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Preface

When we talk about digital image processing, we can refer to a wide variety of 
techniques, concepts, and applications of different types of processing for different 
purposes. The very concept of a digital image is broad enough to depict various 
aspects and elements, for example, a video, photograph, or medical image.

This book provides examples of digital image processing applications and presents 
recent research on image processing concepts and techniques. Chapter 1 provides 
a general introduction to applications of image processing in the field of medical 
physics, presenting different imaging modalities and some of the main contributions 
of the use of processing techniques to medicine. Chapter 2 compares different 
techniques used in one of the most fundamental and important steps of the overall 
digital image processing cycle: binarization. In this step, we try to represent a 
digital image with characteristic elements that allow the extraction of relevant 
information from the image for better computational interpretation. Chapter 3 
discusses image processing with a dynamic application. The authors present results 
obtained using a technique for tracking objects in a video sequence. Chapter 4, 
presents high-performance processing techniques in video processing that aim to 
gain computational performance. Chapter 5 deals with automated face recognition, 
presenting promising results in the use of techniques for recognizing occluded faces 
in an image, for example, when the individual to be recognized is wearing a mask. 
Finally, Chapter 6 reviews the techniques and concepts used in CT imaging for the 
purpose of identifying and characterizing lesions for diagnosing cancer.

We hope this book will inspire young researchers to seek out and develop new 
technical and scientific advances in digital image processing.

Paulo E. Ambrósio
Universidade Estadual de Santa Cruz,

Ilhéus, BA, Brazil
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Chapter 1

Digital Image Processing and Its 
Application for Medical Physics 
and Biomedical Engineering Area
Nupur Karmaker

Abstract

The proper use of imaging modalities produces an image that aids in the detection 
of early stage abnormalities such as cancer, the identification of small precise lesions, 
and the presentation of internal illustration. A high-quality image can help doctors, 
radiologists, medical physicists, biomedical engineers, and scientists to make impor-
tant decisions on ameliorate treatment planning that can reduce cancer mortality 
rates and provide life-saving results. This chapter outlines the features, attributes, and 
processing techniques of various medical imaging modalities utilized in the fields of 
radiation therapy and biomedical engineering. This study highlighted the significance 
of image processing in medical physics and biomedical engineering, characteristics 
of mammography, computed tomography (CT), ultrasound, magnetic resonance 
imaging (MRI), and positron emission tomography (PET) images. With their 
advanced application, various image processing approaches are distinguished. Images 
are collected through the journal, useful websites, the internet, or other sources. 
That can help teachers, students, researchers, scientists, and others comprehend and 
learn how to apply image processing techniques and which techniques will suit which 
modalities image. This chapter will provide a clear understanding of image processing 
techniques for medical physics and biomedical engineering participants, as well as an 
abundance of learning opportunities.

Keywords: mammography, ultrasound, computed tomography,  
positron emission tomography (PET), magnetic resonance imaging (MRI),  
image processing techniques, medical physics, biomedical engineering and importance

1. Introduction

Present status of the globe, special issue for the international community in 
this 21st century struggle against COVID-19 has been taken a tremendous place by 
the greatest health, economy, education, and food challenges that are denigrating 
normal process safety lifestyle of human, animal, agriculture, etc. [1]. Simultaneous 
global emergency situation handled by World Health Organization (WHO), poli-
cymakers, research center, institutions, universities, and scientific societies that are 
still finding affordable and practical solutions for prevention, diagnosis, treatment, 
and management to abate affected and death rate, manage patients in each stage of 
the disease control, secure quality and safety for patients, front liners, healthcare 
workers, and general people by accurate diagnosis kits, respirators, face shields, 
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ventilators, intensive care units (ICUs), personal protective equipment (PPE), 
medical devices, medicine, and vaccines [2, 3].

COVID-19 disrupted medical services more than half (53%) of the countries 
for hypertension treatment; 49% for treatment for diabetes and diabetes-related 
complications; 42% for cancer treatment, 31% for cardiovascular emergencies, and 
almost two-thirds (63%) for rehabilitation services [4].

In a devastating unexpected situation of COVID-19 hampered and increased 
higher risk for cancer patients, doctors, medical physicists, nurses, and other 
staff to ensure safe, sanitization, segregation, face/body shielding maintain 
social distance, and prepare radiotherapy infrastructures [5]. Clinical medical 
physicists approach who are working clinical services, education, informatics, 
equipment performance evaluation, quality assurance, treatment planning, 
brachytherapy, in vivo dosimetry, motion management, etc. mitigate infection 
risk to staff [6, 7]. Medical physicists formulated certain strategies based on 
published evidence to help to formulate their own protocols to carry out planning 
and treatment considering time, distance, and shielding it remains unchanged 
for COVID-19 [8].

Biomedical engineers are preserving life in different ways to fortify during 
COVID-19 pandemic for healthcare infrastructure, imaging modalities, medical 
equipment designed to avail contain the SARS-CoV-2 virus responsible for causing 
COVID-19 infections, rapid and reliable test kits, face mask, face shield, ventilator, 
oximeter, better nasal swabs, 3D printing, artificial intelligence applications, and 
vaccine development [9, 10].

On the other hand, human history has high death rate for some diseases per year. 
According to WHO report in 2019, the top 10 causes of death accounted for 55% of 
the 55.4 million deaths worldwide [11]. Leading causes of death globally are illus-
trated below (Figure 1).

The two fields of human health and medical imaging are inextricably linked one 
another. The use of high-quality imaging modalities is essential for accurate diagno-
sis [12]. Early detection and accurate assessment of lesions are the goals of various 
image modalities. The properties of imaging modalities and methodologies con-
tribute to produce an image for clinical visibility [13]. The use of digital processing 
is a powerful tool to quickly analyze enhanced/intensified images [14]. Nowadays 

Figure 1. 
Leading causes of death globally [11].
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artificial neural networks and deep learning applied for better understanding medi-
cal image analysis [15].

Significant image processing can assist to provide accurate anatomical informa-
tion that can always play a vital role in early-stage detection, reducing death rates, 
and take better treatment decisions [16].

The goal of this empirical study is to show that there is a significant link between 
medical physics and biomedical engineering with digital image processing, as well 
as how to apply image processing techniques in this area and what types of benefits 
can be obtained. So, this is the fundamental concern for introducing the medical 
physics and biomedical engineering working field, what sorts of modalities are used 
here for diagnosis and treatment reasons, what essential features can be seen in 
various modalities images, and which image processing techniques are preferred.

2. Medical physics

The application of physics to medicine is known as medical physics which 
encompasses therapeutic radiological physics, medical, nuclear physics, and medi-
cal health physics [17]. A fundamental component of medical physics is the require-
ment for broad imaging facilities and accurate explanations [16]. The journey of 
medical physics and imaging began with the discovery of X-ray that is known as 
medicine in radiation [18]. Radiation therapy (RT) was first used to treat cancer 
over a century ago. Since then, enormous progress has been made to improve the 
effectiveness of this modality and minimize side effects [19]. Radiation therapy is 
a form of radiation medicine that consists of external beam radiation therapy and 
brachytherapy that is used to treat a variety of cancer cases. Radiation therapy (also 
called radiotherapy) is a cancer treatment that uses high doses of radiation to kill 
cancer cells and shrink tumors [20].

Various machines have been used to produce radiation beams throughout the history 
of radiation therapy [21]. High-energy X-ray or electron beams used for cancer treat-
ment that is known as external beam radiation therapy (EBRT) [22]. Brachytherapy is a 
treatment in which radioactive material is implanted into patient body.

One type of radiation therapy used to treat cancer is brachytherapy or internal 
radiation therapy [23].

Stereotactic irradiation, total body irradiation, total skin electron irradiation, 
intraoperative radiotherapy, endocavitary rectal irradiation, conformal radio-
therapy, image guided radiotherapy, adaptive radiotherapy, respiratory gated 
radiotherapy, and PET/CT scanners and PET/CT image fusion are some special 
techniques use for treated cancer to achieve better outcome [24].

2.1 Importance of digital image processing: Medical physics in radiation therapy

Medical imaging, tumor localization, skin reference marks, treatment planning, 
virtual simulation are key parts of radiation treatment [25].

Medical diagnosis for detection, staging, grading, treatment planning before 
radiation therapy, treatment guidance and verification, evaluation of response to 
therapy, and treatment follow-up is involved with imaging of tumors and surround-
ing normal tissues [26].

2.1.1 Tumor localization

In oncology, benign, pre-malignant, and malignant tumors are the most 
prevalent forms. Early imaging techniques aid in the reduction of cancer-related 
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morbidity. Pre-processing, segmentation, and morphological operation are the 
three stages of tumor image processing [27]. The goal of this image processing 
is always to determine tumor location [28]. The main concern of segmentation, 
detection, and extraction of tumor area from imaging modalities images that helps 
to perform radiologists or clinical experts for treatment planning [29].

2.1.2 Treatment planning

Treatment planning is a computerized procedure that employs a variety of 
technologies to update treatment outcomes [30]. Image datasets are required by 
treatment planning systems in order to construct a detailed plan for each beamline 
route for delivering radiation. The complex programming for multi-leaf collima-
tor (MLC) leaf is sequencing to shape the beam around critical structures during 
dose delivery [31]. From the initial characterization of tumor volumes through the 
development of digitally reconstructed radiographs for patient treatment setup and 
treatment verification, medical images such as CT images are used in the treatment 
planning process. CT enables tumor imaging as well as the reconstruction of three-
dimensional (3D) anatomical information, which is then utilized to create patient 
models with all of the relevant anatomic, geometric, and electron density data. CT 
has become the method of choice for 3D treatment planning due to these character-
istics, as well as its widespread availability and inexpensive cost [32].

2.1.3 Virtual simulation

The virtual simulator is a software program that helps with the geometric 
component of 3D radiation treatment planning [33].

After completion of treatment planning, the patient is directly placed at the 
LINAC. The actual position is registered by the LINAC-based imaging units [34].

It is obvious that without a high-quality image, all radiation treatments will 
proceed incorrectly, potentially increasing cancer mortality. As a result, image 
processing is becoming increasingly important in radiation oncology.

3. Biomedical engineering

The application of engineering ideas and design concepts to medicine and biol-
ogy for healthcare reasons is known as biomedical engineering (BME) or medical 
engineering (e.g., diagnostic or therapeutic) [35]. BME’s areas of expertise include 
bioinstrumentation, biomaterials, biomechanics, cell, tissue, and genetic engineering, 
clinical engineering, medical imaging, orthopedic, and rehabilitation engineering [36].

3.1 Importance of digital image processing in biomedical engineering

The concern of BME is the acquisition of images for diagnostic and therapeutic 
applications where use advanced sensors and computer technology [37]. A set of 
anatomical information structures provide by a biomedical images helps to inves-
tigate and visualize for treatment [38]. Accurate implant, prepare the biomedical 
device, joint, and other organ replacement is required good quality images.

3.1.1 Bioinformatics

The growing usage of medical equipment has resulted in a tremendous amount 
of data being generated, including image data. Bioinformatics solutions give an 
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effective way to picture data processing in order to recover information of interest 
and combine several data sources for knowledge extraction; additionally, image 
processing techniques aid scientists and physicians in diagnosis and treatment [39]. 
Some bioimage informatics are mentioned here: high-throughput and high-content 
analysis of cellular phenotypes, Atlas building for model organisms, understanding 
the dynamic processes in cells and living organisms, joint analysis using both bioim-
age informatics and other bioinformatics methods [40].

3.1.2 Biomechanics

Medical imaging is crucial in the construction of anatomically realistic, cutting-
edge finite element models that can be employed in biomechanical research [41]. 
In the discipline of biomechanics, Digital Image Correlation (DIC) is being used. 
However, because DIC is based on a number of key assumptions, it necessitates 
rigorous optimization to provide accurate and precise findings [42].

3.1.3 Biomaterial and tissue engineering

Repair, replacement, restoration of hard and soft tissues continue to grow as the 
population ages using biomaterials require to investigate internal anatomy so imag-
ing has been taken a crucial role in this field [43].

3.1.4 Genetic engineering

Molecular imaging offers a novel way to observe cellular and molecular phenom-
ena such as cell survival, migration, proliferation, and even differentiation at the 
whole-organism level without causing harm. For monitoring cell grafts in vivo, a vari-
ety of imaging methods and methodologies used for investigating the condition [43].

3.1.5 Biomedical optics

Techniques, equipment, instruments, probes, computer algorithms and 
software, and clinical trials make up the discipline of biomedical optical imaging 
[44]. Without medical imaging modalities, image processing medical physics and 
biomedical engineering is impossible.

4. Imaging modalities for cancer diagnosis

Different types of imaging modalities are utilized in diagnosis. How to get an 
image from modalities is a popular inquiry for the audience. Some imaging modali-
ties are given below:

4.1 Mammography

One of the most frequent diagnostics for detecting breast tissue abnormalities 
is mammography, which uses X-rays to create images of the breast that is known as 
a mammogram [45]. The two-dimensional image that relies on the identification 
of morphologic findings for breast cancer these findings include masses, grouped 
calcifications, asymmetries, and areas of architectural distortion. Spot compres-
sion, magnification, rolling, extended views, and genuine lateral views are some 
of the diagnostic mammographic views that can be used to describe and locate 
abnormalities [46]. When a high-energy X-ray photon with a low dose interacts 
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with tissue, the photon is attenuated. The reconstruction method captures and 
images changes in attenuation. In terms of identifying cancer, it has a high specific-
ity sensitivity and temporal response of a portable gadget (about 1 minute). When 
employing mammography, good resolution means higher accuracy in thick breasts. 
The number of false-positive predictions is considerable. When compared to CT 
and MRI, the contrast is poor [47].

Worldwide breast cancer screening programs, digital mammography (DM) 
use as a standard imaging technique. The primary benefit of DBT is that it 
provides depth information about the breast, allowing for improved imaging of 
possible concealed lesions and demonstrating a difficult reconstruction proce-
dure to build a pseudo-3D representation of the breast from a small number of 
projection images [48]. The image quality of digital breast tomosynthesis (DBT) 
volumes depends greatly on the reconstruction algorithm [49]. DBT images have 
the acquisition of several low-dose planar X-ray projections of the compressed 
breast over a limited angular range, which is then reconstructed into a pseudo-
3D volume. The inherent challenges of this acquisition approach degrade image 
quality. The limited angle acquisition gives rise to out-of-plane artifacts and low 
vertical resolution, the low dose per projection increases the impact of noise, 
and X-ray scatter decreases contrast. The reconstruction algorithm is one of the 
main aspects of image creation that could ameliorate these technical drawbacks 
and therefore can greatly affect the final quality of DBT images [50]. DBT has 
been demonstrated to help with two-dimensional (2D) mammography breast 
tissue overlapping concerns. However, contemporary DBT technologies are still 
limited in comparison to mammography. Statistical image reconstruction (SIR) 
approaches have the ability to reduce DBT through-plane artifacts, and hence 
could be utilized to reduce anatomical clutter even more [51].

Galactography can detect a variety of breast abnormalities, including pathologi-
cal nipple discharge, which is described as bloody, serous, or clear single-orifice 
nipple discharge [52]. The GL technique is essential for diagnosing and finding 
intraductal lesions. GL has been shown in several trials to be ineffective in distin-
guishing benign from malignant tumors [53].

Scintimammography using 99mtc-sestamibi is a non-invasive and painless 
diagnostic imaging method where a variety of radiopharmaceuticals create planar 
and tomographic pictures as well as provide information on tumor cell viability and 
cellularity that is used to detect breast cancer when mammography is inconclusive 
[54]. In the presence of cancer tissue, the radiopharmaceutical accumulates in the 
breast, which may be seen clearly in the photographs [55]. It is the most widely used 
agent for this purpose because of the advantages of 99mTcsestamibi tagging and its 
great efficiency in detecting carcinomas [56].

4.1.1 Image processing techniques

• Contrast stretching, histogram processing, spatial filtering (mean filter and 
median filter) [57]

• Adaptive histogram equalization (AHE), brightness preserving bi-histogram 
equalization (BPBHE), recursive mean separate histogram decomposition 
(RMSHD), multi-decomposition histogram equalization (MDHE), minimum 
mean brightness error bi-histogram equalization (MMBEBHE), and adaptive 
smoothing [58]

• Low pass filtering: Butterworth low pass filter and Gaussian low pass filter. 
High pass filtering: ideal high pass filter and Butterworth high pass filter [58]
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• Enhancement based upon wavelet transform and morphology, morphological 
operations (enhancement of image using multi-scale morphology) [59]

• Direct contrast enhancement techniques [60]

• Adaptive neighborhood contrast enhancement [61]

• Removal of noise using wiener function [62]

• An intuitionistic fuzzification scheme based on the optimization of intu-
itionistic fuzzy entropy and contrast limited adaptive histogram equalization 
(CLAHE) [63]

• Mammogram enhancement, non-subsampled pyramid (NSP), low pass filter 
(LPF), high pass filter (HPF), directional filter bank (DFB), 2D-directional 
edge filter (HTDE), combining directional and scale features, adaptive his-
togram equalization (AHE), one-dimensional spatial profile of difference of 
Gaussian and HTDE filter, detection of microcalcification (MC) [64, 65]

4.2 Ultrasound

A hand-held transducer transmits and receives pulsed acoustic waves, which 
are used in medical ultrasound imaging. This is a well-established technique that is 
widely used throughout the world. Its benefits include cost-effectiveness, flexibility, 
and the absence of ionizing radiation [66]. Generally, the morphology, orientation, 
internal structure, and margins of lesions from multiple planes with a high resolu-
tion both in predominantly fatty breasts and dense, glandular structures find out 
from ultrasound [67]. Ultrasound electrography, contrast-enhanced ultrasound, 
three-dimensional ultrasound, automated breast sonography, computer-aided 
detection for breast ultrasound use for better outcome of image quality [68].

The biggest disadvantage of ultrasound is its restricted penetration, which is due 
to the fact that sound waves cannot pass through bone or air, limiting its usage in 
the brain, lungs, and abdominal region [69].

4.2.1 Image processing techniques

• Modern beamforming techniques, dynamically focused transmission and 
reception, apodization, limited diffraction beams, pulse compression, com-
pounding, spatial compounding, frequency compounding, strain compound-
ing, harmonic imaging, pulse inversion, filtering, adaptive filters, anisotropic 
diffusion, wavelets, and deconvolution [70]

• Gray-level normalization, image fuzzification, and fuzzy histogram computa-
tion, histogram partitioning and equalization, and image defuzzification [71]

• Contrast limited adaptive histogram equalization (CLAHE) [72] block size, 
histogram bins, max slope, 3D discrete wavelet transform (3D DWT), wavelet 
thresholding, and bilateral filter [73]

4.3 CT

The CT scanner displays several slices of bodily tissues in various directions 
[74]. Due to more informative CT images so it is more effective than X-ray [75]. 
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The resolution, noise, and contrast are the three key elements that influence image 
quality [76]. Contrast materials are frequently injected into the body during CT scans 
to improve visibility of certain organs, blood arteries, or tissues by increasing contrast 
between these locations and surrounding structures in CT images. Contrast enhanced 
CT (CECT) is a technique that provides useful anatomical information that is not 
acquired by standard non-enhanced CT (NECT) imaging [77]. Modern micro-CT- 
and X-ray-based scanners allow the acquisition of three-dimensional (3-D) images of 
core samples with a resolution as fine as 0.1 μm per voxel these images can be used to 
construct 3-D digital models of core samples in extremely fine detail [78].

