London Journal
of Research in Science: Natural and
Formal (LJRS), London Journals Press,
vol. 20(5), pp. 1-57. Print ISSN:
2631-8490, Online ISSN: 2631-8504,
DOI: 10.17472/LJRS, 2020.

[18] Benton, W. (1966). Probability,
Encyclopedia Britannica. vol. 18,
pp. 570-574, Chicago, Encyclopedia
Britannica Inc.

[19] Benton, W. (1966). Mathematical
Probability, Encyclopedia Britannica. vol.
18, pp. 574-579, Chicago, Encyclopedia
Britannica Inc.

[20] Feller, W. (1968). An Introduction to
Probability Theory and Its Applications.
3rd Edition. New York, Wiley.

[21]Walpole, R., Myers, R., Myers, S., &
Ye, K. (2002). Probability and Statistics
for Engineers and Scientists. 7th Edition,
New Jersey, Prentice Hall.

[22] Freund, J. E. (1973). Introduction to
Probability. New York: Dover
Publications.

[23] Abou Jaoude, A. (2019).TheComputer
Simulation ofMonté CarloMethods and
Random Phenomena. United Kingdom:
Cambridge Scholars Publishing.

[24] Abou Jaoude, A. (2019). The
Analysis of Selected Algorithms for the
Stochastic Paradigm. United Kingdom:
Cambridge Scholars Publishing.

[25] Abou Jaoude, A. (2020). The
Analysis of Selected Algorithms for the
Statistical Paradigm. The Republic of
Moldova: Generis Publishing.

[26] Abou Jaoude, A. (August 1st 2004).
Ph.D. Thesis in Applied Mathematics:
Numerical Methods and Algorithms for
Applied Mathematicians. Bircham
International University. http://www.
bircham.edu.

[27] Abou Jaoude, A. (October 2005).
Ph.D. Thesis in Computer Science:
Computer Simulation of Monté Carlo
Methods and Random Phenomena.
Bircham International University.
http://www.bircham.edu.

[28] Abou Jaoude, A. (27 April 2007).
Ph.D. Thesis in Applied Statistics and
Probability: Analysis and Algorithms for
the Statistical and Stochastic Paradigm.
Bircham International University.
http://www.bircham.edu.

[29] Stuart, A., Ord, K. (1994). Kendall's
Advanced Theory of Statistics: Volume I –
Distribution Theory, Edward Arnold,
Section 8.7.

[30] Lee, P. M. (2012). "Chapter 1".
Bayesian Statistics. Wiley. ISBN 978-1-
1183-3257-3.

[31] Bayes, T., & Price, R. (1763). "An
Essay towards solving a Problem in the
Doctrine of Chance. By the late Rev. Mr.
Bayes, communicated by Mr. Price, in a
letter to John Canton, A. M. F. R. S."
(PDF). Philosophical Transactions of
the Royal Society of London. 53:
pp. 370–418. doi:10.1098/rstl.1763.0053.
Archived from the original (PDF) on
2011-04-10. Retrieved 2003-12-27.

[32] Daston, L. (1988). Classical
Probability in the Enlightenment.
Princeton University Press. pp. 268.
ISBN 0-691-08497-1.

[33] Stigler, S. M. (1986). "Inverse
Probability". The History of Statistics: The

42

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



Measurement of Uncertainty Before 1900.
Harvard University Press. pp. 99–138.
ISBN 978-0-674-40341-3.

[34] Jeffreys, H. (1973). Scientific
Inference (3rd edition). Cambridge
University Press. pp. 31. ISBN 978-0-
521-18078-8.

[35] Stigler, S. M. (1983). "Who
Discovered Bayes' Theorem?". The
American Statistician. 37 (4):
pp. 290–296. doi:10.1080/
00031305.1983.10483122.

[36] Hooper, M. (2013). "Richard Price,
Bayes' theorem, and God". Significance.
10 (1): pp. 36–39. doi:10.1111/
j.1740-9713.2013.00638.x. S2CID
153704746.

[37] Wikipedia, the free encyclopedia,
Bayes’ Theorem. https://en.wikipedia.
org/

43

The Paradigm of Complex Probability and Thomas Bayes’ Theorem
DOI: http://dx.doi.org/10.5772/intechopen.98340





Chapter 2

The Paradigm of Complex
Probability and Isaac Newton’s
Classical Mechanics: On the
Foundation of Statistical Physics
Abdo Abou Jaoudé

“Imagination is more important than knowledge. Knowledge is limited.
Imagination encircles the world.”

Albert Einstein.

“Our minds are finite, and yet even in these circumstances of finitude we are
surrounded by possibilities that are infinite, and the purpose of life is to grasp as
much as we can out of that infinitude.”

Alfred North Whitehead.

“The important thing is not to stop questioning. Curiosity has its own reason for
existence.”

Albert Einstein.

“A theory with mathematical beauty is more likely to be correct than an ugly one
that fits some experimental data. God is a mathematician of a very high order, and
He used very advanced mathematics in constructing the universe.”

Paul Adrien Maurice Dirac.

Abstract

The concept of mathematical probability was established in 1933 by Andrey
Nikolaevich Kolmogorov by defining a system of five axioms. This system can be
enhanced to encompass the imaginary numbers set after the addition of three novel
axioms. As a result, any random experiment can be executed in the complex prob-
abilities set C which is the sum of the real probabilities set R and the imaginary
probabilities set M. We aim here to incorporate supplementary imaginary dimen-
sions to the random experiment occurring in the “real” laboratory in R and there-
fore to compute all the probabilities in the sets R, M, and C. Accordingly, the
probability in the whole set C = R + M is constantly equivalent to one indepen-
dently of the distribution of the input random variable in R, and subsequently the
output of the stochastic experiment in R can be determined absolutely in C. This is
the consequence of the fact that the probability in C is computed after the subtrac-
tion of the chaotic factor from the degree of our knowledge of the nondeterministic
experiment. We will apply this innovative paradigm to Isaac Newton’s classical
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mechanics and to prove as well in an original way an important property at the
foundation of statistical physics.

Keywords: Chaotic factor, degree of our knowledge, complex random vector,
probability norm, complex probability set, random forces, complex force,
resultant force

1. Introduction

Firstly, classical mechanics is a theory in physics studying the macroscopic
objects motion whether they are parts of machinery or projectiles or objects in
astronomy like for example planets or spacecrafts or galaxies or stars. As it was
established, classical mechanics is deterministic that means that we can predict the
motion of objects in the future when we know their present state. It is also revers-
ible and that means we can know the motion of objects in the past when we know
their present state also [1].

Since classical mechanics was developed at the beginning by Sir Isaac Newton
therefore it is usually referred to as Newtonian mechanics. It comprises the mathe-
matical methods and the employed physical concepts developed, as we have men-
tioned, by Newton, Gottfried Wilhelm Leibniz and others in the seventeenth
century to study the bodies motion under the effect of a set of forces. The theory
was more developed later on to embody more abstract methods which have led to
the reformulations of classical mechanics and hence to the establishment of Hamil-
tonian mechanics and Lagrangian mechanics. These developments which were done
in the eighteenth and nineteenth centuries are substantial extensions beyond the
work of Newton because they used more particularly analytical mechanics. After
doing some modifications, modern physics makes use of them in all its areas [2].

Moreover, exceptionally precise results are provided by classical mechanics
when considering objects with velocities far from the speed of light and when they
do not possess extreme masses. It is mandatory to make use of quantum mechanics
which is a sub-field of mechanics when studying objects which have an atom
diameter size. Additionally, we need Albert Einstein’s special relativity when con-
sidering speeds near the velocity of light. Furthermore, Einstein’s general relativity
is applied when objects have huge masses. It is important to note that many modern
sources include in classical physics the relativistic mechanics which represents
according to them the most precise, developed, and complete form of classical
mechanics [3].

Furthermore, we now present classical mechanics fundamental concepts. The
theory assumes that the objects of the real world are of negligible size that means
that they are point particles. And it also characterizes the point particle motion by
few parameters which are: its mass, its position, and the applied forces to it. We will
discuss each of these parameters in turn [4].

In fact, and in reality, classical mechanics can describe always the kind of objects
that have a non-zero size. Whereas, very small particles like electrons are described
more accurately by the physics of quantum mechanics. Additionally, hypothetical
point particles have more simplified behavior than non-zero size objects like for
example a baseball that can spin when it is in motion. Moreover, such non-zero
objects are considered as composite objects constituted of a large number of point
particles acting collectively; hence, the point particles results can be used in such
large objects study [5].

Common sense notions are used by classical mechanics of how matter and forces
interact and exist. Its basic assumption is that energy and matter have knowable and
definite attributes such as speed and location in space. Additionally, it is assumed by
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non-relativistic mechanics the instantaneous action of forces or instantaneous
action at a distance [6].

The bodies motion study is very ancient, this makes classical mechanics one of
the largest and oldest subjects in engineering, technology, and science [7].

Aristotle, one among antiquity Greek philosophers and who is the founder of
Aristotelian physics, may have been the first to postulate that theoretical principles
can assist nature understanding and to assume that “everything happens for a rea-
son”. Many of these ideas preserved are considered as eminently reasonable by a
modern reader but there is an obvious lack of controlled experiment and mathemat-
ical theory as we know it. In fact, modern science was formed by these later decisive
factors and classical mechanics came to be known as their early application [8].

The medieval mathematician Jordanus de Nemore introduced in his Elementa
demonstrationem ponderum the “positional gravity” concept and the component
forces use [9].

Johannes Kepler published in 1609 Astronomia nova which was the first published
causal explanation of the planets motion. Based on the observations made by Tycho
Brahe on Mars orbit, he concluded that the orbits of the planet were ellipses. This
epistemological revolution occurred at the same time when Galileo was proposing for
objects motion abstract mathematical laws. Perhaps he may have performed the
historical experiment of the two cannonballs of different weights dropping from Pisa
tower. Hence, he showed that these two cannonballs hit the ground simultaneously.
We doubt in fact the reality of that particular experiment, but Galileo conducted
quantitative experiments which were to roll balls on an inclined plane. From such
experiments results he derived his accelerated motion theory [10].

Sir Isaac Newton laid down classical mechanics foundations by founding his
natural philosophy principles on three laws of motion proposed by him: the inertia
first law, the acceleration second law, and the action and reaction third law. A
proper mathematical and scientific treatment in Philosophiae Naturalis Principia
Mathematica of Newton was given to his second and third laws. They are in fact
different from the attempts laid earlier to explain similar phenomena and which
were either incorrect, incomplete, or they lack a precise mathematical expression.
Moreover, the principles of conservation of angular momentum and momentum
were postulated by Newton. Additionally, the universal gravitational law of Newton
was also provided by him to give the first accurate mathematical and scientific
formulation of gravity. The most accurate and fullest description of classical
mechanics was provided by the combination of the laws of motion and gravitation
of Newton. Newton showed that his three laws can be applied to the objects of
everyday as well to heavenly objects. Particularly, Newton derived a theoretical
explanation of the planets’ laws of motion of Kepler [11].

Newton performed the mathematical calculation by inventing previously the
mathematical calculus. In fact, calculus eclipsed his book, the Principia, which was
formulated totally in terms of geometric methods which were long established and
to gain hence acceptability. Moreover, the notation of the integral and of the
derivative which are preferred today were developed by Leibniz however [12].

All phenomena, including light in the form of geometric optic, can be explained
by classical mechanics as it was assumed by Newton and most of his contempo-
raries, with the notable exception of Christiaan Huygens. Newton maintained his
own corpuscular light theory even when they discovered the wave interference
phenomenon or the so-called Newton’s rings [13].

Classical mechanics became a major field of study in physics as well in mathe-
matics and this after Newton. A far greater number to problems solutions were
allowed by several progressive reformulations of his mechanics. Joseph Louis
Lagrange was the first to reformulate in 1788 Newtons’ mechanics. William Rowan
Hamilton in his turn reformulated Lagrangian mechanics in 1833 [14].
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More modern physics resolved some difficulties that were discovered in the late
nineteenth century. Compatibility with the theory of electromagnetism and the
famous Michelson-Morley experiment were some of these difficulties. Often still
considered as a part of classical mechanics, the special relativity theory was led by
the resolution of these problems [15].

Explaining all thermodynamics, raised another set of difficulties and problems
with classical mechanics. Gibbs paradox of classical statistical mechanics was the
result of the combination of classical mechanics with thermodynamics. In this
paradox, entropy is not a quantity which was well defined. We introduced quanta to
explain the black-body radiation otherwise this was not possible. Classical mechan-
ics was unable to explain, not even approximately, such basic things as the sizes of
the atoms, the photo-electric effect, and the energy levels and this when experi-
ments delved into the atomic world. Quantum mechanics was the result of the
efforts to resolve these problems [16].

Classical mechanics has no longer been considered as an independent theory
since the end of the twentieth century. We consider classical mechanics now
as an approximate theory to quantum mechanics which is a more general
theory. The desire to understand the fundamental forces of nature has shifted
our emphasis in our research and investigation and has led to the Standard
Model and also has directed the studies to a unified theory of everything. For the
study of the motion of low-energy, of non-quantum mechanical particles in weak
gravitational fields, it is useful to make use of classical mechanics. Additionally,
we were successful to extend classical mechanics to the complex domain. In fact,
this extended complex classical mechanics behaves very similarly to quantum
mechanics [17].

At the end, and to conclude, this research work is organized as follows: After the
introduction in section 1, Newton’s laws of classical mechanics are stated in section
2, then the purpose and the advantages of the present work are presented in section
3. Afterward, in section 4, the extended Kolmogorov’s axioms and hence the com-
plex probability paradigm with their original parameters and interpretation will be
explained and summarized. Moreover, in section 5, the complex probability para-
digm axioms are applied to classical mechanics which will be hence extended to the
imaginary and complex sets. Additionally, in section 6, the resultant complex ran-
dom vector Z of CPP will be applied to statistical physics to prove an important
property at its foundation. Also, in section 7, the flowchart of the new paradigm will
be shown. Furthermore, the simulations of the novel model for various discrete and
continuous stochastic distributions are illustrated in section 8. Finally, we conclude
the work by doing a comprehensive summary in section 9, and then present the list
of references cited in the current research work.

2. Isaac Newton’s laws of motion

The classical mechanics foundation was laid down by Isaac Newton’s three
physical laws of motion. These laws define and describe the forces acting upon a
body as well as the response of the body to those forces. Moreover, and more
precisely, the first law defines the force qualitatively, the second law measures the
force quantitively. The third law states that an isolated single force does not exist
[18–21]. Throughout nearly three centuries, these three laws have been stated in
many different ways and we will summarize them as follows:

First law
In an inertial frame of reference, an object either remains at rest or continues to

move at a constant velocity, unless acted upon by a force.
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Second law

In an inertial frame of reference, the vector sum of the forces F
!
on an object is

equal to the mass m of that object multiplied by the acceleration a! of the object:

F
! ¼ ma!. (It is assumed here that the mass m is constant).

Third law
When one body exerts a force on a second body, the second body simultaneously

exerts a force equal in magnitude and opposite in direction on the first body.
Isaac Newton was the first to state in his Mathematical Principles of Natural

Philosophy (Philosophiae Naturalis Principia Mathematica), first published in 1687,
the three laws of motion. Many systems and physical objects were investigated and
explained by the three laws of motion of Newton. As an example, the planetarymotion
laws of Johannes Kepler were proved and demonstrated by Newton’s laws when
combined with the universal gravitational law, in the third volume of the text [22–25].

Fourth law
Some also describe a Fourth law which states that forces add up like vectors, that

is, that forces obey the principle of superposition.
A single point masses idealize the objects to which we apply the laws of Newton,

that means that the object body shape and size are to be ignored in order to
concentrate on the body’s motion more easily. This is achieved when the rotation
and the deformation of the body are negligible and when the object is too small
compared to the distances that the analysis involves. Hence, in the planet orbital
motion around a star analysis, even a planet can be idealized as a particle [26–29].

Moreover, deformable bodies and the rigid bodies motion are not characterized
by the original form of the laws of motion of Newton which reveal to be inadequate.
Additionally, a generalization of the laws of motion of Newton for rigid bodies was
introduced and achieved by Leonhard Euler in 1750 and they were called accord-
ingly Euler’s laws of motion. They were applied later on to deformable bodies which
were postulated to be a continuum. Euler’s laws can be derived from the laws of
Newton if we represent a body as an assemblage of discrete particles where every
particle is governed by the motion laws of Newton. Independently of the structure
of any particle, the laws of Euler can be considered, however, as axioms that
describe the motion laws of extended bodies [30–33].

Newtonian inertial reference frames are a certain set of frames that verify and
confirm Newton’s laws. The first law defines what an inertial frame of reference is
and this according to some authors interpretation. Therefore, the first law cannot be
demonstrated as special case of the second law since the second law is only valid
when an inertial frame of reference is used in the observation. The second law is
considered as a corollary of the first law by other authors. It was long after Newton’s
death that we have developed the inertial frame of reference explicit concept [34–37].

Furthermore, we assume that, momentum, acceleration, and most importantly
force to be quantities defined externally in the given interpretation. This is not the
only interpretation, but the most common way one can consider the definition of
these quantities by Newton’s laws [38–41].

Additionally, when the speeds considered are much closer to the speed of light,
then Albert Einstein’s special relativity replaces Newtonian mechanics which is still
useful as an approximation of the studied phenomenon [42–44].

3. The purpose and the advantages of the current publication

The crucial job of the theory of classical probability is to compute and to assess
probabilities. A deterministic expression of probability theory can be attained by
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adding supplementary dimensions to nondeterministic and stochastic experiments.
This original and novel idea is at the foundations of my new paradigm of complex
probability. In its core, probability theory is a nondeterministic system of axioms
that means that the phenomena and experiments outputs are the products of chance
and randomness. In fact, a deterministic expression of the stochastic experiment
will be realized and achieved by the addition of imaginary new dimensions to the
stochastic phenomenon taking place in the real probability setR and hence this will
lead to a certain output in the set C of complex probabilities. Accordingly, we will be
totally capable to foretell the random events outputs that occur in all probabilistic
processes in the real world. This is possible because the chaotic phenomenon
becomes completely predictable. Thus, the job that has been successfully completed
here was to extend the set of real and random probabilities which is the setR to the
complex and deterministic set of probabilities which is C =R +M. This is achieved
by taking into account the contributions of the imaginary and complementary set of
probabilities to the set R and that we have called accordingly the set M. This
extension proved that it was effective and consequently we were successful to
create an original paradigm dealing with prognostic and stochastic sciences in which
we were able to express deterministically in C all the nondeterministic processes
happening in the ‘real’ world R. This innovative paradigm was coined by the term
“The Complex Probability Paradigm” and was started and established in my seven-
teen earlier publications and research works [45–61].

The advantages and the purpose of this current work are to:

1.Extend the theory of classical probability to encompass the complex numbers
set, hence to bond the theory of probability to the field of complex variables
and analysis in mathematics. This mission was elaborated and initiated in my
earlier seventeen papers.

2.Apply the novel probability axioms andparadigm toNewton’s classicalmechanics.

3.Show that all nondeterministic phenomena can be expressed deterministically
in the complex probabilities set which is C.

4.Compute and quantify both the degree of our knowledge and the chaotic
factor of all the forces acting on a body in classical mechanics and CPP in the
sets R, M, and C.

5.Represent and show the graphs of the functions and parameters of the
innovative paradigm related to Newton’s mechanics.

6.Demonstrate that the classical concept of probability is permanently equal to
one in the set of complex probabilities; hence, no randomness, no chaos, no
ignorance, no uncertainty, no nondeterminism, no unpredictability, and no
disorder exist in:

C complex setð Þ ¼R real setð Þ þM imaginary set
� �

:

7.Prove an important property at the foundation of statistical physics after
applying CPP to classical mechanics.

8.Prepare to implement this creative model to other topics in prognostics and to
the field of stochastic processes. These will be the job to be accomplished in my
future research publications.
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Concerning some applications of the novel founded paradigm and as a future
work, it can be applied to any nondeterministic phenomenon using classical
mechanics whether in the continuous or in the discrete cases. Moreover, compared
with existing literature, the major contribution of the current research work is to
apply the innovative paradigm of complex probability to Newton’s classical
mechanics and to statistical physics as well.

The next figure displays the major purposes and goals of the Complex
Probability Paradigm (CPP) (Figure 1).

4. The complex probability paradigm

4.1 The original Andrey Nikolaevich Kolmogorov system of axioms

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a
collection of elements {E1, E2, … } called elementary events and let F be a set of
subsets of E called random events [62–66]. The five axioms for a finite set E are:

Axiom 1: F is a field of sets.
Axiom 2: F contains the set E.
Axiom 3: A non-negative real number Prob(A), called the probability of A, is

assigned to each set A in F. We have always 0 ≤ Prob(A) ≤ 1.
Axiom 4: Prob(E) equals 1.
Axiom 5: If A and B have no elements in common, the number assigned to their

union is:

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ

hence, we say that A and B are disjoint; otherwise, we have:

Prob A∪Bð Þ ¼ Prob Að Þ þ Prob Bð Þ � Prob A∩Bð Þ

And we say also that: Prob A∩Bð Þ ¼ Prob Að Þ � Prob B=Að Þ ¼ Prob Bð Þ � Prob A=Bð Þ
which is the conditional probability. If both A and B are independent then:
Prob A∩Bð Þ ¼ Prob Að Þ � Prob Bð Þ.

Moreover, we can generalize and say that for N disjoint (mutually
exclusive) events A1,A2, … ,A j, … ,AN (for 1≤ j≤N), we have the following
additivity rule:

Figure 1.
The diagram of the complex probability paradigm major goals.
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Prob ⋃
N

j¼1
A j

 !
¼
XN
j¼1

Prob A j
� �

And we say also that for N independent events A1,A2, … ,A j, … ,AN (for
1≤ j≤N), we have the following product rule:

Prob ⋂
N

j¼1
A j

 !
¼
YN
j¼1

Prob A j
� �

4.2 Adding the imaginary part M

Now, we can add to this system of axioms an imaginary part such that:
Axiom 6: Let Pm ¼ i� 1� Prð Þ be the probability of an associated complemen-

tary event in M (the imaginary part) to the event A in R (the real part). It follows
that Pr þ Pm=i ¼ 1 where i is the imaginary number with i ¼ ffiffiffiffiffiffi�1p

or i2 ¼ �1.
Axiom 7:We construct the complex number or vector z ¼ Pr þ Pm ¼

Pr þ i 1� Prð Þ having a norm zj j such that:

zj j2 ¼ P2
r þ Pm=ið Þ2:

Axiom 8: Let Pc denote the probability of an event in the complex probability
universe C where C = R + M. We say that Pc is the probability of an event A in R
with its associated event in M such that:

Pc
2 ¼ Pr þ Pm=ið Þ2 ¼ zj j2 � 2iPrPm and is always equal to 1:

We can see that by taking into consideration the set of imaginary probabilities
we added three new and original axioms and consequently the system of axioms
defined by Kolmogorov was hence expanded to encompass the set of imaginary
numbers [45–61].

4.3 A Concise Interpretation of the Original Paradigm

As a summary of the new paradigm, we declare that in the universe R of real
probabilities we have the degree of our certain knowledge is unfortunately incom-
plete and therefore insufficient and unsatisfactory, hence we encompass in our
analysis the set C of complex numbers which integrates the contributions of both
the real set R of probabilities and its complementary imaginary probabilities set
that we have called accordingly M. Subsequently, a perfect and an absolute degree
of our knowledge is obtained and achieved in the universe of probabilities
C = R + M because we have constantly Pc = 1. In fact, a sure and certain prediction
of any random phenomenon is reached in the universe C because in this set, we
eliminate and subtract from the measured degree of our knowledge the
computed chaotic factor. Consequently, this will lead to in the universe C a
probability permanently equal to one as it is shown in the following equation:
Pc

2 = DOK�Chf = DOK + MChf = 1 = Pc deduced from the complex probability
paradigm. Moreover, various discrete and continuous stochastic distributions
illustrate in my seventeen previous research works this hypothesis and innovative
and original model. The figure that follows shows and summarizes the Extended
Kolmogorov Axioms (EKA) or the Complex Probability Paradigm (CPP)
(Figure 2) [67–92]:
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5. The Newton’s mechanics and the complex probability paradigm
parameters

In this section we will relate and link Newton’s mechanics to the complex
probability paradigm with all its parameters by using four novel concepts which are:

the real stochastic force F
!
r in the real probability set R, the imaginary stochastic

force F
!
m in the imaginary probability set M, the complex resultant stochastic force

F
!
in the complex probability set C = R + M, and the deterministic real force F

!
c

also in the probability set C [45–61, 93–104].

5.1 The stochastic forces F
!
r in R and F

!
m in M

The real stochastic force is defined by: F
!
r ¼ Prma!⇔Pr ¼ F

!
r

ma!
.

Here Pr measures the probability that the real stochastic force F
!
r acting on a

body in R will occur.

Since 0≤Pr ≤ 1⇔0≤ F
!

r

ma!
≤ 1⇔ 0

!
≤ F
!
r ≤ma!

If Pr ¼ 0 then F
!
r ¼ 0

!
that means that the real stochastic force in R is totally

known and is equal to 0
!
or null in this case.

If Pr ¼ 1 then F
!
r ¼ ma! that means that the real stochastic force in R is totally

known and totally deterministic and is equal to ma! in this case.
The imaginary stochastic force is defined by:

F
!
m ¼ Pmma! ¼ i 1� Prð Þma!⇔Pm ¼ F

!
m

ma!
¼ i 1� Prð Þ.

Here Pm measures the probability that the imaginary stochastic force F
!
m acting

on a body in M will occur.

Figure 2.
The EKA or the CPP diagram.
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Since 0≤Pr ≤ 1⇔0≤Pm ≤ i⇔0≤ F
!

m

ma!
≤ i⇔ 0

!
≤ F
!
m ≤ ima!

If Pm ¼ 0 then F
!
m ¼ 0

!
that means that the imaginary stochastic force in M is

totally known and is equal to 0
!
or null.

If Pm ¼ i then F
!
m ¼ ima! that means that the imaginary stochastic force in M is

totally known and totally deterministic and is equal to ima!.

5.1.1 The relation between the real and the imaginary stochastic forces

We have: F
!
m ¼ Pmma! ¼ i 1� Prð Þma!⇔Pm ¼ F

!
m

ma!
¼ i 1� Prð Þ.

And since Pr ¼ F
!
r

ma!
⇔Pm ¼ F

!
m

ma!
¼ i 1� F

!
r

ma!

� �
.

And we can deduce that: Pr ¼ 1� Pm=i ¼ 1� F
!

m

ima!
⇔Pr ¼ 1þ iF

!
m

ma!
since i ¼ � 1

i

Therefore, F
!
m ¼ i 1� F

!
r

ma!

� �
ma! ¼ ima! � iF

!
r

⇔ F
!
r ¼ ma! � F

!
m
i ¼ ma! þ iF

!
m since i ¼ � 1

i also.

5.2 The resultant complex stochastic force F
!
in C = R + M

We define the resultant complex stochastic force by: F
! ¼ F

!
r þ F

!
m ¼ Prma! þ

Pmma! ¼ Pr þ Pmð Þma! ¼ zma!.
Here z measures here the complex probability that the resultant stochastic force

F
! ¼ F

!
r þ F

!
m acting on a body in C = R + M will occur.

Since z ¼ Pr þ Pm then:

If Pr ¼ 0⇔Pm ¼ i 1� Prð Þ ¼ i 1� 0ð Þ ¼ i⇔ z ¼ 0þ i ¼ i⇔ F
! ¼ zma! ¼ ima!.

If Pr ¼ 1⇔Pm ¼ i 1� Prð Þ ¼ i 1� 1ð Þ ¼ 0⇔ z ¼ 1þ 0 ¼ 1⇔ F
! ¼ zma! ¼ ma!.

5.2.1 The relations between the forces F
!
r, F
!
m, and F

!

Since F
!
r ¼ ma! þ iF

!
m⇔ F

! ¼ F
!
r þ F

!
m ¼ ma! þ iF

!
m þ F

!
m ¼ ma! þ 1þ ið ÞF!m.

where Re F
!� �
¼ ma! þ iF

!
m and Im F

!� �
¼ F
!
m.

Additionally, since F
!
m ¼ ima! � iF

!
r ⇔ F

! ¼ F
!
r þ F

!
m ¼ F

!
r þ ima! � iF

!
r ¼

ima! þ 1� ið ÞF!r.

where Re F
!� �
¼ F
!
r and Im F

!� �
¼ ima! � iF

!
r ¼ i ma! � F

!
r

� �
.

5.3 The deterministic real force F
!
c in the probability set C = R + M

We define the deterministic real force by: F
!
c ¼ Pcma!.

Since from CPP we have: Pc ¼ Pr þ Pm=i ¼ Pr þ 1� Prð Þ ¼ 1⇔ F
!
c ¼ ma!.

Here Pc measures the probability that the force F
!
c acting on a body in the

probability universe C = R + M will occur. This means that the force acting on the
body in the probability set C is totally known and is totally deterministic always
∀Pr : 0≤Pr ≤ 1 and ∀Pm : 0≤Pm ≤ i.

54

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



5.3.1 The relations between the forces F
!
r, F
!
m, and F

!
c

Furthermore,

Since F
!
r ¼ Prma!⇔ F

!
r ¼ PrF

!
c and Pr ¼ F

!
r

F
!

c
.

Since F
!
m ¼ Pmma!⇔ F

!
m ¼ PmF

!
c and Pm ¼ F

!
m

F
!

c
.

Since Pm ¼ i 1� Prð Þ⇔Pr ¼ 1� Pm
i ¼ 1þ iPm because i ¼ � 1

i ⇔Pr ¼ 1þ i F
!

m

F
!

c
.

Since F
! ¼ zma!⇔ F

! ¼ zF
!
c, therefore:

If Pr ¼ 0⇔Pm ¼ i⇔ z ¼ 0þ i ¼ i⇔ F
! ¼ zma! ¼ ima! ¼ iF

!
c.

If Pr ¼ 1⇔Pm ¼ 0⇔ z ¼ 1þ 0 ¼ 1⇔ F
! ¼ zma! ¼ ma! ¼ F

!
c.

The second case shows and proves that if Pr ¼ 1 then the complex resultant
stochastic force will become equal to the real deterministic force that means that we
will return directly to the classical deterministic Newtonian mechanics theory
which is a special deterministic case of the stochastic complex probability paradigm
general case.

Additionally, since F
!
m ¼ ima! � iF

!
r ⇔ iF

!
r þ F

!
m ¼ ima! ¼ iF

!
c.

And F
!
r � iF

!
m ¼ ma! ¼ F

!
c since i ¼ � 1

i.

Since F
! ¼ ma! þ 1þ ið ÞF!m ⇔ F

! ¼ F
!
c þ 1þ ið ÞF!m

And since F
! ¼ ima! þ 1� ið ÞF!r ⇔ F

! ¼ iF
!
c þ 1� ið ÞF!r.

5.4 The relationships between the forces in R, M, and C and all the CPP
parameters

5.4.1 The relationships between the real force in R and all the CPP parameters

Furthermore, according to CPP:

DOK ¼ zj j2 ¼ Pr þ Pmj j2 ¼ P2
r þ Pm=ið Þ2 ¼ P2

r þ 1� Prð Þ2
¼ P2

r þ 1� 2Pr þ P2
r ⇔ 2P2

r � 2Pr þ 1�DOK ¼ 0

which is a second-degree equation in terms of Pr whose discriminant is:

Δ ¼ 4� 8 1�DOKð Þ ¼ 8DOK � 4:

Since 0:5≤DOK ≤ 1⇔0≤ 8DOK � 4≤4⇔0≤Δ≤ 4⇔Δ≥0, ∀DOK. Therefore,
the equation admits two real roots which are:

Pr1 ¼ 2� ffiffiffiffi
Δ
p

4
¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8DOK � 4
p

4
¼ 2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

4
¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DOK � 1
p

2

and Pr2 ¼ 2þ ffiffiffiffi
Δ
p

4
¼ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8DOK � 4
p

4
¼ 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

4
¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DOK � 1
p

2
:

But according to CPP: ∀Pr : 0≤Pr ≤ 1⇔0:5≤DOK ≤ 1 and �0:5≤Chf ≤0 and
0≤MChf ≤0:5.

And if Pr ¼ 0 or Pr ¼ 1 then DOK ¼ 1 and Chf ¼ 0 and MChf ¼ 0.
And if Pr ¼ 0:5 then DOK ¼ 0:5 and Chf ¼ �0:5 and MChf ¼ 0:5.
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Consequently,

Pr ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DOK � 1
p

2
if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2
if 0:5≤Pr ≤ 1

8>><
>>:

But F
!
r ¼ Prma! hence (Figure 3):

F
!
r ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2

 !
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

We have DOK ¼ 1þ Chf ⇔ 2DOK � 1 ¼ 1þ 2Chf thus (Figure 4):

F
!
r ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Chf

p
2

 !
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Chf

p
2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

Figure 3.
The graphs of the reduced real force Fr (Pr) / ma in blue and of Fr (DOK) / ma in pink and DOK (Pr) in red
and of Fr (DOK) / ma in green in the Fr (Pr) / ma plane in light gray.
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We have DOK ¼ 1�MChf ⇔ 2DOK � 1 ¼ 1� 2MChf thus (Figure 5):

F
!
r ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MChf

p
2

 !
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MChf

p
2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

We can deduce also from CPP that (Figure 6):

F
!
r ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK þ Chf

p
2

 !
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK þ Chf

p
2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

And we can infer using the fact that MChf ¼ �Chf that (Figure 7):

F
!
r ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK �MChf

p
2

 !
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK �MChf

p
2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

Figure 4.
The graphs of the reduced real force Fr (Pr) / ma in blue and of Fr (Chf) / ma in pink and Chf (Pr) in red and
of Fr (Chf) / ma in green in the Fr (Pr) / ma plane in light gray.
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Figure 5.
The graphs of the reduced real force Fr (Pr) / ma in blue and of Fr (MChf) / ma in pink andMChf (Pr) in red
and of Fr (MChf) / ma in green in the Fr (Pr) / ma plane in light gray.

Figure 6.
The graphs of the reduced real force Fr (Chf) / ma in pink and of Fr (DOK) / ma in red and of Pc

2 = DOK –
Chf = 1 = Pc (Chf, DOK) in cyan and of Fr (Chf, DOK) / ma in green in the Pc plane in light gray.
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Also, we can calculate (Figure 8):

F
!
r ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Chf �MChf

p
2

 !
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Chf �MChf

p
2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

But according to CPP: Pc
2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1 ¼ Pc hence the

real force F
!
r in R as a function of all the CPP parameters is the following:

F
!
r ¼

Pc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
ma! if 0≤Pr ≤0:5

Pc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

5.4.2 The relationships between the imaginary force in M and all the CPP parameters

As we have computed:

Pr ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DOK � 1
p

2
if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2
if 0:5≤Pr ≤ 1

8>><
>>:

Figure 7.
The graphs of the reduced real force Fr (MChf) / ma in pink and of Fr (DOK) / ma in red and of Pc

2 =DOK +
MChf = 1 = Pc (MChf, DOK) in cyan and of Fr (MChf, DOK) / ma in green in the Pc plane in light gray.
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And since Pm ¼ i 1� Prð Þ then:

Pm ¼
i

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2

 !
if 0≤Pr ≤0:5⇔ if 0:5i≤Pm ≤ i

i
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DOK � 1
p

2

 !
if 0:5≤Pr ≤ 1⇔ if 0≤Pm ≤0:5i

8>>>>><
>>>>>:

We have F
!
m ¼ Pmma!, so similarly to the previous section we get (Figure 9):

F
!
m ¼

i
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DOK � 1
p

2

 !
ma! if 0≤Pr ≤0:5

i
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2DOK � 1
p

2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

And we can deduce that (Figure 10):

F
!
m ¼

i
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Chf
p

2

 !
ma! if 0≤Pr ≤0:5

i
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Chf
p

2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

Figure 8.
The graphs of the reduced real force Fr (MChf) / ma in pink and of Fr (Chf) / ma in red and of
Chf + MChf = 0 in cyan and of Fr (Chf, MChf) / ma in green in the Chf + MChf = 0 plane in light gray.
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Figure 9.
The graphs of the reduced imaginary force Fm (Pr) / ma in blue and of Fm (DOK) / ma in pink and DOK (Pr)
in red and of Fm (DOK) / ma in green in the Fm (Pr) / ma plane in light gray.

Figure 10.
The graphs of the reduced imaginary force Fm (Pr) / ma in blue and of Fm (Chf) / ma in pink and Chf (Pr) in
red and of Fm (Chf) / ma in green in the Fm (Pr) / ma plane in light gray.
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And we can infer that (Figure 11):

F
!
m ¼

i
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2MChf
p

2

 !
ma! if 0≤Pr ≤0:5

i
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2MChf
p

2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

We can deduce also that (Figure 12):

F
!
m ¼

i
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DOK þ Chf
p

2

 !
ma! if 0≤Pr ≤0:5

i
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DOK þ Chf
p

2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

And we can compute (Figure 13):

F
!
m ¼

i
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DOK �MChf
p

2

 !
ma! if 0≤Pr ≤0:5

i
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DOK �MChf
p

2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

Figure 11.
The graphs of the reduced imaginary force Fm (Pr) / ma in blue and of Fm (MChf) / ma in pink and
MChf (Pr) in red and of Fm (MChf) / ma in green in the Fm (Pr) / ma plane in light gray.
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Figure 12.
The graphs of the reduced imaginary force Fm (Chf) / ma in pink and of Fm (DOK) / ma in red and of
Pc

2 = DOK – Chf = 1 = Pc (Chf, DOK) in cyan and of Fm (Chf, DOK) / ma in green in the Pc plane in light
gray.

