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Preface

Today, consumers demand safe, minimally processed foods without microbiological 
hazards and additives but with a long shelf life. Food security is the basis of human 
health and quality of life. Today, global food security has become a major strategic 
issue and has attracted worldwide attention.

Food safety is achieved when food is available and accessible and when food use and 
stability are at levels that allow all people physical and economical access to afford-
able, safe, and nutritious food. When one of these four pillars weakens, then a society 
undermines its food security.

Most countries have established laws and regulations to provide the population with 
safe food. According to the law, safe food is non-toxic, harmless, and in accordance 
with nutritional requirements. It does not pose acute, chronic, or potential danger to 
human health, for example, during planting, breeding, processing, packaging, stor-
age, transport, sales, consumption, and other food activities. According to mandatory 
standards and requirements, there should be no foods that contain harmful or poison-
ous substances with hidden potential to cause harm or even death to consumers.

Food safety and quality are greatly influenced by pollution and economic develop-
ment. Given the rapid socioeconomic changes of the last decade, food processing, 
food supply, and consumption patterns have undergone significant changes, increas-
ing the number of food security problems. One of these problems, present worldwide, 
is mycotoxin contamination. This contamination decreases product quality and 
reduces export values, which can lead to significant economic losses for producing 
countries.

Mycotoxin contamination can be mitigated to acceptable levels through an integrated 
management approach along value chains, good agricultural practices, biological 
control, sorting, electromagnetic radiation treatments, ozone fumigation, chemical 
control agents, plant growth, good manufacturing practices, and Hazard Analysis 
Critical Control Point (HACCP) and other management systems used to reduce and 
prevent the risks of mycotoxin contamination. Contamination of food by mycotoxins 
has a considerable impact on food security, trade, economy, and public health.

Given the ongoing evolution in the field of food safety, this book, Mycotoxins and Food 
Safety - Recent Advances, presents comprehensive information on and recent advances 
in mycotoxins and food safety. aims to come up with the most comprehensive pre-
sentation of current information in the literature to improve existing knowledge 
about regards Recent Advances in Mycotoxins and Food Safety. Chapters are orga-
nized into the following five sections: “Introduction: Mycotoxins and Food Safety 
Overview”; “The Influence of Contaminants on Food Safety” “Mycotoxins in Feed”; 
“Indirect Mycotoxin Contamination of Food Safety”; and “Control and Reduction of 
Mycotoxin Contamination.”
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Chapter 1

Implications of Mycotoxins  
in Food Safety
Romina Alina Marc

Abstract

The chapter aims to address an overview of the implications of mycotoxins in food 
safety and the presence of mycotoxins in various foods. Nowadays, everyone wants 
safe food with a long shelf life. Food safety has become a major strategic issue world-
wide and has attracted worldwide attention. Mycotoxins are widely found in food and 
feed, and dietary exposure to them can induce various types of adverse health effects 
in humans and animals. Contamination of food by fungi and mycotoxins results in 
loss of dry matter, quality and nutrition, and poses a significant danger to the food 
chain. Moreover, mycotoxin contamination decreases product quality and reduces 
export values, which can lead to significant economic losses for producing countries. 
Mycotoxin contamination directly reduces food availability and has its own contribu-
tion to hunger and malnutrition, and the consumption of food contaminated with 
mycotoxins has major repercussions on human health.

Keywords: mycotoxins, food safety, aflatoxin, ochratoxins, zearalenone, fumonisin, 
patulin

1. Introduction

Food security is the basis of human health and quality of life. Today, food safety has 
become a major strategic issue in the world and has attracted worldwide attention [1].

Food security is effectively realized when food pillars, including food availability, 
access to food, food use, and food stability are at levels that allow all people to have 
physical and economical access to affordable, safe, and nutritious food to meet the 
requirement for a living active and healthy. When one of these four pillars weakens, 
then a society undermines its food security [2].

Most countries have established laws and regulations to provide the population 
with safe food. A safe food according to the law is nontoxic, harmless, and in accor-
dance with nutritional requirements. It will not cause an acute, chronic, and potential 
danger to human health, for example, during planting, breeding, processing, packag-
ing, storage, transport, sales, consumption, and other food activities. According to 
mandatory standards and requirements, there should be no foods with potential harm 
or danger to human health, such as harmful or poisonous substances with hidden 
potential to cause harm to consumers, which can lead to death [3].

Even though we have so much information at our disposal, the situation regard-
ing global food security is still grim. Worldwide, food security and safety issues have 
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increased over the past two decades. These increases continually raise questions about 
whether these current regulatory and control systems are effective. Recently, the 
World Health Organization (WHO), the Codex Alimentarius Commission (CAC), 
and other organizations have developed new limits for the safety of the international 
food trade [3].

Food safety and quality are greatly influenced by the living conditions of pollution 
in different countries, as well as their economic development. Given the rapid socio-
economic changes of the last decade, worldwide, which promise a flourishing eco-
nomic rise, food processing, food supply, and consumption patterns have undergone 
significant changes, increasing the number of outbreaks of food security problems. 
One of these problems, present worldwide, is given by mycotoxins [3].

Mycotoxins are one of the most important contributing factors to food loss, espe-
cially in developing countries, and have become a recurring challenge for food safety 
[4]. As a result, to date, serious concerns are raised by both consumers and health and 
nutrition professionals about the presence of mycotoxins in food [5]. Contamination 
of food by fungi and mycotoxins results in loss of dry matter, quality and nutrition, 
and poses a significant danger to the food chain [6].

Moreover, mycotoxin contamination decreases product quality and reduces 
export values, which can lead to significant economic losses for producing countries. 
Mycotoxin contamination directly reduces food availability and has its own contri-
bution to hunger and malnutrition [4]. Drought stress, failure to implement good 
agricultural practices, poor postharvest practices, and insect infestation are factors 
that influence mycotoxin contamination [7, 8].

In addition, socio-economic factors, such as poor transport and trading systems, 
lack of awareness, and insufficient regulations and legislation, can also contribute to 
the risks of mycotoxin contamination [4].

Mycotoxin contamination can be mitigated to acceptable levels through an inte-
grated management approach along value chains [2] good agricultural practices, 
biological control, sorting, electromagnetic radiation treatments, ozone fumigation, 
chemical control agents [2] plant growth [9], good manufacturing practices, Hazard 
Analysis Critical Control Point (HACCP), and others [4] are some of the methods 
used to reduce/prevent the risks of mycotoxin contamination.

Contamination of food and food by mycotoxins has a considerable impact on food 
insecurity, trade, economy, and public health [10].

Food safety and security are basic needs for consumers. The major goal of world 
organizations is to take action to ensure food safety and security. In addition to 
food, the consumer is also exposed to water through oral intake, to the environ-
ment through inhalation, and exposure of the skin and penetration through it. 
Consumption of foods contaminated with mycotoxins, mainly cereals and foods of 
animal origin, is the most important and common route of exposure. Mycotoxins 
found in animal feed can indeed be transported in animal tissues, especially the liver, 
kidneys, and eggs [11].

2.  Generalities. short classification of the main mycotoxins involved in 
food safety

Mycotoxins contribute significantly to food loss in developing countries [2]. 
According to the Food and Agriculture Organization (FAO), about a third of total food 
is lost, totaling about 1.3 billion tons per year. It is also estimated that approximately 
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five billion people worldwide are exposed to mycotoxins, such as aflatoxins. However, 
formulas for assessing the global economic impact of the presence of mycotoxins in 
food have been extremely difficult to develop [12]. Mycotoxins are a global public 
health problem, with spices, crops, meat, and dairy products being the main sources of 
mycotoxins [13].

The economic and social impact of these mycotoxins includes losses caused by 
death and disease of humans and animals, veterinary and medical costs, reduced ani-
mal productivity, loss of livelihoods, control measures, economic losses for farmers 
through food and feed losses, and waste due to contamination. The negative effects 
of mycotoxin exposure could be mitigated through the use of agricultural knowledge 
and public health practices, such as proper processing and storage of products [2, 12].

The problem of mycotoxins is of paramount importance because it can have carci-
nogenic, immunological, allergenic effects [14], toxigenic, nephrotoxic, hepatotoxic, 
immunosuppressive, mutagenic [15], estrogenic and teratogenic effects, depending 
on exposure levels [16], which are particularly relevant for human consumption of 
contaminated food [14].

Mycotoxins are secondary fungal metabolites, not essential for the normal growth 
and reproduction of a fungus, but capable of causing biochemical, physiological, 
and pathological changes in many species and pose a global threat to public health. 
Mycotoxins have harmful effects on both humans and animals. These effects include 
immune toxicity, carcinogenicity, neurotoxicity, teratogenicity, nephrotoxicity, 
indigestion, hepatotoxicity, developmental and reproductive toxicity, and more. Most 
mycotoxins can be found in various agricultural products, which are then processed, 
staple foods and often consumed, which are generally dependent on their composi-
tion—food matrix composition, water activity, relative humidity and moisture 
content of the product, pH, temperature, physical appearance, and degree of damage, 
as well as the presence of mold spores [17].

Mycotoxins are secondary metabolites toxic to humans and animals [16, 18]. Most 
of these toxins have relatively low molecular weights and are generally thermally 
stable demonstrating high levels of bioaccumulation [16, 19]. More than 400 types 
of mycotoxins have been identified, however, only about 10–15 are considered to 
be of public health interest [19], with aflatoxin (AF), deoxynivalenol (DON), ergot 
alkaloids, fumonisins (FB), ochratoxin A (OTA), patulin (PAT), zearalenone (ZEN), 
and trichothecenes (T-2 and HT-2), the most prominent due to their high incidence 
in food. OTA and AF can be produced by toxigenic fungi associated with dried meat 
products [2, 12, 16].

2.1 Aflatoxins (AF)

Aflatoxins (A-flavus-toxins) are considered the best known and most toxic myco-
toxins. They are produced by certain species of molds of the genus Aspergillus, their 
growth being thus particularly favored at temperatures between 26°C and 38°C and 
with a moisture content of more than 18%. Six forms of aflatoxins are identified—
aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), 
aflatoxin M1 (AFM1), and aflatoxin M2 (AFM2). They are reported in several crops, 
mainly maize, peanuts, pistachios, and cotton seeds. Aspergillus flavus is responsible 
for the production of aflatoxins B1 and B2, while Aspergillus parasiticus can produce 
aflatoxins B1, B2, G1, and G2, especially in storage time [17, 20, 21].

Aflatoxin B1 (AFB1) is considered the most potent natural carcinogen and is 
classified by the International Agency for Research on Cancer (IARC) group 1 as 
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carcinogenic to humans. It is estimated that AFB1 causes up to 28% of all liver can-
cers, and has been associated with impaired immune system growth and dysfunction. 
AFB1 and its metabolites are excreted in urine, feces, and breast milk [22, 23].

Aflatoxins contamination has been demonstrated in cereals and cereal-based 
products [24, 25], organs, meat, pork products, and chicken eggs [26, 27]. In addi-
tion, aflatoxin M1 is released into milk through the milk glands of cattle fed aflatoxin 
B1—contaminated feed. Given the stability of the toxin during pasteurization and 
sterilization of milk and dairy products, even a relatively small amount of aflatoxin 
M1 can significantly affect human health [28].

2.2 Ochratoxins

The ochratoxin group includes ochratoxins A, B, C, and TA. An ochratoxin mol-
ecule is composed of dihydroisocoumarin and the L-β-phenylalanine component. The 
most toxic representative of the group is ochratoxin A (OTA), isolated from the mold 
of Aspergillus ochraceus [29].

The researchers’ reports showed that the genus Penicillium (P. verrucosum) and 
members of Aspergillus (A. carbonarius and A. ochraceus) are the main producers 
of the toxin. This toxin can be produced over a wide range of conditions in terms of 
humidity and temperature, the optimum humidity of crops, for its synthesis, is at 
least 16%, and the optimum temperatures are between 20 and 25°C [30].

Significant concentrations of ochratoxin A have been found in plant-based foods, 
such as wheat, corn, rye flower, buckwheat, and breakfast cereals, but the toxin can also 
be found in offal, meat, and meat products due to secondary contamination [31]. Sources 
in the literature have reported that the most substantial amounts of ochratoxin A can be 
found in organ-based meat products [32, 33]. In addition, significant amounts of this 
mycotoxin have been found in smoked meat products and other animal products [17, 31].

2.3 Zearalenone (ZEN)

The toxin F-2, the mycotoxin zearalenone, received this designation in 1962, after 
the Giberella zeae mold, from which it was isolated. The most important producers of 
zearalenone are the forms—Fusarium graminearum, Fusarium culmorum, Fusarium 
moniliforme, Fusarium roseum, and Fusarium tricinctum [17].

This mycotoxin is a nonsteroidal estrogen, and its chemical structure is that of 
resorcylic acid lactone [34]. Zearalenone production is increased especially in wetter, 
somewhat colder climates, with temperatures of 10–15°C. More than 150 zearalenone 
derivatives are currently known. The most toxic is considered α-zearalenone. More 
toxins up to 3–4 times compared to zearalenone. β-Zearalenone is thought to have an 
activity similar to that of zearalenone. This mycotoxin is thermally stable and stable 
in several types of solvents, such as ethyl acetate, acetonitrile, acetone, methanol, or 
chloroform. Zearalenone is insoluble in water but can be dissolved in alkaline water, 
alcohols, or ether. It is also insoluble in carbon tetrachloride and carbon [17].

Cold wet periods and the early onset of frost, followed by strong periods of 
sunshine, favor the infestation of crops with Fusarium spp. Before harvest, in this 
process, zearalenone is also produced [30].

It is commonly found in corn, but can also be found in wheat, barley, sorghum, 
and rye from countries around the world. Although at much lower concentrations, 
zearalenone has also been found in milk, meat, organs, and eggs from animals 
exposed to this mycotoxin through contaminated feed [17].
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2.4 Fumonisins (FB)

Fumonisins are the group of mycotoxins produced by molds of the genus Fusarium 
and comprise fumonisins B1, B2, B3, and B4. The most toxic of these, fumonisin 
B1, is a propane-1,2,3-tricarboxylic acid diester. Molds that produce fumonisins in 
significant amounts are Fusarium verticillioides, Fusarium proliferatum, and Fusarium 
moniliforme. They are soluble in water, acetonitrile and methanol, thermally stable, 
and resistant to alkalis that are not photosensitive. The high temperatures used in food 
processing do not affect their stability.

Substantial amounts of this mycotoxin have been identified in foods intended for 
the human diet, but also in milk, meat, and eggs of animals feeding on feed contami-
nated with fumonisin B1, even if they were not found in concentrations harmful to 
human health. Recently, fumonisins B2 and B4 were produced by Aspergillus niger 
isolated from coffee and fumonisin B2 in A. niger from grapes. Fumonisin B2 is 
detected in coffee beans, wine, and beer [17, 35, 36].

Data from the literature have shown correlations between different diseases 
such as liver cancer in rats, esophageal cancer in humans, leukoencephalomalacia in 
horses or donkeys, pulmonary edema in pigs, and contamination with fumonisins. 
Fumonisin B1, according to IARC, is classified in group 2B as a potential carcinogen 
for humans [17, 36].

2.5 Deoxynivalenol (DON)

Deoxynivalenol (DON, vomitoxin), is a tetracyclic epoxy sesquiterpene and 
belongs to the group of trichothecene mycotoxins type B [37] and was first isolated 
from damaged barley grains in 1972. DON production is mainly attributed to molds 
Fusarium graminerarum and Fusarium culmorum and is enhanced by wetter climates 
(water activity of 0.97) at temperatures of 25–28°C [17]. DON is a small colorless 
powder that is soluble in polar solvents, such as water, methanol, ethanol, acetonitrile, 
and ethyl acetate. It remains stable during storage, grinding, and processing and is, at 
least to some extent, resistant to heat processing of both food and feed [38].

Among trichothecans, DON is the least toxic, but it is gaining importance due 
to its high prevalence in food around the globe. The man, who consumes contami-
nated grains, accuses acute nausea, vomiting, diarrhea, abdominal pain, headache, 
dizziness, and fever. In animals, acute exposure to DON leads to lower food intake 
(anorexia) and vomiting, while prolonged exposure may lead to lower yields and 
thymus, spleen, heart, and liver disease.

The main grains in which DON has been identified are wheat, corn, rye, oats, and 
barley. They are found, but less often in rice, triticale, or sorghum. Cereals can be 
contaminated with DON in the field, but also during storage. Consequently, deoxyni-
valenol can be found in the raw material, the finished food product based on cereals, 
but also in feed [39]. It has been suggested that DON may also be present in products of 
animal origin, such as meat and milk [40]. Its metabolites are rapidly excreted from the 
body, especially in urine, but also in milk, however, in much lower concentrations [17].

2.6 Patulin (PAT)

Molds of the genera Aspergillus, Byssochlamys, and Penicillium are responsible for 
the production of the mycotoxin patulin. It can be grown on cereals, fruits, veg-
etables, processed foods, or on different types of cheese. Penicillium expansum is the 
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mold that produces this toxin; it is generally found in the soil and is the most impor-
tant source of fruit patulin. Patulin, in terms of chemical composition, is a polyketide 
lactone, made up of a single small molecule. This molecule can be isolated as white 
or colorless crystals. Patulin is soluble in water, ethanol, methanol, acetone, or ethyl 
acetate/amyl. Patulin is less soluble in benzene or diethyl ether. This mycotoxin is 
stable in acidic solutions, but its sulfuric acid can degrade.

Once produced by the mold Penicillium expansum, the patulin most often reveals 
its presence in the form of a disease that affects apples after harvest (rot, rot) or 
during storage. This mycotoxin has been identified in apples, apple juice, pears, 
grapes, fodder, and flowers affected by brown rot. Given that consumers, but also 
producers tend to eliminate the rotten part of fruits or cereals before consumption or 
processing, the maximum allowed limit for food safety is not exceeded. In the case 
of cheese, cysteine in high concentrations interacts with patulin and deactivates it. 
In addition, it has been reported that patulin can be annihilated by fermentation and 
is, therefore, absent in fruit-based alcoholic beverages and fruit juice-based vinegar, 
but is present in apple wine (cider). Heat processing manages to moderately reduce 
the level of patulin; therefore, the patulin found in apple juice maintains its presence 
during the pasteurization process [17, 41].

2.7 Trichothecenes (T-2 and its main metabolite HT-2)

T-2 toxin together with HT-2, the most important metabolite in or, are produced 
by molds of the genus Fusarium and are trichothecene type A toxins. This myco-
toxin is the basic representative of trichothecine, present in most situations when 
we talk about trichothecine. It was first identified in maize grown in France. It is a 
natural sesquiterpene and was isolated from the mold Fusarium tricinctum. After 
several studies, it was concluded that the T-2 toxin can be produced by several spe-
cies of the genus Fusarium, such as Fusarium sporotrichioides, Fusarium langsethiae, 
and Fusarium poae.

The optimal parameters for the development of this mycotoxin are at least 0.88 
water activity and a temperature below 15°C, but can be produced between −2°C and 
32°C [27, 42]. T-2 toxin is thought to be a powerful cytotoxin and immunosuppressant 
capable of causing acute intoxication and chronic disease in both humans and ani-
mals. Symptoms of acute intoxication include nausea, tremors, abdominal pain, diar-
rhea, and weight loss [17]. T-2 toxin inhibits protein synthesis, leading to side effects 
of DNA and RNA synthesis [27]. In addition, it has an adverse effect on the immune 
system, showing changes in the number of leukocytes and hypersensitivity [42].

Of all cereals, oats are the ones in which contamination with this mycotoxin occurs 
most frequently and in higher concentrations. Residues and metabolites of T-2 toxin 
have been found in milk, but not in significantly high concentrations [17, 43].

2.8 Ergot alkaloids

Ergot alkaloids are produced by multiple species of the genus Claviceps. Claviceps 
purpurea is the basic representative of the genus and is the most common in Europe. 
The most affected cereals are generally rye, wheat, oats, barley, triticale, and millet. 
Rye is the cereal where this fungus forms sclerotia (dark crescent-shaped bodies that 
describe the last stage of evolution of plant disease). Pure ergot alkaloids form color-
less crystals soluble in organic solvents, such as acetonitrile and methanol, but also in 
mixtures of organic solvents and buffers. Some of the ergot alkaloids, especially those 
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belonging to the group of simple lysergic acid derivatives, as well as ergoclavins, are 
soluble in water only to a certain extent. To the extent that more than 50 ergot alka-
loids have been isolated from fungal sclerotia, attention has been paid to ergometrine, 
ergotamine, ergosine, ergocristine, ergocryptine (the latter being a mixture of α- and 
β-isomers), ergocornine, and their correspondent.

Many mass poisonings caused by the consumption of cereals, flowers, and bread 
contaminated with ergot alkaloids are recorded throughout human history. If con-
taminated cereals are consumed in small quantities, one can only expect indigestion, 
while higher consumption leads to ergotism, that is, the disease that manifests itself 
with hallucinations, pain, and severe vasoconstriction eventually leading to dry 
gangrene and numbness of the limbs. The worst-case scenario involves kidney and 
heart failure and fatal outcomes, while abortion can be induced in pregnant women. 
A close link between sclerotia content and ergot alkaloid levels has been established in 
different crops (barley, oats, rye, triticale, and wheat grains) [17, 44].

2.9 Beauvericin—BEA

Beauvericin is a cyclic hexadepsipeptide that is synthesized by various toxigenic 
fungi, including several species of Fusarium [45]. BEA can be produced by different 
species of Fusarium in different regions. For example, in the USA and South Africa, F. 
circinatum is the most important BEA-producing fungus, while in Europe, F. sambuci-
num and F. subglutinans are the most relevant [46]. As a mycotoxin, BEA is a relevant 
natural contaminant when referring to mycotoxins in cereals and cereal-based 
products [47]. BEA contamination is a reported food safety problem in Southern 
Europe [48]. BEA is toxic to human tissues and cells and has a cytotoxic effect at a 
lower concentration than that for aflatoxin B1 [49, 50].

2.10 α-Cyclopiazonic acid—CPA

Cyclopiazonic mycotoxin was first discovered in 1968. The species responsible for 
CPA production are Aspergillus (A. tamarii, A. oryzae, and A. flavus) and Penicillium 
(P. dipodomyicola, P. camemberti, P. griseofulvum, and P. commune). This mycotoxin 
has been reported in foods such as milk and cheese, oilseeds and nuts, cereals, dried 
figs, and meat products and has a toxicological effect. It was most commonly detected 
in products such as peanuts and corn. CPA is toxic to animals such as rats, pigs, 
guinea pigs, poultry, and dogs. After ingestion of feed contaminated with CPA, the 
tested animals show severe gastrointestinal disorders and neurological disorders. 
The affected organs were the liver, kidneys, heart, and digestive tract, which show 
degenerative changes and necrosis [23].

2.11 Citrinin—CIT

Citrinin is a polyketide mycotoxin, which contaminates food and is associated 
with various toxic effects. CIT is produced by several fungal strains belonging to 
the genera Penicillium, Aspergillus, and Monascus and is usually found together with 
another nephrotoxic mycotoxin, ochratoxin A. Although, it is clear that exposure to 
CIT can have toxic effects on the heart, liver, kidneys, and the reproductive system, 
the mechanism of CIT-induced toxicity remains largely elusive. The presence of CIT 
has been reported in fruits, fruit juices, beans, vegetables, red rice, herbs, spices, and 
spoiled dairy products [51].
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2.12 Enniatin—ENN

Enniatins are a group of cyclic hexadepsipeptides, comprising 29 enniatin analogs, 
belonging to groups A and B. Of these analogs, the most commonly found in food 
(most commonly found in cereals and cereal products) and feed are A, A1, B, B1, 
although Enniatins B2, B3, and B4 are also found, especially in cereals. This hetero-
geneous group of mycotoxins is produced by several types of fungi belonging to the 
genus Fusarium—F. acuminatum, F. avenaceum, F. oxysporum, F. poae, F. sporotrichioi-
des, F. sambucinum, and F. tricinctum [52, 53].

2.13 Alternaria toxins—ATs

Alternaria is one of the main mycotoxins with a mycotoxigenic effect found in 
cereals around the world. Although, cereals are constantly affected by Alternaria spp. 
and their toxins, little relevance is still given to the subject. Currently, tenuazonic acid 
in sorghum/millet baby foods is the only Alternaria toxin regulated by a government 
official (the Bavarian Food and Safety Authority) [54].

3. Mycotoxins identified in food

Mycotoxins are not only highly toxic but also widely distributed in various products, 
such as cereals [55, 56], nuts [57, 58], fruits, vegetables [59], corn [60], seaweed [61], 
wines [62], meat [12], eggs [63], dried fruits [64], coffee [65], milk [66], and so on. 
The Food and Agriculture Organization (FAO) has estimated that approximately 25% 
of world food crops are contaminated with mycotoxins each year [10].

Consumption of foods contaminated with mycotoxins could be the most 
important source of exposure to toxic mycotoxins, which can be mainly dangerous 
especially for children and infants [67]. Obviously, a wide mass of mycotoxins can 
be found in the same product, because a single species of fungus can produce several 
toxic metabolites, even several species of fungi can be present simultaneously and can 
produce different toxins [56]. For example, raw cereals are often contaminated with 
DON and NIV, and other mycotoxins such as AF, ZEN, and OTA are also detected 
in low-level raw cereals [68]. In addition, DON and ZEN are widespread especially 
in rice, and mycotoxins such as AF, OTA, and FB1 are also detected in rice [69]. 
Although mycotoxins are frequently coexisting, different samples may contain only 
the most common individual mycotoxin. For example, the most common mycotoxin 
in milk is AFM1, which is also known as “milk toxin.” Most investigations are aimed 
at detecting AFM1 in milk [70]. PAT is usually predominant in fruit-derived products 
[71]. In addition, the most common mycotoxin in wine is OTA [72]. Migration and 
environmental accumulation are the other important ways of exposure for people, 
with the exception of direct input. For example, Schenzel et al. reported that 3-acetyl-
deoxynivalenol, DON, NIV, and BEA were detected in Swiss Midland Rivers [73]. A 
number of researchers have also indicated that drinking water is an important matrix 
contaminated with mycotoxins [74] and the living environment of humans, these 
being a principal threat to public health.