4.3.1 Image processing techniques

• Noise filter, watershed segmentation, thresholding, image acquisition, and 
image pre-processing (smoothing, enhancement, image segmentation, feature 
extraction, and classification) [79]

• Data analyze and interpretations: histogram, particles analyze, and profile 
plot [80]

4.4 MRI

Magnetic resonance imaging (MRI) is a noninvasive imaging tool for examining 
anatomic features, physiological functions, and tissue molecular composition [81]. 
MRI is known as a non-invasive, radiation-free imaging technology for detecting 
and diagnosing small lesions, with significant implications for various kinds of 
cancer diagnosis, prognosis, and treatment [82].

4.4.1 Image processing techniques

• Histogram equalization techniques, typical histogram equalization (HE), 
brightness preserving bi-histogram equalization (BBHE), recursive mean sepa-
rated histogram equalization (RMSHE), and dynamic histogram equalization 
(DHE) [83]

• Dynamic block coding [84]

• Median filter, Wiener filter [85]

• Local area histogram equalization (LAHE) [86]

4.5 Positron emission tomography (PET)

PET and combined PET/computed tomography (CT) is increasingly used for 
oncologic imaging [87]. Fluorodeoxyglucose (FDG) PET demonstrates abnormal 
metabolic features associated with malignancy that often precedes morphologic 
findings demonstrated with anatomic imaging [88]. Combined PET/CT systems are 
increasingly available and currently account for almost all of the new whole-body 
PET installations [89]. In these systems, the CT and PET images are fused and pro-
vide combined anatomic and physiologic imaging [90]. Typically, the CT portion 
is used to provide attenuation correction as well as an anatomic correlation for the 
PET imaging component [91]. This modality allows more precise anatomic localiza-
tion of PET abnormalities and in general has been shown to improve diagnostic 
accuracy compared with FDG PET alone [92].
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4.5.1 Image processing techniques

• Gauss filter, high order derivatives of Gauss filter [93]

• Shock filter, Bettahar’s image filtering model, speckle reducing anisotropic 
diffusion [94]

• Coherence enhancing filter [95]

• Stationary wavelet transform (SWT) and Discrete Wavelet Transform 
(DWT) [96]

5. Limitation

This chapter has lots of information on the role of digital image processing in 
medical physics and biomedical engineering areas that can be a little bit confused 
for the reader. It was challenging to place image processing in this area and popular 
in the non-medical environment.

6. Future direction

This chapter enriches by multi-disciplinary research area. This is offering lots of 
research information for the audience. The audience can be able to carry on indi-
vidual research based on each topic.

7. Conclusion

Overview of medical imaging with their modalities, application, and outcome 
stated here. The combination of medical physics and biomedical engineering area is a 
vast and worldwide recognized field. Both areas fight against global health challenges. 
History from human, this is the main concern for ensuring safety for human, animal, 
plant, and other living matter. In this planet suffers a lot in various time hit living sys-
tem but always these areas highly contributing lifesaving. This chapter is given an inspi-
rational message for the young because lots of do wait for their contribution to change 
the future world. Especially women can highly contribute to gynecological health 
challenges because all corners of the cannot be developed in this area equally. So, some 
conservative environment always prefers women for gynecological challenges. This 
chapter highlighted to significance role of image and image processing for this area, 
imaging modalities for various images, image processing techniques. Various kinds of 
image processing techniques are mentioned here for growing creative interests.
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Learning outcomes

The reader will be able

• to expatiate the role of medical physics and biomedical engineering area

• to identify the known image of image processing

• to characterize various modalities images

• to outline that image processing can contribute to medical science

• to apply image processing techniques

• to find out lots of reading materials and exhort to study in this area

Useful learning materials

• https://github.com/sfikas/medical-imaging-datasets

• https://www.cancerimagingarchive.net/primary-data/

• https://datacommons.cancer.gov/repository/imaging-data-commons

• https://nucmedicine.iaea.org/home

Mammography

• https://www.rsna.org/education

• http://www.sprawls.org/resources/MAMMO/module.htm

• https://venturebeat.com/2019/03/21/nyu-open-sources-breast-cancer-screen-
ing-model-trained-on-over-200000-mammography-exams/

• http://www.eng.usf.edu/cvprg/Mammography/Database.html

Ultrasound

• https://www.ultrasoundtraining.com.au/resources/free-ultrasound- 
e-books/

• https://www.mathworks.com/matlabcentral/
answers/524385-ultrasound-image-processing-roi-contrast-in-db

• http://www.med.umich.edu/dipl/research.html

CT

• http://www.sprawls.org/resources/CTIMG/module.htm

• https://www.kaggle.com/kmader/siim-medical-images
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MRI

• https://radiology.ucsf.edu/research/labs/
quantitative-image-processing_a#accordion-ct-angiography

• https://uwaterloo.ca/vision-image-processing-lab/research-topics

• https://www.aylward.org/notes/open-access-medical-image-repositories

PET

• https://www.petimagingresources.com/

• https://cai2r.net/resources/pet-mr-dataset/

SPECT

• http://www.people.vcu.edu/~mhcrosthwait/clrs322/
SPECTimagingparameters.html

Radiology organizations

• https://en.wikipedia.org/wiki/Category:Radiology_organizations

Organization/society of medical physics

• The American Association of Physicists in Medicine (AAPM)

• https://www.aapm.org/

• International Organization for Medical Physics (IOMP)

• https://www.iomp.org/

• Institute of Physics and Engineering in Medicine (IPEM)

• https://www.ipem.ac.uk/

• European Federation of Organizations For Medical Physics (EFOMP)

• https://www.efomp.org/

• Australasian College of Physical Scientists and Engineers in Medicine 
(ACPSEM)

• https://www.acpsem.org.au/Home

• Asia-Oceania Federation of Organizations for Medical Physics

• https://afomp.org/

• Middle East Federation of Medical Physics (MEFOMP)
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• https://www.mefomp.com/

• South East Asian Federation of Organizations for Medical Physics (SEAFOMP)

• http://seafomp.org/home/

Organization/society of biomedical engineering

• IUPESM

• https://2018.iupesm.org/about/

• IFMBE

• https://ifmbe.org/

• https://guides.libraries.psu.edu/c.php?g=318448&p=2258484

• https://guides.library.uab.edu/c.php?g=386396&p=2621393

Useful Video Links

Mammography

• https://www.youtube.com/watch?v=B_LASa80I8I

• https://www.youtube.com/watch?v=FJl_yf5Au68

• https://www.youtube.com/watch?v=H3wrzoV_Ksk

• https://www.itnonline.com/videos/
video-how-contrast-enhanced-mammography-will-impact-breast-imaging

• https://www.youtube.com/watch?v=WJKhehpFxow

Ultrasound

• https://www.youtube.com/watch?v=X8ab6NAIV5I

• https://www.youtube.com/watch?v=b1Eh4a1umdw

• https://www.youtube.com/watch?v=4aXEmVCf9HM

• https://www.youtube.com/watch?v=hI51xJ0qxSk

• https://www.youtube.com/watch?v=VSjTK_R8e3A

CT

• https://www.youtube.com/watch?v=l9swbAtRRbg

• https://www.youtube.com/watch?v=bgjkJfBHKxg
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• https://www.youtube.com/watch?v=wdY9gcjVsNY

• https://www.youtube.com/watch?v=9eeiKhyysLU

• https://www.youtube.com/watch?v=UeFRo7uALhM

MRI

• https://www.youtube.com/watch?v=nFkBhUYynUw

• https://www.youtube.com/watch?v=akuQWr8q9Qs

• https://www.youtube.com/watch?v=G2YsuVzg-Gg

• https://www.youtube.com/watch?v=mBAIWAyNdz0

• https://www.youtube.com/watch?v=ur6pi3L98kk

PET

• https://www.youtube.com/watch?v=k2jnSmpHqzg

• https://www.youtube.com/watch?v=GHLBcCv4rqk

• https://www.youtube.com/watch?v=nnS0YPWuwLY

• https://www.youtube.com/watch?v=64ALTpmtxUw
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Chapter 2

Binarization Based on Maximum
and Average Gray Values
Saúl Manuel Domínguez Nicolás

Abstract

Many image processing techniques use binarization for object detection in
images, where the objects and background are well distinct by their brightness
values, where, the threshold level is globally assigned, on the other hand, if it’s
adaptive, the threshold level is locally calculated. In order to determine the optimal
binarization threshold, from an image with the mean gray values and extreme gray
values, exchanging the mean gray values relating to automatic analisis for a stan-
dard histogram equalization, which can evaluate a wide range of image features,
even when the gray values in both the object of interest and background of the
image are not uniform.

Keywords: image processing, image are not uniform, mean gray values,
extreme gray values, histogram equalization

1. Introduction

In image processing, when one aims to obtain information of interest from
image, in order to achieve robust and reliable descriptors. In many image processing
algorithms the segmentation technique is widely used to identify regions of input
images, which is very important as it may be necessary in the required analysis.
Thresholding is the most commonly used technique in image segmentation, and is a
binarization method that is used for object detection if background and objects
differ by their brightness values. Thresholds values used in a binarization can be
chosen manually or automatically. In manual form to find appropriate threshold
values it is necessary to perform trial experiments. Automatically selection, com-
bines the image information to get the optimal threshold value. Otsu’s algorithm [1]
uses image histogram to get the threshold values. There are algorithms based on
edges, regions and hybrids, so according to the information used, they define their
threshold values. Canny edge detection [2], Sobel edge detection and Laplacian
edge detection [3] are algorithms based in the edge information as structures are
depicted by edge points. Algorithms suppress the noice in the image to try to find
edge pixels. For example, the second derivation information of the image intensity
is used by Laplacian edge detection. The gradient magnitude is used in Canny edge
detector to find the edge pixels. The pixel intensities are fundamental operations of
these algorithms, so discrete pixels make up the detected boundary, hence it can be
incomplete or discontinuous. Thus, post-processing techniques like morphological
operations is applied to connect generated discontinuities. However, the edges of
organs in medical images are not clearly defined, due to noise influence and partial
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volume effect. Therefore, a pre-processing step is used for the later algorithm base
on threshold [4, 5].

Region growing algorithms [6–10] are algorithms that quantify features inside a
structure tend to be homogeneous. The grouping is initiated by the similarity of seeds in
the desired regions, growing throughout the image considering the properties present in
neighboring pixels. Using a seed in the desired región and local criterion an increase in
the regions of the input image can be obtained, or through the distribution of seeds in
different regions and a global criterion. Nevertheless, due to their reliance on intensity,
these algorithms present problems to undo the influence of partial volume effect.

Hybrid algorithms to complete the segmentation use different image properties.
Hybrid algorithms are the watershed, which to complete segmentation, use morpho-
logical filter, gradient information and image intesity [11–13]. In these algorithms, the
gradient magnitude is seen as elevation and as reliefs are considered the gray scale
images. Pixels with local maximum gradient define to the watershed lines, which
encloses the pixels that define a region of the image. The complete segmentation of an
image can be successfully produced through the watershed algorithms. However, when
the images are noisy, these algorithms tend to present over-segmentation problems. In
knee cartilage image have been reported successful experiments on the segmentation
using the marker imposition technique [11]. C-means algorithm [13] is used to avoid
the over segmentation problems to improve the performance of watershed algorithm.

At the end of the 90s, some algorithms based in binarization via thresholding
[14–17] have been used to obtain the basic mechanical propiertes of materials using
the Vickers hardness testing [18–22]. In addition, to eliminate speckles in the
segmantation morphological filters have been employed [14–17]. Other segmenta-
tion methods have considered to obtain mechanical propiertes in the Vickers hard-
ness testing, such as: template edge matching [23, 24] and dual resolution active
contours segmentation [25]. These methods are suitable for indentation images with
high contrast and straight edges. Moreover, high computational complexity, multi-
ple parameters specified by the user, and contour detection that may collapse in
images with low contrast are challenges in algorithms based on edge and line
oriented contour detection [26]. However, in the last three years, have been
reported algortihms [27, 28] to detect objects where its edges are not exactly straight
lines in low contrast image. These algorithms use thresholding based on the extreme
and gray values as binarization creteria, which are distinct from other binarization
techniques [14, 17, 24] used to segment similar images.

The purpose of this chapter is to show the reader thresholdization algorithms based
on the extreme and gray values as binarization creteria, which are applied to detect
objects of interes where theirs edges are not exactly straight lines, and where the gray
values in both the object and background of the image are not uniform. In addition to
being applied in images with very low contrast, in comparison with the limited
capabilities of other algorithms [23, 24, 27–31] to detect objects in this type of images.

This chapter is organized as follows: Section 2 describes image segmentation
semi-automatically evaluating maximum and average gray values like binarization
creteria. Next, Section 3 describes image segmentation automatically evaluating
maximum and average gray values like binarization creteria. Section 4 includes
examples of the techniques. Finally, the conclutions are reported in the Section 5.

2. Image segmentation semi-automatically evaluating maximum and
average gray values like binarization criteria

At the end of 2018 was reported an algorithm to segment images using maxi-
mum and average gray values like binarization criteria [27]. The algorithm’s aim
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was to detect corners, so as to locate the vertices of the object of interest, which is
called indentation. Each input image was treated as 2D monochromatic digital
image with gray values between 0 and Max, high values corresponding to bright
pixels (Max ¼ white), and dark pixels having low values (0 ¼ black). Each image
contains exactly one indentation which is of approximately rhombic shape (see
Figure 1) whose size, position, and exact orientation in the image are unknown. The
indentation is asseumed as a dark region on a brighter background.

Image segmentation of the semiautomatic algorithm, starts with binarization,
using the average gray value of the input image as threshold and the difference to
the maximum gray value as discriminant criterion. Both the average and the maxi-
mum gray value are global characteristics determined from the input image.
Denoting the input image by F ¼ f x, yð Þ, x ¼ x1,⋯, xmax; y ¼ y1,⋯ymax, see
Figure 1, its average gray value is given by f mean ¼ 1

xmaxymax

P
x; yf x, yð Þ, and its

maximum gray value by fmax ¼ max x; y f x, yð Þ½ �.
Thus, the binarization criterion for every input pixel p ¼ x, yð Þ : p is considered a

pixel of interest whenever f x, yð Þ � fmax

�� ��> f mean.
The result is a binary image G ¼ g x, yð Þ with x ¼ x1,⋯, xmax, y ¼ y1,⋯, ymax

where each pixel of interes is represented as black, and other pixels are white.
Therefore, the indentation region will be a subset of the black pixels. In this type of
images to represent the indentation region as black is in coincidence with the fact
that this region is dark in the original image.

The first image of the Figure 2 has an value fmean = 0.3350 and fmax ¼ 0:5843,
with which is evaluated the binarization criterion for every input pixel of the image.
Similar, the second image of the same Figure 2 presents values of f mean ¼ 0:3202
and fmax ¼ 0:6157. Finally, the values f mean ¼ 0:3102 and fmax ¼ 0:6057 are
obtained from the third image of Figure 2. As a result is the binary image shown in
the second column corresponding to each image of the Figure 2. However, the
binary image there can be many pixels are detected as false positives of the region of
interes, as shown in Figure 2. Thus, morphological filter is applied to delete these
black pixels not belonging to the indentation.

Figure 1.
Example of Indentation image.
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3. Morphological filtering

For the binary image G, any set A of black pixels, and a (small) pixel set S called

structuring element, the dilatation of A by S is the set A⊕ S of all pixels p ¼ px, py
� �

such that x1 ≤ px ≤ xmax, y1 ≤ py ≤ ymax, and p ¼ aþ s ¼ ax þ sx, ay þ sy
� �

for some

a ¼ ax, ay
� �

∈A, s ¼ sx, sy
� �

∈ S [27]. Thus, the dilation consists of extending the set
of black points in G converting into black all pixels of A⊕ S. The erosion of A by S is
the pixel set AƟ S ¼ p∈A : pþ s∈A∀s∈ Sf g. Erosion reduces the set of black
points in G converting into White all pixels of A which do not belong to AƟ S.
Erosion followed by dilation is called morphological opening, whereas
morphiological closing is defined as Erosion of a dilated set.

The filters applied to the binarization techniques reported in [27, 28]
consists in morphological opening of the set of black pixels in G, by a
structuring element distinct from those used in works previously published.
Based on the a- priori knowledge that the indentation region has a rhombic shape.
Moreover, these binarization techniques use a structuring element S of diamond
shape of 10 pixels radius. This morphological opening sustantively reduces struc-
tural noise of the image, making possible to find the interest object (indentation
region) as the largest connected region of black pixels in the next step. In addition,

Figure 2.
Indentation images and their binary images.
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it preserves size and shape of the indentation. Finally, through region growing,
which is a standard procedure in image processing the image segmentation is
completed. In a binary image, region growing consists in determining all connected
components of black pixels, where the algorithms reported in [27, 28] applies
8-connectivity.

Figure 3 shows images together with their binary versions, and the results of
morphological filtering. The first example contains a slightly deformed indentation
and the second presents surface imperfections. Nevertheless, many of these types of
images present some shading by lots of lighting and additionally, a light sopt in the
image center, both problems caused by the light reflection capacity when capturing
the image through a camera. Thus, the algortihm semi-automatic reported in [27] is

Figure 3.
Indentation images (first column), binary versions (second column) and morphological filtering (third
column).

Figure 4.
Indentation images with low contrast, where the algorithm reported in [27] fails in binarization technique.
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not suitable for indentation images with low contrast in relation to the adjacent
image, as show in the Figure 4.

4. Image segmentation automatically evaluating maximum and average
gray values like binarization criteria

The algorithm reported in [28] uses image segmentation via binarization,
automatically evaluating the mean and extreme gray values by means of standard
histogram equalization so as to determine the optimal binarization threshold from
each input image. The binarization of the input image use the average gray value, a
standard histogram applied to the input image, and the difference to the maximum
gray values to determine the threshold values τð Þ for binarization. The highest
frquency of occurence f h ¼ max h ið Þ (where h ið Þ is the histogram of the image with
a number i of gray values), average f mean, and maximum fmax gray values are global
characteristics determined by the input image F . Unlike semi-automatic
binarization reported in [27], the image segmentation reported in [28] evaluate
maximum and average gray values under the following binarization criterion:

f x, yð Þ � fmax

�� ��> τ (1)

The binarization using (1) with τ ¼ τ0 ¼ f mean is applied to indentation images
with gray levels distribuided along the dynamic range of h ið Þ as shown in Figure 5,
where f mean ffi f h and f mean are located to approximately half of the dynamic
range h ið Þ.

