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Preface

Total body weight is the sum of the weight of all body components. Among these
components, water, adipose tissue, muscle, and bone are the main contributors. The
physiological or pathological variations in the amount or mass of each component
can lead to an increase or decrease in total body weight. Some of these changes carry a
risk of increased morbidity and mortality. The variations in body weight are increase
(retention) or decrease (dehydration) in water amount, increase (hypertrophy,
hyperplasia) or decrease (lipodystrophy) in adipose tissue mass, increase (hypertro-
phy) or decrease (sarcopenia) in muscle mass, and increase (increased bone density)
or decrease (osteopenia, osteoporosis) in bone mass. A variety of factors including
genes, lifestyle, environment, age, diseases, and medications can promote these
conditions. The most common and relevant body weight change is obesity, which is

a major health problem worldwide. The prevalence of obesity has doubled in more
than 70 countries since 1980. The number of adults with obesity is around 650 million
worldwide. This book provides the reader with a comprehensive overview of current
knowledge about the pathophysiology, consequences, complications, and treatment
of different types of body weight changes, with a special emphasis on obesity.

The book contains thirteen chapters by authors from Dominica, France, India,
Nigeria, Qatar, Ukraine, South Africa, the United Kingdom, and the United States.

I would like to thank all of them. I would also like to express my appreciation for the
great assistance provided by Ms. Ana Javor at IntechOpen who supervised this book
project.

Hassan M. Heshmati, MD
Endocrinology Metabolism Consulting, LLC,
Anthem, AZ, USA






Section 1

Leptin Pathophysiology







Chapter1

Biodiversity of the
Adipocyte-Derived Hormone,
Leptin

Reji Manjunathan, Dharanibalan Kasiviswanathan
and Selvaraj Jayaraman

Abstract

The adipocyte derived hormone leptin is known for its pivotal role in the
regulation of a variety of physiological functions mainly associated with
metabolism and energy homeostasis. One of the major functions of leptin is pertain
with its angiogenic induction in support of organ development as well as under
pathological conditions such as atherosclerosis and cancer. Leptin is a well-known
pro-angiogenic growth factor which exerts its role through Ob-R receptor present
on endothelial cells. The therapeutic application of leptin is based on its potential to
maintain various functions at pathological conditions. In this book chapter, the multi-
diversity potentials of leptin are discussed in detail.

Keywords: Leptin, obesity, angiogenesis, tumor progression,
multi-signaling pathways

1. Introduction

Leptin is a 16 kDa non-glycosylated protein derived from adipose tissue, primarily
by adipocytes. Leptin is a well-known mediator for food intake and weight loss [1].
Leptin mediates its functions mainly through the receptor located in the hypothalamus
and activates signaling cascades associated with energy intake [2]. It circulates through
the bloodstream, engages with normal metabolism, regulates energetic homeostasis,
reproductive system, and influences the circadian cycle, lipid inflammation, and carbo-
hydrate mechanisms. Leptin is well known for its pro-angiogenic potential and operates
multiple signaling agencies through the receptor located in endothelial cells [3, 4]. Leptin
is also secrets by other organs, such as the placenta, bone marrow, ovaries, stomach, and
cellular structures, including mammary epithelial cells, P/D1 cells, and gastric chief cells
[1]. Research has demonstrated that leptin plays a crucial role in maintaining the normal
physiology of various vital systems such as the reproductive system and could balance
cell proliferation (Figure 1). The pleiotropic hormone also could repair tissue damage
and can prevent on-adipocyte lipotoxicity. Though leptin is highly acceptable for its pro-
tective mode of action, increased leptin level is often observed in several inflammatory
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Figure 1.

Lefﬂtin exerts its pleiotropic impact on various organs. It maintains muscle tone and vegulates cardiac function.
Leptin regulates food intake and body weight management through binding with receptor located at brain. In the
thyroid gland, leptin stimulates the secretion of TSH. In the female reproductive system, leptin manage menstrual
cycle and supports in embryo implantation. Leptin inhibits insulin secvetion and maintains blood-glucose level.
Leptin induces sprouting of new vessels from existing ones and enhances ECs proliferation and migration and also
it regulates bone metabolism and density.

conditions [5]. Hence, a therapeutic approach based on leptin and receptor has become
the need of the hour to balance many inflammatory diseases in the human body. The
particular book chapter provides an insight into the multi-diversity properties of the
pleiotropic hormone leptin.

2. Leptin synthesis and regulation

Leptin derives from adipose tissue’s obese gene (OB) transcription product [6].
The OB gene function was first identified in the 0b/ob obese mice model and is located
on chromosome 7 (7q31.3) and has three exons and two introns (18 kb) [7, 8]. Leptin
receptors are located on chromosome 1 (1p31) and are noted with 17 introns and 18
exons and encode two proteins of 166 and 1162 amino acids, respectively [9]. Leptin
receptors are highly expressed in the hypothalamus, cerebellum, and other tissues
associated with the vasculature, stomach, and placental organs [10]. Leptin receptors
have five spliced isoforms, the longest form expressed in neuronal tissue and the short
forms expressed almost in all tissue types [11]. Leptin receptors (OB-R) are structurally
similar to the class I cytokine family receptors. Alternative splicing of leptin receptor
RNA results in various isoforms, designated as OB-Ra, OB-Rb, OB-Rc, OB-Rd, OB-Re,
and OB-Rf. They all have an extracellular domain of more than 800 amino acids, a
transmembrane domain of 34 amino acids, and a variable intracellular domain. The
pleiotropic biological effects of leptin are explained based on the wide distribution
of leptin receptors in humans [5]. Leptin bind to its hypothalamic receptors (Ob-Rs)
in the brain and activates appetite and satiety. The concentration of leptin in plasma
depends on the person’s dietary behavior, gender, and physical activities. The other
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hormonal constituents, such as insulin, estrogen, and glucocorticoids, can also influ-
ence the regulation mode and the level of leptin in the blood [12, 13]. On the other
hand, low energy or fasting, thyroid hormones, androgens, inflammatory cytokines,
and adrenergic agonists can inhibit leptin secretion [14].

3. Leptin signaling pathways

Leptin mediates its biological effects by binding to its various alternatively spliced
isoforms receptor located at the brain and peripheral tissues. The binding of leptin to
its long-form of receptor activates various intracellular signaling pathways, including
insulin receptor substrate (IRS)/phosphatidylinositol 3 kinase (PI3K), Janus kinase 2
(JAK2)/Signal transducer, and activator of transcription 3 (STAT3), SH2-containing
protein tyrosine phosphatase 2 (SHP2)/Mitogen-activated protein kinase (MAPK),
and 5" adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA
carboxylase (ACC) [8]. The binding of leptin to its receptor activates JAK2, which in
turn phosphorylates the Tyrosine amino acid residues in LepRb and is terminated by a
suppressor of cytokine signaling 3 (SOC3) [15].

Leptin input a significant role in energy homeostasis and neuroendocrine function
through JAK2/STAT?3 signaling pathway. A selective deletion in LepRb or STAT3 in
LepRb-expressing neurons ends with obesity and hyperphagia, which further sup-
ports the dominant role of the JAK2/STAT3 signaling pathway in the leptin-induced
body weight regulation [16]. One interesting fact about leptin and insulin is that both
have similar intracellular signaling pathways (PI3K/Akt) in neurons [17]. The ERK,

a member of the MAPK family, acts downstream of LepRb and is mediated through
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Figure 2.

Leptin regulates many signaling pathways through receptor (Ob-Rb) binding mechanism. It vegulates gene
expression through JAK/STAT3 pathway, modulates other signals through PI3K/rho family dependent pathway,
induces vasodilation through NO-dependent pathway, and accelerates angiogenesis through PI3K/Akt/mTOR/

56 kinase/ VEGF a and PI3/Akt/NO-dependent pathways. Promotes tumor progression through HIF-1 alpha
pathway and enhances platelet aggregation through the PLC pathway. The SOS3 molecule function as a regulator
of leptin induced signaling activations by negative feedback mechanism.
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SHP2 or by JAK2. Inhibition of ERK prevents leptin-based sympathetic function in
brown adipose, which further supports SHP2/MAPK in leptin energy expenditure
and food intake [18]. Leptin’s suppressive mode of action on food intake initiates

by inhibiting the effect of AMPK in the brain. The inhibition of AMPK regulates
feeding through the mTOR (mammalian target of rapamycin)/s6Kinase pathway
[19]. In skeletal muscle, leptin directly exists its effect through AMPK signaling and
stimulates fatty acid oxidation and glucose uptake [20]. Leptin has a prominent role
in the modulation of both innate and adaptive immunity. It stimulates neutrophil
chemotaxis and promotes phagocytosis of macrophages through the receptor binding
mechanism. It is also known to increase the production of IL-6 and TNF-alpha under
pathological conditions [21]. Leptin protective action on neutrophils exerts through
PI3K and MAPK depending on signaling and prevents apoptosis of neutrophils.
Leptin via STAT?3 activation promotes natural killer cell activation [22]. In the adap-
tive immune response, leptin promotes native T cells proliferation by increasing the
expression of interferon-gamma and TNF-alphain T cells [23].

Apart from the mentioned direct signaling pathways, leptin interacts with many
signaling functions as a multifunctional cytokine. Leptin shows a potential functional
relationship with Nitric Oxide (NO) and favors NO-mediated lipolysis and vascular
tone [24]. The significant other functions of leptin are associated with its predomi-
nant role in angiogenesis. It is observed that Endothelial cells (ECs) express OB-R
leptin receptors and the binding of leptin to OB-R enables the growth of small blood
vessels [3]. Recently, it has been identified that leptin could induce PI3K/Akt/mTOR/
s6Kinase signaling pathway and enhance VEGF mRNA’s transcription level while
inducing angiogenesis [4]. One of the intriguing possibilities of leptin is that it pro-
motes neovascularization through paracrine mode concerning the volume of fat mass
[25]. Leptin could promote proliferation in colonic epithelial cells in vitro conditions.
Moreover, the presence of OB-R receptor in human colon cancer cell lines and human
Colonia tissue thus supports the angiogenic role of leptin under cancer environment
through PI3K/AKT, MAPK/ERK, and JAK2/STAT?3 pathways [26, 27]. Leptin could
induce apoptosis and regulate actin-myosin cytoskeleton associated with Rho family
GTPases (Figure 2) [28].

4. Leptin as an energy balancer

Leptin acts in the brain and maintains energy homeostasis through a negative
feedback mechanism [29]. The process is mediated through the receptors in the hypo-
thalamic area named the paraventricular nucleus, ventromedial hypothalamic nucleus,
lateral hypothalamic area (LHA), and arcuate nucleus (ARC). The ARC is the primary
site for leptin to integrate peripheral energy balance signals [30]. Recently, it has been
observed that leptin could play a significant role in the long-term regulation of energy
balance and short-term management of body weight and food intake. The gastric leptin
produced because of the actions of the intestinal peptide serves as a local stimulus and
plays a vital role in food digestion and absorption [31]. The particular area requires
more investigations to prove the role of gastric leptin in food digestion and absorption.
Research supported the predominant role of leptin in neuroendocrine mediated starva-
tion through changing sympathetic nervous system activity [32].

Overweight or obesity is characterized by increased fat mass and is proportional to
circulating leptin levels in individuals [33]. The elevated levels of leptin in body fluid
are explained based on leptin resistance. The hypothesis was proved using rodents fed
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with a high-fat diet and leptin sensitivity loss in ARC neurons [34]. At the cellular level,
the inflammatory signals mediate the process of leptin resistance. The two significant
characteristics of obesity connect with hyper-leptinemia and leptin resistance. At the
molecular level, the leptin gene is over-expressed in overweight or obese individuals
[35]. Apart from these functions, many researchers reported the genetic and epigenetic
factors that control leptin action in energy homeostasis and food intake [36-38]. A
better understanding of leptin-induced pathogenicity of obesity and obesity-related
disorders and the regulation of energy homeostasis will provide an alternative solution
in preventing obesity and obesity-related co-morbidities.

5. Leptin as an immune modulator

Despite nutritional regulation, leptin has gained more attention for its pivotal role
in inflammation. The innate immune system plays a major role in the regulation of
leptin production. Leptin responds to immune cells and its receptors, expressed by
most cells, and activates pro-inflammatory features in the host [39]. Leptin plays an
essential role in T cell development, and leptin deficiency directly impacts the levels
of circulating T cells [40]. Many studies supported the role of leptin in immunity
modulation and mentioned the signaling pathways related to the notion [39, 41, 42].
Leptin could accelerate the proliferation process in native CD4 T cells and favored by
reducing the levels of IFN from T cells [43, 44]. During the wound healing process,
leptin activates both inflammatory and proliferative phases in favor of tissue repair
[45]. The increased plasma leptin level acts as an indicator of leptin-induced inflam-
matory response at the injury site. These exciting features of leptin gained attention
as a pro-angiogenic molecule in ischemic tissues [46]. Leptin induces monocyte
chemoattractant proteinl (MCP1) expression [47].

Leptin plays a vital role in producing GM-CSF and G-CSF and activating hematopoi-
etic cells in humans [48]. In animal models, up-regulation of leptin has been found in
acute inflammation states. But, experimental evidence from rodents does not match with
human studies [49]. Leptin plays a significant role in basophils and eosinophils functions
and acts as a chemoattractant [50]. Leptin is abnormally expressed in autoimmune dis-
eases, particularly in skin disorders [51]. Obesity decorates skin normal physiology such
as keratosis pilaris, tags, and striae diseases and increases the levels of pro-inflammatory
cytokines and adipokines, including leptin [52, 53]. In the event of inflammation, leptin
increases the release of Nitric Oxide and activates the macrophages and neutrophils,
and increases natural killer cells’ activity (NK) [54]. Leptin up-regulates the cytokines
production and phagocytic function in obese conditions [55]. It balances monocytes and
activations markers and directly involves in interleukinl and cyclooxygenase expression
[56]. One of the prominent roles of leptin pertains to maintaining the balance between
the immune system and metabolism regulation. Under malnutrition state, leptin acts as
an immunosuppressive factor [42].

6. Leptin as a pro-angiogenic factor

In 1998, Sierra-Hongmans reported that vascular endothelial cells express leptin
receptors, especially the long-form. This discovery leads to an insight into the role of
leptin in angiogenesis [57]. The angiogenic impact of leptin was conformed used on
in vitro and in vivo models analysis [3, 58]. Jin et al. proved that leptin could induce
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angiogenesis in the cornea of the Zucker obese rat model through the activation of the
Ob-R gene [59]. Leptin exerts a paracrine mode of action in tissues and activates vari-
ous signaling during the promotion of angiogenesis. This endocrine hormone activates
Akt signaling pathway and mediates NO-induced vasodilation [60]. In endothelial cell
migration, leptin signals through the ERK pathway and activates the PI3k, Akt, and
eNOS molecules. By stimulating the local neovascularization in adipose tissue, leptin
promotes its release into the vascular system. This process enhances fatty acid oxidation
and supports maintaining a proper balance between adipose tissue’s fat deposits and
blood supply [61]. Even though the vascular fenestration capacity of leptin is poorly
understood, the effect is found similar to VEGF [62]. Leptin plays a crucial role in
exchanging nutrients between the fetus and maternal circulation in the placenta via
enhancing vascular permeability and could induce angiogenesis in the placenta [61].

7. Leptin and pathogenesis

Leptin does not only imply energy homeostasis but also extends its regulatory func-
tion at infectious conditions. But the contagious status regulation mode of leptin is the
least explored signaling mechanism. Latest research support that leptin could activate
phagocytosis of macrophages and could secure the immune cells from pathogenic
infections [63]. In Klebsiella pneumonia infection, exogenous administration of leptin
shows CD11b dependent phagocytosis [64]. It protects lymphocyte deficient mice
from various conditions [65]. Several studies have strongly highlighted the therapeutic
application of the molecule to innervate infectious diseases, including AIDS [66].

8. Leptin resistance with disease

However, under certain conditions, like obesity, leptin levels decrease in associa-
tion with leptin resistance. But it is still unclear how the leptin resistance mechanism
is exerted throughout the tissue. So far, studies have suggested leptin resistance with
metabolic process and revealed a defect in the Ob-R leptin receptor gene [67]. Up to
date, the leptin resistance mechanism has been categorized as follows: gene mutation
specific to the leptin structure, defect in the transport of leptin through the blood-
brain barrier, and malfunctions of leptin receptors. Among these, mutations are rare
in humans, occurring in substitution of guanine by adenine at the donor splice site
of exon 16 of the leptin gene [68]. Second, the brain’s blood vessels usually express
leptin receptors and transport leptin into the cerebrospinal fluid. But excessive levels
of leptin in the bloodstream decrease the permeability of BBB, thus develops leptin
resistance [69]. Finally, the serum level of leptin significantly affects the transcrip-
tional level of the OB (0b) gene and the equilibrium of leptin secretion in adipose
tissue. In such cases, these dramatic changes promote leptin resistance until leptin
level remains standard in the bloodstream. These changes have been widely observed
in obesity [70].

Furthermore, several stimuli affect leptin resistance, including the circadian
cycle. Interestingly, leptin also develops its leptin resistance, observed in diet-induced
obesity [71]. This leptin resistance also provides an environment for the accumulation
of immune response against pathogens, particularly high-fat diet-induced inflam-
mation, which activates inflammatory cytokines [72]. But, in-depth leptin resistance
mechanisms need much more attention.
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9. Leptin role in disease conditions
9.1 Metabolic syndrome and obesity

Fat tissue is an energy storage tissue that functions as a negative feedback loop in
energy homeostasis [73]. Homozygous mutation of leptin causes extreme obesity,
diabetes and suppresses glucose metabolism in insulin-deficient diabetes [8]. The ob/
ob mice model has relatively higher food intake and observed a larger volume of lipid
accumulation in the liver than the control group [74]. It has been assumed that nearly
95% of individuals have resistance against leptin [75]. The type 2 diabetes condition
is noted with an increased level of leptin and suggested using leptin as a biomarker
to study the effect of obesity in diabetes-related morbidities [76]. Some studies
also reported that higher leptin levels are associated with the risk of heart-related
problems in obese individuals [76, 77]. In younger adults, elevated leptin levels are
positively correlated with HOMA-IR and BMI index [78].

Development of severe early-onset obesity and hyperphagia are common in people
with homozygous LEP mutation [79]. Replacement of leptin from a therapeutic
viewpoint has improved insulin sensitivity and thus proved the role of leptin in
metabolic disorders, including T2DM. In humans, serum leptin level is positively
correlated with the percentage of body fat, fat mass, size of adipocytes, and BMI
[80]. Obesity connected with the enlargement of adipose cells enhances the serum
leptin level, which further results in the progression of chronic hyperinsulinemia.
The majority of obese patients are hyper leptinaemic which supports the development
of hypertension, metabolic syndrome, and cardiovascular diseases [81]. Mutation in
the leptin receptor located at the hypothalamus alters the transport of leptin across
the blood-brain barrier. This incidence increases the level of serum leptin and hence
diet-induced obesity. Obesity connected with the leptin receptor mutation is linked
with insulin resistance and in the development of T2DM [82].