The increasing spread of mycotoxins and the highly toxic effects have led to the 
establishment of organizations that aim to make regulations on the control of food 
contamination. For example, the FAO a scientific advisory board of the WHO and 
the Joint Committee of Experts on Food Additives (JECFA) have the responsibility 
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to assess the risks of mycotoxins. In 2001, the Commission’s Scientific Committee 
for Food (SCF) initially set maximum levels for AF, OTA, and PAT in food (EU 
Regulation 466/2001) (EC, 2001). In addition, the IARC has classified mycotoxins 
into different categories according to human carcinogenic risk. In addition, the EC 
has set the maximum levels allowed for most mycotoxins in food by Commission 
Regulation No. EC 1881/2006, but also methods of sampling and analysis for their 
control with the help of EC 401/2006 to protect or reduce losses that occur in produc-
tion and to protect human health. The EC has set maximum limits of 0.012 mg/kg for 
AFB1 in apricots, pistachios, and almonds; 0.00005 mg/kg for AFM1 in raw or heat-
treated milk and dairy products; 0.05 mg/kg for PAT in fruit juices; 0.002 mg/kg for 
OTA in wine; 0.075 mg/kg for ZEN in cereals; 0.5 mg/kg for DON in bread; 10 mg/kg 
for the amount of AFG1, AFG2, AFB1, and AFB2 in nuts and peanuts; and maximum 
limits of 400 μg/kg for ZEN in refined maize germ oil [10].

3.1 Mycotoxins in cereals

Cereals are perhaps the most consumed categories of products worldwide by 
humans because they are an important source of energy, vitamins, minerals, and 
fiber [75]. These products can come with different mushrooms from the farm, after 
harvest, or during storage. Most mycotoxins found in cereals are influenced by 
poor storage conditions, temperature, climate, drought, or insect damage [76]. The 
physicochemical composition of cereals, including water activity or pH, can influence 
the development of mycotoxins [58, 77].

3.2 Mycotoxins in wheat

Wheat contributes to a wide range of bakery products, such as bread, breakfast 
cereals, biscuits, cakes, pasta, and other cereal-based products. Therefore, the level 
of contamination of wheat with mycotoxins is essential in the food and feed chain. 
According to existing studies on wheat seeds, the major occurrence of mycotoxins was 
DON, ZEN, AFB1, OTA, HT-2/T-2, AF, and FUM, respectively. According to the EC 
regulation, the recommended limit for wheat mycotoxins is 4 μg/kg for AF, 2 μg/kg 
for AFB1, 1250 μg/kg for DON, 5 μg/kg for OTA, and 100 μg/kg for ZEN [78].

Of the studies on mycotoxins in wheat grains, 16.6% were reported to exceed 
EU-recommended limits. The most common were AF with a percentage of 50%, of which 
40% were AFB1, followed by ZEN WITH 22.2%. In the case of DON, the highest value, 
17,753 μg/kg, was reported in China [79], and in the wheat samples from Qatar Hassan  
et al. reported DON values of 0.1 μg/kg [78]. For ZEN the highest values were reported in 
India [80], and the lowest values in Qatar [81]. In the case of AF the highest values, 9 μg/kg, 
were reported for wheat samples from Qatar [81], the maximum level allowed for the EU 
being 4 μg/kg, and in wheat samples from Greece AF was not detected [82].

Topi et al. analyzed 10 Fusarium toxins in 71 wheat samples in Albania. The 
analytical procedure consisted of simple one-step sample extraction, followed by 
the determination of toxins using liquid chromatography coupled with tandem mass 
spectrometry. Fusarium toxins were found in 23% of the wheat samples analyzed. 
In the wheat samples, the only Fusarium mycotoxin detected was deoxynivalenol 
(DON), present in 23% of the samples, with a concentration of 1916 g/kg, exceeding 
the maximum level allowed by the EU (1250 g/kg) [83].

According to Malir et al., the most common mycotoxins in wheat flour are aflatox-
ins B1, B2, G1, G2, ochratoxin A, and deoxynivalenol [84].
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3.3 Mycotoxins in corn

Corn seeds are often contaminated with Fusarium verticillioides and Fusarium pro-
liferatum that produce FUMs toxin. However, other mycotoxins have been found in corn 
along with FUMs [78]. The highest contamination rate was related to AFB1, ZEN, and 
DON, respectively. The European Commission (EC) has defined the maximum con-
centration of mycotoxins in maize. When maize is used for human consumption, these 
maximum quantities are 4000 μg/kg for FUMs, 1750 μg/kg for DON, 350 μg/kg for ZEN, 
5 μg/kg for OTA, 2 μg/kg for AFB1, 10 μg/kg for AFs, and 100 μg/kg for T-2 + HT-2 [10]. 
In the study conducted by Aristil et al., 87.5% of the samples detected with AFB1, the 
AF level was higher than the allowed level. This value was 80%, 66.6% for AF and OTA, 
respectively. For other mycotoxins, the values   detected were often lower than the maxi-
mum EC values. Existing research has shown that the highest prevalence of AFB1 was in 
Haiti with 188 44 μg/kg [85], Kenya with 76.2 μg/kg [86], and Serbia with 44 μg/kg [87]. 
Kos et al. reported a high average prevalence of DON (963 μg/kg), ZEN (163 μg/kg) in 
Serbia [88]. The high OTA content (1662 μg/kg) is reported in Vietnam [89], and Skendi 
et al. in Greece reported the lowest OTA levels (0.7 μg/kg) [82]. According to studies by 
Bertuzzi et al. in Italy [85], the highest FUM content was 43,296 μg/kg [90]. Corn is used 
as a raw material for flour, breakfast cereals, popcorn, popcorn, and various other foods 
[78]. Consequently, maize is a good host for mycotoxins, such as AFB1, OTA, ZEN, and 
DON, and requires continuous monitoring. The presence of these mycotoxins represents 
a real danger for the entire food chain due to the high consumption of corn [91].

Topi et al. analyzed 10 Fusarium toxins in 45 maize samples from Albania. 
Fusarium toxins were found in 78% of the maize samples analyzed. In 76% of the 
corn samples, fumonisins B1 (FB1) and B2 (FB2) were found with concentrations 
between 59.9 and 16.970 g/kg. The amount of FB1 and FB2 exceeded the maximum 
level allowed by the EU (4000 g/kg) in 31% of the maize samples [83].

According to Zinedine et al., the most common mycotoxins in cornflakes and 
corn-based foods are fumonisins and beauvericin [92].

3.4 Mycotoxins in rice

The mycotoxins identified in rice seeds based on prevalence were AFB1, ZEN, 
DON, FUM, AF, OTA, and HT-2/T-2 toxins [78].

According to the maximum number of mycotoxins allowed by the EC for rice 
seeds, the following values   are given—4 μg/kg for AF, 2 μg/kg for AFB1, 5 μg/kg 
for OTA, 100 μg/kg for ZEN, and 1250 μg/kg for DON. Of the studies analyzed, 
exceedances of the EC standard limit for AF and AFB1 (50%), FUM (25%), DON 
(16.6%), ZEN (11.1%) were reported. Values exceeding the maximum limits allowed 
by the EU were also reported in a study conducted in Somalia, where 330 μg/kg AFB1 
and 4361 μg/kg FUM were detected in the rice samples [93]. The level of FUM and 
HT-2/T-2 toxins in all rice samples was below the EU maximum. In China, the maxi-
mum allowable level for DON in rice samples is reported at 1607 μg/kg [78].

Several authors have reported that the most common mycotoxins in rice are total 
aflatoxins, aflatoxin B1, ochratoxin A, and beauvericin [94, 95].

3.5 Mycotoxins in barley, sorghum, oats, and rye

DON was an abundant mycotoxin in barley samples collected from different coun-
tries, followed by ZEN and T-2/HT-2 toxins. A study conducted in Canada showed 
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that 56% of cold-season barley presented to the mycotoxin-contaminated industry 
whose DON concentration in some samples exceeded the regulatory level (1250 μg/
kg) [96]. According to several studies conducted in Argentina [97], the Czech 
Republic [98], and Brazil [99], the main mycotoxin of the genus Fusarium reported 
in barley samples was DON. In a study conducted in Turkey, in the analyzed barley 
samples ZEN was not detected, and DON did not exceed the maximum level allowed 
by the EU (138–973 μg/kg) [100]. DON, FUMs, T-2/HT-2 reported in 50%, 25%, and 
50% of barley samples from the Qatar food market with average values   of 0.048 mg/
kg, 0.553 mg/kg, and 0.067 mg/kg [81].

The most common mycotoxins in sorghum are FUM, AFB1, and ZEN [101]. 
According to a study conducted in Togo, FUM was detected in 67% of the samples 
and AFB1 in 25% [102]. In another study conducted in Somalia, the maximum allow-
able limits for FUM (FB1 and FB2) and AFB1 were exceeded in the sorghum analysis 
samples [93]. In a study conducted in Tunisia, in the analyzed sorghum samples, the 
presence of mycotoxins AFB1, OTA, and ZEN was reported, with values between 
0.03–31.7 μg/kg, 1.04–27.8 μg/kg, and 3.75–64, 52 μg/kg, respectively [103].

In a study conducted in Nigeria, all sorghum samples analyzed were contaminated 
with FUM and AF. OTAs have also been identified in some samples [104]. In a study 
conducted in Switzerland, on oats, by Schöneberg et al., the majority of mycotoxins 
identified were T-2/HT-2 [105]. In another study conducted in India, the analyzed 
oat samples were contaminated with ZE in the proportion of 84%, identifying values 
between 5.31 and 389 μg/kg [80]. In the US study by Jin et al., 75% of the rye samples 
were contaminated with DON, reporting values below 1.0 mg/kg, but showed an 
increase through the malting process [106].

According to Meca et al., the most common mycotoxins in barley are deoxynivalenol 
and beauvericin [107]. The most mycotoxins in cereal porridge are aflatoxins B1, B2, G1, 
G2 and deoxynivalenol and in breakfast cereals are aflatoxins B1, B2, G1, G2 [108].

3.6 Mycotoxins in fruits, vegetables, and preparations thereof

Fruits and vegetables are extremely sensitive to fungal infestation due to their high 
water content and abundance of nutrients. They can decompose at any stage of the 
growth, harvesting, and storage processes, resulting in the production and accumula-
tion of various mycotoxins [109].

Previous work has shown that mycotoxins that contaminate fruits and veg-
etables mainly include the toxin Alternaria [110], OTA [111], PAT [109, 112], and 
trichothecenes [113].

Although consumers can cut the rotten parts of fruits and vegetables before 
consumption, several mycotoxins, especially those mentioned above, may be present 
in the rest of the parts [113, 114], indicating that the removal of rotten parts cannot 
completely eliminate mycotoxin contamination.

A study of 20 samples of sweet peppers from two varieties showed that mycotox-
ins from Fusarium species involved in the internal rot of fruit migrate from contami-
nated peppers to initially healthy peppers. B fumonisins (1, 2, and 3) and beauvericin 
were identified after 10 days of incubation in a closed container and 20°C sweet pep-
per temperature conditions. Fumonisins B (1, 2, and 3) have been identified in lesions 
and around the tissue, indicating their migration to healthy parts. The values identi-
fied were between 690 and 104,000 μg/kg in lesions for fumonisin B (1) and outside 
the maximum lesion 556 μg/kg. For the other fumonisins, lower values were obtained 
in the lesions—10,900 μg/kg for fumonisin B (2) and 1287 μg/kg for fumonisin B (3). 
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In the case of beauvericin, it was identified only in lesions, in a proportion of 95%, 
with values between 67 and 73,800 μg/kg [114]. A similar study was conducted for the 
analysis of eight mycotoxins (Alternaria toxins, ochratoxin A, patulin, and citrinin) on 
apple fruits, sweet cherries, tomatoes, and oranges [113].

H. Dong et al. analyzed seven mycotoxins (AOH, AME, TeA, TEN, OTA, PAT, and 
DON) from cherry tomatoes and two green leafy plants (salad and pakchoi) provided 
by Food Science and Technology—Guangzhou Harmony, China, and strawber-
ries and tomatoes were bought from the strawberry fields and markets located in 
Guangzhou, China. All samples were freshly collected and checked for intact and no 
rotten visible parts. Mycotoxins were not detected in any of the fresh samples. During 
long storage, TeA was identified for tomatoes and AME and AOH for strawberries. 
Increased concentrations were observed with storage time. Studies have shown that 
optimal storage conditions for fresh fruits and vegetables, which include proper 
packaging and low temperature, help, delay the formation of mycotoxins [59].

Fruits and pomegranate juice from Greek markets were studied by Myresiotis 
et al. Three Alternaria mycotoxins (alternariol, alternariol monomethyl ether, and 
tentoxin) were determined, and in fresh samples, they were not identified. However, 
in the case of artificial inoculation of pomegranate fruits with various species of 
Alternaria alternata, concentrations between 0.3 and 50.5 μg/g were detected, the 
tentoxin not being detected [111].

A larger study of pomegranate fruits in Greece and Cyprus was presented by 
Kanetis et al. The fruits were studied before and after harvest. The results show that 
the rot of pomegranate fruits before harvesting was mainly caused by species of the 
genera Aspergillus (Aspergillus niger and Aspergillus tubingensis) and Alternaria (A. 
alternata, Alternaria tenuissima, and Alternaria arborescens) [115].

And the postharvest fruit spoilage was mainly caused by Botrytis spp. and to 
a lesser extent by isolates of Pilidiella granati and Alternaria spp. Production of 
alternariol (AOH), alternative monomethyl ether (AME), and tentoxin (TEN) was 
estimated among Alternaria isolates, while production of OTA and fumonisin B2 
(FB2) was assessed in identified black asparagus. In total, in both countries, 89% 
of Alternaria isolates produced AOH and AME in vitro, while TEN was produced 
by 43.9%. The data presented imply that the mycotoxin species Alternaria and 
Aspergillus not only constitute a significant subgroup of the fungal population 
associated with the rotting of pomegranate fruits responsible for fruit deterioration 
but also present a potential risk factor for the health of consumers of basic products of 
pomegranate [115].

Apples, represented by the varieties Fuji, Golden Delicious, Granny Smith, and 
Red Delicious, in the study conducted by Ntasiou et al. are most affected by mycotox-
ins—AOH, AME, and TEN [116]. According to Munitz et al. isolated mycotoxins with 
the potential to be present in blueberries are FB1, FB2, FB3, ZEA, DON, AOH, AME, 
AFB1, AFB2, AFG1, HT-2, and T-2 [117].

3.7 Mycotoxins in baby food

There is a growing interest in baby food. According to the study conducted by 
Sarubbi et al., patulin is detected very often in baby food in Italy. According to EC 
regulation 1881/06, the maximum permitted limit of patulin in baby food is 10 μg/
kg or 10 μg/l. A total of 80 homogenized baby foods were analyzed to assess chil-
dren’s exposure to patulin by consuming these products. Experimental tests revealed 
significant differences between products from organic production and those from 
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traditional production in all categories analyzed. Tomato concentrates showed an 
average patulin concentration of 7.15 ng/ml of the product; tomato sauce for baby 
food of 5.23 ng/ml; tomato sauce 4.05 ng/ml; homogenized pear of 0.79 ng/ml, 
homogenized apple of 0.85 ng/ml. The low incidence of patulin, or low concentra-
tions, in Italian products, is a quality parameter for fruits and their derivatives [112].

The most common mycotoxins in baby food and baby fruits are aflatoxins B1, B2, 
G1, G2 patulin, and beauvericin [84, 118].

3.8 Mycotoxins in spices

Abrunhosa et al. report the presence in the spice of several mycotoxins such as 
ochratoxin A, sum of aflatoxin B1, aflatoxin B2, aflatoxin G1, and aflatoxin G2 [119].

3.9 Mycotoxins in wine

Fungal diseases in the vineyard reduce the quality of grapes and affect their vola-
tile profile. Therefore, it influences the taste, aroma, and color of both the juice and 
the wine. The most common mycotoxins in stubble are aflatoxins, alternariol, OTA, 
tenuazonic acid, citrinin, patulin, or fumonisin B2.

The countries that provide the most information about wine mycotoxins are the 
largest wine producers in Europe—France, Italy, and Spain. The most common and 
worrying mycotoxin in grapes is OTA, produced by Aspergillus carbonarius. The most 
important factors regarding the determination of the contamination once identified are 
the climate, the most important factor, and the high temperatures. The highest concen-
trations of OTA have been identified in southern Europe, where it is warmest. Accurate 
fungal identification and detection of mycotoxins in fungi are important and practical 
methods need to be considered. Both white and red wines, dry, sweet, or hardened can 
be contaminated with mycotoxins. According to reported studies, it seems that OTA 
appears more often in red and sweet wines, compared to white ones [120].

According to Oteiza et al. mycotoxins such as PAT and OTA were identified in fruit 
juices and wines collected in Argentina between 2005 and 2013. PATs were identified 
in 1997 from 5958 samples, with concentrations ranging from 3.0 to 19,622 μg/l, and 
510 samples showed PAT levels above 50 μg/l. A total of 1401 with concentrations 
between 0.15 and 3.6 μg/l. These mycotoxins identified in fruit juices and wines are 
influenced by fruit type, product type, and year of production [62].

Jesus et al. in their study noticed that the most common mycotoxin in wines in the 
United States is OTA [121].

3.10 Mycotoxins in beer

Beer is the most consumed alcoholic beverage in the world. Its mycotoxin contami-
nation is a public health concern, especially for heavy drinkers.

Many studies have been published on the fate of mycotoxins in beer production, 
analyzing the general production process or only part of it and highlighting the physi-
cal parameters that lead to variations in mycotoxin concentration [122–124].

Many studies on beer have focused their investigation on DON, which is the most 
abundant mycotoxin and is the biggest public health problem related to beer con-
sumption [125].

According to EC regulation 1881/2006 and Commission Recommendation, 
2013/165/EU, the maximum allowed levels of mycotoxins in the European Union 
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for 13 compounds are regulated. In the case of beer, we refer to cereal products for 
which the following limits have been established—for AFB1—2 μg/kg, for total 
AF—4 μg/kg, for ZEN—75 μg/kg, for DON—750 μg/kg, for OTA—5 μg/kg, and 
for FUMB1 + FUMB2—400 μg/kg. These limits are considered of great importance 
because beer has high acceptability worldwide, is consumed in large quantities, and 
avoids the accumulation of mycotoxins, especially for loyal consumers. Mycotoxin 
contamination can occur at different stages of brewing. Some of them can be trans-
ferred from cereals to malt and then to beer due to their high thermal stability (AF, 
ZEN, and DON) and water solubility of mycotoxins (DON and FUM) [124, 126].

Whatever the origin, numerous surveys on the occurrence of mycotoxins in beer 
have been conducted worldwide to date, analyzing different styles of brewing. Many 
surveys of beer are specific to mycotoxin, looking for the appearance and exposure of 
humans to various Fusarium mycotoxins found in beer. Others are specific to the style 
of beer, grouping the beer samples according to the production style applied to the 
malted barley from which they are made [99, 126].

DON and its derivatives, together with AF, FB, ZEA, T-2, and HT-2 are the most 
studied mycotoxins in beer and barley, respectively. Among the technological processes, 
the most relevant stages in the beer production process that have an inhibitory effect 
on mycotoxins are soaking, baking, mixing, fermentation, and clarification. In these 
stages, mycotoxins are removed with drainage water, used grain and fermentation 
residues, diluted or destroyed as a result of heat treatment, or adsorbed on the surface.

Germination has no effect on the level of DON in beer but promotes its trans-
formation into its glycosylated derivative (DON-3-Glc). During mixing, enzymes 
not only stimulate the release of conjugated DON from protein structures but also 
decrease the initial toxin concentration due to dilution. This step can be a source of 
contamination with AF and FUM due to corn-free malt adjuvants that are used for the 
purpose of high levels of fermentable sugars. Even if during cooking there is the pos-
sibility of adding to the hop contaminated with mycotoxins, the amount is too small 
to be significant for the final product. In general, about 60% of ZEN is eliminated 
with used grains.

To avoid massive economic losses, during the technological process of obtaining 
beer, various processes are applied to eliminate mycotoxins or prevent contamination 
with them, such as lactic acid bacteria during malting and beer, ozonation, special 
yeast strains (known to bind mycotoxins), hot barley grains, water treatment or 
fungicidal failures in the field [124].

Several authors reported that the most common mycotoxins in malt are aflatoxins 
B1, B2, G1, G2, OTA, PAT, and DON, and in beer are OTA, DON, and sterigmatocys-
tin [90, 127–129].

3.11 Mycotoxins in coffee, cocoa, and chocolate

According to a meta-analysis by Khaneghah et al. out of 3182 centralized samples 
from 36 articles, the prevalent and global level of OTA was 53.0% (95% CI: 43.0–62.0) 
and 3.21 μg/kg (95% CI: 3.08–3.34 μg/kg), respectively. The correlations and the increase 
of the concentrations of these mycotoxins in the coffee beans were identified, together 
with the increase of the poverty, but also with the fluctuation of the precipitations from 
the whole year studied. The lowest concentrations (0.35 μg/kg) of OTA in coffee were 
reported in Taiwan, and the highest concentrations (79.0 μg/kg) were reported in Turkey 
[65]. Of the 26 samples of coffee beans and coffee products, 18% were identified with 
ENN, the average concentration of enniatin was 1901–1901 (g/kg) [130].
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According to Batista et al., OTA is the most common mycotoxins in Arabica coffee 
beans [131]. The same mycotoxins are reported in cocoa beans [132].

In a study of chocolate for sale in Brazil, OTA and AF were identified [133]. Similar 
results were reported by Kabak et al. for chocolate produced in Turkey [134].

3.12 Mycotoxins in water

Several studies report the presence of mycotoxins in portable water, ground-
water, and wastewater. The most common are ZEN, aflatoxin B1, B2, G1, and OTA 
[135–138].

3.13 Mycotoxins in nuts

In the study conducted by Alcántara-Durán et al. on mycotoxins in peanuts, 
pistachios, and almonds, the lowest concentration level was between 0.05 and 5 μg/kg, 
being lower than the maximum levels established by current legislation [57].

Another mycotoxin identified in pistachios is aflatoxin B1 (AFB1). Rastegar et al. 
investigated the effectiveness of the frying process by incorporating lemon juice and/
or citric acid on the reduction of AFB1 in contaminated pistachios (AFB1 at two levels 
of 268 and 383 ng/g). Although frying for 1 hour at 120°C, 50 g of pistachios in 30 ml of 
lemon juice, 6 g of citric acid, and 30 ml of water, led to a good degradation (93.1%) of 
AFB1, this treatment changed the desired physical properties. In the case of frying for 
one hour at 120°C, with 15 ml of lemon juice, 2.25 g of citric acid, and 30 ml of water 
reduced by 49.2% the level of AFB1, from the initial value, without any visible changes 
of the pistachio in terms of appearance. Thus, a synergistic effect can be observed 
regarding the degradation of AFB1 between lemon juice, respectively citric acid and 
heating. In this situation, we can conclude that in the case of pistachios contaminated 
with AFB1, they can be degraded by frying with lemon juice and citric acid [58].

According to Abrunhosa et al., the most common mycotoxins in pistachios are 
aflatoxins B1, B2, G1, G2; in peanuts are aflatoxins B1, B2, G1, G2, OTA, and in 
almonds are aflatoxins B1, B2, G1, G2 [119].

3.14 Mycotoxins in meat

Consumption of dried meat products is increasing, but these products are highly 
perishable, and when contaminated with fungi, they pose a risk of human exposure 
to mycotoxins, and therefore, a global public health problem [139]. Dried meat is 
composed mostly of muscle tissue in which the physicochemical properties of their 
surface, such as low water activity, neutral to low pH, and nutrient content, cause 
the microbial population to grow in external layers of these products [140]. Changes 
in the low activity of water in these products can influence the metabolism of fungi 
favoring the biosynthesis of mycotoxins [141].

Xerophilous species of Aspergillus, Eurotium, and Penicillium have been shown to 
grow on the surface of dried meat products in different parts of the world, partly due 
to the tolerance of these microorganisms at low pH and high salt concentrations [142]. 
Moreover, the maturation time of the product also influences the growth of microor-
ganisms on the surface of these products.

San Daniele ham, for example, contains NaCl concentrations that vary between 
10 and 20% of the dry matter and its maturation lasts between 13 and 18 months 
[14]. Although these salt levels are impossible for many microorganisms to grow, the 
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long maturation period facilitates the growth of microorganisms well adapted to this 
environment [143]. In addition, abnormal variations in temperature and humidity 
commonly encountered in the production of traditional products during the pre-rip-
ening, ripening, and drying stages influence the growth of microorganisms [14, 144].

Regarding toxigenic fungi, four aflatoxins, namely B1, B2, G1, and G2, are consid-
ered to be some of the most important mycotoxins in dried meat. Aflatoxin B1 is the 
most common and has a higher toxigenic potential compared to other aflatoxins [12].

In addition to AF, OTA is an important mycotoxin that has been found in dried 
meat [30]. OTA was first isolated in 1965 from a culture of Aspergillus ochraceus [18]. 
OTA can be transferred from food contaminated with mycotoxin [12].

OTA mycotoxin has been identified in Italian salamis [145] and AFB1 and AFB2 
in Egyptian salamis [146]. OTA has also been found in blood sausages, liver-type 
sausages in Germany [147], Parma ham in Denmark [148], and dried Iberian ham in 
Spain [144, 149].

In a study in Cairo, burgers and sausages had the highest number of mushrooms 
compared to fresh meat and canned food. This contamination may be related to the 
addition of AFB1-contaminated spices to burgers [13].

Among the various forms of direct or indirect human exposure to mycotoxins, 
such as the intake of contaminated meat products, the relationship with human feed 
should be considered [12].

In a study of 115 chicken samples collected from central Punjab, Pakistan, the 
presence of AF, OTA, and ZEN was analyzed. The results showed that 35% of chicken 
samples were found contaminated with AF, and the maximum level of AFB1 was 
7.86 μg/kg and total AF was 8.01 μg/kg found in the hepatic part of the chicken. 
Furthermore, 41% of chicken samples were found to be contaminated with OTA and a 
maximum level of 4.70 μg/kg was found in the hepatic part of the chicken meat. A total 
of 52% of chicken samples were found to be contaminated with ZEN and a maximum 
level of 5.10 μg/kg. The occurrence and incidence of AF, OTA, and ZEN in chicken meat 
are alarming and can cause health hazards and have called for the need for continuous 
monitoring of these toxins in chicken meat [16]. In 70 chicken tissue samples (liver, 
heart, and pipette) collected from the markets of Jiangsu, Zhejiang, and Shanghai 
(China) the main mycotoxins observed were DON, 15-AcDON, and ZEN [11].