Figure 5.
Indentation images where fmean ffi f h and fmean are located to approximately half of the dynamic range h ið Þ.
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The highest frequency of occurrence on the left of the dynamic range is
presented in dark-field images of indentation, as shown in Figure 6. For these
images in τ ¼ τ0 ¼ f mean prevents good binarization. Thus, Eq. (1) is evaluated for
τ ¼ τ0 þ f h � f mean

� ��� �� until good binarization can be obtained.
To indentation images with light gray levels present histogram with a landslide

of gray values, where the highest frequency of ocurrence falls to the right of the
dynamic range h ið Þ, as shown in Figure 7. In these images, Eq. (1) is evaluated
for τ ¼ τ0 � f h � f mean

� ��� �� until better image segmentation is achieved and some
feature of the object of interes may be obtained, for example the indentation
vertices [28].

Thus, the binarization reported in [28] can be resumed as shown in the flow
chart of the Figure 8.

Figure 6.
Dark-field images of indentation and their h ið Þ.

Figure 7.
Indentation images with light gray levels and their h ið Þ.
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Figure 9 shows an example of improved binarization in dark-field of
indentations applying the algorithm reported in [28]. Figure 10 shows an example
of the algorithm reported in [28] applied in Indentation images with light gray
levels.

5. Examples of the techniques

The indentations image are generated through Microdurometers, which use a
diamond tip to generate the indentation images. Example, the microdurometer

Figure 8.
Image segmentation automatically evaluating maximum and average gray values like binarization criteria.
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Mitutoyo model HM-125 (see Figure 11) use a microscope with up to 100-fold
magnification, which it analog video signal was converted to a digital video signal
[32], so that it can be stored as 2D indentation images in gray-scale BMP format.

In many indantion images obtained of samples of steel-316 with roughly
polished surface, it is enough to apply the semi-automatic segmentation technique
to obtain a good binarization of the image. In Figure 2, with the values of f mean and
fmax are enough to evaluate f x, yð Þ � fmax

�� ��> f mean and obtain a good binarization
(see Figure 2). Furthermore, with morphological filter and region growing, reduces
structural noise of the image, making possible to find the indentation and other
characteristics of the interes object like the indentation vertices applying techniques
reported in [27, 28]. Images acquired from samples of steel-316, but with specular-
polished surface, present a light spot in the indentation center, generated by the
microscope’s integrated light source, which these indentation images have low

Figure 9.
Example of improved binarization in dark-field of indentation images.
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contrast in relation to the adjacent image area. For these images, the binarization is
bad obtained by the semi-automatic segmentation technique, because present a
maximum area 8-component such that not coincide with the indentation, as shown
in the first image of the Figure 12. In addition, samples of steel-316 with roughly
polished surface, present dark-field images of indentation, where the morphological
filter is insufficient to eliminate pixels detected as false positives for the indentation
region, as shown in the second image of the same Figure 12.

Thus, images with low contrast have been treated by automatic image segmen-
tation, obtaining a better binarization than the semi-automatic segmentation tech-
nique. Figure 13 shows the improvement of binarization applying the automatic
image segmentation technique to the same images in Figure 12, which, is observed
that in the binarization obtained by the automatic image segmentation the maxi-
mum area 8-component coincides with the indentation footprint. In addition,
applying techniques reported in [27, 28] the indentation vertices are obtained

Figure 10.
Example of improved binarization in indentation images with light gray levels.
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satisfactoraly after applying morphological filter and region growing to the final
binarization obtained.

The first input image of Figure 13 satisfies the condition f mean >
fmax
2 of the

automatic segmentation technique, while the second input image satisfies that

f mean <
fmax
2 to obtain the optimal binarization threshold from the second image of

Figure 13.

Figure 11.
Microdurometer Mitutoyo HM-125.
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6. Conclusions

A couple of algorithms were presented in this chapter, which consist in a very
simple binarization, based in the average gray value of the input image as threshold
and the difference to the maximum gray value as binarization criteria, which
presents robustness against image noise and surface imperfections.

A second algorithm presented in this chapter, employed the same binarization
criteria for each input image as the firts algorithm. However, the second altering the
mean gray values via automatic analysis with standard histogram equalization to
determine the optimal binarization threshold. Morphological filtering was applied
to the binarized image, followed by a segmentation on the growing region. There-
fore, the result obtained is a maximum area black 8-component of the image
segmentation by both algorithms. Nevertheless, the second algorithm, unlike the
first, evaluates a wide range of indentation images, which the indentation edges are
not exactly straight lines, and indentation images with very low contrast relation to
the adjacent image area, and where the indentation image presents some shading,
thereby resolving illumination problems in the image.

Figure 12.
Indentations images with low contrast (left column). Bad binarization obtained by the semi-automatic
segmentation technique (second column).
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Figure 13.
Sequence to obtain good binarization through the automatic segmentation technique applied to indentations
images with low contrast.
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Chapter 3

Object Recognition and Tracking
Using the Particle Estimator
Edgardo Comas and Adrián Stácul

Abstract

In this chapter we describe the particle estimators and its effectiveness for
tracking objects in video sequences. The particles estimators are specifically advan-
tageous in transition state models and measurements, especially when these are
non-linear and not Gaussian. Once the target object to follow has been identified (in
position and size) its main characteristics are obtained using algorithms such as
FAST, SURF, BRIEF or ORB. As the particle estimator is a recursive Bayesian
estimator, where observations update the probability of validating a hypothesis,
that is, they use all the available information to reduce the amount of uncertainty
present in an inference or decision problem. Therefore, the main characteristics of
the object to follow are those that will determine the probability of validating the
hypothesis in the particle estimator. Finally, as an example, the application of a
particle estimator is described in a real case of tracking an object in a sequence of
infrared images.

Keywords: recognition, tracking, estimator, image analysis, image processing

1. Introduction

The first step in tracking object in an image sequence is to identify the reference
object to be tracked; this will allow determining its attributes to carry out its
identification by means of some of the main characteristics of the image of the
object, such as the characteristics points. It should be noted that if is known: the
initial position of the object to be tracked in the camera coordinates and the math-
ematical model of the camera, it is possible, in addition to tracking the object, to
estimate its coordinates and moving in this reference system. One of the techniques
applied for object tracking to which we will particularly refer is the particle estima-
tor. This technique is a special type of Monte Carlo sequential method, one of its
main advantages being its applicability to any model of transition of states and
observations, especially when these are non-linear and non-Gaussian [1]. Although
the Kalman estimator, which is applied to systems where the system evolution and
measurement models are linear, with Gaussian noise, and with known mean and
variance; has extensions to nonlinear models by applying techniques to achieve
linearity, the Gaussian additive noise constraint cannot be overcome [1, 2].

Therefore, the particle estimators do not have the restrictive hypothesis of the
Kalman estimator, so they can be applied to non-linear models with non-Gaussian
and multimodal noise, where the reliable numerical estimate is a function of an
adequate number of samples [3].
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This estimator distributes N particles over the image, and the observations made
on each one of them update their probability of validating a hypothesis, that is, they
use all the available information to reduce the uncertainty present in an inference or
decision problem [2]. In some cases where the images are not clear or noisy,
particularly those acquired through infrared cameras, it is necessary to make an
improvement before applying the estimator; generally this improvement is based
on a reduction in the incidence of the background image, for the special case of
infrared images subtracting the value from the mean intensity and modifying its
histogram to increase the contrast result a good choice.

Faced with rapid and unpredictable movements of the referent or the camera,
the resampling process considers a scattering value based on the number of valid
particles, so that the area covered during tracking is dynamically modified. Basi-
cally, the particle estimator provides us with a framework, in which it is possible to
insert different algorithms for the recognition of the reference image in each parti-
cle; some of them are SURF, BRIEF, ORB, etc. These algorithms have the ability to
generate a set of invariant features against some image variations, such as: scaling,
rotation, illumination and with robustness against occlusion conditions.

2. Particle estimator tracking

To define the state estimation problem let us consider the system model, com-
posed of the state evolution and observation models described by the following
equations:

Xk ¼ f Xk�1, vk�1ð Þ, (1)

Zk ¼ h Xk, nkð Þ: (2)

Where X ϵ Rn contains all the state variables that will be dynamically estimated,
f is the non-linear function of the state variables, v ϵ Rn represents the state noise
system, Z ϵ Rn are all observations related with the state variables by (Eq. (2)),
n ϵ Rn is the measurement noise, and h is known as an observation model.
Remembering that P ajbð Þ is the conditional probability of a if b, then the evolution
and observation models given by (Eqs. (1) and (2)) are based on the following
hypotheses referring to the following sequences [2, 4]:

a. Xk, k ¼ 1, 2, … is a Markov process

P XkjX0, X1, …Xk�1ð Þ ¼ P XkjXk�1ð Þ, (3)

b. Zk, k ¼ 1, 2, … is a Markov process regarding the historical data of X such that

P ZkjX0, X1, …Xkð Þ ¼ P ZkjXkð Þ, (4)

c. and the sequence of past observations only depends on its history, that is

P XkjXk�1, Zk�1ð Þ ¼ P XkjXk�1ð Þ: (5)

Considering that the system and observation noises vi ∧ vj and ni ∧nj are mutu-
ally independent of i∧ j and also the initial state for all i 6¼ j; and on the other hand
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we know that P X0jZ0ð Þ ¼ P X0ð Þ, then, the two-step Bayesian estimator, prediction
and update allows us to obtain the probability density P XijZið Þ ¼ P Xið Þ [3, 5].

The particle estimator represents the posterior probability density of a random set
of samples with their probabilities of validation with the hypothesis, so it is possible
to estimate the most likely particle from this set. When we make the number of
particles approaches to infinity this process approaches to the a posteriori likelihood
function, and the solution approaches an optimal Bayesian estimator [5].

To go into the details of the particle estimator for object tracking, we will rely on
the importance sampling method, taking a set of samples from the state space, which
characterizes the a posteriori probability density function p X0:kjZ1:kð Þ for the state:

Xi
0:k ¼ Xi, i ¼ 0, … , kf g, (6)

while that the corresponding observations are Z0:k ¼ Zi, i ¼ 0, … kf g, then, the
a posteriori density in tk can be approximated by:

p X0:kjZ1:kð Þ≈
XN
i¼1

Wi
kδ X0:k � Xi

0:k

� �
, (7)

where δ :ð Þ is Dirac’s delta function, N the total number of particles and Wi
k

� �N
i¼1

are the assigned weighting.
Considering the hypotheses corresponding to the expressions (Eqs. (1) and (2))

the density a posteriori (Eq. (7)) can be written as [6, 7]:

p XkjZ1:kð Þ≈
XN
i¼1

Wi
kδ Xk � Xi

k

� �
, (8)

and the evaluation of the weights within the importance sampling principle
assumes that there is an evaluable probability density function p Xð Þ such that:

Wi
kαp XkjZ1:kð Þ (9)

and Wi
k are normalized according to (Eqs. (10) and (11)).

XN
i¼1

Wi
k ¼ 1,∴ (10)

Wi
k ¼

wk Xi
i¼1:n

� �
PN

j¼1wk X j
j¼1:n

� � (11)

This algorithm has a common problem known as the degeneracy phenomenon,
which manifests itself after a few states, where all but a few particles (usually one)
have negligible weight [3, 6]. This can be solved resampling the particles, however
this creates another problem, which is the increasing information uncertainty aris-
ing in the random sampling process [8]. However, this problem can be detected by
means of what is known as the effective sample size Neff , which can be estimated by
means of the (Eq. (12)).

Neff ¼ 1PN
i¼1 Wi

k

� �2 (12)
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When all particles have the same weight, i.e. Wi
k ¼ 1

N, for ¼ 1, … ,N, then the
effectiveness is maximum and equal to Neff ¼ N, but in the case where all but one
particle has zero weight, the effectiveness is minimum and equal to Neff ¼ 1 [7].

While the correct choice of the probability density function p Xð Þ to evaluate the
particles weights (Eq. (9)), minimizes the problem of the degeneracy phenomenon;
but to solve it, a resampling has to be incorporated into the algorithm; this incor-
poration is known as the Sequential Importance Resampling (SIR). This technique is
applied in the case where the effective sample size Neff falls below a threshold value
NT, its effect is to remove particles with small weights and replicate those with
greater weights.

2.1 Particle estimator algorithm

In the following, we describe the six steps of the particle estimator algorithm
applied to video object tracking:

a. Design:

• An observation function Η kð Þ, used for the evaluation of the similarity
probability for each particle with the referent object.

• Determine whether image pre-processing is required.

• The number of particles N.

• The threshold number of particles Neff , to determine which type of
resampling strategy to use.

• The noise distribution function χ kð Þ, applied for resampling.

b. Initialization:

• Identification on the image the object to be tracked in its position and
size; this operation is performed by the user and defining the reference
particle.

• Determination of its main characteristics by means of the observation
function Η kð Þ; generating the information for the identification of the
reference particle.

• Generation of a set of N particles in random position over the whole
image, if there is a priori information of its location; this is used for the
positioning of the particles centered on it, and over this a random
distribution.

• The set of particles are initialized with the normalized weights, with the
same values Wk ¼ 1

N.

c. Update:

• For each particle, their normalized weights are calculated, based on the
state probability of similarity to the reference.
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• From the particles set, extract a sub set with the particles most likely to
match the reference particle.

• With the subset of particles most likely to match the reference particle,
the most probable location and size of the object is determined a priori.

d. Resampling:

• The effective number of particles Neff is evaluated, and if it is lower than
the threshold value NT, the lowest weight particles are discarded.

• From this new subset of particles most likely to match the reference
particle, the new set of N particles for the next state is created.

• The state of this new set of particles is modified by introducing the
additive noise χ kð Þ, that brings variability to the system.

e. Completion:

• You are returned to the Update stage c), as long as the data sequence is
not finished.

2.2 Observation function

Observation functions are those that allow me to extract the main characteristics
of an image. In the particle estimator they are used to obtain the main characteris-
tics of the reference image and those of the particles. These sets of main character-
istics allow determine the probability of similarity between the reference and each
particle. Some of the main algorithms are described below.

2.2.1 Features from accelerated segment test (FAST) algorithm

The FAST algorithm is basically searching over the whole image the points
where the changes in intensity in all directions are significantly (corner detection
method) [9]. The principal advantage of this algorithm is its high speed perfor-
mance, and is very suitable for real time applications in computer vision processing.
Exist several technics to find a characteristic point in an image; two of this is
described below.

In the first one, and as parameters of the algorithm, a threshold value T and a
radius r are defined for the evaluation. On the pixel p to evaluate and which has an
intensity Ip, a Bresenham circle of radius r is considered (see Figure 1).

This circle of radius r defines a set of N points, if in this circle there is a set of n
pixels whose inensity is greater than Ip þ T

� �
or less than Ip � T

� �
, then the pixel p

can be considered as a characteristic point. The values taken by the authors after the
experimental results are: n≥0:75N to consider a pixel p as a characteristic point,
and the value of the radius r ¼ 3, which defines N ¼ 16 and n ¼ 12.

In a first step, the intensity Ip of pixel p is compared with the intensity of the
pixels 1, 5, 9, and 13, if 3 of these 4 pixels meet the threshold criteria, then it is
checked if there are at least 12 pixels that meet with this criteria to consider it as a
characteristic pixel.

This procedure must be repeated for all pixels in the image and its drawbacks
are: for values of n< 12 a large number of characteristics points are generated, and
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having to evaluate all points of the circle slows down the algorithm. To improve the
speed of the algorithm a proposal of the authors is to give it a machine learning
approach [10].

In the second one, known as Fast Radial Blob Detector (FRBD), the technique
consists of applying the Gaussian Laplacian filter to an image I x,yð Þ, the Laplacian
operator, as well as detecting the edges very well also detects the noise very well
[11]. Therefore a Gaussian filter must be previously applied to the image to reduce
its noise level; a Gaussian kernel of width σ to convolve with the image is
represented by the (Eq. (13)) to suppress the noise before using Laplace for edge
detection (Eq. (14)), and finally (Eq. (15)) represent the kernel of the Gaussian
Laplacian filter to convolve with the image (Eq. (16)).

G x,y,σð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
x2þy2

2σ2

� �
(13)

L x,yð Þ ¼ ∇2I x,yð Þ ¼
d2I x,yð Þ
dx2

þ d2I x,yð Þ
dy2

(14)

LoG x,yð Þ ¼ ΔG x,y,σð Þ ¼
d2G x,y,σð Þ

dx2
þ d2G x,y,σð Þ

dy2
(15)

LoG x,y,σð Þ ¼ ΔG x,y,σð Þ ∗ I x,yð Þ (16)

This kernel ΔG x,y,σð Þ showed in Figure 2, is a feature detector because it finds

regions where the image gradients are changing quickly for example blobs, corners
and edges.

This FRBD algorithm goes one step further by using a second-order finite-
difference approximation on the filtered image. An approximation to the LoG but
which can be computed more rapidly is the Difference of Gaussian (DoG) operator,
this approximation using a second-order finite differencing which estimates how
the filtered image changes at a given pixel. A circle of radius r is constructed with
center in a pixel p, and sampled pixels in eight discrete directions are evaluated,
refer to the central pixel (Figure 3).

Using the sample points P 0… 8½ � compute the average pixel difference around
pixel P 0½ � as,

F x, y, r
� � ¼ abs

X8
1¼1

P 0½ � � P i½ �
� �

(17)

The average pixel difference (Eq. (17)) is identical to convolving the original
image with the kernel of the Figure 2.

The features are extracted maximizing the rate of change of F x, y, r
� �

respect to r,
calculate as first order differencing,

Figure 1.
A Bresenham circle of radius r.
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R x, y, r
� � ¼ F x, y, r

� �� F x, y, r� 1
� �

(18)

if R(x, y, r) is multiplied by the minimum pixel difference,

Fmin x, y, r
� � ¼ min

i
P 0½ � � P i½ �
� �

(19)

the pixels that no exhibit changes in intensity in all directions are suppressing.

2.2.2 Speeded-up robust features (SURF) algorithm

The particularity of this algorithm is its ability to determine the characteristics
points in an image, which are invariant to changes in: scale, rotations and trans-
lations, and partially to illumination changes. This algorithm is an optimization of
the Scale Invariant Feature Transform (SIFT) algorithm [12], being its execution
speed much higher than the latter [13]. On the other hand, the SURF algorithm
produces less information that the SIFT for each characteristic point of the image,

Figure 3.
Eight discrete directions of the sampled pixels.

Figure 2.
Kernel of the Gaussian Laplacian filter.
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although the produced information by the SURF algorithm is more than enough for
most applications, including the present one.

The use of integral images in this algorithm makes it very fast to represent at
different scales of the original image its differential features. Integral images accel-
erate the computation at different scales the application of Haar wavelets, and
together with the application of the Hessian differential operator allows the deter-
mination of key points and their robust descriptor features [2, 11].

Given an image I, and a point X ¼ x, y
� �

in this image, the Hessian matrix H X,σð Þ
in X ¼ x, y

� �
to the scale σ is defined as:

H X,σð Þ ¼
Lx,x, X,σð Þ Ly,x, X,σð Þ
Lx,y, X,σð Þ Ly,y, X,σð Þ

" #
, (20)

where Lx,x, X,σð Þ, Lx,y, X,σð Þ, Ly,x, X,σð Þ and Ly,y, X,σð Þ represent the convolution product

of the second derivative of the Gaussian ∂
2

∂X2 g X,σð Þ with the Image I in the point X ¼
x, y
� �

[12], see (Eq. (22)).