Figure 13.
The graphs of the reduced imaginary force Fm (MChf) / ma in pink and of Fm (DOK) / ma in red and of
Pc

2 = DOK + MChf = 1 = Pc (MChf, DOK) in cyan and of Fm (MChf, DOK) / ma in green in the Pc plane in
light gray.
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And we can calculate (Figure 14):

F
!
m ¼

i
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Chf �MChf
p

2

 !
ma! if 0≤Pr ≤0:5

i
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Chf �MChf
p

2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

But according to CPP: Pc
2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1 ¼ Pc hence the

imaginary force F
!
m in M as a function of all the CPP parameters is the following:

F
!
m ¼

i
Pc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
ma! if 0≤Pr ≤0:5

i
Pc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

5.4.3 The relationships between the resultant complex force in C and all the CPP
parameters

Analogously, and since F
! ¼ F

!
r þ F

!
m then:

F
! ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2

 !
þ i

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2

 !" #
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2

 !
þ i

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DOK � 1
p

2

 !" #
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

Figure 14.
The graphs of the reduced imaginary force Fm (MChf) / ma in pink and of Fm (Chf) / ma in red and of
Chf + MChf = 0 in cyan and of Fm (Chf, MChf) / ma in green in the Chf + MChf = 0 plane in light gray.
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And

F
! ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Chf

p
2

 !
þ i

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Chf

p
2

 !" #
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Chf

p
2

 !
þ i

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Chf

p
2

 !" #
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

And

F
! ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MChf

p
2

 !
þ i

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MChf

p
2

 !" #
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MChf

p
2

 !
þ i

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MChf

p
2

 !" #
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

We can deduce also that:

F
! ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK þ Chf

p
2

 !
þ i

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK þ Chf

p
2

 !" #
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK þ Chf

p
2

 !
þ i

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK þ Chf

p
2

 !" #
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

And

F
! ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK �MChf

p
2

 !
þ i

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK �MChf

p
2

 !" #
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK �MChf

p
2

 !
þ i

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK �MChf

p
2

 !" #
ma! if 0:5≤Pr ≤ 1

8>>>>>><
>>>>>>:

And

F
! ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Chf �MChf

p
2

 !
þ i

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Chf �MChf

p
2

 !" #
ma! if 0≤Pr ≤0:5

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Chf �MChf

p
2

 !
þ i

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Chf �MChf

p
2

 !" #
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

But according to CPP: Pc
2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1 ¼ Pc hence the

complex resultant force F
! ¼ F

!
r þ F

!
m in the set C = R + M as a function of all the

CPP parameters is the following (Figure 15):

F
! ¼

Pc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
þ i

Pc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !" #
ma! if 0≤Pr ≤0:5

Pc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
þ i

Pc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !" #
ma! if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

And since the deterministic force in C = R + M is F
!
c ¼ ma! then:
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F
! ¼

Pc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
þ i

Pc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !" #
F
!
c if 0≤Pr ≤0:5

Pc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !
þ i

Pc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf � 2MChf

p
2

 !" #
F
!
c if 0:5≤Pr ≤ 1

8>>>>><
>>>>>:

¼ zma!

In this cube (Figure 15), we can notice the simulation of the complex resultant
reduced force F / ma = z(X) in C = R + M as a function of the real reduced force
Fr / ma = Pr(X) = Re(z) in R and of its complementary imaginary reduced force
Fm /ma = Pm(X) = i� Im(z) inM, and this in terms of the random variableX for any
probability and stochastic distribution. The red curve represents Fr / ma in the plane
Pm(X) = 0 and the blue curve represents Fm / ma in the plane Pr(X) = 0. The green
curve represents the complex resultant reduced force F / ma = Fr / ma + Fm / ma =
z(X) = Pr(X) + Pm(X) = Re(z) + i� Im(z) in the plane z(X) = Pr(X) + Pm(X) or z(X)
plane in cyan. The curve of F / ma starts at the point J (Pr = 0, Pm = i, X = Lb = lower
bound ofX) at z = i and ends at the point L (Pr = 1, Pm = 0,X =Ub = upper bound ofX)
at z = 1. The thick line in cyan is Pr(X = Lb) + Pm(X = Lb) = z(X = Lb) and it is the
projection of the F / ma curve on the complex probability plane whose equation is

Figure 15.
The graphs of the reduced real force Fr / ma = Pr = Re(z) in red and of the reduced imaginary force
Fm / ma = Pm = i � Im(z) in blue and of z = Pr + Pm in cyan and of the reduced complex resultant force
F / ma = Fr / ma + Fm / ma in green in the z plane in light cyan.
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z = i. This projected thick line starts at the point J (Pr = 0, Pm = i, X = Lb) and ends at
the point (Pr = 1, Pm = 0,X = Lb). Notice the importance of the point K corresponding
to z = 0.5 + 0.5iwhen Pr = 0.5 and Pm = 0.5i.

5.4.3.1 The relationships between the norm of the resultant complex force and all the CPP
parameters

We have: F
! ¼ F

!
r þ F

!
m ¼ Pr þ Pmð Þma! ¼ zma! then the norm of the complex

force F
!
can be computed as follows: F

!���
���
2
¼ zj j2 �m2 a!

���
���
2
.

But from CPP we have: zj j2 ¼ DOK⇔ F
!���
���
2
¼ DOK �m2 a!

���
���
2
⇔ F

!���
��� ¼ ffiffiffiffiffiffiffiffiffiffiffi

DOK
p �

m a!
���
���.
According to CPP: Pc

2 ¼ DOK � Chf ¼ 1⇔DOK ¼ 1þ Chf ⇔ F
!���
���
2
¼

1þ Chfð Þ �m2 a!
���
���
2
⇔ F

!���
��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Chf
p �m a!

���
���.

Since also Pc
2 ¼ DOK þMChf ¼ 1⇔DOK ¼ 1�MChf ⇔ F

!���
���
2
¼ 1�MChfð Þ �

m2 a!
���
���
2
⇔ F

!���
��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�MChf
p �m a!

���
���.

Since we have: Pc
2 ¼ DOK � Chf ¼ DOK þMChf ¼ 1 ¼ Pc ⇔ F

!���
���
2
¼

Pc þ Chfð Þ �m2 a!
���
���
2
⇔ F

!���
��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pc þ Chf
p �m a!

���
���

And ⇔ F
!���
���
2
¼ Pc �MChfð Þ �m2 a!

���
���
2
⇔ F

!���
��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pc �MChf
p �m a!

���
���

5.4.4 The relationships between the real deterministic force in C = R + M and all the
CPP parameters

Furthermore, since F
!
c ¼ Pcma! and since Pc

2 ¼ DOK � Chf ¼ DOK þMChf ¼
1 ¼ Pc therefore:

F
!
c ¼ Pcma! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK � Chf

q
:ma!

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOK þMChf

q
:ma!

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Chf þMChf

q
:ma!

¼ Pc
2ma!

¼ 1�ma! ¼ ma!

Hence, we can conclude that no chaos, no ignorance, no disorder, no
unpredictability, no chance, and no randomness exist in the probability universe
C = R +M, but complete and perfect and deterministic knowledge and experiment.

6. The resultant complex random vector Z of CPP and statistical
physics

A powerful tool will be described in the current section which was developed in
my personal previous research papers and which is founded on the concept of a
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complex random vector that is a vector combining the real and the imaginary
probabilities of a random particle, defined in the three added axioms of CPP by the
term z j ¼ Prj þ Pm j. Accordingly, we will define the vector Z as the resultant
complex random vector which is the sum of all the complex random vectors z j in
the complex probability plane C. This procedure is illustrated by considering first a
general Bernoulli distribution, then we will discuss a discrete probability distribu-
tion with N equiprobable random vectors as a general case. In fact, if z represents
one particle in a macrosystem from the uniform distribution U, then ZU represents
all the particles in the whole macrosystem from the uniform distribution U that
means that ZU represents the whole random distribution in the complex probability
plane C. So, in this context, it follows directly that a Bernoulli distribution can be
understood as a simplified system with two random particles (section 6-1), whereas
the general case is a random system with N random particles (section 6-2). After-
ward, I will prove an important property at the foundation of statistical mechanics
and physics using this new powerful concept (section 6-3) [45–61].

6.1 The resultant complex random vector Z of a general Bernoulli distribution
(a distribution with two random particles)

First, let us consider the following general Bernoulli distribution and let us
define its complex random vectors and their resultant (Table 1):

Where,
x1 and x2 are the outcomes of the first and second random vectors respectively.
Pr1 and Pr2 are the real probabilities of x1 and x2 respectively.
Pm1 and Pm2 are the imaginary probabilities of x1 and x2 respectively.
We have:

X2
j¼1

Prj ¼ Pr1 þ Pr2 ¼ pþ q ¼ 1

and

X2
j¼1

Pmj ¼ Pm1 þ Pm2 ¼ iqþ ip ¼ i 1� pð Þ þ ip

¼ i� ipþ ip ¼ i ¼ i 2� 1ð Þ ¼ i N � 1ð Þ

Where N is the number of random vectors or outcomes which is equal to 2 for a
Bernoulli distribution.

The complex random vector corresponding to the random outcome x1 is:

z1 ¼ Pr1 þ Pm1 ¼ pþ i 1� pð Þ ¼ pþ iq

Outcome x j x1 x2

In R Prj Pr1 ¼ p Pr2 ¼ q

In M Pmj Pm1 ¼ i 1� pð Þ ¼ iq Pm2 ¼ i 1� qð Þ ¼ ip

In C = R + M z j z1 ¼ Pr1 þ Pm1 z2 ¼ Pr2 þ Pm2

Table 1.
A general Bernoulli distribution in R, M, and C.
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The complex random vector corresponding to the random outcome x2 is:

z2 ¼ Pr2 þ Pm2 ¼ qþ i 1� qð Þ ¼ qþ ip

The resultant complex random vector is defined as follows:

Z ¼
X2
j¼1

z j ¼ z1 þ z2 ¼
X2
j¼1

Prj þ
X2
j¼1

Pmj

¼ pþ iqð Þ þ qþ ipð Þ ¼ pþ qð Þ þ i pþ qð Þ
¼ 1þ i ¼ 1þ i 2� 1ð Þ

) Z ¼ 1þ i N � 1ð Þ

The probability Pc1 in the complex plane C = R + M which corresponds to the
complex random vector z1 is computed as follows:

z1j j2 ¼ P2
r1 þ Pm1=ið Þ2 ¼ p2 þ q2

Chf 1 ¼ �2Pr1Pm1=i ¼ �2pq
) Pc

2
1 ¼ z1j j2 � Chf 1
¼ p2 þ q2 þ 2pq ¼ pþ qð Þ2 ¼ 12 ¼ 1

) Pc1 ¼ 1

This is coherent with the three novel complementary axioms defined for the
CPP.

Similarly, Pc2 corresponding to z2 is:

z2j j2 ¼ P2
r2 þ Pm2=ið Þ2 ¼ q2 þ p2

Chf 2 ¼ �2Pr2Pm2=i ¼ �2qp
) Pc

2
2 ¼ z2j j2 � Chf 2
¼ q2 þ p2 þ 2qp ¼ qþ pð Þ2 ¼ 12 ¼ 1

) Pc2 ¼ 1

The probability Pc in the complex plane C which corresponds to the resultant
complex random vector Z ¼ 1þ i is computed as follows:

Zj j2 ¼
X2
j¼1

Prj

 !2

þ
X2
j¼1

Pmj=i

 !2

¼ 12 þ 12 ¼ 2

Chf ¼ �2
X2
j¼1

Prj

X2
j¼1

Pmj=i ¼ �2 1ð Þ 1ð Þ ¼ �2

Let s2 ¼ Zj j2 � Chf ¼ 2þ 2 ¼ 4) s ¼ 2

) Pc
2 ¼ s2

N2 ¼
Zj j2 � Chf

N2 ¼ Zj j2
N2 �

Chf
N2 ¼

4
22
¼ 4

4
¼ 1

) Pc ¼ s
N
¼ 2

2
¼ 1

Where s is an intermediary quantity used in our computation of Pc.
Pc is the probability corresponding to the resultant complex random vector Z in

the probability universe C = R + M and is also equal to 1. Actually, Z represents
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both z1 and z2 that means the whole distribution of random vectors of the general
Bernoulli distribution in the complex plane C and its probability Pc is computed in
the same way as Pc1 and Pc2.

By analogy, for the case of one random vector z j we have:

P2
cj ¼ z j

�� ��2 � Chf j with N ¼ 1ð Þ:

In general, for the vector Z we have:

Pc
2 ¼ Zj j2

N2 �
Chf
N2 ; N ≥ 1ð Þ

Where the degree of our knowledge of the whole distribution is equal to

DOKZ ¼ Zj j2
N2 , its relative chaotic factor is Chf Z ¼ Chf

N2 , and its relative magnitude of
the chaotic factor is MChfZ ¼ Chf Z

�� ��.
Notice, if N = 1 in the previous formula, then:

Pc
2 ¼ Zj j2

N2 �
Chf
N2 ¼

Zj j2
12
� Chf

12
¼ Zj j2 � Chf ¼ z j

�� ��2 � Chf j ¼ P2
cj

which is coherent with the calculations already done.
To illustrate the concept of the resultant complex random vector Z, I will use the

following graph (Figure 16).

Figure 16.
The resultant complex random vector Z ¼ z1 þ z2 for a general Bernoulli distribution in the complex
probability plane C.
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6.2 The general case: A discrete distribution with N Equiprobable random
vectors (a uniform distribution U with N random particles)

As a general case, let us consider then this discrete probability distribution with
N equiprobable random vectors which is a discrete uniform probability distribution
U with N particles (Table 2):

We have here in C = R + M:

z j ¼ Prj þ Pmj, ∀j : 1≤ j≤N,

and z1 ¼ z2 ¼ … ¼ zN ¼ 1
N
þ i N � 1ð Þ

N

) ZU ¼
XN
j¼1

z j ¼ z1 þ z2 þ … þ zN ¼ Nz j ¼ N
1
N
þ i N � 1ð Þ

N

� �
¼ 1þ i N � 1ð Þ

Moreover, we can notice that: z1j j ¼ z2j j ¼ ⋯ ¼ zNj j, hence,

ZUj j ¼ z1 þ z2 þ … þ zNj j ¼ N z1j j ¼ N z2j j ¼ … ¼ N zNj j

) ZUj j2 ¼ N2 z j
�� ��2 ¼ N2 1

N2 þ
N � 1ð Þ2
N2

 !
¼ 1þ N � 1ð Þ2, where 1≤ j≤N;

And

Chf ¼ N2 � Chf j ¼ �2� Prj � Pmj=i
� ��N2 ¼ �2N2 � 1

N

� �
N � 1
N

� �

¼ �2 1ð Þ N � 1ð Þ ¼ �2 N � 1ð Þ

) s2 ¼ ZUj j2 � Chf ¼ 1þ N � 1ð Þ2 þ 2 N � 1ð Þ ¼ 1þ N � 1ð Þ½ �2 ¼ N2

) P2
c ZUj ¼

s2

N2 ¼
N2

N2 ¼ 1

¼ ZUj j2
N2 �

Chf
N2 ¼

1þ N � 1ð Þ2
N2 ��2 N � 1ð Þ

N2 ¼ 1þ N � 1ð Þ2 þ 2 N � 1ð Þ
N2 ¼ 1þ N � 1ð Þ½ �2

N2 ¼ N2

N2 ¼ 1

) Pc ZUj ¼ 1

Where s is an intermediary quantity used in our computation of Pc ZUj .
Therefore, the degree of our knowledge corresponding to the resultant complex

vector ZU representing the whole uniform distribution is:

DOKZU ¼
ZUj j2
N2 ¼

1þ N � 1ð Þ2
N2 ,

and its relative chaotic factor is:

Chf ZU
¼ Chf

N2 ¼ �
2 N � 1ð Þ

N2 ,

Similarly, its relative magnitude of the chaotic factor is:
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MChf ZU
¼ Chf ZU

���
��� ¼ Chf

N2

����
���� ¼ �

2 N � 1ð Þ
N2

����
���� ¼

2 N � 1ð Þ
N2 :

Thus, we can verify that we have always:

P2
c ZUj ¼

ZUj j2
N2 �

Chf
N2 ¼ DOKZU � Chf ZU

¼ DOKZU þMChf ZU
¼ 1⇔Pc ZUj ¼ 1

What is important here is that we can notice the following fact. Take for example:

N ¼ 2) DOKZU ¼
1þ 2� 1ð Þ2

22
¼ 0:5 and Chf ZU

¼ �2 2� 1ð Þ
22

¼ �0:5

N ¼ 4) DOKZU ¼
1þ 4� 1ð Þ2

42 ¼ 0:625≥0:5 and Chf ZU
¼ �2 4� 1ð Þ

42

¼ �0:375≥ � 0:5

N ¼ 5) DOKZU ¼
1þ 5� 1ð Þ2

52
¼ 0:68≥0:625 and Chf ZU

¼ �2 5� 1ð Þ
52

¼ �0:32≥ � 0:375

N ¼ 10) DOKZU ¼
1þ 10� 1ð Þ2

102 ¼ 0:82≥0:68 and Chf ZU
¼ �2 10� 1ð Þ

102

¼ �0:18≥ � 0:32

N ¼ 100) DOKZU ¼
1þ 100� 1ð Þ2

1002 ¼ 0:9802≥0:82 and Chf ZU
¼ �2 100� 1ð Þ

1002

¼ �0:0198≥ � 0:18

N ¼ 1000) DOKZU ¼
1þ 1000� 1ð Þ2

10002 ¼ 0:998002≥0:9802 and

Chf ZU
¼ �2 1000� 1ð Þ

10002 ¼ �0:001998≥ � 0:0198

N ¼ 1, 000, 000) DOKZU ¼
1þ 106 � 1

� �2
1012 ¼ 0:999998≥0:998002 and

Chf ZU
¼ �2 106 � 1

� �

1012 ¼ �0:000001999998≥ � 0:001998

We can deduce mathematically using calculus that:

lim
N!þ∞

ZUj j2
N2 ¼ lim

N!þ∞
DOKZU ¼ lim

N!þ∞
1þ N � 1ð Þ2

N2 ¼ 1,

Outcome x j x1 x2 … xN

In R Prj Pr1 ¼ 1
N Pr2 ¼ 1

N
⋯ PrN ¼ 1

N

In M Pmj Pm1 ¼ i 1� 1
N

� �
Pm2 ¼ i 1� 1

N

� �
⋯ PmN ¼ i 1� 1

N

� �

In C = R + M z j z1 ¼ Pr1 þ Pm1 z2 ¼ Pr2 þ Pm2 … zN ¼ PrN þ PmN

Table 2.
A discrete uniform distribution with N equiprobable random vectors in R, M, and C.

72

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



and lim
N!þ∞

Chf
N2 ¼ lim

N!þ∞
Chf ZU

¼ lim
N!þ∞

� 2 N � 1ð Þ
N2 ¼ 0:

From the above, we can also deduce this conclusion:
As much as N increases, as much as the degree of our knowledge in R

corresponding to the resultant complex vector is perfect and absolute, that means, it
is equal to one, and as much as the chaotic factor that prevents us from foretelling
exactly and totally the outcome of the stochastic phenomenon in R approaches
zero. Mathematically we state that: If N tends to infinity then the degree of our
knowledge in R tends to one and the chaotic factor always in R tends to zero.

6.3 Statistical mechanics using Z and CPP

We have:
Pr ZUj ¼

PN
j¼1Prj=N ¼ N � Prj

N ¼ Prj ¼ 1
N= the mean of the real probability of all

the N complex random vectors z j represented by ZU, and.

Pm ZUj ¼
PN

j¼1Pmj=N ¼ N � Pmj

N ¼ Pmj ¼ i 1� 1
N

� �
= the mean of the imaginary

probability of all the N complex random vectors z j represented by ZU, then:
ZU ¼ Nz j ¼ N Pr ZUj þ Pm ZUjð Þ ¼ N 1

N þ i 1� 1
N

� �� � ¼ 1þ i N � 1ð Þ, as computed in
section 6-2.

Where ZU
N ¼ Pr ZUj þ Pm ZUj ¼

PN

j¼1z j

N ¼ Nz j

N ¼ z j ¼ Prj þ Pmj ¼ 1
N þ i 1� 1

N

� �
, ∀j :

1≤ j≤N
= the mean of all the N complex random vectors z j represented by ZU .

Therefore, Pc ZUj ¼ Pr ZUj þ
Pm ZUj

i ¼ 1
N þ 1� 1

N

� � ¼ 1 ¼ Pcj, ∀j : 1≤ j≤N, just as
predicted by CPP.

Additionally, we have:

F
!
rj ¼ Prjma! j,∀j : 1≤ j≤N, that means for every particle j in the macrosystem of

N particles, and

F
!
r ZUj ¼

XN
j¼1

F
!
rj ¼ Pr1ma!1 þ Pr2ma!2 þ … þ Prjma! j þ … þ PrNma!N

¼ 1
N
ma!1 þ 1

N
ma!2 þ … þ 1

N
ma! j þ … þ 1

N
ma!N

¼ 1
N

ma!1 þma!2 þ … þma! j þ … þma!N

� �

¼ Pr ZUj ma!1 þma!2 þ … þma! j þ … þma!N

� �

¼ Pr ZUj m
XN
j¼1

a! j ¼ Pr ZUj ma! ¼ ma!

N

= the mean real random force acting on the whole macrosystem in R.
Moreover,

F
!
mj ¼ Pmjma! j,∀j : 1≤ j≤N, that means for every particle j in the macrosystem

of N particles, and
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F
!

m ZUj ¼
XN
j¼1

F
!
mj ¼ Pm1ma!1 þ Pm2ma!2 þ … þ Pmjma! j þ … þ PmNma!N

¼ i 1� 1
N

� �
ma!1 þ i 1� 1

N

� �
ma!2 þ … þ i 1� 1

N

� �
ma! j þ … þ i 1� 1

N

� �
ma!N

¼ i 1� 1
N

� �
ma!1 þma!2 þ … þma! j þ … þma!N

� �

¼ Pm ZUj ma!1 þma!2 þ … þma! j þ … þma!N

� �

¼ Pm ZUj m
XN
j¼1

a! j ¼ Pm ZUj ma! ¼ i 1� 1
N

� �
ma!

= the mean imaginary random force acting on the whole macrosystem in M.
Furthermore,

F
!

ZUj ¼ F
!
r ZUj þ F

!
m ZUj ¼

XN
j¼1

F
!
rj þ

XN
j¼1

F
!
mj ¼ Pr ZUj ma! þ Pm ZUj ma!

¼ Pr ZUj þ Pm ZUjð Þma! ¼ ZU

N
ma! ¼ 1

N
þ i 1� 1

N

� �� �
ma!

= the mean resultant complex random force acting on the whole macrosystem in
C = R + M.

Also, we have:

F
!
cj ¼ Pcjma! j ¼ 1�ma! j ¼ ma! j, ∀j : 1≤ j≤N, that means for every particle j in

the macrosystem of N particles, just as predicted by CPP.

And F
!
c ZUj ¼ Pc ZUma! ¼ 1�ma! ¼

��� ma! = the deterministic force acting on the

whole macrosystem in C = R + M, as predicted by CPP also.
Correspondingly, we can deduce the following result:

If DOKZU ¼
ZUj j2
N2 ¼ Pr ZUjð Þ2 þ Pm ZUj

i

� �2

¼ P2
r ZUj þ 1� Pr ZUjð Þ2 ¼ 1

⇔

Pr ZUj ¼
1
N
¼ 0

or

Pr ZUj ¼
1
N
¼ 1

8>>><
>>>:

⇔

N ! þ∞
or

N ¼ 1

8><
>:

⇔
F
!
r ZUj ¼ Pr ZUj �ma! ¼ 0�ma! ¼ 0

!

or

F
!
r ZUj ¼ Pr ZUj �ma! ¼ 1�ma! ¼ ma!

8><
>:

⇔

Pm ZUj ¼ i 1� Pr ZUjð Þ ¼ i 1� 0ð Þ ¼ i
or

Pm ZUj ¼ i 1� Pr ZUjð Þ ¼ i 1� 1ð Þ ¼ 0

8><
>:

⇔
F
!
m ZUj ¼ Pm ZUj �ma! ¼ ima!

or

F
!
m ZUj ¼ Pm ZUj �ma! ¼ 0�ma! ¼ 0

!

8><
>:

Therefore, this means that in the first case the mean real force acting on

the macrosystem in the real set R is equal to 0
!
, or that in the second case the

experiment on the macrosystem is totally deterministic always in the real
probability set R.
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⇔

F
!

ZUj ¼ F
!
r ZUj þ F

!
m ZUj ¼ 0

! þ ima! ¼ ima!

or

F
!

ZUj ¼ F
!
r ZUj þ F

!
m ZUj ¼ ma! þ 0

! ¼ ma!

8>><
>>:

⇔ F
!

ZUj
���

��� ¼
ima!
���

��� ¼ m a!
���
���

or

ma!
���

��� ¼ m a!
���
���

8>><
>>:

⇔ F
!

ZUj
���

��� ¼ m a!
���
��� ¼ F

!
c ZUj

���
��� in both cases:

That means that the mean norm of the resultant force acting on the whole
macrosystem is totally deterministic in both cases in the probability set C = R + M

and is always equal accordingly to m a!
���
���.

Similarly, we can deduce also the following similar result:

If DOKZU ¼ 1⇔Chf ZU
¼ 2iPr ZU � Pm ZUjj ¼ �2Pr ZU � 1� Pr ZUjð Þ ¼j 0

⇔

Pr ZUj ¼
1
N
¼ 0

or

Pr ZUj ¼
1
N
¼ 1

8>>><
>>>:

⇔

N ! þ∞
or

N ¼ 1

8><
>:

⇔
F
!
r ZUj ¼ Pr ZUj �ma! ¼ 0�ma! ¼ 0

!

or

F
!
r ZUj ¼ Pr ZUj �ma! ¼ 1�ma! ¼ ma!

8><
>:

⇔

Pm ZUj ¼ i 1� Pr ZUjð Þ ¼ i 1� 0ð Þ ¼ i
or

Pm ZUj ¼ i 1� Pr ZUjð Þ ¼ i 1� 1ð Þ ¼ 0

8><
>:

⇔
F
!
m ZUj ¼ Pm ZUj �ma! ¼ ima!

or

F
!
m ZUj ¼ Pm ZUj �ma! ¼ 0�ma! ¼ 0

!

8><
>:

Therefore, this means that in the first case the mean real force acting on the

macrosystem in the real set R is equal to 0
!
, or that in the second case the

experiment on the macrosystem is totally deterministic always in the real
probability set R.

⇔
F
!

ZUj ¼ F
!
r ZUj þ F

!
m ZUj ¼ 0

! þ ima! ¼ ima!

or

F
!

ZUj ¼ F
!
r ZUj þ F

!
m ZUj ¼ ma! þ 0

! ¼ ma!

8><
>:

⇔ F
!

ZUj
���

��� ¼
ima!
���

��� ¼ m a!
���
���

or

ma!
���

��� ¼ m a!
���
���

8>><
>>:

⇔ F
!

ZUj
���

��� ¼ m a!
���
��� ¼ F

!
c ZUj

���
��� in both cases:

That means that the mean norm of the resultant force acting on the whole
macrosystem is totally deterministic in both cases in the probability set C = R + M

and is always equal accordingly to m a!
���
���. Consequently, we reach the same conclu-

sion if we consider Chf ZU
as above when we have considered DOKZU .

In addition, for N ¼ 1) ZUj j2
N2 ¼ DOKZU ¼ 1þ N�1ð Þ2

N2 ¼ 1þ 1�1ð Þ2
12 ¼ 1

and
Chf
N2 ¼ Chf ZU

¼ � 2 N � 1ð Þ
N2 ¼ � 2 1� 1ð Þ

12
¼ 0
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This means that we have a random experiment with only one outcome or vector,
hence, Pr ZUj ¼ 1

N ¼ 1
1 ¼ 1, that means we have a sure event in R. Consequently, we

have accordingly the degree of our knowledge is equal to one (perfect macrosystem
knowledge) and the chaotic factor is equal to zero (no chaos) since the experiment
is certain and totally deterministic in R, which is absolutely logical.

6.4 Analysis and interpretation of all the results

The law of large numbers states that:
“AsN increases, then the probability that the value of sample mean to be close to

population mean approaches 1”.
We can deduce now the following conclusion related to the law of large

numbers:
We can see, as we have proved, that as much as N increases, as much as the

degree of knowledge of the resultant complex vector DOKZU ¼ ZUj j2
N2 tends to 1 and

its relative chaotic factor Chf ZU
¼ Chf

N2 tends to 0. Assume now that the random
variables x j

0s correspond to the atoms or particles or molecules moving randomly in
a gas or a liquid. So, if we study a gas or a liquid with billions of such particles, then
N is big enough (e.g. Avogadro’s number ≈ 6.02214 � 1023 / mole in the Interna-
tional System of Units) to allow that its corresponding temperature, pressure,
energy etc.… tend to the mean of these quantities corresponding to the whole
system. This because the chaotic factor of the whole macrosystem (gas, liquid, etc.),
that is, of the resultant complex random vector ZU representing all the random
particles or vectors, tends to 0; thus, the behavior and characteristics of the whole
system inR is predictable with great precision since the degree of our knowledge of

Figure 17.
Chf ZU

,DOKZU , and Pc ZUj , as functions of the particles number N in 2D.
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the whole macrosystem tends to 1. Subsequently, we can deduce from the above
that since for DOKZU ¼ 1 or for Chf ZU

¼ 0 the mean norm of the resultant force
acting on the macrosystem that consists of N > > 1 individual particles is totally
known and deterministic inR then all the properties of the macrosystem are totally
and completely known and determined like the macrosystem energy which should
be equal to the mean of the individual particles energies, or the macrosystem
pressure which should be equal to the mean of the individual particles pressures or
the macrosystem temperature which should be equal to the mean of the individual
particles temperatures, etc.

Hence, what we have done here is that we have proved the law of large numbers
(already discussed in the published papers [46, 50, 57, 61]) as well as an important
property of statistical mechanics using CPP. In fact, as it is very well known in the
classical probability theory and statistics, the law of large numbers is tightly related
and linked to statistical mechanics. Here CPP comes and proves both of them in a
novel and original way. This looks very interesting and fruitful and shows the
validity and the benefits of extending Kolmogorov’s axioms to the complex probability
set C =R +M. The following figures (Figures 17 and 18) show the convergence of
Chf ZU

to 0 and of DOKZU to 1 as functions of the particles or atoms or molecules
number N.

7. Flowchart of the complex probability and Newton’s mechanics
prognostic model

The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model where X is between the lower bound Lb and the upper
bound Ub:

Figure 18.
Chf ZU

,DOKZU , and Pc ZUj , as functions of the particles number N in 3D.
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8. The new paradigm applied to various discrete and continuous
stochastic distributions

In this section, the simulation of the novel CPP model for various discrete and
continuous random distributions will be done. Note that all the numerical values
found in the paradigm functions analysis for all the simulations were computed using
the 64-Bit MATLAB version 2020 software. It is important to mention here that a few
important and well-known probability distributions were considered although the
original CPPmodel can be applied to any stochastic distribution beside the studied
random cases below. This will lead to similar results and conclusions. Hence, the new
paradigm is successful with any discrete or continuous random case.

8.1 Simulation of discrete probability distributions

8.1.1 The discrete uniform probability distribution

The probability density function (PDF) of this discrete stochastic distribution is:
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f X ¼ xk;Nð Þ ¼
0 for X ¼ x0 ¼ Lb, k ¼ 0
1
N

for X ¼ x1, x2, … , xk, … , xN ¼ Ubð Þ, ∀k : 1≤ k≤N

8<
:

Note that in the simulation we have considered: Lb ¼ �21 and Ub ¼ 21 and
N ¼ 60 and ∀k : 1≤ k≤ N ¼ 60ð Þ we have : Δxk ¼ xk � xk�1 ¼ 0:7 .

The cumulative distribution function (CDF) is:

CDF xð Þ ¼ Prob X ≤ xð Þ ¼
Xk
j¼0

f x j;N
� � ¼ f x0;Nð Þ þ

Xk
j¼1

f x j;N
� � ¼ 0þ

Xk
j¼1

1
N
¼ k

N

¼ k
60

,∀k : 0≤ k≤ N ¼ 60ð Þ

Note that:
If k ¼ 0⇔CDF xð Þ ¼ Prob X ≤ xð Þ ¼ f X ¼ x0 ¼ Lb;Nð Þ ¼ 0.
If k ¼ N⇔X ¼ xN ¼ Ub

⇔CDF xð Þ ¼ Prob X ≤ xð Þ ¼ f x0;Nð Þ þ
Xk¼N
j¼1

f x j;N
� � ¼ 0þ

Xk¼N
j¼1

1
N
¼ N

N
¼ 60

60
¼ 1

The mean or average or expectation is:

μ ¼
PN

j¼0x j

N þ 1
¼ 0

The variance is:

σ2 ¼
PN

j¼0 x j � μ
� �2

N þ 1
¼ 151:9000

The standard deviation is:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j¼0 x j � μ
� �2

N þ 1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
151:9000
p

¼ 12:3247718

The median Md = 0 = μ since it is a symmetric distribution.
Since the distribution is uniform then it has no mode.
The real probability Pr xð Þ and force are:

Pr xð Þ ¼ CDF xð Þ ¼
Xk
j¼0

f x j;N
� � ¼ k

N
¼ k

60
, ∀k : 0≤ k≤ N ¼ 60ð Þ

⇔ F
!
r xð Þ ¼ Pr xð Þma! ¼ k

N

� �
ma! ¼ k

60

� �
ma!

The imaginary complementary probability Pm xð Þ and force are:

Pm xð Þ ¼ i 1� Pr xð Þ½ � ¼ i 1� CDF xð Þ½ � ¼ i 1�
Xk
j¼0

f x j;N
� �" #

¼ i
XN

j¼kþ1
f x j;N
� � ¼ i 1� k

N

� �
¼ i 1� k

60

� �
, ∀k : 0≤ k≤ N ¼ 60ð Þ
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⇔ F
!
m xð Þ ¼ Pm xð Þma! ¼ i 1� k

N

� �
ma! ¼ i 1� k

60

� �
ma!

The real complementary probability Pm xð Þ=i and force are:

Pm xð Þ=i ¼ 1� Pr xð Þ ¼ 1� CDF xð Þ ¼ 1�
Xk
j¼0

f x j;N
� � ¼

XN

j¼kþ1
f x j;N
� � ¼ 1� k

N

¼ 1� k
60

, ∀k : 0≤ k≤ N ¼ 60ð Þ

⇔ F
!
m xð Þ=i ¼ Pm xð Þ

i
ma! ¼ 1� k

N

� �
ma! ¼ 1� k

60

� �
ma!

The complex probability or random vector and force are:

z xð Þ ¼ Pr xð Þ þ Pm xð Þ ¼ k
N
þ i 1� k

N

� �
¼ k

60
þ i 1� k

60

� �
, ∀k : 0≤ k≤ N ¼ 60ð Þ

⇔ F
!

xð Þ ¼ F
!
r xð Þ þ F

!
m xð Þ ¼ Pr xð Þma! þ Pm xð Þma! ¼ Pr xð Þ þ Pm xð Þ½ �ma! ¼ zma!

¼ k
N

� �
ma! þ i 1� k

N

� �
ma! ¼ k

N

� �
þ i 1� k

N

� �� �
ma!

¼ k
60

� �
þ i 1� k

60

� �� �
ma!

The Degree of Our Knowledge:

DOK xð Þ ¼ z xð Þj j2 ¼ P2
r xð Þ þ Pm xð Þ=i½ �2 ¼ k

N

� �2

þ 1� k
N

� �2

¼ 1þ 2iPr xð ÞPm xð Þ ¼ 1� 2Pr xð Þ 1� Pr xð Þ½ � ¼ 1� 2Pr xð Þ þ 2P2
r xð Þ

¼ 1� 2
k
N

� �
þ 2

k
N

� �2

¼ 1� 2
k
60

� �
þ 2

k
60

� �2

, ∀k : 0≤ k≤ N ¼ 60ð Þ

:

DOK xð Þ is equal to 1 when Pr xð Þ ¼ Pr Lb ¼ �21ð Þ ¼ 0 and when Pr xð Þ ¼
Pr Ub ¼ 21ð Þ ¼ 1 .

The Chaotic Factor:

Chf xð Þ ¼ 2iPr xð ÞPm xð Þ ¼ �2Pr xð Þ 1� Pr xð Þ½ � ¼ �2Pr xð Þ þ 2P2
r xð Þ

¼ �2 k
N

� �
þ 2

k
N

� �2

¼ �2 k
60

� �
þ 2

k
60

� �2

, ∀k : 0≤ k≤ N ¼ 60ð Þ

Chf xð Þ is null whenPr xð Þ ¼ Pr Lb ¼ �21ð Þ ¼ 0andwhenPr xð Þ ¼ Pr Ub ¼ 21ð Þ ¼ 1 .
The Magnitude of the Chaotic Factor MChf:

MChf xð Þ ¼ Chf xð Þj j ¼ �2iPr xð ÞPm xð Þ ¼ 2Pr xð Þ 1� Pr xð Þ½ � ¼ 2Pr xð Þ � 2P2
r xð Þ
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¼ 2
k
N

� �
� 2

k
N

� �2

¼ 2
k
60

� �
� 2

k
60

� �2

, ∀k : 0≤ k≤ N ¼ 60ð Þ

MChf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ �21ð Þ ¼ 0 and when Pr xð Þ ¼
Pr Ub ¼ 21ð Þ ¼ 1.