9.2 Cardiovascular diseases

The level of leptin could influence the function of the heart. It could lead to the pro-
gression of many heart-related problems such as coronary artery disease, stroke, chronic
kidney disease (CKD), peripheral artery disease (DAP), carotid plaque instability [83].
It was observed that elevated level of serum leptin in obese patients contributes to the
low-grade systemic inflammation in favor to develop cardiovascular disease. Moreover,

a high level of leptin is used as a biomarker to measure the progression of heart failure
in patients with dilated cardiomyopathy [84]. On the other hand, many studies using
rodent, obese and diabetic models highlighted the beneficial impact of leptin on cardiac
metabolism through glucose metabolism and fatty acid oxidation. This evidence sug-
gested that leptin compensates for cardiac insults due to ischemia and heart failure [85].
Leptin signaling in the modulation of heart function is studied extensively using animal
models. These studies demonstrated that impaired cardiac leptin signaling majorly
reflects in metabolic inflexibility for glucose utilization, defects in cardiac contract-
ibility, impaired recovery of cardiac function due to coronary artery ligation [86, 87].
Clinical data cemented that plasma leptin levels are associated with LV hypertrophy and
increased myocardial wall thickening [88]. Leptin also increased the blood pressure level
in obese individuals with a loss-of-function mutation in leptin or leptin receptor [89].
Thus, aleptin-mediated increase in blood pressure directly increases the heartbeat rate,
developing into cardiac hypertrophy through the sympathetic nervous mechanism [90].
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Leptin-mediated aldosterone synthesis impairs myocardial relaxation and contrib-
utes to cardiovascular diseases through a novel mechanism associated with endothelial
dysfunctions [91]. Increased plasma leptin levels positively correlate with the number
of stenotic coronary arteries in patients with coronary artery disease [92]. In vitro
analysis using HUVEC cells demonstrated that leptin induces chronic oxidative stress
in ECs and contributes to vascular pathology development [93]. Also, the cytokine
hormone leptin could stimulate vascular smooth muscle cells proliferation and migra-
tion, thereby increasing calcification and vascular lesions [94]. Altogether, it was
suggested that hypertension, obesity, and endothelial dysfunctions are more frequent
in T2DM patients with elevated leptin levels [95].

9.3 Tumor progression

Cancer progression is a complex process that includes the interaction between
ECs, fibroblast, insusceptible cells, and adipocytes [96]. Normal epithelial cells do not
express leptin and leptin receptors but are overexpressed in a cancerous environment.
Leptin enhances the survival rate of cancer cells through the activation of a down-
stream signaling molecule known as sirtuin-dependent NAD-dependent deacetylase
1 (SIRT 1) [97]. Leptin can activate many signaling pathways in cancer directly by
activating TNF alpha, IL-6, ROS, VEGF, MMP2, and MMP9. It can also support tumor
growth by activating JAK/STAT, Akt, FGF2, and NO molecules through receptor
(Ob-R) binding mechanisms in ECs [98, 99]. The appetite hormone can potentially
interact with pre-neoplastic or cancerous breast epithelium in a breast cancer
environment. Leptin secreted by the breast cancer surroundings inhibits inflamma-
tory cytokines and thus blocks macrophages’ production [100, 101]. The cytokine
enhances neovascularization through VEGF in many cancerous conditions [102, 103].

Increased levels of serum leptin and insulin under obese conditions cause colorec-
tal cancer [104]. Leptin supports the proliferation and invasiveness of colonic cells.
Leptin receptors are found to express in human colon cell lines and are believed to ini-
tiate cancer angiogenesis. Hyperlipidemia and insulin resistance can cause low-grade
systemic inflammation that promotes proliferation and angiogenesis and inhibits
apoptotic rate in colon cancer [105]. Leptin and its receptors express in papillary
thyroid tumors and enhance the pathogenicity through PI3K/Akt pathway [106].

Obesity enhances the concentration of leptin around the pancreatic carcinogenic
environment. The enhanced concentration of leptin favors vascularization, migration,
and invasiveness of pancreatic tumor cells [105]. Leptin has a crucial role in developing
the non-alcoholic fatty liver disease (NAFLD) via insulin resistance. This imbalance
ultimately worsens hepatic inflammation and results in the development of liver fibrosis
[107]. The receptor Ob-R identified in Kupffer cells (KC), and binding of leptin with
receptor enhances the expression of TGF beta, TIMP1 in liver fibrosis scenario [108].
However, the direct role of leptin in liver cancer is controversial, with some reports sug-
gesting its role in liver cancer. In contrast, others offer its inhibitory potential on tumor
size in hepatic cancer [109, 110]. The level of leptin was found to decrease in patients
with cancer cachexia compared to non-cancer cachexia [111].

10. Leptin therapeutics past and future

The significant need for clinical implications of leptin is to regulate the regular
physiological role of leptin in pathological conditions. There is a correlation between
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body weight loss and serum levels of leptin. As a result, several therapeutic approaches
have been implemented for the use of leptin in obesity control. However, increased
resistance to leptin is also a significant issue in the treatment of obesity. But, a combina-
tion of therapeutic approaches may be helpful to these problems [112, 113].

Among the adipocyte secreted hormones, leptin is the front that has been used for the
treatment of hypoleptinemia status clinically. The most important therapeutic benefits
of leptin are rely on providing a novel method for treating the conditions connected with
mutation of leptin gene and lipodystrophy in humans [114]. Treatment with exogenous
leptin in obese patients concluded that leptin can decrease the body weight and fat tissue
of the subjects [115]. It was also noted that leptin excerpts a dose-dependent regulating
potential as individuals energy intake and appetite [116, 117]. Development of leptin
analogous with full biological effect, especially with the potential to cross the blood-brain
barrier, can improve the results obtained from leptin therapy focusing on obesity man-
agement. The administration of leptin can accelerate wound healing in diabetic ob/ob and
wild-type mice in a dose-dependent manner through leptin receptor mediation [118].

Exogenous administration of leptin can regulate fatty acid oxidation in muscles
and control triglyceride synthesis in the liver [119, 120]. Even though the mechanisms
in humans are not clear, administration of leptin and adiponectin was found to
improve insulin resistance in type 2 diabetic conditions [121, 122]. The immune-
modulatory impact of exogenous leptin administration in rodents highlighted that the
cytokine could activate encephalomyelitis [123]. Various in vitro assays also supported
the immune stimulator action of leptin [124, 125]. Identifying high-affinity-binding
molecules to control the level of circulating leptin is suggested as an advanced therapy
for treating arthritis and inflammatory bowel disease. In addition, replacement with
recombinant methionyl human leptin is a brilliant choice for treating pathological
conditions associated with relative or absolute leptin deficiency and restoring immune
functions [126]. One of the future therapeutic approaches of leptin relies on its use
as a natural adjuvant in vaccinations since it can stimulate T helper I responses while
down-modulating regulatory T cells [127].

Considering the cancerous conditions, ATLO-ACA, an Ob-R antagonist peptide,
finds effective for treating triple-negative breast cancers in experimental models
[128]. Also, therapy based on leptin/Ob R axis function inhibition was identified
as adjunctive therapy for newly diagnosed and recurrent glioblastoma [129]. The
modern therapeutic approaches of leptin are connected with molecular approaches at
gene levels are 1) CRISPR-Cas 9 connected with floxed leptin-locus based approaches
- to lower the leptin levels, 2) Cre-lox P- generation of one copy of Lep eliminates — to
lower the leptin levels, glucose and insulin tolerance, c) administration of neutral-
izing leptin-specific antibodies —to reduce the circulating levels of leptin to reduce
food intake and hepatic stenosis [130]. Administration of human recombinant leptin
accelareated dose-dependent sprouting angiogenesis and hypothesized that the
application of human recombinant leptin could improve the wound healing process
through neovascularization [3]. So far, evidence gathered from previous studies high-
lights the role of leptin in therapeutic applications. But overcoming leptin resistance is
a significant challenge in leptin-based therapy.

11. Conclusion

In conclusion, leptin is considered an essential pleiotropic adipokine with
various effects on biological systems. However, leptin’s structural and functional
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characteristics and its receptors are characterized by a unique signaling mechanism.
Focusing on leptin could be a therapeutic approach to manage autoimmune inflam-
mation associated with obesity, cancer, and metabolic diseases. But further research is
needed to understand the relationship between leptin on biological systems, as it has
complex signaling mechanisms.
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Abstract

Pituitary cell function is impacted by metabolic states and therefore must receive
signals that inform them about nutritional status or adiposity. A primary signal
from adipocytes is leptin, which recent studies have shown regulates most pituitary
cell types. Subsets of all pituitary cell types express leptin receptors and leptin has
been shown to exert transcriptional control through classical JAK/STAT pathways.
Recent studies show that leptin also signals through post-transcriptional pathways
that involve the translational regulatory protein Musashi. Mechanistically, post-
transcriptional control would permit rapid cellular regulation of critical pre-existing
pituitary transcripts as energy states change. The chapter will review evidence for
transcriptional and/or post-transcriptional regulation of leptin targets (including
Gnrhr, activin, Fshb, Gh, Ghrhy, and Poul1f1) and the consequences of the loss of
leptin signaling to gonadotrope and somatotrope functions.

Keywords: Leptin, somatotropes, gonadotropes, Musashi, post-transcriptional, Poulf1,
Ghrhr, Gnrhr, Fshb

1. Introduction

To perform their vital functions, anterior pituitary cells must respond appro-
priately to their unique hypothalamic releasing hormones, while also responding to
extrinsic signals informing them of the body’s nutritional and metabolic state. Leptin
is one of the most important of these extrinsic signals. However, recent studies show
that leptin does more than simply signal levels of fat stores [1-11]. Leptin plays a
trophic role that optimizes and maintains differentiation of at least two of these cell
types, somatotropes and gonadotropes.

Anterior pituitary somatotropes produce growth hormone (GH) to support
growth in muscles and bones before puberty and build muscle, bone, and reduce
fat to optimize body composition in the adult [12, 13]. Gonadotropes produce the
gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH),
which differentially regulate gonadal functions, ovulation and reproductive cyclicity
[14]. Both somatotrope and gonadotrope functions are impacted by the nutritional
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state and therefore it is not surprising that they exhibit a dependency on leptin. Early
studies showed significant reductions in numbers of gonadotropes in leptin-deficient
animals [6, 15-19]. Similarly, rodents that lack leptin or leptin receptors (LEPR) had
reduced numbers of somatotropes [20, 21]. Our studies on the distribution of pitu-
itary LEPR showed expression in nearly all cells [1, 22].

A dependency on normal levels of serum leptin was seen in our studies of 24 h
fasted rats, when we correlated the reduction in serum leptin with reduced numbers
of immunolabeled somatotropes and gonadotropes, along with reduced receptivity
for gonadotropin releasing hormone (GnRH) and growth hormone releasing hor-
mone (GHRH) [23]. As these findings pointed to potential trophic actions by leptin,
we continued iz vitro studies to determine if leptin would rescue either cell popula-
tion, restoring hormone stores lost during the acute fast. We cultured pituitary cells
from fasted rats overnight and then incubated them with 10-100 pg./ml leptin for
1h. This brief treatment rapidly restored stores as detected by increases in numbers
of immunolabeled somatotropes and gonadotropes [23], confirming direct effects of
leptin on these cell populations.

These findings agree with recent in vivo studies of rodents by Luque et al. [24],
which showed that both GH secretion and Ghrihr mRNA levels were restored by leptin
in leptin-deficient ob/ob mice. Furthermore, studies of non-human primates by
this same group confirmed both somatotropes and gonadotropes as leptin targets in
primates [25, 26], reporting that leptin stimulated release of GH and follicle stimulat-
ing hormone (FSH) in vitro [25].

Leptin’s restorative or stimulatory effects directly on somatotropes and gonado-
tropes have since led to studies that explored the significance of this regulatory
influence as well as basic mechanisms of action, including the identification of signal-
ing pathways and transcription factors. This chapter will review the studies which
have identified critical leptin target molecules that are vital to the differentiated
function of gonadotropes and somatotropes. We will also review signaling pathways
used by leptin to stimulate production of these targets. Finally, we will show how
leptin may contribute to plasticity of the pituitary by supporting multihormonal cell
populations.

2. Leptin regulation of reproduction

The overall importance of leptin to reproduction was established soon after
its discovery [5]. Leptin alone will restore fertility in leptin-deficient animals and
humans [4, 15, 16, 27-36]. There are distinct sex differences in serum leptin levels
in the adult. After puberty, adult males have relatively low leptin levels, when
compared with females [37-41]. This sex difference may reflect the differential
regulation of leptin by gonadal steroids. Androgens inhibit leptin secretion to
prevent leptin inhibition of testicular function (reviewed in [5]). In females by
contrast, estrogens stimulate leptin secretion. The rise in estrogen early in the
cycle may contribute to the 2-3-fold increase in leptin levels known as the midcycle
leptin surge [37, 39].

With respect to gonadotrope function, studies have also reported a synchrony
between nocturnal leptin and LH pulses in normal cycling women [36, 37]. Indeed, a
comprehensive study of 259 cycling women reported that the highest levels of leptin
were correlated with the timing of the LH surge [37]. In contrast, anovulatory cycles
were associated with overall low leptin levels.
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3. Leptin regulation of gonadotropes

Shortly after leptin was discovered, pioneering studies by Yu et al. [10] dem-
onstrated that leptin stimulated LH and FSH release, in vitro, from hemi-anterior
pituitaries. They reported a dose dependent increase in LH after 3 hin 10710 M
leptin. Higher concentrations, however, were not stimulatory suggesting the develop-
ment of leptin resistance. It is interesting to note that the relatively narrow concentra-
tion range that stimulates gonadotropin release matches that of the normal cyclic rise
in leptin [36, 39]. Yu et al. reported that leptin alone stimulated LH release, iz vitro
and it did not add to the stimulatory effect of GnRH [11]. Their studies also identi-
fied nitric oxide as a signaling pathway for leptin regulation of gonadotropes. They
showed that a competitive inhibitor of nitric oxide synthase (NOS), N6-monomethyl-
L-arginine (NMMA), inhibited the leptin stimulation of LH release in vitro [11]
suggesting that leptin may use the NOS pathway to stimulate gonadotropes directly.

Our studies on the importance of leptin to gonadotropes began with the detection
of leptin receptors (LEPR) in dispersed pituitary cells from male and cycling female
rats and mice [1]. The expression of LEPR varied with the stage of the cycle and was
seen in 40-50% of anterior pituitary cells from males and females in metestrus or
diestrus. LEPR expression increased to 60-80% of AP cells in proestrous and estrous
females, which coincided with the midcycle rise in serum leptin [1].

To determine if the increase reflected changes in gonadotrope receptivity, dual
labeling was performed for LEPR and gonadotropins. The results showed that 90% of
gonadotropes identified by the stores of luteinizing hormone (LH) or follicle stimulat-
ing hormone (FSH) expressed LEPR in males and throughout all stages of the cycle in
females [1]. Some of the increase in LEPR in proestrous females was due to an increase
in cells expressing LH and LEPR, which occurs just before the LH surge.

The findings showing an overall increase in LEPR early in the estrous cycle stimu-
lated studies to determine potential regulators for this expression. We treated one day
cultures of anterior pituitary cells from diestrous female mice with estradiol overnight
and then treated a subset of these cultures with 10 or 100 pg./ml neuropeptide Y
(NPY) for 3 h. Figure 1 shows that estradiol or NPY alone (100 pg./ml) stimulated a
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Figure 1.

Estradiol and NPY stimulate LEPR expression in 1-day cultures of anterior pituitary cells. * = significantly higher
values than all other values; ANOVA + Bonferroni’s post hoc test. Note: These ave original data, not published
elsewhere.

27



Weight Management - Challenges and Opportunities

significant 2--fold increase in LEPR-bearing cells and that the effects of the two were
not additive. In contrast, NPY did not stimulate LEPR expression in anterior pituitary
cells from male mice (data not shown). Collectively, these data support the hypothesis
that rising estradiol early in the cycle may stimulate an increase in pituitary receptiv-
ity to leptin which may serve as a gateway for leptin’s permissive actions [7].

Having established the presence of the receptor population in gonadotropes, we
determined if leptin acted on gonadotropes through the Janus Kinase-Signal Transducer
and Activator of Transcription (JAK-STAT) pathway. Following leptin stimulation for
10-60 min in vitro, pituitary cells from diestrous females were dual immunolabeled for
phosphorylated STAT3 and LH or FSH [1]. In 30-60 min, leptin stimulation increased
the overall percentage of LH or FSH-bearing gonadotropes and the percentages of
gonadotropes bearing pSTAT3 [1]. Thus, leptin acts through both NOS [11] and the
JAK-STAT [1] pathways to increase LH or FSH stores in gonadotropes.

4. The importance of leptin to gonadotrope function

The next series of studies investigated leptin’s importance to gonadotrope func-
tion by selectively ablating LEPR in gonadotropes with Cre-LoxP technology. This
work fills a critical knowledge gap, because, as summarized in our recent review [5],
much of the research surrounding leptin’s role in reproduction has been focused in the
hypothalamus. There was a growing body of evidence showing that leptin’s regulatory
actions were mediated through its stimulation of Kisspeptin neuronal pathways that
regulate GnRH neurons (reviewed in [5]).

Our first set of studies used Cre-recombinase driven by the »Lhb promoter to
delete either the JAK binding site (floxed LEPR exon 17) [1] or the signaling peptide
of the LEPR (floxed LEPR exon 1). Deletion of LEPR exon 17 resulted in a non-
signaling receptor. Deletion of exon 1 resulted in ablation of all isoforms of LEPR.
because the deletion removed the signal peptide thereby preventing the protein
from entering the rough endoplasmic reticulum. Ongoing studies are using Cre-
recombinase driven by the Gnrhr promoter to delete LEPR exon 1.

The first question to be addressed related to the impact of loss of LEPR in
gonadotropes on pubertal development, growth, and fertility of the mice [1]. When
LEPR exon 17 was deleted in gonadotropes with the Cre-LAb driver, mice showed
no evidence of delayed puberty or growth. Mutant males showed no evidence of
impaired fertility. However, mutant females exhibited a 36% increase in time to first
pregnancy and the litters contained significantly fewer pups. Pup survival was 98%
from either parent and there was no evidence of growth defects in weanlings from
mutant females. Therefore, mutant females appeared to lactate normally.

We analyzed hormone levels in mice lacking LEPR exon 17 and reported that loss
of LEPR resulted in several deficits [1]. In mutant diestrous females, serum levels
of LH, FSH, and GH were reduced. In contrast, mutant males showed reductions in
GH, prolactin (Prl), and thyroid stimulating hormone (TSH), but no reductions in
gonadotropins. The loss of LEPR resulted in reduced Fshb mRNA levels in both males
and females but no reductions in Lkb, Cga (in females) or Gnrhr mRNA levels. In
addition, there was a reduction in inhibin/activin beta subunit mRNA (Actffa and
Actfsh) in females. The most striking reduction, however, was in GnRHR proteins, as
detected by immunolabeling or binding to a biotinylated analog of GnRH [1]. The
reduced binding was most severe in diestrous females, a stage where GnRHR expres-
sion is normally at the highest levels.
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However, during this phase of the study, we detected Cre-recombinase in the testes
and therefore continued these studies focusing only on mutant females [7] bearing Cre-
Lhb and floxed LEPR exon 1. The deletion of this exon was impactful because it results
inloss of all isoforms of the receptor. Tests of fertility showed normal litter numbers
from three breeding cages of F2 generation heterozygous females (bearing only one
deleted allele of LEPR exon 1). However, the study showed severe subfertility/infertility
in F3 generation mutant homozygous and heterozygous females [7]. Out of the five F3
generation homozygous females, only two were fertile, producing litters more slowly
than control females (one every 30-45 days). One of the litters did not survive. In addi-
tion, three F3 homozygous females and two F3 heterozygous females were completely
infertile in breeding tests that lasted from 65 to 281 days with a fertile male [7].

