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Preface

Interest in the frail elderly, or rather the concept of frailty, is increasing as the aging 
population continues to grow. The Latin writer Publio Terenzio Afro stated in the 
comedy Formione, “Senectus ipsa est morbus” (“old age is a disease in itself”). Of the 
opposite opinion is Cicero, who in De senectute exalts the advantages of the third age. 
Undoubtedly, frailty is a dynamic condition of increased vulnerability, reflecting 
age-related pathophysiological changes of a multisystemic nature, associated with 
an increased risk of adverse outcomes, such as institutionalization, hospitalization, 
and death. Having ascertained that frailty in the elderly is determined by a disorder 
of multiple physiological systems that interact with each other, we can make two 
basic assumptions:

1. Frailty is a physiological syndrome characterized by the reduction of functional 
reserves and the decreased resistance to stressors resulting from the cumulative 
decline of multiple physiological systems.

2. Frailty is a dynamic state that affects an individual who experiences losses in 
one or more functional domains (physical, psychic, social).

Regardless of the operational definitions, in the frail elderly, the physiological reduc-
tion of the body’s homeostatic mechanisms occurs in an accelerated and clinically 
detectable manner as pathological. Aging is accompanied by a progressive decrease 
in muscle mass known as sarcopenia, which limits autonomy and makes elderly 
people more vulnerable to external aggressions. Sarcopenia can affect 20% of the 
population between the ages of 65 and 70 and up to 40% of over-octogenarians 
and can be associated with alterations in the individual’s immunological capacity. 
The effects of poor nutrition and sarcopenia overlap, contributing to the functional 
decline of the musculoskeletal system, responsible for impaired gait and balance 
correlated with a high risk of falls and fractures.

The disease thus becomes an integral part of everyday life and the elderly feel even 
weaker, less efficient, and of great burden to the family.

The highly negative impact of multidimensional risk compromised of isolation and 
mortality confirms that fragility is the most common condition associated with 
mortality in the elderly. Low levels of activity and decreased protein and micronu-
trient intake in the diet can unleash fragility and accelerate it. For these reasons, 
it becomes crucial in clinical practice to identify, measure, and treat frailty. The 
primary objective of treatment is the preservation of maximum personal and social 
autonomy. Proper nutrition characterized by a sufficient energy intake and associ-
ated with the implementation of protein intake and targeted and constant physical 
exercise can promote the health and autonomy of the elderly and prevent serious 
complications.
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This book is an up-to-date and realistic view on physiopathological mechanisms, 
assessment tools, and rehabilitation activities of sarcopenia in frail elderly. It includes 
topical contributions from multiple disciplines to support the fundamental goals of 
extending active life and enhancing its quality.

Grazia D’Onofrio
Clinical Psychology Service,

Health Department,
Fondazione IRCCS Casa Sollievo Della Sofferenza,

San Giovanni Rotondo, Italy
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Chapter 1

Introductory Chapter: Frailty and 
Sarcopenia – Recent Evidence and 
New Perspectives
Grazia D’Onofrio

1. Introduction

Frailty refers to a state of increased vulnerability and reduced resilience to 
stressful events. Sarcopenia, on the other hand, is a syndrome characterized by 
progressive and generalized loss of musculoskeletal mass and function (muscle 
strength or physical performance), with an increased risk of adverse outcomes 
(falls, fractures, hospitalization, worse quality of life, and mortality). These two 
conditions actually present large overlaps. The sarcopenia, in fact, constitutes 
an essential component within the physical model of frailty proposed by Fried 
(involuntary weight loss, muscle weakness, slowed walking speed, reduced physi-
cal activity, exhaustion) [1]. This physical phenotype can be in turn inserted, as 
suggested by Rockwood, in a larger multidimensional model of frailty, comprising 
psychological and social aspects, multi-morbidity, and disability [2, 3].

Currently, sarcopenia is considered a true and own biological substrate of physi-
cal frailty. Loss of muscle mass typically begins in the fifth decade of life and pro-
ceeds with a falling speed of 0.8% per year [4]. Epidemiological data suggest wide 
prevalence variability, depending on population type study, gender, age, setting, 
and diagnostic criteria used. According to a recent review, comprising 5 European 
clinical trials, the prevalence of sarcopenia is 7.5% (elderly subjects in community) 
to 77.6% (patients in rehabilitation/convalescence) [5].

Sarcopenia can occur in sedentary subjects as a result of a long period of physi-
cal inactivity [6] or it can be accentuated simply by the onset of old age [7–9]. 
According to current studies, sarcopenia is not an inevitable consequence of age but 
occurs under conditions of oxidative stress, increasing over time with the formation 
of free radicals.

Regarding sarcopenia linked to the third age in the male sex, is related to the 
decrease in the production of testosterone that has anabolic effects, in particular on 
protein metabolism.

In sarcopenia, the loss of muscle mass and the consequent loss of strength are 
also accompanied by reduced muscle function. In general, sarcopenia produces a 
deterioration of physical functions and also means:

• Postural instability.

• Changes in thermoregulation (increased mortality in extreme summer or 
winter).

• Worse bone trophism (lack of stimulation of contraction).
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• Modification of glucidic homeostasis (lack of storage and consumption).

• Reduction in basal energy production.

With the passing of the years of life of a standard subject (considered as an 
examination sample) the loss of muscle mass advances in step with the loss of 
muscle strength that can be of the same or even greater proportions. At 50 years of 
age, many people have already lost about 10% of their muscle mass and at 70 years 
of age, they will have lost about 70% [10].

The effects of sarcopenia contribute to the functional decline of the musculo-
skeletal system, responsible for impaired gait and balance and a high risk of falls 
and consequent serious fractures [11]. The disease thus becomes an integral part of 
everyday life and the elderly feel even weaker, less efficient, and of great weight for 
the family.

The highly negative impact of multidimensional compromise on the risk of 
isolation and mortality confirms that frailty is the most common condition associ-
ated with mortality in the elderly. Low levels of activity and decreased protein and 
micronutrient intake in the diet can trigger and accelerate it. For these reasons in 
clinical practice, it becomes crucial to identify, measure and treat frailty.

Primary objective of care is the preservation of maximum autonomy personal 
and social. Proper nutrition characterized by a sufficient energy intake and associ-
ated with the implementation of protein intake and targeted and constant exercise 
can encourage the health conditions and autonomy of the subject elderly and 
prevent serious complications.

2. Classification and pathophysiology of sarcopenia

Sarcopenia is a frequent condition in the elderly but can also be observed in 
younger individuals. Sarcopenia can be considered “primitive” (or age-related) 
when no cause is highlighted if not aging, while it is considered “Secondary” when 
one or more causes are identifiable [8].

Muscle trophism is a consequence of a balance between anabolic stimuli (insu-
lin, exercise, amino acids, testosterone, adrenaline, growth hormone) and catabolic 
stimuli (cortisol, catecholamines, glucagon, cytokines, intense exercise) [12]. It has 
been seen in the elderly how it tends to be there, associated with the normal aging 
process, a prevalence of the catabolic state which becomes predominant if there 
are particular conditions such as comorbidity [12]. In these cases also muscle mass 
suffers effects of the general catabolic state in which the organism is found [12].

From a pathophysiological point of view, they are several factors that can 
contribute to the development of sarcopenia [13]. Among the main ones recognized 
causes include:

• reduction of the growth hormone levels and insuline-like growth  
factor (IGF-1)

• Reduced levels of sex hormones

• Neuromuscular changes

• Physical inactivity

• Malnutrition
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• Increased production of cytokines, such as Interleukin-1 (IL-1), Interleukin-6 
(IL-6), tumor necrosis factor-α (TNF-α), etc.

• Alteration of the cellular redox state.

Medicines can also play a role in a protective or causative sense in the develop-
ment of sarcopenia. Recently Campins et al. have highlighted such as statins, 
sulfonylureas and glinides have potential detrimental effects on muscle metabolism 
while Angiotensin-converting enzyme (ACE) inhibitors, incretins, allopurinol, 
formoterol, and vitamin D can play a protective role on muscle function [14].

Muscle is made up of several types of fibers muscle, such as slow fibers  
(type I) and fast fibers (type IIa and IIb). With aging and in particular, in sarco-
penic patients, there is a reduction in the diameter of the muscle fibers as well as 
a progressive loss of rapid fibers which translates, clinically, in a reduction of the 
strength, the coordination of movements, and speed of the way. This happens 
because the fibers lost in rapid muscles are replaced by slow fibers by motor neurons 
adjacent [15]. However, given the dynamic nature of the neuromuscular remodel-
ing, it has been seen as well as the muscle of the elderly subject, under certain 
stimuli, maintains the ability to respond and adapt to the new state required [16]. So 
much so that it is proved as even just the lifestyle can greatly affect the development 
muscle mass [17].

It is precisely from the reversibility of the processes that lead to sarcopenia which 
derives the possibility of a therapeutic intervention (and still more preventive) is 
effective.

3. Sarcopenia and frailty

Sarcopenia is considered a key component of frailty since, by acting on the 
reduction of mass and power muscle, causes a reduced physical performance with a 
consequent reduction in walking speed up to hypo-immobility [18].

Frailty is the most problematic expression of characterized aging from a state 
of vulnerability to any stressful event. It is due to the reduced homeostatic reserve 
of the body which follows the functional decline of different physiological systems 
over the course of life.

These changes mean that the fragile person is exposed to disproportionate 
responses to the triggering event leading to important repercussions on the plan 
socio-sanitary.

In fact, it is demonstrated how frailty is associated with an increased risk of 
negative outcomes such as falls, delirium, disability, institutionalization, hospital-
ization, and death [19].

4. Prevention and treatment

Given the multifactorial pathogenesis of sarcopenia and the lack of knowledge 
of the interactions between the various causal factors, a global and standardized 
approach to the prevention and treatment of this condition does not exist.

It is now universally accepted and recognized that following a diet balanced 
and complete (Mediterranean diet) and practicing regular physical activity have a 
fundamental role in the prevention of sarcopenia [20]. In particular, in the elderly, 
scientific evidence suggests that the protein requirement in the diet has increased 
compared to the 0.8 g/kg required for adults [21]. On the other hand, it is very 
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frequent to note a progressive reduction in protein intake with increasing age [22]. 
These cases can be considered protein integration through the administration of 
whole proteins or amino acids essential. Several studies have shown how impor-
tant not only the quantity administered but also the modality of administration 
and subdivision in the day. Amino acids have a greater ability to stimulate the 
synthesis of protein after taking orally or intravenously compared to integration 
in the whole protein diet. They are also directly usable by the body without the 
need for additional metabolic steps. However, their effects depend on the moment 
of administration: if administered before physical activity they are used mainly 
as energy substrates while if taken after exercise they mainly contribute to the 
repair muscular [23]. There are several on the market both oral formulations, such 
as tablets, sachets, or jellies for dysphagia patients than for intravenous use. The 
systemic effect of administering essential amino acids has been shown to be much 
more ample being able because it affects metabolism glycidic and insulin resis-
tance [24]. Also supplementation with vitamin D is considered important. More 
controversial is resorting to hormonal therapies, for example with estrogen and 
Dehydroepiandrosterone (DHEA) [25].

Exercise plays a key role in the prevention and treatment of sarcopenia and, a 
today, it turns out to be the most effective approach. Through the stimulus given 
by physical activity, numerous are activated at the muscular level pathways that 
converge towards anabolic pathways with positive consequences on trophism and 
on muscle quality. In particular, moderate resistance exercises intensity produces 
the greatest results in elderly and/or sarcopenic subjects [26]. Particularly intense 
exercise is not beneficial further benefits if not actually harmful.

Due to the multifaceted nature of sarcopenia, the best therapeutic approach can 
only be multidisciplinary, requiring collaboration between different figures special-
ists such as the geriatrician, the internist, the physiatrist, the general practitioner, 
the nutritionist, and physiotherapist.

In addition, the nutritional aspect is important and not only intended as a pro-
tein supplement. In fact, elderly patients often have unbalanced diet, and a nutri-
tional assessment with the advice of a specific diet is essential [21, 27]. Once you 
have all the information from anamnestic and necessary clinics comes a personal-
ized rehabilitation plan is recommended, which also takes into account any clinical 
conditions that may limit or contraindicate certain exercises. Like this, depending 
on the individual patient, they come recommended exercises to be performed in 
the gym either at home or cycles are prescribed rehabilitation to be performed on 
an outpatient basis through a specific machine. The follow-up includes a control 
outpatient periodical with a re-evaluation of physical performance to monitor the 
progress and make any changes to rehabilitation plans.

5. Conclusion

Sarcopenia is a morbid condition that involves the skeletal musculature and has 
repercussions on a multisystem level. It is a chronic but reversible process as well 
as preventable. The most effective approach consists in exercising appropriately 
supplemented by nutritional supplementation, in particular with essential amino 
acids. The hope is that efforts will be intensified in prevention, through lifestyle 
changes, and in the implementation of screening for an early diagnosis of sarcope-
nia, a very pathological condition underestimated as widespread.
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Chapter 2

Prevalence of Sarcopenia 
According to the Method Used to 
Determine Physical Performance
Carlos Sáez and Sara García-Isidoro

Abstract

Sarcopenia is currently defined as a progressive and generalized skeletal muscle 
disorder that occurs with advancing age and is associated with an increased likeli-
hood of adverse outcomes. Low levels of measures for muscle strength, muscle 
quantity, and physical performance define sarcopenia. In this chapter, we will see 
that the prevalence of a low value of physical performance will be different accord-
ing to the method used to measure this parameter, and thus, it would be foreseeable 
to think that the prevalence of sarcopenia will also be different according to the 
method used. However, despite the differences found in physical performance, we 
will show that the prevalence of sarcopenia appears to be regardless of the method 
used for physical performance, and therefore, how is it possible that having a 
significant difference in the prevalence of physical performance depending on the 
method chosen, the prevalence of sarcopenia has an almost perfect agreement? To 
answer these questions, a new simplified model is studied, defining sarcopenia as 
low muscle strength and low muscle mass and without taking physical performance 
into account. Finally, we will see that, indeed, physical performance does not seem 
to be decisive or necessary for the diagnosis of sarcopenia.

Keywords: aging, prevalence, diagnosis, sarcopenia, EWGSOP

1. Introduction

1.1 Definition of sarcopenia

The term sarcopenia comes from the Greek words “sarco,” which means 
muscle, and “penia,” which means loss, and was used for the first time by Dr. Irwin 
Rosenberg, director of the “Research Center on Aging” at Boston University (USA) 
which in 1989 stated: “the most dramatic and significant age-related physical decline 
was the loss of lean body mass” (Figure 1) [1, 2].

Thus, sarcopenia was initially defined as “normal and involuntary loss of muscle 
mass due to aging” (Rosenberg, 1989).

This definition was based on the conceptual framework that states that the 
decline in muscle strength due to aging was due to a parallel decline in muscle 
mass. However, as the field of sarcopenia progressed, studies showed that the 
loss of age-related muscle strength outweighed the loss of muscle mass [3], so a 
definition of sarcopenia based only on muscle mass was not sufficient [4]. It was 
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more precisely defined as [5]: “Decrease in muscle mass and strength due to aging” 
(Morley et al., 2001).

Since then, the number of scientific publications has increased. In those, 
among other findings, its possible causes and consequences were identified, 
and the concept of sarcopenia has evolved as different definitions emerged 
among researchers [6, 7]. Still, there was still a lack of a definition of sarcopenia 
that would be suitable both for use in research settings and in clinical practice, 
until significant progress was made in 2010 thanks to a joint publication by the 
European Working Group on Sarcopenia in Older People [8] (EWGSOP) in 
which sarcopenia was defined as: “A syndrome characterized by a gradual and 
generalized loss of skeletal muscle mass and muscle strength with the risk of causing 
adverse outcomes such as physical disability, poor quality of life and even mortality” 
( Cruz-Jentoft et al., 2010).

This new definition incorporated sarcopenia not only the loss of muscle mass 
and strength but also its consequences on physical performance [5, 9] and for many 
years, it was the definition that was used in most studies as a reference or “gold 
standard” for the diagnosis of sarcopenia [10].

In October 2016, the World Health Organization gave a new advance to this con-
dition, since through the International Classification of Diseases in its 10th revision 
(ICD-10-CM) recognized sarcopenia not as a geriatric syndrome but as a disease 
(muscular), with the code M62.84 [11, 12]. This forced it to revise and update its 
definition again.

In the 10 years passed since the initial work of the European group in 2010, 
researchers and clinicians have explored many aspects of sarcopenia, and expert 
groups around the world have published complementary definitions of sarco-
penia [13–15]. However, the more recent definition and the current one are the 
one proposed by this same group [16–21] who, in a review carried out in 2019, 
defined sarcopenia as “A progressive and generalized skeletal muscle disorder that 

Figure 1. 
Loss of muscle mass and strength due to aging (modified from: ADAM©, atlas of human anatomy. Todd R. 
Olson, 1997).
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occurs with aging and is associated with a greater probability of adverse outcomes 
such as falls, fractures, physical disability and even mortality” (Cruz-Jentoft  
et al., 2019).

Despite all these advances, international expert groups from around the world 
still do not reach a consensus on a definition of sarcopenia that is widely accepted, 
although they have agreed on the mechanisms and clinical implications of sarco-
penia [22, 23] and especially in the fact that muscle mass, muscle strength, and 
physical performance are important components for the diagnosis of this disease 
and that therefore, all these parameters must be measured [4].

1.2 Clinical consequences of sarcopenia

The clinical consequences of sarcopenia are basically due to loss of strength 
and muscle mass, not only in terms of functional disabilities, fractures, 
hospitalizations, and increased mortality [24], but also in quality of life [25].

In terms of human health, sarcopenia increases the risk of falls and fractures 
[26, 27] and impairs the ability to carry out activities of daily living [28]; it is asso-
ciated with heart disease [29], respiratory disease [15], and cognitive impairment 
[30]; and leads to mobility disorders [13]; it contributes to a decrease in the quality 
of life [31] and ultimately death [26].

1.3 Sarcopenia categories

Sarcopenia is a disease with many causes and variable outcomes. In some people, 
a clear and unique cause of sarcopenia can be identified, largely attributable to aging, 
but in other cases, other causes can be identified. In this way, defining the sarcopenia 
categories as primary and secondary can be useful in clinical practice [8, 16].

Sarcopenia can be considered “primary” (or age-related) when there is no obvi-
ous cause other than aging. Sarcopenia is considered “secondary” when there are 
one or more obvious causes other than aging [16].

Sarcopenia staging is a concept that can help to guide its clinical treatment, in 
this way it can be categorized according to its severity in the following states [16]:

• The “probable sarcopenia” stage is characterized by low muscle strength with no 
effects on muscle mass or physical performance [16].

• The “possible sarcopenia” stage is characterized by low muscle strength or poor 
physical performance (normal muscle mass) [32].

• The “presarcopenia” stage is characterized by low muscle mass with no effects 
on muscle strength or physical performance [8].

• The “sarcopenia” stage is characterized by low muscle mass with low muscle 
strength or poor physical performance [8, 32, 33]. However, according to other 
authors this condition can also occur with low muscle mass and low muscle 
strength (without taking into account physical performance) or with low 
muscle mass and poor physical performance (without taking into account 
muscle strength) [13, 34].

• “Severe sarcopenia” or “severe” is the stage that is identified when the three 
parameters that determine sarcopenia are low: muscle mass, muscle strength, 
and physical performance [8, 16, 32].
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Identifying the stages of sarcopenia helps in selecting treatments and setting 
appropriate recovery goals. Staging can also support the design of research studies 
that focus on a specific stage or changes in stages over time [8].

1.4  Parameters that define sarcopenia and variables  
that measure these parameters

The parameters that define sarcopenia are the amount of muscle and its func-
tion. The measurable variables are muscle mass, muscle strength, and physical 
performance [8].

Muscle mass can be expressed as total body skeletal muscle mass or as appendicular 
skeletal muscle mass, which is the sum of skeletal muscle mass of arms and legs [16].

Muscle strength refers to the amount of force that a muscle can produce with a 
single maximal effort [35].

The concept of the physical performance was defined for the first time to 
evaluate objectively and from a clinical point of view, how an individual performed 
different activities of daily living or physical tasks, as opposed to scales based on 
asking questions about the ability to perform these task [35]. However, since then, 
the concept of physical performance has evolved, and today, it is mainly related 
to ambulation and transfers [35], forming part of the most current definitions of 
sarcopenia.

The most up-to-date definition of physical performance was provided by 
Beaudart et al. [35] in 2019, who defined it as: “A function of the whole body objec-
tively related to locomotion” (Beaudart et al., 2019).

1.5 Measurement of sarcopenia parameters

Currently, there are a wide variety of tests and tools available to measure the param-
eters that define sarcopenia [22, 36, 37], cost, availability, and ease of use, determine 
whether they are better adapted for clinical practice or more useful for research [8].

The selection of tools may depend on the patient (disability, mobility), access to 
technical resources in the setting where the tests are performed (community, clinic, 
hospital, or research center), or the purpose of the tests (monitoring of progression 
or follow-up of rehabilitation and recovery) [16].

Accurate measurement of muscle mass is a fundamental step to detect cases of 
patients with sarcopenia, and various techniques can be used for its quantification, 
but choosing one of them is not easy since all existing methods have advantages and 
disadvantages [38].

Nuclear magnetic resonance, computerized axial tomography, dual-energy 
X-ray absorptiometry, bioelectrical impedance analysis, determination of urinary 
creatinine excretion, and anthropometry are available [19].

There are few well-validated techniques to measure muscle strength, some 
assess upper extremity strength, and others lower extremity, and although the 
latter are more important for gait and physical function, and the two have been 
shown to be highly correlated [35]. Again, cost, availability, and ease of use deter-
mine whether techniques are best suited for clinical practice or useful for research 
purposes [8].

For the assessment of physical performance, there are a wide variety of tests. 
Short-distance walking tests can be used, such as the 2.4, 4, 6 m, or up to 10 m, 
or long-distance walking tests such as the 400-meter walk test, or the 6-minute 
walk test.

Other tests of physical performance are also the time up and go test (TUG), and 
the short physical performance battery (SPPB) [23].
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2.  Prevalence of sarcopenia according to the method used to determine 
physical performance

2.1 Prevalence of low physical performance

In the same definition of sarcopenia suggested by the European working 
group of Cruz-Jentoft et al. in 2010 (EWGSOP) [8], the prevalence of sarcopenia 
is already expected to be highly dependent on the method used to measure the 
diagnostic parameters of this disease and although there are several studies that 
have used the model proposed by the EWGSOP to determine the prevalence of 
sarcopenia and at least one from Beaudart et al. from 2015 [39], in which, using two 
different methods for both muscle mass and strength determination, significant 
differences were found in the prevalence of sarcopenia, as far as it has been found 
only the study of Sáez et al. de 2020 [40] compared the prevalence of sarcopenia, 
using three different methods for assessing physical performance, the usual gain 
speed (UGS), the time up and go test (TUG), and the short physical performance 
battery (SPPB), with the cut-off points recommended by the EWGSOP (Table 1).