In a study conducted by Rodrigues, they observed that the most common myco-
toxin in Portuguese ham of pork, goat, and sheep is OTA [150].

3.15 Mycotoxins in milk and dairy products

In a study by Ezekiel et al. on mycotoxins in breast milk, complementary foods 
and urine obtained from 65 infants aged 1–18 months in Ogun State, Nigeria, it was 
observed that complementary foods were contaminated with six types of mycotox-
ins, including fumonisins identified in 14 of the 42 samples, with a concentration 
between 8 and 167 μg/kg and aflatoxins identified in 14 of the 42 samples, with a 
concentration between 1.0 and 16.2 μg/kg. In four out of 22 breast milk samples, 
aflatoxin M1 was detected, in addition to six other classes of mycotoxins. And for 
the first time, dihydrocitrinone was detected in six of the 22 samples studied with a 
concentration between 14.0 and 59.7 ng/L and sterigmatocystin in a sample of the 22 
samples studied with a concentration of 1.2 ng/L. Mycotoxins were detected in 64/65 
of urine samples, with seven distinct classes of mycotoxins observed demonstrating 
ubiquitous exposure. Two metabolites of aflatoxin (AFM1 and AFQ1) and FB1 were 
detected in samples 6/65, 44/65, and 17/65, respectively. The frequency of detection, 
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the average concentrations, and the appearance of mixtures were usually higher in the 
urine at nonexclusive breastfeeding, compared to breastfed infants.

In conclusion, the study provides new information on mycotoxin exposure in 
children in a country at high risk of mycotoxin without adequate food safety measures. 
Although a small set of samples, it highlights the significant transition to higher levels 
of mycotoxin exposure in infants as complementary foods are introduced, providing 
an impetus to alleviate this critical early period and encourage breastfeeding [151, 152].

Other authors also reported the presence of mycotoxins in breast milk such as 
aflatoxin M1, beauvericin, dihydrocitrinone, alternariol monomethyl ether, enniatin 
A, enniatin B, ochratoxin A, ochratoxin alpha, ochratoxin B, and sterigmatocystin 
[153, 154].

In milk powder, the most common mycotoxins reported were aflatoxins B1, B2, 
G1, G2 [84], in milk aflatoxin M1 [154, 155]. Aflatoxin M1 is also found in cheese 
[156] or yogurt [119].

Mannami et al. conducted a study on 67 samples of liquid milk (46 pasteurized 
and 21 UHT) randomly collected during 2019 from supermarkets and dairy stores 
in four Moroccan cities (Casablanca (n = 27), El Jadida (n = 10), Fez (n = 18), and 
Meknès (n = 12)). The results showed that out of the 67 samples analyzed, AFM1 was 
identified in nine samples, while 58 samples (86.6%) had AFM1 below the detection 
limit. According to Moroccan regulations, the maximum limit allowed by AFM1 is 
50 ng/l, and it can be observed that a single pasteurized milk sample exceeds the 
maximum limit allowed by 77 ng/l, by AFM1. According to Codex Alimentarius 
standards, where the maximum permitted limit is 500 ng/l, all milk samples studied 
fall within these limits [157].

A study by Marimón Sibaja et al. carried out between 2003 and 2018 in Latin 
America on aflatoxin (AFM1) from 3547 milk samples and 969 milk products showed 
that 67% of milk samples were contaminated with AFM1 and had a concentration 
between 0.001 and 23.10 μg/kg, and 63% of the dairy samples were contaminated with 
AFM1 and had a concentration between 0.001 and 18.12 μg/kg. According to these 
studies, referring to AFM1, the highest estimated daily doses were reported for Mexico 
(20.9 ng/kg body weight/day), Brazil (2.4 ng/kg body weight/day), Colombia (1.2 ng/
kg body weight/day), and Costa Rica (1.0 ng/kg body weight/day). During the 15 years 
of the study, all average values calculated for Latin American countries exceeded the 
maximum limits allowed by FAO and WHO (0.058 ng/kg body weight per day) [158].

3.16 Mycotoxins in eggs

In a study of 80 egg samples (farm eggs and domestic eggs) collected from the 
central areas of Punjab, Pakistan, the presence of AF, OTA, and ZEN was analyzed. 
The results showed that 28% of the samples were found contaminated with AF, and 
the maximum level of AFB1 was 2.41 μg/kg and the total AF was 2.97 μg/kg. More 
than 35% of samples were found to be contaminated with OTA and a maximum level 
of 1.46 μg/kg. A total of 32% of samples were found to be contaminated with ZEN 
and a maximum level of 2.23 μg/kg. The occurrence and incidence of AF, OTA, and 
ZEN in chicken meat are alarming and can cause health hazards and have called for 
the need for continuous monitoring of these toxins in chicken meat [16].

In 152 egg samples collected from the markets of Jiangsu, Zhejiang, and Shanghai 
(China) the main mycotoxins observed were DON, 15-AcDON, and ZEN [11]. Makun 
et al. showed that 85% of eggs tested in Nigeria were contaminated with DON at 
concentrations between 0.6 and 17.9 ng/g [159].
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4. Toxic effects on human health caused by ingestion of mycotoxins

Mycotoxins are a public health concern, mainly due to their multiple types and 
prevalence that can lead to adverse effects due to chronic exposure even when con-
taminating food at low levels. If ingested, mycotoxins can cause episodes of acute or 
chronic diseases, such as various types of cancer, food poisoning, liver disease, vari-
ous hemorrhagic syndromes, immune and neurological disorders in humans [160]. 
In addition, mycotoxin contamination of food has been linked to cytotoxicity or 
even genotoxicity [161], which can also induce toxic effects on the liver and kidneys, 
immune reproduction and fetal toxicity, and teratogenicity and carcinogenicity 
[162]. Moreover, exposure to a mycotoxin diet has been associated with an increased 
incidence of esophageal and gastric carcinomas in certain regions of China [163]. 
Therefore, mycotoxin contamination is a long-term hidden danger to human health, 
and relentless efforts have been devoted to mycotoxin investigation [10].

In recent years, large-scale poisoning incidents and international trade disputes 
caused by fungal contamination are extremely common. For example, severe out-
breaks of aflatoxinosis have been reported in Kenya, India, and Malaysia, killing hun-
dreds of people. In the United States, mycotoxin corn infection is a chronic economic 
and health problem. The European Union’s food and feed rapid alert system has placed 
mycotoxins in second place based on the total number of hazard notifications [10].

Table 1 summarizes the structures of common mycotoxins and the toxic effects 
they cause on human health. For example, AF toxicity can cause the infant to deform 
by crossing the placental barrier [183]. In 2018, McMillan et al. confirmed that AF 
could cause other effects, such as anemia, immunosuppression, and reduced growth 
rate [165]. In addition, the International Agency for Research on Cancer (IARC) has 
indicated that exposure to AF may impair renal function in addition to having strong 
hepatotoxic effects (IARC group 1) (group 1 means carcinogenic to humans), and the 
same effects have been reported for sterigmatocystin [55]. TA, a toxin produced by 
Alternaria alternate, has been considered the Alternaria mycotoxin with the highest 
acute toxicity. Referring to human toxicities, TA has been blamed for the onyalai 
outbreak, a human hematological disease that occurs in Africa [181].

In recent years, large-scale poisoning incidents and international trade disputes 
caused by fungal contamination are extremely common. For example, severe out-
breaks of aflatoxinosis have been reported in Kenya, India, and Malaysia, killing hun-
dreds of people. In the United States, corn mycotoxin infection is a chronic economic 
and health problem [10]. The European Union’s food and feed rapid alert system has 
placed mycotoxins in second place in terms of the total number of hazard notifications.

CIT affects kidney function but has been shown to be less toxic than OTA. The 
latter has carcinogenic, neurotoxic, immunotoxic, and teratogenic effects, exerting 
nephrotoxicity. According to IARC group 2B (group 2B means possible human carci-
noma) both OTA and fumonisins have carcinogenic effects on kidney cells) [10]. It is 
called vomitoxin because it can lead to some typical acute effects, including nausea, 
vomiting, abdominal pain, diarrhea, headache, dizziness, or fever, which has also 
been linked to outbreaks of gastroenteritis in animals and humans. In addition, DON 
acts as a potent inhibitor of protein synthesis and stimulates the pro-inflammatory 
response, resulting in the impairment of multiple physiological functions. NIV 
has been demonstrated with immunotoxicity, hematotoxicity, myelotoxicity, and 
developmental and reproductive toxicity [169]. T-2 is a latent inhibitor of mitochon-
drial function and protein synthesis. Moreover, T-2 has toxic effects on the skin and 
mucous membranes [171].
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Long-term ingestion of PAT has shown immunotoxicity, mutagenicity, and neurotox-
icity in animals [112]. Trichothecenes are a large family of structurally related mycotoxins 
among which DON is the most common worldwide [184]. DON has high immunotoxic 
and immunosuppressive effects against a variety of animal and human cells [88].

Mycotoxins Toxic effect Reference work

Aflatoxin B1 Development of hepatocellular carcinoma. Cancer and affects the 
child’s development

[164]

Anemia, immunosuppression, causing reduction growth rate [165]

Ochratoxin A Carcinogenic, teratogenic, immunotoxicity, nephrotoxicity, and 
neurotoxicity

[10, 166]

Zearalenone Endometrial cancer [167]

Disorders of the hormonal balance of the body; prostate, ovarian, 
cervical, or breast cancers

[168]

Deoxynivalenol Emesis, anorexia, growth retardation, immunotoxicity, 
reproduction, and development resulting from maternal toxicity. 
Altered neuroendocrine signaling, proinflammatory gene 
induction, disruption of the growth hormone axis, and altered gut 
integrity

[169]

Nausea, vomiting, diarrhea, abdominal pain, headache, dizziness, 
fever, and effects on reproduction

[170]

Fumonisin B2 Teratogenic, hepatotoxic, and nephrotoxic [161]

T-2 toxin A latent inhibitor of mitochondrial function and protein synthesis [171]

Causing low growth and side effects on the thymus, spleen, heart, 
and liver

[172]

Beauvericin Induction of apoptosis, increases the concentration of cytoplasmic 
calcium

[173]

Patulin Impairment of some of the physiological parameters that 
characterize the intestinal barrier function

[174]

Citrinin Impaired renal function in addition to strong hepatotoxic effects [10]

α-Cyclopiazonic acid Weight loss, nausea, diarrhea, dizziness, muscle necrosis, seizures [175]

Enniatin B Cytotoxic effect for different cell lines and reduces the motility of 
wild boar sperm

[176]

Alternariol DNA damage [177]

Genotoxic in bacteria and mammalian cells in vitro [10]

Sterigmatocystin Genotoxic cytotoxic effects [178]

Induction of DNA damage in HepG2 cells [179]

Fusaric acid Modification of neurotransmitter levels by inhibition of dopamine 
hydroxylase and modulation of tyrosine hydroxylase

[180]

Tenuazonic acid Inhibition of protein biosynthesis; causing precancerous changes 
in the esophageal mucosa of mice

[181]

Mycophenolic acid Nausea, vomiting, stomach cramps, and diarrhea; infections 
hematological complications (anemia, leukopenia, neutropenia); 
cytostatic effects on lymphocytes

[182]

Table 1. 
Toxic effects caused by the main mycotoxins.
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DAS exerts acute and chronic effects on humans and animals, such as hemato-
toxicity, growth retardation, lung disorders, immunotoxicity, and cardiovascular 
effects [26]. In addition, Vidal et al. linked DAS toxicity to distal tubular epithelial 
necrosis in the kidney [184]. Fumonisins cause a lot of negative effects on humans 
and animals, such as teratogenic, hepatotoxic and nephrotoxic, esophageal cancer, 
liver cancer, and neural tube defects [161]. Belhassen et al. confirmed that ZEN 
stimulates the growth of human breast cancer cells [185], but IARC classified ZEN in 
group 3 (IARC) (group 3 does not mean carcinogenic effects on humans). In addition, 
ZEN has strong estrogenic activity and may be an essential etiological agent of infant 
intoxication, leading to premature enlargement of puberty and breast enlargement. 
Moreover, IARC reported that FUS-X mainly affects organs that have actively dividing 
cells, including hematopoietic tissue, spleen, and thymus, as well as exerts intestinal 
inflammation, inhibits protein synthesis, and induces apoptosis. However, the toxic-
ity of mycotoxins is not stationary, which changes during metabolism in humans and 
animals [10]. In addition, the assessment of adverse health effects is complicated by 
multiple exposures to various mycotoxins that can lead to synergistic or antergic toxic 
effects [186]. Furthermore, the susceptibility of animals and humans varies according 
to species, age, nutrition, duration of exposure, and other factors [187]. Therefore, 
the synergistic or antergic toxic effects of different mycotoxins should attract more 
attention, which is also a new topic in mycotoxin toxicity research.

In addition, a wide range of masked mycotoxins that have been produced by plant 
phase II metabolism may co-appear as contaminants in addition to parent compounds 
in food samples. The group of masked mycotoxins comprises both conjugated extract-
able and related varieties. Bound mycotoxins are attached to carbohydrates or pro-
teins by covalence or non-covalence, which cannot be detected directly and must be 
released from the matrix by chemical or enzymatic treatment before detection [188]. 
Regarding the toxicity of masked mycotoxins, on the one hand, these mycotoxins can 
degrade in free states in the digestive tract of humans and animals, releasing their 
prototypes of toxins, thus increasing exposure to toxins and posing a greater threat 
to human health. On the other hand, changes in mycotoxin molecules that reduce or 
eliminate toxicity can lead to an apparent overestimation of mycotoxin contamina-
tion. Thus, it is necessary to understand the fate of masked mycotoxins during food 
processing and digestion. Khaneghah et al. conducted a comprehensive review of 
changes in DON masked forms and their occurrence in combination with culmorin in 
grain-based products [189]. They also comprehensively exposed the characteristics, 
incidence, control, and fate of DON and its masked forms [190]. However, there are 
only limited data reported on the occurrence of masked mycotoxins in food, as well as 
information on the transformation, stability, and release of masked mycotoxins in the 
food chain. Moreover, masked mycotoxins easily escaped conventional detection due 
to the biotransformation of their structures, leading to underreporting [191]. In view 
of the above, it is essential to pay more attention to the subsequent investigation of 
masked mycotoxins, in particular their occurrence, exposure, toxicity, and nontarget 
screening.

5. Conclusions

The purpose of this chapter was to analyze the significant types of mycotoxins in 
food that are consumed directly or indirectly by humans. Studies show that con-
tamination of various mycotoxins is still high in developing countries and remains 
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the main concern in these regions. In recent years, most reports of contamination 
have been reported for maize, wheat, and rice, respectively. AFB1 are considered the 
most dangerous mycotoxins and have a high prevalence in cereals that in most studies 
exceeded the EC permitted limit. DON, ZEN, and FUM are the other significant 
mycotoxins in cereals, such as barley, sorghum, and oats.

The high stability of mycotoxins during the production, distribution, storage, 
and processing of cereals was aimed at the contamination of mycotoxins in cere-
als. Therefore, the development of practical control and management strategies is 
essential to ensure consumer safety.
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Contaminants in Food Quality
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Abstract

The concept of food quality has been following scientific and technological 
evolution. Currently, producers, users, consumers, as well as public authorities, have 
well defined their expectations regarding the quality requirements in the food sector. 
These projections are related to several parameters that are no longer seen only from 
a safety and nutritional point of view. Thus, the characteristics of food products must 
fulfill criteria that embrace their origin, esthetics, convenience, functionality, ethics, 
organoleptic and must result in benefit. The needs of consumers increasingly reflect 
public interests, which are supervised by public authorities that hold technical and 
scientific information that allows them to advocate normative regulations regarding 
defects, adulteration, and fraud, increasing awareness in the food quality field. Since 
food quality and safety are two increasingly interconnected domains, the different EU 
legislation and regulations impose procedures for the determination of contaminants. 
In this chapter, we will only cover three main topics, namely heavy metals, polycyclic 
aromatic hydrocarbons, and mycotoxins.

Keywords: food quality, safety, polycyclic aromatic hydrocarbons, heavy metals, 
mycotoxins

1. Introduction

Food quality is a very broad concept, whose definition presents a complex and 
dynamic character, which varies according to the time interval and the geographic 
location.

From the consumer’s point of view, quality is intrinsically linked to health,  
well-being, and sensory aspect of the products, which makes this concept quite diffuse 
and subjective [1, 2].

The measurability of the food quality parameter can allow its conversion to be more 
objective. For producers, the precision in the parameterization of this concept is very 
important, because the consumer’s perception of quality greatly affects the purchase 
decision, which in Europe is directly correlated with information subjective [2].

According to Tothill and Stephen [3], a large investment is needed in terms of 
providing relevant information and industrial marketing practices. This gap has been 
reduced with the regulation on labeling, requiring the definition of consistent norms 
and standards, a rigorous food quality control process in order to keep the consumer 
safe [4], and confident in their decision to purchase the product. This point is in line 
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with Organization for Economic Co-operation and Development (OECD) indica-
tions, as there are data indicating that the content of food labels influences consumer 
behavior more than energy efficiency labeling [5].

Food quality control involves the specification of ingredients and the consequent 
physical, chemical, and microbiological characterization of food and food products [6].

All food quality control is carried out, using acceptable and well-established meth-
odologies, in order to maintain product characteristics, but is increasingly associated 
with food safety, for the prevention of chemical and biological hazards that may 
result in contamination [6, 7].

Since food quality and safety are two increasingly interconnected domains, it is 
of great value to identify which constituents in food make it unfeasible to consume. 
These components, called contaminants, are increasingly regulated and controlled, 
because their improper consumption can interfere with consumer health.

In 1963, a harmonized international collection of food standards, guidelines, 
and codes of practice was created by the Codex Alimentarius Commission, a joint 
intergovernmental body of the Food Agriculture Organization (FAO) and the World 
Health Organization (WHO), to protect consumer health and ensure fair food trade 
practices.

Since contaminants are defined as substances that are not intentionally added to 
food and may result from various stages such as production, packaging, transport or 
storage, or environmental factors, the Codex Committee on Contaminants in Food 
(CCCF) establishes and endorses maximum allowable levels or guideline levels for 
naturally occurring contaminants and toxins in food and feed. Codex has established 
17 maximum levels for these types of substances, including some hazardous metals, 
mycotoxins produced by certain fungi, and radionuclides [8].

EU legislation, through its Regulations 315/93/EEC [9], 1881/2006 [10], and 
amendments, imposes procedures for the determination of contaminants and their 
maximum levels. Thus, in this issue we will cover three main topics related to the 
intrinsic quality of food, namely heavy metals, polycyclic aromatic hydrocarbons 
(PAHs), mycotoxins.

There is a wide variety of synthetic and natural organic pollutants found in the 
environment, contaminating air, water, soils, and therefore, animals and plants, 
many of them are used for human food. However, within this vast array are the PAHs 
that present a great structural diversity, possessing two or more benzene rings. These 
hydrocarbons can be produced by pyrolysis or incomplete combustion of carbon 
compounds, such as oil and coal [11, 12].

Highly important and problematic is the fact that this group of aromatic organic 
compounds can be teratogenic, carcinogenic, and mutagenic, can cause serious 
problems in human health, and can therefore be used as a marker for the occurrence 
of polycyclic aromatic hydrocarbons in food [13]. Processing of food, such as smok-
ing, heating, and drying processes, and cooking at high temperatures are the major 
sources of contamination by PAHs because those processes allow combustion prod-
ucts to come into contact with food. High levels of PAH are found in dried fruits, olive 
pomace oil, teas, smoked fish, grape seed oil, smoked meat products, fresh mollusks, 
and condiments [12, 14].

Existence of PAH and its relationship with human health and nutrition is an issue 
that goes back more than half a century. To protect public health, maximum levels 
are also necessary for foods where environmental pollution may cause high levels of 
contamination especially in fish and fishery products that contact contaminated water 
[15]. The detection, identification, monitoring, and regulation that exist today rely on 
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identities such as the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 
the European Food Safety Authority (EFSA), the Scientific Committee on Food (SCF), 
the United States Environmental Protection Agency (U.S. EPA), the International 
Agency for Research on Cancer (IACR), and the International Programme on 
Chemical Safety (IPCS), that have joined forces to raise alert to this issue [16].

Based on the evaluation of PAHs, in 2002, the European Union through SCF 
concluded that 15 PAHs, namely benz[a]anthracene, benzo[b]fluoranthene, 
benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, benzo[a]
pyrene, chrysene, cyclopenta[cd]pyrene, dibenzo[a,h]anthracene, dibenzo[a,e]
pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[a,l]pyrene, 
indeno[1,2,3-cd]pyrene, and 5-methylchrysene showed evidence of mutagenicity, 
genotoxicity [14]. In 2005, EFSA concluded that benzo[a]pyrene could be used 
as marker to exposure to, and effect of, genotoxic and carcinogenic PAHs. Later, 
in 2008, the evaluations showed that 50% of the thousands of samples analyzed 
contained benzo[a]pyrene, but that 30% of the samples that showed carcinogenic 
properties contained no benzo[a]pyrene. Based on these and other findings, the 
CONTAM Panel concluded that the risk characterization should be based upon oral 
carcinogenicity data of eight PAHs, explicitly benzo[a]pyrene, benz[a]anthracene, 
benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, chrysene, 
dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene (PAH8). These polycyclic 
aromatic hydrocarbons either individually or in a combination were considered 
possible indicators of the carcinogenic potency in food. In addition to the effects of 
the sum of PAH8, the sum of benzo[a]pyrene, chrysene, benz[a]anthracene, and 
benzo[b]fluoranthene (PAH4), as well as the sum of benzo[a]pyrene and chrysene 
(PAH2), and the correlation between PAH2, PAH4, and PAH8 were calculated. The 
CONTAM Panel later concluded that benzo[a]pyrene is not an appropriate indica-
tor for PAH in food and that PAH4 and PAH8 are the most appropriate indicators 
of PAH in food, with PAH8 not providing much added value compared with PAH4, 
which are presented in Table 1 [16, 17].

Polycyclic aromatic hydrocarbons (PAH4) Other names Structure

Benzo[a]pyrene 3,4-Benzopyrene
3,4-Bnzpyrene
Benzo[def]chrysene

Benz(a)anthracene 1,2-Benzanthracene
Tetraphene

Benzo(b)fluoranthene 2,3-Benzfluoranthene
3,4-Benz[e]acephenanthrylene
3,4-Benzfluoranthene
3,4-Benzofluoranthene
Benz[e]acephenanthrylene
Benzo[e]fluoranthene

Chrysene 1,2-Benzophenanthrene
1,2-Benzphenanthrene
Benzo[a]phenanthrene
[4]Phenacene

Table 1. 
Polycyclic aromatic hydrocarbons (PAH4) and structures.
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The foods with maximum levels of PAH4, benzo(a)pyrene, benzo(a)anthracene, 
benzo(b)fluoranthene and chrysene, above those laid down in EU Regulations 
315/93/EEC [9], and 1881/2006 [10] may not be consumed nor used for the edible 
part of the food. However, recently new data have been collected in order to obtain 
more useful information on PAHs. An example of this is the new regulated values for 
powders of food of plant origin used for the preparation of beverages, contained in 
Regulation 2020/1255 [18], where the maximum thresholds of 10 μg/kg for benzo(a)
pyrene and 50 μg/kg for the sum of benzo(a)pyrene, benz(a)anthracene, benzo(b)
fluoranthene, and chrysene are established. The same regulation warns of the need 
to look for new alternative smoking practices to reduce PAH contaminants. This last 
point is illustrative of the regulators’ concern for maintaining food safety, but also 
shows the concern for food quality, which has great weight at consumer level and also 
directly in the production and marketing of smoked products and their derivatives.

European Union also establishment, in Commission Regulation (EC) No 1881/2006 
[10], the maximum levels for cadmium (Cd), lead, mercury (Hg), inorganic tin (Sn), 
and arsenic (As), knowing that the exposure of these heavy metals may lead to oxida-
tion stress, which may induce DNA damage, protein modification, lipid peroxidation, 
and consequently, toxicity in plants and humans [19, 20]. It is important to mention, 
from a chemical point of view, that arsenic, although being classified as a nonmetal, is 
included in the group of heavy metals when it comes to environmental parameters. 
Consequently, from this point on we will roughly call arsenic a heavy metal [21].

For these metallic elements, the European Commission, through Regulation EC 
No 1881/2006 [10], sets the maximum levels for certain contaminants in foodstuffs, 
has fixed the tolerable weekly intake (PTWI) of mercury and lead at 1.6 and 25 μg/
kg body weight (bw), respectively, Regulation EC No 488/2014 [22] sets the toler-
able weekly intake (TWI) at 2.5 μg/kg bw/week for cadmium, and EC Regulation 
2015/1006 [23] annexed to the Regulation EC No 1881/2006 [10], estimated maxi-
mum dietary exposures BMDL01 between 0.3 and 8 μg/kg bw/day for arsenic.

Chemical contamination is a consumer concern, but microbiological is the greatest 
one [24]. The presence of mycotoxins in food and feed is an important concern of the 
authorities concerning food safety and quality, as their presence may have an impor-
tant impact on the health of consumers both in the short term and in the long term 
[25]. Due to its toxicity, the Rapid Alert System for Food and Feed (RASFF) in 2017 
considered mycotoxins among the top 10 risk categories in terms of contaminants for 
food and products [26].

Mycotoxins are products resulting from the secondary metabolic by certain fila-
mentous fungi, they are not essential for their growth and reproduction but can cause 
biochemical, physiological, and pathological changes in many species [27]. Fungi 
frequently occur in several crops, such as wheat, corn, soybeans, sorghum, and dried 
fruits, as well as in derived products used in human food and feed; they can accumu-
late in maturing products already in the field, or during harvesting, in transportation 
or also in storage [28–30].

Depending on microclimatic conditions, such as moisture content, temperature, 
pH value, and food matrix composition, fungi can produce more than one mycotoxin, 
and some mycotoxins are produced by more than one fungal species [31, 32]; once 
produced they can be modified as a result of interactions between fungi and host or 
during processing, so when humans or animals are exposed to several mycotoxins 
simultaneously synergistic effects can be observed [25]. Most mycotoxins are low-
molecular-weight compounds (less than 1000 Daltons) [33], highly liposoluble, very 
stable, and can accumulate over time both during crop growth and post-harvest. 
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The European Union authorities produce documentation regarding a comprehensive 
strategy to be implemented by the food production chain in terms of correct pre-
harvest management and post-harvest strategies and also on sanitary conditions as 
well on the technology and operating conditions in live cycle products [25] to prevent 
and minimize the contents of mycotoxins as a food contaminant [34].

