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Preface

The nonlinear Schrödinger equation is a well-known equation that arises for a 
wide range of scientific purposes, including optical fiber communication systems, 
quantum mechanics, thermodynamics, ocean acoustic performance, biomedical 
dynamics, and quantum physics.

In this book, we present exact and numerical solutions to the nonlinear Schrödinger 
equation and its applications from various perspectives.

This book is a collection of selectively chosen chapters written by some of the 
world’s leading researchers in quantum mechanics and nonlinear optics, particu-
larly concerning the nonlinear Schrödinger equation.

Chapter 1 investigates the existence and stability properties of fundamental lattice 
solitons in a nonlocal nonlinear medium with self-focusing and self-defocusing 
quintic nonlinearity.

In Chapter 2, linear stability analysis is used to study the modulation instability 
gain for a generalized nonlinear Schrödinger equation with rational nonlinear 
terms.

Chapter 3 presents different types of soliton solutions, such as bright, dark, singular, 
and W-shaped solitons, for the extended non-trivial version of the nonlinear 
Schrödinger equation. The Adomian decomposition method is used to compare the 
soliton solutions obtained using the indeterminate coefficient method.

In Chapter 4, the Projective Riccati equation technique is used to find various types 
of exact resonant optical soliton solutions, such as bright, dark, singular, king, 
dark-singular, and combined singular solitons, for the (3 + 1) dimensional resonant 
nonlinear Schrödinger equation with Kerr and parabolic nonlinearities.

Chapter 5 investigates the existence and stability properties of traveling wave solu-
tions for the perturbed nonlinear Schrödinger equation with power-law nonlinearity 
and higher-order dispersions in a nano-optical fiber.

Chapter 6 discusses the non-Manakovian transmission phenomena for nonlinear 
depolarization of light governed by coupled nonlinear Schrödinger equation in 
optical fiber.

Chapter 7 presents a set of generalized Schrödinger’s equations using the Hamilton–
Jacobi equation and lifting principle. The classical Schrödinger’s equation is demon-
strated to be the simplest of this set.
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IV

Finally, Chapter 8 investigates the paradox of Schrödinger’s cat and double-sit 
postulation. The author gives a different perspective on questions about the 
Schrödinger equation and the quantum conspiracy that physicists have debated 
for many years.

This book is a useful resource for scientists, researchers, and postgraduate students 
from various backgrounds.

Dr. Nalan Antar and Dr. İlkay Bakırtaş
Department of Mathematics Engineering,

Istanbul Technical University,
İstanbul, Türkiye
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Chapter 1

Perspective Chapter: Lattice
Solitons in a Nonlocal Nonlinear
Medium with Self-Focusing and
Self-Defocusing Quintic
Nonlinearity
Mahmut Bağcı,Theodoros P. Horikis, İlkay Bakırtaş
and Nalan Antar

Abstract

The fundamental lattice solitons are explored in a nonlocal nonlinear medium
with self-focusing and self-defocusing quintic nonlinearity. The band-gap bound-
aries, soliton profiles, and stability domains of fundamental solitons are investigated
comprehensively by the linear stability spectra and nonlinear evolution of the
solitons. It is demonstrated that fundamental lattice solitons can stay stable for a
wide range of parameters with the weak self-focusing and self-defocusing quintic
nonlinearity, while strong self-focusing and self-defocusing quintic nonlinearities
are shortened the propagation distance of evolved solitons. Furthermore, it is
observed that when the instability emerges from strong quintic nonlinearity,
increasing anisotropy of the medium and modification of lattice depth can be
considered as a collapse arrest mechanism.

Keywords: lattice solitons, nonlinear response, nonlocal nonlinear medium, quintic
nonlinearity, focusing and defocusing media

1. Introduction

Optical solitons arise as localized optical fields that preserve their shapes during
propagation when the medium’s diffraction and self-phase modulation are balanced
[1]. Since they were first observed experimentally in 2003 [2], spatial solitons [3] in
nonlinear optical systems with additional optical lattices have received a significant
interest. Currently, fundamental solitons and vortices on a variety of lattices
including real and complex structures in the media with cubic (Kerr) [4, 5], satu-
rable [6] and with competing nonlinearities [7] have been studied. Solitons may also
exist in aperiodic or quasicrystal lattices [8–12] and in lattices with defects [13] and
dislocations [14, 15].

In the studies above, the governing equations are nonlinear cubic Schrödinger
(NLS) equation and their variants, e.g., NLS with additional terms and/or with
external lattices. On the other hand, numerous optical materials, such as potassium
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niobate (KNbO3) [16] or lithium niobate (LiNbO3) [17], acquire quadratic
nonlinear responses as well [18–24]. NLS equation with coupling to a mean term
(NLSM) system governs the pulse dynamics in quadratically polarized media. The
general NLSM system is given by [18, 25, 26].

iuz þ Δuþ uj j2u� ρuϕ ¼ 0, ϕxx þ νϕyy ¼ uj j2
� �

xx
(1)

Here u x, yð Þ is the normalized amplitude of the envelope of the static electric
field propagating in the z direction. Δu � uxx þ uyy corresponds to diffraction, and
the nonlinear cubic term comes from the nonlinear Kerr effect. The parameter ρ is a
coupling constant that emerges from the combined optical rectification and
electro-optic effects formed by the ϕ x, yð Þ field, and ν is the coefficient that origi-
nates from the anisotropy of the material [26]. These equations arise due to the
interaction between the fundamental and dc fields when second-harmonic-genera-
tion is not phase-matched. In such a situation, the second harmonic component
can be solved explicitly and generates an additional self-phase modulation contri-
bution due to cascaded nonlinearity. Consequently, the NLSM system is obtained
as a result of the nonlocal nonlinear coupling between the first field (with the
cascaded effect from the second harmonic) and a static field that arises from the
zeroth harmonic (mean term). We would like to note that solitons of a media with
solely quadratic nonlinear response can also be governed by the NLSM type
Equations [25, 26].

NLSM equations were derived by Benney and Roskes [27] for a finite water depth,
neglecting the surface tension. In 1974, Davey and Stewartson [28] investigated the
evolution of a three-dimensional wave packet for a finite water depth and obtained an
equivalent form of these equations. The integrability of the NLSM equations that were
derived for the shallow water limit was studied by Ablowitz and Haberman [29].
Djordevic and Reddekopp [30] improved the study of Benney and Roskes by
including the surface tension in 1977. Later, Ablowitz et al. [18, 25, 26] derived from
first principles that NLSM type equations model the evolution of the electromagnetic
field in a quadratically polarized media.

One major drawback of the dynamics of solitons under the NLS equation in 2D is
that they exhibit collapse. As a matter of fact, in [31], it was revealed that the
collapse dynamics of NLSM solitons are similar to the collapse of NLS solitons.
Possible collapse arrest mechanisms have been studied extensively in nonlinear
optics, e.g., nonlinear saturation [32, 33]. Merle and Raphael [34] investigated the
collapse of the NLS solitons and its variants in depth. Furthermore, Gaeta and
coworkers [35] carried out detailed experiments in order to expose the nature of the
singularity formation in cubic optical media and demonstrated experimentally that
collapse occurs with a self-similar profile.

Recently, wave collapse in the NLSM system was studied in [36] and it is shown
that in both water waves and optics, collapse occurs with a quasi self-similar profile.
By evolving the NLSM solutions that are computed by the Spectral Renormalization
method which is essentially a fixed point iteration scheme. In this study, it is also
revealed that the NLSM solitons have astigmatic profiles and their collapse can be
arrested by adding nonlinear saturation into the system. Wave self-rectification and
beam ellipticity as a collapse arrest mechanism for NLSM solitons was put forward
by in [16]. In the aforementioned work, for simplicity, the authors considered
Gaussian profiles with various input powers and astigmatism and then evolve these
profiles for long distances. More recently, wave collapse in the NLSM system was
arrested by adding a periodic external lattice in [23] and it has been shown that
deeper lattices may serve as a collapse arrest mechanism.
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In this chapter, the NLSMmodel (1) is extended by adding a quintic term and an
external lattice. Using this new model, the dynamics of the fundamental lattice
solitons in a nonlocal nonlinear medium with quintic nonlinearity are explored. The
study is concentrated on effects formed by the imposed lattice depth and the
strength of quintic nonlinearity. The stability of the obtained lattice solitons is
examined by the nonlinear evolution and linear spectra. In the light of the
conducted numerical analysis, it is confirmed that fundamental lattice solitons can
exist in nonlocal nonlinear media with both self-focusing and self-defocusing quin-
tic nonlinearities and stability of these solitons is achieved for a broad range of
system parameters. Since many optical materials such as chalcogenide glasses are
engineered to reveal fifth and seventh-order effects in addition to cubic nonlinear
effects [37], and high-order nonlinearities can arise even with pure Kerr materials
[38–40], it is crucial to consider the soliton dynamics consists of higher-order non-
linearities.

The outline of the chapter is as follows: In Section 2, we present the model
equations and compute the periodic lattice solitons numerically. In Section 3, we
explore the linear spectra and nonlinear evolution of the solitons. Results are
outlined in Section 4.

2. The model and its soliton solutions

It is known that, the steady-state solutions of the NLSM system (1) collapse [36],
and the collapse of solitons can be arrested by adding external lattices [23]. The
NLSM model (1) is extended as follows to describe the nonlocal qubic-quintic
nonlinear medium with an external lattice,

iuz þ 1
2
Δuþ β uj j2u� ρuϕþ γ uj j4u� V x, yð Þu ¼ 0, ϕxx þ νϕyy ¼ uj j2

� �
xx

(2)

where γ denotes the strength of quintic nonlinearity and V x, yð ) shows the
optical lattice. We consider lattices that are created by the sum of N phase-
modulated plane waves [8].

V x, yð Þ ¼ V0

N2

XN�1

n¼0

ei knxxþkny yð Þ
�����

�����
2

(3)

where V0 >0 is the depth of lattice and the wave vector knx, k
n
y

� �
¼

Kcos 2πn=Nð Þ,Ksin 2πn=Nð Þ½ �. The lattices for N ¼ 2, 3, 4, 6 correspond to crystal
(periodic) structures, while N ¼ 5, 7 correspond to aperiodic (Penrose) quasi-
crystals. Contour plot and diagonal cross-section of the lattice V x, yð Þ is displayed in
Figure 1 for V0 ¼ 12:5,N ¼ 4 and kx ¼ ky ¼ 2π. It can be seen that the lattice is
periodic, and the center ( x, yð Þ ¼ 0, 0ð Þ) of lattice is a local maximum.

2.1 Numerical solution for the fundamental solitons

The squared operator (SOM) method (that was proposed by Yang and Lakoba
[41]) is utilized to calculate the soliton solutions of the (2 + 1)D NLSM model (2).
The SOM method is based on integrating squared-operators of evolution equations.
Derivation of these operators and the scheme of the method are explained below.
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A real-valued nonlinear evolution equation can be presented in the following
form

L0u xð Þ ¼ 0 (4)

where x is the multidimensional spatial variable, u xð Þ is a real valued
function and the operator L0 includes the solitary wave’s propagation constant.
Let the operator L1 denotes linearization of Eq. (4) around the solution u, and
given by

L1 uþ ~uð Þ ¼ L1~uþ O ~u2
� �

(5)

where ~u≪ 1. In order to get a solitary wave solution, the following time-
dependent squared operator evolution equation will be integrated

ut ¼ �M�1L1
†M�1L0u (6)

here L1
† denotes the Hermitian of the operator and M is a real valued positive

definite Hermitian operator that is introduced to accelerate the convergence. Using
the forward Euler method, the solitary wave solution u will be calculated by the
following iteration.

unþ1 ¼ un � M�1L1
†M�1L0u

� �
u¼un

Δt: (7)

It was shown that the SOM method converges to a solitary wave solution for a
broad-range of nonlinear evolution equations when a convenient initial condition is
given and time step Δt is small enough [41, 42].

To calculate a solitary wave solution of the model Eq. (2) by the SOM, the
following scheme is constructed. Inserting the solution suggestion u ¼
U x, yð Þ exp iμzð Þ into the model (2), the following sub-operators are obtained

F0 ¼ �μþ β Uj j2 � ρϕþ γ Uj j4 � V x, yð Þ, ϕxx þ νϕyy ¼ Uj j2
� �

xx

F1 ¼ �μþ 3βU2 � ρϕþ 5γU4 � V x, yð Þ
(8)

(a) (b)

Figure 1.
The top view and diagonal cross-section of the lattice V x, yð Þ when V0 ¼ 12:5,N ¼ 4 and x, yð Þ∈ �15, 15½ �.
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where μ is propagation constant. Using F0 and F1, we get L0 and L1 operators as
follows:

L0U ¼ 1
2
ΔU þ F0U, M0 ¼ F�1 F L0Uð Þ

K2 þ c

� �
,

L1U ¼ 1
2
ΔM0 þ F1M0, M1 ¼ F�1 F L1Uð Þ

K2 þ c

� � (9)

where

F f x, yð Þf g ¼ f̂ kx, ky
� � ¼

ð∞
�∞

f x, yð Þei kxxþkyyð Þ dxdy (10)

F�1 f̂ kx, ky
� �n o

¼ f x, yð Þ ¼ 1
2π

ð∞
�∞

f̂ kx, ky
� �

e�i kxxþkyyð Þ dkxdky, (11)

K2 ¼ k2x þ k2y and the parameter c that has a considerable effect on
convergence of the SOM method is utilized for parametrizing the numerical
procedure.

After obtaining M1, the iteration scheme is executed as follows,

Unþ1 ¼ Un �M1Δt: (12)

while the mean term ϕ x, yð Þ is calculated by

ϕn ¼ F�1 k2x
k2x þ νk2y

F Unj j2
� � !

: (13)

In order to avoid division by zero error, the first element of K2 is set to be 1.
Starting from an initial guess, this numerical scheme is iterated until the error E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∥Unþ1 � Un∥2
p

< 10�8. It is noted that c and Δt are chosen heuristically as
positive real numbers to obtain a convergent solution, and we take c ¼ 1:3 and
Δt ¼ 0:2 in this chapter. The initial condition of the SOM method is chosen as a

Gaussian u x, yð Þ ¼ exp � x� x0ð Þ2 þ y� y0
� �2Þ

h i� �
. The location of the initial

condition is determined by x0 and y0. In previous studies [8, 15, 23], it was shown
that the solitons centered at the maxima of the lattices cannot stay stable. Thus, in
this study, the initial condition is located on a local minimum of the periodic
lattice where x0, y0

� � ¼ π, 0ð Þ (that is shown in Figure 1). Unless otherwise stated,
the parameters in the model (2) are fixed to the following values

μ, ρ, ν, β, γ,V0ð Þ ¼ �0:1, 0:5, 1:5, 2,�0:2, 12:5ð Þ: (14)

It should be noted that ρ ¼ 0:5 and ν ¼ 1:5 are specifically chosen to characterize
the electro-optical effects in potassium niobate (KNbO3) [16], and γ ¼ 0:2 and γ ¼
�0:2 cases are chosen to investigate soliton dynamics with self-focusing and self-
defocusing quintic nonlinearity, respectively.

The fundamental solitons of the NLSM model (2) are obtained by the SOM
method for the considered parameters (14) and are shown in Figure 2.

As shown in previous studies [23, 24, 36], fundamental solitons of the NLSM
system (2) (with or without lattice) are not radially symmetric due to the anisot-
ropy in the medium. To investigate the effect of the quintic nonlinearity on the level
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of astigmatism in the solitons, the following formulation is defined as a measure of
astigmatism

e ¼ radius along y� axis
radius along x� axis

: (15)

Here, e ¼ 1 when the soliton is radially symmetric, and if e< 1 and e> 1 the
obtained solitons are comparatively wider along the x and y axes, respectively.
Thus, the solitons are elliptical if e 6¼ 1.

Contour plots of solitons are depicted in Figure 3 for ρ ¼ 0, ρ ¼ 0:5 and ρ ¼ 1
when the quintic nonlinearity coefficient γ ¼ �0:5, γ ¼ 0 and γ ¼ 0:5. Figure 3
shows that astigmatism along the x-axis is emphasized when the fundamental
solitons are obtained with a larger coupling parameter ρ (see the first column). It is
also observed that the fundamental soliton becomes less astigmatic along x-axis
with a larger quintic nonlinearity parameter γ (for a fixed ρ), and when ρ ¼ 0 and
the quintic nonlinearity is self-focusing (i.e., when γ>0) the solitons become
comparatively wider along y-axis (see the first row).

To see the impact of the anisotropy parameter ν on the soliton profile, the on-
axes amplitudes and contour images of fundamental solitons are displayed in
Figure 4. Figure 4 shows that the amplitude of fundamental solitons are decreasing
with increasing ν (from 0 to 3), and solitons become more extended along x-axis
with larger ν values.

Comparing the contour images in Figures 3 and 4, it is seen that the astigmatism
of the fundamental solitons changes significantly with ρ, whereas it depends weakly
on ν.

3. Stability analysis

The stability properties of fundamental solitons (that are obtained by the SOM
method) are examined by the linear eigenvalue spectra and the direct simulation of
the nonlinear model (2).

(a) (b)

Figure 2.
3D profiles (first column), top views (second column) of fundamental solitons that are obtained (a) for γ ¼
�0:2 (self-defocusing) and (b) for γ ¼ 0:2 (self-focusing) quintic nonlinearity. All other parameters are taken
as in Eq. (14).
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The linear stability of solitons are studied by the linear spectra of fundamental
solitons. To obtain the linear spectrum, the fundamental soliton is perturbed as follows

U ¼ eiμz u0 x, yð Þ þ g x, yð Þeλz þ h ∗ x, yð Þeλ ∗ z� �
(16)

where u0 x, yð Þ is the fundamental soliton and g, h≪ 1 are infinitesimal perturba-
tions. Substituting the solution U into (2) and linearizing, it is found that these
normal modes satisfy the following linear eigenvalue problem

LV ¼ λV (17)

where

L ¼ i
0 Lþ
L� 0

� �
, V ¼ g

h

� �

and the matrix coefficients of L are

Lþ ¼ �μþ 1
2
Δ� ρϕþ 3βu2 þ 5γu4 � V,

L� ¼ �μþ 1
2
Δ� ρϕþ βu2 þ γu4 � V:

(18)

Figure 3.
Contour image of fundamental solitons that are obtained for ρ ¼ 0 (the first row), ρ ¼ 0:5 (the second row)
and ρ ¼ 1 (the third row) while γ ¼ �0:5 (the first column), γ ¼ 0 (the second column) and γ ¼ 0:5 (the
third column). All other parameters are taken as in Eq. (14) and e shows the degree of astigmatism for each
soliton.
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We can solve this eigenvalue problem by the Fourier collocation method [42].
Any eigenvalue with a positive real part in the spectrum indicates the linear insta-
bility of the fundamental soliton considered.

The power (or energy is some other contexts) of solitons can be computed by
P=
ÐÐ

�∞ uj j2dxdy. In [43], Vakhitov and Kolokolov (VK) demonstrated that there is a
critical power value above which the solitons cannot be linearly stable, and a soliton
can be linearly stable only if its power increases as the propagation constant μ is
increased, i.e.,

dP=dμ>0: (19)

Moreover, in [44, 45], it was shown that the solitons can be stable nonlinearly
only if the slope condition (19) is satisfied.

In the light of these results, prior to the nonlinear stability analysis, the power
and linear stability of solitons are studied in Figure 5. These power-eigenvalue
diagrams are calculated for the parameters that are given in Eq. (14), and the
linear (in)stability intervals of gap solitons are determined via the computation of
eigenvalue spectra of the solitons at each point of the power curves (see Figure 5
(a1)–(b1)). Furthermore, the maximum real part in the eigenvalue spectra
(spectral radius) is examined in Figure 5(a2)–(b2) for the gap solitons. The solitons
are found to be linearly stable for self-defocusing quintic nonlinearity (γ ¼ �0:2)
when the power P∈ 1:61, 2:39½ � and propagation constant μ∈ �0:35, 0½ �

Figure 4.
The on-axes amplitudes of fundamental solitons along x-axis (first column), along y-axis (second column) and
contour image of solitons (third row) (a) for ν ¼ 0; (b) for ν ¼ 1:5 and (c) ν ¼ 3. All other parameters are
taken as in Eq. (14) and e shows the degree of astigmatism for each soliton.
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(see Figure 5(a1)–(a2)), and the solitons are linearly stable when P∈ 1:76, 2:17½ �
and μ∈ �0:15, 0:3½ � for self-focusing (γ ¼ 0:2) quintic nonlinearity (see Figure 5
(b1)–(b2)). These results are consistent with VK stability criterion since the slope
of both power-eigenvalue diagrams is positive.

In addition to the power-eigenvalue diagram, the power and linear stability of
solitons are studied in Figure 6 for varied values of γ, ρ and β. The x-axis of each
panel shows the existence domain for the varied parameter when other parameters
are fixed to the values in Eq. (14). For instance, when μ ¼ �0:1, ρ ¼ 0:5, ν ¼
1:5, β ¼ 2 and V0 ¼ 12:5, fundamental solitons can be generated for γ ∈ �0:7, 25:1½ �
(see the left panel in Figure 6(a)). In Figure 6(a), stable (solid blue line) and
unstable (red dotted line) regions are determined in the left panel, and in the right
panel zoom-in view of the black rectangular region in the left panel is depicted.

Figure 6 shows that the power of solitons is decreased as γ and β are increased.
The right panel in Figure 6(a) shows that solitons are linearly stable when γ is
between �0:24 and 0:26, and comparing the left and right panels in Figure 6(b)
and (c), it is seen that stability regions of ρ and β parameters for self-focusing
(γ ¼ 0:2) case of quintic nonlinearity is narrow than that of self-defocusing
(γ ¼ �0:2) case.

To confirm obtained linear stability results, we study nonlinear evolution of
solitons by means of direct simulation of the governing Eq. (2). To this end, using
the fourth-order Runge–Kutta (RK4) scheme fundamental soliton is advanced in z
direction, and the spatial domain x, yð Þ is discretized by the finite-difference
method. It should be noted that the RK4 method is widely used for numerical
analysis of nonlinear evolution equations, in this regard we apply RK4 to compare
the results of this chapter with previous studies. The starting point of nonlinear
evolution is chosen as the fundamental soliton, and 1% random noise is inserted to
amplitude of the soliton to test the nonlinear stability under perturbations.

Figure 5.
The power-eigenvalue (P� μ) diagram of lattice solitons (a1) for γ ¼ �0:2 (self-defocusing) and (b1) for
γ ¼ 0:2 (self-focusing). Maximum real part (spectral radius) of the eigenvalue spectra of solitons (a2) for γ ¼
�0:2 and (b2) for γ ¼ 0:2. Solid blue and red dotted lines show stable and unstable regions for the gap solitons,
respectively.
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In Figure 7, linear stability spectrum (first column), nonlinear evolution of the
peak amplitude (second column), the evolution of soliton power (third column),
and 3D view of the evolved soliton (fourth column) are plotted for the fundamental
solitons that correspond to “a”, “b”, “c”, “d” and “e” points in the right panel of
Figure 6(a). Here, the impact of quintic nonlinearity is examined by increasing γ
from �0:3 to 0:3.

In Figure 7(b)–(d), it is shown that the linear spectrum of the fundamental
soliton is purely-imaginary (none of their eigenvalues have a real part), and the
peak amplitudes oscillate during the propagation, thus stable evolution can be
achieved for the considered solitons in the quadratic-cubic-quintic nonlinear
medium when γ ¼ �0:2, γ ¼ 0 and γ ¼ 0:2. On the other hand, when the coefficient
of quintic nonlinearity is increased, there are eigenvalues with positive real part in
linear stability spectra, and the peak amplitudes blow-up after a short propagation
distance for γ ¼ �0:3 and γ ¼ 0:3 as shown in Figure 7(a) and (e), respectively.

Figure 6.
(a) Soliton power for varying quintic nonlinearity coefficient γ, left panel shows the domain of existence, and
right panel shows zoom-in view of the black rectangular region. Soliton powers for γ ¼ �0:2 (left panel) and
γ ¼ 0:2 (right panel) (b) with varying ρ and (c) with varying β parameters. The linear stability and
instability regions are shown by solid blue and red dotted lines, respectively.
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This fact reveals that both strong self-focusing and self-defocusing quintic non-
linearities have an adverse effect on the stability of fundamental solitons.

From previous studies, it is known that increasing potential depth V0 improves
the stability of solitons in quadratic [23] and cubic (Kerr) medium [4]. In Figure 8,
to examine the impact of the deeper lattice on the soliton stability in the quadratic-
cubic-quintic nonlinear medium when γ ¼ �0:3 (see panel (a)) and γ ¼ 0:3 (see
panel (b)), the evolution of the peak amplitudes are displayed for varied potential
depths. To compare the propagation distance, the amplitude of solitons are divided
by their peak amplitudes. Figure 8 shows that larger lattice depth V0 supports the
stability of solitons for γ ¼ 0:3 (self-focusing), whereas shallow potential extends
and eventually stabilizes the soliton for γ ¼ �0:3 (self-defocusing). Thus, when the
instability emerges from strong self-focusing nonlinearity, a deeper lattice can be
utilized to arrest (or delay) the collapse. This result is consistent with the previous
studies, and it is meaningful because the potential in our model (2) is defocusing
and it must be balanced with a self-focusing term to obtain stable modes.

Furthermore, it is known that increasing anisotropy parameter ν assists the
stability of solitons when quadratic electro-optic effects are strong [23, 46, 47]. In

(a)

(b)

(c)

(d)

(e)

Figure 7.
Linear spectra (first column), nonlinear evolution of peak amplitudes (second column), the evolution of soliton
power (third column), and 3D view of the soliton after evolution (fourth column) for (a) γ ¼ �0:3; (b) γ ¼
�0:2; (c) γ ¼ 0; (d) γ ¼ 0:2; and (e) γ ¼ 0:3. All other parameters are fixed to the values in Eq. (14).
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order to investigate the impact of anisotropy on soliton dynamics, we plot the
evolution of peak amplitude when ν is varying between 0 and 1000 in Figure 9. As
shown in Figure 9, increasing the anisotropy coefficient ν (from 0.001 to 100)
extends the propagation distance of the evolved solitons, and it stabilizes the soliton
in the medium with a strong self-defocusing nonlinearity (when γ ¼ �0:3) eventu-
ally (see black dotted line in panel (a)). Similarly, increased ν supports the stability
of the solitons for strong self-focusing nonlinearity (when γ ¼ 0:3), and although it
cannot stabilize the soliton robustly, it provides a significant extension of propaga-
tion distance when ν ¼ 1000 (see black dotted line in panel (b)).

It must be noted that even though soliton solutions of the NLSM system (2) can
be obtained when ν∈ 0,∞ð Þ and stability of solitons are improved by higher values
of ν, they cannot be utilized in practical optical applications, due to the fact that ρ
and ν are predetermined constants associated with the type of optical materials.

4. Conclusions

Fundamental lattice solitons were obtained in a nonlocal nonlinear medium with
self-focusing and self-defocusing quintic nonlinearity. The steady-state solutions
are calculated by the SOM algorithm and the stability properties of solitons have
been explored by linear spectra and nonlinear evolution of the amplitude by direct
simulation of the nonlinear model. The band-gap boundaries and stability intervals

Figure 8.
Peak amplitude of the evolved solitons for varying lattice depths when the fundamental soliton is obtained for
(a) γ ¼ �0:3; and (b) γ ¼ 0:3.
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of solitons were found and the power of solitons was investigated for varied ρ, β and
γ parameters. It has been seen that the power of fundamental solitons is decreased
by increasing cubic (β) and quintic (γ) nonlinearity, while the power is increasing
as the quadratic nonlinear response (ρ) is increased, and stability regions of ρ and β
parameters for self-focusing (γ ¼ 0:2) case of quintic nonlinearity is narrow than
that of self-defocusing (γ ¼ �0:2) case.

The stability analysis showed that fundamental lattice solitons can stay stable for
the weak self-focusing and self-defocusing quintic nonlinearity. Strong self-
focusing (γ ¼ 0:3) and self-defocusing (γ ¼ �0:3) quintic nonlinearities shortened
the propagation distance of evolved solitons.

Furthermore, it has been observed that when the quintic nonlinearity is strong
in the medium, solitons collapse, and the collapse of solitons can be arrested by a
deeper lattice for self-focusing quintic nonlinearity (γ ¼ 0:3), whereas unstable
solitons can be stabilized by shallow lattice for strong self-defocusing quintic
nonlinearity (γ ¼ �0:3).

In conclusion, the numerical existence and stability of fundamental lattice soli-
tons have been presented in a nonlocal nonlinear medium with the quintic nonlinear
response, and it has been demonstrated that stability of unstable solitons can be
improved by modification of potential depth and strong anisotropy coefficient.
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Figure 9.
Peak amplitude of the evolved solitons for varying anisotropy coefficients (ν) between 0.001 and 1000 when the
fundamental soliton is obtained for (a) γ ¼ �0:3; and (b) γ ¼ 0:3.
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Chapter 2

Soliton Like-Breather Induced by
Modulational Instability in a
Generalized Nonlinear
Schrödinger Equation
Saïdou Abdoulkary and Alidou Mohamadou

Abstract

We consider the nonlinear Schrödinger equation modified by a rational
nonlinear term. The model appears in various studies often in the context of the
Ginzburg-Landau equation. We investigate modulational instability by means of a
linear stability analysis and show how the nonlinear terms affect the growth rate.
This analytical result is confirmed by a numerical simulation. The latter analysis
shows that breather-like solitons are generated from the instability, and the effects
of the nonlinear terms are again clearly seen. Moreover, by employing an auxiliary-
equation method we obtain kink and anti-kink soliton as analytical solutions. Our
theoretical solution is in good agreement with our numerical investigation.

Keywords: generalized nonlinear schrödinger, modulational instability, breather
like-soliton

1. Introduction

The nonlinear Schrödinger equation (NLSE) is the main equation which governs
the propagation of pulses in various fields such as nonlinear optical systems,
plasmas, fluid dynamics, Bose-Einstein condensation, and condensed matter phys-
ics. It has been shown to govern the evolution of a wave packets in weakly nonlinear
and dispersive media and has thus arisen in such diverse fields. One other applica-
tion of this equation is in pattern formation, where it has been used to model some
nonequilibrium pattern forming systems. Most notable is the role it plays in under-
standing the propagation of electromagnetic waves in glass fibers and other optical
waveguides [1].

In this paper we consider a NLS equation with inverse nonlinear terms. Inverse
nonlinear term has been introduced for the first time by Malomed and al. [2] which
has been later studied by [3, 4] in the case of the Ginzburg-Landau equation.

iuz þ puxx þ γ1

∂u
∂x

�� ��2
uj j2 uþ γ2

1

uj j2 uþ γ3 uj j2u ¼ 0, (1)

where u is a complex amplitude that depends on z and x, γi (i ¼ 1, 2, 3) is a real
constant and represents the nonlinear coefficient, p is a real constant and supposes
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to be the group-velocity dispersion (GVD) coefficient. Notice that Eq. (1) especially
with γ1 ¼ γ2 ¼ 0 appears in many contemporary work in physics and has been
shown to be completely integrable [5] and to admit optical solitons by balancing the
GVD and Kerr nonlinearity γ3 (the self-focusing interaction and defocusing inter-
action corresponding to bright and dark solitons, respectively). However, in many
applications it contains also some small additional terms which destroy these prop-
erties. It describes either the propagation of a continuous wave (CW) beam in a
planar waveguide or propagation of an optical pulse inside optical fiber, and show
that this equation admits analytical solitary solution and exhibits a modulation
instability (MI). This instability leads to spatial or temporal modulation of a
constant-intensity plane wave.

Modulational instability is one of the nonlinear wave equations associated to
NLSE and appears in many physical systems. It indicates that due to the competi-
tion between nonlinearity and the dispersive effects, a small perturbation of the
initial plane wave may induce an exponential growth of the wave amplitude,
resulting in the carrier-wave breakup into a train of localized waves [6].

The NLSE is also one of the original nonlinear partial differential equations, the
study of which has lead to fundamental advances in theoretical physics. The study
of NLS was motivated by a large number of theoretical problems ranging from
optical pulse propagation in nonlinear fibers to hydrodynamics, condensed matter
physics and biophysics. It is now known that NLS is one of the few examples of
completely integrable nonlinear partial differential equations [7, 8].

The main objective of this paper is to study MI in a generalized NLSE that
includes rational nonlinear terms given by Eq. (1). By means of the linear stability
analysis we explicitly investigate the stability condition of a launched plane wave.
The results show that the MI gain is strongly dependent on the nonlinear parame-
ters as well as the GVD. Our numerical simulations show that those parameters
contribute to the formation and the propagation of the soliton like-breather in the
systems. Those parameters can generate either stable or unstable solitons. We also
investigate analytical soliton solutions. By employing auxiliary equation method we
obtain kink and antikink solutions of Eq. (1).

The rest of the paper is organized as follows. The model is introduced in Section 2,
which is followed by the analysis of the MI of the CW solutions in Section 3, direct
simulations shown the formation of modulated wave as well as breather like-solitons
and their stability in Section 4. Exact analytical kink and antikink soliton solutions are
reported in Section 5, and the paper is concluded by Section 6.