According to this study, the prevalence of a low level of physical performance 
evaluated by these three different measurement methods, ranged globally, between 
20.9 and 45.9%, increasing to 68.8% in the case of women [40]. The highest 
prevalence of low physical performance was obtained when evaluated by the UGS 
test, and it was lower for the TUG test (Figure 2). The prevalence of low physical 
performance was always higher in women than in men for any of the methods used 
for its determination [41]. These results are consistent with the fact that the average 
results of all physical performance tests were also lower for women [40].

Regarding the association and the concordance between the three tests used to 
assess physical performance, a significant association was found for all of them, 
with a low concordance, the overall concordance being between 71.1 and 78.6% [41]. 
These results show that the three tests used to determine physical performance are 
not interchangeable with each other and that the choice of one or the other would 
give significantly different results in the prevalence of physical performance [40].

2.2 Prevalence sarcopenia

According to these results of the study by Sáez et al. [40] that show a discor-
dance in the prevalence of physical performance, and while this parameter is used 
for the diagnosis of sarcopenia, in the same way, we could expect discordant results 
on the prevalence of sarcopenia depending on the method used to determine physi-
cal performance, even applying the same diagnostic algorithm for all of them and 
defining sarcopenia as low muscle mass and low muscle function (muscle strength 
or physical performance) (Table 2) [8].

However, the results found showed similar sarcopenia prevalence values regard-
less of the method used for physical performance (6.0 vs. 63.9 vs. 67.0%) (Table 3) 
and with a concordance almost perfect [40].

Physical performance test Cut points

Usual gain speed test (UGS) ≤0.8 m/s

Short physical performance battery (SPPB) ≤8 points

Up-and-go test (TUG) ≥20 seconds

Table 1. 
Physical performance tests and cut points recommended by the EWGSOP.
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Physical performance test Prevalence of sarcopenia

Total (%) Men (%) Women (%)

Usual gain speed test (UGS) 66.0 55.2 70.6

Short physical performance battery (SPPB) 63.9 55.2 67.6

Up-and-go test (TUG) 67.0 55.2 72.1

Table 3. 
Sarcopenia prevalence comparing three different methods for the determination of physical performance (Sáez 
et al., 2020).

Muscle mass Muscle function

⇓ AND Muscle straight ⇓

OR

Physical performance

Table 2. 
Criteria for the diagnosis of sarcopenia according to the EWGSOP.

Figure 2. 
Prevalence of physical performance using three different methods: Usual gait speed (UGS); get-up-go test 
(TUG); short physical performance battery (SPPB) (Sáez et al., 2020).
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That is, an excellent concordance was found between the prevalence of sarcopenia 
regardless of the method used to assess physical performance, but at the same time 
with low concordance between the methods used to determine this parameter [40].

This finding allows us to hypothesize that possibly the diagnostic model used could 
not be dependent on the method used to determine physical performance and that 
therefore, the choice of one or another measurement technique for this parameter 
would not affect or influence the prevalence and the final diagnosis of sarcopenia [41].

These prevalence results are what would be expected and would be consistent with 
the definition of Cruz-Jentoft et al. of 2010 [8], suggesting that it is possible to choose 
any of the three methods of physical performance proposed by this group, which should 
be equally valid, and therefore give similar results for the prevalence of sarcopenia.

However, at this point, the following reflection could be made: How is it possible 
that there is a significant difference in the prevalence of physical performance depending 
on the method chosen and a low concordance between the three methods used for its deter-
mination, and that the prevalence of sarcopenia has a near-perfect match? Could it be that 
physical performance was not a determining parameter for the diagnosis of sarcopenia?

To answer these questions, it was proposed to apply a new model (Table 4), 
defining sarcopenia as low muscle strength plus low muscle mass and without taking 
physical performance into account, and comparing and assessing the concordance of 
the prevalence between this new algorithm and the one proposed by the EWGSOP in 
2010 [40] for three different methods of assessing physical performance.

The prevalence of sarcopenia found according to this new algorithm was 63.9%, 
the association with the previous results, where physical performance was taken 
into account, was significant, and the agreement between them was excellent 
(Figure 3) [41].

These findings would indicate that indeed, being the agreement between the 
four cases almost perfect, physical performance does not seem to be determining or 
necessary for the diagnosis of sarcopenia [41].

The justification for these results is that for at least 95.4% of the cases in which 
the diagnosis is sarcopenia, muscle mass and strength have a low value, and accord-
ing to the definition used for the diagnosis of sarcopenia (Table 2), this condition 
would be sufficient to confirm a positive case. In this way, the value, whether 
normal or low, of physical performance would no longer change the result of the 
diagnosis, and therefore for this 95.4% of cases, the method used to determine this 
parameter would no longer be relevant.

That is, most of the patients with low values of physical performance for any of 
the three tests (more than 82.4%) also had low values of muscle mass and strength 
[41], and thus when determining sarcopenia, the assessment of physical perfor-
mance was indifferent.

Therefore, if the objectives were to find sarcopenia cases in a chosen population, 
a new diagnostic model, where sarcopenia was defined only by a low value of muscle 
strength plus a low value of muscle mass without having to assess physical perfor-
mance [40], would be sufficient, to obtain the same results as with the model proposed 
by Cruz-Jentoft et al. in 2010 [8] where physical performance was taken into account.

The results found are also consistent and could in this way reinforce the proposal 
made by other authors such as Studenski et al. in 2014 [14] or Cruz-Jentoft et al. in 
2019 [16] who proposed new diagnostic models, where sarcopenia was defined and 

Muscle mass Muscle straight

⇓ AND ⇓

Table 4. 
New criteria proposal for the diagnosis of sarcopenia (Sáez et al., 2020).
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determined only taking into account these two properties of the muscle (strength 
and mass), without taking into account physical performance.

2.2.1 Older than 80 years

When the prevalence of sarcopenia was analyzed according to these four 
options, three taking into account physical performance and another without taking 
it into account, but for patients over 80 years of age, the results were even more con-
clusive, since the prevalence was the same in all cases (73.2%) and the agreement 
between them was perfect [41].

These results could mean two important things, first that sarcopenia is highly 
prevalent among the population over 65 years of age [42], but it could also mean that 
by increasing the age range from which sarcopenia is assessed, and the differences 
in the prevalence of this disease are reduced until identical results are found regard-
less of the method which is chosen to assess physical performance. This statement is 
consistent with that of other authors such as Petermann-Rocha et al. [43] who in a 2019 
study in which they compared the prevalence between two diagnostic models, stated 
that the differences between the different results found in prevalence also decreased 
with increasing the age range considered. In other words, the greater the age range of 
the population studied, the less relevant it is to measure physical performance for the 
detection of cases of sarcopenia.

It has been found that concordance between these two diagnostic models 
remains perfect for patients 77 years of age or older and excellent for patients 
75 years of age or older [41].

Figure 3. 
Prevalence of sarcopenia using three different methods: Usual gait speed (UGS); get-up-go test (TUG); short 
physical performance battery (SPPB) and without physical performance (Sáez et al., 2020).
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2.2.2 Sarcopenia staging

If the staging of sarcopenia in its different categories is taken into account 
(presarcopenia, sarcopenia, or severe sarcopenia), according to the model proposed 
by the EWGSOP in 2010, the results show that the prevalence of the state of presar-
copenia and sarcopenia was higher for the physical performance measured with the 
TUG test, but for the severe sarcopenia state, the prevalence is higher with the UGS 
test [41].

Regarding the prevalence of absence of sarcopenia, it is observed that it is the 
same regardless of the method used for physical performance [41]. This is con-
sistent since according to the EWGSOP definition, the absence of sarcopenia is 
determined only by a normal value of muscle mass, regardless of the value of the 
other two diagnostic parameters.

Regarding the association and concordance between the prevalence of sarco-
penia states according to the method used for physical performance, a significant 
association was found and a global concordance percentage was greater than 76.0% 
in all cases, being the best 86.6% between the TUG and SPPB tests [41].

As mentioned above, a low concordance was found between the methods 
used to assess physical performance, and although on the other hand, it seems 
that the prevalence of sarcopenia would be independent of the method used to 
assess physical performance when assessing sarcopenia according to its states, it is 
observed that, although for the case of absence of sarcopenia, there are no varia-
tions in prevalence (17.5% for the three methods), for the state of presarcopenia, 
the greatest variation was 3.1% between the TUG test and the SPPB test, but these 
differences increased up to 16.5% points for the case of the severe sarcopenia state, 
between the UGS test and the TUG test [41]. The TUG test is the one that shows 
the greatest difference with respect to the other two in both sarcopenia and severe 
sarcopenia states.

These differences are due, on the one hand, to the fact that, as already men-
tioned, the three physical performance tests are not concordant with each other, and 
although it was found that this aspect did not influence the prevalence of sarco-
penia, however, the severity of sarcopenia is influenced by physical performance, 
since according to the EWGSOP definition, the three diagnostic parameters must be 
low (Table 2).

When the prevalence of a low value of physical performance was assessed, 
precisely the TUG test was the one with the lowest prevalence (20.9%) with a 
difference of 25.0% points compared to the UGS test and 16.6% points regarding 
the SPPB, which is why the lowest value of severe sarcopenia was also obtained with 
this test [41].

On the other hand, it was the UGS test that had the highest prevalence of a low 
value for physical performance, which is why it was also the test that obtained the 
highest prevalence of severe sarcopenia. In fact, the higher the prevalence of the low 
value of physical performance, the higher the prevalence of severe sarcopenia [41].

This result was consistent with the definition of severe sarcopenia, for which this 
state only occurred with the low values of the three diagnostic parameters of this 
disease (Table 2), and therefore, physical performance is a necessary parameter if 
we want to determine the severity of sarcopenia.

3. Conclusions

The prevalence of sarcopenia obtained by applying the diagnostic algorithm 
proposed by the EWGSOP in 2010 [8] was very similar regardless of the method, 
which was used to determine physical performance. However, we also found that 
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the prevalence of poor physical performance was dependent on the method used 
to measure it. The apparent incongruity between these two conclusions could be 
explained by a third; that is, physical performance might not be a necessary param-
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sarcopenia. Finally, we conclude that the results found are consistent and reinforce 
the proposal made by the EWGSOP in 2018 [16] where physical performance is no 
longer a necessary parameter for determining sarcopenia, although it could be to 
determine the severity of this disease.
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Chapter 3

Sarcopenia in Patients with  
End-Stage Cardiac Failure 
Requiring Ventricular Assist 
Device or Heart Transplantation
Norihide Fukushima

Abstract

Sarcopenia has been defined as the age-related reduced skeletal muscle mass, 
strength, and physical capacity and is frequently associated with serious complica-
tions in patients with heart failure (HF). However, when HF progressed to end-
stage HF requiring advanced therapies, such as heart transplantation (HTx) and 
implantation of left ventricular assist device (LVAD), an even higher prevalence of 
sarcopenia has been reported in younger patients with end-stage HF than elderly 
patients with less advanced HF. Many literatures have reported that sarcopenia is 
greatly associated with high rates of morbidity and mortality after HTx and LVAD 
implantation. Therefore, therapeutic interventions to prevent and reverse sarcope-
nia, such as cardiac rehabilitation and nutrition supplementation, are important in 
patients with end-stage HF prior to HTx and LVAD implantation. Although moder-
ate or severe sarcopenia is a contraindication for HTx, the patients who can recover 
from sarcopenia after LVAD implantation would be considered eligible for HTx. 
Then, therapeutic options to reverse sarcopenia in patients supported with LVAD 
are also important to improve patient prognosis after LVAD implantation. In this 
review, the impacts of sarcopenia on prognosis after LVAD implantation and HTx 
and vice versa were summarized and therapeutic interventions to reverse sarcope-
nia before and after LVAD implantation are discussed.

Keywords: sarcopenia, end-stage heart failure, heart transplantation,  
left ventricular assist device, cardiac rehabilitation, nutrition supplementation

1. Introduction

Heart failure (HF) is a general acute and chronic disease expressing the 
advanced stage of various types of heart disease, and its prevalence is increasing 
year by year [1]. As the risk of HF increases with age [2], elderly patients occupy 
more than four-fifth of all patients with HF. HF may reduce organ and physical 
functional capacity and their daily life performance in patients. HF greatly affects 
physical function as well as body composition of skeletal muscle, which is greatly 
correlated with high rates of morbidity, hospitalization, and mortality [3, 4].

Sarcopenia is a syndrome characterized by general skeletal muscle mass loss and 
strength, which is related to poor outcomes and high mortality in patients with a 
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variety of underlying diseases [5]. Although sarcopenia has been first defined as an 
age-related syndrome, it was also frequently associated with serious complications 
in even younger patients with advanced stage of HF [6, 7]. The alteration in the 
skeletal muscle system in patients with HF plays the main role in developing many 
signs and symptoms related to HF [8, 9]. Then, sarcopenia may significantly greatly 
attribute to the poor prognosis in patients with HF than in those of the same age 
without HF [8]. The rate of sarcopenia in a patient with HF is reported to be higher 
at 19.5% than that in healthy individuals of the same age [10]. Although sarcopenia 
is more frequently associated with increasing age, an even higher prevalence of 47% 
has been reported in patients younger than 55 years with dilated cardiomyopathy 
[11]. Therefore, the patient population with end-stage HF requiring ventricular 
assist device (VAD) or heart transplantation (HTx) may be different from those 
with less advanced HF.

Even in younger patients with end-stage HF, metabolic abnormalities related 
to sarcopenia develop and affect renal and hepatic function [11]. Skeletal muscle, 
which is the greatest reservoir of protein, is easily wasted in catabolic illness 
including end-stage HF. However, therapeutic interventions to reverse progressive 
local and systemic catabolism in advanced HF are limited. Growth hormone (GH) 
administration and aerobic exercise rehabilitation are known to increase insulin-
like growth factor (IGF)-1 level in the blood and increase skeletal muscle volume in 
HF [12–14]. VAD implantation for bridge-to-transplantation (BTT) and destination 
therapy (DT) improves local and systemic metabolism probably due to corrected 
hemodynamics and tissue perfusion in patients with end-stage HF [15, 16]. Multiple 
literatures have reported that advanced strategies for HF, such as VAD implantation 
and HTx, provide optimal hemodynamic support and improve local and systemic 
metabolism, resulting in improvement of other organ function as well as physical 
capacity [17, 18].

Due to the great development in the field of left VAD (LVAD) in the past two 
decades, patients referred to this therapy are greatly increased. Although great 
advances in methodology and increased clinical experience in LVAD therapy 
had improved patient survival with end-stage HF over time, a certain amount of 
patients still has a high prevalence of mortality, comorbidity, and hospitalization 
after LVAD implantation, even in clinical trial settings [19]. As patients for DT are 
older and have more commodities before LVAD implantation than those for BTT, 
the use of LVAD for DT recently approved clinically worldwide may lead to higher 
mortality and morbidity in patients implanted with LVAD.

In this article, we review the impacts of both VAD and HTx on variables associ-
ated with sarcopenia as well as malnutrition in patients with end-stage HF and vice 
versa and discuss therapeutic interventions to reverse sarcopenia before and after 
LVAD implantation.

2. Diagnosis of sarcopenia

According to the consensus on definition and diagnosis by the European 
Working Group on Sarcopenia in Older People (EWGSOP), sarcopenia is defined by 
the presence of both reduced skeletal muscle mass and function as well as reduced 
physical performance (Figure 1) [20]. Skeletal muscle strength is assessed by 
handgrip strength (HGS), whereas physical performance is assessed by usual gait 
speed. In the presence of reduced skeletal muscle function, defined by a reduced 
gait speed (<0.8 m/s) and/or a reduced HGS (<26–30 kg for men and <16–20 kg 
for women), the diagnosis requires verification of reduced skeletal muscle mass. 
Currently, magnetic resonance imaging (MRI) and computed tomography (CT) 
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have been the gold standard to accurately measure the mass of a skeletal muscle as 
well as its density and fatty infiltration.

The HGS is an easy and simple tool but suffers from that peripheral muscle 
strength and function might improve after LVAD implantation and HTx as previ-
ously described [21, 22]. To resolve these limitations, investigators in the field 
of mechanical circulatory support and HTx have begun to estimate the grade of 
sarcopenia by evaluating the mass of skeletal muscles, such as psoas and pectoralis 
muscles with clinical prognosis. Positive results have been reported in patients 
undergoing invasive thoracic and abdominal surgeries [23–26] as well as in those 
with advanced HF [27–29]. CT scans provide precise identification and quantifica-
tion of individual skeletal muscle and fat tissue components [30–32].

Creatinine excretion rate index (CER index) in 24-hour urine collection is an 
easily measurable and less invasive classic marker of total-body skeletal muscle 
mass [33] and a reliable biomarker even in patients with advanced HF [34, 35]. 
Iwasaki et al. [36] reported that the CER index in patients with continuous-flow 
implantable LVAD (CF-LVAD) was significantly correlated with psoas and pectora-
lis muscles mass measured by CT scan.

3.  Impact of sarcopenia at pre-LVAD on outcome after LVAD implantation

Clinical studies of sarcopenia in patients with advanced heart failure referred for 
left ventricular assist device implantation or heart transplantation is summarized in 
(Table 1).

3.1 Skeletal muscle function

Chung et al. [21] examined the correlation of HGS with outcomes after LVAD 
implantation, showing that HGS less than 25% of body weight was related to higher 

Figure 1. 
Sarcopenia assessment algorithm.
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mortality. Khawaja et al. [22] reported that patients with advanced HF had signifi-
cantly lower HGS prior to CF-LVAD implantation compared to healthy controls and 
that the average HGS increased greater than 25% after 6 months after CF-LVAD 
implantation.

3.2 Skeletal muscle mass measurement

Heberton et al. [37] first introduced the assessment of skeletal muscle mass in 
the field of LVAD therapy and reported that sarcopenia by measuring psoas muscle 
area at L3-L4 vertebrae was significantly related to longer hospital stay and higher 
mortality after implantation of HeartMate II LVAD. On the other hand, Teigen et al. 
reported that pectoralis muscle mass and tissue quality by measuring Hounsfield 
units (PHUm) and size-indexed to body surface area were highly associated 
with post-LVAD mortality and surpassed any other variables in the University of 
Minnesota dataset [32]. This group further added an external dataset to create a 
user-friendly, multivariable post-LVAD mortality-prediction score, the so-called 
the Minnesota Pectoralis Risk Score (MPRS) [39]. This final model included PHUm, 
pectoralis muscle index (PMI), African American race, serum creatinine and total 
bilirubin, body mass index (BMI), BTT or DT, and the presence or absence of 
contrast. The estimated 1-year survival for patients after LVAD implantation by 
MPRS risk category (tertiles) was the following—low, medium, and high risks were 
95, 79, and 58%, respectively (P < 0.0001 by log-rank test). These skeletal muscle 
measures appear to add important prognostic value to pre-LVAD risk assessment 
[39]. A further study by them [41] described that INTERMACS 3 and four patients 
with the highest PMI had the best survival after CF-LVAD implantation. Tsuji et 
al. [40] also reported that muscle wasting defined by skeletal muscle index on CT 
scan at L3 level was also associated with post-LVAD mortality. From these findings, 
CT scan quantification of sarcopenia may help us to identify the optimal timing of 
LVAD implantation.

3.3 Creatinine excretion rate index

Iwasaki et al. [36] reported that reduced CER index was significantly related to a 
higher rate of mortality and intracranial hemorrhage after CF-LVAD implantation. 
Preoperative reduced CER index might be an independent predictor of intracranial 
hemorrhage after CF-LVAD implantation.

4.  Impact of sarcopenia as well as malnutrition at pre-HTx on outcome 
after HTx

4.1 Sarcopenia and indication for HTx

The donor heart shortage restricts HTx to a small portion of potential recipi-
ents. Moreover, serious complications accompanied with patients with end-stage 
HF, such as sarcopenia, systemic infection, and irreversible renal and hepatic 
dysfunction, more greatly affect patient prognosis after HTx than other cardiac 
surgery, because HTx recipients need immunosuppressive medication to prevent 
allograft rejection. Therefore, HTx is a treatment option for a few carefully selected 
patients with end-stage HF. The number of patients above the age of 60 years being 
transplanted has increased over the past 10 years. And recent post-HTx survival 
in patients aged between 60 and 69 years has been satisfactory. However, 5-year 
mortality in those aged 70 years and older are significantly poorer compared with 
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those aged between 18 and 59 years. Therefore, recipients aged older than 70 years 
are less acutely ill, have fewer comorbidities, and are less likely to have durable 
LVAD support for BTT [42]. Therefore, usually moderate or severe sarcopenia, as 
well as frailty, might be a contraindication for HTx. However, LVAD implantation in 
patients with frailty could be applicable as a bridge to candidacy. Patients who can 
recover from a frail state after LVAD implantation presumably after a certain period 
of physical rehabilitation and nutrition supplementation would then be considered 
eligible for HTx. This means that a sarcopenia patient who is firstly likely to survive 
LVAD implantation and secondly to reverse his/her frailty or sarcopenia can be a 
potential candidate for HTx [43]. For these reasons, there has been no published 
data concerning the impacts of real sarcopenia on outcomes after HTx.

4.2  Impact of malnutrition and physical rehabilitation at before and after HTx 
on exercise capacity post-HTx

Although previous studies have shown that the recipients exhibit improvements 
in exercise capacity and physical performance after HTx, the recipients often have 
a lower exercise capacity than normal healthy controls of the same age and gender 
soon and long after HTx.

Yanase et al. [44] investigated the effects of the recipient and donor predictive 
risk factors on the patient’s exercise capacity early after HTx. In this study, 3-month 
rehabilitation exercise training significantly increased peak VO2 irrespective of 
the main recipient or donor risk predictive factors on post-HTx survival, which 
included paracorporeal or implantable LVAD, and several marginal donor heart 
risk factors. Only younger recipient age and better several nutrition factors, such as 
higher choline esterase and higher blood lymphocyte count, at the entry of 3-month 
exercise program were significantly associated with higher peak VO2 at the entry 
and the end of the 3-month training program. These data suggested that nutri-
tion management and rehabilitation at the bedside prior to starting the exercise 
training program play a significant role in increasing peak VO2 at the entry of the 
 rehabilitation program.

