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Preface

Nature evolves mainly in a statistical way. Different strategies, formulas, and conformations 
are continuously confronted in the natural processes. Some of them are selected and 
then the evolution continues with a new loop of confrontation for the next generation 
of phenomena and living beings. Failings are corrected without a previous program or 
design. The new options generated by different statistical and random scenarios lead 
to solutions for surviving the present conditions. This is the general panorama for all 
scrutiny levels of the life cycles. Over three parts, this book examines different statistical 
questions and techniques in the context of machine learning and clustering methods, 
the frailty models used in survival analysis, and other studies of statistics applied to 
diverse problems.

The first section of the book presents different techniques and methods applied to 
clustering and machine learning. In Chapter 1, Dai et al. propose a framework for a 
clustering procedure based on functional rankings or depth. In Chapter 2, Fernandes 
et al. discuss the reasons to use dummy variables in cluster analysis. In Chapter 3,  
Yue is concerned with sparse boosting-based machine learning methods in different 
high-dimensional problems. Chapter 4 by Kuroda presents how to accelerate the  
convergence of the EM algorithm and apply it to mixture model estimation.

The second section of the book addresses the question of frailty models usually applied 
to survival analysis. In Chapter 5, Zhong et al. propose a generalized shared frailty 
model and develop a survival function to model the dependency among the baseline 
survival functions. Chapter 6 by Pandey and Lalpawimawha introduces a new frailty 
model with exponential power and generalized Rayleigh as baseline distributions.

The last section of the book presents the use of computational statistics in different 
contexts and problems. In Chapter 7, Yildiz depicts the use of the network meta-analysis 
tool through an example from diabetes. In Chapter 8, Ghosh constructs an N-ary 
variance balance design by using different techniques. In Chapter 9, Kumar proposes an 
improved randomized response model for the simultaneous estimation of population 
means of two quantitative sensitive variables. In Chapter 10, Ünvan and Nahmatli 
examine the causal relationship between imports, exports, and Exim bank loans in the 
Turkish economy.

As the editor of this book, I would like to thank all the contributing authors and 
reviewers. I am also grateful to the staff at IntechOpen, particularly Author Service 
Manager Ms. Romina Rovan. At this time when the omicron variant of the coronavirus 
continues to plague the world, I want to dedicate this book to all the teachers I had in 
the CP El Castelar of Villafranca and the IES Marqués de Villena of Marcilla. Finally, 
I acknowledge the support of my family, friends, and advisors.

Ricardo López-Ruiz
University of Zaragoza,

Spain
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Chapter 1

A New Functional Clustering
Method with Combined
Dissimilarity Sources and
Graphical Interpretation
Wenlin Dai, Stavros Athanasiadis and Tomáš Mrkvička

Abstract

Clustering is an essential task in functional data analysis. In this study, we
propose a framework for a clustering procedure based on functional rankings or
depth. Our methods naturally combine various types of between-cluster variation
equally, which caters to various discriminative sources of functional data; for
example, they combine raw data with transformed data or various components of
multivariate functional data with their covariance. Our methods also enhance the
clustering results with a visualization tool that allows intrinsic graphical interpreta-
tion. Finally, our methods are model-free and nonparametric and hence are robust
to heavy-tailed distribution or potential outliers. The implementation and perfor-
mance of the proposed methods are illustrated with a simulation study and applied
to three real-world applications.

Keywords: depth, insurance, intrinsic graphical interpretation, robustness,
statistical rankings

1. Introduction

Cluster analysis is a critical step in exploratory data analysis intended to identify
homogeneous subgroups among observations. Cluster analysis is also widely used
for functional data in tasks such as the classification of electrocardiogram curves in
the diagnosis of cardiovascular ischemic diseases [1] and the extraction of repre-
sentative wind behavior [2, 3]. The various functional data clustering methods
described in the literature can generally be categorized into two subgroups:
distance-based methods and filtering-based methods.

The distance-based methods involve the construction of a distance matrix with a
specific metric; the clustering results may be derived with hierarchical or centroid-
based clustering tools [3, 4]. The filtering-based methods involve the approxima-
tion of the curves with linear combinations of finite basis functions, such as splines
and functional principal components, and the cluster analysis is conducted based on
the coefficients or scores of finite dimensions [5–7]. The focus of this study is on
distance-based methods. In this paper, we propose a new family of clustering
algorithms based on the chosen functional ordering. The dissimilarity matrix is
constructed via the chosen functional ordering, which is applied to the set of
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differences of all pairs of the functional data under investigation. Various functional
ordering can be chosen, but we concentrate on orderings with intrinsic graphical
interpretation. But any ordering that treats the sources equally can be used, includ-
ing the modified band depth [8] and the simplicial band depth [9]. The choice of
functional ordering with intrinsic graphical interpretation allows us to show the
resulting clusters and a central region that attains a natural interpretation. I.e., All
functions contained in the central region do not leave the plot of the central region,
and all functions not contained in the central region leave the plot of the central
region in at least one point. It has to be mentioned that the classical functional
orderings mentioned above do not satisfy this natural condition, and therefore we
will concentrate on functional orderings defined in [10].

Functional data differ in various ways, such as in magnitude, shape, phase, and
dependence structure, and hence they are difficult to analyze when clusters exist
from multiple perspectives. The existing methods either focus on a single type of
variation or pool the various sources of variation with weightings that rely on a
delicate selection procedure. Without balancing, the clustering results could be
dominated by the component with the greatest absolute variation. In order to
achieve some balancing between the various sources, it is possible to standardize the
curves before applying existing methods, such as k-means or model-based methods.
By “standardization”, we mean that the marginal empirical distributions are stan-
dardized so that they have zero mean and unit variance. This approach is used in the
simulation study in order to compare the performance of existing methods with the
proposed methods.

Since the proposed procedure applies functional ordering, such that every part of
the function is treated equally, the different sources of variation are combined in an
equal manner. For univariate cases, it may combine the raw curves and the deriva-
tives equally to measure the magnitude and shape variation simultaneously. For
multivariate cases, it may combine the marginal curves and the covariance functions
equally to account for both marginal and joint variation among curves. Furthermore,
the proposed method provides a reasonable graphical interpretation of the clustering
result. Finally, it inherits the robustness of functional orderings and can stably
recover the clusters when abnormal observations contaminate the data.

The remainder of this paper is organized as follows. In Section 2, we define the
new proposed procedure with an arbitrary functional ordering. Further, we review
several functional orderings already defined in [10] which satisfy the intrinsic
graphical interpretation. Finally, we study the metric properties of derived dissim-
ilarity. In Section 3, we describe the simulation studies we conducted to assess the
performance of the proposed methods and compare them with some existing com-
petitors in cases where the combination of the various sources is of interest. In
Sections 4–6, we demonstrate the effectiveness of our method with three real-world
examples. The proposed methods will be available soon in the R package GET.

2. Description of methods

2.1 Dissimilarity matrix

Assume that the functions f i xð Þ, i ¼ 1, … , s are observed at a fixed set of points
x1, … , xd, so that the functions can be represented as d-dimensional vectors Ti, i ¼
1, … , s. If the functions of interest are not observed at the same set of points, a
nonparametric smoothing method can be applied to address the situation.

To induce dissimilarity measure from functional ordering, we construct the set
of functional differences:

4
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D f ¼ df ii0 ¼ f i xð Þ � f 0i xð Þ, i, i0 ¼ 1, … , s
� �

:

We remark here that df � 0 is an element of D f . We then apply a functional
ordering to D f and obtain the induced measure of centrality of df ii0 ¼ f i xð Þ � f 0i xð Þ
asMii0. Finally, the dissimilarity between f i xð Þ and f i0 xð Þ is defined as dii0 ¼ 1�Mii0,
and this forms the dissimilarity matrix of f i

� �s
i¼1. Such an ordering can take the

form of any functional depth notions or rankings in the literature, such as the band
depth and modified band depth [8], the simplicial band depth [9], the spatial
functional depth [11], or the curve depth [12]. These notions naturally give equal
treatment to the variations at each design point, compared with the norm-based
methods such as L1 or L2 distances.

After a dissimilarity matrix is established, the partitioning around medoids
procedure can be used to determine the given number of clusters. This produces a
family of clustering algorithms that depends on the choice of the functional
ordering.

In the following, we will discuss the possible choices of functional ordering.
First, we assume functional orderings, which take different sources of the data
variability equally. We call such ordering combined functional ordering. Such an
approach is useful when the investigator wants to join different information about
the data and combine them in one universal procedure. Second, we review several
functional orderings which satisfy the intrinsic graphical interpretation.

Our proposed procedure then consists of the following steps:

1.Choose the appropriate data sources (e.g., raw data, derivative and second
derivative)

2.Choose the functional ordering, which allows for intrinsic graphical
interpretation and which gives the same weight to every chosen source (e.g.,
the studentized maximum ordering, the area rank ordering).

3.Compute the dissimilarity matrix

4.Apply partitioning around medoids

5.Plot the resulted clusters together with their central region with intrinsic
graphical interpretation.

2.2 Combined functional ordering

We consider now functions Ti xð Þ, i ¼ 1, … , s0 and specify their combined
functional ordering. Various perspectives, such as different magnitudes and
different shapes of the functions, can be used to order the functions. Here we
provide a general method to combine these different perspectives in an equal
manner. As suggested by [13], data transformation is an effective method to
convert different types of variation into types that are easy to handle by the
functional depth. Hence, various transformations could be applied to the raw
functions to obtain the transformed data sets of interest, such as V1, … ,Vk. These
transformations are computed in the same fixed set of points x1, … , xd; for instance,
shifting each curve to zero means eliminates the magnitude variation, normalizing
the centered curves by their L2 norms, respectively, to extract pure shape informa-
tion. In the case of multivariate functional data, each component of the data and
their transformation could be treated similarly. Also, the covariance function
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between the components can be added to take into account the dependence
structure.

We denote with Vk Tij
� �

the resultant curves of Tij via the transformation Vk,
and we can express the long vector as:

Ti ¼ V1 Ti1ð Þ, … ,V1 Tidð Þ, … ,Vk Ti1ð Þ, … ,Vk Tidð Þð Þ, i ¼ 1, … , s0 (1)

We can then apply to them the corresponding ordering and hence construct the
dissimilarity matrix. Note that each of the orderings to be introduced considers each
element equally by ranking or scaling, so the desired perspectives of ordering are
considered and treated equally in such a combined ordering. To enhance the inter-
pretability of the clustering results, we focus only on the notions that satisfy the
intrinsic graphical interpretation.

2.3 Functional ordering with intrinsic graphical interpretation

The following definition specifies the properties of the global envelope that has an
intrinsic graphical interpretation with respect to an ordering. This definition was
already used in [10] to define global envelope tests and central regions with graph-
ical interpretation.

Definition 1: Assume a general ordering ≺ of the vectors Ti, i ¼ 1, … , s0, that is
induced by a univariate measure Mi. That is, Mi ≥Mj iff Ti ≺T j, which means that
Ti is less extreme or as extreme as T j. (The smaller the measure Mi, the more

extreme Ti.) The 100 1� αð Þ% global envelope T αð Þ
low j,T

αð Þ
upp j

h i
has intrinsic graphical

interpretation (IGI) with respect to the ordering ≺ if:

1.m αð Þ ∈ℝ is the largest of the Mi such that the number of those i for which
Mi <m αð Þ is less than or equal to αs0;

2.Tij <T αð Þ
low j or Tij >T αð Þ

upp j for some j ¼ 1, … , d iff Mi <m αð Þ for every i ¼ 1, … , s0;

3.T αð Þ
low j ≤Tij ≤T αð Þ

upp j for all j ¼ 1, … , d iff Mi ≥m αð Þ for every i ¼ 1, … , s0.

Let us call the ordering with intrinsic graphical interpretation such ordering, for
which exists a global envelope with IGI with respect to this ordering. Remark here
that m αð Þ is not exactly the α quantile of Mi and that points 2 and 3 are equivalent.
We kept points 2 and 3 to show the interpretability of the IGI. The simple ordering
criterion based on L∞ distance, Mi ¼ max j∣Tij � T:j∣, clearly satisfies such a prop-
erty, but it does not account for the changes in the marginal distribution of T:j for
different values of j [14, 15]. To address this problem, Myllymäki et al. [14] pro-
posed studentized and directional quantile scaling of the maximum ordering, which
also satisfies IGI. Furthermore, [15, 16] simultaneously defined extreme rank length
ordering, which is based on the number of the most extreme pointwise ranks and
satisfies IGI. Finally, [10] extended this family with continuous rank ordering,
which is based on the continuous extension of pointwise ranking, and area rank
ordering, which is based on the area with the most extreme continuous ranks. To
the best of our knowledge, no other functional (respective multivariate) orderings
satisfy IGI.

The definitions of all previously mentioned orderings are given in [10]. For the
sake of completeness, we provide here a short list of these definitions.

6
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2.3.1 Extreme rank length ordering

Let r1j, r2j, … , rs0j be the raw ranks of T1j,T2j, … ,Ts0j, such that the smallest Tij

has rank 1. In the case of ties, the raw ranks are averaged. The two-sided pointwise
ranks are then calculated as Rij ¼ min rij, s0 þ 1� rij

� �
. Consider now the vectors of

pointwise ordered ranks Ri ¼ Ri 1½ �,Ri 2½ �, … ,Ri d½ �
� �

, where Ri 1½ �, … ,Ri d½ �
� � ¼

Ri1, … ,Ridf g and Ri k½ � ≤Ri k0½ � whenever k≤ k0. The extreme rank length measure of

the vectors Ri is equal to:

Ei ¼ 1
s0
Xs0

i0¼1

Ri0 ≺Rið Þ (2)

where

R0
i ≺Ri ⇔∃n≤ d : Ri0 k½ � ¼ Ri k½ �∀k< n, Ri0 n½ � <Ri n½ �:

The division by s0 leads to normalized ranks that obtain values between 0 and 1.
Consequently, the ERL measure corresponds to the extremal depth as defined
in [16].

Let eα be defined according to point 1 of Definition 2.3, and let Iα ¼
i∈ 1, … , s0 : Ei ≥ e αð Þ
� �

be the index set of vectors less extreme than or as extreme as
eα. Then, the 100 1� αð Þ% global extreme rank length envelope (or global extreme
rank length central region) induced by Ei is:

T αð Þ
lowk ¼ min

i∈ Iα
Tik and T αð Þ

uppk ¼ max
i∈ Iα

Tik fork ¼ 1, … , d: (3)

2.3.2 Global continuous rank ordering

The continuous rank measure is:

Ci ¼ min
j¼1, … d

cij= s0=2d e,

where cij are the pointwise continuous ranks defined as:

cij ¼
X
i0

1 Ti0j >Tij

� �
þ T iþ1½ �j � Tij

T iþ1½ �j � T i�1½ �j
for i : Tij 6¼ max

i0
Ti0j

andTij >median Tij
� �

,

cij ¼ exp � Tij � T i�1½ �j
T i�1½ �j � min

i
Tij

0
@

1
A for i : Tij ¼ max

i0
Ti0j,

cij ¼
X
i0

1 Ti0j <Tij

� �
þ Tij � T i�1½ �j
T iþ1½ �j � T i�1½ �j

for i : Tij 6¼ min
i0

Ti0j

andTij <median Tij
� �

,

cij ¼ exp � T iþ1½ �j � Tij

max
i

Tij � T iþ1½ �j

0
@

1
A for i : Tij ¼ min

i0
Ti0j:

cij ¼ Rij for Tij ¼ median Tij
� �

,

7

A New Functional Clustering Method with Combined Dissimilarity Sources and Graphical…
DOI: http://dx.doi.org/10.5772/intechopen.100124



Here, T i�1½ �j and T iþ1½ �j denote the values of the functions, which are in a j-th
element below and above Tij, respectively (i.e., T i�1½ �j ¼ max i0:Ti0 j <Tij

Ti0j and
T iþ1½ �j ¼ min i0:Ti0 j >Tij

Ti0j).
The 100 1� αð Þ% global continuous rank envelope induced by Ci is constructed

in the same manner as the global extreme rank length envelope.

2.3.3 Global area rank ordering

The area rank measure:

Ai ¼ 1
s0=2d ed

X
j

min Ri, cij
� �

,

where.
Ri ¼ min j Rij

� �
and Rij are two-sided pointwise ranks defined above. The

100 1� αð Þ% global area rank envelope induced by Ai is constructed in a manner
similar to that of the global extreme rank length envelope.

2.3.4 Studentized maximum ordering

Because we construct a symmetric set of functions to compute the dissimilarity
matrix, here we use only the symmetric studentized ordering. The above orderings
are based on the whole distributions of T�j, j ¼ 1, … , d. It is also possible to approx-
imate the distribution from a few sample characteristics. The studentized maximum
ordering approximates the distribution of T�j, j ¼ 1, … , d by the sample mean T0j

and sample standard deviation sd T�j
� �

. The studentized measure is:

Si ¼ max
j

Tij � T0j

sd T�j
� �

�����

�����: (4)

The 100 1� αð Þ% global studentized envelope induced by Si is defined by:

T lð Þ
low j ¼ T0j � sαsd T�j

� �
and T lð Þ

upp j ¼ T0j þ sαsd T�j
� �

for j ¼ 1, … , d, (5)

where sα is taken according to point 1 of IGI.

2.4 Dissimilarity matrix based on the combined ordering

In this section, we validate the dissimilarity matrix construction defined in
Section 2.1 for studentized measure by showing that dii0 ¼ Sii0 is a metric and for
global area rank measure by showing that dii0 ¼ 1� Aii0 is a semi-metric. The latter
means that the dii0 ¼ 1� Aii0 satisfies all properties of metric, except for the trian-
gular inequality, which is violated in specific cases. The metric properties are usu-
ally required when choosing the distance measure, but it is not necessary for the
partitioning around medoids algorithm, which is used to calculate the clusters
afterward. Furthermore, our simulation study demonstrates that these specific
cases, where the triangular inequality of global area rank measure is not satisfied,
are not realized by functions appearing in real data studies. Furthermore, we pro-
vide a thorough check of satisfaction of the triangular inequality for global area rank
measure in our implementation of the algorithm. Thus in practice, a user can check
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this feature of the metric for particular data of interest. For any dataset considered
by us in simulation and data studies, the triangular inequality was satisfied.

Theorem 1.1: Define the distance between Ti and Ti0 as:

dii0 ¼ 1� Aii0 ,

where Aii0 is the global area rank measure of Ti � Ti0 on D f . Then dii0 satisfies for
any i, i0:

1.Non-negativity: dii0 ≥0;

2.Identity of indiscernibles: dii0 ¼ 0 iff Ti ¼ Ti0 ;

3.Symmetry: dii0 ¼ di0i.

Proof:
Non-negativity: For the set D f , there are s0 curves. The set D f contains a zero

element, which is the deepest point of D f . I.e. 0 is median in every coordinate. For the
area ordering of these curves, we have that two-sided pointwise ranks of curve Ti � Ti0 is
Rii0j ≤ s0=2d e and Rii0 ¼ min j Rii01, … ,Rii0df g≤ s0=2d e. Hence, we have Aii0 ≤ 1, i.e.,
dii0 ≥0.

Identity of indiscernibles: dii0 ¼ 0⇔Aii0 ¼ 1⇔ Rii0j ¼ s0=2d e for every j = 1,… , d
⇔ Ti � Ti0 is the deepest curve of D f ⇔ Ti ¼ Ti0 .

Symmetry: This property holds implicitely due to the symmetry of D f .
The fourth property of the metric, i.e.

4.Triangle inequality: dii0 þ di0k ≥ dik, for any i, i0 and k,

is not satisfied when Ti � ti for every i. The results of our simulation study
suggest that if the system of data provides enough crossings of functions, then
the triangle inequality is satisfied.

Theorem 1.2: Define the distance between Ti and Ti0 as:

dii0 ¼ Sii0 ,

where Sii0 is the studentized measure of Ti � Ti0 on D f . Then dii0 is a valid metric.
Proof:
The first three properties obviously hold for the studentized difference distance. We

prove the triangle inequality for dii0 . Note that df � 0 is an element of D f , and hence the
sample mean T0j ¼ 0 for j ¼ 1, … , d. Lets denote the sample standard deviation of the
j-th element of D f by sd D�j

� �
. Then, we have:

dik ¼ max
j

Tij � Tkj � 0
sd D�j
� �

�����

�����≤ max
j

Tij � Ti0j

sd D�j
� �

�����

�����þ
Ti0j � Tkj

sd D�j
� �

�����

�����

( )

≤ max
j

Tij � Ti0j

sd D�j
� �

�����

�����þ max
j

Ti0j � Tkj

sd D�j
� �

�����

�����

¼ dii0 þ di0k:

This completes the proof.
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3. Simulation study

This section describes the intensive simulation studies we conducted to assess
the empirical performance of the proposed clustering methods and compares this
performance with those of the existing methods when the clusters demonstrate
differences from various perspectives. For comparison, we also consider two clus-
tering methods for functional data: the k-means methods available in the R package
fda.usc [17] and the model-based clustering methods proposed by [18], which are
available in the R package fdapace [19]. For the fairness of comparison, the stan-
dardization procedure is applied to normalize the empirical marginal distributions
as described in Section 1 so that they can be combined equally.

Specifically, we consider the following five models on t∈ 0, 1½ �:

• Class 1: X Tð Þ ¼ 2T þ e Tð Þ;

• Class 2: X Tð Þ ¼ 2� 2T þ e Tð Þ;

• Class 3: X Tð Þ ¼ 2 1 T >Uð Þ þ e Tð Þ;

• Class 4: X Tð Þ ¼ 1:5þ 2 1 T >Uð Þ þ e Tð Þ;

• Class 5: X Tð Þ ¼ 3� 2:5T þ e Tð Þ.

Here, U follows a uniform distribution on 0:5, 0:6½ �, and e Tð Þ is generated from a
Gaussian process with zero mean and covariance function γ s, tð Þ ¼
σ2 exp �ϕ t� sj jνf g, where σ2 ¼ 0:2, ϕ ¼ 2 and ν ¼ 1.

In addition, to assess the robustness of the proposed methods, we also consider
another situation by replacing e Tð Þ with a multivariate-t distribution with two
degrees of freedom, t2 μ,Σð Þ, where μ ¼ 0, and Σ is generated with γ s, tð Þ. The heavy

Figure 1.
Top panel: Realizations of two settings. Bottom panel: Adjusted Rand index of four clustering methods with the
two settings.
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tail property of the marginal distribution allows the data to be viewed as contami-
nated by some outliers, which are commonly encountered in practice. We generate
100 samples for each of the five classes with 20 equally spaced design points; as a
result, 500 curves are clustered into five groups. The top panel of Figure 1 demon-
strates one realization of the simulated samples under two settings. To account for
both the magnitude and the shape variation among clusters, we make two

Figure 2.
Clusters for setting 1 visualized on raw curves (top panel) and normalized curves (bottom panel). In each
panel, from top to bottom: Area, studentized, k-means, and model based.
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transformations suggested by [13] to the raw curves, shifting the curves so that each
has a zero mean and then normalizing the centered curves by their L2 norm. We
then bind the three components together as long vectors for clustering. For each
run, we use the true number of clusters for all four methods and calculate the
adjusted Rand index [20] to compare their clustering results. We repeat the
procedure 100 times, and the results are reported in the bottom panel of Figure 1.

Figure 3.
Clusters setting 2 visualized on raw curves (top panel) and normalized curves (bottom panel). In each panel,
from top to bottom: Area, studentized, k-means, and model based.
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Note that in all cases of the simulation study, the triangular inequality of the area
measure was satisfied for all combinations of curves.

Under the first setting, data are generated from a Gaussian process. With regard
to the adjusted Rand index, the four methods are quite comparable but the proposed
methods are slightly better than the other two. However, our methods recover
much better the characteristics of the true clusters; see Figure 2, which illustrates
one clustering result for each of the four methods with both raw curves and nor-
malized curves. In contrast, the k-means method merges classes 2 and 5, and the
model-based method merges classes 1 and 3.

As for the second setting, in which the marginal distribution becomes heavy-
tailed, our methods obtain more robust clustering results than the other two
methods and reach higher adjusted Rand indexes (Figure 3). The model-based
method relies heavily on the Gaussian assumption and thus shows less satisfactory
behavior. Again, our methods still accurately recover the patterns of each cluster,
whereas the other two methods completely fail to reveal reasonable group struc-
tures. Specifically, both k-means and the model-based methods suggest a cluster
with only a few curves, which indicates a clear misinterpretation of the situation.

4. Clustering of insurance penetration

Insurance consumption indicates the equilibrium of supply and demand of
insurance products. For a given insurance market, the collection of total (Life and
non-Life) yearly insurance consumption observations helps to explain the variation
of insurance market development over time. A common measure of insurance
consumption, and hence of insurance development, is insurance penetration (IP),
defined as the ratio of insurance premiums on GDP. The pattern of the develop-
ment variation is evident when one views the IP as a function of time, known as the
IP curve.

In their effort to promote the European single insurance market through the
integration process, European policymakers put emphasis on homogeneity and
convergence aspects of development patterns of European insurance markets. That
is equivalent to saying that they are interested in identifying a single group (cluster)
of countries whose IP curves exhibit similarity in magnitude and shape. The clus-
tering of European countries in terms of their IP curves provides a method for
testing the magnitude and shape similarity of the insurance industry in Europe. In
particular, functional clustering methods are appropriate for our data, given the
time dependency in the observations.

IP curves (time-series data on IP) originated from the Swiss Re (2016) Database
were analyzed by the proposed functional clustering (FC) method based on Area
measure. The exploration concentrated on the IP curves of 34 European countries
(EU and non-EU members) observed over 13 years between 2004 and 2016, that is,
before, during, and post-financial and sovereign debt crises.

The FC method extracts the partitioning information from both the magnitude
and the shape of IP curves. While the magnitude is captured in the IP curves, the
shape is not straightforward to be detected. To this end, we performed two types of
transformations on the raw IP curves to reveal their shape. First, the raw IP curves
were centred relative to each country’s average IP rate to mitigate the widely
different magnitudes in the IP data. After this, the resulting centred IP curves were
then normalized with their L2 norms to a unit norm (to have a length of 1). These
transformations are proposed to extract shape information by [13] By normalizing
the centred IP curves in this manner, we eliminate their amplitude signal, while we
are only left with the shape signal of the raw IP curves.
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For the FC method to run properly, the most suitable number of clusters must be
determined. We chose 6 clusters even if the median value of all methods presented
in the NBclust library of the R software is 5. Our choice is justified as it better serves
the analysis and the characterization of the produced clusters.

Given the IP curves of each cluster, the FC method also provides a graphical
representation, through the central regions, of the deepest central IP curves within
each cluster. We are interested in the so-called marginal plot style approach of the
clustering solution. This means that the central regions are computed separately for
magnitude and shape to better express each cluster component’s shape. Remark
here that the proposed method also allows showing the central region with respect
to the combined ordering with respect to the magnitude and shape together. The
appearance of clusters is demonstrated by the deepest IP curve (solid curve) that
corresponds to the medoid IP curve and the envelope of 50% central IP curves (gray
area) that reflects the band where 50% of the IP curves surrounding the deepest are
varied. See Figures 4 and 5. Note that the fraction of combinations of countries
satisfying the triangular inequality with Area measure was 1 with respect to all
combinations. With this visualization, we can describe the clusters that are pro-
duced by the FC method as follows:

Cluster 1: Developed insurance markets with middle-to-high IP levels and
decreasing IP patterns in the whole period. This cluster includes Belgium, France,
Ireland, Austria*, the UK, Portugal, Switzerland, Malta, Slovakia, and Germany.
Cluster 2: Developing insurance markets with low-to-middle IP level and increasing
IP pattern until 2010 and varying (decreasing) thereafter. This cluster of countries
consists of Cyprus*, Turkey, Greece, and Luxemburg. Cluster 3: Developed insur-
ance markets with middle-to-high IP levels and increasing IP patterns in the whole
period. This cluster unites Finland*, Italy, Spain, Denmark, and the Netherlands.
Cluster 4: Developing insurance markets with low-to-middle IP levels and increas-
ing IP pattern until 2009 and decreasing thereafter. The within-cluster countries are
Croatia*, Slovenia, Iceland, the Czech Republic, Sweden, and Romania. Cluster 5:
Developing insurance markets with low-to-middle IP levels and almost quadratic IP

Figure 4.
Clustering results of the IP curves: Magnitude plot.
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pattern and vertex point in 2008. In this cluster, we see countries such as Russia*,
Ukraine, and Norway. Cluster 6: Least Developed insurance markets with low IP
level and increasing IP pattern followed by a decreasing one initiated in 2007, right
on the start of the financial crisis. Members of this cluster are countries such as
Lithuania*, Bulgaria, Hungary, Estonia, Serbia, and Poland. The * symbol denotes
the medoid IP curve produced by the clustering for each cluster.

The results bring to surface first the difficulty of the European insurance industry
to converge and to exhibit homogeneity among national insurance markets during
the whole period. A fact that otherwise could lead to the building of single European
insurance industry. Second and final, the differential behavior of European insurance
markets under different phases of the macroeconomic environment. For instance,
Least Developed non-EU insurance markets faced shrink challenges, especially dur-
ing and after the financial and sovereign debt crises period. The same challenge with a
time lag of approximately two years was obvious for some Developing insurance
markets. Russia and Ukraine had their insurance markets running in parallel and
separated from the other two Developing insurance markets to follow their own
smile-shaped development pattern. A slight improvement in insurance activity was
also observed for the remaining Developing insurance markets that lasted almost
until the end of the sovereign debt crisis in 2011. However, this improvement was
offset by their unstable development pattern thereafter. Over the past years, the
overall development of Developed insurance markets has decreased, due to a con-
traction in life insurance business. However, few of them managed to succeed in an
increasing pattern with varying IP rate changes over the years.

5. Clustering of population growth data

Over the last century, the world has seen rapid population growth. Particularly,
the global population more than quadrupled. The magnitude of the population rate
of change from one year to another is found by the fold change ratio (FCR). Fold

Figure 5.
Clustering results of the IP curves: Shape plot.
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change is calculated simply as the ratio of the year-end over the year-start popula-
tion of a certain country. We refer to the evolution of FCR over the course of time as
the population growth rate (PGF) curve. In this example, our objective is to find
clusters of world countries in which their PGF curves share similar magnitude and
shape properties. We use the output of the FC method based on Area measure for
clustering world countries. This output will also give a hint towards the distribution
of the world population and provide the trends or the dynamics that are defining
our world, such that policymakers can set sustainable development goals for our
societies.

Thus, we consider the world population data (United Nations 2016), which was
analyzed by [21]. This dataset includes estimates of the total population (both
sexes) in 233 countries, areas, or regions in July 1950–2015. Motivated by these
estimates and the arguments needed for the execution of the FC method, we follow
three steps. In the first step, we perform the preprocessing of the dataset by
selecting those countries with populations of more than one million in July 1950. In
total, 134 countries are included in our analysis. For each of these countries, we
collect 65 data points that correspond to the FCR of each year interval and propose
connecting them to make the PGF curve. In the second step, we derive the shape
information from the L2 normalization of the shifted PGF curves towards their
center. This particular step is the one that provides the set of PGF pattern (PGFP)
curves. In the last step, we specify the input argument for the number of clusters
which is required by FC method to start. The optimal number of clusters was
arrived at by calculation of the median value of all methods presented in NBclust
library of the R software. Based on the result of this calculation, the chosen number
of clusters was three.

Figure 6 satisfies the marginal plot style approach followed in our case studies
by presenting the output of the FC method in a two-panel display. The first panel is
dedicated to magnitude clustering (it helps discern broad trends in PGF curves),
and the second to the shape clustering (it helps identify patterns of pace for popu-
lation rate of change). The first plot of each panel is the plot of the median curves of
the clusters. Remark that the fraction of combinations of countries satisfying the
triangular inequality with Area measure was 1 with respect to all combinations.

Next, we present both the derived clusters and their characterization, which is
based on the United Nations (UN) geographical region and classification of econo-
mies. For instance, we see that the population growth rates in Cluster 1 appear to
follow an increasing trend or at least maintain a certain degree of stability because
of a natural increase and migration. Most countries in this cluster have a developing
economy and are mainly located in Sub-Saharan Africa. However, three European
countries (Ireland, Norway and Spain) with developed economies are also members
of this cluster of countries. In contrast, the other two characteristic population
growth trends that are present in both Clusters 2 and 3 paint a picture of a stagnat-
ing or shrinking population in the future, the only difference being that the popu-
lation in Cluster 3 has a faster speed of shrinkage than in Cluster 2. The most
populated cluster (that is Cluster 2 with 64 curves) is mostly associated with
another set of developing economies (such as those of Brazil, China and Singapore)
located, this time, in Latin America and the Caribbean along with East Asia and
Pacific. Additionally, the only developed economy that appears to reside in this
cluster is that of the United States, while few economies in transition that belong
to the Commonwealth of Independent States (such as those of Azerbaijan,
Kazakhstan) make their presence visible for a first time.

Finally, Cluster 3 has united mostly the developed economies of Europe and East
Asia and Pacific along with the economies in transition of South-Eastern Europe
(Albania, Serbia and North Macedonia). Moreover, the population of few
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developing economies that are located, for example, at Cuba, Jamaica, Puerto Rico,
Ghana and Mozambique, have distinguished themselves from the vast majority of
developing economies in Cluster 1 or Cluster 2 by following the population behavior
of developed economies.

In conclusion, developing economies and economies in transition are split
between two clusters, while the majority of the developed economies belong to one
cluster. Based on the characterization of these clusters, it is understood that coun-
tries with developing economies experience population growth (or at least popula-
tion stability). However, the more the economy of a country is developed, the more

Figure 6.
Clustering results for the population curves. Top panel: Magnitude plot; bottom panel: Shape plot.
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its population growth change decreases. This decrease, in certain cases, might have
even a severe negative effect on a country’s future projected population size.
Whereas, in some other cases, the effect of this decrease is smoother without
forcing the population size to reach record lows.

6. Multivariate clustering of insurance penetration with ratio of life and
total insurance

The insurance industry generates a large volume of multivariate functional data
from the simultaneously obtained measurements on variables related to life, non-
life, and total insurance activities. In our case of interest, two main country-specific
variables that include data on premiums are available. The first is the total IP (TIP)
that represents the development of total activities. While the second is the R ratio of
life IP to TIP that represents the development of the share of life premiums in total
premiums.

Since the insurance industry of a country can be represented by the bivariate vari-
ables of TIP and R, it is important to take into account the dependence between them.
We compute a variable that describes this dependence through the covariance function:

Cov tð Þ ¼ sign IP tð Þ �m1 tð Þð Þ R tð Þ �m2 tð Þð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣ IP tð Þ �m1 tð Þð Þ R tð Þ �m2 tð Þð Þ∣

p
,

where m1 tð Þ is the mean IP over all countries and m2 tð Þ is the mean R over all
countries and represents the development of the link between total and life share
dynamics.

There is no doubt that the development of total activities is different from
that of life share. Nevertheless, it may be assumed that a common development
coordinates these differential developments of different insurance variables.
Then, it is of great interest to identify groups of insurance markets with similar
joint development patterns. With this consideration in mind, we aim to discover
whether the European insurance market is homogeneous when national insurance
developments are jointly differential by developing their total activities and their
life share.

We obtained again insurance data from Swiss Re (2016) database and for the
same European (EU and non-EU) countries as in univariate case. In particular, we
employ a dataset of our main variables for 34 European countries sampled at annual
frequency between 2004 and 2016. That is to say that the data for each variable can
be viewed as curves. Yet, except for the curves related to TIP and R variables, we
also included the computed curves for the Cov variable in our dataset and ended up
with a set of three-dimensional vectors of curves.

Viewing the curves for each variable as a set of curves, a three-component list of
curve sets is constructed to serve as an input for the FC method. This time, the
optimal number of clusters is three and consistent with the median value of all
methods presented in the NBclust library of the R software. Our proposed method
concentrates on visualizing, in the marginal plot style approach, clusters of multi-
variate insurance functional data with regard to their magnitudes and covariance
function (Figures 7–9).

The clustering results are summarized as follows:

Cluster 1: Countries of high TIP and high R with no correlation whatsoever
between the two variables throughout the study period.

Cluster 2: Countries of high TIP and high R with a positive correlation between
the two variables throughout the study period.
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Cluster 3: Countries of low TIP and low R with no correlation whatsoever
between the two variables throughout the study period.

Additionally, the FC method suggests that the total and life share developments
in Cluster 1 and Cluster 3 have independent paths since curves for Cov variable
almost coincide with the x-axis of Figure 9. Simultaneously, it succeeded not to
clustered them together due to different magnitude levels. On the contrary, in

Figure 8.
Clustering results for bivariate curves of TIP and R: R plots.

Figure 7.
Clustering results for bivariate curves of TIP and R: TIP plots.
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Cluster 2, the curves for Cov variable are positioned above x-axis, which means that
total and life share are dependent functions (positively correlated) over the years.

The functional cluster analysis revealed some differences in the dynamics of
insurance markets in Europe. The clustering results clearly reject the hypothesis on
the homogeneity of the European insurance market. Europe continues in a two-
speed insurance market, with countries with high development and independent
paths of total and life insurance business, and others with low. For both speed
markets, detecting an increasing pattern in total insurance business does not guar-
antee that the life premiums will also follow at the same time the same pattern. Any
similarity in their patterns could be explained by socio, economic, demographic, or
other factors and not by the total business pattern itself. However, there is another
high-speed market where the increase of total insurance business in the economy is
an additional factor that accelerates the development of life business share.

7. Conclusions

In this study, we introduce a new class of functional cluster analysis methods
based on functional orderings.We intended to work with methods that allow intrinsic
graphical interpretation to obtain a natural interpretation of clusters via their central
regions. Therefore, we propose the use of a studentized measure that forms a metric
on the set of functional differences. Also, We suggest the use of the area measure,
which orders the functions according to the area of the most extreme continuous rank
and considers the entire distribution of the functions. This measure does not form a
metric on any set of functions, but the simulation study results and the real data study
suggest that it is a metric on any real data set of functions. The check for the
satisfaction of the triangular inequality is provided for the given set of functions.

This study’s primary aim is to introduce methods that combine the various
functional information sources equally. It is possible to study clustering while
showing equal concern for both magnitude and shape, as shown in the first and

Figure 9.
Clustering results for bivariate curves of TIP and R: Covariance plots.
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second data examples. In other words, it is possible to study the clustering of
multivariate functions when the marginal functions are taken equally. It is also
possible to add to the study term, which summarizes the covariance between the
marginals of the multivariate function, as shown in the third data example.

The simulation study suggests that the proposed method is robust and more
powerful than studied alternatives that give equal treatment to various sources. The
studied alternatives are the K-means method, with pre-standardization of every
coordinate by its mean and variance, and the model-based method, which assumes
a normal distribution of data and considers marginals means, variances, and the
covariance function.

Our proposed methods consider the covariance structure of the functional data
via the ordering of the entire functional differences. Our proposed methods are also
nonparametric and, as such, have no model requirement. Our simulation study also
showed that our proposed methods are quite robust to heavy-tailed functions,
which can be considered as a type of functional cluster outlier. The data studies
show that our methods can cluster the functions with respect to magnitude and
shape and that it provides a sensible graphical interpretation of the resulting clus-
ters. The third example shows that the clusters can be also constructed with respect
to the covariance of the marginals in the multivariate function. This study does not
examine methods to choose the number of clusters in an optimal manner, and this
problem is left to the user’s choice or further development.
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Chapter 2

Computational Statistics with
Dummy Variables
Adji Achmad Rinaldo Fernandes, Solimun and Nurjannah

Abstract

Cluster analysis is a technique commonly used to group objects and then further
analysis is carried out to obtain a model, named cluster integration. This process can
be continued with various analyzes, including path analyzes, discriminant analyzes,
logistics, etc. In this chapter, the author discusses the reason to use dummy vari-
ables in this type of cluster analysis. Dummy variables are the main way that
categorical variables are included as predictors in modeling. With statistical models
such as linear regression, one of the dummy variables needs to be excluded, other-
wise the predictor variables are perfectly correlated. Thus, usually if a categorical
variable can take k values, we only need k-1 dummy variables, the k-th variable
being redundant, it does not bring any new information. When more dummy vari-
ables than needed are used this is known as dummy variable trapping. The advan-
tage to use dummy variables is that they are simple to use and the decision making
process is easier to manage. The novelty in this chapter is the perspective of the
dummy variable technique using cluster analysis in statistical modeling. The data
used in this study is an assessment of the provision of credit risk at a bank in
Indonesia. All analyzes were carried out using software R.

Keywords: dummy, cluster, integrated cluster with logistic regression, integrated
cluster with discriminant analysis, integrated cluster with path analysis

1. Introduction

The application of cluster analysis is commonly used to group objects. Cluster
analysis can be used to group objects and then further analysis is carried out to
obtain a model, namely cluster integration. Cluster integration can be continued
with various analyzes, including path analysis, discriminant analysis, logistics, etc.
In cluster integration with path analysis, it aims to group homogeneous objects into
one group, the goal is that the resulting residual variance is homogeneous in addi-
tion to maximizing the adjusted R2 value. In cluster integration with discriminant
analysis, the benefits of cluster analysis generated can maximize the accuracy,
sensitivity, and specificity of the model. In this chapter, we will explain the techni-
cal perspective of dummy variables using cluster analysis in statistical modeling,
such as regression analysis, path analysis, and discriminant analysis.
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2. Why use dummy variables

Dummy variables are numerical variables that represent categorical data, such
as gender, race, political affiliation, etc. Technically, the dummy variable is
dichotomous, a quantitative variable. Their value range is small; they can only take
two quantitative values. As a practical matter, regression results are easiest to
interpret when the dummy variable is constrained to two specific values, 1 or 0.
Typically, 1 represents the presence of a qualitative attribute, and 0 represents its
absence. Categorical variables have more than two categories, can be represented by
a set of dummy variables, with one variable for each category. Numerical variables
can also be coded to explore nonlinear effects. Dummy variables are also known as
indicator variables, design variables, contrasts, one-hot coding, and binary basis
variables [1].

Dummy variables are the main way that categorical variables are included as
predictors in modeling. For example, in linear regression analysis, the response
variable is profit, and the predictor variable is employee group. With statistical
models such as linear regression, one of the dummy variables needs to be excluded
(by convention, the former, or the latter), otherwise, the predictor variables are
perfectly correlated [2].

When defining dummy variables, a common mistake is to define too many
variables. If a categorical variable can take on k values, then you tend to define k
dummy variables. You only need k-1 dummy variable.

The k-th dummy variable is redundant; it does not bring any new information.
And that creates a severe multicollinearity problem for analysis. Using k dummy
variables when only k-1 dummy variables are needed is known as dummy variable
trapping.

Regression analysis treats all independent variables (X) in the analysis as
numerical. A numeric variable is an interval or ratio scale variable whose values can
be directly compared, e.g. “10 is double 5,” or “3 minus 1 equals 2.” However, you
may want to include a nominal scale attribute or variable such as: “Product Brand”
or “Defect Type” in your study. Say you have three types of defects, numbered “1,”
“2” and “3.” In this case, “3 minus 1” means nothing. You cannot subtract handicap
1 from handicap 3. The numbers here are used to indicate or identify the degree of
“Type of Disability” and have no intrinsic meaning of their own. A dummy variable
is created in this situation to “trick” the regression algorithm into the correct
attribution of the analysis variable [3].

The main benefit of dummy variables is that they are simple. Often there are
better alternative basis functions, such as orthogonal polynomials, effect coding,
and splines. If dummy variables are used in linear regression analysis, then there are
several advantages [4], including:

a. The dependent variable prediction process becomes more focused and
accurate, different from ordinary multiple regression

b. Because the data is not qualitative, the prediction results are easy to interpret

c. The decision-making process tends to be easy

3. Hierarchical cluster

Cluster analysis (group analysis) is an analytical method that aims to group
objects into several groups, objects in groups are homogeneous (same) while other
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group members are heterogeneous (different) [5]. The procedure for group forma-
tion in Cluster analysis is divided into two, namely hierarchical and non-
hierarchical methods. Grouping with the hierarchical method is used when there is
no information about the number of clusters. The main principle of the hierarchical
method is to group objects that have something in common with one group. While
the non-hierarchical method is used when information about the number of clusters
is known or has been determined [6].

This method starts grouping with two or more objects that have the closest
object. Then the process is continued by passing to another object that has second
proximity. And so on to form a tree in which there is a hierarchy or level from the
most similar to the different. The tree formed by this cluster is also called a den-
drogram. This tree is useful for providing deeper clarity on the clustering process.

The stages of grouping data using the hierarchical method are [7]:

1.Determine k as the number of clusters to be formed.

2.Each object data is considered as a cluster so that n = N.

3.Calculate the distance between clusters.

4.Find two clusters that have the least distance between clusters and combine
them (meaning N = n-1).

5.If n > k, then go back to step 3.

According to [6] in the method of forming groups in the hierarchical method,
there are two approaches, namely agglomerative hierarchical methods (Agglomera-
tive Hierarchical Methods) and divisive hierarchical methods (Device Hierarchical
Methods). The agglomerative method starts by assuming that each object is a cluster.
Then the two objects that have the closest distance are combined into one cluster. The
process continues so that in the end it will form a cluster consisting of all objects.

4. Integrated cluster with logistic regression

4.1 Integrated cluster equation model with logistic regression analysis

The model of the integration of cluster analysis with logistic analysis of the
dummy variable approach is the same as the general model of multiple linear
regression analysis with dummy variables.

The general model of the integrated cluster with logistic analysis can be written
in the following Eq. (1).

yi ¼

exp

β0 þ β1x1i þ⋯þ βpxpiþ
D1βpþ1 þD1βpþ1x1i þ⋯þD1β2pþ1xpiþ
D2βpþ2 þD2βpþ3x1i þ⋯þD2β3pþ2xpiþ
⋯þDqβpqþ1 þDqβpqþ2x1i þ⋯þDqβp qþ1ð Þxpi

0
BBB@

1
CCCA

1þ exp

β0 þ β1x1i þ⋯þ βpxpiþ
D1βpþ1 þD1βpþ1x1i þ⋯þD1β2pþ1xpiþ
D2βpþ2 þD2βpþ3x1i þ⋯þD2β3pþ2xpiþ
⋯þDqβpqþ1 þDqβpqþ2x1i þ⋯þDqβp qþ1ð Þxpi

0
BBB@

1
CCCA

(1)

27

Computational Statistics with Dummy Variables
DOI: http://dx.doi.org/10.5772/intechopen.101460



where,
yi: response variable at the i-th observation unit
xki: the k-th predictor variable on the i-th observation unit
βp: coefficient of the p-th logistic function
Dq: q-th dummy variable
p: number of predictor variables
q: the number of clusters formed is reduced by 1
i: 1, 2, 3, … , n

4.2 Logistics regression analysis assumptions

Before conducting the analysis, several basic principles or assumptions underlie
regression analysis, several assumptions that underlie logistic regression analysis,
namely [8].