At any value of x: ∀x : Lb ¼ �21ð Þ≤ x≤ Ub ¼ 21ð Þ and ∀k : 0≤ k≤ N ¼ 60ð Þ, the
probability expressed in the complex probability set C = R + M is the following:

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ z xð Þj j2 � 2iPr xð ÞPm xð Þ
¼ DOK xð Þ � Chf xð Þ
¼ DOK xð Þ þMChf xð Þ
¼ 1

then,

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ Pr xð Þ þ 1� Pr xð Þ½ �f g2 ¼ 12 ¼ 1⇔Pc xð Þ ¼ 1 always

⇔ F
!
c xð Þ ¼ Pc xð Þma! ¼ 1�ma! ¼ ma! always also.

Hence, the prediction of all the probabilities and forces of the stochastic
experiment in the universe C = R + M is permanently certain and perfectly
deterministic (Figure 19).

Figure 19.
The graphs of Fr / ma, Fm / ima, and Fc / ma and of all the CPP parameters as functions of the random
variable X for this discrete uniform probability distribution.
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8.1.1.1 The complex probability cubes

In the first cube (Figure 20), the simulation ofDOK and Chf as functions of each
other and of the random variable X for the discrete uniform probability distribution
can be seen. The dotted line in cyan is the projection of the plane Pc

2(X) =DOK(X) –
Chf(X) = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound of X = �21. This
dotted line starts at the point J (DOK = 1, Chf = 0) when X = Lb = �21, reaches the
point (DOK = 0.5, Chf = �0.5) when X = 0, and returns at the end to J (DOK = 1,
Chf = 0) when X = Ub = upper bound of X = 21. The other curves are the graphs of
DOK(X) (red) and Chf(X) (green, blue, pink) in different simulation planes. Notice
that they all have a minimum at the point K (DOK = 0.5, Chf = �0.5, X = 0). The
point L corresponds to (DOK = 1, Chf = 0, X = Ub = 21). The three points J, K, L are
the same as in Figure 19.

In the second cube (Figure 21), we can notice the simulation of the real
reduced force Fr / ma = Pr(X) in R and its complementary real reduced force
Fm / ima = Pm(X)/i in R also in terms of the random variable X for the discrete
uniform probability distribution. The dotted line in cyan is the projection of the
plane Pc

2(X) = Pr(X) + Pm(X)/i = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower

Figure 20.
The graphs of DOK and Chf and the deterministic reduced force Fc / ma = Pc in terms of X and of each other for
this discrete uniform probability distribution.
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bound of X = �21. This dotted line starts at the point (Pr = 0, Pm/i = 1) and ends at
the point (Pr = 1, Pm/i = 0). The red curve represents Fr / ma = Pr(X) in the plane
Pr(X) = Pm(X)/i in light gray. This curve starts at the point J (Pr = 0, Pm/i = 1,
X = Lb = lower bound of X = �21), reaches the point K (Pr = 0.5, Pm/i = 0.5, X = 0),
and gets at the end to L (Pr = 1, Pm/i = 0, X = Ub = upper bound of X = 21). The blue
curve represents Fm / ima = Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i =
1 = Pc(X) = Fc / ma. Notice the importance of the point K which is the intersection of
the red and blue curves at X = 0 and when Pr(X) = Pm(X)/i = 0.5. The three points J,
K, L are the same as in Figure 19.

In the third cube (Figure 22), we can notice the simulation of the complex
resultant reduced force F / ma = z(X) in C = R + M as a function of the real
reduced force Fr / ma = Pr(X) = Re(z) in R and of its complementary imaginary
reduced force Fm / ma = Pm(X) = i � Im(z) in M, and this in terms of the random
variable X for the discrete uniform probability distribution. The red curve repre-
sents Fr / ma in the plane Pm(X) = 0 and the blue curve represents Fm / ma in the
plane Pr(X) = 0. The green curve represents the complex resultant reduced force F /
ma = Fr / ma + Fm / ma = z(X) = Pr(X) + Pm(X) = Re(z) + i � Im(z) in the plane
Pr(X) = iPm(X) + 1 or z(X) plane in cyan. The curve of F / ma starts at the point J
(Pr = 0, Pm = i, X = Lb = lower bound of X = �21) and ends at the point L (Pr = 1,

Figure 21.
The graphs of Fr / ma = Pr and Fm / ima = Pm / i and Fc / ma = Pc in terms of X and of each other for this
discrete uniform probability distribution.
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Pm = 0, X = Ub = upper bound of X = 21). The dotted line in cyan is Pr(X = Lb = �21)
= iPm(X = Lb = �21) + 1 and it is the projection of the F / ma curve on the complex
probability plane whose equation is X = Lb = �21. This projected dotted line starts at
the point J (Pr = 0, Pm = i, X = Lb = �21) and ends at the point (Pr = 1, Pm = 0,
X = Lb = �21). Notice the importance of the point K corresponding to X = 0 and
z = 0.5 + 0.5i when Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same as in
Figure 19.

8.1.2 The binomial probability distribution

The probability density function (PDF) of this discrete stochastic distribution is:

f xð Þ ¼ NCxpxqN�x ¼
N
x

� �
pxqN�x, for Lb ¼ 0ð Þ≤ x≤ Ub ¼ Nð Þ

I have taken the domain for the binomial random variable to be:
x∈ Lb ¼ 0,Ub ¼ N ¼ 12½ � and ∀k : 1≤ k≤ 12 we have Δxk ¼ xk � xk�1 ¼ 1, then:
x ¼ 0, 1, 2, … , 12.

Taking in our simulation N ¼ 12 and pþ q ¼ 1, p ¼ q ¼ 0:5 then:
The mean of this binomial discrete random distribution is: μ ¼ Np ¼ 12� 0:5 ¼ 6.

Figure 22.
The graphs of the reduced forces Fr / ma = Pr and Fm / ma = Pm and F / ma = z in terms of X for this discrete
uniform probability distribution.
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The standard deviation is: σ ¼ ffiffiffiffiffiffiffiffiffi
Npq

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 0:5� 0:5
p ¼ ffiffiffi

3
p ¼ 1:73205… .

The median is Md ¼ μ ¼ 6.
The mode for this symmetric distribution is = 6 = Md = μ.
The cumulative distribution function (CDF) is:

CDF xð Þ ¼  Prob X ≤ xð Þ ¼
Xx

k¼0
f k;Nð Þ ¼

Xx

k¼0
NCkpkqN�k ¼

Xx

k¼0
12Ckpkq12�k,

∀x : 0≤ x≤ N ¼ 12ð Þ

Note that:
If x ¼ 0⇔X ¼ Lb ⇔CDF xð Þ ¼ Prob X ≤0ð Þ ¼ f X ¼ Lb;Nð Þ ¼ NC0p0qN�0 ¼

qN ¼ 0:512 ffi 0.
If x ¼ N ¼ 12⇔X ¼ Ub ⇔CDF xð Þ ¼ Prob X ≤ xð Þ ¼PN

k¼0NCkpkqN�k ¼
pþ qð ÞN ¼ 1N ¼ 112 ¼ 1 by the binomial theorem.

The real probability Pr xð Þ and force are:

Pr xð Þ ¼  CDF xð Þ ¼
Xx

k¼0
f k;Nð Þ ¼

Xx

k¼0
NCkpkqN�k ¼

Xx

k¼0
12Ckpkq12�k,

∀x : 0≤ x≤ N ¼ 12ð Þ

⇔ F
!
r xð Þ ¼ Pr xð Þma! ¼

Xx

k¼0
12Ckpkq12�k

 !
ma!

The imaginary complementary probability Pm xð Þ and force are:

Pm xð Þ ¼ i 1� Pr xð Þ½ � ¼ i 1� CDF xð Þ½ � ¼ i 1�
Xx

k¼0
f k;Nð Þ

" #

¼ i 1�
Xx

k¼0
NCkpkqN�k

 !
¼ i

XN

k¼xþ1
NCkpkqN�k ¼ i

X12

k¼xþ1
12Ckpkq12�k,

∀x : 0≤ x≤ N ¼ 12ð Þ

⇔ F
!
m xð Þ ¼ Pm xð Þma! ¼ i

X12

k¼xþ1
12Ckpkq12�k

 !
ma!

The real complementary probability Pm xð Þ=i and force are:

Pm xð Þ=i ¼ 1� Pr xð Þ ¼ 1� CDF xð Þ ¼ 1�
Xx

k¼0
f k;Nð Þ ¼

XN

k¼xþ1
NCkpkqN�k

¼
X12

k¼xþ1
12Ckpkq12�k, ∀x : 0≤ x≤ N ¼ 12ð Þ

⇔ F
!
m xð Þ=i ¼ Pm xð Þ

i
ma! ¼

X12

k¼xþ1
12Ckpkq12�k

 !
ma!
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The complex probability or random vector and force are:

z xð Þ ¼ Pr xð Þ þ Pm xð Þ ¼
Xx

k¼0
NCkpkqN�k þ i

XN

k¼xþ1
NCkpkqN�k

 !

¼
Xx

k¼0
12Ckpkq12�k þ i

X12

k¼xþ1
12Ckpkq12�k

 !
, ∀x : 0≤ x≤ N ¼ 12ð Þ

⇔ F
!

xð Þ ¼ F
!
r xð Þ þ F

!
m xð Þ ¼ Pr xð Þma! þ Pm xð Þma! ¼ Pr xð Þ þ Pm xð Þ½ �ma! ¼ zma!

¼
Xx

k¼0
NCkpkqN�k

 !
ma! þ i

XN

k¼xþ1
NCkpkqN�k

 !
ma!

¼
Xx

k¼0
NCkpkqN�k

 !
þ i

XN

k¼xþ1
NCkpkqN�k

 !" #
ma!

¼
Xx

k¼0
12Ckpkq12�k

 !
þ i

X12

k¼xþ1
12Ckpkq12�k

 !" #
ma!, ∀x : 0≤ x≤ N ¼ 12ð Þ

The Degree of Our Knowledge:

DOK xð Þ ¼ z xð Þj j2 ¼ P2
r xð Þ þ Pm xð Þ=i½ �2 ¼

Xx

k¼0
NCkpkqN�k

 !2

þ 1�
Xx

k¼0
NCkpkqN�k

 !2

¼
Xx

k¼0
NCkpkqN�k

 !2

þ
XN

k¼xþ1
NCkpkqN�k

 !2

¼
Xx

k¼0
12Ckpkq12�k

 !2

þ
X12

k¼xþ1
12Ckpkq12�k

 !2

¼ 1þ 2iPr xð ÞPm xð Þ ¼ 1� 2Pr xð Þ 1� Pr xð Þ½ � ¼ 1� 2Pr xð Þ þ 2P2
r xð Þ

¼ 1� 2
Xx

k¼0
NCkpkqN�k

 !
þ 2

Xx

k¼0
NCkpkqN�k

 !2

¼ 1� 2
Xx

k¼0
12Ckpkq12�k

 !
þ 2

Xx

k¼0
12Ckpkq12�k

 !2

, ∀x : 0≤ x≤ N ¼ 12ð Þ

:

DOK xð Þ is equal to 1 when Pr xð Þ ¼ Pr Lb ¼ 0ð Þ ¼ 0 and when Pr xð Þ ¼
Pr Ub ¼ 12ð Þ ¼ 1 .

The Chaotic Factor:

Chf xð Þ ¼ 2iPr xð ÞPm xð Þ ¼ �2Pr xð Þ 1� Pr xð Þ½ � ¼ �2Pr xð Þ þ 2P2
r xð Þ

¼ �2
Xx

k¼0
NCkpkqN�k

 !
þ 2

Xx

k¼0
NCkpkqN�k

 !2

¼ �2
Xx

k¼0
12Ckpkq12�k

 !
þ 2

Xx

k¼0
12Ckpkq12�k

 !2

, ∀x : 0≤ x≤ N ¼ 12ð Þ

Chf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ 0ð Þ ¼ 0 and when Pr xð Þ ¼ Pr Ub ¼ 12ð Þ ¼ 1.
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The Magnitude of the Chaotic Factor MChf:

MChf xð Þ ¼ Chf xð Þj j ¼ �2iPr xð ÞPm xð Þ ¼ 2Pr xð Þ 1� Pr xð Þ½ � ¼ 2Pr xð Þ � 2P2
r xð Þ

¼ 2
Xx

k¼0
NCkpkqN�k

 !
� 2

Xx

k¼0
NCkpkqN�k

 !2

¼ 2
Xx

k¼0
12Ckpkq12�k

 !
� 2

Xx

k¼0
12Ckpkq12�k

 !2

, ∀x : 0≤ x≤ N ¼ 12ð Þ

MChf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ 0ð Þ ¼ 0 andwhen Pr xð Þ ¼ Pr Ub ¼ 12ð Þ ¼ 1.
At any value of x: ∀x : Lb ¼ 0ð Þ≤ x≤ Ub ¼ N ¼ 12ð Þ, the probability expressed

in the complex probability set C = R + M is the following:

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ z xð Þj j2 � 2iPr xð ÞPm xð Þ

¼ DOK xð Þ � Chf xð Þ

¼ DOK xð Þ þMChf xð Þ

¼ 1

Figure 23.
The graphs of Fr / ma, Fm / ima, and Fc / ma and of all the CPP parameters as functions of the random
variable X for this discrete binomial probability distribution.
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then,

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ Pr xð Þ þ 1� Pr xð Þ½ �f g2 ¼ 12 ¼ 1⇔Pc xð Þ ¼ 1 always

⇔ F
!
c xð Þ ¼ Pc xð Þma! ¼ 1�ma! ¼ ma! always also.

Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe C = R + M is permanently certain and perfectly determinis-
tic (Figure 23).

8.1.2.1 The complex probability cubes

In the first cube (Figure 24), the simulation ofDOK and Chf as functions of each
other and of the random variable X for the binomial probability distribution can be
seen. The thick line in cyan is the projection of the plane Pc

2(X) = DOK(X) – Chf(X)
= 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound of X = 0. This thick line
starts at the point J (DOK = 1, Chf = 0) when X = Lb = 0, reaches the point
(DOK = 0.5, Chf = �0.5) when X = 6, and returns at the end to J (DOK = 1, Chf = 0)

Figure 24.
The graphs of DOK and Chf and the deterministic reduced force Fc / ma = Pc in terms of X and of each other for
this binomial probability distribution.
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when X = Ub = upper bound of X = 12. The other curves are the graphs of DOK(X)
(red) and Chf(X) (green, blue, pink) in different simulation planes. Notice that
they all have a minimum at the point K (DOK = 0.5, Chf = �0.5, X = 6). The point L
corresponds to (DOK = 1, Chf = 0, X = Ub = 12). The three points J, K, L are the same
as in Figure 23.

In the second cube (Figure 25), we can notice the simulation of the real reduced
force Fr / ma = Pr(X) in R and its complementary real reduced force Fm / ima =
Pm(X)/i in R also in terms of the random variable X for the binomial probability
distribution. The thick line in cyan is the projection of the plane
Pc

2(X) = Pr(X) + Pm(X)/i = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound of
X = 0. This thick line starts at the point (Pr = 0, Pm/i = 1) and ends at the point
(Pr = 1, Pm/i = 0). The red curve represents Fr / ma = Pr(X) in the plane
Pr(X) = Pm(X)/i in light gray. This curve starts at the point J (Pr = 0, Pm/i = 1,
X = Lb = lower bound of X = 0), reaches the point K (Pr = 0.5, Pm/i = 0.5, X = 6), and
gets at the end to L (Pr = 1, Pm/i = 0, X = Ub = upper bound of X = 12). The blue
curve represents Fm / ima = Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i =
1 = Pc(X) = Fc / ma. Notice the importance of the point K which is the intersection of
the red and blue curves at X = 6 and when Pr(X) = Pm(X)/i = 0.5. The three points J,
K, L are the same as in Figure 23.

Figure 25.
The graphs of Fr / ma = Pr and Fm / ima = Pm / i and Fc / ma = Pc in terms of X and of each other for this
binomial probability distribution.
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In the third cube (Figure 26), we can notice the simulation of the complex
resultant reduced force F / ma = z(X) in C =R +M as a function of the real reduced
force Fr / ma = Pr(X) = Re(z) inR and of its complementary imaginary reduced force
Fm / ma = Pm(X) = i� Im(z) inM, and this in terms of the random variable X for the
binomial probability distribution. The red curve represents Fr / ma in the plane
Pm(X) = 0 and the blue curve represents Fm / ma in the plane Pr(X) = 0. The green
curve represents the complex resultant reduced force F / ma = Fr / ma +Fm / ma =
z(X) = Pr(X) + Pm(X) = Re(z) + i � Im(z) in the plane Pr(X) = iPm(X) + 1 or z(X)
plane in cyan. The curve of F / ma starts at the point J (Pr = 0, Pm = i, X = Lb = lower
bound of X = 0) and ends at the point L (Pr = 1, Pm = 0, X = Ub = upper bound of
X = 12). The thick line in cyan is Pr(X = Lb = 0) = iPm(X = Lb = 0) + 1 and it is the
projection of the F / ma curve on the complex probability plane whose equation is
X = Lb = 0. This projected thick line starts at the point J (Pr = 0, Pm = i, X = Lb = 0) and
ends at the point (Pr = 1, Pm = 0, X = Lb = 0). Notice the importance of the point K
corresponding to X = 6 and z = 0.5 + 0.5iwhen Pr = 0.5 and Pm = 0.5i. The three points
J, K, L are the same as in Figure 23.

Figure 26.
The graphs of the reduced forces Fr / ma = Pr and Fm / ma = Pm and F / ma = z in terms of X for this binomial
probability distribution.
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8.1.3 The Poisson probability distribution

The probability density function (PDF) of this discrete stochastic distribution is:

f x; λð Þ ¼ e�λλx

x!
 where 0≤ x<∞:

For the Poisson discrete random variable: x∈ Lb ¼ 0,∞½ Þ and ∀k :
k≥ 1 we have Δxk ¼ xk � xk�1 ¼ 1, then x ¼ 0, 1, 2, … ,∞.

I have taken in the simulation the domain for the Poisson random variable to be
equal to: x∈ Lb ¼ 0,Ub ¼ 16½ �, then: x ¼ 0, 1, 2, … , 16.

The mean of this Poisson discrete random distribution is: μ ¼ λ ¼ 6:7.
The standard deviation is: σ ¼ ffiffiffi

λ
p ¼ ffiffiffiffiffiffiffi

6:7
p ¼ 2:588435821… .

The median Md is ¼ 6.
The mode is = ¼ ⌊λ⌋ ¼ ⌊6:7⌋ ¼ 6.
Since Md = mode < μ then this distribution is skewed to the right or positively

skewed.
The cumulative distribution function (CDF) is:

CDF xð Þ ¼ Prob X ≤ xð Þ ¼
Xx

k¼0
f k; λð Þ ¼

Xx

k¼0

e�λλk

k!
¼
Xx

k¼0

e�6:76:7k

k!
, ∀x : 0≤ x≤ 16

Note that:
If x ¼ 0⇔CDF xð Þ ¼ Prob X ≤0ð Þ ¼ f X ¼ Lb; λð Þ ¼ e�λ ¼ e�6:7 ffi 0.

If x ¼ Ub ⇔X > > 1⇔X ! þ∞⇔CDF xð Þ ¼ Prob X ≤ xð Þ ! Pþ∞
k¼0

e�λλk
k! ¼

e�λ
Pþ∞
k¼0

λk

k! ¼ e�λ � eλ ¼ 1 by the properties of infinite series from calculus.

The real probability Pr xð Þ and force are:

Pr xð Þ ¼ CDF xð Þ ¼
Xx

k¼0
f k; λð Þ ¼

Xx

k¼0

e�λλk

k!
¼
Xx

k¼0

e�6:76:7k

k!
, ∀x : 0≤ x≤ 16

⇔ F
!
r xð Þ ¼ Pr xð Þma! ¼

Xx

k¼0

e�λλk

k!

 !
ma! ¼

Xx

k¼0

e�6:76:7k

k!

 !
ma!

The imaginary complementary probability Pm xð Þ and force are:

Pm xð Þ ¼ i 1� Pr xð Þ½ � ¼ i 1� CDF xð Þ½ � ¼ i 1�
Xx

k¼0
f k; λð Þ

" #

¼ i 1�
Xx

k¼0

e�λλk

k!

 !
¼ i

Xþ∞

k¼xþ1

e�λλk

k!

 !
¼ i

X16

k¼xþ1

e�6:76:7k

k!

 !
, ∀x : 0≤ x≤ 16

⇔ F
!
m xð Þ ¼ Pm xð Þma! ¼ i

Xþ∞

k¼xþ1

e�λλk

k!

 !
ma! ¼ i

X16

k¼xþ1

e�6:76:7k

k!

 !
ma!

The real complementary probability Pm xð Þ=i and force are:

Pm xð Þ=i ¼ 1� Pr xð Þ ¼ 1� CDF xð Þ ¼ 1�
Xx

k¼0

e�λλk

k!
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¼
Xþ∞

k¼xþ1

e�λλk

k!
¼
X16

k¼xþ1

e�6:76:7k

k!
, ∀x : 0≤ x≤ 16

⇔ F
!
m xð Þ=i ¼ Pm xð Þ

i
ma! ¼

Xþ∞

k¼xþ1

e�λλk

k!

 !
ma! ¼

X16

k¼xþ1

e�6:76:7k

k!

 !
ma!

The complex probability or random vector and force are:

z xð Þ ¼ Pr xð Þ þ Pm xð Þ ¼
Xx

k¼0

e�λλk

k!
þ i

Xþ∞

k¼xþ1

e�λλk

k!

 !

¼
Xx

k¼0

e�6:76:7k

k!
þ i

X16

k¼xþ1

e�6:76:7k

k!

 !
,

⇔ F
!

xð Þ ¼ F
!
r xð Þ þ F

!
m xð Þ ¼ Pr xð Þma! þ Pm xð Þma! ¼ Pr xð Þ þ Pm xð Þ½ �ma! ¼ zma!

¼
Xx

k¼0

e�λλk

k!

 !
ma! þ i

Xþ∞

k¼xþ1

e�λλk

k!

 !
ma!

¼
Xx

k¼0

e�λλk

k!

 !
þ i

Xþ∞

k¼xþ1

e�λλk

k!

 !" #
ma!

¼
Xx

k¼0

e�6:76:7k

k!

 !
þ i

X16

k¼xþ1

e�6:76:7k

k!

 !" #
ma!, ∀x : 0≤ x≤ 16

The Degree of Our Knowledge:

DOK xð Þ ¼ z xð Þj j2 ¼ P2
r xð Þ þ Pm xð Þ=i½ �2 ¼

Xx

k¼0

e�λλk

k!

 !2

þ 1�
Xx

k¼0

e�λλk

k!

 !2

¼
Xx

k¼0

e�λλk

k!

 !2

þ
Xþ∞

k¼xþ1

e�λλk

k!

 !2

¼
Xx

k¼0

e�6:76:7k

k!

 !2

þ
X16

k¼xþ1

e�6:76:7k

k!

 !2

¼ 1þ 2iPr xð ÞPm xð Þ ¼ 1� 2Pr xð Þ 1� Pr xð Þ½ � ¼ 1� 2Pr xð Þ þ 2P2
r xð Þ

¼ 1� 2
Xx

k¼0

e�λλk

k!

 !
þ 2

Xx

k¼0

e�λλk

k!

 !2

¼ 1� 2
Xx

k¼0

e�6:76:7k

k!

 !
þ 2

Xx

k¼0

e�6:76:7k

k!

 !2

, ∀x : 0≤ x≤ 16

:

DOK xð Þ is equal to 1 when Pr xð Þ ¼ Pr Lb ¼ 0ð Þ ¼ 0 and when Pr xð Þ ¼
Pr Ub ¼ 16ð Þ ¼ 1 .

The Chaotic Factor:

Chf xð Þ ¼ 2iPr xð ÞPm xð Þ ¼ �2Pr xð Þ 1� Pr xð Þ½ � ¼ �2Pr xð Þ þ 2P2
r xð Þ

¼ �2
Xx

k¼0

e�λλk

k!

 !
þ 2

Xx

k¼0

e�λλk

k!

 !2
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¼ �2
Xx

k¼0

e�6:76:7k

k!

 !
þ 2

Xx

k¼0

e�6:76:7k

k!

 !2

, ∀x : 0≤ x≤ 16

Chf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ 0ð Þ ¼ 0 and whenPr xð Þ ¼ Pr Ub ¼ 16ð Þ ¼ 1 .
The Magnitude of the Chaotic Factor MChf:

MChf xð Þ ¼ Chf xð Þj j ¼ �2iPr xð ÞPm xð Þ ¼ 2Pr xð Þ 1� Pr xð Þ½ � ¼ 2Pr xð Þ � 2P2
r xð Þ

¼ 2
Xx

k¼0

e�λλk

k!

 !
� 2

Xx

k¼0

e�λλk

k!

 !2

¼ 2
Xx

k¼0

e�6:76:7k

k!

 !
� 2

Xx

k¼0

e�6:76:7k

k!

 !2

, ∀x : 0≤ x≤ 16

MChf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ 0ð Þ ¼ 0 and when Pr xð Þ ¼ Pr Ub ¼ 16ð Þ ¼ 1.
At any value of x: ∀x : Lb ¼ 0ð Þ≤ x≤ Ub ¼ 16ð Þ, the probability expressed in the

complex probability set C = R + M is the following:

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ z xð Þj j2 � 2iPr xð ÞPm xð Þ
¼ DOK xð Þ � Chf xð Þ
¼ DOK xð Þ þMChf xð Þ
¼ 1

then,

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ Pr xð Þ þ 1� Pr xð Þ½ �f g2 ¼ 12 ¼ 1⇔Pc xð Þ ¼ 1 always

⇔ F
!
c xð Þ ¼ Pc xð Þma! ¼ 1�ma! ¼ ma! always also.

Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe C = R + M is permanently certain and perfectly determinis-
tic (Figure 27).

8.1.3.1 The complex probability cubes

In the first cube (Figure 28), the simulation of DOK and Chf as functions of each
other and of the random variable X for the Poisson probability distribution can be
seen. The thick line in cyan is the projection of the plane Pc

2(X) = DOK(X) – Chf(X)
= 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound of X = 0. This thick line starts
at the point J (DOK = 1, Chf = 0) when X = Lb = 0, reaches the point (DOK = 0.5,
Chf = �0.5) when X = 6, and returns at the end to J (DOK = 1, Chf = 0) when
X = Ub = upper bound ofX = 16. The other curves are the graphs ofDOK(X) (red) and
Chf(X) (green, blue, pink) in different simulation planes. Notice that they all have a
minimum at the point K (DOK = 0.5, Chf = �0.5, X = 6). The point L corresponds to
(DOK = 1, Chf = 0, X = Ub = 16). The three points J, K, L are the same as in Figure 27.

In the second cube (Figure 29), we can notice the simulation of the real reduced
force Fr / ma = Pr(X) in R and its complementary real reduced force Fm / ima =
Pm(X)/i in R also in terms of the random variable X for the Poisson probability
distribution. The thick line in cyan is the projection of the plane
Pc

2(X) = Pr(X) + Pm(X)/i = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound of
X = 0. This thick line starts at the point (Pr = 0, Pm/i = 1) and ends at the point
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(Pr = 1, Pm/i = 0). The red curve represents Fr / ma = Pr(X) in the plane
Pr(X) = Pm(X)/i in light gray. This curve starts at the point J (Pr = 0, Pm/i = 1,
X = Lb = lower bound of X = 0), reaches the point K (Pr = 0.5, Pm/i = 0.5, X = 6), and
gets at the end to L (Pr = 1, Pm/i = 0, X = Ub = upper bound of X = 16). The blue
curve represents Fm / ima = Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i =
1 = Pc(X) = Fc / ma. Notice the importance of the point K which is the intersection of
the red and blue curves at X = 6 and when Pr(X) = Pm(X)/i = 0.5. The three points J,
K, L are the same as in Figure 27.

In the third cube (Figure 30), we can notice the simulation of the complex
resultant reduced force F / ma = z(X) in C =R +M as a function of the real reduced
force Fr / ma = Pr(X) = Re(z) inR and of its complementary imaginary reduced force
Fm / ma = Pm(X) = i� Im(z) inM, and this in terms of the random variable X for the
Poisson probability distribution. The red curve represents Fr / ma in the plane
Pm(X) = 0 and the blue curve represents Fm / ma in the plane Pr(X) = 0. The green
curve represents the complex resultant reduced force F / ma = Fr / ma + Fm / ma =
z(X) = Pr(X) + Pm(X) = Re(z) + i � Im(z) in the plane Pr(X) = iPm(X) + 1 or z(X)
plane in cyan. The curve of F / ma starts at the point J (Pr = 0, Pm = i, X = Lb = lower
bound of X = 0) and ends at the point L (Pr = 1, Pm = 0, X = Ub = upper bound of
X = 16). The thick line in cyan is Pr(X = Lb = 0) = iPm(X = Lb = 0) + 1 and it is the
projection of the F / ma curve on the complex probability plane whose equation is
X = Lb = 0. This projected thick line starts at the point J (Pr = 0, Pm = i, X = Lb = 0) and
ends at the point (Pr = 1, Pm = 0, X = Lb = 0). Notice the importance of the point K
corresponding to X = 6 and z = 0.5 + 0.5iwhen Pr = 0.5 and Pm = 0.5i. The three points
J, K, L are the same as in Figure 27.

Figure 27.
The graphs of Fr / ma, Fm / ima, and Fc / ma and of all the CPP parameters as functions of the random
variable X for this discrete Poisson probability distribution.

94

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



8.2 Simulation of continuous probability distributions

8.2.1 The continuous uniform probability distribution

The probability density function (PDF) of this continuous stochastic
distribution is:

f xð Þ ¼ d CDF xð Þ½ �
dx

¼
1

Ub � Lb
if Lb ≤ x≤Ub

0 elsewhere

8<
:

and the cumulative distribution function (CDF) is:

CDF xð Þ ¼ Prob X ≤ xð Þ ¼
ðx

�∞
f tð Þdt ¼

ðx

Lb

f tð Þdt ¼
x� Lb

Ub � Lb
if Lb ≤ x≤Ub

0 elsewhere

8<
:

Figure 28.
The graphs of DOK and Chf and the deterministic reduced force Fc / ma = Pc in terms of X and of each other for
this Poisson probability distribution.
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I have taken the domain for the continuous uniform random variable to be equal
to: x∈ Lb ¼ �3,Ub ¼ 3½ � and dx ¼ 0:01.

Then CDF xð Þ ¼
xþ 3
6

if Lb ¼ �3ð Þ≤ x≤ Ub ¼ 3ð Þ
0 elsewhere

8<
:

Note that:
If x ¼ Lb ¼ �3⇔CDF xð Þ ¼ Prob X ≤ � 3ð Þ ¼ �3þ36 ¼ 0.
If x ¼ Ub ¼ þ3⇔CDF xð Þ ¼ Prob X ≤ þ 3ð Þ ¼ 3þ3

6 ¼ 1.
The mean of this continuous uniform random distribution is: μ ¼ LbþUb

2 ¼
�3þ3

2 ¼ 0.

The variance is: σ2 ¼ Lb�Ubð Þ2
12 ¼ �3�3ð Þ2

12 ¼ 36
12 ¼ 3.

The standard deviation is: σ ¼ ∣Lb�Ub∣ffiffiffiffi
12
p ¼ ∣�3�3∣ffiffiffiffi

12
p ¼ 6ffiffiffiffi

12
p ¼ ffiffiffi

3
p ¼ 1:732050808… .

The median is Md ¼ 0 ¼ μ since the distribution is symmetric.
Since the distribution is uniform then it has no mode.
The real probability Pr xð Þ and force are:

Figure 29.
The graphs of Fr / ma = Pr and Fm / ima = Pm / i and Fc / ma = Pc in terms of X and of each other for this
Poisson probability distribution.
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Pr xð Þ ¼ CDF xð Þ ¼ xþ 3
6

, ∀x : �3≤ x≤ 3

⇔ F
!
r xð Þ ¼ Pr xð Þma! ¼ xþ 3

6

� �
ma!

The imaginary complementary probability Pm xð Þ and force are:

Pm xð Þ ¼ i 1� Pr xð Þ½ � ¼ i 1� CDF xð Þ½ � ¼ i 1�
ðx

�∞
f tð Þdt

2
4

3
5 ¼ i 1�

ðx

�3
f tð Þdt

2
4

3
5

¼ i
ðþ∞

x

f tð Þdt
2
4

3
5 ¼ i

ð3

x

f tð Þdt
2
4

3
5 ¼ i 1� xþ 3

6

� �
¼ i

3� x
6

� �
, ∀x : �3≤ x≤ 3

⇔ F
!
m xð Þ ¼ Pm xð Þma! ¼ i

3� x
6

� �
ma!

The real complementary probability Pm xð Þ=i and force are:

Figure 30.
The graphs of the reduced forces Fr / ma = Pr and Fm / ma = Pm and F / ma = z in terms of X for this Poisson
probability distribution.
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Pm xð Þ=i ¼ 1� Pr xð Þ ¼ 1� CDF xð Þ ¼ 1�
ðx

�∞
f tð Þdt ¼

ðþ∞

x

f tð Þdt ¼
ð3

x

f tð Þdt

¼ 3� x
6

,∀x : �3≤ x≤ 3

⇔ F
!
m xð Þ=i ¼ Pm xð Þ

i
ma! ¼ 3� x

6

� �
ma!

The complex probability or random vector and force are:

z xð Þ ¼ Pr xð Þ þ Pm xð Þ ¼ xþ 3
6

� �
þ i

3� x
6

� �
, ∀x : �3≤ x≤ 3

⇔ F
!

xð Þ ¼ F
!
r xð Þ þ F

!
m xð Þ ¼ Pr xð Þma! þ Pm xð Þma! ¼ Pr xð Þ þ Pm xð Þ½ �ma! ¼ zma!

¼ xþ 3
6

� �
ma! þ i

3� x
6

� �
ma!

¼ xþ 3
6

� �
þ i

3� x
6

� �� �
ma!

The Degree of Our Knowledge:

DOK xð Þ ¼ z xð Þj j2 ¼ P2
r xð Þ þ Pm xð Þ=i½ �2 ¼ xþ 3

6

� �2

þ 1� xþ 3
6

� �2

¼ xþ 3
6

� �2

þ 3� x
6

� �2

¼ 1þ 2iPr xð ÞPm xð Þ ¼ 1� 2Pr xð Þ 1� Pr xð Þ½ � ¼ 1� 2Pr xð Þ þ 2P2
r xð Þ

¼ 1� 2
xþ 3
6

� �
þ 2

xþ 3
6

� �2

, ∀x : �3≤ x≤ 3

:

DOK xð Þ is equal to 1 when Pr xð Þ ¼ Pr Lb ¼ �3ð Þ ¼ 0 and when Pr xð Þ ¼
Pr Ub ¼ 3ð Þ ¼ 1.

The Chaotic Factor:

Chf xð Þ ¼ 2iPr xð ÞPm xð Þ ¼ �2Pr xð Þ 1� Pr xð Þ½ � ¼ �2Pr xð Þ þ 2P2
r xð Þ

¼ �2 xþ 3
6

� �
þ 2

xþ 3
6

� �2

, ∀x : �3≤ x≤ 3

Chf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ �3ð Þ ¼ 0 and when Pr xð Þ ¼ Pr Ub ¼ 3ð Þ ¼ 1 .
The Magnitude of the Chaotic Factor MChf:

MChf xð Þ ¼ Chf xð Þj j ¼ �2iPr xð ÞPm xð Þ ¼ 2Pr xð Þ 1� Pr xð Þ½ � ¼ 2Pr xð Þ � 2P2
r xð Þ

¼ 2
xþ 3
6

� �
� 2

xþ 3
6

� �2

, ∀x : �3≤ x≤ 3

MChf xð Þ is null whenPr xð Þ ¼ Pr Lb ¼ �3ð Þ ¼ 0 andwhenPr xð Þ ¼ Pr Ub ¼ 3ð Þ ¼ 1.
At any value of x: ∀x : Lb ¼ �3ð Þ≤ x≤ Ub ¼ 3ð Þ, the probability expressed in the

complex probability set C = R + M is the following:
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Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ z xð Þj j2 � 2iPr xð ÞPm xð Þ
¼ DOK xð Þ � Chf xð Þ
¼ DOK xð Þ þMChf xð Þ
¼ 1

then,

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ Pr xð Þ þ 1� Pr xð Þ½ �f g2 ¼ 12 ¼ 1⇔Pc xð Þ ¼ 1 always

⇔ F
!
c xð Þ ¼ Pc xð Þma! ¼ 1�ma! ¼ ma! always also.

Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe C = R + M is permanently certain and perfectly determinis-
tic (Figure 31).