5. Impact of LVAD implantation on sarcopenia

As mentioned earlier, many investigators have shown that sarcopenia was 
associated with increased comorbidity and mortality after implantation of LVAD. 
On the other hand, only limited studies concerning the impact of LVAD implanta-
tion on sarcopenia have been available. Several investigators reported improvement 
of HGS after implantation of CF-LVAD [21, 22]. Although it has been reported that 
frailty prior to BTT LVAD implantation is associated with an increased post-LVAD 
morbidity and mortality, it has also been reported that frailty is reversible in most 
patients who survive the perioperative period [45, 46]. Maurer et al. [47] assessed 
reversal of frailty in 29 elderly frail LVAD recipients with a mean age of 71 years. 
Although frailty improved overall, 53% of the patients remained frail 6 months 
after LVAD implantation. These data suggested that frailty may be less reversible in 
aged patients supported with LVAD.

Multiple studies have shown that implantation of LVAD not only provides 
adequate hemodynamic support but also improves renal and liver function and 
psychical capacity especially after receiving physical rehabilitation. However, there 
are multifactorial limitations to exercise in patients supported with LVAD [38]. 
Although LVAD implantation improves hemodynamics in end-stage HF patients 
at rest, the device is unable to provide full circulatory support during exercise, 
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especially in patients with CF-LVAD. Thus, significant limitations in exercise capac-
ity persist soon and long after CF-LVAD implantation. Maximizing LV unloading 
and improving native myocardial function in association with an automated 
increase in LVAD speed could provide an increase in maximal exercise capacity 
in patients with the old-type pulsatile implantable LVAD. However, CF-LVAD can 
provide only partial improvement in maximal exercise capacity. Further studies are 
needed regarding the role of RV function, recovery of native cardiac function, the 
role of rehabilitation and nutrition intervention, changes in skeletal muscle func-
tion after CF-LVAD, and their contribution to endurance exercise [38].

6. Impact of HTx on sarcopenia

Fernandes et al. [48] investigated the impact of HTx on the recovery of periph-
eral and respiratory muscle mass and strength in patients with congestive HF. They 
showed significant decreases in a cross-sectional area of the bilateral psoas major 
muscle (CSAbPm), a bilateral HGS, and the maximum inspiratory and expiratory 
pressure (MIP and MEP) in patients on the waiting list compared with the healthy 
controls with normal cardiac function. They also found significant increases during 
waiting for HTx to 6- and 18-month post-HTx in the CSAbPm (1305.4 vs. 1458.1 vs. 
1431.3 mm2, respectively), bilateral HGS (27.3 vs. 30.2 vs. 34.7 kg/f, respectively), 
MIP (59.5 vs. 85.5 vs. 90.9 cmH2O, respectively), and MEP (79.5 vs. 93.2 vs. 101.8 
cmH2O, respectively). These results revealed that patients recovered peripheral and 
respiratory muscle mass and strength early after HTx. However, Schaufelberger  
et al. [49] demonstrated that intrinsic abnormalities in skeletal muscle found before 
HTx remained 6–9 months after HTx and might contribute to a reduced exercise 
capacity and muscle strength in these patients, in contrast to the former paper’s 
findings.

7. Management of sarcopenia after LVAD implantation

As mentioned earlier, sarcopenia is a strong negative predictor on outcome after 
LVAD implantation and HTx. Therefore, sarcopenia is one of the main therapeutic 
targets in patients with end-stage HF referred to LVAD implantation and HTx to 
avoid related comorbidity and to improve prognosis post-LVAD implantation and 
post-HTx. Although moderate or severe sarcopenia as well as frailty is a contrain-
dication for HTx, patients who can reverse frail after LVAD implantation would be 
considered eligible for HTx. Therefore, to further improve outcomes after LVAD 
implantation or HTx, therapeutic management for sarcopenia should be established 
in patients supported with LVAD as well as those prior to LVAD implantation. As 
the management of sarcopenia in patients prior to LVAD implantation might be the 
same in medically treated patients with end-stage HF and has been previously well 
discussed in many previous literatures, those for patients supported with CF-LVAD 
will be discussed in this review.

According to the pathophysiological factors involved in the pathogenesis of 
sarcopenia, therapeutic approaches for sarcopenia are summarized in Figure 2. 
Although Khawaja et al. [22] reported that CF-LVAD implantation corrects  
GH/IGF-1 signaling and improves muscle structure and function, only limited data 
were available regarding anti-inflammation strategies and hormonal therapies, 
such as GF/IGF-1 and ghrelin administration for sarcopenia in patients supported 
with LVAD. Therefore, exercise training and nutrition supplementation in patients 
supported with LVAD are reviewed in this review.
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7.1 Exercise training (rehabilitation) in LVAD patients

Generally, HTx or LVAD recipients attend a cardiac rehabilitation program to 
promote recovery after surgery. Such rehabilitation programs consist of standardized 
sessions of physical exercise training, with the same intensity and duration regardless 
of HTx or LVAD implantation. However, surgical indication and method, individual 
medical and surgical therapies, and possible adverse events after surgery might affect 
the efficacy of cardiac rehabilitation differently in HTx and LVAD patients. If this 
occurs, rehabilitation programs better tailored to LVAD patients should be designed.

Yanase et al. [44] reported that short term, such as 3-month rehabilitation  
program, could significantly increase post-HTx exercise capacity irrespective of 
age, gender, type of LVAD, and underlying disease. But, even in those patients, 
better several nutrition factors at exercise program admission were significantly 
associated with peak VO2 at the end of the exercise program. Therefore, nutrition 
supplementation during LVAD support might be also essential to improve exercise 
capacity post-HTx as well as exercise training. However, there are no guidelines 
regarding the best way to cardiac exercise prescription, especially for CF-LVAD 
patients. As a result, LVAD patients currently undergo rehabilitation protocols 
designed for other types of cardiovascular diseases or cardiac surgeries.

As patients receiving LVAD are deeply deconditioned due to advanced HF, it 
is recommended that patients with sarcopenia as well as frailty are admitted to an 
in-patient rehabilitation program soon after implanting LVAD. Alsara et al. [50] 
reviewed the literatures regarding cardiac rehabilitation in patients supported 
with LVAD and concluded that exercise training is safe and recommended early 
mobilization between 7 and 10 days post-LVAD and treadmill exercise training 
beginning at 21 days post-LVAD. However, there is very few information regarding 
the improvements derived from exercise training in LVAD patients.

Currently, pulsatile-flow LVADs (PF-LVADs) are seldom used as durable support 
in patients with end-stage HF, but they have a pneumatically/electrically driven 
ventricle operating in the complete fill/ and empty mode. Therefore, cardiac output 
during exercise will increase by an automatic increase in pump rate responding to 
an increase in left ventricular (LV) preload. PF-LVADs work independently from LV 
afterload and produce a maximal cardiac output of 10 liters/min with a pump rate 

Figure 2. 
Sarcopenia pathogenesis and therapeutic approaches: GH growth hormone, IGF-1 insulin-like growth factor-1.
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of 120 beats/min [51]. On the other hand, the CF-LVAD has no inflow or outflow 
valves, unloads the ventricle in both systole and diastole, and operates at a fixed 
pump speed. The two types of CF-LVADs are axial and centrifugal. Pump flow 
changes according to the differential pressure between the inflow and outflow can-
nulas. The sensitivity of axial and centrifugal pumps to changes in preload is simi-
lar, whereas centrifugal pumps are more sensitive to afterload [52]. During exercise, 
pump flow increases in the CF-LVAD according to changes in LV preload and 
afterload. For example, RV failure decreases LV preload and high systemic pressure 
decreases LV afterload, resulting in reduced pump flow. Therefore, CF-LVAD can-
not fully increase pump flow with exercise, whereas PF-LVAD can do so.

Haft et al. [53] reported the differences in the exercise hemodynamic responses 
between PF-LVAD and CF-LVAD. Peak VO2 as well as resting central venous 
pressure, mean arterial pressure, and pulmonary capillary wedge pressure were 
similar and pump flow increased peak VO2 in both groups. However, the increase in 
pump flow was approximately 20% greater in the PF-LVAD than in the CF-LVAD. 
Moreover, the significance of this finding is unclear because the pump flow through 
for the CF-LVAD is not directly measured but only estimated. Martina et al. [54] 
reported that patients supported with CF-LVAD showed a mean peak VO2 of 
18 mL/kg/min (55% of predicted) and a mean total maximum cardiac output of 
8.5 liters/min. From these studies, patients supported with CF-LVAD may have 
a similar peak VO2 independently of the type of CF-LVAD. Although maximum 
cardiac output increases with exercise in patients supported with CF-LVAD, it does 
not reach levels found in healthy individuals with normal cardiac function.

Many factors, such as underlying heart disease, native heart function, especially 
right ventricular function, both ventricular morphology, co-existing arrhythmia, 
type of LVAD, rehabilitation protocol, and nutrition intervention may influence 
the effect of cardiac rehabilitation on improvement in exercise capacity and recov-
ery from sarcopenia. Therefore, individualized exercise prescriptions leading to 
optimal improvements in exercise capacity in patients supported with CF-LVAD are 
not well known and should be established in the field of LVAD therapy [47].

7.2 Nutrition

There is no doubt that malnutrition is involved in the pathogenesis of sarcope-
nia, and that it contributes to the poor muscle function observed in patients with 
end-stage HF, particularly in frail elderly patients. In general, the proposition of 
nutritional interventions should be based on the delivery of an adequate energy 
supply and on the supplementation of specific nutrients as an effective treatment 
in preventing and/or reversing sarcopenia in patients with advanced HF. However, 
there are very few literatures regarding the recovery from sarcopenia by nutrition 
interventions particularly in patients supported by LVAD.

8. Conclusion

Sarcopenia as well as frailty is a strong negative predictor on outcome after 
LVAD implantation and HTx. Assessment of skeletal muscle function such as HGS 
and gait speed, and measurement of skeletal muscle mass and CER index prior to 
surgery are useful tools to predict patient’s outcome after LVAD implantation and 
HTx. Therefore, therapeutic strategies to reverse sarcopenia prior to surgery and 
after LVAD implantation are important to improve their outcomes. However, many 
factors, such as the indication, surgical method, postoperative therapies, and pos-
sible adverse events, might affect the efficacy of cardiac rehabilitation and nutrition 
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supplementation on quality of life as well as survival differently in HTx and LVAD 
patients. Therefore, individualized exercise prescriptions and nutrition interven-
tions leading to the reversal of sarcopenia as well as frailty in patients undergoing 
and supported with CF-LVAD should be established in the near future.
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Abstract

Sarcopenia is an important recently defined disease affecting people aged ≥ 
65 years all over the world. Improving the assessment of loss of muscle mass is 
becoming mandatory. In this regard, various new technologies have been advanced. 
Although the gold standard is represented by magnetic resonance imaging (MRI) or 
magnetic resonance spectroscopy (MRS), computed tomography (CT) or dual-
energy X-ray absorptiometry (DXA), followed by biological impedance analysis 
(BIA) compared with DXA, there are numerous correlations between sarcopenia 
and health domain of everyday life that must be investigated and addressed, trying 
to obtain the best possible outcome in the older population. In this review, we 
focused on all types of new technologies assessing loss of muscle mass, frailty, inde-
pendence, walking, capacity to get dressed, and loss of balance or sleepiness in older 
people and that could improve the diagnosis of sarcopenia or the rehabilitation of 
sarcopenic patients to prevent possible accidents. Different technologies have been 
proposed to investigate the factors promoting the loss of muscle mass and weak-
ness. Despite the standard EWGSOP 2019 guidelines defining a specific methodol-
ogy for the diagnosis of sarcopenia, not all domains and devices were included, and 
new frontiers of prevention have been explored.

Keywords: new technologies, sarcopenia, measurement, rehabilitation, device

1. Introduction

Sarcopenia was defined by the International Classification of Diseases, Tenth 
Revision, Clinical Modification (ICD-10-CM) and recognized as a disease in 
2016 [1–3]. In 2019, the European Working Group on Sarcopenia in Older People 
(EWGSOP) published important recommendations for the diagnosis of Sarcopenia 
for Caucasian People [4]. These recommendations are currently used as guidelines 
for the assessment of sarcopenia.

The first guidelines for the diagnosis of sarcopenia were written on the occasion 
of the first EWGSOP Congress in 2010 [5]. They also included some criteria for the 
diagnosis of pre-sarcopenia (loss of muscle mass and its variability).

The functional and anatomical areas to investigate for diagnosis, defined in both 
the first and second EWGSOP Congress [4], are muscle strength (hereinafter referred 
to as MS); muscle quality (hereinafter referred to as MQ ), and physical performance 
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(hereinafter referred to as PP). Nowadays, in accordance with the second EWGSOP 
guidelines, MS is evaluated through the assessment of grip strength (subsequently 
referred to as handgrip strength or HGS). The dynamometer is an inexpensive and 
efficient tool, but it investigates only the strength exerted by the upper limbs and has 
several limitations [6]. The recommended tests for MQ are magnetic resonance imag-
ing (MRI) or magnetic resonance spectroscopy (MRS); computed tomography (CT); 
dual-energy X-ray absorptiometry (DXA) [4], including the alternative use of the 
biological impedance analysis (BIA) [7]. Regarding PP, the suggested gold standards 
are the short physical performance battery (SPPB) combined with the time-up and go 
test (TUG), or, as an alternative, the gait speed test (GS) [4].

However, the problem is that DXA, MRI, and BIA are not always available in 
hospitals and at the surgeries of general practitioners, and are fairly expensive.

Therefore, the aim of this review is to suggest some new and less expensive tools 
and technologies that may substitute the three tests mentioned above and that are 
able to maintain a reliable level of diagnostic accuracy. Moreover, we would like to 
extend the MS parameters not only to the upper limbs but also to the lower limbs and 
to the assessment of balance and spatial coordination. The use of these accurate and 
cheaper tools would favor the diagnosis of sarcopenia and, consequently, the preven-
tion of loss of muscle mass, in a higher number of patients. Alternative tools for the 
evaluation of MS and PP as well as some rehabilitation tools for the prevention of 
bad outcomes in pre-sarcopenic and sarcopenic patients will also be proposed.

2. Methodology

This is a review of five randomized control trials (RCT), three cohort studies (CS), 
13 cross-sectional studies (CSS), two systematic reviews (SR), two systematic reviews 
& meta-analyses (SR&M), one quasi-experimental study (Q-ES), one design and 
validation study (DVS), one exploratory study (ES), four randomized control studies 
(RCS), and four articles on new integrated technologies, some of which not yet tested 
on humans. The research was carried out between April 2021 and July 2021. The follow-
ing libraries were searched: PubMed, Cochrane Library, Google Scholar, and Scopus.

A total of 6069 records were obtained. Of these, 5931 were discarded: 1833 were 
duplicates and 4098 were eliminated because of the type of population or because they 
focused on populations affected by cancer, or having post-operative outcomes or head 
and neck cancer with post-surgical outcomes affecting the tongue, or because they were 
studies based the use of ultrasound, MRI, CT, and DXA. Also, we excluded papers deal-
ing with the rehabilitation of sarcopenia after a hip fracture or other similar events.

The eligibility criteria were: (1) community-dwelling older adults; (2) older 
adult volunteers: out-patient or hospitalized patients; (3) frail subjects according to 
the frailty criteria defined by Fried et al. [8]. About age, some of the studies focused 
on patients aged ≥50 years (middle-aged), others on patients aged ≥65 years 
(older), and others on patients aged 19 to an older age. Studies that did not include 
older adults were excluded.

Works referring to the Asian Working Group for Sarcopenia guidelines were also 
excluded.

Moreover, of the remaining 138 articles, 102 were discarded because they were 
duplicates or because they were not pertinent to the aim of the research.

The studies analyzed for this review were 36: 32 dealing with tested technolo-
gies whose results were compared with the parameters established in the EWGSOP 
guidelines, and four studies presenting new and not tested technologies.

The article search was carried out by using the following word strings and 
the PubMed’s Boolean operators: “phase angle and sarcopenia”; “rehabilitation and 
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sarcopenia”; “sarcopenia and measurement”; “actigraphy and sarcopenia”; “jumping 
mechanography”; “sarcopenia and wearable devices”; “sarcopenia robotic measure-
ments”. The search was restricted to the 2015–2021 period, including extremes.

To assess the quality of the paper, the Newcastle-Ottawa quality assessment scale 
was used [9].

3. Results

3.1 Diagnosis and rehabilitation of sarcopenia

3.1.1 Assessment of sarcopenia

3.1.1.1 Accelerometer and actigraph technology in wearable inertial sensors

Nowadays, wearable inertial sensors have the potential to assess MQ and PP 
(Table 1) [15].

In 2018, the American Academy of Sleep Medicine recommended using the 
actigraphy test for the diagnosis of sleep disorders [16]. Subsequently, on the basis 
of the ascertained association between frailty domains and functional limitations 
[8, 12, 17], Pana et al. investigated the relationship between sleep quality and MS 
among community-dwelling middle-aged and older adults [12]. The existence of a 
correlation between sleep disorders and sarcopenia can be expected but, until now, 
research in this field has been fragmented and no studies have been carried out 
investigating a possible direct correlation between sleep disorders and sarcopenia. 
For example, a study [18] has been published on the correlation between peak 
oxygen consumption and muscle loss. Physiological data were obtained through 
a feature of the actigraphy test called Actihear [19] which, however, focused on 
muscular functionality and not on sleep quality.

Accelerometer has been proposed in wearable devices to assess different parameters 
of physical activity following the “The Physical Activity Guidelines for Americans” 
(PAG, 2nd edition) [13], as shown in Table 1. However, in two studies in which the 
accelerometry was used, the accelerometry threshold did not prove to be indicative 
[10, 11]. Viecelli et al. [20] used a smartphone built-in accelerometer to obtain sci-
entific mechano-biological descriptors of resistance exercise training. They aimed 
to test whether accelerometer data obtained from standard smartphone placed on 
the weight stack of resistance exercise machines can be used to extract single repeti-
tion, contraction-phase specific and total time-under-tension (TUT) [20]. Total 
time-under-tension is an important mechano-biological descriptor of resistance 
exercise as it was shown that it is highly positive correlated (R2 = 0.99) with the 
phosphorylation c-Jun N-terminal kinase (JNK) [21]. Activated JNK phosphory-
lates the transcription factor SMAD2, leading to the inhibition of myostatin [22], 
a potent negative regulator of muscle mass [23, 24]. The JNK/SMAD signaling axis 
is activated by resistance exercise and hence the molecular switch JNK stimulates 
muscle fiber growth, resulting in increased muscle mass [22] being a direct counter-
measure of the muscle loss seen in sarcopenia.

Burd et al. [25] examined the influence of muscle time-under-tension on myofibril-
lar protein synthesis. Eight young men were allocated into two groups. One group per-
formed three sets of unilateral knee extension at 30% of 1-repetion maximum involving 
concentric and eccentric muscle actions that were 6 s in duration to failure. The control 
group performed a work-matched bout that comprised concentric and eccentric actions 
that were 1 s in duration. As work was matched, the groups significantly differed in 
time-under-tension (P < 0.001) whereby the slow group had a time-under-tension of 
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407 ± 23 s and the control group a time-under-tension 50 ± 3, respectively. Myofibrillar 
protein synthetic rate was higher in the slow condition versus the control condition after 
24–30 h recovery (P < 0.001). Therefore, a longer time-under-tension increased myofi-
brillar protein synthesis longer and to a greater extent than under the control condition.

As evident, time-under-tension is not only an important mechano-biological 
descriptor of resistance exercise but also of high clinical relevance.

Lastly, a very recent article [14] aimed at identifying and elaborating parameters 
from gait signals produced by the sensors in order to develop a screening and clas-
sification method for sarcopenia. In the study were used specific parameters that they 
interpreted through an artificial intelligence (AI) model called SHAP (Shapley Additive 
Explanations). The input that applied the SHAP to the descriptive statistical parameters 

Author, year, 
country

Study 
design

Sample
Mean
Age ± SD

Technologies 
employed

Data collected/
performed 
measurement

Session modality

Foong  
et al., 2016; 
Australia [10]

CSS 636 community-
dwelling OA: 
66 ± 7 years

ACC 
technology to 
assess PA

AMM
S-ACC
CF

Monitoring of PA at 
baseline, and 2.7 years, 
5 years later, and last 
follow-up; between 
March 2002 and 
September 2004, ending 
on 2014

Rejeski et al., 
2017; USA 
[11]

CSS 1.528 OA: HE 
(N = 771): 
79.07 ± 5.23 and 
PA (N = 757): 
78.74 ± 5.21

GT3X+ 
accelerometer: 
CPM to assess 
MVPA.

HE (N = 771) PA 
(N = 757) divided for:

• Health-related 
variables education

• SPPB

• EFs

Data examined at 
baseline, and 6-, 12-, 
and 24-months of 
follow-up

Pana et al., 
2021; Greece 
[12]

SR 92.363 OA 
≥65 years and 
middle-aged adults
≥ 40 years

ASD HGS
SAss

Research from March 
2020 to May 2020

Zytnick et al., 
2021; USA 
[13]

R-CSS 1.317 healthy 
adults aged 
≥60 years

WAM Data collected from 
the fall wave of the 
2015 styles database: 
FallStyles: PA and 
walking

Data monitoring, data 
activity carried out for 
more than 12 months

Kim et al., 
2021; Korea 
[14]

CS 20 older women 
aged ≥65 years: 10 
sarcopenic women 
with: 69.6 ± 3.0 
and 10 normal 
women with: 
71.1 ± 2.0

IS GS, HGS, and walking 
to analyze raw data, 
it will be applied DL 
methods

Acquiring spatial-
temporal parameters 
used in clinical practice 
and descriptive 
statistical parameters for 
all seven gait phases

CSS, cross-sectional studies; CS, cohort studies; SR, systematic review; R-CSS, retrospective-cross-sectional studies; 
OA; older adults; PA, physical activity; CPM, counts per minute; MVPA, moderate to vigorous PA; HE, health 
education; DH, digital handgrip; DYN, dynamometer; ACC, accelerometer; ASD, actigraphy sleep diary; WAM, 
wearable activity monitor; IS, inertial sensors; AMM, anthropometrics muscle mass; S-ACC, strength accelerometer; 
CF, cognitive function; SPPB, short physical performance battery; TUG, time-up and go test; EFs, executive 
functions; MS, maximal strength; RFD, rate of force development; SA, strength asymmetry; BS, bilateral strength; 
FSFT-ST, force steadiness fatigability task-specific tremor; HGS, hand grip strength; GS, gait speed; SAss, sleep 
assessment; DL, deep learning.