We were able to study cyclicity in the progeny from the two F3 fertile females. These
mutant F4 female progeny cycled irregularly. Two of them remained in diestrus and
the remaining females spent more time in diestrus than normal females. Collectively,
these breeding studies showed that ablation of all isoforms of LEPR in gonadotropes
had a profound impact on a subset of females; less than half could cycle and were
fertile [7]. This highlighted the importance of leptin to gonadotrope functions.
However, because of the infertility issues in the line expressing Cre-LH X LEPR exon
1, our ongoing studies have now switched to mice bearing Cre-recombinase driven by
the Gnrhr promoter. Whereas the mutant females in this line are still subfertile, they
produce sufficient progeny for our ongoing and continuing studies of this line.

5. Leptin regulates target genes through different pathways

After we characterized the deletion mutants lacking LEPR in gonadotropes, we
hypothesized that rising leptin early in the cycle may have a permissive effect on the
rise in pituitary GnRHR levels [7], which could serve as a gateway that permitted
full receptivity to GnRH and facilitates the LH surge. We treated pituitary cells from
normal diestrous female mice with 10 nM leptin and showed a significant increase in
GnRHR proteins [7]. We also detected leptin-stimulated increases in pituitary activin
(but not inhibin) mRNA (Actfa and Actfsb) in the same sets of experiments. However,
leptin did not stimulate increases in Gurhr mRNA levels [7], which correlated well
with the lack of change in mRNA levels evident in the LEPR-null gonadotropes. Thus,
we identified three targets of leptin in our animal model, and proposed that leptin
may activate these by different pathways.

5.1 Transcriptional regulation of FSH and activin by leptin

We have demonstrated that expression of Fshb and activin transcripts are dependent
on a normal leptin signal [1, 7]. Other workers have shown that activin and FSH may
be dependent on the timing of this leptin signal during postnatal development, which
is characterized by a rapid rise in serum leptin. Wen et al. [42] studied the link between
the postnatal rise in leptin and FSH and reported that full co-expression of GnRHR and
FSH is seen by postnatal day 7, which coincides with the peak leptin surge. A parallel rise
in Fshb and Actfa and Actfb mRNA levels during the postnatal leptin rise has also been
reported [43-46]. Researchers investigating the impact of altering the neonatal leptin
surge on the reproductive system reported that blockade or alteration of the leptin surge
decreased testicular or ovarian growth, delayed puberty, and reduced FSH in rat pups
[47]. In addition, females showed reduced numbers of ovarian primordial follicles [48].
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Another link between leptin and FSH was reported by studies that restored LEPR
in gonadotropes from mice that were genetically engineered to be globally deficient
in LEPR [49]. As expected, fertility was not restored, because the mice were morbidly
obese, and kisspeptin and GnRH neuronal function was still deficient. However, they
did report elevated FSH levels in these mice. It was not determined whether restora-
tion of the leptin signal influenced GnRHR expression.

The reduced Fshb mRNA detected in our gonadotrope LEPR-null mutants cor-
relates well with the reduced activin (Actffa and Actfsb) mRNA [1], which is a critical
regulator of Fshb transcription [50, 51]. Our studies show that leptin stimulates
activin mRNA [7], which could thus serve as a pathway for FSH stimulation. Leptin
regulation of FSH also agrees with studies of rats [10, 11] and non-human primates
[25] in which leptin directly stimulated FSH secretion, in vitro. Collectively, these
findings suggest that leptin may be an important transcriptional regulator of FSH
production both postnatally and early in the cycle, either directly or indirectly.
Additional studies are needed to determine if this pathway is mediated through JAK-
STAT activation or NOS [10, 11].

Figure 2 illustrates how the ovary and adipocytes may partner in the remodeling
of gonadotropes to support the development of the follicles with key cellular regula-
tory pathways and outputs indicated. This cartoon focuses mainly on leptin, FSH and
estrogen. We propose that normal levels of leptin permit a rise in FSH early in the
cycle regulating FSH directly or through activin. This could be an important check-
point if leptin levels drop due to fasting, for example [23] as this may signal poor
nutrition and reduce FSH production. The cartoon then shows that FSH stimulates
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Figure 2.

Gonadotropes are remodeled early in the cycle by estrogens, GnRH, and leptin to support the ovary. We

postulate that normal levels of leptin permit FSH release directly or through activin. FSH stimulates the growing
population of follicles, which produce more estrogen. This rise in estrogen may stimulate leptin release from
adipocytes and the expression of LEPR in gonadotropes. Estrogen also exerts positive feedback on the neuronal
circuit that vegulates GnRH, which produce move vapid GnRH pulses, which also stimulate Gnrhr mRNA. As
Gnrhr mRNA rises, leptin works post-transcriptionally to permit translation of GnRHR proteins by de-repressing
the actions of the translational regulator Musashi (MSI). Leptin also causes a veduction in expression of MSI.
This is an original figure drawn by the corresponding author and not published elsewhere.
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ovarian follicles to produce and secrete estrogen, which stimulates a rise in serum
leptin. The growth in ovarian follicles and subsequent rise in estrogen also has posi-
tive feedback actions on GnRH neurons (shown in ref. [5]) and the gonadotropes.
Estrogen may also stimulate a rise in pituitary LEPR (Figure 1), which renders the
gonadotropes more responsive to leptin.

Not shown in this cartoon is GnRH, which is secreted in response to estradiol positive
feedback to stimulate gonadotrope production of gonadotropins and GnRHR (pathway
shown in ref. [5]). GnRH and estradiol both stimulate Gnrir mRNA during this time
(reviewed in [9]). Leptin’s role is to de-repress Musashi’s actions on Guriir mRNA and
permit translation. Leptin also reduces Musashi expression [7, 8]. Thus, our studies show
that, whereas leptin does not regulate Gnrhr mRNA directly, it works in partnership with
estradiol and GnRH to permit its translation by regulating MSI. This is another check-
point in reproductive cycles [7, 9]. Reduced leptin, due to fasting for example, may signal
poor nutrition and thus reduce translation of GnRHR [7-9] and GnRH binding sites
[23]. Ultimately, leptin reduction of ablation slows or prevents reproduction. Our animal
models lacking LEPR in gonadotropes support this hypothesis [1, 5, 7].

5.2 Post-transcriptional regulation of GnRHR by leptin

Figure 2 also shows the pathway that regulates the third target for leptin, GnRHR.
This receptor appears to be regulated post-transcriptionally by leptin, because Gnrhr
mRNA is unchanged when diestrous female or male gonadotrope LEPR-null mutants
were compared with control males or diestrous females. Additionally, stimulation of
control diestrous female pituitary cultures by leptin increases GnRHR, but not Gnrhr
mRNA levels [7, 8]. We investigated post-transcriptional mediators of leptin action
and determined that a putative miRNA repressor of Gurhir mRNA translation, miR-
581/669d, was increased in LEPR-null gonadotropes [7]. The most promising regula-
tion, however, came from the translational regulatory protein, Musashi (MSI), as we
identified 3 consensus binding elements for Musashi (MBEs) in the 3’ UTR of murine
Gnrhr mRNA [8]. The evolutionarily conserved Musashi family of sequence-specific
RNA binding proteins (Musashil and Musashi2) have long been known to be expressed
in stem and progenitor cell populations, where they act to oppose differentiation and
promote stem cell self-renewal [52]. Although originally identified as a repressor
of target mRNA translation, Musashi was subsequently shown capable of directing
translational activation of target mRNAs in a context-dependent manner [53].

Our studies of leptin stimulation of GnRHR proteins showed a dose response
relationship between leptin and expression of GnRHR (detected by enzyme assays)
or Biotinylated GnRH binding to living pituitary cells (detected cytochemically)

[8] After we confirmed that leptin stimulated GnRHR proteins, but not mRNA, we
determined by electrophoretic mobility shift assays that Musashil interacted directly
with the Gnrhr 3 UTR [8] . This pituitary association was confirmed by immuno-
precipitation with anti-Musashi antibody and the detection of an enrichment of the
endogenous Gnrhr mRNA (17-fold over control immunoprecipitates). Moreover, the
use of luciferase mRNA reporter assays showed that Musashil repressed translation of
the Gnrhr 3 UTR. Tests of leptin actions on Musashi showed that leptin stimulation
caused a reduction in Musashi protein levels in gonadotropes, suggesting that leptin
may inhibit Musashi expression [8].

To summarize, our studies of leptin actions on gonadotropes have shown severe
functional deficiencies in gonadotropes lacking exon 1 of LEPR. The total absence of the
LEPR caused infertility in a subset of females [7]. Collectively, studies of these animal
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models point to key gene products that are affected by loss of leptin signals. Leptin

may be important in the transcription of Fshb mRNA either directly and/or through

the transcription of activin. In addition, leptin’s actions may serve to regulate the
translation of GnRHR protein [7-9]. Our studies suggest that leptin opposes Musashi-
dependent repression of target mRNAs and/or reduces expression of Musashi directly in
gonadotropes, leading to enhanced translation of the Gnrhr mRNA. This may provide a
pathway which permits full expression of GnRHR early in the cycle to reach peak levels
in diestrus and proestrus. Estradiol may also stimulate the expression of LEPR, which
peaks on proestrus (Figure 1). Rising leptin may then partner with estradiol to promote
the production of GnRHR (Figure 2). We hypothesize that leptin’s permissive actions on
GnRHR may be to de-repress actions of the translational regulatory protein Musashi and
promote full receptivity of the gonadotrope to GnRH [7-9].

6. Impact of ablation of LEPR in gonadotropes on other pituitary cell
types

The loss of leptin receptors in gonadotropes also had a broader impact on pituitary
function. We reported a profound reduction in serum GH, in both mutant males and
females (Figure 3) [1]. This reduction would expect to result in growth hormone defi-
ciency, which, in our other models has resulted in significant changes in body weight
(adult-onset obesity) [22]. However, when mice were weighed regularly for nearly a
year, these deletion mutant animals grew normally and did not gain more weight than
normal mice during their first year of life [1]. In addition, male mutants show reduced
levels of serum TSH and prolactin [1]. There were also sex-specific differences in mRNA
levels. As stated earlier, in deletion mutant females, Fshb and activin were reduced. In
contrast, male deletion mutants showed reduced mRNA levels of Fshb, Cga, Gh, and
Ghrhr. This phenotype may be the result of deficits in the production of paracrine fac-
tors from gonadotropes, which are needed to regulate the function of these cell types.
Alternatively, we hypothesized that this phenotype may simply result from of the loss
of multihormonal function in subsets of gonadotropes themselves. Evidence for the
presence of multihormonal gonadotropes is reviewed in the next few paragraphs.

The presence of multihormonal gonadotropes in the rodent pituitary cell population
is not unexpected since our group previously reported cells that stored gonadotropins
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Figure 3.

Mutants lacking Lepr exon 17 in gonadotropes show significantly reduced levels of serum GH. This coloved figure
has not been published elsewhere. However, the data were published as separate figures (separating sexes) in ref.
[1] in a completely different, black and white graph.
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and either ACTH [54-56] or GH [57, 58]. Early studies of gonadotropes purified by cen-
trifugal elutriation reported a fraction that contained 91-93% immunolabeled LH-FSH
cells (a 9-fold enrichment). This group of cells were enriched based on their response

to GnRH. The stimulated secretion caused them to enlarge. Which allowed them to be
separated and enriched in a fraction containing larger cells. The fraction also contained
gonadotropes that immunolabeled for other hormones. In the female gonadotrope frac-
tion, we detected: 29.2% GH cells, 4% prolactin cells, 6.8% adrenocorticotropin (ACTH)
cells, and 2.8% thyroid stimulating hormone cells (TSH [59]).

More recently we bred a Cre-reporter gene into our Cre-LH line to purify gonado-
tropes by fluorescence activated cell sorting mice [60]. Floxed tdTomato (red fluores-
cence) was expressed in all pituitary cells. However, in cells bearing Cre-recombinase
(Cre-Lhb), the tdTomato was ablated promoting the expression of eGFP (green
fluorescence). Thus, all non-gonadotropes (not producing Cre-Lkb) fluoresced red
and all gonadotropes bearing LH expressed the green eGFP fluorescence. The red and
green fractions were then separated by Fluorescence Activated Cell Sorting (FACS).

FACS Separation of eGFP+ LHb-cre cells from single female pituitaries

I o[ wdTomatd [ Mixed X | Mixed 5

& & =

§ " g w'] §

I " 5

n E " g.-l

a [-% =3

S 81 8
. ] o [ . 3 o ) c * ! ' w'

A . Cor;P-GFP-A B Comp-GFP-A Comp-GFP-A
on-fluorescent Cre-negative Cre-positive

Stod mtrresy

-7~ GnRHR

EIA of Hormone/GnRHR Content—Females
i
tHp &

0 asinerne
: FSHB
9082 ; ¥ —
o

LH<4GFP  LH4dTomato E FSH-eGFP FSH-tdTomato

e

POIMISI0,000 cells

ng/ml GnRHRM0,000 collz

D

GH contant of fractions ACTH content of fractions
-
- i -
1
"% % wi ACTH
H TSHeGFP  TSH-4dTomalo K ACTH-2GFP ACTH-dTomato
Figure 4.

FACS experiment comparing non-fluorescent cells (4A) with those bearing tdTomato-eGFP, but no Cre-
recombinase (4B) and those bearing Cre-recombinase, which ablates the td Tomato, allowing expression of eGFP
(4C). Only the profile in 4C shows the presence of eGFP cells. (D-F) show that >90% of LH, FSH, and GnRHR is
assayed in the eGFP fraction and barely detectable in the tdTomato fraction. Immunolabeling in

(G) shows that >90% of the eGFP cells are labeled for LH (cyan shows blue label over eGFP green). (H-K) detect
70-90% of other pituitary hormones in the tdTomato fraction, but 10-30% of these hormones are found in the pure
gonadotrope fraction. These data have never been published elsewhere and are original to this chapter.
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The FACS and assay methods are identical to those used for the Cre-GH line, as
described by Odle et al. [60].

Figure 4 shows the FACS separation profiles for non-fluorescent pituitary
cells (Figure 4A); fluorescent Cre-negative populations bearing only tdTomato
(Figure 4B) and Cre-positive populations, which contain the eGFP cells (Figure
4C). Assays for content of gonadotropins and GnRH receptors show that over
95% of the total content is in the eGFP fraction (Figure 4D-F). Over 90% of
eGFP cells were immunolabeled for LH (Figure 4G). However, multihormonal
expression is evident as shown in Figure 4H-K. The eGFP fraction contains
30% of the GH and TSH content and 10% of the ACTH and prolactin content. In
contrast, the non-gonadotrope, tdTomato fraction (red bars) contain over 70% of
the content of GH and TSH and 90% of the content of ACTH and prolactin.

When mRNA levels were assayed by qPCR, similar results were seen. Figure 5A
shows the 72-88% enrichment in gonadotropin and Gnrhr mRNAs in the eGFP fractions,
with little evidence for expression in the tdTomato fraction. Figure 5B shows that 10-20%
of the levels of Gh, Tsh, and Pornc mRNA were also found in the gonadotrope fraction
with the remaining tdTomato fraction containing the bulk of these RNAs (80%). It is also
interesting to note that PouIf1 (also known as Pit1) mRNA, a transcription factor impor-
tant in the production of Gk, Tshb and Prl is also found in the eGFP-gonadotrope fraction
at about the same levels as that of Gi and Tshb. This expression would be important as
Poulf1 would be available to support the transcription of Gh, Tsh, and Prl.

FACS fractions from male mice from this line were also analyzed for mRNA content
and similar enrichment of gonadotropins and Gurhr mRNA levels was evident as well as
similar levels of Gk, Prl and Tshb mRNAs in the eGFP-gonadotrope fractions (data not
shown). Also, it is interesting to compare the expression profile of these purified gonado-
trope fractions with that of the purified fractions produced in mice bearing Cre-GH. As
previously reported, the Cre-GH/eGFP fraction contains most of the GH but very little
LH, FSH or ACTH (see Figure 5 in [60]). The pure somatotropes contain significant
amounts of Poulfl, prolactin and TSH proteins and mRNA. Thus, somatotropes also
include a multihormonal subset, but the expression profile is different.

More recently, multihormonal pituitary cell populations have been detected by
single cell RNA-sequencing, especially in the study by Ho et al. [61], which investigated
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Figure 5.

(Ag)’ qPCR assays show enrichment in Lhb, Fshb, and Gnrhr mRNA in eGFP fraction. These data have not been
published elsewhere and are original. (B) Shows enrichment of Gh, Prl, and Pit1 mRNA levels in tdTomato
fractions, but expression of about 20% of the total in the gonadotrope fraction. (C) Shows Tshb and Pomc mRNA
levels and about 20% are in the gonadotrope fraction and 80% in the tdTomato fraction. These data have not been
published elsewhere and are original to this chapter.
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changes in multihormonal cell transcriptome patterns in mice subjected to differ-

ent physiological stresses. As we have outlined in a recent review [62], these pools of
multihormonal cells may serve to support pituitary plasticity and add to the functions
of pituitary populations as physiological needs arise. We hypothesize that these cells
may include progenitor cells. Our data showing that gonadotrope LEPR-null mice have
deficiencies in other hormones suggest that leptin may regulate multihormonal expres-
sion from this group of cells. The fact that secretion of a particular hormone is reduced
in animals with LEPR-null gonadotropes highlights the importance of leptin to multi-
hormonal function and suggests a role for leptin in the regulation of pituitary plasticity.

7. Leptin regulation of somatotropes

Somatotropes are vital metabolic sensors because they directly regulate stores of
fat as they build muscle, bone, and regulate optimal body composition [63]. Most
somatotropes bear leptin receptors [64, 65] and leptin deficiency results in reduced
somatotrope functions [4, 20, 66-68]. As stated in the introduction, leptin treatment
of leptin deficient ob/ob mice restores pituitary GH secretion and Ghrhr mRNA levels,
but not hypothalamic production or secretion of GHRH [24].

Our studies of leptin’s regulation of somatotropes began with the ablation of LEPR
exon 17 or exon 1 with Cre-recombinase driven by the rat GH promoter [22, 69]. Both
models showed GH deficiency, adult-onset obesity and metabolic dysfunction. At the
level of the pituitary, this deficiency was seen as a reduction in GH and GHRHR.