2. Modulational instability

The nonlinear Schrodinger Equation Eq. (1) has the simplest solution in the form
of a continuous wave as u ¼ u0 exp i kx� ωzð Þ, where u0 is a constant and k and ω
are respectively the the wave-number and the angular frequency and satisfy the
dispersion relation ω� k2pþ γ1k

2 þ γ2
u0j j2 þ γ3 u0j j2 ¼ 0. Now we focus our attention

on the modulational instability in the system. Therefore, we look at solutions of
Eq. (1) in the form of

u ¼ u0 1þ bð Þ exp i kx� ωzð Þ, (2)

where b represents a small perturbation.
Substituting Eq. (2) into the NLS equation Eq. (1) and linearizing the resulting

equations, we obtain a linear equation of b.
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ibz þ pbxx þ 2ikpbx þ iγ1k b ∗
x � bx

� �� γ2
u0j j2 b ∗ þ bð Þ þ γ3 u0j j2 b ∗ þ bð Þ ¼ 0, (3)

Looking for solutions to this function in the form of plane waves
b ¼ b1 exp i Kx�Ωzð Þ þ b ∗

2 exp � i Kx�Ωzð Þ, we obtain the dispersion relation

Ω ¼ 2p� γ1ð ÞkK � K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21k

2 þ p2K2 þ 2
γ2
u0j j2 p� 2γ3p u0j j2

r
, (4)

where the wave number K and the frequency Ω characterize linear properties of
the modulation wave. The dispersion relation given by Eq. (4) determine the con-
dition for the stability of a plane wave with a wave number k in the system. This is
the case as long as Ω is real. This stability condition is explicitly depends on the
nonlinear parameters γ1, γ2, and γ3. It shows that the CW plane-wave is absolutely
stable only in the case γ21k

2 þ p2K2 þ 2 γ2
u0j j2 p� 2γ3p u0j j2 <0. That is

γ21k
2 þ p2K2� �� ffiffiffiffi

Δ
p

< u0j j2 < γ21k
2 þ p2K2� �þ ffiffiffiffi

Δ
p

, (5)

with Δ ¼ γ21k
2 þ p2K2� �2 þ 16γ2γ3p2.

The modulation instability gain is related to the imaginary part of Ω and is
given by

g ¼ Im jKj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21k

2 þ p2K2 þ 2
γ2
u0j j2 p� 2γ3p u0j j2

r" #
, (6)

Figure 1 shows the instability gain as a function of the perturbationwave numberK
for u0 ¼ 1 and 1:5. The gain exists for both positive andnegative values ofK in the range

∣K∣<K0 ¼ 1=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2γ21k

2 u0j j2 � 4γ2pþ 4γ3p u0j j4
q

= ju0jpð Þ. The peak gain occurs for

K ¼ K0 and has the value gmax ¼ 1=2ð ÞK0∣
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ21k

2 þ 4γ2p= u0j j2 � 4γ3p u0j j2
q

∣. Now let
us study the latter gain.We have plotted a qualitative study of its behavior. Figure 1a
shows that the peak gain increased with the amplitude u0 increasing as well as it width.
In Figure 1b one can see the inverse phenomenon. Figure 2 shows the evolution of the
peak gain as a function of nonlinear parameters γ2 and γ3. Here we are seeing the
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Figure 1.
Gain spectrum g Kð Þ of modulation instability as a function of wave number with effect of the background
amplitude u0 ¼ 1 (dashed line) and 1:5 (soline) when the GVD is 0:5 for the left-hand panel (a) with γ1 ¼
0:1, γ2 ¼ 0:4, γ ¼ 0:8 and the GVD is �0:5 for the right hand-panel (b) with γ2 ¼ 0:8, γ3 ¼ 0:01.
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increasing of the peak with the nonlinear terms (see Figure 2a). There is a limit cycle
where the peak remains constant for certain values of both γ2 and γ3. This is clearly seen
through the contour plot in Figure 2b. This aspect is better analyzed in Figure 3where
the peak gain increased by increasing both γ2 and γ3 in the left side of top panel (a)
as well as the gain width. This is confirm by fixing one nonlinear parameter (γ2)

Figure 2.
Maximum gain spectrum gmax of modulation instability for u0 ¼ 1 versus nonlinear parameters γ2 and γ3
(panel (a)), while in panel (b) we show its contour plot.
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Figure 3.
Gain spectrum g Kð Þ of modulation instability as a function of wave number with effect of the nonlnear
parameters γ2, γ3. In the top panel (a) on left we set γ2 ¼ 0:03, γ3 ¼ 0:3 for dashed line, γ2 ¼ 0:3, γ3 ¼ 0:4 for
the solid line, γ2 ¼ 0:5, γ3 ¼ 0:6 for o-line. On right (b) we set γ2 ¼ 0:2, and γ3 ¼ 0:1, 0:3, 0:6 (respectively
for dashed, solid and o-line. In botton we got on left panel (c) γ2 ¼ 0:01, 0:1, 0:2 (respectively for dashed, solid
and o-line) and γ3 ¼ 0:3. For all the previous panels we got u0 ¼ 1 and γ1 ¼ 0:1. On right panel (d) we
consider the same values in (c) when u0 ¼ 2.
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when the last one (γ3) is varying (see panel (b)). One observe the inverse phenomenon
by fixing γ3 when γ2 increasing (see panel (c)). The last panel (d) is very particular
while we are seeing the peak and the width gain are almost constant by varying the
nonlinear parameters (γ2) when the background amplitude u0 ¼ 2.

3. The numerical simulation analysis

Analytical analysis done by linear stability shown the possibility of the
formation of modulated waves in the consider system. This prediction can be
numerically confirmed. In this way let us launch as initial condition a
modulated plane wave: u 0, xð Þ ¼ 1þ ε cos Kxð Þ where fixed boundary conditions are
used and the numerical constants used in the calculation are the following: ε ¼ 0:01,
p ¼ 0:5, k ¼ 0, K ¼ 0:2π, γ1 ¼ 0:1, 0:2, 0:3 in γ2 ¼ 0:01, 0:1, 0:4, 0:6 and γ3 ¼
0:1, 0:3, 0:6, 0:9 normalized units. The question we are going to answer is the influ-
ence of the parameters γi on the formation of modulated wave.

From Figure 4 one can see the formation of bright solitary wave. The left hand top
panel shows the generation of a pulse train toward the boundary regions but the
intensity is smallest at the center. On right hand panel we can see the bright solitary
wave behaves like a breather soliton is forming. This may be a multisoliton quasiperi-
odic solutions. It can be seen that the breather solutions keep their oscillating shapes,
while the wave packets move as periodic solitons along the x-axis for certain values of
z. Those breathers are periodic in the x coordinate and aperiodic in the z coordinate.
There is more generation of breathers in bottom panels (e) and (f). Comparing panel
(b) with panels (e) and (f), one can see that in panels (e) and (f), under the influence
of the increasing values of the parameter γ3, the number of peaks on the same space
interval is increasingwhen ∣x∣ goes up even z. The breathers have compressed inwidth
and peak, and this is clearly seen through the contour plot figures given by panels (c),
(d), (g) and (h). Those phenomenon are certainly caused by increasing of the
nonlinear parameter γ3 when γ2 remains small and constant. We can see the evolution
of the peak amplitude of the wave over the z-axis for each case above in Figure 5. One
can see that in panel (a) the peak amplitude increases gradually and oscillation little
beat over the parameter z. The oscillation of the peak is increasing when the nonlinear
parameter γ3 increases and the curve believes sharp. This is perceptible in the rest
panels (b, c and d). One can clearly confirms The dynamical process of the spatial
pattern formation induced by MI.When γ3 increases, the rate of MI increases too and
the MI occurs earlier. Another interesting phenomenon is the width of the breather
which decreases by increasing the consider nonlinear parameter.

There is more breathers when γ2 is negative. Figure 6 shows the evolution
of the typical intensity profile done by numerical simulations. In panel (a) one can see
that there are more breathers that appears more stable than the previous one. This
analysis is more perceptible in panel (b) wherewe plot the contour plot of the consider
figure. We are seeing both presence of breathers and bright soliton. This means that
the consider parameter is strongly responsible of the formation of those solitons. This
is more view in Figure 7where panels (a) and (b) shown how breathers are broke and
the bright soliton takes place and propagate through the systemwhen the wave vector
is small than the previous one (0:01π).

4. Exact analytical solutions to the consider stationary model

We now discuss about the analytical solution to the stationary NLS of Eq. (1).
Suppose that
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u z, xð Þ ¼ V xð Þ exp iϕ zð Þ½ �, (7)

is the solution of Eq. (1) where V is independent of z and ϕ the phase. Substituting
Eq. (7) into Eq. (1) we obtain two equations for V and ϕ. The phase equation shows
that ϕ should be of the form ϕ zð Þ ¼ βz, where β is a constant and V equation is
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Figure 4.
The evolution of the typical intensity profile done by numerical simulation of Eq. (1) when γ3 is varying (0:1,
for (a), 0:3 for (b), 0:6 for (e) and 0:8 for (f)) by fixing γ1 ¼ 0:1 and γ2 ¼ 0:01, while panels (c), (d), (g)
and (h) show their respective contour plots.
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�βV þ pVxx þ γ1
V2

x

V
þ γ2

1
V
þ γ3V

3 ¼ 0, (8)

For solving this equation we set V ¼ G
1
2 and then the Eq. (8) yields

1
4

γ1 � pð Þ _G2 þ 1
2
pG€Gþ γ2G� βG2 þ γ3G

3 ¼ 0, (9)

This is a nonlinear ordinary differential equation which can be solve by the
auxiliary equation method.
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Figure 5.
Representation of the maximum amplitude versus z corresponding of each panels (a), (b), (e) and (f) of
Figure 4 respectivelly.
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Figure 6.
The influence of negative value of γ2 on the evolution of the typical intensity profile done by numerical
simulation of Eq. (1) with p ¼ 1=2, γ1 ¼ 0:1, γ2 ¼ �0:2, γ3 ¼ 0:4 showed by panel (a), while panel (b)
shows its contour plot.
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4.1 The auxiliary equation method

The auxiliary equation method has been defined by [9, 10] while it allows to find
more and new multiple solutions for nonlinear partial differential equations. The
main steps of using this method is summarized as follows.

For solving equation

P u, ut, ux, uxx, uxxx, …ð Þ ¼ 0, (10)

we set ξ ¼ xþ ωt then the nonlinear partial differential equation in two inde-
pendent variables x, tð Þ becomes a nonlinear ordinary differential equation

Q u, u0, u00, u00
0
, …

� �
¼ 0, (11)

We seek for the solutions of Eq. (11) in the following generalized form

u ξð Þ ¼
X2M
i¼0

aiFi ξð Þ, (12)

in which ai (i = 0, 1, 2,… , 2 M) are constants to be determined and M ¼ 2. The
variable F ξð Þ should satisfy the following variable separated ordinary differential
equation

F02 ξð Þ ¼ aF2 ξð Þ þ bF4 ξð Þ þ cF6 ξð Þ, (13)

where a, b, c are parameters to be determined. Substituting Eq. (12) into (11) by
taking in account Eq. (13) and equate the coefficients of all powers of F ξð Þ to zero
yields a set of algebraic equations for unknowns a, b, c, ai (i = 0, 1,… , 2 M) and ω.
We solve the set of algebraic equations by the use of Maple and substitute the
solutions obtained in this step back into (12) so as to obtain the exact traveling wave
solutions for Eq. (10).

The solution of Eq. (9), balancing GG00 with G3 gives M ¼ 2. Therefore we may
choose

G02 ¼ a0 þ a1F ξð Þ þ a2F2 ξð Þ þ a3F3 þ a4F4, (14)

(a) (b)

Figure 7.
Influence of γ2 and wave number K on the evolution of the typical intensity profile done by numerical
simulation of Eq. (1) when γ2 ¼ �0:03 in (a) and γ2 ¼ 0:03 (b), the rest of the parameters are γ1 ¼ 0:1,
γ3 ¼ 0:5 and K ¼ 0:01π.
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where a0, a1 and a2, a3, a4 are constants to be determined. By applying the
defined method we obtained the following exact kink and anti-kink solutions for
the stationary NLSE (9).

G ¼ � ffiffiffiffiffi
a0

p
tanh x

ffiffiffi
a

p� �
, (15)

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
γ3

1þ 2p
γ1

� �r
and a ¼ � γ2

γ1a0
. We must have γ2=γ1 <0 in order to

ensure that the pulse width
ffiffiffi
a

p
is real.

Having obtained exact solutions of the stationary NLSE Eq. (9), we will use
them together to construct soliton solutions of the NLSE Eq. (1). In this case, the
kink-soliton and anti-kink solutions of Eq. (1) can be written in the form

u z, xð Þ ¼ � ffiffiffiffiffi
a0

p
tanh x

ffiffiffi
a

p� �
exp iβz, (16)

where β ¼ 2a γ1 þ pð Þ. Figure 8 shows the representation of the analytical
solution to the stationary NLSE.

5. Conclusion

In the present study a generalized nonlinear Schrödinger equation with particu-
lar nonlinearities has been introduced. The model including rational nonlinearity
that arise from Malomed model and describes the propagation of nonlinear surface
waves on a plasma with a sharp boundary. We explicitly investigated MI gain by
means of linear stability analysis. Results reveal that the nonlinear parameters are
strongly influences the dynamics of the launched plane wave. We further tested
the evolutionary modulate plan wave numerically, which indicates that those
parameters allow the formation of breather-like soliton in the system as well as
bright soliton. We have investigated analytical kink and anti-kink soliton too.

It would be particularly worthwhile to extend this study to the generalized NLS
with time and space modulated nonlinearities and potentials. This could allow more
stability and more formation of the breather-like soliton as well as the Akhmediev
breather [11], Peregrine rogue wave [12], and Kuznetsov-Ma breather [13, 14] and
even high-order rogue waves [15]. MI gain distributions could bring different
nonlinear excitation pattern dynamics.
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Figure 8.
Kink and anti-kink representations of the analytical solutions done by Eq. (16). The following parameter
values are used p ¼ 1=2, γ1 ¼ �1:1, γ2 ¼ 0:3 and γ3 ¼ 0:6.
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Chapter 3

A Comparison of the
Undetermined Coefficient Method
and the Adomian Decomposition
Method for the Solutions of the
Sasa-Satsuma Equation
Mir Asma

Abstract

This chapter will talk about the mathematical as well as numerical aspects of the
Sasa-Satsuma equation that is the extended nontrivial version of nonlinear
Schrödinger’s equation. The exact solution will be found out by the undetermined
coefficient method. After that, the Adomian decomposition method is secure
numerical simulations of computed analytical solutions. The error plots are given to
see the accuracy of the results.

Keywords: Sasa-Satsuma equation, solitons, Adomian decomposition method,
undetermined coefficient method, telecommunication

1. Introduction

Solitons can be illustrated as special wave packets that are formed as a result of
elegant balance among the fiber nonlinearity and dispersion. They have the ability
to travel undistorted along trans-continental and trans-oceanic distances. Solitons
are narrow pulses with immense peak power and exceptional properties. Mostly,
pulses go through by spreading because of group velocity dispersion while propa-
gating through optical fibers. Actually, solitons have the advantage of nonlinear
effects that helps to overcome the broadening of pulse with the group velocity
dispersion. When the corresponding dispersive effects and nonlinear effects are
controlled and get the appropriate shape of the pulse. When these pulses balance
compression and broadening and there is no change in the shape of the pulse or
there are periodic changes in the shape of the pulse, this phenomenon is called
soliton. Solitons are very advantageous for optical communication that they can
overcome chromatic dispersion completely. In most Dense Wavelength Division
Multiplexing (DWDM) systems, fiber losses are compensated periodically by using
fiber amplifiers spaced 60-80 Km apart. Attenuation and higher powers are the
indirect properties of solitons that are reimbursed by the optical amplifiers. When
solitons and amplifiers are used together, they can assure the very high-bit rate, for
the repeater-less data transmission for long distances. This combination can be
responsible for the data transmission at a bit rate of 80 Gb/s for 10,000 km and it
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was testified in the laboratory. Hasegawa and Tappert in 1973, have discussed the
possibilities of propagation of solitons through optical fibers and showed their
remarkable stability by numerical computation [1]. Seven years later, Mollenauer,
Stolon, and Gordon succeeded in observing soliton propagation experimentally [2].

In this chapter, Sasa-Satsuma equation (SSE) is going to be studied for the
sake of optical solitons. SSE is the expansion of nonlinear Schrödinger equation
(NLSE). In 1991, Narimasa Sasa and Junkichi Satsuma reported significant results that
have a great impact in the field of nonlinear optics and the telecommunication
industry [3]. Initially, Sasa and Satsuma displayed a nonlinear complex wave equation
that was composed with the aid of inverse scattering transformation [4].

The Sasa-Satsuma equation with the linear temporal evolution is [5]:

iqt þ a qj jnqð Þxx þ b qj j2qþ i β3qxxx þ σ qj j2
� �

x
qþ θ qj j2qx

h i
¼ 0 (1)

In (1), q x, tð Þ is the dependent variable, x and t are independents variables and
the subscripts serve as partial derivatives. The first term in (1) known as time
evolution term, while a is the coefficient of nonlinear chromatic dispersion, b gives
the self-phase modulation with kerr nonlinearity, β3 is the coefficient of third-order
dispersion, σ and θ are the coefficients of nonlinear dispersion. Finally, n gives the
nonlinearity parameter of chromatic dispersion and n>0.

2. Method of undetermined coefficients

Method of undetermined coefficients gives the spectrum of soliton solutions. In
order to seek the soliton solution of SSE to (1) [6–10]:

q x, tð Þ ¼ P x, tð Þeiϕ x,tð Þ (2)

Where P(x,t) is the amplitude segment of the soliton. The phase component is

ϕ x, tð Þ ¼ �κxþ ω tþ θ0 (3)

Here, κ, ω and θ0 are the soliton frequency, wave number and the phase constant
respectively. By substituting (2) into (1) and equating real and imaginary parts
leads to

�aκ2 1þ nð Þ2Pnþ1 þ a
∂

∂x
P x, tð Þ

� �2

n 1þ nð ÞPn�1 þ a 1þ nð Þ P x, tð Þð Þn þ 3β3 κð Þ ∂
2

∂x2
P x, tð Þ

P x, tð Þ �2σ � θð Þκ � bð Þ P x, tð Þð Þ2 þ β3 κ
3 þ ω

� �
¼ 0,

(4)

and

∂
3

∂x3
P x, tð Þ

� �
β3 þ �2aκ 1þ nð Þ2 P x, tð Þð Þn þ 2σ þ θð Þ P x, tð Þð Þ2 � 3β3 κ

2
� �

∂

∂x
P x, tð Þ

þ ∂

∂t
P x, tð Þ ¼ 0:

(5)
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2.1 Solution of bright soliton

For the solution of bright soliton, the starting hypothesis is [7–10]

P x, tð Þ ¼ A
Dþ cosh τð Þp , (6)

Where

τ ¼ B x� vtð Þ (7)

A is known as amplitude, B is the inverse width of the soliton, and D is the
parameter that relates to A and B. The p is an unknown parameter that can be found
with the aid of balancing principle. By putting (6) into (4) gives:

A3 κθ þ bð Þ
E3p þ A a np2 nþ 2ð ÞB2 � κ2

� �þ 3B2β3 κp2 � β3 κ
3 � ω

� �þ AB2p2a
Ep

þ nþ 1ð Þ 1þ nþ 1ð Þpð Þaþ 3β3 κ pþ 1ð Þð Þ Dþ 1ð Þ D� 1ð ÞApB2

Epþ2

�2
DAp nþ 1ð Þ 1=2þ nþ 1ð Þpð Þaþ 3κ pþ 1=2ð Þβ3ð ÞB2

Epþ1 ¼ 0:

(8)

where E ¼ Dþ cosh τð Þð Þ.
With the balancing principle, the exponents of 3p and pþ 2 gives p ¼ 1. By

setting the coefficients of linearly independent function in (8) to zero that gives;

ω ¼ nþ 1ð Þ2aþ 3β3 κ
� �

B2 � β3 κ
3 � aκ2 (9)

A ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κθ þ bð Þ D� 1ð Þ Dþ 1ð Þ n2 þ 3nþ 2ð Þaþ 6β3 κð Þp

B
κθ þ b

, (10)

κθ þ b>0, (11)

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 3nþ 2ð Þaþ 6β3 κð Þ �B2 nþ 2ð Þ nþ 1ð Þa� 6B2β3 κ þ κθ þ bð ÞA2� �q

n2 þ 3nþ 2ð Þaþ 6β3 κð ÞB ,

(12)

n2 þ 3nþ 2
� �

aþ 6β3 κ
� �

B>0: (13)

The solution of bright soliton of (1) is

q x, tð Þ ¼ A
Dþ cosh B x� vtð Þ½ � e

i �κxþωtþθ0ð Þ, (14)

Figure 1 represents the bright optical soliton of SSE. The soliton solution appears
with their corresponding constraints conditions.

2.2 Solution of dark solitons

For the solution of dark soliton, the assumption is [7–10]

P x, tð Þ ¼ Aþ B tanh τð Þp, (15)
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where A and B are free parameters and

τ ¼ μ x� vtð Þ, (16)

Here, p can be found with the balancing principle. By substituting (15) into (4),
the real part gives:

μ2 A Aþ Bð Þ � B Aþ Bð Þð Þ4 a �1þ nþ 1ð Þpð Þ nþ 1ð Þ þ 3β3k p� 1ð Þð Þp Ep�2

�6 A� Bð ÞA a �1=2þ nþ 1ð Þpð Þ nþ 1ð Þ þ 2β3k p� 1=2ð Þð Þ Aþ Bð Þμ2p Ep�1

þ 1þ 2 nþ 1ð Þpð Þa nþ 1ð Þ þ 3β3k 2pþ 1ð Þð ÞAμ2p Epþ1

þ 1þ nþ 1ð Þpð Þa nþ 1ð Þ þ 3β3k 1þ pð Þð Þμ2p Epþ2 þ B2 kθ þ bð ÞE3p

þ18 A2 � 1=3B2� �
p2 1=3 nþ 1ð Þ2aþ β3k
� �

μ2 � 1=18B2 β3k
3 þ ak2 þw

� �� �
Ep ¼ 0

(17)

where E ¼ Aþ B tanh τð Þð Þ
The value of p is similar to bright soliton and gives the value of coefficients of

linearly independent function as zero that yields to the following relations of soliton
parameters.

A ¼ �B ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kθ þ bð Þ an2 þ 3anþ 6β3kþ 2að Þp

kθ þ b
, (18)

kθ þ bð Þ>0, (19)

an2 þ 3anþ 6β3kþ 2
� �

>0, (20)

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kθ þ bð Þ an2 þ 3anþ 6β3kþ 2að Þp

an2 þ 3anþ 6β3kþ 2
(21)

ω ¼ �ak2 þ 4an2 � k3 þ 8anþ 4aþ 12k (22)

Figure 1.
Bright soliton.
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Hence, the solution of the dark soliton is given as:

q x, tð Þ ¼ A 1� tanh μ x� vtð Þ½ �f gei �κxþωtþθ0ð Þ, (23)

Figure 2 represents the dark soliton of SSE. The soliton solution appears with
their corresponding constraints conditions.

2.3 Solution of singular solitons

For the solution of singular soliton, the starting assumption is [7–10];

P x, tð Þ ¼ A
Dþ sinh τð Þp , (24)

Here, A, B, and D are the free parameters with the unknown p. By putting (25)
into (4) gives;

nþ 1ð Þ 1þ nþ 1ð Þpð Þaþ 3β3 pþ 1ð Þkð ÞCh2ApB2

Epþ2 � AB2Shp anþ 3β3kþ að Þ
Epþ1

þA3 kθ þ bð Þ
E3p � A β3k

3 þ ak2 þ w
� �

Ep ¼ 0,

(25)

where E ¼ Dþ sinh τð Þð Þ.
By setting 3p ¼ pþ 2, we get p ¼ 1 and the free parameters are related as

A ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an2 þ 3anþ 6β3kþ 2a

kθ þ b

r
B, (26)

kθ þ b>0, (27)

Figure 2.
Dark soliton.
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ω ¼ a nþ 1ð Þ2 þ 3β3k
� �

B2 � β3k
3 � ak2 (28)

Hence the solution of singular soliton of (1) is as:

q x, tð Þ ¼ A
Dþ sinh B x� vtð Þ½ � e

i �κxþωtþθ0ð Þ, (29)

for designated parameters.

2.4 Solution of W-shaped solitons

For the solution of w-shaped soliton, the starting assumption is [7–10];

P x, tð Þ ¼ β þ ρsech τð Þð Þp, (30)

τ ¼ μ x� vtð Þ, (31)

Substituting (30) into (4) gives

4μ2pβ a nþ 1ð Þ 1þ 2 nþ 1ð Þpð Þ þ 3β3k 2pþ 1ð Þð ÞEpþ1

�p β þ ρð Þμ2 �1þ nþ 1ð Þpð Þa nþ 1ð Þ þ 3β3k p� 1ð Þð Þβ2 ρ� βð ÞEp�2

�2p �1=2þ nþ 1ð Þpð Þa nþ 1ð Þ þ 3β3k p� 1=2ð Þð Þ �2β2 þ ρ2
� �

μ2βEp�1

þρ2 kθ þ bð ÞE3p þ p2 nþ 1ð Þ2aþ 3β3k
� �

μ2 � β3k
3 � ak2 �w

� �
ρ2

�6μ2β2p2 nþ 1ð Þ2aþ 3β3k
� �

Ep

� 1þ nþ 1ð Þpð Þa nþ 1ð Þ þ 3β3k 1þ pð Þð Þpμ2Epþ2 ¼ 0,

(32)

where E ¼ β þ ρ sech τð Þð Þ
By the aid of balancing principle, the value of p ¼ 1 that gives parameters as;

β ¼ �1=2
ffiffiffi
2

p
ρ, (33)

μ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kθ þ b
an2 þ 3anþ 6kβ3 þ 2a

s
ρ, (34)

ρ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an2 þ 3anþ 6kβ3 þ 2a

kθ þ b

r
, (35)

and

w ¼ � 6β2μ2an2 � μ2an2ρ2 þ 12anμ2β2 � 2aμ2nρ2 þ 18β2μ2kβ3 þ β3k
3ρ2 � 3β3kμ2ρ2 þ 6μ2aβ2 þ ak2ρ2 � μ2aρ2

ρ2
:

(36)

Therefore, W-shaped soliton solution is given by:

q x, tð Þ ¼ β þ ρsech τð Þð Þei �κxþωtþθ0ð Þ, (37)

Figure 3 represents the W-shaped optical soliton of SSE. The soliton solution
appears with their corresponding constraints conditions.
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3. Numerical investigation of soliton solutions

In this section, the Adomian decomposition method will be implemented. ADM
has gained very much popularity in recent times in applied mathematics. This
method is very robust, efficient, and effective to grasp a broad range of linear,
nonlinear, ordinary or partial differential equations and linear or nonlinear integral
equations. This method gives the fast convergence of the solution and has many
symbolic advantages.

Geoge Adomian has introduced and developed this method and very well
treated it in the literature. A very appreciable amount of work has been explored for
the wide range of linear, nonlinear, ordinary differential equations, partial
differential equations as well as integral equation [11].

3.1 Recapitulation of Adomian decomposition method

In this section, ADM is used to handle SSE numerically that show the broad
spectrum analytically results. This method tackles the problem in a direct way that
shows the accuracy of the exact solution of soliton solutions.

q x, tð Þ ¼ q1 x, tð Þ þ iq2 x, tð Þ (38)

By substituting (38) into (4) and breaking it down into real and imaginary parts,
respectively

�u2t þ a u21 þ u22
� �n

xxu1xx þ u31 þ u1u22 � β3u2xxx � σ u21xu2 þ u22xu2
� �

�θ u21u
2
2x þ u22u2x

� � ¼ 0,
(39)

u1t þ a u21 þ u22
� �n

xxu2xx þ u32 þ u21u2 þ β3u1xxx þ σ u21xu1 þ u22xu1
� �

þθ u21u
2
1x þ u22u1x

� � ¼ 0,
(40)

Figure 3.
W-shaped soliton.
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The solution is decomposed into finite sums of components by decomposition
method that is defined as;

ui z, tð Þ ¼
X∞
n¼0

ui,n x, tð Þ, (41)

Here, i∈ 1, 2f g. The components ui,n , n≥0 and i ¼ 1, 2 will be found out
recurrently. By using an operator form Lt ¼ ∂

∂t, Eqs. (39) and (40) becomes

�Ltu2 x, tð Þ þN2 u1, u2ð Þ ¼ 0 (42)

Ltu1 x, tð Þ þN1 u1, u2ð Þ ¼ 0, (43)

Where

N2 u1, u2ð Þ ¼ a u21 þ u22
� �n

xxu1xx þ u31 þ u1u22 � β3u2xxx � σ u21xu2 þ u22xu2
� �

�θ u21u
2
2x þ u22u2x

� � ¼ 0,
(44)

N1 u1, u2ð Þ ¼ a u21 þ u22
� �n

xxu2xx þ u32 þ u21u2 þ β3u1xxx þ σ u21xu1 þ u22xu1
� �

þθ u21u
2
1x þ u22u1x

� � ¼ 0,
(45)

By applying an inverse operator L�1
t ¼ Ð

t

0
�ð Þdt to Eqs. (42) and (43), we get

u1 x, tð Þ ¼ u1 x, 0ð Þ � L�1
t N2 u1 x, tð Þ, u2 x, tð Þð Þ (46)

u2 x, tð Þ ¼ u2 x, 0ð Þ þ L�1
t N1 u1 x, tð Þ, u2 x, tð Þð Þ, (47)

where u1 x, 0ð Þ ¼ Re u x, 0ð Þð Þ and u2 z, 0ð Þ ¼ Im q z, 0ð Þð Þ.

u1,0 x, tð Þ ¼ u1 x, 0ð Þ

u2,0 x, tð Þ ¼ u2 x, 0ð Þ

u1,kþ1 x, tð Þ ¼ �L�1
t N2,kð Þ

u2,kþ1 x, tð Þ ¼ L�1
t N1,kð Þ,

(48)

An ¼ 1
n!

dn

dηn
N j

X∞
n¼0

ηnu1,n x, tð Þ,
X∞
n¼0

ηnu2,n xð , tÞ
 !

: (49)

4. Numerical simulations

4.1 Bright solitons

To depict the ability, reliability and the accuracy of the ADM for Sasa-Satsuma
equation for bright solitons where, a = 1

10, b = 4
100, β3 =

1
100, σ = 1

10, θ = � 173
200, θ0 = 0,

ω = 311
800, and κ = 1

2. The results and the profile of bright soliton shown in Table below.
Figures 4–14, present the plots of exact and approximate solution with their error
plots respectively by varying the values of t and x.
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t ∣qe � qa∣

0 8:� 10�17

0.1 8:� 10�17

0.2 8� 10�17

0.3 8:� 10�17

1 0:10

2 0:2

3 0:2

x ∣qe � qa∣

0 9:� 10�8

0.1 9:� 10�8

0.2 7:� 10�8

0.3 5:� 10�8

Figure 5.
The graph of analytical and numerical solution with absolute error at t ¼ 0:1 and a = 1

10, b = 4
100, β3 =

1
100,

σ = 1
10, θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 4.
The graph of analytical and numerical solution with absolute error at t ¼ 0 and a = 1

10, b =
4

100, β3 =
1

100, σ = 1
10,

θ = � 173
200, θ0 = 0, ω = 311

800, κ =
1
2.
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Figure 6.
The graph of analytical and numerical solution with absolute error at t ¼ 0:2 and a = 1

10, b = 4
100, β3 =

1
100,

σ = 1
10, θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 7.
The graph of analytical and numerical solution with absolute error at t ¼ 0:3 and a = 1

10, b = 4
100, β3 =

1
100,

σ = 1
10, θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 8.
The graph of analytical and numerical solution with absolute error at x ¼ 0 and a = 1

10, b =
4

100, β3 =
1

100, σ =
1
10,

θ = � 173
200, θ0 = 0, ω = 311

800, κ =
1
2.
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Figure 9.
The graph of analytical and numerical solution with absolute error at x ¼ 0:1 and a = 1

10, b = 4
100, β3 =

1
100,

σ = 1
10, θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 10.
The graph of analytical and numerical solution with absolute error at x ¼ 0:2 and a = 1

10, b = 4
100, β3 =

1
100,

σ = 1
10, θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 11.
The graph of analytical and numerical solution with absolute error at x ¼ 0:3 and a = 1

10, b = 4
100, β3 =

1
100,

σ = 1
10, θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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Figure 12.
The graph of analytical and numerical solution with absolute error at t ¼ 1 and a = 1

10, b =
4

100, β3 =
1

100, σ = 1
10,

θ = � 173
200, θ0 = 0, ω = 311

800, κ =
1
2.

Figure 13.
The graph of analytical and numerical solution with absolute error at t ¼ 2 and a = 1

10, b =
4

100, β3 =
1

100, σ = 1
10,

θ = � 173
200, θ0 = 0, ω = 311

800, κ =
1
2.

Figure 14.
The graph of analytical and numerical solution with absolute error at t ¼ 3 and a = 1

10, b =
4

100, β3 =
1

100, σ = 1
10,

θ = � 173
200, θ0 = 0, ω = 311

800, κ =
1
2.
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4.2 Dark solitons

In order to depict ADM, we acknowledge the Sasa-Satsuma equation in investi-
gated in detail where, a = 1

10, b =
1
2, β3 =

1
5, σ =

1
10, θ = � 173

200, θ0=0, ω = 311
800, and κ = 1

2. The
results and the profile of dark soliton shown in Table below. Figures 15–22, present
the plots of exact and approximate solution with their error plots respectively by
varying the values of t and x.

t ∣qe � qa∣

0 1:5� 10�8

0.1 1:� 10�16

0.2 1:� 10�16

0.3 1:� 10�16

1 1:� 10�16

2 8:� 10�17

4 6:� 10�17

x ∣qe � qa∣

0.1 4:� 10�19

0.2 1:5� 10�18

0.3 3:� 10�18

4.3 W shaped solitons

In order to depict ADM, we acknowledge the Sasa-Satsuma equation in investi-
gated in detail where, a = 4

100, b = 1
2, β3 =

4
100, σ = 1

10, ρ =
ffiffi
3

p
10, θ = � 173

200, θ0 = 0, ω = 311
800,

Figure 15.
The graph of analytical and numerical solution with absolute error at t ¼ 0 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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Figure 16.
The graph of analytical and numerical solution with absolute error at t ¼ 0:1 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 17.
The graph of analytical and numerical solution with absolute error at t ¼ 0:2 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 18.
The graph of analytical and numerical solution with absolute error at t ¼ 0:3 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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Figure 19.
The graph of analytical and numerical solution with absolute error at x ¼ 0:1 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 20.
The graph of analytical and numerical solution with absolute error at x ¼ 0:2 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 21.
The graph of analytical and numerical solution with absolute error at x ¼ 0:3 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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and κ = 1
2. The results and the profile of W-shaped soliton shown in Table below.