Lx,x, X,σð Þ ¼
∂
2

∂X2 ∗ G x,y,σð Þ ∗ I x,yð Þ
h i

(21)

Lx,x, X,σð Þ ¼ ∂
2

∂X2 ∗G x,y,σð Þ

� �
∗ I x,yð Þ (22)

∧G x,y,σð Þ ¼
1

2πσ2
e�

x2þy2

2σ2 (23)

The determinant of the Hessian matrix allows the calculation of the scale of the
point, defined as follows:

H X,σð Þ
�� �� ¼ Dx,xDy,y � ωDx,y

� �2, (24)

where Dx,x, Dy,y, and Dx,y ¼ Dy,x are the approximations of the partial deriva-
tives, and ω is the balance factor of the determinant [2], obtained from (Eq. (25))
where :j jF is the Frobenius norm [3], see (Eq. (26)).

w ¼ Lx,y, X,σð Þ
�� ��

F Dy,y
�� ��

F

Ly,y, X,σð Þ
�� ��

F Dx,y
�� ��

F

(25)

Aj jF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1
ai,j
� �2r

(26)

Applying the Haar-Wavelet filters in a circular area of radius 6s provides us a set
of outputs in both directions (dx and dy respectively), and the mean value of those
responses as a dominant direction within the sliding area of π/3 [12].

Finally the feature descriptors for a certain scale and for each characteristic point
are obtained. To do this a rectangular area of 20σ x 20σ centered on the point is
constructed in the dominant orientation. This is divided into four sub-regions of
4x4, and for each sub-region the Haar-Wavelet is applied obtaining the horizontal
dx and vertical dy responses. A characteristic vector V is formed, and then for each
point a total of 64 SURF descriptors are generated [10, 11],

V ¼
X

dx,
X

dy,
X

dxj j,
X

dy
�� ��� �

: (27)
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2.2.3 Binary robust independent elementary features (BRIEF) algorithm

In terms of execution time, the SURF algorithm performs better than SIFT, but
this is not sufficient for current applications for real-time processing of video
streams in navigation, augmented reality, etc. To satisfy these applications simpler
concepts are applied in algorithms for obtaining fast detectors and descriptors, such
as: FAST [14], FASTER [15], CenSurE [16], and SUSurE [17] are some examples of
them.

In particular the BRIEF descriptor, like SURF, uses the integral image and applies
to a set of very simple binary tests which are adequate to the use of the Hamming
distance (distance between two code words, is the number of bit positions in which
they differ). This distance is much simpler and faster to evaluate than the Euclidean
distance. It is also demonstrated in a practical way that a 32-dimensional BRIEF
descriptor achieves similar results to a 64-dimensional SURF descriptor.

This algorithm obtains the descriptors of the characteristics points of the image,
and for this a defining a neighboring area centered on this points, this area is known
as patch p, which is square and a few pixels high and wide L x L (see Figure 4).

Since, the BRIEF algorithm handles pixel intensity levels this makes it very
sensitive to noise, therefore it is necessary to pre-smooth the patch to reduce the
sensitivity and increase the accuracy of the descriptors. Is for that, after create a
patch centered on the feature point a smooth Gaussian filter is applied to the patch
(Eq. (28)),

f x,yð Þ ¼
1

2πσ2
e �x2þy2

2σ2

� �
: (28)

BRIEF converts the patches into a binary vector representative of it, this
descriptor containing only 1 and 0, so each descriptor of a characteristic point is a
string of 128–512 bits. After applied the smoothing to the patch p by (Eq. (16)) the
patch is converted to binary feature vector as responses of binary test τ, which is
define by (Eq. (29)),

τ p; x,yð Þ ¼
1 : p xð Þ <p yð Þ
0 : p xð Þ ≥p yð Þ

8<
: (29)

Figure 4.
Patch in an image over a specific key point.
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where p xð Þ is the intensity value of the pixel at point x; then a set of n x, y
� �

with
n equal to 128, 256 or 512, and the location pairs (see Figure 4) must be defined as a
set of binary tests uniquely. The pixel p x,yð Þ is located inside the patch, and it is

called random pair, for creating a binary feature vector of number n is necessary
select the random pairs; the most useful functions to this selection are the following
five, showed in (Eq. (30)).

I: X,Yð Þ � Uniform �L
2
,þL

2

� �

II: X,Yð Þ � Gaussian 0,þ 1
25

L2
� �

III: X � Gaussian 0,þ 1
25

L2
� �

Y � Gaussian xi,
1

100
L2

� �

IV: The xi, yi
� �

are randomly sampled

V: xi ¼ 0, 0ð ÞT and yi is takes all
possible values on a coarse polar grid

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(30)

The advantages characteristics of the BRIEF descriptor are: high-speed
processing, little memory usage and strong to illumination and blur change, and
disadvantages are: weak to the rotation of the viewpoint, and the change in the
position of a light source.

The (Eq. (31)) describes the BRIEF descriptor, but in its application must be in
consideration that its matching performance falls sharply with a few degrees in
plane rotation.

fn pð Þ ¼
Xn
i¼1

2i�1:τ p; xi, yi
� �

(31)

2.2.4 Oriented FAST and rotate BRIEF (ORB) algorithm

The main characteristics of the ORB algorithm compared to its equivalents SIFT
and SURF are that the ORB performs the feature detection operations as well as
these but with a superior performance; having as an additional advantage that its
use is free. It is based on the widely proven FAST and BRIEF algorithms, very good
performance and low computational cost.

As the FAST algorithm does not have information about features of orientation
and multi-scale, these must be implemented. For the multi-scale response, a scale
pyramid is generated, where each level of the pyramid contains a version of the
original image but at a lower resolution (Figure 5).

Applying to each level (scale) the FAST algorithm (see 2.1.1) we obtain the
characteristics points at each level (vertices); as this algorithm also responds to edges,
these must be discarded. For this we use the Harris algorithm with a low threshold
[18], in order to obtain a large number of characteristic points, which are ordered
according to the Harris measure to obtain the desired number of main points.

From there, the orientation is done by means of the intensity centroid [19],
which assumes that the intensity of a corner is different from that of its center, and
the vector formed between both points is used to calculate its orientation. Rosin
defines the moments of a patch by means of (Eq. (32)) as,

50

Digital Image Processing Applications



mp,q ¼
X
x, y

xp:yq:I x,yð Þ (32)

and with these moments we can find the centroid by (Eq. (33)),

C ¼ m1,0

m0,0
,
m0,1

m0,0

� �
: (33)

While the orientation of the patch can be calculated by means of the vector OC
�!

with origin at the center C of the patch and a point O on its periphery, and is
obtained by means of (Eq. (34)),

θ ¼ atan2 m0,1,m1,0ð Þ: (34)

To improve the invariance of this measurement we must ensure that the calcu-
lation of the moments is performed with x and y included in a circular region of
radius r contained within the patch.

The table of features for each characteristics point is determined by means of the
steered BRIEF method [20], according to the orientation θ of the patch at that point.
For each characteristics point xi, yi

� �
we define a 2 x n matrix S (Eq. (35)), and a

rotation matrix Rθ as function of the orientation θ of the patch, obtaining an
oriented version of the matrix Sθ by (Eq. (36)).

S ¼ x1 … xn
y1 … yn

� �
(35)

Sθ ¼ RθS (36)

Figure 5.
Multiscale scheme for an image.
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Obtaining the operator steered BRIEF as,

gn p, θð Þ ¼ fn pð Þ xi, yi
� �

∈ Sθ
�� , (37)

where fn pð Þ is the binary test operator obtained from (Eq. (31)).
To construct the BRIEF pattern search table, the angle θ is discretizing in incre-

ments of 2π=30 12 degreesð Þ. All previous tests are ordered by their distance from a
mean of 0:5 generating a vector T. Then the first test of T is taken and added to the
table of results R, from there the next test of the vector T is taken and compared with
all the tests results in R, if its absolute correlation is less than a threshold it is discarded,
otherwise it is added to the table of results R, until a total of 256 tests are obtained.

3. Processes in the particle estimator algorithm

Basically this method deploys in the image a series of random particles, possible
states of the process in this case the target position and its size; while their weights
represent their posteriori probability of the density functions as an estimated from
the observations. One of the particularities of the particle estimator is the number of
configuration parameters it has, and to optimize its performance, in terms of esti-
mation quality and processing time, they must be properly chosen. Some of these
parameters refer to the behavior of the estimator itself and others to the behavior of
the SURF algorithm (used here for infrared images), as described below.

For the behavior of the particle estimator:

• Maximum number of particles,

• Probability threshold to consider a particle valid,

• Adaptability in the standard deviation as a function of the number of valid
particles for the vector of states in the resampling.

For the behavior of the SURF algorithm:

• Maximum number of characteristics points to be considered,

• Number of scale level, controls the number of filters used per octave,

• The threshold for the determination of the number of blobs to detect,

• Number of octaves, controls the filters and subsample of the image data; larger
number of octaves will result in finding larger size blobs.

Then, and for the case of this application (tracking objects in video images) we
can describe the processes implemented following the guidelines of the algorithm
described in 2.1.

3.1 Initialization

Mainly in this step, the reference particle to follow is selected, and all the
parameters described in the previous paragraph are initialized with the design
values.
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3.2 Particle description

The particle was described by means of a rectangle; and to characterize it we
define a state vector for each particle (Eq. (38)).

X ¼ x y w h _x _y _w _h
h iT

¼ p v½ �T (38)

This state vector contains the positions x, yð Þ and for its size, lengths of width

and height w, hð Þ, while for its velocities _x , _yð Þ and _w _h
� �

respectively.

The velocity of the particle is calculated by means of the difference between
pkþ1 � pk

� �
divided by the time video sampling, at the end of the cycle.

When a new frame is acquired, the particles are propagated following state
evolution model in correspondence with (Eq. (1)):

Pk ¼ APk�1 þ Avk�1, (39)

A ¼ I4x4 Δt:I4x4
04x4 I4x4

� �
, (40)

where I4x4 is the 4x4 identity matrix, 04x4 is the 4x4 null matrix and Δt is the
frame sample time. After the particle propagation the bounds check is applied to
verify that all the particles are within the image.

3.3 Particle probabilities estimation

The determination of the similarity between each particle and the reference
depends on the type of image, either color or black and white. The images in this
text are in black and white from images acquired from infrared sensors, but we will
pause here to consider a color image.

3.3.1 Color images

In the case of the color image to determine the similarity with the reference the
distance between histograms is used, in the example of the Figure 6 the
Bhattacharyya distance [21] for histograms (Eq. (41)) was used, instead of Euclid-
ean distance, because a better response was obtained.

Bdst ¼
P

hIr� hIr
� �

: hI � hI
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
hIr� hIr
� �2� �

:
P

hI � hI
� �2� �r (41)

Where Bdst is the Bhattacharyya distance, hIr and hI the histogram to be com-
pared, and hIr and hI its mean values. The probability of one is obtained when the
sum of the three distances between the red, green and blue histograms, is equals to
zero.

Figure 7 shows the sequence of images for the tracking of a person, in which the
particles can be seen in three colors, green for the best estimation, blue for the most
probable particles, and red for the least probable ones. At 3.399 seconds the action
of the increase dispersion parameter in the resampling procedure is observed, due a
low number of valid particles; this is maintained only in two frames, returned to
normal values quickly.
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3.3.2 Black and white images

In the case of the black and white images, for determining the similarity between
each particle with the reference, the SURF algorithm was used. Before applying the
SURF algorithm, the background effect is reduced, generally this improvement is
based on subtracting the value from the mean intensity and modifying its histogram
to increase the contrast result a good choice for infrared images. In this case and for
this type of image the procedure used to enhance the image of the object was: first

Figure 6.
Airplane sequence of the particle estimator, where [a .. h] correspond to sequences between [4s .. 4.32s].

Figure 7.
Person tracking, sequence of the particle estimator.
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subtract the input image IP by a proportional factor α to its mean value I, second
multiply the result by a proportional factor β to the relationship between the
standard deviation of the image (as measurement of the contrast) divided by the
maximum value of the luminosity (Eq. (42)).

IP ¼ I� α
XN,M

i¼1, j¼1

I i,jð Þ

2
4

3
5β σ Ið Þ

max Ið Þ , (42)

where, N and M are the number of pixels X and Y respectively, σ Ið Þ and max Ið Þ
the standard deviation and the maximum value of image respectively. The adaptive
factors α and β are obtained experimentally and the best results was obtained with
values of α ¼ 0:84314 and β ¼ 25.

For determining the similarity of a particle with the reference particle, a pairing
of the characteristic points is performed. After this pairing, the numbers of pairs of
points whose metric is less than a threshold metric are counted; and the relationship
between the numbers of pairs of points with respect to the total number of charac-
teristic points of the reference particle gives us its similarity probability.

3.4 Position and size of the object to be tracked

The position and size of the object to be tracked is determined by means of the
most significant particles, i.e. those particles whose probability exceeds the selected
probability threshold.

3.5 Re-sampling

From the most probable particle obtained in the previous step, a new particle set
is distributed according to the dispersion of each variable, always limiting them to
the size of the screen. But the dispersion of the variables is adapted according to the
number of valid particles. This is implemented as a strategy of re-sampling, where
the search zone is extended as function of the number of valid particles decreases.

4. Experimental results

Three experimental tests were performed with the previously described algo-
rithm to tracking an object: a) an airplane; b) a six rotors “UAV” and c) a heliport.
For the three experiments an infrared camera Tau 640, in the 8 to 14 micron band
was used, in a) and b) experiments the camera was mounted on a positioning
system, while in c) the camera was mounted on a six-rotor “UAV”, taking a zenithal
image.

In case b), where the camera was mounted on a positioning system, this had a
tracking system attached to it, so the values of the X and Y coordinates in pixels of
the target could be obtained. Comparing them with those obtained from the particle
estimator the error of the latter was determined.

The images obtained from the video frames were recorded sequentially
according to the video acquisition frequency, and before applying the particle
estimation algorithm, they were pre-processed by a background suppression and
contrast enhancement procedure (Eq. (42)).

In all cases the same observation function, the SURF routine, was used to
determine the likelihood of similarity between the video image and the reference
image. The dispersion factors applied to the state vector in the resampling function
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vary inversely proportional to the number of valid particles, so that if the number of
valid particles decreases, the search area increases.

4.1 Airplane tracking

The first experiment was the tracking of airplane, the estimator sequence can be
observed in Figure 6, frame (a) correspond to the first sate of the estimator,
distributed the particles over an area of the maximum probability of locate the
target.

After the correct detection the particle estimator remains locked throughout the
entire flight. As can be observed in frame (f) a lot of particle with probability under
the threshold probability appears, but nevertheless remains lock.

4.2 Six rotors tracking

This experiment has the particularity of that the UAV to avoid detection flies
hidden behind the trees, after which it starts a free flight. And in both cases the
particle estimator is able to detect when only one part of its image visible. From the
moment of the first detection the particle estimator remains locked throughout the
entire flight. The Figure 8 shows part of the frames sequence of the flight, from left
to right and from top to bottom the “UAV” first flying behind the trees, while the
particle estimator begins distributing the particles in the largest possible area of the
screen, after the third frame, and with the “UAV” still largely behind the trees, the
particle estimator still able to detect it and “hook” it as soon as it partially appears.

From the fourth frame the estimator remains locked during the whole flight,
especially when the occlusion free flight is carried out, and the tracking is always right.

4.3 Heliport tracking

This experiment was a flight over a heliport located in a park area of the
Institute, and the shots were taken from zenithal videos because an artificial vision
navigation system was tested to aid the landing. The characteristics of these images

Figure 8.
Six rotors “UAV” sequence of the particle estimator.
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are that they are interfered by infrared radiation from the ground, and the heliport
is not properly marked.

The Figure 9 shows two sequences of the particle estimator execution, the upper
correspond to the startup, and the lower in the middle of the experiment. From left
to right and from top to bottom, the first frame corresponds to the initialization of
the estimator, the particles are distributed over the whole image and the most
probable particle in the center of the screen. In the second frame after 0.04 seconds
(frame rate) only two particles have probability higher than the threshold, and it
can be seen how the most probable particle reached the target. After that the
estimator is locked, and remains in sequence of tracking.

5. Conclusions

The parameters that define the behavior of the particle estimator were described
in paragraph 3. Although an analysis of the estimator’s response can be made based
on each of these parameters; here we will perform only one, for the number of
particles of the estimator.

For this purpose, we rely on the experiment corresponding to the tracking of the
six-rotor UAV, because it was simultaneously tracked by a positioning system.
Therefore, taking as true the observation obtained from the positioning system, it
was possible to determine the relative error corresponding to the particle estimator.

To observe the dynamic response and the internal state of the particle estimator,
the relative error (upper graph) and the number of valid particles (lower graph) as a
function of time were plotted on Figure 10.

This figure show the behavior of the estimator, as a function of the number of
particles and in different colors, for values of 30 (red), 50 (magenta), 70 (blue) and
90 (green), the time between marks is the acquisition video time, which is
0.050 seconds.

As can be seen always at least a number of 6 frames are needed to begin reach
the lock state, and the number of particles parameter does not affect this number to
get this state. But when the number of the particles of the estimator it increase,
decreases its relative error, increase the computer time process, and presents
greater stability to maintain the lock.

Another parameter that improved the particle estimator response is the disper-
sion multiplying factor of the state variables. This multiplying factor is increased
when the number of valid particles decrease, covering a wider area of search in the

Figure 9.
Heliport tracking sequence of the particle estimator.
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image. With this search strategy the estimator maintains its stability in the response
to the lock with the objective, in a few frames.

After several execution of the algorithm in the experiment b); and varying
different initialization parameters of the estimator, the values that produce an
acceptable behavior are: number of particles 70 or higher, number of characteristic
points of the SURF algorithm 70 or higher, threshold value of probability of simi-
larity 90% or higher.

With the considerations in the initialization parameters of the particle estimator
mentioned above, the state lock could be maintained with no more than two frames
unlocked. And another observed feature is that the estimator could track the target
even when the object is mostly occluded on its surface, for example when the UAV
is behind trees (see Figure 8).

As a proposed improvement to enhancement to achieve better detection of the
target when it is mainly occluded, or when the image is heavily contaminated with
noise; it is to reformulate the main strategy. This strategy consists of decomposing
the reference image into NxN sub-images, in sequence and with their
corresponding identification. And for each sub-image a particle estimator is applied,
having NxN particle estimators, each one looking for a part of the reference image.
From there and starting with the first particle, we look for the particles with more
probability, and that are located in the correct sequence; the average of these
particles will give us the more likely position of the target to be follow. In case that no
particles are found in the correct positions we can obtain the most probability posi-
tion of the object to be followed as the position of the particle with the largest
probability, or as the integration of the information provided by the NxN estimators.
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Chapter 4

Performance Analysis of OpenCL
and CUDA Programming Models
for the High Efficiency Video
Coding
Randa Khemiri, Soulef Bouaafia, Asma Bahba,
Maha Nasr and Fatma Ezahra Sayadi

Abstract

In Motion estimation (ME), the block matching algorithms have a great
potential of parallelism. This process of the best match is performed by computing
the similarity for each block position inside the search area, using a similarity
metric, such as Sum of Absolute Differences (SAD). It is used in the various steps of
motion estimation algorithms. Moreover, it can be parallelized using Graphics
Processing Unit (GPU) since the computation algorithm of each block pixels is
similar, thus offering better results. In this work a fixed OpenCL code was
performed firstly on several architectures as CPU and GPU, secondly a parallel
GPU-implementation was proposed with CUDA and OpenCL for the SAD process
using block of sizes from 4x4 to 64x64. A comparative study established between
execution time on GPU on the same video sequence. The experimental results
indicated that GPU OpenCL execution time was better than that of CUDA times
with performance ratio that reached the double.