1.Does not assume a linear relationship between the response variables and the
predictor variables.

2.Predictor variables do not have to be normally distributed.

3.The response variable does not require the assumption of homogeneity for
each level of the predictor variable or the variance does not have to be the
same in each category.

4.The measurement scale on the response variable is discrete or binary (success/
failure) and the predictor variable does not require an interval measurement
scale.

5.Using probability sampling, which is a sampling technique to provide equal
opportunities for each member of the population to be selected as a member of
the sample.

6.Observation variables are measured without errors (valid and reliable
measurement instruments) meaning that the variables studied can be observed
directly.

4.3 Integrated cluster analysis method with logistic regression analysis

The linkage used in this study is the Average Linkage and the measurement of
the distance between clusters using the Euclidean distance. Determination of the
number has been determined in advance, namely as many as 2 and 3 groups. The
Average Linkage method is based on the average distance. The table of the number
of members in each Cluster in the Integrated Cluster Analysis method with
regression analysis is presented in Table 1.

From Table 1 it can be seen that there are 71 customers in Cluster 1 with 3
groups, 15 customers in Cluster 2, and 14 customers in Cluster 3. While many
members with 2 groups in Cluster 1 as many as 93 customers and in Cluster 2 as
many as 7 customers. The selection of the best linkage and model validity is by
choosing the model that has the largest total R2, as shown in the equation, which can
be briefly seen in Table 2 as follows.

Based on Table 2 the logistic regression analysis model with cluster integration
with 3 groups has the greatest total determination value so that logistic regression
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analysis with cluster integration with 3 groups is the best model compared to 2
groups. The total determination value of 89.23% is considered very good to describe
the model.

Based on Table 2 the adjusted R2 value of the Cluster integration regression
analysis with 3 groups resulted in an adjusted R2 value of 0.4258 meaning that the
variables of age, work experience, and loan to value were able to explain the
diversity of credit collectibility variables of 42.58%, while 57 The other, 41% is
influenced by variables outside the model. The value of R2 adjusted Cluster inte-
gration logistic regression analysis with 3 groups resulted in an R2 adjusted value of
0.8492, meaning that the variables of age, work experience, and loan to value were
able to explain the diversity of credit collectibility variables of 84.92%, while 13.08.
The other percentage is influenced by variables outside the model. The coefficient
of total determination of the Cluster integration logistic regression analysis model
with 3 groups is 0.8923, so it can be concluded that the diversity of data that can be
explained by the model is 89.23% while the remaining 10.17% is explained by vari-
ables outside the model.

The results of R2 the adjusted integrated cluster in logistic regression analysis
with 3 groups having the highest adjusted R2 value. If the average variables of each
Cluster are compared, it is found that most of Cluster 2 has the highest average
value compared to other Clusters, so Cluster 2 is high. While Cluster 1 has the
lowest average value compared to other Clusters, so Cluster 1 is low. The average
value for each cluster is presented in Table 3.

Based on Table 3, it can be seen that most of the customers are 39 years old in
the low cluster, 37 years old in the high cluster, and 38 years old in the medium

Cluster Number of cluster members

3 Groups 2 Groups

1 71 93

2 15 7

3 14 —

Table 1.
Number of members of each cluster average linkage method on integrated cluster analysis method with logistics
regression analysis.

R2 adjusted of Y1 R2 adjusted of Y2 Total R2 adjusted

3 Groups 0.4258 0.8492 0.8923

2 Groups 0.3852 0.8129 0.8667

Table 2.
Adjusted values R2 for each integrated cluster analysis model with logistics regression analysis.

Variable Average

Cluster 1: low cluster Cluster 2: high cluster Cluster 3: medium cluster

Age (X1) 39.507 37.333 38.571

Work experience (X2) 39.930 193.867 107.571

Table 3.
Average value and each cluster in integrated cluster analysis model with logistic regression analysis.
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cluster. The work experience of customers in the low cluster is mostly for
40 months, the high cluster is mostly for 194 months, while in the medium cluster
mostly for 108 months.

Integrated Cluster Analysis method with Logistic Regression Analysis with 3
groups that separate each data set optimally. Then the model formed is like Eq. (2)
as follows.

π xð Þ ¼ exp �0, 027x1 � 0, 041x2 þ 0, 850y1 � 0, 374D1x1 � 0, 006D1x2 þ 9, 971D1y1 þ 0, 090D2x1 þ 0, 026D2x2 � 1, 559D2y1
� �

1þ exp �0, 027x1 � 0, 041x2 þ 0, 850y1 � 0, 374D1x1 � 0, 006D1x2 þ 9, 971D1y1 þ 0, 090D2x1 þ 0, 026D2x2 � 1, 559D2y1
� �

(2)

Low cluster (D1 ¼ 0 and D2 ¼ 0) can be seen in Eq. (3).

π xð Þ ¼ exp �0, 027x1 � 0, 041x2 þ 0, 850y1
� �

1þ exp �0, 027x1 � 0, 041x2 þ 0, 850y1
� � (3)

High cluster (D1 ¼ 1 and D2 ¼ 0) can be seen in Eq. (4).

π xð Þ ¼ exp �0, 401x1 � 0, 047x2 þ 10, 821y1
� �

1þ exp �0, 401x1 � 0, 047x2 þ 10, 821y1
� � (4)

Medium cluster (D1 ¼ 0 and D2 ¼ 1) can be seen in Eq. (5).

π xð Þ ¼ exp 0, 063x1 � 0, 015x2 � 0, 709y1
� �

1þ exp 0, 063x1 � 0, 015x2 � 0, 709y1
� � (5)

5. Integrated cluster with discriminant analysis

5.1 Discriminant analysis

Discriminant analysis is a multivariate analysis that functions to model the
relationship between a categorical response variable and one or more quantitative
predictor variables [9]. Discriminant analysis can be used as a grouping method
because it produces a function that cancan distinguishes between groups. The
function is formed by maximizing the distance between groups. If the response
variable or categorical data consists of only two groups, it is called a Two-Group
Discriminant Analysis model, whereas if the group consists of more than two
categories it is called Multiple Discriminant Analysis. Discriminant analysis has two
assumptions that must be met, namely the assumption of multivariate normality,
and the assumption of homogeneity of the variance matrix.

According to [6], discriminant analysis is included in the multivariate depen-
dence method. The model can be written as in Eq. (6).

yi ¼ β1X1i þ β2X2i þ … þ βpXpi (6)

where,
yi: the response variable is categorical or nominal data on the i-th observation

unit
Xpi: the p-explanatory variable on the i-th observation unit
βp: the coefficient of the p-th discriminant function
i: 1, 2, 3, … , n
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5.2 Integration of cluster analysis with discriminant analysis of dummy
variable approach

Integration of Cluster Analysis with Discriminant Analysis The Dummy Variable
Approach in this study combines cluster analysis with discriminant analysis.
Integrating cluster analysis with discriminant analysis can be done by using dummy
variables obtained from cluster results. Many clusters formed are used as categories,
then used as dummy variables.

An integrated cluster model with discriminant analysis can be written in Eq. (7).

yi ¼ β1x1i þ β2x2i þ … þ βpxpi
þD1βpþ1x1i þD1βpþ2x2i þ … þD1βpþqxpi
þD2βpþqþ1x1i þD2βpþqþ2x2i þ … þD2βpþ2qxpi
þ… þDqβpþqqþ1x1i þDqβpþ11þ2x2i þ … þDqβpþqqxpi

(7)

where,
yi: response variable at the i-th observation unit
xpi: the p-explanatory variable on the i-th observation unit
βp: the coefficient of the p-th discriminant function
Dq: q-th dummy variable
p: number of explanatory variables
q: the number of clusters formed is reduced by 1
i: 1, 2, 3, … , n
If the research variables used are 3 and the number of clusters is 2, then the integrated

cluster model withmultiple discriminant analysis can be written as in Eq. (8).
Common models:

yi ¼ β1x1i þ β2x2i þ β3x3i þD1β4x1i þD1β5x2i þD1β6x3i (8)

Cluster 1 (D1=0)

yi ¼ β1x1i þ β2x2i þ β3x3i (9)

Cluster 2 (D1=1)

yi ¼ β1 þ β4ð Þx1i þ β2 þ β5ð Þx2i þ β3 þ β6ð Þx3i (10)

5.3 Model efficiency

Efficiency can be seen based on three criteria, namely model accuracy, sensitivity,
and specificity. Accuracy measures how correctly a diagnostic test identifies and
excludes a certain condition, in other words, accuracy is used to measure the goodness
of the model. In diagnostic tests, the terms sensitivity and specificity are also known.
Sensitivity and specificity in diagnostic tests is a measure of the ability to correctly
identify objects under reality [10]. The difference is that sensitivity measures the
positive group while specificity measures the negative group. To get the value of
accuracy, sensitivity, and specificity can use the ConfusionMatrix as follows (Table 4).

Accuracy ¼ aþ d
aþ bþ cþ d

Sensitivity ¼ a
aþ c

Specificity ¼ d
bþ d

(11)
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5.4 Implementation of integrated cluster with discriminant analysis

For example, there are secondary data regarding homeownership loans obtained
from Bank X in Indonesia, where the variables studied are age, credit period, loan to
value, and credit collectibility status. The collectibility status of the credit used
consists of two categories, namely the collectibility of current and non-current
loans. The variables of age and credit period are in hours, while the loan to value is
in proportion units. Therefore, it is necessary to standardize before conducting data
analysis.

When using an integrated cluster with discriminant analysis, the first thing we
have to do is perform a cluster analysis to get a dummy variable. In cluster analysis,
it is not necessary to test assumptions because cluster analysis is included in explor-
atory analysis. If the results of the cluster analysis are n clusters, then the dummy
variables formed are n-1 variables. The analysis used is hierarchical cluster analysis
with the average linkage method with Euclidean distance. The determination of the
number of clusters is determined based on the Silhouette value. Silhouette values
for each of the many clusters can be seen in Table 5.

Based on Table 5, the largest Silhouette value is in many clusters 2. So that the
optimum number of clusters is 2. The results of cluster analysis are obtained in
cluster 1 consisting of 71 customers, and cluster 2 consisting of 29 customers. Thus,
the dummy variable formed is 1 dummy variable. If the object (customer) is
included in cluster 2, we assume that the object is 1 in the dummy variable. Mean-
while, if the object is included in cluster 1, we assume that the object is 0 in the
dummy variable.

After obtaining the dummy variable, the next step is to test the assumptions in
discriminant analysis. Testing for multivariate normality using the Shapiro-Wilk
test on predictor variables, and testing the homogeneity of the covariance matrix
using the Box M test. of 0.9917 (> 0.05). So it can be concluded that the data already
meet the assumptions of multivariate normality and homogeneity of the variance
matrix.

Next is to analyze the data using an integrated cluster with discriminant analysis.
Based on the analysis carried out, an integrated cluster model was obtained with the
following discriminant analysis:

Actual Prediction

Z1 Z0

Z1 a b

Z0 c d

Table 4.
Confusion matrix.

Number of clusters Silhouette value

2 0.4491

3 0.3915

4 0.2912

5 0.2811

Table 5.
Cluster analysis silhouette results.
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yi ¼ 0, 0838x1i þ 0:0606x12i � 0, 0241x3i þ 0, 0569D1x1i þ 0, 0358D1x2i
� 0, 0752D1x3i (12)

Cluster 1 (D1 = 0)

yi ¼ 0, 0838x1i þ 0:0606x12i � 0, 0241x3i (13)

Cluster 1 (D1 = 1)

yi ¼ 0, 1407x1i þ 0:0964x12i � 0, 0993x3i (14)

Based on the above equations, it can be interpreted that the coefficient of age
and credit term is positive, meaning that the higher the age and credit term, the
greater the possibility that customers in cluster 1 and cluster 2 have current credit
collectability. On the other hand, loan-to-value has a negative coefficient, so if the
value increases, it will increase the possibility of customers having non-current
credit collectibility. The variable that most influences credit collectibility in cluster 1
and cluster 2 is age which has the largest discriminant coefficient value. The value of
classification accuracy, sensitivity, and specificity in the integrated cluster analysis
method with discriminant analysis can be seen in Table 6 below.

Based on Table 6, the results of the classification accuracy are 84%, which
means that the model correctly classifies as many as 84 customers out of 100
customers. Sensitivity of 84% means that customers belonging to the current cate-
gory can be classified correctly by the model as many as 60 of 71 customers. The
specificity of 16% means that customers belonging to the non-current category can
be classified correctly by the model as many as 5 out of 29 customers.

6. Regression analysis with dummy variable

6.1 Regression analysis

The method that describes how big the relationship between variables is a
regression analysis method. Regression analysis is divided into two, namely simple
regression analysis and multiple regression analysis. Simple regression analysis is an
analysis involving one predictor variable and one response variable, while multiple
regression analysis is a regression analysis involving several predictor variables and
one response variable. The regression analysis has several classical assumptions
based on Gauss-Markov theory that must be met, namely the relationship between
variables is correct, predictor variables are fixed or non-stochastic, homogeneity of
variance, non-autocorrelation, error normality, non-multicollinearity [11].

6.2 Regression analysis with dummy variables

There are many ways to create a regression model with qualitative predictor
variables, one of which is to use regression with dummy variables. The dummy
variable is a variable used to obtain an estimator in a regression model involving

Percentage

Classification accuracy 84%

Sensitivity 84%

Specificity 16%

Table 6.
Value of classification accuracy, sensitivity, and specificity.
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qualitative predictor variables [12]. There is no difference in the assumptions
underlying the regression with or without a dummy variable, this is because the
addition of a dummy variable will be the same as the addition of a predictor variable
in general.

There are several rules for coding dummy variables, for example by using binary
code (0, 1). For example, there is a qualitative predictor variable with two catego-
ries (category 1 and category 2), then the qualitative variable can be defined in the
dummy variable as shown in the following equation:

D ¼ 1, for category 1
0, for other

�
(15)

The regression model with dummy variables can be expressed in the following
equation:

Yi ¼ β0 þ β1 Dþ β2X2 þ β3X3 þ β4X4 þ εi (16)

Information:
Yi: the value of the response variable at the i-th observation.
Xi: the value of predictor i-th variable.
β: regression model parameter.
εi: Random error at i-th observation.
i: index for observation i ¼ 1, 2, … , nð Þ:
Dummy variables can be entered into the regression model in three different

ways, namely:

1.Dummy variable as intercept component

2.Dummy variable as slope component

3.Dummy variables as components of intercept and slope

6.3 Application of regression analysis with dummy variables

From the available data, namely Y = willingness to pay, X1 = dummy variable
with category 1 being income in one family that is not combined, while category 2 is
income in one family combined. X2 is Service Quality, X3 is Environment and X4 is
Fairness.

The regression model formed is Y ¼ b0 þ b1 Dþ b2X2 þ b3X3 þ b4X4 (Figure 1)
Based on the regression analysis performed, the regression model with dummy

variables is obtained as follows:

Y ¼ 0:54088þ 0:08676 Dþ 0:1579X2 þ 0:4309X3 þ 0:2545X4 (17)

In this model, it is possible to know the difference in interest in paying creditors
whose income is combined with income that is not combined.

6.4 Assumptions of regression analysis with dummy variable

6.4.1 Non multicollinearity

Multicollinearity is a problem in regression which means that the predictor
variables correlate. A good regression model is a data that there is no
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multicollinearity problem. Multicollinearity checks can use the VIF value, where if
the VIF value is <10 then there is no multicollinearity problem. In the data used,
the VIF value for all variables is less than 10 so that the data is used to fulfill the
assumption of non-multicollinearity.

6.4.2 Normality error

The assumption of normality of error is an assumption that requires that the
error must be normally distributed with a mean of 0 and a variance σ2. Testing for
normality of errors can use the Shapiro Wilk test.

H0: normal distribution error
H1: error is not normally distributed
α ¼ 5%
Based on the normality test, a p-value of 0.91 was obtained, which means

that the error was normally distributed. So that the assumption of normality error
is met.

6.4.3 Non autocorrelation

The non-autocorrelation assumption test aims to find out whether some obser-
vations have correlated errors or not. If there is covariance and the correlation
between errors is not equal to zero, then this can be said as a violation of assump-
tions. The non-autocorrelation assumption test method can be done using the
Durbin Watson method. Based on the analysis conducted using the Durbin Watson
test, a p-value of 0.6132 was obtained, which means that the data met the non-
autocorrelation assumption.

6.4.4 Homoscedasticity

The assumption of homoscedasticity invariance indicates that as the average
increases, the variance should remain constant, but there is a possibility that an
increase in the average value causes the variance value to also increase, so it is
necessary to test the assumption of homogeneity of variance. Assumption testing is
done so that the estimator results obtained are efficient. Testing the assumption of
homoscedasticity can use the Brusch Pagan method.

Based on the analysis conducted using the Brusch Pagan test, a p-value of 0.130
(less than 0.05) was obtained, which means that the data met the assumption of
homoscedasticity.

Figure 1.
Output R.

35

Computational Statistics with Dummy Variables
DOI: http://dx.doi.org/10.5772/intechopen.101460



6.5 Parameter significance test

a. Simultaneous test

H0: β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0

H1: there is at least one βi 6¼ 0

α ¼ 5%

Based on the analysis obtained a p-value of 0.000 which means that there is
at least one significant regression coefficient.

b. Partial test

H0: βi ¼ 0

H1: βi 6¼ 0

α ¼ 5%

Based on the analysis, it was found that three regression coefficients have a p-
value of less than 0.05. The three regression coefficients are the coefficients of the
variables X2 (Quality of Service), X3 (Environment), and X4 (Fairness). This
means that Service Quality, Environment, and Fairness have a significant effect on
Willingness to Pay.

6.6 Model interpretation

The model obtained and has fulfilled all the assumptions of regression analysis
with dummy variables is as follows:

y ¼ 0:54088þ 0:08676 Dþ 0:1579x2 þ 0:4309x3 þ 0:2545x4 (18)

In this model, it is possible to find out the difference in interest in paying
creditors whose income is combined with income that is not combined. Based on
the model obtained, the coefficient of the dummy variable is 0.08676, which means
that when the incomes of creditors in one family are combined, the willingness to
pay will be greater than those of creditors whose income is not combined. The
estimated regression coefficient for the variable X2 (Quality of Service) is 0.1579,
which means that the better the bank’s service quality, the willingness to pay for
credit also increases. Then for the estimation of the regression coefficient for the X3
(Environmental) variable, an estimate of 0.4309 is obtained, which means that the
better the creditor’s environmental conditions, the willingness to pay credit will also
increase. The same thing also happened to the variable X4 (Fairness) where the
estimated regression coefficient was 0.2545, which means that if the bank
institution is fairer, creditors will also be more interested in paying.

7. Conclusion

The use of cluster analysis in statistical modeling will greatly facilitate the cap-
ture of the diversity of objects so that objects with the same characteristics can be
grouped into the same group. This will be useful in classification methods such as
discriminant analysis. Because in one group, objects will be more homogeneous,
while between groups has a high diversity. So, the novelty in this chapter is the
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perspective of the dummy variable technique where the number of categories in the
dummy variable is determined by the number of clusters formed from the results of
cluster analysis. This will then be continued on statistical modeling which is able to
help researchers to divide objects into several groups according to the characteris-
tics of each object by minimizing the diversity within the group.
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Chapter 3

Sparse Boosting Based Machine
Learning Methods for
High-Dimensional Data
Mu Yue

Abstract

In high-dimensional data, penalized regression is often used for variable
selection and parameter estimation. However, these methods typically require time-
consuming cross-validation methods to select tuning parameters and retain more
false positives under high dimensionality. This chapter discusses sparse boosting
based machine learning methods in the following high-dimensional problems. First,
a sparse boosting method to select important biomarkers is studied for the right
censored survival data with high-dimensional biomarkers. Then, a two-step sparse
boosting method to carry out the variable selection and the model-based prediction
is studied for the high-dimensional longitudinal observations measured repeatedly
over time. Finally, a multi-step sparse boosting method to identify patient sub-
groups that exhibit different treatment effects is studied for the high-dimensional
dense longitudinal observations. This chapter intends to solve the problem of how
to improve the accuracy and calculation speed of variable selection and parameter
estimation in high-dimensional data. It aims to expand the application scope of
sparse boosting and develop new methods of high-dimensional survival analysis,
longitudinal data analysis, and subgroup analysis, which has great application
prospects.

Keywords: sparse boosting, high-dimensional data, machine learning, variable
selection, data analysis

1. Introduction

High-dimensional model has become very popular in statistical literature and
many new machine learning techniques have been developed to deal with data with
very large number of features. In the past decades, researchers have done a great
deal of high-dimensional data analysis where the sample size n is relatively small but
the number of features p under consideration is extremely large. It is widely known
that including irrelevant predictors in the statistical model may result in unstable
estimation and dreadful computing issues. Thus, variable selection is crucial to
address the challenges. Among all developments, regularization procedures such as
LASSO [1], smoothly clipped absolute deviation (SCAD) [2], MCP [3] and their
various extensions [4–6] have been thoroughly studied and widely used to perform
variable selection and estimation simultaneously in order to improve the prediction
accuracy and interpretability of the statistical model. However, those penalized
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estimation approaches all have some tuning parameters required to be selected by
computationally expensive methods like cross-validation.

In recent years, machine learning methods such as boosting have become very
prominent for high-dimensional data settings since they can improve the selection
accuracy substantially and reduce the chance of including irrelevant features. The
original boosting algorithms were proposed by Schapire [7] which is an ensemble
method that iteratively combines weaker learners to minimize the expected loss.
The major difference among different boosting algorithms is the loss function. For
example, AdaBoost [8] has the exponential loss function, L2 boosting [9] has the
squared error loss function, sparse boosting [10] has the penalized loss function and
HingeBoost [11] has the weighted hinge loss function. Recently, more various
versions of boosting algorithms have been proposed. See, for example, Bühlmann
and Hothorn [12] for the twin boosting; Komori and Eguchi [13] for the
pAUCBoost; Wang [14] for the twin HingeBoost; Zhao [15] for the GSBoosting and
Yang and Zou [16] for the ER-Boost. Besides these extensions, much effort has been
made in understanding the advantages of boosting such as relatively lower
over-fitting risk, smaller computational cost, and simpler adjustment to include
additional constraints.

In this chapter we review some sparse boosting based methods for the following
high-dimensional problems based on three research papers. First, a sparse boosting
method to select important biomarkers is studied for the right censored survival data
with high-dimensional biomarkers [17]. Then, a two-step sparse boosting to carry out
the variable selection and the model-based prediction is studied for the high-
dimensional longitudinal observations measured repeated over time [18]. Finally, a
multi-step sparse boosting method to identify patient subgroups that exhibit different
treatment effects is studied for the high-dimensional dense longitudinal observations
[19]. This chapter intends to solve the problem of how to improve the accuracy and
calculation speed of variable selection and parameter estimation in high-dimensional
data. It aims to expand the application scope of sparse boosting and develop new
methods of high-dimensional survival analysis, longitudinal data analysis, and
subgroup analysis, which has great application prospects.

The rest of the chapter is arranged as follows. In Section 2, a sparse boosting
method to fit high-dimensional survival data is studied. In Section 3, a two-step
sparse boosting approach to carry out variable selection and model-based prediction
by fitting high-dimensional models with longitudinal data is studied. In Section 4, a
subgroup identification method incorporating multi-step sparse boosting algorithm
for high-dimensional dense longitudinal data is studied. Finally, Section 5 provides
concluding remarks.

2. Sparse boosting for survival data

Survival time data are usually referred to time-to-event data and they are usually
censored. Predicting survival time and identifying the risk factors can be very
helpful for patient treatment selection, disease prevention strategy or disease man-
agement in evidence-based medicine. A well-known model in survival analysis is
the Cox proportional hazards (PH) model [20] which assumes multiplicative
covariate effects in the hazards function. Another popular model is the accelerated
failure time (AFT) model [21] which assumes that the covariate effect is to acceler-
ate or decelerate the life time of a disease. The coefficients in the regression model
have the direct interpretation of the covariate effects on the mean survival time.
Recently, researchers developed boosting methods to analyze survival data. For
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example, Schmid and Hothorn [22] proposed a flexible boosting method for para-
metric AFT models, and Wang and Wang [23] proposed Buckley-James boosting
for survival data with right censoring and high dimensionality.

In this section, a sparse boosting method to fit high-dimensional varying-
coefficient AFT models is presented. In particular, the sparse boosting techniques
for right censored survival data is studied. In Section 2.1, the varying-coefficient
AFT model for survival data is formulated and a detailed sparse boosting algorithm
to fit the model is proposed. In Section 2.2, the proposed sparse boosting techniques
through simulation studies is evaluated. In Section 2.3, the performance of sparse
boosting via a lung cancer data example is examined.

2.1 Methodology

2.1.1 Model and estimation

Let Ti and Ci be the logarithm of survival time and censoring time for the ith
subject in a random sample of size n respectively. In reality Yi ¼ min Ti,Cif g and the
censoring indicator δi ¼ I Ti ≤Cið Þ [24] are observed. Denote Xi ¼ Xi,1,⋯,Xi,p�1

� �
to

be the corresponding (p-1)-dimensional predictors such as gene expressions or bio-
markers for the ith subject and Ui to be the univariate index variable. Our observed
data set Xi, δi,Yi,Uið Þ : Xi ∈ IRp�1, δi ∈ 0, 1f g,Yi ∈ IR,Ui ∈ IR, i ¼ 1, 2,⋯, n

� �
is an

independently and identically distributed random sample from X, δ,Y,Uð Þ. The
varying-coefficient AFT model is:

Ti ¼ β0 Uið Þ þ
Xp�1

j¼1

Xi,jβ j Uið Þ þ εi, i ¼ 1, … , n, (1)

where β0 :ð Þ, β1 :ð Þ,⋯, βp�1 :ð Þ are the unknown varying-coefficient functions of
confounder U and εi is the random error with E εijXi,Uið Þ ¼ 0.

A weighted least squares estimation approach is adopted. Let wi‘s be the
Kaplan–Meier weights [25], which are the jumps in the Kaplan–Meier estimator

computed as w1 ¼ δ 1ð Þ
n and wi ¼ δ ið Þ

n�iþ1

Qi�1
j¼1

n�j
n�jþ1

� �δ jð Þ
, i ¼ 2, … , n. Let Y 1ð Þ ≤⋯≤Y nð Þ

be the order statistics of Yi0 s, δ 1ð Þ,⋯, δ nð Þ be the corresponding censoring indicators
of the ordered Yi0 s, and X 1ð Þ,j,⋯,X nð Þ,j, j ¼ 1,⋯, p� 1 and U 1ð Þ,⋯,U nð Þ are defined
similarly. Then the weighed least squares loss function is

Xn
i¼1

wi Y ið Þ � β0 U ið Þ
� ��

Xp�1

j¼1

X ið Þ,jβ j U ið Þ
� � !2

: (2)

Let B :ð Þ ¼ B1 :ð Þ, … ,BL :ð Þð ÞT be an equal-spaced B-spline basis, where L is
the dimension of the basis. Under certain smoothness conditions, the Curry-
Schonberg theorem [26] implies that for every smooth function β j :ð Þ, it can be
approximated by

β j :ð Þ≈BT :ð Þγ j, j ¼ 0,⋯, p� 1, (3)

where γ j is a vector of length L. Then the weighted least squares loss function
Eq. (2) can be approximated by
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Xn
i¼1

wi Y ið Þ � BT U ið Þ
� �

γ0 �
Xp�1

j¼1

X ið Þ,jBT U ið Þ
� �

γ j

 !2

: (4)

Denote by ~Y ¼ Y 1ð Þ,⋯,Y nð Þ
� �T, X ið Þ,0 ¼ 1 for i ¼ 1,⋯, n, ~X j ¼

B U 1ð Þ
� �

X 1ð Þ,j,⋯,B U nð Þ
� �

X nð Þ,j
� �T, ~X ¼ ~X0,⋯, ~Xp�1

� �
, W ¼ diag w1,⋯,wnð Þ and γ ¼

γT0 ,⋯, γTp�1

� �T
. Then the objective function Eq. (4) may be written in the following

matrix form:

~Y � ~Xγ
� �T

W ~Y � ~Xγ
� �

: (5)

The estimation may yield close-form solution for the coefficients when dimen-
sionality p is small or moderate. With high dimensionality the solution cannot be

easily achieved. Let γ K̂½ � ¼ γ
K̂½ �
0

� �T

,⋯, γ
K̂½ �
p�1

� �T
 !T

be the estimator of γ from

sparse boosting approach with weighted square loss function Eq. (5), and K̂ is the
estimated number of stopping iterations. Then the estimates of coefficient function
are given by

β̂ j uð Þ ¼ BT uð Þγ K̂½ �
j , j ¼ 0,⋯, p� 1: (6)

Instead of using the regularized estimation approaches, a sparse boosting

method to estimate γ K̂½ � is presented in the following subsection.

2.1.2 Sparse boosting techniques

The key idea of sparse boosting is to replace the empirical risk function in L2
boosting with the penalized empirical risk function which is a combination of
squared loss and the trace of boosting operator as a measure of boosting complexity,
and then perform gradient descent in a function space iteratively. Thus sparse
boosting produces sparser models compared to L2 boosting. The g-prior minimum
description length (gMDL) proposed by [27] can be used as the penalized empirical
risk function to estimate the update criterion in each iteration and the stopping
criterion. The gMDL takes the form:

gMDL RSS, trace Bð Þð Þ ¼ log Sð Þ þ trace Bð Þ
n

log
~Y
T ~Y � RSS

trace Bð Þ � S

 !
,

S ¼ RSS
n� trace Bð Þ :

(7)

Here RSS is the residual sum of squares and B is the boosting operator. The
model that achieves the shortest description of data will be selected. The advantage
is that it has a data-dependent penalty for each dimension since it is explicitly given
as a function of data only, thus the selection of the tuning parameter can be avoided.

The sparse boosting procedure is described in details. The initial value of γ is set to
be a zero vector, i.e. γ k½ � ¼ 0 for k ¼ 0,while in each of the kth iteration (1≤ k≤K forK
being the total number of iterations) only the current residualR k½ � ¼ ~Y � ~Xγ k�1½ � is used
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to regress every jth working element ~X j, j ¼ 0,⋯, p� 1. The fit denoted by λ̂
k½ �
j

can be obtained byminimizing theweighted squared loss function

R k½ � � ~X jλ
� �T

W R k½ � � ~X jλ
� �

with respect to λ. Hence the weighted least squared

estimate is λ̂
k½ �
j ¼ ~X j

� �T
W ~X j
� �h i�1

~X j
� �T

WR k½ �, the corresponding hatmatrix isH j ¼
~X j
� �

~X j
� �T

W ~X j
� �h i�1

~X j
� �T

W and theweighted residual sum of squares is RSS k½ �
j ¼

R k½ � � ~X jλ̂
k½ �
j

� �T
W R k½ � � ~X jλ̂

k½ �
j

� �
. The selected component ŝk can be obtained by:

ŝk ¼ argmin0≤ j≤ p�1gMDL RSS k½ �
j , trace B k½ �

j

� �� �
, (8)

where B 1½ �
j ¼ H j and B k½ �

j ¼ I � I �H j
� �

I � νHŝk�1

� �
:⋯: I � νHŝ1ð Þ for k> 1 is the

boosting operator for selecting jth component in the kth iteration. Therefore, at
each iteration there is only one working component ~Xŝk to be chosen, and only the

corresponding coefficient vector γ k½ �
ŝk

changes, i.e. γ k½ �
ŝk

¼ γ k�1½ �
ŝk

þ νλ̂
k½ �
ŝk , where ν is the

step size, while all the other γ k½ �
j for j 6¼ ŝk remain the same. This process is repeated

for K iterations and estimate the stopping iteration K by.

K̂ ¼ argmin1≤ k≤KgMDL RSS k½ �
ŝk
, trace B k½ �

� �� �
, (9)

where B k½ � ¼ I � I � νHŝk

� �
:⋯: I � νHŝ1ð Þ.

From this sparse boosting procedure, the estimator of γ is obtained as

γ K̂½ � ¼ γ
K̂½ �
0

� �T

,⋯, γ
K̂½ �
p�1

� �T
 !T

. The sparse boosting algorithm for the

varying-coefficient AFT model can be summarized as follows:
Sparse Boosting Algorithm for Varying-Coefficient AFT Model.

a. Initialization. Set k ¼ 0 and γ k½ �
0 ¼ 0,⋯, γ k½ �

p�1 ¼ 0 (component-wise).

b. Iteration. k ¼ kþ 1. Compute ŝk ¼ argmin0≤ j≤ p�1gMDL RSS k½ �
j , trace B k½ �

j

� �� �
,

where B 1½ �
j ¼ H j and B k½ �

j ¼ I � I �H j
� �

I � νHŝk�1

� �
:⋯: I � νHŝ1ð Þ for k> 1.

c. Update. γ k½ �
ŝk

¼ γ k�1½ �
ŝk

for j 6¼ ŝk and γ k½ �
ŝk

¼ γ k�1½ �
ŝk

þ νλ̂
k½ �
ŝk , where ν is the step size.

d. Iteration. Repeat step (b)-(c) for K iterations.

e. Stopping. Estimate K̂ ¼ argmin1≤ k≤KgMDL RSS k½ �
ŝk
, trace B k½ �

� �� �
, where

B k½ � ¼ I � I � νHŝk

� �
:⋯: I � νHŝ1ð Þ.Thus, γ K̂½ � ¼ γ

K̂½ �
0

� �T

,⋯, γ
K̂½ �
p�1

� �T
 !T

is

the estimate for γ and β̂ j uð Þ ¼ BT uð Þγ K̂½ �
j , j ¼ 0,⋯, p� 1 are the estimators for

varying coefficients. The final estimator of ~Y is ~Y
K̂½ � ¼ ~Xγ K̂½ �.

According to [10] and references therein, the selection of step size ν is of minor
importance as long as it is small. A smaller value of ν achieves higher prediction
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accuracy while requires a larger number of boosting iterations and more computing
time. A typical value used in literature is ν ¼ 0:1.

2.2 Simulation

The performance of the above sparse boosting algorithm is evaluated by
studying their performance on simulated data. L2 boosting and sparse boosting
methods are compared in their performance of variable selection and function
estimation. Sparse boosting method is what we present in this section while L2
boosting method is a relatively simpler version and may not achieve sparse solution
in general.

The simulation results from [17] show that both boosting methods can identify
important variables while sparse boosting selects much fewer irrelevant variables
than L2 boosting. Although in-sample prediction errors (defined as
Pn

i¼1δi Yi � Y
K̂½ �
i

� �2

=
Pn

i¼1δi) using L2 boosting is a little bit smaller than using

sparse boosting since the former has larger model sizes, the average of root mean

integrated squared errors (defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P5
j¼0
Pn

i¼1 β j uið Þ � β̂ j uið Þ
� �2r

) using sparse

boosting is much smaller than that using L2 boosting. Furthermore, when the
smoothness assumption in Curry-Schonberg theorem is violated for the coefficient
functions, the performance of variable selection remains good. In summary, sparse
boosting outperforms L2 boosting in terms of parameter estimation and variable
selection.

2.3 Lung cancer data analysis

Lung cancer is the top cancer killer for people in the U.S. Identifying relevant
gene expressions in lung cancer is important for treatment and prevention. Our data
is from a large multi-site blinded validation study [28] with 442 lung adenocarci-
nomas. Age is treated as the potential confounder in this analysis, since it is usually
strongly correlated with survival time [29]. After removing missing measurements
and predictors in overall survival, a total of 439 patients are left in the analysis. For
each patient, 22,283 gene expressions are available. The median follow-up time is
46 months (range: 0.03 to 204 months) with the overall censoring rate 46.47 %. The
median age at diagnosis is 65 years (range: 33 to 87 years). After adopting a marginal
screening procedure to screen out irrelevant genes, variable selection approaches
are used to identify important genes associated with lung cancer. With the aim of
comparison, except L2 boosting and the proposed sparse boosting, the following
existing variable selection approaches for constant-coefficient AFT models are also
considered: Buckley-James boosting with linear least squares [23], Buckley-James
twin boosting with linear least squares [23], Buckley-James regression with elastic
net penalty [30] and SCAD penalty respectively.

The results from [17] show that L2 boosting and sparse boosting for varying-
coefficient AFT model not only produce relatively sparser model, but also have
smaller in-sample and out-of-sample prediction error compared to the four
methods for constant-coefficient AFT model. Again, sparse boosting produce
even sparser model than L2 boosting. In conclusion, including age in the
varying-coefficient AFT model could lead to more accurate estimate than constant-
coefficient AFT model and the proposed sparse boosting method for varying-
coefficient AFT model has good performance in terms of estimation, prediction as
well as sparsity.

44

Computational Statistics and Applications



3. Two-step sparse boosting for longitudinal data

Longitudinal data contain repeated measurements collected from the same
respondents over time. The assumption that all measurements are independent does
not hold for such data. One important question in longitudinal analysis is how to
make efficient inference by taking into account of the within subjects correlation.
This question has been investigated in depth by many researchers [31, 32] for
parametric models. Semiparametric and nonparametric models for longitudinal
data are also presented in the literature, see [33, 34]. Recently, there are some
development on longitudinal data with high-dimensionalilty using varying-
coefficient models [35, 36]. All previous studies adopted the penalty methods.

In this section, a two-step sparse boosting approach is presented to preform the
variable selection and the model-based prediction. Specifically, high-dimensional
varying-coefficient models with longitudinal data will be considered. In the first
step, the sparse boosting approach is utilized to obtain an estimate of the correlation
structure. In the second step, the within-subject correlation structure is considered
and variable selection and coefficients estimation are achieved by sparse boosting
again. The rest of this section is arranged as follows. In Section 3.1, the varying-
coefficient model for longitudinal data is formulated and a two-step sparse boosting
algorithm is presented. In Section 3.2, simulation studies are conducted to illustrate
the validity of the two-step sparse boosting method. In Section 3.3, the performance
of two-stage method is assessed by studying yeast cell cycle gene expression data.

3.1 Methodology

3.1.1 Model and estimation

Let Yij be the continuous outcome for the jth measurement of individual i taken
at time tij ∈T, where T is the time interval on which the measurements are taken.
Denote Xij ¼ Xij,1,⋯,Xij,p�1

� �
to be the corresponding (p-1)-dimensional covariate

vector. The varying-coefficient model which can capture the dynamical impacts of
the covariates on the response variable is considered:

Yij ¼ β0 tij
� �þ

Xp�1

d¼1

Xij,dβd tij
� �þ εij, i ¼ 1,⋯, n, j ¼ 1,⋯, ni, (10)

where β0 :ð Þ, β1 :ð Þ,⋯, βp�1 :ð Þ are the unknown smooth coefficient functions of

time and εi ¼ εi1,⋯, εinið ÞT, i ¼ 1,⋯, n are multivariate error terms with mean zero.
Errors are assumed to be uncorrelated for different i, but components of εi are
correlated with each other. Without loss of generality, the balanced longitudinal
study is considered in the following implementation, i.e., tij ¼ tkj, and ni ¼ m for all i.

The estimation procedure is presented below. In the first step, the within-subject
correlation is ignored first and the coefficients are estimated by minimizing the
following least squares loss function:

Xn
i¼1

Xm
j¼1

Yij � β0 tij
� ��

Xp�1

d¼1

Xij,dβd tij
� �

 !2

: (11)

The B-spline basis is used to estimate the coefficient functions
β0 :ð Þ, β1 :ð Þ,⋯, βp�1 :ð Þ. Denote B :ð Þ ¼ B1 :ð Þ, … ,BL :ð Þð ÞT to be an equal-spaced
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B-spline basis of dimension L. Under certain smoothness assumptions, function
βd :ð Þ can be approximated by

βd :ð Þ≈BT :ð Þγd, d ¼ 0,⋯, p� 1, (12)

where γd is a loading vector of length L. Then the least squares loss function
Eq. (11) is close to

Xn
i¼1

Xm
j¼1

Yij � BT tij
� �

γ0 �
Xp�1

d¼1

Xij,dBT tij
� �

γd

 !2

: (13)

Further denote Yi ¼ Yi1,⋯,Yimð ÞT, Y ¼ YT
1 ,⋯,YT

n

� �T
,Xij,0 ¼ 1, ~Xi,d ¼

B ti1ð ÞXi1,d,⋯,B timð ÞXim,dð ÞT, ~Xi ¼ ~Xi,0,⋯, ~Xi,p�1
� �

, ~X ¼ ~X
T
1 ,⋯, ~X

T
n

� �T
and γ ¼

γT0 ,⋯, γTp�1

� �T
. Then the target functionEq. (13) can be expressed in thematrix format:

Xn
i¼1

Yi � ~Xiγ
� �T

Yi � ~Xiγ
� � � Y � ~Xγ

� �T
Y � ~Xγ
� �

: (14)

Denote γ
bK1

� �
to be the estimator of γ by sparse boosting with squared loss

function Eq. (14) being loss function, where cK1 is the estimated stopping iterations

in this step. There is no exact closed form for γ
bK1

� �
since it is derived from an

iterative algorithm. However it can be evaluated very fast in a computer imple-
mentation. The detailed algorithm will be presented in the next subsection.

The first step coefficient estimates are given by

~βd tð Þ ¼ BT tð Þγ bK1

� �
d , d ¼ 0,⋯, p� 1: (15)

Write ε̂i ¼ Yi � ~Xiγ
bK1

� �
, i ¼ 1,⋯, n. The m�m covariance matrix Cov Yið Þ � Σ

can be estimated by the following empirical estimator

dX ¼ 1
n

Xn
i¼1

ε̂iε̂
T
i : (16)

In the second step, the estimated correlation structure within repeated mea-
surements is taken into account to form the weighted least squares loss function as
follows:

Xn
i¼1

Yi � ~Xiγ
⋆� �TΣ̂�1

Yi � ~Xiγ
⋆� � � Y � ~Xγ⋆

� �T
W Y � ~Xγ⋆
� �

, (17)

whereW ¼ diag Σ̂�1
,⋯, Σ̂�1

� �
is the estimated n�mð Þ � n�mð Þ weight matrix.

Denote γ⋆
bK2

� �
to be the estimator of γ⋆ by sparse boosting with weighted loss function

Eq. (17) being the loss function, wherecK2 is the estimated stopping iterations in the
second step. Then the coefficient estimates from the second step are given by

β̂d tð Þ ¼ BT tð Þγ⋆
bK2

� �
d , d ¼ 0,⋯, p� 1: (18)
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The reliable estimates for the coefficient functions could then be obtained. More

details about how to use sparse boosting to get γ
bK1

� �
and γ⋆

bK2

� �
are provided in the

following subsection.

3.1.2 Two-step sparse boosting techniques

gMDL can be adopted as the penalized empirical risk function to estimate the
update criterion in each iteration and the stopping criterion. gMDL can be
expressed in the following form:

gMDL RSS, trace Bð Þð Þ ¼ log Fð Þ þ trace Bð Þ
n�m

log
YTY � RSS
trace Bð Þ � F

� �
,

F ¼ RSS
n�m� trace Bð Þ ,

(19)

where B is the boosting operator and RSS is the residual sum of squares.
The two-step sparse boosting approach is presentedmore specifically. In the first

step, the start value of γ is set to zero vector, i.e. γ 0½ � ¼ 0, and in each of the k1th iteration
(0< k1 ≤K1, andK1 is themaximumnumber of iterations considered in the first step),
the residual R k1½ � ¼ Y � ~Xγ k1�1½ � in present iteration is used to fit each of the dth

component ~X,d ¼ ~X
T
1,d,⋯, ~X

T
n,d

� �T
, d ¼ 0,⋯, p� 1 by treating all the within-subject

observations uncorrelated. Then the fit denoted by λ̂
k1½ �
d can be calculated byminimizing

the squared loss function R k1½ � � ~X,dλ
� �T

R k1½ � � ~X,dλ
� �

with respect to λ. Therefore, the

least squares estimate is λ̂
k1½ �
d ¼ ~X,d

� �T ~X,d
� �h i�1

~X,d
� �T

R k1½ �, the corresponding hat

matrix isHd ¼ ~X,d
� �

~X,d
� �T ~X,d

� �h i�1
~X,d
� �T

and the residual sum of squares is

RSS k1½ �
d ¼ R k1½ � � ~X,dλ̂

k1½ �
d

� �T
R k1½ � � ~X,dλ̂

k1½ �
d

� �
. The chosen element ŝk1 is attained by:

ŝk1 ¼ argmin0≤ d≤ p�1gMDL RSS k1½ �
d , trace B k1½ �

d

� �� �
, (20)

where B 1½ �
d ¼ Hd and B k1½ �

d ¼ I � I �Hdð Þ I � νHŝk1�1

� �
:⋯: I � νHŝ1ð Þ for k1 > 1 is

the first step boosting operator for choosing dth element in the k1th iteration.
Hence, there is an unique element ~X,̂sk1

to be selected at each iteration, and only the

corresponding coefficient vector γ k1½ �
ŝk1

changes, i.e., γ k1½ �
ŝk1

¼ γ k1�1½ �
ŝk1

þ νλ̂
k1½ �
ŝk1

, where ν is

the pre-specified step-size parameter. All the other γ k1½ �
d for d 6¼ ŝk1 keep unchanged.

This procedure is repeated for K1 times and the number of iterations K1 can be
estimated by

cK1 ¼ argmin1≤ k1 ≤K1
gMDL RSS k1½ �

ŝk1
, trace B k1½ �

� �� �
, (21)

where B k1½ � ¼ I � I � νHŝk1

� �
:⋯: I � νHŝ1ð Þ.