We also reported sex-specific deficiencies during postnatal development with the
discovery that leptin may target two transcription factors important in the production
of GH, GHRHR, PRL, and TSH. These included Prophet of Pitl (Propl) and Poulfl
[70]. Ablation of LEPR exon 1 in somatotropes reduced Poulfl in neonatal females
along with serum prolactin. GH stores detected by immunolabeling were also reduced
in both neonatal males and females. Interestingly, the lack of LEPR promoted an
increase in Propl in neonatal males.

The studies of the impact of loss of LEPR were continued on FACS purified somato-
tropes [60]. Purified somatotropes showed reductions in GH, as expected, however
they also contained a subset of multihormonal cells storing TSH and/or prolactin. In
somatotrope LEPR-null females, TSH and prolactin stores were reduced in the pure
somatotrope fraction [60]. Taken together, our analysis of somatotropes that lack LEPR
shows that this multihormonal subset is significantly reduced, suggesting once more
that leptin may play a role in maintaining multihormonal expression and promot-
ing pituitary cell plasticity. Finally, these studies also demonstrated that Poulf1 was
reduced in pure somatotropes, which may explain the reduction in any or all hormones
dependent on this transcription factor (GH, GHRHR, TSH and prolactin) [60].

We continued the investigation of leptin signaling pathways in somatotropes and
reported that they included both transcriptional and posttranscriptional regulators [3].
Our tests of pathway inhibitors showed that full GH expression may be maintained by
leptin through the JAK/STAT?3 pathway but not nitric oxide. This contrasts with leptin
pathways that regulate gonadotropins, which include NOS. Leptin regulation is likely to
be transcriptional as loss of LEPR in somatotropes reduced G and Ghrhr mRNA and
proteins [3]. In addition, leptin regulation of the PouIf1 transcription factor may also
serve as a pathway for the transcriptional regulation of Gk and Ghrhr [2, 3, 60].

However, regulation of POU1F1 by leptin appears to be via post-transcriptional
mechanisms as loss of LEPR in somatotropes causes reduction in mRNA levels of
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the Poulfl protein, but not the Pou1fI mRNA [2, 60]. Conversely, leptin stimulation
results in increased expression of Poulfl proteins, but not mRNA [60].

Anin silico analysis detected eight Musashi binding elements in the 3’UTR of the
Poulf1 mRNA and tests of Musashi binding showed direct interaction of Musashi
with this region and repression of translation, which was reversed by leptin [2].
Furthermore, Musashi immunoprecipitation of whole pituitary extract showed co-
association of Musashi and the endogenous PouIfI mRNA. Our analyses of transcripts
by scRNA-sequencing studies of normal pituitary cells showed that MsiI mRNA was
expressed in somatotropes. This was confirmed in pure somatotrope populations [2].

8. Leptin regulation of pituitary musashi

Our studies of animal models in which LEPR was ablated in gonadotropes or
somatotropes opened the door to the discovery that leptin may regulate some of its
target gene products by post-transcriptional pathways. The post-transcriptional
targets included Gurhr mRNA in gonadotropes [1, 7, 8] and the mRNA encoding the
POU1F1 transcription factor in somatotropes [2, 60, 70].

The concept that Musashi would be involved in the translational regulation of
either Gnrhr or Poulfl mRNA was novel, as both transcripts are important in the
function and differentiation of somatotropes and gonadotropes. The expression
and involvement of Musashi in differentiated hormone-producing cell lineages was
surprising as Musahsi is typically implicated in stem and progenitor cell self-renewal.
Nonetheless, while Msil and Msi2 are expressed in pituitary stem cells as expected,
our scRNA sequencing clearly demonstrated that Msil and Msi2 mRNAs were also
expressed in all hormone-producing cell lineages of the anterior pituitary [2].

Since our findings indicated that Musashi was involved in the repression of trans-
lation of Gnrhr or Poulfl mRNAs, we hypothesized that normal signals from leptin
were needed to reverse this repression [2, 7]. This was based on the fact that the loss
of leptin signals resulted in a reduction in the proteins (but not the mRNA). We were
able to demonstrate a role for leptin in regulating the actions of Musashi s in reporter
assays, where leptin mediated the reversal of Musashi-dependent repression [2].

Our studies also showed that leptin may directly reduce expression of Musashi in
its target cells. In pituitaries from proestrous female mice lacking LEPR in gonado-
tropes, Msi mRNA expression is higher. Furthermore, leptin treatment of normal
pituitaries from proestrous females resulted in reduced levels of MsiI mRNA [8]. More
specifically, leptin treatment of normal pituitaries reduced Musashil immunolabeling
in gonadotropes, identified by their expression of binding to biotinylated GnRH [8].

Similarly, Musashil protein and MsiI mRNA levels were increased in pure somato-
tropes lacking LEPR [2]. Furthermore, leptin treatment of pure somatotropes sig-
nificantly reduced their expression of Musashil proteins. Collectively these findings
point to a post-transcriptional pathway for leptin, which would reverse repression of
translation of key target molecules in somatotropes or gonadotropes by regulating the
function and expression of the Musashi family of translational regulatory proteins.

Our in silico analyses have identified other potential Musashi targets in the anterior
pituitary, which may be regulated by leptin as well. Notably, there are MBEs in the
FEshb, Tshb, Prl and Pomc mRNAs. However, no MBEs are found in Lhb, Gh, or Ghrhr
mRNAs. It is interesting to speculate that this differential targeting may reflect spe-
cific roles for Musashi in regulating differentiated pituitary cells. Musashi could act in
multihormonal cells by repressing translation of one set of hormones but not another.
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Furthermore, our studies of leptin regulation of Musashi, GnRHR, and Poulfl
protein levels suggest that leptin may use this Musashi pathway to promote selective
differentiation of a given cell type depending on the body’s needs.

9. Conclusions

Pituitary gonadotropes and somatotropes were initially shown to be most vulnera-
ble to the global loss in leptin signals as demonstrated by their reduction in numbers in
the population, even following acute fasting. As little as 10-100 pg./ml leptin directly
restored hormone levels in these populations, so they could once more be detected by
immunolabeling. We now have much more information about the impact of loss of
leptin signaling to model animals including infertility when they carried LEPR-null
gonadotropes and adult-onset obesity and GH deficiency when they carried LEPR-null
somatotropes. We have identified specific leptin targets in each of these cell types and
determined that leptin regulation may involve both transcriptional and post-tran-
scriptional pathways. The target molecules are vital to the differentiated function of
these cells, which highlights a role for leptin in maintaining their differentiated state.
Regarding post-transcriptional pathways, we have shown that leptin also regulates
expression of the translational regulatory protein, Musashi. Our studies have led to
the discovery of novel roles for Musashi, implicating this regulator in the repression of
targets in specific pituitary cell types. This broadens the scope of Musashi’s regulatory
role beyond that of regulation of stem cells. Finally, our studies of purified somato-
tropes and gonadotropes have confirmed the presence of multihormonal expression
in a subpopulation of cells and have led to the discovery that leptin signaling is needed
to maintain this subset. The presence of these multihormonal pituitary cells is also
evident in single cell RNA-sequencing studies. Future studies are needed that focus
on the role leptin plays in maintaining this cell population, which supports pituitary
plasticity. Future investigation will elucidate the role Musashi may play in the selective
regulation of specific hormones or their transcription factors.
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Chapter 3

Leptin and Female Reproductive
Health

Shyam Pyari Jaiswar and Apala Priyadarshini

Abstract

Leptin is a peptide hormone, secreted primarily by the adipose tissue, placenta
being the second leptin-producing tissue in humans. Apart from playing an integral
role in food intake regulation and energy balance, leptin is an important signalling
molecule affecting human reproduction. Accumulated evidence suggests that leptin
has potential roles in the regulation of GnRH and LH secretion, puberty, preg-
nancy, and lactation. Deregulation of leptin levels has been associated with several
reproductive disorders including infertility, recurrent pregnancy loss, and poly-
cystic ovary syndrome. This chapter illustrates the importance of leptin in female
reproductive health, its role in the metabolic regulation of reproductive axis and its
eventual pathophysiological implications in prevalent reproductive disorders.

Keywords: leptin, pregnancy, reproduction

1. Introduction

Human reproduction is an energy demanding process which requires the
complex interaction of biological molecules and neuroendocrine pathways primarily
revolving around the hypothalamic—pituitary—ovarian (HPO) axis [1, 2]. The size of
body fat and energy stores and the metabolic state of the individual are two of the
key elements which determine the appropriate functioning of human reproduction,
including the onset of puberty [1, 3].

In a severely undernourished state, the energy stores of the body are deviated to
support the indispensable functions for survival, hence compromising the reproduc-
tive ability [4, 5].

It has long been observed that the extreme situations of body fat metabolism, that
is, obesity and cachexia are both associated with derangement of female reproductive
function including infertility, recurrent pregnancy loss (RPL) and polycystic ovary
syndrome (PCOS) [1].

The presumptions on the existence of a missing link between the energy homeo-
stasis of the body and female reproductive health culminated in the year 1994,
with the discovery of leptin, an adipose tissue derived hormone that maintains the
homeostatic control of the body fat stores [1, 6, 7]. Leptin has now been recognised
to control and influence the functioning of the HPO axis also exerting a negative
feedback effect on the hypothalamus.
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2. Leptin: Structure and function

Leptin (derivative of Greek word “leptos” which means thin) is an adipose tissue
derived hormone. It a known biomarker of adiposity, its levels rising proportionately
with body fat stores [3, 8].

Leptin comprises a 167 amino acid polypeptide chain. This 16 kDa protein is
encoded by the obesity gene (Lep°b gene) situated on chromosome 7 [2, 8].

The preliminary function of leptin was recognised to control energy homeostasis
via a negative feedback mechanism to the brain, to reduce the intake of food when the
body fat stores were sufficient [3, 9].

However, recent literature elucidates that leptin can control and regulate the
functioning of HPO axis, has a putative role as a placental hormone and can directly
affect the reproductive function of gonads.

In this chapter, the role of leptin in female reproductive health will be illustrated
under the following sections:

a.Leptin in normal pregnancy
b.Leptin in pathological pregnancy:
i.Pre-eclampsia (PE)
ii. Gestational diabetes mellitus (GDM)
iii. Fetal growth restriction (FGR)
c.Leptin in puberty and infertility
d.Leptin in menstruation
e.Leptin in PCOS

f. Leptin in recurrent pregnancy loss (RPL).

3. Leptin in normal pregnancy
3.1 Source of leptin in pregnancy

Placenta is the other leptin producing tissue in humans apart from adipose tissue
and compelling evidence suggests that both leptin hormone and leptin receptors are
expressed in human placenta [1, 8-10]. Leptin is produced by the syncytiotropho-
blast cells of the placenta (contribute 95% of total placental leptin) and the vascular
endothelial cells on the fetal side (5%) [8, 11, 12]. The amniocytes of the amniotic
membrane and the maternal decidua also release leptin into the amniotic fluid [13].

Even though pregnancy is a state of enhanced fat stores, the major proportion of
leptin in maternal circulation is contributed by the placenta [1, 11]. Leptin has both
endocrine and autocrine actions in the placenta and placental leptin is similar to its
adipose tissue derived counterpart in terms of structure and function [10, 11, 14].

Increased blood levels of leptin (by two folds) have been demonstrated in preg-
nant as compared to non-pregnant women [8]. Presence of leptin has been observed
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in placenta from 7 weeks of gestation onwards. Leptin levels increase by 30% at as
early as 12 weeks of gestation, plateau at mid pregnancy and return to pre-pregnant
levels 24 hours after delivery [8, 11]. The clarification for increased leptin concentra-
tion during pregnancy is the release of plasma soluble leptin receptors by the placenta
which bind the circulating leptin, hence delaying its clearance [1, 11].

3.2 Functions of leptin in pregnancy
3.2.1 In mother

Pregnancy is an anabolic state where adequate energy stores are required to cater
to the nutritional demands of the growing fetus. However, pregnancy is a state of
leptin resistance and the role of leptin in pregnancy deviates considerably from its
classical role of controlling food intake [15, 16].

The functions can be elaborated as follows (Figure 1) [8, 17]:

1. Plays an integral role in implantation and formation of blastocyst.

2. Activation of enzymes for lipid oxidation to generate growth substrates in the
form of free fatty acids for growing fetus.
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Figure 1.
Actions of leptin seen at maternal-fetal interface. ST, syncytiotrophoblast; CT, cytotrophoblast [17].
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3.Placental transfer of these substrates to meet the energy demands of the fetus
including amino acid uptake by the fetus.

4.Placental leptin has a paracrine action in the placenta itself. It contributes to
placental angiogenesis, induces placental growth and stimulates the trophoblasts
to produce hCG.

5.As an immunomodulator, it suppresses maternal immune mediated rejection of
the developing fetus [17].

3.2.2 In fetus

Fetal leptin is predominantly fetal in origin and is present in fetal blood from
18 weeks of gestation [8, 18]. Maternal leptin does not cross the placenta to affect fetal
functions due to its high molecular weight [19].

However, the umbilical cord blood leptin concentrations correlate strongly with fetal
fat mass serving as a good indicator for the same [8, 10, 11, 20]. Fetal leptin levels increase
as gestational age increases [21]. Female foetuses have higher serum leptin levels than
their male counterparts due to the suppression of leptin by testosterone in males [22].

Leptin receptors have been reported to be expressed in fetal tissues, for example,
bone, kidney, and hypothalamus and fetal leptin supports fetal endocrine functions,
for example, angiogenesis and erythropoiesis.

4. Leptin in pathological pregnancy
4.1 Leptin and pre-eclampsia (PE)

Pre-eclampsia is a multisystem disorder of unknown aetiology characterised by
hypertension >140/90 mm Hg after 20 weeks of gestation with proteinuria. Pre-
eclampsia complicates around 5% of all pregnancies. The pathophysiology involves
defective trophoblastic invasion of maternal spiral arteries leading to reduced placen-
tal blood flow and hence hypoxia [23].

Pre-eclamptic pregnancies have higher serum leptin levels (eight folds) specifi-
cally in the second half of gestation as compared to normal pregnancy. In PE, plateau
of leptin does not occur and leptin levels continue to rise till term, falling only after
delivery. The increase in the serum leptin levels are a consequence of placental

Severe Preeclampsia

Placental Insufficiency (Infarction, etc.)

Chronic Disturbance of Nutrient Chronic Hypoxia of Placental

and Oxygen Supply to the Fetus Trop%nblast Cells
—_—— l

Intrauterine Growth Retardation Augmented Leptin Production

Figure 2.
Schematic diagram vepresenting hyperleptinemia as a consequence of chronic placental hypoxia induced by severe
pre-eclampsia [9].
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hypoxia induced stress (Figure 2). This rise in leptin levels precedes the clinical
onset of disease hence can also be considered as a potential predictive marker of PE.
Apart from serum, amniotic fluid also shows a higher concentration of leptin than
normotensive pregnancies. Leptin being an angiogenic hormone promotes placental
vasculogenesis and trans placental nutrient transfer compensating for the placental
insufficiency to some extent [8, 11, 17, 24].

The serum leptin levels rise in linear proportion with the severity of the disease
[8, 9]. Studies have also suggested that leptin concentrations are higher in term PE as
compared to preterm PE [17].

However the cord blood leptin levels are lower which denote a reduced fetal fat
mass often associated with PE [11]. Pre eclamptic pregnancies complicated with FGR
have higher maternal leptin levels than those without FGR suggesting a greater degree
of placental insufficiency [8].

The data available is conflicting and the modulation of leptin in relation to pre-
eclampsia is a fertile ground for further studies.

4.2 Leptin and fetal growth restriction (FGR)

Fetal growth restriction may be defined as the failure of the fetus to reach its
genetically determined growth potential. FGR complicates 5-10% of all pregnancies
and is associated with significant perinatal morbidity and mortality [25].

Studies linking the role of leptin in FGR have yielded conflicting results. A
recent meta-analysis involving 1734 women showed no difference in the leptin lev-
els between maternal blood of FGR pregnancies and healthy pregnant women [26].

However evidence suggests that the maternal serum leptin levels are higher in
pregnancies complicated with FGR and fetal cord blood levels are lower compared
with normal pregnancies. The higher maternal levels are a consequence of increased
placental production of leptin triggered by placental insufficiency and hypoxia [27].
The lower cord blood levels reflect a lower fetal fat mass seen in FGR and also suggest
a plausible role of leptin as a growth factor [28].

4.3 Leptin and gestational diabetes mellitus

Gestational diabetes mellitus (GDM) is one of the most common metabolic
complications occurring during pregnancy with a high risk of maternal and perinatal
morbidity, also leading to long term sequelae [29]. It may be defined as glucose intol-
erance of variable severity with its onset or first recognition during pregnancy [30].
Prevalence of GDM is higher in obese women as compared to women with a normal
pre-pregnancy BMI [12].

GDM is associated with increased levels of leptin in the placenta and increased
expression of placental leptin receptors. The rise in serum leptin levels has been noted
in the first trimester of pregnancy itself, illustrating its possible role as a predictive
marker for GDM (4.7 fold greater risk of developing GDM). Not only in serum, higher
leptin levels have also been measured in the amniotic fluid of women with GDM,
each 1 ng/dl rise in amniotic fluid leptin increasing the risk of developing GDM by
4% [31].

It has been observed the higher umbilical cord leptin levels were present in
macrosomic foetuses of diabetic mothers correlating with the increased fetal fat mass.
Leptin may also contribute to the increased placental size seen in GDM. Moreover,
leptin also stimulates placental protein synthesis and transfer of nutrients to the fetus
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Figure 3.
Association of increased leptin production with chronic inflammatory state, insulin resistance and
hyperinsulinemia seen in GDM. TNF-o, tumour necvosis factor alpha; IL-6, interleukin-6 [30].

as can be speculated by increased expression of glycerol transporter aquaporin-9 in
the placentae of women with GDM [32].

The enhanced placental production of leptin has also been correlated with a higher
production of inflammatory cytokines interleukin-6 and tumour necrosis factor-
alpha and therefore linked with the chronic inflammatory state seen in GDM. IL-6
and TNF-a enhance the placental expression of leptin. Leptin in turn stimulates the
monocytes for enhanced production of IL-6 and TNF-« resulting in a vicious cycle
(11, 17, 30, 33].

The production of leptin is stimulated by hyperinsulinemia seen in GDM.
Therefore, increased leptin levels are also associated with the increased insulin resis-
tance seen in GDM during the second half of pregnancy (Figure 3) [33].

Studies evaluating novel bioactive therapeutic agents comprising macro and
micronutrients which exert anti-inflammatory actions may be a potential cure for
inflammation induced leptin resistance at the level of the hypothalamus seen in
GDM. This will lead to improved leptin sensitivity at the centre and decreased insulin
resistance at the peripheral level [32].

5. Leptin in puberty and infertility

Robust data reveal that obesity is associated with precocious puberty and cachexic
women often experience delayed puberty [34]. The association of obesity with
puberty as well as infertility led the researchers to investigate the mediator and con-
necting factor linking obesity with reproduction.

Rat models with deficiency of leptin or leptin receptors failed to attain puberty,
elaborating the significance of leptin for reproductive function. The serum levels of
leptin rise continuously throughout the entire period of pubertal development. Leptin
regulates female pubertal development more closely as compared to males where
minimal leptin levels are sufficient to sustain reproductive function [1].