Figures 23–34, present the plots of exact and approximate solution with their error
plots respectively by varying the values of t and x.

t ∣qe � qa∣

0 1:6� 10�11

0.1 1:6� 10�11

0.2 1:6� 10�11

0.3 1:6� 10�11

2 3:� 10�18

Figure 22.
The graph of analytical and numerical solution with absolute error at t ¼ 1 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 23.
The graph of analytical and numerical solution with absolute error at t ¼ 2 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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t ∣qe � qa∣

3 2:� 10�18

5 3:� 10�18

x ∣qe � qa∣

0.1 8:� 10�19

0.2 8:� 10�19

0.3 8:� 10�19

Figure 25.
The graph of analytical and numerical solution with absolute error at t ¼ 0 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ=

ffiffi
3

p
10 , θ=� 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 24.
The graph of analytical and numerical solution with absolute error at t ¼ 4 and a = 1

10, b = 1
2, β3 =

1
5, σ = 1

10,
θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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Figure 26.
The graph of analytical and numerical solution with absolute error at t ¼ 0:1 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 27.
The graph of analytical and numerical solution with absolute error at t ¼ 0:2 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 28.
The graph of analytical and numerical solution with absolute error at t ¼ 0:3 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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Figure 29.
The graph of analytical and numerical solution with absolute error at x ¼ 0:1 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 30.
The graph of analytical and numerical solution with absolute error at x ¼ 0:2 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 31.
The graph of analytical and numerical solution with absolute error at x ¼ 0:3 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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Figure 32.
The graph of analytical and numerical solution with absolute error at t ¼ 2 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 33.
The graph of analytical and numerical solution with absolute error at t ¼ 3 and a = 4

100, b=
1
2, β3 =

4
100, σ = 1

10,

ρ =
ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.

Figure 34.
The graph of analytical and numerical solution with absolute error at t ¼ 5 and a = 4

100, b = 1
2, β3 =

4
100,

σ = 1
10, ρ =

ffiffi
3

p
10 , θ = � 173

200, θ0 = 0, ω = 311
800, κ =

1
2.
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5. Conclusion

In this chapter, SSE has been discussed. First, the undetermined coefficient
method has been used. This method secured bright, dark, singular, and W-shaped
solitons solutions. The method has given a spectrum of solitons. After that, the
Adomian decomposition method has been used for the numerical simulations. This
is a very powerful method that has given rapid convergence. Along with, error plots
have also been given to witness the accuracy of the exact solution. The graphs have
also shown the comparison of exact and absolute solution.
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Chapter 4

Resonant Optical Solitons in
(3 + 1)-Dimensions Dominated by
Kerr Law and Parabolic Law
Nonlinearities
Khalil S. Al-Ghafri

Abstract

This study investigates the optical solitons of of (3+1)-dimensional resonant
nonlinear Schrödinger (3D-RNLS) equation with the two laws of nonlinearity. The
two forms of nonlinearity are represented by Kerr law and parabolic law. Based on
complex transformation, the traveling wave reduction of the governing model is
derived. The projective Riccati equations technique is applied to obtain the exact
solutions of 3D-RNLS equation. Various types of waves that represent different
structures of optical solitons are extracted. These structures include bright, dark,
singular, dark-singular and combined singular solitons. Additionally, the obliquity
effect on resonant solitons is illustrated graphically and is found to cause dramatic
variations in soliton behaviors.

Keywords: Optical solitons, 3D-RNLS equation, Kerr law and parabolic law
nonlinearities, Projective Riccati equations method, Obliquity influence

1. Introduction

Soliton is one of the important nonlinear waves that has been under intensive
investigation in the physical and natural sciences. It has been noticed that solitons
play a significant role on describing the physical phenomena in various branches of
science, such as optical fibers, plasma physics, nonlinear optics, and many other
fields [1–5]. For example, solitons in the field of nonlinear optics are known as
optical solitons and have the capacity to transport information through optical
fibers over transcontinental and transoceanic distances in a matter of a few femto-
seconds [6, 7]. Moreover, it is found that the efficient physical properties of solitons
may support the improvement on photonic and optoelectronic devices [8, 9]. Fur-
ther to this, optical solitons can be exploited widely in optical communication and
optical signal processing systems [10, 11].

The formation of solitons is essentially caused due to a delicate balance between
dispersion and nonlinearity in the medium. Understanding the dynamics of solitons
can be performed through focusing deeply on one model of the nonlinear
Schrödinger family of equations with higher order nonlinear terms [12, 13]. Thus,
various studies in literatures scrutinized the resonant nonlinear Schrödinger equa-
tion which is mainly the governing model that describes soliton propagation and
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Madelung fluids in many nonlinear media. Several integration schemes have been
implemented to examine the behavior of solitons such as ansatz method, semi-
inverse variational principle, simplest equation approach, first integral method,
functional variable method, sine-cosine function method, (G0=G)-expansion
method, trial solution approach, generalized extended tanh method, modified sim-
ple equation method, and improved extended tanh-equation method. For more
details, readers are referred to references [14–25].

The present study concentrates on the investigation of resonant optical solitons
in (3 + 1)-dimensions with two types of nonlinear influences, namely, Kerr law and
parabolic law nonlinearities. In particular, we shed light on the model of (3 + 1)-
dimensional resonant nonlinear Schrödinger (3D-RNLS) equation given in the form

iQt þ η∇2Q þ σF sð Þ Qj j2Q þ sδ
∇2∣Q ∣
∣Q ∣

� �
Q ¼ 0, i ¼

ffiffiffiffiffiffi
�1

p
, ∇2 ¼ ∂

2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2
,

(1)

where the dependent variable Q x, y, z, tð Þ is a complex-valued wave profile and
the independent variables x, y and z stand for spatial coordinates while t indicates
temporal coordinate. The non-zero constants η, σ, and δ account for the coefficients
of the group velocity, non-Kerr nonlinearity, and resonant nonlinearity, respec-
tively. The parameter s plays an important role on manipulating the physical prop-
erties of distinct media and consequently affecting the behaviors of constructed
solitons, see [26].

Here, we will consider two specific cases for the function F sð Þ that represent the
effect of nonlinearity in the media. These two nonlinear influences include the Kerr
law and parabolic law nonlinearities. Hence, Eq. (1) with the two laws of
nonlinearity has the following forms

iQt þ η∇2Q þ σ Qj j2Q þ δ
∇2∣Q ∣
∣Q ∣

� �
Q ¼ 0, (2)

and

iQt þ η∇2Q þ σ Qj j2 þ ρ Qj j4
� �

Q þ δ
∇2∣Q ∣
∣Q ∣

� �
Q ¼ 0: (3)

The first model given in Eq. (2) is the 3D-RNLS equation dominated by the Kerr
law nonlinearity and is found to have applications in the optical fiber and water
waves when the refractive index of the light is proportional to the intensity. The
second model presented in Eq. (3) is the 3D-RNLS equation with the parabolic law
nonlinearity which arises in the context of nonlinear fiber optics.

In literatures, there are some studies that dealt with the 3D-RNLS equation to
find exact solutions. For example, Ferdous et al. [27] investigated the conformable
time fractional 3D-RNLS equation with Kerr and parabolic law nonlinearities. Dif-
ferent structures of oblique resonant optical solitons have been obtained by using
the generalized exp �Φ ξð Þð Þ-expansion method. Furthermore, Sedeeg et al. [28]
studied the two models of 3D-RNLS equation given in (2) and (3) by applying the
modified extended tanh method. Optical soliton solutions including dark, singular
and combo solitons are extracted in addition to periodic solutions. Moreover, the
exact solutions of the 3D-RNLS equation with Kerr law nonlinearity given in (2) has
been examined by Hosseini et al. [29] by exploiting the new expansion methods
based on the Jacobi elliptic equation. Recently, Hosseini et al. [30] studied the
optical solitons and modulation instability of the models given in (2) and (3).
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Various forms of optical solitons are derived with the aid of the exp a and hyper-
bolic function techniques.

The aim of current work is to derive the optical solitons of 3D-RNLS equation
presented in (2) and (3). The mathematical technique applied to solve the models is
based on a finite series expressed in terms of the solution of projective Riccati
equations. The paper is organized as follows. In Section 2, we analyze the idea of
implementing the proposed method. In Section 3, the traveling wave reduction of
(2) and (3) is extracted. Then, Section 4 displays the derivation of resonant optical
solitons in (3 + 1)-dimensions. In Section 5, the main outlook of results and remarks
are presented. Finally, the conclusion of work is given in Section 6.

2. Elucidation of solution method

Consider a nonlinear partial differential equation (NLPDE) for Q x, y, z, tð Þ in the
form

P Q,Qt,Qx,Qy,Qz,Qxx,Qyy,Qzz, …
� �

¼ 0, (4)

where P is a polynomial in its arguments.
Since we seek for exact traveling wave solutions, we introduce the wave vari-

ables

Q x, tð Þ ¼ q ξð Þ, ξ ¼ x cos αþ y cos β þ z cos γ þ ct: (5)

Inserting (5) into Eq. (4), one can find the following ordinary differential equa-
tion (ODE)

H q, q0, q00, q00
0
, …

� �
¼ 0, (6)

where prime denotes the derivative with respect to ξ. Then, integrate Eq. (6), if
possible, to reduce the order of differentiation.

Now, assume that the solution of Eq. (6) can be expressed in the finite series of
the form

U ξð Þ ¼ a0 þ
Xm

l¼1

al f
l ξð Þ þ blgl ξð Þ

� �
, (7)

where a0, al, bl, l ¼ 1, 2, … ,mð Þ are constants to be identified. The parameter m,
which is a positive integer, can be determined by balancing the highest order
derivative term with the highest order nonlinear term in Eq. (6).

The variables f ξð Þ, g ξð Þ satisfy the equations

f 0 ξð Þ ¼ εAg2 ξð Þ, g0 ξð Þ ¼ �Af ξð Þg ξð Þ � B
A
g ξð Þ R� Bf ξð Þð Þ,

g2 ξð Þ ¼ ε
1
A2 R� Bf ξð Þð Þ2 � f 2 ξð Þ
� �

,
(8)

where A and B are arbitrary constants and ε ¼ �1. The third equation in the
system (8) represents the first integral which gives the relation between the
functions f ξð Þ and g ξð Þ.
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The set of Eqs. (8) is found to admit the following solutions

f 1 ξð Þ ¼ R tanh Rξð Þ
Aþ B tanh Rξð Þ , g1 ξð Þ ¼ Rsech Rξð Þ

Aþ B tanh Rξð Þ , (9)

demands ε ¼ 1.

f 2 ξð Þ ¼ Rcoth Rξð Þ
Aþ Bcoth Rξð Þ , g2 ξð Þ ¼ Rcsch Rξð Þ

Aþ Bcoth Rξð Þ , (10)

implies ε ¼ �1.

f 3 ξð Þ ¼ A
ACþ A2 � B2� �

ξ
, g3 ξð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ε A2 � B2� �q

ACþ A2 � B2� �
ξ
, (11)

provided R ¼ 0, where C is an arbitrary constant.
The substitution of (7) along with (8) into Eq. (6) generates a polynomial in

f i ξð Þg j ξð Þ. Equating each coefficient of f i ξð Þg j ξð Þ in this polynomial to zero, yields a
set of algebraic equations for ai, b j. Solving this system of equations, we can obtain
many exact solutions of Eq. (4) according to (9)–(11).

3. Traveling wave reduction for Eqs. (2) and (3)

In order to tackle the complex models of 3D-RNLS equation with Kerr law and
parabolic law nonlinearities given in (2) and (3), we embark on analyzing their
structures by using the wave transformation of the form

Q x, tð Þ ¼ q ξð Þeiφ, (12)

where

ξ ¼ x cos αþ y cos β þ z cos γ þ νt, φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ ωt: (13)

3.1 Traveling wave reduction for Eq. (2)

Applying transformation (12), the 3D-RNLS equation with Kerr law nonlinearity
given in (2) is broken down into real and imaginary parts as

cos 2αþ cos 2β þ cos 2γ
� �

ηþ δð Þq00 � ωþ ηκ2 cos 2αþ cos 2β þ cos 2γ
� �� �

qþ σq3

¼ 0,

(14)

and

νþ 2ηκ cos 2αþ cos 2β þ cos 2γ
� �� �

q0 ¼ 0: (15)

From Eq. (15), we obtain

ν ¼ �2ληκ, (16)
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where λ ¼ cos 2αþ cos 2β þ cos 2γ. Hence, Eq. (14) reduces to the form

λ ηþ δð Þq00 � ωþ ληκ2
� �

qþ σq3 ¼ 0: (17)

3.2 Traveling wave reduction for Eq. (3)

Similarly, we utilize the wave transformation (12) to the 3D-RNLS equation with
parabolic law nonlinearity given in (3) which is decomposed to real and imaginary
parts as

λ ηþ δð Þq00 � ωþ ληκ2
� �

qþ σq3 þ ρq5 ¼ 0, (18)

and

νþ 2ληκð Þq0 ¼ 0: (19)

From Eq. (19), we come by the expression given in (16). To seek a closed form
solution, the structure of Eq. (18) has to be rearranged. Thus, we multiply Eq. (18)
by q0 and integrate with respect to ξ to arrive at

λ ηþ δð Þq02 � ωþ ληκ2
� �

q2 þ σ

2
q4 þ ρ

3
q6 þ 2μ ¼ 0, (20)

where μ is the integration constant. For convenience, we make use of the
variable transformation given as

q2 ¼ V, (21)

which leads to q02 ¼ V 02=4V. Thus, Eq. (20), after manipulating, becomes

λ ηþ δð ÞV 02 þ 8μV � 4 ωþ ληκ2
� �

V2 þ 2σV3 þ 4
3
ρV4 ¼ 0: (22)

4. Optical soliton solutions of 3D-RNLS equation with Kerr law and
parabolic law nonlinearities

Now, we aim to employ the projective Riccati equations method given in Section
2 to extract the exact resonant optical soliton solutions with Kerr law and parabolic
law nonlinearities for 3D-RNLS equations given in (2) and (3). Basically, the pro-
posed technique will be implemented to Eqs. (17) and (20) and then their obtained
solutions will be inserted into (12) so as to derive the optical solitons of the models
discussed in this work.

4.1 Oblique resonant solitons of 3D-RNLS equation with Kerr law nonlinearity

According to the expansion given in (7) and the balance between the terms q00

and q3, the solution of Eq. (17) reads

q ξð Þ ¼ a0 þ a1f ξð Þ þ b1g ξð Þ: (23)

Substituting (23) together with Eqs. (8) into Eq. (17) gives rise to an equation
having different powers of f ig j. Collecting all the terms with the same power of f ig j
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together and equating each coefficient to zero, yields a set of algebraic equations.
Solving these equations simultaneously leads to the following results.

Set I. If ε ¼ 1, then the following cases of solutions are retrieved.

Case I1. a0 ¼ a1 ¼ 0, b1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ ηþδð Þ A2�B2ð Þ

σ

q
, ω ¼ λ ηþ δ½ �R2 � ηκ2

� �
.

Q x, y, z, tð Þ ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ ηþ δð Þ A2 � B2� �

σ

s
sech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ e
iφ,

(24)

where λσ ηþ δð Þ A2 � B2� �
>0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ

λ ηþ δ½ �R2 � ηκ2
� �

t.

Case I2. a0 ¼ � BR
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþδð Þ

σ

q
, a1 ¼ � A2�B2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþδð Þ

σ

q
, b1 ¼ 0,

ω ¼ �λ 2 ηþ δ½ �R2 þ ηκ2
� �

.

Q x, y, z, tð Þ ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþ δð Þ

σ

r
Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ e

iφ,

(25)

where λσ ηþ δð Þ<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ � λ 2 ηþ δ½ �R2 þ ηκ2
� �

t.

Case I3. a0 ¼ � BR
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþδð Þ

2σ

q
, a1 ¼ � A2�B2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþδð Þ

2σ

q
, b1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ηþδð Þ A2�B2ð Þ

2σ

q
,

ω ¼ �λ ηþ δ½ �R
2

2
þ ηκ2

� �
:

Q x, y, z, tð Þ ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþ δð Þ

2σ

r
Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A2

p
sech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

)
eiφ,

(26)

where λσ ηþ δð Þ<0, A2 <B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ �
λ ηþ δ½ � R2

2 þ ηκ2
� �

t.

Set II. If ε ¼ �1, then the following cases of solutions are generated.

Case II1. a0 ¼ a1 ¼ 0, b1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþδð Þ A2�B2ð Þ

σ

q
, ω ¼ λ ηþ δ½ �R2 � ηκ2

� �
.

Q x, y, z, tð Þ ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþ δð Þ A2 � B2� �

σ

s
csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ e
iφ,

(27)

where λσ ηþ δð Þ A2 � B2� �
<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ

λ ηþ δ½ �R2 � ηκ2
� �

t.

Case II2. a0 ¼ � BR
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþδð Þ

σ

q
, a1 ¼ � A2�B2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþδð Þ

σ

q
, b1 ¼ 0,

ω ¼ �λ 2 ηþ δ½ �R2 þ ηκ2
� �

.
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Q x, y, z, tð Þ ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþ δð Þ

σ

r
Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ e

iφ,

(28)

where λσ ηþ δð Þ<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ � λ 2 ηþ δ½ �R2 þ ηκ2
� �

t.

Case II3. a0 ¼ � BR
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþδð Þ

2σ

q
, a1 ¼ � A2�B2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþδð Þ

2σ

q
, b1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþδð Þ A2�B2ð Þ

2σ

q
,

ω ¼ �λ ηþ δ½ �R
2

2
þ ηκ2

� �
:

Q x, y, z, tð Þ ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþ δð Þ

2σ

r
Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

)
eiφ,

(29)

where λσ ηþ δð Þ<0, A2 >B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ �
λ ηþ δ½ � R2

2 þ ηκ2
� �

t.

Set III. If R ¼ 0, then the following cases of solutions are created.

Case III1. a0 ¼ a1 ¼ 0, b1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ ηþδð Þ A2�B2ð Þ

εσ

q
, ω ¼ �ληκ2.

Case III2. a0 ¼ 0, a1 ¼ � A2�B2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþδð Þ

σ

q
, b1 ¼ 0, ω ¼ �ληκ2.

Case III3. a0 ¼ 0, a1 ¼ � A2�B2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� λ ηþδð Þ

2σ

q
, b1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ηþδð Þ A2�B2ð Þ

2εσ

q
, ω ¼ �ληκ2.

Herein, these three cases in the Set III provide the solution of the form

Q x, y, z, tð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2λ ηþ δð Þ

σ

r
A2 � B2� �

ACþ A2 � B2� �
x cos αþ y cos β þ z cos γ � 2ληκtð Þ e

iφ,

(30)

where λσ ηþ δð Þ<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ � ληκ2t.

4.2 Oblique resonant solitons of 3D-RNLS equation with parabolic law
nonlinearity

Based on the expansion given in (7), we consider that the solution to Eq. (22)
takes the form

q ξð Þ ¼ a0 þ
X2

l¼1

al f
l ξð Þ þ blgl ξð Þ

� �
: (31)

Inserting (31) together with Eqs. (8) into Eq. (22) gives rise to an equation
having different powers of f ig j. Collecting all the terms with the same power of f ig j

together and equating each coefficient to zero, yields a set of algebraic equations.
Solving these equations simultaneously leads to the following results.

Set I. If ε ¼ 1, then the following cases of solutions are obtained.

Case I1. b1 ¼ a2 ¼ b2 ¼ 0, a0 ¼ �Ra1
AþBð Þ, a1 ¼ � A2�B2

2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþδð Þ

ρ

q
,
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ω ¼ λ ηþδð Þ AþBð Þ2a20�ηκ2a21ð Þ
a21

, σ ¼ 2λ ηþδð Þ A�Bð Þ AþBð Þ2a0
Aa21

, μ ¼ 0.

Q x, y, z, tð Þ ¼ ∓
R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþ δð Þ

ρ

s
1� Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �" #1

2

eiφ,

(32)

where λρ ηþ δð Þ<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case I2. b1 ¼ a2 ¼ b2 ¼ 0, a0 ¼ Ra1
A�Bð Þ, a1 ¼ � A2�B2

2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþδð Þ

ρ

q
,

ω ¼ λ ηþδð Þ A�Bð Þ2a20�ηκ2a21ð Þ
a21

, σ ¼ 2λ ηþδð Þ AþBð Þ A�Bð Þ2a0
Aa21

, μ ¼ 0.

Q x, y, z, tð Þ ¼ �R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþ δð Þ

ρ

s
1þ Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �" #1

2

eiφ,

(33)

where λρ ηþ δð Þ<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case I3. a1 ¼ a2 ¼ b2 ¼ 0, a0 ¼ � Rb1ffiffiffiffiffiffiffiffiffiffi
A2�B2

p , b1 ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþδð Þ A2�B2ð Þ

ρ

r
,

ω ¼ � λ 5 ηþδð Þ A2�B2ð Þa20þ4ηκ2b21ð Þ
4b21

, σ ¼ � 2λ ηþδð Þ A2�B2ð Þa0
b21

, μ ¼ � λ ηþδð Þ A2�B2ð Þa30
4b21

.

Q x, y, z, tð Þ ¼ �R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþ δð Þ

ρ

s
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
sech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

( )" #1
2

eiφ,

(34)

where λρ ηþ δð Þ>0, A2 >B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ �
λ ηþ δ½ � 5R2

4 þ ηκ2
� �

t.

Case I4. a2 ¼ b2 ¼ 0, a0 ¼ � Rb1
A AþBð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
, a1 ¼ � b1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
, b1 ¼

� 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþδð Þ A2�B2ð Þ

ρ

r
, ω ¼ � λ ηþδð Þ AþBð ÞA2a20þ4ηκ2 A�Bð Þb21ð Þ

4 A�Bð Þb21
, σ ¼ � λ ηþδð Þ AþBð ÞAa0

2b21
, μ ¼ 0.

Q x, y, z, tð Þ ¼ � R
4A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþ δð Þ A2 � B2� �

ρ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

8<
:

2
4

� Asech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

Aþ Bð Þ

9=
;

3
5

1
2

eiφ,

(35)

where λρ ηþ δð Þ<0, A2 <B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ
λ ηþ δ½ � R2

4 � ηκ2
� �

t.

Case I5. a2 ¼ b2 ¼ 0, a0 ¼ � Rb1
A A�Bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

, a1 ¼ � b1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

, b1 ¼

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþδð Þ A2�B2ð Þ

ρ

r
, ω ¼ � λ ηþδð Þ A�Bð ÞA2a20þ4ηκ2 AþBð Þb21ð Þ

4 AþBð Þb21
, σ ¼ � λ ηþδð Þ A�Bð ÞAa0

2b21
, μ ¼ 0.
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Q x, y, z, tð Þ ¼ � R
4A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþ δð Þ A2 � B2� �

ρ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

8<
:

2
4

� Asech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

A� Bð Þ

9=
;

3
5

1
2

eiφ,

(36)

where λρ ηþ δð Þ<0, A2 <B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ
λ ηþ δ½ � R2

4 � ηκ2
� �

t.

Case I6. a0 ¼ � 2λ ηþδð ÞA2þσb2ð ÞR2

σA2 , a1 ¼ 2BRb2
A2 , b1 ¼ � A2a0þR2b2

RA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
, a2 ¼

A2�B2ð Þb2
A2 , ω ¼ �λ ηþ δ½ � 5R2

4 þ ηκ2
� �

, ρ ¼ 3σ2
16λ ηþδð ÞR2, μ ¼ λ2 ηþδð Þ2R4

2σ .

Q x, y, z, tð Þ ¼ � 2λ ηþ δð ÞR2

σ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
sech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

( )" #1
2

eiφ,

(37)

where A2 >B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ � λ ηþ δ½ � 5R2

4 þ ηκ2
� �

t.

Case I7. b1 ¼ 0, a0 ¼ A2a1� AþBð ÞRb2ð ÞR
A�Bð ÞA2 , a1 ¼ 2 λ ηþδð Þ A2�B2ð ÞAþσBb2ð ÞR

σA2 , a2 ¼ A2�B2ð Þb2
A2 ,

ω ¼ λ ηþ δ½ �R2 � ηκ2
� �

, ρ ¼ 3λ ηþδð Þ A2�B2ð Þ2A2

4 A2a1�2BRb2ð Þ2 , μ ¼ 0.

Q x, y, z, tð Þ ¼ 2λ ηþ δð ÞR2

σ
1þ Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �� �1

2

eiφ,

(38)

where φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case I8. b1 ¼ 0, a0 ¼ � A2a1þ A�Bð ÞRb2ð ÞR
AþBð ÞA2 , a1 ¼ � 2 λ ηþδð Þ A2�B2ð ÞA�σBb2ð ÞR

σA2 ,

a2 ¼ A2�B2ð Þb2
A2 ,

ω ¼ λ ηþ δ½ �R2 � ηκ2
� �

, ρ ¼ � 3λ ηþδð Þ A2�B2ð Þ2A2

4 A2a1�2BRb2ð Þ2 , μ ¼ 0.

Q x, y, z, tð Þ ¼ 2λ ηþ δð ÞR2

σ
1� Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �� �1

2

eiφ,

(39)

where φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case I9. a0 ¼ λ ηþδð Þ AþBð ÞA�2σb2ð ÞR2

2σA2 , a1 ¼ A�Bð ÞA2a0þ AþBð ÞR2b2
A2R

, b1 ¼
� λ ηþδð ÞR

2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

, a2 ¼ A2�B2ð Þb2
A2 , ω ¼ λ ηþ δ½ � R2

4 � ηκ2
� �

, ρ ¼ � 3σ2
4λ ηþδð ÞR2, μ ¼ 0.
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Q x, y, z, tð Þ ¼ λ ηþ δð ÞR2

2σ
1þ Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

sech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

9=
;

3
5

1
2

eiφ,

(40)

where A2 <B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ � R2

4 � ηκ2
� �

t.

Case I10. a0 ¼ λ ηþδð Þ A�Bð ÞA�2σb2ð ÞR2

2σA2 , a1 ¼ � AþBð ÞA2a0þ A�Bð ÞR2b2
A2R

, b1 ¼
� λ ηþδð ÞR

2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

, a2 ¼ A2�B2ð Þb2
A2 , ω ¼ λ ηþ δ½ � R2

4 � ηκ2
� �

, ρ ¼ � 3σ2
4λ ηþδð ÞR2, μ ¼ 0.

Q x, y, z, tð Þ ¼ λ ηþ δð ÞR2

2σ
1� Bþ A tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

sech R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ B tanh R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

9=
;

3
5

1
2

eiφ,

(41)

where A2 <B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ � R2

4 � ηκ2
� �

t.

Set II. If ε ¼ �1, then the following cases of solutions are acquired.

Case II1. b1 ¼ a2 ¼ b2 ¼ 0, a0 ¼ �Ra1
AþBð Þ, a1 ¼ � A2�B2

2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþδð Þ

ρ

q
,

ω ¼ λ ηþδð Þ AþBð Þ2a20�ηκ2a21ð Þ
a21

, σ ¼ 2λ ηþδð Þ A�Bð Þ AþBð Þ2a0
Aa21

, μ ¼ 0.

Q x, y, z, tð Þ ¼ ∓
R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþ δð Þ

ρ

s
1� Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �" #1

2

eiφ,

(42)

where λρ ηþ δð Þ<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case II2. b1 ¼ a2 ¼ b2 ¼ 0, a0 ¼ Ra1
A�Bð Þ, a1 ¼ � A2�B2

2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþδð Þ

ρ

q
,

ω ¼ λ ηþδð Þ A�Bð Þ2a20�ηκ2a21ð Þ
a21

, σ ¼ 2λ ηþδð Þ AþBð Þ A�Bð Þ2a0
Aa21

, μ ¼ 0.

Q x, y, z, tð Þ ¼ �R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþ δð Þ

ρ

s
1þ Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �" #1

2

eiφ,

(43)

where λρ ηþ δð Þ<0 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case II3. a1 ¼ a2 ¼ b2 ¼ 0, a0 ¼ � Rb1ffiffiffiffiffiffiffiffiffiffi
A2�B2

p , b1 ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþδð Þ A2�B2ð Þ

ρ

r
,

ω ¼ � λ 5 ηþδð Þ A2�B2ð Þa20þ4ηκ2b21ð Þ
4b21

, σ ¼ � 2λ ηþδð Þ A2�B2ð Þa0
b21

, μ ¼ � λ ηþδð Þ A2�B2ð Þa30
4b21

.
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Q x, y, z, tð Þ ¼ �R
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ ηþ δð Þ

ρ

s
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

8<
:

9=
;

2
4

3
5

1
2

eiφ,

(44)

where λρ ηþ δð Þ>0, A2 <B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ �
λ ηþ δ½ � 5R2

4 þ ηκ2
� �

t.

Case II4. a2 ¼ b2 ¼ 0, a0 ¼ � Rb1
AþBð Þ, a1 ¼ � A2�B2

4A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþδð Þ

ρ

q
, b1 ¼

� Aa1
A2�B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
, ω ¼ λ ηþδð Þ AþBð Þ2a20�4ηκ2a21ð Þ

4a21
, σ ¼ λ ηþδð Þ AþBð Þ A2�B2ð Þa0

2Aa21
, μ ¼ 0.

Q x, y, z, tð Þ ¼ ∓
R
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþ δð Þ

ρ

s
1� Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
�"

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

)#1
2

eiφ,

(45)

where λρ ηþ δð Þ<0, A2 >B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ
λ ηþ δ½ � R2

4 � ηκ2
� �

t.

Case II5. a2 ¼ b2 ¼ 0, a0 ¼ Rb1
A�Bð Þ, a1 ¼ � A2�B2

4A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþδð Þ

ρ

q
, b1 ¼ � Aa1

A2�B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
,

ω ¼ λ ηþδð Þ A�Bð Þ2a20�4ηκ2a21ð Þ
4a21

, σ ¼ λ ηþδð Þ A�Bð Þ A2�B2ð Þa0
2Aa21

, μ ¼ 0.

Q x, y, z, tð Þ ¼ �R
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3λ ηþ δð Þ

ρ

s
1þ Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
�"

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

)#1
2

eiφ,

(46)

where λρ ηþ δð Þ<0, A2 >B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ
λ ηþ δ½ � R2

4 � ηκ2
� �

t.

Case II6. a0 ¼ � 2λ ηþδð ÞA2�σb2ð ÞR2

σA2 , a1 ¼ � 2BRb2
A2 , b1 ¼ � 2λ ηþδð ÞR

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

, a2 ¼
� A2�B2ð Þb2

A2 , ω ¼ �λ ηþ δ½ � 5R2

4 þ ηκ2
� �

, ρ ¼ 3σ2
16λ ηþδð ÞR2, μ ¼ λ2 ηþδð Þ2R4

2σ .

Q x, y, z, tð Þ ¼ � 2λ ηþ δð ÞR2

σ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� A2 � B2� �q

csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

8<
:

9=
;

2
4

3
5

1
2

eiφ,

(47)

where A2 <B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ � λ ηþ δ½ � 5R2

4 þ ηκ2
� �

t.

Case II7. b1 ¼ 0, a0 ¼ A2a1þ AþBð ÞRb2ð ÞR
A�Bð ÞA2 , a1 ¼ 2 λ ηþδð Þ A2�B2ð ÞA�σBb2ð ÞR

σA2 , a2 ¼ � A2�B2ð Þb2
A2 ,
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ω ¼ λ ηþ δ½ �R2 � ηκ2
� �

, ρ ¼ � 3λ ηþδð Þ A2�B2ð Þ2A2

4 A2a1þ2BRb2ð Þ2 , μ ¼ 0.

Q x, y, z, tð Þ ¼ 2λ ηþ δð ÞR2

σ
1þ Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �� �1

2

eiφ,

(48)

where φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case II8. b1 ¼ 0, a0 ¼ � A2a1� A�Bð ÞRb2ð ÞR
AþBð ÞA2 , a1 ¼ � 2 λ ηþδð Þ A2�B2ð ÞAþσBb2ð ÞR

σA2 ,

a2 ¼ � A2�B2ð Þb2
A2 , ω ¼ λ ηþ δ½ �R2 � ηκ2

� �
, ρ ¼ � 3λ ηþδð Þ A2�B2ð Þ2A2

4 A2a1þ2BRb2ð Þ2 , μ ¼ 0.

Q x, y, z, tð Þ ¼ 2λ ηþ δð ÞR2

σ
1� Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
� �� �1

2

eiφ,

(49)

where φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ �R2 � ηκ2
� �

t.

Case II9. a0 ¼ λ ηþδð Þ AþBð ÞAþ2σb2ð ÞR2

2σA2 , a1 ¼ A�Bð ÞA2a0� AþBð ÞR2b2
A2R

, b1 ¼
� λ ηþδð ÞR

2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
, a2 ¼ � A2�B2ð Þb2

A2 , ω ¼ λ ηþ δ½ � R2

4 � ηκ2
� �

, ρ ¼ � 3σ2
4λ ηþδð ÞR2, μ ¼ 0.

Q x, y, z, tð Þ ¼ λ ηþ δð ÞR2

2σ
1þ Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

)#1
2

eiφ,

(50)

where A2 >B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ � R2

4 � ηκ2
� �

t.