8.2.1.1 The complex probability cubes

In the first cube (Figure 32), the simulation of DOK and Chf as functions of each
other and of the random variable X for the continuous uniform probability
distribution can be seen. The thick line in cyan is the projection of the plane
Pc

2(X) = DOK(X) – Chf(X) = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound
of X = �3. This thick line starts at the point J (DOK = 1, Chf = 0) when X = Lb = �3,

Figure 31.
The graphs of Fr / ma, Fm / ima, and Fc / ma and of all the CPP parameters as functions of the random
variable X for this continuous uniform probability distribution.
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reaches the point (DOK = 0.5, Chf = �0.5) when X = 0, and returns at the end to J
(DOK = 1, Chf = 0) when X = Ub = upper bound of X = 3. The other curves are the
graphs of DOK(X) (red) and Chf(X) (green, blue, pink) in different simulation
planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = �0.5,
X = 0). The point L corresponds to (DOK = 1, Chf = 0, X = Ub = 3). The three points
J, K, L are the same as in Figure 31.

In the second cube (Figure 33), we can notice the simulation of the real reduced
force Fr / ma = Pr(X) inR and its complementary real reduced force Fm / ima =
Pm(X)/i in R also in terms of the random variable X for the continuous uniform
probability distribution. The thick line in cyan is the projection of the plane
Pc

2(X) = Pr(X) + Pm(X)/i = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound of
X = �3. This thick line starts at the point (Pr = 0, Pm/i = 1) and ends at the point
(Pr = 1, Pm/i = 0). The red curve represents Fr / ma = Pr(X) in the plane
Pr(X) = Pm(X)/i in light gray. This curve starts at the point J (Pr = 0, Pm/i = 1,
X = Lb = lower bound of X =�3), reaches the point K (Pr = 0.5, Pm/i = 0.5, X = 0), and
gets at the end to L (Pr = 1, Pm/i = 0, X = Ub = upper bound of X = 3). The blue curve
represents Fm / ima = Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i = 1 = Pc(X) = Fc /
ma. Notice the importance of the point K which is the intersection of the red and blue

Figure 32.
The graphs of DOK and Chf and the deterministic reduced force Fc / ma = Pc in terms of X and of each other for
this continuous uniform probability distribution.
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curves at X = 0 and when Pr(X) = Pm(X)/i = 0.5. The three points J, K, L are the same
as in Figure 31.

In the third cube (Figure 34), we can notice the simulation of the complex
resultant reduced force F / ma = z(X) in C =R +M as a function of the real reduced
force Fr / ma = Pr(X) = Re(z) in R and of its complementary imaginary reduced
force Fm / ma = Pm(X) = i � Im(z) in M, and this in terms of the random variable
X for the continuous uniform probability distribution. The red curve represents
Fr / ma in the plane Pm(X) = 0 and the blue curve represents Fm / ma in the plane
Pr(X) = 0. The green curve represents the complex resultant reduced force F / ma =
Fr / ma + Fm / ma = z(X) = Pr(X) + Pm(X) = Re(z) + i � Im(z) in the plane
Pr(X) = iPm(X) + 1 or z(X) plane in cyan. The curve of F / ma starts at the point J
(Pr = 0, Pm = i, X = Lb = lower bound of X = �3) and ends at the point L (Pr = 1,
Pm = 0, X = Ub = upper bound of X = 3). The thick line in cyan is
Pr(X = Lb = �3) = iPm(X = Lb = �3) + 1 and it is the projection of the F / ma curve on
the complex probability plane whose equation is X = Lb = �3. This projected thick
line starts at the point J (Pr = 0, Pm = i, X = Lb = �3) and ends at the point (Pr = 1,
Pm = 0, X = Lb = �3). Notice the importance of the point K corresponding to X = 0
and z = 0.5 + 0.5iwhen Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same as
in Figure 31.

Figure 33.
The graphs of Fr / ma = Pr and Fm / ima = Pm / i and Fc / ma = Pc in terms of X and of each other for this
continuous uniform probability distribution.
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8.2.2 The standard Gaussian normal probability distribution

The probability density function (PDF) of this continuous stochastic
distribution is:

f xð Þ ¼ d CDF xð Þ½ �
dx

¼ 1ffiffiffiffiffi
2π
p exp �x

2

2
� �

, for �∞< x<∞

and the cumulative distribution function (CDF) is:

CDF xð Þ ¼ Prob X ≤ xð Þ ¼
ðx

�∞
f tð Þdt ¼

ðx

�∞

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

The domain for this standard Gaussian normal variable is considered in the
simulations to be equal to: x∈ Lb ¼ �4,Ub ¼ 4½ � and I have taken dx ¼ 0:01.

In the simulations, the mean of this standard normal random distribution is
μ ¼ 0.

The variance is σ2 ¼ 1.

Figure 34.
The graphs of the reduced forces Fr / ma = Pr and Fm / ma = Pm and F / ma = z in terms of X for this continuous
uniform probability distribution.
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The standard deviation is σ ¼ 1.
The median is Md ¼ 0.
The mode for this symmetric distribution is = 0 = Md = μ.
The real probability Pr xð Þ and force are:

Pr xð Þ ¼ CDF xð Þ ¼
ðx

�∞

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt ¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt,∀x : �4≤ x≤4

⇔ F
!
r xð Þ ¼ Pr xð Þma! ¼

ðx

�∞

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5ma!

¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5ma!

The imaginary complementary probability Pm xð Þ and force are:

Pm xð Þ ¼ i 1� Pr xð Þ½ � ¼ i 1� CDF xð Þ½ � ¼ i 1�
ðx

�∞
f tð Þdt

2
4

3
5

¼ i
ðþ∞

x

f tð Þdt
2
4

3
5 ¼ i

ðþ∞

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5 ¼ i

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5, ∀x : �4≤ x≤4

⇔ F
!
m xð Þ ¼ Pm xð Þma! ¼ i

ðþ∞

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5ma!

¼ i
ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5ma!

The real complementary probability Pm xð Þ=i and force are:

Pm xð Þ=i ¼ 1� Pr xð Þ ¼ 1� CDF xð Þ ¼ 1�
ðx

�∞
f tð Þdt ¼

ðþ∞

x

f tð Þdt

¼
ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt,∀x : �4≤ x≤ 4

⇔ F
!
m xð Þ=i ¼ Pm xð Þ

i
ma! ¼

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5ma!

The complex probability or random vector and force are:

z xð Þ ¼ Pr xð Þ þ Pm xð Þ ¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5þ i

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5, ∀x : �4≤ x≤4
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⇔ F
!

xð Þ ¼ F
!
r xð Þ þ F

!
m xð Þ ¼ Pr xð Þma! þ Pm xð Þma! ¼ Pr xð Þ þ Pm xð Þ½ �ma! ¼ zma!

¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5ma! þ i

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5ma!

¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5þ i

ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5

8<
:

9=
;ma!

The Degree of Our Knowledge:

DOK xð Þ ¼ z xð Þj j2 ¼ P2
r xð Þ þ Pm xð Þ=i½ �2 ¼

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

þ 1�
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5

0
@

1
A

2

¼
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

þ
ð4

x

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

¼ 1þ 2iPr xð ÞPm xð Þ ¼ 1� 2Pr xð Þ 1� Pr xð Þ½ � ¼ 1� 2Pr xð Þ þ 2P2
r xð Þ

¼ 1� 2
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5þ 2

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

, ∀x : �4≤ x≤4

:

DOK xð Þ is equal to 1 when Pr xð Þ ¼ Pr Lb ¼ �4ð Þ ¼ 0 and when Pr xð Þ ¼
Pr Ub ¼ 4ð Þ ¼ 1.

The Chaotic Factor:

Chf xð Þ ¼ 2iPr xð ÞPm xð Þ ¼ �2Pr xð Þ 1� Pr xð Þ½ � ¼ �2Pr xð Þ þ 2P2
r xð Þ

¼ �2
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5þ 2

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

, ∀x : �4≤ x≤4

Chf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ �4ð Þ ¼ 0 and whenPr xð Þ ¼ Pr Ub ¼ 4ð Þ ¼ 1 .
The Magnitude of the Chaotic Factor MChf:

MChf xð Þ ¼ Chf xð Þj j ¼ �2iPr xð ÞPm xð Þ ¼ 2Pr xð Þ 1� Pr xð Þ½ � ¼ 2Pr xð Þ � 2P2
r xð Þ

¼ 2
ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5� 2

ðx

�4

1ffiffiffiffiffi
2π
p exp �t

2

2
� �

dt

2
4

3
5
2

, ∀x : �4≤ x≤4

MChf xð Þ is null when Pr xð Þ ¼ Pr Lb ¼ �4ð Þ ¼ 0 and when Pr xð Þ ¼
Pr Ub ¼ 4ð Þ ¼ 1 .

At any value of x: ∀x : Lb ¼ �4ð Þ≤ x≤ Ub ¼ 4ð Þ, the probability expressed in the
complex probability set C = R + M is the following:
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Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ z xð Þj j2 � 2iPr xð ÞPm xð Þ
¼ DOK xð Þ � Chf xð Þ
¼ DOK xð Þ þMChf xð Þ
¼ 1

then,

Pc
2 xð Þ ¼ Pr xð Þ þ Pm xð Þ=i½ �2 ¼ Pr xð Þ þ 1� Pr xð Þ½ �f g2 ¼ 12 ¼ 1⇔Pc xð Þ ¼ 1 always

⇔ F
!
c xð Þ ¼ Pc xð Þma! ¼ 1�ma! ¼ ma! always also.

Hence, the prediction of all the probabilities and forces of the stochastic exper-
iment in the universe C = R + M is permanently certain and perfectly determinis-
tic (Figure 35).

8.2.2.1 The complex probability cubes

In the first cube (Figure 36), the simulation ofDOK and Chf as functions of each
other and of the random variable X for the standard Gaussian normal probability
distribution can be seen. The thick line in cyan is the projection of the plane
Pc

2(X) = DOK(X) – Chf(X) = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound
of X = �4. This thick line starts at the point J (DOK = 1, Chf = 0) when X = Lb = �4,

Figure 35.
The graphs of Fr / ma, Fm / ima, and Fc / ma and of all the CPP parameters as functions of the random
variable X for the continuous standard Gaussian normal distribution.
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reaches the point (DOK = 0.5, Chf = �0.5) when X = 0, and returns at the end to J
(DOK = 1, Chf = 0) when X = Ub = upper bound of X = 4. The other curves are the
graphs of DOK(X) (red) and Chf(X) (green, blue, pink) in different simulation
planes. Notice that they all have a minimum at the point K (DOK = 0.5, Chf = �0.5,
X = 0). The point L corresponds to (DOK = 1, Chf = 0, X = Ub = 4). The three points
J, K, L are the same as in Figure 35.

In the second cube (Figure 37), we can notice the simulation of the real reduced
force Fr / ma = Pr(X) in R and its complementary real reduced force Fm / ima =
Pm(X)/i in R also in terms of the random variable X for the standard Gaussian
normal probability distribution. The thick line in cyan is the projection of the plane
Pc

2(X) = Pr(X) + Pm(X)/i = 1 = Pc(X) = Fc / ma on the plane X = Lb = lower bound of
X = �4. This thick line starts at the point (Pr = 0, Pm/i = 1) and ends at the point
(Pr = 1, Pm/i = 0). The red curve represents Fr / ma = Pr(X) in the plane
Pr(X) = Pm(X)/i in light gray. This curve starts at the point J (Pr = 0, Pm/i = 1,
X = Lb = lower bound of X = �4), reaches the point K (Pr = 0.5, Pm/i = 0.5, X = 0),
and gets at the end to L (Pr = 1, Pm/i = 0, X = Ub = upper bound of X = 4). The blue
curve represents Fm / ima = Pm(X)/i in the plane in cyan Pr(X) + Pm(X)/i = 1 =
Pc(X) = Fc / ma. Notice the importance of the point K which is the intersection of the

Figure 36.
The graphs of DOK and Chf and the deterministic reduced force Fc / ma = Pc in terms of X and of each other for
the standard Gaussian normal probability distribution.
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red and blue curves at X = 0 and when Pr(X) = Pm(X)/i = 0.5. The three points J, K, L
are the same as in Figure 35.

In the third cube (Figure 38), we can notice the simulation of the complex
resultant reduced force F / ma = z(X) in C = R + M as a function of the real
reduced force Fr / ma = Pr(X) = Re(z) in R and of its complementary imaginary
reduced force Fm / ma = Pm(X) = i � Im(z) in M, and this in terms of the random
variable X for the standard Gaussian normal probability distribution. The red curve
represents Fr / ma in the plane Pm(X) = 0 and the blue curve represents Fm / ma in
the plane Pr(X) = 0. The green curve represents the complex resultant reduced force
F / ma = Fr / ma + Fm / ma = z(X) = Pr(X) + Pm(X) = Re(z) + i � Im(z) in the plane
Pr(X) = iPm(X) + 1 or z(X) plane in cyan. The curve of F / ma starts at the point J
(Pr = 0, Pm = i, X = Lb = lower bound of X = �4) and ends at the point L (Pr = 1,
Pm = 0, X = Ub = upper bound of X = 4). The thick line in cyan is
Pr(X = Lb =�4) = iPm(X = Lb =�4) + 1 and it is the projection of the F / ma curve on
the complex probability plane whose equation is X = Lb = �4. This projected thick
line starts at the point J (Pr = 0, Pm = i, X = Lb = �4) and ends at the point (Pr = 1,
Pm = 0, X = Lb = �4). Notice the importance of the point K corresponding to X = 0
and z = 0.5 + 0.5i when Pr = 0.5 and Pm = 0.5i. The three points J, K, L are the same
as in Figure 35.

Figure 37.
The graphs of Fr / ma = Pr and Fm / ima = Pm / i and Fc / ma = Pc in terms of X and of each other for the
standard Gaussian normal probability distribution.
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9. Conclusion and perspectives

In the current research work, the original extended model of eight axioms (EKA)
of A. N. Kolmogorov was connected and applied to Isaac Newton’s classical mechan-
ics theory. Thus, a tight link between classical mechanics and the novel paradigm was
achieved. Consequently, the model of “Complex Probability” was more developed
beyond the scope of my seventeen previous research works on this topic.

Additionally, as it was proved and verified in the novel model, before the begin-
ning of the random phenomenon simulation and at its end we have the chaotic factor
(Chf andMChf) is zero and the degree of our knowledge (DOK) is one since the
stochastic fluctuations and effects have either not started yet or they have terminated
and finished their task on the probabilistic phenomenon. During the execution of the
nondeterministic phenomenon and experiment we also have: 0.5 ≤ DOK < 1,
�0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. We can see that during this entire process we
have incessantly and continually Pc

2 = DOK – Chf = DOK +MChf = 1 = Pc, that means
that the simulation which behaved randomly and stochastically in the setR is now
certain and deterministic in the probability set C =R +M, and this after adding to
the random experiment executed inR the contributions of the setM and hence
after eliminating and subtracting the chaotic factor from the degree of our

Figure 38.
The graphs of the reduced forces Fr / ma = Pr and Fm / ma = Pm and F / ma = z in terms of X for the standard
Gaussian normal probability distribution.
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knowledge. Furthermore, the probabilities of the real, imaginary, complex, and
deterministic forces acting on a body and that correspond to each value of the
random variable X have been determined in the three probabilities sets which areR,
M, and C by Pr, Pm, z and Pc respectively. Consequently, at each value of X, the
novel classical mechanics and CPP parameters Fr, Fm, F, Fc, Pr, Pm, Pm=i, DOK, Chf,
MChf, Pc, and z are surely and perfectly predicted in the complex probabilities set C
with Pc maintained equal to one permanently and repeatedly. Also, as it was shown
and proved in the equations above that if the real probability Pr is equal to one then
we will return directly to the classical deterministic Newtonian mechanics theory
which is a special deterministic case of the stochastic complex probability paradigm
general case.

In addition, referring to all these obtained graphs and executed simulations
throughout the whole research work, we are able to quantify and to visualize both
the system chaos and stochastic effects and influences (expressed and materialized
by Chf and MChf) and the certain knowledge (expressed and materialized by DOK
and Pc) of the new paradigm. This is without any doubt very fruitful, wonderful,
and fascinating and proves and reveals once again the advantages of extending A. N.
Kolmogorov’s five axioms of probability and hence the novelty and benefits of this
inventive and original model in the fields of prognostics and applied mathematics
that can be called truly: “The Complex Probability Paradigm”.

Moreover, it is important to mention here that one very well-known and impor-
tant random distribution was considered in the current work which is the discrete
and uniform random distribution that was used to prove an important and essential
result at the foundation of statistical mechanics and physics, knowing that the novel
CPP paradigm can be implemented to any probability distribution that exists in
literature as it was shown in the simulation section. This will lead without any doubt
to analogous and similar conclusions and results and will confirm certainly the
success of my innovative and original model.

As a future and prospective research and challenges, we aim to more develop the
novel prognostic paradigm conceived and to implement it to a large set of random
and nondeterministic events like for other probabilistic phenomena as in stochastic
processes and in the classical theory of probability. Additionally, we will apply CPP
to the random walk problems which have huge and very interesting consequences
when implemented to chemistry, to physics, to economics, to applied and pure
mathematics.
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Nomenclature

R real set of events
M imaginary set of events
C complex set of events
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i the imaginary number where i ¼ ffiffiffiffiffiffi�1p
or i2 ¼ �1

EKA Extended Kolmogorov’s Axioms
CPP Complex Probability Paradigm
Prob probability of any event
Pr probability in the real set R = probability of the real random force

in R
Pm probability in the imaginary set M corresponding to the real

probability inR = probability of the imaginary random force inM
Pc probability of an event in R with its associated complementary

event in M = probability of the real deterministic force in the
complex probability set C

F
!
r

the real stochastic force in R

F
!
m

the imaginary stochastic force in M

F
! the resultant complex stochastic force in C

F
!
c

the real deterministic force in C

z complex probability number = sum of Pr and Pm = complex random
vector = probability of the resultant complex stochastic force in C

DOK = zj j2 the degree of our knowledge of the random system or experiment,
it is the square of the norm of z

Chf the chaotic factor of z
MChf magnitude of the chaotic factor of z
N number of random vectors = number of random atoms or particles

or molecules
Z the resultant complex random vector =

PN
j¼1z j

DOKZ ¼ Zj j2
N2

the degree of our knowledge of the whole stochastic system

Chf Z ¼ Chf
N2

the chaotic factor of the whole stochastic system

MChf Z magnitude of the chaotic factor of the whole stochastic system
ZU the resultant complex random vector corresponding to a uniform

random distribution
DOKZU the degree of our knowledge of the whole stochastic system

corresponding to a uniform random distribution
Chf ZU

the chaotic factor of the whole stochastic system corresponding to
a uniform random distribution

MChf ZU
the magnitude of the chaotic factor of the whole stochastic system
corresponding to a uniform random distribution

Pc ZUj probability in the complex probability set C of the whole stochastic
system corresponding to a uniform random distribution
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Chapter 3

Flooding Fragility Model
Development Using Bayesian
Regression
Alison Wells and Chad L. Pope

Abstract

Traditional component pass/fail design analysis and testing protocol drives
excessively conservative operating limits and setpoints as well as unnecessarily
large margins of safety. Component performance testing coupled with failure prob-
ability model development can support selection of more flexible operating limits
and setpoints as well as softening defense-in-depth elements. This chapter discuses
the process of Bayesian regression fragility model development using Markov Chain
Monte Carlo methods and model checking protocol using three types of Bayesian p-
values. The chapter also discusses application of the model development and testing
techniques through component flooding performance experiments associated with
industrial steel doors being subjected to a rising water scenario. These component
tests yield the necessary data for fragility model development while providing
insight into development of testing protocol that will yield meaningful data for
fragility model development. Finally, the chapter discusses development and selec-
tion of a fragility model for industrial steel door performance when subjected to a
water-rising scenario.

Keywords: fragility model development, Bayesian regression, Markov Chain
Monte Carlo, fragility model checking, Bayesian p-value

1. Introduction

Traditional component pass/fail design analysis and testing protocol drives
excessively conservative operating limits and setpoints as well as unnecessarily
large margins of safety. Additionally, pass/fail testing tends to result in data short-
comings which must then be addressed using defense-in-depth elements. Con-
trarily, component performance testing and failure probability model development
can support selection of more flexible operating limits and setpoints as well as
softening defense-in-depth elements. The two major obstacles involved in develop-
ing a failure probability model, also known as a fragility model, center on devising
an optimum component performance testing protocol so that meaningful data can
be collected, and navigating the process of developing and testing an appropriate
fragility model.

This chapter will first discuss the process of Bayesian regression fragility model
development which includes model checking protocol. The foundation of fragility
model development is Bayesian in nature where both data and parameters have
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probability distributions, and we seek a model that establishes a relationship
between parameters and observables ultimately yielding a posterior probability
distribution. That is, the Bayesian method requires an aleatory model, a prior
distribution for the parameters of the aleatory model, and data associated with the
aleatory model. Then, using Bayes Theorem, the posterior distribution for the
model output can be obtained using Markov Chain Monte Carlo (MCMC) methods
to address complicated integration. Multiple models are then developed, and a
rigorous process is used to check model validity to help identify the most appropri-
ate model. The model checking and comparison process uses multiple techniques
including three types of Bayesian p-values.

With a firm foundation for fragility model development, checking, and selection
established, the chapter then discusses component flooding performance experi-
ments associated with industrial steel doors subjected to a rising water scenario.
These component tests yield the necessary data for fragility model development
while providing insight into development of testing protocol that will yield mean-
ingful data for fragility model development. Finally, the chapter discusses the
development and selection of a fragility model for industrial steel door performance
when subjected to a rising water flood scenario.

2. Bayesian data analysis

Significant experience exists with fragility modeling focused on seismic fragility
model determination. In a seismic fragility model, the single vertical ground
acceleration variable is used to completely characterize the failure probability of
structures or components of interest. However, other observable parameters may
be important indicators for the potential of failure. Expanding upon the seismic
example, these observables could include the detailed characteristics of the earth-
quake such as X, Y, and Z components of the ground motion; frequency of the
waves; the age of the component; the anchorage of the component; the specifics of
the component type; or any combination of the above.

Limitations found in these traditional fragility models include simplistic (single
“driving” parameter) and excessive conservatism. For complex flooding fragility
modeling requiring more observables, these issues will be avoided by moving to a
more flexible, data-informed approach—Bayesian fragility modeling through
phenomena-driven regression modeling. As stated by Box and Tiao, “Bayesian
inference alone seems to offer the possibility of sufficient flexibility to allow
reaction to scientific complexity free from impediment from purely technical
limitation.” [1].

From the Bayesian perspective, both data and parameters can have probability
distributions, and the task of Bayesian analysis is to build a model for the relation-
ship between parameters (θ) and observables (y), and then calculate the posterior
probability. The Bayesian method, therefore, relies on three items: an aleatory
model, a prior distribution for the parameter(s) of the aleatory model, and data
associated with the aleatory model. An aleatory model pertains to stochastic or
non-deterministic events, the outcome of which is described using probability. The
posterior distribution for the model output function is developed in accordance
with Bayes’ Theorem [2], which is generally written as:

p θjyð Þ ¼ p θð Þp yjθð Þ
p yð Þ (1)

where,
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• p θjyð Þ :Posterior distribution, which is conditional upon data (y) that is known
related to the hypothesis (θ);

• p θð Þ :Prior distribution, for knowledge of the hypothesis (θ) that is
independent of data (y);

• p yjθð Þ :Likelihood, or aleatory model, representing the process or mechanism
that provides data (y);

• p yð Þ :Marginal distribution, which serves as a normalization constant.

In summary, the above equation takes our prior knowledge about the
parameters and updates this knowledge with the likelihood to observe the data for
particular parameter values and gives the posterior probability. It essentially states:
posterior∝prior� likelihood

This process combines everything that is known about a particular data set and
model response to produce a posterior estimate of the output function’s probability
distribution.

Integration of functions plays an important role in Bayesian statistical
analysis; however, explicit evaluation of these integrals is only possible for a
limited number of special cases. Usually, problems will involve complex
distributions and explicit evaluation is not possible. Traditionally, statisticians
would be forced to use numerical integration or analytical approximation tech-
niques. However, there are now several powerful software programs that exist for
Bayesian inference. One of the most widely used by statistical practitioners is the
BUGS (Bayesian inference Using Gibbs Sampling) family of programs. The most
popular packages from the BUGS family are WinBUGS and OpenBUGS. There
are several methods devised for construction and sampling complex Bayesian
posterior distributions. BUGS software utilizes MCMC methods to determine the
posterior [3].

MCMC is a general method based on randomly sampling values from a prior
distribution to approximate the posterior distribution p θjyð Þ. The sampling is done
sequentially, with the distribution of the sampled parameter depending on the value
from the previous step only, forming a Markov chain [4]. Eventually the Markov
chain will converge to a unique stationary distribution, the posterior distribution.
Therefore, the key to MCMCmethod is the approximate distributions are improved
at each step in the simulation, and after running the simulation long enough,
converging to the posterior distribution.

3. Model checking and comparison

After constructing a probability model and computing posterior distributions
for all estimated parameters, the next step of a Bayesian analysis includes
checking that the model adequately represents the data and is plausible for the
purpose for which the model will be used. There are multiple ways of assessing a
model’s performance. The approach selected is posterior predictive checking, a
useful direct way of assessing the fit of a model to various aspects of the data.
Additionally, residual tests are used for informal model criticism and outlier
identification.

Posterior predictive checks are a primary form of Bayesian model checking used
to assess the fit of the model to various aspects of the data. The procedure is based
upon the following assumption: if a given model fits, then data simulated or
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replicated under the model should be comparable to the real-world observed data
the model was fitted to [4]. In other words, the observed data should be plausible
under the posterior predictive distribution. If any systematic differences occur
between simulations and the data, it potentially indicates that model assumptions
are not being met.

The model is checked for deviations from an assumed parameter form by means
of test quantities or discrepancy functions, T yjθð Þ, that depend on both data (y) and
parameters (θ). A check is made whether T yjθð Þ is compatible with the simulated
distribution of T ysimulatedjθ� �

by calculating a Bayesian p-value [4]. Regarding the
choice of discrepancy functions, focus is given to diagnosing global lack of fit rather
than discovering outliers; a task given to residual calculations. A summary of
candidate discrepancy functions considered is provided in Table 1. Note, to avoid
numerical errors for binomial models if p = 0 or 1, a small ε = 0.00001 is added in
the expressions.

Note that ideally model checking should be based on new data, although in
practice the same data is generally used for both developing and checking the
model. This means Bayesian p-values based on these checks tend to be conservative
[3]. However, this does not imply that posterior predictive checks lack value. Given
that tests are conservative, small (less than 0.05) and large (greater than 0.95)
p-values strongly suggest lack of fit. P-values closest to 0.5 indicate a high degree of
predictive capability [2]. The concept of Bayesian p-value is graphically represented
in Figure 1.

Residuals measure the discrepancy between the observed data and an assumed
model. Informal tests based on Pearson and deviance residuals can be used to
identify obvious assumption violations. Note that these analyses are generally car-
ried out informally in Bayesian application, since all residuals depend on θ and have
posterior distributions [6]. Therefore, they are not truly independent as required in
unbiased application of goodness-of-fit tests.

Name Definition Binomial Expression

χ2
T y, θð Þ ¼Pi

yi�E yi jθð Þð Þ2
Var yi jθð Þ

P
i

yi�npið Þ2
npi 1�pið Þþε

Likelihood ratio
T y, θð Þ ¼ 2

P
iyi log

yi
E yi jθð Þ
� �

2
P

iyi log
yiþε
npiþε
� �

Freeman-Tukey
T y, θð Þ ¼Pi

ffiffiffiffiyip �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E yijθ
� �q� �2 P

i
ffiffiffiffiyip � ffiffiffiffiffiffiffinpi
p� �2

Table 1.
Discrepancy functions used for model checking [5].

Figure 1.
Depiction of the Bayesian p-value predictability.
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A standardized Pearson residual is defined as:

ri ¼
yi � E yijθ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yijθ

� �q (2)

Where is the E yijθ
� �

expected value and Var yijθ
� �

is the variance. Since it is
considered a function of random yi for a fixed θ, Pearson residuals should generally
take on values between �2.0 and 2.0 [6]. Values falling outside this range would
represent outliers.

Residuals can also be based on a saturated version of the deviance., defined as:

Ds θð Þ ¼ �2 log p yjθð Þ þ 2 log p yjθ̂s yð Þ
� �

(3)

where θ̂s yð Þ are the saturated estimates. Models for which saturated deviance is
appropriate, such as Poisson and binomial, the rule of thumb for a rough
assessment of the fit is the mean saturated deviance should approximately equal
sample size n [3].

Following model checking, comparisons can be made on the performance of
alternative hypothesized models. It is not an uncommon occurrence for more than
one probability model to provide an adequate fit to the data. These models may
differ in prior specification, link function selection, or which explanatory variables
are included in the regression, to name a few. Therefore, an analysis should not only
examine models to see how they fail to fit reality but compare how sensitive the
resulting posterior distributions are to arbitrary specifications using any number of
model comparison or performance metrics.

There are a variety of Bayesian model comparison methods, including methods
based on information criteria, which are measures of the relative fit. Deviance
Information Criteria (DIC) is a measure of model fit that can be applied to Bayesian
models and is applicable when the parameter estimation is done using techniques
such as Gibbs sampling. It is particularly useful in Bayesian model selection prob-
lems where the posterior distributions of the model have been obtained by MCMC
simulation. DIC is a generally straightforward computation, and no additional
scripting is needed to calculate it in OpenBUGS, making it the comparison approach
selected for this work.

As a rule of thumb, the model with the smallest DIC usually indicates the better
fitting model. Note, however, only differences between models in DIC are important,
not strictly absolute values. While it is not easy to define what constitutes an impor-
tant difference, the following rough guide can be used for DIC comparison [3]:

• Differences greater than 10 can be used to rule out the model with the higher
DIC.

• Differences between 5 and 10 are substantial.

• Differences less than 5, there is uncertainty about choice of model. Other
methods may need to be considered, especially if models make different
inferences.

Note that these considerations include negative values for the DIC, which occur
in cases where the deviance is negative. It must also be noted that since DIC is a
measure of relative fit, a model with the smallest DIC can still be a poor fit for the
data [2].
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4. Experiments

The objectives of component flooding experiments are to test individual com-
ponent performance in flooding scenarios and acquire the necessary data to develop
component fragility mathematical models. To conduct rising water experiments,
the Portal Evaluation Tank (PET) was designed and built to facilitate testing.

Figure 2.
PET tank and piping.

Test Depth (in.) Flow rate (gal/min) Temperature
(F)

Notes

1S 46.1 1148 67.4

2S 39.0 1130 63.3

3S 37.1 1120 63.1

4S 37.8 979 63.0

5S 37.5 1133 63.0

6S 37.6 604 63.0

7S 37.7 593 63.0

8S 37.1 598 63.1

12S 44.5 975 64.0

— 25.7 248 61.6 Non-Failure

— 17.0 117 59.0 Non-Failure

— 27.4 285 59.3 Non-Failure

— 30.9 397 59.4 Non-Failure

— 32.3 484 59.6 Non-Failure

— 24.3 247 60.2 Non-Failure

— 34.8 593 60.7 Non-Failure

— 37.5 696 61.0 Non-Failure

— 38.0 734 61.2 Non-Failure

13S 41.4 1025 61.3

Table 2.
Steel door performance results [5].
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The PET is a steel semi-cylindrical tank with a height and diameter of 8 ft. Its
design includes a 62.4 ft2 opening for installation of components to be tested, a front
water tray with a 90-degree v-notch weir and the ability to hold up to 2,000-gal of
water. The PET is connected through 12 in. PVC pipes to a 60 HP pump, which is
located inside an 8,000 gal water reservoir, to support variable inlet flow rates up to
�4,500 gpm. Additionally, the design of PET, once filled, can rely on the pump and
pressure and air relief values to provide hydrostatic head to simulate depths up to
20 ft. The PET, along with piping, is shown in Figure 2.

Accompanying instrumentation and measurements included electromagnetic
flowmeters for upstream and downstream flow rates and two pressure transducers
for averaged water depths and temperature. The PET can also measure small leak-
age rates that do not exceed the v-notch weir barrier using an ultrasonic depth
sensor. The top of the PET is also equipped with pressure and air relief valves and a
digital pressure gauge to measure pressures for simulated hydrostatic head once the
PET is filled.

The components tested were industrial steel doors oriented to swing outwards,
away from the tank interior. A strengthened wall was built to support the
doorframe, ensuring stability. The aim of these experiments was to test the door to
failure only and not the supporting wall structure. The experimental approach
subjected each steel door to a water rising scenario until catastrophic failure of the
door occurred or the leakage rate equalized with the filling rate. A compiled sum-
mary of the steel door results, including non-failure tests, are given in Table 2.

5. Model development

Having conducted the flooding experiments and collected observational data on
door failures, models where developed that analyzed the fragility of components
using explanatory variables. An explanatory variable is a type of independent vari-
able that is possibly predictive of a component’s fragility in a regression analysis. For
the probability of door failure during a flooding event, water depth, flow rate, and
temperature may be leading indicators of failure and information about these
explanatory variables is incorporated into the Bayesian inference.

The mathematical modeling uses the discrete binomial distribution to represent
failure of a door installed in the PET during a rising water flood event. This is a
commonly used model for failure on demand with key parameters p, the probability
of failure on demand, and trials n = 1 (only a single door is potentially challenged
during testing). The fragility model in this case looked at seven possibilities: each of
the variables alone driving the model to failure, a combination of two variables
driving the model to failure, and all three variables driving the model to failure. The
above cases are modeled as:

Logit pð Þ ¼ interceptþ aD (4a)

Logit pð Þ ¼ interceptþ bF (4b)

Logit pð Þ ¼ interceptþ cT (4c)

Logit pð Þ ¼ interceptþ aDþ bF (4d)

Logit pð Þ ¼ interceptþ aDþ cT (4e)

Logit pð Þ ¼ intercept þ bF þ cT (4f)

Logit pð Þ ¼ interceptþ aDþ bF þ cT (4g)
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where a, b, and c are the coefficients of the covariate parameters represented as
D, F, and T for depth, flow rate, and temperature respectively. Since parameter p
represents a probability, it must be constrained between 0 and 1 with a link
function. The logit function was selected, which is defined as:

Logit pð Þ ¼ ln
p

1� p

� �
(5)

While the logit function should transform the parameter p onto an appropriate
scale, in practice this was not always true from the special case of n = 1. Periodically,
the sampler from the prior distribution selects illogical or extreme values. This can
cause errors such as numerical overflow or, within the logistic regression, results in
negative parameter values that cannot be log transformed. The improper value
prompted a binomial calculation that OpenBUGS is unable to perform, causing the
run to crash. It should also be noted that subtle differences in programs could
resolve some of these problems. Not all available programs, for instance, use the
same sampling approach. A similar model setup in R or JAGS could run without
additional considerations for the case of n = 1.

A robust solution focuses on the parameter that fails to meet specifications. The
binomial probability of failure, p, needs to take on values between 0 and 1 for
OpenBUGS to perform the calculation, as referenced earlier. This requirement can
be achieved by restricting p using built-in scalar functions, max and min. They are
defined and operate as follows:

• max(e1, e2) e1 if e1 > e2; e2 otherwise,

• min(e1, e2) e1 if e1 < e2; e2 otherwise.

For the probability of failure to be properly scaled, the following criteria need to
hold true:

• return 1 if probability of failure is greater than 1,

• return 0 if probability of failure is less than 0,

• otherwise p.

The quantity p.bound[i] - > max(0, min(1, p[i])) performs all three listed
criteria. Inserting p.bound into the model script restricts the probability to lie
between 0 and 1 and prevents OpenBUGS from crashing [7]. A logistic link function
can now be used when n = 1 for all regression models.

The water temperature data was included as an explanatory variable with the
expectation that it would be eliminated as part of the Bayesian analysis. To address
the possibility of temperature as a failure influence, centering was used on the
covariates. Interpreting coefficients in models with interactions can be simplified by
subtracting the mean, x ¼ N�1

P
xi, of each input variable xi. For example, the

temperature T in Eq. (4c) would be subtracted by T and the following logistic
regression would be fit:

Logit pð Þ ¼ intercept þ c T � T
� �

(6)

where the data is now centered at zero. The main effects of using explanatory
variables are now interpretable based on comparison to the mean of the data.
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Coefficients that stay relatively the same compared to the un-centered results
indicate low predictability, while large predictive differences are leading indicators
of component failure.

Looking at the steel door data, however, leads to a different discovery. Table 3
gives the results for the standard models, and Table 4 gives the results when
centering is applied. Depth’s predictive difference is greater than flow rate, but the
highest is temperature. Additionally, temperature has the smallest DIC between the
three models.

To understand why temperature appears to be the leading indicator of failure,
the steel door data, along with its collection process, must be examined. Of the
nineteen test results recorded in Table 2, the first nine tests all resulted in door
failures. These nine tests were conducted exclusively during the spring. The
remainder of the tests, nine non-failure and one failure, where conducted in a single
day during the winter when the reservoir water was cooler. The results could mean
that warmer water temperatures cause steel doors to fail in flooding events, imply-
ing a correlation of variables observed together. It is noted, however, that correla-
tion does not necessarily mean causation. The relationship could have alternative
explanations, such as a third-cause fallacy, where a spurious correlation is mistaken
for causation. A spurious correlation is a relationship in which events or variables
are associated, but not causally related, due to the presence of a third factor [8].
Seasonal weather changing the interior temperature of the laboratory is a hidden
third factor. Therefore, steel door flooding failure and water temperature may be
correlated with each other only because they are correlated with the weather when
testing was conducted. By conducting all non-failure tests in the cooler winter
conditions and majority of failures in the warmer spring, an unintentional bias was
introduced into the temperature data. This bias, that temperature impacts failure,
becomes apparent when looking at the centering comparison.

