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Preface

This book discusses recent advances in vortex dynamics. It includes nine chapters 
written by twenty-two authors from Turkey, Czech Republic, Japan, China, Italy, 
Mexico, Sweden, India, and Spain.

Chapter 1 investigates the existence and stability properties of dipole solitons 
in a nonlocal nonlinear medium with self-focusing and self-defocusing quantic 
nonlinear responses. The second chapter is a review chapter in which the authors 
examine the existing literature on the propagation of coherent or partially coherent 
vortex beams through a random medium. Chapter 3 presents an algorithm 
developed to detect individual vortices via direct fitting of the measured velocity 
field. Chapter 4 discusses the existing literature on vortex dynamics in complex 
fluids by considering Taylor vortex flow. The fifth chapter discusses rotating fluid 
flows affected by a β-effect and blood flow through a natural or artificial valve in 
the left ventricle. The next chapter is a theoretical work that studies a system of 
partial differential equations that is related to point vortices that appear in fluid 
dynamics. Chapter 7 discusses the features of vortex structures that are shown to 
exist in the plasma wake of Venus and the momentum transport phenomena of the 
vortex motion. Chapter 8 is a discussion of the existence of vortex structures in 
a dusty plasma medium. Finally, Chapter 9 analyzes and compares the horseshoe 
vortex and some other known models applied to biomimetic Micro Aerial Vehicles 
(MAVs). 

This book is a useful resource for researchers, scientists, and postgraduate students in 
academia as well as industry.

Dr. İlkay Bakırtaş and Dr. Nalan Antar
Faculty of Science and Letters,

Mathematical Engineering Department, 
Istanbul Technical University,

Istanbul, Turkey
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Chapter 1

Dipole Solitons in a Nonlocal
Nonlinear Medium with
Self-Focusing and Self-Defocusing
Quintic Nonlinear Responses
Mahmut Bağcı, Melis Turgut, Nalan Antar and İlkay Bakırtaş

Abstract

Stability dynamics of dipole solitons have been numerically investigated in a
nonlocal nonlinear medium with self-focusing and self-defocusing quintic
nonlinearity by the squared-operator method. It has been demonstrated that
solitons can stay nonlinearly stable for a wide range of each parameter, and two
nonlinearly stable regions have been found for dipole solitons in the gap domain.
Moreover, it has been observed that instability of dipole solitons can be improved or
suppressed by modification of the potential depth and strong anisotropy coefficient.

Keywords: dipole solitons, nonlinear response, nonlocal nonlinear medium, quintic
nonlinearity

1. Introduction

Many phenomena in nature are modeled mathematically using nonlinear
differential equations. Traveling wave solutions of nonlinear partial differential
equations play a significant role in nonlinear wave propagation problems that are
observed in various fields such as nonlinear optics, fluid dynamics, plasma physics,
elastic media, and biology [1]. Some of the solutions to such nonlinear wave prop-
agation problems are called solitons, which are localized wave solutions.

Optical solitons are formed because of the balance between the medium’s dif-
fraction and the self-phase modulation [2]. As a consequence of this, an optical field
that does not change its shape occurs during propagation [3]. Recently, spatial
solitons that can be used for optical switching and processing applications [4] have
been extensively investigated in nonlinear optical systems with external optical
lattices. There is a considerable amount of research about this subject in the
literature. In 2003, Segev et al. experimentally observed spatial solitons in optically
induced periodic potentials [5]. Fundamental and vortex solitons with real or
complex lattices have been investigated in optical media with the cubic Kerr-type
[6–10], the saturable [11], and competing nonlinearities [12]. Moreover, the exis-
tence of solitons has been observed in aperiodic or quasicrystal lattice structures
[13–18] and the lattices that possess defects [19, 20] and dislocations [21, 22].

The dynamics of solitons are governed by nonlinear Schrödinger (NLS) type
equations in optical media with nonlinearities and/or external potentials as in the
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referred studies. Additionally, the cubic nonlinear NLS equation needs to be modi-
fied to describe nonlinear optical materials that have both cubic and quadratic
nonlinear responses [23–29], such as potassium niobate (KNbO3) [30] or lithium
niobate (LiNbO3) [31]. These dynamics in quadratically polarized media are
governed by the NLS equation with coupling to a mean term (d.c. field), which
are denoted as NLSM systems and sometimes referred to as Benney-Roskes or
Davey-Stewartson systems [32, 33].

NLSM equations were first studied by Benney and Roskes for water of finite
depth in the free surface conditions in 1969 [32]. Later, in 1974, Davey and
Stewartson derived the limiting integrable case, which is a reduced case of the
Benney–Roske’s system by studying the evolution of a 3D wave packet for water of
finite depth [33]. In 1975, Ablowitz and Haberman [34] studied the integrability of
NLSM systems in the shallow water limit. The effects of surface tension were
included in the results of Benney and Roskes by Djordevic and Reddekopp [35] in
1977. From the first principles, Ablowitz et al. [23, 36, 37] discovered that NLSM-
type equations describe the evolution of the electromagnetic field in a quadratic
nonlinear media. The general NLSM system is given by [23, 36, 37]

iuz þ Δuþ uj j2u� ρuϕ ¼ 0, ϕxx þ vϕyy ¼ uj j2
� �

xx
, (1)

where u(x, y, z) corresponds to the normalized amplitude of the envelope of the
static electric field propagating in the z direction, x and y are transverse spatial
coordinates. Δu � uxx þ uyy corresponds to diffraction, the cubic term in u origi-
nates from the Kerr-type nonlinear change of the refractive index. The parameter ρ
is a coupling constant that comes from the combined optical rectification and
electro-optic effects modeled by the ϕ x, yð Þ field, and v is the coefficient that comes
from the anisotropy of the material [37]. Such systems of equations arise due to the
growth and depletion of the fundamental and second-harmonic fields at the
moment that the phase velocity of the fundamental and the second-harmonic wave
are not equal during propagation [38]. When the phase-matching condition is not
satisfied, the equation of the second-harmonic field can be solved directly and
generates an additional self-phase modulation contribution as a result of cascaded
nonlinearity. Similarly, the NLSM systems describe the nonlocal–nonlinear coupling
between the first harmonic with the cascading effect from the second harmonic and
a static field that is related to the mean term [36, 37].

Wave collapses play a significant role in various branches of science. The peak
amplitude of the wave solutions tends to infinity (blow-up) in finite time or finite
propagation distance when a singularity occurs. This phenomenon is often called
wave collapse [39]. In the NLS equation, it was first observed numerically by Kelley
in 1965 [40]. In fact, this wave collapse phenomenon is similar for the NLSM
systems. Wave collapse in the NLSM systems occurs with a modulated profile [41].
Merle and Raphael [42] analyzed the collapse behavior of the NLS equation and
other related equations in detail. Moreover, Moll et al. investigated experimental
observations of optical wave collapse in cubic nonlinearity and showed that the
amplitude of the wave increases as the spatial extent decreases in a self-similar
profile [43]. In Ref [39], Ablowitz and coworkers studied wave collapse that occurs
with a quasi-self-similar profile in the NLSM system and found that collapse can be
arrested by the small nonlinear saturation. Furthermore, in Ref [30], NLSM collapse
was arrested by wave self-rectification. In this aforementioned study, they consid-
ered only the nonlinear evolution of beams with an initial Gaussian beam profile
with several values of input power and/or beam ellipticity and found that the wave
collapse can be arrested by increasing the coupling constant ρ or for an initially
highly elliptic beam. Recently, the NLSM system collapse was arrested by adding a
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real periodic [24] and partially parity-time-symmetric [44] and azimuthal [45]
external lattices (potential) to the governing system, and it was shown
numerically that modification of potential depth provides great controllability on
the stability of soliton.