Case II10. a0 ¼ λ ηþδð Þ A�Bð ÞAþ2σb2ð ÞR2

2σA2 , a1 ¼ � AþBð ÞA2a0� A�Bð ÞR2b2
A2R

, b1 ¼
� λ ηþδð ÞR

2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
, a2 ¼ � A2�B2ð Þb2

A2 , ω ¼ λ ηþ δ½ � R2

4 � ηκ2
� �

, ρ ¼ � 3σ2
4λ ηþδð ÞR2, μ ¼ 0.

Q x, y, z, tð Þ ¼ λ ηþ δð ÞR2

2σ
1� Bþ Acoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � B2

p
csch R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

Aþ Bcoth R x cos αþ y cos β þ z cos γ � 2ληκt½ �ð Þ

)#1
2

eiφ,

(51)

where A2 >B2 and φ ¼ κ x cos αþ y cos β þ z cos γð Þ þ λ ηþ δ½ � R2

4 � ηκ2
� �

t.

5. Results and remarks

To give a clear insight into the behavior of resonant optical solitons, the graph-
ical representations for some of the extracted soliton solutions are presented.
Besides, the obliqueness influence on the resonant solitons is examined. Thus, we
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display the 3D and 2D plots of the absolute of these solutions by selecting different
values of the model parameters. For example, Figure 1(a)-(b) present the 3D and
2D plots of resonant soliton for the solution given in (24) of 3D-RNLS equation with
Kerr-law nonlinearity. It is clear from the graph that the wave profile represents
bright soliton. Figure 1(c)-(d) display the 3D plot for the effect of obliquity on the
resonant soliton given in (24), where Figure 1(c) shows the relation between x and
αwhile Figure 1(d) illustrates the relation between x and γ. Figure 2(a)-(b) exhibit
the 3D and 2D plots of resonant dark soliton given in the solution (29) of 3D-RNLS
equation with Kerr-law nonlinearity. The obliqueness influence on the solution (29)
is shown in Figure 2(c)-(d). Additionally, Figure 3(a)-(b) demonstrate the 3D and
2D plots of resonant soliton given in the solution (40) of 3D-RNLS equation with
parabolic-law nonlinearity, where the wave profile describes a kink-shape soliton. It
can be seen that Figure 3(c)-(d) present the obliquity impact on the solution (40).
Figure 4(a)-(b) depict the 3D and 2D plots of resonant singular soliton given in the
solution (48) of 3D-RNLS equation with parabolic-law nonlinearity, where the
effect of obliqueness on this wave is illustrated in Figure 4(c)-(d).

One can obviously see from Figures 1–4 that the obliqueness influences the
behavior of resonant solitons, where the structure of solitons is changed remarkably
with the variation of obliqueness parameters. Further to this, it is noticed that the

Figure 1.
(a)-(b) Resonant soliton and (c)-(d) obliqueness effect on resonant soliton corresponding to solution (24) with
κ ¼ 0:5, η ¼ δ ¼ σ ¼ 1,R ¼ A ¼ 2,B ¼ 1, α ¼ β ¼ γ ¼ π=3, y ¼ z ¼ 0, t ¼ 1.

Figure 2.
(a)-(b) Resonant soliton and (c)-(d) obliqueness effect on resonant soliton corresponding to solution (29) with
the same values of parameters in Figure 1 except σ ¼ �1.

Figure 3.
(a)-(b) Resonant soliton and (c)-(d) obliqueness effect on resonant soliton corresponding to solution (40) with
the same values of parameters in Figure 1 except A ¼ 1,B ¼ �2.
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amplitude of the resonant solitons decreases and the width rises with the increase of
obliqueness as shown in the 2D graphs.

6. Conclusions

This work scoped the behavior of optical solitons of 3D-RNLS equation. The
dominant nonlinearity in the model is considered to have two forms which are Kerr
law and parabolic law. The resonant solitons are derived with the aid of projective
Riccati equations method. Various forms of wave structures are retrieved such as
bright, dark, singular, kink, dark-singular and combined singular solitons. The
influence of obliquity on resonant solitons is also examined. It is found that the
change in the obliqueness parameters leads to a noticeable variation on the behavior
of optical soliton waves. In addition to this, the amplitude of the resonant solitons
undergoes a reduction, but their width is enhanced as the obliqueness is increased.
The results obtained in this work are entirely new and it may be useful to under-
stand the dynamics of resonant solitons affected by obliqueness in different
nonlinear media such as optical fiber and Madelung fluids.
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Chapter 5

Traveling Wave Solutions and
Chaotic Motions for a Perturbed
Nonlinear Schrödinger Equation
with Power-Law Nonlinearity and
Higher-Order Dispersions
Mati Youssoufa, Ousmanou Dafounansou,
Camus Gaston Latchio Tiofack and Alidou Mohamadou

Abstract

This chapter aims to study and solve the perturbed nonlinear Schrödinger (NLS)
equation with the power-law nonlinearity in a nano-optical fiber, based upon dif-
ferent methods such as the auxiliary equation method, the Stuart and DiPrima’s
stability analysis method, and the bifurcation theory. The existence of the traveling
wave solutions is discussed, and their stability properties are investigated through
the modulational stability gain spectra. Moreover, the development of the chaotic
motions for the systems is pointed out via the bifurcation theory. Taking into
account an external periodic perturbation, we have analyzed the chaotic behavior of
traveling waves through quasiperiodic route to chaos.

Keywords: nano-optical fibers, perturbed nonlinear Schrödinger equation,
auxiliary equation method, exact traveling wave solutions, modulational instability,
planar dynamic system, chaotic motions

1. Introduction

The wave process is innumerable in nature. Such familiar examples include
water waves, plasma waves, and optical waves and are governed by nonlinear
partial differential equations. The study of nonlinear evolution equations helps a lot
in understanding certain interesting physical properties posed by themselves, in
several physical systems. Recently, an important amount of studies has been related
to nonlinear systems having multidegrees of freedom: The well-known nonlinear
Schrödinger (NLS) equation is a particular example. The idea behind the NLS
equation was originated from the work of Erwin Schrödinger, an Autrichian physi-
cian, in 1926 [1]. This equation governs weakly nonlinear and dispersive wave
packets in one-dimensional (1D) physical systems. It was first derived, in a general
setting, by Benney and Newell in 1967 [2]. Also, it was derived in the study of
modulational stability of deep-water waves by Zakharov in 1968 [3]. Afterward,
Hasegawa and Tappert (1973) showed that the same equation governs light-pulse
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propagation in optical fibers [4]. For instance, the cubic-NLS has been widely used
to model the propagation of light pulse in material’s systems involving third-order
susceptibility χ 3ð Þ [5–7]. In the same context, the nonlinear interaction between the
high-frequency Langmuir waves and the ion-acoustic waves by ponderomotive
forces [8, 9] in a region of reduced plasma density, and the nonlinear interaction
between Langmuir waves and electrons, were described by the “parabolic law
nonlinearity” (cubic-quintic CQ) that existing in nonlinear media such as the
CdSxSe1�x� doped glass [10, 11], the poly-toluene sulfonate (PTS) crystals, special
semiconductor waveguides (e.g., AlGaAs, CdS) [12]. Furthermore, Serkin et al.
[13], Dai et al. [14], and others have devoted pioneering works in order to analyze
the dynamical propagation of light pulse in CQ-nonlinear media, by considering the
CQ-NLS equation.

Generally, the NLS-type models are important classes of nonlinear evolution
equations that play a crucial role in the study of nonlinear dynamical problems in
several areas of nonlinear sciences such as nonlinear optics, plasmas and Bose-
Einstein condensates, and nano-optical fibers among others [15–18]. Although these
equations explain the pulse dynamics in optical fibers [19–22], some of these
nonlinear models are non-integrable. In this context, various computational and
analytical methods have been proposed and used in the past few decades, to exam-
ine many classes of Schrödinger equation [23–42]. Nonetheless, these investigations
reveal that the dynamic of solutions in non-integrable systems can be important and
more complex.

Our study will be focused on a nano-optical fiber-system, described by the follow-
ing extended perturbed NLS equation (integrable equation named as Biswas-Arshed
model), involving power-law nonlinearity and higher-order dispersions [20–22]:

iψz þ a1ψxx þ a2ψxt þ b1∣ψ ∣2nψ þ b2∣ψ ∣4nψ � i αψx þ γ ∣ψ ∣2nψ
� �

x

h

þ σ ∣ψ ∣2n
� �

xψ þ δ ∣ψ ∣4nψ
� �

x þ λ ∣ψ ∣4n
� �

xψ þ θ∣ψ ∣2nψx

i
¼ 0,

(1)

where the complex-valued function ψ z, xð Þ is designated for waveform, which
depends on the temporal variable z and the spatial variable x; a1 and a2 are,
respectively, the group velocity dispersion (GVD) and spatiotemporal dispersion
coefficients (STD). b1 and b2 correspond to the coefficient of power-law
nonlinearity; α accounts for the inter-modal dispersion. γ and δ account for the self-
steepening perturbation terms, while σ, λ, and θ provide the effect of nonlinear
dispersion coefficient. Finally, n denotes the strength of the power-law nonlinearity.

This model is relevant to some applications in which higher-order nonlinearities
are important and describe the dynamics of solitary-wave propagation through
optical fibers and other forms of waveguides, and contains, under different cir-
cumstances, several integrable NLS-types such as the Hirota equation [43], the Sasa
Satsuma model [44], Gerdjikov-Ivanov equation, Lakshmanan-Porsezian-Daniel
model, Schrödinger-Hirota equation, and a variety of other such models. More
specially, Eq. (1) with b2 ¼ σ ¼ δ ¼ λ ¼ θ ¼ 0 and 0< n< 2 was used to study
chaotic motions for the perturbed NLS equation with the power-law nonlinearity
based on the equilibrium points by Yin et al. [20] and was also considered by
Savescu et al. [45] to analyze nonlinear dynamical problems in the nano-optical
fibers. Here, we study the model Eq. (1) with arbitrary parameters that are valid for
several types of highly nonlinear mediums and give rise to some new results. For
this purpose, we would like to obtain the exact solutions of Eq. (1) by using the
auxiliary equation method [46–48] and the bifurcation theory of planar dynamical
systems [49, 50].
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The auxiliary equation method is a powerful solution method for the computa-
tion of exact traveling wave and soliton solutions. It is a one of the most direct and
effective algebraic methods for finding exact solutions of nonlinear partial differ-
ential equations. This method is applicable to a large class of equations and does not
need therefore to make strong assumptions about the nonlinear equations, as com-
pared to the well-known inverse scattering transform, which uses powerful analyt-
ical methods and therefore makes strong assumptions.

The bifurcation theory of planar dynamical systems plays a crucial role in the
study of the evolution of higher-order nonlinear equations. The bifurcation analysis
can be used to obtain chaotic motions for Eq. (1) based on the equilibrium points.

We will discuss model Eq. (1) and explore the dynamics of traveling wave
solutions by employing the auxiliary equation method. In addition, using the linear
stability analysis formulation, we will analyze and report the typical outcomes of
the nonlinear development of the modulational instability (MI). Finally, we will
point out the development of the chaotic motions for systems described by Eq. (1)
through the bifurcation theory.

2. Exact solutions

2.1 The auxiliary equation method

In order to obtain the exact analytic traveling wave solutions of Eq. (1), we can
employ the auxiliary equation method by considering the following transformation:

ψ z, xð Þ ¼ U ζð Þeiϕ ζð Þ,  ζ ¼ k1x� k2z: (2)

Here, k1 and k2 are real constants, U ζð Þ denotes the amplitude and ϕ ζð Þ
characterizes the phase component of the soliton.

Putting Eq. (2) into Eq. (1) and separating the real and imaginary parts, one
obtains

b1U2nþ1 þ b2 þ k1ϕζ

� �
U4nþ1 þ k1 γ þ θð ÞϕζU

2nþ1 þ k2 þ αk1ð ÞϕζU

�k1 a1k1 � a2k2ð Þ ϕζ
2U þ Uζζ

� � ¼ 0, (3)

and

�k1 δþ 4n δþ λð Þ½ �UζU4n � k2 þ αk1ð ÞUζ � k1 γ þ θ þ 2n γ þ σð Þ½ �UζU2n

þk1 a1k1 � a2k2ð Þ 2ϕζUζ þ ϕζζU
� � ¼ 0: (4)

We set:

ϕζ ¼ p1 � p2U
2n,  ϕζζ ¼ �2np2UζU2n�1: (5)

The substitution of Eq. (5) into Eq. (4) gives

p1 ¼
k2 þ αk1

2k1 a1k1 � a2k2ð Þ ,  p2 ¼ � γ þ θ þ 2n γ þ σð Þ
2 nþ 1ð Þ a1k1 � a2k2ð Þ , (6)

under the restraint relation

λ ¼ � 4nþ 1ð Þδ: (7)
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Plugging Eq. (5) into Eq. (3) with respect to Eqs. (6) and (7), we get

k1 a1k1 � a2k2ð ÞUζζ þ p1 k2 þ αk1ð Þ � p1
2k1 a1k1 � a2k2ð Þ� �

U

þ b1 þ k1p1 γ þ θð Þ þ p2 k2 þ αk1ð Þ � 2p1 p2k1 a1k1 � a2k2ð Þ� �
U2nþ1:

þ b2 þ k1p1 þ k1p2 γ þ θð Þ � p2
2k1 a1k1 � a2k2ð Þ� �

U4nþ1 þ k1p2U
6nþ1 ¼ 0:

(8)

The substitution of

U ζð Þ ¼ V
1
2n ζð Þ, (9)

in Eq. (8) yields:

k1 a1k1 � a2k2ð Þ 2nVVζζ þ 1� 2nð Þ Vζð Þ2
h i

þ 4n2k1p2V
5

þ4n2 b2 þ k1p1 þ k1p2 γ þ θð Þ � p2
2k1 a1k1 � a2k2ð Þ� �

V4

þ4n2 b1 þ k1p1 γ þ θð Þ þ p2 k2 þ αk1ð Þ � 2p1p2k1 a1k1 � a2k2ð Þ� �
V3

þ4n2 p1 k2 þ αk1ð Þ � p1
2k1 a1k1 � a2k2ð Þ� �

V2 ¼ 0: (10)

We consider the trial equation as [46, 47]:

Vζð Þ2 ¼ F Vð Þ ¼
XN

l¼0

μlV
l, (11)

where μl l ¼ 0, 1, … ,Nð Þ are constants to be determined according to the balance
principle. The previous Eq. (11) can be rewritten by the integral form

� ζ � ζ0ð Þ ¼
ð

dVffiffiffiffiffiffiffiffiffiffiffi
F Vð Þp : (12)

Balancing VVζζ and V5 in Eq. (10), we get N ¼ 5. Using the solution
procedure of the trial equation method [46, 47], a system of algebraic equations
is obtained (see Appendix) and the resolution of this obtained system yields the
following:

μ0 ¼ 0, μ1 ¼ 0, μ2 ¼ 4n2 p1
2 � p1 k2 þ αk1ð Þ

k1 a1k1 � a2k2ð Þ
� �

,

μ3 ¼
4n2

nþ 1
2p1 p2 �

b1 þ k1p1 γ þ θð Þ þ p2 k2 þ αk1ð Þ
k1 a1k1 � a2k2ð Þ

� �
,

μ4 ¼ 4n2

2nþ 1
p2

2 � b2 þ k1p1 þ k1p2 γ þ θð Þ
k1 a1k1 � a2k2ð Þ

� �
,

μ5 ¼ � 4n2p2
a1k1 � a2k2ð Þ 3nþ 1ð Þ :

(13)

Now, from Eqs. (11) and (12), we can write

� ζ � ζ0ð Þ ¼
ð

dV

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ μ3V þ μ4V

2 þ μ5V
3

q : (14)
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The integral Eq. (14) admits many types of solutions that can be listed in
accordance with [51–53].

Since μ2 ¼ 4n2 p1
2 � p1 k2 þ αk1ð Þ

k1 a1k1 � a2k2ð Þ
� �

¼ � n2 k2 þ αk1ð Þ2
k1

2 a1k1 � a2k2ð Þ2 <0, and in order to

highlight our analysis, we consider the following parametric setting γ ¼ �σ ¼ �θ.
After these considerations, the phase component of the soliton can be written as
follows:

ϕ z, xð Þ ¼ k2 þ αk1
2k1 a1k1 � a2k2ð Þ k1x� k2zð Þ þ c, (15)

where c is a real constant number.

a. If 4μ2μ4 � μ3
2 ¼ 0 and μ4 >0, we have the following exact traveling solution.

ψa z, xð Þ ¼ μ3
4μ4

1� cotanh
μ3

ffiffiffiffiffi
μ4

p
4μ4

k1x� k2zð Þ
� �� �� � 1

2n

eiϕ z,xð Þ, (16)

under the constraint μ4 >0.

b. If μ32 � 4μ2μ4 >0 and μ2 <0 we get a singular periodic solution

ψb z, xð Þ ¼ 2μ2
�μ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ32 � 4μ2μ4

p
sin ffiffiffiffiffiffiffiffiffi�μ2

p k1x� k2zð Þ� �
( ) 1

2n

eiϕ z,xð Þ: (17)

2.2 Stability analysis method: Modulational instability (MI) of the continuous
wave (CW) background

Modulational instability (MI) is a fundamental and ubiquitous phenomenon
originating from the interplay between nonlinear self-interaction of wave fields and
linear dispersion or diffraction. This process appears in most nonlinear systems
[42, 52–57]. Unlike the well-known pulse kinds, the solitons are relatively stable,
even in a perturbed environment.

In this section, we investigate the stability of the previous solutions that are sitting
on a CW background, which may be subject to MI. To do so, we apply the standard
linear stability analysis [52, 53, 56] on a generic CW (steady-state solution)

ψ0 z, xð Þ ¼ P0ei c1xþc2zð Þ, (18)

where P0, c1, and c2 are real constants.
Putting Eq. (18) into Eq. (1), we get:

c2 ¼ 1
1þ a2c1

α� a1c1ð Þc1 þ b1 þ γ þ θð Þc1½ �P0
2n þ b2 þ δc1ð ÞP0

4n� �
: (19)

Adding infinitesimal perturbation field υ on CW solutions by introducing the
following expansion

~ψ z, xð Þ ¼ P0 þ υ z, xð Þ½ �ei c1xþc2zð Þ, (20)

one can find the linearized equation satisfied by the complex perturbation υ as:
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ir1υz þ ir2υx þ a1υxx þ a1υxz þ r3 υþ υ ∗ð Þ þ ir4 υx þ υx
∗ð Þ ¼ 0, (21)

where

r1 ¼ 1þ a2c1,

r2 ¼ 2a1c1 þ a2c2 � α� γ þ θð ÞP0
2n � δP0

4n,

r3 ¼ nP0
2n b1 þ γ þ θð Þc1 þ 2 b2 þ δc1ð ÞP0

2n� �
,

r4 ¼ �nP0
2n γ þ σ þ 2 δþ λð ÞP0

2n� �
:

(22)

The solution of Eq. (21) is given by collecting the Fourier modes as

υ z, xð Þ ¼ υþei Kz�Ωxð Þ þ υ�e�i Kz�Ωxð Þ, (23)

where Ω accounts for the wavenumber and K represents the frequency of
perturbation. υþ and υ� are much less than the background amplitude
P0 (∣υ z, xð Þ∣≪P0). In this case, the instability of the steady state (CW) is achieved
by the exponential growth of the perturbed field.

Deputing the expression of perturbed nonlinear background Eq. (23) into
Eq. (21), we obtain after linearization, a system of homogeneous equations satisfied
by υþ and υ�:

a2Ω� r1ð ÞK þ r2 þ r4ð ÞΩþ r3 � a1Ω2 r3 þ Ωr4
r3 � Ωr4 a2Ωþ r1ð ÞK � r2 þ r4ð ÞΩþ r3 � a1Ω2

 !
υþ
υ�

� �
¼ 0

0

� �
:

(24)

This set has a nontrivial solution only when the previous 2 � 2 determinant
matrix vanishes. By requiring the determinant of the associated matrix to be zero,
we get the dispersion relation:

a22Ω2 � r12
� �

K2 þ 2Ω a2 r3 � a1Ω2� �þ r1 r2 þ r4ð Þ� �
K þ r3 � a1Ω2� �2

� Ω2 r2 þ r4ð Þ2 ¼ 0:
(25)

In order to observe MI, one of the two roots of the previous dispersion relation
should possess a negative imaginary part, which corresponds to an exponential
growth of the perturbation amplitude. So, the MI is measured by power gain, and it
is defined at any pump frequency as [52, 53]:

g Ωð Þ ¼ 2∣Im Kmaxð Þ∣, (26)

where the factor 2 converts g Ωð Þ to power gain, and Im Kmaxð Þ denotes the
imaginary part of the polynomial root with the largest value Kmax.

Figure 1 depicts the MI gain spectra as a function of the modulation frequency
(Ω) and second-order dispersion (a1), for a fixed value of the initial power
(P0 ¼ 10kW), the other parameter values being a2 ¼ 0:005, b1 ¼ b2 ¼ α ¼ 0:2,
c1 ¼ 2, γ ¼ �θ ¼ �σ ¼ 1, δ ¼ 0:5. Firstly, we consider the strength of the power-
law nonlinearity n ¼ 1, which yields to symmetrical sidelobes of instability around
the zero-perturbation frequency Ω ¼ 0 in Figure 1(a). In this map, the width and
magnitude of the two sidelobes remain constant in the normal group velocity
dispersion (a1 <0), while they increase in the anomalous dispersion regime (a1 >0).
For the nonlinearity power index n ¼ 2, we obtain in Figure 1(b), two similar
sidelobes due to MI, which stand symmetrically around the line Ω ¼ 0. In this case,
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the magnitude and width of the sidelobes remain constant in the normal as well as the
anomalous dispersion regimes.

Figure 2 exhibits the enlarged MI gain spectra in 2D-plot at four power levels
(P0 ¼ 10kW; 20kW; 30kW; 50kW) with the same values of parameters as in Figure 1.
The MI gain profile, indicated by colored solid curves, is constitutive of two gain
bands in the Stokes frequency shift region (Ω<0) and in the anti-Stokes frequency
shift region (Ω>0). We can see that the MI gain exists only within a limited range
of frequency ∣Ω∣< 100ð Þ and the maximum gain increases with the increasing input
power P0.

3. Planar dynamical system and Hamiltonian: Phase portraits

In this section, we transform Eq. (8) to a dynamical system by introducing new
variables X and Y, in order to investigate the equilibrium points, the periodic,
quasiperiodic, and chaotic motions of systems in the presence of an external
periodic perturbation, via the bifurcation method [49, 50, 58].

Figure 1.
MI gain spectra g Ωð Þ versus frequency shift Ω and second-order dispersion a1 for parameter values: a2 ¼ 0:005,
b1 ¼ b2 ¼ α ¼ 0:2, c1 ¼ 2, γ ¼ �θ ¼ �σ ¼ 1, δ ¼ 0:5, P0 ¼ 10: (a) n ¼ 1; (b) n ¼ 2.

Figure 2.
2D plot showing the variation of the MI gain spectra g Ωð Þ versus frequency Ω at a four-power level P0 [for
yellow solid line ðP0 ¼ 10kWÞ, red solid line ðP0 ¼ 20kWÞ, blue solid line ðP0 ¼ 30kWÞ, and green solid line
ðP0 ¼ 50kWÞ], with the same parameter values as in Figure 1.
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3.1 Formation of a dynamical system

Now, we rewrite Eq. (8) as

Uζζ ¼ AU þ BU2nþ1 þ CU4nþ1 þDU6nþ1, (27)

where

A ¼ p1
2 � p1 k2 þ αk1ð Þ

k1 a1k1 � a2k2ð Þ ¼ � k2 þ αk1ð Þ2
4k1

2 a1k1 � a2k2ð Þ2 <0,

B ¼ 2p1p2 �
b1 þ k1p1 γ þ θð Þ þ p2 k2 þ αk1ð Þ

k1 a1k1 � a2k2ð Þ ,

C ¼ p2
2 � b2 þ k1p1 þ k1p2 γ þ θð Þ

k1 a1k1 � a2k2ð Þ ,

D ¼ � k1p2
k1 a1k1 � a2k2ð Þ :

(28)

By setting

X ¼ U,Y ¼ Uζ, (29)

we can rewrite Eq. (27) as a planar dynamical system

Xζ ¼ Y,

Yζ ¼ f Xð Þ ¼ AX þ BX2nþ1 þ CX4nþ1 þDX6nþ1:

8><
>:

(30)

The Hamiltonian of the dynamical system Eq. (30) is defined as

H X,Yð Þ ¼ 1
2
Y2 � A

2
X2 � B

2 nþ 1ð ÞX
2nþ2 � C

2 2nþ 1ð ÞX
4nþ2 � D

2 3nþ 1ð ÞX
6nþ2,

(31)

and satisfy to

dH
dζ

¼ ∂H
∂ζ

Xζ þ ∂H
∂ζ

Yζ ¼ 0: (32)

This result implies that the Hamiltonian is a constant of motion [i.e., H X,Yð Þ �
Cst] and the system Eq. (30) is an integrable Hamiltonian system.

3.2 Chaotic motion analysis

3.2.1 Equilibrium state derivation

Using the bifurcation analysis and qualitative theory, we analyze equilibrium
points for system Eq. (30). We consider the following Jacobian matrix of system
(30) at the equilibrium points Xk,Ykð Þ:
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J ¼

∂Xζ

∂X
∂Xζ

∂Y

∂Yζ

∂X
∂Yζ

∂X

0
BBB@

1
CCCA ¼

0 1

Aþ 2nþ 1ð ÞBXk
2n þ 4nþ 1ð ÞCXk

4n þ 6nþ 1ð ÞDXk
6n 0

0
B@

1
CA,

(33)

where Xk are the zeros (solutions) of f Xð Þ, and the determinant of J is expressed
by M � det Jð Þ as

M ¼ �A� 2nþ 1ð ÞBXk
2n � 4nþ 1ð ÞCXk

4n � 6nþ 1ð ÞDXk
6n: (34)

We research equilibrium points that satisfy Xζ ¼ Yζ ¼ f Xð Þ ¼ 0, and we find

Y ¼ 0,

X Aþ BX2n þ CX4n þDX6n� � ¼ 0:

(
(35)

It is obvious to notice that Trace Jð Þ ¼ 0, and through the bifurcation theory
[49, 50, 58], we know that, the solution X j,Y j

� �
of Eq. (35) is a:

• center point, if M>0;

• saddle point, if M<0;

• degenerate point, if M ¼ 0.

From Eq. (35), firstly, we have one equilibrium point X,Yð Þ ¼ 0, 0ð Þ for the
dynamical system Eq. (30), which is a center point, and hence stable.

• If we consider A ¼ 0, we have

Y ¼ 0,

X2nþ1 Bþ CX2n þDX4n� � ¼ 0,

8<
: (36)

and by setting Δ ¼ C2 � 4BD, we can discuss the following situations:

◦ If Δ<0, Eq. (36) has only one real root, which indicates that the
dynamical system Eq. (30) has one equilibrium point X,Yð Þ ¼ 0, 0ð Þ,
which is a center point.

◦ If Δ ¼ 0 and � C
2D >0, Eq. (36) has three real roots, which indicates that

the dynamical system Eq. (30) has three equilibrium points: X,Yð Þ �
0, 0ð Þ;

ffiffiffiffiffiffiffiffiffi
� C

2D
2n
q

, 0
� �

; �
ffiffiffiffiffiffiffiffiffi
� C

2D
2n
q

, 0
� �

. The first equilibrium point 0, 0ð Þ is a
center point; the second

ffiffiffiffiffiffiffiffiffi
� C

2D
2n
q

, 0
� �

and third �
ffiffiffiffiffiffiffiffiffi
� C

2D
2n
q

, 0
� �

points are

also center points ifM>0. Else, ifM<0, they are saddle points and hence
unstable.

◦ If Δ>0, C<0, and D<0, Eq. (36) has just one root; we find one
equilibrium point 0, 0ð Þ, which indicates a stable center point.
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• For A 6¼ 0, we get

Y ¼ 0,

Aþ BX2n þ CX4n þDX6n ¼ 0:

(
(37)

We consider an evident root of the polynomial equation Aþ BX2n þ CX4n þ
DX6n ¼ 0, as X0 [i.e., Aþ BX0

2n þ CX0
4n þDX0

6n ¼ 0] and setting Δ0 ¼
CþDX0

2n� �2 � 4D Bþ X0
2n CþDX0

2n� �� �
. After this consideration, we can

discuss the equilibrium points for the dynamical system Eq. (30):

◦ If Δ0 <0, we get a first equilibrium point as X0, 0ð Þ, which is a center
point.

◦ If Δ0 ¼ 0 and � CþDX0
2n

2D >0, there are three equilibrium points: one center

point X0, 0ð Þ, and two saddle points
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� CþDX0

2n

2D
2n
q

, 0
� �

and

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� CþDX0

2n

2D
2n
q

, 0
� �

for M<0. In contrast for M>0, the three equilibrium

points are center points.

◦ If Δ0 >0, C>0, and D>0, the dynamical system Eq. (30) has just
equilibrium point X0, 0ð Þ, which indicates a stable center point.

Figure 3 shows the phase portrait of the dynamical system (30) for a1 ¼ 1:4,
a2 ¼ 1, b1 ¼ b2 ¼ α ¼ 2, γ ¼ 3, θ ¼ 0:0005, σ ¼ �4, k1 ¼ 0:51, k2 ¼ 3:5, and n ¼ 1.
We observe one limit cycle about the origin 0, 0ð Þ. This implies that the waves are
stable, and there are no noises to disturb them.

The periodicity of X and Y, based on system (30) with the same values of
parameters as in Figure 3, is shown in Figure 4.

3.2.2 Quasiperiodic and chaotic motions of the perturbed system

In this section, we will study the quasiperiodic and chaotic motions for Eq. (1)
under the external perturbation. As in the previous process, we find the following
perturbed dynamical system:

Figure 3.
Phase portrait of the system (30) for parameter values: a1 ¼ 1:4, a2 ¼ 1, b1 ¼ b2 ¼ α ¼ 2, γ ¼ 3,
θ ¼ 0:0005, σ ¼ �4, k1 ¼ 0:51, k2 ¼ 3:5, and n ¼ 1.
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Xζ ¼ Y,

Yζ ¼ g Xð Þ ¼ AX þ BX2nþ1 þ CX4nþ1 þDX6nþ1 � R ζð Þ
k1 a1k1 � a2k2ð Þ ,

8><
>:

(38)

where X,Y,A,B,C, and D are given by Eqs. (28) and (29); R ζð Þ ¼ R0 cos ωζð Þ is
an external periodic perturbation, R0 is a strength of the external perturbation, and
ω is the frequency. The difference between the system (30) and the system (38) is
that only external periodic perturbation is added with the system (38).

In Figure 5, we have presented a phase portrait of the perturbed system (38)
under the conditions of parameter values as those in Figure 3, except those fixed
E0 ¼ 0:01 and ω ¼ 1. For the same parameter values as Figure 5, we plotted in
Figure 6 the quasiperiodicity of X and Y versus ζ. From this plot, it is obvious to
notice that the perturbed system (38) has quasiperiodic motion even with the
consideration of the external periodic perturbation.

If we increase the strength of the periodic perturbation by considering E0 ¼ 0:01,
the other parameter values remain as in Figure 5, the perturbed system (38) shows
quasiperiodic route to chaos as it is shown in Figure 7. In this case, the solutions
ignore the periodic motions and represent random sequences of uncorrelated
oscillations (see Figures 7 and 8).

Figure 4.
Periodicity of X and Y based on system Eq. (30), with the same values of parameters as Figure 3.

Figure 5.
Phase portrait of the perturbed system (38) for the same parameter values as those in Figure 3, under external
perturbation R ζð Þ ¼ E0 cos ωζð Þ, where E0 ¼ 0:01 and ω ¼ 1.

79

Traveling Wave Solutions and Chaotic Motions for a Perturbed Nonlinear Schrödinger…
DOI: http://dx.doi.org/10.5772/intechopen.100396



From the above observations, it is straightforward to notice that the strength of
the periodic perturbation significantly enhances the development of the quasiperi-
odic motion of the perturbed system (38) and quasiperiodic route to chaotic motion
of the system (38). Thus, the perturbed NLS Eq. (1) with the power-law
nonlinearity in a nano-optical fiber not only has solitonic and periodic wave
solutions but could also possess quasiperiodic and chaotic motions.

Figure 6.
Variation of X and Y with respect to ζ of the perturbed system (38), for the same values of parameters as in
Figure 5.

Figure 7.
Phase portrait of the perturbed system (38) for the same parameter values as those in Figure 5 with E0 ¼ 0:1.