From the first step of sparse boosting, the estimator of γ is obtained by

γ
bK1

� �
¼ γ

bK1

� �
0

� �T

,⋯, γ
bK1

� �
p�1

� �T !T

. Then the weight matrix W can be easily

obtained too.
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In the second step, sparse boosting is used again by taking into account of the
correlation structure estimator for the repeated measurements estimated in the first
step. The initial value of γ⋆ is set to be the coefficient estimator from the first step of

sparse boosting, i.e. γ⋆ 0½ � ¼ γ
bK1

� �
, and in each of the k2th iteration (0< k2 ≤K2, and

K2 is the maximum number of iterations under consideration in the second step),
the residual R⋆ k2½ � ¼ Y � ~Xγ⋆ k2�1½ � in current iteration is used to fit each of the dth
working element ~X,d, d ¼ 0,⋯, p� 1 by incorporating the within-subject correla-

tion estimator from the first step. Then the fit denoted by λ̂
⋆ k2½ �
d can be obtained by

minimizing the weighted squared loss function R⋆ k2½ � � ~X,dλ
� �T

W R⋆ k2½ � � ~X,dλ
� �

with respect to λ. Thus, the weighted least squares estimate is λ̂
⋆ k2½ �
d ¼

~X,d
� �T

W ~X,d
� �h i�1

~X,d
� �T

WR⋆ k2½ �, the corresponding hat matrix is H⋆
d ¼

~X,d
� �

~X,d
� �T

W ~X,d
� �h i�1

~X,d
� �T

W and the weighted residual sum of squares is

RSS⋆ k2½ �
d ¼ R⋆ k2½ � � ~X,dλ̂

⋆ k2½ �
d

� �T
W R⋆ k2½ � � ~X,dλ̂

⋆ k2½ �
d

� �
. The chosen element ŝk2 can be

obtained by:

ŝk2 ¼ argmin0≤ d≤ p�1gMDL RSS⋆ k2½ �
d , trace B⋆ k2½ �

d

� �� �
, (22)

where B⋆ 1½ �
d ¼ I � I � B

bK1

� �� �
I �H⋆

d

� �
and B⋆ k2½ �

d ¼ I �

I � B
bK1

� �� �
I �H⋆

d

� �
I � νH⋆

ŝk2�1

� �
:⋯: I � νH⋆

ŝ1

� �
for k2 > 1 is the second step

boosting operator for choosing dth element in the k2th iteration. Thus, there is an
unique element ~X,̂sk2

to be selected at each time, and only the corresponding

coefficient vector γ⋆ k2½ �
ŝk2

change, i.e., γ⋆ k2½ �
ŝk2

¼ γ⋆ k2�1½ �
ŝk2

þ νλ̂
⋆ k2½ �
ŝk2

. While all the other γ⋆ k2½ �
d

for d 6¼ ŝk2 remain the same. This procedure is repeated for K2 times and the
estimated stopping iterations cK2 is

cK2 ¼ argmin1≤ k2 ≤K2
gMDL RSS⋆ k2½ �

ŝk2
, trace B⋆ k2½ �

� �� �
, (23)

where B⋆ k2½ � ¼ I � I � B
bK1

� �� �
I � νH⋆

ŝk2

� �
:⋯: I � νH⋆

ŝ1

� �
.

From the second step of sparse boosting, the estimator of γ⋆ is arrived by

γ⋆
bK2

� �
¼ γ

⋆ bK2

� �
0

� �T

,⋯, γ
⋆ bK2

� �
p�1

� �T !T

. The two-step sparse boosting algorithm for

varying-coefficient model with longitudinal data can be summarized in the
following form:

Two-step Sparse Boosting Algorithm with Longitudinal Data.
Step I: Use sparse boosting to estimate covariance matrix.

a. Initialization. Let k1 ¼ 0 and γ k1½ �
0 ¼ 0,⋯, γ k1½ �

p�1 ¼ 0.

b. Increase k1 by 1. Calculate ŝk1 ¼ argmin0≤ d≤p�1gMDL RSS k1½ �
d , trace B k1½ �

d

� �� �
,

where B 1½ �
d ¼ Hd and B k1½ �

d ¼ I � I �Hdð Þ I � νHŝk1�1

� �
:⋯: I � νHŝ1ð Þ for k1 > 1.
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c. Update. γ k1½ �
ŝk1

¼ γ k1�1½ �
ŝk1

for d 6¼ ŝk1 and γ k1½ �
ŝk1

¼ γ k1�1½ �
ŝk1

þ νλ̂
k1½ �
ŝk1

, where ν is the

step-size parameter.

d. Iteration. Repeat step (b)-(c) for some large iteration number K1.

e. Stopping. The optimal iteration number can be taken as cK1 ¼
argmin1≤ k1 ≤K1

gMDL RSS k1½ �
ŝk1

, trace B k1½ �
� �� �

, where B k1½ � ¼ I �
I � νHŝk1

� �
:⋯: I � νHŝ1ð Þ.

Thus, γ
bK1

� �
¼ γ

bK1

� �
0

� �T

,⋯, γ
bK1

� �
p�1

� �T !T

is the first step estimator for γ from

sparse boosting and ~βd tð Þ ¼ BT tð Þγ bK1

� �
d , d ¼ 0,⋯, p� 1 are the varying coefficient

estimates ignoring the within-subject correlation. Cov Yið Þ can be estimated by

Σ̂ ¼ 1
n

Xn
i¼1

Yi � ~Xiγ
bK1

� �� �
Yi � ~Xiγ

bK1

� �� �T

:

Step II: Use sparse boosting again by incorporating covariance matrix estimator.

a. Initialization. Let k2 ¼ 0 and γ⋆ k2½ � ¼ γ
bK1

� �
.

b. Increase k2 by 1. Calculate ŝk2 ¼ argmin0≤ d≤ p�1g MDL RSS⋆ k2½ �
d , trace B⋆ k2½ �

d

� �� �
,

where B⋆ 1½ �
d ¼ I � I � B

bK1

� �� �
I �H⋆

d

� �
and B⋆ k2½ �

d ¼ I �

I � B
bK1

� �� �
I �H⋆

d

� �
I � νH⋆

ŝk2�1

� �
:⋯: I � νH⋆

ŝ1

� �
for k2 > 1.

c. Update. γ⋆ k2½ �
ŝk2

¼ γ⋆ k2�1½ �
ŝk2

for d 6¼ ŝk2 and γ⋆ k2½ �
ŝk2

¼ γ⋆ k2�1½ �
ŝk2

þ νλ̂
⋆ k2½ �
ŝk2

.

d. Iteration. Repeat step (b)-(c) for some large iteration number K2.

e. Stopping. The optimal iteration number can be taken as
cK2 ¼ argmin1≤ k2 ≤K2

gMDL RSS⋆ k2½ �
ŝk2

, trace B⋆ k2½ �
� �� �

, where

B⋆ k2½ � ¼ I � I � B
bK1

� �� �
I � νH⋆

ŝk2

� �
:⋯: I � νH⋆

ŝ1

� �
.

Therefore, γ⋆
bK2

� �
¼ γ

⋆ bK2

� �
0

� �T

,⋯, γ
⋆ bK2

� �
p�1

� �T !T

and β̂d tð Þ ¼ BT tð Þγ⋆ bK2

� �
d ,

d ¼ 0,⋯, p� 1 are the final estimator for γ⋆ and varying coefficient estimates by

the two-step sparse boosting. The final estimate for Y is Ŷ ¼ ~Xγ⋆
bK2

� �
.

3.2 Simulation

Simulation studies are conducted to evaluate the performance of the above two-
step sparse boosting algorithm. The following four methods are compared in terms
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of variable selection and function estimation performance. M1: two-step L2
boosting (use squared loss for update criterion and gMDL for stopping criterion);
M2: two-step sparse boosting; M3: two-step lasso (performs lasso regression in the
first step to calculate the estimated within-subject correlation structure using
Eq. (14), and use lasso regression in the second step by taking into account of the
estimated correlation structure) and M4: two-step elastic net regression (similar as
M3 with the elastic net mixing parameter 0.5).

The simulation results from [18] show that all methods are able to identify
important variables. However, in terms of sparsity, the two-step sparse boosting
method preforms best with smallest number of false positives. Both penalization
methods select much more irrelevant variables than boosting methods, with elastic
net selects the most. For two-step sparse boosting, results of variable selection are
quite stable from step I to step II but for the other approaches, the false positives
and thus the sizes of model from step I to step II are expanding. Two-step sparse
boosting yields smallest bias for the coefficients estimation among the competing
methods. The refined estimates after incorporating the within-subject correlation
generally perform better than the initial estimates without taking into account of
the within-subject correlation since the two-step methods gain reduction of bias,
especially when the within-subject correlation is high. In other words, the reduction
of bias from step I to step II are much larger when the within-subject correlation is
higher. This is intuitive as in the second step, the within-subject correlation struc-
ture estimated from the first step have been taken into account. The similar results
obtained for the bias of the estimated covariance matrix. The bias under smaller
within-subject correlation is smaller than under larger within-subject correlation.
The two-step sparse boosting yields smaller bias of the estimated covariance matrix
than other competing methods when the within-subject correlation is high. In
summary, the performance of variable selection and functional coefficients estima-
tion for two-step sparse boosting is quite satisfactory.

3.3 Yeast cell cycle gene expression data analysis

The cell cycle is one of the most important activities in life by which cells grow,
replicate their chromosomes, undergo mitosis, and split into daughter cells. Thus,
identifying cell cycle-regulated genes becomes very important. Adopting a model-
based approach, Luan and Li [37] identified n ¼ 297 cell cycle-regulated genes
based on the α-factor synchronization experiments. All gene expression levels were
measured at m ¼ 18 different time points covering two cell-cycle periods. Using the
same subset of the original data as in [38], a total p ¼ 96 transcriptional factors
(TFs) are included as predictors in the downstream analysis. Wei, Huang and Li
[39] proved that the effects of the TFs on gene expression levels are time-
dependent. After the independence screening by l2-norm [40] to screen out the
irrelevant predictors at first step, several methods can be used to identify the key
TFs involved in gene regulation. Except two-step L2 boosting and two-step sparse
boosting which take into account of the within-subject correlation in the second
step, one-step L2 boosting and one-step sparse boosting which ignore the within-
subject correlation are also considered for better comparison. Besides, some two-
step penalized approaches are also considered: two-step lasso, two-step adaptive
lasso and two-step elastic net (the elastic net mixing parameter 0.5).

The results from [18] show that boosting approaches yield sparser model than
the penalized methods. Sparse boosting yields even sparser model and smaller
errors in terms of estimation and prediction than L2 boosting. Two-step boosting
achieves better performance than one-step boosting with smaller estimation and
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prediction errors. Two-step sparse boosting method yields the most sparse model,
with the smallest in-sample and out-of-sample prediction errors compared to other
methods. In terms of the selected TFs, there is a significant overlap between two-
step sparse boosting and each of the other methods. In conclusion, the two-step
sparse boosting approach performs quite well in terms of variable selection, coeffi-
cients estimation and prediction and can provide useful information in identifying
the important TFs that take part in the network of regulations.

4. Multi-step sparse boosting for subgroup identification

As personalized medicine is gaining popularity, identification of subgroups of
the patients that can gain a higher efficacy from the treatment becomes greatly
important. Recently, significant statistical approaches have been proposed to iden-
tify subgroups of patients who may be suitable for different treatments. Tradition-
ally, subgroup identification is achieved by parametric partitioning approaches such
as Bayesian approaches [41] or classification and regression tree (CART) [42].
Recently, recursive partitioning methods gain popularity since they achieve greater
generalizability and efficiency. Such methods include MOB [43], PRIM [44],
sequential-BATTing [45] and other non-parametric methods. For a detailed litera-
ture review of subgroup identification refer to Lipkovich et al. [46]. In this section,
a sparse boosting based subgroup identification method is presented in the context
of dense longitudinal data.

In particular, a formal subgroup identification method for high-dimensional
dense longitudinal data is presented. It incorporates multi-step sparse boosting into
the homogeneous pursuit via change point detection. Firstly, sparse boosting algo-
rithm for individual modeling is first performed to obtain initial estimates. Then,
change point detection via binary segmentation is used to identify the subgroup
structure of patients. Lastly, the model on each identified subgroups is refitted and
again sparse boosting is utilized to remove irrelevant predictors and yield reliable
final estimates. The rest of the section is organized as follows. In Section 4.1, the
subgroup model is formulated and a detailed method for subgroup identification
and estimation is presented. In Section 4.2, the subgroup identification technique is
evaluated through simulation studies. In Section 4.3, the feasibility and applicability
of the approach is validated by studying a wallaby growth dataset.

4.1 Methodology

4.1.1 Patients model

Denote Yit be the continuous measurement of the tth follow-up for patient i,
where i ¼ 1, ⋯, n, t ¼ 1, ⋯, Ti. Let Xit ¼ Xit,1, ⋯, Xit,p

� �
be the corresponding

p-dimensional predictors. Assume n patients are independent. The following
longitudinal model for the patients is considered:

Yit ¼ ~βi,0 þ
Xp

j¼1

Xit,j~βi,j þ εit, i ¼ 1,⋯, n, t ¼ 1, ⋯, Ti: (24)

where εi ¼ εi1, ⋯, εiTið ÞT, i ¼ 1,⋯, n are multivariate error terms with mean
zero. Errors are assumed to be uncorrelated for different i, but components of εi are
correlated with each other.
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Moreover, the model is further assumed to have the following subgroup
structure:

~βi,j ¼

β1,j when i∈Ω1,j

β2,j when i∈Ω2,j

⋮ ⋮
βN jþ1,j when i∈ΩN jþ1,j

8>>><
>>>:

(25)

The partition for regression coefficient ~βi,j : 1≤ i≤ n
n o

is

Ωk,j : 1≤ k≤N j þ 1
� �

, which is unknown, and thus there are N j þ 1 subgroups
for the jth predictor. All patients are divided into at least max j N j þ 1

� �
and at mostQp

j¼0 N j þ 1
� �

subgroups by the model. The patients in the same subgroup share a
similar relationship between the response and the predictors and have the same set
of regression coefficients while different subgroups have different overall relation-
ship between response and covariates. The main aim is to investigate the effects of
the predictors on the response for different subgroups.

However, if the number of predictors under consideration is much larger than
the number of patients and the number of follow-ups, a serious challenge may arise
to estimate regression coefficients. Therefore, instead of adopting traditional
methods (eg, MLE), sparse boosting method can be used to estimate the regression
coefficients. With this, the dimensionality of features can be reduced and the
coefficients of parameters can be obtained simultaneously.

4.1.2 Subgroup identification and estimation

Denote ~βi ¼ ~βi,0, ⋯, ~βi,p

� �T
and ~β ¼ ~β

T
1 , ⋯, ~β

T
n

� �T
. Firstly, an initial estima-

tor for ~βi is calculated for each subject i through sparse boosting approach using his
or her own repeated measurements data; then, homogeneity pursuit via change
point detection can be used to identify the change points among βk,js; lastly, the ~βis
can be replaced by the identified subgroup structure, and the final estimator of
regression coefficients can be obtained by the sparse boosting algorithm again. The
steps for estimating ~βi is outlined as below.

In the first step, individualized modeling via sparse boosting is performed. For
each of the ith individual, the initial coefficients ~βi can be estimated by minimizing
the following least squares loss function:

XTi

t¼1

Yit � ~βi,0 �
Xp

j¼1

Xit,j~βi,j

 !2

: (26)

Let Yi ¼ Yi1, ⋯, YiTið ÞT, Xit,0 ¼ 1, Xi,j ¼ Xi1,j, ⋯, XiTi,j
� �T, Xi ¼

Xi,0, ⋯, Xi,p
� �

. Then the function Eq. (26) can be written in the matrix form:

Yi �Xi~βi
� �T

Yi �Xi~βi
� �

: (27)

Denote ~β
L̂i½ �
i ¼ ~β

L̂i½ �
i,0 ⋯, ~β

L̂i½ �
i,p

� �T

to be the estimator of ~βi by sparse boosting

with Eq. (27) being loss function, where L̂i is the estimated stopping iterations in
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this step. This is the initial estimator of ~βi. The detailed sparse boosting algorithm
will be presented in the next subsection.

In the second step, homogeneity pursuit via change point detection is
performed. Binary segmentation algorithm [47] is used to detect the change points

among ~βi,j, i ¼ 1, ⋯, n and to identify the subgroup structure. Let ~β
L̂i½ �
i,j be the

jþ 1ð Þth component of ~β
L̂i½ �
i . For the jth covariate, ~β

L̂i½ �
i,j , i ¼ 1, ⋯, n, are sorted in

ascending order, and denoted by b 1ð Þ ≤⋯≤ b nð Þ. Denote ri,j be the rank of ~β
L̂i½ �
i,j .

For any 1≤ l1 < l2 ≤ n, denote the scaled difference between the partial means of
the first τ � l1 þ 1 observations and the last l2 � τ observations to be

Hl1l2 τð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � τð Þ τ � l1 þ 1ð Þ

l2 � l1 þ 1

s Pl2
i¼τþ1b lð Þ
l2 � τ

�
Pτ

i¼l1b ið Þ
τ � l1 þ 1

 !
: (28)

Denote δ to be the threshold, which is a tuning parameter and can be selected by
AIC or BIC, then the binary segmentation algorithm is as follows:

1.Find t̂1 such that

H1,n t̂1ð Þ ¼ max
1≤ τ< n

H1,n τð Þ: (29)

If H1,n t̂1ð Þ≤ δ, there is no change points among b lð Þ, l ¼ 1, ⋯, n, and the
change point detection process terminates. Otherwise, t̂1 is added to the set of
change points and the region τ : 1≤ τ≤ nf g is divided into two subregions:
τ : 1≤ τ≤ t̂1f g and τ : t̂1 þ 1≤ τ≤ nf g.

2.Find the change points in the two subregions derived in part (1), respectively.
Consider the region τ : 1≤ τ≤ t̂1f g first. Find t̂2 such that

H1,̂t1 t̂2ð Þ ¼ max
1≤ τ< t̂1

H1,̂t1 τð Þ: (30)

If H1,̂t1 t̂2ð Þ≤ δ, there is no change point in the region τ : 1≤ τ≤ t̂1f g.
Otherwise, add t̂2 to the set of change points and divide the region
τ : 1≤ τ≤ t̂1f g into two subregions: τ : 1≤ τ≤ t̂2f g and τ : t̂2 þ 1≤ τ≤ t̂1f g.
Similarly, for the region τ : t̂1 þ 1≤ τ≤ nf g, t̂3 can be found such that

Ht̂1þ1,n t̂3ð Þ ¼ max
t̂1þ1≤ τ< n

Ht̂1þ1,n τð Þ: (31)

If Ht̂1þ1,n t̂3ð Þ≤ δ, there is no change point in the region τ : t̂1 þ 1≤ τ≤ nf g.
Otherwise, add t̂3 to the set of change points and divide the region
τ : t̂1 þ 1≤ τ≤ nf g into two subregions: τ : t̂1 þ 1≤ τ≤ t̂3f g and
τ : t̂3 þ 1≤ τ≤ nf g.

3.For each subregion derived in part (2), the above algorithm is repeated for the
subregion τ : 1≤ τ≤ t̂1f g or τ : t̂1 þ 1≤ τ≤ nf g in part (2) until no change
point is detected in any subregions.

The estimated locations for change points are sorted in increasing order and
denoted by
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t̂ 1ð Þ < t̂ 2ð Þ <⋯< t̂ N̂ jð Þ, (32)

where N̂ j is the number of detected change points and could be used to estimate
N j. Further denote t̂ 0ð Þ ¼ 0, and t̂ N̂ jþ1ð Þ ¼ n. Let. R̂i,j ¼ ℓ : t̂ ℓ�1ð Þ < ri,j ≤ t̂ ℓð Þ

� �
,

1≤ℓ≤ N̂ jþ1, where R̂i,j : 1≤ i≤ n
� �

can be used to estimate the grouping index
Ri,j : 1≤ i≤ n
� �

. The above algorithm can be used to identify the change points for
all j ¼ 0, ⋯, p and correspondingly obtain R̂i,j : 1≤ i≤ n, 0≤ j≤ p

� �
. Let

R̂
⋆
ℓ,j : 1≤ℓ≤ N̂ , 0≤ j≤ p

n o
¼ unique rows of R̂i,j : 1≤ i≤ n, 0≤ j≤ p

� �
, then N̂ is

the estimated total number of subgroups for patients and the patients index in
group ℓ is.

Ω̂ℓ ¼ i : R̂i,j ¼ R̂
⋆
ℓ,j

n o
, 1≤ℓ≤ N̂ : (33)

All the coefficients ~βi,js in the same estimated subgroup Ω̂ℓ are treated to be equal.
In the third step, subgroup modeling is performed by sparse boosting. Incorpo-

rating the patients structure identified in step 2, the model is refitted to each of the
subgroups via sparse boosting with the following least squares loss function

X
i∈ Ω̂ℓ

XTi

t¼1

Yit � ~βi,0 �
Xp

j¼1

Xit,j~βi,j

 !2

, 1≤ℓ≤ N̂ : (34)

Further denote Y⋆
ℓ ¼ YT

Ω̂ℓ 1½ �, ⋯, YT
Ω̂ℓ jΩ̂ℓj½ �

� �T

, X⋆
ℓ,j ¼ XT

Ω̂ℓ 1½ �,j, ⋯, XT
Ω̂ℓ jΩ̂ℓj½ �,j

� �T

,

X⋆
ℓ ¼ X⋆

ℓ,0, ⋯, X⋆
ℓ,p

� �
and ~β

⋆
ℓ ¼ ~β

T
Ω̂ℓ 1½ �, ⋯, ~β

T
Ω̂ℓ jΩ̂ℓj½ �

� �T
for ℓ ¼ 1, ⋯, N̂ , where

Ω̂ℓ i½ � is the ith element of Ω̂ℓ and ∣Ω̂ℓ∣ is the number of elements in Ω̂ℓ. The function
Eq. (34) can be written in the matrix form:

Y⋆
ℓ �X⋆

ℓ
~β
⋆
ℓ

� �T
Y⋆
ℓ �X⋆

ℓ
~β
⋆
ℓ

� �
, 1≤ℓ≤ N̂ : (35)

Denote ~β
⋆ L̂

⋆
ℓ

� �
ℓ to be the estimate for ~β

⋆
ℓ by sparse boosting with Eq. (35) being

the loss function, where L̂
⋆
ℓ is the estimated number of stopping iterations in this

step. The estimator for coefficient ~βi is

β̂i ¼ ~β
⋆ L̂

⋆
ℓ

� �
ℓ for i∈ Ω̂ℓ

� �
, 1≤ i≤ n: (36)

More details about how to use sparse boosting to obtain ~β
L̂i½ �
i , 1≤ i≤ n

� �
and

~β
⋆ L̂

⋆
ℓ

� �
ℓ , 1≤ℓ≤ N̂

� �
are given in the following subsection.

4.1.3 Multi-step sparse boosting techniques

gMDL can be used as the penalized empirical risk function to estimate the
update criterion in each iteration and the stopping criterion to avoid the selection of
the tuning parameter. gMDL can be expressed in the following form:
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gMDL Y,RSS, trace Bð Þð Þ ¼ log Fð Þ þ trace Bð Þ
∣Y∣

log
YTY � RSS
trace Bð Þ � F

� �
,

F ¼ RSS
∣Y∣� trace Bð Þ ,

(37)

where Y is the vector of response variable, ∣Y∣ is the length of Y, B is the
boosting operator and RSS is the residual sum of squares.

The sparse boosting procedure is described in details. The starting value of ~βi is

set to zero vector, i.e. ~β
0½ �
i ¼ 0, and in each of the lith iteration (0< li ≤Li, and Li is

the maximum number of iterations considered in this step), the residual R li½ � ¼
Yi �Xi~β

li�1½ �
i in present iteration is used to fit each of the jth element Xi,j, j ¼

0, ⋯, p. The fit denoted by λ̂
li½ �
j can be obtained by minimizing the squared loss

function R li½ � � Xi,jλ
� �T

R li½ � � Xi,jλ
� �

with respect to λ. Thus, the least squares esti-

mate is λ̂
li½ �
j ¼ Xi,j

� �T Xi,j
� �h i�1

Xi,j
� �TR li½ �, the corresponding hat matrix is H j ¼

Xi,j
� �

Xi,j
� �T Xi,j

� �h i�1
Xi,j
� �T and the residual sum of squares is RSS li½ �

j ¼

R li½ � � Xi,jλ̂
li½ �
j

� �T
R li½ � � Xi,jλ̂

li½ �
j

� �
. The selected entry ŝli is obtained by:

ŝli ¼ argmin0≤ j≤pgMDL Yi,RSS
li½ �
j , trace B li½ �

j

� �� �
, (38)

where B 1½ �
j ¼ H j and B li½ �

j ¼ I � I �H j
� �

I � νHŝli�1

� �
:⋯: I � νHŝ1ð Þ for li > 1 is the

boosting operator for choosing jth entry in the lith iteration in this step. Hence,
there is an unique element Xi,̂sli

to be selected at each iteration, and only the

corresponding coefficient vector ~β
li½ �
i,̂sli

changes, i.e., ~β
li½ �
i,̂sli

¼ ~β
li�1½ �
i,̂sli

þ νλ̂
li½ �
ŝli
, where ν is

the pre-specified step-size parameter. All the other ~β
li½ �
i,j for j 6¼ ŝli keep unchanged.

This procedure is repeated for Li times and the number of iterations Li can be
estimated by

L̂i ¼ argmin1≤ li ≤Li
gMDL Yi,RSS

li½ �
ŝli
, trace B li½ �

� �� �
, (39)

where B li½ � ¼ I � I � νHŝli

� �
:⋯: I � νHŝ1ð Þ.

From the above sparse boosting approach, the estimator of ~βi is ~β
L̂i½ �
i ¼

~β
L̂i½ �
i,0 , ⋯, ~β

L̂i½ �
i,p

� �T

, i ¼ 1, ⋯, n. Then the subgroup structure can be obtained by

homogeneity pursuit via change point detection.
Next, sparse boosting is used again for each estimated subgroups. The starting

value of ~β
⋆
ℓ is set to zero vector, i.e. ~β

⋆ 0½ �
ℓ ¼ 0, and in each of the l⋆ℓ th iteration

(0< l⋆ℓ ≤L⋆
ℓ , and L⋆

ℓ is the maximum number of iterations considered in this stage),

the residual R⋆ l⋆ℓ½ � ¼ Y⋆
ℓ �X⋆

ℓ
~β
⋆ l⋆ℓ�1½ �
ℓ in present iteration is used to fit each of the jth

component X⋆
ℓ,j, j ¼ 0, ⋯, p. Then the fit denoted by λ̂

⋆ l⋆i½ �
j can be calculated by

minimizing the squared loss function R⋆ l⋆ℓ½ � � X⋆
ℓ,jλ

� �T
R⋆ l⋆ℓ½ � � X⋆

i,jλ
� �

with respect
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to λ. Therefore, the least squares estimate is λ̂
⋆ l⋆ℓ½ �
j ¼ X⋆

ℓ,j

� �T
X⋆

ℓ,j

� �� ��1

X⋆
ℓ,j

� �T
R⋆ l⋆ℓ½ �,

the corresponding hat matrix isH⋆
j ¼ X⋆

ℓ,j

� �
X⋆

ℓ,j

� �T
X⋆

ℓ,j

� �� ��1

X⋆
ℓ,j

� �T
and the

residual sum of squares is RSS
⋆ l⋆ℓ½ �
j ¼ R⋆ l⋆ℓ½ � � X⋆

ℓ,jλ̂
l⋆ℓ½ �
j

� �T

R⋆ l⋆ℓ½ � � X⋆
ℓ,jλ̂

l⋆ℓ½ �
j

� �
. The

chosen element ŝ⋆l⋆ℓ is attained by:

ŝ⋆l⋆ℓ ¼ argmin0≤ j≤ pgMDL Y⋆
ℓ ,RSS

⋆ l⋆ℓ½ �
j , trace B

⋆ l⋆ℓ½ �
j

� �� �
, (40)

where B⋆ 1½ �
j ¼ H⋆

j and B⋆ lℓ½ �
j ¼ I � I �H⋆

j

� �
I � νH⋆

ŝl⋆
ℓ
�1

� �
:⋯: I � νH⋆

ŝ1

� �
for

l⋆ℓ > 1 is the boosting operator for choosing jth element in the l⋆ℓ th iteration in this
stage. Hence, there is an unique element X⋆

ℓ,̂sl⋆
ℓ

to be selected at each iteration, and

only the corresponding coefficient vector ~β
⋆ l⋆ℓ½ �
ℓ,̂sl⋆

ℓ

changes, i.e., ~β
lℓ½ �
ℓ,̂sl⋆

ℓ

¼ ~β
⋆ l⋆ℓ�1½ �
ℓ,̂sl⋆

ℓ

þ νλ̂
l⋆ℓ½ �
ŝl⋆
ℓ

,

where ν is the pre-specified step-size parameter. All the other ~β
⋆ l⋆ℓ½ �
ℓ,j for j 6¼ ŝl⋆ℓ keep

unchanged. This procedure is repeated for L⋆
ℓ times and the number of iterations L⋆

ℓ
can be estimated by

L̂
⋆
i ¼ argmin1≤ lℓ ≤L⋆

i
gMDL Y⋆

ℓ ,RSS
⋆ l⋆ℓ½ �
ŝl⋆
ℓ

, trace B⋆ l⋆ℓ½ �� �� �
, (41)

where B⋆ l⋆ℓ½ � ¼ I � I � νH⋆
ŝl⋆
ℓ

� �
:⋯: I � νH⋆

ŝ1

� �
.

From the second step of sparse boosting, the estimator of ~βℓ is ~β
⋆ L̂

⋆
ℓ

� �
ℓ ¼

~β
⋆ L̂

⋆
ℓ

� �
ℓ,0 , ⋯, ~β

⋆ L̂
⋆
ℓ

� �
ℓ,p

� �T

, ℓ ¼ 1, ⋯, N̂ .

4.2 Simulation

Extensive simulations are conducted to evaluate the performance of the pro-
posed procedure. The accuracy of subgrouping, feature selection, coefficients esti-
mation and prediction are assessed in the setting of different number of patients
and repeated measurements. To understand the advantage of the proposed method
better, the following four approaches are also considered. M1: the homogeneous
model fitting method which treats all patients as one group and use sparse boosting
for the single model to estimate ~β; M2: the heterogeneous model fitting method

which uses initial pre-grouping estimate ~β
L̂i½ �
i as the final estimate of ~βi; M3: same as

the proposed method but in step 2, instead of detecting the change points for

coefficients of each covariate ~β
L̂i½ �
i,j , i ¼ 1, ⋯, n for j ¼ 0, ⋯, p, it detects the

change points among ~β
T L̂1½ �
1 , ⋯, ~β

T L̂n½ �
n

� �T

similarly to Ke et al. [48]; M4: the

proposed method.
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The results from [19] show that the naive homogeneous model fitting method
M1 can rarely identify the important covariates while the over-parameterized
model fitting method M2 and other two methods (M3 & M4) which identify
subgroup structures consistently yield true positives equal to the true number of
important covariates. Compared these three methods which can identify the
important covariates, the proposed method produces smallest false positives. In
addition, the number of false positives is decreasing when there is an increase in
cluster size. Neither the homogeneous model fitting method nor heterogeneous
model fitting method is able to identify the true structure among patients. The
method M3 produces much more subgroups than it really has, while the proposed
method M4 identified the number of subgroups closest to the actual number of
subgroups. Furthermore, the probability of identifying the true subgroups
becomes larger when the number of repeated measurements increases. For in-
sample prediction, the over-parameterized model M2 performs the best while
the methods M3 & M4 performs very competitively. However, for out-of-sample
prediction, method M4 is the best. M1 is inferior to M4, yielding poor results of
estimation and prediction. In summary, the proposed method preforms pretty
well in terms of subgroup identification, variable selection, estimation as well as
prediction.

4.3 Wallaby growth data analysis

The proposed subgroup identification method is applied to wallaby growth data,
which is from the Australian Dataset and Story Library (OzDASL) and can be found
at http://www.statsci.org/data/oz/wallaby.html. The data set has 77 Tammar wal-
labies’ growth measurements which were taken longitudinally. The response vari-
able is the weight of wallabies (tenths of a gram). The predictors involve length of
head, ear, body, arm, leg, tail, foot and their second order interactions. Therefore, a
total of 35 predictors are included in the analysis. After removing the missing
data, 43 Tammar wallabies are kept in our dataset. The number of repeated mea-
surements ranges from 9 to 34 (median: 23). To have a better understanding of
the wallabies’ growth trend, the questions of which parts of body would affect the
weight and whether the length of each body parts have the same effects on the
weight for all wallabies are investigated, i.e. is there any subgroups among wal-
labies. Except the above subgroup identification method (SB-CPD1), the other 3
methods studied in simulation are also considered, i.e. homogeneous model fitting
method (SB-Homogeneous), heterogeneous model fitting method (SB-
Heterogeneous) and the method similar to SB-CPD1 but identifying subgroups via
other method in Ke et al. [48] (SB-CPD2). In addition, the following subgroup
identification methods incorporating penalized methods are also investigated:
similar to our proposed method but instead of using sparse boosting, lasso (Lasso-
CPD1), elastic net (ElasticNet-CPD1), SCAD (SCAD-CPD1) or MCP (MCP-CPD1)
is used.

The results from [19] show that although Lasso-CPD1 and ElasticNet-CPD1
yield smaller in-sample prediction error by keeping all 35 covariates, they have
relatively large out-of-sample prediction errors due to over-fitting problem. The
subgroup identification method via sparse boosting keeps smaller number of
predictors, achieves sparser model than penalized methods. The proposed method
SB-CPD1 identifies smaller number of subgroups and predictors than alternative
competing methods while produces smallest out-of-sample prediction errors. In
conclusion, the proposed subgroup identification method provides a more precise
definition for various subgroups. It may also result in a more accurate medical
decision making for these subjects.
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5. Conclusions

In this chapter, we discussed various sparse boosting based machine learning
methods in the context of high-dimensional data problems. Specifically, we
presented the sparse boosting procedure and two-step sparse boosting procedure
for nonparametric varying-coefficient models with survival data and repeatedly
measured longitudinal data respectively to simultaneously perform variable selec-
tion and estimation of functional coefficients. We further presented the multi-step
sparse boosting based subgroup identification method with longitudinal patient
data to identify subgroups that exhibit different treatment effects. The extensive
numerical studies show the validity and effectiveness of our proposed methods and
the real data analysis further demonstrate their usefulness and advantages.
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Chapter 4

Fast Computation of the EM
Algorithm for Mixture Models
Masahiro Kuroda

Abstract

Mixture models become increasingly popular due to their modeling flexibility
and are applied to the clustering and classification of heterogeneous data. The EM
algorithm is largely used for the maximum likelihood estimation of mixture models
because the algorithm is stable in convergence and simple in implementation.
Despite such advantages, it is pointed out that the EM algorithm is local and has
slow convergence as the main drawback. To avoid the local convergence of the EM
algorithm, multiple runs from several different initial values are usually used. Then
the algorithm may take a large number of iterations and long computation time to
find the maximum likelihood estimates. The speedup of computation of the EM
algorithm is available for these problems. We give the algorithms to accelerate the
convergence of the EM algorithm and apply them to mixture model estimation.
Numerical experiments examine the performance of the acceleration algorithms in
terms of the number of iterations and computation time.

Keywords: the EM algorithm, normal mixture models, acceleration of
convergence, the vector ε algorithm, restarting procedure, initial value selection,
the emEM algorithm

1. Introduction

Mixture models become increasingly popular due to their modeling flexibility
and are applied to the clustering and classification of heterogeneous data, see [1–3].
The EM algorithm [4] is largely used for the maximum likelihood estimation of
mixture models because the algorithm is stable in convergence and simple in
implementation. Despite such advantages, it is pointed out that the EM algorithm is
local and has slow convergence as the main drawback.

To circumvent the problem of slow convergence of the EM algorithm, various
acceleration algorithms incorporating optimization methods are proposed. The
optimization methods include the multivariate Aitken method [5], the conjugate
gradient method [6], and the quasi-Newton method [7, 8]. However, these methods
require matrix computation such as matrix inversion or evaluation of Hessian and
Jacobian matrices and a line search for step length optimization. Therefore, their
acceleration algorithms tend to lack one or more of the nice properties of the EM
algorithm, although they may converge faster than the EM algorithm.

As another approach, the ε-accelerated EM algorithm [9] is proposed to acceler-
ate the convergence of the EM algorithm by using the vector ε (vε) algorithm [10]
that is a vector extrapolation algorithm [11, 12]. The vε algorithm can accelerate the
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convergence of the sequence of estimates from the EM algorithm, and therefore,
the ε-accelerated EM algorithm does not require any modification of the E- and
M-steps of the EM algorithm. This point is the advantage of the ε-accelerated
EM algorithm over other acceleration algorithms using the optimization methods.
To reduce the number of iterations and computation time of the ε-accelerated EM
algorithm, the εR-accelerated EM algorithm [13] is developed. The algorithm
improves the computation speed of the ε-accelerated EM algorithm by embedding a
restarting procedure. Then the restarting procedure finds a value for restarting the
EM iterations such that a newly generated sequence of EM iterations from the value
moves quickly into a neighborhood of a stationary point. We use the ε-accelerated
EM and εR-accelerated EM algorithms for parameter estimation.

In application of the EM algorithm to mixture models, the algorithm is sensitive
to the choice of the initial value and may find estimates at a local maximum of the
log-likelihood function. Several strategies are proposed to efficiently initiate the
EM algorithm for getting the global maximum of the log-likelihood function, see
[14–17]. We use the emEM algorithm [14] for the mixture model estimation and
improve its computation speed by the ε-accelerated EM and εR-accelerated EM
algorithms.

The chapter is organized as follows. Section 2 describes the EM algorithm for
normal mixture models. In Section 3, we introduce the ε-accelerated EM and εR-
accelerated EM algorithms. Section 4 presents numerical experiments to evaluate
the performance of these acceleration algorithms. In Section 5, we provide an
acceleration algorithm that applies the ε-accelerated EM and εR-accelerated EM
algorithms to the emEM algorithm. Numerical experiments in Section 6 study the
effects of these acceleration algorithms on the emEM algorithm. In Section 7, we
present our concluding remarks.

2. The EM algorithm for normal mixture models

Let Y1, … ,Yn be p-dimensional random vectors. Assume that an observed data
vector yi of Yi arises from a mixture distribution of G components with density

f yijθ
� � ¼

XG

k¼1

λkϕ yijμk,Σk
� �

, (1)

where ϕ yijμk,Σk
� �

is the k-th component density of a p-variate normal distribu-
tion Np μk,Σkð Þ with mean vector μk, variance–covariance matrix Σk, λk is the k-th

mixing proportion such that 0< λk < 1 and
PG

k¼1λk ¼ 1, and θ ¼
λ1, … , λG, μ⊤1 , … , μ⊤G, vecΣ

⊤
1 , … , vecΣ⊤

G

� �⊤. Here vecΣk is the vectorization of Σk.
The log-likelihood function of θ for y ¼ y1, … ,yn

� �
is

ℓo θð Þ ¼
Xn
i¼1

log f yijθ
� � ¼

Xn
i¼1

log
XG

k¼1

λkϕ yijμk,Σk
� �

( )
: (2)

Direct maximization of the function (2) is complicated, and then the maximum
likelihood estimate (MLE) of θ is usually found via the EM algorithm [4].

In the setting of the EM algorithm, we regard yi as incomplete data and intro-
duce the component-label vector Zi ¼ Zi1, … ,ZiG½ �⊤ of zero–one indicator variables
such that Zik ¼ 1 indicates that yi arises from the k-th component of the mixture
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model and Zik ¼ 0 otherwise. Assume that Zi has a multinomial distribution
Mu 1, λð Þ with parameter λ ¼ λ1, … , λG½ �⊤. In the mixture model, the complete data
vector is xi ¼ y⊤

i , z
⊤
i

� �⊤, where yi is the observed vector and zi is the unobserved
vector of Zi. Then xi has a mixture distribution with density

f xijθð Þ ¼
YG

k¼1

λkϕ yijμk,Σk
� �� �zik : (3)

Given x ¼ x1, … ,xn½ �, the log-likelihood function of θ is

ℓc θð Þ ¼
Xn
i¼1

XG

k¼1

zik log λkϕ yijμk,Σk
� �

, (4)

and the MLE θ̂ of the function (4) is obtained from

λ̂k ¼
Xn
i¼1

zik=n, (5)

μ̂k ¼
Xn
i¼1

zikxi=
Xn
i¼1

zik, (6)

Σ̂k ¼
Xn
i¼1

zik xi � μ̂kð Þ xi � μ̂kð ÞT=
Xn
i¼1

zik (7)

for k ¼ 1, … ,G. The EM algorithm finds θ̂ by iterating the expectation step
(E-step) and the maximization step (M-step). Let θ tð Þ be the t-th estimate of θ in
parameter space Θ. The E-step calculates the Q function that is the conditional
expectation of ℓc θð Þ given y and θ tð Þ and is written as

Q θjθ tð Þ
� �

¼ E ℓc θð Þjy, θ tð Þ
h i

: (8)

Mixture models treat z ¼ z1, … , zn½ � as missing data. The E-step calculates the
conditional expectation of Zik given y and θ tð Þ:

τ tþ1ð Þ
ik ¼ E Zikjy, θ tð Þ

h i
¼ Pr Zikjy, θ tð Þ

� �

¼ λ tð Þ
k ϕ yijμ tð Þ

k ,Σ tð Þ
k

� ��PG
k¼1

λ tð Þ
k ϕ yijμ tð Þ

k ,Σ tð Þ
k

� �
:

(9)

The quantity τ tð Þ
ik is the posterior probability that yi belongs to the k-th

component of the mixture. From Eq. (9), the Q function (8) is given by

Q θjθ tð Þ
� �

¼
Xn
i¼1

XG

k¼1

τ tþ1ð Þ
ik log λkϕ yijμk,Σk

� �
: (10)

The M-step finds θ tþ1ð Þ maximizing the Q function (10) with respect to θ over Θ
given θ tð Þ:
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θ tþ1ð Þ ¼ arg max
θ∈Θ

Q θjθ tð Þ
� �

: (11)

When replacing zik in Eq. (5) with τ tþ1ð Þ
ik in the E-step, we obtain

λ tþ1ð Þ
k ¼ 1

n

Xn
i¼1

τ tþ1ð Þ
ik : (12)

From Eqs. (6) and (7), we also have

μ tþ1ð Þ
k ¼

Xn
i¼1

τ tþ1ð Þ
ik xi

�Xn
i¼1

τ tþ1ð Þ
ik , (13)

Σ̂ tþ1ð Þ
k ¼

Xn
i¼1

τ tþ1ð Þ
ik xi � μ tþ1ð Þ

k

� �
xi � μ tþ1ð Þ

k

� �T�Xn
i¼1

τ tþ1ð Þ
ik : (14)

We describe the EM algorithm for the normal mixture model in Algorithm 1.

Algorithm 1: The EM algorithm.

E-step: Calculate τ tþ1ð Þ
k ¼ τ tþ1ð Þ

i1 , … , τ tþ1ð Þ
iG

h iT
using Eq. (9) and update τ tþ1ð Þ ¼

τ1 tþ1ð Þ, … , τ tþ1ð Þ
n

h i
.

M-step: Estimate θ tþ1ð Þ from Eqs. (12)–(14).

3. Acceleration of the EM algorithm

In order to accelerate the convergence of the EM algorithm, we can use the
ε-accelerated EM algorithm [9] and the εR-accelerated EM algorithm [13]. The
ε-accelerated EM algorithm incorporates the vector ε (vε) algorithm [10] in the EM
algorithm. The εR-accelerated EM algorithm improves the computation speed of the
ε-accelerated EM algorithm by adding a restarting procedure.

We briefly introduce the vε algorithm. Let θ tð Þ
n o

t≥0
be a linearly convergent

vector sequence from an iterative computational procedure and converge to a
stationary point θ̂ as t ! ∞. Then the vε algorithm generates a sequence ψ tð Þ� �

t≥0

that converges to θ̂ faster than θ tð Þ� �
t≥0 by using

ψ t�1ð Þ ¼ θ tð Þ þ Δθ tð Þ
h i�1

� Δθ t�1ð Þ
h i�1

� ��1

, (15)

where Δθ tð Þ ¼ θ tþ1ð Þ � θ tð Þ and θ½ ��1 ¼ θ=∥θ∥2 ¼ θ=θ⊤θ, see Appendix A for
details. The algorithm enables accelerating the convergence of a slowly convergent
vector sequence and is very effective for linearly convergent sequences.

We define the EM algorithm as a mapping θ↦M θð Þ from Θ to Θ such that each
iteration θ tð Þ ! θ tþ1ð Þ is denoted by

θ tþ1ð Þ ¼ M θ tð Þ
� �

: (16)
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Algorithm 2: The ε-accelerated EM algorithm.

E-step: Estimate θ tþ1ð Þ from Eq. (16).

ε acceleration step Calculate ψ t�1ð Þ from θ tþ1ð Þ, θ tð Þ, θ t�1ð Þ
n o

using Eq. (15).

The ε-accelerated EM algorithm is shown in Algorithm 2. Given a convergence
criterion δ, the ε-accelerated EM algorithm iterates until

∥ψ t�1ð Þ � ψ t�2ð Þ∥2 < δ: (17)

Assume that the sequence θ tð Þ
n o

t≥0
from the EM algorithm converges to a

stationary point θ̂. The εR-accelerated EM algorithm generates ψ tð Þ� �
t≥0 converging

to θ̂ faster than θ tð Þ
n o

t≥0
and provides θ̂ from the final value of ψ tð Þ� �

t≥0 when the

algorithm terminates.
The theorems with the convergence and acceleration of the algorithm are given

in [18].
As shown in Algorithm 2, the ε-accelerated EM algorithm generates two parallel

sequences, ψ tð Þ� �
t≥0 in the ε acceleration step and θ tð Þ

n o
t≥0

in the EM step. At the ε

acceleration step, the EM estimate M ψ t�1ð Þ� �
from ψ t�1ð Þ may have a larger log-

likelihood function than the current EM estimate θ tþ1ð Þ, that is,

ℓo M ψ t�1ð Þ
� �� �

>ℓo θ tþ1ð Þ
� �

: (18)

When this occurs, the EM step is restarted with M ψ t�1ð Þ� �
as the initial value,

and the ε acceleration step gets ψ tð Þ from ψ t�1ð Þ,M ψ t�1ð Þ� �
,M M ψ t�1ð Þ� �� �� �

. Notice
that at the restarting point, we still generate the EM sequence using three estimates
obtained from the same initial value ψ t�1ð Þ. By this manner, we keep to always apply
the ε-acceleration to a sequence obtained by the EM mapping M from the same
initial value.

By our experiments, the restarting procedure is performed almost every time

when we only use the restarting condition ℓo M ψ t�1ð Þ� �� �
>ℓo θ tþ1ð Þ

� �
, and then it

inefficiently takes much computation time. As one more condition for restarting the
EM step, we give ∥ψ t�1ð Þ � ψ t�2ð Þ∥2 ≤ δRe > δð Þ and reset δRe ¼ δRe=10k at each
restarting, where k is an integer, such as one. By adding this condition, we can
control the restarting frequency. For example, set δ ¼ 10�12, and initialize δRe ¼ 1
and k ¼ 1. Then the restarting procedure is performed at most 12 times.

The restarting conditions are summarized as follows:

i. ℓo M ψ t�1ð Þ� �� �
>ℓo θ tþ1ð Þ

� �
, and

ii. ∥ψ t�1ð Þ � ψ t�2ð Þ∥2 < δRe.

Condition (i) means that the log-likelihood function can be increased by
restarting. Condition (ii) is used to reduce the frequency of restarting. This is the
key idea of the restarting procedure. The εR-accelerated EM algorithm is the
ε-accelerated EM algorithm with the restarting procedure using conditions (i) and
(ii) and is given in Algorithm 3.
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Algorithm 3: The εR-accelerated EM algorithm.

EM step: Estimate θ tþ1ð Þ from Eq. (16).

ε acceleration step: Calculate ψ t�1ð Þ from θ tþ1ð Þ, θ tð Þ, θ t�1ð Þ
n o

using Eq. (15).