There is another means of verifying the introduced bias in temperature by
looking at the residuals. Pearson residuals should take on values between �2.0 and
2.0. Any data point with values outside this range represent an outlier. If there is a
bias introduced from when the tests were conducted, the last data point, a failure
during winter testing, should be considered an outlier. Figure 3 shows the residual
box plot for the temperature regression model. Note that the last data point has an
outlier residual value of 3.53 � 6.037, confirming the bias.

Model Mean Standard Dev. 97.5% Interval DIC

Depth 1.66 0.91 (0.42, 3.89) 13.86

Flow Rate 0.013 0.006 (0.004, 0.028) 16.0

Temperature 2.56 0.88 (1.10, 4.51) 8.294

Table 3.
Coefficient results for standard logit regression model for steel doors [5].

Model Mean Standard Dev. 97.5% Interval DIC

Depth 2.05 1.26 (0.46, 5.21) 14.39

Flow Rate 0.013 0.006 (0.005, 0.028) 15.98

Temperature 7.85 4.69 (2.04, 19.74) 8.98

Table 4.
Coefficient results for centered logit regression models for steel doors [5].
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Since the steel door temperature data is biased, it is dropped from consideration
as an explanatory variable for now. In experiments, controlling and extensively
testing the relationship between dependent and independent variables can identify
spurious correlation. For component flooding experiments, steps could be taken to
control the temperature of the reservoir water. If future testing corrects for this
bias, temperature data could again be considered as part of the Bayesian analysis for
steel doors. Of the remaining depth and flow rate data, centering simplified
interpreting coefficients and indicated depth as a significant indicator of failure.

Development of the logistic regression models so far has been directly
interpreting the failure response given some predictor(s) data. It is also possible to
interpret indirectly by incorporating an additional random variability. These
models assume that besides the observed variables, there could be an unobserved
variable or random effects. Therefore, the probability of the binomial distribution is
allowed to adjust by some small amount, λi, for each observation.

A script was written where logistic regression equations contain a random or
latent effect. In the case of the depth model, previously given by Eq. (4a), it would
now be defined as follows:

Figure 3.
Box plot of the temperature regression model residuals using steel door data [5].

Model χ 2 Likelihood Ratio Freeman-Tukey DIC

Depth 0.97 0.97 0.97 0.41

Flow Rate 0.99 0.99 0.99 0.13

Depth. Flow Rate 0.99 0.99 0.99 0.08

Table 5.
Depth, flow and combined p-values and DIC [5].
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#Bound Binomial Model using Logit Regression: Final
#Steel Door Data

model{

for(i in 1:tests){
failure[i] � dbin(p.bound[i], numtested)
p.bound[i] < �max(0, min(1, p[i]))

#Regression Model
logit(p[i]) < � int. + depth*WDepth[i]

failure.rep[i] � dbin(p.bound[i], numtested)

#Fit Assessment: Pearson Residuals Posterier Predective check (Bayesian P-Value)
residual[i] < � (failure[i] - (numtested*p.bound[i]))/sqrt(numtested*p.bound[i]*(1-p.bound
[i]) + 0.00001)
residual.rep[i] < � (failure.rep[i] - (numtested*p.bound[i]))/sqrt(numtested*p.bound[i]*(1-p.bound
[i]) + 0.00001)
sq.[i] < � pow(residual[i], 2)
sq.rep[i] < � pow(residual.rep[i], 2)

#Fit Assessment: Likelihood Statistic Posterier Predective check (Bayesian P-Value)
like.obs[i] < � failure[i]*log((failure[i] + 0.00001)/(numtested*p.bound[i] + 0.00001))
like.rep[i] < � failure.rep[i]*log((failure.rep[i] + 0.00001)/(numtested*p.bound[i] + 0.00001))

#Fit Assessment: Freeman-Tukey Statistic Posterier Predective check (Bayesian P-Value)
diff.obs[i] < � pow(sqrt(failure[i]) - sqrt(numtested*p.bound[i]), 2)
diff.rep[i] < � pow(sqrt(failure.rep[i]) - sqrt(numtested*p.bound[i]), 2)

prop[i] < � failure[i]/numtested
Ds[i] < � 2*numtested*(prop[i]*log((prop[i] + 0.00001)/(p.bound[i] + 0.00001))
+ (1-prop[i])*log((1-prop[i] + 0.00001)/((1-p.bound[i]) + 0.00001)))

phat[i] < � failure[i]/numtested

}

chisq.obs < � sum(sq[])
chisq.rep <� sum(sq.rep[])
p.chisq <� step(chisq.rep - chisq.obs)

likelihood.obs < � sum(like.obs[])
likelihood.rep <� sum(like.rep[])
p.likelihood <� step(likelihood.rep - likelihood.obs)

freeman.obs < � sum(diff.obs[])
freeman.rep <� sum(diff.rep[])
p.freeman <� step(freeman.rep - freeman.obs)

dev.sat < � sum(Ds[])

#Prior Distributions
int. � dnorm(0, .000001)
depth � dnorm(0, .000001)
}

data
list(
tests = 19,
numtested = 1,
failure = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),
WDepth = c(46.1, 39.0, 37.1, 37.8, 37.5, 37.6, 37.7, 37.1, 44.5, 25.7, 17.0, 27.4, 30.9, 32.3, 24.3, 34.8, 37.5,
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Logit pð Þ ¼ intercept þ aDþ λi (7)

with λi � N 0, σ2ð Þ and unknown variance. A prior distribution is specified for σ.
More variability is accounted for by allowing the probability to vary on an
observation-by-observation bases.

The resulting p-values and DIC for the depth, flow rate, and combined regres-
sion models are given in Table 5. The larger p-values (all greater than 0.95) strongly
suggest lack of fit. The regression models without variability are favorable over the
inclusion of unobserved effects for their better fit.

The final OpenBUGS script for the depth regression model, prior distributions,
and dispersed initial values is shown in Table 6. Included are the script for the three
Bayesian p-value calculations and the saturated deviance.

The mean values calculated for the applicable parameters in the outward swing-
ing steel door fragility models and corresponding Bayesian p-values are shown in
Table 7. The saturated deviance for all three models compared with the data sample
size suggests that all three models fit adequately. The DIC is nearly the same for all
three models, the smallest belonging to the depth model by a non-significant
amount. The model with only depth as an explanatory variable has the closest
Bayesian p-value using the likelihood ratio (0.38). It also has the slightly closer
average p-value compared to 0.5 than the regression model with only flow rate and
the combined model with both variables. Given the results, the model with only
depth is recommended for predictive analyses.

With depth selected as the explanatory variable regression model, the parame-
ters in Table 7 are used with the fragility model to calculate the failure probability
for a steel door as a function of water depth. The probability p is given by:

38.0, 41.4),
WFlow = c(1148, 1130, 1120, 979, 1133, 604, 593, 598, 975, 248, 117, 285, 397, 484, 247, 593, 696, 734,
1025)
)

inits

#Depth
list(int = �28, depth = 4, flow = 0, temp = 0, failure.rep = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))
list(int = �122, depth = 0, flow = 0, temp = 0, failure.rep = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

Table 6.
OpenBUGS script [5].

Parameter Depth Flow Rate Depth, Flow Rate

intercept 75.68 �8.51 �72.5
a (depth coeff.) 2.05 — 1.83

b (flow rate coeff.) — 0.01 0.007

Sat. deviance 12.88 14.29 13.31

Chi-squared 0.19 0.26 0.14

Likelihood ratio 0.38 0.36 0.29

Freeman-Tukey 0.33 0.23 0.21

Table 7.
Summary posterior estimates of logistic regression parameters and Bayesian p-values using steel door data [5].
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p ¼ 1
e� �75:68þ2:05xð Þ þ 1

(8)

where x is the given water depth. Figure 4 shows the plot of failure probability
versus water depth with 95% credible intervals. It should be noted that the mean,
shown in red, is close to the bound at low probabilities. This is due to a couple of
non-failure tests reaching water depths greater than some observed failure depths,
bringing the mean near the credible interval at low fragility probabilities.

6. Conclusion

Component failure probability models provide a pathway for selection of more
flexible operating limits and setpoints. Model development requires component
performance data and an effective process for probability model selection and
checking. Using Bayesian methodology, prior knowledge about model parameters
can be updated with the knowledge of the likelihood to observe data for parameter
values giving a posterior probability. In short, the process combines everything that
is known about a particular data set and model response to produce a posterior
estimate of the output function’s probability distribution. Integration of these func-
tions is necessary and can be accomplished through MCMC methods.

Bayesian model checking is used to assess the fit of the model to various aspects
of the data using the assumption that if a given model fits, then data simulated or
replicated under the model should be comparable to the real-world observed data. If
any systematic differences occur between simulations and the data, it potentially
indicates that model assumptions are not being met. The model is also checked for
deviations by means of test quantities or discrepancy functions that depend on both
data and parameters by calculating a Bayesian p-value. The DIC can also be used as
a measure of model fit that can be applied to Bayesian models and is applicable
when the parameter estimation is done using techniques such as Gibbs sampling. It
is particularly useful in Bayesian model selection problems where the posterior
distributions of the model have been obtained by MCMC simulation.

Application of the data collection, model development, and model checking
process was carried out for the performance of steel doors subjected to water rise
flooding conditions. The resulting fragility model provides a carefully developed

Figure 4.
Fragility curve showing probability of failure versus water depth. Blue curves represent the 95% credible
intervals [5].
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representation of the failure probability as the flood depth changes. The model can
then be used in more comprehensive probabilistic flooding analyses rather than
simply using an empirically derived pass-fail water depth for steel doors subjected
to water rise flooding scenarios. The overall result of using the rigorously developed
fragility model is a more robust representation of how components will perform
when subjected to challenges such as flooding. With an improved representation of
overall performance available, necessary limits and controls can then be selected
without undue conservatism.
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Chapter 4

Markov Chain Monte Carlo in a
Dynamical System of Information
Theoretic Particles
Tokunbo Ogunfunmi and Manas Deb

Abstract

In Bayesian learning, the posterior probability density of a model parameter is
estimated from the likelihood function and the prior probability of the parameter.
The posterior probability density estimate is refined as more evidence becomes
available. However, any non-trivial Bayesian model requires the computation of an
intractable integral to obtain the probability density function (PDF) of the evi-
dence. Markov Chain Monte Carlo (MCMC) is a well-known algorithm that solves
this problem by directly generating the samples of the posterior distribution with-
out computing this intractable integral. We present a novel perspective of the
MCMC algorithm which views the samples of a probability distribution as a
dynamical system of Information Theoretic particles in an Information Theoretic
field. As our algorithm probes this field with a test particle, it is subjected to
Information Forces from other Information Theoretic particles in this field. We use
Information Theoretic Learning (ITL) techniques based on Rényi’s α-Entropy func-
tion to derive an equation for the gradient of the Information Potential energy of
the dynamical system of Information Theoretic particles. Using this equation, we
compute the Hamiltonian of the dynamical system from the Information Potential
energy and the kinetic energy. The Hamiltonian is used to generate the Markovian
state trajectories of the system.

Keywords: Hamiltonian Monte Carlo (HMC), information theoretic learning,
Kernel density estimator (KDE), Markov chain Monte Carlo, Parzen window,
Rényi’s entropy, information potential

1. Introduction

Bayesian learning involves estimating the PDF of a model parameter from the
likelihood function and the prior probability of the parameter. Bayesian inference
incorporates the concept of belief where the parameter estimate is refined as more
data or evidence becomes available. The posterior PDF of the model parameter
θ with the PDF of the evidence X denoted as P Xð Þ, is expressed by the following
well-known Bayes’ equation:

P θ Xjð Þ ¼ P X θjð ÞP θð Þ
P Xð Þ (1)
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P Xð Þ is the integral of the probability of all possible values of θ weighted by the
likelihood function:

P Xð Þ ¼
ð

θ

P X θjð ÞP θð Þdθ (2)

This is an intractable integration for most non-trivial Bayesian inference prob-
lems and makes it impossible to compute the posterior probability. The MCMC
algorithm described in [1] provides a solution to this problem by directly generating
samples of the posterior PDF without computing this intractable integral. The shape
of the posterior PDF and other statistics can be inferred from these samples.

The MCMC algorithm requires knowledge of a function that is proportional to
the unknown posterior PDF. It uses this function to generate sample proposals of
the unknown PDF. Usually, this function is the product of the likelihood function
and the prior probability. In practical applications, one often encounters a system
whose outputs are observable, but the process within the system that generated
these outputs are unknown. We present a novel perspective on the MCMC method
to solve these types of practical problems, where instead of generating the samples
of the unknown PDF, it uses the samples of the unknown distribution to estimate
the PDF. In this chapter we use the Hamiltonian MCMC (HMC) method described
in [2–4] and ITL concepts to show how the samples of the unknown distribution
can be viewed as Information Theoretic particles of a dynamical system. The sample
space of the given probability distribution is explored by computing trajectories
corresponding to the state transition of this dynamical system. The evolution or
state transition of the dynamical system is governed by equations which use the
total energy or the Hamiltonian of the system of Information Theoretic particles.
Each such particle has an inherent Information Potential by virtue of its position
with respect to the other particles of the system. The system of Information Theo-
retic particles creates an Information Field which enables each particle to exert an
Information Force on the other particles. We use ITL techniques [5] based on
Rényi’s α-Entropy function to derive an equation for the gradient of the Information
Potential energy of this dynamical system. This equation is one of the main contri-
butions of our work and it is used to compute the Hamiltonian of the system to
explore the probability space of the Information Theoretic particles.

In this work, we implement an iterative PDF estimator of an unknown sample
distribution, using the HMC method. At every iteration of the estimator, the HMC
generates samples such that the mutual information between the generated samples
and the given unknown distribution is large. To do this, it uses the Information
Potential, the Information Force and the kinetic energy of an Information Theoretic
“probe” particle. To compute the Information Potential and the Information Force,
the algorithm uses a non-parametric Kernel Density Estimator (KDE). The band-
width of the KDE determines how close the generated samples are from the
unknown sample distribution. At the end of each iteration, the Kullback–Leibler
(K–L) divergence of the samples generated by the estimator from the given distri-
bution is computed. The iteration continues until the K-L divergence falls below a
specified threshold. We have derived an equation to adapt the kernel bandwidth for
each iteration, based on the invariant point theorem. Before starting the next itera-
tion, this equation is used to adapt the kernel bandwidth before generating the next
set of samples.

An important application of our algorithm is in machine learning where some-
times the dataset is either too large to fit in the memory of a computer or too small
to obtain an accurate inference model. The dataset can be resampled to the desired
size using the PDF estimator and the HMC equations derived in this chapter.
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The sections in this chapter are organized in the following manner: In Section 2
we review the MCMC algorithm. Section 3 provides an overview of the Hamiltonian
MCMC algorithm. Rényi’s Entropy and the concept of Information Theoretic parti-
cles are introduced in Section 4. In Section 5 we show how the Hamiltonian MCMC
algorithm can be used with Information Theoretic particles and derive a key equa-
tion for the system potential gradient. Section 6 describes a method to iteratively
estimate the PDF of the target distribution using HMC. In this section we derive an
equation to adapt the Information Potential energy estimator bandwidth for each
iteration. The simulation results of the HMC algorithm on a system of Information
Theoretic particles are listed in Section 7 and we summarize our conclusions in
Section 8 of this chapter.

2. Review of the MCMC algorithm

The core principle underlying MCMC techniques is that an ergodic, reversible
Markov chain reaches a stationary state. MCMC models the sampling from a distri-
bution as an ergodic and reversible Markov process. When this process reaches a
stationary state, the probability distribution of the states of the Markov chain
becomes invariant and matches the given probability distribution. The sampling
operation in the MCMC is a Markov process that satisfies the following detailed
balance equation:

πiP Xt�1 ¼ i,Xt ¼ jð Þ ¼ π jP Xt�1 ¼ j,Xt ¼ ið Þ ∀i, j (3)

In the detailed balance equation, πi and π j are the stationary probability distri-
bution of being in states i and j respectively and X0,X1,X2, …Xt … are a sequence of
random variables at discrete time indices 0, 1, 2, … t� 1, t, … . The Monte Carlo part
of the MCMC algorithm is used to generate random “proposal” samples from a
known probability distribution Q Xð Þ. The proposal sample for the next time step of
the MCMC algorithm is dependent on the current proposal sample and the transi-
tion probability for the new sample is enforced by an acceptance function. The
proposal distribution is usually symmetric to ensure the reversibility of the
Markov chain:

Q xt xt�1jð Þ ¼ Q xt�1 xtjð Þ (4)

Symmetric distributions like the Gaussian distribution or the Uniform distribution
centered around the current sample value can be used to generate the proposal
sample. There are cases where asymmetric distributions are used but we will focus on
symmetric distributions to illustrate our algorithm, without any loss of generality.

To lay the groundwork for the HMC, we review the simple Metropolis-Hastings
(MH) MCMC [6] in this section. The simplest MH algorithm is the Random-Walk
MH which uses a symmetrical proposal distribution. It comprises of the following 3
parts:

1.Generate a proposal sample for the posterior probability from a known
symmetric distribution. The new proposal sample is based on the current
proposal sample: xproposal � Q xi xi�1jð Þ. For example, if Q Xð Þ is a Gaussian
distribution, it is centered at sample xi�1 to generate sample xi

2.Calculate the acceptance probability by passing this sample through the
posterior density function using:
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P θ Xjð Þ ¼ 1
Z
P X θjð ÞP θð Þ

where Z ¼
ð

θ

P Z θjð ÞP θð Þdθ (5)

3.Accept the candidate sample with probability α or reject it with probability
1� α where α is defined in (Eq. (8))

If the proposal density function is symmetric, we have:

Q xi�1 xproposal
��� � ¼ Q xproposal xi�1j� �

(6)

The acceptance function is derived as follows:

ð7Þ

It is evident from (Eq. (7)) that since the acceptance function is a ratio of the
posterior probability, the intractable integral to compute the value of Z is completely
bypassed. The acceptance probability of a sample proposal of the MH-MCMC is:

α ¼ min 1,
P X ¼ xproposal, θ
� �
P X ¼ xi�1, θð Þ

� �
(8)

The transition probability of each state of the Markov chain is defined by the
acceptance probability. In the stationary state, the product of the Markov chain
state probability and the transition probability matrix remains stationary and
matches the posterior PDF of the model parameter. The sample points xi generated
by this MCMC in the stationary state of the Markov chain are therefore the sample
points of the posterior PDF.

3. The Hamiltonian MCMC algorithm

Instead of the random-walk method of the Metropolis-Hastings algorithm, this
MCMC technique uses Hamiltonian dynamics to sample from the posterior PDF.
The random-walk method of the Metropolis-Hastings algorithm is inefficient and
converges slowly to the target posterior distribution. Instead of randomly generat-
ing “proposal” samples from a known probability distribution, the Hamiltonian
method uses the dynamics of a physical system to generate these samples. This
enables the system to explore the target posterior probability space more efficiently,
which in turn results in faster convergence compared to random-walk methods.

136

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



Hamiltonian dynamics is a concept borrowed from statistical mechanics where the
energy of a dynamic system changes from potential energy to kinetic energy and
back. The Hamiltonian represents the total energy of the system, which for a closed
system, is the sum of its potential and kinetic energy.

As described in [2, 3], Hamiltonian dynamics operates on an N dimensional
position vector q and an N dimensional momentum vector p and the dynamic
system is described by the Hamiltonian H q,pð Þ. The partial derivatives of the
Hamiltonian define how the system evolves with time:

dqi
dt
¼ ∂H

∂pi
i ¼ 1, 2, … ,N

dpi
dt
¼ � ∂H

∂qi

(9)

Given the state of the system at time t, these equations can be used to determine
the state of the system at time tþ T where T ¼ 1, 2, 3, … . For the time evolution of
the dynamical system, we use the following Hamiltonian:

H q,pð Þ ¼ U qð Þ þ K pð Þ (10)

In (10), U qð Þ is the potential energy and K pð Þ is the kinetic energy of the system.
The position vector q corresponds to the model parameter and the PDF of q is the
target posterior PDF that we want to estimate. The potential energy of the
Hamiltonian system is expressed as the negative log of the probability of q:

U qð Þ ¼ � log P qð Þð Þ (11)

To relate the Hamiltonian H q,pð Þ to the target posterior probability, we use a
basic concept from statistical mechanics known as the canonical ensemble. If there
are several microstates of a physical system contained in the vector θ and there is an
energy function E θð Þ defined for these microstates, then the canonical probability
distribution of the microstates is expressed as:

p θð Þ ¼ 1
Z
e�

E θð Þ
T (12)

where T is the temperature of the system and the variable Z is a normalizing
constant called the partition function. Z scales the canonical probability distribution
such that it sums to one. For a system described by Hamiltonian dynamics, the
energy function is:

E θð Þ ¼ H q,pð Þ ¼ U qð Þ þ K pð Þ (13)

In MCMC, the Hamiltonian is an energy function of the states of both the
position q and the momentum p. Therefore, the canonical probability distribution
of a Hamiltonian system can be expressed as:

P q,pð Þ ¼ 1
Z
e�

H q,pð Þ
T

¼ 1
Z
e�

U qð ÞþK pð Þ
T

¼ 1
Z
exp �U qð Þ

T

� �
exp �K pð Þ

T

� �
(14)
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This equation shows that q and p are independent and each have canonical
distributions with energy functions U qð Þ and K pð Þ. The probability density of q is
the posterior probability density of the model parameter θ and is the product of the
likelihood function of θ given the data D and the prior probability of θ. An
important point to note here is that the momentum variable p has been introduced
in the probability distribution in (Eq. (14)) so that we can use Hamiltonian dynam-
ics. Since p is independent of q, we can choose any distribution for this variable. In
our HMC algorithms use a zero-mean multivariate Gaussian distribution for the
momentum vector p. The temperature T ¼ 1 in this discussion on the HMC.

The kinetic energy of the dynamical system for a unit mass is expressed as:

K pð Þ ¼ 1
2
pTp (15)

On applying the Hamiltonian partial derivatives in (9) to the definition of the
HMC in (10) we get the following differential equations which describe the time
evolution of the dynamical system:

dq
dt
¼ ∂H

∂p
¼ ∂ U qð Þ þ K pð Þ½ �

∂p
¼ ∂

∂p
1
2
pTp

� �
¼ p

dp
dt
¼ � ∂H

∂q
¼ � ∂ U qð Þ þ K pð Þ½ �

∂q
¼ � ∂U qð Þ

∂q

(16)

Since the Hamiltonian equations for the time evolution of the system are differ-
ential equations, computer simulation of the HMC must discretize time. A popular
scheme to implement this discretization is the “Leapfrog” algorithm [4]. The HMC
algorithm uses the leapfrog algorithm to update the momentum and the position
while computing the trajectory towards the next sample proposal in the
distribution. The Leapfrog integrator has 2 main advantages:

1. It is time reversible. A Leapfrog integration by N steps in the forward direction
and then in the backward direction results in the same starting position

2.It is symplectic in nature. In other words, it conserves the energy of dynamical
systems

The steps of the Hamiltonian MCMC algorithm are:

1.At every time step t, determine a trajectory of the system potential and kinetic
energy. To do that, generate a random value from a standard normal
distribution for the momentum variable.

2.Execute the Leapfrog algorithm to update the position and momentum
variables according to the differential equations in (Eq. (16)). This determines
the trajectory of the system towards the next sample proposal

3.Compute the potential and kinetic energy U qt�1
� �

,K pt�1
� �� �

of the system at

the beginning of the trajectory and at the end U qproposed

� �
,K pproposed

� �� �
of

the proposed trajectory

4.Calculate the acceptance probability of the new trajectory using the following
ratio of probabilities:
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β ¼ min 1,
P qproposal,pproposal

� �

P qt�1,pt�1
� �

8<
:

9=
;

¼ min 1,

1
Z
exp �U qproposal

� �� �
exp �K pproposal

� �� �

1
Z
exp �U qt�1

� �� �
exp �K pt�1

� �� �

8><
>:

9>=
>;

¼ min 1, exp

U qt�1
� �þ K pt�1

� �� ��

U qproposal

� �
þ K pproposal

� �� �

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

(17)

5.Generate a random number u � Uniform 0, 1ð Þ to accept or reject the proposal

if β> uð Þthen
qt  qproposal ==accept the proposed trajectory

else

qt  qt�1 ==reject the proposed trajectory

endif

4. Rényi’s entropy and Information Theoretic particles

The concept of Information Theoretic particles comes from Alfréd Rényi’s
pioneering work on generalized measures of entropy and information [7]. At the core
of Rényi’s work is the concept of generalized mean or the Kolmogorov-Nagumo
(K-N) mean [8–10]. For numbers x1, x2, … xN, the K-N mean is expressed as:

ψ�1
1
N

XN
i¼1

ψ xið Þ
 !

(18)

where, ψ :ð Þ is the K-N function. This function is continuous and strictly
monotonic implying that it has an inverse. In the general theory of means, the
quasi-linear mean of a random variable X which takes the values x1, x2, … xN with
probabilities p1, p2, … pN is defined as:

Eψ X½ � ¼ Xh iψ ¼ ψ�1
XN

k¼1
pkψ xkð Þ

 !
(19)

From the theorem on additivity of quasi-linear means [11], if ψ :ð Þ is a K-N
function and cis a real constant, then:

ψ�1
XN

k¼1
pkψ xk þ cð Þ

 !
¼ ψ�1

XN

k¼1
pkψ xkð Þ

 !
þ c (20)

if and only if ψ :ð Þ is either linear or exponential.
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4.1 Rényi’s entropy

Consider a random variable X which takes the values x1, x2, … xN with probabil-
ities p1, p2, … pN. The amount of information generated when X takes the value xk is
given by the Hartley [12] information measurement function I xkð Þ:

I xkð Þ ¼ log 2
1
pk

� �
bits (21)

The expected value of I xkð Þ yields the expression for Shannon’s entropy [13]:

H Xð Þ ¼
XN

k¼1
pkI xkð Þ ¼

XN

k¼1
pk log 2

1
pk

� �
(22)

Rényi replaced the linear mean in (Eq. (22)) with the quasi-linear mean in
(Eq. (19)) to obtain a generalized measure of information:

Hψ Xð Þ ¼ ψ�1
XN

k¼1
pkψ log 2

1
pk

� �� � !
(23)

For Hψ Xð Þ to satisfy the additivity property of independent events, it must
satisfy X þ ch iψ ¼ Xh iψ þ c where c is a constant. From (Eq. (20)), this implies that

ψ xð Þ ¼ cx (linear) or ψ xð Þ ¼ c2 1�αð Þx (exponential). Setting ψ xð Þ ¼ cx reduces
(Eq. (23)) to the linear mean and yields Shannon entropy equation. Substituting
ψ xð Þ ¼ c2 1�αð Þx and the corresponding inverse function ψ�1 ¼ 1

1�αð Þ log 2 in
(Eq. (23)) yields the expression for Rényi’s α�entropy:

Hα Xð Þ ¼ 1
1� αð Þ log 2

XN

k¼1
pαk

 !
α>0 and α 6¼ 1 (24)

Rényi’s α�entropy equation is therefore a general expression for entropy and
comprises of a family of entropies for different values of the parameter α. Shannon’s
entropy is a special case of Rényi’s entropy in the limit as α! 1. The argument
of the logarithm function in (Eq. (24)) is called the Information Potential. The
α-Information Potential is expressed as:

Vα Xð Þ ¼
XN

k¼1
pαk (25)

Substituting (Eq. (25)) in (Eq. (24)), we get the following expression for Rényi’s
entropy in terms of the Information Potential:

Hα Xð Þ ¼ 1
1� αð Þ log 2 Vα Xð Þð Þ (26)

The Information Potential in (Eq. (25)) can be written as the expected value of
the PDF of the sample distribution raised to α� 1:

Vα Xð Þ ¼
XN

k¼1
pαk ¼

XN

k¼1
pkp

α�1
k ¼ E pα�1k

� �
(27)
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For α ¼ 2 in (Eq. (24)), we get Rényi’s quadratic entropy, which has the useful
property that it allows us to compute the entropy directly from the samples. The
equations for Rényi’s Quadratic Entropy (QE) and Quadratic Information Potential
(QIP) are obtained by substituting α ¼ 2 in (Eqs. (26) and (27)):

H2 Xð Þ ¼ 1
1� 2ð Þ log 2 V2 Xð Þð Þ ¼ � log 2 V2 Xð Þð Þ

where V2 Xð Þ ¼ E p2�1k

� � ¼ E pk
� � (28)

The QIP is therefore the expected value of the PDF of the given data samples.

4.2 Rényi’s quadratic information potential (QIP) estimator

From (Eq. (28)), it is evident that to compute the QIP we need to know the PDF
of the given data samples. In practical applications an analytical expression of the
PDF is rarely available. Therefore, the QIP computation involves a non-parametric
estimator of the PDF directly from the samples [14]. The Parzen-Rosenblatt win-
dow estimator [15, 16] is a non-parametric way to estimate the PDF of a random
variable from its sample values. This estimator places a kernel function with its
center at each of the samples. The resulting output values are averaged over all the
samples to estimate the PDF. The laws governing the interaction of the
Information Theoretic particles is defined by the shape of the kernel. We use a
Gaussian kernel, since this kernel when placed over the samples, behaves like an
Information Theoretic field whose strength decays with increasing distance
between the samples. Just like a charge in space creates an electric field, the samples
of a probability distribution behave like Information Particles with unit charge.
Information particles exert Information Forces on other particles through this
Information Theoretic field.

For scalar samples x1, x2, … xN, the Parzen window PDF estimator with a
Gaussian kernel is expressed as:

p̂ xð Þ ¼ 1
N

XN
i¼1

Gσ x� xið Þ (29)

where Gσ uð Þ is the following standard univariate Gaussian kernel:

Gσ uð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2
p exp � 1

2
u
σ

� �2� �
(30)

σ is the kernel bandwidth of the estimator and it must be carefully chosen to
obtain an accurate and unbiased estimate of the PDF. The Parzen window
estimator of a multivariate PDF for vector samples x1,x2, …xN of dimension d is
expressed as:

p̂ xð Þ ¼ 1
N

XN
i¼1

GC x� xið Þ (31)

where GC uð Þ is the following standard multivariate Gaussian kernel:

GC uð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd Cj j

q exp � 1
2
uTC�1u

� �
(32)
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d is the dimension of the input vector u, C is the d� d covariance matrix and Cj j
is the determinant of the covariance matrix. For the multivariate PDF case, the
kernel bandwidth C must be carefully chosen to obtain an accurate and unbiased
estimate of the PDF.

Rényi’s quadratic entropy for a continuous random variable is expressed as:

H2 Xð Þ ¼ � log
ð∞

�∞
p2 xð Þdx (33)

Substituting p̂ xð Þ from (Eq. (29)) for p xð Þ in the above equation as described in
[5], we get the following equation for the QE estimator:

Ĥ2 Xð Þ ¼ � log
1
N2

XN
i¼1

XN
j¼1

Gσ
ffiffi
2
p x j � xi
� �

" #
(34)

where:

Gσ
ffiffi
2
p uð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π σ
ffiffiffi
2
p� �2q exp � 1

2
u

σ
ffiffiffi
2
p

� �2
" #

(35)

The equation for the QE estimator shows that we can compute the QE estimate
directly from the samples of a distribution without knowing its PDF, by applying
the Parzen-Rosenblatt kernel on these samples. From (Eqs. (28) and (34)), the QIP
estimator can be expressed as:

V̂2 Xð Þ ¼ 1
N2

XN
i¼1

XN
j¼1

Gσ
ffiffi
2
p x j � xi
� �

(36)

4.3 Information potential energy and the information force of information
theoretic particles

The total QIP energy estimate of the system is given by (Eq. (36)). The QIP
energy estimate of sample x j due to the Information Potential field of a single
sample xi is:

V̂2 x j; xi
� � ¼ Gσ

ffiffi
2
p x j � xi
� �

(37)

The Quadratic Information Potential energy estimate of scalar sample x j in the
Information Field created by all the samples xi ∈, for i ¼ 1, 2, …N is defined as
the average of V̂2 x j; xi

� �
taken over all the samples xi:

V̂2 x j
� � ¼ 1

N

XN
i¼1

Gσ
ffiffi
2
p x j � xi
� �

¼ 1
N

1ffiffiffiffiffi
2π
p

σ
ffiffiffi
2
p� �

XN
i¼1

exp � 1
2

x j � xi
σ
ffiffiffi
2
p

� �2
" # (38)
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If the samples are d dimensional vectors, then the Quadratic Information Poten-
tial energy estimate of vector sample x j in the Information Potential Field created
by all vector samples xi ∈d, for i ¼ 1, 2, …N is defined as:

V̂2 x j
� � ¼ 1

N

XN
i¼1

G2C x j � xi
� �

(39)

where:

G2C ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd Cj j 2d� �q

XN
i¼1

exp � 1
2

x j � xi
� �T 2Cð Þ�1 x j � xi

� �� �
(40)

From (Eqs. (39) and (40)) we can re-write the QIP energy estimate for vector
samples of d dimensions as:

V̂2 x j
� � ¼ 1

N
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Cj j 2d� �q
XN
i¼1

exp � 1
2

x j � xi
� �T 2Cð Þ�1 x j � xi

� �� �
(41)

To obtain the Quadratic Information Force estimate on scalar sample x j due to
the Information Potential field of sample xi, we take the derivative of the Quadratic
Information Potential energy estimate:

F̂2 x j; xi
� � ¼ ∂

∂x j
V̂2 x j; xi
� � ¼ ∂

∂x j
Gσ

ffiffi
2
p x j � xi
� �

¼ ∂

∂x j

1ffiffiffiffiffi
2π
p

σ
ffiffiffi
2
p� � exp � 1

2
x j � xi
σ
ffiffiffi
2
p

� �2
" #" #

¼ 1ffiffiffiffiffi
2π
p

σ
ffiffiffi
2
p� � exp � 1

2
x j � xi
σ
ffiffiffi
2
p

� �2
" #

� 1
2 2σ2ð Þ

� �
∂

∂x j
x j � xi
� �2

¼ 1ffiffiffiffiffi
2π
p

σ
ffiffiffi
2
p� � exp � 1

2
x j � xi
σ
ffiffiffi
2
p

� �2
" #

� 1
2 2σ2ð Þ

� �
2 x j � xi
� �� �

F̂2 x j; xi
� � ¼ 1

2σ2

� �
1ffiffiffiffiffi

2π
p

σ
ffiffiffi
2
p� � exp � 1

2
x j � xi
σ
ffiffiffi
2
p

� �2
" #

�1ð Þ x j � xi
� �� �

¼ 1
2σ2

� �
1ffiffiffiffiffi

2π
p

σ
ffiffiffi
2
p� � exp � 1

2
x j � xi
σ
ffiffiffi
2
p

� �2
" #

xi � x j
� �

¼ 1
2σ2

� �
Gσ

ffiffi
2
p x j � xi
� �

xi � x j
� �

(42)

The Quadratic Information Force on scalar sample x j in the Information Poten-
tial Field created by all the samples xi ∈, for i ¼ 1, 2, …N is defined as the average
of F̂2 x j; xi

� �
taken over all the samples xi:
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F̂2 x j
� � ¼ 1

N 2σ2ð Þ
XN
i¼1

Gσ
ffiffi
2
p x j � xi
� �

xi � x j
� �

¼ 1
2Nσ2ð Þ

1ffiffiffiffiffi
2π
p

σ
ffiffiffi
2
p� �

XN
i¼1

exp � 1
2

x j � xi
σ
ffiffiffi
2
p

� �2
" #

xi � x j
� �

(43)

If the samples are d dimensional vectors, then the Quadratic Information Force on
vector sample x j in the Information Potential Field created by all samples xi ∈d, for
i ¼ 1, 2, …N is defined as:

F̂2 x j
� � ¼ 1

2dN Cj j� �
XN
i¼1

G2C x j � xi
� �

xi � x j
� �

¼ 1
2dN Cj j� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð Þd Cj j 2d� �q

�
XN
i¼1

exp � 1
2

x j � xi
� �T 2Cð Þ�1 x j � xi

� �� �
xi � x j
� �

(44)

5. Hamiltonian MCMC with information theoretic particles

The expression for the potential energy in the Hamiltonian function (Eq. (11)) is
similar to the expression for Rényi’s quadratic entropy (Eq. (28)). This is consistent
with the principles of statistical mechanics where the entropy is related to the
dissipation of the potential energy of the system. Based on this intuition from
statistical mechanics, we replace the PDF of the position vector q in (Eq. (11)) with
the QIP energy estimator as follows:

U q j

� �
¼ � log P q j

� �h i
¼ � log V̂2 q j

� �h i
(45)

The change in momentum of the jth Information Theoretic particle in the
dynamical system is equal to the negative potential energy gradient defined in
(Eq. (16)). This can be expressed in terms of the QIP energy estimator as:

dp
dt
¼ �

dU q j

� �

dq j
¼ �

d log P q j

� �h i

dq j
¼ �

d log V̂2 q j

� �h i

dq j
(46)

From the above expression, we derive the expression for the Hamiltonian
system’s negative potential gradient in terms of the Information Potential and the
Information Force as follows:

�
d log V̂2 q j

� �h i

dq j
¼ � d

dq j
log

1
N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd Σj j 2d� �q �

PN
i¼1

exp � 1
2

q j � qi

� �T
2Σð Þ�1 q j � qi

� �� �

2
66664

3
77775
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�
d log V̂2 q j

� �h i

dq j
¼ � d

dq j
log

1
N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd Σj j 2d� �q

2
64

3
75

� d
dq j

log
XN
i¼1

exp � 1
2

q j � qi

� �T
2Σð Þ�1 q j � qi

� �� �" #

¼ � 1
PN

i¼1 exp �
1
2

q j � qi

� �T
2Σð Þ�1 q j � qi

� �� �

�
XN
i¼1

d
dq j

exp � 1
2

q j � qi

� �T
2Σð Þ�1 q j � qi

� �� �

¼ � 1
PN

i¼1 exp �
1
2

q j � qi

� �T
2Σð Þ�1 q j � qi

� �� �

� 1
2d Σj j� �

XN
i¼1

exp � 1
2

q j � qi

� �T
2Σð Þ�1 q j � qi

� �� �
qi � q j

� �

¼ �
F̂2 q j

� �

V̂2 q j

� �

(47)

This result shows that the gradient of the potential energy of the Hamiltonian
system of Information Particles is just the Information Force estimate normalized
by the Information Potential energy estimate. This also shows that the Information
Force vector influences the trajectory of sample proposals in the HMC algorithm.
This equation is one of the important contributions of our work. Our simulation of
the HMC of a dynamical system of Information Theoretic particles uses this
potential energy gradient equation to evolve the system over time.