The main fungi producing mycotoxin belonging to the genera Aspergillus, 
Fusarium, Penicillium, Claviceps, Cladosporium, Helminthosporium, and Alternaria 
[27]. Presently, more than 500 mycotoxins have been identified; however, the ones of 
most concerns to the agricultural and public health authorities are aflatoxins (AFTs), 
ochratoxins (OTs), trichothecenes (TCT’s), fumonisins (FUMs), zearalenone (ZEN), 
patulin (PAT), citrinin (CT), and ergot, alkaloids (EAs) [31]. Mycotoxins are very 
different compounds not only chemically but also toxicologically, so it is practically 
impossible to systematize them. Nevertheless, from the chemical point of view, the 
most important ones are classified into cyclopeptides, polycetoacids, terpenes, and 
nitrogenous metabolites [27].

We can also distinguish between the field toxins, present in the crops, represented 
mainly by Fusarium deoxynivalelol mycotoxins (DON), zearalenone, fumonisins, 
and T-2/HT-2 toxins and the storage toxins of which the main ones are aflatoxins 
(Aflatoxin B1) and ochratoxins (Ochratoxin A).

Human and animals can be exposed to mycotoxins through oral (i.e., dietary con-
sumption) inhalation (dust), and dermal routes, due to their chemical characteristics 
they are easily absorbed and undergo systemic distribution. In systemic circulation 
they reach several organs, such as the liver, kidneys, nervous system, and immuno-
logical system [33], causing alterations in the immunological response carcinogenic-
ity, teratogenicity, hepatotoxicity, neurotoxicity, nephrotoxicity, reproductive and 
developmental toxicity, gastrointestinal disorders, among others [32, 35].

Considering that carcinogenic and mutagenic mycotoxin actions are the main 
health risk in prolonged exposure, Claeys et al. in their systematic review in 2020 
[36] classify the main mycotoxins according to International Agency for Research 
on Cancer (IRCA) criteria into three groups: group 1—The agent is carcinogenic to 
humans; group 2A—The agent is probably carcinogenic to humans; group 2B—The 
agent is possibly carcinogenic to humans; group 3—The agent is not classifiable as to 
its carcinogenic to humans [37]. In Table 2, we gather the IARC toxic effects by Claeys 
et al. with disease-related problem, fungal species, their occurrence, and the limited 
daily intake, when studied.

The action of mycotoxins as carcinogenic agents is explained by their chemical 
characteristics, which allow them to easily penetrate both in human and animal cells, 
reaching the genome, where they can cause mutations in the nucleotide sequence, 
which can lead to important and permanent alterations in the natural cellular pro-
cesses of transcription and translation, giving rise to mutations that can exacerbate 
and deregulate cell growth [32].

According to the above, the study of mycotoxin toxicity goes beyond its carcino-
genic and teratogenic effects; its local action in the various systems is of particular 
importance, aerial topical action at the level of the skin and respiratory system [48–52]. 
In the digestive system beyond its acute action at the level of vomiting and diarrhea, 
the effects on microbiota cause changes in the phylum, genus, and microbiota species 
level of the various animals exposed. The alterations of microbiota have an important 
consequence on health, as it causes alterations in the composition of short-chain volatile 
fatty acids and the sphingolipids normally present in the digestive tract; these altera-
tions have been related to the appearance of several chronic diseases in human [35].
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Mycotoxins Toxic 
effect

Disease-related 
problem/targeting 
system

Fungal species Frequently 
contaminated 
products

Maximum 
tolerable 
daily intake

Aflatoxins B1, 
B2, G1, G2 
(AFB1, AFB2, 
AFG1, AFG2) 
e Aflatoxin 
M1(AFM1)

IARC 
Group 
1

Liver cancer, 
immune system

Aspergillus genus Cereals (e.g., 
sorghum, rice, corn, 
wheat, barely), oil 
seed (e.g., cotton, 
rape, sunflower) 
nuts (e.g., peanuts, 
groundnut, 
pistachio), spices 
(e.g., turmeric, black 
and red pepper, 
ginger), meat, fruit 
juices, eggs, feed, and 
foods derived from 
these products.

<1 ng/g [38]

Ochratoxin A 
(OTA)

IARC 
Group 
2B

Renal cancer, liver, 
cardiovascular and 
immune systems

Aspergillus section 
Circumdati
Aspergillus section 
Nigris, Penicillium 
verrucosum, 
Penicillium nordicum

Soya bean, nuts, red 
pepper, cereals, green 
coffee beans, coffee 
beans
Grapes, red pepper, 
peanuts, cereals dry 
ham, salami

4 ng/kg bw/
day [39]

Fumonisins B1, 
B2 (FB1, FB2)

Hepatocarcinoma, 
stimulation and 
suppression of 
the immune 
system, defects in 
the neural-tube, 
nephrotoxicity

Fusarium 
verticillioides, 
Fusarium 
proliferatum, and 
Aspergillus nigri

Peanut, maize, and 
grape, feed, and 
foods derived from 
these products

2 μg/kg bw/
day [40]

Sterigmatocystin 
(STC)

Hepatocellular 
carcinomas, 
hemangiosarcomas 
of the liver and 
pulmonary 
adenomas

Aschersonia, 
Aspergillus, 
Bipolaris, 
Botryotrichum, 
Chaetomium, 
Emericellai, 
Eurotium, Farrowia, 
Fusarium, Humicola, 
Moelleriella, 
Monocillium, 
Podospora

Cheese, spices (e.g., 
turmeric, black, 
white, red and chilli, 
pepper, cumin, and 
marjoram, caraway), 
cereals (barely, oat, 
wheat, corn, rice, 
buckwheat, soybean, 
sorghum) and 
derived from cereals 
(pastas, breakfast 
cereals)

1.5 μg/kg [41]

Fusarin C Mutagen and 
immunosuppressive 
activities 
(comparable to 
aflatoxins B1 and 
sterigmatocystin) 
Human esophageal 
cancer [42]

Fusarium 
avenaceum, 
F. culmorum, 
F. fujikuroi, F. 
graminearum, 
Fusarium 
oxysporum, Fusarium 
poae, Fusarium 
sporotrichioides, 
Fusarium 
venenatum, and 
also by Metarhizium 
anisopliae

Cereals (wheat, oats, 
barley, and maize), 
and fruit (banana and 
pineapple), lentils, 
tomato, and pea

No available 
data
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It is necessary to process food under standardized and well-controlled condi-
tions and control each food production cycle and storage chain. Preventive measures 
capable of reducing contamination to a minimum must be implemented. If contami-
nation occurs, methods to reduce or eliminate mycotoxins should be implemented 
independently of several parameters such as food or feed properties.

The prevalence of mycotoxin in food and feeds calls for the attention of food 
safety organizations to create awareness on their control and the need to put in place 
strict regulations to avoid high levels of exposure. Recent studies show that children 
may be exposed to mycotoxins from the time of breastfeeding resulting from the 
prevalence of mycotoxins in the mother’s diet [32].

2. Conclusion

In fact, food quality is a very broad concept, which, according to Jeantet et al. 
[53], covers five different components: safety, health, sensory, service, and society, 
which converge in numerous aspects and criteria. This categorization is much broader 

Mycotoxins Toxic 
effect

Disease-related 
problem/targeting 
system

Fungal species Frequently 
contaminated 
products

Maximum 
tolerable 
daily intake

Deoxynivalenol 
(DON)1

IARC 
Group 
3

Vomiting, digestive 
disorders and 
oxidative damage.
Cytotoxicity and 
genotoxicity.

Fusarium 
graminearum, F. 
culmorum and F. 
crookwellense

Wheat, barley, oats, 
rye, maize, rice, 
sorghum and triticale

PMTDI2, PDI3 
1 μg/kg bw/
day4 [43]

Zearalenone 
(ZEN)

Endocrine disruptor 
(interaction with 
estrogen-receptors)

Fusarium 
graminearum, F. 
culmorum

Wheat, barley, oats, 
rye, and maize

PMTDI 
0.5 μg/kg bw/
day
TDI5 0.25 μg/
kg bw/day 
(20) [44]

Citrinin (CIT) Nephrotoxic6. 
Involved in 
induction of 
apoptosis though 
oxidative stress [45]

Aspergillus, 
Penicillium and 
Monacus

Mainly in stored 
grain. Benas, fruit, 
vegetables herbs and 
spices

EU MLs7 
2000 μg/kg 
[46]

Patulin (PAT) Gastrointestinal 
ulceration, 
immunotoxicity and 
neurotoxicity

Byssochlamys 
nivea, Penicillium 
expansum, 
Aspergillus section 
Clavati

Fruits especially 
apples silage

PMTDI 
0.4 μg/kg bw/
day [44]

A recent study with 3000 Swedish students [47] evaluated the concentrations in urine of various mycotoxins, the data 
showed a worrying concentration of DON levels.
2PMTDI, provisional maximum tolerable daily intake.
3PDI, probable daily intake.
4bw, body weight per day.
5TDI, tolerable daily intake.
6The co-occurrence with other mycotoxins, special ochratoxin A, is usually associated with endemic nephropathy.
7EU MLs, European maximum levels (EFSA).

Table 2. 
Main mycotoxins, toxic effect according to IARC, fungal species, frequently contaminated products, and 
maximum tolerable daily intake.
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than the definition of food quality from the consumer’s point of view, which is much 
narrower, focusing mainly on sensory and health aspects [2]. Thus, when focusing 
on food quality, it is inevitable to mention food safety, which, in our view, is one of 
the fundamental bases for consuming quality food. The implementation and applica-
tion of regulations and standards of good practice in production and processing, the 
application of sanitary controls, the design of production and processing facilities, 
and the continuous monitoring of all processes are elements that help reduce the risk 
of contamination and hygiene that can seriously compromise public health.
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Chapter 3

Mycotoxins … Silent Death
Azhar A. Alhaddad

Abstract

There are many types of fungi that produce secondary metabolites called myco-
toxins. These compounds are very dangerous to humans and animals, as exposure to 
them causes acute or chronic toxicity. Temperature, humidity and pH are important 
environmental factors in the production of mycotoxins. There are about 500 types 
of mycotoxins that are found in many agricultural products such as peanut, cereals, 
wines, fruit juice, dried fruits, feed, and other foodstuffs. Among the most impor-
tant genera of fungi that produce mycotoxins are Aspergillus, Penicillium, Altenaria, 
Fusarium, and others. Some of them infect plants in the field and produce mycotoxin, 
while others infect agricultural crops, foodstuffs, and feed in the store and produce 
mycotoxin during storage conditions. Mycotoxins are divided into various groups 
according to the degree of their impact and danger, into highly toxic, low toxic, 
carcinogenic, and mutagenic. This is depends on the chemical composition of the dif-
ferent types of mycotoxins, which are an open hydrocarbon chain with low molecular 
weights ranging between 100 and 697 Da. The biological effects of mycotoxins 
include damage to living tissues, suppression of immunity, and neurological disor-
ders. Aflatoxins are one of the most dangerous mycotoxins as they are the main cause 
of hepatocellular carcinoma and the fifth most common carcinogen in the world.

Keywords: mycotoxins, characteristics, effects on health

1. Introduction

Mycotoxins are secondary metabolites produced by some fungi that are 
genetically capable of producing toxins when appropriate environmental and 
nutritional conditions exist for their production [1]. They are produced by fungi 
or filamentous molds belonging to the class Ascomycota, have low molecular 
weights, and are of great importance to human and animal health because they 
cause acute or chronic toxicity [2]. Directly or indirectly, living vertebrate 
organisms such as humans and animals are affected when exposed to very low 
concentrations of mycotoxins [3]. Many mycotoxins play a major role against 
plant defenses, some of which enable the fungi to compete with the environ-
ment in nature. There are hundreds of mycotoxins, some of which are used as the 
antibiotics we are familiar with, such as penicillin, and others are very dangerous 
such as aflatoxin, one of the most potent substances known to cause cancer. It is 
followed by diacetoxyserpineol in a small percentage [4]. The origin of the word 
mycotoxins is derived from the Greek mykes, meaning fungi, and toxicum, the 
Latin for poison [5]. Mycotoxins are considered one of the health and economic 
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problems in the world, as they constitute 25% of the problems of field crops. 
These toxins are found in many agricultural crops, foodstuffs, and feed, which 
may appear fit for consumption, but they contain many fungi and their second-
ary metabolites, according to FAO and WHO [6]. Mycotoxins are classified 
according to the fungi that produce them, their structural properties, and their 
toxic effects. There are about 400 types of them that vary in their toxicity [7]. 
Mycotoxins have been associated with diseases throughout history. In 1940s and 
1950s of the last century, episodes appeared for humans in Russia and Japan, as 
intoxication by Stachybotrys appeared in the United States of America, and facial 
eczema appeared in sheep in New Zealand in 1961, In England, many animals died 
after eating feed polluted, all these events led to the discovery of mycotoxins [8]. 
Aflatoxins are one of the most important mycotoxins secreted by several genera of 
fungi such as Aspergillus, Penicillium, Fusarium, in addition to Alternaria, as these 
grow in the temperature range between 10 and 40°C, and these conditions may 
change according to the type of fungus [7] produced by many types of fungi, or 
one type of fungi can produce multiple types of mycotoxins, and among the most 
important and common toxins are Afatoxins of all kinds such as AFB1, AFB2, 
AFG1, AFG2, and Ochratoxin A (OTA) produced by Aspergillus and Penicillium, 
followed by fumonisin FBs such as fumonisinB1 (FB1), fumonisin B2 (FB2), are 
predominant zearalenone (ZEA) and trichothecenes, the most famous of which 
are deoxynivalenol (DON) and HT-2 and T-2 toxins. These fungi are associated 
with the climate and different stages of field crops in addition to geographical 
areas. Among the common fungi that infect crops in the field and during storage 
are Fusarium, Alternaria, Penicillium, and Aspergillus [9]. Consequently, mycotox-
ins OTA and AFs are produced in the pre- and postharvest periods, while FBs and 
DON are mainly produced in the preharvest period, in any type of agricultural 
crops and their harvesting stages, the presence of mycotoxins can be observed 
depending on the stage of production of mycotoxins by the fungi, the production 
of toxins can be reduced. The fungal infection is by following good agricultural 
practices and methods of controlling them, producing resistant cultivars, and 
using chemical protection, Despite the different factors suitable for the growth 
of different types of fungi and their production of mycotoxins, mycotoxins were 
found in many food and feed samples in the world, as they caused many problems. 
It travels through the food chain and is mainly found in grain samples and in dairy 
products, coffee, spices, vegetable oils, dried fruits, nuts, wine, as well as fruit 
juices [10, 11].

2. The fungi are responsible for producing most of the mycotoxins

If we look at the spread of fungi in foods around the world, which may be able to 
produce mycotoxins, these fungi contaminated with field crops are divided into two 
groups, which are:

1. Field fungi such as Cladosporium spp., Fusarium spp. and Alternaria spp., which 
infect the whole plant and reach seeds during plant growth and development.

2. Storage fungi such as Aspergillus ssp. and Penicillium spp., which grow and re-
produce during the storage phase [12].
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There are four types of toxic fungi that can be distinguished into:

1. Plant pathogens such as Fusarium graminearum and Alternaria alternate.

2. Fungi grow and produce mycotoxins on large and vulnerable plants such as As-
pergillus flavus and Fusarium moniliforme.

3. Fungi infest the plant and increase its susceptibility to postharvest pollution such 
as A. flavus.

4. Fungi found in the soil, on decaying plants and the remains of field crops, which 
grow and multiply later during the storage phase, such as P. verrucosum and A. 
ochraceus [13].

3. Genus Aspergillus

Aspergillus spp. It is one of the plant pathogens that infect crops in the soil from 
time to time and produces aflatoxin, and the risk of producing aflatoxin increases dur-
ing wrong agricultural practices, as it was found that A. flavus and A. parasiticus infect 
crops before harvest [2]. These species are considered the most important producers 
of aflatoxins, while Ochratoxins A are produced by A. ochraceus, A. carbonarius, and 
A. niger. The main species, such as A. flavus and A. parasiticus, are observed to produce 
aflatoxins with 10 other types of Aspergillus that are rarely found in food. It was found 
that there is a new species affecting peanuts, A. minisclerotigenes, similar to some 
strains of A. flavus, sometimes producing small sclerotia and similar to A. parasiticus 
by producing both Aflatoxins B and G. There is a species associated with insects, but it 
was found recently on the Brazilian nuts, which is A. nomius, as it is similar to A. flavus 
in terms of its production of types B and G and forms bullet-shaped sclerotia [14]. The 
minimum growth temperature for A. flavus ranges between 10 and 12°C and the maxi-
mum from 43 to 48°C. The optimum temperature is about 33°C [15]. The minimum 
aqueous activity (aw) that allows fungus growth is 0.82 at 25°C, 0.81 at 30°C, and 0.80 
at 37°C [16]. Optimal growth of the fungus occurs in the pH range of 3.4–10, As for 
A. parasiticus, it grows in the same physical factors as A. flavus that were mentioned 
previously except that the minimum temperature is 42°C [17].

4. Genus Penicillium

Penicillium is one of the most common fungi as it is found in different environ-
ments such as different field crops, soil, and air. It is also found in food and has a 
great economic impact on human life. The main role of Penicillium is to spoil organic 
matter. Penicillium species are pre- and postharvest pathogens. With rotting of 
many foodstuffs, this genus is of great importance in many and varied fields such 
as food spoilage, biotechnology, plant pathology, and medicine [18, 19]. Currently, 
there are 438 accepted species, most of which are classified as pre- and postharvest 
pathogens and lead to significant losses in field crops [20]. Penicillium spp. are 
mesophilic fungi, growing between 5 and 37°C (optimal growth of 20–30°C) and at 
pH 3–4.5, maximum growth was obtained in vitro at 23°C and pH 3–4.5. Penicillium 
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genus includes many species, including Penicillium atramentosum, Penicillium digi-
tatum, Penicillium expansum, Penicillium notatum, Penicillium roquefortii, Penicillium 
oxalicum, Penicillium glaucum, and others (https://www.inspq.qc.ca/en/moulds/
fact-sheets/penicillium-spp). Some species of Penicillium produce different types of 
mycotoxins that cause acute or chronic toxicity to humans, such as Indole-diterpenes, 
Penitrems (PNT) A, C, F, Patulin (PTA), Citrinin (CTN), Cyclopiazonic acid (CPA), 
Ochratoxin A (OTA), Penicillic acid (PA), and other mycotoxins [21]. Penicillium can 
produce a variety of secondary metabolites and many antibacterial and antifungal 
compounds, immune suppressants, as well as cholesterol-lowering agents, the most 
famous example being penicillin, which was the first historically known antifungal 
antibiotic [22].

5. Genus Fusarium

Fusarium is among the most economically important genera of fungi in the world 
and is one of the most studied [23]. Most of the species of Fusarium live in the soil, 
Fusarium conidia can spread by rain spray or irrigation, but when dry it can spread by 
air, and this makes it perfectly suitable for long-distance atmospheric dispersal, and 
this contributes to its distribution all over the world [24]. The optimum temperature 
range for growth and reproduction of some species of Fusarium such as F. oxysporum 
was 24–28°C. The minimum growth is obtained at 45°C and 10°C. Also, the optimum 
pH for fungal growth was obtained at a pH of 5.5 [25]. Fusarium spp. has a very 
important role for humankind as plant pathogens, and this leads to its real role in 
creating toxicological risks to humans and our domestic animal species, A wide range 
of plant diseases are associated with Fusarium; most plant-pathogenic Fusarium spp. 
are grouped into four species complexes as defined by RNA polymerase II subunit 
gene sequence phylogeny such as Fusarium fujikuroi, Fusarium graminearum, Fusarium 
oxysporum, and Fusarium solani [26]. There are many hundreds of compounds 
(secondary metabolites) secreted by Fusarium spp. Described as toxic or potentially 
toxic, such as Trichothecenes and Fumonisins, these can contaminate agricultural 
products and make them unsuitable for food or feed. Trichothecenes can also act as 
virulence factors in plant diseases [27, 28]. There are other mycotoxins produced by 
some Fusarium spp. It is commonly found in corn and is called Zearalenone (Zea), Its 
name is a collection of letters from different origins (Zea) comes from Gibberella zeae, 
which is the name of a producing organism that was the first to be studied [29]. There 
are other species of Fusarium producing other types of mycotoxins such as F. crook-
wellense and F. sambucinum produce fusaric acid [30]. Moniliformin is produced from 
F. moniliforme, F. acuminatum, F. culmorum, F. equiseti, and F. sporotrichioides [31].

6. Characteristics of mycotoxins

Mycotoxins are toxic chemical compounds produced by molds, and molds cannot 
be used as building blocks for the body of fungi, but they are produced for other rea-
sons that are not clearly understood so far. Fungi compete for their ecological position 
in nature. There are hundreds of mycotoxins, some of which are used as antibiotics, 
such as penicillin, others are very dangerous such as aflatoxin, which is one of the 
most potent carcinogens known, and others, such as diacetoxiscerinol, are much less 
a favor [32]. Mycotoxins are distinguished toxic chemical compounds produced by 
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fungi. Most mycotoxins are Aromatic hydrocarbon seldom Aliphatic hydrocarbon. 
With low molecular weights ranging between 100 and 697 Da [33], so they do not 
stimulate the immune system creating antibodies. Due to the different chemical 
composition, some may exhibit different biological effects. It causes tissue damage, 
immunosuppression, and nervous disorders [34]. It dissolves well in organic solvents 
and is resistant to freezing and high temperatures as boiling point and pasteurization 
[35]. They resist decomposition during the digestive processes that they occur in the 
human gastrointestinal system and animal [36]. Mycotoxins differ from each other 
in the degree of their toxicity. Depending on its chemical composition and molecular 
construction, as it enters the human body in several ways For example, orally through 
consuming it with food or inhalation of fungi produced. For toxins through the 
respiratory system or from by direct contact with fungi producing mycotoxins [37].

7. Some mycotoxins commonly found in food and feed

Mycotoxins exist in agricultural commodities such as peanuts, grapes, wines, 
grains, nuts, dried fruit, coffee, cocoa, spices, oil seeds, fruits, fruit juices, beer, and 
other foodstuffs and feed crops, both in the field and during transportation [38–40]. 
At any stage of the food production process (before harvesting, harvesting, drying, 
and storage), fungal production of mycotoxins can occur and can expose consumers 
to the risk of contamination directly through food consumption or indirectly through 
feed [41]. In general, under prolonged storage conditions and at extreme temperatures 
along with extreme humidity, all crops including cereals can be subjected to mold 
growth and mycotoxin contamination [42]. In fact, the occurrence of mycotoxins in 
foods and derivatives is not only a problem in countries, mycotoxins affect agribusi-
ness in many countries, influencing or even impeding exportation, reducing livestock 
and crop farming production, and affecting human and animal health [43]. Most of 
the mycotoxins remain chemically and thermally stable, and this has been observed 
through various techniques in food processing such as cooking, boiling, baking, fry-
ing, and pasteurization, The presence of mycotoxins in animal products such as meat, 
eggs, and milk is the result of contaminated feed, and this leads to the contamination 
of the human plate [38]. The agricultural industry has to deal with the presence 
of mycotoxins in food, as it is of global importance and a major threat [44]. Huge 
agricultural and industrial losses in billions of dollars occur annually because 25% of 
the world’s harvested crops are contaminated by mycotoxins [45]. The report stressed 
the WHO and IJRC that there is a need for a coordinated international response to the 
problem of mycotoxins and contamination of food and neglect of its health effect for 
a long time It causes human liver cancer, death, and stunting in young children, There 
are approximately 500 million poor people in sub-Saharan Africa, Latin America, and 
Asia daily exposed to natural toxins, aflatoxins and fumonisins, by following a diet 
based mainly on peanuts, corn, and other grains, and this exposure to toxins occurs 
throughout life as toxin levels far exceed internationally accepted standards, and this 
is in stark contrast to the situation in developed countries [46].

8. Aflatoxin

Aflatoxins are a type of mycotoxin produced by Aspergillus species of fungi, 
such as A. flavus and A. parasiticus, The most potent carcinogens found in nature, 
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aflatoxins are toxic not only to humans, but also to livestock, pets, and wildlife [47]. 
Dietary exposure to aflatoxins is one of the major causes of hepatocellular carcinoma, 
the fifth most common cancer in humans worldwide [48]. The term aflatoxin was cre-
ated based on the name of its main agent producer A. flavus. The main known aflatox-
ins are called B1, B2, G1, and G2, based on their fluorescence under ultraviolet light 
and their mobility during thin layer chromatography (TLC). They are mainly pro-
duced by A. flavus and A. parasiticus. However, more recently, the species A. nomius, 
A. bombycis, and A. tamarii have also been shown to be aflatoxigenic [49]. More than 
20 types of aflatoxins (AFs) and their derivatives occur in nature, but mainly four, B1, 
B2, G1, and G2, are proved to be dangerous for humans and livestock [50]. Aflatoxins 
are immunotoxic, carcinogen, and mutagen. The presence of the lactone and devoran 
ring is mainly due to the effects [51]. AFB1 is considered one of the most studied 
carcinogens, AFM1 is a 4-hydroxy derivative of AFB1, which is formed in the liver 
and secreted by the mammary glands in humans and lactating animals when fed a 
contaminated diet [52]. The chemical formula of the aflatoxin is C17H12O6, colorless 
to pale yellow crystals. Aflatoxins are soluble in organic solvents such as chloroform 
and methanol and slightly soluble in water, but insoluble in nonpolar solutions such as 
phenyl, cyclohexyl, ethyl, octyl, and octadecyl [53, 54] Aflatoxins (AFTs) are deriva-
tives of difuranocoumarin, with a bifuran group attached to one side of the coumarin 
nucleus while a pentanone ring bound to the other side for AFTs and AFTs-B or six 
lacton rings attached to the AFTs-G series Figure 1 [55, 56].