The actions of leptin on various levels of the HPO axis are detailed (Figure 4):
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Figure representing the actions of leptin on the hypothalamic—pituitary-gonadal axis. Both stimulatory and
inhibitory effects are depicted. GnRH, gonadotropin releasing hormone; LH, luteinising hormone; FSH, follicle
stimulating hormone; WAT, white adipose tissue [1].

5.1 Effects on the central nervous system

The primary site where leptin acts to control the reproductive function is the
hypothalamus. Leptin receptors are present on the GnRH producing cells in the
hypothalamus [1]. Leptin through its central action on the hypothalamus stimulates
the production of GnRH and therefore may be a crucial determinant of the integrity
of the HPO axis [35]. In mammals the effect of melatonin is also mediated by leptin,
as observed by reduced litter size in leptin deficient mice [36]. The administration of
daily dose of leptin to normal female mice resulted in advancement in the timing of
opening of the vagina by some days [37].

Kisspeptin, a neuronal substance produced by the kiss1 neurons in the hypothala-
mus stimulates the release of GnRH. Physical stress conditions result in the inhibition
of kiss1 neurons thereby resulting in the suppression of HPO axis. Studies have shown
that leptin directly acts on the kiss1 neurons to release kisspeptin hence causing
GnRH release [1].

The release of follicle stimulating hormone (FSH) and luteinising hormone (LH) from
the pituitary gland is also governed by central pathways involving leptin [38]. Although
increased leptin levels are seen in women with excessive body weight, obesity per se is
associated with leptin resistance at the level of the hypothalamus. This leptin resistance
further aggravates the hyperleptinemia via feedback mechanisms. Although leptin resis-
tance is observed at the centre, the peripheral tissues, for example, the ovaries not only
remain sensitive to leptin, but are also subjected to higher levels seen in obesity [35, 39].

5.2 Effects on the ovary

Normal leptin levels (10-20 ng/ml) are required for the synthesis of oestrogen
and progesterone from the theca and granulosa cells of the ovary. Leptin is also
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essential for the normal growth and maturation of the oocyte. The follicular fluid
of the maturing Graafian follicle contains leptin, the concentration of which

is dependent on the serum leptin concentrations. Higher serum levels of leptin
(50-200 ng/ml) were associated with suppression of oocyte maturation and
reduced follicular count. Leptin may also play a role in ovulation as can be specu-
lated by a surge in leptin levels occurring at the same time as the LH surge prior to
ovulation. Therefore, hyperleptinemia also contributes to infertility by inhibition
of ovulation. The role of leptin also extends to the maintenance of corpus luteum
after ovulation [3, 38-40].

Hence it can be summarised that decreased leptin levels seen in energy deficient
states may be a threat to fertility due to the suppression of HPO axis. However,
hyperleptinemia in obese females also causes infertility due to the direct inhibitory
action on the gonads.

5.3 Effects on the endometrium

The receptivity of the endometrial epithelium is blunted under the effect of leptin.
Studies in mice have revealed that the normal decidualisation of the endometrium is
also diminished in obese women. Leptin controls the remodelling of the endometrial
epithelium by mediating its proliferation as well as apoptosis [35].

5.4 Effects on the embryo

The effects of leptin on fertility are not confined to the pre-conceptional phase.
It also affects the implantation and development of the growing embryo as can be
interpreted from lower success rates of IVF in women with hyperleptinemia [39].
Although in vitro studies have demonstrated the positive effects of leptin on growth
and proliferation of trophoblastic stem cells, higher levels seen in obese women are a
deterrent to the embryonal development [39, 41].

6. Leptin in menstruation

Hyperleptinemia may also be a determinant of menstrual function, again through
its effects on the HPO axis [38]. It is well known that heavy exercise and decreased
body fat (resulting in lower leptin levels) can lead to cessation of menses. Studies
have demonstrated resumption of menses in women with hypothalamic amenorrhoea
when treated with recombinant leptin [42, 43].

A cyclical variation has been observed in the serum leptin concentrations cor-
relating with the phases of the menstrual cycle. In the early follicular phase, the
concentration of leptin in serum is 14.9 ng/ml, which increases to 20.4 ng/ml in the
mid-luteal phase [3]. Data have shown that a mid-cycle surge is seen in leptin levels
corresponding to the mid-cycle LH surge. A recent study demonstrated that a 10%
rise in leptin level throughout the menstrual cycle resulted in an increase in serum
estradiol and luteal progesterone level [44].

The cyclicity of leptin levels in reproductive aged women in contrast to the con-
stant levels in men and post-menopausal females further exemplify the role of leptin
in regulation of menstrual cycle [44].
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7. Leptin in polycystic ovary syndrome (PCOS)

PCOS is a heterogeneous disease, characterised by chronic oligo/an-ovulation,
hyperandrogenism and polycystic ovaries on morphology. It is one of the most com-
mon endocrine disorders of women of reproductive age group affecting 5-10% of
these women. It is also the most common cause of anovulatory infertility.

Since a vast majority of these patients are obese and have metabolic derangements,
several studies have been conducted investigating the role of leptin in PCOS which
have yielded conflicting results [1, 17].

It has been observed that the increased LH levels seen in PCOS patients are also
associated with increased leptin levels [45]. Since nearly half of these women present
with obesity, hyperleptinemia is a common association in PCOS. Several studies have
elucidated elevated levels of leptin in PCOS [46, 47]. Others have linked leptin with
the insulin resistance seen in PCOS [48]. Leptin has also been associated with the
pro-inflammatory and hyperandrogenic state seen in PCOS [49].

Since hyperleptinemia is observed in several clinical manifestations associated
with PCOS, it may be speculated that leptin may have a role in the etiopathogenesis of
the disease. However, studies directly demonstrating leptin as one of causative factors
of PCOS are still sparse.

8. Leptin and recurrent pregnancy loss (RPL)

Recurrent pregnancy loss may be defined as three or more consecutive spontane-
ous pregnancy losses occurring before the 20th week of gestation irrespective of
previous live births [17]. Known causes include anatomical abnormalities, genetic
causes, endocrine derangements, environmental factors, and immunological diseases.
However, despite a thorough evaluation of the patients, the cause remains unknown
in upto 50% of patients. Defects in the leptin signalling pathway have been evaluated
as one of the possible causes of idiopathic RPL. Studies have demonstrated raised
serum leptin concentrations in women with RPL as compared to controls. In contrast,
reduced leptin levels were also observed in women having first trimester abortions. A
recent study revealed similar leptin concentration in RPL cases and controls [50-53].

In conclusion, data linking recurrent pregnancy loss with leptin is largely incon-
clusive, though there is significant evidence suggesting positive association of hyper-
leptinemia with RPL.

9. Conclusion

It may be concluded that leptin is the cross-talk molecule linking human repro-
duction and nutrition. More than 25 years after its discovery, leptin is now known
to mediate a paraphernalia of functions relating to the reproductive capacity. Leptin
exerts its actions in several ways at multiple levels of the pathway of reproduc-
tion including the hypothalamus, ovary, and the placenta. It plays a crucial role in
essential processes in the establishment of a normal pregnancy such as trophoblastic
invasion, placentation, and transfer of nutrients to the developing embryo. The
pathological significance of leptin in human reproduction may be elucidated by the
fact that deregulation of leptin levels is responsible for the genesis of a wide variety
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of disorders associated with pregnancy and reproduction including GDM, FGR, PE,
PCOS, RPL and infertility. Recombinant leptin therapies and leptin sensitisers should
be the ground for further research to address the devastating effects of abnormal
leptin levels and leptin resistance on human reproduction.
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Abstract

Obesity is an excessive accumulation of fat in the body associated with
numerous complications such as development of hypertension, type 2 diabetes
(T2DM), dyslipidemia, sleep apnea, and respiratory disorders; and ultimately
life-threatening cardiovascular disease (CVD), stroke, certain types of cancer and
osteoarthritis. In 2016, more than 1.9 billion adults aged 18 years and older were
overweight. Of these, over 650 million adults were obese, that is over 39% of men
and 40% of women were overweight. Rapid rise in obesity cases in both developed
and developing countries and people suffering from it needs rapid and complete cure
form it without any side effects. Herbal medicine has been used for the treatment
of disease for more than 2000 years, and it has proven efficacy. Many studies have
confirmed that herbal medicines are effective in the treatment of obesity. Various
plants from different families and several phytochemical constituents are responsible
for the anti-obesity activity such as fenugreek cinnamon, cardamom, ginger, etc.
Present work mainly cover herbal species having leptin-stimulating potential for
weight management, importance of leptin, its mechanism of action, current and
herbal treatment for effective weight management.

Keywords: obesity, diabetes, leptin, appetite, herbal treatment etc.

1. Introduction

In 2016, more than 1.9 billion adults aged 18 years and older were overweight. Of
these over 650 million adults were obese i.e. 39% of adults and over (39% of men and
40% of women) were overweight. Overall, about 13% of the world’s adult population
(11% of men and 15% of women) were obese in 2016. Obesity is quantities in terms
of Body Mass Index (BMI), which is defined as the ratio of the weight and the square
of height and is a measure of body adiposity [1]. The incidence and prevalence of
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obesity, are rising both in developed and developing countries. Although globaliza-
tion has resulted in substantial improvements in quality of life and food security, as
well as reductions in poverty, unintended consequences of globalization are also driv-
ing the obesity epidemic. Among the multiple factors contributing to its etiology, the
sedentary life styles, white collar jobs, lack of exercise, psychological factors, excess
consumption of junk food and the consumption of energy rich diets are the major
ones. Obesity is excessive accumulation of fat in the body associated with numer-

ous complications such as development of hypertension, type 2 diabetes (T2DM)),
dyslipidemia, sleep apnea, and respiratory disorders; and ultimately life-threatening
cardiovascular disease (CVD), stroke, certain types of cancer and osteoarthritis.
Currently there is rapid rise in obesity and related severe diseases mainly due to
drastic changes in lifestyle, living standard and modern diet. However rapid urban-
ization, economic revolution and free trade liberty are main reasons behind this.
Nowadays in low and middle income nations there is drastic change in nutritional
values mainly due to getting proteins and fats obtained from animals, added sugars
and refined grains. Due to obscure etiology, the pharmacological treatment of obesity
has been a particularly challenging task. Reducing body weight by lifestyle alteration
is advisable, but sometimes drug intervention is necessary. Combating obesity is
going to requires coordinated efforts from the international community, govern-
ments, industry, health-care systems, schools, urban planners, agriculture and service
sectors, the media, communities and individuals. Further, the cause of concern is the
non-availability of drugs for its treatment and the short-term efficacy and limiting
side effects of the available drugs. Drugs used for obesity management are mainly
classified in to metabolic promoters, digestion and absorption blockers, central appe-
tite suppressants and obesity gene product inhibitors. However drugs used for obesity
management specifically affects monoamine neurotransmitters leads to habit form-
ing, dependence or abuse [2]. Anti-obesity drugs have been studied profoundly for
decades. The need for adjunctive therapies for weight loss has accelerated the progress
in the pharmaceutical industry worldwide. Weight loss drugs may appear to be a
solution to obesity. However, possible side effects or adverse drug reactions are always
a big public health concern and also a major barrier to the development of new drug
products. Obesity, which is broadly refers to excess body fat, and ranked as the fifth
foremost reason for death globally. Overweight and obesity are major lifestyle illness
that leads to wide variety of chronic diseases, which may include cancers, metabolic
syndrome, diabetes, cardiovascular diseases, osteoarthritis, gout, breathing problems
etc. The World Health Organization predicted about 30% of death occurring in whole

Weight status Body mass index in kg/m’
Under-weight <185

Normal range 18.5-24.9
Over-weight 25.0-29.9

Obese >30

Obese class-I 30.0-34.9

Obese class-II 35.0-39.9

Obese class-III >40

Table1.

Classification of weight based on body mass index.
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world will be initiated with lifestyle disease in 2030 and can be stopped by appropri-
ate identification and conveying associated risk factors. It is therefore essential to
detect and diagnose obesity as early as possible [3]. Worldwide more than 1.9 billon
adults are overweight and 650 million are obese. Approximately 2.8 million deaths
are reported as a result of being overweight and obesity. This is major health related
problem in both developed and developing countries. In India more than 135 million
individuals were affected by obesity. The study of total body fat accurately requires
sophisticated technology. The World Health Organization (WHO) have acquire body
mass index, which is calculated by dividing the body weight in kilograms (kg) by the
square of the height in meters (m), as a surrogate measure of total body fat (Table1).
With this index, obesity is defined when the value is equal to or more than 30 Kg/m”
[4]. Formula: BMI = Weight/Height”.

2. Leptin

The discovery of leptin 15 years ago generated great excitement that the treatment
for obesity had been found, and thus, this prototypical adipocyte-secreted protein/
cytokine was named leptin after the Greek word “leptos” for thin. Leptin is a group
of 167 amino acids in human leptin gene mainly made up of adipose tissue and
enterocytes which mainly regulate energy balance by inhibiting hunger. It is released
by white adipose tissue and leptin level is key indicator of body fat. As like other
hormones leptin is secreted at regular temporal pattern i.e. highest secretion in early
morning and evening. Leptin mainly is an indicator of how much energy stored in fats
and caloric intake [5].

2.1 Types of leptin receptors

1. There are mainly three types of leptin receptor i.e. the OBRa, OBRb, and OBRb
with formulation (OBRb-f2), by measurement of the levels of tyrosine phos-
phorylation of STAT3 (signal transducers and activators of transcription 3) and
MAPK (mitogen-activated protein kinase).

2.This receptors are induced by leptin stimulation of CHO cells stably expressing
the OBR (CHO-OBRb, CHO-OBRa, or CHO-OBRb-facells).

3. As the result of leptin stimulation, enhanced levels of tyrosine phosphorylation
of STAT3 [6].

2.2 Mechanism of action of leptin

Leptin (Greek word leptos- thin) also known as “Ob gene” that is located on
chromosome number 7. Main role of leptin is to achieve an energy balance in the body.
Leptin binds to receptors in brain and performs several actions that may prove that
leptin is important in treating obesity.

It works through two distinct types of neurons in arcuate nucleus of

hypothalamus.

1.POMC/CART (Pro-opiomelanocortin/cocaine and amphetamine regulated
transcripts) neurons
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Figure 1.

Mechanism of action of leptin.

2.NPY/AgRP (Neuropeptide Y/Agouti—related peptide) neurons

Leptin stimulates POMC/CART neurons to produce anorexigenic neuropeptide:
melanocytes stimulating hormone that results in

1.Endocrine changes

2.Increase sympathetic nerve activity

This stimulates energy expenditure.

Leptin inhibits NPY/AgRP neurons that produce feeding—inducing (orexigenic) neuropep-

tide: NPY that results in inhibition of food intake.

The binding of leptin to its receptor initiates numerous signal transduction path-
ways and as result, regulates a range of cellular function in body (Figure 1). leptin
receptor as a member of type 1 cytokine receptor family, signals via Janus kinase
family of tyrosine kinase. Leptin induced dimerization alters the intracellular domain
confirmation to increase its affinity for cystolic JAK. After this JAK activate and phos-
phorylate tyrosine residue, then it bind another free moving protein STAT. This also
phosphorylate by JAK. Pairs of phosphorylated STAT dimerize and translocate to the
nucleus to regulate gene transcription resulting in a biological response of leptin [7, 8].

3. Pathophysiology
Three parts.
1. Peripheral afferent system (PAS)
2. Control processing.

3. Peripheral efferent system (PES)

Through PAS
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3.1 Peripheral appetite suppressing signal
A. It act through secrete leptin and adiponectin.
In obese person the level of adiponectin is low and it involve in thermogenesis.
B. GUT hormone secretes insulin, amylin and glucagon like peptide.
3.2 Peripheral appetite stimulating signal

A. It acts through Gut hormone secrete ghrelin, obestatin. Anorexigenic via ObRb
receptor expressed in brain and peripheral tissue which is binding in the hypothala-
mus, leptin activates a complex neural circuit comprising of anorexigenic (that is
appetite suppressing) and orexigenic (that is appetite stimulating) neuropeptide to
control food intake. Loss of melanocortin 4 receptor (MC4R) function, a key MCR
expressed in the hypothalamus, is the most common genetic cause of obesity in
humans [9].

3.3 Through PES

Though PES the regulation is controlled by negative feedback mechanism.
Though food intake and energy expenditure. Change in appetite or drastic reduction
in hunger mainly due to not only activation neuron via binding to the melanocortin
receptor (MCR) by leptin which acts on proopiomelanocortin (POMC) leads to
release of melanocyte stimulating hormone (a-MSH) in to synapse but also inhibition
of neuropeptide-Y (NPY)/agouti related peptides (AgRP) synthesis in neurons which
negatively affects agonistic potential of AgRP on MCR resulting in to suppression of
appetite (Figure 2) [10].

+ -
Arcuate
Nucleus NPY/
I GABA Ag PR
Anoremgenlc = + Orexigenic
Lateral
Hypothal.
Nucleus

Figure 2.

Regulation of appetite by leptin acting on the nucleus arcuatus of the hypothalamus. Proopiomelanocortin
(POMC), neuropeptide Y (NPY), Agouti-related protein (AgRP), melanocortin receptor (MCR), gamma amino
butyric acid (GABA).
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4. Current treatment for obesity management and its effects

Anti-obesity drugs have been studied profoundly for decades [11-13]. The need for
adjunctive therapies for weight loss has accelerated the progress in the pharmaceuti-
cal industry worldwide. Weight loss drugs may appear to be a solution to obesity.
However, possible side effects or adverse drug reactions are always a big public health
concern and also a major barrier to the development of new drug products. Some of
the antiobesity drugs commercially available are orlistat, lorcaserin, sibutramine,
rimonabant, metformin, exenatide, pramlintide etc. These drugs have a wide variety
of severe side-effects including development of cardiovascular problems, restlessness,
insomnia, faulty bowel movements, pain in stomach, psychiatric problems etc. Ideally
anti-obesity agent would be such as to produce weight loss which can be retained, but
with minimal side effects. Medication for short term weight management or selected

medications used off label to promote weight loss mentioned in (Table 2) and
Medication for long term weight management are listed in (Table 3).

Drugs Mechanism Effect on weight Adverse effect Status
Phentermine Sympathomimetic 3.6 kg placebo Insomnia, tremor, Diffusion
amine (appetite subtracted weight increase BP and controlled release
suppressant) lossin studies ranging  pulse rate, headache, preparation is
from 2 to 24 weeks palpitation, constipation.  available
Diethylpropion Sympathomimetic 3.0 kg placebo Insomnia, tremor, Currently
amine (appetite subtracted weightloss  increase BPand approved drug
suppressant) at 6-52 weeks pulse rate, headache, for short term
palpitation, constipation.
Zonisamide Anti-convulsant 5.0% placebo Increase nervousness, Used off—label
drug subtracted weight loss  sweating, tremors,
at 12 weeks gastrointestinal adverse
effects, hypersomnia,
fatigue and insomnia
Topiramate Anti- convulsant 6.5% placebo Paresthesia, dizziness, Used off—label
drug subtracted weight loss  altered taste, fatigue,
at 24 weeks memory impairment,
somnolence, anorexia
and abdominal pain
Table 2.