5.1 Quality of the information potential energy estimator

As described in [5], the Information Potential energy estimator is a kernel
estimator of the 2-norm of the underlying PDF of the Information Particles. Just like
a PDF estimator, we can define metrics to describe the quality of the Information
Potential energy estimator. The Mean Integrated Square Error (MISE) is an
important metric used to assess the quality of an estimator. This is expressed as:

MISE V̂2 q j

� �h i
¼ E

ð
V̂2 q j

� �
� V2 q j

� �� �2
dq

� �

¼
ð
E V̂2 q j

� �
� E V̂2 q j

� �h in o2
dqþ

ð
E V̂2 q j

� �h i
� V2 q j

� �n o2
dq

¼
ð
Variance V̂2 q j

� �� �
dqþ

ð
Bias2 V̂2 q j

� �� �
dq

(48)
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The bias and variance of the Information Potential estimator can be derived as
follows:

Bias:

E V̂2 q j

� �h i
� V2 q j

� �
¼ E

1
N

XN
i¼1

Gσ
ffiffi
2
p q j � qi
� �" #

� V2 q j

� �

¼ E Gσ
ffiffi
2
p q j � qi
� �h i

� V2 q j

� � (49)

Since the Gaussian kernel is symmetric under the expectation operation:

Gσ
ffiffi
2
p q j � qi
� �

¼ Gσ
ffiffi
2
p qi � q j

� �
(50)

Substituting this in (Eq. (49)) and using the definition of Gσ
ffiffi
2
p from (Eq. (35)):

E V̂2 q j

� �h i
� V2 q j

� �
¼ ¼ E Gσ

ffiffi
2
p qi � q j

� �h i
� V2 q j

� �

¼ 1
σ
ffiffiffi
2
p E G

qi � q j

σ
ffiffiffi
2
p

� �� �
� V2 q j

� �

¼ 1
σ
ffiffiffi
2
p
ð
G

s� q j

σ
ffiffiffi
2
p

� �
V2 sð Þds� V2 q j

� �
(51)

In the above equation sis the dummy variable of integration. Let y ¼ s�q j

σ
ffiffi
2
p :This

implies that dy ¼ ds
σ
ffiffi
2
p . Substituting this in (Eq. (51)), we get:

E V̂2 q j

� �h i
� V2 q j

� �
¼
ð
G yð ÞV2 q j þ σ

ffiffiffi
2
p

y
� �

dy� V2 q j

� �
(52)

When σ
ffiffiffi
2
p

is small, we can write the Taylor series expansion ofV2 q j þ σ
ffiffiffi
2
p

y
� �

as:

V2 q j þ σ
ffiffiffi
2
p

y
� �

¼ V2 q j

� �
þ σ

ffiffiffi
2
p

yV 02 q j

� �
þ 1
2
2σ2y2V 002 q j

� �
þ o σ2
� �

(53)

Substituting this in (Eq. (52)), we get:

E V̂2 q j

� �h i
� V2 q j

� �

¼
ð
G yð Þ V2 q j

� �
þ σ

ffiffiffi
2
p

yV 02 q j

� �
þ σ2y2V 002 q j

� �
þ o σ2
� �h i

dy� V2 q j

� �

¼ V2 q j

� � ð
G yð Þdyþ σ

ffiffiffi
2
p

V 02 q j

� � ð
yG yð Þdyþ σ2V 002 q j

� � ð
y2G yð Þdyþ o σ2

� �� V2 q j

� �

¼ V2 q j

� �
1ð Þ þ σ

ffiffiffi
2
p

V 02 q j

� �
0ð Þ þ σ2V 002 q j

� � ð
y2G yð Þdyþ o σ2

� �� V2 q j

� �

¼ σ2V 002 q j

� � ð
y2G yð Þdyþ o σ2

� �

(54)

This result implies that as the kernel bandwidth σ ! 0 the bias of the Informa-
tion Potential energy estimator for sample q j reduces at the rate of O σ2ð Þ. From the
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above equation it is also evident that the main reason for the bias is the second
derivative of the true Information Potential energy (i.e., the rate of curvature of the
true PDF of the samples). In other words, if the true PDF of the samples has a sharp
spike, the bias of the Information Potential energy estimator will increase. The
Information Potential energy estimator tends to smooth out sharp curvatures or
spikes in the PDF which increases bias. The amount of smoothness is governed by
the bandwidth parameter σ.

Variance:

E V̂2 q j

� �h i2� �
� E V̂2 q j

� �h in o2
¼ E V̂2 q j

� �h i2� �
� 1
N

V2 q j

� �
þ Bias

� �2

¼ E V̂2 q j

� �h i2� �
þO N�1

� �

¼ E
1
N

XN
i¼1

Gσ
ffiffi
2
p q j � qi
� �" #28<

:

9=
;þO N�1

� �

¼ E
1
N

XN
i¼1

Gσ
ffiffi
2
p qi � q j

� �" #28<
:

9=
;þO N�1

� �

¼ 1
N
E Gσ

ffiffi
2
p qi � q j

� �h i2� �
þO N�1

� �

¼ 1
2Nσ2

ð
G2

s� q j

σ
ffiffiffi
2
p

� �
V2 sð ÞdsþO N�1

� �

(55)

Let y ¼ s�q j

σ
ffiffi
2
p :This implies that dy ¼ ds

σ
ffiffi
2
p . Substituting this in (Eq. (55)), we get:

E V̂2 q j

� �h i2� �
� E V̂2 q j

� �h in o2
¼

1
Nσ

ffiffiffi
2
p
ð
G2 yð ÞV2 q j þ σ

ffiffiffi
2
p

y
� �

dyþ O N�1
� � (56)

When σ
ffiffiffi
2
p

is small, we can write the Taylor series expansion of V2 q j þ σ
ffiffiffi
2
p

y
� �

as:

V2 q j þ σ
ffiffiffi
2
p

y
� �

¼ V2 q j

� �
þ σ

ffiffiffi
2
p

yV 02 q j

� �
þ o σð Þ (57)

Substituting this in (Eq. (56)), we get:

E V̂2 q j

� �h i2� �
� E V̂2 q j

� �h in o2

¼ 1
Nσ

ffiffiffi
2
p
ð
G2 yð Þ V2 q j

� �
þ σ

ffiffiffi
2
p

yV 02 q j

� �
þ o σð Þ

h i
dsþO N�1

� �

¼ 1
Nσ

ffiffiffi
2
p V2 q j

� � ð
G2 yð Þ þ o

1
Nσ

ffiffiffi
2
p

� �
(58)

This result shows that as the number of samples N ! ∞ and kernel bandwidth
σ ! ∞, the variance of the Information Potential energy estimator for the sample
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q j reduces at the rate of O
1

Nσ
ffiffi
2
p

� �
. However, as σ ! 0, the variance of the estimator

increases. The result also shows that the variance of the estimator is large where the

value of the Information Potential energy V2 q j

� �
(i.e., true probability of the

sample) is also large. This happens when there are many Information Particles
closer together.

5.2 The Kernel bandwidth parameter and the information potential energy
estimator bias-variance trade-off

We have shown that the Gaussian kernel bandwidth σ directly influences the
bias and variance of the Information Potential energy estimator. This in turn affects
the sample distribution of the PDF estimate generated by the Hamiltonian MCMC.
From (Eq. (54)) it is evident that the bias of the estimator reduces when we
decrease the kernel bandwidth σ. However, (Eq. (58)) clearly shows that the
decreasing σ increases the variance of the estimator. Therefore, we must choose an
optimum bandwidth which minimizes both the systematic error (bias) and the
random error (variance) of the Information Potential energy estimator. An iterative
algorithm to converge to the optimum kernel bandwidth is described in the follow-
ing section.

5.3 Computational complexity of the information potential energy estimator

From (Eqs. (38) and (41)) it may appear that the complexity of computing the
Information Potential is O N2� �

. However, as described in [5], the Information Poten-
tial can be written as a symmetric positive GrammMatrix which can be approximated
using the incomplete Cholesky decomposition (ICD) as an N �D matrix where
D≪N. Using this technique, the time complexity for computing the Information
Potential reduces to O ND2� �

and the space complexity reduces to O NDð Þ.

6. Maximum-likelihood iterative algorithm to adapt the kernel
bandwidth of the information potential energy estimator

There are many iterative kernel bandwidth adaptation techniques available
in the literature. We present a simple iterative technique to illustrate how MCMC
with Hamiltonian of Information Theoretic Particles can be used to adjust the
bandwidth parameter of the iterative PDF estimator. Here, we have chosen to
minimize the Kullback–Leibler (K-L) divergence between the samples of the esti-
mated PDF and the target sample distribution as the criteria for adapting the kernel
bandwidth of the Information Potential energy and Information Force estimator. As
described in [17], this is equivalent to maximizing the likelihood that the estimated
PDF samples output by the MCMC, has the same distribution as the target samples.

The ML estimate of the optimum kernel bandwidth CML for vector Information
Particle samples q j is the solution to the following log-likelihood maximization
problem:

CML ¼ argmax
C

XN
j¼1

log V̂ q j Cj
� �h i

(59)

Using (Eq. (41)) in the summation of the above equation, we get:
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XN
j¼1

log V q j Cj
� �h i

¼
XN
j¼1

log
1

N � 1

XN

i¼1
i 6¼j

G2C q j � qi

� �
2
66664

3
77775

¼
XN
j¼1

log

1
N � 1ð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd 2d

� �
Cj j

q �

PN
i¼1
i 6¼j

exp � 1
2

q j � qi

� �T
2Cð Þ�1 q j � qi

� �� �

2
66666664

3
77777775

(60)

To maximize the above equation, we take the derivative and equate it to 0. This
gives us the following update equation for scalar Information Theoretic particles:

σ2tþ1 ¼
1

2N N � 1ð Þ
XN
j¼1

1

V̂ q j

� �X
N

i¼1
i 6¼j

Gσ
ffiffi
2
p q j � qi
� �

q j � qi
� �2

2
66664

3
77775
t

(61)

In the above equation, σtþ1 is the kernel bandwidth at iteration tþ 1. It is updated
with the result of the right-hand side of the equation obtained at time t. This kernel
bandwidth update equation (Eq. (61)) is in the form of a fixed-point (or invariant
point) equation. This equation is like the equation in [18] except for the factor of 1=2.
For vector Information Theoretic particles, the kernel bandwidth update equation is:

Ctþ1 ¼ 1
2N N � 1ð Þ

XN
j¼1

1

V̂ q j

� �X
N

i¼1
i 6¼j

G2C q j � qi

� �
q j � qi

� �
q j � qi

� �T� �
8>>>><
>>>>:

9>>>>=
>>>>;

t

(62)

In this equation, C is the kernel bandwidth matrix and can have unequal ele-
ments along its diagonal or non-zero off-diagonal elements. If the kernel bandwidth
matrix is constrained to an identity matrix multiplied by a scaling factor, the kernel
bandwidth matrix update equation can be expressed as:

Ctþ1 ¼ 1
2N N � 1ð Þ

XN
j¼1

1

V q j

� �X
N

i¼1
i 6¼j

G2C q j � qi

� �
q j � qi

� ����
���
2

8>>>><
>>>>:

9>>>>=
>>>>;

t

(63)

From the fixed- or invariant-point theorem, the range over which the
fixed-point bandwidth update equations will converge to a unique solution is:

min q j � qi
� �2

2
,Trace E qqT� �� �

2
64

3
75 (64)
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In the above equation, qi,q j are information particles from the target sample
distribution and q is the column vector of all the target information particles. From
the fixed-point theorem, this fixed-point equation will converge to a unique
solution if f 0 σ2ð Þ�� ��< 1.

7. Simulation results

The potential energy surface, which is the plot of (Eq. (41)), of a Hamiltonian
system of Information Theoretic particles for a bivariate Gaussian distribution is
shown in Figure 1. From this figure it is evident that the potential energy surface of
the Hamiltonian system has larger values when the Information Theoretic particles
are sparse and is lowest at the bottom of the bowl-shaped surface where the parti-
cles have the highest density.

The momentum variable of the HMC algorithm occasionally moves the “probe”
particle to a higher energy level but the Hamiltonian system has the tendency to fall
back to its lowest energy level along the bowl-shaped surface. As a result, the HMC
tends to sample the given target distribution more often where the density of the
Information Theoretic particles is the largest.

Figure 2 shows the potential energy gradient of the same bivariate Gaussian
distribution. This is the plot of (Eq. (47)) for this distribution. Each surface in this
figure is one component of the potential energy gradient. Each surface tilts towards
the corresponding mean value μ ¼ �5, 6½ � of the bivariate Gaussian distribution.
The figure shows that the potential energy gradient of the Hamiltonian system is
lowest near the mean of the distribution and is highest further away from the mean.
The time evolution trajectory of the Hamiltonian system lies on this surface.

The iterative PDF estimate of a bivariate Gaussian distribution with
μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ � using MCMC with 3 different kernel bandwidths is
shown in Figure 3.

From Figure 3, it is evident that the MCMC algorithm based on the Hamiltonian
of Information Theoretic particles accurately estimates the PDF of the target distri-
bution. The sample points generated by the HMC algorithm covers most of the
target samples in this figure. This figure shows that our intuition of comparing the
Entropy to the system’s potential and also using the Information Potential in the
derivation of the potential gradient (Eq. (47)) of the Hamiltonian system of
Information Theoretic particles, was correct.

Figure 1.
Potential energy surface of the Hamiltonian system of a bivariate Gaussian μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ �ð Þ
distribution of Information Theoretic particles.
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Figure 2.
Vector components of the potential energy gradient of the Hamiltonian system of a bivariate Gaussian
μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ �ð Þ distribution of Information Theoretic particles.

Figure 3.
The left-hand side figure shows the iterative PDF estimate of a bivariate Gaussian distribution
μ ¼ �5, 6½ �,Σ ¼ 3, 0; 0, 4½ �ð Þ with the MCMC method using the Hamiltonian of Information Theoretic
particles. The right-hand side figure shows that the samples generated by the HMC method mostly overlaps the
samples of the target distribution.

Figure 4.
Iterative estimation of the PDF of a bivariate Gaussian mixture distribution with the MCMC method using the
Hamiltonian of Information Theoretic particles.
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Our HMC algorithm using Information Theoretic particles also works well for
Gaussian mixture distributions. Figure 4 shows that our MCMC algorithm using the
Hamiltonian of Information Theoretic particles can be used to iteratively estimate
the PDF of different multivariate distributions.

Figure 5 shows that the contour plot of the estimated PDF matches closely to the
target PDF. The corresponding samples generated by the HMC algorithm traverses
the two clusters of the bivariate Gaussian mixture distribution and covers most of
the samples of the target distribution.

8. Conclusion

We have proposed a novel perspective on the MCMC method where we used it
to iteratively estimate the PDF of a given target sample distribution. We have
shown that the samples of a probability distribution can be viewed as Information
Particles in an Information Field. These particles have Information Potential energy
and are subject to Information Forces by virtue of their position in the field. The
concept of Information Potential energy fits perfectly within the framework of the
Hamiltonian of a dynamical system. We have derived an important result that the
gradient of the potential energy of the Hamiltonian system of Information Particles
is just the Information Force estimate normalized by the Information Potential
energy estimate.

Our simulation results show that our intuition of comparing Rényi’s Quadratic
Entropy equation with the Hamiltonian potential energy equation to derive the
equation for the potential gradient of a dynamical system of Information Theoretic
particles was correct. Using this equation, we were able to accurately estimate

Figure 5.
Contour plots of the target PDF and the estimated PDF of the bivariate Gaussian mixture distribution. Samples
generated by the MCMC algorithm using the Hamiltonian of Information Theoretic particles.
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univariate and multivariate PDFs. Based on the fixed- or invariant-point theorem,
we also derived an equation to iteratively update the bandwidth parameter of the
Information Potential and Information Force estimators.

In machine learning applications the dataset is sometimes resampled to the
appropriate size before starting the learning operation. Our algorithm can be used to
view the data samples as Information Theoretic particles and resample it using the
HMC described in this chapter.

Author details

Tokunbo Ogunfunmi* and Manas Deb
Signal Processing Research Lab (SPRL), Department of Electrical and Computer
Engineering, Santa Clara University, CA, USA

*Address all correspondence to: togunfunmi@scu.edu

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

153

Markov Chain Monte Carlo in a Dynamical System of Information Theoretic Particles
DOI: http://dx.doi.org/10.5772/intechopen.100428



References

[1] R. Neal, “Probabilistic Inference
using Markov Chain Monte Carlo
methods, Technical Report CRG-TR-
93-1,” Department of Computer
Science, University of Toronto,
Toronto, 1993.

[2] R. Neal, “An improved acceptance
procedure for the hybrid Monte Carlo
algorithm, “Journal of Computational
Physics, vol. 111, no. 1, pp. 194–203,
1994.

[3] M. Betancourt, “A Conceptual
Introduction to Hamiltonian Monte
Carlo, “arXiv: 1701.02434 [stat.ME],
2018.

[4] R. Neal, “MCMC using Hamiltonian
Dynamics, “in Handbook of Markov
Chain Monte Carlo, CRC Press, 2011,
pp. 113–162.

[5] J. Principe, Information Theoretic
Learning, New York: Springer, 2010.

[6] W. K. Hastings, “Monte Carlo
Sampling Methods Using Markov
Chains and Their Applications,
“Biometrika, vol. 57, no. 1, pp. 97–109,
1970.

[7] A. Rényi, “On measures of entropy
and information, “Proceedings of the 4th
Berkeley symposium on math, statistics and
probability, vol. 1, pp. 547–561, 1961.

[8] Z. Makó and Z. P. M. D. 7. 4. & Páles,
“On the equality of generalized
quasiarithmetic means.,” Publicationes
Mathematicae, Debrecen, vol. 72,
pp. 407–440, 2008.

[9] A. N. Kolmogorov, “Sur la notion de
la moyenne,” Atti Accad. Naz. Lincei.
Rend. 12:9, pp. 388–391, 1930.

[10] M. Nagumo, “Über eine klasse
von mittelwerte,” Japanese Journal of
Mathematics, vol. 7, pp. 71–79, 1930.

[11] G. H. Hardy, L. J. E. and P. G.,
Inequalities, Cambridge, 1934.

[12] R. V. L. Hartley, “Transmission of
Information,” Bell System Technical
Journal, vol. 7, p. 535, 1928.

[13] C. E. Shannon, “A mathematical
theory of communication,” Bell System
Technical Journal, p. 535, 1928.

[14] M. Deb and T. Ogunfunmi, “Using
Information Theoretic Learning
techniques to train neural networks,” in
51st Asilomar conference on signals, systems
and computers, 2017.

[15] E. Parzen, “On Estimation of a
Probability Density Function and
Mode,” Annals of Mathematical
Statistics, vol. 33, no. 3, pp. 1065–1076,
1962.

[16] M. Rosenblatt, “Remarks on some
Nonparametric Estimates of a Density
Function,” Annals of Mathematical
Statistics, vol. 27, no. 3, pp. 832–837,
1956.

[17] T. Cover and J. Thomas, Elements of
Information Theory, Wiley & Sons,
2012.

[18] J. M. Leiva-Murillo and A. Artés-
Rodriguez, “Fixed point algorithm for
finding the optimal covariance matrix in
kernel density modeling,” IEEE
International Conference on Acoustics,
Speech and Signal Procesing, vol. 5, 2006.

154

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



Chapter 5

Monte Carlo and Medical Physics
Omaima Essaad Belhaj, Hamid Boukhal
and El Mahjoub Chakir

Abstract

The different codes based on the Monte Carlo method, allows to make simula-
tions in the field of medical physics, so the determination of all the magnitudes of
radiation protection namely the absorbed dose, the kerma, the equivalent dose, and
effective, what guarantees the good planning of the experiment in order to mini-
mize the degrees of exposure to ionizing radiation, and to strengthen the radiation
protection of patients and workers in clinical environment as well as to respect the 3
principles of radiation protection ALARA (As Low As Reasonably Achievable) and
which are based on: -Justification of the practice -Optimization of radiation
protection -Limitation of exposure.

Keywords: Radioprotection, Monte Carlo, medical physics, simulation

1. Introduction

The monte Carlo method is a method of the family of algorithmic methods, it
makes it possible to solve statistical problems and contribute to the analysis of data
based on stochastic processes, thus it allows to evaluate the maturity risk and these
probabilities thus the appointment of this method refers to the random side used at
the casino of Monte Carlo located in MONACO.

The scope of the Monte Carlo method is very broad and covers all fields of nuclear
medicine and particle transport, namely applications in radiotherapy-brachytherapy,
scintigraphic imaging, shielding, dosimetry, PET, gamma camera, etc.

This choice of use of this method is not due to chance, but on the one hand
because it allows to simulate the behavior of different particles and to deduce the
average behavior of all particles according to the law of large numbers and the
central limit theorem, so it can handle coupled and 3D problems with complex
geometry and it can answer specific questions (average flow in a volume, Absorbed
dose, Kerma, Hp(10), etc.), and its major advantages and determining the sources
of errors, on the other hand, this method makes it possible to comply with the laws
of ALARA (As Low As Reasonably Achievable) radiation protection which are:

• Justification of the practice

• Limitation of exposure

• Optimization of radiation protection

All this through simulation and modeling of the experience by the Monte Carlo
method before practicing it in order to be able to determine the limits of the doses
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absorbed by the staff and the patient, as well as to develop and determine the
correction methods to improve the quantification images and results, as well as the
design of radiation detection equipment.

Monte Carlo uses software and calculation codes requiring a better knowledge of
the input data of the problem (source, energy, angle and distribution, spatial and
temporal dependence), and of the geometry which must represent the real situa-
tion, as well. The materials constituting the system to be studied, type of calculation
envisaged, criteria for stopping the simulation, these parameters are defined and
entered by the operator, and the basic nuclear data will be taken directly from data
libraries (effective diffusion section, adsorption, fission, etc.).

Among these codes we cite GEANT4, GAMOS, GATE, FLUKA, PENELOPE…

generally written in the C ++ language. So, Monte Carlo is a reliable method and
offers complete and very close to reality solutions, which cover all the needs in
nuclear medicine.

2. Analogous simulation of photon transport by the Monte Carlo
method

2.1 Generality of photons

Most visualization techniques exploit radiation, photonic or otherwise, the
intensity of which can be measured in total flux, while gamma radiation used in
nuclear medicine is exploited at the level of its smallest indivisible component, the
“photon”, and to detect this gamma radiation, a scintillation detector is generally
used, the sensitive cell of which is a crystal which has the property of producing
a small burst of light when it is touched by a photon, a photomultiplier tube
associated with this crystal transforms this spark into an electrical pulse whose
amplitude is proportional to the energy of the radiation. The total number of
photons detected during a given time interval, or count rate, is the measurement of
the radioactivity present in the field of the detector. It’s this ability to count the
number of individual photons that make medicine nuclear energy provides
quantitative results [1].

So, photons (mphoton = 0, qphoton = 0), are electromagnetic radiations character-
ized by their energy and their origin, they can be produced by the following
phenomena:

• de-excitation of the nucleus following a modification of its structure;

• de-excitation of the electronic procession;

• bremsstrahlung production;

• dematerialization or positron annihilation

There are two types of photons:
X-rays:

• Products during the rearrangements of the electronic procession, usually
caused by the collision of electrons on atoms, [10 keV; 100 keV].

• Produced by linear accelerators used in radiotherapy external,
[6 MeV; 25 MeV].
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Ray γ:
Gamma radiation generally accompany α and β decays, their energy ranges from

60 keV at 3 MeV.
Whatever the origin of the photon, its behavior in matter will be identical.
The photons interact directlywith the electrons ofmatter, and then regenerate

various effects depending on the disappearance or not of this one, we find the photo-
electric effect, creation of pairs which are due to a disappearance of the photon, the
coherent and incoherent diffusion due to the non-disappearance of the photon.

2.2 Simple flowchart

The method to generate histories is to query the probability distributions that
describe the problem. This concept is called sampling. The method chosen for Sam-
pling these probability distributions depends on the nature of the distribution [2].

The analogous simulation of particle transport using the Monte Carlo method
allows the particle to be followed in its actual path, and the particle is sampled by
following the following steps (Figure 1):

1.Sampling of the “random distance” collision distance (average free path).

2. transport of the particle to the point of interaction taking into account the
constraints of geometry.

3.Selection of the collided nucleus (heterogeneous environment).

4.selection of the type of interaction.

2.2.1 Collision distance

This is the distance the particle traveled before it interacted. Or a particle that
will undergo an interaction at a point x, at a distance l in a given volume.
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The probability of interaction in dl:

P Lð ÞdL ¼ μ hνð Þe�μ hνð ÞL dL (1)

The cumulative function is calculated by:

F Lð Þ ¼
ðL
0
μ hνð Þ e�μ hνð Þsds (2)

Figure 1.
Flowchart of photon transport in Monte Carlo.
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We draw a random number ε, and we look for L such that:

ʯ ¼ F Lð Þ ! L ¼ F�1 ʯð Þ (3)

So,

L ¼ � ln εð Þ
μ hνð Þ (4)

where μ hνð ) is the linear attenuation coefficient for the material at photon
energy hν.

2.2.2 Selection of the collided nucleus

Which nuclide is subject to collision in the case of a mixture environment?
We must just generate a random number ε between 0 and 1 and compare it to

the cumulative probabilities (Figures 2 and 3).

Figure 2.
Density of probability.

Figure 3.
Inversion of the CDF for selection of the collided nucleus.
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Example (H2O):

2.2.3 Choice of the type of interaction

The choice of the interaction type is done in the same way of choosing of the
collided nucleus.

with σphotoelecric: cross section of photoelectric effect
σcoh: cross section of coherent scattering effect
σincoh: cross section of incoherent scattering effect

2.2.4 Choice of angle and scattering energy

In the case of photoelectric effect, the history of the photon ends, and the
program begins with another sample, except if there is emission of a fluorescence
X-ray in this case The direction of the emitted photon in the laboratory system is
given by.

Ω
! ¼ sinθ cosΦ, sinθ sinΦ, cosθð Þ (12)

(θ and Φ, are polar and azimuthal angles, respectively), with the azimuthal angle
sampled from,

Φ ¼ 2πε1 (13)

and the polar angle sampled from,
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θ ¼ arccos 1� ε2 1� cosθmaxð Þð Þ (14)

with θmax = π
When the scattering is incoherent the energy hν’ of the scattered photon is taken

as the Compton energy:

hν’ ¼ hν= 1þ hν=mec2
� �

1� cosθð Þ� �
(15)

where
mec

2: the energy equivalence of the electron rest mass (511 keV);
θ: scattering angle.
It is common to neglect sampling coherent scattering angles [3], this may be

justified in many situations. However, in diagnostic radiology the neglect of coher-
ent scattering is a poor approximation [4].

Sampling of scattering angles can be done with the rejection method, from the
total (incoherent more coherent) scattering cross-section [5], or separately, through
method of Klein-Nishina cross-section and the classical Thompson scattering cross-
section and corrected for the use of incorrect scattering cross-sections by applying a
weight factor to the photon [6], or with and the distribution function techniques.

2.2.5 Weight of particle

Ideally, every real particle in a physical problem should be simulated by a
fictitious particle in monte Carlo, in fact, to limit the duration of the simulations
and improve computational efficiency [7], a monte Carlo particle does not exactly
simulate a physical particle but rather represents a number w of particles physical.
The number w is the weight, this weight represents the importance that is assigned
to a particle. By default, the weight of each particle is 1 and the energy deposited by
a particle equals the product of its energy by its weight.

The benefit of giving weight to a particle is to favor certain physical processes
over others. It is necessary to simulate more particle with a low weight to decrease
the uncertainty, if we have a sample N of σ (uncertainty) and we want to decrease σ
to σffiffi

n
p , so we have to multiply N by √n2.

3. Monte Carlo code “GAMOS”

There are several Monte Carlo calculation codes in the field of nuclear medicine,
among these codes there is the famous GEANT4 code which is a very powerful and
flexible toolkit, for medical applications, but the use of this code does not is not easy, it
requires strong knowledge of C ++ language, and details of GEANT4, Most GEANT4
users are researchers who always want to know what is going on in simulation.

The thing that drove Pedro Acre to develop an easy-to-use framework based on the
GEANT4 code, allowing to deal with medical physics problems with minimal knowl-
edge of GEANT4 and no need for C ++, thus it provides all the necessary functional-
ities. to deal with a subject of medical physics while avoiding complicated coding, it is
the GAMOS code (Geant4-Based Architecture for Medicine-Oriented Simulation).

The minimum set necessary to compile a project is to select a geometry, a
physics list and a generator, to run N events to do this, the geometry will be written
in a (.geom) extension file, the name of the geometry, the choice of the physics list,
the generators, and the other functionality will be written in an input file of .in
extension, therefore output items will be displayed in a file with an .out extension
and errors in a file with the gamos_error.log extension.
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3.1 Installation Gamos 6.2.0 under Ubuntu

Tap on terminal:

• mkdir gamos-6.2.0

• cd gamos-6.2.0

• run: wget http://fismed.ciemat.es/GAMOS/download/GAMOS.6.2.0/
download_scripts.sh

• run: sh download_scripts.sh

• cd scripts

• bash./installMissingPackages.Ubuntu.20.04.sh

• run: sh installGamos.sh home/your home directory/gamos-6.2.0

• to make sure that Gamos has been installed correctly, you need to compile the
tutorials

• to compile the tutorials tape:

◦ cd �/gamos-6.0.0/GAMOS.6.0.0

◦ source �/gamos-6.2.0/GAMOS.6.2.0/config/confgamos.sh

◦ cd Tutorials

◦ . /runAll

3.2 Creation of geometry and input file

3.2.1 Geometry file

There are 3 ways to describe your geometry:

• Using a text file.

• Using one of the geometry examples provided by Gamos.

• Using C ++.

In this case we will be concerned with the use of a geometry from a text file, the
extension of this file must be (.geom), the 1st step is to create a mother volume that
will generate all the other volumes, so that the particles do not escape from the
mother volume, and to finish the history of the particles that will come out of this
volume, then build the other volumes from the following tags:

a. Materials

:ISOT: For isotopes
:ELEM: For elements
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:ELEM_FROM_ISOT: For element composed of several isotopes Material mix-
tures by weight, volume or number of atoms

:MIXT: For material made of a mixture of elements or materials it can be:
:MIXT_BY_WEIGHT
:MIXT_BY_NATOMS
:MIXT_BY_VOLUME

Examples

:ISOT Cs137(Name) 55(Z) 137(A) 136,907(atomic mass)
:ELEM Hydrogen(Name) H(Symbol) 1.( Z) 1.0078 (A).

:ELEM Water(Name) 1. (density) 2(Number of components).
Hydrogen 2*1.0078/ (2*1.0078 + 15.999)
Oxygene 1.0078/(2*1.0078 + 15.999)

Geant4 provides a list of predefined materials, whose compositions correspond
to the definition of NIST. Among them you can find all the simple elements, you can
use these materials when building a volume in GAMOS without needing to redefine
them on your geometry file.

The elements can be found in � / gamos-6.2.0 / GAMOS.6.2.0 / data /
NIST_elements.txt

Materials consisting of a mixture of elements or materials can be found in � /
gamos-6.2.0 / GAMOS.6.2.0 / data / NIST_materials.txt

Other materials common in medical physics are also predefined in the files � /
gamos-6.2.0 / GAMOS.6.2.0 / data / NIST_materials.txt and /PET_materials.txt.

b. Volume

: VOLU, can be BOX, TUBE, TUBS, CONE, CONS, PARA, TRAP, SPHERE,
ORB, TORUS, POLYCONE, ELLIPTICALTUBE… .

For more details on List of solid parameters see the manual [8].
: PLACE mean the placement of the volume in relation to the parent volume,

according to which rotation Matrix, and which coordinates x, y, z.
: PLACE_PARAM is the placement of several copies of a volume along a line.

c. Rotation matrix

:ROTM, a rotation matrix is interpreted as the rotation that should be applied to
the volume in the reference system, it can be defined in three ways:

3 rotation angles around X,Y,Z
6 theta and phi angles of X,Y,Z axis
9 matrix values (XX, XY, XZ, YX, YY, YZ, ZX, ZY, ZZ)
Example

:ROTM R000 0. 0. 0.
:VOLU world BOX 400. 400. 400. G4_AIR
:VOLU myvol BOX 200. 200. 200. G4_Pb
:PLACE myvol 1 world R00 0. 0. 0.

There are other features offered by Gamos such as Visibility, Color and
transparency, Check overlaps… . For more details return to manual.
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3.2.2 Input file

The first lines of this file are to appeal to the geometry file using the following
commands:

/ gamos / setParam GmGeometryFromText: FileName test.geom
/ gamos / geometry GmGeometryFromText
Then, determine one of the lists found on physical Gamos and functions

adabpted to your problem, such as:
/ gamos / physicsList GmEMPhysics: for gammas, electrons and positrons, as well as

for optical photons.
/ gamos / physicsList HadrontherapyPhysics: this list relates to hadron-therapy.
/ gamos / physicsList GmEMExtendedPhysics: this list concerns subatomic particles,

besons, leptons, mesons, barions, ions.
/ gamos / physicsList GmDNAPhysics: This physics list defines the physical processes and

models to simulate the interactions of very low energy electrons (down to 7 eV) in water.
… .
Then, you have to determine your generator by writing the following command.
/ gamos / generator GmGenerator
The generator allows you to choose the type of particle and combine any number

of single particles or isotopes decaying into e +, e-, g, as well as choosing which
distributions of time, energy, position and direction by the following commands:

3.2.2.1 Particle source

For a single source particle:
/gamos/generator/addSingleParticleSource SOURCE_NAME PARTICLE_NAME

ENERGY.
For an isotope source:
/ gamos / generator / addIsotopeSource SOURCE_NAME ISOTOPE_NAME

ACTIVITY.
…

3.2.2.2 Time distributions

There are 3 choices, Constant time, Time changing at constant interval, Decay
time:

/ gamos / generator / timeDist SOURCE_NAME GmGenerDistTimeConstant TIME .
/gamos/generator/timeDist SOURCE_NAME GmGenerDistTimeConstantChange

TIME_INTERVAL TIME_OFFSET.
/gamos/generator/ timeDist SOURCE_NAME GmGenerDistTimeDecay ACTIVITY

LIFETIME.
…

3.2.2.3 Energy

It can be, Constant, BetaDecay, Gaussian, RandomFlat…
/gamos/generator/energyDist SOURCE_NAME GmGenerDistEnergyConstant

ENERGY.
/ gamos / generator / energyDist SOURCE_NAME GmGenerDistEnergy-

BetaDecay.
/ gamos / generator / energyDist SOURCE_NAME GmGenerDistEnergy-

Gaussian MEAN SIGMA.
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/ gamos / generator / energyDist SOURCE_NAME GmGenerDistEnergyR-
andomFlat MIN_ENERGY MAX_ENERGY.

…

3.2.2.4 Position

It can be, at point, in a Geant4 volume, in a user defined volume, in steps along a
line,in square, in a disc, in the voxels of a phantom(materials, structure… )… .

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionPoint
POS_X POS_Y POS_Z.

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositio-
nInG4Volumes LV_NAME1 LV_NAME2.

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionInU-
serVolumes POS_X POS_Y POS_Z ANG_X ANG_Y ANG_Z SOLID_TYPE
SOLID_DIMENSIONS.

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPosition-
LineSteps POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z STEP.

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionSquare
HALF_WIDTH POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z.

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionDisc
RADIUS POS_X POS_Y POS_Z DIR_X DIR_Y DIR_Z.

/gamos/generator/positionDist SOURCE_NAME GmGenerDistPositionPhan-
tomVoxels.

It is also possible to create distributions where several of the four variables, are
generated at the same time, so that they are related.