Keywords: HEVC, ME, SAD, GPU, CUDA, OpenCL

1. Introduction

The Graphics Processing Unit (GPU) [1] is a microprocessor present on graphic
cards or game consoles. It has a strong parallel framework initially dedicated to
accelerating graphics tasks. Having this innovation and programming language
General Purpose computation on GPUs (GPGPU) languages such as Compute Uni-
fied Device Architecture (CUDA) [2] and Open Computing Language (OpenCL)
[3] enabled applications development in many domains.

CUDA is an NVIDIA Corporation programming model that runs only on
NVIDIA GPUs. The OpenCL method, an effort of the Khronos Community, is very
close to the CUDA method. However, this is a requirement open for parallel pro-
gramming on various platforms: CPUs, GPUs, Digital Signal Processors (DSPs) and
other types of processors. Taking into account that, OpenCL is able to manage
several devices. The concept of context makes it possible to deal with this problem.
A context designates a set of devices.
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However, there are two major differences. The first difference is that OpenCL
codes are much larger than CUDA C codes. The multiplatform side of OpenCL
explains this. The second difference is that the kernel is built from the host code
during runtime using the OpenCL runtime library [4].The OpenCL kernel can be
used in two ways, expressly defining the working group’s local and global size and
the local size or indirectly leaving OpenCL to select its global size of working group.
The size of a working group equals a CUDA thread size block, the size of a working
group is also known as ND Range configuration, as seen in Figure 1.

The two languages provide similar hierarchical decomposition of the computa-
tion index space explained on Table 1. The synchronization is available on thread
block/ work-group level only.

This paper proposed an implementation of the Sum of Absolute Differences
(SAD) of the High Efficiency Video Coding (HEVC) Motion Estimation (ME)
algorithm on an NVIDIA GPU using CUDA and OpenCL languages to compare
their performances.

This manuscript is structured as follows: Section 2 introduces the HEVC SAD
algorithm. In Section 3, an overview of ME is given. Section 4 gives and describes
the SAD kernel proposed. In Section 4 the experimental results and the discussion
are given. Finally, Section 5 concludes this paper.

Figure 1.
Model of software programming.

CUDA OpenCL

Grid NDRange

Thread Block Work group

Thread Work item

Thread ID Global ID

Block index Block ID

Table 1.
Execution model terminology mapping.
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2. HEVC ME feature

The key element of HEVC is the ME, which represent the most time-consuming
task in video coding. Actually, the complexity of ME increases significantly due to
the increase in the coding block size [5]. Inter-prediction requires a great complex-
ity burden of up to 80% [6] in the total encoding process, due to the ME, which
consumes around 70% of the inter-prediction time, as mentioned Figure 2 [6].

ME is performed on a block-by-block basis and supports variable block sizes in
HEVC. This coding tree unit (CTU) structure, which offers a compromise between
a good quality and a less bit-rate, is based on three new concepts: coding unit (CU),
prediction unit (PU), and transform unit (TU) [7, 8].

Each picture is divided into CTU of size 64 � 64 pixels, which can be partitioned
after that into 4 CUs [9] sized from 8 � 8 to 64 � 64 pixels. These regions of CU
contain one or several PUs and TUs.

In the HEVC ME algorithm, SAD and SSD are the most requested functions.
These several cost functions are used to decide the best coding mode and its associ-
ated parameters. An idea of the SAD is given in the next subsection.

3. HEVC SAD algorithm

The calculation of the Sum of Absolute Difference (SAD) is commonly used for
motion estimation in video coding. This is usually the computational intensive part
of video processing [10, 11]. It computes the difference between the pixel intensity
of the current and reference frame macro block. The motion compensation block
size is N � N, where, Currenti,j, and Referencei,jare current and reference frame
block [12].

SAD ¼
XN�1

i¼0

XN�1

j¼0

Currenti,j � Referencei,j
���

��� (1)

SAD is also used as an error calculation in order to define the similar block and to
evaluate the motion vector in the motion estimation phase [13]. SAD is a simple and
fast evaluation metric. This calculation takes every pixel in a block into an account.
For many motion estimation algorithms, it is therefore very efficient (Figure 3).

4. Proposed SAD kernel

The calculation of the SAD can be parallelized using GUP since it treats each
pixel separately, which corresponds to the architecture of the graphics processors

Figure 2.
HEVC inter-prediction time distribution [6].
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2D-grid of threads blocks which computes all disparities for 2D blocks of the image.
Each thread computes the SAD value for a block in the search range, and a thread
block calculates the entire SAD value for an image block. The benefit is that all
SADs are calculated in the same thread block for an image block.

In [14] the authors implemented the SAD on the general purpose GPU architec-
ture. A significant acceleration of 204x for an image size of 1024 � 768 was
obtained for SAD on the GeeForce GTX 280 compared to the serial implementation
as shown in Figure 4.

Figure 3.
Block matching algorithm based on SAD.

Figure 4.
Typical mapping of a block-matching algorithm to a GPU.
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The SAD kernel is composed of two main steps. The subtraction of the PU pixels
then the summation. The addition was achieved on the GPU with the parallel
reduction. In step1, the first N/2 elements are added to the other N/2. In the result,
in the step 2, we have N/2 elements to add up. The first half was added to the next
half. The same steps are repeated until there is only one number remaining as
shown in Figure 5 [15].

5. Experimental results

5.1 OpenCL performance on GPU compared the CPU one

OpenCL offers a convenient way to construct heterogeneous computing systems
and opportunities to improve parallel application performance. As first step, the
OpenCL SAD kernel was implemented in two platforms: CPU with 4 cores at fre-
quency 2.5 GHz and an NVDIA GPU 920 m of 954 MHz as frequency. The SAD block
dimensions are from 4� 8 to 64� 64 pixels. A comparative analysis was made on the
same video between the CPU and GPU is seen in Figure 6. It is clear from the next
figure that the GPU execution time is greater than CPU execution (Figure 7) [16].

When using the Eq. (2), Figure 6 indicates the speed up [17] of the both
implementations.

Speed� up ¼ CPU execution time=GPU execution time (2)

The speed up shows that the GPU platform is more efficient than the CPU
platform, and this is due to the efficient parallel architecture of GPU compared to
CPU. To validate the OpenCL code compared to the CUDA code the next study is
proposed.

5.2 Execution performance OpenCL GPU compared to CUDA GPU

Running the application through GPU requires these steps as it is shown in
Figure 8. For OpenCL, approach contains GPU detection and kernel compilation.

Figure 5.
Reduction technique.
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The CPU input is read from the host to the device by all frameworks; the kernel is
executed on the GPU; the device is returned to the host by copy data. Finally, the
results are displayed on CPU.

Table 2 reports the kernel running time for different size of Prediction Unit
(PU) (designed the block size used). In order to get repeated average times, we
fixed each problem 10 times for both CUDA and OpenCL.

We use a normalized performance metric, called Performance (PR), to compare
the performance of CUDA and OpenCL (Figure 9).

PR ¼ CUDA execution time=OpenCL execution time (3)

If performance ratio is greater than 1, OpenCL will give a better results com-
pared to CUDA language. As shown in Figure 8, the performance ratio indicates
that the OpenCL kernel running time is better than CUDA kernel running for each

Figure 6.
Performance OpenCL comparison with GPU and CPU platforms.

Figure 7.
Speed-up using OpenCL language.
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size block. Similar results are obtained by Frang et al. [18] and Exterman [19],
respectively.

5.3 Comparative study

In this section, we compared the time performance of our proposed implemen-
tation to State-of-the-Art process [20, 21].

In the work presented by Xiao et al. [20], when comparing the result of the
proposed with the HEVC reference software, experimental results show that the
proposed GPU implementation achieves 34.4% encoding time reduction on average
while the BD-rate increase is only about 2% for a typical low delay setting. Another
interesting work is proposed by Karimi et al. [21] used a specific real-world appli-
cation to compare the performance of CUDA with NVIDIA’s implementation of

Figure 8.
Algorithm flow.

Block sizes GPU execution time (μs)

CUDA language OpenCL language

CU 8 � 8 PU 4 � 8 6.63 5.592

PU 8 � 4 6.885 5.482

PU 8 � 8 7.573 5.831

CU 16 � 16 PU 8 � 16 8.224 6.013

PU 16 � 8 8.402 5.909

PU 16 � 16 8.992 6.356

CU 32 � 32 PU 16 � 32 10.17 6.451

PU 32 � 16 9.037 6.503

PU 32 � 32 9.729 6.877

CU 64 � 64 PU 32 � 64 10.265 7.964

PU 64 � 32 13.1 7.297

PU 64 � 64 13.687 8.614

Table 2.
GPU and CPU application running times in seconds.
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OpenCL. Contrary to our results, CUDA’s kernel execution was here consistently
faster than OpenCl’s, despite the two implementations running nearly identical
code. CUDA seems to be a better choice for applications where achieving as high a
performance as possible is important. Otherwise the choice between OpenCL and
CUDA can be made by considering factors such as prior familiarity with either
system, or available development tools for the target GPU hardware. The perfor-
mance will be dependent on some variables, including code quality, algorithm type
and hardware type.

6. Conclusion

OpenCL is quite competitive with CUDA on the NVIDIA graphics processor in
terms of performance. In this work, the use of OpenCL as a portable language for
the development of GPGPU applications was studied. SAD is the largest part of
runtime and calculation in motion estimation the reduction technique was used to
implement the SAD, which significantly allows reducing the run time. The perfor-
mance ratio was equals to 2 when comparing the OpenCL implementation to the
CUDA one.

Paralleling multiple GPU algorithms could improve performance. In addition to
the ME algorithm of the Joint Collaborative Video Coding Team (JCT-VC) [22], we
assume that the suggested concept can also be applied.
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Figure 9.
Performance ratio.
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Chapter 5

Weighted Module Linear
Regression Classifications for
Partially-Occluded Face
Recognition
Wei-Jong Yang, Cheng-Yu Lo, Pau-Choo Chung
and Jar Ferr Yang

Abstract

Face images with partially-occluded areas create huge deteriorated problems for
face recognition systems. Linear regression classification (LRC) is a simple and
powerful approach for face recognition, of course, it cannot perform well under
occlusion situations as well. By segmenting the face image into small subfaces,
called modules, the LRC system could achieve some improvements by selecting the
best non-occluded module for face classification. However, the recognition perfor-
mance will be deteriorated due to the usage of the module, a small portion of the
face image. We could further enhance the performance if we can properly identify
the occluded modules and utilize all the non-occluded modules as many as possible.
In this chapter, we first analyze the texture histogram (TH) of the module and then
use the HT difference to measure its occlusion tendency. Thus, based on TH differ-
ence, we suggest a general concept of the weighted module face recognition to solve
the occlusion problem. Thus, the weighted module linear regression classification
method, called WMLRC-TH, is proposed for partially-occluded fact recognition. To
evaluate the performances, the proposed WMLRC-TH method, which is tested on
AR and FRGC2.0 face databases with several synthesized occlusions, is compared to
the well-known face recognition methods and other robust face recognition
methods. Experimental results show that the proposed method achieves the best
performance for recognize occluded faces. Due to its simplicity in both training and
testing phases, a face recognition system based on the WMLRC-TH method is
realized on Android phones for fast recognition of occluded faces.

Keywords: face recognition, linear regression classification, occlusion tendency,
weighted module face recognition, texture histogram difference

1. Introduction

As the progress of the computer vision and machine learning, person identifica-
tion and verification for security considerations become practical and play an
important role for modern smart living applications. Face recognition for security
control has received lot of attentions recently. Designed with a camera, the face
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recognition becomes a simple and direct way to achieve reliable identification and
verification. There are numerous algorithms [1–4] made important contributions to
face recognition. These approaches can be divided into two categories, holistic
based and modular based methods [5]. The holistic based approaches include the
principle component analysis (PCA) [6] and linear discriminant analysis (LDA) [6].
John et al. [7] exploiting sparsity representation to improve the recognition rate. On
the other hand, the modular based approaches provide more valuable features for
face recognition. Naseem et al. [8] proposed linear regression classification (LRC)
and its modular design to solve occlusion problems. During training stage, the LRC
algorithm is to form the regression surface, which has the most fit of the data
distribution, of each identify. In the testing stage, the unlabeled face image vector is
used to recognize the person by finding the shortest project distance to the regres-
sion surface of the identify.

In practical applications, especially in COVID-19 pandemic period, face recog-
nition might encounter diversified challenges such as low resolution, luminous
change, facial expression and partial occlusion affected by facial accessories and
covering face masks and scarf. For various challenges, there are several improved
LRC algorithms proposed in the literatures, such as PCA-based LRC [9], unitary
LRC [10], class-specific kernel LRC [11], and sparse representation classifier [12]
methods.

Figure 1 shows some examples of partially-occluded faces, where they are par-
tially covered by facial accessories or covering obstacles. Partially occlusion is one of
the practical and difficult problems in face recognition [13, 14]. Thus, some
researches have focused on partially-occluded faces [15–19] recently. Most
approaches tried to detect the testing images in several modules, avoided occlusion
area influence the recognition results. The module LRC (MLRC) proposed in [8] is
an effective way to solve occlusion issues in facial recognition. The MLRC treats
each module equally important, however the occluded modules should be excluded
or reduced their contribution for the final classification. Thus, by using regression
parameters (RP), our early-version weighted module linear regression classification
(WMLRC-PR) [20] is first proposed to enhance the MLRC method. To secure the
access of ATM machines, the occluded face detection methods are proposed
[21, 22]. By using support vector machine (SVM) to detect the occlusion modules,
the LDA face recognition method is performed in the non-occlusion part [23]. By
using structured dictionary learning (SDL) method, the SRC face recognition can
separate occluded face images [24]. The robust face recognition algorithms based
on various features, such as Huber loss [25], local binary feature [26] and topology
preserving structure matching (TPSM) [27] are proposed to solve occlusion prob-
lems successfully. It is noted that the state-of-the-art CNN approaches [28–31],
which need pre-trained by all face images, will not be applicable for partially-
occluded face recognition. Besides, the CNN approaches usually need to pre-train
the model, any instance increase of new members becomes impossible.

Situations Sunglasses Scarf Sunglasses & 
Face mask

Partial
face

Occluded
Facial
Images

Figure 1.
Examples of partially-occluded situations.
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In this chapter, we propose a better occlusion tendency detection by using
texture histogram (TH) to distinguish occluded and non-occluded modules. With
the TH occlusion tendency, the WMLRC-TH methods are then proposed. The rest
of the chapter is organized as follows. In Section 2, we first review the basic LRC
concept and introduce the module LRC design for face recognition. Then, Section 3
first analyzes texture histograms and discusses how to use it to determine the
occlusion tendency of the module. The proposed WMLRC-TH method in use of
texture histogram is the proposed. In Section 4, the proposed WMLRC-TH method,
which is tested on AR [32] and FRGC2.0 [33] face databases with synthesized
occlusions, is compared to the well-known and robust face recognition methods.
The realization of the partially-occluded face recognition system based on the
WMLRC-TH method in mobile platforms are also addressed. Finally, conclusions
are addressed in Section 6.

2. Module linear regression classification for face recognition

For face recognition, we assume that all training and testing facial images are
preprocessed by face detection, face cropping and possible face alignment func-
tions. Assume that we have C subjects, which are characterized by training facial
images used for identity recognition. For C identities, the ith identity is with N
training facial images all with the size of p � q pixels. Each pixel could be further
represented with K color channels. Thus, the kth channel data of the ith identity is
represented by vi,j,k ∈ Rp � q, i = 1, 2, … , C, j = 1, 2, … , N and k = 1, 2, … , K, where
K = 3 for most RGB face images.

For the kth channel, we can cascade its q column vectors into a larger
column vector, xi,j,k∈ Rpq � 1. For the ith class identify, its N training vectors,
xi,j,k, j = 1, 2, … , N are grouped into the ith class vector space as

Xi,k ¼ xi,1,k,xi,2,k, … ,xi,N,k½ �∈Rpq�N, i ¼ 1, 2, … ,C: (1)

If νi,j,k is reformed by linearly combining channels to one grayscale channel, we
set K = 1 or just remove the subscript k as xi,j ∈ Rd � 1 and Xi ∈Rpq�N for simplicity.
For face recognition, the linear regression classification (LRC) and module LRC are
briefly reviewed as follows.

2.1 Linear regression classification

Let uk ∈ Rp � q be the kth channel of an unlabeled query image, which is formed as
a column vector yk ∈ Rpq � 1. If the query data vector yk belongs to the ith class, the
prediction with the linear combination of the ith class vector space can be rewritten as

yk ¼ Xi,kβi,k, i ¼ 1, 2, … ,C, (2)

where βi,k ∈ RN � 1 is the regression parameter vector of the ith class. The optimal
regression parameter vector can be solved by the least square optimization and
expressed in matrix operations as

βi,k ¼ XT
i,kXi,k

� ��1
XT

i,kyk, i ¼ 1, 2, … ,C: (3)

With optimized regression parameter vector, βi,k, the predicted response vector
~yi,k of the k

th channel for the ith class can be formed as
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~yi,k ¼ Xi,kβi,k, i ¼ 1, 2, … ,C: (4)

For all C classes, we first compute the kth-channel predicted response vectors. To
construct the recognition system, by combining Eq. (3) and Eq. (4) together, we
can store the pq�pq projection matrix of the ith identity as:

Hi,k ¼ Xi,k XT
i,kXi,k

� ��1
XT

i,k, k ¼ 1, 2, … ,K: (5)

The construction of the ith projection matrix can be treated as the training
process of the ith identity. For the trained parameters of all C identities, we need to
store Cp2q2 coefficients for recognition. The computation of predicted response
vector becomes the projection process as

~yi,k ¼ Hi,kyk, k ¼ 1, 2, … ,K, (6)

which takes about Kp2q2 multiplications. For testing all C identities, one identity
recognition process, it needs CKp2q2 multiplications. To determine the best class,
the LRC method chooses the identity, which is with the minimum prediction error
of all channels. Thus, the classified identity i* is determined by minimizing the L2-
norm distance between the predicted response vector and the query data vector as

i ∗ LRC ¼ argmin
i

dið Þ, i ¼ 1, 2, … ,C: (7)

where

di ¼
XK

k¼1

~yi,k � yk

���
���
2
, i ¼ 1, 2, … ,C, (8)

for K-channel classifications.