Medication for short term weight management or selected medications used off label to promote weight loss.

Drugs mechanism Effectonweight  Adverse effects status
Orlistat Pancreatic lipase 2.9 kg placebo Abdominal pain, bloating, Approved drug for
inhibitor subtracted weight  flatulence, oily stools, long term weight
loss at 1 year diarrhea, decrease management
absorption of fat soluble
vitamins
Liraglutide GLP-1analogues 7.2 kg Placebo: Nausea, and thyroid C-cell Approved for
28kg focal hyperplasia and treatment of
medullary thyroid tumor obesity
Tesofensine Anti-convulsantagent  11.2 kg Placebo: Nausea, dry mouth, Phase 3
2kg headache, insomnia,

diarrhea and constipation
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Drugs mechanism Effectonweight  Adverse effects status
Cetilistat Anti-convulsantagent 4.3 kg Placebo: Abdominal pain, fecal Phase 3
2.8kg urgency and diarrhea
Phentermine-  Unknown Verage placebo- Combination Approved in 2012
topiramate subtracted weight ~ sympathomimetic and
loss 8.6% carbonic anhydrase
inhibitor / Decreases
appetite and binge eating
behaviors
Bupropion/ Naltrexone is opiate 7.2-10.1% Nausea, dizziness, Approved in 2014
Naltrexone antagonists, and (24 weeks) insomnia, dry mouth, bowel
bupropion is an changes
antidepressant
Gelesis100 Superabsorbent 6.4% in 6 months  No significant Risk Approved in 2019
hydrogel particles of designation
a cellulose-citric acid
matrix / Increases
fullness.
Setmelanotide ~ Melanocortin 4 weight loss Melanocortin-4-receptor Approved in 2020
(Imcivree) receptor agonist 12.5-25.6% agonist / Decreases appetite
Semaglutide Glucagon Like weight loss 8% Nausea, diarrhea, vomiting, ~ Approved in 2021
(Wegovy) Peptide-1 receptor Constipation, abdominal
agonist (stomach) pain, headache,
fatigue.
Table 3.

Drugs/medical devices long term weight management [12—14].

5. Herbal treatment

Herbal medicine has been used for treatment of disease for more than 2000 years,
and it has proven efficacy [4, 5, 15-17]. Many studies have confirmed that herbal
medicine is effective in the treatment of obesity, but the mechanisms are not clear. In
present work an attempt will be done to develop herbal formulation containing differ-
ent types of spices. It is a doubtless fact that various plants from different families and
several phytochemical constituents are responsible for the anti-obesity activity. Current
treatment of obesity includes various marketed formulations which have hazardous
side effects such as high blood pressure, agitation, diarrhea, sleeplessness, liver damage,
rectal bleeding, faster rate palpitations, closed-angle glaucoma, Insomnia etc. which can
be overcome by using herbal formulation. Herbal medicine has been used for treatment
of disease for more than 2000 years, and it has proven efficacy. Many studies have con-
firmed that herbal medicine is effective in the treatment of obesity. But the mechanisms
are not clear. In present work an attempt will be done to develop herbal formulation
containing different types of spices. It is a doubtless fact that various plants from differ-
ent families and several phytochemical constituents are responsible for the anti-obesity
activity" Natural herbs gives not only anti-obesity effect but also other health benefits,
such as anti-diabetic and anti-hyperlipidemic activities. It is anticipated that the
availability of many natural sources will provide a beneficial basis for developing novel
anti-obesity products. Nature is loaded with dozens of herbs and spices—from the very
common black pepper to the exotic turmeric. Along with amazing health benefits they
have to offer, herbs and spices also add flavor and aroma to our food and dishes.
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Research has also shown that herbs and spices have the potential to boost metabo-
lism, promote satiety (read: contentment), aid weight management and improve the
overall quality of diet. Very few researchers focus on exact molecular level mechanism
responsible for anti- obesity activity. Therefore, the growing threat of obesity to
global health is encouraging scientists and researchers to put more effort into find-
ing an efficient mechanism of action at molecular level. It is anticipated that there is
abundant room for further contributions by researchers to establish the molecular
mechanism of new natural anti-obesity agents. Urgency of a novel, nontoxic means
needs to be developed to control obesity. Various plant products have been found to be
effective in controlling obesity. A good portion of fruits, vegetables, spices and herbs
need to be included in the regular diet. Plant derived molecules or phytochemicals
are blessed with strong anti-obesogenic, anti-carcinogenic and anti-inflammatory
properties. Thus they may serve as a nontoxic and cost-effective method to tackle
obesity. These molecules target various pathways that are intricately linked to the
process of adipogenesis. This review aims to elucidate the beneficial role of dietary
food nutrients in control of obesogenicity. Following are the herbs which stimulate
leptin in obesity management.

5.1 Cinnamon

Cinnamomum-verum (cinnamaldehyde)

Cinnamon is most widely used and popular weight loss herbs due to its sugar stabi-
lizing potential which rapidly increase rate of metabolism of fats and rapidly reduces
hunger pangs which has excellent for obesity management.

5.2 Ginger

Zingiber officinale (6-gingerol)

Ginger acts as a potential body cleanser which remove the food logged in the
digestive system and avoid fat storage resulting in to weight loss and obesity
management.

5.3 Cardamom

Elettaria cardamomum (1,8-cineole)

Cardamom boosts metabolism and helps the body burn fat more effectively and
Managing conditions like indigestion, constipation, and water retention, elaichi
makes for an important weight loss. Cardamom improves rate of metabolism which
results in to increasing potential of our body to burn fat which ultimately helpful for
weight management.

5.4 Turmeric

Curcuma longa (Curcumin)

Curcumin is safest yellow orange colored material obtained from turmeric having
potential role in increase in rate of metabolism, stimulate leptin and adiponectin.
Curcumin drastically reduces rate of fat formation and accumulation which ulti-
mately lower total body fat which avoids weight gain.
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5.5 Acai berry

Euterpe oleracea containing phenolic acids such as vanillic acid has important role
in obesity management. It avoids excessive storage of fat in body and also prevents
obesity-induced hepatic steatosis regulating lipid metabolism by increasing choles-
terol excretion which is helpful for maintaining weight in control.

5.6 Nettle leaf

Urticadioica (Acetylcholine)

It has tremendous fat burning potential which helpful in maintaining the weight
also nettle leaf contains vitamins like C and A which provide nutritional powers along
with bold purifying property of nettle leaf.

5.7 Guarana

Paulliniacupana (Caffein)

Guarana improves rate of metabolism which directly results in to obesity control
also it suppress genes that aid fat cell production and promote genes that slow it
down. Caffein mainly acts on central nervous system prevent overeating due to ten-
sion and emotions.

5.8 Cayenne pepper

Capsicum annuum (Capsaicin)

This spice includes a compound called as capsaicin which helps to burn fat
and suppresses your hunger cravings. According to a research done by Prudue
University—cayenne is effective in weight loss, because it increases body’s metabolism
activity which causes the body to burn more calories.

5.9 Cumin

Cuminum cyminum (Cumin aldehyde, phellandrene)

Cumin play a vital role in fat burning as it rapidly increases rate of burning calories
by increasing rate of metabolism and prominent improvement in rate and extent of
digestion. It has also play vital role in boosting immune system.

5.10 Ginseng

Panax ginseng (Ginseng saponin)

Ginseng mainly acts on leptin, insulin and adiponectin which mainly enhance rate
metabolism of fats and cholesterol. Ginseng not only play important role in obesity
management by acting on angiogenesis but also enhance energy level speed up rate
and extent of metabolism.

5.11 Black pepper

Piper nigrum (Piperine)
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Piperine is the main bioactive compound that mainly responsible for obesity man-
agement. Piperine significantly increases rate of metabolism and burn fat at faster
rate mainly due to it improves mRNA expression associated with adipose tissue which
is associated with lipogenesis resulting in to improvement in lipid metabolism related
to genes specifically in visceral fat.

5.12 Dandelions

Taraxacum (chicoric acid, chlorogenic acid)

Dandelions primarily reduces total cholesterol level and level of fat in liver which
is significant in treating obesity related disorders. It also improve rate of digestion and
extent of metabolic activities.

5.13 Flax seeds

Linum usitatissimum (Omega 3 fatty acid)
Flaxseeds acts as a bulking agent and gives you a feeling of fullness. Thus, they
prevent you from overeating and help you to lose weight.

5.14 Guar gum

Cyamopsis tetragonoloba (Sugars of galactose and maltose)

Guar gum helps in managing diabetes and aids weight loss. It helps to improve the
digestion process and gives you a feeling of fullness.

5.15 Garcinia

Garcinia gummi-gutta (Ethyl acetate & hexane moiety)
This fruit promotes appetite suppression and prevents production and deposition
of fat. Choose whole food rather than other variants.

5.16 Mustard

Brassica nigra (carotenoids (zeaxanthin, lutein, p-carotene))
Mustard is a very good weight loss herb, as it helps to fasten body’s metabolic activity.

5.17 Cocos nucifera (caprylic acid)

Coconut oil helps to increase your metabolic speed, which further aids in releasing
energy and promoting weight loss.

5.18 Fennel seeds

Foeniculum vulgare (anethole.)

These tiny seeds aid in digestion and help to regulate your hunger. Besides, it also
helps in cleansing your liver.

5.19 Psyllium

Plantago ovate (hemicellulose, arabinoxylans)
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This is a very safe weight loss agent. These seeds make you feel fuller for a longer
time and slow down the absorption of simple carbs.

5.20 Hibiscus

Hibiscus rosa-sinensis (anthraquinones)

Hibiscus is loaded with various obesity fighting agents like chromium, ascorbic
acid and hydroxycitric acid (HCA).
6. Conclusion

Nowadays there is drastic rise in Incidences and prevalence of obesity in both
developed and developing countries and people suffering from it need rapid and
complete cure form it without any side effects. Herbal treatment stimulating leptin
acts as competent alternative to current treatment without any side effects using
resources form natural origin.
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Chapter 5

The Multiple Consequences of
Obesity
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Prasenjit Mitra, Praveen Sharma and Manoj Kumar

Abstract

Increase in body weight due to excess accumulation of fat can lead to obesity, a
chronic, progressive, relapsing, multifactorial, neurobehavioral disease caused by
adipose tissue dysfunction. Obesity often results in adverse biomechanical, meta-
bolic, psychosocial, and economic consequences. In humans, effects of obesity are
diverse and interrelated and can be classified on the basis of organ/organ system
affected. Physical problems associated with weight gain are musculoskeletal prob-
lems, respiratory problems, lower limb venous diseases, skin-related problems, and
stress incontinence in females. Metabolic conditions caused by obesity include gout,
insulin resistance and metabolic syndrome, type 2 diabetes mellitus, certain cancers,
CVD, fatty liver, gall bladder disease, etc. Obesity is known to affect the reproductive
health. Hypogonadism and pseudo-gynecomastia are more common in males with
obesity. Decreased fertility is reported in both the sexes. Polycystic ovarian syndrome
(PCOS), anovulation, endometrial hyperplasia, and increased risk of complications
in pregnancy have been reported in females. Persons with obesity have increased
healthcare expense, pay more insurance premium, take more illness-related leaves,
thus suffering economic loss due to their condition. Persons with obesity are often
considered legitimate targets for teasing and bullying, which may cause social isola-
tion, depression, eating disorders, etc. Obesity affects the morbidity and mortality.
This chapter deals with the different consequences of obesity.

Keywords: obesity, metabolic syndrome, insulin resistance, type 2 diabetes mellitus,
obesity-related health

1. Introduction

Living organisms are constitutionally wired to store energy for survival in periods

of scarcity. Eel and salmon are reported to survive long periods without food [1-3].
The excess intake of calories leads to energy accumulation in the form of fat, glyco-
gen, or starch. Plants store energy reserves as starch and oil. We were unable to find
reports of adverse consequences of excess energy storage in plants and lower organ-
isms. The stored energy helps the organism to tide over periods of calorie scarcity
and during hibernation, aestivation, or migration in animals. In higher organisms,
deposition of excess calories results in impairment of body functions with adverse
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Type of problems

Examples of associated conditions

Physical problems

1. Musculoskeletal disorders
a. Decreased mobility
b. Loss of balance
c. Osteoarthritis

d. Gout

2. Respiratory problems
a. Decreased lung compliance
b. Increased risk of asthma

c. Sleep apnea

3. Lower limb venous disease
a. Thrombosis
b. Varicose veins

c. Venous insufficiency

4. Skin-related problems

5. Stress incontinence in females

Metabolic disorders

1. Hyperglycemia

2. Dyslipidemia

3. Gout

Hyperglycemia increases risk of skin infections, eye diseases, and kidney diseases.
Both hyperglycemia and dyslipidemia cause insulin resistances, leading to increased
risk of type 2 diabetes, cardiovascular disease, stroke, and cancers.

Gut-associated
diseases

1. Cholelithiasis

2. Pancreatitis

3. Fatty liver

4. Gastroesophageal reflux disease

Reproductive
Health Issues

A.Males
1. Hypogonadism

2. Gynecomastia

3. Decreased fertility

B. Females

1. Polycystic Ovarian Syndrome (PCOS)

2. Anovulation

3. Endometrial hyperplasia

C. Increased risk of complications in pregnancy

1. Gestational diabetes

2. Preeclampsia

3. Cesarian section

Economic issues

1. Increased expense on obesity-related diseases

2. Decreased pay

3. Decreased job opportunity
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Mental and social 1. Social stigma
issues

2. Bullying

3. Binge eating

4. Depression

Quality of life and 1. Increased risk of morbidity, mortality decreased quality of life
mortality

Table 1.
Multiple consequences of obesity.

effects on health and longevity. Obesity with adverse health effects has been reported
in zebrafish [4], reptiles [5, 6], and birds [7].

Energy in humans is stored as glycogen or triacylglycerols (TAGs). Relative to the
amount of calories that can be stored as triacylglycerols (TAGs), only a small amount of
calories can be stored as glycogen. An adult liver can store up to 120 g glycogen, while
the skeletal muscles can store up to 400 g glycogen. Triacylglycerols are hydrophobic
energy-dense molecules that can be stored in large amounts in the adipocytes. Adipose
tissue is the loose collection of adipocytes in a mesh of collagen fibers, deposited at
various sites in the body. Preadipocytes, fibroblasts, vascular endothelial cells, adipose
tissue macrophages, and small blood vessels are also present in the adipose tissue.

Increased mass of adipose tissue, abnormal site of deposition, or abnormal size of
adipocytes can result in adverse consequences on health and quality of life (Table1).

2. Physical problems associated with obesity

These result from the abnormally high weight of the affected person and are
closely related to each other and to the other consequences of obesity including
metabolic dysfunction and insulin resistance. For convenience, we have classified
them into musculoskeletal disorders, skin-related problems, respiratory problems,
lower-limb venous diseases, and urinary incontinence.

2.1 Musculoskeletal disorders

These include decreased mobility, loss of balance, and osteoarthritis, which are
associated with abnormal increase in body weight (Figure 1).

2.1.1 Decreased functional mobility

Obesity is one of the major causes for the loss of functional mobility. Altered pos-
ture and gait resulting from abnormal fat deposition, compromised bone strength,
pain, and breathlessness compromise the mobility [8], which must be taken into
account by treating physicians advising increased physical activity for weight loss.
Decreased mobility results in further increase in weight.

2.1.2 Loss of balance

Increased weight, decreased mobility, and altered posture result in loss of balance,
increasing the risk of falls and injury [9]. In spite of the cushioning effect of the fat
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Figure 1.

Association of obesity with musculoskeletal disorders.

mass, falls in patients with obesity are more serious and require higher treatment
costs and specialized care [10].

2.1.3 Osteoarthritis (OA)

Progressive loss of articular cartilage and formation of osteophytes (bony spurs
usually caused by local inflammation) result in osteoarthritis [11]. Obesity is a
risk factor for OA of knee, hands, and wrist (but not of hip) [12]; thus excessive
body weight alone cannot fully explain the increased incidence of OA in people
with obesity. Increased body mass index (BMI) in obesity results in altered gait
and increased strain on the knee, causing biomechanical joint loading [13]. This
is associated with increased expression of matrix metalloproteinases in chon-
drocytes and increased degradation of proteoglycans [14]. Synthesis of DNA,
proteoglycans, and collagen is decreased, contributing to the loss of cartilage in
joints [14]. Chondrocytes subjected to high loading show increased expression of
pro-inflammatory cytokines including TNF-a and IL-1(f), along with an increased
expression of cyclooxygenase-2 leading to increased PGE2 (responsible for inflam-
matory pain) synthesis [15].

Increase in the amount of adipose tissue leads to metabolic dysfunction: obesity-
related sarcopenia, deposition of intramuscular lipid, and chronic low-grade systemic
inflammation, all of which contribute to osteoarthritis [16].

2.1.4 Gout

Insulin resistance, often seen in patients with obesity, causes decreased excretion
of uric acid, leading to hyperuricemia [17, 18]. Adipose tissue is known to express
all the components of renin-angiotensin system (RAS), including angiotensinogen
[19]. The resulting hypertension may cause glomerular arteriolar damage and
reduce uric acid excretion. Hyperuricemia and gout have been associated with
osteoarthritis [20, 21].
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Figure 2.

Association of obesity with respiratory disorders.

2.2 Respiratory problems

Obesity is associated with various respiratory problems that are correlated with
each other (Figure 2).

2.2.1 Reduced compliance of lungs

Increased fat deposition in the mediastinum and abdominal cavity increases
intra-abdominal and pleural pressure, thus reducing compliance of the lungs. Altered
breathing pattern, with decrease in expiratory reserve volume (ERV), functional
reserve capacity (FRC), and tidal volume (TV), with slight increase in mean respira-
tory rate have been reported in subjects with obesity [22, 23], Obesity has little effect
on the residual volume (RV) and total lung capacity (TLC) [24].

2.2.2 Obesity and asthma

The relationship between obesity and asthma has been established by a meta-analysis
involving more than 300,000 adults [25]. The expression of adipokines secreted by
adipose tissue is different in persons with obesity. Decreased expression of adiponectin
(anti-inflammatory adipokine) and increased expression of leptin (pro-inflammatory
adipokine) have been reported in asthmatic patients with obesity [26]. Leptin, an
anorexigenic hormone, increases metabolic rate and is involved in surfactant production
and neonatal lung development [27]. Sood et al. [28] have reported a strong association
between high BMI and high levels of serum leptin with asthma in adults.

Inflammatory cytokines such as TNF-q, IL-8, and monocyte chemoattractant protein-1
(MCP-1) have also been reported to be raised in persons with obesity. However, their role
in asthma associated with obesity is not clear [29]. In older patients, abdominal obesity and
metabolic syndrome have been reported to be associated with restrictive lung disease [30].