More recently, Bağcı et al. [46] have numerically investigated stability dynamics
of fundamental lattice solitons that are solutions of extended NLSM system in a
nonlocal nonlinear medium with self-focusing and self-defocusing quintic
nonlinearity. It has been shown that as the absolute value of γ increases for both
self-focusing and self-defocusing cases, the obtained fundamental solitons become
nonlinearly unstable. However, the stability of unstable fundamental solitons can be
improved by modification of potential depth [46].

Dipole (two-phased) and higher-phase vortex solitons in the presence of an
induced lattice have been studied analytically and experimentally in Bose-Einstein
condensates (BECs) [47, 48] and in optical Kerr media [49–54]. In recent years,
these types of solitons have attracted considerable interest because of their unique
features and potential applications [55].

In this chapter, we numerically study the existence and stability of dipole soliton
solutions of the NLSM system in a nonlocal nonlinear medium with the self-
defocusing quintic nonlinear response by adding an external lattice. In fact, this
study is about the dynamics of dipole solitons instead of fundamental solitons in the
problem that Bağcı and coworkers have addressed in recent book chapter [46]. The
purpose of this study is to numerically investigate the effects of the strength of
quintic nonlinearity that specify characteristics of the model and variation of
potential depth on the existence and stability of dipole solitons. In several applica-
tions, many optical materials such as chalcogenide glasses are required quintic and
seventh-order effects in addition to cubic nonlinear effects [56], and effective
higher-order nonlinearities can reveal with pure Kerr materials in an inhomoge-
neous propagation media [57–59].

The chapter is outlined as follows: In Sec. 2, we present the model equations, and
the squared-operator method is explained so that it is modified for the model. The
dipole solitons are computed by this numerical method. Nonlinear evolution of the
dipole solitons is examined to perform stability analysis, In Sec. 3. Finally in Sec. 4,
results of this study are outlined.

2. The model

In this chapter, we modify the NLSM system (1) as follows to describe the
dynamics of lattice solitons in a nonlocal nonlinear medium with cubic and quintic
nonlinearity

iuz þ 1
2
Δuþ β uj j2u� ρuϕþ γ uj j4u� V x, yð Þu ¼ 0,

ϕxx þ vϕyy ¼ uj j2
� �

xx

(2)

where γ is the coefficient of quintic nonlinearity and V(x, y) is the optical lattice.
In this chapter, we consider lattices that can be written as the intensity of a sum of
N phase-modulated plane waves [13]

V x, yð Þ ¼ V0

N2

XN�1

n¼0

ei knxxþkny yð Þ
�����

�����
2

, (3)
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where V0 > 0 is the peak depth of the potential and the wave vector knx, k
n
y

� �
¼

K cos 2πn=Nð Þ, K sin 2πn=Nð Þ½ �: The potential for N = 2, 3, 4, 6 yield crystal (peri-
odic) lattices, while N = 5, 7 yield quasi-crystals (aperiodic) lattices. Contour image,
contour plot, and diagonal cross-section of the lattice V(x, y) are plotted in Figure 1
for V0 ¼ 12:5, N = 4 and kx ¼ ky ¼ 2π: It can be seen that the lattice is periodic, and
the center of lattice is a local maximum.

2.1 Numerical solution for the dipole solitons

Yang and Lakoba developed an iterative numerical method called the squared-
operator method (SOM) [60]. The idea of this method is to iterate a modified
differential equation whose linearization operator is square of the original equation
together with a preconditioning (or acceleration) operator. To obtain the soliton
solution of the (2+1)D NLSM model, this method is modified as follows:

Soliton solutions are sought in the form u x, y, zð Þ ¼ U x, yð Þeiμz where U(x, y) is
real-valued function and μ is the propagation constant (or eigenvalue). Substituting
the ansatz u(x, y, z), we get the following expressions:

uz ¼ iμUeiμz,

uxx ¼ Uxxeiμz,

uyy ¼ Uyyeiμz,

uj j2 ¼ UeiμzU ∗ e�iμz ¼ Uj j2,

uj j4 ¼ Uj j2 Uj j2 ¼ Uj j4

(4)

where U ¼ U ∗ in our case. Substituting the set of the terms in Eq. (4) into the
(2+1) NLSM model, the following nonlinear equations for U are obtained

�μU þ 1
2
ΔU þ β Uj j2U � ρϕU þ γ Uj j4U � VU ¼ 0,

ϕxx þ vϕyy ¼ Uj j2
� �

xx
:

(5)

Figure 1.
(a) Contour image, (b) contour plot, and (c) diagonal cross-section of the lattice V(x, y) when V0 ¼ 12:5,N =
4 and (x,y) ∈ [15,15].
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Applying the Fourier transform to the eigenequations system (5) yields

�μÛ � 1
2

k2x þ k2y
� �

Û þ F β Uj j2U � ρϕU þ γ Uj j4U � VU
n o

¼ 0,

k2xϕ̂þ vk2yϕ̂ ¼ k2xF Uj j2
n o

,
(6)

where F denotes the Fourier transform, Û ¼ F Uf g, kx and ky are the Fourier
transform variables. Isolating ϕ̂ from the second equation of Eq. (6) gives

ϕ̂ ¼
k2xF Uj j2

n o

k2x þ vk2y
: (7)

Taking the inverse Fourier transform of Eq. (7), we get

ϕ ¼ F�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;, (8)

where F�1 denotes the inverse Fourier transform and during iteration, the first
element of k2x þ vk2y is set to 1 in order to avoid division by zero error. By applying
the inverse Fourier transform to first equation of Eq. (6) and substituting Eq. (8)
into the obtained equation, we get

�μU þ F�1 � 1
2

k2x þ k2y
� �

Û
� �

þ β Uj j2U � ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;U þ γ Uj j4U � VU ¼ 0:

(9)

To obtain operator L0, Eq. (9) can be written as

L0U ¼ F�1 � 1
2

k2x þ k2y
� �

Û
� �

þ T0U ¼ 0, (10)

where

T0 ¼ �μþ β Uj j2 � ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;þ γ Uj j4 � V: (11)

Now, we should obtain operator L1, which denotes the linearized operator of

L0U ¼ 0, with respect to the solution U, i.e., L0 U þ ~U
� � ¼ L1 ~U þ O ~U

2
� �

, where

~U≪ 1. However, it should be noted that we have obtained the operator L0 by
substituting the mean field term ϕ x, yð Þ into the governing equation. Therefore, at
this point, we have to perturb ϕ x, yð Þ function as well. In accordance with this
purpose, the soliton solution and the mean-field term should be perturbed as fol-
lows, respectively,

u x, y, zð Þ ¼ U x, yð Þ þ ~U x, yð Þ� �
eiμz

ϕ x, yð Þ ¼ ϕ x, yð Þ þ ~ϕ x, yð Þ
, (12)
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where ~U≪ 1 and ~ϕ≪ 1. Firstly, consider that Eq. (5) can be written as a general
type of nonlinearities

�μU þ 1
2
ΔU þ F Uj j2

� �
U � ρϕU � VU ¼ 0,

ϕxx þ vϕyy ¼ Uj j2
� �

xx
,

(13)

where F Uj j2
� �

¼ β Uj j2 þ γ Uj j4 for cubic-quintic nonlinearity. Then, substitut-
ing perturbation U þ ~U and using linear Taylor expansion yield