Figure 8.
Quasi-periodicity of X and Y based on system (38), for same values of parameters as Figure 7.
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4. Conclusion

In this chapter, we have investigated the perturbed nonlinear Schrodinger equa-
tion involving power-law nonlinearity and higher-order dispersions. We have
constructed exact traveling wave solutions of the model by means of the well-known
auxiliary equation method. We showed the existence of a family of traveling wave
solutions and we have reported the parametric conditions on the physical parameters
for the existence of these propagating solutions. Moreover, by employing Stuart and
DiPrima’s stability analysis method, a dispersion relation for the MI gain has been
obtained. The outcomes of the instability development depend upon the nonlinearity,
the power levels, and the dispersion parameters; the instability region increases
regardless of the dispersion regime. The results may find straightforward applications
in nonlinear optics, particularly in fiber-optical communication. Afterward, equiva-
lent two-dimensional planar dynamic system and Hamiltonian have been derived and
equilibrium points of the corresponding system have been gotten through the bifur-
cation theory. In addition, we have addressed the periodic, quasiperiodic, and chaotic
behaviors of the traveling waves considering an external periodic perturbation. It has
been observed that the perturbed system shows quasiperiodic route to chaos as a
result of the strength of the periodic perturbation enhancement.
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Appendix

The system of algebraic equations obtained by balancing VVζζ and V5 in
Eq. (10) is as follows:

• V5 coeff :
k1 a1k1 � a2k2ð Þ 3nþ 1ð Þμ5 þ 4n2k1p2 ¼ 0,

• V4 coeff :
4n2 b2 þ k1p1 þ k1p2 γ þ θð Þ � p2

2k1 a1k1 � a2k2ð Þ� �

þk1 a1k1 � a2k2ð Þ 2nþ 1ð Þμ4 ¼ 0,

• V3 coeff :
4n2 b1 þ k1p1 γ þ θð Þ þ p2 k2 þ αk1ð Þ � 2p1p2k1 a1k1 � a2k2ð Þ� �

þk1 a1k1 � a2k2ð Þ nþ 1ð Þμ3 ¼ 0,

• V2 coeff :
4n2 p1 k2 þ αk1ð Þ � p1

2k1 a1k1 � a2k2ð Þ� �

þk1 a1k1 � a2k2ð Þμ2 ¼ 0,

• V1 coeff :
k1 a1k1 � a2k2ð Þ 1� nð Þμ1 ¼ 0,

• V0 coeff :
k1 a1k1 � a2k2ð Þ 1� 2nð Þμ0 ¼ 0:
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Chapter 6

Non-Manakovian Propagation in
Optical Fiber
Lothar Moeller

Abstract

Solving the nonlinear Schrödinger equation or similar calculus is essential for
designing today’s long-haul optical communication systems. Associated numerical
and analytical approaches were extensively studied over the past four decades; sim-
plifications and adaptions for various applications and purposes have been intro-
duced. Optical fibers installed in long-haul systems possess nonideal features such as
birefringence, which some of these adaptions partially address to improve the simu-
lation accuracy. But as the fiber birefringence frequently and randomly changes along
a link, finding a mathematical solution is a more complex problem and beyond the
task of dealing with the nonlinear nature of the corresponding equations. Recently, a
novel propagation phenomenon related to the polarization evolution of a signal has
been observed. In links with considerable length, i.e., bridging transatlantic or trans-
pacific distances, the polarization state of a light wave is impacted by neighboring
signals via the Kerr nonlinearity in glass. Established formalisms for describing
polarization effects based on the nonlinear Schrödinger equation cannot fully capture
this phenomenon. Here we discuss a first-order calculus for this problem. We start
with high-level reviews of experimental observations to introduce the phenomenon
and ways to model regular nonlinear propagation. Then we present a first-order
calculus to describe the statistics behind the phenomenon by specifically discussing
the interplay between fiber birefringence and fiber nonlinearities.

Keywords: nonlinear depolarization, Kerr nonlinearity, polarization, single-mode
fiber, Manakov equation, Manakov-PMD equation, coupled NL Schrödinger
equations

1. Introduction

Long-distance optical telecommunications using standard single-mode fiber
(SSMF) is economically [1] one of the most important industrial applications, which
requires an accurate solution to the nonlinear (NL) Schrödinger equations for
developing competitive products. Modern fiber communications, the basis of all
backbone networks, enable global long-reach and high-capacity data exchange such
as the WWW and state-of-the-art systems provide 10s of Tb/s capacity per fiber
over transpacific distances without electrical signal regeneration [2, 3].

By simulating the NL Schrödinger equation or similar approaches, the industry
assesses potential commercial link design options for network operations [4, 5]. The
chosen optical power levels balance the generated NL signal distortions with suffi-
ciently high optical signal-to-noise ratios (OSNR) to guarantee certain bit error
rates (BERs) on the receive side.
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Throughout the half-century-long history of SSMF, various mathematical
approaches for describing NL signal propagation have been proposed where all of
them are somewhat related to the (coupled) NL Schrödinger equation(s) [6, 7].
These models vary in terms of complexity, their intended purposes, and user
friendliness. For example, a more refined analysis of light propagation in SSMF for
telecom application requires a polarization dependent field representation. Today’s
coherent signaling technique, which exploits two orthogonal polarization states at
same optical frequency to encode data information and the unavoidable birefrin-
gence of SSMF, requires a vector field representation of the light mode. But simul-
taneously considering both aspects, the polarization of light and its random changes
along a regular link due to fiber birefringence lead to an extended set of equations
that are for most applications impractical to solve exactly.

The high end of the “manageable” equation sets, the “Manakov-PMD equation”
addresses NL propagation in a fiber with randomly varying birefringence [8]. For
the current generation of communication systems, it provides quite accurate results
for expected NL signal distortions. But recently, a fiber phenomenon, to which we
refer to as nonlinear depolarization (NLDP) of light in fiber, has been observed and
does not conform to the Manakov-polarization mode dispersion (PMD) equation.
Here we discuss some relevant experimental aspects of this phenomenon and its
impact on the mathematical description of NL propagation in realistic, i.e., bire-
fringent fiber. The Manakov-PMD equation is in some ways an advanced form of
the NL Schrödinger equation as it additionally considers PMD effects [9, 10], and
on the other hand, a simplification as it uses averaged quantities over distance to
describe the randomly changing fiber birefringence.

In this chapter, we describe an algorithm for solving the NL Schrödinger equation in
vector formwhen the field variables are randomly and rapidly alternated by the sta-
tionary and linear properties (birefringence) of the channel. In other words, some
coefficients of the coupled NL Schrödinger equation (CNLS) become distance depen-
dent and describe the changing features of the glassmediumalong the propagation path.

We start with a brief overview on commonly used modeling for NL signal propa-
gation (Manakovian propagation) in SSMF, report on a high-level view of experimental
results that do not conform to such formalism (non-Manakovian propagation) and
discuss an algorithm that yields some analytic quantities for a theoretical description of
the later. Although not fully technically correct, we use the SSMF terminology in our
chapter [11] even when we also mean other fiber types such as large effective area fiber
(LEAF [12]) that are often installed in long-haul communication systems.

Our focus is to develop a mathematical formalism for NLDP that yields quanti-
ties that are observable in typical industrial test beds. Certainly, more sophisticated
experimental setups can be built to characterize other features of NLDP. We report
the experimental conditions to a degree that produces a qualitative understanding
of the phenomenon and will reference further details in the literature.

2. Nonlinear propagation equations

Back in 1972 and far before commercial applications of optical communications
became relevant, Sergey Manakov1 suggested that a careful consideration of NL
pulse propagation is required for accurate signal modeling in fiber. He proposed a
set of coupled differential equations that to a large degree can capture the impact of
the fiber’s Kerr nonlinearity on a signal’s evolution [13]. A slowly varying envelope

1 Sergey Valentinovich Manakov, Russian mathematician, *1948–†2012.
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constituted by the two orthogonal variables Ax and Ay represents the pulse in space
and time domains:

∂Ax
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∂Ax
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þ jβ2
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2Ax
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where z and t are the propagation direction and time, respectively. The optical
features of the fiber are characterized by a, β1, β2, and γ, which refer to the fiber
attenuation, propagation constant, group velocity, and Kerr nonlinearity [14],
respectively. By multiplying Ax and Ay with the optical carrier, which typically
resides around 194 THz (1.5 μm wavelength), the optical field can be obtained.

In the field of telecom the above listed formulas are called the Manakov Equation
(ME). Literature uses this name for both its scalar version and a two-dimensional
version for polarization representation of a signal. The ME was heuristically found in
the sense that the left side, known from linear transmission theory, has been extended
by a source term on its right side describing the Kerr nonlinearity. It assumes that the
nonlinearities are weak and proportional to the signal’s intensity.

The ME has been highly successfully applied to NL signal propagation and can
explain phenomena such as optical solitons and nonlinear polarization rotation (NLPR
[15, 16]) that were subjects of intensive research until about the end of the 1990 [17–
20]. But the ME in the form outlined above is restricted in twofold aspects compared
with a more accurate propagation modeling that modern telecom applications require:

(a) It assumes a rotational symmetry of the fiber, i.e., without birefringence. But
commercial SSMFs, even those with the lowest amounts of birefringence,
demand for modeling that adapts the ME’s left side (the linear propagation
features) to simulate typical evolutions of a signal’s state of polarization
(SOP). We address this issue by substituting β1 and β2 with polarization-
dependent constants β1x, β1y, β2x and β2y and

(b) other than the ME hypothesizes, the fiber Kerr NL of glass is significantly
polarization dependent. The impact of an orthogonal polarization compo-
nent needs to be weighted by a factor of 2/3.

Both adjustments in the ME lead to a simplified version of the so-called coupled
NL Schrödinger equations (CNLSs):
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The extended version differs by terms on the right side, which model fast
oscillations of the nonlinearity (not shown). In our further considerations, those
terms can be neglected; and the polarization dependence of β2 is small and can be
ignored. Strictly speaking, the CNLSs hold only for a single piece of fiber with linear
birefringence, referred to in the literature as waveplate. Different velocities of light
in both optical axes (principal states) of a waveplate lead in general to SOP changes
for a cw tone passing through a single plate and complicate the calculus.
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A model of a realistic fiber link would typically involve a concatenation of many
waveplates, each with their optical axes randomly oriented. Solving the CNLS
becomes for such a scenario a cumbersome process. On the other hand, it had been
observed that NL differential equations of Manakovian type (Eqs. (1) and (2))
sufficiently capture experimental results such as soliton propagation. This led to the
assumption that the ME can be derived from the CNLS when its polarization-
dependent NL source term is averaged in a way that it simulates polarization scram-
bling caused by fiber birefringence [21, 22]. Several derivations have been published,
which yield an ME with an 8/9 reduced Kerr nonlinearity as fitting parameter:
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Note, the fiber birefringence does not appear anymore in the form of
polarization-dependent propagation constants, and the x, y-indexes should not be
identified with the coordinates of the lab frame. Nevertheless, advanced effects
such as NL polarization rotation of two cw tones can be quantitatively described by
such equations.

The heuristically determined ME with and without reduced Kerr nonlinearity
has become an integral part of soliton theory and is often used in today’s system
modeling due to its relatively simple form and highly accurate results. Based on this
success, the published attempts for deriving the ME from the more fundamental
CNLSs have gained wide acceptance [21]. Here, however, we challenge their for-
malism as they rely on an elusively compelling mathematical argument and show
that the solution spaces of the ME with reduced Kerr nonlinearity and of the
section-wise solved CNLS for long birefringent fibers diverge from each other. This
difference matters in case of NLDP.

The Manakov-PMD equation developed toward the end of the 1990 is cumber-
some but allows to separate the principal effects by terms such as the Kerr
nonlinearity, chromatic dispersion, nonlinear PMD, and linear PMD that contribute
to the signal’s evolution. Its nonlinear PMD term can be ignored in applications for
today’s regular telecom fibers, thus the remaining NL source term of the Manakov-
PMD equation simplifies to the same form as known from the ME (Eqs. (5) and (6)).
It differs from the latter by an additional term that accounts for linear PMD contri-
butions. Nonlinear PMD refers to a situation where the fiber birefringence does not
sufficiently scramble the SOP of a cw signal when it linearly propagates over dis-
tances that are comparable to the NL propagation length of the path. In our following
considerations, we can (to good approximation) assume that a signal’s SOP gets
strongly scrambled represented by a homogeneous coverage on the Poincare sphere
while it propagates just a few kilometers. We can therefore neglect NL PMD.

Nevertheless, due to the same method of averaging that had been applied when
deriving from the CNLS the ME with an 8/9 reduced Kerr nonlinearity, the
Manakov-PMD equation does not represent NLDP fully correctly, regardless if it
includes NL PMD or not.

3. Comparative polarimetry for detecting NLDP

The undersea communication industry continuously aims for a more precise
modeling of signal propagation in fiber to enable longer unrepeated system spans
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and higher transport capacities, hence more cost-effective solutions. However, a
noticeable discrepancy in channel capacity between measurable performance and
predictions from the most advanced simulation tools remains, which attracts sig-
nificant research in propagation modeling mostly focusing on pure optical effects
[23] but lately also considering weak acousto-optic interactions [24, 25]. Here we
discuss NL depolarization of light (NLDP), a recently observed non-Manakovian
transmission phenomenon as a potential candidate to narrow down this discrepancy
[26]. Unpolarized optical noise rapidly changes via the fiber’s Kerr nonlinearity the
SOP from a fully polarized cw light by inducing antisymmetric phase noise in both
of its orthogonal polarization states. These fluctuations become resolvable with a
new generation of high-speed polarimeters [27] and do not average out over wide
noise bandwidths but grow with propagation distance.

Prior to applying the CNLS to NLDP, we introduce the phenomenon by provid-
ing some experimental evidence that will prompt the discussion of quantities
needed for developing our algorithm. Back in 2017, two measurements were
performed on an undersea cable that connects Brazil and Florida to demonstrate
NLDP (Figure 1a) on a real communication link [26, 28]. A cw light launched from
Brazil and looped back in Florida propagates via the opposite fiber link to its origin.
There are about 200 optical amplifiers in each direction to compensate for fiber
attenuation but cause weak NL propagation in the first few tens of kilometer fiber
length directly after each repeater.

Undersea cables on the ocean floor undergo environmental impact such as motion
due to water currents, seismic vibrations, and temperature fluctuations, etc. These
environmental factors lead to small SOP motions on the receive side, trackable with a
low-speed polarimeter, and represented as velocities in histograms. We define the
amount of the time derivative from the corresponding normalized Stokes vector as
“SOP speed.” Typical SOP speeds range on the order of a few rad/s (Figure 1b). In
this experiment, a cw light (ECL, External Cavity Laser) also referred to as probe (or
signal) is launched together with unpolarized Amplified Spontaneous Emission (ASE,
loading) into the cable input. The ASE spectrum covers the whole repeater band-
width (�4.5 THz) except for a narrow central gap with �100 GHz width where the
probe resides (Figure 1c). Without loading, the probe would pick up almost the
entire repeater output power resulting in strong NL propagation, mainly self phase
modulation (SPM) [29], which can produce unstable SOPs. With loading, the probe
contributes less than 1% of the total repeater output power and NL effects such as
Brillouin scattering [30] are avoided. The electrical detection bandwidth of the low-
speed polarimeter (a few 10s of Hz) averages out all fast SOP motions; while increas-
ing its bandwidth (a few 10s of MHz) produces much wider SOP speed histograms
under identical experimental conditions (Figure 1d).

It would be incorrect to attribute the entire width of this histogram solely to NL
interactions between the loading and the probe, as any noise during the detection
corrupts the polarimeter, leading to artifacts in SOP speeds. In our experiment,
signal-ASE beat noise is the main contributor and [31] biases the SOP detection.
Every repeater adds small amounts of ASE that raise the noise floor within the
spectral gap. This ASE then mixes with the probe on the four photodiodes of the
polarimeter. Even a hypothetical constant SOP of the probe on the receive side will
appear in a histogram with nonzero width due to the omnipresent signal-ASE beat
noise. We refer to this noise-induced SOP speed (NISS) as an artifact since improv-
ing the optical signal-to-noise ratio (OSNR) at the polarimeter input would reduce
the width of its histogram. However, probe power constraints, inevitable added
repeater noise during transmission, and practical limitations on tighter filtering
yield OSNR levels, which result in artificially broadened SOP speed histograms that
partially obscure NLDP.
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Figure 1.
(a) Comparative polarimetry on a commercial undersea cable system. A cw tone and unpolarized ASE
propagate together from Brazil to the USA and back. The probe’s SOP speed is measured after propagation and
compared with a local reference (not transmitted through the cable, dashed path); (b) SOP speed histogram
recorded over 24 h showing environmental impact on SOP stability; (c) spectra of transmitted and received
signals; (d) matched optical spectra of the probe and reference, taken with an OSA, look similar, but the
corresponding SOP speed histograms (e) differ significantly and prove the existence of NLDP (noise boost
explained in text).
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Instead, we demonstrate NLDP-induced fast SOP changes by means of a com-
parison technique. We contrast the SOP speed histograms from the transmitted
probe with one from a reference signal that possesses equal power, equal ASE, and
equal OSNR but bypasses the undersea cable (reference, btb). This reference is
obtained by superimposing the transmitter signal with the noise output of the cable
in Brazil and launched btb into the receiver (ECL switched to reference path,
Figure 1a). Within the resolution capabilities (�2 GHz) of our optical spectrum
analyzer (OSA), both the transmitted probe and the reference spectra are identical
(Figure 1d). However, the SOP speed histogram for the probe is significantly wider
compared with the histogram for the reference (Figure 1e) as NL interactions
fluctuated the probe’s SOP. Even when the optical noise floor in the btb experiment
is subject to added ASE (�5 dB, Figure 1d), the corresponding histogram does not
expand to the same width of the probe’s plot (Figure 1e).

It is reasonable to assume a scaling of the NLDP magnitude with the probe’s
transmission length and the loading power, as both determine the strength of the
Kerr nonlinearity. Such parametric NLDP studies become feasible with a lab test
bed based on a recirculating fiber loop (RFL, Figure 2a) [32]. In RFLs, a fast optical
switch allows to launch a signal into a fiber link whose output is coupled back into
its input. After a programmable number of round trips inside the loop, the signal is
released via the switch and analyzed.

Our RFL comprises 11 transmission spans each with an output power-adjustable
repeater followed by SSMF (specs see Figure 2a). The transmitter (Figure 2b) inserts
the probe via a variable optical attenuator (VOA) in path I into the RFL (VOA_I
open, VOA_II blocked). After leaving the RFL, a narrow bandwidth amplified filter
cascade selects the probe from the wide band loading prior to its detection by the
polarimeter. To acquire the reference for determining NISS (btb measurement),
VOA_I blocks the access to path I for the ECL while the reference reaches the receiver
via path II. In both scenarios, loading enters the RFL via path I. We fine-tune VOA_II
to match the spectra from probe and reference within 0.1 dB across a bandwidth of
approx. 50 GHz. A central clock synchronizes the gates from loop switch, kicker
(loop synchronous polarization controller), OSA, and polarimeter. It periodically
activates the latter’s data acquisition at 100 MS/s typically for a �3 ms long interval
per transmission. A spectrally programmable ASE source delivers unpolarized loading
(Degree of Polarization (DOP) <1%) with flat spectrum (constant power density)
across the repeater gain bandwidth of about 4.5 THz except for a narrow gap
(100 GHz wide, �50 dB ASE suppression) centered at 193.9 THz to contain the
probe. Here we chose a flat launch spectrum for the loading and a flat transfer
function for the RFL, adjusted via its GEF (Gain Equalizing Filter, Figure 2a), to
simplify a mathematical treatment of NLDP [26]. In reality, every system component
such as repeaters, fibers, etc., possesses small amounts of PDL [33] and PMD. Due to
the large number and the random orientation of their optical axes in Stokes space, the
results follow a “smooth distribution.” But in an RFL, a signal passes the same
components several times, which causes filtering and different PDL and PMD statis-
tics. To counteract this effect and emulate scenarios such as those in real systems, a
triggered loop synchronous polarization controller [34] (kicker) randomizes PMD
and PDL inside the loop. After the signal has traversed the device and before its
return, the kicker is set to a different mode within a few nanoseconds to randomize
the output SOP. The kicker does not directly impact the SOP speed as it is stationary
when the probe is passing through, but it emulates more realistic propagation paths.

By programming the loop’s timing gate, SOP speed histograms are determined
(Figure 2c) for propagation lengths of approx. 1023 km, 3069 km, 5115 km,
10,230 km, and 20,460 km further referred to as 1 Mm, 3 Mm, … , 20 Mm trans-
missions and correspond to 1, 3, 5, 10, and 20 loop circulations, respectively. For
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Figure 2.
Characterizing NLDP in a lab setup using a recirculating fiber loop: (a) block diagram of an RFL design and
its fiber specifics. (b) Setup for experimental comparative polarimetry embedding an RFL. The RFL allows
economically emulating differently long transmission paths, which impacts the magnitude of NLDP. The
propagation time is determined by a central clock that synchronizes the gates of the RFL, the high-speed
polarimeter, and the OSA. (c) Visualization of a typical NLDP dependence on transmission distances; the
histograms widen for the probe and reference with increased transmission distances. Their difference σ2NLDP
shows the NLDP magnitude and grows nearly linearly with the transmission distance. (d) Repeater output
power dependence of NLDP at 10 mm transmission. The power-dependent Kerr effect mediates the cross-phase
modulation between loading and the probe. Lowering the repeater output power reduces the width of the probe’s
histograms but deforms the spectral shape of the loading as the gain shape of the individual EDFA changes.
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longer transmissions, the corresponding btb measurements show wider NISS histo-
grams as the received OSNRs decay. The probe’s SOP speed histograms broaden
with propagation length due to NISS and NLDP. We hypothesize both as statisti-
cally independent processes and visualize NLDP by subtracting the reference’s NISS
from the probe’s SOP speed variance (Figure 2c, inset). This quantity monotoni-
cally increases, indicating a growing NLDP with transmission distance. A linear fit
reasonably resembles the measured NLDP variances as a function of the propaga-
tion length. Each recording consists of about 100 MSamples and was repeated
multiple times to verify stable measurement readings. We found experimentally for
the short-term reproducibility of all measured SOP speed variances a relative error
smaller than 1%.

Without NL interaction with the loading, the probe would linearly propagate.
Altering the nominal probe power of ��5.2 dBm at the repeater output by �3 dB
has shown an insignificant dependence of σ2NLDP on SPM-based effects at 10 Mm
transmission distance. Hence, Brillouin scattering or modulation instability (known
to be the weakest NL fiber process) can be ruled out as origin for NLDP.

The repeater output power inside our RFL can be to some degree controlled
without strongly tilting and distorting the spectral shape of the loading. At
maximum repeater output power (20.9 dBm into transmission fiber) and at 1 and
2 dB down, we record SOP speed histograms over 10 Mm transmission distance
following the same methodology. As three different phenomena need to be
onsidered, NLDP, receive OSNR degradation, and spectral distortions of the
loading, the data analysis becomes more complex. Increasing widths of the
reference’s NISS histograms with decreasing repeater power (Figure 2d) can be
explained by receive OSNR reduction. To a good approximation, the ASE that an
optical amplifier adds to a boosted signal is proportional to the repeater’s gain. Since
our repeaters operate in constant gain mode (as the span loss stays constant the
repeater gain must do the same), altering the output power does not affect their
ASE contributions. Consequently, lower repeater output power means smaller
probe power and degraded OSNR after transmission (at constant ECL power),
which enhances NISS. Remarkably, after transmission, and despite improved
receive OSNR, the corresponding SOP speed histograms trend oppositely and widen
with stronger repeater power. This broadening stems from NLDP, which even
exceeds a theoretically expected narrowing of the histograms when only the
enhanced receive OSNRs are considered as in case of the reference. Other than in
the NLPD versus transmission distance—study, the received spectra diverge from
an ideal boxcar shape and deform at different test conditions (Figure 2d, inset).
While around 194.4 THz, the spectral density remains about constant, it drops
disproportionately toward the spectral edges with reduced repeater power, making
a quantitative analysis more challenging. But the noise floor surrounding the probe
(zoom-in Figure 2d) remains relatively constant, which supports our previous
OSNR argument.

As discussed in Section 4.7, NLDP is formed on long-range nonlinear optical
interactions that become observable in the spectral domain. Distortions mainly
generated within the first section of a transmission fiber connected to a repeater
output substantially interfere among each other when propagating along a multi
span link. Qualitatively spoken, the spectral features of the probe’s Stokes vector
depend on the transmission distance—more precisely, the further the signal propa-
gates, the leaner the Stokes vector spectrum becomes. In our study, we define as the
probe’s spectrum the Fourier transform of the autocorrelation of its normalized,
three-dimensional Stokes vector.

In our experimental verification, we utilize the same RFL as in the aforemen-
tioned setup. But instead of using a polarimeter, a polarization scrambling
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interferometer connected to a photodetector followed by an RF spectrum analyzer
is deployed (Figure 3a). It can be shown that averaging many RF spectra yields the
Stokes vector spectrum [35]. For emulated transmission distances between 1 and

Figure 3.
(a) Recirculating fiber loop (RFL) test bed with a polarization scrambling interferometer (PSI). A probe
(ECL), embedded by unpolarized flat ASE, propagates through the RFL and the PSI records the power density
spectrum of its stokes vector. (b) Stokes vector spectra for 1–20 mm transmissions and corresponding spectra for
references showing flat noise floors. (c) Typical launch spectrum and receive spectra at the RFL output.
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20 Mm spectral width (FWHM), between 16.1 and 3.3 MHz, respectively, were
observed. This demonstrates the spectral contraction over propagation length
(Figure 3b).

An analogy to Fabry-Perot etalons [36] whose filter width narrows with the
number of interfering rays inside its cavity maybe helpful for understanding the
spectral shaping of the Stokes vector spectrum with transmission distance. While a
higher reflectivity of the etalon’s mirrors produces more interfering rays, more link
spans lead to more coherently superimposing distortions in the receiver plane that
cause spectral compression.

4. Applying the coupled NL Schrödinger equations to NLDP

Techniques for solving the CNLS for a short piece of fiber with constant linear
birefringence have been extensively discussed in the literature [37]. SSMF can be
envisioned as a concatenation of many fiber pieces with linear birefringence. The
length of each piece and the orientation of its optical axes follow known statistics. Our
goal is to calculate closed-form solutions for quantities that describe the underlying
statistics of the reported NLDP effects based on the aforementioned fiber models. For
the sake of simplicity, we take advantage of certain experimental conditions that
justify a significantly reduced formalism. The conceptional simplifications relate to
NL propagation, the repeater functionality, and the fiber model.

We assume NL signal propagation but consider its impact as relatively weak,
which effectively addresses the operational range of today’s telecom systems. This
allows us to model NL distortions as first-order perturbations that propagate line-
arly through the path once they have been generated.

Every repeater adds small amounts of ASE to the loading. While this extra noise
does not significantly change the spectral shape of the loading, it slightly impacts its
temporal correlation features, which will be ignored.

We will partially diverge from the picture of discrete and concatenated
waveplates that form a fiber. For SSMF, it is appropriate to imagine smooth transi-
tions between the single waveplates. However, we will consider a discrete
waveplate model to discuss local SOP rotations and apply the theory of PMD
statistics to cope with long-distance SOP correlations. These assumptions should not
impact our main conclusions.

4.1 Sorting the Kerr nonlinearity in even and odd operators

For simplicity, we consider a weak cw field ax yð Þ (probe) residing in a narrow
spectral gap of a surrounding, fully unpolarized and co-propagating strong ASE
field Ax yð Þ (loading) with a boxcar-shaped spectrum (Figure 4a). As stated, signif-
icantly less than 1% of the total signal power stems from the probe. The known
CNLS [38] for propagation in z direction within a waveplate, given here in complete
form, can approximate this scenario well:
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with AΣ
x yð Þ ¼ Ax yð Þ þ ax yð Þ; ax yð Þ

�� ��≪ Ax yð Þ
�� ��, (9)

where the wavelength-independent α, β1x(y)
�1, β2, and γ denote the attenuation,

polarization-dependent group velocities, dispersion coefficient, and the Kerr
nonlinearity of a waveplate, respectively. As previously mentioned, the high modal
birefringence Δβ of regular SMF induces fast oscillating of the terms at the far-right
side, which leads to ineffective NL interference. This has been discussed in great
detail for the derivation of the Manakov-PMD equation [8]; however, it is negligible
in our analysis and thus left out in the following.

We assume that the loading modulates the probe, but the probe has no impact
on the loading. In the limit of a negligibly small probe power, such interaction can
be justified and simplifies the Kerr nonlinearity. Two sets of equation pairs follow,
for the two cases ax yð Þ ¼ 0 and 1≫ ax yð Þ

�� �� 6¼ 0. Subtracting both sets, neglecting
second-order terms, and considering coupling conditions yield an equation set that
describes the motion of the probe induced by the loading

∂ax
∂z

þ β1x
∂ax
∂t

þ jβ2x
2

∂
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The remaining stochastic perturbation on the right side is decomposed into a
symmetric and an antisymmetric term (Eqs. (12) and (13)) with respect to the
loading’s field
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Figure 4.
(a) Spectral grid for boxcar-shaped ASE spectrum with a probe residing in its center gap. (b) Single and
multiple span link design for NLDP study.
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While both describe weak and independently treatable NL interactions in a first-
order perturbation calculus, the polarization-dependent sign of the antisymmetric
perturbation (right sides of Eqs. (12) and (13) root-causes opposite phase noises in
both principal axes thatmanifests experimentally as NLDP. Identical phase changes in
both polarizations as produced by the symmetric perturbation do not alter the probe’s
SOP but lead to NL phase noise. In the following, we discuss solutions for the pair

∂ax
∂z

þ β1
∂ax
∂t

þ jβ2
2

∂
2ax
∂t2

þ α
2
ax ¼ jγ

2
3

Axj j2 � Ay
�� ��2� �

ax (14)

∂ay
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þ β1
∂ay
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þ jβ2
2

∂
2ay
∂t2

þ α
2
ay ¼ jγ

2
3

Ay
�� ��2 � Axj j2
� �

ay: (15)

The impact of birefringence has been disregarded in Eqs. (14) and (15) by
replacing β1x(y) with a polarization-independent group velocity β1

�1 but will be
revisited at a later stage. That is, Eqs. (14) and (15) captures nonlinear SOP changes
along a waveplate but does not include the much larger SOP changes caused by linear
birefringence. The linear SOP changes are static and do not contribute to the mea-
sured SOP speeds. In practical applications, the right side represents a very fast
fluctuating term as the noise components Axand Ay stem from stochastically inde-
pendent processes with bandwidths in the range of several THz. Since we assume

unpolarized loading, the quantity Ax yð Þ
�� ��2 � Ay xð Þ

�� ��2� �
is on average zero. For our

algorithm, we represent it on an evenly spaced frequency grid, which yields experi-
mentally observable quantities to describe some statistical features of the probe ax yð Þ.

4.2 Asymmetric phase noise in first-order approximation

The right side of Eqs. (14) and (15) weakly perturbs the probe by adding a first-
order correction term a1x(y)(z,t) to it. We write the perturbation by means of the
undistorted fields of the probe ax(y)(z) and the loading Ax(y)(z,t). The latter’s compo-
nents with amplitudes Ax(y) form a comb Eqs. (16) and (17) on an evenly spaced grid
with an infinitesimally small angular frequency pitch ω (Figure 4a). For a single span
system, the probe ax(y)(z,t) in first-order development and the ASE field read

A0x z, tð Þ ¼
XN

m¼�N

Am
x e

j kmz�mωtð Þ e�
α
2z (16)

A0y z, tð Þ ¼
XN

m¼�N

Am
y e

j kmz�mωtð Þ e�
α
2z (17)

ax z, tð Þ≈ a0x þ a1x z, tð Þð Þe�α
2z ¼ a0x þ

X
l
al1x zð Þe�jlωt

� �
e�

α
2z (18)

ay z, tð Þ≈ a0y þ a1y z, tð Þ� �
e�

α
2z ¼ a0y þ

X
l
al1y zð Þe�jlωt

� �
e�

α
2z (19)

with Am
x yð Þ ¼ 0 for mj j<Nu, mj j>N, z≥0 and A0x z, tð Þ ¼ ax z, tð Þ ¼ 0 for z<0

(20)

where km ¼ β1mωþ β2
2 mωð Þ2 stands for the propagation constant of a compo-

nent at ‘mω’. We synthesize the Kerr nonlinearity in Eqs. (14) and (15) as a sum to
address the impact of low-frequency beat noises among its terms. Due to phase
matching conditions, this noise alone can efficiently interact with the probe and is
used to redefine the perturbation term in Eqs. (14) and (15) as
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Axj j2 � Ay
�� ��2 ≝

X
m, l
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x e�αze j β1lωþβ2lmω2ð Þz�lωtð Þ (21)

Ay
�� ��2 � Axj j2 ≝

X
m, l

Al,m
y e�αze j β1lωþβ2lmω2ð Þz�lωtð Þ (22)

with Al,m
x yð Þ ¼ Amþ l

2
x yð ÞA

m� l
2

x yð Þ
∗
� Amþ l

2
y xð ÞA

m� l
2

y xð Þ
∗
, lj j≪Nu: (23)

Here mω stands for the angular frequency spacing between the two beating ASE
tones at ω m� l

2

� �
and the probe, which is typically in the THz range. Due to

coupling inefficiency, any beating among the two noise tones can be neglected
when its frequency lω resides beyond a few tens of MHz. Eqs. (21) and (22) hold
separately for every l and m, and its solution for a single span system can be written
by means of a Green’s function

al,m1x yð Þ z, tð Þ ¼ j
2
3
γ

ðz

0

e jkl z�zið Þ�αziAl,m
x yð Þe

j β1lωþβ2lmω2ð Þzi�lωtð Þa0x yð Þdzi (24)

According to this Ansatz, the NL distortions are generated as a kind of “wave
packet” in fiber sections of incremental length dzi, propagate thereafter linearly
through the span, and coherently superimpose in the receiver plane. We portion out
the integral of Eq. (24) into a sum of infinitesimal short waveplates dzi (Eq. (25)) to
analyze NL interactions in the presence of Polarization Mode Dispersion (PMD),
which originates from fiber birefringence. At the span output at L0 holds

δl,m1x yð Þ L0, tð Þ ¼
al,m1x yð Þ L0, tð Þ

a0x yð Þ
¼ j

2
3
γe j β1lωL0�lωtð ÞX

i

Am,l
x yð Þe

�αzi e jβ2lmω2zi e j12β2l
2ω2 L0�zið Þdzi:

(25)

Alternating the sign of l conjugates its right side, except for its last and typically
negligible small exponent (al,m1x yð Þ L0, tð Þ≈ a�l,m

1x yð Þ L0, tð Þ ∗ Þ. Hence, pairing contributions
at �l results into a correction with a 90○ phase offset relative to the undistorted
probe. Therefore, all pairs of NL distortions stemming from single waveplates gener-

ate pure phase oscillations in the receiver plane ε L0, tð Þ ¼ δl,m1x yð Þ L0, tð Þ þ δ�l,m
1x yð Þ L0, tð Þ

� �

at an angular frequency lω. As Am,l
x yð Þ ¼ �Am,l

y xð Þ holds, the oscillations in both orthog-
onal polarizations are 180○ out of phase and cause SOP fluctuations. We define for
later purposes a temporal autocorrelation as

φl,m
i,k τð Þ ¼ δl,m1x,i L0, tþ τð Þδl,m1x,k L0, tð Þ ∗

D E
þ δl,m1y,i L0, tþ τð Þδl,m1y,k L0, tð Þ ∗
D E

, (26)

where the indices i, k denote different waveplates and hi denotes the averaging
over time and fields, which involves reestablishing the birefringent fiber features in
our model as detailed below.