2.2 Module linear regression classification (MLRC)

For real applications, if a query sample is partially corrupted or occluded, the
LRC algorithm cannot handle these special situations well since the discernible
messages are getting less. The module, which is in a small and clean subface,
approach can efficiently overcome this problem.

For the module LRC (MLRC), each training image νi,j,k ∈ Rp � qxK is segmented
into M non-overlapped partitions. Figure 2 shows an example of segmentation of
facial images with M = 16. The mth module, as the LRC approach, is formed as a
column vector xm

i,j,k, i = 1, 2, … ,C, j = 1, 2, … , N, m = 1, 2, … , M. As Subsection 2.1,

Segment to
16 modules

1 5 139

2 6 1410

3 7 1511

4 8 1612

Figure 2.
Segmentation of face images with M = 16 modules.
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in the training phase, the column vectors of all training image related to each class
are grouped accordingly. Hence, for the ith class, we could obtain M groups of the
kth channel data spaces as

Xm
i,k ¼ xm

i,1,k,x
m
i,2,k, … ,xm

i,N,k

� �
∈R

pq
M�N (9)

for i = 1, 2, … , C, j = 1, 2, … , N.
For the kth channel of the query image uk, as the training images, we first

segment it to M modules and form them as column vectors ykm for m = 1, 2, … , M.
If the mth module of the query image, ykm is assumed to lie on the mth module of the
ith class, the least square prediction can be expressed in the training images of the
mth module in the ith class as

ym
k ¼ Xm

i,kβ
m
i,k, i ¼ 1, 2, … ,C,m ¼ 1, 2, :… ,M, (10)

where the optimal regression parameter vector is given as

βmi,k ¼ Xm
i,k

� �TXm
i,k

� ��1
Xm

i,k

� �Tym
k ¼ Rm

i,ky
m
k : (11)

and the regression matrix is defined as

Rm
i,k ¼ Xm

i,k

� �TXm
i,k

� ��1
Xm

i,k

� �T
: (12)

Similar to Eq. (5), the corresponding module response vectors ~ym
i,k can be

predicted as

~ym
i,k ¼ Xm

i,kβ
m
i,k ¼ Hm

i,ky
m
k , (13)

where Hm
i,kis the (pq/M) � (pq/M) projection matrix of the mth module of the ith

identity as

Hm
i,k ¼ Xm

i,k Xm
i,k

� �TXm
i,k

� ��1
Xm

i,k

� �T, k ¼ 1, 2, … ,K: (14)

The project matrix, Hm
i,k, for m = 1, 2, .., M, k = 1, 2, … , K can be treated as the

training parameters for the ith identity. For the trained parameters of M modules of
all C identities, we need to store CKp2q2/M coefficients for recognition process. For
testing all C identities, we can directly use (13) to compute the project result. Thus,
the MLRC recognition process, which needs to compute all ~ym

i,k for M-module and
K-channel p � q facial images by using (13), will need CKp2q2/M multiplications.
The computation of the MLRC is less than the LRC method, which needs CKp2q2

multiplications.
With the above module optimization, each module is processed by the LRC

computation individually. Without the knowledge of occluded modules, the mini-
mum distance could be used as the distance metric which implicates that the
occluded modules will be automatically removed. The MLRC in min-min distance
measure is expressed as.

i ∗MLRC ¼ argmin
i

min
m

dmi
� �

, (15)

where
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dmi ¼
XK

k¼1

~ymi,k � ym
k

���
���
2
, i ¼ 1, 2, … ,C; m ¼ 1, 2, … ,M: (16)

for K-channel classifications.

3. Weighted MLRC by detection of occluded modules

The module linear regression classification (MLRC) shows better recognition
performance under occlusion situations. However, the MLRC with min-min dis-
tance measure only uses the best module for classification essentially. Thus, we can
further improve its classification performance if we can properly gather more
reliable non-occluded modules. As shown in Figure 2, we should fully utilize all top
8 clear modules (#1, #5, #9, #13, #2, #6, #10, #14) modules and moderately adopt 4
partially-occluded modules (#3, #7, #11, #15) for face recognition.

Thus, in the early age, we suggested an occlusion detection measure, which can be
used to infer the occlusion tendency of the module. For linear regression classification
method, the occlusion detection could be obtained by regression parameters [15] by
the assumption that the regression parameters of the clean modules will have large
variations for in-class and out-class faces. The module with small variations of
regression parameters will have high probabilities to be detected as the occluded
modules. The regression parameter (RP) concept is only good for dark and less
texture occlusion objects. If the face recognition algorithm is not a linear regression
approach, it will need extra computation to compute the regression parameters. In
this chapter, we suggest a simple detection method to find the occlusion tendency of
the module. Generally, the module has its particular location, the texture distribution
of the module could easily be identified by its texture histogram.

3.1 Occlusion detection by texture histogram

To detect the occluded modules, instead of regression parameters, we can also
perform the occlusion detection in the texture domain. First, the D-bin texture
histogram of a grayscale image I(x, y) ∈ Rp � q is expressed by

hI x,yð Þ ¼ t1,⋯, ti,⋯, tD½ �T (17)

where the count of gray level I(x, y) for every b = 256/D in D bins will be
collected as.

ti ¼
Xp

y¼1

Xq

x¼1

qi I x, yð Þð Þ (18)

and qi pð Þ is to quantize p into the ith bin as

qi pð Þ ¼ 1 , if i� 1ð Þ � b≤ p< i � b ,

0 , else

�
‘ (19)

For finding D-bin texture histogram of modules of the ith class among N training
samples, we first obtain the expected vmi as

vm
i,k ¼

1
N

XN
j¼1

vm
i,j,k: (20)
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where vmi,j,k is the k
th channel of the mth module, νi,j,k ∈ Rp � q. Let the kth

channel of the query image u ∈ Rp � q, uk be segmented intoM partitions as uk
m. To

evaluate the occlusion tendency of the modules, γim, which denotes the distance
between the D-bin texture histograms of the mth module of query image uk

m and
the averaged module vm

i,kafter summing all K channels, becomes

γmi ¼
X
k

hum
k
� hvmi,k

���
���
2
: (21)

It is obvious that the modules of the query image, which are with larger γmi , will
have more occlusion tendency due to dissimilar intensity distribution. In AR face
database, we test 200 scarf images, With respect to 100 identities, Figure 3 shows
200x100 overlapped curves of γmi for all 16 modules. The results also show that γmi in
the occluded modules with m = 4, 8, 12, 16 are larger than the reminding ones.
Similarly, the texture histogram difference could be also used to determine the
occlusion tendency.

Conceptually, the texture histogram difference (HTD) of the module is a mean-
ingful measure to identify the location of the face. For example, the modules #5 and
#6 are forehead and left-center-eye modules, respectively. The average of texture
histogram for module #5 has flat texture distribution of pure skin color while that
for module #6 is unevenly distributed with textures of eyeball and nose regions.
These two modules have their distinct and special texture histograms. If the mod-
ules are occluded by the mask, their texture histograms become very different from
the original ones. For any face recognition algorithm, the classification criterion
generally can be expressed by

i ∗ face ¼ argmin
i

f i y
� �� �

, i ¼ 1, 2, … ,C, (22)

where fi(y) denotes the i
th class score function of the face recognition algorithm.

If we divide the face region into M modules, the adaptive weighted module face
recognition algorithm generally becomes

Figure 3.
Plots of γmi for all 16 modules of 200x100 scarf query images in AR face database.
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i ∗mface‐HT ¼ argmin
i

XM
m¼1

g γmi
� �

f i y
m� � !

, i ¼ 1, 2, … ,C, (23)

by using the above averaged texture histogram difference stated in (21). In (23),
g γmi
� �

is a function of HTD parameters should be properly designed to achieve the
best face recognition performance. Without loss of generality, we apply the HTD
parameters to the adaptive weighted MLRC method in the following subsection.

3.2 Weighted MLRC method by texture histogram

By using texture histogram difference (THD), we suggest a weighted MLRC
method, called WMLRC-HT for robust face recognition. For minimization measure
errors, it is obvious that occluded modules should give larger weights in the
WMLRC such that we can improve the drawback of the MLRC and achieve better
recognition performance. Similarly as the observation shown in Figure 3, the tex-
ture histogram distance, γmi has highly correlated to the occlusion tendency of the
module, In other words, the occluded module has larger γmi than the normal one.
Thus, we define the texture histogram (TH) weight for the mth module to be

wm
TH ¼ g γmi

� � ¼ γmi
� ��1

: (24)

With (24), the TH weight will be bigger for smaller texture histogram
difference. Thus, wm

TH for the occluded module is smaller than the normal one.
As the module LRC, the response vector ~ymi is predicted in terms of Xm

i,j as

~ym
i ¼ Xm

i β̂
m
: (25)

By using THD weight defined in (24), the WMLRC-TH with the weighted
minimum rule can be adjudicated as

i ∗ TH ¼ argmin
i

X
m

~ymi � ym
�� �� � wm

THP
m
wm

TH

0
@

1
A

0
@

1
A: (26)

4. Experimental results

In our experiments, the recognition performance with different face recognition
algorithms will be used to validate the proposed methods. In experiments, AR and
FRGC 2.0 face databases are used by synthetically adding osculation. We compare
recognition performances of the proposed WMLRC methods to those of PCA, LDA,
LRC, MLRC, SRC, locality preserving projection (LPP) [34], neighboring preserv-
ing embedding (NPE) [35] methods. All the experiments are carried out on a
personal computer, which is equipped with Intel Core2 Q9400 CPU associated a
4-GB RAM. The testing environment is on Microsoft Visual Studio 2013 with
OpenCV.

4.1 Experiments on AR database

The famous face recognition algorithms and recent robust face recognition
methods [23, 24, 27] all show the recognition performances on AR database, which
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contains more than 100 people’s color face images. For experiments, the cropped
facial images are normalized to 40 � 40 pixels. The first experiment is to test all the
algorithms on AR database [32] under sunglasses, scarf, colored blocks, black,
white, and texture occlusions, overlapped onto normal faces. The AR database
consists of more than 100 people’s color face images. The images also include
several facial variations, such as illumination change, expression and facial dis-
guises. We choose a subset of 100 subjects with 50 men and 50 women. In each
subject, 3 normal images are used as the training set as shown in Figure 4 while 2
images with sunglasses and 2 images with scarf are used for the testing set as shown
in Figure 5.

Before the experiments, we should first decide suitable settings for the proposed
WMLRC-TH method. For module designs, the images are divided into 16 modules,
i.e., M = 16. For the WMLRC-RP, we choose α, ε, and γ to be fixed to 2, 0.3, 0.7,
respectively. The number of bins in texture histogram is D = 64 for WMLRC-TH.
For the MLRC, we further modify the min-min criterion stated in Eq. (12) to
become min-min 4 criterion, the MLRC-4, which is the sum of distances of the best
4 modules as

i ∗MLRC‐4 ¼ argmin
i

X4
m ∗¼1

min
m

dmi

 !
, (27)

By using original AR database, Table 1 shows the comparison results with those
normal face algorithms while Table 2 exhibits the reported results from the recent
robust face recognition methods. From Table 1, the results show that the proposed
WMLRC-TH methods achieved with over 95% accuracy outperforms the other
methods. The LDA with SVM method [23] achieves 91.5% recognition rate, the SRC
with SDL method [24], the recognition rate for sunglasses plus scarf face images, the
recognition rate achieves up to 92%. The topology preserving structure matching
(TPSM) [27] achieve 91.7%. recognition accuracy. From Table 2, the proposed
WMLRC-TH outperforms the WMLRC-RP [20], the LDA-SVM [23], SRC-SDL [24]
and TPSM [27] methods for recognizing occlusion face images on AR database.

To further analyze the detailed performances of the algorithms with different
conditions of occlusions. The synthesized occlusions with various occlusion levels
overlapped to the normal faces are shown in Figures 6–9. We still keep all the face

AR Face Database
Training Set

Figure 4.
Normal faces as the training set on AR database.

Figure 5.
Sunglasses and scarf occluded faces on AR database.
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recognition algorithms with same settings, it is noted the synthesized occlusion
images are used for the testing results.

Tables 3–6 show the recognition performances of all the face recognition
methods for all synthesized occlusion cases, where WMLRC-TH1 and WMLPRC-
TH3 denote the WMLRC-TH preformed with gray (K = 1) and RGB color (K = 3)
images, respectively. The experimental results show that the proposedWMLRC-TH
with gray and color images outperform the other methods, which can achieve over

Situations Methods

PCA LDA LPP NPE LRC MLRC

Sunglasses 34.5 28.0 16.5 49.0 64.0 88.0

Scarf 5.0 18.0 12.5 9.0 23.0 45.0

Average 19.75 23.0 14.5 29.0 43.5 65.0

Situations Methods

MLRC- 4 SRC [12] WMLRC-RP [20] WMLRC-TH (K = 1) WMLRC-TH (K = 3)

Sunglasses 72.0 93.0 89.0 95.0 97.5

Scarf 92.0 52.0 87.5 96.0 97.0

Average 82.0 72.5 88.25 95.5 97.25

Table 1.
Recognition performances (%) achieved by different methods for sunglasses and scarf images on AR database.

Robust Recognition
Methods

WMLRC-RP
[20]

LDA-SVM
[23]

SRC-SDL
[24]

TSPM
[27]

WMLRC-TH
(K = 3)

Average Recognition
Rates

86.0 91.5 92.0 91.7 97.25

Table 2.
Recognition performances (%) achieved by the recently-proposed robust face recognition algorithms on AR
database.

10%           20%  30%         40%          50%  

Figure 6.
Added colored occlusion with occlusion ratios on AR database.

10%            20% 30%      40%          50%

Figure 7.
Black partial occlusion with various occlusion ratios on AR database.
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95% of accuracy. The MLRC and MLRC-4 performed badly in dark occlusion
because low pixel value produces low prediction error, which leads to error recog-
nition. All results show that the proposed WMLRC-TH methods achieve the best
recognition performances. The WMLRC-TH had a few benefit from RGB color
information since the WMLRC-TH (K = 3) exhibits better recognition performance
than WMLRC-TH (K = 1).

4.2 Experiments on FRGC 2.0 database

The second experiments are to test all the methods on the FRGC2.0 database
[33, 36] under gray texture blocks, dark, white, and texture occlusions overlapped

(a) (b) (c) (d) (e)

Figure 9.
Different occlusion (a) - (e) color wall patterns with 50% occlusion ratio on AR database.

Methods Occlusion ratio

10% 20% 30% 40% 50% Average

PCA [6] 31.0 16.0 7.0 5.0 3.0 12.4

LDA [7] 40.0 27.0 12.0 11.0 6.0 19.2

LPP 14.0 9.0 5.0 3.0 3.0 6.8

NPE 30.0 20.0 12.0 9.0 7.0 15.6

LRC [8] 50.0 33.0 23.0 11.0 6.0 24.6

SRC [12] 84.0 70.0 70.0 68.0 40.0 66.4

MLRC [8] 87.0 87.0 1.0 1.0 1.0 35.4

MLRC-4 98.0 98.0 1.0 1.0 1.0 39.8

WMLRC-RP [20] 88.0 88.0 88.0 81.0 81.0 85.2

WMLRC-TH (k = 1) 98.0 98.0 98.0 98.0 96.0 97.6

WMLRC-TH (k = 3) 98.0 98.0 98.0 98.0 98.0 98.0

Table 3.
Recognition performances (%) of different methods with varying occlusion ratios of dark partial occlusion on
AR database.

10%          20%            30% 40%           50%

Figure 8.
White partial occlusion with various occlusion ratios on AR database.
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onto normal faces. The FRGC2.0 database consists of more than 4000 people’s
front-view grayscale images including non-facial expressions and slightly facial
variations. We choose a subset of 100 subjects with 50 men and 50 women. In each
subject, two non-facial expression images are used for the training set as shown in
Figure 10. In additions, the synthesized occlusions with various occlusion levels
overlapped to normal faces as shown in Figures 11–14 are also used for the testing.
As to the experiment settings, the facial images are also normalized to 40 � 40
pixels and divided into 16 modules.

Tables 7–10 illustrate the recognition performances of all the methods in all test
cases. On FRGC 2.0 database, the proposed WMLRC-TH methods also achieve

Methods Occlusion ratio

10% 20% 30% 40% 50% Average

PCA 13.0 9.0 8.0 7.0 2.0 7.2

LDA 23.0 6.0 4.0 8.0 6.0 9.4

LPP 10.0 10.0 5.0 4.0 4.0 6.6

NPE 13.0 6.0 7.0 5.0 5.0 7.2

LRC 28.0 15.0 12.0 12.0 9.0 15.2

SRC 86.0 86.0 70.0 68.0 39.0 83.6

MLRC 87.0 87.0 82.0 82.0 81.0 83.8

MLRC-4 95.0 95.0 95.0 95.0 95.0 95.0

WMLRC-RP 89.0 89.0 84.0 84.0 78.0 84.8

WMLRC-TH (k = 1) 98.0 98.0 95.0 95.0 95.0 96.2

WMLRC-TH (k = 3) 98.0 98.0 95.0 96.0 96.0 97.2

Table 5.
Recognition performances (%) of different methods with varying levels of white partial occlusion on AR
database.

Methods Occlusion ratio

10% 20% 30% 40% 50% Average

PCA 53.0 63.0 61.0 32.0 52.0 52.2

LDA 42.0 67.0 67.0 17.0 20.0 42.6

LPP 21.0 39.0 31.0 11.0 16.0 23.6

NPE 49.0 68.0 61.0 30.0 43.0 50.2

LRC 86.0 53.0 30.0 12.0 6.0 37.4

SRC 96.0 93.0 76.0 68.0 39.0 74.4

MLRC 97.0 97.0 89.0 79.0 39.0 79.4

MLRC-4 97.0 96.0 94.0 70.0 61.0 83.6

WMLRC-RP 91.0 88.0 84.0 81.0 43.0 77.4

WMLRC-TH (k = 1) 98.0 98.0 93.0 85.0 61.0 87.0

WMLRC-TH (k = 3) 98.0 98.0 95.0 86.0 70.0 89.4

Table 4.
Recognition performances (%) of different methods with varying occlusion ratios of colored block occlusion on
AR database.
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better performances than other approaches. From Table 8, the MLRC and MLRC-4
performed badly in dark occlusion also. In most cases, the WMLRC-TH performs
better than WMLRC-RP. In flat and bright occlusions, as shown in Table 9, the
WMLRC-RP carries out the better performance than WMLRC-TH. Since the

Methods Occlusion texture

A B C D E Average

PCA 20.0 10.0 22.0 12.0 16.0 16.0

LDA 18.0 15.0 19.0 11.0 16.0 15.8

LPP 3.0 4.0 7.0 3.0 4.0 4.2

NPE 17.0 11.0 19.0 13.0 16.0 15.2

LRC 33.0 19.0 34.0 25.0 22.0 26.6

SRC 45.0 40.0 39.0 55.0 39.0 43.6

MLRC 82.0 82.0 82.0 82.0 82.0 82.0

MLRC-4 95.0 95.0 95.0 95.0 95.0 95.0

WMLRC-RP 86.0 86.0 87.0 84.0 85.0 85.6

WMLRC-TH (k = 1) 96.0 94.0 94.0 95.0 95.0 95.4

WMLRC-TH (k = 3) 96.0 94.0 96.0 97.0 95.0 95.6

Table 6.
Recognition performances (%) of different methods with different occlusion textures of 50% occlusion on AR
database.