Figure 1. 
Chemical structure of aflatoxins.
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9. Trichothecenes

Fusarium toxins are produced by over 50 species of Fusarium and have a history of 
infecting the grain of developing cereals such as wheat and maize [57]. They include a 
range of mycotoxins, such as trichothecenes, which are most strongly associated with 
chronic and fatal toxic effects in animals and humans, the genera producing trichot-
hecenes include Fusarium, Myrothecium, Spicellum, Stachybotrys, and Cephalosporium, 
Trichoderma, and Trichostium. Trichothecene (TCT) mycotoxin is agriculturally 
more important worldwide due to the potential health hazards they pose [58, 59]. It 
produces more than 20 metabolites mainly after the metabolism of trichothecene, 

Figure 2. 
Chemical structure of trichothecenes.

Figure 3. 
Chemical structure of trichothecenes types A, B, C, D.
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and this happens when ingested to get rid of it, and hydroxy trichothecene-2 is the 
main metabolite, this family is divided into four groups according to its composition, 
namely A, B, C, and D [60, 61]). Trichothecenes are groups of chemicals such as 
T-2 toxin (T-2), HT-2 toxin (HT-2), neosolaniol (NEO), diacetoxyscirpenol (DAS), 
monoacetoxyscirpenol (MAS), verrucarol (VER), scirpentriol (SCP), and their 
derivatives are reported as representative type A trichothecenes [62]. Types C and D of 
trichothecenes are chemical compounds of different structures. It is not produced by 
Fusarium species. Therefore, type A and type B are some of the most common types of 
trichothecenes found in nature and highly toxic, The most toxic group is type A (T-2 
and HT-2) compared with type B DON, NIV, and FUS-X [63, 64]. Trichothcinate is 
a low-molecular-weight (MW 250–550) mycotoxin, nonvolatile, and slightly soluble 
in water, but highly soluble in acetone, ethyl acetate, chloroform, dimethyl sulfoxide 
(DMSO), ethanol, methanol, and propylene glycol Pure trichothcinates have a low 
vapor pressure but evaporate when heated in organic solvents (Figures 2 and 3) [65].

10. Patulin

Patulin (PAT) is produced by many different molds, predominantly by Penicillium 
spp., but, occasionally, by some Byssochlamys and Aspergillus spp. including A. gigan-
teus, A. longivesica, and A. clavatus [66–68]. It is a low-molecular-weight mycotoxin. 
Compounds with low volatility, which are secondary metabolites found in crops, in 
the field or after harvest, are capable of causing disease and death to humans and 
animals by eating contaminated food products [67]. The contamination of patulin 
in fruits, vegetables, and fruit-derived products, especially in apple and derived 
products, is very common worldwide and occasionally in other fruits such as pears, 
oranges, grapes, and their products [69]. If rotten fruits, especially apples, are not 
removed during fruit juice processing, patulin is transferred to juices [70]. Patulin 
is a polycystic metabolite, like many other major mycotoxins, such as aflatoxins, 
fumonisins, and ochratoxins, but this latter toxin is a polycetoxin/amino acid hybrid 
compound, Structurally, PAT is a heterocyclic lactone (4-hidroxi-4H-furo [3,2-c]
piran-2(6H)-ona) (Figure 4) [71].

Figure 4. 
Chemical structure of patulin.
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11. Mycotoxins and public health

There are approximately 500 mycotoxins, most of which have been discovered 
since the 1960s, it has been generally classified into groups based on structural simi-
larities and its major toxic effects [56]. Mycotoxins are classified into polycetoacids, 
cyclopeptides, terpenes, and nitrogenous metabolites, depending on their biologi-
cal origin and structure. From a health point of view, the important mycotoxins in 
food and feed include: aflatoxins, ochratoxin, trichothecenes, fumonisins, ZEN, 
and patulin. Aaflatoxins, fumonisins, and ergot alkaloids are associated with acute 
mycotoxicoses in both humans and livestock [72]. Mycotoxins can travel through the 
food chains of humans and animals through direct or indirect contamination, The 
indirect contamination of food and animal feed occurs when any component has 
been previously contaminated with toxic fungi, and mycotoxins remain in the final 
product despite the elimination of the fungi during processing, on the other hand, 
direct contamination occurs when the product, food, or feed is infected with a fungus 
toxic with the subsequent formation of mycotoxins. It is known that most food and 
feed products can allow toxin-causing fungi to grow and develop during production, 
processing, transport, and storage [7]. The term mycotoxicosis is given to the toxic 
effect of mycotoxins on human and animal health. Mostly exposure to mycotoxins is 
through ingestion but can also occur through inhalation and skin. The extent of harm-
ful effects of mycotoxins on human and animal health depends mainly on exposure 
(dose and period). The physiological and nutritional status, the type of toxins, as well 
as the potential synergistic effects of other chemical substances to which humans 
or animals are exposed [73]. Aflatoxins are the best known among all mycotoxins, 
because of their serious impact on human and animal health, aflatoxin.

B1 is a carcinogenic substance (according to the classification by the IARC in 1987, 
while AFM1 is a potentially carcinogenic substance with a toxicity range of B1, G1, 
B2, and G2 [74, 75]. In addition to being a carcinogen, aflatoxin is mutagenic (DNA 
destruction), have teratogenic effects, and immunosuppressive effects. Symptoms of 
acute aflatoxicosis in humans include vomiting, abdominal pain, jaundice, pulmonary 
edema, coma, convulsions, and death while chronic aflatoxicosis occurs via cancer, 
immune system inhibition, and liver damage [76, 77]. Aflatoxicosis is the consump-
tion of foods or feed contaminated with high levels of aflatoxins, which leads to acute 
Aflatoxicosis, while regular intake at low levels (ppb) is responsible for stunting and 
weight loss in children and in some cases led to the development of hepatocellular 
carcinoma. Aflatoxins have also been linked with kwashiorkor, a protein-energy 
malnutrition disease [78]. Those who are most exposed to Aflatoxicosis illness are 
residents of developing countries, because the security blankets on crops before and 
after harvest is not as strict as in other countries.

The same is happening with dairy products, as developing countries do not accept 
or assume amenities like developed countries, and it is estimated that there are more 
than 5 billion people in developing countries around the world at risk of chronic 
exposure to aflatoxins through contaminated foods [79]. The effects of aflatoxins 
are similar in all animals; however, susceptibility to infection varies by gender, age, 
and individual variation. Symptoms of acute poisoning consist of depression, loss of 
appetite, weight loss, disease, gastrointestinal bleeding, and pulmonary edema

Liver damage. Signs of acute liver injury are thrombosis and capillary enlargement 
feeling, bleeding, and prolonged clotting. Pigments of blood may appear in urine and 
mucous membranes are rhythmic. Symptoms of prolonged exposure to moderate to 
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aflatoxins may be reflected in a decline in feed consumption and production (growth 
and production of eggs and milk) [80]. The US Food and Drug Administration (FDA) 
has recommended acceptable levels of aflatoxins in foods and feeds in order to protect 
human and animal health from the toxicity of high doses of aflatoxins, The permis-
sible levels range from 20 to 300 ppm, depending on the product and host (children, 
adults, animals) Table 1 [81]. Trichothecenes are toxic to humans, other mammals, 
birds, fish, plants, and plants Eukaryotic cells in general, TCT is dangerously toxic 
due to its added ability to be locally absorbed. Its metabolites affect the gastrointesti-
nal tract, kidneys, liver, skin, cellular immune system, and blood. The most sensitive 
end points are in neuroimmune effects, hematological and reproductive diseases, 
and there is variation in the sensitivity of some animals. This type of poison ranges 
from dairy cows to pigs [82]. The mechanism of action mainly consists of the inhibi-
tion of protein synthesis and oxidative damage to cells followed by the disruption of 
nucleic acid synthesis and ensuing apoptosis [59]). Trichothecenes have a spectrum 
of adverse effects including emesis, anorexia, growth retardation, neuroendocrine 
changes, immunotoxicity, and a reduction in food consumption in various animal 
species (mink, mice, and pigs) [83]. TCT is easily absorbed in the membranes of the 
gastrointestinal tract and is rapidly distributed to various organs and tissues of the 

Aflatoxin

Commodity Action level (ppb) Reference

Animal feeds

Brazil nuts 20 CPG 
570.200

Foods 20 CPG 
555.400

Milk 0.5 (aflatoxin M1) CPG 
527.400

Peanuts and peanut products 20 CPG 
570.375

Pistachio nuts 20 CPG 
570.500

Corn, peanut products, and other animal feeds and feed ingredients 
but excluding cottonseed meal, intended for immature animals

20 CPG 
683.100

Corn, peanut products, cottonseed meal, and other animal feed 
ingredients intended for dairy animals, for animal species or uses not 
specified above, or when the intended use is not known

20 CPG 
683.100

Corn and peanut products intended for breeding beef cattle, 
breeding swine, or mature poultry

100 CPG 
683.100

Corn and peanut products intended for finishing swine of 100 
pounds or greater

200 CPG 
683.100

Corn and peanut products intended for finishing (i.e., feedlot) beef 
cattle

300 CPG 
683.100

Cottonseed meal intended for beef, cattle, swine, or poultry 
(regardless of age or breeding status

300 CPG 
683.100

Table 1. 
FDA action levels for aflatoxins present in animal feeds and food.
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body due to its low molecular weight and amphipathic nature. The toxic activity of 
trichothecenes is due to the fact that they all contain epoxide at the C12,13 position 
[84]. Modulation of emesis and anorexia occur as a result of the direct action of 
trichothecenes in the brain or the indirect action in the gastrointestinal tract. The 
direct action of trichothecenes is in specific areas of the brain such as nucleate tractus 
solitarius in the brainstem and the arcuate nuclei in the hypothalamus. Activation 
of these areas in the brain leads to the activation of specific neuronal populations 
containing anorexigenic factors [85]. Since trichothecenes induce emesis and growth 
retardation, mycotoxin contamination is becoming a major issue for child and young 
animal health [86]. The trichothecene mycotoxins are readily absorbed by various 
modes, including the topical, oral, and inhalational routes [87]. Intestinal epithelial 
cells newly identified as an important target for trichothecenes, which affect the 
network of tight junctions and thus lead to impaired intestinal barrier function, 
impairing nutrient transport, the immune system, and increased risk of transmission 
of pathogens and antigens from the intestinal lumen to surrounding tissues, increased 
the possibility of allergic reactions in humans [88].

12. Conclusion

This review showed the main dangerous effect of mycotoxins on public health 
and the occurrence of dangerous diseases such as cancer and mutations by some of 
them such as aflatoxins. In addition to its transmission through the food chains, it was 
also found that there is the ability of different species of fungi to secrete mycotoxins 
at a wide range of different environmental factors, in addition to their occurrence in 
the pre- and postharvest stages and during poor storage conditions and marketing 
to the consumer (human and animal). In view of the seriousness and importance of 
this topic, more light should be shed on mycotoxins and their occurrence in many 
agricultural, food, and feed products, especially in developing countries, should be 
shed light on the lack of accurate systems and programs that reveal this. And since 
the effect on the public health of mycotoxins does not appear quickly until after long 
periods, they really represent the silent or slow death of humans and animals, modern 
strategies, means and methods must be followed to prevent the occurrence of myco-
toxins, especially in the pre- and postharvest stages and in the store, represented by 
genetic, agricultural, biological, chemical, and physical methods.
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Abstract

The demand for livestock products is the main factor affecting the demand 
for livestock feeds worldwide. However, animal feed safety has gradually become 
more important, with mycotoxins representing one of the most significant hazards. 
Mycotoxins are toxic secondary metabolites produced naturally by fungi that grow on 
various agriculture commodities. Aflatoxin, fumonisin, ochratoxin, trichothecene, 
and zearalenone are the more prevalent mycotoxins in animal feeds. Some of myco-
toxins impacts include; loss of animal and human health, reduced animal productiv-
ity, increased veterinary service costs, feed disposal and increased research costs 
which enhance the importance of mycotoxins detoxification. Contamination of feeds 
may occur both during pre-harvest and post-harvest. The purpose of this chapter is to 
review the most prevalent mycotoxins in animal feeds, reveal the origin of mycotox-
ins contamination and the possible risks they pose to feeds and livestock. This chapter 
also gives an overview of the most important factors that influence mold growth and 
mycotoxin production as well as the economic impacts of mycotoxins. To the end of 
this chapter, mycotoxins preventive methods, both preharvest and postharvest, are 
well discussed.

Keywords: mycotoxins, mold, animal, nutrition, prevention, detoxification

1. Introduction

The demand for livestock products is the main factor affecting the demand for 
livestock feeds worldwide. The world-wide demand for animal feed is expected to 
increase as a result of the global demand for animal sourced food which is expected 
to increase due to growth of the world population. The United Nations Food and 
Agriculture Organization (FAO) estimates that food demand will increase by 60% 
by 2050, and animal protein production will increase by 1.7% per year between 2010 
and 2050, with meat production expected to increase by nearly 70%, aquaculture 
by 90%, and dairy by 55% [1, 2]. However, animal feed safety has gradually become 
more important, with mycotoxins representing one of the most significant hazards 
[3]. Mycotoxins are secondary metabolites produced naturally by filamentous fungi, 
which are considered toxic substances when present in food for humans and feed for 
animals [4]. They are small and quite stable molecules which are extremely difficult 
to remove or eradicate, and which enter the feed chain while keeping their toxic 
properties.
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More than 500 mycotoxins have been identified, the majority of which have 
been either regulated or tested [5]. These chemically different mycotoxins formed 
by more than 350 fungal species and causing diseases to living organisms have been 
researched [6] but only a few have been extensively researched and even fewer have 
good methods of analysis [7]. The primary classes of mycotoxins are aflatoxins (B1, 
B2, G1, G2) of which aflatoxin B1 (AFB1) is the most prevalent, zearalenone (ZEA), 
trichothecenes such as deoxynivalenol (DON) and T-2 toxin (T-2), fumonisins (FUM: 
FB1, FB2, FB3) and ochratoxin A (OTA) [8]. With regard to animal feed, aflatoxins, 
fumonisins, ochratoxins, trichothecenes, and zearalenone are the more prevalent 
ones hazards [3]. The majority of mycotoxins in these groups are produced by three 
fungal genera: Aspergillus, Penicillium and Fusarium [9]. Many species of these fungi 
produce mycotoxins in animal feedstuffs. Because a given mold species can produce 
many types of mycotoxins in a single food item, multiple contaminations are possible. 
Multiple varieties of mycotoxins can also be discovered in the same feed if it contains 
a variety of contaminated products or raw materials. Several studies and surveys 
that revealed concurrent contamination were mentioned in a review on mycotoxins 
in the human food chain by Galvano et al. There is therefore a risk of simultaneous 
contamination in animal feed since raw cereals can also be employed as raw materials 
in animal feed preparation [10].

Mycotoxin contamination usually occur in the field as well as during process-
ing and storage of feed products as long as the conditions allow fungal colonization 
with moisture content and ambient temperature being the key determinants of this 
mycotoxin production [11]. Mold growth in feeds is undesirable because they secrete 
toxins which impair with animal health and productivity [12]. Direct consequences of 
consumption of mycotoxins-contaminated livestock feed include reduced feed intake, 
feed refusal, poor feed conversion, diminished body weight gain, increased disease 
incidence, and reduced reproductive capacities [13]. Furthermore, mycotoxins could 
potentially impose large costs on the economy [14]. The addition of adsorbents to 
feeds is the most widely applied way of protecting animals against mycotoxins.

However, it is quite relevant to understand possible sources of mycotoxins that 
contaminate animal feeds and the various available preventive methods that can be 
explored. This review is intended to explore and provide information about most 
prevalent mycotoxins in animal feeds. The review also highlights the origin of myco-
toxins in feeds, the possible risks they pose to feeds and livestock production in general. 
To the end of this article, mycotoxins preventive methods and mycotoxins risk man-
agement methods both before and after harvesting animal feeds are well discussed.

2. Mycotoxins and fungi classification

Mycotoxins are toxic secondary metabolites produced naturally by filamentous 
fungi that grow on various agriculture commodities [4, 15]. The main factors influ-
encing fungi growth and mycotoxin production are temperature and moisture [14]. 
The mycotoxin contamination can occur during pre-harvest and post-harvest, this 
is why researchers have divided fungal species into two main groups: field fungi and 
storage fungi [12].

Field fungi invade the seeds while the crop is still in the field and require high 
moisture conditions (20–21%). These include species of Fusarium, Alternaria, 
Cladosporium, Diplodia, Gibberella and Helminthosporium. On the other hand, storage 
fungi are those that invade grain or seeds during storage and require less moisture 
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than field fungi (13–18%). Storage fungi include species of Aspergillus and Penicillium 
[12]. It’s important to remember that not all fungal growth results in the production 
of mycotoxins, and that the detection of fungi does not always suggest the presence of 
mycotoxins.

Mycotoxigenic species may be further classified based on their geographical 
prevalence. Aspergillus flavus, A. parasiticus and A. ochraceus readily proliferate under 
warm and humid conditions, while Penicillium expansum and P. verrucosum are essen-
tially temperate fungi. Fusarium fungi are more ubiquitous, but toxigenic species 
from this genus are less likely to be associated with cereals contamination from warm 
countries [11].

Mycotoxins are classified according to their chemical structures and biological 
activities as; carcinogenic (e.g. aflatoxin B1, ochratoxin A, fumonisin B1), oestro-
genic (zearalenone), neurotoxic (fumonisin B1), nephrotoxic (ochratoxins, citrinin, 
oosporein), dermonecrotic (trichothecenes) and immunosuppressive (aflatoxin B1, 
ochratoxin A, and T-2 toxin) [16].

3. Major mycotoxins in animal feeds and toxicity

According to different reports, more than 400 mycotoxins have been identified. 
Mycotoxins can occur under natural conditions in animal feeds. Most mycotoxins of 
concern in the area of animal nutrition are produced by three genera of fungi, namely, 
Aspergillus, Penicillium, and Fusarium (Table 1) [19]. Biomin, a feed additive manu-
facturer, conducted a two-year assessment to assess the incidence of mycotoxins in 
feed and feed raw materials in several of the key animal production locations. AFB1, 
OTA, DON, T2 toxin, ZEA, and fumonisins were determined in a total of 2753 assays 
on 1507 samples collected from European and Mediterranean markets. Mycotoxins 
were found in 52% of these samples, demonstrating that the prevalence of mycotoxins 
in animal feed is relatively significant [20].

3.1 Aflatoxin

Aflatoxins are produced by strains of Aspergillus flavus and A. Parasiticus and they 
are a prominent cause of disease in animals. Naturally occurring aflatoxins are B1, B2, 
G1 and G2. Aflatoxin B1 is the most prevalent of the aflatoxins and occur in a couple 
of important animal feeds. It is one of the most potent hepatocarcinogens and causes 

Mycotoxin Molds/fungal species

Aflatoxin Aspergillus flavus, A. parasiticus

Deoxynivalenol Fusarium culmorum, F. graminearum, F. sporotrichioides

Ochratoxin A A. ochraceus, A. Alliaceus, A. melleus, A. ostianus, A. sulphureus, Penicillium viridicatum, 
P. palitans, P. commune, P. variabile, P. cyclopium, P. verrucosum, P. purescens

T-2 toxin F. acuminatum, F. equiseti, F. poae, F. semitectum, F. sporotrichioides

Zearalenone F. culmorum, F. graminearum, F. sambucinum, F. semitectum, F. sporotrichioides

Fumonisins F. proliferatum, F. verticillioides

Table 1. 
Some key species of molds producing some of the most important mycotoxins in animal husbandry [17, 18].
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acute hepatotoxicity as well as growth retardation in animals. Aflatoxin contami-
nates most agricultural commodities. The highest levels of contamination have been 
recorded in groundnuts, tree nuts, other oilseeds and corn. Corn, cottonseed, and 
peanuts are some of the most important sources of aflatoxin in animal feeds [21]. 
Small cereal grains (barley, oats, and wheat) are also occasionally colonized by the 
causative molds, which produce low to moderate quantities of aflatoxin. Soybeans do 
not support significant levels of aflatoxin B1 production [22].

Worldwide aflatoxins have been reported to be prevalent in both feedstuffs and 
finished feeds [23]. Aflatoxin is posing a dangerous problem for animal industry 
and human health [24]. Concerning livestock health, Aflatoxins cause acute death to 
chronic disease. Chronic aflatoxins poisoning causes a wide range of symptoms that 
aren’t always visible clinically; a slow rate of growth in young animals is a sensitive 
clinical indicator of chronic aflatoxicosis. Aflatoxicosis is characterized by a decrease 
in total production, greater vulnerability to stressors, and clinical manifestations such 
as gastrointestinal problems [3]. Long-term consumption of aflatoxin contaminated 
feeds results in negative effects on the liver (primary target organ), such as hepatic 
cell and tissue injury, as well as gross abnormalities [25, 26].

3.2 Ochratoxin

Ochratoxin is a dangerous mycotoxin, produced by Aspergillus species in warmer 
climates and Penicillium species in cold areas. Ochratoxin contaminates various raw 
agricultural commodities and has dangerous effects on animals and humans [27]. 
Ochratoxin predominantly affects the kidneys of all animal species, but it can also 
harm the liver at high concentrations. Because of its strong protein affinity, especially 
for albumin, ochratoxin A (OTA), a primary ochratoxin, accumulates in animal 
tissues. OTA has been proved to be a potent nephrotoxic, immunotoxic, neurotoxic, 
hepatotoxic, and teratogenic compound. The intake of feed contaminated with OTA 
affects animal health and productivity [28]. The kidneys are the most affected by 
OTA-acute toxicity, and pigs have the highest susceptibility, developing nephropathy 
following exposure [29]. Many animal studies, including chick, quail, rabbit, hamster, 
rat, and mouse research, indicated teratogenic effects, with craniofacial deformities 
and lower birth weight being the most prevalent [30, 31]. The most relevant effects of 
ochratoxins in animal cells are the inhibition of protein synthesis, lipid peroxidation, 
DNA damage and oxidoreductive stress [32].

3.3 Zearalenone

Zearalenone is one of the well-known mycotoxins produced by Fusarium mold 
species [33]. The fungi that produce zearalenone are distributed worldwide, particu-
larly in cereal grains and derived products [34]. Zearalenone is a stable compound 
during storage and can resist high temperature during processing of food [35]. 
Furthermore, it was observed that during feed processing (e.g., milling, extrusion, 
storage and heating) zearalenone was not decomposed [36]. It can be found in all 
products intended for animal feeding [33]. It is recommended that the overall amount 
of zearalenone in the diet should not exceed 250 ppb [37]. It has been concluded that 
zearalenone interacts with estrogen receptors and causes an oestrogenic response 
in animals [38]. Among its estrogenic effects includes decreased fertility, increased 
embryo lethal resorptions, reduced litter size, change in serum levels of progesterone 
and teratogenic effects in pigs and sheep [35].
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At higher doses, zearalenone interferes with conception, ovulation, implantation, fetal 
development and the viability of newborn animals [37]. Large doses of zearalenone toxin 
are associated with abortions in dairy cattle as well as reduced feed intake, decreased milk 
production, vaginitis, increase vaginal secretions, poor reproductive performance and 
mammary gland enlargement in heifers. Swine have been shown to be the most sensitive 
to zearalenone among farm animals; some consequences in pigs include swelling of the 
vulva and mammary glands, stillbirth, prolonged estrus intervals, vulvovaginitis, vaginal 
and/or rectal prolapse, ovarian atrophy, disrupted conception, abortion and infertility 
[39–41]. In male pigs, zearalenone induces feminization, decreases spermatogenesis, 
testicular weight, decreases libido, and decreases testosterone levels [37].

3.4 Fumonisins

Fumonisins are neurotoxic and possible carcinogens. Fumonisins are hydrophilic, 
unlike other known mycotoxins, which are soluble in organic solvents, making them 
challenging to study. Different fumonisins have been previously identified (FA1, FA2, 
FB1, FB2, FB3 and FB4) [42]. Fumonisins causes liver and kidney damage, decreases 
weight gains, impairs immune function and increases mortality rates in most animals. 
FB1 and FB2 were isolated from F. moniliforme cultures and were found to promote 
cancer in rats [42]. Fumonisins occur naturally in corn, and they have been linked with 
equine leukoencephalomalacia which results in softening of white tissue in the brain 
[41]. Interference with the enzyme N-acyltransferase, which is involved in sphin-
golipid metabolism, is the principal mechanism of fumonisins toxicity. This mainly 
results in the disruption of processes involved in liver functioning as well as affecting 
other biological functions such as protein metabolism and the urea cycle [41, 43].

3.5 Trichothecenes

Trichothecenes are produced mainly, but not only, by Fusarium species. With a 
basis on the chemical structure, more toxic but less prevalent type A trichothecenes 
(T-2) and widely occurring type B trichothecenes (deoxynivalenol, DON) are well 
defined [44]. Trichothecenes are mostly found in cereals, commercial cattle feed and 
mixed feeds. They affect livestock animals, pets and humans [14]. Trichothecenes 
can be easily absorbed via the skin and gastrointestinal tract [5]. Ingestion of feeds 
contaminated by trichothecenes results in decreased feed intake and weight gain, 
bloody diarrhea, hemorrhaging, oral lesions, low productivity, immunosuppression, 
abortion, and sometimes death [3, 45].

Trichothecenes have several action mechanisms, including DNA, RNA, and 
protein synthesis inhibition, neurotransmitter alterations, lipid peroxidation, apop-
tosis, mitochondrial function inhibition, and cytokine activation [46, 47]. Through 
microbial degradation of trichothecenes in the gastrointestinal system, monogastric 
animals, particularly young pigs, are very sensitive, although poultry and ruminants 
appear to be less sensitive to some trichothecenes [46]. Because of inadequate absorp-
tion following oral exposure, extensive metabolism, and rapid removal from the 
body, poultry have a higher tolerance to trichothecenes [48, 49].