F Uj j2
� �

¼ F U þ ~U
�� ��2� �

¼ F U2 þ 2U ~U þ ~U
2

� �

≈ F U2 þ 2U ~U
� �

≈ F Uj j2
� �

þ 2U ~UF0
Uj j2 Uj j2
� �

, (14)

where U ¼ U ∗ ,~U ¼ ~U
∗
in our case and F0

Uj j2 ¼ ∂F=∂ Uj j2

F Uj j2
� �

U ¼ F U þ ~U
�� ��2� �

U þ ~U
� �

≈ F Uj j2
� �

þ 2U ~UF0
Uj j2 Uj j2
� �h i

U þ ~U
� �

≈ U þ ~U
� �

F Uj j2
� �

þ 2U2 ~UF0
Uj j2 Uj j2
� �

þ 2U ~U
2
F0

Uj j2 Uj j2
� �

≈ U þ ~U
� �

F Uj j2
� �

þ 2U2 ~UF0
Uj j2 Uj j2
� �

þ O ~U
2

� �
:

(15)

Substituting perturbations in Eq. (12) and Eq. (15) into Eq. (13) and only terms
of O ~U

� �
and O ~ϕ

� �
are retained, we get

�μ U þ ~U
� �þ 1

2
Δ U þ ~U
� �þ U þ ~U

� �
F Uj j2
� �

þ 2U2 ~UF0
Uj j2 Uj j2
� �

�ρϕ U þ ~U
� �� ρ~ϕU � V U þ ~U

� � ¼ 0,

ϕxx þ vϕyy þ ~ϕxx þ v~ϕyy ¼ Uj j2
� �

xx
þ 2U ~U
� �

xx:

(16)

Substituting F Uj j2
� �

¼ β Uj j2 þ γ Uj j4 ) F0
Uj j2 Uj j2
� �

¼ β þ 2γ Uj j2 into Eq. (16)

yields

�μ U þ ~U
� �þ 1

2
Δ U þ ~U
� �þ U þ ~U

� �
β Uj j2 þ γ Uj j4
� �

þ 2U2 ~U β þ 2γ Uj j2
� �

�ρϕ U þ ~U
� �� ρ~ϕU � V U þ ~U

� � ¼ 0,

ϕxx þ vϕyy þ ~ϕxx þ v~ϕyy ¼ Uj j2
� �

xx
þ 2U ~U
� �

xx:

(17)
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Applying the Fourier transform to the first perturbed equation in Eq. (17) and
the inverse Fourier transform to the obtained equation, we get

�μ U þ ~U
� �þ F�1 � 1

2
k2x þ k2y
� �

Û þ ~̂U
� �� �

þ U þ ~U
� �

β Uj j2 þ γ Uj j4
� �

þ2U2 ~U β þ 2γ Uj j2
� �

� ρϕ U þ ~U
� �� ρ~ϕU � V U þ ~U

� � ¼ 0:

(18)

Using Eq. (5) and the second equation in Eq. (17), following equation is obtained

~ϕxx þ v~ϕyy ¼ 2U ~U
� �

xx: (19)

Applying Fourier transform to Eq. (19) and isolating ~̂ϕ from obtained equation,
we get

k2x ~̂ϕþ vk2y ~̂ϕ ¼ k2xF 2U ~U
� �

~̂ϕ ¼ k2xF 2U ~U
� �

k2x þ vk2y
:

(20)

Taking the inverse Fourier transform of ~̂ϕ yields

~ϕ ¼ F�1 k2xF 2U ~U
� �

k2x þ vk2y

( )
: (21)

Substituting Eq. (8) and Eq. (21) into Eq. (18) yields

�μ U þ ~U
� �þ F�1 � 1

2
k2x þ k2y
� �

Û þ ~̂U
� �� �

þ U þ ~U
� �

β Uj j2 þ γ Uj j4
� �

þ2U2 ~U β þ 2γ Uj j2
� �

� ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
; U þ ~U
� �

�ρF�1 k2xF 2U ~U
� �

k2x þ vk2y

( )
U � V U þ ~U

� � ¼ 0:

(22)

After grouping the terms, Eq. (22) can be written as

�μU þ F�1 � 1
2

k2x þ k2y
� �

Û
� �

þ β Uj j2U � ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;U þ γ Uj j4U � VU

2
4

3
5

þ �μ~U þ F�1 � 1
2

k2x þ k2y
� �

~̂U
� �

þ β Uj j2 ~U þ γ Uj j4 ~U þ 2β Uj j2 ~U þ 4γ Uj j4 ~U
�

�ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;~U � ρF�1 k2xF 2U ~U

� �

k2x þ vk2y

( )
U � V ~U

3
5 ¼ 0:

(23)
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Hence,

�μU þ F�1 � 1
2

k2x þ k2y
� �

Û
� �

þ β Uj j2U � ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;U þ γ Uj j4U � VU

2
4

3
5

þ �μ~U þ F�1 � 1
2

k2x þ k2y
� �

~̂U
� �

þ 3β Uj j2 ~U � ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;~U þ 5γ Uj j4 ~U

2
4

�ρF�1 k2xF 2U ~U
� �

k2x þ vk2y

( )
U � V ~U

#
¼ 0:

(24)

From Eq. (9), we know that the first bracket is identically zero. Consequently,
we obtain

�μ~U þ F�1 � 1
2

k2x þ k2y
� �

~̂U
� �

þ 3β Uj j2 ~U � ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;~U þ 5γ Uj j4 ~U

�ρF�1 k2xF 2U ~U
� �

k2x þ vk2y

( )
U � V ~U ¼ 0:

(25)

Moreover, Eq. (24) satisfied L0 U þ ~U
� � ¼ L1 ~U þ O ~U

2
� �

. Therefore, to obtain a

linearized operator L1L1, Eq. (25) can be written as

L1 ~U ¼ F�1 � 1
2

k2x þ k2y
� �

~̂U
� �

þ T1 ~U � ρF�1 k2xF 2U ~U
� �

k2x þ vk2y

( )
U ¼ 0, (26)

where

T1 ¼ �μþ 3β Uj j2 � ρF�1
k2xF Uj j2

n o

k2x þ vk2y

8<
:

9=
;þ 5γ Uj j4 � V: (27)

To obtain soliton solution U(x, y) in L0U ¼ 0, we numerically integrate the
following distance-dependent squared-operator evolution equation

Uz ¼ �M�1L†
1M

�1L0U, (28)

where �ð Þ† denotes the Hermitian of the operator and M is a real-valued positive
definite Hermitian preconditioning operator that is introduced to accelerate the
convergence. Since it is easily invertible to take the Fourier transform, we take the
preconditioning operator M to be in the form of the following

M ¼ c� ∂xx þ ∂yy
� �

, (29)
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where c > 0 is a parameter for parametrizing the numerical scheme. Applying
the Fourier transform to Eq. (29) yields

F Mf g ¼ cþ k2x þ k2y: (30)

Consequently, in Eq. (28)

M�1L†
1M

�1L0U ¼ F�1 F L1M�1L0U
� �

cþ k2x þ k2y

( )
: (31)

Using the forward Euler method, steady-state solution U is computed by an
iterative scheme as follows

Unþ1 ¼ Un � M�1L†
1M

�1L0U
� �

U¼Un
Δz, (32)

where Δz is an auxiliary distance-step parameter. It has been demonstrated that
the SOM algorithm converges to a soliton solution for a wide range of nonlinear
PDEs if the initial condition is sufficiently close to the exact solution and the
distance-step Δz in the iteration scheme is less than a specific threshold value
[60, 61]. To obtain a convergent soliton solution, c and Δz are chosen heuristically
as positive real numbers. Moreover, our convergence criterion is that the obtained
solution satisfies Eq. (10) with an absolute error less than 10�5.