FRGC 2.0  Face Database
Training Set

Figure 10.
Normal faces as the raining set on FRGC2.0 database.

10%          20%          30%           40%         50%

Figure 11.
Added texture block with various occlusion ratios on FRGC 2.0 database.

10%              20%         30%           40% 50%

Figure 12.
Dark partial occlusion with various occlusion ratios on FRGC 2.0 database.
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sunglasses are the most common situation in daily life, WMLRC-RP is still useful in
real applications in the cases of dark occlusions.

From above experiments, the proposed WMLRC-HT method achieves best
accurate recognition rate. For the cases of light color occlusions, the WMLRC-RP
performs better than the WMLRC-HT. For the other cases, the WMLRC-HT
achieves the best recognition performances. The simulations show that the texture
histogram feature can be used to detect occluded modules effectively. Besides, we
observe that the MLRC-TH in RGB space domain performs better than that in
grayscale domain because the grayscale images would waste the useful colored
information.

4.3 Android based system implementation

Recently, Android-based operating system successfully supports smartphones
and tablets because of its computing ability, storage capacity and its handy

Methods Occlusion ratio

10% 20% 30% 40% 50% Avg

PCA 99.0 95.0 86.0 61.0 37.0 75.6

LDA 99.0 97.0 81.0 62.0 40.0 75.8

LPP 85.0 64.0 39.0 31.0 14.0 46.6

NPE 98.0 94.0 91.0 76.0 61.0 84.0

LRC 70.0 65.0 52.0 32.0 12.0 46.2

SRC 98.0 92.0 80.0 69.0 42.0 76.2

MLRC 96.0 96.0 97.0 94.0 82.0 93.0

MLRC-4 97.0 96.0 96.0 96.0 89.0 94.8

WMLRC-RP 96.0 90.0 85.0 85.0 82.0 87.6

WMLRC-TH (k = 1) 99.0 98.0 97.0 97.0 92.0 96.6

Table 7.
Recognition performances (%) of different methods with varying occlusion ratios of random block occlusion on
FRGC 2.0 database.

10%            20% 30%            40% 50%

Figure 13.
White partial occlusion with various occlusion ratios on FRGC 2.0 database.

(a) (b) (c) (d) (e)

Figure 14.
Different occlusion (a) - (e) gray wall patterns with 50% occlusion on FRGC 2.0 database.
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functions for image capture and image processing. Thus, we realize the proposed
WMLRC-TH method on Android system to a robust face recognition system on
mobile devices since it has more robust performance in general situations, especially
in color image.

In general, the face recognition system can be divided into training phase and
the testing phases. As shown in Figure 15, the user needs to select the training phase
first after capturing face images of a new identity. The user will be asked to enter
the name of the identity then the system will store face images with the name in
database. In the test phase, the user can capture face image and then identify it. The
testing phase basically consists of three steps. Figure 16 shows the flow chart of
testing phase. The first step is the face detection, which rapidly captures human
faces when the human is located within a proper distance by the mobile phone
camera. The second step is the pre-processing stage that is removing the noisy

Methods Occlusion ratio

10% 20% 30% 40% 50% Avg

PCA 21.0 7.0 6.0 4.0 2.0 8.0

LDA 36.0 23.0 9.0 8.0 5.0 16.2

LPP 14.0 5.0 2.0 2.0 1.0 4.8

NPE 20.0 15.0 10.0 7.0 4.0 9.8

LRC 25.0 16.0 9.0 4.0 3.0 11.4

SRC 88.0 81.0 46.0 32.0 29.0 55.2

MLRC 97.0 97.0 93.0 93.0 93.0 94.6

MLRC-4 97.0 97.0 97.0 97.0 97.0 97.0

WMLRC-RP 100 100 100 100 100 100.0

WMLRC-TH (k = 1) 98.0 98.0 96.0 97.0 96.0 97.0

Table 9.
Recognition performances (%) of different methods with varying occlusion ratios of white partial occlusion on
FRGC 2.0 database.

Methods Occlusion ratio

10% 20% 30% 40% 50% Avg

PCA 63.0 18.0 5.0 4.0 3.0 18.6

LDA 82.0 19.0 22.0 6.0 4.0 26.6

LPP 35.0 32.0 24.0 12.0 6.0 21.8

NPE 40.0 21.0 18.0 9.0 1.0 17.8

LRC 49.0 25.0 14.0 2.0 1.0 18.2

SRC 88.0 86.0 70.0 68.0 41.0 70.6

MLRC 97.0 97.0 1.0 1.0 1.0 39.4

MLRC-4 98.0 98.0 1.0 1.0 1.0 39.8

WMLRC-RP 96.0 96.0 95.0 95.0 95.0 95.4

WMLRC-TH (k = 1) 98.0 98.0 97.0 97.0 97.0 97.4

Table 8.
Recognition performances (%) of different methods with varying occlusion ratios of dark occlusion on FRGC
2.0 database.
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Methods Occlusion texture

A B C D E Avg

PCA 20.0 36.0 15.0 11.0 26.0 21.6

LDA 14.0 19.0 17.0 14.0 23.0 17.4

LPP 16.0 19.0 6.0 10.0 6.0 11.4

NPE 24.0 33.0 17.0 8.0 20.0 20.4

LRC 34.0 42.0 18.0 7.0 21.0 24.4

SRC 40.0 47.0 45.0 66.0 39.0 47.4

MLRC 93.0 93.0 93.0 93.0 93.0 93.0

MLRC-4 95.0 95.0 95.0 95.0 95.0 95.0

WMLRC-RP 91.0 93.0 92.0 88.0 92.0 91.2

WMLRC-TH (k = 1) 96.0 94.0 95.0 97.0 91.0 94.6

Table 10.
Recognition performances (%) of different methods with different occlusion texture of 50% occlusion on FRGC
2.0 database.

Pre-
Processing

Face CollectionTraining Phase

Testing Phase

Gallery

User

WMLRC -TH

Result

G ll

Pre-
Processing

Figure 15.
Proposed android face recognition system.

Camera Frame Input / RGB Image

Face Detection LBP Cascades 

Preprocessing
Gray-scale Transform

Cropped Face Image

Proposed WMLRC-THFace Recognition

Image Resize

Form Column Vector

ge

Face 
Recognized

Elliptical Mask

Figure 16.
Flow chart of testing phase in Andorid phones.
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pixels like background and human hairs of the face images. The third step is face
recognition that is recognizing the face according to the face database collected
before.

Considering the computation resources of mobile phones, we surveyed several
face detection methods [37–41]. By trade-off between accuracy and computation,
we finally selected the LBP-feature [37] for face detector, where the LBP operator is
given as:

LBP xc, yc
� � ¼

XP�1

p¼0

2ps ip � ic
� �

, s xð Þ ¼ 1, x≥0

0, x<0

�
(28)

where ic is the intensity of (xc, yc), at the central pixel in the local image, ip is the
intensity of neighbor pixel. P is the total number of neighbor pixels. After face
detection, the pre-processing stage, including cropping, gray transform, elliptical
mask, and resizing. It is noted that the face detection and pre-processing should be
identically performed in both training and testing phases. Finally, the face image
vector is then classified by the proposed WMLRC-HT algorithm. Figure 17 shows
the user interfaces of face registration and face recognition of the proposed system.

The proposed Android face recognition system is mainly developed on OpenCV
SDK and Android NDK (Native Development Kit). Android NDK is used to over-
come the limitations of Java, such as memory management and performance, by
programming directly into Android native interface to support native development
in C/C++.

5. Conclusion

In this chapter, we first review the linear regression classification algorithm as
the base of face recognition. If we divide the face region into several subfaces, called
modules, any face recognition algorithm will become a new module face recogni-
tion algorithm, which can avoid the serious degradation of recognition performance
to solve the occlusion problem. We proposed the texture histogram difference of
the module to detect the its occlusion tendency of the input face image. The concept
of the texture histogram difference can be used for any face recognition algorithms
if they adopt the module design. By using texture histogram (HT) concept, the
weighted module linear regression classification (WMLRC-HT) method for
partially-occluded face recognition is finally proposed. The proposed WMLRC-HT
method with adaptive HT weights can effectively improve the shortcoming of the
original LRC and MLRC algorithms. The experimental results show that the pro-
posed WMLRC-HT method performs better than the existing linear regression
classification methods and the contemporary approaches like SRC with various

(a) (b) 

Figure 17.
User interfaces for registration and face recognition. (a) Registration and setup database (b) recognition and
show name.
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occluded situations. Since theWMLRC-HTmethod acquires small computation cost
in both training and testing, after the face detector with LBP-features, we imple-
ment the proposed method on smart phones. Even the people wear masks, we can
easily train and successfully detect the identify only with a smart phone.
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Chapter 6

Diffuse Optical Tomography
System in Soft Tissue Tumor
Detection
Umamaheswari Kumarasamy, G.V. Shrichandran
and A. Vedanth Srivatson

Abstract

Topical review of recent trends in Modeling and Regularization methods of
Diffuse Optical Tomography (DOT) system promotes the optimization of the for-
ward and inverse modeling methods which provides a 3D cauterization at a faster
rate of 40frames/second with the help of a laser torch as a hand-held device.
Analytical, Numerical and Statistical methods are reviewed for forward and inverse
models in an optical imaging modality. The advancement in computational methods
is discussed for forward and inverse models along with Optimization techniques
using Artificial Neural Networks (ANN), Genetic Algorithm (GA) and Artificial
Neuro Fuzzy Inference System (ANFIS). The studies carried on optimization tech-
niques offers better spatial resolution which improves quality and quantity of opti-
cal images used for morphological tissues comparable to breast and brain in Near
Infrared (NIR) light. Forward problem is based on the location of sources and
detectors solved statistically by Monte Carlo simulations. Inverse problem or close-
ness in optical image reconstruction is moderated by different regularization tech-
niques to improve the spatial and temporal resolution. Compared to conventional
methods the ANFIS structure of optimization for forward and inverse modeling
provides early detection of Malignant and Benign tumor thus saves the patient from
the mortality of the disease. The ANFIS technique integrated with hardware pro-
vides the dynamic 3D image acquisition with the help of NIR light at a rapid rate.
Thereby the DOT system is used to continuously monitor the Oxy and
Deoxyhemoglobin changes on the tissue oncology.

Keywords: Diffuse Optical Tomography (DOT), Near Infrared (NIR),
Forward model, Inverse model, Regularization, Artificial Neural Networks (ANN),
Genetic Algorithm (GA) and Artificial Neuro Fuzzy Inference System (ANFIS)

1. Introduction

A recent survey was taken in the UK, reported 4,884 deaths from a brain tumor
and about 11,633 deaths from breast cancer. The tumor detection is complicated and
earlier detection leads to better chances of effective treatment, thereby increasing
the survival rate. In the last decade, the concept of imaging has raised by the
discovery of the X- ray radiography technique. The imaging techniques are highly
meant for diagnostic applications in medical field. Different parts of a body have
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different range of absorption level hence the penetration of propagating light pho-
ton level varies for each and every organ, whereas this is the major concept consid-
ered for imaging. The imaging trend started with the X- ray radiography [1], it
provides a one-dimensional image of the bony structures in a photographic film
which could give the visualization of bony defects and the soft tissue tracks are
identified only after the administration of contrast agents or dyes. The advanced
version of the X- ray radiography is the Digital Radiography system which also
provides a single plane image and it has the additional features such as data collec-
tion system, processing, display and storage system. Here the data obtained can be
stored in a memory for future use. The limitation is even after the dye usage only
the large variations in soft tissues can be identified.

In X - ray computed tomography the imaging of the organ is done in various
angles and the reconstruction is demonstrated mathematically over the computer
and displayed on the monitor. For the soft tissue examination, the dye fluids are
pumped into the ventricles for providing the variation or contrast in the image.
Here the noise increases inherently over the square root of the dose as the dose must
be increased to preserve the same amount of noise. Therefore, over dosage leads to
the side effects such as skin allergy, then came the existence the nuclear imaging.

Nuclear Medical Imaging (NMI) [1] systems utilize the radioisotopes for
imaging. The small amount of radioactive chemicals is injected into the arm vein
or inhaled through, and then the amount of radioactivity of the organ is examined
using the radiation detectors. NMI includes Emission Computed Tomography
which displays the single plane slice of the object with radioactivity, insisting
same as.

X - ray computed tomography. In Single Positron Emission Tomography,
gamma camera is used to create a three-dimensional representation of the radioiso-
tope injected organ. Positron Emission Tomography (PET) imaging provides the
cross- sectional images of positron emitting isotopes, which demonstrate the bio-
logical function and even physiological and pathological characteristics. The
injected radioisotope may create allergic reactions and it takes hours to get clear
from the blood and it’s a time-consuming process.

Magnetic Resonance Imaging (MRI) uses a magnetic field and high radio fre-
quency signals to obtain anatomical information about the human body as cross-
sectional images. The imaging technique needs the subject to be still while imaging,
when there occurs a move and it blurs the output image. Radiations utilized here are
highly ionized which causes harm and it is a tremendous time consuming and cost
inefficient process for early tumor detection. The Ultrasonic imaging system is used
for obtaining images of an almost entire range of internal organs in the abdomen.
While it is completely reflected at boundaries with gas and there is a serious
restriction in investigation of and through gas containing structures. The ultrasonic
waves could not penetrate the bony structures hence imaging the brain is
impossible.

Diffuse Optical Tomography (DOT) [2, 3] employs near infra-red light of range
700-1000 nm [4] which is non-invasive and non-ionizing radiation, therefore
causes no harm or side effects. It has its main application of imaging the soft tissue
organs such as the brain and breast for diagnosing tumor using the biological
parameters [5, 6] such as oxygenation etc. The brain and breast tumor or lesion can
be detected by examining the oxygenated, deoxygenated hemoglobin, water and
lipids (proteins). DOT imaging [7] provides a number of advantages, such as
reduced size setup in turn lead to portability, real-time imaging, low instrumental
cost and less time consumption when compared to the other imaging techniques but
is generally known to have a low image resolution which limits its further clinical
application. Table 1: Compares Biomedical Imaging Modalities- Diffuse optical
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tomography evaluated with Computer Tomography (CT), Magnetic Resonance
Imaging (MRI), and Positron Emission Tomography (PET). The parameters namely
cost, imaging time, size, sensitivity and specificity are compared.

The main absorbers of near-infrared (NIR) light in blood-perfused tissues are
Oxy-hemoglobin, deoxyhemoglobin, Lipids (Bulk proteins) and water. NIR Spec-
tral Window absorption spectra are between 650 and 1000 NM are shown in
Figure 1 is obtained from compiled absorption data for water [8] and hemoglobin
[9]. Hence, light in this spectral window penetrates deeply into tissues, thus
allowing for non-invasive investigations. The NIR light penetration depth into
tissues is limited, by the hemoglobin absorption at shorter wavelengths and by the
water absorption at longer wavelengths.

Different systems in DOT are Continuous Wave (CW) imaging [6], Time
Domain (TD) and Frequency Domain (FD). Continuous imaging is the study of
hemodynamic and oxygenation changes in superficial tissues. It requires a source of
constant intensity modulated at low frequency. Measuring the intensity of light
transmitted between two points on the surface of the tissue is economical. Opti-
mum sensitivity is achieved by a number of distinct sources and detectors. Intensity
measurements are sensitive and are unable to distinguish between the absorption

Parameters DOT CT MRI PET

Cost $150,000 $300,000 $1,000,000 $1,446,546

Imaging Time 15–20 mins 45–60 mins 45–70 mins 75–90 mins

Size 60 x 45 cm 50 x 50 cm 4x4m 25x36x17cm

Sensitivity 50% 90% 91% 93%

Specificity 100% 56% 71% 70%

Table 1.
Comparison of biomedical imaging modalities.

Figure 1.
Absorption spectra of deoxy-hemoglobin (Hb), oxy-hemoglobin (HbO2), lipids and water.
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and scattering effects. Time Domain (TD) system uses photon counting detectors,
slow but highly sensitive. The temporal distribution of photons is produced in short
duration. Short pulses of light are transmitted through a highly scattering medium
known as a Temporal Point Spread Function (TPSF). Frequency Domain (FD) [9]
system is relatively inexpensive, easy to develop and provides fast temporal sam-
pling up to 50HZ.The system acquires quick measurements regarding the amplitude
and phase of scattering and absorption in the frequency domain at high detected
intensities.

2. Methods

2.1 Forward model

The NIR light propagates within the biological tissue in a turbid medium [5].
Light particles scatters with cell particles and the medium either absorbs or scatter
the light. The positions and orientations of scatters are described by mesoscopic and
macroscopic. In mesoscopic the particles in turbid media of dense concentration
and light transport are modeled by Radiative Transport Equation (RTE) [3]. In
macroscopic photon transport on mean free path, diffusion approximation holds
good for turbid media. Therefore, the isotropic scattering effect and light transport
within the tissues is described by the diffusion Equation.

2.1.1 Radiative transport equation

Light transport in tissues derived using RTE, assumes the energy particles do not
change in collisions hence refractive index is constant with the medium [8]. RTE is
used to describe anisotropic field and the photon propagation in tissue, is given by

ŝ:∇I r,ω, ŝð Þ þ μa þ μs þ
iω
c

� �
I r,ω, ŝð Þ ¼ μs

ð
f ŝ, ŝ0ð ÞI r,ω, ŝð Þd2ŝ0 þ q r,ω, ŝð Þ (1)

I(r, ω, ŝ) is radiance with modulation frequency ω at point r, in the direction ŝ.
μa, μs are absorption and scattering coefficients respectively and c is the speed of
light. The scattering phase function.

f (ŝ, ŝ0Þ is used to characterize the intensity of a beam, that is scattered from the
direction ŝ0 into the direction ŝ. The scattering phase function commonly used
Henyey - Greenstein scattering function.

f cos θð Þ ¼ 1
4π

1� g2

1þ g2 � 2gcosθð Þ3=2
" #

(2)

where θ is the angle between the two directions ŝ and ŝ’, and g is the anisotropy
factor which is used to characterize the angular distribution of tissue scattering.

The fluence at point r modulation frequency ω and in the direction ŝ is
defined by

φ r,ωð Þ ¼
ð

4π
I r,ω, ŝÞð (3)

The Monte Carlo Method is used to solve the radiative transfer Equation.
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2.1.2 Diffusion approximation

The directional flux magnitude is less compared to isotropic fluence magnitude
within the tissue. The light field ‘diffuses’ means the scattering interaction
dominates over absorption. The diffusion equation [10] approximation is given as

�∇K rð Þ∇φ r,ωð Þ þ μa rð Þ þ iω
c rð Þ

� �
φ r,ωð Þ ¼ q0 r,ωð Þ (4)

μa rð Þ absorption coefficient, q0 r,ωð Þ is isotropic source, Φ(r, ωÞ is photon
influence rate with modulation frequency ω at position r. The velocity of light in
medium c(r) at any point r is defined as c0=n rð Þ where c0 is the speed of light in
vacuum, n(r) is the index of refraction.