2.2.3 Obstructive sleep apnea (OSA)

The prevalence of obstructive sleep apnea in adult persons with obesity is about
45%, compared with 25% in persons with normal weight [31]. Increased fat deposit
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in tissues surrounding the upper airway decreases the size of lumen and increases
collapsibility of the upper airway. OSA may cause sleep fragmentation, which may
lead to sleep deprivation [32]. Since experimental sleep deprivation and self-reported
short sleep have been linked with metabolic dysregulation, it is possible that OSA may
also be a contributing factor in metabolic dysregulation associated with obesity.

2.3 Lower limb venous diseases

Venous diseases (blood clots, deep vein thrombosis, superficial venous thrombosis
or phlebitis, chronic venous insufficiency or CVI, varicose and spider veins, and
venous stasis ulcers) may be caused by one or more of the following factors: immobil-
ity (as in bed-ridden patients) leading to stagnation of blood), blood vessel injury
caused by trauma/needles/intravenous catheters/infections, central venous hyper-
tension, conditions that increase the blood coagulation, and pregnancy. Different
cancers are associated with deep vein thrombosis.

Varicose veins and chronic venous insufficiency are more common in aged women
compared with men. Obesity has been found to be associated with all types of lower
limb venous diseases (Figure 3). Willenberg et al. [33] showed that lower limb venous
flow parameters are different in healthy persons with and without obesity. Various

Central Obesity

A 4

| Increased abdominal pressure |

A

| Venous stasis, distension of veins of lower limbs |

}

’ Valve dysfunction | | Increased risk of thrombosis |

/-

‘ Chronic venous insufficiency (CVI) '——»I Varicose veins

A 4

| Rupture of capillaries ‘

}

| Discoloration of skin I | Inflammation of ulcers |

Figure 3.
Obesity as a cause of lower limb venous diseases.
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epidemiological studies show that obesity is associated with chronic venous disease,
phlebitis, and thromboembolism [34-37]. Untreated CVI results in increased pressure
and swelling leading to rupture of capillaries. The skin may appear reddish-brown and
becomes sensitive to bumps and scratches. Burst capillaries may lead to inflammation
and even ulcers.

Increased intra-abdominal pressure caused by central obesity is transmitted to the
extremities via femoral veins leading to resistance to venous return, producing venous
valvular insufficiency. The self-perpetuating cycle of worsening venous insufficiency
causes venous stasis and distension of veins in the lower limb. Obesity produces a
chronic low-grade inflammation, which damages the affected veins and increases the
risk of thromboembolism [33].

2.4 Skin problems

Different problems of the integumentary system associated with obesity can be
classified on the basis of their pathophysiologic origin (Figure 4). Skin lesions associated
with mechanical causes include striae, lipodystrophy, plantar hyperkeratosis, and venous
insufficiency. Acanthosis nigricans and skin tags or acrochordons are due to insulin resis-
tance. Obesity-related hyperandrogenism may cause acne, hirsutism, and androgenic
alopecia. Skin folds created by obesity increase the risk of intertrigo and infections.

2.4.1 Mechanical causes of dermatologic manifestations associated with obesity

Striae or stretch marks are a type of scarring of the dermis associated with
stretching of the dermis. Striae distensae may appear as a consequence of pregnancy,
puberty, or obesity and appear on abdomen, breasts (in females), and shoulders (in
body builders). They are more common in females [38]. Striae atrophicans due to
thinning of the skin may appear in adrenal gland disorders [39].

Other dermatological conditions with mechanical causes include intertrigo, condi-
tions associated with chronic venous insufficiency, and lymphedema [40]. Intertrigo

* [ l

Increased mass and volume | Increased risk of skin infections ‘ | Insulin resistance | | Low grade chronic inflammation |
Immune dysfunction

[ Psoriasis || Eczema H Atopic dermatitis H Lichen planus ‘

|HHJ=" li i | Hidradenitis suppurativa

[ Distension of skin | [ 1 Skin folds, sweating duc to 1SAT | 1Abdominal obesity |

l Striae distensae | | Intertrigo | l

Stimulation of IGF-1 receptor

| Chronic venous insufficiency | ‘ Lymphedema |

l l l l

Proliferation of dermal || Proliferation of epidermal | t Ovarian androgen | Serum SHBG
fibroblasts keratinocytes production

Pitting edema
Telangiectasia, varicose veins | +—|

Hyperpigmentation "—

Stasis dermatitis

Hyperandrogenemia
| l ! :
| Keratosis | l Skin tags/Acrochordons | | Acanthosis nigricans | | Plantar hyperkeratosis ” 1 Acne vulgaris ‘ | Hirsutism ‘ | Male pattern baldness

Figure 4.
Dermatological manifestations associated with obesity.
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is an inflammation of skin resulting from friction between opposing skin surfaces of skin
folds. It may have an infectious component. Axilla, groin, intergluteal, and inframam-
mary areas may be involved [41]. Hot, humid climates and obesity (BMI > 30 kg/mz)

are known to promote intertrigo. Persons with obesity tend to sweat more.

Dermatologic sequelae of chronic venous insufficiency (discussed above) are often

seen in patients with obesity and include pitting edema, varicose veins, telangiectasia,
hyperpigmentation, venous stasis ulcers, and scaling of the skin (stasis dermatitis) [42].

Blocking or damage of the lymphatic system resulting in accumulation of lymph in

soft tissues, especially legs or arms, is called lymphedema. Obesity is a risk factor for
secondary lymphedema [40].

2.4.2 Obesity-related endocrine disorders of skin

These include skin tags, acanthosis nigricans, keratosis pilaris, hidradenitis sup-

purativa and hirsutism, and plantar hyperkeratosis.
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a. Skin tags or acrochordons. Skin tags are soft cutaneous growths, usually benign,

more commonly seen in persons with obesity, metabolic syndrome, type 2 diabetes,
or in persons with family history of skin tags [43]. They occur in both males and
females, usually later on in life, but are less common after the seventh decade. The
polypoid lesions are skin-colored, brown, or red, 1-5 mm in size (rarely larger) with
aloose edematous fibrovascular core, and may be attached to a fleshy stalk. They
are more common in skin folds: axilla, groin, eyelids, and neck [44]. Although not
painful, they can cause trouble by getting caught in clothing or jewelry, resulting

in itching or bleeding. However, skin tags in large numbers may be seen in patients
with Birt-Hogg-Dube (BHD) syndrome and tuberous sclerosis, where they appear
around the neck: the molluscum pendulum necklace sign [45, 46].

b. Acanthosis nigricans (AN). Hyperpigmented velvety plaques usually in body folds,

neck, knuckles, and scalp may be seen in patients with obesity. The condition was
first reported more than an hundred years ago in the Atlas for Rare Skin Diseases.
The term acanthosis nigricans was proposed by Paul Gerson Unna and published

in 1891 in a case report by Sigmund Pollitzer [47]. Obesity-associated AN was
previously called pseudo acanthosis nigricans; however, this term is incorrect. This
is because the initial cases identified in Europe were associated with abdominal or
pelvic malignancies. Association of AN with obesity was first reported by Robertson
and Tasker in 1947 [48]. Like acrochordons, AN is also associated with insulin resist-
ance often seen in obesity. Probably, the hyperinsulinemia seen in insulin resistance
leads to direct and indirect activation of the insulin-like growth factor receptor,
triggering proliferation of the dermal fibroblast and epidermal keratinocyte [49].
Friction and perspiration may also be involved in the development of AN [50].

.Keratosis pilaris (chicken skin) is a benign condition of the skin in which sterile

papules occur on the skin (collections of dead skin cells). Though these papules
may occur anywhere on the body (except palms and soles), they are more com-
mon on the posterior aspect of upper arms, anterior aspects of thighs, face, and
buttocks [51].

d.Hidradenitis suppurativa or acne inversa is a chronic painful condition of the

terminal follicular epithelium in the apocrine gland-bearing skin (groin, bottom,
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axilla, breasts) [51]. It affects about 1% of the population and is strongly associ-
ated with smoking and obesity. It is also linked with hyperandrogenemia, as
many patients have acne and hirsutism [52].

e. Hirsutism, acne vulgaris, and androgenic alopecia seen in some female patients with
obesity (with or without polycystic ovarian syndrome, PCOS) are due to hyperan-
drogenemia, often associated with peripubertal obesity [51-54]. Increased insulin
production (hyperinsulinemia) due to insulin resistance in obesity increases IGF-1
levels and augments ovarian androgen production [55]. Hyperinsulinemia produces
adecrease in serum level of steroid hormone binding globulin (SHBG), resulting
in a further increase in the level of free testosterone. Treatments that reduce insulin
levels usually correct hyperandrogenemia and ovulatory dysfunction [56].

f. Plantar hyperkeratosis (thickening of skin over metatarsophalangeal joints,
caused due to increased pressure and mechanical stress placed on the feet) is seen
in almost 50% patients with obesity [40]. Increased circulating levels of IGF-1
seen in hyperinsulinemia lead to overactivation of IGF-1 receptors on fibroblasts
and keratinocytes. The abnormal IGF-1 signaling causes cellular hyperprolifera-
tion (Figure 4).

2.4.3 Increased visk of skin infections

Obesity has been associated with an increased risk of skin, respiratory tract, and
urinary tract infections [57]. An increased risk of community-acquired infections has
been reported by Harpsoe et al. [58] in both overweight and underweight women.
Obesity alters the function of skin, sebum, and sweat glands, affects the structure of
collagen and subcutaneous fat, and slows wound healing. A number of skin infections
that are more common in persons with obesity include candidiasis, candida folliculi-
tis, furunculosis, tinea cruris, and folliculitis. Cellulitis is less common [42].

2.4.4 Obesity-associated immune disorders affecting skin

Normal adipose tissue in a nonobese person has a population of anti-inflamma-
tory/regulatory immune cells: M2-macrophages and regulatory T cells. These are
replaced by pro-inflammatory cells: M1 macrophages, Thl, Th17, and cytotoxic T cells
in adipose tissue in persons with obesity [59]. Systemic immune adaptations in obesity
include increased number of circulating monocytes, neutrophils, Th1, Th17, and Th22
cells. The pro-inflammatory cytokines produced by pathogenic adipose tissue (IL-1p,
IL-6, IL-17, and IFN-y) result in a chronic low-grade inflammation. Skin conditions
such as psoriasis, atopic dermatitis, and eczema are strongly associated with obesity
[60]. Hashba et al. [61] have suggested the association of lichen planus with obesity.

2.5 Urinary incontinence (UI)

Urinary incontinence may be of different types: stress incontinence when preg-
nancy, childbirth, etc., weaken the muscles supporting and controlling bladder; urge
incontinence caused by involuntary action of bladder muscles; and mixed inconti-
nence that shares the causes of both stress and urge incontinence. Thyroid problems,
uncontrolled diabetes, and medicines such as diuretics can worsen the problem of Ul
High BMI, especially BMI higher than 40 kg/m?, has been strongly associated with
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stress predominant incontinence including mixed incontinence [62]. Central obesity
increases the abdominal pressure, which increases the bladder pressure and urethral
mobility, leading to UI. Chronic strain and stretching seen in pregnancy and abdomi-
nal obesity weaken the muscles and other structures of the pelvic floor. Surgical and
non-surgical weight loss has been reported to decrease incontinence and improved

quality of life.

3. Metabolic disorders associated with obesity
3.1 Organization of the adipose tissue

Adipose tissue is a loose connective tissue in which about half the cells are adipo-
cytes, the remaining is stromal vascular fraction containing preadipocytes, fibro-
blasts, endothelial cells, and macrophages [63]. The adipose tissue may be considered
the largest endocrine gland in the body.

Based on the metabolic features of the adipocytes, adipose tissue (AT) can be white
adipose tissue (WAT), which stores excess energy as fat, and brown adipose tissue
(BAT), which dissipates stored energy as heat (Figure 5). Both WAT and BAT are pres-
ent in mammals and are formed throughout life. In humans, WAT development begins
during early to mid-gestation period. WAT adipocytes contain a large single (unilocu-
lar) droplet of triacylglycerols occupying 90% of the cell volume, with the cytoplasm
and the nucleus squeezed to the periphery. Adipocytes of BAT are smaller, multilocu-
lar, and contain mitochondria and uncoupling protein-1 (UCP-1), which is involved in
non-shivering thermogenesis. The brown appearance of BAT is due to high vasculature
and high mitochondrial content. It has a high density of noradrenergic parenchymal
fibers. BAT is 5-10 times more vascularized than WAT. A third type of adipose tissue,
the beige or brite (brown in white) adipose tissue with paucilocular adipocytes is dis-
persed in the WAT [64-66]. Browning of WAT has been suggested under the influence
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of the hormone irisin, which is produced by the skeletal muscle during exercise [67].
Adipocytes of WAT and beige adipose tissue are predominantly derived from the Myf
5 negative progenitor cells, while adipocytes of BAT are predominantly from Myf 5
positive progenitor cells. Myf 5 or myogenic factor 5 is a gene for transcriptional factor
expressed during embryonic myogenesis [68]. Brown and beige AT show anatomical
decline with aging and protect from obesity and type 2 diabetes mellitus (T2DM).

Based on the location of the white adipose tissue, it is broadly classified as sub-
cutaneous and visceral (Figure 5). The subcutaneous adipose tissue (SAT) stores
excess energy, provides insulation from heat and cold, and functions as an endocrine
organ. Visceral adipose tissue (VAT) provides a protective padding around organs.
Specialized adipose tissue is associated with the bone marrow, breast, retroorbital
adipose tissue, and epicardium [69]. In persons having the same BMI, females tend to
have more adipose tissue than males. Females also have more subcutaneous adipose
tissue (SAT) compared with males. Localized fat pads, e.g., the synovia are considered
as SAT. The SAT of lower trunk and gluteal-thigh region is further organized in two
separate layers: the superficial SAT, SSAT (evenly distributed around the circumfer-
ence of the abdomen), and the deep SAT, DSAT (most of which is located in the poste-
rior half of the abdomen). The SSAT and DSAT are separated by the fascia of Scarpa.
SSAT has a higher expression of metabolic regulatory genes, while DSAT has a higher
level of expression of inflammatory genes and higher lipolytic activity. Thus, higher
volume of DSAT is associated with higher levels of free fatty acids [70].

3.2 Specialized adipose tissue

Bone marrow contains adipose tissue called the marrow adipose tissue (MAT),
which increases in amount in periods of calorie restriction, in contrast to adipose
tissue present at other sites in the body. Exercise results in decrease in the size of MAT,
as well as of the adipocytes present in MAT. Adipocytes of MAT develop from the
mesenchymal stem cells.

3.3 Diseases associated with adipose tissue

In some persons there is a variable lack of adipose tissue, which may be general-
ized or specific (abnormal distribution of adipose tissue). This condition is called
lipodystrophy. Lack of sufficient adipose tissue results in increased levels of fatty
acids in blood, as they cannot be stored as TGs in the adipocytes. Raised levels of fatty
acids cause lipotoxicity, characterized by ectopic fat deposition in the muscle, liver,
and pancreas, thus contributing to T2DM [71].

3.3.1 Development of insulin resistance

The mechanism of development of insulin resistance is complicated and is
influenced by diverse factors, including the location and type of adipose tissue that
increases in mass.

Depending on the location, WAT is further classified into different types
(Figure 5) [72, 73]. Excess calorie intake leads to enlargement of adipocytes
(hypertrophy) as well as increase in the number of adipocytes (hyperplasia) [74].
The new adipocytes may develop from preadipocytes or from adipocytes of BAT.
Adipogenesis through differentiation of progenitor cells to adipocytes occurs
through transcription factors such as peroxisome proliferator-activated receptor-y
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(PPAR-y), and CCAAT/enhancer binding protein-a [75]. Increase in the size of

the adipocytes is associated with insulin resistance and inflammation. Adipose
hypertrophy seen in morbid adiposity results in heterogeneity of cell size within
the same depot of adipose tissue, with cell size ranging from 20 microns to 300
microns [76]. Usually, SAT contains more preadipocytes compared with VAT, so
adipose hypertrophy is less in SAT [77]. Normal adipose tissue produces adipokines
(leptin, adiponectin) that regulate appetite and energy metabolism and cytokines.
Pro-inflammatory cytokines include TNF-a, visfatin, resistin, angiotensin II, serum
amyloid alpha, plasminogen activator inhibitor, and IL-6, while anti-inflammatory
cytokines include apelin, transforming growth factor beta (TGFp), IL-10, IL-4,
IL-13, and IL-1 receptor antagonist (IL-1Ra) [78]. Male hormones promote hyper-
trophy, while female hormones promote hyperplasia [79]. In lean adipose tissue,
the adipose cells are 5-10% of all cells in the tissue; in obese adipose tissue, this
number is as high as 60% [80]. Although the life span of adipocytes is about 8 years,
increase in size beyond a critical cell size and nutrient excess produce endoplasmic
reticulum stress, hypoxia, and death of adipocyte, attracting infiltration of mac-
rophages. This is more in VAT. Adipocyte remnants are absorbed by macrophages,
which become activated. In lean adipose tissue, the adipose tissue macrophages
(ATMs) are predominantly M2 (anti-inflammatory) type. Pathologic adipose has
greater number of M1 ATMs, which are pro-inflammatory and produce cytokines
in large amounts after absorbing dead adipocytes. This results in chronic low-grade
inflammation and insulin resistance.

In some persons with obesity, excess calories are preferentially stored in SAT,
which does not produce inflammation. This type of obesity is also called metabolically
healthy obesity (MHO) [81]. In contrast, increase in VAT is associated with abnormal
blood lipid profile, i.e., dyslipidemia, insulin resistance, metabolic syndrome, type
2 diabetes, and hypertension. This type of obesity is called metabolically unhealthy
obesity (MUHO) and is due to deposition of intraabdominal fat.

Hypertrophic stressed adipocytes are unable to take up free fatty acids, which
are therefore diverted to other non-fat-storing organs such as muscle, liver, pan-
creas, and heart, where they are stored as ectopic fat. This results in impaired
glucose uptake by muscle cells, decreased glucose utilization by liver and adipose
causing hypertriglyceridemia, hyperglycemia, reduced amounts of HDL choles-
terol, increased amounts of LDL and VLDL cholesterol, increased proportion of
small, dense LDL particles, and insulin resistance. Products of fatty acid metabo-
lism such as long-chain fatty acyl-Co A, diacyl glycerol (DAG), and ceramide are
harmful to cells and aggravate insulin resistance by causing phosphorylation of the
serine residues on the insulin receptor substrate (IRS) [82]. In skeletal muscle, lipid
can be stored in adipocytes between muscle fibers, or as cytosolic triacylglycerols
within the muscle cells (intramyocellular lipids, IMCLs). IMCLs are an adaptive
response in endurance athletes and are present in close proximity to mitochondria.
Increased IMCL stores in insulin resistance or T2DM is a consequence of raised free
fatty acid levels in blood and impaired fatty acid oxidation in the muscle [83]. This
may also be due to mitochondrial dysfunction.