In this chapter, to obtain dipole solitons, the initial condition of the SOM algo-
rithm is chosen as a multi-humped Gaussian function which is given by

U0 x, y, 0ð Þ ¼
XH�1

n¼0

e�A xþxnð Þ2þ yþynð Þ2
� �

þiθn , (33)

where xn and yn represent the location of the solitons on the lattice, H corre-
sponds to the number of humps, A is a positive integer, and θn is the phase
difference. Since we numerically investigate the dipole solitons, H is set to 2, thus
Eq. (33) takes the following form:

U0 x, y, 0ð Þ ¼ e�A xþx0ð Þ2þ yþy0ð Þ2
� �

þiθ0 þ e�A xþx1ð Þ2þ yþy1ð Þ2
� �

þiθ1 , (34)

where (x0,y0) and (x1,y1) represent the locations of dipole solitons, θ0 and θ1 are
the phase differences of dipole solitons. It was shown that the solitons located at the
maximum of the lattices are unstable [13, 21, 24], due to this fact we will investigate
the dipole solitons located on minima of the considered square lattice. A dipole
(two-phased) localized soliton numerically found by

A ¼ 1, xn ¼ r cos θn, yn ¼ r sin θn, n ¼ 0,1: (35)

Here r is set to be π and θn ¼ nπ, so that the humps of the initial condition are
located at the local minima of the lattice where x0, y0

� � ¼ π, 0ð Þ and x1, y1
� � ¼

�π, 0ð Þ.
Unless otherwise stated, parameters in the NLSM model (2) are fixed to

μ, ρ, v, β, γ, V0ð Þ ¼ �0:1, 0:5, 1:5, 2, �0:1, 12:5ð Þ: (36)

It is noted that ρ ¼ 0:5 and v ¼ 1:5 are especially chosen to simulate quadratic
optical effects in potassium niobate (KNbO3) [30].
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Dipole solitons of the NLSM model (2) are calculated by the SOM method. In
Figure 2, 3D views (first column), phase structures (second column), and contour
plots of dipole solitons on the underlying lattice (third column) are displayed for self-
defocusing (γ <0) and self-focusing (γ >0) quintic nonlinearities. γ is set to be �0.3,
�0.1 and 0.3 in Figure 2(a)–(c), respectively, and all other parameters are fixed to
the values given in Eq. (36). Figure 2 shows that the dipole solitons can be generated
on the lattice minima (see the third column), and the amplitudes of dipole solitons
are decreased as γ increased (from �0.3 to 0.3) (see the first column).

3. Stability analysis

The stability dynamics of dipole solitons obtained by the SOM method are
studied by the power analysis and direct simulation of the nonlinear evolution.

The power of solitons plays an important role in the stability analysis and it is
calculated by

Figure 2.
3D dipole profiles centered at the lattice minima (first column), the phase structures of the dipole (second
column), and the contour plot of the dipole solitons superimposed on the underlying lattice (third column),
which are obtained for (a) γ ¼ �0:3,c ¼ 2:1,Δz ¼ 0:4 and error is order of 10�6, (b) γ ¼ �0:1,c ¼
2:5,Δz ¼ 0:4 and error is order of 10�8, and (c) γ ¼ 0:3,c ¼ 2:5,Δz ¼ 0:4 and error is order of 10�8. All
other parameters are fixed to the values in Eq. (36).
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P μð Þ ¼
ðþ∞

�∞

ðþ∞

�∞
U xð , y; μÞj j2dxdy: (37)

Vakhitov and Kolokolov proved a necessary condition for the linear stability of
solitons in Ref [62]. They demonstrated that a soliton is linearly stable only if its
power increases as propagation constant (or eigenvalue) μ increases. In other
words, a necessary condition for the stability of solitons is

dP
dμ

>0: (38)

Moreover, Weinstein and Rose [63, 64] proved that a necessary condition for
the nonlinear stability of solitons is also the slope condition given in Eq. (38).

To analyze nonlinear stability of the NLSM model (2), we examine the direct
simulation of dipole solitons obtained by the SOM method. A finite-difference
discretization scheme is used in the spatial domain (x, y) and the dipole solitons are
advanced in the z direction with a fourth-order Runge-Kutta method. The initial
condition of the nonlinear evolution is taken to be a dipole soliton, and 1% random
noise is inserted into the amplitude of the initial condition.

The power diagrams of dipole solitons are displayed for varied μ, γ, β and ρ
values in Figure 3(a)–(d), respectively. It is noted that the domain of existence for
the varied parameter is shown on the x-axis of each panel when other parameters
are fixed to the values in Eq. (36). Figure 3 shows that the power of dipole solitons
increases as μ and ρ increase, whereas the power of dipole solitons decreases as γ and
β increase. Moreover, the stability (solid blue) and instability (red dotted) regions
of parameters are determined by the nonlinear evolution of dipole solitons for each
point on the power curves.

The dipole solitons are found to be nonlinearly stable for self-defocusing quintic
nonlinearity (γ ¼ �0:1) when the power P ∈ [0.99, 1.87] and propagation constant
μ∈ �0:75, �0:6½ �. Also, the dipole solitons are nonlinearly stable when P ∈ [3.12,
4.26] and μ∈ �0:35, �0:06½ �, which is the second nonlinearly stable gap (see
Figure 3(a)). These results are consistent with key analytical results on nonlinear
stability, which Weinstein and Rose proved in Ref [63, 64], since slope of the
power-eigenvalue (P � μ) diagram is positive. As can be seen from Figure 3(b), the
dipole solitons are obtained for γ ∈ �0:7, 25½ �, when other parameters are fixed, and
dipole solitons are nonlinearly stable for γ ∈ �0:21, 0:25½ �. Zoom-in view of this
stability domain is depicted in Figure 3(b). Furthermore, it is observed that dipole
solitons are nonlinearly stable for β∈ 1:6, 18:9½ � (see Figure 3(c)), and dipole soli-
tons are stable for ρ∈ 0, 0:8½ � (see Figure 3(d)) in their existence domains when
other parameters are fixed.

In Figure 4, nonlinear evolution of peak amplitudes, 3D views of the evolved
dipole solitons, and the phase structures of evolved dipole solitons are plotted for
the dipole solitons that are shown in Figure 2. The effect of quintic nonlinearity (γ)
on nonlinear stability is investigated by fixing other parameters as in Eq. (36).

Figure 4(b) shows that peak amplitudes of dipole solitons oscillate mildly (first
column), and the 3D profile (second column) and phase structure (third column) of
dipole solitons are preserved for γ ¼ �0:1. Thus, the dipole solitons are nonlinearly
stable for the defocusing quintic nonlinearity for the considered parameter regime.
On the other hand, as shown in Figure 4(a) and (c), when the quintic nonlinearity
is strong (γ ¼ �0:3 and γ ¼ þ0:3), peak amplitudes of dipole solitons increase
significantly in a short propagation distance z (first column), dipole profiles (sec-
ond column) cannot be preserved, and phase structures of dipole solitons (third
column) break up after evolution. Comparing Figure 4(a) and (c), it is observed
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that the propagation distance of dipole solitons in a medium with strong self-
focusing nonlinearity (γ ¼ 0:3) is longer than that of a medium with strong self-
defocusing nonlinearity (γ ¼ �0:3). Considering these evolution results in Figure 4
and the existing domain for γ in Figure 3(b), it is demonstrated that both strong
self-focusing and self-defocusing quintic nonlinearities have a negative effect on the
nonlinear stability of dipole solitons.