Table 1. 
General overview of the paper focused on the accelerometer in wearable devices and the actual use of 
actigraphy to assess sarcopenia in primary prevention.
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Author, year, 
country

Study 
design

Sample
Mean
Age ± SD

Technologies 
employed

Data collected/
performed 
measurement

Session modality

Swiecicka  
et al., 2019; UK 
[17]

RCT 86 older men aged 
74 ± 5.

EMG (DS7AH; 
Digitimer, Welwyn 
Garden City, UK); 
AAE (Dermatrode, 
Farmadomo, The 
Netherlands); S2S 
(v.8.1; Cambridge 
Electronic Designs).

L&NBRM 
determined 
relationship 
between FP and 
FI with CMAP 
and MUP sizes 
before and after 
adjustments for 
age and BMI.

The femoral nerve 
was stimulated 
maximally and the 
resulting CMAP 
measured over the 
vastus lateralis. 
MUP size assessed 
in voluntary 
contractions using 
(iEMG).

Habenicht 
et al., 2020; 
Vienna [26]

CSS 86 VHP between 18 
and 90 years of age.

BED and EMG 
(DAVID®, Helsinki, 
Finland); EMG 
(Model Trigno, 
DelSys®, Boston, 
MA, USA) and 
TXACC-SI.

Anthropometric 
measurements, 
IPAQ, warm-up 
and MVC, HGS, 
and EMG.

Measurement 
obtained during 
training session: 
first session at 
baseline, second 
session 2 days after, 
and third session 
6 weeks later.

Marshall et al., 
2020 [27]

CSS 15 HY: 25 ± 3 years; 
and 15 OA: 
70 ± 5 years.

BIA (mBCA 525, 
SECA, Hamburg, 
Germany); EMG 
(Mbody, Myontec 
Ltd., Kuopio, 
Finland).

Indices of QM 
EMG activity 
in response to 
different modes of 
RET and ADL.

In 4 days, 
participants 
completed a MVC 
of the KE, followed 
by a 15mWT, 
SCT (i.e., ADL) 
and BW-RET 
and MN-RET or 
EB-RET.

Gennaro  
et al., 2020; 
Switzerland 
[28]

ES 198 community-
dwelling volunteers: 
73 ± 6 years.

EMG: FREEEMG 
1000, BTS 
Bioengineering, 
Milan, Italy; EEG: 
eego sport, ANT 
Neuro, Enschede, 
The Netherlands.

EEG and EMG 
samples in 
sarcopenic 
participants.

Acquired during 
walking, then 
processed.

Hu et al., 2021; 
Taiwan [29]

CSS Five risk-sarcopenia 
(age: 66.20 ± 4.44), 
five healthy (age: 
69.00 ± 2.35), and 
20 young (age: 
21.33 ± 1.15).

EMG (EMGworks® 
4.0 Acquisition 
software, Delsys Inc., 
Boston, MA, USA).

EMG parameters 
as: MNRT, MFRRT, 
y-intercept, 
FRU, and mean 
MFR extracted 
to analyze MFD. 
HGS, GS, PASE, 
and IPAQ.

Not defined.

RCT, randomized control trials; CSS, cross-sectional studies; ES, exploratory study; VHP, voluntary health people; 
HY, healthy young; OA, older adults; BIA, biological impedance analysis; HGS, hand grip strength; EMG, 
electromyography; EEG, electroencephalogram; L&NBRM, logistic & negative binomial regression models; BED, 
back extension dynamometer; RET, resistance exercise training; KE, knee extension; SCT, stair climbing task;  
MVC, maximal voluntary contraction; 15mWT, 15 minutes walking task; TXACC-SI, triaxial accelerometer-sensor 
integrated; QM, quadriceps muscle; BW-RET, lower-limb RET through body-weight squats; MN-RET, seated 
knee extensions on machine; AAE, adhesive anode electrode; EB-RET, seated knee extensions via elastic bands; 
S2S, Spike2 Software; FP, frailty phenotype; FI, frailty index; CMAP, compound muscle action potential; MUP, 
motor unit potential; MNRT, motor unit number-recruitment threshold; MFRRT, motor unit firing rate-recruitment 
threshold; FRU, firing rate per unit force; MFR, motor unit firing rate; MFD, muscle fiber discrimination; PASE, 
physical activity of senior elder; IPAQ, International Physical Activity Questionnaire.

Table 2. 
General overview of the paper focused on new tools for the assessment of sarcopenia with electromyography 
(EMG).
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yielded the best performance; showing that the signal of the inertial sensor contained 
abundant information on gait parameters. However, the deep learning did not extract 
effective features from inertial signals; further data and greater cohorts, respectively, 
with additional clinical evaluations should be collected and studied [14].

3.1.1.2 Electromyography

In Table 2, an interesting new technology capable of evaluating variations in 
muscle activity is shown: the EMG.

It was demonstrated [17] that some electrophysiological sarcopenic variables 
were associated with the frailty phenotype [8, 17], but frailty in older men was asso-
ciated with lower CMAP and MUP, which however were not related to age and BMI.

On the basis of the data obtained by Habenicht et al. [26] in their study on back 
extension, a diagnostic algorithm for assessing the first signs of muscle weakness 

Author, 
year, 
country

Study 
design

Sample
Mean
Age ± SD

Technologies 
employed

Data collected/
performed 
measurement

Session modality

Dietzel  
et al., 2015; 
Germany 
[32]

CSS Total of 293 C-D 
women (146) and 
men (147): aged 
60–85 years.

Leonardo 
Mechanograph® 
(Novotec Medical, 
Pforzheim, 
Germany); plateDXA.

DXA data, ADL, JM, 
EFI, HF, CRTV. MF: 
muscle power per 
2LJPrel and the CRTPrel 
on a force.

30 subjects in each 
5-year.

Siglinsky  
et al., 2015¸ 
Madison 
(USA) [33]

CS USA OA (213 
women/119 
men), mean: 
65.4 ± 17.4 years.

DXA, Leonardo 
Mechanograph®

BMI, ALM/Ht2, HGS, 
GS, CRT, JH, JRP, Vel. 
(m/s) APT.

Randomly.

Hannam  
et al., 2017; 
Bristol, UK 
[34]

CSS 463 C-D of which: 
300 76.4 ± 2.6, 
and 163 with 
77.7 ± 3.6 years.

Jumping 
Mechanography 
(Leonardo 
Mechanograph).

JM, SPPB, HGS. Re-recruited 
participants from an 
earlier population-
based cohort study, 
during 2015 for 
1 years.

Minett  
et al., 2020; 
Germany 
[35]

RCT 94 OA: 46 users to 
the WALK: mean 
75.8 years and 48 to 
the W + EX: mean 
77.1 years.

DXA and JM. F&C, weekly 
meetings, DI&EH, 
BIA, MD, M-CSA, 
IMAT, MF, and MM, 
JM.

3-month exercise 
intervention, 
measured performed 
at baseline and at 
the third month. 
09-12/2016.

Alvero-
Cruz  
et al., 2021; 
Málaga, 
Spain [36]

CSS 256 MATH of 
these, 240 ATH 
aged between 35 
and 91 years; mean 
58 ± 12 years.

BIA, JM. Anthropometric, 
BIA, JM.

Between 4th and 
15th September 
2018, during the 
23rd-WMAC 
held in Málaga; 
40–60 minutes for 
athlete.

CSS, cross-sectional studies; CS, cohort studies; RCT, randomized control trials; OA, older adult; C-D, 
community-dwelling; JM, jumping mechanography; BIA, biological impedance analysis; DXA, dual-energy X-ray 
absorptiometry; BMI, body mass index; EFI, Esslinger fitness index; HF, history falls; MF, muscle function; 2LJPrel, 
maximum 2 leg jump power per kg body mass; CRTPrel, maximum chair rise test power per kg body mass; CRTV, the 
max velocity of the CRT; HGS, hand-grip strength; GS, gait speed; SPPB, short physical performance battery; JRP, 
jumping relative power; APT, acceptability; W or WALK, walking; EX, exercises; F&C, feasibility & compliance; 
DI&EH, dietary intakes & eating habits; MD, muscle density; M-CSA, muscle cross-sectional area; IMAT, 
intramuscular adipose tissue; MM, mobility measures; MATH, masters athletes; ATH, athletes; 23RD-WMAC, 
23rd-World Masters Athletics Championships.

Table 3. 
General overview of papers based on jumping mechanography.
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related to back extension may be developed [26]. Subsequently, Gennaro et al. [28], 
in their ES, defined “corticomuscular coherence” (CMC), obtained during locomotion 
by simultaneously measuring EEG and EMG, and suggested it as a new feature for the 
diagnosis of sarcopenia [28], reporting that it has a high sensitivity and specificity.

Marshall et al. [27] compared BW-RET with MN-RET and EB-RET in a group of 
healthy younger adults and a group of older adults: BW-RET proved less effective 
than MN-RET and EB-RET. The EMG parameters were defined by studying a popu-
lation composed of young adults, healthy and at-risk older adults [29] (as shown 
in Table 2). In the article, they concluded that it was not clear if EMG difference 
correlates with MS loss or mere loss of muscle mass [29].

3.1.1.3 Jumping mechanography

The association between the jumping mechanography (JM) and sarcopenia 
starts with Buehring et al. [30, 31], who gave “operational definitions of the vari-
ables available through muscle mechanography” with the aim to propose muscle 
mechanography as a tool for what we defined as MQ parameter [31], supporting the 
reproducibility of JM in older people [30, 32].

To assess muscle function and, at the same time, the MQ and PP parameters, 
JM can be considered an interesting new tool. It was first described by Dietzel et 
al., Siglinsky et al., Hannam et al., and Gangnon et al. [30, 32–34]; in all of these 
studies, JM was performed by Leonardo Mechanograph® (Table 3). JM measures 
the peak of muscle power by a vertical jump, as this practice is considered safe and 
useful to assess not only MQ and PP parameters but also different geriatric out-
comes clearly important in primary prevention.

In all previous studies, participants were tested in accordance with the first 
EWGSOP guidelines [32, 33] and showed a better correlation between ADL and JM 
performance. Such correlation gives useful indications for the prevention of falls 
and fractures. In another work [34], the feasibility and acceptability of JM were 
evaluated: JM was considered comfortable and the comfort was related to one’s own 
JM performance.

Also, in the work by Alvero-Cruz et al. [36], sarcopenia was diagnosed according 
to the first EWGSOP guidelines. They did not use JM but studied highly trained 
track and field athletes to explain the age-related decline in vertical jumping perfor-
mance, obtaining data from the Redcap, Leonardo, and BIA data merging [36].

Of interest, in 2020 a complete and well-designed RCT was carried out [35]. It 
consisted of an intervention program based on physical exercises to evaluate out-
comes in anthropometrics, body composition, muscle function, mobility measures, 
JM, and dietary habits. It showed that the program could be feasible in a population 
of older adults and that JM detected differences in MS and MQ using the chair-rise 
test rather than the TUG test [35].

All the above-mentioned studies were carried out on the basis of the first 
EWGSOP guidelines. However, it is now necessary to perform studies comparing 
results with the second EWGSOP guidelines. Wiegmann et al. defined a diagnostic 
algorithm on the basis of the 2nd EWGSOP guidelines [37].

3.1.1.4 Sarcopenia and BIA’s phase angle

The BIA’s phase angle (PhA) was mentioned, not for the first time, in a work 
by Heymsfield et al. [7]. Biological impedance analysis (BIA) was considered a 
useful tool for sarcopenic patients who were unable to perform a handgrip test or 
to walk [4, 38, 39]. Nowadays, BIA is used to confirm the diagnosis of sarcopenia 
(Table 4).
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Author, year, 
country

Study 
design

Sample
Mean
Age ± SD

Technologies 
employed

Data collected/
performed 
measurement

Session modality

Pessoa et al., 
2019; Brazil 
[40]

CSS 94 physically 
active older 
women: Tercile 
1 (n = 31): 
73.5 ± 7.6 
Terciles 2 and 
3 (n = 63): 
69.6 ± 5.7

BIA 
(Biodynamics® 
450, version 
5.1).

BIA and PhA; 
4-mWST, HGS, 
following 1st EWGSOP 
criteria.

Not specified.

Rosas-
Carrasco 
et al., 2021; 
Mexico [41]

CS 498 Mexican 
older adults 
with over 
50 years of age 
71.1 ± 9.5.

BIA (SECAR 
model mBCA 
514.), DXA and 
DYN.

BIA and PhA; HGS, 
DXA, CES, MMSE, 
MNA-SF.

Cohort of adults 
living in the 
community of 
two municipalities 
of Mexico City 
consisting of men 
and women over 
50 years of age.

CSS, cross-sectional studies; CS, cohort studies; BIVA, bioelectrical impedance vector analysis; BIA, biological 
impedance analysis; DXA, dual-energy X-ray absorptiometry; 4-mWST, 4-m walking speed test; HGS, hand-grip 
strength; CES, center for epidemiologic studies, DS, depression scale (Mexican version); MMSE, mini-mental state 
examination; MNA-SF, mini nutritional assessment-short form; PhA, phase angle; NRS-2002, Nutritional Risk 
Screening 2002; DT, drawing test.

Table 4. 
General overview of the relationship between the assessment of sarcopenia and BIA’s phase angle.

Author, year, 
country

Study 
design

Sample
Mean
Age ± SD

Technologies 
employed

Data collected/
performed 
measurement

Session modality

Beveridge et al., 
2018¸ Scotland, 
UK [42]

RCT SC-D people 
>65 years¸ Study 
1: 77.6 ± 6.2; for 
study 2, and data of 
study 1.

Magstim 200 
system (Magstim 
Company Ltd., 
Whitland, UK).

6 MW, QMVC, 
SPPB, HGS and 
TwQ compared 
with population of 
Study 2.

Stimulation at 
baseline and 2 weeks 
along with 6 MW, 
QMVC, SPPB and 
HG.

Lera et al., 
2020; Chile [43]

DVS 430 C-D people 
60 years and older: 
68.2 ± 4.9

Mobile devices 
(Android, IOS) 
and software 
HTSMayor.

EWGSOP 
parameters 
compared with 
software.

A comparison 
between clinical 
diagnosis and 
software diagnosis, 
with a median 
follow-up of 4.8 years.

Bachasson  
et al., 2021; 
France [44]

CSS 40 of which 20 
HP: 8 women, 
aged 37 ± 9 years, 
and 12 men, age 
35 ± 10 years; and 
20 SP: 10 men, 
aged 63 ± 7 years 
and 10 women, 
aged 68 ± 10 years.

MRI using a 
3 T Scanner 
(PrismaFit, 
Siemens, 
Healthineers, 
Erlangen, 
Germany), 
BIA (Z-Scan, 
Bioparhom, 
France).

Lean thigh muscle 
volume from MRI 
(IVMRI) compared 
with lean thigh 
muscle volume 
from BIA (IVBIA).

IVMRI was computed, 
subsequently, 
multifrequency 
acquired. Values of 
the muscle electrical 
conductivity constant 
were computed using 
data from SBIA and 
MRI.

CSS, cross-sectional study; RCT, random controlled trial; SC-D, sarcopenic community-dueling; C-D, community-
dueling; DVS, design and validation study; HP, healthy participants; SP, sarcopenic participants; BIA, biological 
impedance analysis; MRI, magnetic resonance imaging; 6 MW, six minutes walking; QMVC, maximum voluntary 
quadriceps contraction; TwQ, maximum quadriceps twitch tension.

Table 5. 
General overview of the paper focused on the assessment of sarcopenia: New tools and software.
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According to a study carried out in Mexico [40] on active older women, there 
seems to be no correlation between PhA and sarcopenia parameters, but PhA seems 
to be associated, with a doubtful biological meaning, with speed walking [40] (or 
PP). In a recent paper [41], they analyzed sarcopenia on the basis of the parameters 
defined by the second EWGSOP guidelines, and physical frailty, according to the 
parameters defined by Fried et al. [8], both adjusted to the Mexican population.

Studies on more homogeneous populations may clarify the usefulness of BIA’s PhA.

3.1.1.5 New technologies tested

Magstim 200 system: Magnetic nerve stimulation was tested on older sarcopenic 
people [42]. The study reports several limitations in the execution and screening 
of sarcopenic patients whose functions were not highly compromised. Despite this 
and the fact that it is an expensive technique, this methodology is still considered 
acceptable and feasible. More tests on sarcopenic patients with highly impaired 
functionality would be needed (Table 5).

Software HTSMavor: In South America, accessibility to DXA is very 
difficult. With the purpose to facilitate the assessment of sarcopenia, a 
screening algorithm for the diagnosis of sarcopenia, following the sec-
ond EWGSOP guidelines, was developed. The results are very promising, 
but software accuracy for different populations should be implemented [43].

Bioelectrical impedance analysis to estimate the lean muscle volume: Serial 
bioelectrical impedance analysis (SBIA) was compared with magnetic resonance 
imaging (MRI) [44]. As a strong agreement between IVBIA and IVMRI was found, a 
specific conductivity constant (𝞼𝞼) was computed in order to assess the reliability 
of SBIA as a possible alternative to MRI. Despite the study limitations, the technique 
appears to be very promising.

3.1.2 Rehabilitation in sarcopenia

Sarcopenic patients are not usually followed in the daily routine, therefore it would 
be advisable to develop rehabilitation programs to keep the progression of the disease 
under control. Rehabilitation programs usually contain enhanced physical exercises 
and dietary increased amounts of protein intake [45]. In the absence of these reha-
bilitation programs, physicians give advice on physical exercises and dietary habits to 
patients. However, these recommendations are rarely observed by the patients [46].

In the following part of this manuscript, we talk about new proposals on reha-
bilitation. Such proposals include new or old technologies that could be used in 
planned therapies for pre-sarcopenic and sarcopenic patients.

3.1.2.1 Virtual reality and laser therapy

Thousands of articles on rehabilitation protocols that use virtual reality in 
different research fields have been produced [47, 48], but there are still few stud-
ies applying virtual reality to sarcopenia. The patients on whom the usability was 
tested were older patients with varied pathologies. The results were promising; 
therefore, it is hoped that it will be applicable to sarcopenic patients (Table 6).

In the work by Chen et al. [50], the virtual reality-based progressive resis-
tance training was tested on patients residing in a nursing home, over a period of 
12 weeks. The outcomes were different, but the training determined an improve-
ment especially of the upper limb strength, in other words, MS and MQ but not PP. 
An increase of ASMM was present but was not statistically significant [50]. Further 
studies are required.
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3.1.2.2 Electrostimulation included whole-body vibration

It is well-known, from previous studies, that electrostimulation can favor the 
increase of muscle fibers thus improving MS, MQ, and PP and today confirmed in 
different works [51]. In 2016, Wittman et al. [52] and then Klemmer et al. [53–55] 
evaluated the parameters linked to sarcopenia and the WB-EMS effects, accord-
ing to sex: the FORMOsA trial was conducted on women and the FranSO trial was 
conducted on men (Table 7).

The FORMOsA study concluded that the WB-EMS did not improve MS or PP 
nor decrease the fat mass, compared to the conventional physical activity [52], 
but it improved muscle mass. For this reason, it is advisable to use it in cases 
where the patient is unable to perform conventional resistance training [52, 
53]. The FranSO study, on the other hand, showed that in men WB-EMS suc-
ceeded in increasing muscle mass and lowering fat mass (in sarcopenic obesity), 
confirming its use in the case of older people unable to move or unmotivated 
[54, 55].

To understand the effects of EMS intervention, Nishikawa et al. [56] made three 
measurements over a period of 12 weeks; then the results were compared with 
SEMG. Although their conclusions were closely related to a short group of indi-
viduals with the locomotive syndrome, the results suggested that EMS was able to 
increase MS and MQ. However, further studies would have to be performed [56] to 
obtain more conclusive results.

In the article by Jandova et al. [57], the EMS activity was completed in lumbar 
multifidus (LM) and vastus lateralis (VL). The results suggested an increase in 
muscle mass and mobility.

Author, year, 
country

Study 
design

Sample
Mean
Age ± SD

Technologies 
employed

Data collected/
performed 
measurement

Session modality

Toma et al., 
2016; Brazil 
[49]

RCT-DB 38 elderly 
women: -CG = 15; 
63.64 ± 2.11-
TG = 17; mean: 
63.31 ± 2.66-
TLG = 16; mean: 
64.07 ± 2.87.

An infrared 
AsGaAl laser 
(λ = 808 nm) 
(Photon Lase III; 
DMC® São Carlos, 
SP, Brazil).

6-MWT, SEMG, 
1-RM, BS, IP.

STS was performed 
by TG and TLG 
groups for 8 
consecutive weeks. 
Placebo or active 
LLLT for CG at the 
end of each STS.

Chen et al., 
2020; Taiwan, 
China [50]

Q-ES 30 residents: 74.57. VR-RHE; ORH; 
one constellation; 
LMS.

HGS, GS, BIA. Measurements at 
baseline, and at 4, 
8, and 12 weeks. 
Session took place 
twice per week, 
30 minutes per 
session.

Tuena et al., 
2021; Portugal 
[47]

SR 405 OA and YA 
and other specific 
disease patients.

VR: 3D simulator 
environment 
system.

SUS, other 
questionnaires, and 
physical impairments.

Variable

RTC-DB, randomized control trial-double blinded; Q-ES, quasi-experimental study; SR, systematic review; 
VR-RHE, virtual reality-based progressive resistance training; ORH, oculus rift headset; LMS, leap motion sensor; 
VR, virtual reality; CG, control group; LLLT, low-level laser therapy; TG, strength training associated with placebo 
LLLT; TLG, strength training associated with active LLLT; BS, blood sample; HGS, hand grip strength; GS, gait 
speed; BIA, biological impedance analysis; OA, older adult; YA, young adult; SUS, system usability scale; 6-MWT, 
6-min walk test; SEMG, isokinetic protocol in isokinetic dynamometry; 1-RM, 1-repetition maximum; STS, strength 
training session.

Table 6. 
General overview of papers focused on rehabilitation with virtual reality and laser therapy in sarcopenia.
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On the other hand, vibration therapy (VT) was considered a close relative of EMS 
and showed the potential to improve MS and PP in sarcopenic older adults [58].