Restarting step: If ℓo M ψ t�1ð Þ� �� �
>ℓo θ tþ1ð Þ

� �
and ∥ψ t�1ð Þ � ψ t�2ð Þ∥2 < δRe, then set

θ tð Þ ¼ ψ t�1ð Þ, (19)

update

θ tþ1ð Þ ¼ M ψ t�1ð Þ
� �

, (20)

and reset
δRe ¼ δRe=10k: (21)

The εR-accelerated EM algorithm also gives θ̂ from the final value of ψ tð Þ� �
t≥0.

When the restarting step effectively finds values for restating the EM step, the
εR-accelerated EM algorithm greatly reduces the number of iterations and compu-
tation time for convergence. The advantage of the εR-accelerated EM algorithm
over the ε-accelerated EM algorithm is that it restarts the EM step at a better current
estimate and also keeps that the log-likelihood function increases in the iterations.

Theoretical results of convergence and speed of convergence of the
εR-accelerated EM algorithm are given in [13].

4. Numerical experiments for the acceleration of the EM algorithm

We investigate how much faster the ε-accelerated EM and εR-accelerated EM
algorithms converge than the EM algorithm. All computations are performed with
the statistical package R [19] executing on Windows, Intel Core i5 3.00 GHz with
8 GB of memory.

The R package MixSim [17, 20] is used to simulate a random data matrix y
having a p-variate normal mixture distribution of G components. We generate y ¼
y1, … , y1000
� �

and find the MLE of θ using the EM, ε-accelerated EM, and εR-
accelerated EM algorithms. The procedure is replicated 100 times. Here, we
consider p ¼ 2, 3, 4, 5, 6 and G ¼ 4. For all experiments, we set δ ¼ 10�12 for
convergence of the algorithms, δRe ¼ 1 and k ¼ 1 for the restarting condition of the
εR-accelerated EM algorithm. Initial values of the algorithms are obtained from the
k-means method using the R function kmeans.

Tables 1 and 2 report the results of the number of iterations and CPU time of
these algorithms for each p. The CPU times (in seconds) are measured by the R
function proc.time that times are typically available to 10 milliseconds. For all
computations, the acceleration algorithms found the same MLEs as those from the
EM algorithm.We see from the tables that the EM algorithm requires a large number
of iterations for convergence, whereas two acceleration algorithms converge a
smaller number of iterations than the EM algorithm. Then the εR-accelerated EM
algorithm can greatly reduce both the number of iterations and CPU time.

To measure the speed of convergence of the EM and two acceleration algo-
rithms, we calculate iteration and CPU time speedups. The iteration speedup of an
acceleration algorithm for the EM algorithm is defined by

The number of iterations of the EM algorithm
The number of iterations of an acceleration algorithm

:
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The CPU time speedup is also calculated similarly to the iteration speedup.
Tables 3 and 4 show the results of the iteration and CPU time speedups of two
acceleration algorithms. We compare the mean values of the iteration and CPU time

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 EM 172.00 467.25 771.00 1069.48 1302.25 10852.00

ε 133.00 308.50 445.00 697.74 706.50 8090.00

εR 83.00 182.50 253.50 424.22 396.50 4967.00

p ¼ 3 EM 210.00 403.50 628.50 716.33 946.75 1973.00

ε 121.00 276.75 400.50 484.83 604.75 1566.00

εR 68.00 167.50 244.50 307.99 359.75 1183.00

p ¼ 4 EM 166.00 372.75 468.50 618.63 755.75 2193.00

ε 120.00 248.75 331.50 400.00 461.50 1452.00

εR 58.00 139.00 194.50 241.25 291.25 884.00

p ¼ 5 EM 141.00 334.75 492.50 879.35 783.00 24886.00

ε 101.00 235.50 351.00 687.31 516.00 24756.00

εR 57.00 144.00 226.00 431.55 336.50 14288.00

p ¼ 6 EM 193.00 361.25 499.00 655.80 647.75 5910.00

ε 144.00 252.00 323.50 454.45 473.75 5825.00

εR 99.00 163.75 230.50 302.13 299.00 4771.00

Table 1.
Summary statistics of the number of iterations of the EM, ε-accelerated EM (ε) and εR-accelerated EM (εR)
algorithms for 100 simulated random data. Each data is generated from a p-variate normal mixture
distribution of four components.

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 EM 0.39 1.04 1.68 2.31 2.80 22.73

ε 0.30 0.75 1.08 1.66 1.66 19.18

εR 0.22 0.49 0.66 1.11 1.04 13.21

p ¼ 3 EM 0.75 1.40 2.07 2.64 3.30 8.53

ε 0.45 1.01 1.46 1.99 2.52 7.60

εR 0.35 0.68 1.00 1.44 1.68 8.26

p ¼ 4 EM 0.42 0.93 1.16 1.53 1.86 5.34

ε 0.28 0.65 0.86 1.06 1.24 3.80

εR 0.20 0.44 0.59 0.71 0.86 2.39

p ¼ 5 EM 0.25 0.64 0.92 1.65 1.50 46.11

ε 0.22 0.49 0.72 1.42 1.08 50.36

εR 0.16 0.35 0.51 0.95 0.80 29.07

p ¼ 6 EM 0.51 1.02 1.42 1.84 1.88 17.86

ε 0.43 0.75 1.02 1.37 1.47 17.75

εR 0.32 0.54 0.76 0.99 1.00 14.29

Table 2.
Summary statistics of CPU time of the EM, ε-accelerated EM (ε) and εR-accelerated EM (εR) algorithms for
100 random data. Each data is generated from a p-variate normal mixture distribution of four components.
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speedups of the algorithms. The ε-accelerated EM algorithm is about 1.5 times and
1.4 times faster than the EM algorithm in the number of iterations and CPU time,
respectively. Then the εR-accelerated EM algorithm is more than twice as fast as the
EM algorithm in both the number of iterations and CPU time. The boxplots of
Figures 1 and 2 also show that the εR-accelerated EM algorithm is obviously much
faster than the ε-accelerated EM algorithm. Table 3 and Figure 1 indicate that in 75
out of 100 replications, the number of iterations of the εR-accelerated EM algorithm
is less than half as small as that of the EM algorithm. For CPU time of Table 4 and
Figure 2, the εR-accelerated EM algorithm is more than twice as fast as the EM
algorithm in 50 out of 100 replications.

Figure 3 shows the boxplots of the iteration and CPU time speedups of the εR-
accelerated EM algorithm for p ¼ 6. Here, “more” (“less”) means that the number
of iterations of the EM algorithm is more (less) than the median in Tables 1 and 2.

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 ε 1.05 1.34 1.54 1.61 1.77 3.58

εR 1.15 2.08 2.73 3.03 3.48 11.36

p ¼ 3 ε 1.07 1.32 1.52 1.52 1.68 2.15

εR 1.20 1.97 2.57 2.58 2.98 6.08

p ¼ 4 ε 1.13 1.32 1.48 1.51 1.62 2.33

εR 1.45 2.09 2.42 2.60 2.94 9.04

p ¼ 5 ε 1.01 1.30 1.46 1.47 1.63 2.06

εR 1.33 1.84 2.23 2.32 2.67 4.32

p ¼ 6 ε 1.01 1.28 1.46 1.49 1.65 2.33

εR 1.24 1.86 2.17 2.37 2.59 6.75

Table 3.
Summary statistics of the iteration speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR)
algorithms for 100 random data. Each data is generated from a p-variate normal mixture distribution of four
components.

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 ε 0.97 1.22 1.45 1.47 1.67 3.37

εR 1.05 1.71 2.24 2.50 2.85 8.60

p ¼ 3 ε 0.85 1.21 1.39 1.40 1.56 2.07

εR 0.78 1.61 2.04 2.08 2.40 4.48

p ¼ 4 ε 1.02 1.27 1.39 1.43 1.53 2.11

εR 1.20 1.70 2.03 2.17 2.43 7.48

p ¼ 5 ε 0.92 1.17 1.33 1.34 1.50 2.06

εR 1.12 1.48 1.76 1.86 2.12 3.21

p ¼ 6 ε 0.84 1.18 1.39 1.39 1.55 2.21

εR 1.00 1.57 1.77 1.98 2.24 5.47

Table 4.
Summary statistics of the CPU time speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR)
algorithms for 100 random data. Each data is generated from p-variate normal mixture distributions of four
components.
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We can see from the figure that, for the larger number of iterations of the EM
algorithm (“more”), the εR-accelerated EM algorithm works well to speed up the
convergence of ψ tð Þ� �

t≥0. We observed a similar result for other p. Therefore, the
algorithm is more powerful when the EM algorithm takes a larger number of
iterations.

The results from the tables and figures demonstrate that the restarting step in
the εR-accelerated EM algorithm enables a significant increase in the computation
speed with less computational effort.

Figure 1.
Boxplots of the iteration speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR) algorithms for 100
random data generated from a p-variate normal mixture distribution of four components.

Figure 2.
Boxplots of the CPU time speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR) algorithms for 100
random data. Each data is generated from a p-variate normal mixture distribution of four components.
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5. Initial value selection for normal mixture models

It is well known that the log-likelihood function (2) may have numerous
maximums. The EM algorithm does not guarantee to obtain the global maximum
of the log-likelihood function due to its local convergence. Thus, the initial value of
θ deeply depends on the performance of the EM algorithm. Several methods
for selecting the initial value are proposed; for example, see [14–17]. These methods
are based on the multiple runs of the EM algorithm using different initial values and
find θ̂ for getting the global maximum of the log-likelihood function.

We apply the emEM algorithm [14] to the mixture model estimation. The
algorithm is a popular one and usually provides excellent results when the number
of components is not large [21]. The emEM algorithm selects an initial value in the
em step that is several short runs of the EM algorithm using different initial values
and a lax convergence criterion and obtains θ̂ from the EM step that runs the EM
algorithm starting from the initial value with a strict convergence criterion.

The em step consists of three steps. The first step generates J initial values of θ.
The second step runs the EM algorithm from these initial values with a lax conver-
gence criterion. Hence, we do not wait for convergence of the EM algorithm and
stop the iterations. The third step selects the value giving the largest log-likelihood
function among J trials.

Let δini be a convergence criterion and Tmax the maximum number of iterations.
We present the emEM algorithm in Algorithm 4.

Algorithm 4: The emEM algorithm.

em step: Select θ 0ð Þ of the EM step.

Random initialization step: Draw J initial values θ 0,jð Þ
n o

j¼1,… ,J
.

Short running step: Repeat the following computation for j ¼ 1, … , J:

Generate θ t j,jð Þn o
t j ≥0

by iterating the EM algorithm from θ 0,jð Þ and stop the

iterations at the t j-iteration if

Figure 3.
Boxplots of the iteration and CPU time speedups of the εR-accelerated EM algorithms for 100 random data. Each
data is generated from a six-variate normal mixture distribution of four components. The label “less” (“more”)
means that the number of iterations of the EM algorithm is less (more) than the median in Tables 1 and 2.
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ℓo θ t j,jð Þ� �
� ℓo θ t j�1,jð Þ� �

ℓo θ t j,jð Þ� �
� ℓo θ 0,jð Þ

� � < δini, or t j >Tmax: (22)

Obtain θ ∗ ,jð Þ ¼ θ t j,jð Þ.
Selection step: From J candidate initial values θ ∗ ,jð Þ

n o
j¼1,… ,J

, find

θ 0ð Þ ¼ arg max
θ ∗ ,jð Þf g j¼1,… ,J

ℓo θ ∗ ,jð Þ
� �n o

j¼1,… ,J
: (23)

EM step: Given θ 0ð Þ in the em step, find θ̂ using the EM algorithm.

The em step performs multiple runs of the EM algorithm, and then its compu-
tation may be time-consuming. We replace the EM algorithm with the ε-accelerated
EM algorithm in the em step and use the εR-accelerated EM algorithm to obtain θ̂ in
the EM step. By applying these acceleration algorithms to the emEM algorithm, it is
possible to reduce the number of iterations and CPU time. The acceleration of the
emEM algorithm is referred as to the εem-εREM algorithm and is shown in
Algorithm 5.

Algorithm 5: the εem-εREM algorithm.

ε-em step: Select θ 0ð Þ of the εR-EM step.

Random initialization step: Draw J initial values θ 0,jð Þ
n o

j¼1,… ,J
.

Short running step: Repeat the following computation for j ¼ 1, … , J:

Generate ψ t j,jð Þn o
t j ≥0

by iterating the ε-accelerated EM algorithm from

θ 0,jð Þ and stop the iterations at the t j-iteration if

ℓo ψ t j,jð Þ� �
� ℓo ψ t j�1,jð Þ� �

ℓo ψ t j,jð Þ� �
� ℓo ψ 0,jð Þð Þ

< δini, or t j >Tmax: (24)

Obtain θ ∗ ,jð Þ ¼ ψ t j,jð Þ.
Selection step: From J candidate initial values θ ∗ ,jð Þ

n o
j¼1,… ,J

, find

θ 0ð Þ ¼ arg max
θ ∗ ,jð Þf g j¼1,… ,J

ℓo θ ∗ ,jð Þ
� �n o

j¼1,… ,J
: (25)

ε-R-EM step: Given θ 0ð Þ in the em step, find θ̂ using the εR-accelerated EM
algorithm.

6. Numerical experiments for the initial value selection

We evaluate the performance of the ε-accelerated EM and εR-accelerated EM
algorithms in application to the emEM algorithm.
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By using MixSim, we simulate y ¼ y1, … , y1000

� �
having the p-variate normal

mixture distribution of six components for p ¼ 2, 3, 4, 5, 6. The values of δ, δRe, and
k are the same as in the experiments of Section 1.4. Assume that the probability of
not finding the global maximum of the log-likelihood function in a single run is
0.80 for safety. Then the probability of finding the global maximum at least once
is 1� 0:8050 >0:9999. In the em and ε-em steps, we draw 50 initial values

θ 0,jð Þ
n o

j¼1,… ,50
from kmeans and set δini ¼ 0:001 and Tmax ¼ 1000.

Tables 5 and 6 present the number of iterations and CPU time for each p. We
see from Table 5 that the number of iterations of the ε-em step is much smaller than
that of the em step. The ε-accelerated EM algorithm effectively improves the
computation speed of the em step. We compare the number of iterations and CPU
time of the εem-εREM algorithm with those of the emEM algorithm. Then these
values of the εem-εREM algorithm are about less than half of those of the emEM
algorithm. The results illustrate that the ε-accelerated EM and εR-accelerated EM
algorithms can sufficiently accelerate the convergence of the emEM algorithm.

7. Concluding remarks

In this chapter, we introduced the ε-accelerated EM and εR-accelerated EM
algorithms. Both algorithms are given by very simple computational procedures and
are executed with a little bit of computation for each iteration, while they well
accelerate the convergence of the EM algorithm.

When the EM algorithm is applied to normal mixture models, the algorithm may
converge slowly and be heavily dependent on the initial value. The first problem is
solved by the acceleration of the EM algorithm. The numerical experiments

emEM εem-εREM

em EM total ε-em εR-EM total

p ¼ 2 1912 3834 5746 1415 1429 2844

p ¼ 3 1995 1490 3485 925 354 1279

p ¼ 4 2352 725 3077 997 451 1448

p ¼ 5 3344 885 4229 1516 397 1913

p ¼ 6 2641 957 3598 1234 435 1669

Table 5.
The numbers of iterations of the emEM and εem-εREM algorithms. The em and ε-em steps generate 50 random
initial values.

emEM εem-εREM

em EM total ε-em εR-EM total

p ¼ 2 6.04 7.37 13.41 4.67 3.22 7.89

p ¼ 3 6.36 3.14 9.50 3.23 1.00 4.23

p ¼ 4 8.81 1.61 10.42 3.98 1.86 5.84

p ¼ 5 12.55 2.33 14.88 6.04 1.19 7.23

p ¼ 6 11.01 2.44 13.45 5.35 1.43 6.78

Table 6.
CPU times of the emEM and εem-εREM algorithms. The em and ε-em steps generate 50 random initial values.
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indicated the availability of the ε-accelerated EM and εR-accelerated EM algo-
rithms. For the second problem, the initial value selection is useful to initiate the
EM algorithm. We applied the emEM algorithm to normal mixture model estima-
tion and developed the εem-εREM algorithm to speed up the computation of the
emEM algorithm. Then the ε-accelerated EM algorithm is used in the em step, and
the εR-accelerated EM algorithm is in the EM step. Numerical experiments showed
that the εem-εREM algorithm can converge in a smaller number of iterations and
shorter CPU time than the emEM algorithm.

The ε-accelerated EM and εR-accelerated EM algorithms accelerate the conver-
gence of the EM algorithm without any modification of the E- and M-steps of the
algorithm. This means that these algorithms do not require to derive the accelera-
tion formula for every statistical model. Thus, these algorithms are applied to
several mixture models—mixtures of factor analyzers, mixtures of multivariate t-
distributions, mixtures of generalized hyperbolic distributions, and parsimonious
Gaussian mixture models. We expect that the convergence of the EM algorithms
used in these mixture models tends to be slow. The results from the experiments
show that the εR-accelerated EM and εR-accelerated EM algorithms are useful due
to their fast speed of convergence and ease of use.

Appendix: the vector ε algorithm

Let θ tð Þ denote a d-dimensional vector that converges to a vector θ̂ as t ! ∞. We

define θ½ ��1 ¼ θ=∥θ∥2 ¼ θ=θ⊤θ. In general, the vε algorithm for a sequence θ tð Þ
n o

t≥0
starts with

ε t,�1ð Þ ¼ 0, ε t,0ð Þ ¼ θ tð Þ (26)

and then generates a vector ε t,kþ1ð Þ by

ε t,kþ1ð Þ ¼ ε tþ1,k�1ð Þ þ ε tþ1,kð Þ � ε t,kð Þ
h i

¼ ε tþ1,k�1ð Þ þ Δε t,kð Þ
h i�1

, k ¼ 0, 1, 2, … :

(27)

For practical implementation, we apply the vε algorithm for k ¼ 1 to accelerate

the convergence of θ tð Þ
n o

t≥0
. From the above equation, we have

ε t,2ð Þ ¼ ε tþ1,0ð Þ þ Δε t,1ð Þ
h i�1

for k ¼ 1, (28)

ε t,1ð Þ ¼ ε tþ1,�1ð Þ þ Δε t,0ð Þ� ��1 ¼ Δε t,0ð Þ� ��1
for k ¼ 0: (29)

Then the vector ε t,2ð Þ becomes as follows:

ε t,2ð Þ ¼ ε tþ1,0ð Þ þ Δε tþ1,0ð Þ
h i�1

� Δε t,0ð Þ
h i�1

� ��1

¼ θ tþ1ð Þ þ Δθ tþ1ð Þ
h i�1

� Δθ tð Þ
h i�1

� ��1

:

(30)

When setting ψ tð Þ ¼ ε t,2ð Þ, we obtain Eq. (15).
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Chapter 5

Dependent Dirichlet Processes for
Analysis of a Generalized Shared
Frailty Model
Chong Zhong, Zhihua Ma, Junshan Shen and Catherine Liu

Abstract

Bayesian paradigm takes advantage of well-fitting complicated survival models
and feasible computing in survival analysis owing to the superiority in tackling the
complex censoring scheme, compared with the frequentist paradigm. In this chap-
ter, we aim to display the latest tendency in Bayesian computing, in the sense of
automating the posterior sampling, through a Bayesian analysis of survival model-
ing for multivariate survival outcomes with the complicated data structure. Moti-
vated by relaxing the strong assumption of proportionality and the restriction of a
common baseline population, we propose a generalized shared frailty model which
includes both parametric and nonparametric frailty random effects to incorporate
both treatment-wise and temporal variation for multiple events. We develop a
survival-function version of the ANOVA dependent Dirichlet process to model the
dependency among the baseline survival functions. The posterior sampling is
implemented by the No-U-Turn sampler in Stan, a contemporary Bayesian com-
puting tool, automatically. The proposed model is validated by analysis of the
bladder cancer recurrences data. The estimation is consistent with existing results.
Our model and Bayesian inference provide evidence that the Bayesian paradigm
fosters complex modeling and feasible computing in survival analysis, and Stan
relaxes the posterior inference.

Keywords: ANOVA DDP, dependent treatments, multivariate survival outcomes,
recurrence, Stan

1. Introduction

The shared frailty model, coined by [1], has been widely used in the analysis of
multivariate survival outcomes that might be associated with subgroups or clusters.
Enormous work has been devoted to the development of the shared frailty model in
both Bayesian and frequency paradigms, and the reviews can be found in [2, 3]. As
an extension of the well-known Cox’s proportional hazard model, conditional on the
frailty effect, the traditional shared frailty model assumes a proportional hazards
structure, that is, the hazard ratio between two sets of covariate values is propor-
tional to their difference in relative risk scores over time [4]. Meanwhile, it fixes the
baseline hazard function among all clusters.

Traditional shared frailty models provide a good framework for expediently
mathematical tractability of the heterogeneity among multivariate observations,
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whereas in practice it needs modification and adaption to tolerate complex struc-
ture so as to incorporate cross information owing to the intra- and inter-subject
variability [5, 6]. Take the renowned data on recurrences of bladder cancer, for
instance [7]. There are three treatment arms, placebo, thiotepa, and pyridoxine.
Patients had multiple recurrences of tumors which were sparse beyond the fourth
recurrence. Figure 1 displays the Kaplan-Meier estimators of the survival-function
for the times of the first and the second recurrences under three treatments. One
observes that in Figure 1(a), the estimated survival curves at the first recurrence
are crossed, indicating a crossed hazard, and therefore, the proportional hazard
assumption is suspected [8]; in Figure 1(b), the survival curve of pyridoxine drops
below that of placebo from the fifth month at the second recurrence rather than
above from the 10th month on at the first recurrence. This indicates the functional
form of the survival curves varies between recurrences. Neglecting such character-
istics of non-proportionality and stratification of recurrences may yield inefficiency
by encumbering borrowing strength from potentially related information sources,
and consequently may jeopardize the prediction of the global survival times. More-
over, dependency might exist among the treatment strata and the stratification of
recurrences [5, 9].

Consequently, more complex modeling is needy to characterize the dependence
among the baseline hazard functions and treatment strata due to the temporal
effects of recurrences. Frequentist inference and computing are pretty challenging
and even infeasible within the most complex model setting. In Bayesian literature,
there exists work that allows the baseline survival/hazard function to vary on a
single level such as subgroups or the time axis ([10, 11]; among others). Neverthe-
less, rare work has taken bi-level varying baseline survival/hazard function into
account [12], not to mention that dependence among treatment strata [5].

We propose a generalized shared frailty model (GSFM) for multiple events time
data that allows the baseline hazard function to change dually along with the types
of events and treatment strata, so as to strengthen the ability to borrow information
from many sources. The proposed GSFM postulates multiplier frailties including
both parametric and nonparametric ones, where the parametric frailty random
effect accounts for the within-subject association by treating each subject as a
cluster; and a nonparametric frailty effect represents dependency among treatment
strata and temporal recurrences. For the GSFM, we suggest a Bayesian solution to
estimate the regression coefficient vector, the variance parameter of the frailty

Figure 1.
The Kaplan-Meier estimator of survival functions for first recurrence time (a) and second recurrence (b) in the
bladder cancer data.
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term, and baseline survival functions stratified by treatments and recurrences. In a
Bayesian workflow, the posterior distribution is determined by the combination of
observational data in the form of the likelihood function and the prior distribution
represented based on the background knowledge. From a Bayesian perspective, we
model the dependent nonparametric prior through transferring the data context
aforementioned into the ANOVA dependent Dirichlet process (ANOVA DDP),
which will be further reviewed in Section 2. The construction of the No-U-Turn
sampler for Markov chain Monte Carlo (MCMC) sampling is automated by Stan
[13] with its R interface [14]. The posterior inference is conducted by Stan as well.

The rest of this chapter is organized as follows. In Section 2, under typical data
scenarios of dependence structure, we summarize several modified versions of the
dependent Dirichlet process (DDP) initiated from MacEachern’s regression spirit
that nests dependent predictors into the traditional Dirichlet process (DP). In Sec-
tion 3, we postulate the GSFM and transform the dependent dual-stratified multiple
events to the survival-function version of the ANOVA DDP. We have a short
comparison between Stan and Nimble, two contemporary Bayesian computing tools
based on our user experience. In Section 4, we demonstrate the validity of the
GSFM, its Bayesian inference, and analysis of the data on recurrences of bladder
cancer. A brief conclusion is contained in Section 5.

2. Review of MacEachern’s DDP

The DP is the most popular Bayesian nonparametric prior since the seminal
work of [15]. The belief in data background that there exists some kind of depen-
dence structure stimulates construction and selection of proper dependent prior.
Some dependent DPs are constructed for unsupervised purposes such as clustering
[16, 17]. The DDP prior adopted in our proposed model is supervised and predictor-
dependent, originated from [18, 19], named as MacEachern’s DDP in two recent
review papers, which are interpretive and comprehensive [20, 21]. The key idea
behind MacEachern’s DDP is that the distributions of the random measures are
marginally DP distributed, validated by in our Subsections 3.2 and 3.3. Therefore,
we here confine how MacEachern’s DDP (henceforth we use the DDP to denote the
MacEachern’s DDP if the context is clear) came into being expanded from the DP;
and compare various modified versions of the DDP under various dependency
structures. We focus on two fundamental elements of Sethuraman’s construction of
DP [22], the weight and the atom, following the insight of [21].

2.1 DP vs. DDP

The DP is a distribution on distributions whereas the DDP aims to construct a
prior for a collection of distributions ℱ ¼ Fxjx∈Xf g indexed by covariate x. In
general, there are several representations of the DP such as Polya Urn, Levy mea-
sure, and stick-breaking representations [23]. Here, we use Sethuraman’s stick-
breaking construction to connect the DP with the DDP. The stick-breaking con-
struction is a kind of infinite sum representation that divides the DP into two
countable series, the stick-breaking weights (SBW) and the atoms. Generally, a DP
is expressed as a process with two components, the mass parameter determining the
weights and the base measure to generate atoms. Through the stick-breaking con-
struction, the DDP can be easily extended from the DP. We list their comparison in
Table 1, where we can find that the dependency among the covariates set X is
realized by indexing the mass parameter and base measure with the covariate x∈X .
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More specifically, the dependency can be characterized through the dependency
among the weights and atoms in the DDP.

The DDP can be widely applied to scenarios of various dependence data struc-
tures. We review modification versions of the DDP from three categories
depending on which part it modifies in the stick-breaking representation, weights,
atoms, or both. The first is to impose the dependency on the atoms but keep
common weights, leading to two typical representatives, ANOVA and Spatial
[9, 24, 25]. The ANOVA type DDP encoded the covariate dependence in the form of
regression for the atom processes. The Spatial DDP models for nonstrationary
spatial random fields with heterogeneous variance. The second category is to mod-
ify the weights to be dependent but keep the common atoms. The early and typical
work is the time series DDP [26]. They introduced a Markov Beta process on the
weights to account for the temporal dependency. The third category is to impose
dependency on both weights and atoms [27]. They constructed vector
autoregressive and autoregressive models for atoms and weights, respectively. We
summarize the aforementioned types of typical modifications in Figure 2.

3. Model and Bayesian inference

Consider a clinical trial with multiple event types, for example, the time of the
kth recurrence of a certain disease. In the trial, n subjects are divided into G strata of
treatment. Our goal is to describe the relationship between the time to the kth
recurrence of a subject, and its treatment stratum, as well as its vector of covariates
Z. For a certain subject, the time of recurrences, may be dependent since they occur
on the same individual and thus we assume an unobservable independent shared-
frailty random effectW to account for this dependence. On the other hand, we may
allow the conditional hazard affiliated with the script pair kj to imply distinct
survival distributions along with the temporal order of the recurrences of the
disease and for specific treatment. For the ith subject in the jth treatment stratum,
at the kth recurrence, given the value of frailty variable wi and its covariate vector
zkji, we propose the following frailty model,

λkj tjwi, zkji
� � ¼ wiλ0kj tð Þ exp βTzkji

� �
, k ¼ 1,⋯,K, j ¼ 1,⋯,G, i ¼ 1,⋯, n j: (1)

Model (1) is called the generalized shared frailty model in the sense that non-
proportionality among k-varying recurrences is allowed by the fact that the right-
hand baseline hazard has footnotes k and j. We allow dependency among treatment
strata in the model (1). Therefore, the baseline hazard function λ0kj acts as if a
nonparametric frailty random measure accounting for the dependency owing to the
recurrences and treatment schemes.

DP DDP

Random probability measure F � DP M, F0ð Þ F ¼ Fxjx∈X ,Mx,F0xf g
Sethuraman’s construction F �ð Þ ¼P∞

h¼1phδθh �ð Þ Fx �ð Þ ¼P∞
h¼1pxhδθxh �ð Þ

ph � SBW 1,Mð Þ pxh � SBW 1,Mxð Þ
θh � F0 θxh � F0x

Convolution H yð Þ ¼ Ð k yjθð ÞdF θð Þ Hx yð Þ ¼ Ð k yjθð ÞdFx θð Þ

Table 1.
Comparison of DP and DDP.
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Figure 2.
Workflows of representative expansions of DDP.
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Model (1) is an extension of the classical shared frailty model (4.1.1) on page 101
of [4] since the baseline hazard function there does not vary among the recurrences
and the treatment strata. Model (1) has the analog spirit to the frailty model (1) in
[10], whereas their treatment strata are independent.

3.1 Likelihood

The corresponding survival function of the model is given by: Skj tjwi, zkji
� � ¼

S0kj tð Þ
� � exp βTzkjiþvið Þ, where S0kj tð Þ ¼ exp �Ð t0λ0kj sð Þds

� �
denotes the baseline sur-

vival function of the kth recurrence for subjects in the jth treatment stratum, and
vi ¼ log wið Þ denotes logarithm transformation of the frailty effect. Let f0kj be the
corresponding baseline density function.

Given the data sample Ykji, δkji, zji
� �

, where Ykji ¼ min Ckji,Tkji
� �

,
δkji ¼ I Tkji ≤Ckji

� �
, with Tkji being the gap time between the (k � 1)th and kth

recurrence of the ith subject in the jth stratum and Ckij being the corresponding
censoring variable that is independent of Tkji given the covariate vector zkji, for
k ¼ 1,⋯,K, j ¼ 1,⋯,G, i ¼ 1,⋯, n j, and

PG
j¼1n j ¼ n. In the jth stratum, suppose

that there are nkj (nkj ≤ n j) subjects suffering from the kth recurrence. Then the
likelihood is written as:

YK

k¼1

YG
j¼1

Ynkj

i¼1

exp βTzkji þ vi
� �

f 0kj ykji
� �

S0kj ykji
� �n o exp βTzkjiþvið Þ�1ð Þ� �δkji

� S0kj ykji
� �n o 1�δkjið Þ exp βTzkjiþvið Þ

:

3.2 Survival-function version of the ANOVA DDP

In the Bayesian workflow for the estimation, prior distributions are first deter-
mined. We here specify appropriate nonparametric priors for S0kj and f0kj. Since
they can be easily derived from one to the other, we here only introduce the priors
for S0kj.

We divide S0kj into K groups, and the kth group has G baseline survival
functions of different treatment strata at the kth time of recurrence. That is, for
a fixed k, Sk ¼ S0kj, j ¼ 1,⋯,G

� �
is a collection of baseline survival functions

with length G indexed by the categorical covariate j denoting the treatment
stratum. The next procedures come from the spirit of [9]. As a general example,
suppose two dugs A and B will be taken in treatment, with V and U levels of
doses, respectively. In this case, G = VU denotes the number of treatment
strata and let the level of the jth stratum be (v,w). We write the stick-breaking
form of S0kj such that S0kj tð Þ ¼

P∞
h¼1phI t> θkjh

� �
. We impose an ANOVA

structure on θkjh:

θkjh ¼ mkh þ Akvh þ Bkwh, (2)

where mkh denotes the ANOVA effect shared by all the strata at the kth
recurrence, and the rest terms are the ANOVA effects of the jth stratum at the kth
recurrence. Let the three components be independently generated from three
distributions, and marginally on j, the baseline survival function S0kj follows a DP.
The aforementioned procedure implies that Sk is a survival-function version of the
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ANOVA DDP. If we consider a single event, that is, K = 1, with linear effects of a
regressor vector z involved in (2) such that θjh ¼ mh þ Avh þ Bwh þ βTh Z, then it
reduces to the univariate survival regression model in [25].

Since any function in the stick-breaking form is discrete almost surely, we place
a convolution through the Dirichlet process mixture (DPM) model [28]. Particu-
larly, since the baseline survival functions are defined on the positive half-real line,
the convolution kernel in DPM should be positive such as log-normal, Gamma, and
Weibull. In this chapter, a log-normal kernel is considered. For different recur-
rences, we treat the relationship among Sks to be independent.

3.3 One-way ANOVA DDP

Considering the data of our interest, where only one drug and one level of dose is
used in each treatment stratum, we introduce the modeling of the survival-function
version of one-way ANOVA DDP. In this case, the prior for the Sk reduces to a one-
way ANOVA form since the dependency among the G treatment strata is explained
by only one ANOVA effect. Furthermore, if we set mkh ¼ 0, αkh ¼ θk1h,⋯, θkGhð ÞT
reduces to a G-variate variable denoting the locations of all G baseline distributions
and thus θkjh ¼ αTkhd j, where dj is the design vector of the jth stratum to select the
appropriate ANOVA effects corresponding to j.

With the above notations, we summarize the procedure to construct the
survival-function version of one-way ANOVA DDP prior in model (1) as follows:

1.Stick-breaking form. For k ¼ 1,⋯,K, let Hk be the collection of G distribution
functions s.t Hk ¼ Hkj, j ¼ 1,⋯,G

� �
. Hkj �ð Þ ¼

P∞
h¼1pkhδθkjh �ð Þ.

2.Convolution step. Let αkh ¼ θk1h,⋯, θkGhð ÞT, and dj be the jth design vector of
length G with the jth element being 1 and others being 0. Let H0k ¼
H0k1,⋯,H0kGð Þ be the collection of base measures, S0kj tð Þ ¼Ð
SLN tjαTk d j, σ2
� �

dHk α, σð Þ, where SLN denotes the survival function of the log-
normal distribution, and Hk � DP Mk,H0kð Þ.

3.Determine the mass parameter and the base measure. For simplicity, we set
Mk = 1 for all k, which is a commonly used default value of the mass parameter
[29], H0k θ, σð Þ ¼ N 0, IGð Þ � Cauchy 0, 5ð Þþ, where Cauchy+ denotes the
half_Cauchy distribution.

Step 1 is a standard stick-breaking representation for DP. Step 2 is kernel mix-
ture of DP whereas the kernel is a survival function rather than a cumulative
distribution function. The realization of Step 2 is quite straightforward in Stan as it
provides the function lognormal_lccdf to be used as the kernel of the survival
function of the log-normal family.

In Step 3, we specify the base measure as the prior for the location and shape
parameters of the log-normal kernel directly rather than adding another hyper prior
distribution like [25] did. The main reason is to simplify the computation in Stan.
Particularly, inspired by [30, 31], we use the half-Cauchy distribution as the non-
informative prior for the variance parameter instead of the inverse Gamma prior. In
our practice, the choice of half-Cauchy prior significantly improves the speed of
convergence and mixture performance of the MCMC chains in our real data analysis
and simulation. Another interesting point we met in numerical studies is that the
informativeness of the base measure for θ. Here, we do not assign the non-
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informative distribution but a weakly informative one is considered since we find
such a weakly informative prior provides better MCMC performance than that of
non-informative one with a higher effective sample size and better mixture perfor-
mance. In our other research experience, the weakly informative prior for the vari-
ance parameter in the mixing component of the DPM seems to be more preferable.

3.4 Other priors and MCMC

In terms of the prior for the parametric prior wi, we choose to log-normal prior
that vi ¼ log wið Þ and vi � N 0, τ2ð Þ, where τ>0 is an unknown parameter. We
further assign a half Cauchy prior for τ s.t τ � Cauchyþ 0, 5ð Þ as a non-informative
prior. The prior for the vector of regression coefficients is β � N 0, 1000Ið Þ as a non-
informative prior.

We use the truncated Dirichlet process to replace the infinite summand in the
DP. The selection of the truncation point is often ad-hoc. Since in Stan the NUTS
cannot sampler discrete parameters, we have to fit the truncation number and the
mass parameter before the MCMC procedure. In general, the truncation number is
set to be large enough s.t the truncated part is negligible. Gelman et al. [32]
suggests using a truncation number L that is greater than 5M + 5. In our
computation, we set L = 12.

The MCMC sampling for the posterior distribution is realized in Stan. Stan and
its R version are widely used in statistical modeling and high-performance statistical
computing, especially in Bayesian. Stan realizes the MCMC sampling through the
No-U-Turn sampler (NUTS). Stan automates the deriving of the fully conditional
posterior distribution and NUTS is able to obtain high effective sample size [33].

3.5 Stan and NIMBLE: Programming styles

The MCMC sampling procedure is implemented in Stan and we also tried to
implement the model in NIMBLE, another contemporary Bayesian computing tool
in R. Stan and NIMBLE are two contemporary Bayesian computing tools that have
drawn arising interest for Bayesian analysis but still remain under active develop-
ment [34, 35]. The main advantage of Stan and NIMBLE is that they provide clear
automatic posterior sampling procedures based on their specific sampling algo-
rithms without particular justification. Therefore, users can be released from com-
plicated probabilistic deriving and implementation. There has been a buzz group
discussion about the comparison between Stan and NIMBLE in environments like
[36, 37]. One comparison of their built-in samplers is demonstrated through
implementing weakly informative and informative estimation within the trimmed
mean regression model setting [38]. Here we contribute a naive comparison on their
programming styles based on the first two authors’ experience in coding this project
and using Stan and NIMBLE, respectively.

A Bayesian paradigm is made up of three main steps, the prior, likelihood, and
the posterior. MCMC generates samples to approximate the posterior distribution.
Therefore, what one needs to set in a Bayesian computing tool is the prior and
likelihood, let alone Stan or NIMBLE. Nevertheless, Stan and NIMBLE take differ-
ent programming styles in writing likelihood. In Stan, the default way to present the
log-likelihood is the syntax target and users can add log contribution to it freely,
which is similar to the natural language and straightforward to users whatever level
of mathematical background. In NIMBLE, the default way is to transfer the likeli-
hood into some standard distributions given by NIMBLE, which may not be
friendly for users who have a relatively less mathematical background.
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We take fitting the finite mixture of the Gaussian model as an example. For a
fixed positive integer L, the distribution of Y is given by FY sð Þ ¼PL

l¼1plN sjμl, σ2l
� �

and the log-likelihood is logL p, μ, σjYð Þ ¼Pn
i¼1
PL

l¼1 log pl
� �þ logϕ yijμ1, σl

� �� �
,

where ϕ denotes the density function of normal distribution. The code for Stan and
NIMBLE to implement this model is listed in Listing 1.1 and 1.2, respectively. In
Listing 1.1 we clearly find that the contribution to the syntax target is just the sum of
log(pl) and the logarithm of the density of normal distribution denoted by
normal_lpdf. The rest is to assign a Dirichlet prior to the weights pl and other
parameters. However, in the NIMBLE code shown in Listing 1.2, we have to transfer
the likelihood into some sampling procedures by IMAGING that there are L clusters
of random numbers, the random numbers are i.i.d Gaussian within each cluster,
and the probability a random number is drawn from the lth cluster is pl. Thereafter,
the Dirichlet prior is assigned to pls. Such imagine matches the Bayesian philosophy
but when the likelihood function becomes to be quite complicated, to understand
this sampling procedure may not be easy anymore, especially for practitioners not
coming from a mathematics or statistics background.

Listing 1.1: Stan code for modeling mixture of Gaussian distribution

1 data {
2 int<lower=1> N;
3 vector[N] y;
4 int<lower=1> L;
5 }
6 parameters {
7 simplex[L] p;
8 vector[L] mu;
9 vector<lower=0>[L] sigma;
10 }
11 model {
12 p � dirichlet(rep_vector(1, L));
13 mu � normal(0, 100);
14 sigma � cauchy(0, 2.5);
15 for(i in 1:N) {
16 vector[L] lp_i;
17 for(l in 1:L) {
18 lp_i[l] = log(p[l]) + normal_lpdf(y[i]|mu[l], sigma[l]);
19 }
20 target += log_sum_exp(lp_i);
21 }
22 }

Listing 1.2: NIMBLE code for modeling mixture of Gaussian distribution

1 NimbleCode <- nimbleCode ({
2 for (i in 1:N) {
3 y[i] � dnorm(mu_y[z[i]], tau = tau_y[z[i]])
4 z[i] � dcat(p[1,L])
5 }
6 for (j in 1:L) {
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7 mu_y[j] � dnorm(0, 0.01)
8 tau_y[j] � dgamma(0.01, 0.01)
9 }

10 p[1:L] � ddirch(alpha0[1,L])
11 })
12 NimbleData <- list(y = y)
13 NimbleConsts <- list(L = L, N = length(NimbleData$y), alpha0 = rep(1, L))
14 NimbleInits <- list(mu_y = rnorm(NimbleConsts$L), tau_y = rgamma

(NimbleConsts$L),p = rep(1/NimbleConsts$L, NimbleConsts$L))

4. Application: Bladder cancer recurrences

We apply the GSFM to analyze the bladder cancer recurrences data set
contained in R package survival. Totally 118 subjects in the clinical trial are divided
into three treatment strata including placebo, pyridoxine (vitamin B6), and thio-
tepa. Each subject may experience k (from 1 to 9) times of recurrences and may die
from or not from the recurrence of bladder cancer. We do not discriminate the
death from cancer and the recurrence, and the death from other causes is treated as
censoring status. Our interest is the gap time between the (k � 1)th and the kth
recurrences. Besides the treatment schemes, two clinical covariates are considered:
the number of tumors at the beginning (x1) and the size of the largest tumor (x2)
within a subject. The values of these two covariates are evaluated at the beginning
of each recurrence interval. This data set was once analyzed for the time between
the first to the second recurrence as a univariate time-to-event outcome [39]. In this
chapter, we consider both the first and the second recurrences and thus K = 2 here.
The two covariates are scaled by divided by 100. To simplify the computation, the
follow-up time is transferred from months to years to get lower scalars.

4.1 Model-checking for baseline survival functions

Before further inference, we need to check whether the proposed model is
appropriate. As an alternative, a shared frailty model is fit by R package
spBayeSurv. In the shared frailty model, the treatment strata are considered as
indicator covariates in the parametric term. We run four independent MCMC
chains for 5000 times with the first 2000 times burn-in and aggregate the rest
chains together as the posterior samples under the GSFM. All chains are well mixed
and convergent under the GSFM. For the shared frailty model, we run the MCMC
16,000 times with the first 6000 times burn-in through R function survregbayes
using the “IID” Gaussian frailty under “PH”model name. Other settings are default.

The plots of the estimated baseline survival functions under different models
stratified by treatment strata can be viewed in Figure 3. From that, we find the
baseline survival functions estimated under the GSFM show similar trends as that of
the K-M estimator in each recurrence and reflect the crossing survival curves at the
first recurrence like the K-M estimator. However, the curves estimated by the
shared frailty model are not crossed and cannot change along with recurrences.
Therefore, the proposed GSFM is appropriate for the data.

4.2 Parametric estimation I: Real data

We use the mean of posterior samples (median for τ) as the estimator of param-
eter and we list the estimation of the vector of regression coefficients β and standard
deviation parameter τ in Table 2.
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From Table 2 we find that as the number of tumors at the start point increases,
the hazard for recurrences increases as well whereas the larger size of the largest
tumor will decrease the hazard. This conclusion is similar to that in [39] who
analyzed the first recurrence as univariate time-to-event data by a transformation
model.

Besides the parametric estimation result, we also report two metrics about the
MCMC performance here. The first one is the effective sample size (ESS), an
approximation to the number of “independent” draws in MCMC sampling. It shows
that the ESS of all parameters is greater than 400, which is considered to be
adequate by [40]. The ESS of τ is significantly lower than that of β, a possible reason
is that the frailty random effect might be time-dependent wi(t) rather than a time-
fixed effect. Another metric of interest is the average time needed to generate each
effective sample, called MCMC Pace. Stan development team emphasized the
importance of MCMC Pace, and the definition is given by the team of NIMBLE in
[41] as the time consuming of generating one effective sample. The MCMC Pace to
generate τ is much higher than that of β, and we conjecture the possible reason is
that the posterior distribution has a long upper tail leading to outliers in posterior
samples, which slows down the speed to generate effective samples.

4.3 Parametric estimation II: Simulation

Another simulation study is considered to evaluate the performance of para-
metric estimation of the MCMC procedure. Our simulation aims to simulate the
occurrences of multiple events on the same individual. We take K = 2 and G = 3
denote the number of types of events and the number of treatment strata,

Figure 3.
The estimated baseline survival curves for the first (a) and second (b) recurrence; the black curves are estimated
under the proposed generalized shared frailty model, and the pink curves are estimated under the traditional
shared frailty model; the real lines, placebo; the dash lines, pyridoxine; the dotted lines, thiotepa.

Est SD ESS PACE

No. tumors 13.849 11.051 1495 0.145

Tumor size �14.196 12.341 1114 0.194

τ 1.793 0.383 456 0.474

Est, point estimation; SD, posterior standard deviation; ESS, effective sample size; PACE, the MCMC Pace.

Table 2.
The parametric estimation and the MCMC performance for the bladder cancer recurrences data.
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respectively. The simulation includes two independent covariates, xi � Bin 1, 0:5ð Þ
and x2 � N 0, 1ð Þ to incorporate indicator variable and continuous variable as well.
For k ¼ 1, 2, j ¼ 1, 2, 3, the baseline survival functions S0kj are set as:

• S011 ¼ 1� 0:5 LN �0:25, 1ð Þ þ LN 0:25, 1ð Þð Þ;

• S012 ¼ 1� 0:5 LN �0:5, 1ð Þ þ LN 0:65, 1ð Þð Þ;

• S013 ¼ 1� 0:5 LN �0:65, 1ð Þ þ LN 1:25, 1ð Þð Þ;

• S021 ¼ 1� LN 0, 1ð Þ; S022 ¼ 1� LN �0:5, 1ð Þ; S023 ¼ 1� LN 0:5, 1ð Þ

When k = 1, the three baseline survival functions are crossed whereas when
k = 2, the three curves are not. The vector of regression coefficients is β ¼ 1, 1ð ÞT
and the log frailty random effect vi � N 0, 1ð Þ independently. The survival time is
generated following model (1). The censoring variable of each event is generated
from Unif(4,6) independently, leading to a censoring rate of about 28%. We set the
number of subjects to be 90 and they are equally divided into three treatment strata.
We repeat the simulation for 150 times.

Table 3 summarizes the results for regression parameters β and the standard
deviation of frailty effect τ, including the averaged bias (BIAS), the root of mean
square error (RMSE), posterior estimated standard deviation (ESD) of each point
estimate (posterior mean for β and median for τ), the standard deviation (across 150
replicated simulations) of the point estimate (SDE), and the coverage probability
(CP) of the 95% credible interval (given by Wald-type credible interval). The
results show that the point estimates of β and τ have quite little bias with low RMSE,
ESD values are close to the corresponding SDEs, and the CP values are close to the
nominal 95%.