In previous studies [6, 14, 24], it is found that modification of the depth of
potential can suppress nonlinear instabilities. More recently, Bağcı and coworkers
[46] have demonstrated that nonlinear stability of fundamental solitons in an
NLSM system (2) with quintic nonlinearity can be improved by the modification of
lattice depth V0. They showed that increased lattice depth supports the stability of
fundamental solitons in a medium with strong self-focusing (γ ¼ 0:3) quintic
nonlinearity, and the stability of solitons in a medium with strong self-defocusing
(γ ¼ �0:3) quintic nonlinearity can be improved by decreasing lattice depth. For
the dipole solitons, evolution of peak amplitudes is depicted for varying potential
depths, when γ ¼ �0:3 and γ ¼ 0:3 in Figure 5(a) and (b), respectively. Figure 5
(a) shows that the stability of dipole solitons is improved by decreasing lattice
depth (from 25 to 5) for strong self-defocusing nonlinearity (γ ¼ �0:3), and col-
lapse can be arrested when V0 ¼ 5. In contrast, as shown in Figure 5(b), the
propagation distance of dipole solitons in a medium with strong self-focusing

Figure 3.
Power of dipole solitons (a) for varying eigenvalue μ, (b) for varying quintic nonlinearity coefficient γ, (c) for
varying cubic nonlinearity coefficient β, and (d) for varying quadratic nonlinear response ρ. The nonlinear
stability and instability regions are shown by solid blue and red dotted lines, respectively.
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nonlinearity (γ ¼ 0:3) is extended by increasing lattice depth (from 5 to 50). It
should be noted that these results are in agreement with the findings of the afore-
mentioned studies. Thus modification of the lattice depth can be utilized to improve
the nonlinear stability of dipole solitons.

It is also known that when the quadratic [15, 24, 44] and quintic [46] electro-
optic effects are strong, the instability of fundamental solitons can be improved by
increasing the anisotropy parameter. To examine the effect of anisotropy coefficient
v on the nonlinear stability of dipole solitons in a medium with strong quintic
nonlinearity (γ ¼ �0:3 and γ ¼ 0:3), evolution of the peak amplitudes is displayed
for varied v values in Figure 6. Figure 6 shows that increasing the anisotropy
coefficient v from 0.001 to 10 stabilizes the dipole solitons in a medium with strong
self-defocusing nonlinearity (γ ¼ �0:3), and increasing v from 0.001 to 1000
extends the propagation distance of dipole solitons in a medium with strong self-
focusing nonlinearity (γ ¼ 0:3). Thus, larger anisotropy coefficient supports the
nonlinear stability of the dipole solitons, and this result complies with the results of
the previous studies [46]. It is important to note that the parameters ρ and v are
predetermined coefficients that depend on the type of optical materials; larger

Figure 4.
Nonlinear evolution of maximum amplitudes as a function of propagation distance z (first column), 3D views
of the dipole solitons after evolution (second column), and the phase structures of dipole solitons after evolution
(third column) for (a) γ ¼ �0:3, (b) γ ¼ �0:1, and (c) γ ¼ 0:3. All other parameters are taken as in
Eq. (36).
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values of v cannot be applied to real optical systems. In this chapter, the effect of
extremely large v values on the stability of dipole solitons is explored numerically.

4. Conclusions

In this chapter, the existence and nonlinear stability dynamics of dipole solitons
have been investigated for a nonlocal nonlinear medium with quintic nonlinear
response. This medium was characterized by the (2+1)D NLSM system with a
periodic external lattice. Dipole solitons were obtained for self-defocusing (γ <0)
and self-focusing (γ >0) quintic nonlinearities by the SOM method, and the
nonlinear stability of these dipole structures has been investigated by the direct
simulation of the model equations. Power of dipole solitons was determined for
varying μ, γ, β, and ρ parameters and it has shown that the power of dipole solitons
increases as the eigenvalue μ and quadratic nonlinear response ρ increase, whereas
the power of dipole solitons decreases as quintic nonlinearity coefficient γ and cubic
nonlinearity coefficient β increase.

Nonlinear evolution of the dipole solitons showed that the dipole solitons are
stable for the weak self-focusing and self-defocusing quintic nonlinearity. In other
words, as an absolute value of γ increases, the obtained dipole solitons become
nonlinearly unstable in both self-focusing and self-defocusing media. It has been
demonstrated that the collapse of dipole solitons can be arrested by decreased

Figure 5.
Maximum amplitudes of the evolved dipole solitons for varying depth of potential V0, when the dipole soliton is
obtained for (a) γ ¼ �0:3 and (b) γ ¼ 0:3.
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potential depth in a medium with strong self-defocusing quintic nonlinearity
(γ ¼ �0:3), while the deeper lattice extends the propagation distance of dipole
solitons in a medium with strong self-focusing quintic nonlinearity (γ ¼ 0:3).
Furthermore, it has been observed that increasing the anisotropy coefficient (v)
extends the propagation distance of the dipole solitons for strong self-focusing
quintic nonlinearity, and it stabilizes the dipole solitons for strong self-defocusing
quintic nonlinearity.

In conclusion, the existence and stability properties of dipole solitons have been
numerically explored in a nonlocal nonlinear medium with quintic nonlinear
response, and it has been demonstrated that the instability of dipole solitons can
be suppressed by modification of the lattice depth and increased anisotropy
coefficient.
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Figure 6.
Maximum amplitudes of the evolved dipole solitons for varying anisotropy coefficients v, when the dipole soliton
is obtained for (a) γ ¼ �0:3, and (b) γ ¼ 0:3.
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Chapter 2

The Propagation of Vortex Beams
in Random Mediums
Sekip Dalgac and Kholoud Elmabruk

Abstract

Vortex beams acquire increasing attention due to their unique properties. These
beams have an annular spatial profile with a dark spot at the center, the so-called
phase singularity. This singularity defines the helical phase structure which is
related to the topological charge value. Topological charge value allows vortex
beams to carry orbital angular momentum. The existence of orbital angular
momentum offers a large capacity and high dimensional information processing
which make vortex beams very attractive for free-space optical communications.
Besides that, these beams are well capable of reducing turbulence-induced scintil-
lation which leads to better system performance. This chapter introduces the
research conducted up to date either theoretically or experimentally regarding
vortex beam irradiance, scintillation, and other properties while propagating in
turbulent mediums.

Keywords: vortex beams, random medium, turbulence, scintillation, optical
communications

1. Introduction

Wave front dislocations, in other words, phase defects which consist of edge
dislocations, screw dislocations and mixed edge-screw dislocations are firstly
proposed by Nye and Berry as a new type of light field principle [1]. The screw
dislocation most prevalently known as front dislocation which presents a phase
singularity at the center of the beam with zero amplitude and indefinite phase. Also,
when both the real and imaginary parts of the wave function (ψ) equal zero the
phase singularity is observed. Due to the fact that light field possesses unique
properties such as phase singularly or dislocations, it paves the way for modern
optics which called singular optics. Optical vortices are the primary topic of the
singular optics [2]. Allen in 1992 realized that a beam of photons can hold singular-
ity with azimuthally phase structure ejlƟ and carry an orbital angular momentum
(OAM) where l is the topological charge and Ɵ is the azimuth angle [3]. Vortex
beams possess distinct optical properties compared to the other beam types since
they carry OAM. These beams have introduced a great diversity in a wide range of
applications namely optical manipulation, biomedical applications, micro-
fabrication, imaging, and micro-mechanics. Furthermore, they played an important
role in the new generation of optical communication where OAM is employed as a
new modulation technique in the optical communication systems [4, 5]. Such a
feature makes the beams carrying OAM a perfect solution for the increasing
demand of larger bandwidth and higher data rates in a diversity of applications such
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as 5G and 6G communication links, laser satellite communications, and remote
sensing. However, in these applications the propagation of the laser beam in a
random medium, which represents the channel of the system, degrades the
probability of error performance of the system [6–12].