Initially, whole-body vibration was tested both on Asiatic and European middle-
aged and older postmenopausal women [61]. Later, other studies tried to determine 
the optimal rate of frequency per time [62]; patients were enrolled if the diagnosis 
of sarcopenia was assessed by skeletal mass index. Therefore, there were some 
discrepancies due to the type of population and the criteria used to establish the 
diagnosis of sarcopenia, the point of stimulation, the type of exercises, and the 
measurements [58, 61]. It was compared [59] RT, WBV, and EMS and concluded 
that the combined use of the three techniques had the capability to improve MS 
and functional performance. However, more studies would be necessary to obtain 
more evidence that the combined use of EMS, RT, and WBV is effective in improv-
ing MS [59]. In the same year, Wu et al. [58] published a systematic review and 
meta-analysis showing the efficacy of WBV in improving sarcopenia and important 
results demonstrating an increase in MS, MQ, and PP after treatment.

Finally, Yamazaki et al. evaluated proprioception in pre-sarcopenia in a group of 64 
patients [60]. However, a limitation of the study was the absence of the diagnosis of sar-
copenia. Nevertheless, the results suggested that the proprioception could be linked to 
the decline of lower leg skeletal muscle spindles in older adults with lower muscle mass.

3.1.3 New-born technologies (not yet been tested)

Addante et al. [63] proposed new wearable devices incorporating the Arduino 
software to gain HGS, GS, and EMG data at the same time. Data acquisition was 
possible through the activation of a mobile application linked to the REST server, 
which was connected with the PostgreSQL database stored on a web application.

Concurrently, McGrath et al. [6] proposed a new dynamometer. It integrates the 
basic functionalities of any dynamometer with those of an accelerometer allowing a 
doubling of the features measured, obtaining a complete evaluation of the muscular 
capacities, integrating the parameters of MS, MQ, and PP, but only of the upper limbs.

Given the functional connection between brain activity and muscles driving the 
whole gait cycle, Gennaro et al. [64] proposed a mobile wireless recording device 
of brain activity combined with several other body behavioral variables [28, 64]. 
Through statistical methods based on blind source separation, they managed to 
segregate non-cerebral/artefactual sources from cerebral sources of activity: this 
system is called “mobile brain/body imaging” (MoBI) [64]. The obtained data were 
founded on coupled EEG-EMG analysis, in an interval from 0 to 1 named “cortico-
muscular coherence” (CMC) [28, 64].

Friedrich et al. [65] introduced the MyoRobot technology (a full description is 
available on the biomechatronic platform [66]) designed for assessing the patho-
physiologic mechanisms of muscle biomechanics. Nowadays, the technology is still 
being tested.

4. Discussion and conclusions

Sarcopenia is a disease that cannot be underestimated, given the impact it has on 
out-patient or hospitalized patients: complications, length of hospitalization, mortal-
ity, and possible problems that may occur in everyday life. In order to define target 
strategies or personalized therapies against sarcopenia, the diagnosis in older sarcope-
nic patients should be achieved through qualitative and quantitative measurements of 
muscle loss. Such measurements could be facilitated by the use, during hospitalization, 
of wearable devices capable of providing important data in a very short period of time.
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In order to assess the reliability of the novel technologies proposed, a compari-
son on homogeneous populations should be made between the parameters obtained 
by using the second EWGSOP guidelines instructions and the parameters acquired 
through the technologies applied. Thereafter, it will be possible to define a diagnos-
tic algorithm that would be able:

• To distinguish pre-sarcopenia from sarcopenia and severe sarcopenia, as 
defined by the first EWGSOP guidelines;

• On the basis of the MQ, MS, and PP parameters defined by the second 
EWGSOP guidelines, to build pre-sarcopenia cut-offs through the use of  
low-cost, safe, and useful technologies to assess pre-sarcopenia.

In conclusion, the proposed technologies are: (a) accelerometer and actigraph 
technology in wearable inertial sensors (Table 1), focused on sleep quality and loss 
of muscle strength, and physical activity in older adults related to PP assessment; 
(b) EMG for diagnostic purposes (Table 2); (c) JM (Table 3), (d) a short overview 
about the correlation between the PhA and muscle loss (Table 4); (e) a new frontier 
of virtual reality (Table 6) designed for rehabilitation programs for sarcopenic 
patients; (f) EMS and WBV (Table 7) technologies that are being studied for reha-
bilitation for pre-sarcopenia and sarcopenia; (g) IoT technologies, dynamometer, 
MoBI, and Myorobot Fiber System, which have not been yet evaluated on patients, 
and tools and software proposed and already tested (Table 5) (cfr. 3.1.3).

Devices promoting active aging could be used to design rehabilitation and 
prevention programs in severe sarcopenic and pre-sarcopenic patients, respectively. 
It would be desirable that these devices were available in hospitals, occupational 
medicine physicians’ offices, or at general practitioner’s surgeries.
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Chapter 5

Attenuating Cancer  
Cachexia-Prolonging Life
Charles Lambert

Abstract

Death by cancer cachexia is dependent on the time allotted to cancer to cause 
muscle and fat wasting. If clinicians, nurses, researchers can prolong the life of a 
cancer patient other therapeutic interventions such as radiation and chemotherapy 
may be given the time to work and rid the cancer patient of tumors and save lives. 
Three areas by which cancer induces cachexia is through impaired insulin-like 
growth factor signaling, elevations in the proinflammatory cytokines TNF-α and 
IL-6 and subsequent reductions in muscle protein synthesis and increases in muscle 
protein degradation. Therefore, it is important to augment the IGF-1 signaling, 
block TNF-α and IL-6 in cancer cachexia and in other ways augment muscle 
protein synthesis or decrease muscle protein degradation. Ghrelin like growth 
hormone secretagogues, monoclonal antibodies to TNF-α and IL-6, testosterone, 
and anabolic steroids, the beta 2 agonist albuterol, resistance exercise, and creatine 
monohydrate (with resistance exercise) are beneficial in increasing muscle protein 
synthesis and/or reducing muscle protein breakdown. With these muscle augment-
ing agents/interventions, the duration that a cancer patient lives is prolonged so that 
radiation and chemotherapy as well as emerging technologies can rid the cancer 
patient of cancer and save lives.

Keywords: muscle wasting, anabolism, oncology, nutrition, exercise, 
pharmacotherapy

1. Introduction

There are no drugs approved to treat cancer cachexia in the US. This is unfortu-
nate and a flaw, I believe, in the FDAs criteria for cancer cachexia drug approval in 
the United States [1]. Their criterion measure has been an improvement in function. 
This variable depends on the nervous system in addition to skeletal muscle because 
they are functional in nature. Cachexia, by definition is the loss of skeletal muscle 
and adipose tissue. Drugs designed to affect skeletal muscle have little and probably 
no effect on the nervous system. As such, the FDA should remove the functional 
requirement or make functional training along with drug administration a require-
ment in phase I, II and III studies. As it is, all drugs anabolic to skeletal muscle will 
likely fail a functional test since they have no effect, without functional exercise, on 
the nervous system.

With this short coming of the approval process in mind, other measures must 
be taken to attenuate cachexia with the intent of allowing more time for chemo-
therapeutic agents and radiation therapy to exert their tumor killing activity. It is 
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indeed a matter of time for cachectic cancer patients; the more time they have, the 
better the outcome with the goal to be to cure cancer for those individuals suffering 
from cancer cachexia and save lives. Off-label use of drugs that are approved for 
other conditions would appear to be a very important action to take for clinicians 
to this end. For example, the use of monoclonal antibodies for IL-6 and TNF-α 
which are approved for other indications would appear beneficial in treating 
many cancers as these proinflammatory cytokines are secreted during cancer-
inflammation mediated by these cytokines wreaks havoc on the patient. In addi-
tion, IL-6 and TNF-α are directly related to muscle catabolism in models of cancer 
cachexia [2, 3]. Hypermetabolism is another manifestation of cancer cachexia [4]. 
Drugs that block the action of epinephrine (a catecholamine) would act to reduce 
metabolic rate and slow the rate of muscle wasting [5]. The drug propranolol 
blocks both beta 1 and beta 2 receptors metabolic rate. This is just one example of 
a drug that could reduce hypermetabolism of cachexia. A third factor, although 
taboo especially in the sporting world, is the use of anabolic agents to stimulate 
muscle protein synthesis [6–8] in the face of reduced muscle protein synthesis, and 
elevated muscle protein breakdown. Thus, the off-label use of anabolic steroids, 
testosterone, and growth hormone secretagogues should be explored although 
some these agents are not FDA approved. For example, anamorelin was found to be 
safe and effective in increasing lean body mass through phase III trials but did not 
increase grip strength [9].

2. Mechanisms of IL-6 induced muscle catabolism

In one study, to date, IL-6 has been shown to reduce basal and eccentric exercise 
induced protein synthesis by generally well accepted mechanisms [10].

One mechanism by which IL-6 decreases muscle mass is by activating the STAT 
3 pathway which causes muscle protein breakdown to acute phase proteins. An 
acute phase protein derived from skeletal muscle that is synthesized upon IL-6 
binding in skeletal muscle and activation of the STAT 3 pathway is fibrinogen. This 
was reported in an experimental animal model of cancer cachexia [2]. In a subse-
quent study this group also reported that blocking the JAK/STAT 3 pathway inhib-
ited skeletal muscle wasting [3]. Therefore, this is a way that IL-6 induces muscle 
protein breakdown also known as proteolysis.

Another mechanism described in the literature [11] is autophagy where the cells 
in essence eat themselves. This would be considered a second mechanism by which 
proteolysis is induced by IL-6.

A third mechanism by which IL-6 can induce protein breakdown is by activation 
of atrogin 1 (MAFBX) [12].

3. Mechanisms of TNF-α induced muscle catabolism

In a pre-clinical proof of concept study Lang et al. [13] reported that a TNF-α 
infusion to rats reduced the muscle protein synthesis rate (decreased by 39%) 
by way of reducing the mRNA to protein conversion (decreased by 39%) of both 
myofibrillar and sarcoplasmic proteins in the gastrocnemius muscle. The plasma 
TNF-α concentration was raised to 500 pg/ml in this study.

A question that remains is: is it the plasma concentration of the TNF-α that is 
important and/or the muscle derived TNF-α [14] that is important in the regula-
tion of muscle protein synthesis. A similar example in skeletal muscle are the acute 
phase proteins which are derived from muscle such as fibrinogen.
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On the muscle protein breakdown side of the muscle mass equation, Li et al. [15] 
reported that TNF-α utilizes the p38 MAPK pathway to cause expression of atro-
gin-1/MAFBX in skeletal muscle. This activation of atrogin-1/MAFBX activates the 
ubiquitin-proteasome pathway for muscle protein degradation. This was confirmed 
when inhibitors of p38 inhibited ubiquitin conjugation activity.

4. Impairment of the IGF-1 pathway in muscle catabolism

Endogenous insulin-like growth factor-1 (IGF-1) is a very potent anabolic 
agent in the human body. IGF-1 is released from the liver after growth hormone 
(GH) stimulation of liver cells. Another form of IGF-1 (a splice variant) mechano-
growth factor (MGF) is produced by the mechanical loading of skeletal muscle 
[16] and is released in a paracrine/autocrine fashion and is also a potent anabolic 
agent. Lambert et al. [14] reported that the combination of chronic aerobic and 
resistance exercise training in humans, resulted in an upregulation in MGF mRNA 
in skeletal muscle.

The mechanism of action of IGF-1 in causing muscle protein synthesis is through 
PI3K/AKT/mTOR signaling [17]. This would also be the pathway via a common 
receptor by which insulin stimulates muscle protein synthesis. Interestingly, lack of 
basal IGF-1 signaling resulted in activation of atrogin-1 and Murf-1, two factors that 
induce muscle protein breakdown through the ubiquitin-proteasome pathway [17, 18]. 
Additionally, these authors [18] reported when basal IGF-1 levels were absent there 
was an activation of GSK-3B which phosphorylates and inactivates 4EBP1-a transla-
tion (protein synthesis) initiation factor. This activation of muscle protein breakdown 
through these two mediators resulted in myosin heavy chain 1 and 3 degradation in an 
animal model. In addition to causing muscle protein synthesis, IGF-1 acts to reduce 
muscle protein breakdown through reducing atrogin-1 and Murf-1.

In a thorough study on the effects of cancer cachexia on the IGF-1 system in 
skeletal muscle and plasma, Costelli et al. [19] reported that there was about a 50% 
reduction in muscle IGF-1 and plasma levels were also reduced. The model they 
used for cancer cachexia was the Yoshida AH-130 hepatoma model [19].

To summarize, IGF-1 is a potent stimulator of anabolism or muscle growth 
and impairing the signaling of IGF-1 results in reduced muscle protein synthesis 
through the PI3K/AKT/mTOR pathway as well as increased muscle protein degrada-
tion through an increase in atrogin-1 and Murf-1. Additionally, GSK-3B is activated 
which inhibits translation initiation by phosphorylating 4EBP-1 when IGF-1 signal-
ing is impaired.

5. Treatment of cachexia

5.1 Resistance exercise training

Weight training or more commonly known as resistance exercise training in 
which an individual contracts his muscles against the force of a weight stack, free 
weights, or sometimes resistance bands is a way in which to increase muscle protein 
synthesis [20]. This bodes well for the cancer patient if they have the functional 
ability to undergo these types of workouts. It is well known that this increase in 
protein synthesis chronically will result in an increase in muscle mass. An additional 
benefit of exercise and likely a precursor to muscle growth is a decrease in intra-
muscular proinflammatory cytokine mRNAs and an increase in mechano-growth 
factor mRNA which is a slice variant of IGF-1.
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5.2 Creatine monohydrate

An adjunct nutritional supplement to resistance training is creatine (monohy-
drate). Creatine when ingested in sufficient quantities, for example, 20 g/day for 
5 days will elevate the intramuscular stores of creatine. This elevation of intramus-
cular creatine can increase the rate of phosphocreatine resynthesis in man [21]. This 
is by way of the reaction ATP + creatine yields PCr + ADP. Where ATP is adenosine 
triphosphate, PCr is phosphocreatine, and ADP is adenosine triphosphate. Creatine 
ingestion in the manner described above improves not only PCr resynthesis but also 
exercise capacity [22].

5.3 Ibuprofen and acetaminophen

It is well known that a bout of resistance training will increase muscle 
protein synthesis in the hours after exercise [20]. Resistance exercise also 
increases the muscle protein degradative cytokines IL-6 and murf-1 mRNA 
[23]. Resistance exercise with ibuprofen or acetaminophen ingestion blunts 
the IL-6 and murf-1 response to resistance exercise [23]. Cancer cachexia 
increases IL-6 and murf-1 leading to more protein degradation [10]. Therefore 
resistance exercise with acetaminophen or ibuprofen is beneficial for increas-
ing muscle protein synthesis and decreasing muscle protein breakdown to 
achieve a more favorable response (increasing synthesis and decreasing break-
down = more + net protein balance; Trappe et al. [23]). This would improve 
the ability to accrete more muscle mass in the face of cancer cachexia. It is 
suggested that future clinical trials combine resistance training with acetamino-
phen or ibuprofen at the maximal daily dosage in cachectic cancer patients. For 
detailed schematic on how these analgesic agents affect protein metabolism see 
Trappe et al. [23].

5.4 Albuterol

In humans, Uc et al. [24] found that administration of the beta-2 agonist 
 albuterol increased thigh cross-sectional area by 5.3% and whole-body fat free 
mass by 9.5% in Parkinson’s patients over 14 weeks (16 mg/day). Unpublished 
data suggests that muscle protein synthesis is elevated by ~90% in elderly 
 individuals with 16 mg/day over 10 days of albuterol administration  
(Lambert et al. unpublished observations). Albuterol would appear to be an 
anabolic agent that should be administered off label in cancer cachexia in clini-
cal trials.

5.5 Anamorelin and ibutamorelin

Anamorelin is active orally, centrally penetrant, and selective agonist of 
the ghrelin/growth hormone secretagogue receptor-1a and was under develop-
ment for the treatment of cancer cachexia and anorexia [25] (Drug Bank). It 
increases growth hormone (GH), insulin-like growth factor-1 (IGF-1) and 
insulin-like growth factor binding protein (IGFBP-3) and apparently has no 
side effects as testosterone administration does. It also stimulates appetite [9]. 
It has been shown in Phase III Clinical Trials to increase appetite, body weight, 
lean body mass, but not muscle strength as measured by hand grip strength 
[9]. The natural agonist for ghrelin/growth hormone secretagogue receptor-1a, 
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ghrelin has a short half-life, however; anamorelin has better pharmacokinetic 
properties as evidenced by a more sustained delivery [26]. It is a dipepetide of 
molecular weight 546.716 (Drug Bank). Apparently, this drug failed in Phase III 
Clinical Trials due to lack of an effect on grip strength although it increased lean 
body mass [9]. The only side effect noted with anamorelin was a small risk of 
headache [26]. Anamorelin is approved for clinical use in Japan but not the US 
or Europe.

Ibutamorelin, like anamorelin, is another ghrelin analogue that stimulates 
growth hormone secretion from the pituitary and IGF-1 secretion from the liver. 
Svenson et al. reported that 2 months of treatment of individuals 18–50 years 
old with 25 mg of ibutamorelin resulted in and increase in growth hormone and 
IGF-1 and a significant increase in fat free mass when measured by DEXA or by 
a four compartment model. Basal metabolic rate was elevated at 2 weeks but not 
at 8 weeks. Nass et al. [27] reported that in individuals 60–81 years of age, 25 mg 
of ibutamorelin administered over 2 years resulted in a loss of 0.5 kg of fat free 
mass in placebo group but a gain of 1.1 kg in the ibutamorelin group. This was 
accompanied by an increase in growth hormone and IGF-1 and a reduction in 
LDL cholesterol of 0.14 mmol/L. Murphy et al. (1998) reported that in individu-
als 24–39 years of age, ibutamorelin (25 mg/day) accompanied by a 18 kcal/kg/
day energy intake for 2, 14 day periods resulted in a + 2.69 nitrogen balance for 
the ibutamorelin group but a −8.97 for the placebo group during the last 7 days 
of the second 14 days, which suggests that this anabolic agent would be preven-
tative of muscle loss with a very low energy intake. Unfortunately, ibutamorelin 
did not show efficacy in functional tests which are the criteria the FDA uses for 
cancer cachexia drugs [1] and in other conditions which induce muscle loss such 
as hip fracture [28]. Both anamorelin and ibutamorelin did not show functional 
efficacy in clinical trials. Why functional capacity improvement would be the 
ultimate criteria for cancer cachexia would be beyond me. Since the problem 
in cancer cachexia would be considered muscle wasting and not a functional 
problem [1]. Maybe it is time for the FDA to change their criteria for approval of 
safe and effective drugs which cause anabolism and prevent catabolism during 
cancer cachexia. Because of the FDAs short sightedness, both of these drugs 
(anamorelin and ibutamorelin) have been rendered the status of nutritional 
supplements.

5.6 Megace

Megestrol acetate (Megace) stimulates appetite, increases feeding behavior, 
alone-reduces lean body mass-but in combination with testosterone therapy and 
resistance exercise training, increases lean body mass in underweight elderly 
men [29]. This combination of Megace, testosterone, and resistance training may 
be beneficial in cancer patients. Megace alone decreased muscle mass but when 
combined with testosterone AND exercise resulted in a substantial increase in 
muscle mass in 12 weeks of training and administration [29]. It was hypothesized 
by the authors that Megace binds to the androgen receptor and blocks the action of 
testosterone. However, when combined with resistance exercise and testosterone 
replacement (100 mg/week) resulted in substantial muscle growth (hypertrophy). 
Therefore, resistance exercise, in some way acts, permissively to allows under-
weight elderly men to maintain muscle mass when testosterone is low and in the 
face of testosterone replacement to increase muscle mass. Likely, this is through the 
androgen receptor.
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5.7 Testosterone and anabolic steroids

Testosterone and anabolic steroids are anabolic to skeletal muscle [30]. Bhasin  
et al. [30] illustrated the fact that testosterone is anabolic to skeletal muscle in step-
wise fashion with increasing dosage. The correlation between log testosterone and 
lean body mass (a surrogate for muscle mass) was 0.73, a very strong correlation. 
Urban et al. [6] reported that the mechanism of action of testosterone, with regard 
to, skeletal muscle anabolism in elderly individuals with low testosterone (testos-
terone < 480 ng/dL), was an increase in muscle protein synthesis which appear by 
elevated muscle IGF-1 concentrations and to be mediated by an elevation of IGF-1 
in skeletal muscle. Cancer patients in general are hypogonadal (testosterone concen-
trations less than 300 ng/dL; Burney et al. [31]). Therefore, the administration of 
testosterone or its much less androgenic (secondary side effects) analogue anabolic 
steroids would appear to be a logical step in the treatment of cancer cachexia which 
may at least partly be due to low testosterone concentrations. The only caveat is that 
cancers that are hormone sensitive may not be a good candidate for testosterone 
or anabolic steroid therapy due to possible proliferation of the tumor. Nandrolone 
decanoate, an intramuscular injectable anabolic steroid and oxandrolone, an oral 
anabolic steroid are very low in secondary side effects because of their low andro-
genic to anabolic ratio. They have been used in other disease populations such as HIV 
[7] for oxandrolone and nandrolone decanoate [8]. Thus, the utility of these drugs 
along with testosterone in cancer would appear unquestionable. Clinical trials using 
these anabolic agents in an off label fashion in multiple types of cancer is warranted.

5.8 Monoclonal antibodies

A logical step in decreasing the cachexia associated with cancer would be 
neutralizing circulating IL-6 and TNF-α with monoclonal antibodies.

There are many monoclonal antibodies to TNF-α FDA approved for other uses. 
To the best of my knowledge, there are one or a few monoclonal antibodies to IL-6 
for different indications than cancer. Clearly, as discussed in a recent letter to the 
editor [5], this would be a very important application of monoclonal antibody 
technology.