Diffusion coefficient is described as

K rð Þ ¼ 1
3 μa rð Þ þ μ0s rð Þ� � (5)

Where the reduced scattering coefficient is μs0 rð Þ ¼ μs rð Þ 1� g rð Þ½ �, g(r) is
anisotropy factor. The refractive index mismatch at the tissue boundary is eluded
by applying Robin boundary condition (type III). Eq. (5) solved using Finite
Element Method (FEM) which provides stable solution [11].

3. Modeling techniques

3.1 Analytical model

Analytical model has fast computation and the Green’s function is applied for
modeling the diffusion equation or RTE analysis. The Green’s function provides a
solution when the source is a spatial and temporal function. It is commonly used to
solve the forward problem for image reconstruction, specifically for fast imaging
techniques. Optical properties are modeled by a green’s function [3] for a slab
representing the homogeneous background; with an additional perturbation term
represent the spherical insertion.

3.2 Statistical model

Models the individual photon with Poisson error incorporated in the model.
Monte Carlo method is a gold standard statistical technique in diffuse optics. The
geometry of the model is defined by μa, μs, the refractive index and the photon
trajectories. Light propagation in non- diffusive domains is calculated by Monte
Carlo techniques. Random walk theory provides a distinct approach in which pho-
ton transport is modeled as a series of steps on the discrete cubic lattice. Random
walk theory [9] is particularly suited to model time-domain measurements. The
random walk extension technique has been developed for modeling media with
anisotropic optical properties, maintaining the cubic lattice.

3.3 Numerical model

Numerical techniques have the potential for modeling complex geometries.
Finite Element Method (FEM) [8] is used to represent the inhomogeneous distri-
bution [12] of optical properties in an arbitrary geometry. Boundary Element
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Method (BEM) [3], Finite Difference Method (FDM) and Finite Volume Method
(FVM) are applied in more specialized applications. Finite Element Method divides
the reconstruction domain into finite element meshes. The optimal computational
efficiency of FEM depends on the smallest number of elements to represent the
internal field by a finite element mesh. Adaptively refine the mesh by placing more
elements when the field changes rapidly.

4. Regularization

The ill-condition inverse problem [5] in image reconstruction provides poor
localization of imaging in localized or sparse regions. To overcome the ill posed
problem in inverse model, regularization is applied in inverse model. The various
forms of regularization are standard/Tikhonov regularization, exponential/spatial
regularization, generalized least mean square regularization, adaptive regularization
and model-based regularization [8, 11, 13–15].

4.1 Standard regularization

Standard regularization [16] or constant regularization is of Tikhonov type. Here
the regularization is based on the already available information that may be the
noise characteristics [11] or structural information [17] of the data, more prior
information [13] usage leads to a better outcome of reconstruction procedure or
robustness to the noise in the data.

P μað Þ ¼ λT μak k2 (6)

λ is a regularization parameter (i.e.) constant chosen to stabilize the solution and
its value varies from 1e-6 to 10.

λT ¼ σy
� �2

= σμ�μ0

� �2 (7)

The ill posed problem with inverse model is solved by adding the penalty term to
the objective function.

Ω ¼ y� G μað Þk k2 þ P μað Þ (8)

y = ln (A) is the measured experimental data here A specifies the amplitude, G
(μa) modeled data and penalty term is P(μa) removes the high frequency compo-
nents. Iteratively linearization minimizes “Ω” by ∂Ω

∂μa ¼ 0: Using Taylor series of
expansion Tikhonov minimization is obtained by

Ω ¼ y� G μað Þk k2 þ λT L μa � μ0ð Þk k2 (9)

L is the dimensionless matrix and μ0 is prior estimate. The penalty term
minimization scheme along with linearization leads to the updated equation
(Gauss-Newton update equation)

JTJ þ λI
� �

∇μa ¼ J y�G μað Þð (10)

‘J’ is a Jacobian ∂G (μa) / ∂ (μa) gives the rate of change with modeled data with
respect to μa and I represent the Identity matrix. The diffuse optical tomography
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inverse problem sets a least square problem, which is solved by matching experi-
mentally measured boundary data with modeled data iteratively.

Linearization of the as in (7) leads to an updated equation.

JTJ � λLTL
� � ¼ JTδi�1 � λTLTL μi�1 � μ0ð Þ (11)

The δi�1 represents data misfit model and T for transpose operation. The resolu-
tion provided by as in (9) concentrates more on the detected position.

4.2 Adaptive regularization

In adaptive regularization [15] the regularization parameter λ varies with respect
to the projection error [18]. Projection error Φ is defined as the difference in
measured data in the modeled data which is expressed as in (12).

∇φ ¼ y�G μað Þj j2 (12)

The regularization parameter λ is denoted as

λ ¼ 1= 2þ e�Δφ
� �

(13)

The regularization parameter λ varies in the range from 1/3 to 1/2. As in (13) ‘e’
represents the exponential function and ΔΦ representing the change in projection
error. A penalty term for projection error-based regularization is expressed as

P μað Þ ¼ λ Δφð Þ μak k2 (14)

Linearization leads to an updated equation.

Δμ ¼ JT JJT þ λJJTI
� ��1

φ (15)

As in Eq. (15) Δμ represents the change in absorption coefficient. Projection
error determines the accuracy, while JJT is denoted as the Hessian matrix with
diagonal elements.

4.3 Exponential regularization

Exponential regularization is otherwise called as spatially varying regularization
[14] or wavelength chromophore specific regularization, which is based on the
physics of the problem. This simplicity makes it widely used for solving inverse
problems especially in the cases where the prior information is not available. λ(r) is
spatially varying regularization parameter, where r represents the position spatially.
The spatial variation is attained by an exponential function in the form

λ rð Þ ¼ λe exp r=Rð Þλc (16)

As in (16) the radius of imaging domain is R, λc, λe are the regularization
parameters at the edge and center of the location. The spatially varying regulariza-
tion has exponential term with low value at the center and large value near the
boundary of the imaging domain in-order to neutralize the hypersensitivity near the
boundary, which appears due to detectors located at the boundary. In order to
determine the regularization parameter λ(r), the generalized objective function is
given as,
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Ω ¼ y� G μð Þk k2 þ λ rð Þ L μ� μ0ð Þk k2 (17)

As in (17) L is a dimensionless regularization matrix and μ0 is the prior estimate
the of properties, while the penalty term for exponential regularization is
represented as

P μað Þ ¼ λ rð Þ μak k2 (18)

Linearizing (17) leads to a Jacobian updated equation as

JTJ � λ rð ÞLTL
� � ¼ JTδi�1 � λ rð ÞLTL μi�1 � μ0ð Þ (19)

Exponential Regularization captures the hessian matrix diagonal as JTJ.

4.4 Model based regularization

Model based regularization utilizes the combination of model resolution matrix
[19] and data resolution matrix. The objective is to match the modeled data with the
observed data. By this method of regularization, the spatial resolution of the
reconstructed image is improved [18].

y ¼ G μað Þ (20)

Expanding using Taylor series gives the equation

y ¼ G μað Þ ¼ G μa0ð Þ þ G0 μað Þ μa � μa0ð Þ þ μa � μa0ð ÞTG} μað Þ μa � μa0ð Þ þ ::…

(21)

Jacobian matrix J = G0 (μa) and Hessian matrix H = G″ (μa).
Linearizing (21) then

y ¼ G μa0ð Þ þ J μa � μa0ð Þ (22)

using y - G (μa0) = δ and Δμa = μa- μa0 [20].

Updated equation δ ¼ JΔ~μa (23)

Change in absorption coefficient (Δμa) is derived as in (18) as

Δμa ¼ JTJ þ λI
� ��1

JTJΔ~μa (24)

In the case of λ = 0

Δμa ¼ Δ~μa (25)

Regularization term is linearized using the model resolution matrix, which
depends on the forward model and regularization but not on data. Because of the ill
posed nature of the problem as in (25) λ > 0, then

Δμa 6¼ Δ~μa (26)

As in Eq. (24) leads to a model resolution matrix.
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M ¼ JTJ þ λI
� ��1

JTJ (27)

As in (27) M has the dimension of NN x NN and it purely depends on JTJ and the
regularization term used. Linearization of as in (27) leads to an updated Jacobian
matrix. λ varies from 0 to 1.

JTJþ cλiI
� �

Δμa ¼ JT y� G μað Þ� �
(28)

The regularization parameter of a model resolution matrix is given as

λim ¼ Mii=max Miið Þ for i ¼ 1, 2, ………NN (29)

The model resolution matrix can be applied for deriving the linearization as in
(26) for both constant and spatially varying regularization parameters. The matrix
varies for constant and spatially varying regularization. The model resolution
matrix main aim is to provide the better resolution characteristics without
depending on data.

The data resolution matrix concentrates only on the data not on the image
characteristics [21]. It defines that how well the estimated Δμa fits the observed
data, hence it is important to consider data too in order to improve the resolution
characteristics.

JΔμa ¼ δ0 (30)

Data resolution matrix is derived using the Jacobian matrix (J) and the regular-
ization technique which is used for reconstruction. It is evaluated by matching the
predicted data with the obtained data [22].

δ0 ¼ y� G μa0ð Þ (31)

The data-resolution matrix does not depend on a specific data (y) or error in it
but are exclusively the properties of J and the regularization (λ) used. The closer it is
to the identity matrix, the smaller are the prediction errors for δ, where δ` as in (31)
representing the data misfit.

Data resolution matrix D is given as

D ¼ JTJ JJT þ λI
� ��1

(32)

Linearizing (31) leads to an updated equation

Δμi ¼ JT JJT þ λI
� ��1

δi�1 (33)

The regularization parameter of a data resolution matrix is given as

λid ¼ Dii=max Diið Þ for i ¼ 1, 2, ………NN (34)

As in (26) and as in (34) the regularization parameter of the model-based
regularization λi is given as

λi ¼ λim þ λidð Þ=2 (35)
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Penalty term for the regularization scheme is given as

P μað Þ ¼ cλi μak k2 (36)

Where c provides the weight for penalty term and it is a constant term.

5. Inverse model

Newton - Raphson iterative method to find the optical parameter μa, μs by
solving the minimum objective function.

ψ μð Þ ¼ φm � φcj j2 þ λ μ� μ0j j2 (37)

Φm and Φc are calculated and measured radiance at the detectors. λ is regulari-
zation parameter, μ, μ0 are current and initial estimates of optical properties at
each node.

The initial values of absorption and scattering properties were estimated
homogenously [23]. Update Φoptical distribution in Tikhonov Regularization is
given by Eq. (39).

μ ¼ JT JJT þ λHmaxI
� ��1

φm � φcð Þ (38)

Δμ Optical parameter update vector, Hmax maximum main diagonal element
value of the matrix JJT. J is Jacobian matrix for inverse problem plots the variation in
log amplitude and phase for both absorption and diffusion modification in every
node.

5.1 Jacobian reduction

Jacobian matrix J has the size as number of measurements NM by the number of
FEM nodes NN i.e. NM x NN is calculated using ad joint method. Limit the Jacobian
[23, 24] to the measured amplitude data and optical absorption. Jacobian links a
change in log amplitude, at the boundary with a change in absorption coefficient μa.

J ¼

∂ ln I1
∂μa1

⋯
∂ ln I1
∂μaNN

⋮ ⋱ ⋮

∂ ln INM

∂μa1
⋯

∂ ln I1
∂μaNN

2
66666664

3
77777775

(39)

The size of the Jacobian matrix is reduced by calculating the total sensitivity
throughout the imaging domain and a new Jacobian Ji~j is formed [25].

~Jij ¼
Jij if

PNM

i¼1
Jij ≥ threshold

0 if
PNM

i¼1
Jij < threshold

8>>>><
>>>>:

(40)
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‘j’ corresponds to a node number within the domain. Reduction of Jacobian
matrix improves the computational speed and efficiency of image reconstruction.

5.2 Bayesian framework

Ill posed condition of DOT problem, the solution is robust. To overcome this
problem a priori information is incorporated constraint in the space of unknowns.
Bayesian approach proposes an algorithm for spatial physiological prior [26]. High
resolution anatomical image is segmented into sub-images. Each image is assigned a
mean value with a prior probability density function of the image. ‘Confidence
level’ is defined in the form of an image variance formulation to allow local varia-
tions within sub-images. MAP (Maximum a posteriori) estimates of the image
[26, 27] is formed based on the formulation of the image’s probability density
function.

ŷMAP ¼ argmax log p y=xð Þ þ log p xð Þgf (41)

p(y/x) is log likelihood function; p(x) is a probability density function.
Alternating minimization algorithm sequentially updates the unknown parame-

ters, solves the optimization problem. Probability density function of the ith

sub-image is defined in the spatial prior as

p xi=σið Þ ¼ 1

2
Q

σ2i
� �Ni=2

exp
�1
2σ2i

Xi � Cij j2
� �

, i ¼ 1, 2:…M (42)

M is number of sub regions, Ni is number of voxels in the ith sub image, xi is the
unknown sub image, Ci is chromosphere mean concentration, σ2i is single variance.

The confidence level is incorporated into the statistical reconstruction proce-
dure, the sub-image variance.

p σið Þ ¼ 1

2
Q

γ2i
� �Ni=2

exp � 1
2γ2i

σi � σ j
�� ��2

� �
, i ¼ 1, 2, …M (43)

γi is the variance and σi0 is the mean value of σi:

6. Experimental set-up

The practical setup of image acquisition as shown in Figure 2 includes optical
components, electrical components, control, data acquisition and image recon-
struction [28].

The optical Multiplexer has three parts namely the motor, drive and Black box
(PMT) Photon multiplier tube. Driver rotates the optical multiplexer to guide the
energy to PMT, which converts light to electrical signals. The signal is amplified by
an Amplifier and preprocessed electrical signals are given to Data acquisition card.
Data acquisition software samples the raw data, post process and controls the
hardware. The personal computer delivers commands to alter the fiber switch
(source channel) sequentially. 16 X 16 input and output fibers constitutes to 256
sources – detector pairs. Image is reconstructed using inverse modeling such as
Jacobian reduction with FEM.

The optical Multiplexer has three parts namely the motor, drive and Black box
(PMT) Photon multiplier tube. Driver rotates the optical multiplexer to guide the
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energy to PMT, which converts light to electrical signals. The signal is amplified by
an Amplifier and preprocessed electrical signals are given to Data acquisition card.
Data acquisition software samples the raw data, post process and controls the
hardware. The personal computer delivers commands to alter the fiber switch
(source channel) sequentially. 16 X 16 input and output fibers constitutes to 256
sources – detector pairs. Image is reconstructed using inverse modeling such as
Jacobian reduction with FEM.

7. Optimization techniques

7.1 Artificial neural networks

Artificial Neural Network (ANN) is data structure accurately approximates a
nonlinear relationship between a set of input and output parameters. It maps the
input optical properties for spatial frequency domain in inverse modeling. Perform
Monte Carlo simulation and fit it to ANN to output the data. Neural Network is
trained to predict the tissue reflectance for strongly and weakly absorbing media.

The parallel Back propagation neural network distinguishes nonlinear relation-
ship between spatial location of tumors and light intensity around the boundary of
the tissue [29]. The neural network is trained for fast reconstruction in diffuse
optical tomography. Location and spacing of optical sources and detectors are

Figure 2.
The practical imaging system.
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optimized using neural network. To improve the resolution of DOT images in
inverse model Fixed Grid Wavelet Network [30] image segmentation is applied to
extract a smooth boundary in tumor images.

7.2 Genetic algorithm

Reconstruction of optical in homogeneities embedded in turbid medium using
diffuse optical tomography. The optimization problem is solved by using genetic
algorithm minimizing objective function [31, 32]. This approach is applied for full
non- linear range of quantitative reconstruction. Crosstalk near the source detector
artifacts are the major inaccuracies in diffuse optical tomography images [33]. This
problem can be solved by a global optimization method namely genetic algorithm
for estimating the optical parameters.

7.3 Adaptive neuro fuzzy interference system

Adaptive Neuro fuzzy Inference system can be used for optical imaging, solving
the non-linear ill posed problem with accurate qualitative and quantitative optical
image reconstruction. The proposed method using ANFIS architecture will provide
fast and accurate optical image reconstruction hence can achieve classification
accuracy, volume and the layer thickness measurement of tumor.

8. Simulation techniques

The simulation software for modeling diffuse optical tomography is CULA,
NIRFAST NETGEN and MIMICS. CULA is GPU Accelerated Linear Algebra which
has a parallel computing architecture to dramatically improve the computation
speed of sophisticated mathematics and also contains routines for systems solvers,
singular value decompositions and Eigen problems. For reconstruction in diffuse
optical tomography it facilitates singular value decomposition, matrix multiplica-
tion, matrix inversion etc.

NIRFAST is Near Infrared Fluorescence and Spectroscopy Tomography [33, 34]
which is an FEM based software package designed for modeling Near Infrared
Frequency domain [35] light transport in tissue.

NETGEN [36] is an automatic 3D tetrahedral mesh generator which accepts
input from Constructive Solid Geometry (CSG) or Boundary Representation (BR)
from the STL (Stereo Lithography) file format. It contains modules for mesh opti-
mization and hierarchical mesh refinement and it is also open-source software
available for Unix/Linux and Windows.

MIMICS is software specially developed for medical image processing. The ROI
(Region of Interest) is selected in the segmentation process which is converted to a
3D surface model using an adapted marching cubes algorithm that takes the partial
volume effect into account, leading to very accurate 3D model. The 3D files are
represented in the STL format.

9. Conclusion

The Diffuse Optical Tomography (DOT) imaging experimental setup has three
kinds of noise namely thermal noise, shot noise and relatively intensity noise. The
shot noise from dark current of photodetector has Poisson statistics, solved by using
Bayesian network in inverse problem. DOT has undetermined problem due less
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measured data in the forward model compared to the pixels reconstructed in
inverse model. The forward problem solved by FEM and regularization techniques
to improve the spatial resolution of DOT images. Diffuse Optical Tomography
(DOT) has significant advancement since it becomes faster, more robust, less sus-
ceptible to error, and able to acquire data at a number of wavelengths with more
source–detector combinations. Images reconstructed in 3D, uses more sophisticated
techniques, which can be adapted by incorporating prior information and by com-
pensating for some of the unavoidable sources of measurement error. DOT imaging
is still a laboratory-based technique, yet to progress to develop a handheld for
detection of tumor in morphological tissues in clinical applications. Qualitative and
quantitative accuracy has to be improved in DOT, both of which are limited by poor
spatial resolution. Improved image quality is achievable by adopting the optimiza-
tion techniques namely Artificial Neural Networks, Genetic Algorithm and Adap-
tive Neuro Fuzzy Inference System. Enhancement of DOT can also achieve higher
performance using multimodal imaging techniques. DOT is as a low-cost, portable
imaging system to be developed at the bedside. The best modeling and reconstruc-
tion methods provide an ideal DOT instrumentation.
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