Actually, the propagation of laser beams through a random medium is governed
fundamentally by three main phenomena namely absorption, scattering and
refractive-index fluctuations. While absorption, scattering, which are caused by
constituent gas and particles in the medium, resulted in the energy dissipation
[13, 14]. The refractive-index fluctuations named turbulence originate from the
temperature differences and cause intensity fluctuations (scintillation) that degrade
the probability of error performance of the wireless optical communication system.
In case that turbulence presence, the beams involve in extra beam spreading, beam
wander, and scintillation that greatly hamper the performance of the communica-
tion system. Consequently, understanding the effects of turbulent medium on the
propagating beam is an important issue for the researchers that paves the way
towards mitigating the limitations caused by turbulence [15, 16].

This chapter presents a detailed review of the conducted work up to date on the
propagation of vortex beams through random mediums. Accordingly, Section 2
starts with the representation of different types of vortex beams. Then, followed by
the theory of the propagation in a random medium in Section 3. Subsequently,
Section 4 discusses the atmospheric turbulence effect on the fully and partially
coherent vortex beams. In addition, it represents the scintillation properties of
vortex beams. In Section 5, we evaluate coherent and partially coherent vortex
beam properties in oceanic turbulence. Furthermore, it covers the scintillation
effects on the vortex beams propagating oceanic turbulence medium. Finally,
Section 6 sums up the chapter by concluding the advantages that vortex beams
offer for optical communication systems through the degradation of turbulence
effects.

2. Representations of vortex beams

In this part of the chapter, expressions of different vortex beams are given at
the source plane on the fundamental coordinate systems, neither Cartesian sx, sy

� �
or radial s,φð Þ [17, 18]. Firstly, the source field expression of Gaussian vortex
beam is;

E s,φð Þ ¼ s
αs

� �l

exp � s2

αs2

� �
exp jlφð Þ (1)

where αs, and l represent the source size and topological charge respectively.
Besides that, the source field expression of elliptical Gaussian vortex beam [19]

can be written with the Cartesian coordinate as follows;

E sx, sy
� � ¼ sx þ jεssy

αs

� �l

exp � sx2 þ εs2sy2

αs

� �
exp jl tan �1 εssy

sx

� �� �
(2)

εs is the degree of ellipticity. Another widely investigated beam type is the
Laguerre Gaussian vortex beam which can be expressed as [20, 21];

E s,φð Þ ¼ s
αs

� �l

exp � s2

αs2

� �
Ln

m s2

αs2

� �
exp jlφð Þ (3)
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Ln
m is the Laguerre polynomial, with a polynomial degree of n. If n>0, Bessel

function Jn
m with orders can also generate vortex beams [22]. Thus, Bessel–

Gaussian vortex beam can be written as;

E s,φð Þ ¼ exp � s2

αs2

� �
Jm

s
αs

� �
exp jlφð Þ (4)

Jm is the Bessel function order with m. Finally, Flat topped Gaussian vortex
beam expressed with the related source field expression [23] as given;

E sx, sy
� � ¼ 1

N
sx þ jsy

αs

� �mXN
n¼1

�1ð Þn�1 Nnð Þ exp �n
sx2 þ sy2

αs2

� �
(5)

N indicates the order of flat-topped Gaussian vortex beam. Moreover, Hermite–
Gaussian vortex beam can be written as the superposition of two orthogonally
polarized components under paraxial approximation [24]. The equation of
Hermite–Gaussian vortex beam can be written as;

E sx, sy
� � ¼ exp � sx2 þ sy2

αs2

� �
Hnx

sx
αs

� �
Hny

sy
αs

� �
sx!þHmx

sx
αs

� �
Hmy

sy
αs

� �
sy!

� �

(6)

where the orders of the Hermite polynomials such as nx, ny,mx,my in
HnxðÞ, HnyðÞ, HmxðÞ, HmyðÞ can be introduced as odd integers to create the desired
zero on-axis field amplitude, this way such combinations can be regarded as vortex
beams.

The optical field of the sinh-Gaussian vortex beam in the source plane can be
specified as given in [25];

E s,!0
� � ¼ sinh Ω x0 þ y0

� �� �
exp � x02 þ y0

2

w0
2

� �
x0 þ j sgn lð Þy0
� � lj j (7)

s! is the position vector, Ω denote the constant parameter of the hyperbolic
sinusoidal part, where sgn lð Þ can be introduced as a symbolic function.

In addition to coherent vortex beams, there exist various important types of
partially coherent vortex beams in the literature. The cross spectral density (CSD)
of partially coherent beams in the source plane can be expressed by the following
general form [17];

W s1, s2ð Þ ¼ E s1ð ÞE ∗
s2ð Þ
�� ¼ A s1ð ÞA s2ð Þ exp jl φ1 � φ2ð Þ½ �g s1 � s2ð Þ (8)

Es and As are electric field and its amplitude, respectively. The angular bracket
and the asterisk denote ensemble average and complex conjugate. s1 and s2 are the
two arbitrary points in the source plane, g s1 � s2ð Þ is the correlation function
between two arbitrary points. As the amplitude (As) of the beam changes, different
kind of partially coherent beams are obtainable. The correlation function for the
Gaussian distribution is [26];

g s1 � s2ð Þ ¼ exp � s1 � s2ð Þ
2δ02

� �
(9)

That δ0 indicates initial coherence width. In case of δ0 ! ∞, Eq. (9) tends to a
fully coherent vortex beam, However, when δ0 ! 0, Eq. (9) reduces to an
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incoherent vortex beam. On the other hand the CSD function of Gaussian Schell-
model (GSM) vortex beam in the source plane is written as [27];

E s1, s2,φ1,φ2ð Þ ¼ exp � s12 þ s22

4σ02
� s12 þ s2 � 2s1s2 cos φ1 � φ2ð Þ

2δ02
þ jl φ1 � φ2ð Þ

� �

(10)

Where σ0 indicates transverse beam width. Furthermore, the CSD of the par-
tially coherent LG beam in the source plane is obtained as [28];

E s1, s2,φ1,φ2ð Þ ¼
ffiffiffi
2

p
s1

ω0

� �m ffiffiffi
2

p
s2

ω0

� �m

Ln
m 2s12

ω0
2

� �
Lp

m 2s22

ω0
2

� �
exp � s12 þ s22

4ω0
2

� �

� exp � s12 þ s22 � 2s1s2 cos φ1 � φ2ð Þ
2δ02

� �
exp jl φ1 � φ2ð Þ½ � (11)

Ln
m is Laguerre polynomial with mode orders n and m. In the case that n ¼ 0,

Eq. (11) becomes a partially coherent LG0l beam. However, having the both mode
ordersn and m set to zero, the beam turns to the well-known GSM beam. Further-
more, Laguerre Gaussian correlated Schell-model vortex (LGCSMV) beam in the
source plane as special kind of the correlated partially coherent vortex beams, can
be expressed as [29].