6. Conclusion

Inflammation through IL-6 and TNF-α is an important mechanism by which 
cancer causes muscle catabolism. Reducing inflammation by exercise, non-
steroidal anti-inflammatory drugs, and monoclonal antibodies would appear to be 
a potential strategy to curtail cancer cachexia. Also, augmenting protein synthesis 
by utilizing exercise, creatine monohydrate, albuterol, testosterone, and anabolic 
steroids would also appear to be a potential strategy to curtail cancer cachexia. 
Utilizing megestrol acetate would be indicated for cancer cachexia only if accom-
panied by testosterone replacement and exercise. The off-label oral use of albuterol 
is anabolic to skeletal muscle in healthy elderly individuals and future clinical trials 
could evaluate its utility in cancer cachexia. Ghrelin analogues, that is, growth 
hormone secretagogues, although not FDA approved, elevate, in pulsatile manner, 
growth hormone and IGF-1 concentrations and increase significantly lean body 
mass accrual (some studies in cancer) with few if any side effects. Therefore, these 
nutritional supplements are indicated for the treatment of cancer cachexia. For 
a depiction of Ligand-Receptor interactions discussed in this Chapter please see 
(Figure 1).
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Figure 1. 
A schematic representation of monoclonal antibodies and cytokines, mechanism of action of growth 
hormone and putative mechanism of beta-2 agonists in animals, and of testosterone and anabolic steroids on 
skeletal muscle.
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Abstract

Sarcopenia has been defined as the loss of skeletal muscle mass and strength that 
occurs with advancing age and has also been related to many metabolic diseases. 
In late stages, sarcopenia precedes cachexia, defined as a multifactorial syndrome 
characterized by an ongoing skeletal muscle wasting, with or without loss of fat 
mass, associated with poor prognosis in diseases, worsening quality of life and 
survival. Heart failure and cancer-associated cachexia represents a progressive 
involuntary weight loss and is mainly the result of an imbalance in the muscle pro-
tein synthesis and degradation, inflammation, and oxidative stress, causing muscle 
wasting. Importantly, both diseases are still the main causes of death worldwide 
and the molecular basis of cachexia is still poorly understood. Recently, non-coding 
RNAs have been described to regulate the cardiac and cancer-associated cachexia. 
On the other hand, exercise training is a promising ally in slowing down cachexia 
and improving the quality of life of patients. New studies demonstrate that exercise 
training, acting through non-coding RNAs, may be able to mitigate muscle wasting, 
as protein turnover, mitochondrial biogenesis, and antioxidant capacity improve-
ment. This review will therefore discuss the molecular mechanisms associated with 
the muscle wasting in both cardiac and cancer cachexia, as well as highlighting the 
effects of exercise training in attenuating the loss of muscle mass in these specific 
conditions.

Keywords: cancer, cardiovascular diseases, exercise, muscle wasting,  
non-coding RNAs

1. Introduction

Cardiovascular diseases (CVD) and cancer (CA) are the two leading causes of 
death worldwide, representing about 28 million deaths per year [1–4]. Only CVDs 
affected 523 million cases worldwide, representing the main cause with 18 million 
deaths each year [4]. Currently, CA is the second disease in the number of deaths 
in the world, but its prevalence has been increasing in recent years and, in some 
countries, it is the main cause of death [5]. GLOBOCAN data show that in 2021, 
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19.3 million new cases and 10 million deaths from the CA disease were reported [6]. 
Considering the worldwide increase in the prevalence of CA and the high mortality 
from CVD, both diseases represent a serious public health problem.

The heart failure (HF) is the final common pathway of most cardiac and 
circulatory diseases [7]. The American Heart Association (AHA) defined HF as 
clinical syndrome characterized by typical symptoms such as edema, dyspnea, 
and fatigue; caused by changes in cardiac function and structure, with reduced 
cardiac contraction and/or increased intraventricular pressure at rest and physical 
stress [7–9]. In addition to central cardiac alterations, HF promotes changes in 
peripheral structure and function, impairing oxidative metabolism accompanied 
by microvascular rarefaction and skeletal muscle wasting [8, 10–12]. These 
changes in skeletal muscles contribute to reduced quality of life and increased 
mortality. Worldwide, HF affects more than 23 million people [7, 9], and just 
in the United States, around 6 million American citizens are affected, leading 
to more than 1 million hospitalizations/year and a mortality rate of 1 in every 9 
patients hospitalized [2]. Furthermore, worsen projections are expected for the 
next 10 years, with an increase of 46% in cases, generating an estimated annual 
expenditure of 70 billion dollars, making a health epidemic [2, 13, 14].

In CA, studies have been shown that is a group of diseases characterized by 
uncontrolled cell growth, spreading and progressing to other cells beyond physi-
ological limits, affecting any organ and tissue in the human body [1]. In 2021, 2.2 
million new cases of breast CA have been reported worldwide, thus being the most 
prevalent, followed by lung CA (2.1 million), colon and rectum (1.8 million), and 
prostate (1.3 million). Regarding mortality, lung CA is the most lethal in the world 
followed by breast CA [15, 16].

Even with new drugs and therapies, there is still an increase in the prevalence 
of both diseases [6, 17]. Furthermore, the progression of HF and CA is related to 
muscle wasting and loss of body weight as well as consequent weakness toward 
to important clinical consequences in these diseases [18, 19]. Numerous studies 
demonstrate that involuntary body weight reduction, with increased muscle 
wasting, is the main sign of cachexia, represented by a multifactorial syndrome 
related to pre-established chronic diseases [18, 20]. Currently, in the world, 12 
million patients have cachexia, which is responsible for worsting prognoses on 
established diseases, reduced quality of life, impaired therapeutic effectiveness, 
and increased mortality [21, 22].

To date, there are no effective pharmacological treatments for cachexia for both 
HF and CA [17, 23]. On the other hand, exercise training (ET) is a non-pharma-
cological treatment, relatively cheap and safe. In addition, ET promotes anabolic 
stimuli, which may preserve the muscle wasting, and at the same time enhance 
the quality of life and reduce mortality in cachexia patient [18, 24, 25]. During the 
last decades, the class of non-coding RNAs (ncRNAs): microRNAs (miRNAs), 
long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) have been 
demonstrating important associations with CVD, CA [26, 27], and with the muscle 
wasting promoted by cachexia [28, 29], becoming a promising mechanism to the 
understanding cardiac and CA cachexia.

Although great advances have been made to understand HF and CA, the 
mechanisms involved in skeletal muscle abnormalities, still poorly understood  
[3, 12, 15, 30, 31]. Therefore, understanding the mechanisms and pathways 
involved in skeletal muscle structure and function may help to develop new thera-
peutic strategies against cachexia, resulting in improved treatment and quality of 
life for patients [20, 32]. Consequently, this review aims to discuss the molecular 
mechanisms, involving ncRNAs in cardiac and CA cachexia. In addition, to known 
the implication of ET and ncRNAs in the treatment of cachexia.
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2. Cachexia in heart failure and cancer

Cachexia (from the Greek ‘kakos’ for bad, and ‘hexis’ for condition) was first 
described, as a result of chronic disease, in 1860 by the French physician Charles 
Mauriac, which consider only as muscle disease, close to a metabolic syndrome 
[25, 33, 34]. Over the years, the term cachexia has been updated and nowadays is 
considered as a multifactorial syndrome characterized by loss of appetite, body 
weight (with significant muscle wasting), which may or not extend to adipose 
tissue. The advancement of cachexia decreases muscle function, worse fatigue, and 
reduces the quality of life and life expectancy of patients [21, 25, 35]. Also, recent 
studies demonstrate that cachexia can communicate with multiple organs, such as 
the heart, adipose tissue, intestine, kidneys, and liver, helping the development and 
progression of disease [31, 36].

Among the chronic diseases that commonly progress to cachexia, HF and CA 
have the largest number of affected patients [37]. Anker et al. [38] were the first 
authors to describe muscle wasting in HF patients, where patients with reduced 
body weight were diagnosed with cardiac cachexia. In 2012, the European Society 
of Cardiology (ESC) recognized cachexia as a comorbidity of HF [39] and in 
2016 the ESC began to recommend the non-reduction of body weight in HF for 
obese or overweight patients [40]. In HF, the involuntary loss of body weight is 
considered an independent factor to reduce physical capacity, and poorer quality 
of life [38, 41].

The cardiac cachexia prognosis is extremely complex, with annual mortality 
about 20 to 40%, reaching up to 50% of patients death after 18 months of diagnosis 
[37, 38]. On the other hand, the cardiac cachexia incidence can range from 10–39%, 
depending on study design and HF patients prognosis [42, 43]. In the SICA-HF 
study (studies investigating co-morbidities aggravating HF), investigated cardiac 
caquexia in 207 HF patients with reduced ejection fraction (HFrEF) and preserved 
(HFpEF), of these 21% had cachexia independent of ejection fraction [44]. Studies 
show that cardiac cachexia would be more present in patients with HFrEF, being 
associated with a 3-fold higher risk of death from all causes compared to those with 
HFpEF [38]. On the other hand, implications of cardiac cachexia in patients with 
HFpEF still need further studies [42]. Valentova et al. [42], based on their clinical 
experience, reported that patients with HFpEF shows cardiac cachexia signs only 
in advanced stages of HF, possibly acting in a different biological pathway in the 
development of the disease [45].

Numerous changes between central and peripheral organs were observed in 
patients with HF [46], followed by abnormalities in skeletal muscle such as capil-
lary rarefaction, type I to II fiber switch, impaired oxidative metabolism, decreased 
excitation-contraction coupling, and muscle atrophy [47, 48]. In general, cardiac 
cachexia is responsible for muscle atrophy in the early stages of the disease and 
may progress to loss of adipose tissue, just in the late stages of the disease [42]. 
Regarding myocardial impairment in cardiac cachexia, more solid data are needed 
to help distinguish the structural and functional changes related to cardiac disease 
from those found in cardiac cachexia. Currently, contradictory data demonstrate 
cardiomyocytes wasting with or without cardiac impairment [22, 49]. It is necessary 
to emphasize to achieve correct values of cardiac cachexia it is necessary to exclude 
edema values from the total body weight, a difficult task for patients with HF that 
hinders the accurate diagnosis of cardiac cachexia [32].

In CA, depending on the stage and development of the disease, 80% of patients 
have cachexia, leading to death of 30% of these patients [15, 50]. Fearon et al. 
[51] classifies CA cachexia into 3 stages: pre-cachexia, cachexia, and refractory 
cachexia. It is necessary to understand that not all patients will go through the 
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three stages. Then, the type and stage of CA can influence the progression of 
cachexia, as well as systemic inflammation, low food intake. In addition, CA 
cachexia can reduce tolerance to responses to chemotherapy treatments, worsening 
the prognosis of patients [50, 52].

Regarding the incidence of CA cachexia, the type of cancer may influence, since 
patients with gastric or pancreatic CA have over 80% of incidence. On the other 
hand, patients with lung, prostate, or colon CA have an incidence of 50%, and 
40% of patients with advanced breast, head, and neck tumors and some leukemias 
develop the syndrome [35, 53, 54].

Both cardiac and CA cachexia share symptoms, as described in Figure 1, but 
cardiac cachexia presents a slower and more gradual muscle wasting [55] when 
compared to CA, with a progressive and rapid muscle wasting, leading to earlier 
death compared to cachexia from cardiac causes [56]. The international consensus 
for the diagnosis of cachexia is similar between HF and AC, namely: body weight 
loss >5% or > 2% in individuals with low BMI (< 20 kg/m2) or loss of skeletal 
muscle mass in 12 months [31, 51].

3. Non-coding RNAs in cardiac and cancer cachexia

Several factors are involved to cardiac and CA cachexia like imbalance between 
protein synthesis and degradation, high inflammatory levels, and metabolic 
dysfunction (Figure 2). However, the pathophysiological mechanisms involved in 
muscle wasting induced by cardiac and CA cachexia are not fully understood. Thus, 
in recent years, researchers have been identifying a set of ncRNAs, with great regu-
latory potential in skeletal muscle, and that may have important roles in controlling 
muscle wasting in cachexia [29, 57].

ncRNAs are RNA molecules not translated into proteins, organized in classes 
depending on their structure. miRNAs have approximately 19–25 nucleotides (nt) 
and play a regulatory function in gene expression, through translation inhibition 
of messenger RNA (mRNA). The lncRNAs have approximately 200 nt in their 
composition and primarily interact with mRNA, DNA, protein, and miRNA 
and consequently regulate gene expression at the epigenetic, transcriptional, 

Figure 1. 
Common symptoms of cardiac and cancer cachexia.
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post-transcriptional, translational, and post-translational levels in a variety of 
ways. CircRNAs is produced by the circularization of specific exons by covalently 
linking the 3′ end of one exon to the 5′ end of another. It is known to function as a 
kind of miRNA sponge, thus regulating transcription, splicing, and production of 
peptides by translation [58, 59].

Among the ncRNAs, miRNAs have been the most studied to date due to 
be essential to numerous cellular functions, from fetal formation to disease 
development [59, 60]. miRNAs are expressed in all body tissues, but in skeletal 
muscle, 25% of all expressed are muscle-specific, and play important roles on 
muscle mass and homeostasis [29, 61]. These muscle-specific miRNAs are termed 
“myomiRs”, and include miRNA-1, −133a, −133b, −206, −208a, −208b, −486, 
and − 499. Because myomiRs are exclusively expressed or enriched in striated 
muscle (skeletal muscle and cardiac), they occupy essential functions in the 
regulatory networks of myogenesis, fiber type composition, muscle growth, and 
metabolism [60–64]. Beyond the myomiRs, some miRNAs (e.g., miRNA-21, −24, 
−29b, −199, −214) shows important roles in atrophy, especially in cachexia, and 
known as “atromiRs” [57, 63].

Both lncRNAs and circRNAs shows important regulation on skeletal muscle and 
diseases such as HF and CA [29, 59, 65, 66]. Professor Chen’s group, in recent years, 
has been investigating the lncRNAs on the molecular mechanisms of skeletal muscle 
mass development and control. In their works, it was found more than 4,400 
lncRNAs related to atrophy mechanisms in C2C12 cells (i.e., myoblasts) [67, 68]. In 
the same way, circRNAs have also been related to the development and control of 
skeletal muscle mass [65, 68]. Although ncRNAs have a promising future, further 
research is needed to better understand the ncRNAs on muscle wasting mechanisms 
in cardiac and CA cachexia. Thus, the next topics presents the new perspectives of 
ncRNAs in cardiac and CA cachexia.

3.1 Cardiac cachexia and non-coding RNAs

Currently, ncRNAs are associated with molecular mechanisms in HF, respon-
sible for progression, treatment, and use as biomarkers of the disease [59, 69, 70]. 
On the other hand, studies involving muscle wasting, ncRNAs, and HF remain 
rare. Moraes et al. [71] was the first group to investigate cardiac cachexia and 
ncRNAs. The study identified several changes in the regulatory pathways, such as 
cellular matrix, protein degradation, metabolism, c-Jun N-terminal kinase (JNK) 
cascade, and cellular response to the transforming growth factor-beta (TGF-β) in 
soleus muscle from cardiac cachexia animal. Indeed, the cellular responses found 
are close to those have found in patients with cardiac cachexia [24]. Furthermore, 

Figure 2. 
Factors contributing to cardiac and cancer cachexia and the role of exercise in reversing these damages.
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the authors demonstrated 18 differentially expressed miRNAs, where 5 was down-
regulated (miRNA-30d, −146b, −214, −489 and − 632) and 13 was up-regulated 
(miRNA-27a, −29a, −29b, − 132, −136, −204, −210, −322, 331, −337, −376c, −434 
and − 539). After gene ontology analysis, all miRNAs showed enriched to the mus-
cle mass control pathway (Figure 3) [71]. However, most of the reported miRNAs 
were different from those usually found in skeletal muscle atrophies (e.i., induced 
by other etiologies, such as dystrophies, diabetes, and denervation) [72, 73], but 
they were close to those altered in HF and cardiac remodeling [71]; suggesting a 
unique profile of miRNAs responsible for muscle wasting in cardiac cachexia.

In HF, most miRNAs were found differentially expressed in both heart and 
skeletal muscle [63]. Moreover, many of these miRNAs are also found in blood 
circulation, probably allowing myocardium-skeletal muscle cross-talking, through 
miRNAs circulating between tissues. This communication is not exclusive to 
miRNAs, but it is common to all ncRNAs through lipid vesicles or proteins (e.g., 
exosomes) [59]. In fact, cell culture experiments have already shown that distinct 
cells such as cardiac fibroblasts, endothelial cells, cardiomyocytes, myoblasts, and 
myotubes can communicate with each other through exosomes-miRNAs [74, 75]. 
Therefore, during cardiac cachexia, muscle wasting probably is influenced by other 
tissues, such as the myocardium, through miRNAs leading to molecular changes in 
cachexia development [63]. In conclusion, myocardium-skeletal muscle commu-
nication via miRNAs still needs better investigation, but it sets a great precedent to 
understand the role of miRNAs in HF-derived dysfunctions and cardiac cachexia.

Although lncRNAs and circRNAs are not fully understood in the context of 
cardiac cachexia, preliminary studies have been shown a regulatory potential in the 
development of HF [59, 66], and skeletal muscle regulation [29, 65].

As seen above, muscle wasting in cardiac cachexia patients is an important 
limiting factor in daily activities and quality of life [25]. Muscle wasting is a 
consequence of imbalance of synthesis, and degradation protein [76]. In the last 
years, cardiac cachexia studies have focused on the ubiquitin-proteasome (UPP) 
and autophagy/lysosomal proteolytic pathways to understand the muscle wasting 
process [57, 77–79]. The UPP plays an important role in the breakdown of myo-
fibrillar proteins in cardiac cachexia [80]. Proteolytic activity, through the UPP, 
depends on the limited expression of enzymes, which include the E3 ubiquitin-
ligases muscle RING finger 1 (MurRF1) and muscle atrophy F-box (atrogin-1). 
The expression of these enzymes is determined by transcription factors such as the 
forkhead box O (FOXO) family [25, 57]. The increased expression of miRNA-18a 

Figure 3. 
Non-coding RNAs involved in cardiac and cancer cachexia.
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up-regulate atrogin-1 and MuRF-1 expression; otherwise, reduced expression of 
miRNA-18a down-regulates FOXO3 expression, controlling myotube hypertrophy 
[81]. miRNA-29 plays a central role in cachexia, affecting protein synthesis and 
degradation pathways [57]. The increased expression of miRNA-29b led to muscle 
wasting with high expression of MuRF-1 and atrogin-1 and genes involved in 
autophagy [57]. The miRNA-23a antagomiR administration, an oligonucleotide, 
which acts as a competitive inhibitor of miRNA-23a, increased the expression of 
MuRF-1, revealing itself as an important negative regulator of the UPP [82].

The lncRNA HOX Transcript Antisense RNA (HOTAIR) can assume epigenetic 
functions, binding to E3 ubiquitin-ligases facilitating protein degradation through 
the UPP [83]. Also, the lncRNA cardiac hypertrophy-associated transcript (Chest) 
may regulate autophagy helping cardiomyocyte hypertrophy, and its expression was 
found to be increased in cardiac disease patients [84]. CircNfix is a key circRNA in 
cardiac muscle regeneration and regulation, whereas reducing circNfix expression 
promotes cell proliferation, angiogenesis, and reduced cell death [85]. CircNfix 
promotes the interaction of Ybx1, a transcription factor related to cell proliferation, 
and Nedd41, an E3 ubiquitin-ligases. Additionally, circNfix acts as a miRNA-214 
sponge to promote glycogen synthase 3-β (GSK-3β) expression, a protein synthesis 
pathway inhibitor [85].

Protein synthesis is also essential to maintain skeletal muscle during HF [76, 86, 87]. 
The stimulation of phosphoinositide 3-kinase-serine/serine–threonine protein kinase 
(PI3K/Akt) pathway is stimulated by the insulin-like growth factor 1 (IGF-1), leading to 
an increase in activation of mammalian target of rapamycin (mTOR) [88]. The IGF-1/
PI3K/Akt/mTOR pathway is the major signaling pathway known in skeletal muscle 
protein synthesis control [89, 90]. Indeed, mTOR activation-induced protein synthesis, 
allowing complex signals, such as TORC1 activating the ribosomal protein S6 kinase 
(p70S6k) and eukaryotic translation initiation factor 4E-Binding protein 1 (4E-BP1) 
pathways and TORC2 controlling the autophagy process [79, 91]. In cardiac cachexia, 
IGF-1 is down-regulated, promoting lower protein synthesis and increased degrada-
tion, aiding in muscle wasting [25].

The myomiRs-1 and -133a participate in several roles in cell development, 
differentiation, and growth. Besides, both have been validated to target IGF-1 
[92–94], and reduction in both expression induces skeletal muscle hypertrophy 
[74, 95, 96]. On the other hand, increased expression of miRNA-1 and -133a can 
lead to muscle atrophy [63]. The binding of IGF-1 to its receptor, insulin recep-
tor substrate 1 (IRS-1), active, through its own phosphorylation, the PI3K/AKT/
mTOR signaling pathway [25]. In this way, miRNA-378 performs an important 
anti-hypertrophic role, acting as an inhibitor of IRS-1 via AMP-activated protein 
kinase (AMPK) signaling [97]. Furthermore, the miRNA-1 low expression in HF 
muscle patients reduce the protein expression of phosphatase and tensin homolog 
(PTEN), an important protein in the regulation of the synthesis pathway [98]. 
Bioinformatics analyzes demonstrated that miRNA-22 expression target PTEN 
and Sirtuin 1 protein, both responsible to regulate hypertrophy in cardiomyocytes 
[99, 100]. On the other hand, the synthesis pathway inhibits the FOXO family 
and GSK-3β leading to increased protein synthesis [25]. In HF animal models, the 
increase in miRNA-29 expression regulates the function of GSK-3 β, preventing 
hypertrophy via the nuclear factor of activated T cell (NFAT) [101]. Likewise, the 
miRNA-29 down-regulation leads to muscle atrophy in C2C12 cells and in cardiac 
cachexia patients [71]. The miRNA-23a, −132 and − 212 are related to the suppres-
sion of FOXO3, the main isoform of the FOXO family, responsible for the regula-
tion of protein synthesis [102, 103].

Although the CircRNA SLC8A1–1 (circSLC8A1–1) has not been observed in HF 
yet, the circRNA expression is directly related to hypertrophy, acting as a sponge 
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for miRNA-133 [94]. Another circRNA identified as HRCR was the first circRNA 
related to cardiac hypertrophy, and it is down-regulated in cardiac hypertrophy 
animal models, while miRNA-223 expression was increased. HRCR acts as a sponge 
for miRNA-223 controlling hypertrophy [104]. The muscle wasting mechanisms in 
cardiac cachexia are complex, and not fully understood. At the moment, ncRNAs 
seem to be indispensable. However, ncRNAs constitute a diverse class of molecules 
capable act in gene expression and skeletal muscle homeostasis. In cachexia, many 
of these ncRNAs are differently expressed, imply functional changes, and aggravate 
the progression of the disease. Further studies are needed to better understand the 
pathophysiological mechanisms of cardiac cachexia under ncRNAs participation.

3.2 Cancer cachexia and non-coding RNAs

In silico and in vivo approaches demonstrated the involvement of miRNAs-21 
and -206 in the regulation of muscle wasting from different atrophic models (i.e. 
diabetes, cancer cachexia, chronic renal failure, fasting, and denervation) by 
targeting the transcription factor YY1 and the translational initiator factor eIF4E3, 
indicating these miRNAs as fine-tuning regulators from muscle catabolism [73]. 
The tumor-secreted miRNA-21 and -29a showed an activation of premetastatic 
inflammatory pathways, mediated by its binding to the Toll Like Receptor (TLR), 
such as, murine TLR7 and human TLR8. CA-induced miRNA-21 was also found to 
be overexpressed in exosomes during tumor evolution, which signals through the 
TLR7 on myoblasts to promote cell apoptosis [105, 106].