By using this minimum of commands described above we can run an example
and also visualize the geometry by VRML, OpenGL and ASCII with this command:

/control/execute PATH_TO_MY_GAMOS_DIRECTORY/examples/
visVRML2FILE.in

The main way to extract information of what is happening and modify the
running conditions is user action,

/gamos/userAction MyUserAction
This user action feature allows you to add filters, and classifier in order to follow and

focus on the particles as well as the processes you are interested in with this command:
For filters
/gamos/userAction USER_ACTION FILTER_NAME
/gamos/filter FILTER_NAME FILTER_CLASS PARAMETER_1 PARAMETER_2
For classifiers
/gamos/userAction USER_ACTION CLASSIFIER_NAME
/gamos/scoring/assignClassifier2Scorer CLASSIFIER_NAME SCORER_NAME
Next step consiste of attaching a sensitive detector to a volume, which used to

creating hits (deposits of energy) each time a track traverses a sensitive volume and
loses some energy.

Finally you can creat a score to calculatemanyquantitieswith orwithout error, in one
or several volumes, for each scored quantity one of several filters can be used, only
particles in a given volumen, and results can be displayed in a file or as a histogram.

3.3 Application

3.3.1 Attenuation study for photons of different energy (shielding)

To strengthen radiation protection, nuclear activities must be carried out in
accordance with the fundamental principles to ensure the protection of man and the
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environment against the harmful effects of exposure to ionizing radiation, and since
we are talking about medical nuclear medicine, The use of ionizing radiation for
medical purposes contributes significantly to the exposure of the population. After
natural exposure, this practice presents the first source of exposure of artificial
origin, it is therefore recommended to control the doses, and to minimize the time,
it is suggested to simulate the experiment before the practice.

We will be interested in the photon, in a midst, the fluence of photons decreases
exponentially with the thickness of the material crossed. So, we have:

Φ xð Þ ¼ Φ 0ð Þe�μx (16)

As the Kerma is at any point proportional to the fluence of photons:

K xð Þ ¼ K 0ð Þe�μx (17)

For against, the absorbed dose is proportional to the photon fluence that when
the electronic equilibruim is achieved in the material medium. In this case:

D xð Þ ¼ D 0ð Þe�μx (18)

Therefore the dose rate decreases exponentially with the thickness of the mate-
rial traversed, so to protect ourselves from external exposure we must move far
from the source and protect ourselves with shielding, where the role of simulation
comes in determining the thickness necessary to attenuate these photons.

The attenuation study of a parallel beam of photons of diffetent energy which
moves away from a distance of 1 m from the plate of material with Gamos is made
by this user action: /gamos/userAction SHNthValueLayerUA, and we must stopped
secondary particle, so that they will not be counted as particles coming out of the
shield layers by this command /gamos/userAction GmKillAtStackingActionUA
GmSecondaryFilter. This commands, allows us to studying penetration, and to
establish the role of the shielding.

3.3.2 For photons of 150 Kev

Figures 4 and 5.

Figure 4.
Attenuation of E = 150 Kev photons by Pb.
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3.3.3 For photon of 511 Kev

Figures 6 and 7.

3.3.4 For photon of 2 Mev

Figures 8 and 9.

3.3.5 Interpretation

(Figures 4–9).
From the curves we can see that the element suitable for attenuating

and absorbing photons is lead (you can try other materials than Cu), because it
is less expensive, and it allows to have an optimal thickness compared to other
materials, as well as for the facility of its control of the parameters of aquatic
chemistry.

Figure 5.
Attenuation of E = 150 Kev photons by Cu.

Figure 6.
Attenuation of E = 511 Kev photons by Pb.
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We can also Make an histogram of the energy spectrum of photons of
energy 1 Mev and other types of particles that traverse the plate by using
Gamos filters, and classifiers, with GmClassifierByParticle:DataList
FinalKineticEnergy (Figures 10–13).

So we can remove the number of interactions that occur along the path of the
particle in the material with this command /gamos/userAction GmCountProcessesUA

Shielding calculations made by hand are often approximations, the most accu-
rate are those performed by simulation, The thickness of the shielding needed
depends on: Radiation Energy, the shield material, and Radiation intensity, So the
lower the energy of the gamma rays, the easier it is to shield of them, and high
energy gamma rays sometimes determine shielding requirements.

For gamma rays, the higher the atomic number of the shield material, the
greater the attenuation of the radiation.

Figure 7.
Attenuation of E = 511 Kev photons by Cu.

Figure 8.
Attenuation of E = 2Mev photons by Pb.
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Figure 9.
Attenuation of E = 2Mev photons by Cu.

Figure 10.
Energy spectrum of photons that traverse the plate.

Figure 11.
Energy spectrum of electron.
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3.4 PET scanner

PET imaging combined with CT scanning allows two examinations to be
performed simultaneously: the PET examination studies the biological activity of
organs, while the CT examination studies the anatomy and morphology of organs.
The objective of this examination is to detect anomalous organic activities, by
injecting the patient with low-level radioactive glucose, the radiation dose is very
low, and does not represent a risk for the patient and his entourage. The injected
product is a weakly radioactive marker (derived from glucose marked by Fluorine
18), which will be fixed on the organs, with a preference for the organs that work
more, the radioactive marker to highlight the biological activity. This examination is
performed on a hybrid machine consisting of two devices:

• PET scanner that records the radiation emissions of the injected product.

• X-ray CT which allows to obtain anatomical images

Quantitative reconstruction of PET (Positron emission tomography) data with
GAMOS (Monte Carlo) needs to have knowledge of the scanner geometry
(Figure 13). Both typical clinical and preclinical scanners use a block-type geome-
try. Many rectangular blocks of crystals are arrayed in regular polygons. Some of
these polygons are arranged along the axis of the scanner, and Monte Carlo simula-
tion remains an essential tool to help design new medical imaging devices, and to
know what is happening in the simulation.

Figure 12.
Number and type of processes that occur when a number N = 10 4of photons passes through the material.

Figure 13.
Geometry realized by GAMOS. Three-dimensional (3D) acquisition with block description, and 18F source.
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With this user action we can obtain information about the physics process that
occur in a PET scanner with all particle:

/gamos/userAction GmCountTracksUA
/gamos/userAction GmCountProcessesUA
/gamos/userAction GmHistosGammaAtSD
/gamos/analysis/histo1Max *Energy* 1*MeV
/gamos/analysis/histo1Max *Pos* 200*mm
/gamos/userAction GmTrackDataHistosUA GmPrimaryFilter
We will obtain results about track (Figure 14) and procces that occur for each

particle in terminal and we can save them in file, for example
/gamos/userAction GmHistosGammaAtSD, this command give us an idea about

the interaction of original gammas in the sensitive detector (Figure 15).
So we have 901 total number of events:
55.66% of ‘original’ gammas reaching one sensitive detector,
94.21% with photoelectric interaction in SD,
37.67%with photoelectric interaction and no Compton interactions,
38,51, with photoelectric interaction and one Compton interaction,
16.29% with photoelectric interaction and two Compton interaction,

Figure 14.
Information about track of the job in interactive running.
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Figure 15.
Final position X ,Y,Z obtain with GAMOS.

Figure 16.
Accumulated Energy deposit.

Figure 17.
Accumulated energy lost.

172

The Monte Carlo Methods - Recent Advances, New Perspectives and Applications



6.7% with photoelectric interaction and more than two Compton interaction,
31,03% with no photoelectric interaction and no Compton interaction.
Also we can get more details from the histrograms for examples:
Figures 16–20 show the different parameters and details after reaction

generated by Gamos based on random number generator (Section 2.2.4).

4. Conclusion

To conclude, Monte Carlo simulation facilitates the experiment and minimizes
the time to process the phenomena, so we can go as far as studying the treatment

Figure 18.
Accumulated energy lost.

Figure 19.
Information about interaction of gammas in the sensitive detector.

Figure 20.
Informations about Compton effect.
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using proton therapy because if we use a cancer treatment with photons, there will
be the maximum amount of X-rays, so there will be a maximum dose delivered to
the area to be treated (tumor volume), but also there will be a certain level of dose
around this volume which are the organs at risk, and which are the tissues that
should not be irradiated and which are, so the great advantage of protons is to have
a delicate dose, almost zero once the target is reached, because the protons deposit
their energy locally, so they generate less complication, and allows to decrease the
risk of having a radiation-induced carcinogenesis. Proton therapy has an extremely
important indication, which makes it possible to prevent proton therapy, and the
Monte Carlo method remains a very powerful tool that makes it possible to improve
research in this field by going as far as microdosimetry.
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Abstract

This chapter presents a specific reliability study of some GEANT4-DNA (ver-
sion 10.02.p01) processes and models for proton transportation considering ultra-
thin layers (UTL). The Monte Carlo radiation transport validation is fundamental to
guarantee the simulation results accuracy. However, sometimes this is impossible
due to the lack of experimental data and, it is then that the reliability evaluation
takes an important role. Geant4-DNA runs in an energy range that makes impossi-
ble, nowadays, to perform a proper microscopic validation (cross-sections and
dynamic diffusion parameters) and allows very limited macroscopic reliability. The
chemical damage cross-sections reliability (experiment versus simulation) is a way
to verify the consistency of the simulation results which is presented for 2 MeV
incident protons beam on PMMA and PVC UTL. A comparison among different
Geant4-DNA physics lists for incident protons beams from 2 to 20 MeV, interacting
with homogeneous water UTL (2 to 200 nm) was performed. This comparison was
evaluated for standard and five other optional physics lists considering radial and
depth profiles of deposited energy as well as number of interactions and stopping
power of the incident particle.

Keywords: Geant4-DNA, Monte Carlo methods, Proton transportation, Ultra-thin
layer, Software reliability

1. Introduction

The Monte Carlo toolkit Geant4 [1–3] was developed as a general-purpose
transportation toolkit. This toolkit has a framework that extends the transport
process to model the early biological damage induced by ionizing radiation at
cellular and sub-cellular scale [4–6], the so called Geant4-DNA [4–6], that makes
possible to simulate the physical–chemical and chemical processes for water
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radiolysis, the molecular geometries, and the damage quantification. This frame-
work can simulate energies from 10 eV to 100 MeV for protons, enabling the
simulation of particles’ interaction using discrete models at nanoscale. It is also
known and well informed on Geant4 manual “Guide For Physics Lists” that simu-
lation of transport for energies below 1 keV reduces significantly the accuracy of the
transport models [7]. However, to get a simulation in the necessary scale for
Geant4-DNA it is inevitable to consider energies below 1 keV. It allows to simulate,
depending on the interacting particle and energy range, the following processes
(applying different possible models): elastic scattering, ionization, excitation, elec-
tron capture, nuclear scattering, charge increase and decrease, attachment and
vibrational excitation [8].

The validation (macroscopic and microscopic) of the results by comparing the
Geant4-DNA cross sections or simulated quantities to experimental data is still
extremely limited, considering the energy range used by Geant4-DNA, which
makes important to be careful on generalizing the simulation results.

In this chapter simulations results of 2 MeV kinetic energy protons impinging on
homogeneous water ultra-thin layers (UTLs), using different physics lists (includ-
ing Geant4-DNA running on version 10.02.p01) are presented. The reliability
evaluation was performed considering chemical damage cross section (CDCS) and
stopping power (SP). The comparison among different Geant4 recommended
physics lists was based on radial and depth deposited energy profiles, number of
interactions and SP.

2. The experimental and simulation definitions

In this section the experimental setup, the developed application for the
simulation and the results are presented. The strategy used to evaluate the
reliability of the simulation for each physics list was performed comparing
simulated-calculated to experimental CDCS, and simulated SP to NIST
database. The physics lists evaluation was based on the comparison of the results
of interaction files generated, that registered several information on each
simulation step.

2.1 The experimental setup for chemical damage cross section estimation

The experimental setup used on reliability evaluation was defined to collect the
CDCSs using polymer ultra-thin films. High-grade poly(methyl methacrylate)
(PMMA) with density 1.190 g/cm3 and poly(vinyl chloride)(PVC) with density
1.406 g/cm3 powder were dissolved and spun onto polished silicon (Si) wafers.
Homogeneous ultra-thin films, with thicknesses from 4 nm to 200 nm, and very
low roughness (�0.3 nm RMS) were obtained. The films were bombarded by
2 MeV Hþ in vacuum at a HVEE 3 MV Tandetron (Porto Alegre, Brazil) with a set
of fluences ranging from 1014 ions/cm2 to 2.8x1015 ions/cm2. X-ray photo-electron
spectroscopy (XPS) was performed on the irradiated samples at Universit de
Namur, Belgium, to evaluate bond-breaking cross sections of C=O and C-Cl bonds
as a function of the thickness of the polymer. The radiolytic efficiency is usually
estimated measuring CDCSs for different transformation processes induced by
radiation such as bond-breaking [9–11]. These CDCSs for bond-breaking represent
the energy loss by length (dE/dx) [12, 13] and are based on the number of specific
bond-breaking at the end of an irradiation process. Additional information about
the experimental data collection can be found at [14].
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2.2 The Monte Carlo simulation

This Geant4-DNA application (version 10.02.p01) was developed considering a
protons beam impinging normally on the entrance surface of an ultra-thin layer
(UTL) of water in a semi-infinite configuration of 500 nm per 500 nm with thick-
nesses from 2 nm to 200 nm and a water 500 nm substract. The simulated protons
beams were monodirectional and monochromatic with initial kinetic energies of
2 MeV, 5 MeV, 10 MeV and 20 MeV.The CDCS evaluation was performed only for
the 2 MeV incident protons beam, while the SP one was performed for 2 MeV,
5 MeV, 10 MeV and 20 MeV protons beams. For each UTL and beam energy 105

histories were simulated, taking into account a cut-off of 1 nm for secondary
particle generation. According to Geant4-DNA official webpage the Geant4-DNA
processes are all discrete; as such, they simulate explicitly all interactions and do not
use any production cut, so this 1 nm cut will have no effect on the Geant4-DNA
Physics results [8]. The class G4EmDNAPhysics (henceforth named DNA) and the
other five available physics lists (named DNAopt1 to DNAopt5) were evoked for
each setup configuration for both reliability and comparison studies. So, to
enlighten the physics lists evoked to transport protons and electrons, the processes
and models used on Geant4-DNA classes are presented on Figures 1 and 2.

To simulate the processes and models above cited, additional electromagnetic
physics builders are needed and, to support the simulation, the Livermore physics
list was implemented by default [15].

Since Geant4-DNA only simulates standard liquid water as interaction material,
the only way to explore situations close to the experimental setup was by altering
the water density. So, different CDCSs were simulated-calculated using water with
different densities. In addition to standard liquid water, composed by 2 hydrogen
and 1 oxygen with density of 1 g/cm3, a “dense water” of the same composition but
with a 1.190 g/cm3 density was considered.

Figure 1.
Scheme of the processes and models for protons transport and different physics lists. The symbol * indicates that
the flag “SelectFasterComputation” was activated. The G4DNAChargeDecrease class always evoke the
G4DNADingfelderChargeDecreaseModel class, so it was nod added to the scheme.
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The total number of histories, the total deposited energy and its statistical fluctua-
tions were recorded at the end of each run. Also, during the simulation, for each
interaction, the following information were recorded: pre and post-step position
(x, y and z, in nm); deposited energy due to the interaction (in MeV); event, parent
particle, track and step identification; process name and particle type. Later, these
information were organized/accumulated on bins representing radial deposited energy
profiles (henceforth called radial profile) and SP obtained with different physics lists.

To estimate the CDCS, radial profiles based on the position information
recorded for 2 MeV incident kinetic energy protons beam and thicknesses from
2 nm to 200 nm were generated. The SP for protons was calculated considering the
total energy deposited in each UTL divided by its thickness.

2.3 The reliability evaluation

On this subsection the methodological strategy used and the results for the
reliability evaluation are presented.

The CDCS was calculated based on the standard thermally activated model
(STAM) [16] taking into account the radial deposited energy profile simulated to
generate the probability energy deposition function which was adjusted to estimate
the activation energy density value for a specific bond-break in N positions [14].
The simulated-calculated CDCS was compared to experimental ones for 2 MeV Hþ

on PMMA and PVC ultra-thin films.
The SP profile as function of the UTL thickness was evaluated by the fitting curve

considering all thicknesses for each incident kinetic energy protons beam and each
physics list. The fitting TamLog (y = a + b*ln(sing*(x-c))) for all curves presented
R-squared coefficient larger than 0.99. The radial profile, mainly formed by second-
ary electrons, was used to define the simulated electron range which was compared to
the CSDA ESTAR electrons range [17]. The simulated SP is a microscopic quantity

Figure 2.
Scheme of the processes and models for electron transport and different physics lists. The symbol * indicates that
the flag “SelectFasterComputation” was activated. The G4DNAAttachment and G4DNAVibExcitation classes
always evoke respectively the G4DNAMeltonAttachmentModel and the G4DNASancheExitationModel classes,
so it was nod added to the scheme.
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since the largest water UTL thickness is smaller than the expected electron range
which is a limitation in this comparison, but unfortunately it was not possible to find
an experimental SP database valid for ultra-thin layers. This comparison was
performed using the extrapolation of the fitting TamLog curve considering the mac-
roscopic CSDA ESTAR electrons range as a limit. The NIST CSDA ESTAR electrons
range was defined based on the calculated maximum kinetic energy (Kmax) that can
be transferred in a head-on collision with an atomic electron. The Eq. (1) [18]
depends on the relativistic velocity parameter of the incident proton (β ¼ vincidentparticle

c )
and the rest-mass energy of the scattered electron (m0c2).

Kmax ≃ 2m0c2
β2

1� β2

� �
(1)

This equation assumes that the electrons are unbound and is applicable for an
incident heavy particle with kinetic energy smaller than its rest-mass energyM0c2,
which is the condition applied to the study case presented in this chapter. The Kmax
was used as input parameter to estimate the CSDA range from ESTAR database [17],
using a log–log interpolation to calculate the data not presented on the database grid.
The CSDA ranges estimated from ESTAR were considered maximum limits taking
into account the theoretical limitation of the interaction with unbounded electrons.
This overestimates electrons range value and limits the comparison between the
microscopic simulated range, based on SP, and the macroscopic ESTAR CSDA range.
Both conditions underestimate the simulated electrons range and if the simulated
value is larger than the ESTAR value, the former is unreliable.

2.3.1 Reliability results based on chemical damage cross section

On this subsection the reliability for the CDCS and the SP considering different
Geant4-DNA physics lists are presented and analysed. Figures 3 and 4 present the

Figure 3.
Chemical damage cross section as function of the UTL thickness considering 2 MeV, bin size of 1 nm and standard
water density for bonds Cl/(C1+C3+C4) (a), Cl/Ctotal (b), O-CH3 (c) and O=C (d) and all physics lists.
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experimental and simulated data for CDCS and Table 1 presents the activation
energy density considering different bond-breaking for 2 MeV kinetic energy pro-
tons beam. Adapting the activation energy published by [10] to the conditions used

Figure 4.
Chemical damage cross section as function of the UTL thickness considering 2 MeV, bin size of 0.2 nm and
standard water density for bonds Cl/(C1+C3+C4) (a), Cl/Ctotal (b), O-CH3 (c) and O=C (d) and all physics
lists.

0.2 nm 1.0 nm

Condition Cl/(C1+C3+C4) Cl/Ctotal Cl/(C1+C3+C4) Cl/Ctotal

water_DNA 2.21 2.60 4.71 5.12

dense_water_DNA 3.14 3.70 6.07 6.65

water_DNAopt1 2.33 2.73 4.69 5.13

water_DNAopt2 2.21 2.62 4.82 5.29

water_DNAopt3 2.21 2.61 4.82 5.29

water_DNAopt4 2.53 2.98 5.10 5.60

water_DNAopt5 2.53 2.98 5.11 5.60

Condition O-CH3 C=O O-CH3 C=O

water_DNA 26.45 13.01 7.53 6.84

dense_water_DNA 34.26 17.45 9.62 8.66

water_DNAopt1 27.37 13.91 7.43 6.69

water_DNAopt2 28.32 14.41 7.63 6.87

water_DNAopt3 28.34 14.42 7.64 6.87

water_DNAopt4 29.13 14.82 8.09 7.28

water_DNAopt5 29.08 14.80 8.08 7.28

Table 1.
Calculated values of activation energy density (ε0), in eV/nm3, for each bond-break situation and condition
simulated.
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in this study case, the activation energy to get a reliable result must be in the range
from 1 eV/nm3 to 10 eV/nm3. To analyse the influence of the radial profile step size
on CDCS, these profiles were organized in steps of 0.2 nm and 1.0 nm for all studied
cases. These two different bins were defined to explore the influence of the
extremely strong slope in the first 3 nm of the radial profile curve, where the
deposited energy is reduced approximately between 8% and 13% of the total
deposited energy, depending on the kinetic energy protons beam.

The CDCSs for water, 1 nm bin size and all transport models for each ultra-thin
layer are presented on Figure 3. On this figure it is visible that most of the transport
models showed the same profile for CDCS as function of the UTL thickness, with
the exception of Cl bond-breaks (Figure 3a and b) and DNAopt1 that showed
similar tendency but different amplitude. A similar behaviour for different physics
lists can be seen on Figure 4, including the DNAopt1 discrepancy observed on
CDCSs for 0.2 nm bin size and all physics lists. However, for a complete reliability
evaluation it is important to take into account the activation energy used to get the
best fitting curve on the estimation of the simulated CDCS (Table 1).

Still considering the 0.2 nm bin (Figure 4), there is a visible difference on the
activation energy values when compared to 1 nm bin. As one can see, the results of
activation energy are out of the reliability range presented by [10] for the bonds
O-CH3 and O=C and 0.2 nm bin (Table 1). However, it is important to notice that
these results are dependent on the accentuated slope of the radial profile discussed
on subsection 2.2 which leads to the condition that small changes on the bin size
may result in a large change on the activation energy. It is necessary to take this
observation into account on further evaluations and to use the most conservative
methodology to guarantee the reliability of the results. In this chapter, the total
deposited energy calculated for 1 nm bin are reliable because this results presented
smaller statistical fluctuations than the ones calculated for 0.2 nm bin, keeping the
consistency for the activation energy calculated value.

The dense water when compared to standard water presented, in general, lower
CDCSs values, as was expected, due to the increase on this material density.

The activation energies defined to get the best fitting presented on Table 1
showed values larger than 10 eV/nm3, out of the reliability range, for bin size
0.2 nm and bond-breaks O-CH3 and C = 0. However, for bin size 1 nm (Figure 3)
all activation energies evaluated for all bond-breaks are in the reliability range. This
significant difference in the activation energy shows the dependency of the CDCS
on the bin size defined to generate the radial profile. This happens due to the
accentuated slope on the simulated radial profile (Figure 7b) where most of the
deposited energy is absorbed in the first 5 nm. Because of that, the interpolation
method used to integrate the radial deposited energy and its agreement with the
simulated data are fundamental.

Another important consideration about CDCS is the shape of the curves for
different bin sizes and same bond. In this cases, specially the O=C and O-CH3
(Figure 3c, d, 4c and d), the changes on the curve shapes are visible, where 0.2 nm
bin presented a flat shape curve which is less reliable based on the experimental data.

To evaluated the effect of material density on CDCS and to observe a condition
closer to the experiment setup (PMMA material), the data obtained with dense and
standard water were compared to the experimental data. It is visible that the
standard water data presented only one case (Figure 5c) out of the region defined
by the error bars of the experimental CDCS, Cl/Ctotal. Considering the activation
energy (Table 1) one may see that the values presented by dense water DNA were
always larger than the ones presented by standard water DNA. Despite the differ-
ences, both descriptions of water presented activation energies in the reliability
range, however, taking into account the standard water that presented one case
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(Figure 5c) out of the error bars of the experimental CDCS, one may assume that
the dense water may be a better option to describe PMMA on simulations.

2.3.2 Reliability based on stopping power

Figure 6 presents the SP values as function of the UTLs for all evaluated ener-
gies. All values of SP based on simulated deposited energy were sub-estimated, as
expected, since the thickness of the UTLs were inferior to the electron range.
According to ESTAR - of National Standards and Technology [17] the observed
tendencies for SP at 2 MeV incident protons will achieve the (macroscopic) value
for thicknesses around a few hundred nm. For energies of 5 MeV, 10 MeV and
20 MeV differences of 8%, 10% and 18%, respectively, were observed. One can see
that the percentage difference increased with the increase on proton incoming
energy. The studied cases were in the domain of UTLs, which means that the
layers were not thick enough to reach stability on the energy depth profile. This
comparison has limitations since the values published by [17] are macroscopic
measurements. Since there were no SP data available on literature in the
simulated conditions presented on this chapter, the strategy was to compare the
data considering ESTAR [17] value as a limit to the tendency curve evaluated as
electron range (Table 2). Values above this limit were considered inconsistent for
the simulation.

As can be seen on Table 2, only the electron range presented by DNAopt1 is
above the macroscopic limit turning this the unique physics list that can be consid-
ered unreliable. Another important observation is that DNAopt2 and DNAopt3, and
DNAopt4 and DNAopt5 presented similar electrons ranges due to the similarity on
their transport models for electrons in energy range of this simulation (Figure 2).

The DNAopt1 simulates more electrons interactions (increasing the running
time) than DNAopt4 and DNAopt5 that were the fastest among all physics lists

Figure 5.
Chemical damage cross section as function of the UTL thickness considering 2 MeV, different water description,
bin size of 1 nm and bonds Cl/(C1+C3+C4) (a), Cl/Ctotal (b), O-CH3 (c) and O=C (d) simulated with DNA
physics list.
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evaluated. It was observed, for the simulated energies, that DNAopt1 was 1.5 to 4.1
more time consuming than DNA.

The tendencies, similarities and differences showed by the results obtained with
the different physics lists can be explained reporting to the scheme on Figure 2. In
this Figure one can see that: * DNAopt1 evokes the multiple scattering class for
electrons instead of the elastic scattering (DNA) class for electrons; * DNAopt2 and
DNAopt3 evoke the same process and model classes with the only change on the
ionization model that had the flag SelectFasterComputer activated on DNAopt2;
* DNAopt4 and DNAopt5 evoke similar process and model classes with exception
for energy above 10 keV where additional models were evoked for excitation and
ionization processes and the flag SelectFasterComputer was activated on DNAopt5.

Figure 6.
Stopping power behaviour as function of the UTL thickness for different incident energy: 2 MeV (a), 5 MeV
(b), 10 MeV (c) and 20 MeV (d). The red line represents the expected value of stopping power from
PSTAR-NIST [19].

Kproton 2 MeV 5 MeV 10 MeV 20 MeV

Kmax 4.34 keV 10.92 keV 21.90 keV 44.03 keV

std 380.41 1336.06 2917.06 10226.08

opt1 1409.78 4556.32 14524.03 7495.98

opt2 393.53 1246.24 3573.87 28166.71

opt3 385.60 1300.47 3911.23 13049.32

opt4 416.72 1513.44 4586.29 19025.65

opt5 415.67 1625.90 4281.31 15316.91

NIST 581.61 2937.84 10060.36 34562.29

1. Kproton represents the incident protons kinetic energy that will interact with the atomic electrons.
2. Kmax represents the maximum kinetic energy that can be transferred in a head-on collision with an atomic electron.

Table 2.
Electrons range estimated with the simulated data and defined using NIST ESTAR [17].
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2.4 The physics lists comparison

On this subsection the methodological strategy used and the comparisons among
results of deposited energy profiles, total deposited energy and number of interac-
tions for different Geant4-DNA physics lists is presented and analysed.

All statistical comparisons among different physics lists were performed using
two-sample non-parametric statistical tests: Chi-Square test (χ2) considering the
statistical fluctuation of the simulation, independence Anderson-Darling k-Sample
test (AD) and Kolmogorov–Smirnov (KS) test to evaluate both profiles distribu-
tions. The evaluation of the general conformity of the DNApto physics lists to the
reference DNA physics list was performed by Chi-Square contingency Tables (CT)
based on the number of cases that passed and failed the statistical χ2 test. The
contingency tables were applied to the total deposited energy and the depth and
radial profile evaluations. All the statistical tests were performed for a significance
level (SL) of 0.05.

2.4.1 The comparison findings

Figure 7 presents an example of radial and depth profiles according to DNA
physics list that exemplifies the behaviour observed in all cases.

The shape of both profiles presented on Figure 7 is similar to the expected.
Usually, depth profiles show a Bragg Peak when the depth is thick enough to stop
the incident particle [20]. This consideration cannot be applied in this study case
since even the largest thickness evaluated is smaller than the protons and electrons
range. Also, for UTLs the influence of the surface properties becomes significant
due to the particles that are able to escape from it. In what follows, one may expect a
small reduction on deposited energy at entrance surface and then an increase on the
deposited energy as function of the depth until it reaches the stability around the
range of the particles of interest (in this study case specially electrons). This behav-
iour is compatible with the example shown on Figure 7a. For radial profile one may
expect the proportionality Eabs ∝ 1

rn, where r represents the radius which means the
distance from the center of the transported protons core and the position of the
energy absorption, and n≈ 2. However, the n values presented by the simulations
are slightly larger than 2 when the data presented on Figure 6 are fitted to the
proportionality equation. The same behaviour was reported by [21] on his valida-
tion of radial profiles with Geant4-DNA where this general tendency for the profiles
was observed in all cases analysed and n was in the range of 2.1 to 2.38.

Figure 7.
Example of depth (a) and radial profile (b) simulated considering protons of 2 MeV passing through 20 nm
water UTL by evoking DNA (stable) physics list.
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The curves on Figure 8 show a visual comparison among different transport
models evoked. These curves exemplify the behaviour observed for all incident
energies and UTL thicknesses. All models presented behaviour similar to the DNA
physics list, with the exception of DNAopt1 where the depth profile showed a peak
at the end of the water UTL.

Both depth and radial profiles showed lower energy deposition for DNAopt1
when compared to the other physics lists, indicating larger range for the secondary
electrons generated by DNAopt1. Also, both profiles presented a localised deposited
energy, evident on depth profile (at the end of the exit surface of the water ultra-
thin layer) and diluted on the radial profile (near the core). The difference on the
particles range (secondary electrons) can be noticed on Figure 9, where the DNA
presented a smaller electron range when compared to the one showed by DNAopt1.
DNAopt2,3,4 and 5 showed a similar behaviour to DNA physics list. Further inves-
tigation and statistical analysis are needed to generalize these results and evaluate
the significance of these observations.

Tables 3 and 4 present the statistical tests p-values for depth profile by protons
and electrons generated with different possible optional physics lists when
compared to DNA physics list.

On Table 3, for protons, when the DNAopts are compared to DNA physics list,
it is observable that χ2 p-values are always higher than the SL with exception of
DNAopt1 considering 2 MeV for thickness 6 nm and 5 MeV for 4 nm, as well as, one
case on the limit of SL for 10 MeV and 200 nm. AD and KS statistical tests presented
distributions significantly different when 100 nm and 200 nm were evaluated.
Since χ2 test evaluates the fluctuations on average value and the AD and KS tests
evaluate the distribution considering only the average data, it reveals that the
average data has some differences but they are not significant when the statistical

Figure 8.
Example of comparisons among different physics lists evoked on depth (a,b) and radial (c,d) profiles
considering the deposited energy by secondary electrons (a,c) and protons (b,d) for incident protons of 2 MeV
passing through 20 nm water UTL.
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fluctuations in each bin are taken into account. The contingency table evaluation
shows 0.306 p-value when the physics list DNAopt1 is compared to DNA (higher
than the SL). It happens because only few studied cases for DNAopt1 are signifi-
cantly different from the reference DNA on the comparison among the evaluated
physics lists. The physics lists DNAopt2,3,4 and 5 passed 100% of the statistical tests
presenting no significant differences when compared to DNA physics list. The
contingency table comparing all different optional physics lists presents p-value
0.3961, evidencing no significant difference from the reference physics list.

On Table 4, for electrons, when the DNAopts are compared to DNA physics list,
it is observable that χ2 p-values are always higher than the SL. However, for AD and

Figure 9.
Typical interaction maps as function of the depth (a,b) and radius (c,d) considering all particles for DNA (a,
c), reference physics list and DNAopt1 (b,d) physics list for incident protons of 2 MeV passing through 20 nm
water UTL.

Energy Thickness DNAopt1 DNAopt2 DNAopt3 DNAopt4 DNAopt5

(MeV) (nm) AD KS AD KS AD KS AD KS AD KS

2 10 0.0191 0.0243 0.0021 0.0008 — — — — — —

100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

5 8 — — <0.001 <0.001 <0.001 <0.001 — — — —

10 8 — — — — <0.001 <0.001 — — — —

20 8 <0.001 <0.001 — — — — — — — —

Table 3.
Statistical evaluation of the energy depth profile for protons among the different physics list options when
DNA physics lists is the reference, considering all studied cases, but showing only the cases with p-value inferior
to 0.02.
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KS statistical tests the physics list DNAopt1 generally shows p-values lower than the
SL, presenting significant differences in most cases when compared to DNA physics
list. Again, it shows that the average data has some differences but they are not

Energy Thickness DNAopt1 DNAopt2 DNAopt3 DNAopt4 DNAopt5

(MeV) (nm) AD KS AD KS AD KS AD KS AD KS

2 2 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

6 <0.001 <0.001 — — — — — — — —

8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

10 <0.001 <0.001 — — — — — — — —

20 <0.001 <0.001 — — — — — — — —

40 <0.001 <0.001 — — — — — — — —

100 0.0019 0.0014 — — — — — — — —

200 <0.001 <0.001 — — — — — — — —

5 2 <0.001 <0.001 0.0025 0.0010

6 <0.001 <0.001 — — — — — — — —

8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0050 0.0128

10 <0.001 <0.001 — — — — — — — —

20 <0.001 <0.001 — — — — — — — —

40 <0.001 <0.001 — — — — — — — —

50 <0.001 <0.001 — — — — — — — —

100 0.0023 <0.001 — — — — — — — —

200 <0.001 <0.001 — — — — — — — —

10 2 <0.001 <0.001 — — — — — — — —

6 <0.001 <0.001 — — — — — — — —

8 <0.001 <0.001 0.0739 0.0546 <0.001 <0.001 — — — —

10 <0.001 <0.001 0.0119 0.0132 0.0519 0.0727 0.0021 0.0016 0.0144 —

20 <0.001 <0.001 — — — — — — 0.0055 0.0028

40 <0.001 <0.001 — — — — — — — —

50 <0.001 <0.001 — 0.0067 — — — — — —

100 0.0023 0.0014 — — — — — — — —

200 <0.001 <0.001 — — — — — — — —

20 2 <0.001 <0.001 — — 0.0042 0.0015 — — — —

6 <0.001 <0.001 — — <0.001 <0.001 — — — —

10 <0.001 <0.001 — — — — — — — —

20 <0.001 <0.001 — — — — 0.0022 <0.001 — —

30 — 0.0063 — — — — — — — —

40 <0.001 <0.001 0.0019 <0.001 <0.001 0.0016 — — 0.0128 —

50 <0.001 <0.001 — — — — — — — —

100 <0.001 <0.001 — — — — — — — —

200 <0.001 <0.001 — — — — — — — —

Table 4.
Statistical evaluation of the energy depth profile for electrons among the different physics list options when DNA
physics lists is the reference, considering all studied cases, but showing only the cases with p-value inferior to
0.02.
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significant when the statistical fluctuations of each bin are taken into account.
Considering the χ2, all the optional physics lists passed 100% of the statistical tests
presenting no significant differences when compared to the reference physics list
with the statistical fluctuations in the evaluation.

The statistical evaluation shows that despite the visible systematic differences
represented on the Figure 8, those are not significant. Nevertheless, it is important
to consider these systematic differences when one is studying depth profiles on a
sensitive case, and it would be better to use any other physics list than DNAopt1,
to avoid the influence of the changes in shape and the systematic lower energy
deposition on the results.

It is not possible to statistically evaluate the proton radial profile because almost
100% of the energy is deposited on the first bin so, on Table 5, only the deposited
energy radial profile for electrons is presented. It is observable that χ2 p-values are
always higher than the SL. The physics list DNAopt1 presents significant differences

Energy Thickness DNAopt1 DNAopt2 DNAopt3 DNAopt4 DNAopt5

(MeV) (nm) AD KS AD KS AD KS AD KS AD KS

2 4 <0.001 <0.001 — — — — — — — —

6 0.0032 0.0187 — — — — — — — 0.0033

10 0.0034 0.0118 — — — — — — — —

20 0.0143 — — — — — — — — —

30 <0.001 <0.001 — — — — — — — —

100 <0.001 <0.001 — — — — — — — —

200 <0.001 <0.001 — — — — — — — —

5 2 <0.001 <0.001 0.0025 0.0010 — — — — — —

6 <0.001 <0.001 — — — — — — —

8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0050 0.0128 — —

10 <0.001 <0.001 — — — — — — — —

20 <0.001 <0.001 — — — — — — — —

40 <0.001 <0.001 — — — — — — — —

50 <0.001 <0.001 — — — — — — — —

100 0.0020 <0.001 — — — — — — — —

200 <0.001 <0.001 — — — — — — — —

10 4 <0.001 <0.001 — — — — — — — —

30 <0.001 <0.001 — — — — — — — —

100 0.0012 0.0092 — — — — — — — —

200 <0.001 0.0072 — — — 0.0092 — — — —

20 4 <0.001 <0.001 — — — — 0.0104 — 0.0094 0.0235

6 <0.001 0.0033 — — — — — — — —

20 <0.001 0.01176 — — — — — — — —

30 <0.001 <0.001 — — — — — — — —

100 <0.001 0.0019 — — — — — — — —

200 0.0016 0.0118 — — — — — — — —

Table 5.
Statistical evaluation of the energy radial profile for electrons among the different physics list options when
DNA physics lists is the reference, considering all studied cases, but showing only the cases with p-value inferior
to 0.02.
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in at least 50% of cases when compared to DNA physics list for all evaluated
energies on AD and KS statistical tests. Once more, it shows that average data
differences are not significant when the statistical fluctuations of each bin are taken
into account. The optional physics lists passed 100% of the statistical tests
presenting no significant differences when compared to DNA physics list.