E s1, s2ð Þ ¼ exp � s12 þ s22

4σ02
� s1 � s2ð Þ2

2δ02

" #
Ln

0 s1 � s2ð Þ2
2δ02

exp jl θ1 � θ2ð Þ½ � (12)

3. Theoretical background of beam propagation
through random medium

In this part of the chapter, atmospheric and oceanic turbulence phenomena that
influence the optical laser beam propagation are explained. Also, the theoretical
background regarding the laser beam propagation is provided.

3.1 Atmospheric turbulence

Atmosphere is a medium that surrounds the Earth which mainly consists of
gaseous such as nitrogen, oxygen, water vapor, carbon dioxide, methane, nitrous
oxide, and ozone. As the beam propagates through atmospheric medium, the
change of atmosphere temperature and wind velocity results in variation of the
atmosphere’s refractive index. These changes simply called atmospheric turbulence.
Atmospheric turbulence is a non-linear process that is governed by Navier–Stokes
equations. Since solving such kind of equations is challenging, the statistical
approaches are developed. One of the widely used approaches is Kolmogrov power
spectrum model that is given below [30];

Φn kð Þ ¼ 0:033C2
nκ

�11=3; 1=L0
≪ κ≪ 1=l0 (13)

Cn
2 indicates the refractive index structure and κ ¼ Κj j is the scalar wave

number. Kolmogrov power spectrum does ignore the effects of the inner (l0) and
outer scales (L0) of the turbulence since outer scale is infinity and the inner scale is
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so small. However, more elaborated power spectrums are suggested by Tatarski and
Von-Karman. Tatarski power spectrum is defined as [31];

Φn kð Þ ¼ 0:033C2
nκ

�11=3 exp � κ2

κ2m

� �
; κ≫ 1=L0

(14)

where κm ¼ 5:92=l0. If the limit 1=L0 ! 0 L0 ! ∞ð Þ then this spectrum has a
singularity at κ ¼ 0.If the inner and outer scales of the turbulence are considered,
Von-Karman spectrum can be defined to model the turbulence as follows [32];

Φn κð Þ ¼ 0:033C2
nκ

�11=3 exp �κ2=κ2m
� �

κ2 þ κ20
� �11=6 ; 0≤ κ<∞ (15)

3.2 Oceanic turbulence

As it is stated above, optical turbulence refers to the index of refraction fluctu-
ations, which is one of the most significant features of optical wave propagation.
Depending on the medium type, external and internal effect, there are some dis-
tinctions among the index of refraction fluctuations. For instance, while tempera-
ture fluctuation is fundamental reason for atmospheric turbulence, refraction index
variation in seawater is caused by not only temperature fluctuations but also fluc-
tuations of salinity. For that reason, power spectrum of ocean that considers both
temperature and salinity fluctuations was firstly proposed in 2000 [33]. Power
spectrum of oceanic turbulence is given for homogeneous and isotropic underwater
media as follows;

Φn κð Þ ¼ 0:388

� 10�8ε�11=3 þ2:35 κƞð Þ2=3
h i χT

ς2
ς2 exp �ATδð Þ þ exp �ASδð Þ � 2ςexp �ATSδð Þ� �

(16)

ε is the rate of dissipation for turbulent kinetic energy per unit mass of fluid, χT
is the rate of dissipation of mean square temperature. AT ¼ 1:863� 10�2, ATS ¼
9:41� 10�3δ = 8.284 κƞð Þ4=3+12.987 κƞð Þ2. ς is the relative strength of temperature
and salinity fluctuations, and finally, ƞ represents the Kolmogrov inner scale.

3.3 Turbulence Modeling

The behavior of optical beams propagating in random medium can be
understood by characterizing the medium qualitatively and quantitatively.
Huygens–Fresnel principle is one of the most important modeling types to
characterize beam propagation in turbulent medium [34]. The average intensity
distribution at the observation plane can be expressed via Huygens–Fresnel
principle as Eq. (17);

I R,
�!

L
� �ED

¼ k2

2πLð Þ2
ðð

E0 r!1, 0
� �

E0
∗ r!2, 0
� �

� exp
ik
2L

R� r!1

� �2
� R� r!2

� �2� �� �

� exp ψ R, r!1

� �
þ ψ ∗ R, r!2

� �h iE
d r!1

D
d r!2 (17)
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R
!

denotes the position vector at the observation plane, r!1 and r!2 represent the
position vectors at the source plane, k is the wave number, the asterisk denotes the
complex conjugation, the < > indicates the ensemble average over the medium
statistics covering the log-amplitude and phase fluctuations due to the turbulent

atmosphere, ψ R, r!1

� �
is the random part complex phase of a spherical wave.

Moreover, Rytov approximation is another type of turbulence modeling for weak
atmospheric turbulence [35]. The beam at the receiver plane can be written in terms
of Rytov approximation as given Eq. (18);

E ρ, zð Þ ¼ � i
λz

exp ikzð Þ
ð2π

0

ðþ∞

0
E r, θð Þ exp ik

2z
ρ� rð Þ2

� �
exp ψ r, ρ, zð Þ½ �r dr dθ

(18)

ψ r, ρ, zð Þ denotes the random part due to the turbulence and ρ is the position
vector. Furthermore, Random Phase Screen method can be employed to modeling
turbulence [36]. It is described by the spatial spectrum of phase fluctuations. The
spectrum of random phase can be expressed as;

Φ qx, qy, qz
� �

¼ 2πkΔz Φ qx, qy
� �

(19)

4. Coherent vortex beams in turbulent media

Fluctuation of electric field between two or more points can be considered as
coherence of the light beams. The effect of coherence parameters is analyzed by
different research groups [37, 38]. The term of coherent vortex beam firstly was
revealed by Coullet in 1989, then Allen found that vortex beams can carry OAM
[39, 40]. Since the first exploration of the vortex beams, many studies utilized in
numerous fields such as quantum information [41], optical processing [42], optical
manipulation [43] and optical communication systems [44]. Thus, the propagation
of fully coherent vortex beams in turbulent medium has been investigated inten-
sively in the literature.

4.1 Atmospheric turbulence

Despite the great advantages of free-space optical communication (FSO) sys-
tems, the propagation of the laser beam in atmosphere limits the performance of
these systems. Mitigating these effects can be achieved through understanding the
behavior of the propagating beam under different atmosphere circumstances.
Accordingly, the literature has significant investigations on this topic. Recently,
vortex beams have become one of the beam types under concentration. Considering
Laguerre Gaussian (LG) vortex beams, it is proved that, as the topological charge
increases, LG beam undergoes less broadening as given Figure 1a. Also, it is
obtained that LG vortex beam is less affected by the turbulence than Gaussian beam
as a result of the numerical analysis in [17, 18]. Thus, Gaussian beam suffers from
more broadening than LG vortex beam. Moreover, Algebraic sum of the topological
charges of LG beam is determined. Accordingly, the phase singularities existing in
test aperture is approximately equal to the topological charge of the input LG vortex
beam [48]. Fiber coupling of LG vortex beam in turbulent atmosphere is investi-
gated by a theoretical model. LG beam that have small OAM number, low radial
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index and long wavelength gives higher coupling efficiency [49]. Mode probability
density (MPD) of LG beam propagating in atmospheric turbulence is analyzed.
MPD of LG vortex beam decreases while the distance increases as given Figure 1b.
Additionally, MPD is increases by lower radial and waist radius, lower refractive
index constant and shorter propagation distance [45]. The propagation properties of
synthesized vortex beams compared with LG beams in free-space and in atmo-
sphere is explored numerically. Propagation properties of LG beam shows the same
characteristics with those of the synthesized vortex beams [50]. Furthermore, spiral
spectrum of LG vortex beam and Anomalous vortex beam (AVB) is studied in
details. It is achieved that; effects of atmospheric turbulence on LG vortex beam are
more than those on Anomalous vortex beams as illustrated Figure 1c. Also, the
spiral spectrum of the AVB is less affected by the turbulent atmosphere compared
with LG vortex beam, in the case that AVB has larger beam order, longer wave-
length, smaller topological charge, and at smaller refractive index structure con-
stant, also propagating shorter distances [46]. Different kinds of vortex beams,
including LG vortex beam and Bessel vortex beam were analyzed under the same
turbulence conditions as given Figure 1d. Bessel vortex beams are more affected by
the turbulence than LG vortex beams under the same circumstances [47]. It was
experimentally demonstrated that, LG vortex beam exhibit enhanced backscatter
(EBS) when only having even topological charge and LG beam may convert into
corresponding Hermite Gaussian (HG) mode [51].