A recent meta-analysis showed that miRNAs are related to muscle wasting 
during CA cachexia, including miRNAs-27a, −27b, −140 and -199a. These miRNAs 
favor atrophy and also inhibit muscle growth [107].

In studies using wild-type mice and poly (ADP-ribose) polymerases- 1(Parp-1) 
−/− and Parp-2 −/− with Lewis lung carcinoma revealed that the miRNA-1 was found 
down-regulated in the skeletal muscle of these animals. Furthermore, miRNA-133a 
was reduced in the diaphragm and gastrocnemius of animals with Parp-2 −/−, while 
animals with Parp-1 −/− showed difference only in the reduction of the diaphragm. 
The expression of miRNA-206 and -486 in tumor bearing-mice was also lower in 
wild-type animals. There was proliferation and differentiation of muscle cells in 
Parp-1 −/− mice via miRNA-133a, −206, and − 486 action, while the inhibition of 
Parp-2 through miRNA-206 promoted the differentiation of muscle cells in the 
gastrocnemius muscle [108].

Lee et al. [109] performed analysis in CA cachectic mice whereas they found 9 
differentially expressed miRNAs, namely: miRNA-147, −205, −223, −299a, −431, 
−511, −665, −1933 and -3473d, most of all involved in many functions, such as cell 
growth, signaling, inflammatory response, and catabolism [109]. In another study, 
with CA cachexia patients, 5 miRNAs were found differently expressed. Of these, 
miRNA-23a, −99b, −483 and − 744 were down-regulated, and miRNA-378 was 
up-regulated in these patients and were involved with catecholamine-stimulated 
lipolysis in adipocytes [110].

Patients with CA cachexia showed up-regulation of 8 miRNAs, which were 
involved in myogenesis, muscle metabolism and inflammation (miRNAs-let-7d, 
−199a, −345, −423, −532, −1296 and − 3184) [111]. A study using vastus lateralis 
biopsy showed a higher expression of miRNA-424, and -450a and a lower expres-
sion of miRNA-144 and -451a. These processes involved target genes related to IL-6, 
TGF-β, TNFα, insulin and Akt pathway, thus contributing to a reduction in the 
survival of these patients [112].

Regarding lncRNAs in cachectic animals, lncIRS1 was described to act as a 
sponge for miRNA-15, regulating the expression of IRS1. When this lncRNA is 
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overexpressed, it activates the signaling pathways IGF-1 / PI3K / Akt, thus increas-
ing protein synthesis. Furthermore, this increase in its expression inhibits muscle 
wasting. When suppressed, there is a decrease in IGF-1 levels in favor to muscle 
wasting [113]. LncRNA muscle anabolic regulator 1 (MAR1) showed an interac-
tion with miRNA-487b promoting muscle regeneration and differentiation; when 
overexpressed, it has been shown to attenuate muscle wasting, thus being a possible 
therapeutic target for CA cachexia [114]. Another lncRNA that was shown to be 
altered in CA cachexia was cachexia-related long noncoding RNA1 (CAAlnc1), 
which through its interaction with the protein Hu antigen R (HuR), an essential 
protein for adipogenesis, led to fat loss [115].

lncMyoD is a lncRNA activated during myoblast differentiation directly by 
Myogenic Differentiation 1 (MyoD). When overexpressed, it has been shown to 
inhibit muscle differentiation and cell cycle exit, thus being associated with CA 
cachexia patients [116]. Recently, the lncRNA metastasis associated lung adenocar-
cinoma transcript 1 (MALAT1) was found involved in expression of peroxisome 
proliferator activated gamma receptor (PPAR-ỿ), at the transcriptional level, 
associating with fat loss, and reflect a marker of worse prognosis to affected CA 
cachexia patients [117].

Looking for circRNAs, only one study to date has shown the expression of cir-
cRNA Hsa_circ_0010522 (ciRNA-133) in gastric CA. These circRNA was positively 
associated with body fat and brown fat mass. ciRNA-133 has been shown to interact 
as a sponge with miRNA-133 in an in vivo approach. When ciRNA-133 was over-
expressed in mice, it was also shown to be increased in tumors tissue. The animals 
showed reduced inguinal adipose tissue mass and darkening. Therefore, ciRNA-133 
worsens cancer cachexia, probably through the darkening of the fat [118].

The Figure 3 indicates the ncRNAs that have been identified to promote cardiac 
and cancer cachexia.

4. Non-coding RNAs and physical exercise on skeletal muscle

The health benefits of ET have been recognized for decades [119, 120]. 
Currently, ET is an important component in the prevention and treatment of HF 
and CA diseases [121, 122], as well as other chronic diseases [123]. Furthermore, 
being widely recommended by AHA, ESC and American Cancer Society (ACS) 
guidelines [124, 125]. On the other hand, no effective pharmacological therapies 
are available in the treatment to cachexia [20]. Indeed, ET acts directly on adapta-
tions in skeletal muscle metabolism and morphology, inducing anabolic stimuli, 
which reduce muscle wasting and improve in morbidity and mortality in cachexia 
patient [17, 18, 24, 25, 126].

Recent studies suggest the involvement of ncRNAs, especially miRNAs, on 
ET-induced skeletal muscle [120, 127] and myocardium [128, 129] adaptation. In 
this way, potential role of ET on miRNA–mRNA networks were associated with 
muscle mass control, whereas ET induces skeletal muscle metabolic and myogenic 
pathways through miRNAs modulation [120, 130].

Although only a limited number of lncRNAs have been characterized in 
response to ET, the expectation of possible applications of these ncRNAs is 
huge. Recent study showed, through a bioinformatics analysis, the expression of 
lncRNAs in different ET modalities including resistance training, endurance train-
ing, high-intensity interval training, and combined ET [131]. These lncRNAs were 
involved with signaling pathways, such as: collagen fibril organization, extracel-
lular matrix organization, myoblast and plasma membrane fusion, skeletal muscle 
contraction, synaptic transmission, PI3K/Akt/mTOR regulation, autophagy, and 
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angiogenesis [131]. Studies validating the expression of these lncRNAs in trained 
human samples still needs to be evaluated. The large number of cellular functions 
regulated by lncRNAs and affected by ET open space for countless possibilities, 
becoming very promising for the future.

Even in the beginning, research involving ET and circRNAs regulation may 
demonstrate a possible mechanism in muscle wasting. Guo et al. [132] identified 
21 circRNAs differently expressed in trained animals compared to sedentary ones. 
Among them, circRNA BBS9 was found reduced in aging compared to young mice 
and elevated expression in ET compared to sedentary aging mice. In fact, CircRNA 
BBS9 acts as a sponge for 10 distinct miRNAs, regulating metabolic and the PI3K/
Akt/mTOR signaling pathway [132]. Besides their functions in skeletal muscle, 
circRNAs are promising ET biomarkers. In this way, circRNA MBOAT2 has been 
used in marathon athletes for cardiorespiratory assessment [133]. There are many 
regulatory possibilities linked to ET and ncRNAs. However, few works directly 
involved ncRNAs, ET, and cachexia in the literature. Below we will summarize the 
main findings involving this theme.

4.1 Cardiac cachexia, non-coding RNAs and physical exercise

More the one decade ago, ET was established as an important non-pharmaco-
logical strategy for HF treatment, promoting important adaptations in neurohor-
monal control and cardiac function [126, 134, 135]. Moreover, ET provide different 
biochemical, structural, and functional skeletal muscle adaptations, acting against 
the HF progression, and promoting capillarization, fiber type shift, oxidative 
metabolism improvement, and antioxidant defenses [136–138]. Important to note, 
skeletal muscles are highly responsive to ET stimulus [48], being able to reduce 
muscle wasting pathways, with E3 ligases mRNA down-regulation [77] and increas-
ing protein synthesis (Figure 2) [48].

Many of miRNAs were altered in heart, circulation, and skeletal muscle after ET 
[139, 140]. Souza et al. [141] evaluated ET adaptations in rats with HF. The authors 
found 56 miRNAs differentially expressed in the trained group compared to seden-
tary. Of these, 38 miRNAs were up-regulated, and 18 miRNAs were down-regulated 
in trained rats. This miRNAs profile were involved with cell death, inflammation, 
cell metabolism, and morphology pathways [141]. Also, treadmill training may 
reduce the expression of miRNA-1 and -133 in the hearts of rats which are negative 
regulators in protein synthesis [142]. In contrast, swimming training increased 
expression of miRNA-21 and -144 targeting PTEN and miRNA-145 targeting 
tuberous sclerosis complex 2 (TSC2) [139]; whereas miRNA-124 targeting PI3K 
was down-regulated involved with ET-induced physiological ventricular hyper-
trophy. Furthermore, miRNA-17 was up-regulated in the bloodstream of exercised 
patients with HF, as well as rats, after ET. This increase is responsible to promote 
cardiomyocytes hypertrophy and proliferation, acting indirectly through PTEN 
and Akt signaling pathway [143]. miRNAs also regulate ET adaptation acutely, after 
accomplished a marathon miRNA-1, −133a, −206, and − 499 were abundantly 
expressed in the circulation, and 24 hours after all miRNAs, except miRNA-499, 
returned to baseline values. It shows that maybe these miRNAs were necessary to 
regulate protein synthesis in an acute way [144]. Besides, the same miRNAs were 
found differently expressed after 4 weeks of ET in the bloodstream, being involved 
in protein synthesis [145]. In conclusion, ET through miRNAs can induce molecular 
mechanisms related to muscle trophism acutely and chronically.

Compared to miRNAs, lncRNAs and circRNAs actions on exercise- induced 
muscle wasting protection remain unknown. In the heart, Lin et al. (2021) [129] 
evaluated the ET effects on lncRNAs expression induced by aortic constriction, 
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showing a markedly increase in lncRNA Mhrt779 expression compared to seden-
tary ones. Mhrt779 expression inhibited cardiac remodeling through Hdac2/Akt/
GSK-3β pathway [129]. Consequently, the lncRNAs studies are extremely important 
and will help to understand the ET and ncRNA in CVD, in both heart and skeletal 
muscle tissue.

4.2 Cancer cachexia, non-coding RNAs and physical exercise

The therapeutic strategy for CA cachexia is still open to a new treatment. 
However, physical fitness maintenance is widely recommended in the early disease 
stages [146–148]. ET attenuates CA cachexia effects through several mechanisms, 
such as anabolic increase, muscle homeostasis, improvement of insulin sensitivity, 
and control inflammation levels (Figure 2). Both aerobic ET and resistance ET were 
capable to reduce inflammation, through the balance of the pro and anti-inflamma-
tory cytokines, namely TNFα, IL-6, and IL-10. In animals, this modulation, through 
exercise, reduced tumor volume and muscle wasting [149–151].

After resistance ET, miRNA-1 expression was down-regulated in young men and 
is responsible for skeletal muscle hypertrophy. In addition, miRNA-126 also induce 
hypertrophy by IGF-1 pathway and was down-regulated after acute exercise [131]. 
The PI3K/Akt/mTOR signaling pathway, once reduced either by age or disease 
progression, can be re-established with resistance ET [132]. ET restores the expres-
sion of 26 miRNAs differentially expressed with aging. Among these miRNAs, the 
family of miRNA-99 and -100, show important regulation on PI3K/Akt/mTOR 
signaling pathway, increasing protein synthesis, and preventing skeletal muscle 
atrophy [133].

Regarding muscle wasting, aerobic ET has been shown to stimulate skeletal 
muscle hypertrophy, reducing autophagy and the expression of E3 ubiquitin-ligases 
(i.e., Murf and Atrogin-1) [152, 153]. A study with the Walker-256 tumor showed 
that ET was able to reduce muscle wasting and to control TNF-α and IL-6 levels, 
oxidative damage, and E3 ubiquitin-ligases expression, acting as an anti-atrophy 
treatment [154]. Curiously, a study using low-intensity ET was able to inhibit the 
activation of the UPP and re-active mTOR pathway, suppressing phosphorylated 
AMPK, thus indicating that the low-intensity exercise was able to prevent CA 
cachexia muscle wasting [155].

Since myomiRs are tightly regulated during ET, it has been suggested that they 
could be used as biomarkers for monitoring cachectic patients avoiding harmful 
exercise, or as biomarkers for drugs that mimic exercise, such as trimetazidine [77]. 
In this sense, circulating miRNAs were shown to act like a biomarker for muscle 
loss, regeneration, therapeutic efficacy, and early detection of cachexia. We can 
highlight the miRNAs-130a [156], −21 [157], −203 [158], −486 [159], and myo-
miRs: miRNAs-1, −133a, −133b e − 206 [160–162].

5. Conclusion

Cachexia has been described as a serious health problem due to its prevalence 
and by affects several organs and systems. The development of cardiac and CA 
cachexia promotes imbalance protein system, which in turn facilitates exercise 
intolerance and weakness, increasingly leading to death. Therefore, understanding 
all the mechanisms behind this syndrome and its possible biomarkers is of great 
value in creating new intervention strategies.

ET has been shown to have positive results as a non-pharmacological therapy 
for cachexia. Its effect related to decreasing muscle degradation, inflammatory 
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environment, fatigue, and increased survival highlights its importance within the 
treatment protocols for these syndromes. Current HF and CA guidelines strongly 
recommend regular physical exercise for stable patients to prevent and/or attenuate 
skeletal muscle abnormalities. Its application should incorporate the early stage 
of cachexia development and may be accompanied by the markers previously 
described. Given this, its incorporation for the treatment of cachexia only needs a 
focus on the syndrome. Further studies should be undertaken to explore the under-
lying mechanisms responsible for cardiac and CA cachexia adaptations to exercise 
and the regulation of ncRNAs.
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Chapter 7

Combined Ketogenic Diet and 
Walking Exercise Interventions 
in Community Older Frailty and 
Skeletal Muscle Sarcopenia
Jia-Ping Wu

Abstract

The ketogenic diet and walking exercise training interventions are two key  
public health lifestyle factors. The potential of combined lifestyle factors interven-
tions focused on getting to compliance in diet and exercise. A balanced ketogenic 
diet and regular exercise interventions is key modifiable factor to the prevention 
and management of community older frailty and skeletal muscle sarcopenia. 
Influence health across the lifespan and reduction of the risk of premature death 
through several biochemistry mechanisms. Community older group’s lifestyle 
factors interventions contribute identity in their natural living environment. While 
the older health benefits of walking exercise training interventions strategies are 
commonly to study, combining ketogenic diet and walking exercise interventions 
can induce greater benefits in community older groups.

Keywords: ketogenic diet, exercise therapy, community health planning, natural, 
exercise intervention

1. Introduction

The ketogenic diet is a 60% high-fat, 30% adequate-protein, and 10% low-
carbohydrate diet used to treat aging-related diseases in the community older 
groups. The ketogenic diet interventions are a specialized diet that involves a 
highly restricted intake of carbohydrates and proteins and a high proportion of 
fat consumption in community older groups [1]. It has proven to be used in the 
treatment of older-related diseases in community groups because the mechanism 
of action of the ketogenic diet interventions causes changes in the levels of ketone 
bodies with exercise training interventions in the body, reducing the aging-related 
diseases [2, 3]. The purpose of this chapter review was to systematically review 
the systemic effects of ketogenic diet restriction when combined with walking 
exercise intervention in community older groups. Thus, in this chapter review, 
we want to discuss combining ketogenic diet interventions and walking exercise 
interventions in community older groups. The ketogenic diets very high in fat 
can promote ketogenesis differently depending on other different macronutrient 
ratios [4]. The ketogenic diets intervention for weight loss in older humans may 
be counterproductive to obesity, however, which is not typically associated with 
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NAFLD/NASH [5, 6]. Acetoacetate, acetone, and β-hydroxybutyrate are the three 
ketone bodies produced in community older groups. It is also important to eat 
healthy ketogenic diet interventions and exercise interventions regularly as well as 
a check-in with your healthcare provider [7]. After a short-time walking exercise, 
make appropriate adjustments based on your own feelings, such as frailty and 
sleepiness [8]. However, the benefits of walking exercise regimens improve the 
immune system, helps digestion, promote the release of muscle hormones, and 
when they enter the body to eliminate inflammation, reduce visceral fat, reduce 
inflammation, helps improve brain-derived neurotrophic factor substances, 
mitochondrial cells work normally, and help longevity [9]. The precise regimen 
of action of the combined ketogenic diet interventions and walking exercise 
interventions in community older groups is not known, although many possible 
interventions explanations have been proposed. There are many changes that 
occur in the body as a result of the ketogenic diet, but it is unclear which of these 
alterations is responsible for the walking exercise interventions effects. This is 
expected, however, as the mechanism of action of the combined ketogenic diet 
and walking exercise interventions in community older groups is similarly a 
mystery [10]. Sarcopenia and frailty are prevalent in the community of older 
aging-related diseases [11]. Sarcopenia is because of the presence of loss of muscle 
mass with low muscle strength and low physical function in the community older 
groups (Figure 1). What is sarcopenia? And what causes sarcopenia?

Sarcopenia is defined as the loss of both coordination of muscle mass and 
strength, which causes difficulty walking and poor daily activities balance. 
Sarcopenia is a major aging-related disease with a health condition for contributes 
to public health and sociate. Aging-related skeletal muscle sarcopenia can lead to 
disability and lack of independence, as well as increase the risk of falls. Skeletal 
muscle strength loss led to lower muscle function (Figure 1A), and skeletal muscle 
structure disruption, in addition to a loss of muscle mass because of an increase in 
fat tissue skeletal muscle strength evaluated appendicular muscle mass was mea-
sured with dual-energy X-ray absorptiometry (Figure 1B). Aging disrupts skeletal 
muscle ability to lose maintain muscles. With aging, a lot of signals are sent from 
the brain to the muscle leading to a loss in mass and strong (Figure 2A). Frailty is 
a body system impairment associated with increased oxygen stressor. The walking 
exercise interventions regimens are to stave off frailty transitions over time among 

Figure 1. 
Sarcopenia is a muscle-wasting condition disease. (A) Skeletal muscle strength loss is related to aging. 
(B). Skeletal muscle structure disruption is associated with aging.
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the elderly populations [12]. Both sarcopenia and frailty are detrimental outcomes 
in older adults to processes exacerbated by acute illness or injury. Multiple weight 
cycles in the community older groups are a predictor of lower muscle mass and 
reduced strength with potential for sarcopenia in elderly with obesity (Figure 2B). 
Severe obesity overweight cyclers with lower muscle mass and strength showed 
a greater risk of developing sarcopenia. Pro-inflammation is a hallmark of aging. 
Aging-associated obesity is adipose tissue and skeletal muscle inflammation associ-
ated with skeletal muscle loss and impaired myogenesis [13]. Combined ketogenic 
diet interventions and walking exercise interventions are shown to decline infiltra-
tion of proinflammatory macrophages in skeletal muscle sarcopenia in obesity 
and being associated with muscle insulin resistance in the community human 
older groups.

2. The ketogenic diet in the community older skeletal muscle sarcopenia

The key aspect of the ketogenic diet is a high proportion of fats, adequate levels 
of protein, a low proportion of carbohydrates primarily used to treatment difficult-
to-control aging chronic diseases [14]. The ketogenic diet is now used to treat in the 
community older groups for rapidly burning more fat when there is a low carbohy-
drate intake [15]. The ketogenic diet, low carbohydrate intake, can lead to elevated 
blood ketone bodies. Measured blood ketones levels can allow for adjustment of the 
ketogenic diet to meet the user’s needs [16]. But now new technologies are being 
researched in the breath acetone sensors are becoming more popular due to less 
invasiveness and convenience [17–19]. Future technologies are very promising but 
are still in the early development stages. The ketogenic diet became popular as a 
therapy for epilepsy in the 1920s and 30s. Recently, it was developed to provide an 
alternative to anti-aging, which had demonstrated success as an aging therapy [20]. 
However, the ketogenic diet interventions are eventually largely abandoned due 
to the mitochondrial dysfunction and excessive inflammatory responses to induce 

Figure 2. 
Combined ketogenic diet and exercise interventions in community older groups. (A) The foods of the ketogenic 
diet we eat can support or hinder older health. The different intensity exercise interventions combined with the 
ketogenic diet have different effects on the older man’s health. (B) Obese sarcopenia can contribute to obesity-
induced muscle loss. Aging-related sarcopenia contributes to age-induced muscle loss.
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pathology in age-related diseases in the community older groups. There are several 
theories about the mechanism of action of the ketogenic diet intervention including 
increased acidity in the blood.

2.1 The Ketogenic diet is converted to ketone bodies

The ketogenic diets forces to burn off of fats rather than carbohydrates [21]. A 
ketogenic diet, a high fat, in food is converted triglyceride (TG). The liver converts 
triacylglycerol (TAG) into fatty acid and ketone bodies. An elevated ketone body in 
the blood eventually lowers the aging-related diseases [22]. We hoped that keto-
genic diet therapy could be maintained ketone bodies by the liver in the community 
older groups. Blood ketone bodies were produced β-hydroxybutyrate, acetoacetate, 
and acetone. They consumed a very low-carbohydrate, and excess high-fat diet [23]. 
Ketone bodies (KBs) are considered as an alternative source of energy supply [24]. 
When a person eats a regular ketogenic diet, food is converted into glucose, which 
is transported around the body and used by various cells as an energy source [25], 
but when too little carbohydrates are available, the liver processes fats to provide the 
brain with energy in the form of fatty acids and ketone bodies. An increased blood 
level of ketone bodies is referred to as ketosis. These ketone bodies are thought to 
possess anti-aging properties in the community older groups, as β-hydroxybutyrate 
supplementary has been shown to protect old human health [26]. In 1921, endo-
crinologists demonstrated that ketone bodies were produced by the liver including 
three water-soluble compounds, acetone, β-hydroxybutyrate, and acetoacetate, as 
they eat a diet rich in fat and low in carbohydrates.