4.3 Correlations of asymmetric phase noise in birefringent fiber

For deriving correlations between phase noises generated at different propaga-
tion distances of the probe, we focus on a single span system and extend the results
to a multiple span link. Modeling a birefringent fiber as a concatenation of
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waveplates uses Eq. (25) to determine the correlation among incremental distor-
tions stemming from two different plates. Our x(y)-coordinate system is congruent
with the fast (slow) axis of a waveplate, i.e., it rotates and follows the plates’
orientations along the propagation path. Our model incorporates birefringence,
originating from, e.g., axis-specific group velocities (β1x 6¼ β1y), by means of a Jones
matrix that transforms the input SOPs from the probe and the noise components
Am

x yð Þ when traversing a waveplate. A Jones matrix �Ri of a waveplate shall be given
by a unitary matrix

�Ri ¼ Ri
11 Ri

12

�Ri ∗
12 Ri ∗

11

" #
with Ri

11

�� ��2 þ Ri
12

�� ��2 ¼ 1: (27)
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� �
and �I ¼ 1 0

0 �1

� �
, an NL distortion generated in

waveplate k with length dzk concisely reads at the span output
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(28)

where Am,l
x,k und ML0stand for the undepleted noise components inside of

waveplate k constituted by Eq. (23), and the total number of waveplates, respec-
tively. The correlation between contributions from two consecutive waveplates
follows as
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��!⟩,

(29)

where a0,k
��! and h i represent the undistorted and undepleted probe field within

waveplate k and the field-averaged scalar product, respectively. We restore PMD in
our fiber model by using matrices �Ri, �Ri

0 obeying Eq. (27) and transforming
wavelength-dependent the probe and ASE fields:
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where double primes indicate statistically independent noises. Since m≫ l holds,
we can evaluate Eq. (30) just at m but must treat the original two noise components
at frequencies m� l=2ð Þω as uncorrelated. The theory of PMD statistics [39] specifies
the distance-dependent decorrelation from two SOPs of two co-propagating cw tones
at different wavelengths, which provides a correlation between the matrix elements

Rk
11

�� ��2 � Rk
12

�� ��2� �
Rk0
11

�� ��2 � Rk0
12

�� ��2� �D E
¼ 1

3
e�

1
3 ωmð Þ2τ2ρΔL, (32)

where m ω, τρ, and ΔL ¼ zkþ1 � zkj j are the angular frequency spacing between
the probe and the two noise components, the mean fiber DGD per √length (Dif-
ferential Group Delay), and the propagation distance, respectively. PMD effects
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across frequency intervals of size�l ω such as the spectral width of the received and
distorted probe or spacings between two efficiently beating noise components are
negligibly small. Hence, the sum of all incremental phase oscillations correlates as
defined by Eq. (26) at the span output like

φl,m τð Þ ¼ 4
27

γ2e�jlωτHm
X
i, k

e jβ2lmω2 zi�zkð Þ�α ziþzkð Þe�
1
3 ωmð Þ2τ2ρ∣zi�zk∣ dzidzk: (33)

The above outlined calculus assumes two consecutive birefringent waveplates
k, kþ 1. But it holds for any pair of further spaced waveplates, indexed i, k with
i 6¼ kþ 1, as well. Since a matrix product �R ¼ �Ri … �Rkþ2�Rkþ1 of intermediately
located waveplates can be expressed by a single unitary matrix that fulfills Eq. (27),
the conclusion from Eq. (30) will equally hold and leads to Eq. (33).

4.4 Fiber PMD constitutes NLDP

System PMD imposes cutoff conditions via the Gaussian for the number of
interacting waveplates addressed by the double sum of Eq. (33). Without this
constrain, the sum tends to zero as its complex exponential function causes averag-
ing for sufficiently small α. For a single span system with L0 ≫ α�1 (typically tens of
kilometers) and relatively short waveplates ≪ α�1ð , typically tens of meters), we
will replace the double sum with an integral.

Experimentally observed NLDP-caused SOP features such as scattering angles
and speed as their time derivatives are detected after O/E conversion of the optical
fields and conveniently reported in Stokes space (Section 3). To derive such quan-
tities, we will confine the optical autocorrelation density by introducing electrical
low-pass filtering, which represents the detection process, and then convert the
result into Stokes space. In Jones space, the density of the optical autocorrelation
(Eq. (33)) at lω reads for sufficiently long propagation distances L0 ! ∞ð Þ

φl,m τð Þ ¼ 4
27

γ2Hm e�jlωτ
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ðþ∞

�∞
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αþ 1

3 ωmð Þ2τ2ρ
� �2

þ β2lmω2ð Þ2

(34)

and its integration over m, l0 yields the autocorrelation for the total phase noise.
So far, we have considered a single span system, i.e., one optical amplifier boosts

the probe and loading prior of their launch into an as infinite long assumed trans-
mission fiber. Today’s undersea communication cables can consist of a few hundred
spans to bridge transpacific distances of up to about 15 Mm length. In contrast to
terrestrial systems, they are strictly modularly designed, which eases our modeling.
To keep the calculation effort at an introductory level, we further assume a large
enough fiber attenuation α, thus all NL propagation fades away far before the span
end. Additionally, our amplification is assumed to be a noiseless process. For a cable
with NS spans, the autocorrelation then reads

φl,m
Ns

τð Þ ¼ 4
27

γ2e�jlωτHm �
XNs,Ns

p¼0, q¼0

X
i, k

e jβ2lmω2 zi�zkþL0 p�qð Þð Þ�α ziþzkð Þe�
1
3 ωmð Þ2τ2ρ zi�zkþL0 p�qð Þj j dzidzk

(35)
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with zi þ L0p and zk þ L0q as the positions of two interacting waveplates.
For approximating the interleaved summations, we take advantage of the

assumed large fiber attenuation, which forms cutoff conditions for the zi and zk.
When one of the two coordinates or both are large enough but still significantly
smaller than L0, the corresponding summands do not substantially contribute to the
overall sum. Thus, a replacement of the amount in the exponents by

∣zi � zk þ L0 p� qð Þ ! jzi � zkj j þ L0 p� qj j (36)

can be justified and yields
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(38)

where Λ :ð Þ denotes the triangular function. For the degree of accuracy, we
follow in our modeling, it is sufficient to approximate it with an exponential func-
tion of even area and substitute both sums by integrals to obtain at least trends that
show how NLDP qualitatively depends on system parameters.
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Further we approximate the sum with a Fourier integral and find for the density
of the optical correlation
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(40)

4.5 Detecting optical fields in the electrical domain

For the sake of simplicity, we consider two extreme cases for the electrical
detection bandwidth Ωe of our polarimeter. In one scenario its bandwidth tends to
infinity and in the other, it strongly filters the photocurrents. In both cases τ�1

S ≫Ωe

should hold for its sampling rate. In typical lab experiments, the electrical detection
bandwidth is the only parameter that can be practically tuned over a larger range
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without the need for readjusting other model assumptions. For example, reducing
the optical bandwidth of a system (�4.5 THz) at launch or the launch power into a
span usually distorts the assumed boxcar-shaped spectrum of the loading.

We model the low-pass characteristic of the polarimeter with a Lorentzian
curve, thus the autocorrelations in the optical and electrical domain interrelate as

φelec
Ns

τð Þ ¼
ð∞
�∞

ð∞
�∞

1

1þ lω
Ωe

� �2 φl,m
Ns

τð Þ dωldωm, (41)

Provided sufficiently short sampling periods τS, compared with the
inverse of the autocorrelation’s spectral width2, the exponential in Eq. (40)

e�jlωτ ≈ 1� jlωτ � 1
2 lωτð Þ2

� �
can be approximated in τ. Its linear term vanishes after

the integration (Eq. (41)) due to symmetry aspects. The second order in τS of φelec
τSð Þ

determines the variance of the stochastic SOP speed as shown below and reads
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which tends for the case of wide bandwidth detection (Ωe ! ∞) and under the
assumptions of typical system parameters as explained in Section 3 toward

φelec
Ns

0ð Þ � φelec
Ns

τSð Þ≈ π

81
γ2

Ns

αL0
β�3
2 τ2Sτ

2
ρP

2
rep

1

Ωmax � Ωminð Þ2 ln
Ωmax

Ωmin

� �
, (43)

where Prep represents the total launch power of the loading at the fiber input.

For the case of detection at a reduced electrical bandwidth (Ωe ≪ 1
3Ωmin

τ2ρ
β2
), we

find

φelec
Ns

0ð Þ � φelec
Ns

τSð Þ≈ π

27
γ2

Ns

αL0

Ω2
e

Ω2
max

τ2S
β2α

P2
rep ln

ffiffiffiffiffi
3α
2

r
1

τρΩmin

 !
: (44)

As Eq. (44) rapidly declines for small Ω2
e , NLDP stays hidden in the study of

environmentally driven SOP fluctuations in undersea cables (Figure 1b), which had
been performed at a detection bandwidth below 100 Hz.

4.6 Transforming phase noise from Jones space to stokes space

So far, NLDP has been characterized in Jones space for which the CNLSs hold.
But for convenience in general, quantities such as the SOP speed and the SOP
scattering angle [40] are usually discussed and experimentally obtained in Stokes
space. To transform the incremental field distortions, determined by means of the
Jones calculus and the CNLS, into Stokes space, we represent the assumed normal-

ized probe’s Jones vector anorm���! NsL0, tð Þ ¼ ax NsL0, tð Þ, ay NsL0, tð Þ� �T at the fiber
output by

2 With the current generation of commerically avaialbe high-speed polarimeters sampling periods

�10 ns can be achieved while spectral widths of the autocorrelation typically reside in the few MHz

range.
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anorm���! NsL0, tð Þ ¼ ax NsL0, tð Þ
ay NsL0, tð Þ
� �

¼ cos ϑ cos θ þ j sin ϑ sin θ

sin ϑ cos θ � j cos ϑ sin θ

� �
(45)

with ϑ ¼ ϑ0 þ δϑ tð Þ, 2ϑ0j j< π and θ ¼ θ0 þ δθ tð Þ, 4 θ0j j< π where ϑ0, θ0 obey
known distributions [41] to uniformly cover the Poincare sphere. For the SOP
density Ψ holds

Ψ 2ϑ0, 2θ0ð Þ d2ϑ0d2θ0 ¼ 1
4π

rect
2ϑ0
2π

� �
rect

2θ0
π

� �
cos 2θ0ð Þd2ϑ0d2θ0: (46)

NLDP causes small temporal fluctuations δϑ tð Þ, δθ tð Þ whose autocorrelations
must equal δϑ tþ τSð Þδϑ tð Þh i ¼ δθ tþ τSð Þδθ tð Þh i ¼ φJ τSð Þ due to averaging caused by
birefringence fluctuations along the long propagation path. The corresponding
three-dimensional Stokes vector with unity length S0 ¼ 1ð Þ to Eq. (45) reads

S
!

NsL0, tð Þ ¼
axj j2 � ay

�� ��2

þ2 Rℯ axay ∗
� �

�2 Im axay ∗
� �

2
664

3
775

NsL0,tð Þ

¼
cos 2ϑð Þ cos 2θð Þ
sin 2ϑð Þ cos 2θð Þ

� sin 2θð Þ

2
64

3
75

NsL0,tð Þ

(47)

and can be analyzed with respect to the impact of δϑ tð Þ and δθ tð Þ: One finds

S
!

tþ τSð Þ � S
!

tð Þ
���

���
2

� �
¼ 40

3
φJ 0ð Þ � φJ τSð Þ� �

: (48)

In Jones space we get

anorm���! tþ τSð Þ � anorm���! tð Þ�� ��2D E
¼ 4 φJ 0ð Þ � φJ τSð Þ� �

: (49)

Thus, combing both results add up to

S
!

tþ τSð Þ � S
!

tð Þ
���

���
2

� �
¼ 10

3
anorm���! tþ τSð Þ � anorm���! tð Þ�� ��2D E

(50)

Identifying anorm���! tþ τSð Þ � anorm���! tð Þ�� ��2D E
=2 φelec

Ns
0ð Þ � φelec

Ns
τSð Þ

� �
yields the

variance of the NLDP-induced SOP speed in Stokes space

S
!

tþ τSð Þ � S
!

tð Þ
���

���
2

� �

τ2S
≈

2π
81

γ2
Ns

αL0
β�3
2 τ2ρP

2
rep

1

Ωmax � Ωminð Þ2 ln
Ωmax

Ωmin

� �
, (51)

which depends on the PMD of the link and differentiates NLDP from NL polar-
ization rotation (NLPR) [15]. NLPR is a phenomenon between two cw tones where
one impacts the SOP of the other. However, its fundamental equations do not
include fiber features such as PMD and chromatic dispersion.

4.7 NLDP-induced stokes vector spectrum of the probe

In analogy to the relationship between temporal and spectral features of an
electrical signal in time and frequency domain, we define the spectrum of the
probe’s Stokes vector by the Fourier transform of its temporal autocorrelation
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S
!

tþ τSð Þ ∙ S! tð Þ
D E

¼ 1� 20
3
φJ 0ð Þ þ 20

3
φJ τSð Þ≈ 1þ 20

3
φJ τSð Þ∘� ∎Φ fð Þ: (52)

For our following derivations, we revisit Eq. (52). It does not include several
approximations we have meanwhile applied in our calculus and can therefore be
considered as a more accurate starting point. But we simplify the integration over
the loading’s optical spectrum by neglecting its central gap and assume infinite
integral bounds, i.e., Hm ¼ �Hm ¼ const holds

φl,m
Ns

τð Þ ¼ 4
27

γ2
e�ilωτ

α2
�Hm 1

1þ 1
3α

ωmð Þ2τ2ρ

1

1þ β lmω2

αþ1
3 ωmð Þ2τ2ρ

� �2

�Ns

XNs

n¼�Ns

e jβ2lmω2L0ne�
1
3 ωmð Þ2τ2ρL0 nj jΛ

n
Ns

� �
:

(53)

For typical system parameters, Eq. (53) is dominated by the term e�
1
3 ωmð Þ2τ2ρL0 nj j,

which sets even for low fiber PMD (�50 fs/√km) and small |n| > 0 a strong cutoff
criterion for the integration. In this case the first two fractions on the right side will
be ignored and the integration yields

φl
Ns

τð Þ � e�jlωτ
XNs

n¼�Ns, n6¼0

1ffiffiffiffiffiffi
nj jp e

�3β2
2

4τ2ρ
ωlð Þ2L0 nj j

Λ
n
Ns

� �
: (54)

A narrowing of the probe’s Stokes vector spectrum with an increasing number of
system spans can be qualitatively understood by defining its spectral width as

1
φ0
Ns

0ð Þ
ð
φl
Ns

0ð Þ dωl≈ ln Nsð Þ � 1ffiffiffiffiffiffi
Ns

p � 1
: (55)

This quantity decreases for large enough and increasing Ns . NL distortions
generated along the transmission link interfere, which leads to spectral shaping of
the Stokes vector spectrum. Such kind of spectral compression has been experi-
mentally observed (Section 3). The more spans a link consists of, the more
nonlinear distortions in form of wave packets superpose in the receiver plane and
steepen the pedestal of the averaged RF spectra (Figure 3b) [35].

5. Non-Manakovian transmission

We continue to assume that the CNLSs provide a sufficiently accurate basis for
signal modeling in a single birefringent waveplate and will compare in the following
their nonlinearity with corresponding terms of often-used simplifications such as
the Manakov equation [13], the Manakov-PMD equation [8], and GN theory [23]. It
turns out that the nonlinearity used in our NLDP calculus differs significantly from
simplified forms often exploited in today’s system simulations. For this purpose, we
examine a known transformation of the CNLS into the ME for regular birefringent
fiber, which leads to an inconsistency in the foundation of nonlinear propagation
theory. This commonly applied assumption biases microscopic NL polarization
effects. As for non-Manakovian effects such as the NLDP, we like to refer to when
propagating signals cannot be sufficiently accurately described by applying
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equations of Manakovian type or the Manakov-PMD equation, which possess aver-
aged and symmetric Kerr nonlinearities.

5.1 Shortfalls of an averaged Kerr nonlinearity

Here we review key steps for introducing an averaged Kerr nonlinearity into the
CNLS and point out the associated shortfalls. The two main concepts [22, 41] to
derive an averaged Kerr nonlinearity can be found in the literature. We follow a
well-documented scheme in [41], which considers a piece of isotropic fiber (with
zero birefringence) and neglect for now linear propagation effects such as attenua-
tion and all forms of dispersion. Furthermore, like all published derivations we
assume for AΣ

x yð Þ monochromatic fields at ω ¼ 0, which some papers paraphrase as
fully polarized light3. In this case Eqs. (7) and (8) reduces to polarization-dependent
differentials that equal small NL distortions

∂AΣ
x

∂z
¼ jγ AΣ

x

�� ��2 þ 2
3
AΣ

y

���
���
2

� �
AΣ

x þ jγ
1
3
AΣ ∗

x AΣ2

y (56)

∂AΣ
y

∂z
¼ jγ AΣ

y

���
���
2
þ 2
3
AΣ

x

�� ��2
� �

AΣ
y þ jγ

1
3
AΣ ∗

y AΣ2

x : (57)

For normalized variables

AΣ
x

�� ��2 þ AΣ
y

���
���
2
¼ 1 (58)

Eqs. (56) and (57) can concisely be written as

∂AΣ
x

∂z
¼ jγ 2AΣ

x þ AΣ ∗
x AΣ

x
2 þ AΣ

y
2

� �� �
(59)

∂AΣ
y

∂z
¼ jγ 2AΣ

y þ AΣ ∗
y AΣ

x
2 þ AΣ

y
2

� �� �
: (60)

Similar as in Section 4.6, we evaluate the magnitude of the polarization state-
dependent NL distortion by expressing the field with a Jones vector

AΣ
x

AΣ
y

" #
¼ cosϑ cos εþ j sinϑ sin ε

sinϑ cos ε� j cosϑ sin ε

� �
eiψ: (61)

But here, the time-independent variables ϑ, ϵ,ψ are functions of the distance z.
As empirically observed, the SOP of a cw light propagating through randomly and
rapidly changing fiber birefringence is uniformly distributed on the Poincare sphere
with corresponding densities for the angles ϑ, ε as assumed for Eq. (46).

Inserting Eq. (61) into the left sides of Eqs. (59) and (60) leads to a differential
term for the phase

AΣ
x AΣ

y

h i†
∂zψ (62)

3 Note, in the given derivation [22] on p. 29 it should read shortly above Eq. (3) “converts s3 σ3 U to 1/

3 s0 U.”
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that can be evaluated as scalar when multiplying both sides of the equation by

AΣ
x A

Σ
y

h i ∗
. Averaging the differentials across the Poincare sphere by means of

Eq. (46) must equate to zero for terms including ∂zϑ and ∂zε due to symmetry
considerations. Thus, on the left only a term in ∂zψ remains. On the right,

AΣ
x

�� ��2 þ AΣ
y

���
���
2

� �
is factored out, which is no longer assumed to be limited to unity,

but represents time- and distance-dependent power levels of a signal. When adding
the time-dependent differentials on the left sides that describe linear propagation
effects and including the absorption term, then the ME as stated in form of Eqs. (5)
and (6) with an averaged Kerr NL follows. As this derivation assumes an isotropic
fiber, β1, β2 must be defined as x-, y-independent. Some closed-form solutions of
Eqs. (5) and (6) are known (solitons). Its nonlinearity is symmetric in the field
components. But strictly speaking, the above derivation holds only for cw light and
so Eqs. (5) and (6). The reintroduction of Eq. (58) as time- and distance-dependent
quantity without expanding term (62) by additional corresponding differentials
violates the derivation’s assumptions and complicates it. Literature justifies the
above derivation with lacking phase matching of mixing terms that can be
neglected. However, if the field contains components that are closely separated, a
low-frequency beat tone can occur. When sufficient phase matching is present (as
in the case of NLDP), measurable modulation of the probe can appear. Additionally,
the derivation does not mirror correlations among differentials in ∂zϑ or ∂zε taken
at two different positions separated by PMD. But as such, they are essential for
understanding the spectral properties of NLDP.

When choosing Eqs. (5) and (6) as starting point for the splitting of the overall
NL operator as explicated by Eqs. (12) and (13), the symmetric and asymmetric NL
perturbation terms change their relative weights. Hence, both phenomena NLDP
and NL phase noise cannot be represented at the same time using the same effective
average Kerr nonlinearity.

5.2 Manakovian simulators in telecom

A common technique in modern optical communications is to polarization mul-
tiplex two orthogonal channels at same wavelength, which maximizes the spectral
efficiency of a system. When representing in a simplified picture transmitted data
symbols per channel by optical wave packets, their instantaneous common receive
SOP is equally blurred by NLDP in both azimuth and polar angles on the Poincare
sphere. Especially, fast SOP motions in azimuthal direction (assuming the individ-
ual channels possess polarizations aligned with the x-y coordinates) impair coherent
cross talk at high receive OSNR for advanced modulation formats and reduce
established limits for the channel capacity. Current research on capacity limits of
fiber channels has not explicitly considered NLDP. These theories apply Shannon’s
theorem while computing NL signal distortions by means of the Manakov equation
[42–49]. They need to be revisited when more accurate estimates are required.

To ease computations, most of the industrial link simulations resort to a type of
ME when estimating NL transmission penalties. For signals with low-density con-
stellation (e.g., PM-QPSK), the small NLDP-induced SOP scattering has little per-
formance impact and a Manakovian simulation can be a good approximation. As
reference, for a link with moderate Kerr nonlinearity and transpacific transmission
distance, we experimentally found an apex angle �11° for NLDP-induced scattering
on the Poincare sphere [40].

The Manakov-PMD equation as defined in [8] includes the 8/9 factor for an
averaged Kerr nonlinearity. For regular birefringent fiber, its NL PMD term
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becomes irrelevant and only its linear PMD term distinguishes it from an ordinary
ME. However, the averaging of its Kerr nonlinearity that yields its 8/9 weighting
questions its claim of universal acceptance as a governing model.

The GN model, another widely discussed approach for simulating optical com-
munication channels, is a technique to analytically solve the ME for a weakly NL
WDM system with D+ propagation [23, 50]. Its main advantage resides in the
derivation of variances for NL field distortions that can be linearly added to noise
powers (repeater ASE) in the SNR formula to determine a BER. Note, these NL field
distortions should not be confused with polarization state noise generated by NLDP.
The GN model does not include PMD effects, which lead to a linear SOP
decorrelation between the probe and the beating ASE components [39]; but this
decorrelation is essential for the foundation of the probe’s NLDP-induced Stokes
vector spectrum, which is interferometrically formed by long-range NL interactions
(Section 3 [35]).

6. Conclusions

Precise modeling of NL signal propagation in optical fibers is critical for maxi-
mizing the data capacity of long-haul communication systems. It balances signal
powers and received OSNR to mitigate nonlinearities. Over the past five decades,
simplified techniques have been developed to efficiently compute NL propagation
in fiber. They adapt models for ideal or piece-wise linear birefringent fiber to
simulate propagation paths with randomly varying birefringence.

Recently, a novel transmission phenomenon in fiber to which we refer to as NL
DePolarization (NLDP) has been introduced. Unpolarized ASE depolarizes a co-
propagating probe in long-haul communication systems and lab test beds due to the
fiber Kerr nonlinearity. This phenomenon has proven elusive to simpler propaga-
tion modeling.

We have described NLDP by means of propagation-dependent SOP speed his-
tograms. And under some simplifying assumptions, our outlined analytical model
yields a closed-form solution for NLDP-induced SOP speed in single and multiple
span systems. Although small compared with other polarization effects, this phe-
nomenon leads to a qualitatively different microscopic understanding of nonlinear
light propagation in fiber. An antisymmetric perturbation operator in the CNLS
generates phase noises that produce the SOP fluctuations. A major aspect of our
model forms the PMD dependence of NLDP, which fundamentally differentiates it
from other NL polarization phenomena such as NL polarization rotation. NLDP is
based on long-range NL interactions where contributions from Kerr nonlinearities
interfere over long transmission distances. Counterintuitively, the NL-generated
Stokes vector spectrum of a signal’s polarization narrows with increasing
propagation length.

Our derivations show that in the case of NLDP (non-Manakovian propagation),
the solution spaces of the CNLS and the Manakov equation do not converge as
suggested by earlier work. Under consideration of NLDP, reassessing fiber channel
capacity simulations that are utilizing Manakovian-type equations can be beneficial
for scientific purposes and could show small performance offsets.
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Chapter 7

Nonlinear Generalized
Schrödinger’s Equations by Lifting
Hamilton-Jacobi’s Formulation of
Classical Mechanics
Gérard Gouesbet

Abstract

It is well known that, by taking a limit of Schrödinger’s equation, we may
recover Hamilton-Jacobi’s equation which governs one of the possible formulations
of classical mechanics. Conversely, we may start from the Hamilton-Jacobi’s equa-
tion and, by using a lifting principle, we may reach a set of nonlinear generalized
Schrödinger’s equations. The classical Schrödinger’s equation then occurs as the
simplest equation among the set.

Keywords: Schrödinger’s equation, Hamilton-Jacobi’s equation, correspondence
principle, lifting principle

1. Introduction

Schrödinger’s equation is the fundamental equation of quantum mechanics.
Using a correspondence principle, we may recover the classical limit of mechanics
under the form of the Hamilton-Jacobi’s equation. This is a up-down process, from a
general theory to a limit restricted theory, i.e. from quantum mechanics to classical
mechanics. We may use another principle, that I call a lifting principle, which,
starting from Hamilton-Jacobi’s equation allows one, through a bottom-up process,
to reach a set of generalized Schrödinger’s equations, encompassing nonlinear
terms. From this generalized set, we may turn back to a up-bottom process. In a
first step, we recover the classical Schrödinger’s equation as, in some sense, the
simplest equation in the set and, in a second step, we recover again classical
mechanics from quantum mechanics, using again a correspondence principle.

The chapter is organized as follows. Section 2 recalls the Hamilton-Jacobi’s
equation of classical mechanics which, in the present chapter, may be viewed as a
turning equation, both the end of a up-bottom process and the beginning of a
bottom-up process. Section 3 exemplifies a way to obtain Schrödinger’s equation by
using an analogy relying on Hamilton-Jacobi’s equation. Section 4 expounds the
bottom-up process from Hamilton-Jacobi’s equation to a set of generalized
Schrödinger’s equations. Section 5 provides a complementary discussion while
Section 6 is a conclusion.

115



2. Hamilton-Jacobi’s formulation of classical mechanics

We know that classical mechanics can be declined under four different formu-
lations, which are mathematically and empirically equivalent. These are the New-
ton’s, Lagrange’s, Hamilton’s and Hamilton-Jacobi’s formulations. In the present
chapter, we rely on the Hamilton-Jacobi’s formulation, see for instance Louis de
Broglie [1], Blotkhintsev [2], Landau and Lifchitz [3], and Holland [4]. This
formulation of nonrelativistic classical mechanics of a matter point relies on an
equation, that I shall call Hamilton-Jacobi’s equation, reading as:

� ∂S
∂t

¼ 1
2m

∂S
∂xj

� �2

þ V (1)

This equation allows one to study the motions of a particle of mass m in a
potential V ¼ V xj, t

� �
. The xj’s denote Cartesian coordinates and t is the time. The

field S ¼ S xj, t
� �

is a real field that I shall call the Jacobi’s field. Eq. (1) has to be
complemented by two other equations reading as:

W ¼ � ∂S
∂t

(2)

pj ¼
∂S
∂xj

(3)

in whichW is the energy and pj is the momentum. From Eq. (2), we see that S is
an action (energy multiplied by time) and, from now on, we may call it the action.
Also, inserting Eqs. (2) and (3) in Eq. (1), we see that we obtainW ¼ T þ V, which
should be enough to convince us of the equivalence between Newton’s and
Hamilton-Jacobi’s formulations. For a conservative motion, the energy (that we
denote E in that case) is constant along each particular motion, and Eq. (2) implies:

S xj, t
� � ¼ S0 xj

� �� Et (4)

Inserting Eq. (4) into Eq. (1), we obtain:

∂S0
∂xj

� �2

¼ 2m E� Vð Þ (5)

We now consider the locus of the points for which S0 possesses a given value C0:

S0 xj
� � ¼ C0 (6)

Eq. (6) shows that the locus is a time-independent surface. There is one surface,
and only one, containing a point P of space, according to C0 ¼ S0 xj Pð Þ� �

. The whole
space is therefore filled by a set of motionless surfaces forming what I call the
Jacobi’s static field. From Eqs. (3) and (4), we have:

pj ¼
∂S
∂xj

� �
¼ ∂S0

∂xj

� �
(7)

Therefore, pj is the gradient of S (and of S0). This means that trajectories are
orthogonal to the surfaces S (and to the surfaces S0). Next, we consider the locus of
the points for which the action S possesses a given value C:
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S xj, t
� � ¼ C (8)

Eq. (8) shows that the locus is still a surface but which now depends on time.
When times goes on, the surface moves and, in general, experiences a deformation.
For a given time t, the moving surface S xj, t

� � ¼ C coincides with a motionless
surface S0 xj

� � ¼ C0, according to, from Eq. (4): C ¼ C0 � Et. Therefore, when time
goes on, the moving surface S ¼ C sweeps over all motionless surfaces S0 ¼ C0.

We now consider a fictitious point P, pertaining to the surface S ¼ C, and
therefore moving with it, with the constraint that its displacement remains orthog-
onal to the swept surfaces S0 ¼ C0. The velocity of the moving surface may then be
defined as:

wj ¼
dxj
dt

(9)

in which dxj is an infinitesimal displacement of the point P. But we have:

dS
dt

¼ dC
dt

¼ 0 (10)

that is to say:

∂S
∂xj

dxj
dt

þ ∂S
∂t

¼ 0 (11)

leading to:

pjwj ¼ E (12)

But wj (modulus: w) is colinear to pj (modulus: p). Hence, with E positive, we
obtain:

w ¼ E
p
¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m E� Vð Þp (13)

We are therefore facing two different velocities (i) the velocity v ¼ p=m of the
material point and (ii) the velocity w ¼ E=p of the fictitious point P. Finally,
inserting Eq. (13) into Eq. (5), we obtain:

∂S0
∂xj

� �2

¼ E2

w2 ¼ p2 (14)

We then remark that Newton’s formulation relies on the existence of trajectories
while Hamilton-Jacobi’s formulation relies both on trajectories and on a field filling
the space. Hamilton-Jacobi’s formulation is the first one in which the motion of a
localized object has been associated with a space filling field. In other words,
Hamilton-Jacobi’s formulation is nonlocal. This nonlocality actually anticipates the
nonlocality of quantum mechanics and the space filling field S is an anticipation as
well of a space filling field of quantum mechanics. It has furthermore been argued
that Newton’s and Hamilton-Jacobi’s formulation, although empirically equivalent,
are ontological contradictory, representing an example of the Duhem-Quine
ontological underdetermination of theory by experience [5, 6].
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3. Guessing Schrödinger’s derivation

Strictly speaking, there is no derivation of Schrödinger’s equations but a variety
of guessing approaches, with different flavors depending on the preferences of the
authors. Basically, however, Schrödinger’s equation has been introduced in [7, 8]
under its stationary form and in [9] under its time-dependent form. English trans-
lation is available from [10] and French translation from [11]. The derivation relies
on an analogy between Hamilton-Jacobi’s formulation of classical mechanics and
geometrical optics. As rather usual when something new is exposed for the first
time, Schrödinger’s argument is more complicated than necessary. For instance, it
relies on the use of non-Cartesian coordinates and on a non-Euclidean interpreta-
tion of the configuration space, requiring the use of covariant and contravariant
components of vectors (more generally, of tensors), which may be unfamiliar to
some readers. Feynman even commented that some arguments invoked by
Schrödinger are erroneous [12]. Without showing any disrespect to Schrôdinger’s
work, I prefer to present a more recent exposition extracted fromWinogradski [13]
who defended her thesis under the supervision of Louis de Broglie.

We begin with scalar wave optics and with the corresponding wave equation
reading as:

∂
2Ψ
∂x2j

� 1
u2

∂
2Ψ
∂t2

¼ 0 (15)

in which u ¼ u xj, t
� �

is the velocity of the wave Ψ xj, t
� �

. We may also introduce
the refractive index n of the medium according to n ¼ c=u in which c is the speed of
light. We now consider a steady medium (∂n=∂t ¼ 0) which may support mono-
chromatic waves of angular frequency ω, reading as:

Ψ xj, t
� � ¼ Ψ0 xj

� �
exp �iωtð Þ (16)

Because Ψ and Ψ0 are, in general, complex fields, we set:

Ψ0 ¼ A exp iϕ0ð Þ A,ϕ0 ∈R (17)

leading to:

Ψ ¼ A exp iϕð Þ (18)

with:

ϕ xj, t
� � ¼ ϕ0 xj

� �� ωt (19)

In these expressions, Ψ0 is a complex amplitude, A a real amplitude, ϕ xj, t
� �

and
ϕ0 xj
� �

are phases. We may then introduce the wave-number vector reading as:

kj ¼ ∂ϕ

∂xj
¼ ∂ϕ0

∂xj
(20)

The wave-number k is defined as
ffiffiffiffiffi
k2j

q
and the wave-length λ is defined by λ ¼

2π=k. Also, we have:

ω ¼ � ∂ϕ

∂t
(21)
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Inserting Eq. (16) into Eq. (15), we obtain:

∂
2Ψ0

∂x2j
þ ω2

u2
Ψ0 ¼ 0 (22)

Next, inserting Eq. (17) into Eq. (22), we obtain two equations relating the real
amplitude A and the phase ϕ0:

1
A
∂
2A
∂x2j

� ∂ϕ0

∂xj

� �2

þ ω2

u2
¼ 0 (23)

2
A
∂A
∂xj

∂ϕ0

∂xj
þ ∂

2ϕ0

∂x2j
¼ 0 (24)

If the medium, besides being steady, is homogeneous (∂n=∂xj ¼ 0), the wave
equation admits plane wave solutions reading as:

Ψ xj, t
� � ¼ A exp i kjxj � ωt

� �
(25)

in which A, kj,ω are constant quantities, and λ becomes the spatial period of the
wave along the direction of propagation.