3.5.1 T-2 toxin

T-2 is the most lethal of the trichothecene mycotoxins, and its toxicity in animals 
varies depending on age, dosage, and species. The T-2 toxin, which is mostly produced 
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by Fusarium tricinctum, was the first trichothecene to be discovered as a naturally 
occurring grain contaminant in the United States, where it was linked to a deadly 
toxicosis in dairy animals fed moldy corn [50]. T-2 toxin was found to inhibit protein 
and DNA synthesis and weaken cellular immune responses in animals [51]. T-2 toxin 
has been linked to feed refusal, output losses, diarrhea, intestinal hemorrhages, and 
death in dairy cattle. In poultry, the T-2 toxin has been linked to oral and intestinal 
lesions, as well as immune system impairment, hematopoietic system destruction, 
decreased egg production, thinning of eggshells, feed refusal, weight loss, altered 
feather patterns, and incorrect wing positioning [52, 53]. Cells that divide rapidly 
are more vulnerable to T-2 toxin thereby explaining why the immune system and the 
gastrointestinal tract are two of T-2’s primary targets. Carcinogenesis, immunological 
depression, neurotransmitter abnormalities, weight loss, growth retardation, oral 
lesions, diarrhea, and vomiting are among indications of chronic and acute T-2 toxic-
ity in animals [5, 47, 54].

3.5.2 Deoxynivalenol (vomitoxin)

Deoxynivalenol (DON) is one of the most frequently detected trichothecenes in 
grains [55] and the most common producing species of deoxynivalenol (DON) is F. 
graminearum [56]. DON is stable and it can survive processing, milling. Therefore, it 
easily occurs in feeds prepared from contaminated corn and wheat.

Swine are the most vulnerable of all livestock species to deoxynivalenol (DON) 
toxicity. The main symptoms for DON are vomiting (hence known as “vomitoxin”), 
feed refusal, skin damage and hemorrhage especially in swine [44]. DON has been 
associated with reduced milk production in dairy cattle, reproductive performance 
inhibition and immune function inhibition in several animal species [56]. Low 
intakes of DON causes nausea, diarrhea, gastrointestinal tract lesions, decreased 
nutritional efficiency, and weight loss in animals while higher doses of DON intake 
induces vomiting and feed refusal with severe reduction in weight, severe damage in 
the hematopoietic systems and immune dysregulation [57–59]. Dogs and cats can be 
affected as well, and sensitivity to DON mainly vary with gender and age [5, 60].

4. Factors influencing mold growth and mycotoxin production

The production of mycotoxins requires molds growth [18]. The production of 
these compounds, especially in grains, is highly dependent on environmental factors 
pre and/or postharvest (Table 2) [61]. Temperature, relative humidity strains of toxi-
genic organisms and occurrence of competitive growth are the most factors respon-
sible for mold outbreaks in the field [62]. Temperature, water activity, and oxygen are 
the most significant elements for growth and mycotoxin generation, aside from the 
presence of nutrients. Physical and chemical features of substrates affect their ability 
to support fungal growth. Physical qualities include water activity, oxygen avail-
ability, and surface area, while chemical characteristics include carbohydrates, lipids, 
protein, trace elements, and amino acid composition [63].

According to [64], a minimum water activity of 0.70 will sustain growth of storage 
molds, though for field molds that produce mycotoxins water activity should be above 
0.85. Most fungi require the relative humidity to be above 70% for them to develop. 
At a moisture level of 14–15%, in equilibrium with a relative humidity of 70–75%, 
Aspergillus glaucus will develop and thrive on cereals, pulses, pellets, and defatted 
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oilseed meals [65]. At the same relative humidity, the moisture levels of the whole 
oilseeds such as rapeseed, sunflower, or flax will be only 6–7%, but the fungi will still 
develop.

Many researchers have reported that pre-harvest fungal invasion is influenced by 
in-field damage caused by insects, birds, rodents, husbandry practices and adverse 
weather. Stress caused by drought, nutrient deficiency and untimely or excessive 
fertilizer application may also predispose towards fungal establishment. Airborne 
fungal spores can easily infect cracked grain, whereas soil-borne spores can easily 
infect pods and cobs of crops that fall to the ground. Mold is encouraged and fungal 
infection is favored by repeated planting of the same crop in the same field, poor 
harvest handling, poor storage, and post-harvest pest attack.

5. Overview of mycotoxin effects in animals

Intake levels, duration of exposure, toxin species, modes of action, metabolism, 
and defense systems all influence the harmful effect of mycotoxin ingestion in 
animals. The presence of multiple mycotoxins in feed probably have at least an addi-
tive, if not synergistic, effect. In animals, mycotoxins have a wide range of biological 
consequences, including liver and kidney damage, neurological effects, immune-
suppressive effects, carcinogenic, estrogenic and teratogenic effects, to mention a few. 
Carcinogenic examples of mycotoxins include AFB1, OTA, and FB1. When mold and 
mycotoxins are present together, it can lead to infection risk, as well as reproductive 
issues. Animals that consume mycotoxin-contaminated feed may experience appetite 
loss, reduced feed efficiency, immunosuppression (leading to increased disease 
incidence), poor weight gain, and mortality [7, 39, 66].

It should be noted that toxicity may vary considerably within a structural group 
of mycotoxins and that the danger may not always be due to the toxin itself but to 
its metabolites. Chronic intoxication can adversely affect animal health, leading to 
problems with reproduction, increased susceptibility to infectious diseases, and 
altered performance. According to a review by [5], mycotoxins exhibit their cellular/
molecular effects via several mechanisms including metabolic enzyme inhibition, 
ribosomal binding, DNA effects, protein interaction, ionophore activity, effects on 
hormones, epigenetic properties, necrosis and apoptosis, RNA polymerase effects, 
and mitochondrial interactions. Mycotoxins have varied impacts on various organ 
systems and cellular pathways. Aflatoxin, ochratoxin, and T-2 toxin, for example, 
all inhibit protein synthesis, but in distinct ways: aflatoxin binds to both RNA and 
DNA and stops transcription, T-2 toxin inhibits translation initiation, and ochratoxin 
inhibits phenylalanine-t RNA synthetase and hence translation [67].

Mycotoxin Temperature (°C) Water activity

Aflatoxin 33 0.99

Ochratoxin 25–30 0.98

Fumonisin 15–30 0.9–0.995

Zearalenone 25 0.96

Deoxynivalenol 26–30 0.995

Table 2. 
The optimum temperature and water activity for mycotoxins production in grains [61].
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Mycotoxins are capable of inducing both acute and chronic effects. The effects 
observed are often related to dose levels and duration of exposure. Acute primary 
mycotoxicosis occurs if high to moderate amounts of mycotoxins are consumed. 
Specific, overt, acute episodes of disease ensue, which include hepatitis, hemor-
rhage, nephritis, necrosis of oral and enteric epithelium, and death. Chronic primary 
mycotoxicosis, resulting from moderate to low levels of mycotoxin intake, often 
cause reduced productivity in the form of slower rate of growth, reduced production 
and inferior market quality. Consumption of low levels of mycotoxins through the 
feeds do not cause serious mycotoxicosis, but often predisposes to various infectious 
diseases and especially to secondary bacterial infections [68, 69], because of the sup-
pression in both humoral and cell mediated immune response in such animals [68].

6. Economic impacts of mycotoxins

Mycotoxins are estimated to affect as much as 25% of the world’s crops each year 
[70]. In the United States and Canada alone, the cost of mycotoxins is estimated to be 
more than $5 billion each year [7]. In developing countries, many foods and feeds which 
otherwise can be available for consumption or trade are lost in production or storage 
[71]. The mycotoxins in animal feeds are one of the leading causes of output losses and 
increased management expenses in animal husbandry around the world [72].

Mycotoxin-contaminated products cause significant economic and trade problems 
at almost every marketing stage, from the producer to the consumer. Many import-
ing countries have placed restrictions without following the Codex Alimentarius 
Commission’s guidelines for risk assessment and acceptable methodologies thereby 
negatively impacting developing countries’ economies [73]. Mycotoxins in ethanol 
co-products (dry distiller’s grain and soluble) have an annual economic impact of 
about $18 million on the swine sector in the United States. Mycotoxins create eco-
nomic losses because of their effects on cattle production, crop losses, and the costs 
of regulatory programs targeting mycotoxins. Depending on the toxicity of each 
mycotoxin and the country, regulation limits for mycotoxins in animal feedstuffs vary 
whereas in some countries the limits might not even exist [7, 74, 75].

Mycotoxins significantly impact both the productivity and the nutritional value of 
cereal and forage [70]. Molds use nutrients from the feed to grow. This results in reduced 
energy content of the feeds, decreased feed palatability and increased feed refusal by 
animals [64]. Consumption of feeds contaminated by mycotoxins cause organ dam-
age, immune suppression and health disorders, limiting growth and performance of 
farm animals [76] and thereby directly leading to economic losses [77]. The economic 
impact of mycotoxins includes loss of animal and human life, increased health care and 
veterinary care costs, reduced livestock production, disposal of contaminated foods and 
feeds, and investment in research to reduce severity of the mycotoxin problem [78].

7. Risk management: prevention of mycotoxins in feeds

Because of the harmful consequences of these mycotoxins, several strategies have 
been developed to assist prevent the production of mycotoxigenic fungus, as well as 
detoxify mycotoxin-contaminated animal feeds. These includes:

• Mycotoxin contamination prevention.
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• Mycotoxin detoxification in feed.

• Mycotoxin absorption inhibition in the gastrointestinal tract.

There are physical, chemical and biological treatment methods as well as commer-
cially available products that can be added to the diet to reduce the harmful effects of 
mycotoxin-contaminated animal feed, in addition to pre- and postharvest prevention 
procedures to control mycotoxin contamination in feedstuffs and feed. Some of the 
new techniques for controlling mycotoxicosis in animals include enzymes, microbes, 
antibodies, aptamers, and transgenic crops although binders are the current widely 
used mycotoxin detoxifiers with varying results [7]. Therefore, to lessen the harm-
ful and economic impact of mycotoxins in feeds, any detoxification technique must 
meet an essential criteria [63, 79]: The technique must either inactivate or remove the 
mycotoxins in feeds, avoid producing or leaving toxic residues, not alter the nutri-
tional and technological properties of feed, be capable of destroying fungal spores to 
prevent the formation of new toxins, and be technically and economically feasible.

Contamination mainly occurs or is encouraged before harvest and during harvest-
ing [80]. Currently researchers worldwide are keen on developing effective methods 
to prevent preharvest mycotoxin contamination. Preharvest preventive measures 
include breeding resistant crops, good agronomic practices such as irrigation to 
prevent plant stress and crop rotation to reduce soil population of mycotoxin produc-
ing fungi and harvesting at the optimum stage of maturity [81].

The control of insect infestation in kernels may help to prevent A. flavus and A. 
parasiticus proliferation and subsequent aflatoxin production [82]. The introduction of 
non-toxin producing isolates of A. flavus to competitively replace aflatoxin producers 
is one of the most promising strategies for reducing preharvest contamination of crops 
with aflatoxin [83]. A good quality product is obtained only when the crop is har-
vested at the optimum stage of maturity, particularly if it is to be stored subsequently 
for protracted periods [71]. İt is desirable to harvest early in the day, in the same cases, 
at the sunset to avoid excessive field heat leading to rapid deterioration and fungal 
colonization. Where harvesting is done in dry weather, mycotoxin contamination 
does not prove problematic, it does however pose a problem when harvesting is done 
in very humid weather [84]. Delayed harvest particularly favors contamination with 
Fusarium. Mechanically damaged and shriveled grains are regularly contaminated by 
molds, and moldy grains can partially be removed by separators [85].

Unless the moisture content is safe below the grain-moisture content, which is 
in equilibrium with humidity of the air component of the grain, the development 
of fungi and other spoilage organisms is almost inevitable. The easiest and cheap-
est way of ensuring safe storage is to reduce moisture content before storage. Thus, 
where natural reduction is prevented by natural conditions at harvest time, the grain 
must be dried before storage [65]. Mold problems only occur if silage is exposed to 
oxygen for instance if the silage is not tightly covered, in case of damaged covers 
or when silage is being fed out to the livestock. İt is recommended to use airtight 
containers during the ensiling process of forage and if these containers are damaged 
in any way, repairs must be made as quickly as possible to stop the development of 
mold [64].

While it is sensible to store feedstuffs under conditions of temperature and 
humidity that minimize fungal growth, it is often the case that the product has been 
spoiled before harvest and already contains a considerable amount of mycotoxins 
[86]. Thus, detoxification processes including biological, chemical and physical 
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methods are often necessary to remove, destroy or reduce toxic effects, without pro-
ducing or leaving toxic residues or carcinogens in the food and animal feed materials.

7.1 Physical strategies

Irradiation and thermal processing techniques like cooking, boiling, baking, fry-
ing, roasting, microwave heating, and extrusion are some of the physical techniques 
used for reducing or inactivating mycotoxins in feeds [45]. These physical methods 
including sorting, flotation, and extraction remove mycotoxins from contaminated 
grain products and/or eliminate the bioavailability of mycotoxins in the gastrointesti-
nal system [87]. Heat treatments are applicable in degrading mycotoxins in feedstuffs. 
Of the toxins isolated from fungi, more than 90% melt at temperature above 100°C, 
and 70% have melting point above 150°C and 250°C. However, heat may destroy 
vitamins and denature proteins and so reduce nutritive value especially at the tem-
perature required for degradation of mycotoxins [88].

7.2 Extraction with solvents

Mycotoxins can be extracted from contaminated food materials like oilseed pea-
nuts and cottonseed using a variety of solvents. 95% ethanol, 90% aqueous acetone, 
aqueous isopropanol, 80% isopropanol, hexane-methanol, methanol-water, acetoni-
trile-water, hexane-ethanol-water, and acetone-hexane-water are the most often used 
solvents [84]. While solvent extraction can efficiently remove aflatoxin from oilseed 
meals without the creation of hazardous byproducts or a deterioration in nutritional 
properties, the technique’s large-scale implementation is limited by its high cost and 
concerns with toxic extract disposal [84, 89].

7.3 Adsorption

One strategy for decreasing mycotoxin exposure is to reduce their bioavailability 
by incorporating various mycotoxin-adsorbing agents into the compound feed, which 
reduces mycotoxin uptake and transport to the blood and target organs. Adsorbing 
agents are substances of high molecular weight that, upon reaching the gastrointes-
tinal system (aqueous medium), can bind mycotoxins, preventing their absorption, 
and allowing fecal excretion of this adsorbent–toxin complex [90]. They do not 
dissociate in the gastrointestinal tract of the animal thus preventing or minimizing 
exposure of animals to mycotoxins.

Mycotoxin-adsorbing agents can be silica-based inorganic compounds or carbon-
based organic polymers. Some of the inorganic adsorbing agents utilized include 
natural clay products as well as synthetic polymers. Activated carbons, hydrated sodium 
calcium aluminosilicate (HSCAS), zeolites, bentonites, and certain clays are the most 
studied adsorbents, they possess a high affinity for mycotoxins, and they have shown 
immense potential for use in animal feeds to overcome aflatoxicosis [77, 84]. Adsorption 
agents are quite successful in preventing aflatoxicosis, although they are not as effective 
against other mycotoxins [91]. The main mycotoxins are adsorbed sufficiently by at least 
one type of adsorbent, but a few adsorbents may be used for various mycotoxins and 
none of them have been shown to be effective against all toxins (Table 3) [93].

When supplemented at a concentration of 10 g/kg feed, most of them have been 
shown to be effective aflatoxins binders. Their effectiveness against mycotoxins such 
as zearalenone, fumonisins, and trichothecenes, on the other hand, is very limited or 
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non-existent [77]. T-2 toxin can be adsorbed by bentonite, however its inclusion rate 
in the diet must be 10 times higher (100 g/kg) than the effective amount for aflatox-
ins [94]. Phyllosilicates such as kaolin and sepiolite, like most clays, are ineffective 
against mycotoxins other than aflatoxins [95, 96]. Because clay binders are relatively 
ineffective against mycotoxins other than aflatoxins, natural organic binders have 
been highly proposed. Organic binders are more effective against a wider spectrum of 
mycotoxins than inorganic binders, making them better suited to multi-contaminated 
diets. They’re also biodegradable, which means they will not end up in the environ-
ment after being expelled by animals. Clays, on the other hand, which are assimilated 
at a faster pace than organics, collect in manure and then spread in the field, causing 
harm to the environment [96].

7.4 Chemical techniques

Mycotoxins have been found to be reduced, destroyed, or inactivated by a variety 
of chemicals. Acids (e.g., formic and propionic acids), bases (e.g., ammonia, sodium 
hydroxide), oxidizing compounds (e.g., hydrogen peroxide, ozone), reducing agents 
(e.g., bisulphite), chlorinating agents (e.g., sodium hypochlorite, chlorine dioxide, 
and gaseous chlorine), and miscellaneous reagents (e.g., formaldehyde) are some 
examples of these chemicals which have undergone testing before for their efficacy in 
mycotoxin decontamination [84, 85, 97]. Even though most of these chemical treat-
ments can remove mycotoxins in feeds, chemical detoxification does not meet the 
FAO requirements, because they often reduce the nutrient quality of the treated feeds, 
and some compounds leave behind their toxic metabolites that have unfavorable side 
effects [84, 85]. This is the fundamental reason why their extensive use in the animal 
feeds sector is severely constrained.

7.5 Biological techniques

Biological detoxification implies the biotransformation or degradation of a toxin, 
by bio-transforming agents such as endogenous enzymes to a metabolite that is either 
non-toxic when ingested by animals or less toxic than the original toxin and readily 
excreted from the body. Because it works under mild, ecologically favorable circum-
stances, biological decomposition of mycotoxins has showed promise [98].

A variety of bacteria, yeasts, and molds can degrade aflatoxins. The idea is to utilize 
enzymes that precisely breakdown each mycotoxin, or class of mycotoxins, into a 

Compounds Affected mycotoxins

Hydrated sodium calcium aluminosilicate (HSCAS) Aflatoxin B1

Zeolites Aflatoxin B1 and zearalenone

Bentonites Aflatoxin B1 and T2 toxin

Specific clays (kaolin, sepiolite and montmorillonite) Aflatoxin B1

Active carbons Ochratoxin and aflatoxin B1

Colestiralamine Ochratoxin and zearalenone

Poly-vinyl polypyrrolidone polymers (PVPP) Aflatoxin B1

Table 3. 
Some adsorbents and mycotoxins on which they are effective [92].
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non-toxic molecule. With recent developments in molecular biology, genetic engi-
neering, and microbial genomics, as well as the discovery of microbial populations’ 
catabolic capacities, research in this area has expanded. It has been widely proven that 
microorganisms, such as fungus and bacteria, may breakdown mycotoxins in feed 
(Table 4) [99–101]. Saccharomyces cerevisiae is one of the most successful develop-
ing bacteria at binding to AFB1. Strains such as Phoma sp., Mucor sp., Trichoderma 
harzianum, Trichoderma sp. 639, Rhizopus sp. 663, Rhizopus sp. 710, Rhizopus sp. 668, 
Alternaria sp. and some strains belonging to the Sporotrichum group are some of the 
fungal strains that have been demonstrated to degrade AFB1 to levels ranging from 
65–99% [102].

Flavobacterium aurantiacum also shown the ability to effectively remove aflatoxin 
B1 [103]. Based on a European Food Safety survey, Trichosporon mycotoxinivorans was 
found to be the only microorganism that shows the potential to degrade OTA and 
meets the prerequisites for use as an animal feed additive [104]. Therefore, as endog-
enous oxidation control systems may be more desirable, extensive research is needed 
in identifying, characterizing and purifying enzymes involved before this approach 
becomes more practical [97, 103].

Enzyme-linked immunosorbent assays, thin layer chromatography, high perfor-
mance liquid chromatography, gas chromatography, near-infrared spectroscopy, 
and liquid chromatography-mass spectrometry are some of the current analytical 
methods for detecting and quantifying mycotoxins. Some of these techniques can be 
applied to samples that contain numerous mycotoxins [7].

8. Conclusion

Mycotoxins are toxic secondary metabolites produced naturally by fungi that 
grow on various agricultural commodities. Mycotoxins significantly impact both the 
productivity and the nutritional value of cereal and forage. Mycotoxin contaminated 
feeds impact animal health and productivity. Contamination of feeds may occur 
during pre-harvest and post-harvest. Every year, mycotoxins cause massive economic 
losses in the animal feed sector and animal husbandry. As a result, measures to 
remove or inactivate mycotoxins in diet and feed are critical. Different measures to 
prevent mycotoxin production and its drawbacks are being applied worldwide. On 
farm measures are efficient in terms of products safety and costly feasible, but there 
are not enough to completely prevent fungi growth in crops. Therefore, detoxification 

Mycotoxin Binding capacity (%)

Lactobacillus rhamnosus species (G.G.) Aflatoxin B1 80

Propionibacterium Aflatoxin B1 80

Bifidobacterium bifidum species Aflatoxin B2, G1, and G2 74, 80 and 80

Saccharomyces cerevisiae Zearalenone 52

Glucomannan obtained from the cell wall Aflatoxin 95

Fumonisin 45

Deoxynivalenol 10

Table 4. 
The toxin binding capacity of biological products obtained from yeast cell walls with different bacterial species [92].
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processes including biological, chemical and physical methods are often used to 
remove, destroy or reduce toxic effects in feeds or food contaminated in the field. 
However, traditional physical and chemical procedures have several drawbacks, 
including limited efficacy, safety concerns, palatability losses, and the high cost of 
the equipment required to perform these techniques. They have also been criticized 
to reduce nutritive value of the feeds, and to have side effects on animal and human 
health. Adsorbents and microorganisms/enzymes use may be more desirable and are 
currently used as feed additives in many parts of the world. Further research work is 
needed to weigh out their potential compared to the other methods of detoxification.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 5

Food Safety Endangers the 
Potential Escherichia coli 
Contamination on Currencies
Dewi Susanna, Tris Eryando, Budi Hartono and Lassie Fitria

Abstract

Hands have a role in the transmission of pathogen of microbes such as virus, 
fungi, and bacteria. The transmission is often through the contact between hands and 
mouth. When money touches with sundries, there is a possibility of transfer of micro-
organisms from hands to money and vice versa, then the dirty money will be held by 
someone else. Contamination of money is vital for public health problems because it 
can be a source of easy transmission of pathogens between handlers. Literacy related 
to how important is the Escherichia coli transmission through currencies is needed and 
also the way to measure its contamination. This paper describes the possibilities the 
existence of E. coli found on the surface of two types of currencies for instance papers 
and coins, and the steps to measure the contamination are also given in the Methods 
section.

Keywords: Escherichia coli, coin, currency, food safety, paper, transmission

1. Introduction

Escherichia coli (E. coli) is commonly found in the intestines of humans and 
warm-blooded animals, and most of the strains of E. coli are harmless. Shiga toxin-
producing E. coli (STEC) can cause severe foodborne illness. It is transmitted to 
humans primarily through consuming contaminated food, such as raw or under-
cooked ground meaty products, raw milk, and contaminated raw vegetables and 
sprouts [1]. Person-to-person transmission has been partially identified as a source 
of the pathogen. Hands have a role in the transmission of bacteria. People often touch 
objects already held by others and often put their hands to their mouths [2]. Besides 
that, E. coli can be moved from one object to the other with the help of human hands. 
One of the objects most often contaminated with E. coli is money. Money is a means 
of economic transactions that quickly move from one person to another. When 
money touches with sundries, there is a possibility of transfer of microorganisms 
from around to money. Then the dirty money will be held by someone else and so on. 
Contamination of money is vital for public health because it can be a means of easy 
transmission of pathogens between handlers.



Mycotoxins and Food Safety - Recent Advances

92

Both coins and banknotes are frequently identified as materials for various microor-
ganisms [3]. Fomites are inanimate objects capable of absorbing, storing, and transmit-
ting infectious microorganisms [4]. Whether in the form of coins or banknotes, money 
is probably the item most people handle daily worldwide. It may become contaminated 
with microorganisms from the respiratory and gastrointestinal tracts during count-
ing using saliva, coughing and sneezing on hands followed by currency exchange, 
placement or storage on dirty surfaces, poor handwashing after toilet. The banknote 
then acts as a bacterial vehicle to the following user [5, 6]. Most pathogens such as 
Escherichia coli can survive on surfaces, and this surface can act as a source of pathogen 
transmission if no disinfection is carried out. In addition, the level of general hygiene 
of a community or society can contribute to the number of microbes found on coins 
and banknotes, and thus the possibility of transmission during the handling of money.

Currency notes could potentially function as a fomite in transmitting microorgan-
isms such as E. coli O157:H7 that cause enteric disease in humans. Escherichia coli is 
one of the microorganisms often found on the surface of an object, including the 
surface of the money. The research done in one of the meat markets in Nigeria showed 
that of the 189 samples, 12 (19.7%) were contaminated with E. coli, where (41.7%) are 
confirmed E. coli O157:H7 [7].

Another study showed that banknotes assessed through microbiological culture, 
microscopic visualization, and biochemical techniques identified E. coli contamina-
tion of about 4.75% [8]. While the currency used by the public (banks, hospitals, 
municipal corporation) in India was found to be highly contaminated with various 
pathogenic bacteria [9]. In Bangladesh, among banknotes, it was contaminated 
with three different bacterial isolates, including E. coli (87.5%). They were resistant 
to amoxicillin, ampicillin, and ciprofloxacin, susceptible to azithromycin and 
norfloxacin [10].

In Indonesia, it is quite difficult to find literacy that identifies E. coli on the surface 
of money. A study conducted in 2007 showed that there was E. coli on the surface of a 
1000-rupiah bill in a community trader at Pasar Kleco, Surakarta [11].

2. The existence of Escherichia coli on currencies

2.1 Papers

The presence of bacteria on banknotes is strongly influenced by the material made 
of banknotes [3]. Banknotes are made from fibers that are coarse and provide an 
environment that is comfortable for the bacteria to survive. In addition, bacteria will 
have more surviving life in money paper that made fibers naturally dissolve in the 
mixed material plastic. Money paper does not give effect toxic on bacteria.

Research on Iranian currency also shows that Escherichia coli is the microorganism 
with the highest percentage in each type of currency [12]. This study also proves that the 
physical condition of money also affects the number of microorganisms on its surface. 
The more soiled the condition, the greater the number of microorganisms on its surface.

Research conducted by Gedik in 2013 concluded that the material that forms and 
composes money significantly affects the presence of microorganisms on the surface 
of money [13]. Banknote paper is manufactured from cotton fiber, which gives the 
paper its strength, durability, and distinctive feel. The cotton is sometimes mixed with 
linen, abaca, or other textile fibers. Banknote paper is infused with polyvinyl alcohol 
or gelatin to give it extra strength. This study also proves that Romanian banknotes are 
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currencies whose ingredients can support the survival of microorganisms. In the same 
study, a microorganism transfer test was carried out on three respondents; the results 
showed that three respondents holding Romanian money were contaminated by the 
same microorganism [13]. The results of this study can be considered for countries 
that use money with the same materials and ingredients, especially for countries 
whose currencies are used globally, such as the US dollar and the euro.