5. Discussion

In this chapter, we show the power of Bayesian computing illustrated by suc-
cessfully applying the ANOVA DDP model as the nonparametric prior for a rela-
tively complicated shared frailty model. Our survival-function version of the
ANOVA DDP, modified based on the ANOVA DDP directly in Subsection 3.3, is
constructed for the shared frailty model, but can reduce to modeling the univariate
dependent survival functions by involving the continuous covariates into the pre-
dictor space of the ANOVA DDP. Hence, our work is an extension of [25] to some
extent. However, the proposed GSFM is different from the Linear DDP model for a
single group which is a generalization of the accelerated failure time model [42, 43].

Parameter BIAS RMSE ESD SDE CP

β1 = 1 �0.062 0.042 0.222 0.196 96.7

β2 = 1 �0.025 0.023 0.148 0.152 92.7

τ = 1 �0.078 0.056 0.213 0.224 96.7

BIAS, averaged bias among the 150 simulations; RMSE, the root of mean square error of the estimation; ESD,
averaged posterior estimated standard deviation; SDE, the standard deviation of point estimate; CP, the coverage
probability of 95% credible interval.

Table 3.
Simulation results for the parametric terms.
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Furthermore, although we point out that there exists potentially dual dependence
for dual stratification of treatment strata and recurrences, we just simply allow
dependence in treatment strata and assume that the recurrences are independent in
our methodology demonstration. The dependence across recurrences per subject is
dealt with only by the parametric frailty random effect in the proposed shared
frailty model. It is more reasonable to be incorporated into the baseline survival
functions so that the interaction effects between recurrence and treatment may be
accounted for. Under the one-level stratification, Hanson et al. [5] modeled such
serial correlation among baseline hazard functions by constructing the so-called
dependent tail free process as the prior. It is non-trivial to accommodate dual
temporal and stratified dependency as a future research plan.
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Chapter 6

Modeling Heterogeneity Using
Lindley Distribution
Arvind Pandey and Lalpawimawha

Abstract

Frailty models are intended for use in survival analysis to explain unobserved
heterogeneity in an individual caused by various hereditary variables or environ-
mental influences. A shared frailty model was utilized to examine the data. It is
based on the idea that frailty affects the hazard rate in a multiplicative manner. In
this manuscript, we introduce a new frailty model called the Lindley shared frailty
model with exponential power and generalized Rayleigh as baseline distributions.
The The Bayesian method of the Monte Carlo method of the Markov chain is used to
estimate the parameters used in the model; simulation studies are also carried out to
compare the actual and calculated values of the parameters; the proposed model is
compared with the Bayesian comparison method Compare and propose the best
model of infectious disease data.

Keywords: Bayesian technique, exponential power distribution, generalized
Rayleigh distribution, Lindley frailty, MCMC

1. Introduction

The term frailty was coined by Vaupel et al. [1]. The frailty model is typically
represented as an unobservable random variable that multiplies the risk function,
with the frailty random variable supposed to be one of the parameter distributions,
such as gamma, log-normal, positive stable, inverse Gaussian, power variance
function, and so on. Let Y be a continuous random variable of lifetime of an
individual and the frailty random variable (RV) be V. The conditional hazard
function (CHF) for a given frailty variable V ¼ v at time y>0 is

m yjvð Þ ¼ vh0 yð ÞeX0β, (1)

where m0 yð Þ is a baseline hazard function (BHF) at time y>0, X is a covariate
and β is a regression coefficient, these are in vector form. The CHF for given frailty
at time y>0 is

S yjvð Þ ¼ e�
Ð y

0
m xjvð Þdx ¼ e�vM0 yð ÞeX0β , (2)

where M0 yð Þ is cumulative baseline hazard function (CBHF) at time y>0.
Integrating over the range of frailty variable V having density f vð Þ, we get marginal
survival function as
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S yð Þ ¼
ð∞
0
S yjvð Þf vð Þdv, (3)

¼ Lv M0 yð ÞeX0β
� �

, (4)

where LV :ð Þ is a Laplace transformation of the distribution of V. Once we have
survival function at time y>0 of lifetime random variable of an individual one can
obtain probability structure and can base their inference on it.

Frailty models have gained more attention in the recent medical research due to
the uniqueness property of the frailty parameter. Generally, gamma distribution,
log-normal distribution and inverse Gaussian distributions are the most commonly
used frailty distributions [2, 3]. Hanagal and Dabade [4] introduced new Com-
pound negative binomial shared frailty models for bivariate survival data using
Weibull and generalized exponential as baseline distributions. Pandey et al. [5]
compared gamma, inverse Gaussian and positive frailty models with generalized
Pareto as baseline distribution. Pandey et al. [6] also compared gamma and inverse
Gaussian frailty distributions under additive property.

To extract the features of the Lindley shared frailty model, we used Lindley as a
frailty distribution with right censored data under generalized Rayleigh and expo-
nential power as baseline distributions. The survival periods are dependent in this
case because the frailty variable follows the Lindley distribution. The predicted
value of the frailty distribution variance influences the population’s degree of
heterogeneity. The higher the variance of the frailty distribution, the more
heterogeneity there is in the population under consideration. The frailty distribution
becomes degraded when zero variance is observed. As a baseline distribution, the
exponential power distribution is used. Because it exhibits a rising hazard rate, which
is typical in real-life distributions, the exponential power distribution is chosen as the
baseline distribution. The Lindley distribution with one parameter was first proposed
by Lindley [7] for analyzing failure times data. It belongs to an exponential family,
but it is used as an alternative to the exponential distribution. Lindley distribution is
alluring due to the ability of modeling failure time data with increasing, decreasing,
unimodal and bathtub shaped hazard rates. Ghitany et al. [8, 9] discussed different
properties of Lindley distribution and also showed that Lindley distribution is better
than the exponential distribution for modeling failure time data when considering
hazard rate is unimodal or bathtub shaped. It is also shown that Lindley distribution is
more flexible than exponential distribution in modeling lifetime data. Many authors
have discussed and introduced different generalization of Lindley distribution.
Bakouch et al. [10] introduced extended Lindley distribution. Ghitany et al. [11]
proposed the power Lindley distribution and Shanker et al. [12] proposed two
parameter Lindley distribution, which could also be reduced to one parameter case.
The mean of a two parameter Lindley distribution is always greater than the mode
indicating that the distribution is positively skewed.

The classic approach and the Bayesian approach are two widely utilized tech-
niques in general. We can employ prior distributions here, therefore we’ll estimate
the model parameters using the Bayesian Markov Chain Monte Carlo (MCMC)
approach. Furthermore, because characteristics with diverse posterior distributions
may be easily generated, the results and model selection criteria can be clearly
interpreted. Run after thinning mean and autocorrelation plots, follow-up plots,
past plot couplings, sample autocorrelation plots dictate chain behavior, burn dura-
tion, autocorrelation delay, and how observations are made It’s utilized for cognitive
confirmation on its own. We also give simulation experiments to back up the
model’s performance. All of the model’s estimation processes are detailed, as well as
infection statistics relating to kidney infections.
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In Sections 2 and 3, the introduction of the Lindley shared frailty model and
baseline distributions are given, followed by proposed models and estimation strat-
egies in Sections 4 and 5. In Sections 6 and 7, application of the proposed model and
discussion are given.

2. Lindley shared frailty model

Let a continuous random variable V follows two parameter Lindley distribution
(TPLDP) with parameters α and λ then density function of V is

f vð Þ ¼
α2

αλþ 1
λþ vð Þe�λv ; v>0, α>0, λα> � 1

0 ; otherwise,

8><
>:

(5)

and the Laplace transform is

LV sð Þ ¼ α2 1þ sþ αð Þλð Þ
sþ αð Þ2 1þ λαð Þ , sþ α>0: (6)

The mean and variance of frailty variable are E Zð Þ ¼ αλþ2
α αλþ1ð Þ and V Vð Þ ¼

2þ4αλþα2λ2

α2 αλþ1ð Þ2 . For identifiability, we assume V has expected value equal to one i.e.

E Vð Þ ¼ 1, which imply that α = ξ and λ= 2�ξ
ξ ξ�1ð Þ. Under this restriction the density

function and the Laplace transformation of Lindley distribution reduces to

f vð Þ ¼
e�ξvξ ξ2vþ ξ� ξv� 2

� �
ξ� 2

; v>0, ξ>0

0 ; otherwise,

8><
>:

(7)

and the Laplace transform is

LV sð Þ ¼ ξ ξþ s 2� ξð Þð Þ
sþ ξð Þ2 : (8)

with variance of V is 4ξ�ξ2�2
ξ2

. The frailty variable V is degenerate at V ¼ 1.

Replacing Laplace transform in Eq. (4), we get the unconditional bivariate survival
function for the jth individual as

S y1k, y2k
� � ¼ ξ ξþ ηk M01 y1k

� �þM02 y2k
� �� �

2� ξð Þ� �

ηk M01 y1k
� �þM02 y2k

� �� �þ ξ
� �2 (9)

whereM01 y1k
� �

andM02 y2k
� �

are the cumulative baseline hazard functions of the
lifetime Y1k and Y2k respectively.

And for without frailty, the model becomes

S y1k, y2k
� � ¼ e�ηk M01 y1kð ÞþM02 y2kð Þð Þ: (10)
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3. Baseline distributions

As a starting point, we’ll look at the generalized Rayleigh distribution. Surles and
Padgett [13] proposed the two-parameter Burr type X distribution, dubbed the
generalized Rayleigh distribution, and demonstrated that the two-parameter gen-
eralized Rayleigh distribution may be utilized to describe strength and general
lifetime data rather efficiently. The two-parameter generalized Rayleigh distribu-
tion can be utilized well in survival analysis to describe strength data as well as
general lifetime data. If a continuous random variable Y has a two-parameter
generalized Rayleigh distribution, the survival function, hazard function, and
cumulative hazard function are as follows:

S yð Þ ¼ 1� 1� e� λyð Þ2
� �α

; y>0, λ>0, α>0 (11)

m yð Þ ¼
2αλ2ye� λyð Þ2 1� e� λyð Þ2

� �α�1

1� 1� e� λyð Þ2
� �α ; y>0, λ>0, α>0 (12)

M yð Þ ¼ � log 1� 1� e� λyð Þ2
� �αh i

; y>0, λ>0, α>0 (13)

where α and λ stands for shape and scale parameters respectively of the distri-
bution. It has also some attractive properties increasing hazard and bathtub type
depends on the parameter value.

The second baseline distribution considered here is exponential power distribu-
tion. A continuous random variable Y is said to follow the exponential power
distribution if its survival function, hazard function and cumulative hazard func-
tion are, respectively,

S yð Þ ¼ e1�eλy
α

; y>0, λ>0, α>0 (14)

m yð Þ ¼ αλyα�1eλy
α

; y>0, λ>0, α>0 (15)

M yð Þ ¼ eλy
α � 1 (16)

where λ and α are the shape and scale parameters of the exponential power
distribution. The hazard function and cumulative hazard function are respectively,

m yð Þ ¼ αλyα�1eλy
α

; y>0, λ>0, α>0 (17)

M yð Þ ¼ eλy
α � 1 (18)

The hazard function is decreasing function at time y when α< 1 for smaller
values of λ but as λ increases hazard function takes U shape curve and further
increment in λ gives increasing nature to hazard function.

4. Proposed models

The unconditional survival function is obtained by replacing the cumulative
hazard functions of generalized Rayleigh distribution and exponential power distri-
bution in Eqs. (9) and (10). Then,
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S y1k, y2k
� � ¼ e

� � log 1� 1�e� λ1y1kð Þ2� �α1h i� �
þ � log 1� 1�e� λ2y2kð Þ2� �α2h i� �� �

ηk

1þ ξ � log 1� 1� e� λ1y1kð Þ2� �α1� �� �
þ

��
� log 1� 1� e� λ2y2kð Þ2� �α2� �� ����

�1=ξ

(19)

S y1k, y2k
� � ¼ e

� α1
λ1

eλ1y1k�1ð Þþα2
λ2

eλ2y2k�1ð Þ
� �

ηk

1þ ξ
α1
λ1

eλ1y1k � 1
� �þ α2

λ2
eλ2y2k � 1
� �� �� ��1=ξ (20)

S y1k, y2k
� � ¼ e

� � log 1� 1�e� λ1y1kð Þ2� �α1h i� �
þ � log 1� 1�e� λ2y2kð Þ2� �α2h i� �� �

ηk (21)

S y1k, y2k
� � ¼ e

� α1
λ1

eλ1y1k�1ð Þþα2
λ2

eλ2y2k�1ð Þ
� �

ηk (22)

The Eqs. (19) and (20) are Lindley shared frailty model with generalized
Rayleigh and exponential power as baseline distributions, called as Model-I and
Model-II and Eqs. (21) and (22) are without frailty models under the same baseline
distributions, called as Model-III and Model-IV.

5. Estimation strategies

By assuming independence between censoring scheme and individual lifetimes,
the likelihood function associated with failure times for the kth people (k = 1,2,3, n)
and censoring times is given by

I Ψ, β, ξð Þ ¼
Yn1
k¼1

f 1 y1k, y2k
� �Yn2

k¼1

f 2 y1k, d2k
� �Yn3

k¼1

f 3 d1k, y2k
� �Yn4

k¼1

f 4 d1k, d2kð Þ (23)

where Ψ, β and ξ are vectors of baseline parameters, regression coefficients and
frailty distribution parameter. The likelihood function for without frailty is given as

I Ψ, βð Þ ¼
Yn1
k¼1

f 1 y1k, y2k
� �Yn2

k¼1

f 2 y1k, d2k
� �Yn3

k¼1

f 3 d1k, y2k
� �Yn4

k¼1

f 4 d1k, d2kð Þ (24)

and n1, n2, n3 and n4 are the number of observations, which are observed to lie in
the intervals y1k < d1k, y2k < d2k; y1k < d1k, y2k > d2k; y1k > d1k, y2k < d2k and
y1k > d1k, y2k > d2k respectively and the contribution of the kth individual in the
likelihood function as

f 1 y1k, y2k
� � ¼ ∂

2S y1k, y2k
� �
∂y1k∂y2k

f 2 y1k, d2k
� � ¼ � ∂S y1k, d2k

� �
∂y1k

f 3 d1k, y2k
� � ¼ � ∂S d1k, y2k

� �
∂y2k

f 4 d1k, d2kð Þ ¼ S d1k, d2kð Þ

(25)
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Putting Eq. (24) in Eqs. (23) and (24), we get the likelihood functions for the
Lindley shared frailty models under generalized Rayleigh and exponential power
baseline distributions and likelihood function for without frailty models under the
same baseline distributions.

The joint posterior density of the parameters given failure times is given as

π α1, λ1, α2, λ2, ξ, βð Þ∝L α1, λ1, α2, λ2, ξ, βð Þ

�g1 α1ð Þg2 λ1ð Þg3 α2ð Þg4 λ2ð Þg5 ξð Þ
Y5
i¼1

pi βið Þ

where gi :ð Þ (i ¼ 1, 2,⋯, 5) represent the prior density function of baseline
parameters and frailty variance, which are suppose to have known hyper parame-
ters; pi :ð Þ represents prior density function for the regression coefficient βi; βi
represents regression coefficients of vector form except βi, i ¼ 1, 2, … , a and likeli-
hood function I :ð Þ is also presented by Eqs. (23) and (24). It is assumed that all of
the parameters are distributed independently in this case.

The expression of the likelihood function in Eqs. (23) and (24) are not easy to
solve by using the Newton–Raphson method. MLEs fail to converge as it involved a
large number of parameters. As a result, the Bayesian approach was used to estimate
the parameters involved in the models, which is free of such issues.

Prior distributions are utilized as follows: for a frailty parameter with a small
value of Ψ, a gamma distribution with mean 1 and big variance Γ Ψ,Ψð Þ is used as a
prior distribution. As a prior for the regression coefficient, say φ2, a normal distri-
bution with mean zero and huge variance is utilized. Because we do not know
anything about the baseline parameters, we use the same type of prior distributions
used by Ibrahim et al. [14] and Sahu et al. [15], as well as a non-informative prior.
As non-informative prior distributions, Γ a1, b1ð Þ and U a2, b2ð Þ are utilized. All the
hyper-parameters Ψ,φ, a1, a2, b1 and b2 are supposed to be known in advanced.
Here Γ a1, b1ð Þ stands for gamma distribution having shape parameter a1 and scale
parameter b1 and U a2, b2ð Þ stands for the uniform distribution over the interval a2
to b2. We provide the hyper-parameters as Ψ ¼ 0:0001,φ2 ¼ 1000, a1 ¼ 1, b1 ¼
0:0001, a2 ¼ 0, and b2 ¼ 100.

The Metropolis Hasting Algorithm and Gibbs Sampler were used to estimate the
parameters in the models fitted with the preceding prior density function and
likelihood Eqs. (23) and (24), Metropolis Hasting Algorithm and Gibbs Sampler was
utilized. Geweke test and Gelman-Rubin statistics, as suggested by Geweke [16] and
Gelman et al. [17], show that the Markov chain converges to a stationary distribu-
tion. We used trace plots, coupling from the past plots, and sample autocorrelation
plots to examine the chain’s behavior, as well as to determine the burn-in period and
autocorrelation lag.

It is important to decide which model provides the best fit to the dataset, the
comparison of models was done using Akaike Information Criteria (AIC), Bayesian
Information Criteria (BIC), Deviance Information Criteria (DIC) and Bayes factor.

6. Application in real life data

The models’ applicability was tested by applying them to infectious illness data
relating to kidney infection that occurred during catheter implantation [18]. It
includes 38 patients’ first and second recurrence times of infection from catheters
used with portable dialysis equipment. For each patient in a cluster, these two times
of infection are clustered together. Other pertinent data includes infection duration,
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patient age, gender (0 for male and 1 for female), and illness kinds such as
Glomerulo Nephritis (GN), Acute Nephritis (AN), and Polycystic Kidney Disease
(PKD).

To begin, the Kolmogorov–Smirnov test is used to determine the goodness of fit
for kidney infection data, and the p-values obtained for the first and second recur-
rences are large enough to rule out the hypothesis that the first and second recur-
rence times follow the distributions with survival functions as given in Eqs. (11) and
(14) in univariate case and it is also assumed to be appropriate for bivariate case.
The corresponding p-values are given in Table 1. The posterior summary of the
proposed models are presented in Tables 2 and 3. It consists of estimate (posterior
mean), standard error, 95% lower and upper credible limits, GR statistics values
with p-values and Geweke test values. From Tables 2 and 3, It is observed that we
can observe that regression coefficients for all the models are more or less same.
Also for all these proposed models, the value zero is not a credible value for all the
credible intervals of the regression coefficients, so all the covariates are seems to be
significant. To test the models’ accuracy, we created 95% and 50% predictive
intervals from a generated random sample based on a predictive distribution as
described by Sahu et al. [15], and counted the total number of actual recurrence
times for first and second kidney infections that fell within the intervals. The 95
percent and 50 percent predictive intervals are contained in the 95% and 50%
predictive intervals for Models I and II, respectively, 76, 58, and 76, 60 out of 76

Distribution Recurrence times

First Second

Generalized Rayleigh 0.98078 0.99889

Exponential power 0.96291 0.75766

Table 1.
p-Values of K-S Statistics for goodness of fit test for kidney infection data set.

Parameter Estimate Standard
error

Lower
credible
limit

Upper
credible
limit

Geweke
values

p values Gelman &
Rubin values

Burn in period = 5600; autocorrelation lag = 275

α1 0.3716 0.0312 0.3118 0.4283 1.0007 �0.0048 0.4980

α2 0.4253 0.0455 0.3326 0.5044 1.0003 �0.0045 0.4981

λ1 0.0032 0.0004 0.0023 0.0041 1.0008 �0.0017 0.4992

λ2 0.0026 0.0004 0.0018 0.0034 1.0031 �0.0052 0.4979

ξ 1.1287 0.0423 1.0722 1.2196 1.0032 �0.0095 0.4961

β1 0.0153 0.0041 0.0083 0.0238 1.0052 �0.0042 0.4983

β2 �1.0792 0.2740 �1.6013 �0.5350 1.0001 0.0070 0.4983

β3 0.0021 0.0004 0.0012 0.0029 1.0008 �0.0060 0.4975

β4 0.0031 0.0004 0.0022 0.0040 1.0005 �0.0010 0.4995

β5 �0.2149 0.0514 -0.3031 �0.0947 1.0008 0.0059 0.5023

Table 2.
Posterior results with baseline generalized Rayleigh distribution.
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observations. This demonstrates that the two models are appropriate for the data.
Model-I is a better model in terms of AIC, BIC, and DIC values, since it has lower
AIC, BIC, and DIC values than Model-II in Table 4. However, because the differ-
ence between AIC, BIC, and DIC values for Model I and Model II is so little, AIC,
BIC, and DIC values are not suitable for deciding between the two models. To
compare model uwith model v, we use the Bayes factor (Table 5). Model-I is better
than Model-II, since the equivalent value of 2 log Buvð Þ is larger than 10, suggesting
that there is a very strong positive to favor Model-I over Model-II for the provided
dataset, confirming our earlier conclusion in Table 4. As a result of all of the
demonstrated comparison criteria, we can conclude that Model-I is superior to
Model-II in terms of modeling kidney infection data.

Parameter Estimate Standard
error

Lower
credible
limit

Upper
credible
limit

Geweke
values

p values Gelman &
Rubin values

Burn in period = 6800; autocorrelation lag = 280

α1 0.4440 0.0251 0.3878 0.4905 1.0010 �0.0065 0.4973

α2 0.5040 0.0368 0.4263 0.5689 1.0002 0.0032 0.5012

λ1 0.3120 0.0471 0.2353 0.4021 1.0001 0.0029 0.5011

λ2 0.2150 0.0445 0.1530 0.3166 1.0016 �0.0053 0.4978

ξ 1.2061 0.0496 1.1197 1.3013 0.9999 0.0026 0.5010

β1 0.0001 0.0001 1.7e-05 0.0002 1.0003 0.0036 0.5014

β2 �2.5247 0.3867 �3.2854 �1.7454 1.0021 0.0071 0.5014

β3 0.0020 0.0004 0.0012 0.0029 1.0006 0.0119 0.5047

β4 0.0031 0.0004 0.0021 0.0040 1.0003 0.0107 0.5042

β5 �0.9916 0.4466 �1.8481 �0.1704 1.0027 0.0001 0.5000

Table 3.
Posterior results with baseline exponential power distribution.

Model no. AIC BIC DIC

Model I 638.5262 654.9020 625.1190

Model II 700.3005 716.6763 686.8069

Model III 691.5817 706.3200 720.7843

Model IV 702.0827 716.8210 689.8978

Table 4.
AIC, BIC and DIC values for all models.

Numerator model against
denominator model

2loge Buvð Þ Range Evidence against model
in denominator

Model� I against Model� II 63.23936 > 10 Very Strong Positive

Table 5.
Bayes factor values and decision for test of significance for frailty fitted to kidney infection data set.
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7. Discussion

In this study, we examined a new Lindley shared frailty model under generalized
Rayleigh and exponential power as baseline distributions.

To suit all of the proposed models, the Metropolis-Hastings and Gibbs sampler
was used. The proposed models were used to assess kidney infection data, and the
best model was suggested. To conduct the analysis, we used self-composed
programs in the R statistical software.

All of the exhibited comparison criteria indicated that the Lindley shared frailty
model with generalized Rayleigh baseline distribution is superior to exponential
power baseline distribution and without frailty models for modeling kidney infec-
tion data under the identical baseline distributions. The estimates of frailty variance
are 0.9415 and 0.9739, which are high in all the proposed models indicating that
there is a strong evidence of a high degree of heterogeneity among the patients in
the population. A few patients are anticipated to be exceptionally inclined to infec-
tion compared to others with the same covariate values. Some patients are expected
to be very prone to infection compared to others with the same covariate values.
Also we can say that there is a strong positive correlation between the two infection
times for the same patient.

The most important properties of the proposed models that were not mentioned
in the previous study are the estimates of the frailty variances are high in all
proposed models as compared to previous study given by McGilchrist and Aisbett
[18] on log-normal frailty, Hanagal and Bhambure [19], the disease type GN and
AN has lower infection rates as compared to other covariates. All the covariates are
significant factors for kidney infection, but the disease type are insignificant in the
previous proposed frailty models (see [4]). It is very crucial to be mention that
Lindly shared frailty model based on generalized Rayleigh baseline distribution is
performed better to analyze kidney infection data than other frailty models [4, 19].
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Chapter 7

Network Meta-Analysis Using R
for Diabetes Data
Nilgün Yildiz

Abstract

The objective of a meta-analysis is usually to estimate the overall treatment
effect and make inferences about the difference between the effects of the two
treatments. Meta-analysis is a quantitative method commonly used to combine the
results of multiple studies in the medical and social sciences. There are three com-
mon types of meta-analysis. Pairwise, Multivariate and Network Meta-analysis. In
general, network meta-analysis (NMA) offers the advantage of enabling the com-
bined assessment of more than two treatments. Statistical approaches to NMA are
largely classified as frequentist and Bayesian frameworks Because part of NMA has
indirect, multiple comparisons, As reports of network meta-analysis become more
common, it is essential to introduce the approach to readers and to provide guid-
ance as to how to interpret the results. In this chapter, the terms used in NMA are
defined, relevant statistical concepts are summarized, and the NMA analytic
process based on the frequentist and Bayesian framework is illustrated using the R
program and an example of a network involving diabetes treatments. The aim of the
article is to compare the basic concepts and analyzes of network meta-analysis using
diabetes data and the treatment methods used.

Keywords: Network meta-analysis, fixed effect model, random-effects model,
forest plot, network graph, direct evidence plot

1. Introduction

Meta-analysis is used to synthesize the results of more than one study and
overall effect size is considered to be valid only when some required assumptions
are satisfied [1]. An increasing number of options for alternative medical treatment
has given rise to the need for comparative effectiveness research [2, 3]. A random-
ized, controlled trials used to compare different treatment options are generally
seen to be infeasible, there is a need for other methodological approaches. Since it
makes it possible to combine data from many different studies so that a total
estimate of treatment effect can be provided, a meta-analysis integrated into a
systematic review is generally seen to be a useful statistical tool. On the other hand,
there is an important limitation of standard meta-analysis; only two interventions
can be compared at a time. When you have several treatment options to capitalize
on, only partial information can be provided by a series of individual meta-analysis
since only the questions about pairs of treatments can be answered in this way,
which leads to difficulties in making optimal clinical decisions since each
meta-analysis is just one constituent of the whole picture.
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There is an increasing need for a method to be used to summarize evidence
across many interventions [4]. In order to assess a number of interventions in terms
of their relative effectiveness and to synthesize evidence from a set of randomized
trials, network meta-analysis (or multiple treatments meta-analysis or mixed-
treatment comparison) was created [5–7]. This method is built on the analysis of
direct evidence (coming from research that directly randomizes treatments of
interest) and indirect evidence (coming from research that compares treatments of
interest with a common comparator) [8]. The benefits incurred by network analysis
becoming increasingly popular have been reported in some applications and meth-
odological articles [2, 9, 10]. Figure 1 shows the number of network meta-analysis
(NMA) studies that have been published.

Despite the fact that network meta-analysis shares many underlying
assumptions with pairwise meta-analysis, it is not so much accepted as pairwise
meta-analysis and thus criticized more [11].

The assumptions required by NMA about similarity, transitivity, and consis-
tency [12–17] are methodologically, logically, and statistically more strict [18, 19]
because it should be examined whether each of these is satisfied or not [15, 20, 21].

For NMA, there are some methods to calculate the contribution of direct (and
indirect) evidence of each comparison to its own NMA estimate, but how to define
the contribution of each study to another estimate of treatment effect is an issue of
greater ambiguity. There are a number of proposals made in the literature, each of
which is based on a different approach but many of them are not without limita-
tions and generally, there are contradictions between their results [20, 22–24].
There are some investigations having been conducted on the proportions of direct
and indirect evidence in the past. One of these is the method of “back calculation”
[21] introduced by Dias and some others have been proposed within a Bayesian
framework [25]. There is even one proposed within a frequentist context [13]. In
inverse variance method-based NMA, NMA estimates refer to linear combinations
of treatment effect estimates from primary studies having coefficients that make up
the rows of the hat matrix. It is easy to obtain the direct evidence proportion of a
study or a comparison from the diagonal elements that the respective hat matrix has
[13]. Dias and others proposed “node splitting” as an alternative. Node splitting
refers to the estimation of the indirect evidence for comparison by modeling out all
studies providing direct information for this comparison [25]. Additions were made
to this method [26] and called “side splitting” by others [9]. There are different

Figure 1.
Number of network meta-analysis publications (search PubMed until January 2020).
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interpretations of the term “side” in the literature; for example, it was interpreted as
an edge in the network graph by White [9] while it was interpreted as SIDE, an
abbreviation of “Separating Indirect and Direct Evidence” by others [27, 28]. There
is another way of quantifying the indirect evidence proposed by Noma and others,
including the factorization of the total likelihood into separate component likeli-
hoods [14]. Yet, none of these authors have attempted to make a definition or
estimation of the contribution of each study to a given comparison in the network.

There are six basic steps that every NMA should follow, regardless of the
analytic model chosen. These steps include

1.Understand network geometry,

2.Understand key concepts and assumptions,

3.Conduct analysis and present results,

4.Examine model assumptions through local and global tests,

5.Create a hierarchy of competing interventions (ranking),

6.Conduct heterogeneity and sensitivity analyses.

The network plot is fundamental to an NMA because it helps visualize the
available studies and few of evidence across the multiple comparisons. In such a
plot, each treatment/comparator identified in the review is represented by a node,
and direct evidence comparing two interventions (i.e., studies which directly com-
pared these two interventions) are represented via edges, connecting the respective
nodes. The network plot of our example is presented in Figure 2.

In Figure 2, a network of treatments for type 2 diabetes is shown. The function
served by the lines between the treatment nodes is to show which comparisons have
been made in trials that are randomized. The absence of a line between two nodes
means that there are no studies (that is, no direct evidence) comparing the two

Figure 2.
A graph of the network generated by using the net graph function for the diabetes data.
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drugs. A network meta-analysis refers to an analysis of the data from all of these
randomized trials at the same time. By means of a network meta-analysis, it is
possible to estimate the relative effectiveness of two treatments even if they are not
compared by any studies. For example, no comparison has been made between rosi
and acar in any study but by using a common comparator (placebo), an indirect
comparison can be made between them. After denoting rosi, acar, and placebo as
treatments A, B, and C, respectively, it is possible to have an indirect comparison
(AB) by subtracting the meta-analytic estimates of all studies of acar versus placebo
(BC) from the estimate of all studies of rosi versus placebo (AC): AB indirect meta-
analysis _ AC direct meta-analysis _ BC direct meta-analysis. If there is direct
evidence (such as metf vs. sulf in (Figure 2), direct and indirect estimates can be
combined by the network meta-analysis and mixed effect size can be calculated as the
weighted average of the direct evidence (studies comparing metf and sulf directly)
and the indirect evidence (for example, studies comparing metf and acar via pla-
cebo). The network constructed by studies of metf versus acar, metf versus placebo,
and acar versus placebo is often named as a loop of evidence. By using indirect
estimates, information can be provided on comparisons for which there are no trials.
In this way, the accuracy of the direct estimate can be enhanced through the reduc-
tion of the width of the CIs in comparison with the direct evidence alone [9].

In a network meta-analysis, all the direct and indirect evidence can be utilized.
Empirical studies have concluded that compared to a single direct or indirect esti-
mate, it can produce more precise estimates of the intervention effects [2, 29].
Moreover, network meta-analysis has the potential of yielding data for comparisons
made between pairs of interventions having never been evaluated within individual
randomized trials. The comparison of all interventions of interest simultaneously in
the same analysis makes it possible to estimate their ranking relatively for a given
result. The purpose of this study is to show how analysis can be done with the
network meta-analysis method using the R package program. Network meta-
analysis as a functional method. It is to show that it can be done flexibly and easily
with the R program to help researchers interested in this subject.

This chapter is organized as follows, In the next sections, we present a review of
the methods for NMA as identified in our literature search. In Section 2, we present
key concepts and the basic methodology for NMA. In Section 3 Diabetes treatments
data is used as an example. The last section presents conclusions about our research
and results found by network meta-analysis of diabetes data using the R program.

2. Conceptual issues and underlying assumptions in network
meta-analysis

There may be different alternatives for the treatment of the same health
condition and what makes NMA special is that through the synthesis of direct and
indirect estimates for their relative effects, it allows the selection of the best treat-
ment. Head-to-head studies can be conducted to directly compare two treatments A
and B (AB studies). It is also possible to get an indirect estimate from studies in
which these two treatments are compared with a common comparator treatment C,
namely, AC and BC studies [9]. If we have both direct and indirect estimates, then
we can combine them to estimate a mixed-treatment effect, as you can see in the
left panel of Figure 3. In practice, there are numerous interventions for most health
conditions that have been compared in various randomized trials and build a net-
work of evidence. For the comparison of treatments within such a network, there
may be direct and many different indirect estimates obtained through many differ-
ent comparators, as illustrated in the example in the right panel of Figure 2.
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Using NMA, all these different pieces of information can be compared so that
an internally consistent overall estimate of the relative effects of all treatments can
be produced. Researchers are still disputing about how valid it is to use indirect
treatment comparisons (indirect evidence) while making decisions. There are
strong arguments against using such evidence especially when there are direct
treatment comparisons (direct evidence) [11, 30–32]. A focus of criticism is the
nature of the evidence provided by NMA. Although patients in a randomized
clinical trial (RCT) are randomly assigned to each of the treatments that are
compared, it cannot be argued that the treatments are randomized across the
included trials.

Thus, indirect comparisons can be defined as non-randomized comparisons and
correspondingly they provide observational evidence rather than randomized evi-
dence. Consequently, indirect treatment comparisons may be more susceptible to
biased treatment effect estimates, due, for example, to confounding (for example,
when randomized AB and AC studies are systematically different from BC; [2] and
selection bias (e.g., when the selection of comparator in the study is based on the
relative treatment effect [33].

2.1 Indirect comparisons

Consider trial 1, a two-arm trial of the comparison “B–A”, and trial 2, a two-arm

trial of the comparison “C–B”. If the estimated effect sizes in these trials are δ̂
AB
1 in

trial 1 and δ̂
BC
2 in trial 2, then an indirect comparison of “C–A” may be obtained as

δ̂
AC
indirect ¼ δ̂

AB
1 + δ̂

BC:
2

Through indirect comparison, the benefits of randomization can be maintained
in each trial, and differences across the trials are allowed (e.g.,, in baseline risk) if
only the prognosis of the participants but not their response to treatment is affected
by these differences (in whichever metric is chosen as a measure of effect size).
However, the indirect comparison is based on the assumption that the treatment
named as B is the same in both trials so that its effects are nullified when “B-A” and
“C-B” are added together. It is not possible to test whether the difference between A
and C is truly reflected by an indirect comparison without having further informa-
tion. The comparison of the indirect comparison with a direct comparison would be

allowed by a third trial of “C–A” (yielding result δ̂
AC
3 ). The network of these three

trials can be said to be consistent only if the underlying treatment effects are related
to each other as follows:

δ̂
AC
3 ¼ δ̂

AB
1 þ δ̂

BC
2 (1)

Figure 3.
Each circle represents an intervention, and lines represent direct comparisons.
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Here δ̂
AB
1 , δ̂

BC
2 and δ̂

AC
3 represent the actual effects that underlay the three studies.

In practice, it is not very likely for Eq. (1) to hold for a particular set of three trials
such as the ones described earlier. The reason behind this may be discussed either in
terms of heterogeneity (because, within each treatment comparison, each individ-
ual study may not fully represent all studies in this particular comparison) or in
terms of inconsistency (because, across treatment comparisons, important differ-
ences in the types of studies contributing to the comparisons exist). We will give
more detailed information on these two concepts in subsequent sections [34].

2.2 Heterogeneity

The existing research has widely investigated heterogeneity in meta-analysis,
referring to the situation where multiple studies focused on the same research
question have different underlying values regarding the effect measure that is being
estimated. The way of understanding heterogeneity in the network meta-analysis
scenario is to keep the treatment comparison constant while changing the study
index. In particular, the existence of heterogeneity can be argued for comparison

‘B–A’ if δ̂
AB
i 6¼ δ̂

AB
j for some pair of studies i and j. It has been claimed that hetero-

geneity is an inevitable part of a meta-analysis [35] indicating that it is not likely
that two trials of the same pairwise comparison are to have equal underlying
treatment effects. Hence, within the context of Eq. (1), it is unlikely that the
equality holds since the particular instance of “C–A”, which is examined in trial 3,
will probably not represent all instances of “C–A” comparisons (and this holds true
for trials 1 and 2 for their respective treatment comparisons). A random-effects
model is a common way of allowing for heterogeneity. This assumes that the main
effects in multiple runs of the same comparison arise from a common distribution,
usually a normal distribution; namely,

δJKi � N δJK, τ2JK
� �

(2)

for pairwise comparison JK (taking values AB, AC, or BC in the running
example) [34].

2.3 Consistency

Consistency is the statistical manifestation of transitivity [12]. An additional way
of making implicit inferences about the plausibility of the transitivity assumption is
to check the network for consistency. What is meant by consistency is the statistical
agreement between observed direct and (possibly many) indirect sources of
evidence. A simple network can only contain treatments A, B, and C.

A consistency equation is generally used to express the relationship that is
desirable between direct and indirect sources of evidence for a single comparison

δAC ¼ δAB þ δBC (3)

where the mean effect size across all studies of comparison JK is represented by
JK. (Under a fixed-effect meta-analysis model where the absence of heterogeneity is
assumed, dJK represents a fixed (common) treatment effect for comparison JK).
We refer to evidence that satisfies the consistency equation as showing consistency.
We show this in Figure 4(a) as a three (non-touching) solid-edge relationship
triangle in a network with only two-arm trials. Each edge represents one or more
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two-arm trials that compare two treatments identified at either end of the edge.
Using the same line style (a solid line), we draw all three edges to describe the
situation where there is no contradiction (inconsistency) between them, that is,
Eq. (2) is valid [34].

2.4 Loop inconsistency

When studies focused on various treatment comparisons are highly different in such
a way that their effect sizes are affected, the consistency Eq. (2) might not be valid;
thus, the effect sizes are not “added up” around the loop in the figure. This is called loop
inconsistency and is shown by drawing edges using different line styles (Figure 4(b)).
Loop inconsistencymay only result fromwhen there are different comparisonsmade in
at least three separate study groups (e.g., studies “B–A”, “C–A” and “C–B”). Equiva-
lently, it can only occur when we have both indirect and direct estimates of effect size
(e.g., when “C–B” is measured both directly and through “A” indirectly) [34]. Some
examples showing the causes of loop consistency are given below:

2.5 Multi-arm trials

Generally, some studies having more than two treatment arms are included in a
network meta-analysis. In fact, about a quarter of randomized trials involve more

Figure 4.
Graphical representation of consistency, loop inconsistency and design inconsistency.
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than two arms [36], so it is important to select appropriate methods while dealing
with the condition.

When there is the presence of multi-arm trials in an evidence network, the
definition of loop inconsistency becomes more complicated. It is not possible to loop
inconsistency in a multi-arm trial. As a result, consistency can occur for a network
either structurally (because all studies include all treatments) or through observa-
tion (when assumptions about equality of direct and various indirect comparisons
hold across studies), or by means of a combination of the two.

Also, loop inconsistency cannot be properly defined using Eq. (2) anymore,
since average effect sizes, δJK, refer to pairwise comparisons made from a combina-
tion of possibly inconsistent loops (e.g., from the two-arm trial) and naturally
consistent loops (i.e., from multi-arm trials). In our drawings, multi-arm trials are
shown using a closed (merged) polygon (Figure 4(d)) [34].

2.6 Transitivity

The purpose of an NMA is to improve the decision-making process for making
choices between alternative treatments for a specific health condition and a target
population. Hence, the estimates intended to be estimated in an NMA are the mean
relative treatment effect sizes among the treatments competing with each other as
they are expected to be present in the target population. If unbiased estimates are
yielded by studies involved in the dataset and if a representative sample of the
population addressed is constituted by these studies, then estimates generated by an
NMA model for these parameters will be unbiased and consistent. The same set of
assumptions is adopted by NMA as a pairwise meta-analysis [37], but there is also
another assumption adopted by it which can be difficult to assess [38] and is called
transitivity [39], (also called similarity [40, 41], or exchangeability [42]). Transi-
tivity means that information for comparison between treatments A and B can be
attained through another treatment C using comparisons A to C and B to C. It is not
possible to test his assumption statistically, but it is possible to evaluate its validity
in a conceptual and epidemiological way [21].

What is meant by the transitivity assumption is that direct evidence from studies
AC and BC can be combined to gain insights (indirectly) about AB comparison.
However, this will be open to questioning if there are significant differences in the
distribution of effect modifiers (variables or characteristics that alter the observed
relative effects, e.g., the mean age of participants and treatment dose) across the AC
and BC trials, which yield insights about the indirect comparison [24, 39]. An effect
modifier might have different effects across studies of the same comparison
(e.g., the mean age of participants may differ across AC trials), but if its distribution
across comparisons (AC and BC) is similar, the assumption of transitivity may still
hold [21]. As a consequence, how plausible the transitivity assumption is can be
assessed by reviewing the collection of studies for significant differences in the
distribution of effect modifiers. Assuming that the studies are similar, the assump-
tion of transitivity may be realistic, on the condition that there aren’t any unknown
modifiers of the relative treatment effect [43]. It is clear that such an assessment of
transitivity may not be possible when the effect modifiers are not reported or when
the number of studies per treatment comparison is low [12]. If there are significant
differences identified and sufficient data is available, the transitivity of the network
can be enhanced by using a network meta-regression. This might indicate, for
example, that it is necessary for the common comparator treatment C to be similar
in the AC and BC studies in terms of dose, modes of administration, duration, etc.

In an NMA of studies conducted to compare fluoride treatments administered to
prevent dental caries, the definition of placebo differed between fluoride toothpaste
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studies and fluoride rinse studies [44], casting doubt on how plausible the transitivity
assumption is and thus challenging the reliability of the NMA results. In another
example, Julious and Wang [45] focused on how the use of placebo as an intermedi-
ate comparator can result in the distortion of the results of indirect comparisons due
to changes in the population’s placebo response over the years; for instance, there
might be a bias in the indirect estimate for A versus B when studies that compare
treatment A versus placebo are older than studies that compare B versus placebo.
Other ways used to formulate the transitivity assumption is to suppose that the true
relative effect of A versus B is the same in the fixed-effects model or may vary across
studies in the random-effects model, regardless of the treatments compared in each
study [42, 46], that “missing” treatments in each trial are randomly missing [5] or,
equivalently, that the choice of treatment comparisons in trials is not related directly
or indirectly to the relative efficacy of the interventions. Finally, arguing that the
patients included can be randomly distributed to any of the treatments in the
network is an alternative way of postulating this assumption [21].

However, this does not mean that the assumption of transitivity will necessarily
be valid. It should be stated that the absence of statistical inconsistency does not
offer any evidence to prove the validity of the transitivity assumption that is
essentially an assumption that cannot be tested as discussed in the previous section.
Therefore, the conduct of an NMA should be preceded by a conceptual/theoretical
evaluation of the transitivity assumption besides statistical tests for inconsistency
[12] and the studies that are included in an NMA should always be reviewed for
important differences that can be seen in patients, interventions, outcomes, study
design, methodological characteristics, and reporting biases [2, 9, 14, 32, 43].

2.7 Design inconsistency

What is meant with the “design” of a study is a set of treatments that are com-
pared within the study, recognizing that it is different from traditional interpretations
made for the term. Then, differences in effect sizes among studies including different
sets of treatments are referred to by design inconsistency. While allowing for this
variation, it is implicitly assumed that different designs (i.e., different treatment sets
included) can serve the function of a proxy for one or more important modifiers of
effect [47]. Design inconsistency is depicted in Figure 4(e), in which different line
styles represent possible contradictions between study designs. The AC effect size
depicted with a solid line in the three-arm trial is different from the AC effect size in
the two-arm trial depicted with a dashed line. It is possible to see design inconsistency
as a special case of heterogeneity since study designs correspond to a study-level
covariate that has the potential to change effect sizes in the study, as can occur in a
standard meta-regression analysis. It should be noted that in a network of only two-
arm studies, additional insights provided by loop inconsistency cannot be provided
by the concept of design inconsistency. In the case of a multi-arm trial, loop incon-
sistency in two-arm trials means design inconsistency (Figure 4(f)). The reason for
this is that the multi-arm trial must be self-consistent, so the effect sizes of the multi-
arm trial should be different from those of at least one of the two-arm trials: our
definition of design inconsistency. Nevertheless, what is implied by design inconsis-
tency for loop inconsistency is less clear. Design consistency with one three-arm trial
and two two-arm trials is shown in Figure 4(g). It is possible to create a loop by
subtracting the pairwise BC comparison from the three-arm trial and then by com-
paring it to the two-arm trials. But, in this way, the existence of a consistent loop in
the three-arm experiment is overlooked and thus it is unclear whether this network
should be defined as exhibiting loop inconsistency. Also, it is seen in Figure 4(h) that
the two-arm trials are consistent among themselves, but the effect sizes are different
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from the effect sizes of the multi-arm trial. Does this show design inconsistency
without loop inconsistency? [34].

2.8 Similarity

In order to make a comparison among the clinical trial studies used for analysis,
it must be assumed that there is a similarity in the methodology used in the studies
[12, 44]. The assessment of similarity is qualitatively performed on each of the
selected articles from a methodological point of view and is not a hypothesis that
can be tested statistically. The technique used to investigate similarity is the popu-
lation, intervention, comparison, and outcome (PICO) technique [17]. Examination
of similarity among the studies used for analysis is based on the following four
items: clinical characteristics of study subjects, treatment interventions, comparison
treatments, and outcome measures. In cases where the similarity assumption is not
satisfied, the other two assumptions are also negatively affected [24] and moreover,
there is also a need to check for the heterogeneity error [18, 21].

2.8.1 Network diagrams

One way of graphically depicting the structure of a network of interventions is a
network diagram [12]. Such a graph is comprised of nodes that represent the
interventions in the network and lines that show the available direct comparisons
between pairs of interventions. An example of a network diagram including four
interventions is given in Figure 3. In this example, in order to show the presence of
a three-arm study, distinct lines that form a closed triangular loop have been added.
It should be noted that complex and useless network diagrams may be yielded by
such presentation of multi-arm studies; in this case, a tabular format can be
preferred to depict multi-arm studies (Figure 5).