We are now equipped enough to turn to a discussion of geometrical optics which
is an approximation to wave optics. This approximation is valid whenever the
optical wave approximately behaves as a plane wave over a distance of the order of
the wave-length λ, that is to say when A xj

� �
and kj ¼ ∂ϕ0=∂xj are approximately

constant over λ. Equivalently, we may take the limit λ ! 0. There is a rigorous but
tedious way to take this limit by examining the relative variations of ΔA=A and
Δkj=k over λ, in the direction x kð Þ, relying on Taylor expansions. I shall rather use
heuristic and convincing enough arguments which furthermore lead to the correct
results. Because A is approximately a constant, Eq. (23) reduces to:

� ∂ϕ0

∂xj

� �2

þ ω2

u2
¼ 0 (26)

Furthermore, because kj ¼ ∂ϕ0=∂xj is approximately a constant too, Eq. (24)
reduces to an identity 0 � 0: Therefore, Eq. (26) is the geometrical optics version of
the wave optics. Eqs. (23) and (24), i.e. two equations, have collapsed into a single
one. We observe that Eq. (26) contains the phase ϕ0, but does not contain any more
the amplitude A. This means that the concept of amplitude has no meaning, in a
strict sense defined by the above derivation, in geometrical optics (this does not
prevent to build geometrical optics models using the concept of amplitude).

Also, from Eqs. (20) and (26), we have:

k2 ¼ ω2

u2
(27)

Now, similarly as for S0 and S, ϕ0 and ϕ are equiphase surfaces satisfying the
following obvious analogous results. The locus of the points for which ϕ0 possesses
a given value C0, i.e. ϕ0 xj

� � ¼ C0, is a time-independent equiphase surface. There is
one surface, and only one, containing a point P of space, given by C0 ¼ ϕ0 xj Pð Þ� �

.
The whole space is therefore filled by a set of motionless surfaces forming the
static phase field. The trajectories orthogonal to these surfaces are called rays.
The locus of the points for which ϕ possesses a given value C, i.e. ϕ xj, t

� � ¼ C, is a
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time-dependent equiphase surface. For a given time t, the moving equiphase sur-
face ϕ ¼ C coincides with a motionless equiphase surface ϕ0 ¼ C0. When time goes
on, the moving surface ϕ ¼ C sweeps over all motionless surfaces ϕ0 ¼ C0.

Assembling the results obtained for the conservative Hamilton-Jacobi’s classical
mechanics and for geometrical optics, we obtain a remarkable analogy exhibited in
Table 1.

This analogy has been discovered by Hamilton, about one century (!) before its
use to the discovery of Schrödinger’s equations, see Refs. [14, 15], references therein
and prior references from Hamilton. Formally, we may express the same structure
by using a mechanical language or an optical language. Both languages may be
translated, from one to the other, by using a dictionary D exhibited in Table 2,
where the newly introduced constant G has the dimension of an action.

An analogy is not necessarily significant but any analogy should be, at least
tentatively, taken seriously. If the analogy is fully meaningless, then the value of the
constant G does not matter, and any value for G would do. A contrario, if the
analogy is somehow meaningful, that is to say if the motion of a material point can
be somehow associated with the propagation of a certain scalar field (the point of
view taken very seriously by Louis de Broglie in his double solution), then the
constant G should be a new fundamental constant of nature. We now know that the
analogy under study may be taken seriously enough, and that it eventually leads to
G ¼ ℏ. Lines (c) and (d) of Table 2 then lead to:

pj ¼ ℏkj (28)

E ¼ ℏω (29)

Classical mechanics Geometrical optics

S ¼ S0 � Et Φ ¼ Φ0 � ωt

S0 ¼ S0 xj
� �

Φ0 ¼ Φ0 xj
� �

E ¼constant ω ¼ constant

pj ¼ ∂S
∂xj

¼ ∂S0
∂xj

kj ¼ ∂Φ
∂xj

¼ ∂Φ0
∂xj

E ¼ � ∂S
∂t ω ¼ � ∂Φ

∂t

∂S0
∂xj

� �2
¼ E2

w2 ¼ p2 ∂Φ0
∂xj

� �2
¼ ω2

u2 ¼ k2

w ¼ E=p u ¼ ω=k

Trajectory Ray

Table 1.
Analogy between Hamilton-Jacobi’s classical mechanics and geometrical optics.

S ¼ GΦ (a)

S0 ¼ GΦ0 (b)

pj ¼ ∂S
∂xj

¼ G ∂Φ
∂xj

¼ Gkj (c)

E ¼ � ∂S
∂t ¼ �G ∂Φ

∂t ¼ Gω (d)

w ¼ E
p ¼ ω

k ¼ u (e)

trajectory $ ray

Table 2.
The dictionary.
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which we call de Broglie, or Einstein-de Broglie relations. Eq. (28) expresses an
equivalence between momentum (mechanical language) and wave-number (optical
language), while Eq. (29) expresses an equivalence between energy (mechanical
language) and angular frequency (optical language).

The situation we are facing is now sketched in the Figure 1 below. First, we
possess an analogy between Hamilton-Jacobi’s classical mechanics and geometrical
optics, expressed by a dictionary D. Second, geometrical optics is an approximation
to scalar wave optics. The Figure 1 then exhibits three filled rectangles, and we may
feel intuitively but clearly that something is lacking, corresponding to the fourth
empty rectangle. To fill this rectangle, we apply the dictionary D to wave optics.
From the dictionary of Table 2, with G ¼ ℏ, we have:

ω2

u2
¼ k2 ¼ p2

ℏ2 ¼
2m E� Vð Þ

ℏ2 (30)

We may then translate Eq. (22) to:

∂
2Ψ0

∂x2j
þ 2m

ℏ2 E� Vð ÞΨ0 ¼ 0 (31)

which is exactly the time-independent (stationary) Schrödinger’s equation.
Therefore, Eq. (16) is translated to:

Ψ ¼ Ψ0 exp �iEt=ℏð Þ (32)

and we readily establish that Ψ also satisfies Eq. (31) that we better rewrite as:

� ℏ2

2m
∂
2Ψ
∂x2j

þ VΨ ¼ EΨ (33)

Next, we can eliminate E from Eq. (33) by using Eq. (32). The “simplest” way to
do it is to write:

EΨ ¼ iℏ
∂Ψ
∂t

(34)

Figure 1.
Guessing Schrödinger’s equation.
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leading to:

iℏ
∂Ψ
∂t

¼ � ℏ2

2m
∂
2Ψ
∂x2j

þ VΨ (35)

which is the general time-dependent Schrödinger’s equation. Invoking the
“simplest” way to obtain Eq. (34) rules out awkward expressions such as the one
obtained by deriving Eq. (32) twice with respect to time, i.e.:

EΨ ¼ iℏ

ffiffiffiffiffiffiffiffiffiffiffiffi
Ψ
∂
2Ψ
∂t2

s
(36)

4. Deriving a set of generalized Schrödinger’s equations

There are good reasons to believe that classical mechanics is suspicious. One of
them is the existence of singularities in classical mechanics such as exhibited in the
mechanical rainbow [16, 17]. If we trust a non-singularity principle stating that
“local infinity in physics is not admissible” [18], we arrive to the conclusion that we
must build a wave mechanics (nowadays better known as “quantum mechanics”).
For this, we decide to start from what we know (actually what we are supposed to
know), namely classical mechanics. We are looking for a wave mechanics based on
a wave Ψ xj, t

� �
which should have the virtue of washing out the singularities

exhibited by classical mechanics. The most general form for a wave reads as:

Ψ ¼ eiT (37)

in which T ¼ T xj, t
� �

is a complex dimensionless phase. At this stage, our
amount of knowledge is supposed to be very weak. We only possess one field
S xj, t
� �

for classical mechanics and two fields Ψ xj, t
� �

and T xj, t
� �

for wave mechan-
ics. These fields are the only quantities involved in the problem. Therefore, we have
to search for a relationship between Ψ and S (first option), or between T and S
(second option). Because T and S possess the same nature (they are fields without
being waves), I preferably choose the second option. Of course, the first option is
likely to be valid as well, but it would certainly lead to more complicated derivations
and equations.

For the relationship between T and S, we could search for T Sð Þ or for S Tð Þ.
Because wave mechanics (T) is assumed to be more general than classical mechanics
(S), it is apparent that we better have to try to determine T Sð Þ rather than the inverse
version S Tð Þ. We therefore have to explicitly consider T xj, t

� � ¼ T S xj, t
� �� �

. How-
ever, this is to be slightly corrected. Indeed, T is dimensionless while S is an action
(the action). This will require us to introduce a new constant, that will be denoted g.

Now, I invoke a principle that I call the lifting principle (later to be commented a
bit more when the demonstration is completed). This principle tells us something
very simple, even looking a bit like tautological, as follows: classical mechanics is an
approximation to wave mechanics. Rather than simply using the argument S in T Sð Þ,
we then have to look for a function T S

� �
in which the functional argument S ¼

S xj, t
� �

reads as:

S ¼ 1
g
Sþ iεS1ð Þ (38)
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in which g is a constant having the dimension of an action, S1 is a correcting
function, and ε is a small parameter. To recover classical mechanics from wave
mechanics, we shall have to take the limit ε ! 0 so that, the constant g being
dismissed, we are left with the field S (and with its equation). Also, we can take
ε∈R. Indeed, if ε were complex, it would exhibit a phase factor which could be
absorbed in S1. Similarly, the prefactor “i” which is introduced for convenience
could be absorbed in S1:

The function T S
� �

may be explicitly written as:

T ¼ Tε
Sþ iεS1

g

� �
(39)

in which we used a subscript ε to insist on the fact that T depends on ε. Eq. (39)
may give the feeling that we are dealing with a restricted first-order perturbation
approach. However, instead of Eq. (38), let us assume:

S ¼ 1
g

Sþ iεS1 þ iεð Þ2S2 þ … Þ
�

(40)

This can be rewritten as:

S ¼ 1
g

Sþ iε S1 þ iεS2 þ …
� �� �

(41)

which, relabelling, identifies with Eq. (38).
We are now looking for a differential equation satisfied by the wave Ψ,

involving partial derivatives with respect to xj and t. This equation must be
fundamental, that is to say it must contain lowest-order derivatives compatible
with the constraints imposed by the problem under study. Once the fundamental
equation is obtained, we can of course generate other equations by further
differentiating with respect to xj and t, but such extra-equations are said to be
non-fundamental.

We begin with the assumption that, besides derivatives with respect to xj, the
wave equation only contains the first derivative ∂Ψ=∂t with respect to time. We
shall later comment on the use of higher-order derivatives with respect to time.

The derivative ∂Ψ=∂t may always be written as:

∂Ψ
∂t

¼ f ε K, ∂Ψf gð Þ (42)

in which we again use a subscript ε to insist on the dependence on ε. Also, K is an
extra-field (i.e. a function of time and space, but not a dynamical field possessing
its own differential equation), possibly a constant, and ∂Ψf g represents a set of
arguments formed from various derivatives of Ψ with respect to xj:

Ψi1i2i3 … ir ¼
∂

∂xi1

∂

∂xi2

∂

∂xi3
…

∂

∂xir
Ψ (43)

The set ∂Ψf g is infinite and there is a systematic way to generate all arguments of
the set. For instance, the subset generated by Ψijk contains ΨijkΨiΨjΨk, ΨijkΨijΨk, … ,
and other arguments obtained by using complex conjugations.

We may also express the derivative ∂Ψ=∂t from Eqs. (37) and (39), so that we
obtain:
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∂Ψ
∂t

¼ i
dTε

dS
1
g

∂S
∂t

þ iε
∂S1
∂t

� �
Ψ (44)

We rewrite Eq. (44) as:

� ∂S
∂t

¼ iε
∂S1
∂t

� g
i dTε

dS
Ψ
∂Ψ
∂t

, Ψ 6¼ 0 (45)

or, invoking Eq. (42):

� ∂S
∂t

¼ iε
∂S1
∂t

� g
i dTε

dS
Ψ
f ε K, ∂Ψf gð Þ (46)

But, Hamilton-Jacobi’s equation (and the lifting principle) implies that the r.h.s.
of Eq. (46) must contain a term with no derivative associated with V in Eq. (1), and
a term involving ∂S=∂xj

� �2, associated with the first term in the r.h.s. of Eq. (1).
These terms have to be involved in the function f ε. Upon investigation, we find

that the term involving ∂S=∂xj
� �2 can only be generated by Ψjj which indeed is

found to be:

Ψjj ¼ iΨ
g
fT
g

∂S
∂xj

� �2

þ 2iεT
g

∂S
∂xj

∂S1
∂xj

(47)

� ε2T
g

∂S1
∂xj

� �2

þ dTε

dS
∂
2S
∂x2j

þ iε
∂
2S1
∂x2j

 !
g

in which:

T ¼ i
dTε

dS

� �2

þ d2Tε

dS
2 (48)

We therefore set, without any loss of generality:

f ε K, ∂Ψf gð Þ ¼ a
∂
2Ψ
∂x2j

þ bΨþ hε K, ∂Ψf gð Þ (49)

in which hε is a complementary function, possibly including non-linear terms,
and which also could possibly annihilate the terms a∂2Ψ=∂x2j and bΨ if, eventually,
we would find that they should be zero.

The evolution Eq. (42) then takes the form:

∂Ψ
∂t

¼ a
∂
2Ψ
∂x2j

þ bΨþ hε K, ∂Ψf gð Þ (50)

and our next task is to evaluate a and b.
To this purpose, we now return to Eq. (46) and insert in it Eqs. (49) and (47),

leading to:

� ∂S
∂t

þ a
g

∂S
∂xj

� �2

i
dTε

dS
þ d2Tε=dS

2

dTε=dS

 !
þ gb

i dTε

dS

¼ Aþ B þ C (51)
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with:

A ¼ �a
∂
2S
∂x2j

� g
hε

i
dTε

dS
Ψ

B ¼ ε i
∂S1
∂t

� 2ia
g

i
dTε

dS
þ d2Tε=dS

2

dTε=dS

 !
∂S
∂xj

∂S1
∂xj

� ia
∂
2S1
∂x2j

" #

C ¼ ε2
a
g

∂S1
∂xj

� �2

i
dTε

dS
þ d2Tε=dS

2

dTε=dS

 !

In the classical limit (ε ! 0), Eq. (51) simplifies to:

� ∂S
∂t

þ a
g

∂S
∂xj

� �2

i
dT0

dS
þ d2T0=dS

2

dT0=dS

 !
þ gb

i dT0

dS

¼ �a
∂
2S
∂x2j

� g
h0

i dT0

dS
Ψ

(52)

which must identify with Hamilton-Jacobi’s equation. Under the proviso to be
checked later that the r.h.s. of Eq. (52) must be vanishingly small, we then obtain,
from the l.h.s.:

gb

i dT0

dS

¼ �V (53)

a
g

i
dT0

dS
þ d2T0=dS

2

dT0=dS

 !
¼ � 1

2m
(54)

in which T0 ¼ T0 S=gð Þ and S therefore reduces to S=g. Eq. (53) implies:

b ¼ �
iV dT0

dS

g
(55)

We must now recall that the coefficient b has been actually set as a function
b xj, t
� �

, and Eq. (50) shows that it must pertain to the wave mechanical level. In
other words, it does not pertain to the classical mechanical level, that is to say, as a
rational demand, we would not like it to depend on S. Therefore, dT0=dS must be a
constant that we denote as C1.

From Eq. (55), we then have:

b ¼ �iV
g

C1 (56)

With d2T0=dS
2 ¼ 0 (since the first derivative is a constant), Eq. (54) then implies:

a ¼ ig
2mC1

(57)

Inserting Eqs. (56) and (57) into Eq. (50), we then obtain:

ig
∂Ψ
∂t

¼ � g2

2mC1

∂
2Ψ
∂x2j

þ VC1Ψþ ighε (58)
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Concerning the constant C1, I have (at least at the present time) no theoretical
reason to assign a value to it.

Let R denote the r.h.s. of Eq. (52). We still have to check that it is vanishingly
small. With Eq. (57), we obtain:

R ¼ � g
C1

i
2m

∂
2S
∂x2j

þ h0
iΨ

 !
(59)

which is indeed 0 in the limit g ! 0. This implies that g is a small action, actually
so small that it could not be detected in a classical framework.

Eq. (58) is the main result of this subsection. It provides a set of generalized
Schrödinger’s equations, being admitted that they are evolution equations (first
derivative with respect to time), obtained by a deformation of Hamilton-Jacobi’s
equation, according to the lifting principle. The classical Schrödinger’s equation is,
in a certain sense, the simplest equation in the set. It is obtained by setting the
nonlinear term hε to 0 and C1 to 1, while the constant g identifies with the Planck’s
constant ℏ. This is equivalent to saying that in Eqs. (49) and (50), only the a- and
b-terms in the r.h.s. of the equations, required to match Hamilton-Jacobi’s equation
in the classical limit, are retained.

Let us note that the function hε in Eq. (58) may be significant because it allows
one to introduce non-linear wave equations. Non-linear Schrödinger’s equations in
quantum theory are considered in the literature in many papers. For example, they
are comprehensively discussed by Doebner and Goldin in [19], and in many refer-
ences therein. We may also meet such equations in the Bohm-Bub hidden-variables
theory [20], or with the Ghirardi-Rimini-Weber equation for spontaneous collapse
of the wave function [21]. More generally, non-linear equations may provide a
solution to the measurement problem insofar as linear equations, in utmost rigor, do
not allow one to get rid of quantum superpositions. This fact has been recently
heavily emphasized by R. Penrose in one of his books [22]. A word of caution is
however required, namely that, according to Gisin [23], “the Schrödinger evolution
is the only quantum evolution that is deterministic and compatible with relativity”.
Hence, “the fact that a deterministic evolution compatible with relativity must be
linear puts heavy doubts on the possibility to solve the measurement problem [… ]
by adding non linear terms to the Schrödinger equation”.

5. Complementary discussion

From the generalized Schrödinger’s Eq. (58) we may recover the classical
Schrödinger’s equation, as we have commented, by setting hε ¼ 0, C1 ¼ 1 and g ¼ ℏ,
leading to:

iℏ
∂Ψ
∂t

¼ � ℏ2

2m
∂
2Ψ
∂x2j

þ VΨ (60)

This is a first application of the correspondence principle. A second application
of this correspondence principle afterward allows one to recover the classical
Hamilton-Jacobi’s equation from Schrödinger’s equation, as discussed for instance
by Blotkhintsev [2]. From the generalized Schrödinger’s equation, we therefore
recover the classical Hamilton-Jacobi’s equation by a two-step up-bottom process,
applying twice the correspondence principle. Another approach is to use Eq. (58) as
an Ansatz under the form:
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ig
∂Ψ
∂t

¼ A xj, t
� � ∂2Ψ

∂x2j
þ B xj, t

� �
ΨþHε

and to pursue the game with the correspondence principle to recover, using again
a two-step approach, Hamilton-Jacobi’s equation. But the use of an Ansatz is less
rigorous than the lifting principle because it contains the risk to make the Ansatz too
simple, and therefore to omit significant terms. Note, however, that we have implic-
itly made the assumption that the state of the wave is defined by the wave ψ itself so
that we have obtained what is called an evolution equation. The use of a second-order
derivative with respect to time would require, for integration, to have the state
defined by ψ and by its first derivative (and similar considerations for higher order
derivatives with respect to time) so that the result would not be an evolution equa-
tion. Therefore, in utmost rigor, what we have demonstrated is that Schrödinger’s
equation is the simplest evolution equation satisfying the lifting principle.

To clearly emphasize the difference between the correspondence and the lifting
principles, let us consider two theories, denoted TG (G standing for “general”) and
TA (A standing for “approximate”). By taking some kind of limit on TG, we must
recover TA, a up-down process (↓) that may be denoted as TG ! TA. We then say
that TG satisfies a correspondence principle with respect to TA. If TG is unknown
and under construction, any valid candidate, say TG1, TG2 … must satisfy the
correspondence principle: TG1 ! TA, TG2 ! TA … . It it does not, it is not valid and
must be rejected. If several valid candidates are retained, then the discrimination
among the candidates may need to rely on other considerations, or even remaining
undecidable, such as when dealing with the Duhem-Quine underdetermination of
theories by experiments. The lifting principle is a down-up process (↑): TA ! TG.
It starts from a theory relying on an equation (or a set of equations) which is
acknowledged to be valid within a certain domain of applicability and extends this
domain of validity by extending the original equation (or set of equations) under
conditions defined by physical requirements.

For example, the lifting principle tells us that classical mechanics is an approxi-
mation to quantum mechanics. Therefore, quantum mechanics must indeed satisfy
a correspondence principle, meaning that the correspondence principle is contained
in the lifting principle. However, as we have seen, it does not identify with it. What
we have done to use it is to start from TA and find a way to reach candidates for TG.
However, the word “lifting”may have other meanings, for instance in the theory of
nonlinear dynamics when, to study a low-dimensional system it can be easier to
study its elevation in a higher dimensional system [24, 25]. On the one hand, the
higher-dimensional system must satisfy a correspondence principle. One the other
hand, it is said that it is obtained as a result of the “lifting” of the low-dimensional
system. My choice of the word “lifting” in the context of the present chapter is the
result of my borrowing it to the context of chaos theory.

Another point of view may be taken by using a metaphor from Feynman [12]
according to which the correspondence principle proceeds from one object to its
shadow (and there is one shadow for one object) while the lifting principle proceeds
from a shadow to objects (and there are several possible objects for a given
shadow). Our results agree with this expectation. We did not reach Schrödinger’s
equation, but rather a set of generalized Schrödinger’s equation. The derivation
of Schrödinger, and all Schrödinger-like derivations, reach a single result because
they used analogies, guesses and trials, with more or less implicit assumptions.
Conversely, the use of the lifting principle simultaneously provides the whole
set of admissible possibilities with a minimal number of assumptions (namely
that we have to deal with an evolution equation). All candidates are reached in a
single step.
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6. Conclusion

The realm of nonlinear Schrödinger’s equations is very rich, with many applica-
tions such as to fluid mechanics, solitons, nonlinear optics and Bose-Einstein con-
densates. In the present chapter, we have demonstrated, using a lifting principle,
that such equations occur naturally as a generalization of Hamilton-Jacobi’s formu-
lation of classical mechanics, without however pretending that nonlinear equations
obtained by the lifting process identify with nonlinear Schrödinger’s equations used
in other different contexts (this would require another specific study outside of the
scope of the present chapter). The material presented in this chapter is extracted
from a book, namely [26]. It is here however presented under a single roof and
might then attract the interest of other readers.
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Chapter 8

From Schrödinger Equation to
Quantum Conspiracy
Francis T.S. Yu

Abstract

Schrödinger’s quantum mechanics is a legacy of Hamiltonian’s classical
mechanics. But Hamiltonian mechanics was developed from an empty space
paradigm, for which Schrödinger’s equation is a timeless (t = 0) or time-
independent deterministic equation, which includes his fundamental principle of
superposition. When one is dealing Schrödinger equation, it is unavoidable not to
mention about Schrödinger ‘s cat. Which is one of the most elusive cats in modern
science since disclosed the half-life cat hypothesis in 1935. The cat is alive or not had
been debated by score of world renounced scientists it is still debating. Yet I will
show Schrödinger ‘s hypothesis is not a physically realizable hypothesis, for which it
has nothing for us to debate about. But quantum communication and computing
rely on qubit information algorithm, I will show that qubit information logic is as
elusive as Schrödinger’s cat. It exists only within an empty space, but not exists
within our temporal (t > 0) universe. Since there is always a price to pay within our
universe, I will show that every physical subspace needs a section of time Δt and an
amount of energy ΔE to create and it is not free. Although, double slit hypothesis
had been fictitiously confirmed that superposition principle exists, but I will show
that double-slit postulation is another non-physically realizable hypothesis that had
let us to believing superposition principle is actually existed within our time–space.
Yet one of the worst coverup must be particles behaved differently within a micro
space to justify the spooky superposition principle, which is one of greatest quan-
tum conspiracy in modern science. Nevertheless, the art of quantum mechanics is
all about a physically realizable equation, we see that everything existed within our
universe, no matter how small it is, it has to be temporal (t > 0) which includes all
the laws, principles, and equations. Otherwise, it is virtual as mathematics is since
Schrodinger equation is mathematics, but mathematics is not equaled to science.
Finally, when science turns to virtual reality for solution it is not a reliable answer.
But when science turns to physical reality for an answer it is a reliable solution.

Keywords: Schrödinger equation, quantum mechanics, Schrödinger’s cat, qubit
information, physical realizable, timeless space, temporal space, quantum theory,
double-slit hypothesis, superposition principle

1. Introduction

In modern physics there are two most important pillars of disciplines: It seems to
me one is dealing with macro scale objects of Einstein [1] and the others is dealing
with micro scale particle of Schrödinger [2]. Instead of speculating that micro and
macro-object behaves differently, but they share a common denominator; temporal
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(t > 0) subspace. In other words, regardless how small the particle is it has to be
temporal (t > 0), otherwise it cannot exist within our temporal (t > 0) universe.
Nevertheless, as science changes from Newtonian [3] mechanics to statistical [4], to
relativistic [1], and to quantum mechanics [2], time had always been regarded as an
independent variable with respect to substance or subspace. And this is precisely
what modern physics had been used the same empty space platform, which they
had have treated time as an independent variable for centuries. Since Heisenberg
was one of the earlier starters in quantum theory [5], I have found his principle was
derived on the same empty space platform as depicted in Figure 1 which is in fact
the “same” platform used for developing Hamiltonian classical mechanics [6]. For
which this is the same reason why Schrödinger’s quantum mechanics is timeless
(t = 0) or time independent because quantum mechanics is the legacy of Hamilto-
nian. And this is the same reason that Heisenberg uncertainty principle is time
independent, instead of changes with time [7].

Nevertheless, Figure 1 is not a physically realizable paradigm by virtue of tem-
poral exclusive principle. In other words, emptiness and temporal (t > 0) are
mutually exclusive. Strictly every substance or subspace has to be temporal (t > 0)
within our temporal (t > 0) universe. For simplicity we assumed momentarily that
mass m is a constant and I shall come for this temporal issue in a subsequent
discussion.

Yet, total energy of a Hamiltonian particle in motion is equal to its kinetic energy
plus the particle’s potential energy as given by [6],

H ¼ p2= 2 mð Þ þ V (1)

which is the well-known Hamiltonian equation, where p and m represent the
particle’s momentum and mass respectively, V is the particle’s potential energy.
Equivalently Hamiltonian equation can be written in the following form as applied
for a subatomic particle.

H ¼ � h2=ð8π2m
h �

� ∇2 þ V (2)

which is the well-known “Hamiltonian Operator” in classical mechanics. Where
h is the Planck’s constant, m and V are the mass and potential energy of the particle
and ∇2 is a Laplacian operator;

Figure 1.
Shows a particle in motion within a timeless (t = 0) subspace. v is the velocity of the particle.
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∇2 ¼ ∂
2

∂xi∂xj

By virtue of “energy conservation”, Hamiltonian equation can be written as,

∇ψ ¼ f� h2=ð8π2mÞ
h i

∇2 þ Vgψ ¼ E ψ (3)

where ψ is the wave function that remains to be determined, E and V are the
energy factor and potential energy that need to be incorporated within the equation.
And this is precisely where Schrödinger’s equation was derived from, by using the
energy factor E = hν (i.e., a quanta of light energy) adopted from Bohr’s atomic
model [8], Schrödinger equation can be written as [6];

∂
2ψ

∂x2
þ 8π2m

h2
E� Vð Þψ ¼ 0 (4)

In view of this Schrödinger’s equation, but it is essentially identical to the Ham-
iltonian equation. Where ψ is the wave function has to be determined, m is the mass
of a photonic-particle (i.e., photon), E and V are the dynamic quantum state energy
and potential energy of the particle, x is the spatial variable and h is the Planck’s
constant.

Since Schrödinger’s equation is the core of quantum mechanics, but without
Hamiltonian’s mechanics it seems to me; we would not have the quantum mechan-
ics. The fact is that quantum mechanics is essentially identical to Hamiltonian
mechanics. The major difference between them is that; Schrödinger used a dynamic
quantum energy E = hν as obtained from a quantum leap energy of Bohr’s hypoth-
esis which changes from classical mechanics to quantum leap mechanics or quan-
tum mechanics. In other words, Schrödinger used a package of wavelet quantum
leap energy hν to equivalent a particle (or photon) as from wave-particle dynamics
of de Broglie’s hypothesis [9], although photon is not actually a real particle [10].
Nevertheless, where the mass m for a photonic particle in the Schrödinger’s equa-
tion remains to be “physically reconciled”, after all science is a law of approxima-
tion. Furthermore, without the adoption of Bohr’s quantum leap hν, quantum
physics would not have started. It seems to me that; quantum leap energy E = hν has
played a viable role as transforming from Hamiltonian classical mechanics to quan-
tum mechanics which Schrödinger had done to his quantum theory.

2. Timeless (t = 0) Schrödinger equation

Nevertheless, Schrödinger equation is a point singularity approximated deter-
ministic time-independent equation, for which we see that any solution and princi-
ple come out from Schrödinger equation will be deterministic time-independent.
But science is supposed to change naturally with time or approximated. And this is
precisely the reason that quantum scientists had have committed for decades with-
out knowing that solution or principle as obtained from Schrödinger equation is not
physically realizable. For which his fundamental principle of superposition is one of
them. The reason why Schrödinger equation is not a physically realizable equation is
trivial; firstly, since Schrödinger equation is the legacy of Hamiltonian, which is a
timeless (t = 0) or time independent classical machine. Secondly, the quantum leap
E = hν is not a time limited physically realizable assumption, since Bohr’s atomic was
developed from an empty subspace platform, which has no time and no space. And
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this empty virtual subspace had been using it for centuries. Although Schrödinger
equation has given scores of viable solutions for practical applications but at the
same time it had also produced a number of fictitious and irrational principles and
theories that are not actually existed within our temporal (t > 0) universe, such as
the paradox of Schrödinger’s Cat [11], string theory [12], superposition principle,
and others.

In order to understand why Schrödinger equation is a timeless (t = 0) or time-
independent equation, we have to understand what is a temporal (t > 0) space
paradigm since physically realizable solution comes from a physically realizable
subspace. For which every physically realizable subspace must be a subspace within
our temporal (t > 0) universe, which changes naturally with time. This includes all
the laws, principles, and theories must changes naturally with time, as from strictly
physical realizability standpoint. Particularly we are in the era of asking our science
to response as instantaneously, for instance as the fundamental principle of
Schrödinger equation.

For which let me epitomize the nature of our temporal (t > 0) universe as
depicted in Figure 2. It shows that our universe was started from a big bang
creation theory about 14 billion light years ago. Since past certainty’s consequences
(i.e., memory subspaces) were happened at specified time within the negative time
domain (i.e., t < 0), we see that every specific past time event has been determined
with respect to a precise past certainty subspace. For which time can be treated as
an independent variable with respect to the past certainty consequences within the
pass-time domain (t < 0) as from mathematical standpoint. Which is precisely
where Schrödinger equation is, as well all the laws and theories were developed.

However, it is reasonable to predict any hypothesis and principle based on our
past certainty knowledges, but it is the nature of our time–space tells us that
prediction cannot be absolute deterministic, since every physical aspect changes

Figure 2.
Shows a composited temporal (t > 0) time–space diagram to epitomize the nature of our temporal universe.
BLY is billion of light years.
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with time. In other words, a deterministic Schrödinger equation should not be used
to predict future reality without the constrain of temporal (t > 0) condition, since
future physical reality changes naturally with time. And this is the timeless (t = 0)
or time-independent past-time certainty subspace that many scientists had used to
predict the future out-come with absolute certainty, even though consciously they
knew it is incorrect. Although this was the issue that Einstein and his colleagues
were strongly opposed Schrödinger’s fundamental principle of superposition [13],
but Einstein had also committed the same error as Schrödinger did, his general and
special theory of relativity are also deterministic theories. Nevertheless, the major
difference between Schrödinger’s fundamental principle and Einstein’s theories is
that, Schrödinger’s principle is essentially to stop the time, such as applied to
quantum computing and communication [14, 15]. While Einstein’s theory is basi-
cally to move ahead or behind the pace of time, for instance as applied to wormhole
time traveling [16]. Nevertheless, Schrödinger equation is a non-physically realiz-
able equation which is not encouraged to be used without the constrain of temporal
(t > 0) condition, particularly as applied on instantaneously and simultaneously
supersession position. Since the fundamental principle exists only within an empty
space, but not within our temporal (t > 0) space where empty space is not an
inaccessible subspace within our temporal universe. From which we see that those
application of Schrödinger equation to quantum space–time would have problem to
prove that they exist within our temporal (t > 0) universe, since Schrödinger
equation is a time-independent equation.