Susanna, in 2019, researched banknotes and coins circulating at one of the uni-
versities in Depok, Indonesia. The communities taken are students and traders in 
the canteen. The sample money is money with large values such as 50,000 rupiahs to 
low-value banknotes, namely 1000 rupiahs. Based on the laboratory analysis results, 
there were no E. coli on the surface of the money, but there was still money contami-
nated with coliform [14]. This condition may occur because most money circulating 
is in good condition. The money holders have good knowledge regarding cleanliness 
because they are in an educational environment, so that the habit of washing hands 
can become one of the habits often done. The University of Indonesia already has a 
healthy canteen program under university management, which has provided educa-
tion regarding personal hygiene to traders in the canteen.

2.2 Coins

Escherichia coli can survive on some metal surfaces, and E. coli O157 can survive 
for over 28 days at refrigeration and room temperatures on stainless steel [15]. Studies 
of E. coli on coins are not as much as studies on banknotes; this may be because the 
number of banknotes in circulation is far more than coins. Money and meager value 
denomination coins change hands frequently in poorer societies, unlike the people 
using plastic money. Generally, knowledge regarding personal hygiene in poorer 
societies is minimal, so this is an excellent factor contributing to the presence of 
microorganisms on coins. A study conducted by Curia in 2009 took samples of coins 
from contractor workers, food traders, and meat traders. The results showed that 
there were bacteria such as E. coli and fungi on the surface of the coins [4].

The presence of bacteria on coins does not last as long as on banknotes due to the 
direct toxic effect of coins on bacteria [3]. However, bacteria can adapt to the presence 
of coinage in their environment and increase their life span by the time they have 
adapted to the presence of coinage.

Like paper money, Susanna in 2019 also researched coins circulating at one of the 
universities in Depok, Indonesia. The sample money is money worth 1000 Indonesia 
Rupiah (IDR) to 100 IDR. Based on the laboratory analysis results, there were no E. coli 
on the surface of the money, but there was still money contaminated with coliform [14].

3. Escherichia coli detection on currencies

3.1 Materials and methods

The method used is total plate count (TPC) [7]. The working principle of TPC 
analysis is the calculation of the number of bacterial colonies present in the sample by 
dilution as needed and carried out in duplicate. All work is carried out aseptically to 
prevent unwanted contamination, and multiple observations can improve accuracy. 
The number of bacterial colonies that can be counted is a petri dish that has bacterial 
colonies between 30 and 300 colonies [16].
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3.2 Isolation and identification of E. coli

There are several media used to isolate microorganisms in agar, including potato 
dextrose agar (PDA) [17], mannitol salt agar (MSA), xylose lysine deoxycholate 
(XLD) agar, MacConkey agar (MAC), eosin methylene blue (EMB) agar, bile salts 
citrate thiosulfate (TCBS) agar, Bacillus cereus (BCAM) agar base media [7]. Holt-
Harris and Teague developed EMB agar (eosin methylene blue agar) media in 1916. 
EMB agar medium is selective for growing Gram-negative bacteria. They are generally 
used to separate and distinguish non-fecal coliform and fecal coliform bacteria. EMB 
can distinguish between bacterial colonies that can ferment lactose and those that 
cannot ferment the lactose [18, 19]. EMB agar consists of peptic digest of animal tis-
sue 10,000 (GMS/L), dipotassium phosphate 2000 (GMS/L), lactose 5000 (GMS/L), 
sucrose 5000 (GMS/L), eosin-Y 0.400 (GMS/L), methylene blue 0.065 agar 13.500 
(GMS/L), final pH (at 25°C) 7.2 ± 0.2 [18].

3.3 Total eligible count

The total viable count (TVC) is a simple way to dissect the microbial community’s 
composition. It is used to indicate the different types and numbers of bacteria in a 
given sample. It is possible to isolate various bacteria from a single environmental 
sample, whether a soil sample or a wound swab [20].

Total feasible amount serial dilutions were made from 1 mL sample and 9 mL 
standard saline solution, two drops surface plated on plate count agar (PCA) for TVC. 
Plates were incubated at 37°C for 24 h. The number of different colonies on each plate 
was calculated using a colony counter, colony-forming units (CFU) per mL or cm2 
of the sample were calculated using the respective dilution factors and converted to 
log10, CFU/cm, or mL values.

4. Conclusion

Whether in the form of paper or coins, money is one of the media that can 
be a source of E. coli contamination. Escherichia coli has a reasonably long life on 
the surface of money, especially on coins that provide comfortable conditions 
for E. coli to survive, such as rough surfaces, natural fiber materials, and room 
temperature.

The existence of E. coli in money is very dependent on the cleanliness of the person 
holding the money (handler) when a money holder who has activities at risk of being 
contaminated with E. coli, such as food vendors and butchers, does not have the habit 
of washing hands, E. coli will quickly pass from hand to hand into someone else’s 
hands.
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Abstract

A fermentation technique was utilised to assess a fungus, i.e. Cunninghamella 
bertholletiae/polymorpha, isolated from rotting cassava, ability to produce mycotoxins 
and resultant oxidation by-products of the mycotoxins using liquid chromatogra-
phy–mass spectrometry (LC/MS). Thus, the mycotoxins/secondary metabolites, 
fumonisin B1 (FB1) and deoxynivalenol (DON) were produced while, heptadecanone, 
octadecanamide, octadecenal and 3-keto-deoxynivalenol (DON) were successfully 
identified as biodegradation by-products in the fermentation broth treated with 
hydrolysing ‘monkey cup’ juice from Nepenthes mirabilis. Exposure to the mycotoxins 
and the biodegradation by-products through consumption of contaminated produce 
including contact due to the cumulative presence in arable agricultural soil can be 
harmful to humans and animals. Therefore, this work reports on a strategy for the 
mitigation and reduction of mycotoxins in agricultural soil using natural plant pitcher 
juices from N. mirabilis’ ‘monkey cup’.

Keywords: biodegradation, carboxylesterases, Cunninghamella bertholethiae, LC/MS, 
mycotoxins, Nepenthes mirabilis

1. Introduction

Postharvest storage for cassava is often shortened due to product spoilage caused 
by bacterial and fungal infestation [1, 2]. Fungal species such as Aspergillus spp., 
Fusarium spp., Penicillium spp. and Cunninghamella spp. can produce toxins and/or 
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secondary metabolites that affect the storage longevity and quality of agricultural 
product such as cassava [2, 3]. These mycotoxins, which have a negative impact on 
agricultural products, lead to economic losses due to the contamination of cassava 
tubers, which makes them inedible. Generally, toxins are biosynthetic compounds 
produced by numerous microorganisms in a natural or controlled environment.

These microorganisms include the fungus, Cunninghamella bertholletiae (also 
known as Cunninghamella polymorpha due to its morphological characteristics and 
mating/reproductive scheme) [4], is known to be pathogenic to humans and animals 
[5–7], while its toxins in the environment and on consumable commodities constitute 
an environmental hazard and a health risk to consumers [8–11]. Some fungi, includ-
ing their metabolites, are able to contaminate several plant parts as they are endo-
phytes, culminating in infestation of agricultural products such as tomatoes, maize, 
potatoes, beans, peanuts, yams and wheat, including cassava [1, 5, 12–17] and dairy 
products such as milk and cheese [1, 18, 19]. Humans’ or animals’ consumption of 
contaminated products may lead to foodborne toxin-related intoxication [7, 20] cul-
minating in the degeneration of human internal organs including their functionality 
and the promotion of diseases such as cancer [8, 15, 21–23]. Some clinical outcomes in 
animals and humans include liver and oesophageal cancer [21, 23], the destruction of 
renal and nerve tissues, profound oxidative stress, heart and pulmonary diseases [23].

There are several varieties of mycotoxins, namely aflatoxins (AFB1, AFB2, AFG1 
and AFG2), fumonisins (FB1, FB2), deoxynivalenol (DON), ochratoxins (A, B and C), 
amongst others, which are produced by numerous species, some of which are del-
eterious to plants/agricultural products, humans and animals [1, 5, 21, 23, 24]. Their 
production can occur under favourable environmental conditions, such as a high 
temperature and adequate moisture/humidity, including the availability of nutrients 
(mostly from the decaying produce) [25]. These concerns have prompted researchers 
to find cheap, efficient and cost-effective ways to reduce or manage mycotoxin-
producing organisms, including mycotoxin contamination, when produced [11, 26] to 
limit sequential effects including products’ contamination.

In a previous study, it was found that C. bertholletiae/polymorpha, a common 
soil organism [7, 23, 26] which was isolated from decomposing cassava, was both 
cyanide-resistant with the ability to biodegrade free cyanide while being antagonistic 
towards other soil organisms [15, 27]. Currently, there is minimal literature available 
on mycotoxins produced by C. bertholletiae. Similarly, there is minimal research on 
a mitigation strategy which could be classified as environmentally benign for com-
bined toxin reduction, via oxidation or hydrolysis. The mitigation method must be 
implementable in-situ in order to minimise deleterious effects observed when other 
methods are used.

Therefore, the aim of this study was to propose and assess a method for the iden-
tification of mycotoxins from the free-cyanide tolerant C. bertholletiae/polymorpha 
isolate; furthermore, to quantitatively assess a mitigation method using oxidative/
hydrolysing ‘monkey cup’ digestive fluids from N. mirabilis (green chemistry 
approach). A N. mirabilis is a carnivorous plant which belongs to the genus of 
Nepenthes. This plant is characterised by a pitfall trap commonly known as a ‘monkey 
cup’ at the end of the plants’ leaf, which contains an acidic and oxidative/hydrolysing 
fluid. The plants’ pitcher juices are known to contain a variety of enzymes useful for 
prey digestion [28, 29]. As such, these enzymes can oxidise and/or hydrolyse myco-
toxins and secondary metabolites via deamination or mechanisms biocatalytically 
facilitated by esterases for the decoupling of aliphatic chains in mycotoxins or second-
ary metabolites.
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2. Mycotoxin (secondary metabolite) production in food

Several studies discussed about the presence of mycotoxins in food. Thus, during 
a produce life cycle from harvest, postharvest, selves’ life, processing and sometimes 
distribution, there is a presence of mycotoxins in food worldwide [1]. These toxins 
occurred during poor storage, handling and processing conditions, sometimes might 
be the result of the rot/decay foodstuffs [2, 14, 30]. While these mycotoxins constitute 
a serious threat to food quality and human’s health [22, 30].

2.1  Extraction and analysis of mycotoxins (secondary metabolites) and their 
biodegradation by-products

Literatures abound on the extraction and analysis of mycotoxins, a liquid-phase 
extraction method seems to be more used. Thus, [31, 32] used liquid-liquid extrac-
tion method for their studies in mycotoxins identification, while [33] used a liquid 
chromatography/tandem mass spectrometry for a combined analysis of aflatoxins, 
ochratoxin A and Fusarium for maize crop. Whereas [34] chose a multiplex approach 
of Gas chromatography–mass spectrometry (GC-MS), Liquid chromatography-mass 
spectrometry (LC-MS) and One-dimensional (1D) NMR spectroscopy (1D NMR) 
techniques for their study on a comparative metabolite profiling and fingerprinting of 
medicinal licorice roots, to name few.

The samples were analysed using an LC/MS-ToF 6230 (Agilent Technologies 
Inc., USA) and using mobile-phase parameters as listed in the table below in 
Supplementary Material, without optimisation as suggested by [31, 34]. The solvent 
extract phase was steadily evaporated using a blow-down technique to dryness at an 
ambient temperature for 24 h to minimise mycotoxin evaporation using nitrogen (N2) 
gas (Afrox, South Africa) [31, 35].

The identification of the mycotoxins from C. bertholletiae/polymorpha isolate, 
including toxin biodegradation by-products, was done through analysis on LC/MS-ToF 
6230 (Agilent Technologies Inc., USA) and analytical standard as well as profile data 
as per [31, 35] using a mycotoxin/biodegradation by-product database, with the 
assumption that samples were assumed to lose an electron with the H+ proton being 
hypothetically the lost ion. Compounds were initially mined based on their molecular 
features and verified by mining based on their exact formulas. The extracted ion chro-
matogram (EIC) of matched compounds is presented in Supplementary Figure 2.

3. Proposed mitigation strategy

3.1 N. mirabilis extracts collection, characterisation and application

The assessment of the physicochemical characteristics of the N. mirabilis pitcher juice 
used was similar to that in [36–38]. Thus, the assessment revealed the following: conduc-
tivity: 5.89 S/m, redox potential: 510 mV, specific gravity (SG): 1.02 and a pH of 2.5.

Additionally, a qualitative method for the analysis and enzymes/biochemical 
tests were done to determine the presence of enzymes in the pitcher juice [36–39]. 
Furthermore, the VITEK 2 DensiChek™ cards were used (as a supplementary 
method) to quantitatively determine the enzyme presence in the extracts during the 
physicochemical analysis of the pitcher juice according to the instrument’s/device’s 
user manual instructions [40].
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3.2  Enzyme (carboxylesterase) activity: mechanism, specificity and 
quantification

The quantification of carboxylesterases activity was similar to the method adopted 
from [41–43] with minor modifications. The overall biocatalysis properties of the 
N. mirabilis pitcher constituents, with a focus on carboxylesterases, are described by 
[41], who suggested that hydrolysis mechanism associated with carboxylesterases 
facilitates the biocatalysis of reactions associated with enzymes, including arylester-
ase, lysophospholipase, acetylesterase, acylglycerol lipase, etc. In the current study, 
the biodegradation of fumonisin and deoxynivalenol (DON) was achieved using a 
single enzyme (carboxylesterases).

Furthermore, subsequent reports on the development of a spectrophotometric 
method used for the determination of carboxylesterase activity for the N. mirabilis 
digestive fluid were used by [29, 42].

3.3 Carboxylesterase activity assay

Previous studies assessed carboxylesterase activity. Thus, the carboxylesterase 
activity assay was determined spectrophotometrically at an ambient temperature using 
p-nitrophenyl acetate (PNPA) as the substrate as suggested by [36, 43]. While the 
activity was measured by determining the rate of biocatalysis of PNPA to p-nitrophenol 
(PNP) which was spectrophotometrically monitored at 410 nm. The PNPA exhibits 
minimal absorbance at 410 nm, whereas the PNP absorbs strongly. The extinction 
coefficient used for PNP was 17,000 M−1·cm−1 [36]. Activity was then expressed in U/L, 
where 1 unit is equivalent to 1 μmol/min (the rate of conversion for PNPA to PNP).

3.4 Spectrophotometer settings: Carboxylesterase activity assay

The JENWAY 6405 UV/Vis spectrophotometer (Agilent Pty, USA) at a kinetics 
setting was used 410 nm to monitor PNP formation for 2 min at 10 sec intervals, while 
the cell holder temperature was at 25°C. Eq. (1) Illustrates the mathematical expres-
sion used to quantify the activity of carboxylesterases [36].

 ( )
( )

6
dilution factor

activity U /L 60 10
extinction coefficient

dA
dt

 ∗ 
= ∗ ∗ 
 
 

 (1)

Where dA
dt

 is the value of the reaction’s initial rate.

4. Mycotoxins identification

Mycotoxins produced by the isolated C. bertholletiae/polymorpha were assessed via 
a fermentation technique in a nutrient broth medium with the liquid-liquid extraction 
method being done using chloroform, subsequent to a blow-down technique of the 
samples and reconstitution in absolute methanol. The compounds listed in Table 1 
were identified based on their molecular composition (structural features) and mass-
to-charge ratio (m/z), using an LC/MS-ToF.
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Toxin identification is important due to observed consequential outcomes of the 
infested cassava as by-products of bacterial or mycotic infestation which are hazard-
ous to both humans and animals if such agricultural product is consumed. Thus, both 
fumonisin B1 and deoxynivalenol were identified as the prevalent compounds associ-
ated with the fermentation of the cyanide resistant isolate, C. bertholletiae, accession 
no. KT275316 [15].

FB1 detection on LC/MS-ToF was done, based on a method developed by  
[18, 24, 31, 44], for which the analyte produces a signal under a positive MS acquisi-
tion mode (Table 1).

A, mycotoxins molar mass (g/mol); B, biodegradation by-products molar mass 
(g/mol); A1, mycotoxins mass (m/z) to charge ratio-ion form [M + H]+; B1, biodeg-
radation by-products mass (m/z) to charge ratio-ion form.

For FB1, mean peak counts of 4 × 103 were observed, while 1.9 × 103 counts were 
for DON. Similarly, and according to [31], DON detection is easily achieved through 
HPLC/LC-MS and UV methods. A LC/MS–ToF method, as described above, was 
used without modification nor optimisation, to also identify the biodegradation by-
products for each identified mycotoxins/secondary metabolite as listed in Table 1.

Two peaks were observed with a retention time of 23.79 and 35.12 min, with a 
molecular formula of C34H59NO15 and C15H20O6, analogous to FB1 and DON, respec-
tively. The peaks, A and B, were directly associated with ion m/z of 722.395 and 
297.13, when the ESI was operated in a positive mode [ion form: M + H+]. From the 
analysis, a combination of the molecular weight, the structure, including m/z ratio, 
confirmed the identification of the compounds. It is paramount to indicate that FB1 
was detected in a culture in which CN− (as KCN) was supplemented; hypothetically, 
indicating that the FB1 production was perhaps influenced by strenuous conditions to 
which the culture was subjected in comparison to DON.

4.1 Biodegradation by-products’ identification

To the reported residual samples of the cyanide-resistant C. 
bertholletiaee/polymorpha, in which FB1 and DON were detected, N. mirabilis pitcher 
juices were added. This was for an assessment of the fungal mycotoxins/toxins’ (FB1 
and DON) biodegradation into by-products [36–38], which could be identified using 
the LC/MS-ToF. Thus, compounds such as heptadecanone, octadecanamide and 
octadecenal were successfully identified from FB1 samples with only 3-keto-DON 
being identified in DON samples, respectively (Table 1; Figure 1).

Mycotoxins/secondary 
metabolites

Biodegradation 
by-products identified

Molar mass (g/mol) (m/z) ion form [M + H]+

A B A1 B1

Fumonisin B1 
(C34H59NO15

Heptadecanone C17H34O 721 254.45 722.395 256.270

Octadecanamide 
C18H37NO

283.29 284.282

Octadecenal C18H34O 266.46 267.268

Deoxynivalenol (DON) 
(C15H20O6)

3-keto-DON C15H18O6 296 294.91 297.13 295.115

Table 1. 
C. bertholletiae’s mycotoxins/toxins and mycotoxins biodegradation by-products identified using LC/MS-ToF.
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The findings of this study are similar to those from previous studies which 
revealed that a biodegradation of FB1 yielded by-products such as heptadecanone, 
octadecanamide and octadecenal (Supplementary Figure 2a–c) [26, 45]. While a 
degradation of DON led to an intermediate by-product such as 3-keto-DON [46, 47] 
(Supplementary Figure 2d). By using a similar identification strategy to that used to 
identify FB1 and DON, it was clear that N. mirabilis had a deleterious effect on both 
DON and FB1. The findings of this study are in agreement with those by [38, 48]. 
From the spectra, the by-product counts indicated octadecenal (1.1 × 102) > octa-
decanamide (1 × 102) > heptadecanone (0.9 × 102) with molecular ion peaks at m/z 
[M + H+], 267.268, 284.282 and 256.270, respectively.

Furthermore, for DON residual samples, the by-products observed when 
subjected to the N. mirabilis pitcher juice were indicative of 3-keto-DON; that is, 
with the ESI spectra showing a molecular ion peak at m/z [M + H+], 295.115 in a 
positive ion mode which was consistent with the molecular formula (C15H18O6) 
(see Supplementary Figure 2d). Due to the nature of the proposed in-situ 
mitigation strategy, it is prudent to indicate that the applied N. mirabilis pitcher 
juice comprises biocatalytic agents or enzymes [39, 49] known to facilitate the 
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Figure 1. 
Summary of a biodegradation process and associated oxidation/hydrolysing enzymes.
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biodegradation of mycotoxins, using both qualitative and quantitative techniques. 
Thus, a degrading ability of the pitcher juice is due to the presence of enzymes 
such as carboxylesterase, β-glucuronidase, phosphatidyl inositol phospholipase 
C, xylanases, etc., which are able to biodegrade several organic matters, i.e. 
agro-waste, hemicellulose, etc., as well as mycotoxins/toxins [36–39, 49–51]. The 
enzymes found in the N. mirabilis pitcher juice originate from decayed multitude 
of trapped preys/species (insects) and microbial community (fungal and bacterial, 
etc.) within the plant’s fluid [28, 37, 39, 41, 49, 51, 52].

4.2 Enzyme/biochemical activity assays for N. mirabilis pitcher juice

The samples’ carboxylesterase activity (quantitative) and other biochemical assays 
(using the VITEK system, qualitative) were also done at room temperatures, whereas 
the N. mirabilis pitcher juice for carboxylesterase, P-nitrophenyl acetate (PNPA) were 
used as a substrate at 75% dilution and 410 nm absorbance which was similar to [36, 37]. 
For biochemical assays, numerous enzymes (as highlighted in Table 2) were positively 
identified, while the calculation of carboxylesterase activity was found to be 7.8 U/L.

5. Mycotoxin identification from cyanide-resistant Cunninghamella spp.

Due to the multitude of methods developed and assessed, a method modified 
by [44], for toxin extraction from a fermentation of broth, was adopted. It was 
thus used to produce mycotoxins (FB1 and DON) from the cyanide-resistant C. 
bertholletiae/polymorpha, with the extracts being used for LC/MS-ToF analysis due 
to the method’s usability, reproducibility and rapidity, while incurring minimal 
input/sample-processing costs.

5.1 Biodegradation by-products: outcomes of the mitigation strategy

A digestive fluid of N. mirabilis was used as a feasible alternative for the biodegra-
dation of fungal mycotoxins/toxins (Fumonisin and DON) with assays (n = 2) con-
firming the prevalence of carboxylesterases. However, previous studies mentioned 
the existence of several enzymes [28, 39, 41, 49, 50] within a N. mirabilis digestive 
fluid/pitcher juice, which counts as a larger enzymatic profile than individual micro-
bial species, as highlighted in Table 2.

Furthermore, a few sceptics could express concern about the use of a plant’s 
pitcher juice on mycotoxin-contaminated matrices because of its low pH (2.5), as well 
as availability, which can be addressed by using appropriate buffers and suitable plant 

Enzymes Activity/outcome References

Carboxylesterase 7.8 (U/L) In this study

β-glucosidase ++ [38, 39]

β-glucuronidase ++ [48]

Phosphatidyl inositol phospholipase C ++ [49]

++, positively identified in previous studies.

Table 2. 
Carboxylesterase activity and qualitatively identified enzymes.
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extracts with similar enzymatic characteristics. Overall, the application of a low pH 
extract in a matrix such as agricultural soil should not be a major concern because a 
soil’s pH can be amended by an application of lime. A study by [53] revealed that the 
application of lime on agricultural soil with a low pH increases the soil’s pH, improv-
ing its respiration capacity, while retaining the soil’s microbial community profile at 
an acceptable level.

6. Conclusions

The identification through LC/MS-ToF of toxins ((fumonisin B1 and 
deoxynivalenol (DON)) from a free-cyanide-resistant Cunninghamella 
bertholletiae/polymorpha as well as a mitigation strategy for toxins reduction 
through a biodegradation/fermentation process using ‘monkey cup’ juice from N. 
mirabilis (which yielded by-products such as heptadecanone, octadecanamide, 
octadecenal and 3-keto-DON) is an important step towards ensuring food safety 
and mitigating humans’ health hazards through toxins exposure. As, an exposure or 
intoxication from these mycotoxins, through consumption of contaminated food or 
agricultural product, can be hazardous to humans and animals. Therefore, control 
measures for food and animal feed contamination are needed in order to decrease 
the levels of these compounds. Additionally, preventative protocols and/or mitiga-
tion strategies that would ensure the eradication of these hazardous compounds, 
using an environmentally benign approach such as N. mirabilis digestive fluid/
pitcher juices, are paramount. Thus, the application of the digestive fluid to a liquid 
matrix which culminated in the biodegradation of mycotoxins (fumonisin B1 and 
DON), with the subsequent formation of the biodegradation by-products such as 
heptadecanone, octadecanamide, octadecenal for fumonisin B1 and 3-keto-DON 
for DON, which are easier to biodegrade by other microbial communities, should be 
encouraged.

However, it is worth noting that at this stage, there is a need to find alternative 
indigenous plant extracts with similar characteristics to that of the N. mirabilis.
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Appendix

Gradient (min) A (H2O)* B (MeOH)Y Flow (mL/min)

0 85 15 0.4
30 0 100 0.4
33 0 100 0.4
45 85 15 0.4
50 85 15 0.4

*, water contained, 0.1% formic acid, pH 3.
Y, analytical grade methanol.

Supplementary Table S1. 
LC/MS-ToF elution and mobile phase parameters.

Supplementary Figure 2. 
Molecular features and the extracted ion chromatograms (EICs)/mass spectrum of mycotoxins/toxins’ 
biodegradation by-products: (a) heptadecanone, (b) octadecanamide, (c) octadecenal and (d) 3-keto-DON.
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Mycotoxin Decontamination of 
Foods Using Nonthermal Plasma 
and Plasma-Activated Water
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Abstract

Mycotoxins are food safety and public health concerns due to their widespread 
contamination in agricultural products and adverse health effects on humans. Several 
decontamination techniques, including physical-, chemical-, and thermal-based 
treatments, are employed to minimize the levels of mycotoxins in food. However, 
these treatments present disadvantages, such as negative impacts on the quality and 
leftover chemical residues on the treated food after physical- and chemical-based 
treatments. Furthermore, mycotoxins are resistant to heat, thus contributing to the 
insufficiency of thermal treatments for complete mycotoxin degradation. The use 
of alternative nonthermal-based treatments, such as nonthermal plasma (NTP) and 
plasma-activated water (PAW) for mycotoxin degradation in food, have been recently 
explored to overcome these limitations. NTP and PAW treatments are known to 
minimize the unfavorable changes in food quality while ensuring safety from food 
contaminants. The basics of NTP and PAW technologies, their mycotoxin decontami-
nation efficiencies, their underlying mechanisms of action, effects on food quality, 
and the safety of mycotoxin degradation byproducts and treated food are hereby 
discussed in this chapter.