The number of interactions of protons and electrons for all evaluated physics
lists is presented on Figure 10. To analyse the data presented on Figure 10 it is
necessary to consider that on Monte Carlo simulation, as it is performed on
Geant4-DNA, the increase on the number of interactions represents consequently
an increase on running time.

It is easy to observe that, for the energy range studied, there is no significant
change on the number of proton interactions. This can be explained by the pro-
cesses and models evoked in the energy range of this study case, where incident
protons transfer a few eV of their kinetic energy to electrons. Considering the
energy range of incident protons, it can be seen on Figure 1 that the process and
model classes evoked by all physics lists evaluated were G4DNAExcitation process
with G4DNABornExcitationModel, G4DNAIonisation process with
G4DNABornIonisationModel and G4DNAChargeDecrease process with
G4DNADingfelderChargeDecreaseMode. The only difference was the activation of
the flag “SelectFasterComputation” for ionization transport of DNAopt2.

On the other hand, the number of electrons interactions presents significant
changes.The observable differences for different physics lists can be justified by the
different process and models evoked for electrons presented on Figure 2. DNAopt1
presents larger number of electrons interactions for thicknesses larger than 40 nm
with the exception of 20 MeV incident kinetic energy protons beam where the
DNAopt2 presents a number of electrons interactions similar to DNAopt1. This
behaviour can be explained by the process and model classes evoked by all physics
lists evaluated and the maximum kinetic transferred energy to the electrons which
was estimated [14] as 4.34 keV for incident protons of 2 MeV, 10.92 keV for
incident protons of 5 MeV, 21.90 keV for incident protons of 10 MeV and 44.03 keV
for incident protons of 20 MeV. Under these conditions, all transport process classes
can be evoked for electrons G4DNAElastic (for DNA and DNAopt2,3,4,and 5) or
G4eMultipleScattering (for DNAopt1), G4DNAExcitation, G4DNAIonisation,
G4DNAVibExcitation and G4DNAAttachment.

The main difference among the DNAopt1 and the other physics lists is the
scattering process and model classes evoked that were a multiple scattering process
and model instead of the discrete elastic process class implemented on Geant4-
DNA. Taking DNA as reference, one may see that the scattering model was the only
one that changed on the DNAopt1 implementation, so the high discrepancies
observed on the number of electrons generated, deposited energy and electron

Figure 10.
Number of interactions for protons (a) and for electrons (b) considering incident protons of 10 MeV and
different thicknesses of UTLs.
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range are related to the implementation of the G4eMultipleScattering process class
and the G4LowEWentzelVIModel model class. The physics lists DNAopt2 and
DNAopt3 evoked the same process and model classes as DNA with the exception of
DNAopt2 in ionization process where the flag “SelectFasterComputation” was acti-
vated. DNAopt4 and DNAopt5 evoked the same model as DNA for the process
classes G4DNAVibExcitation and G4DNAAttachment; however, the other process
classes G4DNAElastic, G4DNAExcitation and G4DNAIonisation models were dif-
ferent from DNA. Besides that, DNAopt5 process classes G4DNAExcitation and
G4DNAIonisation evoked two models to each process, one additional model than
the evoked by DNAopt4 for energies above 10 keV.

Taking the DNA physics list as reference, one can see that DNAopt1 presents a
larger number of interactions for electrons. Considering the whole dataset simu-
lated, all thicknesses and energies evaluated: DNAopt1 presents 1.5 to 4.1 times
interactions; DNAopt2 and DNAopt3 present 0.5 to 1.0 times interactions; and
DNAopt4 and DNAopt5 present 0.15 to 0.35 times interactions. The similar behav-
iour presented by DNAopt2 and DNAopt3 and by DNAopt4 and DNAopt5 was
expected due to the similarities on the physics lists evoked to transport the
secondary particles (electrons) in the energy range (Figure 2).

Figure 11 presents the graphics of the relative differences in the total deposited
energies considering the DNA physics list as reference. It is easy to observe that
DNAopt1 physics list presents the lowest average total deposited energy, 3rd and
4th quartiles and the largest standard deviation in all cases. This is in agreement to
the observed energy depth and radial profiles where the DNAopt1 presents the
lowest deposited energy (Figure 7).

Table 6 shows the statistical evaluation of the total deposited energy per ultra-
thin layers presenting χ2, AD and KS p-values. These values are always higher than
the SL for all optional physics list with the exception of DNAopt1 which presents all
p-values below the SL. The contingency table for different incident kinetic kinetic
energy protons beams presents p-value of 0.0016 (lower than the SL) for DNAopt1
when compared to each of the other optional physics lists. The evaluation of the

Figure 11.
Box-and-Whisker plots of the relative difference on total deposited energy on UTL considering all cases for
incident kinetic energy protons beam of 2 MeV (a), 5 MeV (b), 10 MeV (c) and 20 MeV (d).
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deposited energy considering all optional physics lists and studied conditions presents
p-value lower than 0.001 evidencing the significant difference among all models.
Taking into account that only DNAopt1 presents p-values below the statistical signif-
icance when compared to the DNA physics list one may conclude that the DNAopt1 is
the only physics list with significant difference among the optional physics lists.

To get closer to the characteristic of the experimental material used (PMMA) the
influence of the water density change on the profiles was analysed. Figure 12 pre-
sents the depth and radial profiles comparing dense to standard water. As expected,
the dense water presents higher deposited energies. The statistical evaluation shows
that that the significant difference on depth profile is mainly due to secondary
electrons interactions. It was not possible to obtain the statistical evaluation of pro-
tons radial profile because its deposited energy is almost completely performed on
first bin. The logarithmic scale applied on x axis of radial profile makes more
evident the differences between the curves, since on linear scale these differences
are not visible. The total deposited energy on dense water is always larger than the
total deposited energy on standard water, usually 15–20% higher (as was expected).

Table 7 shows p-values for statistical evaluation depth profile for protons and
electrons interactions comparing dense to standard water. For protons, the χ2

p-values are above the SL and AD and KS tests show p-values smaller than the SL,
which means that the systematic differences observed in Figure 12b are not
significant. The differences observed for electrons, in Figure 12a, are significant in all
studied cases when comparing dense to standard water. For electrons, it is observable
that χ2 p-values are always higher than the SL and AD and KS tests show difference
for few cases when comparing dense to standard water. It shows that, again, the
average data has some differences but they are not significant when the statistical
fluctuations in each bin are taken into account. The contingency table presents
significant agreement on depth profile for protons with p-value 0.982 and significant
difference on depth profile for electrons with p-value lower than 0.001.

Table 7 shows the statistical evaluation of radial profile for electrons considering
standard and dense water indicating no significant statistical differences with
exception of AD and KS tests for 2 MeV with 20 nm and 100 nm thicknesses.

DNAopt1 DNAopt2 DNAopt3

Energy χ 2 AD KS χ 2 AD KS χ 2 AD KS

All Energies 0.0001 0.0444 0.0449 0.1195 1.0000 1.0000 0.0850 1.0000 1.0000

2 MeV 0.0001 0.0455 0.0449 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 MeV 0.0461 0.0490 0.0449 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 MeV 0.0430 0.0333 0.0449 0.9988 1.0000 1.0000 0.9402 1.0000 1.0000

20 MeV 0.0010 0.0395 0.0449 0.0573 1.0000 1.0000 0.5401 1.0000 1.0000

DNAopt4 DNAopt5

Energy χ 2 AD KS χ 2 AD KS

All Energies 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 MeV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 MeV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 MeV 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 MeV 0.7128 1.0000 1.0000 0.8225 1.0000 1.0000

Table 6.
Statistical evaluation of the total deposited energy considering all studied cases.
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3. Final remarks

The evaluation of the CDCS (based on radial profile) showed that the bin size
influences on the CDCS curve shapes. These results presented good agreement
between the experimental CDCSs for polymer films and the simulated-calculated

Figure 12.
Comparative depth (a,b) and radial (c,d) profiles of energy deposition due different particles: electrons (a,c),
proton (b) and all particles (d).

Thickness Depth profile for protons Depth profile for electrons Radial profile for electrons

(nm) χ 2 AD KS χ 2 AD KS χ 2 AD KS

2 1.0000 <0.001 <0.001 0.0032 0.0881 0.2058 1.0000 0.2224 0.3505

4 1.0000 <0.001 <0.001 0.0219 0.0042 0.0063 1.0000 0.0937 0.0666

6 1.0000 <0.001 <0.001 0.0032 <0.001 <0.001 1.0000 0.2281 0.1163

10 1.0000 <0.001 <0.001 0.0010 <0.001 <0.001 1.0000 0.8888 0.6350

20 1.0000 <0.001 <0.001 0.0024 <0.001 <0.001 1.0000 0.0483 0.0362

30 1.0000 <0.001 <0.001 0.0210 <0.001 <0.001 1.0000 0.4578 0.3505

40 1.0000 <0.001 <0.001 0.0330 <0.001 <0.001 1.0000 0.2346 0.1163

50 1.0000 <0.001 <0.001 0.0043 <0.001 <0.001 1.0000 0.9351 0.5727

100 1.0000 <0.001 <0.001 0.0012 <0.001 <0.001 1.0000 <0.001 <0.001

200 1.0000 <0.001 <0.001 0.0032 <0.001 <0.001 1.0000 0.8697 0.9730

Table 7.
Statistical evaluation comparing the electrons and proton deposited energy depth profile and the electrons
deposited energy radial profile for the standard water density to the water with PMMA density, considering all
studied cases.
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values for standard water with 1 nm bin, despite different materials used. When the
water density was augmented to the PMMA density value (dense water) the results
became even more reliable.

In general, the SP values increased with the increase on the UTLs thickness, as
expected, since the water layer thicknesses considered were smaller than the elec-
tron range. The simulated SP always presented lower values than NIST, as expected,
with DNAopt1 generating the lowest (worst) SP values. Due to this behaviour the
DNAopt1 presented unreliable electrons range values. This behaviour is probably
due to the evocation of the multiple scattering process (with low energy Wenzel VI
model) instead of the DNA elastic process.

Considering the reliability information presented in this chapter, all transport
models available in Geant4-DNA presented reliable results for SP and CDCS with
exception of DNAopt1. Further investigation is needed to map the differences
among the possible physics lists available on Geant4-DNA.

In summary the comparison of energy deposition radial and depth profiles,
taking DNA physics list as reference, showed that: (i) DNAopt2 to DNAopt5
presented similar results with percentage differences on simulated values lower
than 8%; (ii) DNAopt1 presented the lowest deposited energy in both profiles when
compared to the other physics lists, one peak at the end of the depth profile
deposited energy, and a significant change on the curve shape on radial profile. In a
general analysis the radial deposited energy decreased systematically in ultra-thin
layers.

In a general evaluation, no significant differences were observed for the total
deposited energy among all models, with exception of DNAopt1 which presented
systematic distortions in the profile curves shape with a non-expected behaviour as
confirmed by the contingency tables.

DNAopt1 showed itself being more time consuming and generated the lowest
total deposited energy in UTLs, which resulted in the worst general agreement to
the reference physics list DNA and to the expected data. It is important to empha-
size that these conclusions are valid for the evaluated physics lists, energy range and
geometrical conditions in this study and just for the Geant4-DNA (version 10.02.
p01). Any other generalization requires further evaluation.
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Chapter 7

Applications of Simulation Codes 
Based on Monte Carlo Method for 
Radiotherapy
Iury Mergen Knoll, Ana Quevedo  
and Mirko Salomón Alva Sánchez

Abstract

Monte Carlo simulations have been applied to determine and study different param-
eters that are challenged in experimental measurements, due to its capability in simulat-
ing the radiation transport with a probability distribution to interact with electrosferic 
electrons and some cases with the nucleus from an arbitrary material, which such 
particle track or history can carry out physical quantities providing data from a studied 
or investigating quantities. For this reason, simulation codes, based on Monte Carlo, 
have been proposed. The codes currently available are MNCP, EGSnrc, Geant, FLUKA, 
PENELOPE, as well as GAMOS and TOPAS. These simulation codes have become a tool 
for dose and dose distributions, essentially, but also for other applications such as design 
clinical, tool for commissioning of an accelerator linear, shielding, radiation protec-
tion, some radiobiologic aspect, treatment planning systems, prediction of data from 
results of simulation scenarios. In this chapter will be present some applications for 
radiotherapy procedures with use, specifically, megavoltage x-rays and electrons beams, 
in scenarios with homogeneous and anatomical phantoms for determining dose, dose 
distribution, as well dosimetric parameters through the PENELOPE and TOPAS code.

Keywords: Monte Carlo, codes, radiotherapy

1. Introduction

The constant development of medical applications using ionizing radiation 
requires an understanding of the transport of particles through materials, such as 
tissues, organs, patients, imaging devices. For this reason, computational simula-
tions, using the Monte Carlo Method, have been extensively used in several areas, 
specifically, in Radiological Physics, where this tool is applied for modeling a 
treatment or medical examinations, for example, that for some regions of interest 
are difficulties and complexities to making experimentally.

Several computational codes, based on Monte Carlo simulation, have been 
used in radiological protection, radiotherapy source dosimetry, planning systems, 
and other applications PENELOPE [1–6], MCNP [7–11], EGSnrc [12–15], FLUKA 
[16–20], TOPAS [21–25], GAMOS [26–29], Geant [30, 31].

In this work, some applications will be presented, in different scenarios to deter-
mine dose, relative dose, dose distribution, as well as to determine dosimetric parame-
ters used in radiotherapy, using computational codes through Monte Carlo simulation.
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2. Applications of computational codes in radiotherapy

In this section, some applications of computational codes in radiotherapy will be 
presented.

2.1  Determination of dosimetric parameters of clinical sources of high dose rate 
brachytherapy using the PENELOPE package

The PENELOPE (PENetration and Energy LOss of Positrons and Electrons) 
computational code includes several computational codes written in FORTRAN 
77 [32]. The package simulates the transport of electrons, photons, and positrons 
in arbitrary materials and energy values from 100 eV to 1 GeV, in geometries and 
materials defined by the user [33]. PENELOPE has a database of cross-sections 
for materials involving elements with atomic numbers from 1 to 92, and 180 other 
compounds and mixtures of interest in Radiological Physics.

This computational code has been used in several applications in Radiotherapy, 
such as determining parameters of brachytherapy sources [4, 34–36].

According to the TG-43 protocol, later revised and entitled TG-43 U1 [37, 38], 
the calculation of the dosimetric parameter Anisotropy Function is performed 
through Eq. (1):

 ( ) ( ) ( ) ( ) ( )0 0, , / , , / ,L LF r D r D r G r G rθ θ θ θ θ = ∗    
    (1)

where D is the dose rate; r is the distance from the center of the source to the 
point of interest (in cm), θ is the polar angle that specifies the point of interest, θ 0 
is the reference angle (90°); GL is the geometric factor, determined analytically.

Quevedo et al. [4] determined a dosimetric parameter, using Monte Carlo  
simulation with the PENELOPE package. The high dose-rate 192Ir brachytherapy 
source commonly used in gynecological brachytherapy was modeled, and the 
Anisotropy Function in regions close to the source was determined. Figure 1 
shows (a) the source geometry, modeled in the PENELOPE package, and (b) the 
Anisotropy Function in regions close to the irradiation source.

To validate the results obtained, using Monte Carlo simulation with the 
PENELOPE package, dose profiles in the longitudinal direction of the source were 
compared with data from the BrachyVision planning system. Figure 2 shows the 
comparisons of relative doses, as a function of distances, between the PENELOPE 
package and the BrachyVision treatment planning system for distances (a) 0.4 cm 
from the center of the source towards the source cable, (b) center of the source and 
(c) 0.4 cm from the center of the source towards the top of the source encapsula-
tion, adapted from Quevedo et al. [4].

From the comparisons in the three plans, it is possible to verify that the data 
obtained in the simulations with the PENELOPE package shows agreement greater 
than 98% of the points, with the data obtained from the treatment planning system, 
indicating that the PENELOPE package has great potential in the determination of 
dosimetric parameters of high dose rate brachytherapy sources.

2.2 Applications of the TOPAS code in ocular brachytherapy

The TOPAS (Tool for Particle Simulation) computational code is based on physi-
cal Geant4 models and low energy electromagnetic models of the PENELOPE code 
[39] and has shown great potential for simulations in medical and quality control 
applications [22, 40–43].
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TOPAS is based on an innovative parameter control system, which allows the 
modeling of therapy and imaging devices without the need for programming 
knowledge, in order to reduce user errors. The code has a vast library of predefined 
modules for geometry, physical models, and detection. Despite this, it is possible 
for more experienced users to write their own modules in C++. You can also create 
patient geometries based on computed tomography (CT) images. Therefore, TOPAS 
presents itself as a highly extensible and accessible tool for medical physicists for 
modeling therapy and imaging devices.

Another innovative feature of this code is that it handles time-dependent amounts, 
that is, it has 4D resources through its Time Feature System. Time-varying amounts 
are essential for modeling advanced radiotherapy treatment techniques, the Image-
Guided Radiotherapy (IGRT) technique is an example of this, where the positioning 
of the patient or target organ varies. Therefore, TOPAS proposes an approach to 4D 
simulation to deal with various time-dependent quantities in a single simulation, such 
as volume change, rotational movement, current variation, magnetic field, etc. [44].

Knoll et al., determined dose deposition from a source of brachytherapy used 
in ophthalmic treatments [23]. In this work, the applicator used in the treatment, 
which uses the 90Sr/90Y source, was modeled in the TOPAS code, including the 
active part, encapsulation, and simulator object filled with water. A relative dose 
profile was obtained in a high dose gradient region, normalized at the reference 
point to 1 mm and, for validation purposes, the data obtained with TOPAS were 
compared with data from the ICRU (International Commission on Radiation & 
Measurements) with the same conditions. Figure 3 shows (a) geometry of the 
90Sr/90Y source with applicator and simulator object and (b) comparison of rela-
tive dose, as a function of distance, between TOPAS and ICRU data (Adapted 
from [23]).

Figure 1. 
(a) Source geometry, modeled in the PENELOPE package, adapted from Quevedo et al. [4] and  
(b) anisotropy function in regions close to the irradiation source.
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Figure 2. 
Relative dose comparisons, as a function of distances, between the PENELOPE package and the BrachyVision 
treatment planning system for distances (a) 0.4 cm from the center of the source towards the source cable,  
(b) center of the source, and (c) 0.4 cm from the center of the source towards the top of the source 
encapsulation, adapted from Quevedo et al. [4].
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The greatest uncertainty obtained in computer simulations with the TOPAS code 
was approximately 0.01% at the point where it was normalized. When compared 
to the ICRU, the greatest difference found was approximately 4% at 1.6 mm depth. 
Thus, the TOPAS code has been shown to be a promising tool for dosimetry in 
brachytherapy and radiological applications.

2.3 Applications of the TOPAS-nBio code

Although the TOPAS code provides a wide range of tools for use in radiotherapy 
at patient scale or clinically applicable geometries, the fundamental unit of biologi-
cal response to the effects of ionizing radiation is at the cellular or subcellular scale. 
For this reason, TOPAS has an extension dedicated to the study of the biological 
effects of radiation in micrometer and nanometer scale, designed based on Geant4-
DNA, the extension of Geant4, the basis of TOPAS, so that very low energy are 
included in the interactions.

When interacting with matter, excitations and ionizations can be caused due to 
ionizing radiation. In the context of radiotherapy, incident particles cause radiolysis 
of water and subsequent chemical interactions, inducing molecular damage to the 
cell, more specifically to DNA, which is the critical target for most biological effects 

Figure 3. 
(a) 90Sr/90Y source geometry with applicator and simulator object and (b) comparison of relative dose, as a 
function of distance, between TOPAS and ICRU data (adapted from [23]).
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of radiation [45]. For this reason, TOPAS-nBio has several models of cellular and 
subcellular geometries (such as blood cells and single and double-stranded DNA 
models, for example) specialized in a pre-defined way [46]. Furthermore, with 
regard to biological modeling, the code inherits the chemical parameters provided 
by the Geant4-DNA toolkit and also includes mechanistic DNA repair models to 
perform water radiolysis simulations. With this, it is possible to develop complete 
modeling from the initial physical events to the final observed biological result [47].

According to Semenenko et al. [48] the combination of runway structure simula-
tions with core geometry models is considered the gold standard for predicting the 
spectrum of DNA damage induced by ionizing radiation. Therefore, Hongyu et al. 
[43] determined the cellular response after proton irradiation using the TOPAS-nBio 
code for damage induction and repair modeling with MEDRAS, which is a model 
capable of predicting the main final biological damage in a variety of cell types, 
including repair kinetics, chromosomal aberrations, and cell survival.

To determine the DNA damage yield, the results were scored in the SSD format 
and quantified by strand break (SBs), single-strand break (SSBs), and double-strand 
break (DSBs) yields, compared to published and experimentally measured data.

The initial DNA damage after proton irradiation (0.5–500 MeV, correspond-
ing to the LET region of 60–0.2 keV/μm) was simulated with the code. The core 
model used was placed in the center of a cubic world with a side length of 14 μm, 
containing the core, filled with water. Primary protons were randomly initiated on 
the surface of the nucleus and propagated within the nucleus in a random direction. 
Induced DNA damage caused by direct and indirect interactions in the physical and 
chemical stages was quantified as SBs, SSBs, or DSBs and sent in standard DNA 
damage data format (SDD). To get enough statistics, 100 stories were performed 
for each energy point. Each simulation had a fixed number of primary particles and 
deposited a dose of 1 Gy inside the nucleus. Statistical uncertainty associated with 
DSB dose and yield was less than 2%.

The average LET was recorded as a radiation quality index and calculated by the 
equation:

 LET = ε/d (2)

where d is the average length of the proton path inside the nucleus and ε is the 
energy deposition of primary and secondary particles inside the nucleus.

The initial DNA damage induced by incident protons was simulated by modeling 
the physical and chemical interactions within the nucleus with standard process 
models available in TOPAS-nBio.

As a result, a relationship was obtained between the LET of the proton according to 
literature references and the simulated particle energy in TOPAS-nBio. In low energy 
regions, the maximum discrepancy between the results was 32.5%, probably due to the 
size of the scoring volume, and in this low energy region, the protons do not cross the 
entire nucleus. However, there was an optimal agreement of 96%, as shown in Figure 4.

The results of DNA damage as a function of the LET of the proton simulated 
with TOPAS-nBio were also obtained, as shown in Figure 5.

The figure shows a relationship between the relative contribution of direct and 
hybrid damage as a fraction of each type of SB, SSB, and DSB break. Thus, it was 
shown that most SBs and SSBs would be caused by indirect damage and the indi-
rect contribution rate would increase from approximately 60% to approximately 
75% at 4.5 keV/μm (10 MeV proton energy) and, then decrease to higher LET 
values where radiolysis is denser, causing a greater number of chemical interac-
tions. Furthermore, it was shown that most DSB damage was classified as a hybrid 
type, caused by the combination of direct and indirect damage. Simulations using 
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TOPAS-nBio showed that Monte Carlo tools can predict DNA damage and can be 
used to interpret experimental data and design new theories.

3. Conclusion

Monte Carlo simulations have been applied to determine and study different 
parameters that are challenged in experimental measurements, due to its capability 
in simulating the radiation transport. In this chapter were presented applications for 
radiotherapy procedures, in scenarios with homogeneous and anatomical phantoms 
determining dose values, dose distribution, and dosimetric parameters through the 
PENELOPE and TOPAS code, showing itself as a useful tool for radiotherapy.

Figure 4. 
Proton LET as a function of proton energy compared to experimental data [48].

Figure 5. 
DNA damage obtained with TOPAS-nBio. Eml A: Total, direct, and indirect SB yield per Gy per Gbp of 
DNA. In B: Total, direct and indirect SSB yield per Gy per Gbp of DNA. In C: Total, direct, indirect, and 
hybrid DSB yield per Gy per Gbp of DNA. In D: Contribution of indirect or hybrid damage to SB, SSB, and 
DSB [43].
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Chapter 8

Physical Only Modes
Identification Using the Stochastic
Modal Appropriation Algorithm
Maher Abdelghani

Abstract

Many operational modal analysis (OMA) algorithms such as SSI, FDD,
IV, … are conceptually based on the separation of the signal subspace and the noise
subspace of a certain data matrix. Although this is a trivial problem in theory, in the
practice of OMA, this is a troublesome problem. Errors, such as truncation errors,
measurement noise, modeling errors, estimation errors make the separation diffi-
cult if not impossible. This leads to the appearance of nonphysical modes, and their
separation from physical modes is difficult. An engineering solution to this problem
is based on the so-called stability diagram which shows alignments for physical
modes. This still does not solve the problem since it is rare to find modes stable in
the same order. Moreover, nonphysical modes may also stabilize. Recently, the
stochastic modal appropriation (SMA) algorithm was introduced as a valid com-
petitor for existing OMA algorithms. This algorithm is based on isolating the modes
mode by mode with the advantage that the modal parameters are identified simul-
taneously in a single step for a given mode. This is conceptually similar to ground
vibration testing (GVT). SMA is based on the data correlation sequence which
enjoys a special physical structure making the identification of nonphysical
modes impossible under the isolating conditions. After elaborating the theory
behind SMA, we illustrate these advantages on a simulated system as well as on an
experimental case.

Keywords: in-operation modal analysis, modal appropriation, spurious modes,
SMA

1. Introduction

Operational modal analysis (OMA) is a good complement to classical modal
analysis where the structure is installed in a laboratory and excited under well-
controlled conditions. For structures under their operating conditions, the excita-
tion cannot be measured, random, complex in nature, and can be nonstationary.
Examples are offshore structures under swell, aircraft under turbulence, etc.

Several algorithms exist to extract the modal parameters from the output, only
measurements. Most of these algorithms are stochastic realization algorithms, such
as SSI, BR, CVA, FDD. These algorithms are based on the separation of two orthog-
onal subspaces, namely the signal subspace and the noise subspace. Although in
theory, this is a trivial problem, in the practice of using them, strictly speaking, it is
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impossible to separate them. Errors, such as finite sample length errors, estimation
errors, modeling errors, noise, … make the separation impossible leading to the
problem of model order estimation. In order to solve this problem, the stability
diagrams are used where the modal model is estimated at increased orders leading
to alignments for physical modes. However, numerical modes, noise modes, spuri-
ous modes, harmonics, etc. appear and the challenge is how to reject these modes
especially that the modal model has to be identified in unique model order.

The stochastic modal appropriation algorithm (SMA) is based on rotating and
stretching the outputs correlation sequence which was derived based on physical
background. We show that based on this idea, SMA rejects automatically
nonphysical modes as well as harmonics. Harmonics are assumed to be modes with
zero damping and we show that such a mode can never be appropriated because the
phase angle between the input and output is always different from zero. On the
other hand, the physical structure of the correlation sequence is respected if and
only if the mode is physical. We illustrate this on a simulated example as well as
experimentally.

2. The stochastic modal appropriation algorithm (SMA)

We describe here quickly the basics of the SMA algorithm. The considered
system is a quarter car model excited with the unmeasured white noise of a certain
variance. The impulse response of the system may be written as [1]:

h tð Þ ¼ Che�ξωnt sin ωdtð Þ (1)

where ξ is the system damping ratio, ωn is the system natural frequency, and ωd
is the damped natural frequency.

Computing the correlation sequence of the system based on the above impulse
response leads to the following expression [1]:

R tð Þ ¼ Cre�ξωnt sin ωdt� ϕ ξð Þð Þ (2)

where ϕ ξð Þ is a known parametric function that depends on the system
damping ratio. The impulse response, as well as the correlation sequence, may be
considered as two rotating vectors in the complex plane but with decaying ampli-
tudes (spirals).

In the INOPMA algorithm [2], it is assumed that the outputs correlation
sequence is the system impulse response. As a consequence, it has been shown that
the mode is appropriated at a frequency ω ∗ ¼ ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ξ2

p
and not the natural

frequency ωn. This is considered a limitation of INOPMA, especially that the natural
frequency has to be estimated in two steps. In this work, we propose a different
approach that allows us to overcome this limitation and we show that it is still
possible to appropriate the mode at its natural frequency using a dynamic transfor-
mation on the correlation sequence.

Let R t, αð Þ be the image of R tð Þ by a linear anti-symmetric function that depends
on a certain design parameter α and consider the following sequence:

H t, αð Þ ¼ R tð Þ þ R t, αð Þ (3)

H t, αð Þ may be interpreted as a combination of two transformations on the
correlation sequence namely a rotation and stretching. By varying only α, one
rotates and stretches the correlation sequence and hence it is possible to modify the
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phase shift as well as the amplitude of the correlation sequence and consequently
modify the damping ratio leading to a pure sinusoid. At this stage, the mode is
appropriated and the modified correlation sequence is the system impulse response
up to an unknown factor.

In this work, we propose to use the following anti-symmetric transformation:

F R tð Þ, αð Þ ¼ jαR tð Þ (4)

The key idea is similar to the INOPMA algorithm in the sense that one takes the
convolution of a driving harmonic force with the modified correlation sequence;
notice, however, that with SMA one varies two parameters namely the driving
frequency and the parameter alpha.

In the frequency domain, this means that the system transfer function (the
Laplace transform of the correlation sequence) is multiplied by a complex factor
(1 + jα). It can easily be shown that the transfer function phase angle is zero exactly
at the following condition:

ω ¼ ωn

α ¼ 2ξ

�
(5)

Geometrically, one interpretation is that when the mode is appropriated the
correlation sequence vector describes a circle in the complex plane meaning that the
conservative part of the system is isolated. The nonconservative part follows
immediately. Consequently, the system modal parameters are identified simulta-
neously at the same step. This is one advantage of the SMA algorithm.

3. Harmonics rejection

Harmonics are assumed here to be modes with zero damping. We show that the
algorithm SMA automatically rejects these modes. This avoids hand-based removal
of these harmonics as done in practice.

Let us consider the correlation sequence of an SDOF system excited with
unmeasured white noise. We propose to show in the sequel that if the damping ratio
is zero then the mode cannot be appropriated (the phase angle is never zero) hence
rejected.

The SMA algorithm starts by considering the following modified parametric
correlation sequence:

H t, αð Þ ¼ 1þ jαð ÞR tð Þ

The Laplace transform of this function can be shown to write as:

G sð Þ ¼ 1þ jαð Þ sþ 2ξωn

s2 þ 2ξωnsþ ω2
n

The imaginary part of the frequency response is:

I ¼ 2ξαωn þ ωð Þ ω2
n � ω2� �� 2ξωn � αωð Þ 2ξωωnð Þ

While the real part is:

Re ¼ ω2
n � ω2� �

2ξωn � αωð Þ þ 2ω2ξωn
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When the damping ratio is zero the tangent of the phase angle of the frequency
response reduces to:

tg ¼ � ω ω2
n � ω2

� �

αω ω2
n � ω2

� � ¼ �1=α

Which is always different from zero. Consequently, for a harmonic, the angle
between the input and the output is never zero meaning that the harmonic is never
identified (no zero-crossing).

4. Spurious modes rejection

Spurious/numerical modes appear in an OMA procedure due to many reasons,
such as finite sample length effects, truncation orders, measurement noise, …
These modes appear because they are fitted to the system characteristic equation
and rejecting them is a challenge. This leads to a spurious frequency and damping
that we still denote in the sequel as wn and zeta. The correlation sequence of the
system output is given by [3, 4]:

R tð Þ ¼ e�ξωnt cos ωdtð Þ þ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p sin ωdtð Þ
" #

(6)

The phase shift in this correlation sequence is given by:

tg θð Þ ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p (7)

This particular expression of the phase shift is valid for physical modes only [3].
We propose to show in the sequel that if the phase shift of a correlation sequence
enjoys this particular expression, then the mode is necessarily physical.

Consider the following correlation sequence:

Rx tð Þ ¼ e�ξωnt cos ωdtð Þ þ x sin ωdtð Þ½ �

The Laplace transform of 1þ jαð ÞRx tð Þ is:

Gx sð Þ ¼ 1þ jαð Þ
sþ ωn ξþ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p� �

s2 þ 2sξωn þ ωn
2

The numerator writes as:

1þ jαð Þ jωþ ωn ξþ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

q� �� �
�ω2 þ 2jωξωn þ ωn

2� �

And the imaginary part writes as:

Im ¼ �ω3 þ ωω2
n � αω2ωn ξþ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

q� �
þ αω3

n ξþ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

q� �

þ2ξω2
nω ξþ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

q� �
� 2ξω2ωnα
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Under the appropriation conditions

ω ¼ ωn

α ¼ 2ξ

�

ω3
n 2ξ ξþ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

q� �
� 4ξ2

� �
¼ 0

Leading to:

x ¼ ξffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p

This proves that under the SMA isolating conditions, the mode is necessarily
physical.

5. Simulation validation

We propose in this section to study the performance of the SMA algorithm on a
simple simulated example. A SDOF system is taken as an example. The considered
system parameters are taken as m = 2 kg, k = 10,000 N/m, and c = 8 Ns/m. The
excitation is a white noise with unit variance. This leads to the following modal
parameters; ωn = 11.254 Hz and ξ = 2.83%. The output is then simulated using a
sampling frequency of Fs = 64 Hz and 2% measurement noise is added to the
output. Figure 1 shows the identification results of this data set.

5.1 Harmonics rejection

We propose to study in the section the ability of SMA to reject harmonics. Let us
consider an SDOF system excited with unmeasured white noise. We add a harmonic
component with frequency 5 Hz and amplitude 0.1 N. Figure 2 shows the phase
angle corresponding to the identification results and we notice that the harmonic
component is rejected and only the system frequency is identified.

Figure 1.
Phase angle as a function of frequency and alpha.
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5.2 Spurious modes rejection

Spurious modes may arise from different sources such as noise, measurements,
errors, … In order to simulate spurious modes, we consider adding noise to the
system as well as introducing colored noise. We drive a unit of white noise through an
AR [5] process whose output serves as the excitation to the system. Figure 3 shows
that SMA is robust against spurious modes and only the physical mode is identified.

Figure 2.
Phase angle for harmonics rejection.

Figure 3.
Spurious modes rejection.
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6. Experimental validation

The considered test object is a standard B&K demo plate (WA0846), which is a
rectangular aluminum plate with dimensions 290 � 250� 8 mm3; for the test, the
plate was placed on soft foam. A B&K demomotorWB 1471 with an unbalanced rotor
was attached to the plate; the motor was set to operate at 374 rps (Figure 4). For the
experiment, the plate was excited by tapping its surface by the tip of a plastic pen.
About 16 monoaxial accelerometers B&K Type 4507 were mounted equidistantly on
the plate on the grid points of a 4 � 4 grid, oriented to measure in the direction
perpendicular to the plate surface. The data acquisition was performed by B&K LAN-
Xi DAQ, the sampling frequency was set to 4096 Hz, and 60 seconds of the acceler-
ation data were recorded, which was used as an input to both SMA and SSI algorithms.

Figure 4.
The test setup.

Figure 5.
The stability diagram.

217

Physical Only Modes Identification Using the Stochastic Modal Appropriation Algorithm
DOI: http://dx.doi.org/10.5772/intechopen.101224



To validate the results of the SMA algorithm, we used the commercial OMA
software package “PULSE Operational Modal Analysis 5.1.0.4—x64”; the software
was used in automatic identification mode, that is, all default settings were applied;
OMA-SSI-UPC method was employed. The stabilization diagram is shown in
Figure 5, and the modal identification results are presented in Table 1.

The SMA algorithm was used with 256 correlation lags. Sensors 1 and 5 were
used for the identification. The modes were identified as the angle crossings with
zero. The results are reported in Table 2.

Notice that the harmonics as well as spurious/numerical modes were not identi-
fied and were automatically rejected.

7. Conclusion

Nonphysical modes, as well as harmonics, present a challenge in OMA. Although
stability diagrams help in solving this problem, rejecting these modes is not trivial.
Although stability diagrams help to solve this problem, the results will remain user-
dependent.

Frequency [Hz] Damping [%] Comment

353.4 0.57 1st torsional mode (along Y-axis)

371.9 0.05 Harmonic, automatically identified as a noise mode

491.2 0.62 1st bending mode (along Y-axis)

720.3 0.98 1st bending mode (along X-axis)

866.7 0.47 2nd torsional mode (along Y-axis)

971.7 0.60 2nd torsional mode (along X-axis)

1424 1.1 2nd bending mode (along Y-axis)

1663 0.69 2nd membrane mode

1706 0.67 3rd torsional mode (along Y-axis)

Table 1.
Identification results.

Frequency [Hz] Damping [%] Comment

354 0.57 1st torsional mode (along Y-axis)

372.5 0.05 Harmonic, automatically identified as a noise mode

492 0.62 1st bending mode (along Y-axis)

721.4 0.98 1st bending mode (along X-axis)

871 0.47 2nd torsional mode (along Y-axis)

972 0.60 2nd torsional mode (along X-axis)

1422 1.1 2nd bending mode (along Y-axis)

1661 0.69 2nd membrane mode

1705 0.67

Table 2.
Identification results.
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The SMA algorithm seems to present an advantage. Not only the correlation
sequence has a physical meaning, but also the simultaneity in the identification of
the modal parameters makes a constraint on the modes to be exclusively physical.

This was illustrated on a simulated example as well as experimentally.
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