Figure 5.
Example of network diagram with four competing interventions and information on the presence of multi-arm
randomized trials.
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3. Illustrating example

The estimation of the relative effects on HbA1c change, of adding different oral
glucose-lowering agents to a baseline sulfonylurea therapy in patients with type 2
diabetes, was the aim of the network meta-analysis in Diabetes. Systemic literature
research was carried out on all relevant articles that were published from January
1993 to June 2009 in Medline and Embase. The search strategy was restricted to
“randomized controlled 170 Statistical Methods in Medical Research 22(2) trials”,
“sulfonylurea or sulphonylurea” and “humans”. This initial search was confirmed
by combining each of the Medical Subject Headings key words “chlopropamide”,
“glibenclamide”, “glyburide”, “gliclazide”, “glimepiride”, “glipizide”, “gliquidone”,
“tolbutamide” on the one hand and ‘RCT’ on the other hand. No language restric-
tion was applied. R program was used to analyze the data (Figure 6).

An original dataset offered by Senn [48] will be used in our first network meta-
analysis. In this dataset, there are effect size data obtained from randomized con-
trolled trials that compare different medications for diabetes. The effect size obtained
for all comparisons represents the mean difference (MD) of diabetic patients’ HbA1c
value in the posttest. What is represented by this value is the concentration of glucose
found in the blood, which is aimed to be decreased with diabetic medication. As can
be seen, there are 28 rows that represent the treatment comparisons and seven
columns in the data. In the first column, TE, there is the effect size of each compar-
ison, and the respective standard error is contained in se TE. In case effect size data
that have already been calculated for each comparison might not be possessed.

Figure 6.
Diabetes example and view the data.

121

Network Meta-Analysis Using R for Diabetes Data
DOI: http://dx.doi.org/10.5772/intechopen.101788



The two treatments that are compared are represented by treat1. long, treat2.
long, treat1, and treat2. As a shortened name of the original treatment name is
contained in the variables treat1 and treat2, they are redundant.

We can now move forward by fitting our initial network meta-analysis model
using the net metafunction. Now, we can look at the results of our first model, for
now assuming a fixed-effects model.
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As we have created our network meta-analysis model, we can go ahead and draw
our network graph (Figure 2).

Several types of information are conveyed by this network graph.

• First, there is the overall structure of comparisons in our network, which
makes it possible for us to understand which treatments were compared with
each other in the original data.

• Second, there are the edges having a different thickness, indicating how often
this specific comparison can be found in our network. We see that there are
many trials comparing Rosiglitazone with Placebo.

There is also one multiarm trial in our network, represented by the triangle
shown in blue in our network.

As anext step, our attention canbe shifted towards thedirect and indirect evidence in
our network by looking at the rate of direct and indirect contribution to each compari-
son. A function has been prepared to this endwith the name of direct.evidence.plot.

As can be seen in Figure 7, there are many estimates included in our network
model that needed to be inferred by indirect evidence only. We are also provided
with two additional metrics by the plot: The Minimal Parallelism and the Mean Path

Figure 7.
Direct evidence proportion for each network estimate.
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Length of each comparison. It is noted by König [49] that lower values of minimal
parallelism and Mean Path Length >2 means that care should be taken while
interpreting results for specific comparison.

Then we can look at our network’s estimates for all possible combinations of
treatments. In order to be able to do this, result matrices stored in our net meta
results object under the fixed effects model can be used. Through a few
preprocessing steps, the matrix can be made easier to read. First, the matrix is
extracted from our data and the numbers in the matrix are rounded to three digits.

When the fact that a “triangle” in our matrix includes too much redundant
information is considered, it seems to be possible to replace the lower triangle with
an empty value.

The net league() function offers an extremely convenient way of exporting all
estimated effect sizes. A matrix similar to the one given above can be generated
by this function. Yet, in the matrix created by this function, only the pooled effect
sizes belonging to the direct comparisons available in our network will be shown
by the upper triangle, like the ones to be attained if a conventional meta-analysis had
been conducted for each comparison. As there is no direct evidence for all compar-
isons, we will see some fields in the upper triangle empty. In this case, the network
meta-analysis effect sizes for each comparison are contained by the lower triangle.
The biggest advantage of this function is that it allows effect size estimates and
confidence intervals to be shown together in each cell; the only thing that we need to
tell the function is how the brackets for the confidence intervals should look like and
how many digits we want our estimates to have behind the comma.

In a networkmeta-analysis, the most interesting question desired to be answered is:
which intervention works the best? Such an ordering of treatments frommost to least
useful can be performed by the net rank() function implemented in net meta. The net
rank() function is also built on a method of frequentist treatment ranking that uses P-
scores.With these P-scores, the certainty that one treatment is better than another
treatment is measured. It has been shown that this P-score is equivalent to the SUCRA
score [50]. Our net meta object is needed as input by the function. Moreover, the small
values parameter used to define whether smaller effect sizes in comparison are an
indicator of a beneficial (“good”) or harmful (“bad”) effect should be specified. Nowwe
will look at the output for our example:
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As can be seen, the Rosiglitazone treatment has the highest P-score, which
indicates that this treatment may be particularly helpful. Contrarily, the P-score of
Placebo is zero, supporting our intuition that placebo may not be the best treatment
decision. It should be noted, however, that treatment should never be automatically
concluded to be the best just because it has the highest score [51]. One of the good
ways to be used to visualize the uncertainty in our network is to generate network
forest plots with the “weakest” treatment as a comparison. The forest plot can also
be used to do this. The reference group for the forest plot can be specified by using
the reference group argument (Figures 8 and 9).

Now it can be seen that the results are more ambiguous than they seemed
before; it is seen that several high-performing treatments having overlapping con-
fidence intervals are available. This means we cannot make a firm judgment about
which treatment is actually the best, but rather we see that there are a number of
treatments that are more effective compared to placebo.

3.1 Decomposition of heterogeneity statistics

It is possible to decompose the Q total statistic (of the “whole network”) into a Q
statistic to assess heterogeneity between studies having the same design
(“within designs”) and a Q statistic to assess design inconsistency (“between
designs”). The subsets of treatments that are compared with each other in a study
are used to define designs.

Figure 8.
Forest plot for fixed effect model with placebo as reference.
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For this analysis, the fixed-effect model has been used and it is seen that there is
considerable heterogeneity/inconsistency within as well as between designs. The
total within-design heterogeneity can be further decomposed into the contribution
from each design.

As can be seen, the network meta-analysis includes 26 studies and these 26
studies use 15 different designs. Because only five designs for which more than one
study exist, the remaining Q statistics specific to design are equal to zero and do not
have any degrees of freedom. Except for design metf:rosi (p value = 0.67), hetero-
geneity is higher than would be expected between the contributing studies for all
the other four designs; in the case of metf:plac a substantial amount more
(p < 0:0001). Sources of this could be identified in a substantive application and
thus the analysis could be updated appropriately.

Figure 9.
Forest plot for random-effects model with placebo as reference.
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Now the net heat plot, put forward by Krahn, König, and Binder [49] will be
introduced. This is a graphical presentation where two types of information are
shown in a single plot. These are:

1.For each network estimate, the contribution of each design to this estimate, and

2.For each network estimate, the extent of inconsistency due to each design.

Net heat plot is very useful in terms of evaluating the inconsistency in our
network model, and what contributes to it (Figure 10).

A quadratic matrix is produced by the function so that each element in a row can
be compared to all other elements in the columns. It should be noted here that rows
and columns do not refer to all treatment comparisons in our network rather to
specific designs. Thus, we also have rows and columns for the multiarm study,
which had a design that compares “Plac”, “Metf” and Acar. Comparison of treat-
ments with only one type of evidence (i.e., indirect or indirect evidence) is not
included in this chart, as we are dealing with cases of inconsistency between direct
and indirect evidence. Moreover, the net heat plot has also two important properties:
1. Gray boxes. The Gray boxes for each design comparison show the extent to which
one treatment comparison is important in terms of estimating another treatment
comparison. The increasing size of the box indicates the increasing importance of
comparison. This can be easily analyzed by going through the rows of the plot one
after another, and then by checking for each row in which columns the gray boxes
are the largest. In rows where the row comparison and the column comparison
intersect, the boxes are large, which is a common finding and means that direct
evidence was employed. For instance, it is possible to see a big gray box at the point
where the “Plac vs Rosi2” row and the “Plac vc Rosi” column intersect [52].

The colored backgrounds which range from blue to red indicate the inconsis-
tency of the comparison in a row, which can be attributed to the design in a column.
Inconsistent fields are shown in the upper-left corner in red. For instance, it is seen
that the entry in column “Metf vs. Sulf” is shown with red in the row for “Rosi vs.
Sulf”. This indicates that the evidence that “Metf vs. Sulf” provides for the “Metf vs.
Sulf” estimation is not consistent with the other evidence. We can now remember

Figure 10.
Net heat plot of the Senn data example based on a fixed-effect model.
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that the fixed effects model that we initially used for our network analysis forms the
basis of these results. On the basis of the things we have seen so far, we can reach
the conclusion that due to too much unexpected heterogeneity, justification is not
provided for the fixed effects model. How the net heat graph changes when a
random-effects model is assumed can be controlled by changing the random argu-
ment of the net heat function to TRUE. It is seen that this results in a significant
reduction of inconsistency in our network (Figure 11).

3.1.1 Net splitting

Net splitting, also known as node splitting, is another method for checking
consistency in our network. With this method, our network estimates are split into
the contribution of direct and indirect evidence and in this way, we can control for
inconsistency in specific comparisons in our network. To generate a net split and
compare the results.

Figure 11.
Net heat plot of the Senn data example from a random-effects model.
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Here, the important information is found in the p-value column. Any value that
is p < 0.05 in this column is an indicator of a significant discrepancy (inconsis-
tency) between the direct and indirect estimates. In the output, it is seen that there
are indeed few comparisons showing significant discrepancies between direct and
indirect evidence when the fixed effects model is used. Net split results can be
visualized with a forest chart showing all comparisons for which both direct and
indirect evidence are present in Figure 12.

4. Conclusions

For the estimation and comparison of treatment effects in a particular area,
network meta-analysis can be used as a potentially powerful tool for using all the
evidence. This approach has been depicted through an example from diabetes [48],
which shows how to graph the network and explore a range of analyses. The results of
our first model (fixed-effect model) Q value of DeFronzo1995 is highest with Q ¼
30:89: As a network model, the effects of all treatments are displayed in comparison
to the placebo condition, which is why there is no effect shown for placebo. We can
say heterogeneity/inconsistency in our network model is high, with I2 ¼ 84%. The
heterogeneity between treatment designs reflects the actual inconsistency in our
network, and is highly significant (p = 0.0021). In Figure 2, looking at the network
graph, it is seen that Rosiglitazone has been compared to Placebo in many trials. The
only multi-arm trial in our network is that of Willms 2003. We see that it is the
Rosiglitazone treatment with the highest P score. It is necessary to look at network
forest plots with the “weakest” treatment, as it can be misleading to conclude that a
treatment is best just because it has the highest score.
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Looking at the forest network plot, we see that there are several high-
performance treatments with overlapping confidence intervals. From here, we
looked at the net heat plot as we could not make a definitive decision.

The extent of the information obtained in a given treatment comparison by
means of indirect evidence and the extent of heterogeneity can be defined as two
important aspects of network meta-analysis. The net heat graph communicates
information about both of these and the software allows for the decomposition of
heterogeneity within and between designs. If there is clinically relevant heteroge-
neity, it is worth being explored further. Looking at Figure 10, a particularly large

Figure 12.
Net split plot of the Senn data example from a fixed-effect model.
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gray box is seen where the “Plac vs. Rosi2 row and the “Plac vs. Rosi” column
intersect. Using the.random-effects model in Figure 11, we see that the inconsis-
tency is significantly reduced.

Since it is not possible to conduct covariate adjustment at present with the
software, one approach is to conduct study-specific (ideally individual participant
data) analyses with appropriate covariate adjustment before the software presented
here is used to perform network meta-analysis.
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Chapter 8

Variance Balanced Design
D.K. Ghosh

Abstract

In this chapter binary, ternary and n-ary variance balanced design is constructed
using balanced incomplete block, resolvable balanced incomplete block, semi
regular group divisible, factorial, fractional factorial designs. Constructed variance
balanced designs are with v, (v + 1), (v + 2) and (v + r) treatments. Method of
construction of variance balanced designs are supported by suitable examples. It is
found that all most all variance balanced designs are with high efficiency factors.

Keywords: incidence matrix, C – Matrix, resolvable balanced incomplete block
designs, eigen values, balanced and group divisible designs

1. Introduction

In literature balanced incomplete block designs are either variance balanced (VB),
efficiency balanced (EB) or pairwise balanced. Raghvarao ([1], Theorem 4.5.2)
discussed that among the class of connected designs the balanced designs are the most
efficient designs. A design is said to be variance balanced, if the variance of the
estimate of each of the possible elementary treatment contrast is the same, i.e., if ti
denotes the estimate of ith treatment effects, then Var (ti - tj) is constant for all i 6¼ j.

Chakrabarti [2] gave useful concept of C – matrix of design. It is known that
balanced incomplete block designs are the most efficient but do not exist for all
parametric specifications, and they are equi replicated and have equal block sizes. In
some situations, balanced block designs with equal replicates or unequal block size
or both are needed. The variance balanced designs can have both equal and unequal
number of replications and block sizes. The importance of variance balanced
designs in the context of experimental material is well known, as it yields optimal
designs apart from ensuring simplicity in the analysis. Many practical situations
demand designs with varying block sizes (Pearce, [3], or resolvable VB designs with
unequal replications Mukerjee and Kageyama [4]). Rao [5], Headyat and Federer
[6], Raghavarao [7] and Puri and Nigam [8] defined that a design is said to be
variance balanced, if every normalized estimable linear function of treatment effect
can be estimated with the same precision. They also discussed the necessary and
sufficient conditions for the existence of such designs. John [9], Jones et al. [10],
Kageyama [11, 12], Kageyama et al. [13], Pal and Pal [14], Roy [15], Sinha [16, 17],
Sinha and Jones [18] and Tyagi [19] gave some more methods for constructing
block designs with unequal treatment replications and unequal block sizes. Khatri
[20], along with a method of construction of VB designs, gave a formula to measure
over-all A-efficiency of variance balanced designs. Das and Ghosh [21] gave the
methods of construction of variance balanced designs with augmented blocks and
treatments. Mukerjee and Kageyama [22] introduced resolvable variance balanced
designs. A technique for constructing variance balanced designs, which is based on
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the unionizing block principle of Headayat and Federer [6], was described in Calvin
[23]. Calvin and Sinha [24] extended his technique to produce designs with more
than two distinct block sizes that permit fewer replications. Agarwal and Kumar
[25] gave a method of construction of variance balanced designs which is associated
with group divisible (GD) designs. Rao [5] observed that, if the information matrix
C of a block design satisfied

C ¼ θ Iv � 1
v
Evv

� �

where, θ is non zero eigen value of C matrix, Iv is an identity matrix of order v,
Evv is the matrix with v rows and v columns where, all the elements are unity, then
such design is called Variance balanced designs. Since balanced incomplete block
design (BIBD) satisfies this property and hence, balanced incomplete block design
is a particular case of Variance balanced designs.

Das and Ghosh [21] defined generalized efficiency balanced (GEB) design, which
include both VB as well as EB designs. Ghosh [26], Ghosh and Karmaker [27], Ghosh
and Devecha [28], Ghosh, Divecha, and Kageyama [29], Ghosh et al. [30], Ghosh,
et al. [31, 32] obtained several methods for construction of VB designs. Ghosh and
Joshi [30] constructed VB design through GD design. Again, Ghosh and Joshi [33]
Constructed VB Design through Triangular design. Kageyama [10] recommended the
use of non-binary VB design, when binary VB designs are not available for given
values of parameters. Ghosh and Ahuja [34] carried out VB design using fractional
factorial designs. Agarwal and Kumar [35, 36] developed some methods of
constructing ternary VB designs with vþ sð Þ treatments s≥ 1ð Þ, having blocks of
unequal sizes, through block designs with v treatment. Ghosh, Kageyama and Joshi
[37] developed Ternary VB designs using BIB and GD design. Ghosh et al. [37]
further obtained more VB designs using Latin square type PBIB design. Ghosh [38]
studied the robustness of variance balanced design against the loss of k treatments
and one block. Ghosh et al. [39] discuss construction of VB design using factorial
designs. Hedayat and Stufken [40] established a relation between pair wise balanced
and variance balanced designs. Jones [41] discussed the property of incomplete block
designs. Gupta and Jones [42] constructed equal replicated VB designs.

2. Method of construction

Method of construction of Variance balanced design with equal/unequal repli-
cation sizes and equal/unequal block sizes is carried pot in this chapter. Section 3
discusses the construction of variance balanced design using Hadamard matrix.
While construction of variance balanced design using semi regular group divisible
design is discussed in Section 4. Variance balanced design is constructed by
augmenting n more blocks which is discussed in Section 5. Construction of variance
balanced design with (v + 1) treatments using unreduced balanced incomplete
block design is shown in Section 6. Section 7 discusses the construction of variance
balanced design using 2n symmetrical factorial experiments. Variance balanced
design is constructed using incidence matrix also, and is shown in section – 8.

3. Variance balanced design using Hadamard matrix

Theorem – 3.1: Equi-replicated Variance balanced design with parameters v = n
– 1, b = n, r = n/2, k = {n – 1, n/2–1} and Cim = 3n�4ð Þ

n�1ð Þ n�2ð Þ can always be constructed

138

Computational Statistics and Applications



from a Hadamard matrix of size n by deleting its first row and then considering
rows as treatments and columns as blocks.

Proof: Consider a Hadamard matrix of size n. Delete its first row. The size of this
matrix become (n – 1) x n.We replace�1 by 0, and call this matrix by N. This matrix
contains (n-1) rows and n columns where, element “1” occurs n/2 times in each row,
(n – 1) times in first column, and (n/2–1) times in the remaining columns. Consider
matrix N as an incidence matrix of a variance balanced design, where rows are
treatments and columns are blocks, so, v = n-1, b = n, r = n/2 and k = {n - 1, n/2–1} .

For variance balanced design, Cim =
Pb

j
nijnmj

n:j , where, i 6¼ m = 1 to v.

Cim is computed as C1m = 1
n�1 +

1
n
2�1 = 3n�4ð Þ

n�1ð Þ n�2ð Þ .

We can verify that, Cim gives same constant value for each pair of treatments.
Now a block design Is said to variance balanced design, if C matrix satisfies, C = θ
(Iv – Evv/v), where, θ is non zero eigen value of C matrix with multiplicity (v – 1),
where,

C ¼ diagðr1, r2, … , rvÞ–N K�1N’:

C ¼

n=2 0 :: 0

0
n
2

:: 0

:

0

:

0

:

::

:

n=2

2
666664

3
777775
�

n n� 2ð Þ 3n� 4 :: 3n� 4

3n� 4 n n� 2ð Þ :: 3n� 4

:

3n� 4

:

3n� 4

::

::

:

n n� 2ð Þ

2
66664

3
77775
= n–1ð Þ n–2ð Þ

After simplification C reduces to

C ¼ n n� 2ð Þ n� 3ð Þ þ 6n� 8
2 n� 1ð Þ n� 2ð Þ Iv � Evv

v

� �
(1)

Where, θ = n n�2ð Þ n�3ð Þþ6n�8
2 n�1ð Þ n�2ð Þ denotes the non-zero eigen value of C matrix with

multiplicity (n – 2).
Eq. (1) satisfy the condition of variance balanced design. Hence, this is an equi-

replicated and two unequal block sizes variance balanced design.

3.1 Efficiency factor of a variance balanced design

The efficiency factor of a variance balanced design is defined as

E ¼ Var bti � btm
� �

RBD

Var bti � btm
� �

VB

Where,Var bti � btm
� �

RBD = (2/r) σ2 = 2
n=2 σ

2 and

Var bti � btm
� �

VB ¼ 2=θð Þσ2 ¼ 2
n n�2ð Þ n�3ð Þþ6n�8

2 n�1ð Þ n�2ð Þ
σ2

E ¼ n n� 2ð Þ n� 3ð Þ þ 6n� 8
n n� 1ð Þ n� 2ð Þð

Example–3.1 Construct a variance balanced design from a Hadamard matrix
of size 8.
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Using Theorem – 3.1, we construct a variance balanced design from a Hadamard
matrix of size 8 as following:

Hadamard Matrix of size 8 Incidence matrix of a Variance balanced design
1 1 1 1 1 1 1 1.
1 -1 1 -1 1 -1 1 -1 1 0 1 0 1 0 1 0
1 1 -1 -1 1 1 -1 -1 1 1 0 0 1 1 0 0
1 -1 -1 1 1 -1 -1 1 N = 1 0 0 1 1 0 0 1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 0 0 0 0
1 -1 1 -1 -1 1 -1 1 1 0 1 0 0 1 0 1
1 1 -1 -1 -1 -1 1 1 1 1 0 0 0 0 1 1
1 -1 -1 1 -1 1 1 -1 1 0 0 1 0 1 1 0
N gives the incidence matrix of an equi-replicated and un equal block sizes

variance balanced design with parameters v = 7, b = 8, r = 4, k = {7, 3}, Cim = 10/21
and information matrix,

C ¼

4 0 :: 0

0 4 :: 0

:

0

:

0

:

::

:

4

2
66664

3
77775
�

48 20 :: 20

20 48 :: 20

:

20

:

20

::

::

:

48

2
66664

3
77775
=42

After simplification, C reduces to

C ¼ 280
84

I7 � E77

7

� �
¼ θ I7 � E77

7

� �
(2)

Where, θ = 10
3 , is the non zero eigen value of C matrix with multiplicity 6. Hence,

it is a variance balanced design, with bti = (1/ θ)Qi = (3/10)Qi,

Var bti � btm
� �

VB ¼ 2=θð Þσ2 ¼ 6=10ð Þ σ2:Var bti � btm
� �

RBD ¼ 2=rð Þ σ2 ¼ 2
4
σ2

and Efficiency factor, E = 5/6. This shows that efficiency factor is very high.

4. Variance balanced design through semi regular group divisible
designs

In this section, we discuss the construction of variance balanced design by
adding the blocks of semi-regular group divisible design with its groups, provided
the following conditions (i) block sizes, k = λ2, (ii) λ1 = 0 and (iii) number of groups
are considered as number of blocks, are satisfied.

Theorem – 4.1 Let the parameters of a semi regular group divisible design are v,
b, r, k, λ1 = 0, λ2, m and n, where k = λ2. By adding the b blocks of this semi regular
group divisible design with number of groups as blocks, an equi-replicated and un-
equal block sizes variance balanced design is constructed with parameters v1 = v,
b1 = b + mn, r1 = r + n, k1 = {k, n} and Cim = λ2 / k or Cim = λ1 / k + n/n.

Proof: Consider a semi regular group divisible design with parameters v, b, r, k,
λ1 = 0, λ2 = k, m and n, where, m denotes number of groups and n number of
treatments per group. Denote N as the incidence matrix of the resulting design.
Consider one group as one block. Here, there are m groups and hence, we have m
more blocks. Add b blocks of the semi-regular group divisible design with its m
more blocks, provided m blocks are repeated n times. Hence, v1 = v, b1 = b + mn,
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r1 = r + n and k1 = {k, n}. We can check, Cim =
Pb

j
nijnmj

n:j , where i 6¼m = 1 to v, for each

pair of treatment as following. C1m = λ2
k , for those pair of treatments, which occur λ2

times. Since, λ2 = k and hence, Cim = 1. Again, for those pair of treatments for which
λ1 = 0, C1m = λ1

k + n
n = 1. For variance balanced design, Cim should be the same for

each pair of treatments. Hence, λ1k + n
n =

λ2
k . This implies that, using this method, we

can construct a variance balanced design from those semi - regular group divisible
designs in which (λ2 – λ1) = k holds true.

Again, a block design Is said to variance balanced design, if C matrix satisfies,
C = θ (Iv – Evv/v), where, θ is non zero eigen value of C matrix with multiplicity

(v – 1), and, C = diag (r1, r2, … ,rv) – N K�1N’.

C ¼

rþ n 0 :: 0

0 rþ n :: 0

:

0

:

0

:

::

:

rþ n

2
66664

3
77775
�

rþ k
k

1 :: 1

1
rþ k
k

:: 1

:

1

:

1

::

::

:

rþ k
k

2
6666666664

3
7777777775

Diagonal elements = [k (r + n) – (r + k)]/k, and off diagonal elements =
� k/k = �1. After simplification, C reduces to

C ¼ k rþ nð Þ � r
k

Iv � Evv

v

� �
(3)

Where, θ = k rþnð Þ�r
k denotes the non-zero eigen value of C matrix with

multiplicity (v – 1).
Eq. (3) satisfy the condition of variance balanced design. Hence, this is equi

replicated and two unequal block sizes variance balanced design with parameters
v1 = v, b1 = b + mn, r1 = r + n, k1 = {k, n}.

4.1 Efficiency factor

The efficiency factor of a variance balanced design is defined as

E ¼ Var bti � btm
� �

RBD

Var bti � btm
� �

VB

, where, Var bti � btm
� �

RBD ¼ 2=rð Þ σ2 ¼ 2
rþ n

σ2,

Var bti � btm
� �

VB ¼ 2=θð Þσ2 ¼ 2
k rþnð Þ�r

k

σ2 and E ¼ k rþ nÞð Þ � r
k rþ nð Þ

Example – 4.1 Construct a variance balanced design with parameters v1 = 6,
b1 = 18, r1 = 8, k1 = {3, 2} from a semi regular group divisible design SR – 20,
having parameters v = 6, b = 12, r = 6, k = 3, λ1 = 0, λ2 = 3, m = 3 and n = 2. Where,
group is (3,2).

Three groups each with 2 treatments are (1 4), (2 5), (3 6).
Blocks of the semi-regular group divisible design, SR – 20 are.
(1 2 3), (2 4 6), (3 4 5), (1 5 6), (1 2 3), (2 4 6), (3 4 5), (1 5 6), (1 2 6), (1 3 5), (2

3 4), (4 5 6),
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Using Theorem – 4.1, incidence matrix of the variance balanced design is
given as.

1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0

N1 = 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1
0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0
0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0
0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1

N1 gives the incidence matrix of an equi-replicated and un-equal block sizes
variance balanced design with parameters v1 = 6, b1 = 18, r1 = 8, k1 = {3, 2} Cim = 1
and information matrix,

C ¼

8 0 :: 0

0 8 :: 0

:

0

:

0

:

::

:

8

2
66664

3
77775
�

18 6 :: 6

6 18 :: 6

:

6

:

6

::

::

:

18

2
66664

3
77775
=6

After simplification, C reduces to

C ¼ 6 I7 � E77

7

� �
¼ θ I6 � E6

6

� �

Where, θ = 6 is the non zero eigen value of C matrix with multiplicity 5.
Hence, it is a variance balance design with bti = (1/ θ) Qi = (1/6) Qi, Var bti � btm

� �
VB=

(2/θ)σ2 = (2/6)σ2,Var bti � btm
� �

RBD =(2/r)σ2 = (2/8) σ2, and Efficiency factor,
E = 3/4. This shows that efficiency factor is very high.

5. Variance balanced design through augmenting n (≥ 1) blocks

In this section, variance balanced designs are obtained through balanced incom-
plete block design by augmenting one and more than one blocks, such that each
augmented block contains each of the v treatments. The resulting design is an un -
equal replicated and un - equal blocks sizes variance balanced design.

Theorem – 5.1 Let N be the incidence matrix of a balanced incomplete
block design with parameters v, b, r, k and λ. Let n blocks are added with the
blocks of the given balanced incomplete block design. The incidence matrix N1

defined as

N1 ¼ Nð Þv x b1v x 1
� �

gives variance balanced design with parameters v1 = v, b1 = b + n, r1 = {(r + n), b},
k1 = {k, v}, where, N1 is the incidence matrix of Variance balanced design.

Proof: Consider a balanced incomplete block design with parameters v, b, r, k
and λ, whose incidence matrix is denoted by N. Next n more blocks are
augmented, hence, for resulting design, v1 = v, b1 = b + n, r1 = (r + n), k1 = {k, v}.
Cim = λ

k +
n
v =

λvþnk
vk .

Again, a block design Is said to variance balanced design, if C matrix satisfies,
C = θ (Iv – Evv/v), where, θ is non zero eigen value of C matrix with multiplicity

(v – 1) and C = diag(r1, r2, … ,rv) – N K�1N’.
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C ¼

rþ n 0 :: 0

0 rþ n :: 0

:

0

:

0

:

::

:

rþ n

2
66664

3
77775
�

k bþ nð Þ λvþ nk :: λvþ nk

λvþ nk k bþ nð Þ :: λvþ nk

:

λvþ nk

:

λvþ nk

::

::

:

k bþ nð Þ

2
66664

3
77775
=vk

Diagonal elements are [vk(r + n) – k(b + n)]/vk, and off diagonal elements are
- λ vþn kð Þ

vk . After simplification, C reduces to C =

vk rþ nð Þ � k bþ nð Þ � λvþ nkð Þ :: � λvþ nkð Þ
� λvþ nkð Þ vk rþ nð Þ � k bþ nð Þ :: � λvþ nkð Þ

:

� λvþ nkð Þ
:

� λvþ nkð Þ
::

::

:

vk rþ nð Þ � k bþ nð Þ

2
66664

3
77775
=vk

Finally, C ¼ λvþ nkð Þ
k

Iv � Evv

v

� �
(4)

where, θ = λvþnkð Þ
k is the non zero eigen value of C matrix with multiplicity

(v – 1). Eq. (4) satisfy the condition of variance balanced design. Hence, this is equi
replicated and two unequal block sizes variance balanced design with parameters
v1 = v, b1 = b + n, r1 = (r + n), k1 = {k, v}.

5.1 Efficiency factor

The efficiency factor of a variance balanced design is defined as

E ¼ Var bti � btm
� �

RBD

Var bti � btm
� �

VB

, where, Var bti � btm
� �

RBD ¼ 2=rð Þ σ2 ¼ 2
rþ n

σ2,

Var bti � btm
� �

VB ¼ 2=θð Þσ2 ¼ 2
λvþnkð Þ

k

σ2 ¼ 2k
λvþ nkð Þ and E ¼ λvþ nkð Þ

k rþ nð Þ :

Example – 5.1 Construct a variance balanced design with parameters v1 = 9,
b1 = 15, r1 = 7, k1 = {3, 9} from a balanced incomplete block design having
parameters v = 9, b = 12, r = 4, k = 3, λ = 1.

Blocks of the balanced incomplete block design are (1 2 3), (4 5 6), (7 8 9),
(1 4 7), (2 5 8), (3 6 9), (1 6 8), (2 4 9), (3 5 7), (1 5 9), (2 6 7), (3 4 8). Let n = 3.

Using Theorem – 5.1, incidence matrix of the variance balanced design is given as.
1 0 0 1 0 0 1 0 0 1 0 0 1 1 1.
1 0 0 0 1 0 0 1 0 0 1 0 1 1 1

N1 = 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1
0 1 0 1 0 0 0 1 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0 1 1 0 0 1 1 1
0 1 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 1 1 0 0 0 0 1 0 1 0 1 1 1
0 0 1 0 1 0 1 0 0 0 0 1 1 1 1
0 0 1 0 0 1 0 1 0 1 0 0 1 1 1

N1 gives the incidence matrix of an equi replicated and un - equal block sizes
variance balanced design with parameters v1 = 9, b1 = 15, r1 = 7, k1 = {3, 9} Cim = 2/3
and information matrix,
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C ¼

7 0 :: 0

0 7 :: 0

:

0

:

0

:

::

:

7

2
66664

3
77775
�

45 18 :: 18

18 45 :: 18

:

18

:

18

::

::

:

45

2
66664

3
77775
=27

After simplification, C reduces to C =

144 �18 :: �18

�18 144 :: �18

:

�18

:

�18

::

::

:

144

2
66664

3
77775
/27

Finally,

C ¼ 162
27

I9 � E99

9

� �
¼ 18

3
I9 � E99

9

� �
¼ θ I9 � E99

9

� �
(5)

Where, θ = 6 is the non zero eigen value of C matrix with multiplicity 8. Hence,
it is a variance balance design with bti = (1/ θ) Qi = (1/6) Qi,Var bti � btm

� �
VB =(2/

θ)σ2 = (2/6) σ2. Var bti � btm
� �

RBD= (2/r) σ2 = (2/7) σ2 and Efficiency factor, E = 6/7.
This shows that efficiency factor is very high.

6. Variance balanced design with (v + 1) treatments

Variance balanced design with (v + 1) treatments is constructed by reinforcing
one treatment in each block of a balanced incomplete block design.

6.1 Variance balanced designs with (v + 1) treatments from a series of balanced
incomplete block design with parameters v, b ¼ vC2 , r = v� 1C2�1 , k = 2 and
λ = 1

In this section, method of the construction of variance balanced design with
(v + 1) treatments is discussed. Variance balanced design with (v + 1) treatments
can always be constructed through a balanced incomplete block design by
reinforcing one treatment and augmenting n blocks. Let the parameters of a bal-
anced incomplete block design are v, b ¼ vC2 , r = v� 1C2�1 , k = 2 and λ = 1, provided
v (r – 1) must be divisible by (k + 1) = 3. This is shown in Theorem – 6.1.

Theorem – 6.1: Let the parameters of an unreduced balanced incomplete block
design are v, b ¼ vC2 , r = v� 1C2�1 , k = 2 and λ = 1, whose incidence matrix is
denoted by N. Let balanced incomplete block design is reinforced by one treatment
up to b blocks and augmented with n blocks, such that each block contains each of
the v treatments, where, n = 1, 2, … . . The incidence matrix N1 defined by

N1 ¼
Nv x b Ev x n

11 x b 01 x n

� �

gives the incidence matrix of a Variance balanced design with parameters
v1 = (v + 1), b1 = b + n, r1 = {r + n, b}, k = {3, v}, where, Ev x n is a matrix of v rows
and n columns with elements as 1, 1 is a vector of one row and b columns, 0 is a
vector of one row and n columns, provided n = v r�1ð Þ

3 , n being integer.
Proof: Let us consider a unreduced balanced incomplete block designs with

parameters b ¼ vC2, r = v� 1C2�1, k = 2 and λ = 1, provided v is divisible by k. This series
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of balanced incomplete block design is reinforced by one more treatment and aug-
mented by n blocks such that (v + 1)th treatment appears in each of the b blocks and
each of the n more blocks contains each of the v treatment once and only once, hence,
v1 = v + 1, b1 = b + n, r1 = {r + n, b}, k = {3, v} become the parameters of the resulting
variance balanced design. Let us check the Cim (i 6¼m= 1 to v) value for each pair of
treatments, Cim value for any pair of treatments among v treatments is computed as

Cim ¼ 1
3
þ n

v
(6)

Again,

Cim ¼ r
3
, i ¼ 1, … , v, and m ¼ vþ 1 (7)

For variance balanced design, Cim for each pair of treatment must be same and
hence, from (6) and (7), 1

3 +
n
v =

r
3, or,

n
v =

r�1ð Þ
3 , hence, n = v r�1ð Þ

3 .
Again, a block design Is said to variance balanced design, if C matrix satisfies,
C = θ (Iv – Evv/v), where, θ is non zero eigen value of C matrix with multiplicity

(v – 1) and C = diag (r1, r2, … ,rv) – N K�1N’.

C ¼

rþ n 0 :: 0

0 rþ n :: 0

:

0

:

0

:

::

:

b

2
66664

3
77775
�

vrþ 3n vþ 3n :: vþ 3n

vþ 3n vrþ 3n :: vþ 3n

:

vþ 3n

:

vþ 3n

::

::

:

bv

2
66664

3
77775
=3v

Diagonal elements are (i) [3v(r + n) – vrþ 3nð ]/3v and (ii) 2bv, and off diagonal
elements are - vþ3nð Þ

3v . After simplification, C reduces to

C ¼

3v rþ nð Þ– vrþ 3nð Þ � vþ 3nð Þ :: � vþ 3nð Þ
� vþ 3nð Þ 2v rþ nð Þ– vrþ 3nð Þ :: � vþ 3nð Þ

:

� vþ 3nð Þ
:

� vþ 3nð Þ
::

::

:

2bv

2
66664

3
77775
=3v

For variance balanced design, all the diagonal elements must be same and hence,
[3v(r + n) – vrþ 3nð ] = 2bv. This shows that one can use either of diagonal element.
In this section, we use [3v(r + n) – vrþ 3nð ] as a diagonal element.

Finally,

C ¼ 3nþ 2rþ 1ð Þ
3

Iv � Evv

v

� �
(8)

Where, θ = 3nþ2rþ1ð Þ
3 is the non zero eigen value of C matrix with multiplicity v.

Eq. (8) satisfy the condition of variance balanced design. Hence, this is an unequal
replicated and unequal block sizes variance balanced design with parameters v1 = v,
b1 = b + n, r1 = {(r + n), b}, k1 = {3, v}.

6.2 Efficiency factor

Since the resulting variance balanced design has two unequal replications and
hence, there are two efficiency factors. The efficiency factor of a variance balanced
design is defined as.
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E1 =
Var bti�btm
� �

RBD1

Var bti�btm
� �

VB

,Var bti � btm
� �

RBD1= (2/r) σ2 = 2
rþn σ

2, where, ti and tm are any

two treatments among v treatments, that is, i 6¼ m = 1 to v.Var bti � btm
� �

RBD2 =
( 1

rþnð Þ +
1
b) σ

2, where, i 6¼ m = 1 to v and m = (v + 1).

Var bti � btm
� �

VB ¼ 2=θð Þσ2 ¼ 2
3nþ2rþ1ð Þ

3

σ2 ¼ 6
3nþ 2rþ 1ð Þ :

E1 ¼ 3nþ 2rþ 1ð Þ
3 rþ nð Þ : Again, E2 ¼

Var bti � btm
� �

RBD2

Var bti � btm
� �

VB

¼ bþ rþ nð Þ 3nþ 2rþ 1ð Þ
6b rþ nð Þ

Example – 6.1: Construct a variance balanced design with parameters v1 = 6,
b1 = 15, r1 = {9, 10}, k1 = {3, 5} from a balanced incomplete block design having
parameters v = 5, b = 10, r = 4, k = 2, λ = 1.

Blocks of the balanced incomplete block design are.
(1 2), (1 3), (1 4), (1 5), (2 3), (2 4), (2 5), (3 4), (3 5), (4 5). Let n = v r�1ð Þ

3 = 5.
Hence, five blocks are augmented.

Using Theorem �6.1, incidence matrix of the variance balanced design is
given as.

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 0 0 0 1 1 1 1 1

N1 = 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1
0 0 1 0 0 1 0 1 0 1 1 1 1 1 1
0 0 0 1 0 0 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

N1 gives the incidence matrix of an unequal replicated and unequal block sizes
variance balanced design with parameters v1 = 6, b1 = 15, r1 = {9, 10}, k1 = {3, 5},
Cim = 20/15 and information matrix,

C ¼

9 0 0 0 0 0

0 9 0 0 0 0

0 0 9 0 0 0

0 0 0 9 0 0

0 0 0 0 9 0

0 0 0 0 0 10

2
666666664

3
777777775
�

35 20 20 20 20 20

20 35 20 20 20 20

20 20 35 20 20 20

20 20 20 35 20 20

20 20 20 20 35 20

20 20 20 20 20 50

2
666666666664

3
777777777775

=15

After simplification, C reduces to

C ¼

100 �20 �20 �20 �20 �20

�20 100 �20 �20 �20 �20

�20 �20 100 �20 �20 �20

�20 �20 �20 100 �20 �20

�20 �20 �20 �20 100 �20

�20 �20 �20 �20 �20 100

2
666666664

3
777777775
=15

Finally, C ¼ 120
15

I6 � 66
6

� �
¼ 8 I9 � E99

9

� �
¼ θ I6 � E66

6

� �
(9)
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Where, θ = 8 is the non zero eigen value of C matrix with multiplicity 5. Hence,
it is a variance balanced design with bti = (1/ θ) Qi = (1/8) Qi,

Var bti � btm
� �

VB = (2/θ)σ2 = (2/8) σ2,Var bti � btm
� �

RBD1 = (2/r) σ2 = (2/9) σ2 and
Var bti � btm

� �
RBD2= ( 1

rþn +
1
b) σ

2 = (19 +
1
10) σ

2 = (19/90) σ2 with.
Efficiency factor, E1 = 8/9 and E2 = 38/45. This shows that efficiency factor is

very high.

6.3 Variance balanced designs with (v + 1) treatments from a series of balanced
incomplete block design with parameters v, b ¼ vCk , r = v� 1Ck�1 , k and
λ =v� 2Ck�2

In Section 6.1, method of the construction of variance balanced design
with (v + 1) treatments is discussed with block sizes k = 2. In this section, we
have extended the method of construction of variance balanced designs with
(v + 1) treatments through a balanced incomplete block design for any value of
k by reinforcing one treatment and augmenting n blocks. Let the parameters of
a balanced incomplete block design are v, b ¼ vCk , r = v� 1Ck�1 , k and λ = v� 2Ck�2 ,
provided, v(r – λ) must be divisible by (k + 1). This is shown in Theorem – 6.2.

Theorem – 6.2 Let the parameters of a balanced incomplete block design are v,
b ¼ vCk , r = v� 1Ck�1 , k and λ = v� 2Ck�2 . whose incidence matrix is denoted by N.
Let balanced incomplete block design is reinforced by one treatment up to b blocks
and augmented with n blocks, such that each block contains each of the
v treatments, where, n = 1, 2, … . . The incidence matrix N1 defined by

N1 ¼
Nv x b Ev x n

11 x b 01 x n

� �

gives the incidence matrix of a Variance balanced design with parameters
v1 = (v + 1), b1 = b + n, r1 = {r + n, b}, k1 = {(k + 1), v}, where, Ev x n is a matrix of v
rows and n columns with elements as 1, 1 is a vector of one row and b columns, 0 is
a vector of one row and n columns, provided n =v r�λð Þ

kþ1ð Þ , n being integers.
Proof: Let us consider a series of balanced incomplete block designs with

parameters v,b ¼ vCk , r = v� 1Ck�1 , k and λ = v� 2Ck�2 , provided n is divisible
byv r�λð Þ

kþ1ð Þ . This series of balanced incomplete block design is reinforced by one more
treatment and augmented by n blocks such that (v + 1)th treatment appears in each
of the b blocks and each of the n more blocks contains each of the v treatment once
and only once, hence, v1 = v + 1, b1 = b + n, r1 = {r + n, b}, k1 = {(k + 1), v} are the
parameters of the resulting variance balanced design. Let us check the Cim (i 6¼m = 1
to v) value for each pair of treatments. Cim value for any pair of treatments among v
treatments is computed as

Cim ¼ 1
kþ 1ð Þ þ

n
v

(10)

Again, Cim ¼ r
kþ 1ð Þ , i ¼ 1, … , v and m ¼ vþ 1 (11)

For variance balanced design, Cim for each pair of treatment, must be same and
hence, from (10) and (11), 1

kþ1ð Þ +
n
v =

r
kþ1ð Þ, or,

n
v =

r–λð Þ
kþ1ð Þ , hence, n = v r�λð Þ

kþ1ð Þ .
Again, a block design Is said to variance balanced design, if C matrix satisfies,
C = θ (Iv – Evv/v), where, θ is non zero eigen value of C matrix with multiplicity

(v – 1) and C = diag(r1, r2, … ,rv) – N K�1N’.
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C ¼

rþ n 0 :: 0

0 rþ n :: 0

:

0

:

0

:

::

:

b

2
66664

3
77775

�

vrþ n kþ 1ð Þ λvþ n kþ 1ð Þ :: λvþ n kþ 1ð Þ
λvþ n kþ 1ð Þ vrþ n kþ 1ð Þ :: λvþ n kþ 1ð Þ

:

λvþ n kþ 1ð Þ
:

λvþ n kþ 1ð Þ
::

::

:

bv

2
66664

3
77775
=v kþ 1ð Þ

Diagonal elements are (i) [v(k + 1)(r + n) – vrþ n kþ 1ð Þð ]/v(k + 1) and (ii) kbv
and off diagonal elements are - λvþn kþ1ð Þð Þ

v kþ1ð Þ , . After simplification, C reduces to

C ¼

vk nþ rð Þ þ n v� k� 1ð Þ � λvþ n kþ 1ð Þð Þ :: � λvþ n kþ 1ð Þð Þ
� λvþ n kþ 1ð Þð Þ vk nþ rð Þ þ n v� k� 1ð Þ :: � vþ n kþ 1ð Þð Þ

:

� λvþ n kþ 1ð Þð Þ
:

� λvþ n kþ 1ð Þð Þ
::

::

:

kbv

2
66664

3
77775
=v kþ 1ð Þ

For variance balance design, all the diagonal elements must be same and
hence,vk nþ rð Þ þ n v� k� 1ð Þ = kbv. This shows that we can use either of diagonal
element. In this section, we usedvk nþ rð Þ þ n v� k� 1ð Þ as a diagonal element.

Finally, C ¼ n kþ 1ð Þ þ krþ λð Þ
kþ 1ð Þ Iv � Evv

v

� �
(12)

Where, θ = n kþ1ð Þþkrþλ½ �
kþ1ð Þ is the non zero eigen value of C matrix with multiplicity

v. Eq. (12) satisfy the condition of variance balanced design. Hence, this is an
unequal replicated and unequal block sizes variance balanced design with parame-
ters v1 = v, b1 = b + n, r1 = {(r + n), b}, k1 = {3(k + 1) v}.

6.3.1 Efficiency factor of this variance balanced design

Since the resulting variance balanced design is a two unequal replicated design
and hence, there are two efficiency factors. The efficiency factor of a variance
balanced design is defined as.

E1 =
Var bti�btm
� �

RBD1

Var bti�btm
� �

VB

, Var bti � btm
� �

RBD1 = (2/r) σ2 = 2
rþn σ

2, where ti and tm are any

two treatments among v treatments, i 6¼m = 1 to v.Var bti � btm
� �

RBD2 = ( 1
rþnð Þ +

1
b) σ

2,
where, i 6¼ m = 1 to v and m = (v + 1).

Var bti � btm
� �

VB ¼ 2=θð Þσ2 ¼ 2
n kþ1ð Þþkrþλ½ �

kþ1ð Þ
σ2 ¼ 2 kþ 1ð Þ

n kþ 1ð Þ þ krþ λ½ � :

E1 ¼ n kþ 1ð Þ þ krþ λ½ �
rþ nð Þ kþ 1ð Þ and E2 ¼ n kþ 1ð Þ þ krþ λ½ � bþ rþ nð Þ

2b rþ nð Þ kþ 1ð Þ

Example – 6.2: Construct a variance balanced design with parameters v1 = 6,
b1 = 15, r1 = {9, 10}, k1 = {3, 5} from a balanced incomplete block design having
parameters v = 6, b = 20, r = 10, k = 3, λ = 4.
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Blocks of the balanced incomplete block design are.
(1 2 3), (1 2 4), (1 2 5), (1 2 6), (1 3 4), (1 3 5), (1 3 6), (1 4 5), (1 4 6), (1 5 6),

(2 3 4), (2 3 5), (2 3 6), (2 4 5), (2 4 6), (2 5 6), (3 4 5), (3 4 6), (3 5 6), (4 5 6). Let
n = v r�λð Þ

kþ1ð Þ = 9. Hence, nine blocks are augmented. Using Theorem – 6.2, incidence
matrix of the variance balanced design is given as.