The key aspect of the ketogenic diet involves the restriction of carbohydrates, 
which are no longer able to be converted to glucose and provide for the body’s 
metabolic and energy needs . To compensate for this, fatty acids are converted into 
fuel sources through a process of oxidation in the mitochondria. To detect acetoac-
etate in blood, but does not react with β-hydroxybutyrate which is the predominant 
circulating ketone body. In the community older groups’ bodies can become more 
strongly positive as the metabolic derangements improve β-hydroxybutyrate is con-
verted to acetoacetate . The ketogenic diet mimics aspects of starvation, the body 
is forced to burn fats rather than carbohydrates, when this is combined with a low 
intake of carbohydrates which causes the body to produce ketones . The stabiliza-
tion of the ketogenic diet may occur as a result of the efficiency of the ketone bodies 
as a fuel source. The ketogenic diet is converted fatty acids to ketone bodies for 
energy to increase the number of mitochondria as the body adapts [27]. However, 
this is of no consequence provided the ketogenic diet converted ketone bodies 
(β-hydroxybutyrate and acetoacetate) are closing in community older groups and 
the patient is continuing to improve clinically (Figure 3A).

2.2  The β-hydroxybutyrate (BHB) ketone supplements interventions  
in the community older skeletal muscle sarcopenia

It is not surprising that sarcopenia obesity or obese sarcopenia is linked to many 
adverse health outcomes, such as ketogenic diet and exercise training. Thus, skeletal 
muscle is the largest organ making up around 40% of body weight. It is essential 
for metabolic functions regulating blood glucose levels in the body. Furthermore, 
we discuss the role of β-hydroxybutyrate (BHB) supplementary interventions 
exercise factors released by the liver [28]. Walking exercise training may be able to 
increase their blood β-hydroxybutyrate (BHB) concentrations in the community 
older groups and be increased in ketosis. Endogenous production of high levels 
of the ketone body β-hydroxybutyrate (BHB) is regarded as 5 mM blood BHB for 
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120 min after walking exercise in the older men (Figure 3B) [29]. This ketogenic 
diet has long been used as a treatment in the community of older men focused 
on the therapeutic effects of the ketone body β-hydroxybutyrate (BHB). Recent 
reports demonstrate that developed ketone can help significantly increase the blood 
circulating β-hydroxybutyrate in the community older humans [30]. Ketone supple-
ments can efficiently attenuate age-related diseases in older humans. We argue 
this inflection point affects older human health. Some reports indicated that one 
of the ketone bodies, β-hydroxybutyrate (BHB), in the community older humans 
can inhibit aging-related diseases, such as sarcopenia or Alzheimer’s disease (AD) 
. The favorable aspect of ketosis in both ketogenic diet and ketogenic supplements 
in aging-related diseases has been discussed. We summarize and suggest that aging 
research is entering a new milestone that has unique medical, commercial, and 
societal implications.

2.3  The different types of ketogenic diet intervention regimens in the 
community older skeletal muscle sarcopenia

Many foods and drugs used to treat these conditions can contribute to sarcope-
nia, as they can cause an imbalance in muscle metabolic and disrupt the pathways 
that control muscle mass. Nutritional ketogenic diet factors are also important for 
maintaining muscle and muscle growth in community older patients who may be 
sarcopenia and frailty. With an adequate intake of protein each day, most people 
should aim to lean meat, poultry, fish, seafood, eggs, nuts, seeds, and legumes 
(Figure 2A). The ketogenic diet intervention regimens are a special diet designed 
to help the community older groups that fail to respond adequately to aging-related 
diseases [31]. In the absence of glucose due to lack of carbohydrates in the ketogenic 
diet interventions, the community older groups are no longer able to be converted 
to glucose and provide the body’s metabolic and energy needs, fatty acids are the 
majored converted into the fuel sources through synthesized the ketone bodies 
β-hydroxybutyrate, acetoacetate and acetone [32, 33]. The ketogenic diet is a mixed 

Figure 3. 
The ketone body converses. (A) The ketogenic diet foods. (B) Ketogenic diet raised ketone body levels. 
Blood ketone bodies (<0.6 mmole/L) are markers specifically β-hydroxybutyrate (BHB), acetoacetate 
(AcAc), and acetone. The breath acetone level is lower compared to blood BHB. Direct measurement of 
beta-hydroxybutyrate circumvents this problem. Therefore, the β-hydroxybutyrate (BHB) blood test may 
underestimate the true circulating ketone bodies.
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diet containing low carbohydrates, consisting primarily of proteins and fat. Some 
healthy foods are eaten on a ketogenic diet, for example, seafood, low-carb veg-
etables, cheese, eggs, meat, poultry, coffee, and tea (Figure 3A) [34]. The impor-
tance of high fat in aging-related diseases reducing regimens on different walking 
exercise training models is shown by comparing the effects of four different types 
of ketogenic dietary regimens. A typical ketogenic diet interventions regimens are 
made up of the following: (I). A standard keto diet (SKD): typically contains a very 
low, only 5% carbohydrate, 15% moderate proteins, and 80% high fat diet. This 
classic SKD contains a 3:1 ratio to combined protein and carbohydrate. (II) The high 
protein keto diet (HPKD): this contains 5% carbohydrates, 35% protein, and 60% 
fat. HPKD is about the same as the standard keto diet but includes more protein. 
(III) The cyclical keto diet (CKD): this ketogenic diet feeds like 5 ketogenic days of 
periods of higher-carbs feeds, and then 2 high carbohydrate days. (IV) The targeted 
keto diet (TKD): this type of ketogenic diet allows you to add more around carbo-
hydrates workouts. Although this keto diet is usually safe for diabetes, epilepsy, 
and aging-related diseases, they may be had some initial body adaptation. Be sure 
to consume a balanced optimized ketogenic diet to support your fitness program. 
All food groups are necessary to sustain healthy energy levels and get the most out 
of your workout [35]. A ketogenic diet contains 5% carbohydrates, carbohydrates 
are vital, as they can fuel your muscles before exercise [36]. Carbohydrates are 
also important after walking exercise training to replenish glycogen stores and 
assist with the absorption of amino acids into your muscles during recovery [37]. 
Up to 35% protein helps to improve muscle recovery after walking exercise train-
ing, repairs tissue damage, and builds muscle mass [38]. Up to 60% of consuming 
healthy fats has been shown to help burn body fat and preserve muscle fuel during 
workouts, making your energy last longer [39]. The ketogenic diet interventions 
contain adequate amounts of protein for body growth. The total protein in the 
ketogenic diet is also sufficient to maintain health for a given older age. In the classic 
ketogenic diet, the ratio of fats to carbohydrates and proteins combined is 4:1 [40]. 
Although it emerged in the community older groups of aging-related diseases could 
be effectively controlled using these interventions. They may still fail to achieve 
aging control in the community older groups [41]. For these intervention individu-
als, the ketogenic diet interventions were re-introduced as a technique for managing 
the condition. However, the ketogenic diet has been shown in a study of rats to have 
anti-aging properties and inhibit the development of aging-related diseases in the 
community older groups.

3.  The walking exercise intervention in the community older skeletal 
muscle sarcopenia

What causes of sarcopenia in community older people? By the age of 70, sarco-
penia affects 10–30% of older adults lost muscle mass and this is replaced with fat 
and fibrous tissue, particularly in people who are physical inactivity, malnutrition, 
hormones changes, inflammation increased, and aging-related diseases. Sarcopenia 
is common in older people, but can also earlier in their 40s life without exercise 
intervention causes skeletal muscle mass and strength begin to decline and accelerate 
with aging [42]. Exercise training can help lower the risk of aging-related diseases 
in the older community groups, for example, decreases blood pressure, lower LDL 
cholesterol levels, developing type 2 diabetes, increase your heart’s size and strength, 
and improve cardiorespiratory fitness. Walking exercise training is a low-intensity 
aerobic activity that reduces the risk of the older community groups’ diseases [43]. 
If you have another aging-related chronic disease, you should speak with your 
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healthcare professional before starting a new exercise program. The difference of 
intensity of walking exercise performs change arterial system during the exercise 
stimulus [44]. Moderate walking exercise training models can improve arterial 
endothelial function in the community group of an older healthy man. General 
recommendations to promote good overall health, aim to get at least 150 min of 
moderate-intensity exercise, or 75 min of high-intensity exercise training, or a 
combination of the two each week for optimal young adult health [45]. However, 
low-intensity walking exercise training for 15 min at least three times per week and 
spend 10 min of your lunch break walking exercise. Chronic exercise training that 
can mimic the effects of exercise is associated with lower blood pressure response 
in older men [46]. Starting a new walking exercise routine can be challenging in the 
community older groups. However, having real objectives can help you maintain a 
fitness program in the long term [47]. Simply it is important to warm up before you 
start your walking exercise like arm swings, leg kicks, and walking lunges doing so 
can help to prevent injuries and improve your flexibility and reduce soreness [48]. 
Alternatively, walking exercise training in the older community groups warm up by 
doing easy movements of the walking exercise training you are planning to do. For 
example, warm-up before you walking exercise. Walking exercise training inter-
ventional improvements oxygen consumption between 15 and 29% in older adults 
lasting between 6 and 12 months [49]. A significant improvement in aerobic capacity 
was also shown following exercise training of shorter duration almost 9–12 weeks in 
older people (Figure 2). A time course, intensity, and adaptation in maximal aerobic 
capacity with walking exercise training are different in older compared with younger 
people and suggest improvements in both cardiac function and peripheral muscles 
oxygen extraction [50]. During exercise training, oxygen consumption in older 
people is higher than in people. The successful elderly walking exercise interventions 
regimens. The successful elderly walking exercise regimens are a limited effect on 
arterial structural remodeling [51, 52]. Walking exercise has major implications on 
endothelial function and endothelium dilation [53]. Therefore, walking exercise 
significantly improves endothelial flow-mediated dilation function. Other reports 
demonstrated that endothelium dilation is greater in the older man. About 100 days 
of walking exercise intervention improves endothelium dilation in older healthy men 
[54]. The greater endothelium dilation in older men who regularly perform aerobic 
exercise is mediated nitric oxide. The intensity of exercise performed and duration of 
the exercise stimulus may be changed the arterial system [55]. However, no change 
in endothelial function is observed for mild- or high-intensity exercise training for 
12 weeks in a group of young healthy men. In a healthy older population, a simple 
walking exercise did not improve endothelial function. Walking exercise interven-
tions of a shorter duration do not alter the endothelial function or arterial stiffness 
in the older population, for example, 10 days [56]. It is possible that high exercise 
intensity could diminish oxidative stress. Based on this study regimen, it is reason-
able to suggest that at least 90 days of exercise training is necessary to stimulate 
improvements in the elderly endothelial function [57]. A daily brisk walking exercise 
intervention for 120 days was associated with significantly improved arterial compli-
ance in the older community groups [58]. Regular exercise intervention training is 
independent of baseline compliance body composition and oxygen capacity [59]. 
There are many different types of walking exercise training to choose from interven-
tions. Find a new regiment nice for you and be sure to vary them occasionally in the 
community older groups, for example walking speed over 4 m walking distance in 
m/s. The goal is to start to help prevent injuries slowly to build up your fitness level 
and let your body rest from time to time [60]. Keeping track of your walking exercise 
training progress in the community older groups or taking a virtual group class are 
examples of actionable steps that can help you stay motivated and achieve your 
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goals. From an early treatise collection, authors also describe how an exercising old 
man was cured of aging-related diseases when he was completed from consuming 
a ketogenic diet [61]. Neither walking exercise intervention nor the ketogenic diet 
intervention is able to cure aging but work due to their ability to suppress age-related 
diseases. This session describes how alterations in the walking exercise intervention 
and ketogenic diet intervention played a role in anti-aging management. Forced 
the elderly walking exercise regimen during 120 days timelines in the community 
older groups (Figure 4). This timeline details the important events of each phase of 
the elderly walking exercise regimen during each day of the study. The pre-exercise 
phase during 50–60 days. This stage is the preacclimation phase involves the older 
men’s experimenter handling and baseline locomotor activity.

Stage 1: The older human experimenter handling, 2–5 min/day, 25 days.
Stage 2: The baseline locomotor activity, 60 min/day, 35 days.
During the acclimation phase (60–90 days) all older humans undergo 10 days of 

acclimation walking exercise training.
Stage 1 of acclimation phase: 5–10 min/day, 10 days, 5–7 m/min, 5–10 min, by 

3 days of rest.
Stage 2 of acclimation phase: 5–10 min/day, 20 days, 8–10 m/min, 5–10 min, by 

3 days of rest.
During the walking exercise training phase (90–120 days), one round of 

walking exercise training needs 12 consecutive days. A minimum of two rounds 
of walking exercise training followed by a 6 days rest period is required during 
the walking exercise training phase (24 days). Furthermore, this regimen can be 
modified to include multiple rounds of walking exercise training in this phase. 
Bodyweight measurements can be made throughout all phases of the study a 
before and after each phase of this walking exercise training regimen. Assigned 
nonexercise and walking exercise training sessions scores after all acclimation 

Figure 4. 
The successful elderly walking exercise regimens in the community older sarcopenia disease groups. This elderly 
walking exercise is an easy-to-follow program. This program can be adjusted to your fitness level and made as 
challenging as you want. One round of walking exercise training will only take you 12 days, and one day will 
only take you 30 min to complete. It does not require equipment.
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and walking exercise training phase scores, and range from 1 to 4, with 4 being 
the highest possible score. Briefly,

1. Assign a training score of 4: The older human walking exercise entire walking 
training session without assistance.

2. Assign a training score of 3: The older human walking exercise entire walking 
training requires minimal assistance (less than 25%) from the regimen.

3. Assign a training score of 2: The older human walking exercise require much 
assistance (greater than 25%) from the regimen.

Finally, a training score of 1: The older human walking exercise are  
noncompliant and fail to complete an exercise session.

4.  Combined ketogenic diet and walking exercise interventions in the 
older community skeletal muscle sarcopenia

Skeletal muscle has a resistance and strength training ability to adapt and regener-
ate, which should be done at least twice a week in combination with ketogenic diet 
interventions to the response. However, there are no approved medications to treat 
obesity sarcopenia or obese sarcopenia and new drugs. Many health professionals 
have little knowledge of obesity sarcopenia or obese sarcopenia, they necessar-
ily consider to treat aging-, foods diet-, or drug-related muscle wasting. Exercise 
physiological programs for older people are best positioned to with chronic diseases 
including sarcopenia. Combined ketogenic diet with walking exercise interventions is 
one of the most effective ways to reduce the risk of aging-related diseases in the older 
community groups [62]. The ketogenic diet and walking exercise are both important 
for optimal health. Both ketogenic diet and walking exercise interventions in the older 
community groups can help to reduce aging-related heart, brain, vascular, stomach, 
muscle, lung, liver, kidney, and large intestine injury (Figure 3). While old men may 
be tempted to pick one over the other, a ketogenic diet and walking exercise train-
ing work hand in hand, and combining both will optimize health and quality of life 
[63]. Cardiac physiological functions are associated with walking exercise training 
intervention. After 1 year of progressive walking exercise training intervention was 
confirming physiological cardiac remodeling with walking exercise intervention 
in the community older people. The influence of walking exercise interventions 
on aging-related cardiovascular diseases demonstrates in older men than young. In 
older community groups exhibited myocardial fatty acid metabolism response to 
beta-adrenergic stimulation after 12 months of walking exercise training [64]. The 
well-established ketogenic diet promotes the older man’s health. The ketogenic diet 
interventions are high in healthy unsaturated fats from undergoing walking exercise 
interventions in later life [65, 66]. Ketogenic diets among nonpharmacological treat-
ments for those with exercise intolerance are available to the brain, muscle, and heart, 
where they generate energy for cells in the mitochondria (Figure 2) [67]. The major 
aging-related heart disease pathophysiological conditions—left ventricular hyper-
trophy, chronic heart failure, atrial fibrillation, arterial structural remodeling [68]. 
Pathophysiology is related to multifactorial interventions other than diet or supple-
mentation. In the community older human groups treated with difficult-to-control 
syndromes are those requiring a lot of energy, such as heart, brain, and muscle [69]. 
The brain in a carbohydrate-rich diet usually relies on glucose as the preferred sub-
strate for an energy source. The ketogenic diet is a special case of a high-fat diet, about 
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adopting saturated fat in the diet as a cause of heart disease in the community older 
groups, the long-term ketogenic diet might decrease mitochondrial functions [70]. 
Glucose is initially the context of a low carbohydrate catabolized in the cytoplasm 
through the process of glycolysis which produces ATP and NADH [71]. The ketogenic 
diet reduces hyperglycemia and hyperinsulinemia. Amino acids of threonine, isoleu-
cine, leucine, and lysine were observed for ketogenic amino acids is not true for the 
heart, conversely, the anoxic heart experiences the greatest [72]. Combined keto-
genic diet and exercise interventions in community older groups are high in healthy 
unsaturated fats from olive oil manipulate nutrient-sensing pathways, particularly 
heart infarction, diabetes mellitus, and also liver, lung, and kidney disease varieties 
and antioxidants that help to fight harmful molecules free radicals. Gains in muscle 
mass of 5–10% and improvements in muscle strength power of 30–150% have been 
observed after 12 weeks of the combined ketogenic diet and walking exercise inter-
ventions in the older community skeletal muscle sarcopenia.

5.  Molecular and cellular of the combined ketogenic diet and walking 
exercise interventions in the community older skeletal muscle 
sarcopenia

The physiological molecular and cellular mechanisms of the combined ketogenic 
diet and walking exercise interventions in the older community groups that underlie 
diminished aging response in older age. About 120 days of walking exercise training 
interventions produced a reduction in plasmatic levels of protein carbonylation and 
lipid peroxidation in older [73]. Lipid peroxidation is one of the most irreversible 
changes of oxidative protein modifications, observed on an increase in the protein 
carbonylation and lipid peroxidation in the community older groups [74–76]. 
However, nonpharmacological strategies such as exercise interventions and ketone 
body supplements are of significant difference decreased. In the combined ketogenic 
diet and walking exercise interventions in the older community groups reduced 
nucleic acid oxidation and lipid peroxidation were observed [76, 77–79]. Ketone body 
supplementation and walking exercise interventions have been shown to result in 
a reduction in superoxide dismutase (Mn-SOD) levels [80]. While 120 days of the 
walking training exercise was seen to be associated with increased SOD activity. The 
earliest studies showed glutathione reductase [81, 82], catalase [83, 84], glutamine 
synthetase [85] that these compounds cause older lifestyle changes like you know, 
people talk about exercising and walking that improve your health for your body, 
and managing stress, among participants give lifestyle tips on the ketogenic diet 
and walking exercise training to control their mitochondria keep moving. After 
exercise interventions, although another study showed approximately no change in 
protein carbonylation across the age groups. Nitric oxide synthase (NOS) induces 
nitric oxide synthase (iNOS) inducible to produce NO. Increasing nitric oxide (NO) 
and nitric oxide synthase are promoted the repairment of damaged pathways and 
accelerated endothelial nitric oxide synthase [86]. In this walking exercise training 
interventions regimens, inhibition of the extracellular-signal-regulated inducible 
nitric oxide synthase and down-requirement endothelial nitric oxide synthase 
(eNOS) resulting in disturbed RAS system. The ACE2-Ang II-AT1R/AT2R axis is a 
well-established component of RAS through angiotensin (Ang II)/angiotensinII type 
1 receptor (AT1R) or angiotensin (Ang II)/angiotensinII type 1 receptor (AT2R) [87, 
88]. Walking exercise training interventions improved cognitive remediation renin-
angiotensin system (ARS) in the community older groups. After adaptive walking 
exercise training intervention with the ketogenic diet for two rounds of walking 
exercise, the maximal exercise capacity test was measured. Walking exercise training 
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intervention after ketogenic diet activated SIRT-1/SIRT-3 signaling pathways [87–90] 
and vascular endothelial growth factor (VEGF) [91, 92] because walking exercise 
training interventions increased NAD/NADH ratio in the community older groups. 
SIRT-1/SIRT-3 signaling pathways belonging to the renin-angiotensin system (ARS) 
have also been thoroughly explored [93, 94]. SIRT-1/SIRT-3 pathway is a signaling 
pathway that preserves health under conditions demonstrated that the activation of 
AMPK through walking exercise training increases SIRT activation and mTOR inhi-
bition [95]. Although walking exercise training is an effective way to improve SIRT-1, 
SIRT-3, VEGF, AMPK, and mTOR. Walking exercise training to regulate vascular 
endothelial growth factor (VEGF) and nitric oxide synthase (NOS) synthesis can rise 
various interventional. SIRT-1, SIRT-3, VEGF, AMPK, and mTOR are seen increases 
before and after our exercise intervention. NO and VEG has been demonstrated 
measurable decreases in the community older groups. VEGF plays an important role 
in the benefits of walking exercise training performance and brain blood flow in the 
community older groups. The synthesis of VEGF can be induced by NO [88]. In addi-
tion, combined ketogenic diet and walking exercise training intervention were seen 
to increase intracellular AMPK pathway, the AMPK pathway was the main pathway 
through PI3K/Akt/mTOR pathway in the community older groups. Therefore, a 
walking exercise training was planned for up-regulation PI3K/Akt/mTOR and AMPK 
pathways and anti-inflammatory [96–101]. Walking exercise training interventions 
generally leads to bred with mitochondrial DNA (mtDNA) affecting genes involved 
in every aspect of the mtDNA repair [102–109]. These findings combined are par-
ticularly interesting when considering mtDNA deletions and inflammation factor, 
NF-KB, in the community older groups.

6. Conclusions

Patients in the community older groups remain cooperative with the nutritional 
and walking exercise interventions will reduce aging disorder diseases in commu-
nity older frailty and skeletal muscle sarcopenia. In the communication older frailty 
and skeletal muscle sarcopenia population, a walking exercise program improved 
healthy. Some older communication patients reported mild no need intervention. 
Walking exercise interventions of shorter duration, no changes were observed for 
preacclimation. Most importantly, involving the use of accredited walking exercise 
physiologists were implementing walking exercise programs for the community 
older frailty and skeletal muscle sarcopenia groups.

It should further be noted that walking exercise training programs and 
ketogenic diet interventions to the effective treatments for aging in the commu-
nity older groups. Exercise recommendations for the community older groups, 
the participants will conduct walking exercise training. The walking exercise 
was easy, not difficult in the community older groups. Thus, walking exercise 
interventions in the community older groups program for patients with ketogenic 
diet was combined. This was associated with some improvement in molecular 
and cellular markers of the community older groups’ performance. This prag-
matic trial in primary healthcare aimed to assess the effect of a health promotion 
program with or without exercise intervention on physical activity in community 
older groups. It is possible that exercise therapy has been reported to improve 
the walking distance sitting test, 6 m walking distance, and slow walking speed 
during walking periods in community older frailty and skeletal muscle sarcope-
nia groups. After each exercise regimen phase, we find ineligible interventions, 
especially during challenging walking conditions in the community older groups, 
such as the average walking speed for 15 m/min. The content of the guidance used 
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