Keywords: mycotoxin, nonthermal plasma, plasma-activated water, mechanism of 
action, food quality, toxicity

1. Introduction

Mycotoxins are naturally occurring toxins or secondary metabolites produced by 
a wide range of fungal species (molds), including Aspergillus, Claviceps, Fusarium, 
Penicillium, and Alternaria [1]. These microorganisms usually colonize in crops and 
plants; thus, they can release the mycotoxin compounds and further contaminate the 
agricultural products during pre-harvest, harvest, and post-harvest [2]. Enyiukwu  
et al. [3] reported that approximately 25% of the global food and feed output is 
contaminated by mycotoxins. Furthermore, researchers have identified around 
300 types of mycotoxins and revealed that 10 of these toxic compounds, such as 
aflatoxins, ochratoxins, zearalenone (ZEN), ergotamine, deoxynivalenol (DON), 
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fumonisins, nivalenol, enniatin, citrinin, and trichothecenes, commonly contaminate 
agriculture-based foods worldwide [4]. These molecules can induce mycotoxicosis 
(acute and chronic toxic diseases) in humans, raising concerns toward food safety 
and public health [1]. Additionally, mycotoxin contaminations have been reported 
to be responsible for significant economic losses [4]. For instance, the costs for the 
agricultural industry or food supply chain induced by mycotoxin contamination are 
USD 1.5 billion/year in the United States [5].

Multiple methods, ranging from conventional-, physical-, to chemical-based 
treatments, have been employed throughout the years to detoxify and decontaminate 
mycotoxin from agricultural products. The conventional approaches, including 
cooking and pasteurization, are simple and low-cost treatments; however, several 
mycotoxins can resist such thermal-based treatments [6]. Meanwhile, physical and 
chemical approaches, such as microwave [7], ozone [8], essential oils [9], and pulsed 
light irradiation [10], have been widely applied. However, these typical treatments 
are still problematic because they may result in undesirable changes in the physical, 
chemical, and sensory properties of the treated foods.

Nonthermal-based treatments, such as nonthermal plasma (NTP) and plasma-
activated water (PAW), have recently gained considerable attention in food safety 
because they possess significant antimicrobial capacity against a wide range of food-
borne pathogens without negative effects on food quality [11, 12]. Gaseous NTP and 
PAW richly contain multiple charged particles, reactive oxygen species (ROS), and 
reactive nitrogen species (RNS); thus, these methods have been proposed to prevent 
the risk of mycotoxin contaminations in various foods [4]. Ultimately, the effective-
ness of both systems has rapid growth for decontaminating multiple foods from vari-
ous microorganisms, such as Saccharomyces cerevisiae, Escherichia coli, Staphylococcus 
aureus, Bacillus cereus, Klebsiella pneumonia, and Listeria monocytogenes, as widely 
reviewed by Herianto et al. [11], Perinban et al. [13], Thirumdas et al. [14], and Zhou 
et al. [15]. Nevertheless, a review focusing on their effects on mycotoxin deactivations 
is unavailable. Thus, this chapter briefly discusses the applications of NTP and PAW 
for mycotoxin decontamination in various agricultural foods and their respective 
effects on food quality according to the most up-to-date studies. In addition, the 
decontamination mechanism of reactive species by both systems over mycotoxin is 
elaborated. Finally, constructive suggestions are also provided to stimulate satisfac-
tory research of this field in the future.

2. Fundamentals of NTP and PAW

NTP represents a physical agent compromising a mixture of charged particles, 
neutral particles, radicals, ultraviolet (UV) radiation, and reactive species (RNS 
and ROS), which can induce oxidative stress and death of cells or organisms upon 
interactions [16]. Electrical energy is normally used to introduce feeding gases, such 
as ambient air, argon (Ar), helium (He), and oxygen (O2), into the plasma phase to 
form NTP, which further generates a combination of the above-mentioned species 
[17]. Plasma can be effectively generated through the following four main systems of 
devices—electric arc discharges, corona discharges, plasma jet, and dielectric barrier 
discharges (DBD) [13]. Among these configuration systems, plasma jet and DBD are 
preferred due to their simplicity and efficient capability of producing richly reactive 
species [11]. Particularly, plasma jet utilizes discharged plasma electrodes that can 
extend beyond the area of plasma generation into the surrounding ambiance [18], 
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further facilitating an effective interaction with the treated foods. Meanwhile, DBD 
uses discharges produced between two electrodes, which are separated by dielectric 
barrier materials, such as glass and ceramic [19]. Foods of interest can be placed 
between two electrodes for plasma exposure and treatment, further allowing for 
interaction and decontaminations.

Meanwhile, PAW is a liquid product of chemical reactions of NTP with water, 
containing a rich variety of high ROS and RNS [20]. ROS includes several chemically 
reactive molecules and free radicals containing molecular oxygen, such as hydrogen 
peroxide (H2O2), hydroxyl radical (•OH), ozone (O3), superoxides (O2

−,), singlet oxy-
gen (1O2), and alpha-oxygen [21]. By contrast, RNS is a group of nitric oxide-derived 
compounds, including NO2

−, NO3
−, nitroxyl anion, peroxynitrite (OONO−), nitroso-

nium cation, and S-nitrosothiols [22]. In particular, Herianto et al. [11] reviewed the 
detailed reaction mechanism of the formation of these reactive species. Several key 
parameters for performing these reactions and successful PAW generations include 
water sources (sterile distilled water, deionized water, reverse osmosis water, and tap 
water), working gas (air, Ar, He, and O2), power, activation time, gas flow rate, and 
position of the plasma electrode toward water [11, 12].

Unlike NTP, as a liquid solution, PAW enables a maximal exposure of reactive 
species to the entire surface of the treated foods, suggesting large-scale applica-
tions over various agricultural products in large volumes [11, 20]. Overall, both 
systems have been successfully applied for decontaminating various foods and 
agricultural products, such as vegetables (baby spinach leaves, mushroom, and 
mung bean sprout), fruits (grape tomato, grape, Chinese bayberry, and straw-
berry), fresh-cut fruits and vegetables (fresh-cut apple, pear, kiwifruit, endive 
lettuce, celery, and radicchio), meats (beef, chicken breast), shrimps, eggs, and 
rice cake [11, 12, 14, 23–27]. The application of these decontamination systems for 
mycotoxins is discussed in Section 3.

3. Mycotoxin degradation in food using NTP and PAW

Several researchers have utilized NTP and PAW treatments for the degradation of 
different mycotoxins in recent years to minimize the mycotoxin levels in food [28, 29]. 
Two possible pathways are generally available to achieve mycotoxin degradation—(1) 
inactivation of the fungi that produce the mycotoxins, herein referred to as mycotoxin-
producing fungi (MPF), and (2) direct degradation of the mycotoxins. The most recent 
findings of the studies that target the two pathways using NTP and PAW treatments are 
respectively presented in Sections 3.1 and 3.2.

3.1 Inactivation of MPF

The application of NTP for the inactivation of MPF in food has been comprehen-
sively reviewed in the past [28, 30], whereas a review on the effects of PAW on MPF 
inactivation is still lacking. Therefore, this chapter emphasizes the key findings from 
the most recent NTP studies, particularly in the past 3 years, and all PAW studies, to 
provide updated information on the current progress of these technologies for MPF 
inactivation. The application of NTP and PAW is generally commonly prevalent in nuts, 
seeds, and spices, and the commonly challenged MPF includes species that are mainly 
from the Aspergillus (A.), Alternaria (Alt.), and Fusarium (F.) fungal genera due to 
their capability to produce mycotoxins. These findings are summarized in Table 1.
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These studies revealed that NTP can achieve 100% inactivation of MPF in food, par-
ticularly of the Aspergillus species, which can produce the most toxic mycotoxins, that 
is, the aflatoxins. For example, A. flavus populations in pistachio nuts were completely 
inactivated in only 3 min of NTP treatment operated in DBD using ambient air [31]. 
Similarly, an atmospheric pressure capacitive coupled plasma (AP-CCP) also demon-
strated complete inactivation of A. flavus in pistachio nuts but only after a long treat-
ment period of 10 min using Ar gas [33]. The said study compared three different kinds 
of NTP treatment, which includes AP-CCP, and found that AP-CCP was the optimum 
device due to its most effective MPF inactivation capability and lesser cost requirements 
compared with direct-current diode plasma (DC-DP) and inductively coupled plasma 
(ICP) systems [33]. Furthermore, some food crops can be a host to multiple MPF, thus 
resulting in the co-occurrence of MPF in food. A study also revealed that NTP treat-
ment using a DBD reactor with radiofrequency (RF) generator (RDBD) and He as 
the feed gas completely inactivated the co-occurring Aspergillus species, including A. 
westerdijikiae, A. steynii, and A. versicolor, in ground coffee after 6 min [35]. Meanwhile, 
other studies only achieved partial inactivation of MPF but still reduced their popula-
tions significantly. For instance, Mravlje et al. [30] used a large-scale RF plasma system 
operating in O2 gas and reported significant reductions in Alternaria and Fusarium 
fungal communities in common and Tartary buckwheat seeds in only 1.50 and 2 min of 
treatment, respectively. Similarly, treatment of ginseng seeds for 3 days at 10 min each 
day using a planar-type DBD plasma reactor also reduced Fusarium populations and 
found that using Ar as feed gas showed higher reduction compared to that when Ar/
O2 gas mixture was used [32]. Overall, the choice of plasma device, feed gas, treatment 
duration, type of MPF, and food matrix can affect the efficiency of NTP treatment for 
MPF inactivation. As an example, Sen et al. [36] reported that the use of AP plasma 
resulted in higher reductions of A. flavus and A. parasiticus in hazelnuts compared with 
low-pressure (LP) plasma using N2 gas in both treatments. However, AP and LP plasmas 
achieved an almost similar inactivation of A. parasiticus when the air was used.

Meanwhile, the use of PAW treatment for MPF inactivation in food did not 
produce the best results compared with NTP treatment. PAW generated from Ar/
air mixture and distilled water using an electrohydraulic streamer discharge plasma 
(ESDP) system inhibited A. brassicicola spores in Chinese kale seeds by approxi-
mately 70% but only after a long treatment period of 60 min [38]. Terebun et al. [37] 
also showed that PAW operated using a single-phase gliding arc reactor (GAD) at 
atmospheric pressure produced inconsistent levels of inactivation of several MPF in 
beetroot and carrot seeds, including Alt. alternata, A. niger, F. solani, Penicillium (P.) 
expansum, P. nigricans, Alt. radicina, and F. avenaceum, depending on the treatment 
duration and fungal species.

Overall, NTP and PAW showed effectiveness in the inactivation of MPF in food. 
However, the plasma operation and treatment parameters must be carefully consid-
ered to achieve the maximum efficiency offered by NTP and PAW considering MPF 
inactivation in food.

3.2 Direct degradation of mycotoxin

Comprehensive literature reviews on the application of NTP for the degradation of 
several mycotoxins in food over the past years have been discussed in previous publi-
cations, while that of PAW is still lacking [4, 28, 29, 39, 40]. This chapter highlighted 
the key findings from the past 3 years on the effects of NTP and PAW on the degrada-
tion of mycotoxins in food. A summary of these findings is shown in Table 2.
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Among the mycotoxins, the aflatoxins are regarded as one of the most widely dis-
tributed and toxic mycotoxins, and the International Agency for Research on Cancer 
has categorized AFB1, AFB2, AFG1, and AFG2 as Group 1 carcinogens [48, 49]. Thus, 
most of the research on mycotoxin degradation using NTP has focused on aflatoxins, 
especially on AFB1. A recent study has shown that AFB1 was completely degraded in 
corn kernels after treatment for only 4 min with a high discharge power operation of 
a surface barrier discharge (SBD) system in ambient air [43]. By contrast, a similar 
study reported a low reduction (65%) of AFB1 in maize after treatment with an AP 
plasma jet using He as the feed gas for 10 min [45]. The same author also reported a 
comparable reduction of 64% of fumonisin B1 (FB1) using the same treatment condi-
tions [45]. Meanwhile, short treatment periods of 2–5 min corresponding to constant 
(peanuts placed directly under the plasma jet flame) and agitated (peanuts placed in 
a moving conveyor belt) air plasma jet surface treatments reduced the total aflatoxin 
levels (AFB1 + AFB2) by only 23 and 38%, respectively [46]. T-2 and HT-2, which 
are trichothecene mycotoxins of the Fusarium species, are also commonly studied in 
recent years. Iqdiam et al. [41] reported that T-2 and HT-2 concentrations in wheat 
grains significantly decreased up to 79.80 and 70.40%, respectively, after 10 min of 
air-NTP treatment using a DBD system. Kiš et al. [42] also used an LP-DBD plasma 
reactor for T-2 and HT-2 degradation in oat flour and achieved relatively low maxi-
mum reductions of T-2 (44.42%) and HT-2 (40.87%) after 30 min of treatment using 
N2 gas. Additionally, DON in raw barley grains was degraded by 54.40% after 10 min 
of DBD atmospheric cold plasma (ACP) treatment with air as feed gas [44], which 
is lower compared with T-2 and HT-2 reductions using similar treatment conditions 
[41]. Meanwhile, the degradation of 50% of ochratoxin A (OTA) in roasted ground 
coffee took 30 min of NTP exposure with an RDBD using He gas [35]. Overall, NTP 
treatment demonstrated the effectiveness of up to 100% of mycotoxin degradation in 
food but with a large variation. Furthermore, the results from these studies imply that 
the type of plasma device, feed gas, treatment duration, type of mycotoxin, and food 
matrix may affect the efficiency of NTP treatment for mycotoxin degradation in food.

Meanwhile, the effect of PAW on the degradation of mycotoxins in food is less 
studied compared with NTP treatment. In recent years, only one research has shown 
the applicability of PAW for mycotoxin degradation in the food matrix. Chen et al. 
[47] demonstrated that 20 min of treatment with PAW generated using a nonthermal 
AP plasma jet from the air and distilled water resulted in maximum reductions of 
DON by 25.80 and 38.30% in raw and germinating barley, respectively. This phe-
nomenon may have resulted in less interest in PAW compared to NTP due to the low 
mycotoxin degradation capability of PAW. Therefore, further research on the use of 
PAW for mycotoxin degradation is necessary to be optimized for decontamination of 
food from harmful mycotoxins.

4.  Mechanisms of action of NTP and PAW in mycotoxin decontamination 
of food

4.1 Proposed mechanism of MPF inactivation

The mechanisms involved in the plasma-induced inactivation of MPF have been 
thoroughly discussed in past literature [30, 50]. The reactive species produced during 
NTP and PAW generation are generally believed to contribute substantially to the 
action of these technologies against different microorganisms, including bacteria 



Mycotoxins and Food Safety - Recent Advances

126

and fungi [38, 50, 51]. Particularly, the action of ROS in MPF inactivation has been 
elucidated in many studies, while that of RNS remains unknown [52].

The harsh oxidative environment of NTP and/or PAW can result in fungal spore 
inactivation through denaturation of the proteins that comprise the coating of spores, 
thus leading to the loss of spore coat integrity, which then exposes the center of the 
spore to plasma ROS [28, 31]. The destruction of spore coat integrity results in the 
reduction of cell viability [31]. For instance, the disintegration of the cell walls of A. 
flavus and A. parasiticus spores led to the release of cytoplasmic structures as clusters 
following atmospheric NTP treatment [36]. Similarly, the walls of A. brassicicola 
spores had morphological changes, such as breakage or leakage of the outer mem-
branes, following PAW treatment [38]. The authors concluded that the spores of A. 
brassicicola lost their integrity, and the contents of the cells dispersed into clusters as 
observed in scanning electron microscopy images [38]. In addition, the acidic envi-
ronment of PAW could affect the cell walls of spores [36]. For instance, a recent study 
concluded that the inactivation of A. flavus spore was due to the synergistic effects 
of acidified PAW environment and long-lived reactive species [53]. In addition to the 
denaturation of the spore coat proteins, MPF inactivation may also occur by damag-
ing the lipid bilayers, which results in a ruptured fungal cell wall [28, 31]. The core 
of the spore becomes vulnerable again to attacks by the plasma reactive species once 
the cell wall is ruptured, leading to fungal inactivation [28, 31]. Other mechanisms 
involved in the damage of fungal spores are the accumulation of charged particles and 
continuous bombardment of reactive species on the external surface of spores, which 
both lead to cell wall rupture [31]. Reports indicate that the accumulated charged 
particles resulted in the formation of enlarged pores on the spore surface of A. flavus 
and A. parasiticus after NTP treatment due to electroporation, which promotes spore 
death [54].

Thus far, the mechanisms of MPF inactivation using plasma treatments involve 
changes in fungi morphology. However, the morphology of F. oxysporum spore was 
not altered after its inactivation using NTP treatment [50]. The authors reported that 
the increase in lipid accumulation inside the cells induced apoptosis, which is a form 
of programmed cell death [50]. Considering the direct action of select ROS on MPF 
inactivation, previous literature suggested that the action of •OH radicals on unsatu-
rated fatty acids and the oxidation of amino acids can respectively lead to lipid peroxi-
dation and protein oxidation, which can result in fungi death [30]. Furthermore, the 
interaction of oxygen radicals with DNA can lead to the formation of base adducts, 
resulting in DNA oxidation, which can also cause fungi death [30].

Summarizing the results of the above-mentioned studies, the MPF inactivation 
of plasma mainly occurs due to changes in the morphology caused by the damage 
in the protective coating of the fungal spores, membrane peroxidation and leakage, 
protein oxidation, DNA damage, and apoptosis [4, 30]. Notably, the observed and 
proposed mechanisms of MPF inactivation by the aforementioned studies may have 
varied due to the different plasma devices and processing parameters employed in the 
individual studies, which can lead to different actions of NTP and/or PAW against 
MPF inactivation.

4.2 Proposed mechanism of mycotoxin degradation

The mechanisms of mycotoxin degradation induced by NTP treatments have 
been comprehensively reported elsewhere [28, 40, 51]. AFB1 is the major mycotoxin 
that is studied in plasma investigations; thus, the reports on the mechanism of 
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mycotoxin degradation induced by plasma mainly revolved around AFB1 [55]. The 
toxicity of AFB1, and aflatoxins in general, is related to the C8 = C9 double bond on 
the furan ring, which is considered to be the toxicity site [55]. Generally, the degra-
dation of AFB1 is proposed to have resulted from the action of long-lived ROS with 
chemical structures of AFB1, particularly at the toxicity site [52, 56]. For example, 
reports indicated that O3 and •OH radical were among the primary contributors to 
the degradation of AFB1 into six major degradation byproducts using DBD-based 
plasma treatment, and the authors provided an illustration of the proposed deg-
radation mechanism in their work [52]. The authors proposed the following two 
mechanisms of degradation—(1) an addition reaction involving H2O, H, or CHO 
radicals and (2) an epoxidation reaction involving HO2• and oxidation reactions, 
including O3, H2O2, and •OH radical [52]. An earlier study also proposed that the 
O•, H•, and •OH radicals produced from a low-temperature RF plasma were the 
major reactive species that degraded AFB1 into five major degradation byproducts, 
and two mechanisms of degradation were introduced [57]. Overall, the two stud-
ies revealed that the degradation of AFB1 begins with the breakage of the C8 = C9 
double bonds on the furan ring, followed by an attack by the ROS, thus resulting 
in the formation of AFB1 degradation byproducts [52, 57]. This conclusion was 
further confirmed in a recent study, which investigated the degradation byproducts 
of AFB1 using an atmospheric pressure plasma jet generated from a pulsed DBD jet, 
stating that AFB1 degradation byproducts are produced from the modifications at 
the furan ring [45].

The degradation of other major mycotoxins, such as OTA, could also be mainly 
due to ROS molecules and radicals, such as O3, H2O2, and •OH radical, as well as UV 
irradiation and etching [35]. The ROS could promote the degradation of OTA into 
slightly toxic compounds, such as L-phenylalanine [35]. Furthermore, the degrada-
tion byproducts of ZEN following a plasma jet-based NTP treatment were reported, 
which identified two degradation byproducts [45].

Studies on the mechanism of action for mycotoxin degradation using PAW 
treatment and determination of mycotoxin degradation byproducts post-treatment 
are currently unavailable. However, similar to the gaseous NTP, the different ROS 
dominates the degradation of mycotoxins during PAW treatment. For example, the 
H2O2, O3, and nitrate ion (NO3

−) reactive species were believed to be the major reason 
for DON degradation in barley during PAW treatment [47].

Overall, the reactive species are the major contributors to the degradation of 
mycotoxins during NTP treatment of food. Further work on the elucidation of degra-
dation mechanism and byproducts of other major mycotoxins, such as OTA, DON, or 
ZEN, following NTP treatment, is also needed. Moreover, extensive research on the 
degradation byproducts of these mycotoxins and proposed mechanisms using PAW 
treatment is warranted.

5. Effects of NTP and PAW treatments on food quality

In addition to the effective and significant decontamination of food from myco-
toxins using NTP and PAW treatments, another known promising characteristic of 
these technologies is the retainment or negligible impact on the nutritional and other 
key properties of food. This chapter emphasizes the effects of NTP and PAW treat-
ments on food quality following mycotoxin decontamination from the most recent 
studies.
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Results revealed that the overall likeability was positively correlated with the 
overall texture (r = 0.77) and flavor (r = 0.87) of peanuts [46]. Generally, NTP treat-
ment did not produce a negative effect on the sensory properties of food [34, 46]. For 
example, the treatment of red pepper flakes for A. flavus inactivation did not signifi-
cantly affect its color and flavor properties compared with the control [34]. Similarly, 
the overall appearance of peanuts after NTP treatment using a plasma jet device did 
not significantly change, while the overall likeability, flavor, and texture of the NTP-
treated peanuts significantly increased; this finding indicates that NTP treatment can 
also enhance the sensory characteristics of peanuts [46].

By contrast, plasma treatments had varying effects on the physicochemical 
properties of food. NTP treatment of pistachio nuts for A. flavus inactivation revealed 
a slight increase in the antioxidant activity and a significant increase in malondi-
aldehyde values, while the total phenolic content remained unchanged; however, a 
decrease in chlorophyll, total carotenoid, and color parameters was observed [31]. 
NTP treatment was also found to significantly lower the capsaicin and ascorbic acid 
levels of red pepper flakes, but its antioxidant activity and color were unaffected by 
the treatment [34]. Similarly, the color of wheat grains did not also show changes 
after NTP treatment, along with the nitrogen, protein, starch, and moisture con-
tents [41]. Another study also reported the absence of significant differences in the 
moisture, protein, and β-glucan contents of barley after NTP treatment compared 
with control [44]. The peanut oil extracted from NTP-treated peanuts also had no 
significant difference in its peroxide value, free fatty acid, acidity value, and oxida-
tive stability index compared with control after the treatment [46]. Meanwhile, the 
NTP treatment of corn kernels and peanuts produced slight oxidation and bitterness 
in taste [43, 46]. By contrast, PAW treatment did not affect the overall quality of 
Chinese kale seeds [38].

Overall, the effects of NTP and PAW treatments on food quality may differ 
depending on the processing parameters employed and the type of food matrix 
tested [11].

6.  Safety of mycotoxin degradation byproducts in treated food after NTP 
and PAW treatments

Examining the safety or toxicity of the food post-treatment and the byproducts 
produced during the process is important for any emerging technology, especially 
in the field of food processing. However, investigations regarding these concerns in 
the field of plasma research for mycotoxin decontamination are still limited in the 
current state of literature. The AFB1 byproducts are hypothesized to have reduced 
toxicity due to the loss of the C8 = C9 double bond, which is related to its toxicity [57]. 
This finding was confirmed in a recent study, which reported that the degradation 
byproducts of AFB1 after AP plasma jet treatment showed no increased cytotoxicity 
in human hepatocarcinoma (HepG2) cells [45]. Additionally, another study revealed 
through a brine shrimp (Artemia salina) lethality bioassay that the OTA extract from 
untreated coffee was “toxic,” which corresponds to a 50–88.30% mortality in brine 
shrimp larvae [35]. However, the mortality rate was reduced to “slightly toxic” levels 
(10–33.33% mortality) when OTA extract from NTP-treated coffee was exposed to 
brine shrimp larvae [35]. Meanwhile, the safety or toxicity of the original food that 
has undergone NTP or PAW treatment for mycotoxin decontamination has not been 
currently assessed.
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Overall, the current investigations demonstrate that NTP treatment can degrade 
mycotoxins and produce degradation byproducts that are nontoxic or with lower 
degrees of toxicity compared with the toxic parent compound. However, the safety 
of the food treated with NTP or PAW remains unknown. Hence, future research 
should address this issue to guarantee the safety of plasma-treated food for human 
consumption.

7. Conclusions

The nonthermal-based treatments such as NTP and PAW have shown promising 
results in the field of food decontamination against biological and chemical contami-
nants. Particularly, their effects on decontaminating foods from mycotoxins have 
been exceptional, and the capability of NTP and PAW to inactivate fungi and degrade 
mycotoxins is due to the oxidizing capacities of the existing reactive species in the 
plasma. The existing literature reveals that NTP and PAW inactivated the fungi that 
produce the mycotoxins as well as degraded the mycotoxins in foods, such as nuts, 
seeds, and spices, without producing harmful byproducts and having mild impacts 
on food quality. However, the result is still inconsistent in all studies. For instance, the 
current literature indicates NTP as the better treatment option for MPF inactivation 
and mycotoxin degradation compared with PAW. This finding is due to the desirable 
inactivation or degradation efficiencies of NTP treatment of up to 100% in no longer 
than 30 min, whereas low efficiencies of PAW treatment were observed and can only 
be achieved at long treatments. However, NTP treatment is more prone to induce 
undesirable effects on food quality compared with PAW.

Overall, the decontamination of foods from mycotoxins using NTP and PAW 
treatments and their effects on food quality is dependent on many factors, includ-
ing the plasma device, the treatment parameters (such as power supply, type of feed 
gas, and treatment duration), the fungi species, the type of mycotoxin, and the food 
matrix. Thus, comparison of the results from various studies is difficult due to this 
diversity in plasma operation techniques. Therefore, deciding which NTP or PAW 
treatment is the best for mycotoxin decontamination of food remains unclear. Hence, 
consideration and optimization of the results from the current studies are crucial to 
ensure maximum utilization of NTP and PAW technologies for mycotoxin decontami-
nation of food.
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