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1.
1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1.

N1 = 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1.
0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1.
0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1.
0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0.

N1 gives the incidence matrix of an unequal replicated and un - equal block sizes
variance balanced design with parameters v1 = 7, b1 = 29, r1 = {19, 20}, k1 = {4, 6};
Cim = 10/4 and information matrix,

C ¼

19 0 :: 0

0 19 :: 0

:

0

:

0

:

::

:

20

2
66664

3
77775
�

48 30 :: 30

30 48 :: 30

:

30

:

30

::

::

:

60

2
66664

3
77775
=12

After simplification, C reduces to C =

180 �30 �30

�30 180 :: �30

:

�30

:

�30

:

::

:

180

2
66664

3
77775
/12

Finally, C ¼ 210
12

I7 � E77

7

� �
¼ 35

2
I7 � E77

7

� �
¼ θ I7 � E77

7

� �
(13)

Where, θ = 35/2 is the non zero eigen value of C matrix with multiplicity 6.
Hence, it is a variance balanced design withbti = (1/ θ) Qi = (2/35) Qi, Var bti � btm

� �
VB

= (2/θ)σ2 = (4/35) σ2,Var bti � btm
� �

RBD1 = (2/r) σ2 = (2/19) σ2 and Var bti � btm
� �

RBD2=
( 1
rþn +

1
b) σ

2 = (19 +
1
10) σ

2 = (39/380) σ2 with efficiency factor, E1 = 35/38 and E2 = 273/
304. This shows that efficiency factor is very high.

Nonexistence of variance balanced design by reinforcing (v + t) treatments.
Variance balanced design cannot be constructed from a balanced incomplete

block design by reinforcing (v + t) treatments, t = 1, 2, …
Because for variance balanced design Cim must be same for each pair of

treatments. In this case Cim = λ
kþ1, i 6¼ m = 1 to v and Ci (v + 1) = r

kþ1, where, t = 1.
As per the condition of variance balanced design, r

kþ1=
λ

kþ1, which is not possible as
(r – λ) > 0. If two treatments are reinforced, then r

kþ1=
λ

kþ1 =
b
kþ1 must holds true,

but b 6¼ r 6¼ λ.

7. Variance balanced design using 2n symmetrical factorial experiments

This section discusses the construction of variance balanced design using
2n symmetrical factorial experiment.
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Theorem: 7.1 Let us consider a 2n factorial experiment. By deleting the control
treatment and all the main effects, equi-replicated and unequal block sizes
variance balanced design is obtained with parameters v = n, b = 2n – n – 1, r = 2n � 1,
k = {2, 3, 4… , n}.

Proof: consider a 2n treatment combination of a 2n factorial experiment. Delete
its control treatment and all main effects. Consider each treatment combination as
one block. So, we have (2n – 1 – n) blocks with v (= n) treatments, as factors are
considered as treatments. Consider this matrix as an incidence matrix of a block
design, whose all elements are either zero or 1 only. So, the design is binary.

Since each treatment is repeated (2n � 1– 1) times, design is equi replicated and
unequal block sizes with k = {2, 3,… , n}. Let the incidence matrix of the block
design is given by

N ¼

0 1 1 1 ⋮ 1

1 0 0 1 ⋮ 1

1

⋮

0

1

⋮

0

1 0 ⋮ 1

⋮ ⋮ ⋮ 1

1 1 ⋮ 1:

2
666666664

3
777777775

The incidence matrix of the block design is a variance balanced, if the C matrix
of the block design satisfy C = θ Iv � 1

v EVV
� �

, where, θ is non – zero eigen value of C
matrix.

C ¼
2n�1 � 1 0 …

0 2n�1 � 1 …

0 0 …

0

0

2n�1 � 1

2
6664

3
7775�

Y X

X Y

⋮ ⋮

X X

… X

… X

⋮ ⋮

… Y

2
6666664

3
7777775

where, Y =
n�1
1ð Þ
2 þ

n�1
2ð Þ
3 þ

n�1
3ð Þ
4 þ ::… þ 1

n, and

X = 1
2 þ n�2

3 þ n�3
4 þ … þ n� n�1ð Þ

n and r = 2n – 1 -1
After simplification, C reduces to

C ¼

2n�1 � 1� Y �X

�X 2n�1 � 1� Y

⋮ ⋮

�X �X

… �X

… �X

⋮

… 2n�1 � 1� Y

2
66666664

3
77777775

Finally,

C ¼ 2n–1–1� Yþ X
� �

Iv � Evv

v

� �
(14)

Where, θ = (2n – 1 –1 - Y + X) is the non-zero eigen value of C matrix with
multiplicity (v – 1). Eq. (14) satisfy the condition of variance balanced design.
Hence, this is an equal replicated and unequal block sizes variance balanced design
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with parameters v = n, b = 2n – n – 1, r = 2n � 1 - 1, k = {2, 3, 4… , n.}. Efficiency

factor, E =
2n�1–1�YþXð Þ

2n�1�1ð Þ .

Example: 7.1. Construct a variance balanced design with parameters v = 4,
b = 11, r = 7, k = {2, 3, … , n.}

Using Theorem 7.1, incidence matrix of the variance balanced design is given by

N ¼

0 0 0 0 1 1 1 1 1 1 1

0 1 1 1 0 0 0 1 1 1 1

1 0 1 1 0 1 1 0 0 1 1

1 1 0 1 1 0 1 0 1 0 1

2
666664

3
777775

C ¼

7 0 0 0

0 7 0 0

0

0

0

0

0

0

0

7

2
66664

3
77775
�

33 17 17 17

17 33 17 17

17

17

17

17

33

17

17

33

2
66664

3
77775
=12

After simplification, C reduces to

C ¼

51 �17 �17 �17

�17 51 �17 �17

�17

�17

�17

�17

51

�17

�17

51

2
666664

3
777775
=12

Finally,

C ¼ 68
12

I4 � E44

4

� �
¼ 17

3
I4 � E44

4

� �
¼ θ I4 � 44

4

� �
(15)

Where, θ = 17/3 is the non zero eigen value of C matrix with multiplicity 3.
Hence, it is a variance balanced design with bti = (1/ θ) Qi = (3/17) Qi,
Var bti � btm

� �
VB = (2/θ)σ2 = (6/17) σ2, Var bti � btm

� �
RBD= (2/r) σ2 = (2/7) σ2 and

efficiency factor, E = 17/21.
This result is due to Ghosh, Sinojia and Ghosh (2018).

8. Construction of variance balanced designs using some incidence
matrix

Theorem 8.1: Let In denotes the identity matrix of order n, jn is a column Vector
of one, 0n is the row vectors having all elements zero. An incidence matrix N

defined as N ¼ j0n 01�n
2

In Enxn=2

" #

gives the incidence matrix of a Variance balanced designs, with parameters
v ¼ nþ 1, b ¼ nþ n

2 , r ¼ n, 1þ n
2

� �
and k ¼ 2, nf g, where, n is even.

Proof: Proof is obvious.
Example 8.1. Let = 6: So, the incidence matrix N using Theorem 8.1 is given by
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N ¼

1 1 1 1 1 1 0 0 0

1 0 0 0 0 0 1 1 1

0 1 0 0 0 0 1 1 1

0 0 1 0 0 0 1 1 1

0 0 0 1 0 0 1 1 1

0 0 0 0 1 0 1 1 1

0 0 0 0 0 1 1 1 1

2
666666666666664

3
777777777777775

C ¼

6 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 4 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 4 0

0 0 0 0 0 0 4

2
666666666666664

3
777777777777775

�

6 1 1 1 1 1 1

1 2 1 1 1 1 1

1 1 2 1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 1 1

1 1 1 1 1 2 1

1 1 1 1 1 1 2

2
666666666666664

3
777777777777775

=2

After simplification, C reduces to

C ¼

6 �1 �1 �1 �1 �1 �1

�1 6 �1 �1 �1 �1 �1

�1 �1 6 �1 �1 �1 �1

�1 �1 �1 6 �1 �1 �1

�1 �1 �1 �1 6 �1 �1

�1 �1 �1 �1 �1 6 �1

�1 �1 �1 �1 �1 �1 6

6

2
666666666666664

3
777777777777775

=2

Finally,

C ¼ 7
2

I7 � E77

7

� �
¼ 7

2
I7 � E77

7

� �
¼ θ I7 � E77

7

� �
(16)

where, θ = 7/2 is the non zero eigen value of C matrix with multiplicity 6. Hence,
it is a variance balanced design with parameters v = 7, b = 9, r = {6,4}, k = {2, 6}.
bti = (1/θ) Qi = (2/7) Qi; Var bti � btm

� �
VB = (2/θ)σ2 = (4/7) σ2, Var bti � btm

� �
RBD1= (2/r)

σ2 = (2/4) σ2, Var bti � btm
� �

RBD2= (16 +
1
4) σ

2 = (5/12) σ2 with efficiency factor, E1 = 7/8
and efficiency factor, E2 = 35/48.

This result is due to Ghosh, Sinojia and Ghosh (2018).

9. Conclusions

In this chapter, we have constructed Variance balanced designs using balanced
incomplete block, group divisible, resolvable semi - regular group divisible,
symmetrical factorial and fractional factorial designs. It is observed that efficiency
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factor of all most all variance balanced design is high. Variance balanced designs
constructed in sections 3 to 6 are new and extended methods, while Section 7 and 8,
discuss the review work of Ghosh, Sinojia and Ghosh (2018).
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Chapter 9

Estimation of Means of Two
Quantitative Sensitive Variables
Using Randomized Response
Technique
Amod Kumar

Abstract

I propose an improved randomized response model for the simultaneous
estimation of population means of two quantitative sensitive variables by using
blank card option that make use of one scramble response and another fake
response. The properties of the proposed estimator have been analysed. To judge
the performance of the proposed model, I have considered a real data set and it is to
be pointed out that the proposed model is more efficient in terms of relative
efficiencies and privacy protection of respondents as well. Suitable recommenda-
tions have been made to the survey practitioners.

Keywords: randomized response technique, two quantitative sensitive variables,
estimation of two means\, blank card, privacy protection

1. Introduction

Reliability of data is compromised when sensitive topics on embarrassing or
illegal acts such as students taking drugs, drunk driving, abortion, family income,
tax evasion etc. are required in direct method of data collection in sample survey.
Survey on human population has established the fact that the direct question about
sensitive characters often results in either refusal to respond or falsification of the
answer. To overcome this difficulty and ensure confidentially of respondents,
Warner [1] initiated a technique which is called as randomized response technique
(RRT). For estimating π, the population proportion of respondents, a simple ran-
dom sample of size n respondents selected from the population Nwith replacement.
Each respondent selected in the sample has a random device which consists two
statements “I belong to sensitive group A” and “its compliment Ac”. The respon-
dent answers of sensitive or non-sensitive questions depending on the outcome of
the random device which is unobservable to the sampler. Greenberg et al. [2]
adjusted the Warner [1] model with respect to efficiency and respondent’s cooper-
ation by suggesting unrelated question randomized response model, where the
sensitive question was combined with an unrelated (non-sensitive) question.

Greenberg et al. [3] extended the Greenberg et al. [2] model to estimate the
population mean of quantitative sensitive variable, such as income, tax dodging etc.
In their model, each respondent selected in the sample with replacement was given
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a random device which presents two outcomes Y and X with probabilities P and
1‐Pð Þ respectively, where Y is the true quantitative sensitive variable and X is non-
sensitive independent variable. Later, Eichhorn and Hayre [4] introduced a new
multiplicative randomized response model for estimating the population mean of
quantitative sensitive variable.

Under simple random sampling with replacement (SRSWR) scheme, Perri [5]
modified Greenberg et al. [3] technique to obtain the estimator of population mean
μY by using a blank card option, if a blank card is selected then the respondents are
requested to use Greenberg et al. [3] model. In his model, the observed response θP
is given by:

θP ¼
Y with probability P1

Y with probability P2

Blank Card with probability P3

8><
>:

(1)

Perri [5] proposed an unbiased estimator of the population mean μY

μ̂P ¼ θP‐ P2 þ P3 1‐Pð Þf gμX
P1 þ P3Pð Þ (2)

with variance

V μ̂Pð Þ ¼ σ2θP
n P1 þ P3Pð Þ2 (3)

where θP ¼ 1=n
Pn

i¼1θPi and

σ2θP ¼ P1 þ P3Pð Þ σ2Y þ μ2Y
� �

þ P2 þ P3 1‐Pð Þf g σ2X þ μ2X
� �‐ P1 þ P3Pð ÞμY þ P2 þ P3 1‐Pð Þf gμX½ �2

Many different suggestions have been made for the use of these blank cards by
various authors including Bhargava and Singh [6], Singh et al. [7], Batool et al. [8],
Singh [9] and Singh et al. [10, 11] among others. Furthermore in addition, the
theory of randomized response technique to estimate the population parameters of
sensitive characteristics was extended by Narjis and Shabbir [12, 13].

Recently, Ahmed et al. [14] have introduced the idea to estimate the means of
two quantitative sensitive variables simultaneously by using one scramble response
and other face response. Let Y1i and Y2i be the two values of quantitative sensitive
variables with means μY1, μY2ð Þ and variances σ2Y1, σ2Y2

� �
respectively connected

with the ith unit in the populationN. The parameters of interest are μY1, μY2ð Þwhich
are to be estimated. Each respondent selected in the sample with replacement is
asked to produce two fake values of scramble variables S1 and S2 from two known
distributions. Let S1 and S2 be the independent scramble variables with known
means θ1, θ2ð Þ and variance γ20, γ02ð Þ respectively, which help to maintain the
protection of respondents. Ahmed et al. [14] defined the scramble response as:

Z1i ¼ S1Y1i þ S2Y2i (4)

Each respondent selected in the sample is also requested to draw a card from the
deck which consist two types of cards, similar toWarner [1] model but has different
type of outcomes. Let P be the probability of cards bearing the statements in the
deck, “the selected respondent to report scramble response as S1” and 1‐Pð Þ is the
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probability of cards bearing the statement in the deck, “the selected respondent to
report scramble response as S2”. Thus, the second response from the ith respondent
given as:

Zi ¼
S1 with probability P

S2 with probability 1‐Pð Þ
�

(5)

where P 6¼ θ1γ20
θ1γ20 þ θ2γ02

Ahmed et al. [14] proposed unbiased estimators of population means μY1 and μY2
respectively, and are given as:

μ̂AY1 ¼
Pθ1θ2 þ 1‐Pð Þ γ02 þ θ22

� �� �
Z1‐θ2Z2

1‐Pð Þθ1γ02‐Pθ2γ20
(6)

and

μ̂AY2 ¼
θ1Z2‐ P γ20 þ θ21

� �þ 1‐Pð Þθ1θ2
� �

Z1

1‐Pð Þθ1γ02‐Pθ2γ20
(7)

where Z1 ¼ 1
n

Pn
i¼1Z1i and Z2 ¼ 1

n

Pn
i¼1Z2i

In follow up of above works and motivated by Ahmed et al. [14], I adopt
Perri [5] method and proposes a new improved randomized response model by
introducing blank card option for estimation of population means of two quantita-
tive sensitive variables. For example, Y1 may stand for the respondents’ income and
Y2 may stand for the respondents’ expenditure, Y1 denotes the import in millions
and Y2 denotes the export in millions etc. I have demonstrated the efficacious
performance of the proposed randomized response model over the Ahmed et al.
[14] model along with privacy protection of respondents.

2. Proposed model

In the proposed model, I have considered the similar supposition as it is the case
of Ahmed et al. [14] procedure with the modification that the second response of
Warner [1] method is replaced with Perri [5] blank card method. Proceeding on the
lines of Ahmed et al. [14] as given in their model, the first observed response is
given by:

Z1i ¼ S1Y1i þ S2Y2i (8)

Noted that by mixing of two quantitative sensitive variables with two scramble
variables will make more comfortable to respondent about providing information
because it make very hard to guess the true value of two quantitative sensitive
variables to an interviewer.

Here I differ from the existing randomized response model available in the
literature, in that, the second response is replaced with Perri [5] procedure but has
different outcomes. Each selected respondent in the sample provided a random
device which consists three type of cards bearing the statements (i) green cards
with the statement: report scramble variable S1, (ii) red cards with the statement:
report scramble variable S2 and (iii) yellow card with no statement (blank cards)
with probabilities P1, P2 and P3 respectively such that

P3
i¼1Pi ¼ 1. Thus, the second

response ZAi in the proposed model from ith respondent is given by:
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ZAi ¼
S1 with probability P1

S2 with probability P2

Blank card with probability P3

8><
>:

(9)

If a blank card is selected, the respondents are requested to use Ahmed et al. [14]
second response. Thus, the second response ZAi can be rewritten as:

ZAi ¼

S1 with probability P1

S2 with probability P2

S1 with probability P

S2 with probability 1‐Pð Þ

( )
with probability P3

8>>>><
>>>>:

(10)

where P 6¼ P2 þ P3ð Þθ1γ02‐P2θ2γ20
P3 θ1γ02 þ θ2γ20ð Þ

Taking expectation on both sides of (Eq. (8)), I have

E Z1ið Þ ¼ E S1Y1i þ S2Y2ið Þ ¼ θ1μY1 þ θ2μY2 (11)

With the help from Eqs. (8) and (10), I generate a new response Z0
2i as:

Z0
2i ¼ Z1iZAi

¼

S21Y1i þ S1S2Y2i with probability P1

S1S2Y1i þ S22Y2i with probability P2

S21Y1i þ S1S2Y2i with probability P

S1S2Y1i þ S22Y2i with probability 1‐Pð Þ

( )
with probability P3

8>>>><
>>>>:

(12)

Taking expectation on both sides of (Eq. (12)), I get

E Z0
2i

� � ¼ P1 þ P3Pð Þ γ20 þ θ21
� �

μY1 þ θ1θ2μY2
� �

þ P2 þ P3 1‐Pð Þf g θ1θ2μY1 þ γ02 þ θ22
� �

μY2
� �

(13)

Using the method of moments on Eqs. (11) and (13), I have:

θ1μ̂Y1 þ θ2μ̂Y2 ¼
1
n

Xn
i¼1

Z1i (14)

and

P1 þ P3Pð Þ γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1θ2

� �
μ̂Y1

þ P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �

μ̂Y2 ¼
1
n

Xn
i¼1

Z0
2i

(15)

Eqs. (14) and (15) can be rewritten as:

θ1, θ2
P1 þ P3Pð Þ γ20 þ θ21

� �
P1 þ P3Pð Þθ1θ2

þ P2 þ P3 1‐Pð Þf gθ1θ2, þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �

2
64

3
75 μ̂Y1

μ̂Y2

� �
¼ Z1

Z
0
2

" #

(16)
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Applying Cramer’s rule on Eq. (16), I obtain

Δ ¼
θ1, θ2
P1 þ P3Pð Þ γ20 þ θ21

� �
þ P2 þ P3 1‐Pð Þf gθ1θ2, P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22

� �
�����

�����

¼ θ1 P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �

‐ θ2 P1 þ P3Pð Þ γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1θ2

� �

¼ P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20 (17)

Δ1 ¼
Z1, θ2
Z
0
2, P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22

� �
�����

�����

¼ P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �

Z1‐θ2Z0
2 (18)

and

Δ2 ¼
θ1 Z1

P1 þ P3Pð Þ γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1θ2, Z

0
2

�����

�����

¼ θ1Z
0
2‐ P1 þ P3Pð Þ γ20 þ θ21

� �þ P2 þ P3 1‐Pð Þf gθ1θ2
� �

Z1 (19)

Thus, the estimators of the population mean μY1 and μY2 are respectively given by:

μ̂Y1 ¼
Δ1

Δ
¼ P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22

� �� �
Z1‐θ2Z0

2

P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ � (20)

and

μ̂Y2 ¼
Δ2

Δ
¼ θ1Z

0
2‐ P1 þ P3Pð Þ γ20 þ θ21

� �þ P2 þ P3 1‐Pð Þf gθ1θ2
� �

Z1

P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ � (21)

I have the following theorems.
Theorem 1: μ̂Y1 is an unbiased estimator of the population mean μY1.

E μ̂Y1ð Þ ¼ μY1 (22)

Proof: Taking expectation on both sides of Eq. (20), I have

E μ̂Y1ð Þ ¼
P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þ

� �
γ02 þ θ22
� �h i

E Z1
� �‐θ2E Z02

� �

P2 þ P3 1‐Pð Þ
� �

θ1γ02‐ P1 þ P3Pð Þθ2γ20
� �

¼
P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þ

� �
γ02 þ θ22
� �h i

1=n
Pn

i¼1E Z1ið Þ‐θ21=n
Pn

i¼1E Z02i
� �

P2 þ P3 1‐Pð Þ
� �

θ1γ02‐ P1 þ P3Pð Þθ2γ20
� �

¼

P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þ
� �

γ02 þ θ22
� �h i Pn

i¼1
θ1μY1 þ θ2μY2ð Þ

‐ θ2
Pn

i¼1 P1 þ P3Pð Þ γ20 þ θ21
� �

μY1 þ θ1θ2μY2
n o

þ P2 þ P3 1‐Pð Þ
� �

θ1θ2μY1 þ γ02 þ θ22
� �

μY2
n oh i

n P2 þ P3 1‐Pð Þ
� �

θ1γ02‐ P1 þ P3Pð Þθ2γ20
� �
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After simplification, I get

¼ P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ �μY1
P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ � ¼ μY1:

which completes the proof.
Theorem 2: μ̂Y2 is an unbiased estimator of the population mean μY2.

E μ̂Y2ð Þ ¼ μY2 (23)

Proof: Taking expectation on both sides of Eq. (21), I have

μ̂Y2 ¼
θ1E Z

0
2

� �
‐ P1 þ P3Pð Þ γ20 þ θ21

� �þ P2 þ P3 1‐Pð Þf gθ1θ2
� �

E Z1
� �

P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ �
Similarly, following the pattern as given in Theorem 1, I obtain

¼ P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ �μY2
P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ � ¼ μY2:

hence, it is proved.
Theorem 3: The variance of the unbiased estimator μ̂Y1 is given by:

V μ̂Y1ð Þ ¼

P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �2σ2Z1

þ θ22σ2Z0
2

‐ 2θ2 P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �

σZ1Z0
2

n P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ �2 (24)

where σ2Z1
¼ γ20 σ2Y1 þ μ2Y1

� �þ γ02 σ2Y2 þ μ2Y2
� �þ θ21σ2Y1 þ θ22σ2Y2 þ 2θ1θ2σY1σY2,

σ2Z0
2
¼ σ2Y1 þ μ2Y1
� �

P1 þ P3P
� �

γ40 þ 4γ30θ1 þ 6γ20θ
2
1 þ θ41

� �
þ P2 þ P3 1‐Pð Þ
� �

γ20 þ θ21
� �

γ02 þ θ22
� �h i

þ σ2Y2 þ μ2Y2
� �

P2 þ P3 1‐Pð Þ
� �

γ04 þ 4γ03θ2 þ 6γ02θ
2
2 þ θ42

� �
þ P1 þ P3P
� �

γ20 þ θ21
� �

γ02 þ θ22
� �h i

þ2 σY1σY2 þ μY1μY2ð Þ P1 þ P3P
� �

θ2 γ30 þ 3γ20θ1 þ θ31
� �

þ P2 þ P3 1‐Pð Þ
� �

θ1 γ03 þ 3γ02θ2 þ θ32
� �h i

‐ P1 þ P3P
� �

γ20 þ θ21
� �

þ P2 þ P3 1‐Pð Þ
� �

θ1θ2
n o

μY1
h

þ P1 þ P3P
� �

θ1θ2 þ P2 þ P3 1‐Pð Þ
� �

γ02 þ θ22
� �n o

μY2
i2

and

σZ1Z0
2
¼ σ2Y1 þ μ2Y1
� �

P1 þ P3Pð Þ γ30 þ 3γ20θ1 þ θ31
� �þ P2 þ P3 1‐Pð Þf gθ2 γ20 þ θ21

� �� �

þ σ2Y2 þ μ2Y2
� �

P1 þ P3Pð Þθ1 γ02 þ θ22
� �þ P2 þ P3 1‐Pð Þf g γ03 þ 3γ02θ2 þ θ32

� �� �

þ2 σY1σY2 þ μY1μY2ð Þ P1 þ P3Pð Þθ2 γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1 γ02 þ θ22

� �� �

‐ θ1μY1 þ θ2μY12ð Þ P1 þ P3Pð Þ γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1θ2

� �
μY1

�

þ P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �

μY2
�

The proof is given in Appendix.
Theorem 4: The variance of the unbiased estimator μ̂Y2 is given by:

V μ̂Y2ð Þ ¼

θ21σ2Z0
2
þ P1 þ P3Pð Þ γ20 þ θ21

� �þ P2 þ P3 1‐Pð Þf gθ1θ2
� �2σ2Z1

‐ 2θ1 P1 þ P3Pð Þ γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1θ2

� �
σZ1Z2

n P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ �2 (25)
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Proof: The proof is similar as given in Theorem 3.
In the next section, I discuss a privacy protection measure to compare the

respondent’s privacy protection and efficiency for the considered model.

3. Privacy protection measure

A number of measures have been introduced in the literature to estimate the
performance of competitive strategies taking into account both efficiency and
respondent privacy protection. For a discussion on privacy protection measures for
randomized response survey of stigmatizing character, see Lanke [15], Leyseiffer
and Warner [16], Bhargava and Singh [17] and among other. These measures of
privacy protection are based on the qualitative characters.

When dealing with quantitative sensitive variable, the respondent privacy is
conserved by asking interviewees to algebraically scramble the true response by
means of a coding mechanism. Respondent’s privacy protection measures for quan-
titative sensitive variable have been investigated by Diana and perri [18] and
Zhimin et al. [19] which is based on the square of correlation coefficient i.e.
ρ2yθ ∈ 0, 1½ �. Later, Diana and Perri [20] introduced the new measure of privacy
protection of respondents by using auxiliary variable. These measures are normal-
ized with zero (one) denoting maximum (minimum) privacy protection. Recently,
Singh et al. [11] considered the case when no auxiliary variable is available in the
procedure and studied the normalized measure of respondent privacy. This nor-
malized measure allows researchers to attain a trade-off between efficiency and
privacy. Moreover, it is worth remarking that if one procedure is more efficient
than other, then it will be less protective. Thus, all the provided measures using the
randomized procedure for the privacy protection, they have concluded for a mea-
sure of respondent’s privacy protection having a trade-off between these two
aspects.

τ ¼ 1‐ρ2yθ (26)

The values of τ closer to 1 indicates more privacy protection and greater coop-
eration may be expected using randomized response models while τ closer to zero
denotes that the privacy protection is completely violated. Now, I use this normal-
ized measure for comparing the trade-off between efficiency and privacy protec-
tion.

In the proposed model, there are two quantitative sensitive variables Y1i and Y2i

associated with the second observed response Z0
2i. Following Section 2, I compute

the square of correlation coefficients between the second observed response Z0
2i and

quantitative sensitive variables Y1i and Y2i respectively, and are given as:

ρ2y1iZ
0
2i
¼

P1 þ P3P
� �

γ20 þ θ21

� �
σ2Y1 þ θ1θ2σY1σY2

n o
þ P2 þ P3 1‐Pð Þ
n o

θ1θ2σ2Y1 þ γ20 þ θ22

� �
σY1σY2

n oh i2

σ2Y1σ
2
Z0
2

(27)

and

ρ2y2iZ
0
2i
¼

P1 þ P3P
� �

γ20 þ θ21

� �
σY1σY2 þ θ1θ2σ2Y2

n o
þ P2 þ P3 1‐Pð Þ
n o

θ1θ2σY1σY2 þ γ20 þ θ22

� �
σ2Y2

n oh i2

σ2Y2σ
2
Z0
2

(28)
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where σ2Z0
2
is given in Theorem 3.

Now, I define the measure of respondent’s privacy protection associated with the
proposed second response Z0

2i as:

τPJ ¼ 1‐ρ2yJiZ0
2i
, J ¼ 1, 2 (29)

I also define the square of correlation coefficients for the Ahmed et al. [14]
response model. In the case of Ahmed et al. [14] model, there are also two quanti-
tative sensitive variables associated with the second observed response. Thus, the
square of correlation coefficients between the second observed response and quan-
titative sensitive variables Y1i and Y2i are respectively given by:

ρ2y1iZ2i
¼ P γ20 þ θ21

� �
σ2Y1 þ θ1θ2σY1σY2

� �þ 1‐Pð Þ θ1θ2σ2Y1 þ γ20 þ θ22
� �

σY1σY2
� �� �2

σ2Y1σ2Z2

(30)

ρ2y2iZ2i
¼ P γ20 þ θ21

� �
σY1σY2 þ θ1θ2σ2Y2

� �þ 1‐Pð Þ θ1θ2σY1σY2 þ γ20 þ θ22
� �

σ2Y2
� �� �2

σ2Y2σ2Z2

(31)

where

σ2Z2
¼ σ2Y1 þ μ2Y1
� �

P γ40 þ 4γ30θ1 þ 6γ20θ
2
1 þ θ41

� �þ 1‐Pð Þ γ20 þ θ21
� �

γ02 þ θ22
� �� �

þ σ2Y2 þ μ2Y2
� �

1‐Pð Þ γ04 þ 4γ03θ2 þ 6γ02θ
2
2 þ θ42

� �þ P γ20 þ θ21
� �

γ02 þ θ22
� �� �

þ 2 σY1σY2 þ μY1μY2ð Þ Pθ2 γ30 þ 3γ20θ1 þ θ31
� �þ 1‐Pð Þθ1 γ03 þ 3γ02θ2 þ θ32

� �� �

‐ P γ20 þ θ21
� �þ 1‐Pð Þθ1θ2

� �
μY1 þ Pθ1θ2 þ 1‐Pð Þ γ02 þ θ22

� �� �
μY2

� �2

I also define the measure of respondent’s privacy protection for Ahmed et al.
[14] as:

τAJ ¼ 1‐ρ2yJiZ2i
, J ¼ 1, 2 (32)

In the next section, I investigate the performance of the proposed model with
respect to Ahmed et al. [14] model in terms of relative efficiency and privacy
protection under different parametric situations.

4. Efficiency vs privacy protection

The relative efficiency (RE) of the proposed estimators μ̂Y1 and μ̂Y2 over Ahmed
et al. [14] the estimators μ̂AY1 and μ̂AY2 are respectively given by:

REJ μ̂YJ, μ̂AYJ
� � ¼ V μ̂AYJ

� �

V μ̂YJ
� � , J ¼ 1, 2 (33)

To have a possible trade-off between relative efficiency and privacy protection
of respondents, I consider the parametric values in this manner that the relative
efficiencies are maximum and expect greater privacy protection of respondents. I
decided to take P ¼ 0:6, μY1 ¼ 25–45 with a step 5 and μY2 ¼ 35–55 with a step 5,
five values of θ1 and θ2, equal to 2–10 and 4–16 with a increment 2 and 3
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respectively, σY1 ¼ 7, σY2 ¼ 5, γ20 ¼ 2, γ02 ¼ 9, γ30 ¼ 1:5, γ03 ¼ 1:2, γ40 ¼ 3:2 and
γ04 ¼ 3:5. I have also chosen different values of probabilities Pi i ¼ 1, 2, 3ð Þ and
presented in Tables 1 and 2.

Tables 1 and 2 show how the proposed model works in term of efficiency along
with privacy protection. For the situation under investigate it emerges that the
proposed model based on blank card method is more efficient than Ahmed et al.
[14] model. Hence, the finding results, which are worth discussing, are described in
the following points.

1. It is observed from Tables 1 and 2 that the proposed estimators μ̂YJ J ¼ 1, 2ð Þ
almost equally efficient in term of efficiencies and privacy protection of
respondents.

2.From Tables 1 and 2, it may be observed that the values of relative
efficiencies of the proposed estimators μ̂YJ J ¼ 1, 2ð Þ with respect to Ahmed
et al. [14] estimators μ̂AYJ J ¼ 1, 2ð Þ are more than 1 for all case.

3.The behaviour of the estimators in Tables 1 and 2, indicates that the highest
efficiency 2.03 attains when Pi ¼ 0:20 i ¼ 1, 2ð Þ and Pi ¼ 0:60 with
corresponding values of θ1 ¼ 2 and θ2 ¼ 4 while the minimum efficiency 1.13

P1 P2 P3 θ1 θ2 μY1 μY2 RE1 τP1 τA1

0.20 0.20 0.60 2 4 25 35 2.03 0.9762 0.9765

4 7 30 40 1.72 0.9572 0.9570

6 10 35 45 1.65 0.9399 0.9395

8 13 40 50 1.62 0.9277 0.9272

10 16 45 55 1.60 0.9206 0.9201

0.15 0.15 0.70 2 4 25 35 1.74 0.9763 0.9765

4 7 30 40 1.52 0.9572 0.9570

6 10 35 45 1.47 0.9398 0.9395

8 13 40 50 1.45 0.9276 0.9272

10 16 45 55 1.44 0.9205 0.9201

0.10 0.10 0.80 2 4 25 35 1.47 0.9764 0.9765

4 7 30 40 1.33 0.9571 0.9570

6 10 35 45 1.30 0.9397 0.9395

8 13 40 50 1.29 0.9275 0.9272

10 16 45 55 1.28 0.9204 0.9201

0.05 0.05 0.90 2 4 25 35 1.22 0.9764 0.9765

4 7 30 40 1.16 0.9571 0.9570

6 10 35 45 1.15 0.9396 0.9395

8 13 40 50 1.14 0.9274 0.9272

10 16 45 55 1.13 0.9203 0.9201

Table 1.
Relative efficiency of the proposed estimator μ̂Y1 with respect to Ahmed et al. [14] estimator μ̂AY1 and privacy
protection of the τP1 and τA1.
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attains when Pi ¼ 0:05 i ¼ 1, 2ð Þ and Pi ¼ 0:90 with corresponding values
of θ1 ¼ 10 and θ2 ¼ 16.

4.It is also seen that the values of relative efficiencies are decreasing as the
values of θJ and μYJ J ¼ 1, 2ð Þ increase for the fix values of Pi i ¼ 1, 2, 3ð Þ.

5.However, it is observed that for the fix values of θ1, θ2, μY1 and μY2 the values
of REi i ¼ 1, 2ð Þ are decreasing as the values of Pi i ¼ 1, 2ð Þ decrease.

6.Furthermore, it can be interpreted that with the increase in the values of Pi
i ¼ 1, 2ð Þ while decrease in the values of P3, θ1, θ2, μY1 and μY2 there is a
increasing pattern in the values of REi i ¼ 1, 2ð Þ.

7.From Tables 1 and 2, it is clear that the measure of privacy protection of
proposed randomized response model and Ahmed et al. [14] model is closer
to one for all the cases, which indicate maximum privacy protection of
respondents.

8.It is further observed that the degree of privacy protection of proposed
randomized response model and Ahmed et al. [14] model decreasing with the
values of θJ and μYJ J ¼ 1, 2ð Þ increase.

9.From Tables 1 and 2, it may also be seen that the value of respondent’s
privacy protection are showing an increasing trend with the increase in the
values of Pi i ¼ 1, 2ð Þ while decrease in the values of P3, θ1, θ2, μY1 and μY2.

10.However, it is visible that the proposed model is more efficient than Ahmed
et al. [14] model but less protective only when θ1 ¼ 2 and θ2 ¼ 4. The model
which provides more efficiency yields less privacy protection. Hence, I
conclude that

V μ̂AYJ
� �

>V μ̂YJ
� �

, J ¼ 1, 2

and

τAJ > τPJ, J ¼ 1, 2

Hence, I conclude that small difference in efficiency may procure substantial
improvement in privacy protection of respondent. Thus, our comparisons underline
the good performance, in terms of efficiency and respondent’s privacy protection.

11.Therefore, the proposed randomized response model under the blank card
method may be declared to be best for estimating the mean of two
quantitative sensitive variables and thus may be recommended to the survey
practitioners whenever they deal with extremely sensitive characteristics.

To judge the performance of the proposed model, I consider a real data CO124 of
N = 124 units of Sarndal et al. [21]. A random sample of size n = 30 units are drawn
from the CO124 population. Let Y1, Y2 and X be the import, export and military
expenditure in the state of U.S. during the year 1983, 1983 and 1981 respectively.
The parametric ranges of quantitative sensitive variables Y1 and Y2 and non-
sensitive variable X have been found by using t–test and chi–square test, which are
terms as μY1 ∈ 331:60, 567:66ð Þ, μY2 ∈ 242:56, 440:30ð Þ, μX ∈ 43, 171:16ð Þ,
σY1 ∈ 256:03, 432:17ð Þ, σY2 ∈ 214:47, 362:02ð Þ and σX ∈ 138:90, 234:46ð Þ.
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The relative efficiencies have been computed for these parameters combinations
and presented in Tables 3–7.

The behaviour of the estimators in Tables 3–7 indicate that the proposed esti-
mators perform better than Perri [5] and Ahmed et al. [14] estimators in terms of
efficiency.

1.When the proposed estimators μ̂Y1 and μ̂Y2 are compared with Perri [5]
estimator μ̂P, the estimator μ̂Y2 gives lesser efficiency than the estimator μ̂Y1.
Also, it is clear from Tables 5 and 6 that when the proposed estimators μ̂Y1 and
μ̂Y2 are compared with Ahmed et al. [14] estimators μ̂AY1 and μ̂AY2, the
estimator μ̂Y1 gives lesser efficiency than the estimator μ̂Y2.

2.From the simulation results in Tables 5 and 6, it can be interpreted that the
values of relative efficiencies are coming out to be near 1 when P = 0.1, this is
the cost to be paid for perturbing the data, so that privacy of respondents is
protected.

3.Further, it is observed that for the fix values of Pi, θi, μYi and σYi (i = 1, 2, 3) the
value of relative efficiencies are decreasing in Tables 3 and 4while in Tables 5
and 6 it is increasing as the values of P increase.

P1 P2 P3 θ1 θ2 μY1 μY2 RE2 τP2 τA2

0.20 0.20 0.60 2 4 25 35 1.98 0.9762 0.9765

4 7 30 40 1.70 0.9572 0.9570

6 10 35 45 1.64 0.9399 0.9395

8 13 40 50 1.62 0.9277 0.9272

10 16 45 55 1.60 0.9206 0.9201

0.15 0.15 0.70 2 4 25 35 1.71 0.9763 0.9765

4 7 30 40 1.51 0.9572 0.9570

6 10 35 45 1.47 0.9398 0.9395

8 13 40 50 1.45 0.9276 0.9272

10 16 45 55 1.44 0.9205 0.9201

0.10 0.10 0.80 2 4 25 35 1.45 0.9764 0.9765

4 7 30 40 1.33 0.9571 0.9570

6 10 35 45 1.30 0.9397 0.9395

8 13 40 50 1.29 0.9275 0.9272

10 16 45 55 1.28 0.9204 0.9201

0.05 0.05 0.90 2 4 25 35 1.21 0.9764 0.9765

4 7 30 40 1.16 0.9571 0.9570

6 10 35 45 1.15 0.9396 0.9395

8 13 40 50 1.14 0.9274 0.9272

10 16 45 55 1.13 0.9203 0.9201

Table 2.
Relative efficiency of the proposed estimator μ̂Y2 with respect to Ahmed et al. [14] estimator μ̂AY2 and privacy
protection of the τP2 and τA2.
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The rest of the results can be read out from the given tables.

P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.2 0.3 0.4 0.5

0.20 0.7 0.10 4 1 260 220 340 250 5.90 5.48 5.10 4.77 4.46

390 300 5.87 5.45 5.08 4.75 4.45

440 350 5.86 5.45 5.08 4.76 4.46

490 400 5.86 5.46 5.10 4.78 4.49

540 440 5.94 5.54 5.18 4.86 4.56

310 270 340 250 5.29 4.93 4.61 4.32 4.06

390 300 5.31 4.95 4.63 4.34 4.08

440 350 5.35 4.99 4.67 4.38 4.12

490 400 5.40 5.04 4.72 4.43 4.17

540 440 5.51 5.14 4.82 4.53 4.26

360 320 340 250 4.84 4.53 4.24 3.99 3.76

390 300 4.89 4.57 4.29 4.03 3.80

440 350 4.95 4.63 4.35 4.09 3.86

490 400 5.02 4.70 4.41 4.15 3.92

540 440 5.14 4.81 4.52 4.25 4.01

0.15 0.75 0.10 4 1 260 220 340 250 9.17 8.31 7.57 6.94 6.39

390 300 9.03 8.20 7.49 6.87 6.34

440 350 8.93 8.13 7.44 6.84 6.32

490 400 8.87 8.09 7.41 6.83 6.31

540 440 8.92 8.15 7.48 6.90 6.39

310 270 340 250 8.04 7.32 6.70 6.16 5.70

390 300 8.02 7.31 6.70 6.18 5.72

440 350 8.03 7.33 6.73 6.21 5.75

490 400 8.06 7.37 6.77 6.25 5.80

540 440 8.17 7.48 6.89 6.37 5.91

360 320 340 250 7.23 6.60 6.07 5.60 5.20

390 300 7.26 6.65 6.11 5.65 5.25

440 350 7.32 6.71 6.18 5.71 5.31

490 400 7.40 6.78 6.25 5.79 5.38

540 440 7.54 6.92 6.38 5.92 5.50

0.10 0.80 0.10 4 1 260 220 340 250 17.10 14.77 12.92 11.42 10.20

390 300 16.59 14.38 12.62 11.19 10.02

440 350 16.16 14.06 12.38 11.01 9.88

490 400 15.81 13.80 12.19 10.88 9.79

540 440 15.69 13.75 12.18 10.90 9.83

310 270 340 250 14.60 12.68 11.16 9.92 8.90

390 300 14.40 12.54 11.06 9.86 8.86

440 350 14.24 12.44 11.00 9.83 8.85
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.2 0.3 0.4 0.5

490 400 14.12 12.38 10.97 9.82 8.86

540 440 14.16 12.45 11.06 9.92 8.97

360 320 340 250 12.80 11.18 9.89 8.83 7.96

390 300 12.75 11.17 9.89 8.85 7.99

440 350 12.74 11.18 9.93 8.90 8.04

490 400 12.75 11.22 9.98 8.96 8.11

540 440 12.88 11.36 10.13 9.11 8.26

0.05 0.85 0.10 4 1 260 220 340 250 49.10 37.34 29.54 24.09 20.10

390 300 46.49 35.56 28.29 23.17 19.43

440 350 44.15 33.98 27.18 22.38 18.85

490 400 42.09 32.61 26.23 21.71 18.37

540 440 40.76 31.78 25.71 21.38 18.16

310 270 340 250 40.46 31.02 24.73 20.30 17.06

390 300 39.09 30.12 24.14 19.89 16.77

440 350 37.84 29.32 23.59 19.53 16.53

490 400 36.70 28.60 23.13 19.23 16.34

540 440 36.03 28.23 22.94 19.16 16.34

360 320 340 250 34.24 26.47 21.26 17.58 14.86

390 300 34.55 26.05 21.00 17.42 14.77

440 350 32.92 25.67 20.79 17.30 14.72

490 400 32.34 25.35 20.61 17.22 14.69

540 440 32.07 25.27 20.63 17.30 14.81

0.10 0.85 0.05 4 1 260 220 340 250 18.50 17.10 15.86 14.77 13.79

390 300 17.92 16.59 15.42 14.38 13.45

440 350 17.42 16.16 15.05 14.06 13.18

490 400 17.01 15.81 14.75 13.80 12.96

540 440 16.85 15.69 14.67 13.75 12.93

310 270 340 250 15.75 14.60 13.58 12.68 11.88

390 300 15.51 14.40 13.42 12.54 11.76

440 350 15.31 14.24 13.29 12.44 11.69

490 400 15.16 14.12 13.20 12.38 11.64

540 440 15.18 14.16 13.26 12.45 11.72

360 320 340 250 13.76 12.80 11.94 11.18 10.50

390 300 13.70 12.75 11.91 11.17 10.50

440 350 13.67 12.74 11.92 11.18 10.52

490 400 13.66 12.75 11.94 11.22 10.57

540 440 13.79 12.88 12.08 11.36 10.71

Table 3.
Relative efficiency of the proposed estimator μ̂Y1 with respect to Perri [5] estimator μ̂P when θ1 ¼ 4 and θ2 ¼ 1.
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.2 0.3 0.4 0.5

0.20 0.70 0.10 4 1 260 220 340 250 1.58 1.44 1.31 1.20 1.10

390 300 1.49 1.36 1.24 1.14 1.05

440 350 1.43 1.31 1.20 1.10 1.01

490 400 1.39 1.27 1.16 1.07 0.98

540 440 1.35 1.23 1.13 1.04 0.96

310 270 340 250 1.56 1.42 1.31 1.20 1.11

390 300 1.49 1.36 1.25 1.15 1.06

440 350 1.43 1.31 1.20 1.11 1.02

490 400 1.40 1.28 1.17 1.08 1.00

540 440 1.36 1.24 1.14 1.05 0.97

360 320 340 250 1.54 1.41 1.30 1.20 1.11

390 300 1.48 1.36 1.25 1.15 1.07

440 350 1.43 1.32 1.21 1.12 1.04

490 400 1.40 1.29 1.18 1.09 1.01

540 440 1.36 1.25 1.15 1.07 0.99

0.15 0.75 0.10 4 1 260 220 340 250 2.69 2.39 2.14 1.93 1.74

390 300 2.52 2.25 2.02 1.82 1.64

440 350 2.40 2.14 1.93 1.74 1.57

490 400 2.31 2.07 1.86 1.68 1.53

540 440 2.22 2.00 1.83 1.63 1.48

310 270 340 250 2.59 2.32 2.08 1.88 1.71

390 300 2.46 2.20 1.98 1.79 1.63

440 350 2.36 2.11 1.91 1.73 1.57

490 400 2.28 2.05 1.85 1.68 1.53

540 440 2.21 1.99 1.80 1.63 1.48

360 320 340 250 2.51 2.25 2.04 1.85 1.68

390 300 2.40 2.16 1.95 1.77 1.62

440 350 2.32 2.09 1.89 1.72 1.57

490 400 2.26 2.03 1.84 1.67 1.53

540 440 2.19 1.98 1.79 1.63 1.49

0.10 0.80 0.10 4 1 260 220 340 250 5.46 4.64 3.99 3.47 3.04

390 300 5.05 4.30 3.71 3.24 2.85

440 350 4.73 4.05 3.50 3.06 2.70

490 400 4.49 3.85 3.35 2.93 2.59

540 440 4.27 3.68 3.20 2.82 2.49

310 270 340 250 5.11 4.37 3.78 3.31 2.92

390 300 4.79 4.11 3.57 3.12 2.76

440 350 4.55 3.91 3.40 2.99 2.64

490 400 4.35 3.75 3.27 2.88 2.55
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.2 0.3 0.4 0.5