Recent evidence suggests the role of leptin resistance and hyperleptinemia of
obesity causes production of reactive oxygen species (ROS) and increases oxida-
tive stress, promoting the risk of hypertension, heart disease, and cancer [84-86].
Endoplasmic reticulum stress, protein tyrosine phosphatase 1B, and suppressor of
cytokine 3 (SOC3) signaling mediate leptin resistance and are also involved in insulin
resistance [87].
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3.3.2 Type 2 diabetes

Insulin resistance in the liver, adipose, and muscles coupled with ectopic fat in the
pancreas contributes to hyperglycemia and T2DM. Deposition of ectopic fat in the
pancreas is seen in almost two-thirds of patients with obesity. Most of this is due to
adipocyte infiltration into pancreatic tissue rather than accumulation of intracellular
lipid. Ectopic pancreatic fat is associated with an increased risk of T2DM and car-
diovascular disease (CVD). Increased lipolysis and inflammation caused by ectopic
pancreatic fat are also reported to promote acute pancreatitis [88].

3.3.3 Fatty liver

Hepatic insulin resistance caused by DAG and ceramide promotes lipotoxicity,
ectopic fat deposition, insulin resistance, and steatosis, leading to nonalcoholic fatty
liver disease (NAFLD) [89].

3.3.4 Obesity and cavdiovascular disease

Excess free fatty acids reaching the heart can be stored as epicardial adipose
tissue (EAT), also called pericardial fat (present between the visceral and parietal
pericardia), or surrounding the blood vessels (perivascular adipose tissue or PVAT).
Although the cardiac muscle uses free fatty acids for obtaining energy, when
delivered in excess these fatty acids are stored as ectopic fat in the cardiac myocyte,
disrupting its function. Higher levels of LDL and VLDL receptors are expressed in
the epicardial tissue from patients with T2DM. The PVAT produces adipokines and
many molecules that affect vascular reactivity: monocyte chemotactic protein-1
(MCP-1)], nitric oxide, prostacyclin, and angiotensin II. PVAT present around the
thoracic aorta resembles BAT, while the PVAT around the abdominal aorta resembles
WAT [90, 91]. Healthy PVAT is largely anti-inflammatory, while dysfunctional PVAT
promotes atherosclerosis.

3.3.5 Obesity and cancer

Different types of cancers associated with obesity include breast, endometrial,
prostrate, pancreatic, adenocarcinoma of esophagus, colon cancer, meningioma, and
cancers of ovary, kidney, thyroid, liver, etc. [92-94]. Though different mechanisms
have been proposed, chronic inflammation is a major factor for cancer initiation and
progression. Excess nutrients activate metabolic signaling pathways such as c-Jun
N-terminal kinase (JNK), nuclear factor k B (NFkB), and protein kinase R that may
promote development of neoplasm [95, 96]. Synthesis of IGF-1 is stimulated by
insulin. IGF-1 promotes tumor growth via the PI3K/Akt/mTOR and the Ras/Raf/
MAPK pathways [96]. IL-6, a pro-inflammatory cytokine produced during adipose
tissue inflammation, activates the androgen receptor and promotes cell survival and
proliferation in prostate cancer [97]. Aromatase, the rate-limiting enzyme of estrogen
synthesis, is also stimulated by inflammatory cytokines and PGE2 [98-101].

Risk of gallstones is increased in obesity. Chronic gall bladder inflammation
from gallstones may predispose to cancer of the gall bladder [102]. Similarly, chronic
inflammation of hepatitis may increase the risk of liver cancer [103].

Cancer survivorship, including cancer progression, prognosis, recurrence,
and quality of life are reported to be worsened by obesity [104, 105]. Obesity is

87



Weight Management - Challenges and Opportunities

associated with an increased risk of treatment-related lymphedema in breast cancer
survivors and incontinence in prostate cancer survivors (treated with radial prosta-
tectomy) [106, 107]. Risk of local recurrence was higher in obese/overweight male
patients with stage II or stage III renal cancer [108]. Similarly, obesity increases the
risk of mortality in patients with multiple myeloma [109].

3.3.6 Eye diseases associated with obesity

Ocular manifestations of obesity are less known and not well documented. Its
association with age-related cataract, glaucoma, age-related maculopathy, and dia-
betic retinopathy has been reported [110, 111]. Cortical and posterior subcapsular or
PSC cataracts have been most consistently associated with obesity. Obesity-induced
leptin resistance and hyperlipidemia promote formation of reactive oxygen species,
which are involved in cataract formation. Other complications of obesity: insulin
resistance, hyperglycemia, diabetes, diabetes, and hypertension (see above) are
known to be risk factors for cataract.

Increased retroorbital adipose tissue seen in obesity has been reported to be
associated with increased intraocular pressure (IOP) [112, 113]. Raised IOP may be a
risk factor for glaucoma. The AREDS (Age-Related Eye Disease Study) Report [114]
has reported an association between obesity and age-related macular degeneration.
(AMD) Oxidative stress secondary to hyperleptinemia may cause damage to lipids
in Bruch membrane and secretion of excessive vascular endothelial growth factor
(VEGF), which elicit invasion of neovascularization in Bruch membrane in neovas-
cular AMD [115]. Inflammation may also play a role in AMD development. Diabetic
retinopathy, a common complication of T2DM (which is associated with diabetes),
can result in loss of vision [116]. Other diseases of the eye that may be associated with
obesity include retinal vein occlusion, oculomotor nerve palsy, recurrent lower eyelid
entropion, keratoconus, papilledema, floppy eyelid syndrome and benign intracranial
hypertension (pseudotumor cerebri) [117-121].

4. Gut-associated diseases

Besides fatty liver and pancreatitis (discussed above), obesity is associated with
increased risk of cholelithiasis (gall bladder stones) and gastroesophageal reflux
disease (GERD).

4.1 Cholelithiasis

About 90% gallstones are cholesterol stones while the rest are made of calcium
bilirubinate, calcium complexes, mucin glycoproteins, or unconjugated bilirubin.
Obesity and metabolic syndrome are two risk factors for the development of choleli-
thiasis, other factors being genetics, age, gender, parity, and presence of hepatitis C
virus infection and chronic kidney disease [122]. Recent study by Su et al. [123] shows
that obesity reduces the age of onset of gallstone formation. Energy-dense food such
as increased consumption of refined carbohydrates and saturated fats with decreased
intake of fiber, and medicines such as estrogen and progesterone can promote chole-
lithiasis [124]. Rapid weight loss of more than 1.5 kg/week can also promote gallstone
formation [125].
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4.2 Gastroesophageal reflux disease (GERD)

Heartburn and regurgitation are typical manifestations of GERD. Epidemiologic
data show an association of obesity with GERD and Barrett’s esophagus, a condition
in which the lower part of the esophagus is damaged by repeated exposure to stomach
acid [126, 127].

5. Effect of obesity on reproductive health

Obesity has been shown to cause sub-fecundity and infertility in both sexes [128-130].
Overweight and obesity result in changes in the hypothalamus-pituitary-gonadal (HPG)
axis in both men and women, affecting hormone levels and gametogenesis.

5.1 Reproductive problems in males

Chronic inflammation along with insulin and leptin resistance is associated with
increase in adipose tissue (see above), affecting reproductive issues.

5.1.1 Hypogonadism and pseudo-gynecomastia

Insulin resistance may be responsible for obesity-induced hypogonadism in males.
Male obesity secondary hypogonadism or MOSH is caused by hyperestrogenism,
metabolic endotoxemia, and hyperleptinemia. Hyperestrogenism decreases pituitary
secretion of luteinizing hormone through a negative feedback action that impairs the
synthesis and production of testosterone from Leydig cells. Hypercaloric diet with
excess lipids causes breakdown of the normal leaky gut, facilitating passage of bacte-
rial endotoxin from gut lumen into the blood stream (metabolic endotoxemia). Some
animal studies suggest that bacterial endotoxin (Lipopolysaccharides-LPS) reduces
testicular function by binding toll-like receptor 4 (TLR4) on Leydig cells, stimulating
production of inflammatory cytokines [131-134].

Obesity is associated with elevated levels of leptin and leptin resistance. Leptin
prevents the neuropeptide Y (NPY) neurons from inhibiting the release of GnRH.
Leptin resistance results in reduced release of GnRH, FSH, and LH and impairs
spermatogenesis [135].

Kisspeptin, a hypothalamic peptide encoded by the KiSS1 gene, is an important
neuromodulator involved in HPG axis and fertility control. Most kisspeptin cells are
localized at the hypothalamic level in humans. Kisspeptin and its G-protein-coupled
receptor (KISS 1R or GPR-54) increase the delivery of GnRH into portal circulation,
resulting in enhanced secretion of LH and FSH from the anterior pituitary. Decreased
endogenous kisspeptin secretion is seen in obesity-related hypogonadotropic hypo-
gonadism (HH) [136-139]. Increased leptin levels are associated with decreased total
and free testosterone levels in males.

Hyperinsulinemia results in decreased production of sex hormone binding globulin
(SHBG) by the hepatocytes, causing increased availability of free testosterone for reac-
tion by aromatase in the adipose tissue. Aromatase converts testosterone to estradiol
[140], further decreasing testosterone level with increase in estrogen level. This may
result in pseudo-gynecomastia, with excess adipose deposition in breast area [134].
Sleep apnea associated with obesity disrupts the nocturnal rise in testosterone [134].
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High waist circumference is associated with erectile dysfunction due to athero-
genic effect on peripheral vasculature [141]. Low ejaculatory volume and oligo-zoo-
spermia have been noted in males with increased BMI and waist circumference [142].
Increased testicular heat, elevated inflammatory mediators, and increased presence
of reactive oxygen species in men with obesity affect the quality of sperms [143].

5.2 Reproductive problems in females

Earlier onset of menarche has been reported in adolescent females with over-
weight or obesity, compared with their normal-weight counterparts. The association
of obesity with menstrual disorders, infertility, and recurrent miscarriages was
recognized early [144, 145].

Insulin resistance promotes hyperandrogenemia and decreases the level of steroid
hormone binding globulin (SHBG) resulting in elevated levels of free testosterone
(discussed above). Aromatization of testosterone to estrogens by aromatase in the
adipose tissue suppresses the release of gonadotrophin from the pituitary [140].
Elevated levels of leptin impair follicle development, ovulation, and oocyte matura-
tion in women with obesity [146, 147].

5.2.1 Polycystic ovarian syndrome (PCOS)

This hormonal disorder is one of the most common endocrine disorder in pre-
menopausal women, is also associated with obesity, metabolic syndrome, and T2DM.
Irregular periods, anovulatory cycles, oligo-amenorrhea, excess androgen, hirsutism,
and polycystic ovaries are the main characteristics of PCOS [148, 149]. Most women
with PCOS have elevated levels of plasma free fatty acids, are insulin resistant, and
have compensatory hyperinsulinemia. High levels of free fatty acids induce mitochon-
drial dysfunction, inflammation, oxidative stress, and immune disorders [150]. High
levels of plasma free fatty acids cause increased synthesis of androgens in the ovary as
well as in the zona reticularis of the adrenal gland. Insulin stimulates androgenesis by
stimulating P450c17 activity in zona reticularis of the adrenal gland to produce DHEA
and androstenedione [151]. Hyperinsulinemia causes decreased expression of SHBG
by hepatocytes (see above), thus further increasing free testosterone levels. Aromatase
(CYP19A1) in adipocytes as well as in the tissue of endometriosis converts androgens
to estradiol, which inhibits the secretion of gonadotropin releasing hormone, resulting
in decreased release FSH and LH from the pituitary. This affects maturation of fol-
licles, production of estrogen, ovulation, maintenance of function of corpus luteum.

Women with PCOS may have problems in conceiving and increased risk of gesta-
tional diabetes and miscarriage or premature birth. Impairment of the hypothalamus-
pituitary-gonadal (HPG) axis and follicular environment caused by obesity results in
fertility problems, miscarriages, and complications in pregnancy.

5.2.2 Anovulation and quality of oocyte

Ovulation disorders account for at least 30% cases of infertility. Menstrual cycle
without the release of ovum is called anovulatory cycle. Women with obesity have
higher rates of anovulatory menstrual cycles [152, 153], the exact mechanism of
which is not known. Common causes of anovulation include hyperandrogenism
(asin PCOS, congenital adrenal hyperplasia, androgen-producing tumors), hyper-
prolactinemia, anorexia, excessive strenuous exercise, stress, thyroid dysfunction,
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primary pituitary dysfunction, premature ovarian failure, and certain medications.
Obesity and strenuous exercise are known to alter profiles of insulin and adiponec-
tin, thus impairing fertility in women. Obese women remain sub-fertile even in the
absence of ovulatory dysfunction [154, 155].

Obesity affects the quality of sperm, ovum, embryo, placenta, and the uterine
environment. The competence of the oocyte is defined in terms of its ability to
become fertilized and support embryo development. Oocyte competence may be
influenced by obesity. Machtinger et al. [156] have shown that oocytes from women
with obesity are smaller in size, have more abnormal spindles and chromosome
misalignment than those from women with normal BMI. Negative outcomes for
women undergoing in vitro fertilization (IVF) are more common in women with
higher BMI, due to the poor oocyte quality, lower preimplantation rate, and uterine
receptivity [157]. Decreased rate of conception, infertility, early pregnancy loss, and
reduced success of assisted reproductive technology (ART) have been reported in
females with obesity [158].

High serum levels of insulin, insulin resistance, high levels of glucose, lactate,
triglycerides, and C-reactive protein in the follicular fluid have a negative impact on
oocyte maturation.

Mitochondria of the oocyte must be fully functional, as ATP generated by them
are required for oocyte maturation and blastocyst formation. High levels of fuel
molecules (glucose, free fatty acids, triglycerides, and cholesterol) in environment
increase intracellular lipid accumulation and cause damage to the endoplasmic
reticulum and mitochondria. Mice fed on high-fat diet have oocytes with accumu-
lated lipid, increased reactive oxygen species (ROS), and have altered structure of
mitochondria [159].

5.2.3 Endometrial hyperplasia

Abnormally thickened lining of the uterus due to disordered proliferation of
endometrial glands or endometrial hyperplasia is caused by excess androgen with a
relative deficiency of progesterone [160]. Untreated endometrial hyperplasia may
develop into endometrial cancer [161]. Endogenous estrogen excess may occur in
anovulatory cycles (during perimenopause or PCOS), obesity, and estrogen secret-
ing tumors of the ovary. The most common symptom of endometrial hyperplasia is
abnormal uterine bleeding.

5.3 Obesity-related complications in pregnancy

Women with obesity have a higher risk of miscarriage, gestational diabetes,
preeclampsia, premature delivery, cesarean section, and post-partum hemorrhage.
Maternal obesity with poor glycemic control may result in fetal macrosomia and
associated complications. Twenty percent less detection of fetal anomalies has been
reported in women with obesity [162].

5.3.1 Risk of miscarriage

A Danish cohort study [163] involving more than 5000 women reported a hazard
ratio for miscarriage of 1.23 for women with obesity conceiving spontaneously. Risk
of miscarriage is higher in women with obesity who conceive with IVF, even when
using donor eggs from women with normal BMI.
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5.3.2 Gestational diabetes

Schummers et al. [164] studied 226,000 singleton pregnancies in British Columbia.
They have reported an incidence of gestational diabetes of 7.9%. The risk of gestational
diabetes was doubled with a BMI > 30, and more than tripled at BMI > 40 kg/m®.

5.3.3 Risk of preeclampsia

Women with overweight have double the risk of preeclampsia, while women
with obesity have triple the risk, compared with women with normal BMI [164, 165].
Increased physical activity during pregnancy may reduce the risk of both gestational
diabetes and preeclampsia.

5.3.4 Preterm labor

Obesity has been shown to increase the risk of preterm delivery [165, 166]. This
may be due to increased levels of circulating cytokines and inflammatory proteins in
women with obesity.

5.3.5 Cesarean section

The rate of Cesarean section increases with increase in maternal BMI [165, 167].
There is also an increased risk of wound infection, dehiscence, post-partum hemor-
rhage, and deep vein thrombosis. Duration of labor is longer in women with obesity.
There is an increased risk of fetal distress, instrumental delivery, and shoulder
dystocia in women with obesity.

6. Economic consequences of obesity

Obesity is a risk factor for various diseases (see above). Expenses on medicine, loss
of pay due to absence from work caused by illness, reduced job opportunities, etc.,
lead to constraint on family budget [168].

6.1 Direct expenses

These include the medical expenses on obesity-related diseases. Expense on medi-
cines for hypertension, type 2 diabetes, dyslipidemia, kidney diseases, stroke; and
medical expenses incurred on hospitalization for various conditions affect the family
budget as well as the budget of the country [169].

6.2 Indirect expenses

Absence from work due to disease results in decreased pay and early mortality
affects the family income. Kjellberg et al. [170] report a 2% decrease in income, 3%
increase in social transfer payments, and a 4% increase in healthcare costs per BMI
point above 30. Thus, the indirect costs constitute the greatest proportion of total
costs associated with obesity. Lee et al. [171] have reported that women with higher
BMI are 0.33 times less likely to have service jobs, earn 9% lower monthly wages, and
are half as likely to have jobs with bonuses compared with those with normal BMIL
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7. Mental and social issues

Obesity is considered a social stigma in most societies. People with obesity are
considered responsible for their condition and are often the victims of teasing and
bullying, at all ages, from preschool through adolescence to adulthood [172-176].

7.1 Bullying

Bullying is intentional unprovoked aggression that may be physical (hitting, shov-
ing), mental (name calling, spreading rumors, social exclusion, fat shaming on social
media) or both, which causes harm to the victim. It involves an imbalance of physical
or psychological power. Weight-based victimization is more common at younger
age, but may be observed in adults also [177]. It has been noted that pre-adolescent
or adolescent boys with overweight or obesity who are stronger than their peer may
show bullying behavior, victimizing those who are physically weaker than them [178].

7.2 Binge eating

Binge eating disorder (BED) is a type of disordered eating in which the individual
consumes a relatively large amount of food in a short span of time, compared with
other people of the same age, gender, and weight. BED affects 1-3% of the general
population. People with BED are 3-6 times more likely to be overweight or obese
than persons without eating disorders [179]. Around 30% persons with BED reporta
history of childhood obesity [180].

7.3 Depression

Meta-analysis conducted by Luppino et al. [181] shows a reciprocal link between
depression and obesity. Obesity increases the risk of depression, and depression is
predictive of developing obesity. Both obesity and depression are common and both
are risk factors for cardiovascular diseases [182]. Depression is also an important
cause of premature mortality, primarily due to suicide.

8. Quality of life and mortality

Obesity and the associated diseases affect the quality of life and influence the
length of life span [183].

8.1 Decreased quality of life

Health-related quality of life encompasses physical, mental, and social health and is
influenced by factors such as socioeconomic status, culture, and environment of the per-
son concerned. The degree of obesity is inversely proportional with the quality of life, as
persons with higher BMI values are more likely to have obesity-associated diseases [184].

8.2 Risk of mortality

At least 2.8 million people die annually as a consequence of being overweight
or obese. Many complications of obesity are mentioned above that deteriorate the
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quality of life and may promote early death. Most of the deaths are a direct conse-
quence of cardiovascular problems or cancer [185].
9. Conclusion

Obesity is a condition that can compromise health and is closely associated with
various medical conditions caused by increased body mass, metabolic derangement,
psychological effects, or economic or social aspects. Awareness about the causes and
consequences of obesity should be created among the general public so that persons
with obesity may receive timely care with empathy.
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