Although using past certainties to predict future outcome is a reasonable method
that had have been used for centuries, but it is physically wrong if we treated time
as an independent variable within our temporal (t > 0) universe. And this is the
reason scores of irrational and fictitious solutions emerged, that has already been
dominated the world-wide scientific community. This includes Schrödinger ‘s
fundamental principle of superposition, Einstein’s special and general relativity
theories, and many others, since they were all based on past certainties to predict a
deterministic future, which is not a temporal (t > 0) solution that changes with time
(i.e., non-deterministic).

Nevertheless, the section of time Δt shown in Figure 2 represents an incremen-
tal moment after instant t = 0 moved to a new t = 0 + Δt. In which Δt can be squeeze
as small as we wish (i.e., Δt ⟶0), but it cannot be squeezed to zero (i.e., Δt = 0)
even we have all the energy ΔE to pay for it. In fact, this is the section of time that
cannot be delay or moved ahead the pace of time (i.e., t < 0 + Δt or t > 0 + Δt).
From which the possibility for time traveling either ahead or behind the pace of
time is not conceivable, since we are coexisted with time.

Since our temporal (t > 0) universe shows that science is supposed to be
approximated but not exact or deterministic, any deterministic solution is not
physically real as from absolute certainty of the present. In other words, further
away from the absolute certainty the more ambiguous the prediction or uncertainty
is. And this exactly why uncertainty principle should have developed based on
temporal (t > 0) standpoint, instead Heisenberg principle was derived by observa-
tion which is independent from time [7].

3. Temporal (t > 0) Schrodinger equation

As any physical substance or subspace requires to be temporal (t > 0), otherwise
it cannot be existed within our temporal universe, this includes all the laws, princi-
ples, and theories, otherwise those principles and theories would be as virtual as
mathematics. For example, as we had shown in the preceding section. Schrödinger
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equation is essentially the legacy of Hamiltonian, where Hamiltonian is a timeless
(t = 0) or time-independent equation. To avoid the ambiguity of timeless and time-
independent equation, that means that timeless and time independent are equiva-
lent, since within a virtual empty space it has no time and no physical space. Which
is precisely why we had hijacked by an empty space inadvertently for centuries, for
not knowingly that empty space paradigm is not a physically realizable paradigm.

Since the application of all those timeless (t = 0) principles and theories were
never encountered with serious irrationality, it was because we had never thought
that temporal (t > 0) issue of those timeless (t = 0) principles, although we knew
science is approximated. Which was in part due to our own analytical incline that
paradoxes can be alleviated by rigorous mathematics that all theoretical scientists
adored. For which we felt that without complicated mathematics it has no theoret-
ical physics. But mathematics is not equaled to science, although science needs
mathematics. It turns out to be wrong with theoretical physicists, physically realiz-
able science depends on a physically realizable platform but not on the severity of
mathematics. Nevertheless, as we have seen it is mathematics currently leads the
theoretical physics, but not science directs mathematics. In other words, if it not
how rigorous mathematics is, but it is the physically realizable science that we are
searching for.

Nevertheless, it must be the demand for instantaneous information-
transmission and simultaneous computing, that had motivated me found that the
fundamental principle of Schrodinger had violated the nature of temporal (t > 0)
condition of our universe. Since every subspace within our universe changes with
time, but not the subspace stops the time. In other words, it is time changes us yet
we are coexisted with time. Since time changes subspace, then the respond from
subspace cannot be instantaneously (t = 0), but it takes a section of time Δt no
matter as small it is (i.e., Δt ! 0), but never able to make it to zero (i.e., Δt = 0), to
response. Which is a well-known causality constraint [17], that we may have
forgotten.

Since Schrödinger equation is one of my typical examples to shown that flaw and
limitation as it is implemented within our temporal (t > 0) time–space. Firstly,
Schrodinger equation is a time-independent deterministic equation, which is pre-
cisely why superposition is a timeless (t = 0) principle. Nevertheless, if we imposed
a temporal (t > 0) constraint on the equation as given by,

∂
2ψ

∂x2
þ 8π2m

h2
E� Vð Þψ ¼ 0, t>0 (5)

From which we see that any solution comes out from this equation will be tem-
poral (t > 0), since temporal equation produces temporal solution. Nevertheless, as
from strict temporal (t > 0) standpoint, mass m, quantum leap energy E = hν, and
potential energy V should be temporal. Nevertheless, (t > 0) imposition is showing
that solution or principle as derived from this equation should be temporal. For
example, fundamental principle of superposition is one of the evidences, since the
principle was not constrained by temporal condition. In other words, the adopted
quantum leap energy E = hν is not a physically realizable assumption to be used, since
it is not a time limited quantum leap. This means the wave function ψ as obtained
from Schrödinger equation without the temporal constraint is given by [6];

ψ tð Þ ¼ ψ0 exp �i 2π ν t–t0ð Þ=h½ � (6)

Which is the well-known Schrödinger wave equation, where ψ0 is an arbitrary
constant, ν is the frequency of the quantum leap hν and h is the Planck’s constant.
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As anticipated, Schrödinger wave equation is also a time unlimited solution with no
bandwidth, which is not a physical realizable solution. Yet many quantum scientists
had used this wave solution to pursuing their dream for quantum supremacy com-
puting and communication [14, 15]. But not knowing the dream they are pursuing
is not a physical realizable dream.

It is trivial where the source of the unlimited quantum leap came from, it is from
Bohr atomic model as depicted in Figure 3. Where an atomic model is embedded
within a non-physically realizable empty space paper paradigm, it has no time and
no space. Yet quantum physicists can implant virtual time and coordinates within
the paradigm but not knowing that piece of paper does not actually represents a
physically real subspace. From which we see that Bohr’s model strictly speaking it is
not a physically realizable paradigm should be used. Firstly it is an empty subspace
paradigm, secondly E = hν is not a physically realizable quantum leap energy.

On the other hand, if we put a temporal (t > 0) constraint on the time unlimited
wave equation as given by,

ψ tð Þ ¼ ψ0 exp : �i 2π ν t–t0ð Þ=h½ �, t>0 (7)

From which we have,

ψ tð Þ ¼ ψo exp :½�αo t� toð Þ2� cos ð2πνtÞ; t>0, (8)

where t > 0 denotes equation is subjected to temporal (t > 0) condition (i.e.,
exists only within positive time domain). From which we see that a narrow package
of wavelet as shown in Figure 4 is temporal (t > 0) and time limited. Thus, we see
that it is unlikely simultaneous wavelets will instantaneously occur at same time.
From which we have shown that Schrödinger’s fundamental principle of superposi-
tion fails to exist within our temporal (t > 0) universe.

Nevertheless, major problem of Schrödinger equation is its time-independent or
timeless issue, since the equation was derived from an empty space platform as

Figure 3.
Shows a Bohr atomic model embedded in a timeless (t = 0) platform (i.e., a piece of paper).
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Hamiltonian. From which we see that, Schrodinger equation is not a physically
realizable equation, which is precisely why quantum world behaves weirdly as
within a timeless wonderland. Since string theory [12] in part was developed from
Schrödinger equation, it is trivial to see that string theory is deterministic which is
not a physically realizable theory. From which we see that it is not how sophisti-
cated a theory is, but it is the temporal (t > 0) subspace platform that produces
physically realizable theories.

There is however another essential physical limit cannot be ignored. Within our
temporal (t > 0) universe every aspect has a price to pay; a section of time Δt and an
amount of energy ΔE [i.e., Δt, ΔE], where ΔE(t) is temporal. In other words, every
physically realizable theory or principle needs a section of time Δt to spare and an
amount of energy ΔE to realize or to transmit. For instance, every bit of information
needs a section of time Δt to create. But without an amount of energy ΔE it is
impossible to physically realize a bit of information. For which we have the follow-
ing by uncertainty relationship as given by [18],

Δt ΔE≥h (9)

where h is the Planck’s constant. From which we see that we need to pay a higher
amount of energy ΔE for a narrower section of Δt for every bit of information-
transmission.

On the other hand, if we want to curve a particle into a string-like shape within
our quantum world [12], which is not a physically realizable theory since string
theory is a deterministic principle while our universe is temporal (t > 0). Yet, my
question is that how long it will take to change a particle to string like equivalent,
even though assume we have all the energy (i.e., ΔE) we need. And this is a trivial
question that we have to answer, since every physical aspect within our universe
has a price (i.e., Δt, ΔE) to pay. In other words, particle-string dynamic is a
mathematical equivalent, but physically they are not equaled since every particle is
a temporal (t > 0) particle, which has a mass with time.

4. What timeless space does to wavelets?

On the other hand, if we take a set physically realizable wave functions as given by,

ψo1 tð Þ ¼ ψo1 exp ½�αo1 t� to1ð Þ2� cos ð2πνo1tÞ, t>0, (10)

ψo2 tð Þ ¼ ψo2 exp ½�αo2 t� to2ð Þ2� cos ð2πνo2tÞ, t>0, (11)

Figure 4.
Shows a time-limited temporal (t > 0) equation exists in positive time domain. Which can be implemented
within our temporal (t > 0) universe.
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Which are depicted respectively in Figure 5(a), where we see that wavelets are
physically separated. However, if this set of wavelets are submerged within an
empty subspace, although physically not realizable as illustrated in Figure 5(b), we
see that the wavelets superimposed at t = 0 within an empty space, since within an
empty space it has no time and no distance. And this is precisely what a virtual
empty space can do for all substances as from mathematical standpoint.

Before we move on, let me stress that wave-particle duality is a non-physical
realizable dynamic, since it is from statistical mechanics standpoint that a package
wavelet energy is equivalent to a particle in motion where momentum of a particle
p = h/λ is conserved [6]. However, one should not treat wave or a package of
wavelet energy hΔν as a particle or particle as wave. But it is a package of wavelet
energy equivalent to a particle dynamic (i.e., photon), but they are not equaled.
Similar to mass to energy equation, mass is equivalent to energy and energy is
equivalent to mass, but mass is not equaled to energy and energy is not mass. For
which a quantum of hν or a photon is a virtual particle. From which we see that a
photon has a momentum p = h/λ but no mass, although many quantum scientists
regard a photon as a physical real particle.

Similarly, we can show that a set of separated particles in motion is situated
within a temporal (t > 0) subspace as depicted in Figure 6(a). Since they are
embedded within a time–space platform, their locations can be precisely deter-
mined. However, if this set moving particles are situated within an empty space as
illustrated in Figure 6(b), then particles lost their temporal (t > 0) identities (e.g.,
such as size, location, and motion), since within an empty space it has no time and

Figure 5.
(a) Shows a set of time-limited temporal wavelets. (b) Shows the set of time-limited wavelets is embedded
within an empty space. We see superposition principle holds within an empty space since it has no time and no
space.
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no space. For which all the particles’ dynamic energy converged at t = 0. From
which we see that empty space is a virtual space which does not exist within our
temporal (t > 0) universe. But we had used this virtual space for ages since the
dawn of our science. And this reason that why we need to change to temporal
(t > 0) science otherwise we will forever be trapping within the empty wonderland
of timeless (t = 0) science, which does not need to pay a price (i.e., Δt, ΔE).

Nevertheless, Schrödinger equation is a non-physical realizable equation, which
can be traced back to the development of Hamiltonian mechanics. From which we
see that it is the background subspace (i.e., a piece of paper) that we had inadver-
tently treated as an empty space paradigm. And it is also the same empty space
paradigm that Bohr’s atomic model was embedded, from which we see that quan-
tum state energy hν is not a physically physical assumption. From which I had
shown any application of Schrödinger equation has to be constrained within the
temporal (t > 0) condition. Otherwise, the solution would be virtual and fictious,
which cannot be implemented within our time–space. From which I had shown that
it is not how rigorous mathematics is, it is the physical realizable paradigm
determines her solution is physical realizable.

5. Schrödinger’s cat

When we are dealing with quantum mechanics, it is inevitable not to mention
Schrödinger’s cat since it is one of the most elusive cats in the modern science since
Schrödinger’s disclosed it in 1935 at a Copenhagen forum. Since then, his half-life
cat has intrigued by a score of scientists and has been debated by Einstein, Bohr,
Schrödinger, and many others as soon Schrödinger disclosed his hypothesis. And
the debates have been persisted for over eight decades, and still debating. For
example, I may quote one of the late Richard Feynman quotations as: “After you
have leaned quantum mechanics, you really “do not” understand quantum
mechanics …”.

It is however not the fate of the Schrödinger’s half-life cat, but it is the paradox
that quantum scientists had have treated the fate of the cat as a physically realizable

Figure 6.
(a) Shows particles within a timeless (t = 0) subspace can do to particles. (b) Shows particle 1 and 2 are
superimposing at everywhere within an empty space. (c) Shows energy of particle 1 and 2 converged at t = 0, in
view of energy conservation. But empty space is a virtual mathematical space which does not exist within our
universe.
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paradox. In other words, many scientists believed the paradox of Schrödinger’s cat
is actually existed within our universe, without any hesitation. Or literally accepted
superposition is a physically realizable principle, although fictitious and irrational
solutions had emerged, it seems like looking into the Alice wonderland. In order to
justify some of their believing some quantum scientists even come-up with their
own logic; particle behaves weirdly within a microenvironment as in contrast
within a macro space. Yet some of their potential applications, such as quantum
computing and quantum entanglement communication are in fact in macro sub-
space environment. Nevertheless, I have found many of those micro behaviors are
not existed within our universe, from which paradox of Schrödinger’s cat is one of
them, as I shall discuss.

Let us start with the Schrödinger’s box as shown in Figure 7. Inside the box we
have equipped a bottle of poison gas and a device (i.e., a hammer) to break the
bottle, triggered by the decaying of a radio-active particle, to kill the cat. Since the
box is assumed totally opaque of which no one knows that the cat will be killed or
not, as imposed by the Schrödinger’s superposition principle until we open his box.
From which we see that the fate of Schrödinger ‘s cat is dependent upon the
beholder, or consciousness.

Nevertheless, as we investigate Schrödinger ‘s hypothesis, immediately we see
that his hypothesis is not a physical realizable postulation, since within the box it
has a timeless (t = 0) or time independent radioactive particle in it. As we know
that; any particle within our universe subspace has to be a temporal (t > 0) particle
or has time with it, otherwise the proposed radioactive particle cannot be existed
within Schrödinger’s temporal (t > 0) box. It is therefore, the paradox of
Schrödinger’s cat is not a physical realizable hypothesis and we should not have
treated Schrödinger’s cat as a physically real paradox.

Since every problem has multi solutions, I can change the scenarios of
Schrödinger’s box a little bit, such as allow a small group of individuals take turn to
open the box. After each observation close the box before passing on to the next
observer. My question is that; how many times the superposition has to collapse?
With all those apparent contradicted logics, we see that Schrödinger ‘s cat is not a
paradox after all. And the root of timeless (t = 0) superposition principle as based on
Bohr’s quantum leap hν, represents a time unlimited radiator, which is a singularity
approximated wave solution. But time-unlimited quantum leap is a non-physically
realizable radiator that cannot exist within our universe.

Figure 7.
Shows Paradox of Schrodinger’s Cat: Inside the box we equipped a bottle of poison gas and a device (i.e.,
hammer) to break the bottle, triggered by the decaying of a radio-active particle, to kill the cat.
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6. Micro space coverup

Two of the important pillars inmodern physics must be Einstein’s relativity and
Schrödinger’s Quantum theory; one is dealing with very large object, and the other is
dealing with small particles. Since both of Einstein’s theories and Schrödinger’s
mechanics were developed from an empty subspace, they are not physically realizable
principles. But it was those theories that had given us the fantasy promises that had led
us to believe that physical behaves within amacro and amicro are different, otherwise
relativistic theory and quantummechanics cannot be reconciled. Nevertheless, either
was inadvertently or not, it remains to be found.Nevertheless, this is the objective that I
will show that particles behave within amacro and amicro space are basically the same
regardless of their sizes. Fromwhich I wonder that particle behaves differently within a
micro spacemust be amajor cover upbut not inadvertently inmodern scientific history.

Although Einstein was strongly opposing Schrödinger’s quantum theory [13], but
his relativity theory had also committed the same error for using the same empty space
paradigm. Forwhich Iwill show that particle behaves basically the samewithin amacro
and amicro space, regardless of their size. Nevertheless, themajor difference between
Einstein’s theory and Schrödinger ‘s principle is that, one is tomove ahead or behind the
pace of time and the other is to stop the time. Yet neithermove ahead nor stop time is
possible, since our universe changes with time, but not change the time.

As commonly agreed, that a picture is worth more than a thousand words, then a
viable diagram is worth more hundreds of equations. Once again let me epitomize
the creation of our temporal (t > 0) universe as summarized in Figure 8.

Figure 8.
Shows our universe was originated by a big bang explosion from a singularity temporal mass m(t) triggered by
her own intensive gravitational force within a preexisted temporal (t > 0) space. In which we see that our
universe, subspace, galaxy, planet, particle regardless the size changes naturally with time. From which we see
that the behaviors within micro and macro are basically the same.
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In which it shows that the origin of our temporal (t > 0) universe was started by
a big bang explosion within a preexisted temporal (t > 0) space that allows a
singularity mass M(t) to exist and to grow over time. Such that her induced gravi-
tational pressure will eventually trigger the thermo-nuclei explosion of mass M that
enables creation of our universe. From which we see that every substance regardless
the size changes with time. Where time is the only invisible real variable runs at a
constant pace, for which nothing can move ahead or even stop time. And this a
physically realizable time–space we live in. Which is different from the Einstein’s
space–time continuum where he had treated time as an independent variable [1].
The fact is that temporal (t > 0) universe is a newly discovered realizable time–
space that closer to truth. From which I would anticipate temporal (t > 0) space will
eventually take over the time-independent universe of Einstein. For which we
would have a viable physically realizable paradigm for years to come, because
principle and theory developed from a temporal (t > 0) space platform will be
physically realizable.

In view of our temporal (t > 0) universe, it is not possible for particle behavior
differently within a micro space, since every particle is temporal that changes
naturally with time. Since it is time changes the particle, but not particle changes
time, time is neither can be stop momentarily as superposition principle stated or
changed momentarily as relativistic theory promised. In other words, every sub-
stance regardless of the size needs a section of time Δt and an amount of energy ΔE
to create. And it cannot allow micro-space behaves like a timeless space since every
subspace within our universe has to be temporal, by virtue of temporal exclusive
principle.

7. Qubit information conspiracy

Qubit information-transmission is basically exploiting Wiener’s communication
strategy for the purpose of qubit transmission [19]. For which the receiver would
anticipate a more ambiguous digital signal (e.g., either 0 or 1) from an anticipated
sender. In other words, qubit communication has treated at receiving end entropy
H(B) as a source entropy H(A) to determine the intended signal was sent. Since
signal was originated by the sender, by maximizing entropy H(B) under noiseless
condition the receiver can interpret the received signal (e.g., 0 or1) as equals to a
qubit information. And this is precisely the qubit information principle that cur-
rently is using for quantum communication and computing.

For example, a receiver is not certained about an enclosed message is either yes
or no, until the receiver opens the envelope to find out is yes or no message but not
both. Which is a similar the scenario to the paradox of Schrödinger ‘s cat before
opening his box. But the fate of Schrödinger’s cat or the information within the
envelope had been determined before we look into the Schrödinger’s box or the
receiver opens the envelope. From which we see that it is not our consciousness
changing the outcome of the enclosed message or the fate of the cat, as superposi-
tion principle had implied. For which to guarantee that the envelope will not be
contaminated during transmission, if and only if the transmission time is instanta-
neously (i.e., Δt = 0) which is equivalently that message is sent within timeless
(t = 0) channel, that has no time.

Therefore, it is the physically realizable qubit information whether it exists
within our temporal (t > O) universe. Since everything within our universe has a
price to pay, namely a section of time Δt and an amount of energy ΔE, for which
qubit information transmission cannot be the exception. Firstly, quantum commu-
nication relies on fundamental principle of superposition, but we had shown that
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superposition principle cannot exist within our temporal (t > 0) universe. Then it
has no sense to talk about all the possible capability of qubit information can offer.

Nevertheless, let us assume a quantum communication channel which is situated
within an empty space paradigm shown in the Figure 9, where a binary source
ensemble of A = {0, 1} is capable of transmitting 0 and 1 instantaneously and
simultaneously within an empty space. Notice that this is precisely the same sub-
space platform that Schrödinger’s fundamental principle of superposition derived
from. From which we see that qubit information can only exist within an empty
space platform which is not a physically realizable information hypothesis, since
platform has no time to represent a transmitting signal. The fact is that every
temporal information (i.e., 0 or 1) needs a section of time (i.e., Δt) to presents a
time-signal. In other words, if a time-signal has no section of time, it has no carrier
to represent and to transmit within our temporal (t > 0) universe since qubit
information is timeless (t = 0) space transmission algorithm.

Aside it is not a physically realizable paradigm, let me show how a qubit informa-
tion channel works as depicted by a block box diagram shown in Figure 10, which is a
timeless (t = 0) noise free channel. Where A = {0, 1} represents an input binary
source, H(A) = 1 bit is the input entropy, B{qubit} is output quantum bit, H
(B) = qubit is the output entropy. Since quantum qubit information transmission has
treated the input binary source A = {0, 1} and the output ensemble as qubit
B = {qubit}, such that at the receiving ending information can be presented in
quantum bit (i.e., qubit). But qubit channel is embedded within a timeless (t = 0)
subspace, it has no noise and no time, we see that it has no channel noise entropy [i.e.,
H(A/B) = 0]. From which mutual information of the qubit channel can be written as,

I A; Bð Þ ¼ H Bð Þ ¼ H Að Þ (12)

Figure 9.
Shows a conventional noiseless communication channel is embedded within an empty space. But it is not a
physically realizable paradigm since substance (i.e., signal) and emptiness cannot coexist.

Figure 10.
Shows a binary timeless (t = 0) quantum qubit-information channel.
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where the output end entropy H(B) is equaled to the input entropy H(A) [i.e., H
(B) = H(A)]. Thus, the intended sent signal either 1 or 0, but not by both, is
receiving at the receiving end. This is equivalently to recovering the intended input
signal that was corrupted within a noisy channel of Wiener’s information-
transmission, but in this case is a noiseless channel. In fact, a noiseless channel is a
virtual channel only exists within an empty virtual space, which cannot be existed
within our temporal (t > 0) universe.

Since quantum information is dependent on Schrodinger’s superposition princi-
ple such that binary transmission of 0 and 1 can be transmitted instantaneously and
simultaneously. This presents a quantum bit or a qubit to determine the input
source ensemble of either 1 or 0. But quantum information channel is assumed
within an empty space paradigm, we see that the operation is instantaneous and
simultaneous but only exists within timeless (t = 0) space. Since qubit information
is the anchor principle for quantum computing and communication, but unfortu-
nately qubit information cannot exist within our temporal (t > 0) universe, by
virtue of temporal exclusive principle.

A similar scenario to qubit information transmission is the paradox of
Schrodinger’s cat, where a received signal is dependent upon on observation. For
example, the observer (i.e., the receiver) did not know the cat within the
Schrödinger’s box is either alive or dead until the observer opens up the box. In
which we see that it is the observer confirms the outcome after the observation. But
the physical fact is that the cat is alive, or dead had been determined before the
observer opens up Schrödinger’ s box. Similarly, we never know a boiled egg is
either hard or soft-boiled until we crack open it. But hard- or soft-boiled egg had
been determined before we crack the egg.

Although paradox of Schrödinger’s cat had been debated since the disclosure of
the hypothesis in 1935, it seems to me that no one had have found the real reason
where the paradox comes from until recent discovery of the temporal (t > 0)
universe [20, 21]. From which I had shown that paradox came from an empty
subspace (i.e., a piece commonly used paper) where Schrödinger’s equation was
derived from. From which I had shown that his fundamental principle of
superposition is timeless (t = 0), fails to exist within our universe.

On the other hand, if qubit information channel is situated within a temporal
(t > 0) subspace as shown in Figure 11, then the responds of a supposed qubit
channel is subjected to the boundary condition within temporal (t > 0) space.

Figure 11.
Shows a binary noisy quantum communication channel embedded within a temporal (t > 0) space. For which
output entropy is always larger than the input entropy, that is H(B) > H(A). Note: For a noise-free channel we
have H(B) = H(A). But noiseless channel is equivalent to a timeless channel, which is not a physically realizable
communication channel.
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For which simultaneous and instantaneous superposition of binary digital trans-
mission (i.e., 0, 1) fails to exist. Thus, output entropy H(B) at the transmitted end
cannot be treated as a qubit information since superposition principle does not hold
within our temporal (t > 0) space. Of which output ensemble is B = {0, 1} that is
identical to a conventional noisy binary channel, instead of B = {qubit}.

Before departing this section, I would stress that within our universe everything
needs a price to pay, a section of time Δt and an amount of energy ΔE and it is not
free. However, quantum qubit information pays no price since it does not have a
section of time Δt. Yet, qubit information had created a worldwide qubit conspir-
acy, from which it is hard to tell when this conspiracy would be ended. But I am
confidence to say that this fictious qubit information supremacy would be ended
soon since information-transmission is supposed to be physically realizable.

8. Double slit paradox

Instead of getting into the argument of simultaneous existence particles at
double-slit using Young’s experiment, which is a non-physical realizable paradigm
as from temporal exclusive principle standpoint. Particle-wave dynamics is a math-
ematical equivalent duality principle as described; particle in motion is equivalent
to wave dynamics or wave propagation is equivalent to particle dynamics. How-
ever, particle is not equaled to wave and wave is not equal to particle. Particularly as
from De Broglie-Bohm theory as I quote: particles have “precise locations” at all
times… [9]. But, in contrast within a temporal (t > 0) subspace, particle changes
with time but not at precise location since future prediction is not deterministic. As
we have shown earlier particle existed within a temporal (t > 0) space is quite
difference as assumed within a virtual non-physically realizable subspace. For
example, particle existed within our temporal (t > 0) universe, no matter how small
it is, it has to be temporal (t > 0). Since temporal subspace is not empty, from which
we see that particle cannot be totally isolated. For example, mass particle induces
gravitational field, charged particle induces electric field, and others which cannot
be ignored. Without the preexistent substances such as permittivity and permeabil-
ity, wave dynamics has no way to exist. From which we see that particle-wave
dynamics is a mathematical postulation existed only within an empty timeless
(t = 0) or time independent virtual mathematical subspace, since the assumption of
wave dynamics is not a time and band limited physically realizable wavelet.

Nevertheless, let me show a double slit set-up as depicted in Figure 12(a), which
is a commonly accepted paradigm that has been used in decades, but it is not a
physically realizable paradigm. Yet a photonic particle can be shown simultaneously
and instantaneously existed at the double slits, since within an empty space it has no
time and no distance. And this is precisely the same subspace that Schrödinger’s
superposition principle derived from, but we had shown that superposition princi-
ple can only exist within an empty timeless (t = 0) virtual subspace.

However, if the double-slit hypothesis is situated within a temporal (t > 0)
subspace as depicted in Figure 12(b), then it is very unlikely two particles will be
instantaneously and simultaneously existing at both slits because time is distance
and distance is time. Since wave is equivalent to particle as from particle-wave
dynamics standpoint, but within our temporal (t > 0) universe any physical wave
dynamic has to be time and band limited otherwise it is a virtual wave-dynamic.
From which we see that it is very unlikely two wavelets (or particles) will be
simultaneously arrived at both slits at the same time.

Yet, a question remains to be asked, why it works for a continuous emitting
laser. It is apparently that a continuous light emitter has a longer time-limited
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duration. For example, if we assume that human has a 300-year life expectance,
then it has a good chance that we may coexist with Einstein, Schrödinger, and may
be coexisted with Newton at some time, but may not at the same place. On the other
hand, if our universe is a time-independent (i.e., timeless) space, then in principle
we can time-traveling back to visit them. What I have just given is that within our
temporal (t > 0) universe everything has a price; an amount of energy ΔE and a
section of time Δt (i.e., ΔE, Δt) to pay. But this is the necessary cost, and it is not
sufficient. From which we see that superposition principle is limited by a section of
time Δt, although ΔE and Δt are coexisted.

Nevertheless, we can hypothetically show that instantaneously and simulta-
neously superposition phenomenon does not hold by a postulated set-up shown in
Figure 13, which is a physically realizable paradigm since substance and temporal
(t > 0) space are mutually inclusive.

However, if the difference path length between d1 and d2 is beyond the
coherence length D of the coherent illuminator (i.e., laser) as given by.

D ¼ d2–d1 ¼ c ðΔt2–Δt1Þ ¼ c Δt’<D (13)

where ds are the distances, Δts are the incremental times and c is the velocity of
light. Then interference pattern cannot be observed at the diffraction screen of P.

Figure 12.
Shows a hypothetical double-slit experiment. (a) Shows a non-physically realizable empty space paradigm,
(b) shows a physically realizable paradigm.

Figure 13.
Shows a double-slit experimental setup using a band limited coherent light source.

147

From Schrödinger Equation to Quantum Conspiracy
DOI: http://dx.doi.org/10.5772/intechopen.99484



This means that photonic-particles (i.e., photons) emitted from the laser are not
simultaneously and instantaneously arriving at the double-slit as from the
coherence theory standpoint.

Let me further note that if one submerges any scientific model within a temporal
(t > 0) subspace, then it is rather easy to find out any paradox as observed within an
empty subspace is not existed. Notice that whenever a scientific model is sub-
merged within a temporal (t > 0) subspace, the model becomes a part of the
temporal (t > 0) space for analysis, from which many of the timeless (t = 0)
paradoxes can be resolved rather easily, for instance such as Schrödinger’s Cat and
Einstein’s theories. Nonetheless this is an inadvertently error that all scientists had
have committed for centuries. For instance, all the laws, principles, theories, and
paradoxes were developed from the same empty timeless subspace. For which most
of the scientists believe that we can travel ahead and behind the pace of time, as
Einstein’s special theory has suggested. Similarly, we can simultaneously and
instantaneously exploit photonic particles for computing and communication as
Schrödinger’s fundamental principle of superposition has indicated.

For example, if one plunge two moving spaceships within an empty space, we
cannot tell which one is moving with respect to the other. However, if we submerge
the same scenario within a temporal (t > 0) subspace, inevitably we can figure out
the relative position between them, since time is space, and space is time within a
temporal (t > 0) subspace while within an empty space there has no time and no
distance to distinguish. And this is precisely why Einstein’s special theory is
relativistic-directional independent and as well his general theory of relativity is a
deterministic principle. From which it is trivial for us to submerge a pair of
entangled particles within a temporal (t > 0) subspace, then we would find out the
instantaneous (i.e., Δt = 0) entanglement is not existed, since within our universe
there is always a section of time Δt to pay aside an amount of energy ΔE, and there
are not free.

Let me further stress that time speed is one of the most esoteric variables existed
with our universe that cannot be changed, but it is the section of time Δt we have to
spend that can somewhat manipulate. From which we see that the section of Δt that
we will spend can be squeezed as small as we wish yet we can never be able to
squeeze it to zero (i.e., t = 0), even we have all the energy ΔE (i.e., ΔE ⟶ ∞)
willing to pay for. And this is the well-known causality constraint within our
temporal (t > 0) universe that cannot be violated.

Furthermore, a question remains to be asked; if the width of Young’s experiment
is smaller than the wavelength of the illuminator, would you able to observe the
diffraction pattern. If the answer is no, then we see that wave dynamics is equiva-
lent to particle in motion but not equaled to particle since photonic particle has no
size. From which we see that particle in motion is equivalent to wave-dynamic, but
wave-dynamic is not particle and particle is not wave. Finally, I would say that
when science turns to virtual reality for solution it is not a reliable answer. But when
science turns to physical reality for an answer it is a reliable solution.

9. Conclusion

I would conclude that quantum scientists used amazing mathematical analyses
added with their fantastic computer simulations provide very convincing virtual
evidences. But mathematical analyses and computer animations are virtual and
fictitious, and many of their animations are not physically realizable for example
such as superimposing principle for quantum computing is not actually existed
within our universe. One of the important aspects within our universe is that one
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cannot get something from nothing there is always a price to pay; an amount of
energy ΔE and a section of time Δt and they are not free! Since science within our
universe is temporal (t > 0), in which we see that any scientific law, principle,
theory, and paradox has to comply with temporal (t > 0) condition within our
universe, otherwise it is unlikely be physically realizable. Since science is mathe-
matics but mathematics is not equaled to science. Yet, Schrödinger equation is a
legacy of Hamiltonian classical mechanics, I had shown that Schrödinger equation is
a timeless (t = 0) or time-independent formula which includes his superposition is
not a physical realizable principle. Since Schrödinger’s cat is one of the most
controversial paradoxes in modern science, I had shown that the paradox of
Schrödinger’s cat is not a physical realizable paradox, which should not have been
postulated.

Nevertheless, the most esoteric nature of our universe must be time, for which
every fundamental law, principle, and theory is associated with a section of time Δt.
I had shown that it is the section of Δt we had expended that cannot bring it back.
For which I had shown that we can squeeze a section of time Δt closes to zero (i.e.,
Δt ! 0) but it is not possible reach zero (i.e., Δt = 0) even though that we have all
the energy ΔE to pay for it. In which we see that we can change a section of Δt, but
we cannot change the pace of time. Since quantum computing and communication
rely on qubit information logic, but qubit information can only exist within a
timeless (t = 0) subspace. I had shown that qubit information is virtual and illusive
as Schrödinger’s cat. Which is not a physically realizable qubit information that can
be used for quantum supremacy communication and computing.

Although double-slit hypothesis is a well-accepted postulation for showing the
superposition principle holds, but unfortunately the postulation only holds within
empty space paradigm, and it is not existed within our temporal (t > 0) universe.
What I meant is that double-slit postulation is another false hypothesis aside the
Schrödinger’s cat that had led us to believing superposition is actually existed within
our universe. Since quantum supremacy relies on qubit information-transmission,
which has caused a worldwide quantum conspiracy. I hope this conspiracy will be
ended soon, otherwise we will forever trap within a timeless wonderland of quan-
tum supremacy. From which we see that it is not how rigorous the mathematics is,
it is the temporal (t > 0) subspace paradigm that produces viable realizable solution.
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