540 440 4.17 3.60 3.15 2.78 2.47

360 320 340 250 4.81 4.14 3.60 3.17 2.81

390 300 4.57 3.94 3.44 3.03 2.69

440 350 4.38 3.78 3.30 2.91 2.59

490 400 4.22 3.66 3.20 2.83 2.52

540 440 4.07 3.53 3.10 2.74 2.44

0.05 0.85 0.10 4 1 260 220 340 250 16.98 12.71 9.90 7.95 6.53

390 300 15.32 11.54 9.04 7.28 6.01

440 350 14.00 10.61 8.36 6.77 5.61

490 400 12.95 9.88 7.82 6.37 5.30

540 440 12.03 9.23 7.35 6.01 5.03

310 270 340 250 15.28 11.54 9.06 7.33 6.06

390 300 14.06 10.67 8.42 6.83 5.67

440 350 13.06 9.97 7.90 6.44 5.36

490 400 12.23 9.39 7.48 6.12 5.12

540 440 11.49 8.86 7.09 5.83 4.89

360 320 340 250 13.85 10.56 8.36 6.81 5.67

390 300 12.96 9.92 7.88 6.44 5.38

440 350 12.20 9.38 7.48 6.13 5.14

490 400 11.56 8.93 7.15 5.88 4.94

540 440 10.96 8.50 6.84 5.64 4.76

0.10 0.85 0.05 4 1 260 220 340 250 5.96 5.46 5.02 4.64 4.30

390 300 5.50 5.05 4.65 4.30 3.99

440 350 5.14 4.73 4.37 4.05 3.76

490 400 4.87 4.49 4.15 3.85 3.59

540 440 4.62 4.27 3.96 3.68 3.43

310 270 340 250 5.55 5.11 4.71 4.37 4.06

390 300 5.20 4.79 4.43 4.11 3.82

440 350 4.93 4.55 4.21 3.91 3.64

490 400 4.71 4.35 4.03 3.75 3.50

540 440 4.51 4.17 3.87 3.60 3.37

360 320 340 250 5.21 4.81 4.45 4.14 3.86

390 300 4.95 4.57 4.24 3.94 3.67

440 350 4.73 4.38 4.06 3.78 3.53

490 400 4.56 4.22 3.92 3.66 3.42

540 440 4.39 4.07 3.79 3.53 3.31

Table 4.
Relative efficiency of the proposed estimator μ̂Y2 with respect to Perri [5] estimator μ̂P when θ1 ¼ 4 and θ2 ¼ 1.
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.3 0.5 0.7 0.9

0.20 0.7 0.10 4 1 260 220 340 250 0.98 1.01 1.11 1.83 1589.20

390 300 0.98 1.02 1.12 1.89 1728.00

440 350 0.98 1.02 1.13 1.95 1854.80

490 400 0.98 1.02 1.14 2.00 1968.00

540 440 0.98 1.02 1.15 2.05 2064.70

310 270 340 250 0.98 1.01 1.10 1.74 1446.10

390 300 0.98 1.01 1.11 1.80 1568.00

440 350 0.98 1.01 1.12 1.86 1684.80

490 400 0.98 1.01 1.13 1.91 1793.90

540 440 0.98 1.01 1.13 1.96 1890.00

360 320 340 250 0.99 1.01 1.09 1.68 1343.80

390 300 0.99 1.01 1.10 1.73 1448.40

440 350 0.99 1.01 1.11 1.78 1552.40

490 400 0.99 1.01 1.12 1.83 1653.10

540 440 0.99 1.01 1.12 1.88 1744.10

0.15 0.75 0.10 4 1 260 220 340 250 0.99 1.02 1.12 1.84 1605.30

390 300 0.99 1.02 1.13 1.91 1746.40

440 350 0.99 1.02 1.14 1.97 1875.50

490 400 0.99 1.02 1.15 2.02 1990.80

540 440 0.99 1.02 1.16 2.07 2089.90

310 270 340 250 0.99 1.01 1.11 1.76 1459.00

390 300 0.99 1.01 1.12 1.82 1582.7

440 350 0.99 1.02 1.12 1.87 1701.50

490 400 0.99 1.02 1.13 1.92 1812.50

540 440 0.99 1.02 1.14 1.98 1910.80

360 320 340 250 0.99 1.01 1.10 1.70 1345.50

390 300 0.99 1.01 1.11 1.75 1460.70

440 350 0.99 1.10 1.12 1.80 1566.40

490 400 0.99 1.01 1.12 1.85 1668.60

540 440 0.99 1.02 1.13 1.90 1761.50

0.10 0.80 0.10 4 1 260 220 340 250 0.99 1.02 1.13 1.86 1617.30

390 300 0.99 1.02 1.14 1.92 1760.20

440 350 0.99 1.02 1.15 1.98 1890.80

490 400 0.99 1.03 1.15 2.04 2007.60

540 440 0.99 1.03 1.16 2.09 2108.50

310 270 340 250 0.99 1.02 1.12 1.77 1468.60

390 300 0.99 1.02 1.12 1.83 1593.70

440 350 0.99 1.02 1.13 1.88 1713.90

490 400 0.99 1.02 1.14 1.94 1826.20
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.3 0.5 0.7 0.9

540 440 0.99 1.02 1.15 1.99 1926.10

360 320 340 250 0.99 1.02 1.10 1.70 1362.50

390 300 0.99 1.02 1.11 1.76 1469.80

440 350 0.99 1.02 1.12 1.81 1576.60

490 400 0.99 1.02 1.13 1.86 1680.10

540 440 0.99 1.02 1.13 1.91 1774.40

0.05 0.85 0.10 4 1 260 220 340 250 1.00 1.03 1.14 1.87 1626.40

390 300 1.00 1.03 1.15 1.93 1770.50

440 350 1.00 1.03 1.15 1.99 1902.30

490 400 1.00 1.03 1.16 2.05 2020.20

540 440 1.00 1.03 1.17 2.10 2122.40

310 270 340 250 1.00 1.02 1.12 1.78 1475.70

390 300 1.00 1.02 1.13 1.84 1601.90

440 350 1.00 1.02 1.14 1.89 1723.00

490 400 1.00 1.03 1.14 1.95 1836.40

540 440 1.00 1.03 1.15 2.00 1937.50

360 320 340 250 1.00 1.02 1.11 1.71 1368.40

390 300 1.00 1.02 1.12 1.76 1476.60

440 350 1.00 1.02 1.12 1.82 1584.20

490 400 1.00 1.02 1.13 1.87 1688.50

540 440 1.00 1.02 1.14 1.92 1783.90

0.10 0.85 0.05 4 1 260 220 340 250 0.99 1.02 1.13 1.86 1625.60

390 300 0.99 1.02 1.14 1.93 1769.60

440 350 0.99 1.03 1.15 1.99 1901.30

490 400 0.99 1.03 1.16 2.04 2019.10

540 440 0.99 1.03 1.17 2.10 2121.20

310 270 340 250 0.99 1.02 1.12 1.77 1475.10

390 300 0.99 1.02 1.13 1.83 1601.20

440 350 0.99 1.02 1.13 1.89 1722.20

490 400 0.99 1.02 1.14 1.94 1835.50

540 440 0.99 1.03 1.15 2.00 1936.50

360 320 340 250 0.99 1.02 1.11 1.71 1367.90

390 300 0.99 1.02 1.11 1.76 1476.00

440 350 0.99 1.02 1.12 1.81 1583.50

490 400 0.99 1.02 1.13 1.86 1687.80

540 440 0.99 1.02 1.14 1.91 1783.10

Table 5.
Relative efficiency of the proposed estimator μ̂Y1 with respect to Ahmed et al. [14] estimator μ̂AY1 when θ1 ¼ 4
and θ2 ¼ 1.
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.3 0.5 0.7 0.9

0.20 0.7 0.10 4 1 260 220 340 250 0.81 1.17 2.06 6.14 5899.30

390 300 0.81 1.17 2.08 6.24 6099.10

440 350 0.81 1.17 2.09 6.33 6289.70

490 400 0.81 1.17 2.10 6.42 6466.80

540 440 0.81 1.17 2.11 6.45 6491.60

310 270 340 250 0.82 1.16 2.04 6.07 5933.10

390 300 0.81 1.16 2.05 6.17 6103.60

440 350 0.81 1.16 2.06 6.26 6272.90

490 400 0.81 1.17 2.08 6.34 6435.10

540 440 0.81 1.17 2.09 6.38 6461.80

360 320 340 250 0.82 1.16 2.01 6.01 5971.40

390 300 0.82 1.16 2.03 6.10 6115.70

440 350 0.82 1.16 2.04 6.19 6264.40

490 400 0.82 1.16 2.06 6.27 6411.20

540 440 0.81 1.16 2.07 6.31 6438.30

0.15 0.75 0.10 4 1 260 220 340 250 0.89 1.29 2.29 6.85 6603.20

390 300 0.89 1.29 2.31 6.96 6833.40

440 350 0.89 1.30 2.32 7.07 7052.40

490 400 0.89 1.30 2.33 7.17 7255.60

540 440 0.89 1.30 2.35 7.21 7289.80

310 270 340 250 0.90 1.28 2.25 6.74 6619.70

390 300 0.90 1.28 2.27 6.86 6818.50

440 350 0.90 1.29 2.29 6.97 7015.00

490 400 0.90 1.29 2.31 7.07 7202.90

540 440 0.89 1.29 2.32 7.12 7240.80

360 320 340 250 0.90 1.27 2.22 6.65 6643.30

390 300 0.90 1.28 2.24 6.76 6813.50

440 350 0.90 1.28 2.26 6.87 6987.80

490 400 0.90 1.28 2.28 6.97 7159.30

540 440 0.90 1.29 2.29 7.03 7198.80

0.10 0.80 0.10 4 1 260 220 340 250 0.98 1.42 2.52 7.56 7317.70

390 300 0.98 1.42 2.54 7.70 7579.10

440 350 0.98 1.42 2.56 7.82 7827.10

490 400 0.98 1.43 2.57 7.93 8056.60

540 440 0.98 1.43 2.59 7.99 8102.10

310 270 340 250 0.98 1.40 2.47 7.42 7310.90

390 300 0.98 1.41 2.50 7.56 7539.20

440 350 0.98 1.41 2.52 7.68 7763.90

490 400 0.98 1.41 2.54 7.80 7978.10
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 P

0.1 0.3 0.5 0.7 0.9

540 440 0.98 1.42 2.55 7.87 8029.50

360 320 340 250 0.98 1.39 2.43 7.30 7314.40

390 300 0.98 1.39 2.45 7.43 7512.00

440 350 0.98 1.40 2.48 7.56 7713.20

490 400 0.98 1.40 2.50 7.67 7910.40

540 440 0.98 1.41 2.52 7.75 7964.70

0.05 0.85 0.10 4 1 260 220 340 250 1.06 1.54 2.75 8.28 8040.70

390 300 1.06 1.55 2.78 8.44 8333.90

440 350 1.06 1.55 2.80 8.58 8611.10

490 400 1.06 1.56 2.82 8.70 8866.90

540 440 1.06 1.56 2.83 8.77 8925.60

310 270 340 250 1.06 1.52 2.69 8.10 8004.10

390 300 1.06 1.53 2.72 8.26 8263.00

440 350 1.06 1.53 2.74 8.40 8516.70

490 400 1.06 1.54 2.77 8.53 8757.70

540 440 1.06 1.55 2.79 8.62 8824.70

360 320 340 250 1.06 1.50 2.63 7.94 7982.30

390 300 1.06 1.51 2.66 8.09 8208.60

440 350 1.06 1.51 2.69 8.24 8437.60

490 400 1.06 1.52 2.72 8.37 8661.30

540 440 1.06 1.53 2.74 8.47 8732.70

0.10 0.85 0.05 4 1 260 220 340 250 0.99 1.45 2.64 8.07 7968.00

390 300 0.99 1.46 2.66 8.21 8258.10

440 350 0.99 1.46 2.68 8.35 8532.40

490 400 0.99 1.46 2.69 8.47 8785.50

540 440 0.99 1.47 2.71 8.53 8842.80

310 270 340 250 0.99 1.44 2.58 7.89 7934.80

390 300 0.99 1.44 2.61 8.05 8190.50

440 350 0.99 1.45 2.63 8.19 8441.30

490 400 0.99 1.45 2.65 8.31 8679.70

540 440 0.99 1.46 2.67 8.39 8745.00

360 320 340 250 0.99 1.42 2.53 7.75 7915.80

390 300 0.99 1.43 2.56 7.89 8139.10

440 350 0.99 1.43 2.59 8.03 8365.30

490 400 0.99 1.44 2.61 8.16 8586.30

540 440 0.99 1.45 2.63 8.25 8655.90

Table 6.
Relative efficiency of the proposed estimator μ̂Y2 with respect to Ahmed et al. [14] estimator μ̂AY2 when θ1 ¼ 4
and θ2 ¼ 1.

175

Estimation of Means of Two Quantitative Sensitive Variables Using Randomized Response…
DOI: http://dx.doi.org/10.5772/intechopen.101269



P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 RE1 RE2

0.85 0.10 0.05 4 1 260 220 340 250 3.5688 3.5201

390 300 3.5701 3.5221

440 350 3.5712 3.5241

490 400 3.5722 3.5258

540 440 3.5723 3.5255

310 270 340 250 3.5691 3.5227

390 300 3.5702 3.5241

440 350 3.5712 3.5255

490 400 3.5721 3.5269

540 440 3.5722 3.5265

360 320 340 250 3.5695 3.5251

390 300 3.5704 3.5260

440 350 3.5712 3.5270

490 400 3.5720 3.5281

540 440 3.5721 3.5276

0.80 0.15 0.05 4 1 260 220 340 250 116.44 105.89

390 300 117.42 106.52

440 350 118.22 107.12

490 400 118.87 107.66

540 440 119.17 107.59

310 270 340 250 115.91 106.64

390 300 116.84 107.08

440 350 117.63 107.54

490 400 118.30 107.94

540 440 118.65 107.87

360 320 340 250 115.48 107.35

390 300 116.34 107.64

440 350 117.10 107.97

490 400 117.77 108.31

540 440 118.15 108.18

0.75 0.20 0.05 4 1 260 220 340 250 355.18 328.81

390 300 363.11 332.28

440 350 369.70 335.58

490 400 375.11 338.62

540 440 378.32 338.29

310 270 340 250 348.93 332.66

390 300 356.59 335.15

440 350 363.24 337.70

490 400 368.94 340.18

540 440 372.59 339.68
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 RE1 RE2

360 320 340 250 343.89 336.31

390 300 351.03 338.03

440 350 357.49 339.94

490 400 363.22 341.91

540 440 367.14 341.23

0.70 0.25 0.10 4 1 260 220 340 250 637.70 649.04

390 300 661.97 658.47

440 350 682.56 667.49

490 400 699.81 675.82

540 440 711.27 675.11

310 270 340 250 616.17 658.67

390 300 639.28 665.62

440 350 659.84 672.73

490 400 677.80 679.63

540 440 690.56 678.47

360 320 340 250 599.19 667.92

390 300 620.45 672.86

440 350 640.14 678.31

490 400 657.98 683.88

540 440 671.33 682.30

0.65 0.30 0.05 4 1 260 220 340 250 894.78 1048.40

390 300 941.37 1067.30

440 350 981.73 1085.40

490 400 1016.20 1102.10

540 440 1040.80 1101.10

310 270 340 250 851.25 1066.00

390 300 894.75 1080.20

440 350 934.31 1094.70

490 400 969.53 1108.80

540 440 996.20 1106.90

360 320 340 250 817.76 1083.00

390 300 857.09 1093.40

440 350 894.29 1104.70

490 400 928.64 1116.30

540 440 955.85 1113.70

0.60 0.35 0.05 4 1 260 220 340 250 1098.70 1512.50

390 300 1168.00 1544.30

440 350 1229.00 1574.90

490 400 1281.70 1603.20

540 440 1321.40 1602.10
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 RE1 RE2

310 270 340 250 1032.30 1539.30

390 300 1095.80 1563.70

440 350 1154.50 1588.50

490 400 1207.60 1612.70

540 440 1249.60 1610.30

360 320 340 250 917.00 1565.30

390 300 981.16 1583.60

440 350 1042.50 1603.40

490 400 1099.60 1623.60

540 440 1146.60 1620.10

0.55 0.40 0.05 4 1 260 220 340 250 1250.10 2029.90

390 300 1338.80 2077.90

440 350 1418.00 2124.00

490 400 1487.20 2167.00

540 440 1541.10 2166.20

310 270 340 250 1163.40 2065.80

390 300 1243.70 2103.40

440 350 1318.80 2141.50

490 400 1387.50 2178.50

540 440 1443.50 2176.20

360 320 340 250 1099.00 2101.10

390 300 1169.70 2129.90

440 350 1238.50 2160.80

490 400 1303.50 2192.10

540 440 1358.60 2188.40

0.50 0.45 0.5 4 1 260 220 340 250 1359.40 2591.10

390 300 1463.50 2658.30

440 350 1557.20 2723.00

490 400 1639.70 2783.20

540 440 1705.70 2783.60

310 270 340 250 1256.30 2635.20

390 300 1349.60 2688.70

440 350 1437.60 2742.80

490 400 1518.70 2795.20

540 440 1586.30 2794.00

360 320 340 250 1180.70 2678.70

390 300 1262.20 2720.60

440 350 1341.90 2765.20

490 400 1418.10 2810.20

540 440 1483.80 2807.20
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P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 RE1 RE2

0.45 0.50 0.5 4 1 260 220 340 250 1437.80 3188.60

390 300 1553.50 3277.70

440 350 1658.20 3363.40

490 400 1751.00 3443.30

540 440 1826.70 3445.70

310 270 340 250 1322.00 3238.70

390 300 1424.90 3310.70

440 350 1522.60 3383.30

490 400 1613.10 3453.60

540 440 1689.90 3454.50

360 320 340 250 1237.80 3288.40

390 300 1327.10 3345.90

440 350 1415.10 3406.70

490 400 1499.60 3467.70

540 440 1573.50 3466.80

0.40 0.55 0.5 4 1 260 220 340 250 1494.20 3816.00

390 300 1618.50 3929.40

440 350 1731.40 4038.20

490 400 1831.80 4139.70

540 440 1915.00 4145.40

310 270 340 250 1368.80 3869.00

390 300 1478.70 3961.90

440 350 1583.60 4055.30

490 400 1681.00 4145.50

540 440 1764.70 4150.00

360 320 340 250 1278.00 3922.10

390 300 1373.10 3997.50

440 350 1467.10 4076.80

490 400 1557.60 4155.90

540 440 1637.80 4158.80

0.35 0.60 0.5 4 1 260 220 340 250 1535.20 4468.10

390 300 1665.70 4607.70

440 350 1784.70 4741.50

490 400 1890.70 4866.30

540 440 1979.50 4876.50

310 270 340 250 1402.30 4520.00

390 300 1517.50 4636.00

440 350 1627.50 4752.20

490 400 1730.00 4864.20

540 440 1819.00 4873.80
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5. Conclusions

The main objective of this paper is to estimate the population means of two
quantitative sensitive variables. It is to be pointed out that the proposed model is
more efficient in terms of relative efficiencies and respondent’s privacy protection.
Therefore, these results advocate that the proposed technique is appreciatively
favourable in obtaining the truthful response from the respondents.

Appendix

Proof: Given that E S1ð Þ ¼ θ1 and E S2ð Þ ¼ θ2. Following Singh [9], I define

γrs ¼ E S1‐θ1½ �r S2‐θ2½ �s (34)

Then due to independence of the scramble variables, I have

E S21
� � ¼ γ20 þ θ21 (35)

E S31
� � ¼ γ30 þ 3γ20θ1 þ θ31 (36)

E S41
� � ¼ γ40 þ 4γ30θ1 þ 6γ20θ

2
1 þ θ41 (37)

E S22
� � ¼ γ02 þ θ22 (38)

E S32
� � ¼ γ03 þ 3γ02θ2 þ θ32 (39)

E S42
� � ¼ γ04 þ 4γ03θ2 þ 6γ02θ

2
2 þ θ42 (40)

E S1S2ð Þ ¼ θ1θ2 (41)

E S21S
2
2

� � ¼ γ20 þ θ21
� �

γ02 þ θ22
� �

(42)

E S31S2
� � ¼ γ30 þ 3γ20θ1 þ θ31

� �
θ2 (43)

and

E S1S32
� � ¼ θ2 γ03 þ 3γ02θ2 þ θ32

� �
(44)

P1 P2 P3 θ1 θ2 σY1 σY2 μY1 μY2 RE1 RE2

360 320 340 250 1306.70 4573.00

390 300 1406.00 4668.60

440 350 1504.40 4768.30

490 400 1599.30 4867.60

540 440 1684.00 4876.00

Table 7.
Relative efficiency of the proposed estimators μ̂Y1 and μ̂Y2 with respect to Ahmed et al. [14] estimators μ̂AY1 and
μ̂AY2 respectively when θ1 ¼ 4, θ2 ¼ 1 and P ¼ 0:9.
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V μ̂Y1ð Þ ¼

P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �2Pn

i¼1V Z1ið Þ þ θ22
Pn

i¼1V Z0
2i

� �

‐ 2θ2 P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �Pn

i¼1cov Z1iZ0
2i

� �

n2 P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ �2

¼

P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �2σ2Z1

þ θ22σ2Z0
2

‐ 2θ2 P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �

σZ1Z0
2

n P2 þ P3 1‐Pð Þf gθ1γ02‐ P1 þ P3Pð Þθ2γ20½ �2 (45)

where, the variance σ2Z1
is given by:

σ2Z1
¼ E Z2

1i

� �‐ E Z1ið Þ½ �2

¼ E S1Y1i þ S2Y1ið Þ2‐ E S1Y1i þ S2Y1ið Þ½ �2

¼ E S21Y
2
1i þ S22Y

2
2i þ 2S1S2Y1iY2i

� �‐ θ1μY1 þ θ2μY2½ �2

¼ γ20 þ θ21
� �

σ2Y1 þ μ2Y1
� �þ γ02 þ θ22

� �
σ2Y2 þ μ2Y2
� �

þ2θ1θ2 σY1σY2 þ μY1μY2ð Þ‐ θ1μY1 þ θ2μY2½ �2

¼ γ20 σ2Y1 þ μ2Y1
� �þ γ02 σ2Y2 þ μ2Y2

� �þ θ21σ
2
Y1 þ θ22σ

2
Y2 þ 2θ1θ2σY1σY2 (46)

The variance σ2Z0
2
is given by:

σ2Z0
2
¼ E Z022i

� �
‐ E Z02i
� �h i2

¼ P1 þ P3P
� �

E S21Y1i þ S1S2Y2i
� �2

þ P2 þ P3 1‐Pð Þ
� �

E S1S2Y1i þ S22Y2i
� �2

‐ P1 þ P3P
� �

γ20 þ θ21
� �

μY1 þ θ1θ2μY2
n o

þ P2 þ P3 1‐Pð Þ
� �

θ1θ2μY1 þ γ02 þ θ22
� �

μY2
n oh i2

¼ P1 þ P3P
� �

E S41Y
2
1i þ S21S

2
2Y

2
2i þ 2S31S2Y1iY2i

� �

þ P2 þ P3 1‐Pð Þ
� �

E S21S
2
2Y

2
1i þ S42Y

2
2i þ 2S1S

3
2Y1iY2i

� �

‐ P1 þ P3P
� �

γ20 þ θ21
� �

μY1 þ θ1θ2μY2
n o

þ P2 þ P3 1‐Pð Þ
� �

θ1θ2μY1 þ γ02 þ θ22
� �

μY2
n oh i2

¼ P1 þ P3P
� �

γ40 þ 4γ30θ1 þ 6γ20θ
2
1 þ θ41

� �
σ2Y1 þ μ2Y1
� �

þ γ20 þ θ21
� �

γ02 þ θ22
� �

σ2Y2 þ μ2Y2
� �h

þ2 γ30 þ 3γ20θ1 þ θ31
� �

θ2 σY1σY2 þ μY1μY2ð Þ
i
þ P2 þ P3 1‐Pð Þ
� �

γ20 þ θ21
� �

γ02 þ θ22
� �

σ2Y1 þ μ2Y1
� �h

þ γ04 þ 4γ03θ2 þ 6γ02θ
2
2 þ θ42

� �
σ2Y2 þ μ2Y2
� �

þ 2θ1 γ03 þ 3γ02θ2 þ θ32
� �

σY1σY2 þ μY1μY2ð Þ

‐ P1 þ P3P
� �

γ20 þ θ21
� �

μY1 þ θ1θ2μY2
n o

þ P2 þ P3 1‐Pð Þ
� �

θ1θ2μY1 þ γ02 þ θ22
� �

μY2
n oh i2

After simplification, this gives

σ2Z0
2
¼ σ2Y1 þ μ2Y1
� �

P1 þ P3Pð Þ γ40 þ 4γ30θ1 þ 6γ20θ
2
1 þ θ41

� �
þ P2 þ P3 1‐Pð Þ
� �

γ20 þ θ21
� �

γ02 þ θ22
� �h i

þ σ2Y2 þ μ2Y2
� �

P2 þ P3 1‐Pð Þ
� �

γ04 þ 4γ03θ2 þ 6γ02θ
2
2 þ θ42

� �
þ P1 þ P3Pð Þ γ20 þ θ21

� �
γ02 þ θ22
� �h i

þ2 σY1σY2 þ μY1μY2ð Þ P1 þ P3Pð Þθ2 γ30 þ 3γ20θ1 þ θ31
� �

þ P2 þ P3 1‐Pð Þ
� �

θ1 γ03 þ 3γ02θ2 þ θ32
� �h i

‐ P1 þ P3Pð Þ γ20 þ θ21
� �

þ P2 þ P3 1‐Pð Þ
� �

θ1θ2
n o

μY1
h

þ P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þ
� �

γ02 þ θ22
� �n o

μY2
i2

(47)
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and the covariance σZ1Z0
2
between Z1i and Z0

2i is given by:

σZ1Z0
2
¼ cov Z1i, Z02i

� �
¼ E Z1iZ

0
2i

� �
‐E Z1i

� �
E Z02i
� �

¼ P1 þ P3P
� �

E S1Y1i þ S2Y2i

� �
S21Y1i þ S1S2Y2i

� �� �
þ P2 þ P3 1‐Pð Þ
n o

E S1Y1i þ S2Y2i

� �
S1S2Y1i þ S22Y2i

� �� �

‐ θ1μY1 þ θ2μY2
� �

P1 þ P3P
� �

γ20 þ θ21

� �
μY1 þ θ1θ2μY2

� �
þ P2 þ P3 1‐Pð Þ
n o

θ1θ2μY1 þ γ02 þ θ22

� �
μY2

� �� �2

¼ P1 þ P3P
� �

E S31Y
2
1i þ 2S21S2Y1iY2i þ S1S

2
2Y

2
2i

� �
þ P2 þ P3 1‐Pð Þ
n o

E S21S2Y
2
1i þ 2S1S

2
2Y1iY2i þ S32Y

2
2i

� �

‐ θ1μY1 þ θ2μY2
� �

P1 þ P3P
� �

γ20 þ θ21

� �
μY1 þ θ1θ2μY2

� �
þ P2 þ P3 1‐Pð Þ
n o

θ1θ2μY1 þ γ02 þ θ22

� �
μY2

� �� �2

¼ P1 þ P3P
� �

γ30 þ 3γ20θ1 þ θ31

� �
σ2Y1 þ μ2Y1

� �
þ 2 γ20 þ θ21

� �
θ2 σY1σY2 þ μY1μY2
� �

þ θ1 γ02 þ θ22

� �
σ2Y2 þ μ2Y2

� �� �

þ P2 þ P3 1‐Pð Þ
n o

γ20 þ θ21

� �
θ2 σ2Y1 þ μ2Y1

� �
þ 2θ1 γ02 þ θ22

� �
σY1σY2 þ μY1μY2
� �

þ γ03 þ 3γ02θ2 þ θ32

� �
σ2Y2 þ μ2Y2

� �� �

‐ θ1μY1 þ θ2μY2
� �

P1 þ P3P
� �

γ20 þ θ21

� �
μY1 þ θ1θ2μY2

� �
þ P2 þ P3 1‐Pð Þ
n o

θ1θ2μY1 þ γ02 þ θ22

� �
μY2

� �� �2

After some algebra, I get

σZ1Z0
2
¼ σ2Y1 þ μ2Y1
� �

P1 þ P3Pð Þ γ30 þ 3γ20θ1 þ θ31
� �þ P2 þ P3 1‐Pð Þf gθ2 γ20 þ θ21

� �� �

þ σ2Y2 þ μ2Y2
� �

P1 þ P3Pð Þθ1 γ02 þ θ22
� �þ P2 þ P3 1‐Pð Þf g γ03 þ 3γ02θ2 þ θ32

� �� �

þ2 σY1σY2 þ μY1μY2ð Þ P1 þ P3Pð Þθ2 γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1 γ02 þ θ22

� �� �

‐ θ1μY1 þ θ2μY12ð Þ P1 þ P3Pð Þ γ20 þ θ21
� �þ P2 þ P3 1‐Pð Þf gθ1θ2

� �
μY1

�

þ P1 þ P3Pð Þθ1θ2 þ P2 þ P3 1‐Pð Þf g γ02 þ θ22
� �� �

μY2
�

(48)

Finally, substituting the expressions given in Eqs. (13), (14) and (15) in Eq. (12),
I get the variance of the estimator μ̂Y1 as given in Eq. (24).
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Chapter 10

Causality Relationship between
Import, Export and Exim Bank
Loans: Turkish Economy
Yüksel Akay Ünvan and Ulviyya Nahmatli

Abstract

Export promotion tools aim to increase exports and support the entrepreneur in
reaching new foreign markets. The positive impact of incentives, especially on
financial issues, on exports both before and after shipment is undeniable. Founded in
1987, Turkish Exim bank is Turkey’s official export credit institution. By observing
macro-economic balances, Exim bank ensures that exporters, export-oriented pro-
duction manufacturers and entrepreneurs operating abroad are supported by credit,
guarantee and insurance programs to increase their competitiveness. The study aims
to examine the causal relationship between imports, exports and Exim bank loans in
the Turkish economy. In the study, stationarity with the extended Dickey-Fuller unit
root test, long-term relationship with the Johansen co-integration test, and then
causality with the Granger test were investigated. The causality relationship was
analyzed using import, export and Eximbank loans data for the periods 2003–2020.

Keywords: exports, exim bank loans, ADF test, causality test

1. Introduction

For developing countries to reach the level of developed countries and to catch
the level to compete with them, more than one condition must be met. The most
important of these conditions is the industrialization strategies that developing
countries will implement. With the decisions of January 24, 1980, which were a
turning point in terms of redesigning the Turkish economy, the export-based
industrialization strategy was started to be implemented by targeting export-based
growth instead of the import substitution strategy implemented since the 1960s,
and some institutions were created to eliminate the problems that will be encoun-
tered at the implementation stage of these decisions ([1], p. 22).

To increase the competitiveness of exporters in foreign markets, Turkish Exim
bank provides export financing in Turkey with credit, guarantee and insurance
programs under international rules and principles ([2], p. 180).

In developing countries, Exim bank loans are provided by organizations that
support the Central Bank of the Republic of Turkey (CBRT) and non-profit exports.
Commercial banks, private equity export credit insurance companies and factoring
companies are the only organizations that support finance, as the main purpose is
profit.

In developed countries, the necessary financing for exports is usually provided
by the commercial banking system. Export financing organizations, on the other

185



hand, support the export sector and banks with insurance and guarantee programs,
only performs the function of providing a risk-free environment.

1.1 Import

Imports are the value of foreign goods and services bought by a country’s
households, firms, government agencies, and other organizations in a given period.

1.2 Exports

Exports are goods and services that are produced in one country and sold to
buyers in another. Exports, along with imports, make up international trade.

1.3 Eximbank loan

Eximbank loans are lines of credit made available by Export Credit Bank of
Turkey (Exim bank) to enhance exports. This credit is made available during the
pre-export stage against a written pledge by the exporter to export Turkish-origin
goods and services as stipulated by Exim bank. It provides a price advantage over
other export loans offered by banks.

2. Literature review

In the Literature view, a summary of information was given about research that
examines the relationship between exports, financial development and economic
growth in Turkey in the context of causality.

Dodaro [3], examined the relationship between economic growth and exports
with the Granger Causality test by using variables between 1967 and 1986 periods.
The study found a one-sided causal relationship from economic growth to exports.

Bahmani and Domac [4] examined the relationship between economic growth
and exports, with the Co-Integration test by using variables between 1923 and 1990
periods. As a result of the research, it is found that there is a decidedly causal
relationship between economic growth and exports.

Tuncer [5], examined the causal relationship between exports, imports, invest-
ments and Gross domestic product (GDP) with the method Toda and Yamamoto by
using variables between 1980Q1 and 2000Q3 periods. As a result of the study, a
one-sided causality relationship has been found from economic growth to exports.

Şimşek [6], tested the export-based growth hypothesis with Error Correction
Model, Co-Integration Test and Causality tests by using variables between 1960 and
2002 periods. As a result of the study, the one-sided causality relationship has been
found from economic growth to exports.

Erdogan [7], examined the relationship between economic growth and exports,
with Co-Integration and Causality tests by using variables between 1923 and 2004
periods. As a result of the study, the long-term double-sided causal relationship
between economic growth and exports was found at the level of 10% significance.

Taştan [8], examined the interaction and causal relationships between export,
industrial production and import variables, with Co-Integration and Causality tests
by using variables between 1985Q1 and 2009Q3 periods. As a result of the study, a
one-sided causality relationship has been found from economic growth to exports.

Tıraşoglu [9], examined whether the export-based growth hypothesis is valid in
Turkey or not, with Co-Integration and Causality tests by using variables between
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1998Q1–2011Q3 periods. As a result of the study, there is a long-term one-sided
causal relationship between exports and economic growth.

Korkmaz [10], examined the relationship between economic growth and
exports, with Co-Integration and Causality tests by using variables between 1998:
Q1–2013:Q3 periods. As a result of the study, a one-sided causality relationship has
been found from exports to economic growth.

Pentecost and Kar [11], examined the relationship between economic growth
and exports, with Co-Integration and Causality tests by using variables between
1963 and 1995 periods. As a result of the research, there is a one-sided causal
relationship from economic growth to financial development.

Al-Yousif [12], studied the causal relationship between financial development
and economic growth for 30 developing countries, with both Time Series and Panel
Data Analysis tests, by using variables between 1970 and 1999 periods. As a result of
the study, there is a double-sided relationship between economic growth and
financial development.

Ceylan and Durkaya [13], examined the causal relationship between domestic
credit volume and economic growth, by taking advantage of Gross domestic
product (GDP) and total loans that private banks use domestically by using vari-
ables between 1998 and 2008 periods. As a result of the research, there is a one-
sided causality relationship from economic growth to loans.

3. Econometric analysis

3.1 Data set

In this study, the data set used were between 2003 and 2019 periods. The source
of the data used in the study was taken from the Central Bank of the Republic of
Turkey (TCMB) and the official website of the bank Exim bank. This data was
created with three different variables which are listed in Table 1. All analyses and
tests were performed on these variables by using the EViews11 program.

3.2 Augmented Dickey-Fuller (ADF) unit root test

To obtain econometrically significant relationships between series in time series
analysis, it is essential that the analyzed series must be stationary. Unit root tests are
usually used to test whether the series has a stationary structure or not. The most
commonly used of these tests is the unit root test performed by Dickey-Fuller [14],
which assumes that the error term is independent and uniformly distributed. If a
time series is stationary, its variance, average, and covariance (with various delays)
are the same, no matter when it is measured ([15], p. 757).

Variable Code

Import Central Bank of the Republic of Turkey, Balance Of Payments Analytical
Presentation (6.manual), A.2

Export Central Bank of the Republic of Turkey, Balance Of Payments Analytical
Presentation (6.manual), A.1

Exim bank loans https://www.eximbank.gov.tr

Table 1.
Data set.
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Let Yt be any time series, the stationary of a series depends on the following
conditions:

E Ytð Þ ¼ μ (1)

Var Ytð Þ ¼ E Yt–μð Þ2 ¼ σ2 (2)

γk ¼ E Yt–μð Þ Yt�k � μð Þ½ � (3)

The relationship between this period value of Series Yt and the value it has in the
last period, is as in Eq. (4):

Yt ¼ ρYt�1 þ εt (4)

Yt �Yt�1 ¼ ρYt�1 �Yt�1 þ εt (5)

ΔYt ¼ ρ� 1ð ÞYt�1 þ εt (6)

ΔYt ¼ γ Yt�1 þ εt (7)

If ρ = 1 or γ = 0 is found in this equation, there is a unit root problem. If ρ = 1, the
relationship will be as in Eq. (8):

Yt ¼ Yt�1 þ εt (8)

This means that the impact of the shock that the series was subjected in the
previous period remains in the system as it was. If ρ < 1, it means that the initial
effect of shocks in the past continues and that this effect will disappear over time.

The main regression patterns used in the Dickey-Fuller test are:

ΔYt ¼ γ Yt�1 þ εt (9)

ΔYt ¼ β0þγ Yt�1 þ εt (10)

ΔYt ¼ β0þβit þ γ Yt�1 þ εt (11)

Eq. (9), shows a structure with no fixed term and no trend effect. Eq. (10) shows
a structure with a fixed term and no trend term, and Eq. (11) shows a structure with
a fixed term and no trend effect.

In case of correlation between error terms, the extended Dickey-Fuller (ADF)
unit root test was developed again by Augmented Dickey-Fuller [16] by including
the delayed values of the dependent variable in the model. The proposed models for
this test are shown in the following equations:

ΔYt ¼ γ Yt�1 þ
Xρ

i¼2

βiΔYt�iþ1 þ εt (12)

ΔYt ¼ β0þγ Yt�1 þ
Xρ

i¼2

βiΔYt�iþ1 þ εt (13)

ΔYt ¼ β0þβt þ γ Yt�1 þ
Xρ

i¼2

βiΔYt�iþ1 þ εt (14)

Eq. (12) shows the structure in which there is no fixed term and no trend effect.
Eq. (13) shows the structure in which there is only a fixed term, and Eq. (14) shows
the structure in which both the fixed term and the trend effect are observed.

The stationary test is first performed at the level value. If stationary is not
achieved in the level value, the first difference of the Yt series will be taken. If the
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ΔYt= Yt �Yt�1 series becomes stationary, it is denoted by I(1) and the series
becomes stationary in the first difference. If stationarity cannot be achieved in the
first difference of the series, the second difference will be taken. The process of
taking the difference of the series continues until it becomes stationary.

In Eqs. (4) and (7), the H0: γ=0 (the series aren’t stationary) hypothesis in the
unit root test was found by Dickey Fuller [14] and tested with the τ (tau) statistic. If
the error term is correlated in the Yt series, the extended Dickey Fuller (ADF) test
is preferred, and the H0 hypothesis is rejected if the critical values of MacKinnon
[17], correspond to the absolute value of the statistics τ (tau), are greater than τ.
([15], p. 757).

If the ADF test statistic value is more negative than the MacKinnon [17] critical
values at various significance levels, it is decided that there is a unit root in the
series; in other words, the series are not stationary. In this study, the stability of the
series was analyzed using the extended Dickey-Fuller (ADF) unit Root Test.

As we can see in Table 2, Import variables were found stationary in the intercept
model in the first difference I(1), Export variables were found stationary in non-
intercept and trendless model in the first difference I(1); while Eximbank loans
variables were found stationary in intercept model in the second difference I(2).

3.3 Johansen cointegration test

To test whether non-stationary series converge to equilibrium over a long
period, the cointegration test examines whether there is a long-term relationship
between the series or not. But since this test does not provide information about the
direction of the relationship, causality tests are used to determine the direction of
the relationship. There are two Tests in Johansen’s cointegration analysis. These are
trace and max.

Trace hypothesis test H0: r ≤ r0, H1: r ≥ r0 + 1.
Max hypothesis test H0: r = r0, H1: r = r0 + 1.
If r = 0 there is not cointegration vector.
The series were analyzed using the Johansen cointegration test and the results

were shown in Table 3. In Table 3, the r = 0 hypothesis, shows that there is no
cointegration relationship between the variables; the r ≥ 1 hypothesis, is an alterna-
tive hypothesis which shows that there is at least one cointegration relationship; the

Variables Test for unit root in Include in test equation Lag Length ADF

Import I(1) Intercept p = 0 �4.061237

Export I(1) None p = 0 �3.196258

Eximbank loans I(2) Intercept p = 1 �4.417361

Table 2.
ADF unit root test.

Hypothesis Trace statistic Max-Eigen statistic

H0 H1 Statistic Critical value Statistic Critical value

r = 0 r ≥ 0 76.02502 29.79707 66.68893 21.13162

r = 1 r ≥ 2 9.336092 15.49471 8.804522 14.26460

Table 3.
Johansen cointegration test results.
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r ≥ 2 hypothesis is an alternative hypothesis that shows that there are at least two
cointegration relations:

According to the Johansen test output, both the Trace test statistic value and the
Maximum Eigen test statistic value were greater than the table critical value of 5%.
Therefore, the zero hypothesis of r = 0 can be rejected for both test values. In other
words, Export, Gross domestic product (GDP), and Loan variables are cointegrated.

3.4 Granger causality test

The Granger causality test examines the relationship between series based on
estimating past and present values. According to Granger, if past information about
Xt helps to obtain estimates. On the other hand, if Yt’s past values allow Xt to be
estimated, the Yt series is the granger cause of Xt. If Xt causes Yt and Yt causes Xt,
there is a bilateral causality relationship. An error correction model is used to
determine the direction of the causality relationship, if the series is co-integrated.
But if the series is not co-integrated, standard Granger or Sims tests are used to
determine the direction of the causality relationship ([18], pp. 213–228).

3.4.1 Determination of appropriate lag length

Accurate determination of the number of lag lengths in the Granger causality
test is very important for the application to give healthy results, because this test is
sensitive to the number of lag lengths. To find the appropriate lag length numbers
for the Granger causality test, the Vector autoregression (VAR) model is estimated.
Here a generic VAR model is estimated primarily to determine the appropriate
number of lag length. Then, the number of lag length, will be determined by Akaike
information criteria and by the LM test.

For the VAR model, the appropriate lag length was obtained by LogL (Log-We),
LR (sequential modified LR test statistic), FPE (Final prediction error), AIC
(Akaike information criterion), SC (Schwarz information criterion) and HQ
(Hannan-Quinn information criterion) criteria. The model with the largest LogL
and LR values and the smallest FPE, AIC, SC and HQ values were selected to
determine the appropriate lag length criteria.

As seen from Table 4, Sequentially modified LR test statistic (LR); Final pre-
diction error (FPE), Akaike information criterion (AIC),Schwarz information cri-
terion (SC) and Hannan-Quinn information criterion (HQ) appropriate lag length
as 1. According to this information, the lag length will be 1.

In Figure 1 it is presented the Var(1) model which provides the stationary
condition:

Since the auto-regressive characteristic roots are all in the unit circle,the model
VAR(1) which is used in the study, provided the stationary condition. Subse-
quently, appropriate delay numbers for the Granger causality test were performed

Lag LogL LR FPE AİC SC HQ

0 �853.9328 0 6.65e+42 107.1166 107.2615 107.1240

1 �820.4059 50.29035* 3.20e+41* 104.0507* 104.6302* 104.0804*

2 �816.0730 4.874522 6.71e+41 104.6341 105.6481 104.6861
*Values shows that the appropriate number of lag lengths according to the relevant criterion.

Table 4.
Determination of appropriate lag length.
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by autocorrelation LM tests, it was determined that there was no autocorrelation
and the series was stationary.

The series were analyzed using the Granger causality test, as we can see from
Table 5; there is no causal relationship between Eximbank to Export variables
(ρ = 0.2485 > 0.05), Import to Export variables (ρ =0.1140 > 0.05), Export and
Eximbank variables(ρ = 0.3826 > 0.05), Import to Eximbank variables
(ρ = 0.0839 > 0.05), Eximbank to Import(ρ =0.98035 > 0.05), Export to Import
(ρ =0.8944 > 05).

According to the results which are shown in Table 5, it was determined that
there is no causal relationship between Eximbank loans, Import and Export
variables at 1 and 5% significance levels.

4. Conclusion

To decipher the causal relationship between import, export and Eximbank loan
variables in the Turkish economy, three different variables were used in the study.

Figure 1.
Stationarity analysis.

H0 Hypothesis Chi-sq. Probability Result

Eximbank!Export 1.331500 0.2485 Rejected

Import!Export 2.497195 0.1140 Rejected

Export!Exim bank 0.762369 0.3826 Rejected

Import!Eximbank 2.986957 0.0839 Rejected

Eximbank!Import 0.000609 0.9803 Rejected

Export!Import 0.017613 0.8944 Rejected

Table 5.
Granger causality test results.
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All variables used in the study are time series, because they depend on time, so the
stationarity of the variables was tested by the ADF test. As a result of the test,
stationarity was achieved by taking first-order differences in import and export
variables and second-order differences in eximbank loans variables. To test whether
non-stationary series converge to equilibrium over a long period or not, the series
were analyzed by using the Johansen cointegration test and the results revealed that
Export, GDP, and Loan variables were cointegrated. Then the series were analyzed
using the Granger causality test, and according to the results, it was determined that
there was no causal relationship between Eximbank loans, Import and Export
variables at 1 and 5% significance levels.

When we look at the literature review, a summary of information was given
about research that examines the relationship between exports, financial develop-
ment and economic growth in Turkey in the context of causality. From the study of
Ceylan and Durkaya [13], there was found one-sided causality relationship from
economic growth to loans. From the study of Dodaro [3], Bahmani and Domac [4],
Tuncer [5], Şimşek [6] and Taştan [8] it was found a causal relationship from
economic growth to exports. Erdogan [7] found causality relationship between
economic growth and exports at the level of 10% significance. Tıraşoğlu [9] and
Korkmaz [10], found a causal relationship between export and economic growth.
Pentecost, Kar [11] and Al-Yousif [12] found causal relationships from economic
growth to financial development. But in this study, it was determined that there
were no causal relationship between Eximbank loans, Import and Export variables
at 1 and 5% significance levels.

Turkey’s export target in 2023, is to set at 500 billion USD. Looking at the export
figures at the end of 2015, Turkey must increase exports by an average of 16.5%
each year to reach the 2023 target. To achieve this increase, it is necessary to ensure
the high growth of the economy, accelerate R&D investments, diversify exports,
reach new markets, and provide the necessary regulations and facilities for
exporting companies to compete with exporters in other countries.

Eximbank loans provide a price advantage over other export loans offered by
banks. It has a strong financial structure. Because of this financial structure, it
supports exports at a high rate. To achieve the export potential that the country has,
also in international markets, it should implement new and effective credit/insur-
ance programs under international treaties and the restrictions of the institutions to
which it is affiliated.
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