Figure 1.
Influence of (a) topological charge and (b) mode probability density (MPD) and crosstalk probability density
of low-order LG beams for the various propagation distance for angular mode = 1. (c) the capacity of wireless
optical links using AV beams versus LG beams, and (d) effect of turbulence on the intensity and phase
distributions of Bessel vortex beams versus LG vortex beams [17, 45–47].
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In addition researchers have analyzed Bessel Vortex Beams (BVB) in atmo-
spheric turbulence. The degree of coherence of Bessel vortex beam decreases much
faster under higher levels of fluctuation in the atmosphere [52]. The mean intensity
of BVB versus dimensionless parameter ξð ) is given Figure 2a. It is obvious from
the figure that increasing the topological charge results in decreasing the mean
intensity of BVB [22]. Also, Bessel-Gaussian Vortex beams (BGV) have been stud-
ied numerically and experimentally, where it is observed that the OAM mean value
does not show any variation during the propagation in atmospheric turbulence [56].
The mean intensity of BGV beams possessing phase singularities versus wavelength
is given Figure 2b. It is clear that the central hole and the dark ring of the beams are
gradually filled with the decrease of wavelength. Also, mean intensity of BGV beam
decreases faster as the beam operating at a shorter wavelength or having either a
narrower beam width, or a smaller topological charge [53]. Finally, a comparison
between LG beam and BGV beam is conducted in terms of transmission quality and
stability. According to the study given in [57], transmission quality and stability of
BGV beam were observed to be better than those of the LG beams. Gaussian Vortex
(GV) beam is another beam type that investigated frequently by the researchers.

Figure 2.
(a) The average intensity of vortex Bessel beam versus dimensionless parameter and (b) BesselGaussian
vortex beam with different wavelength, (c) illustration of the radius of a ring dislocation of vortex beam as a
function of structure constant, and (d) beam order effect on the intensity distributions for four petal GV beam
[22, 53–55].
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GV beam enables us to calculate atmospheric turbulence strength by measuring
radius of ring dislocations with different beam width as given Figure 2c [54]. Four
Petal GV beam possessing high beam order undergoes transformation into more
petals in the far field as achieved in Figure 2d [55].

The laser wavelength effect on the annular vortex beam is investigated when
propagating in atmospheric turbulence [58]. It is observed that, operating at higher
wavelengths causes lowering the central relative intensity and the central dark
hollow is more achievable as stated in Figure 3a. Furthermore, beam width of a
collimated vortex beam increases with the decrease of the wavelength [61]. Ellipti-
cally polarized (EP) vortex beams in turbulent atmosphere evolve into a Gaussian
beam shape when the propagation distance is long enough and also flat-topped
profile is obtained at a longer propagation distance as the topological charge
increases [62]. Initial dark hollow profile of flat-topped vortex hollow beams
remains the same in the short propagation distance then the beam evolves into a
Gaussian-like beam under the strong turbulence [44]. Rectangular vortex beam
array with arbitrary topological charge through atmospheric turbulence is analyzed
and the obtained results clarify that beam array transform into a fan structure under
moderate turbulence after propagating 1000 m, then turns to a single vortex beam
after propagating 5000 m as given in Figure 3b and c. [59]. Also, optical vortex
beams with higher topological charge are able to propagate longer distances in weak
turbulent atmosphere. However, when the particular distance exceeds 500 km the
output beam finally loses the vortex property and gradually becomes a Gaussian-
shaped beam as illustrated in Figure 3d [60].

Figure 3.
(a) Average intensity of annular vortex beam with different beam wavelengths and rectangular vortex beam
when distance (b) 1000 m and (c) 5000 m and optical vortex beam with distance of 500 km [58–60].
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Furthermore, the influence of topological charge, wavelength, zenith, receiver
aperture, waist radius, radial index and inner scale on spiral spectrum is investi-
gated on the LG vortex beam propagating in slant atmospheric medium. It is
achieved that, when propagation distance, topological charge, zenith and
receive aperture increases, the spiral spectrum becomes wider. However, with
the increase of wavelength and turbulence inner scale, the spiral spectrum spread
less [63].

4.2 Scintillation properties

Optical wave propagating through a random medium such as the atmosphere,
ocean and tissue etc. encounters fluctuations of beam intensity during the short and
long propagation paths. This mechanism briefly explained by the scintillation of
medium. Scintillation is caused by the external effect which is temperature varia-
tions in the random medium, resulting in index-of-refraction fluctuations (i.e.,
optical turbulence). Theoretical and experimental studies of scintillation have
become more important nowadays since optical communication system adopts
many types of beams. Accordingly, the scintillation index of LG beams is investi-
gated in [17, 64]. The scintillation index of LG beam having different topological
charges is demonstrated in Figure 4a. It is shown that, as propagation distance
increases scintillation index increases as well. Also, it is obvious that the scintillation

Figure 4.
Scintillation index of (a) LG beam with different beam orders (b) vector versus scalar vortex beams (c) LG
vortex against Gaussian beam, (d) single and double vortex beam [21, 64–66].
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of non-vortex beams is higher than that of the vortex beams since having a higher
topological charge results in lower scintillation levels [64]. Also, it is obtained that,
Gaussian beams are much more affected by the scintillation than LG vortex beams
[17]. Additionally, the scintillation properties of vectorel and scalar vortex beam are
analyzed both numerically and experimentally as shown in Figure 4b. This study
realized that vectorel vortex beam provides an advantage over the scalar vortex
beam since it has lower scintillation index for long propagation distances [21].
Furthermore, scintillation performance of various vortex beams (flat-topped
Gaussian vortex, elliptical Gaussian vortex beam, Gaussian vortex beam) in strong
turbulence region is investigated in [67]. It is achieved that, higher topological
charges uniformly leading to lower scintillation [67]. The scintillation performance
of Sinh Gaussian (SH-G) vortex beam has derived and investigated in [68]. This
study has discovered that scintillation index of SH-G beam is higher than that of
SH-G vortex beam under the same propagation circumstances. Comparison
between Gauss and LG vortex beam in terms of scintillation index with different
radius of targets is given in Figure 4c. The scintillation indices of the two beams
decrease while weak turbulence effect exists. However, in case of strong turbulence,
the scintillation indices increase. Moreover, the scintillation indices of Gaussian
beam are higher than those of LG vortex beams [65]. Finally, Figure 4d shows the
scintillation indices of single (beam 1 and beam 2) and double vortex beam (beam 3
and beam 4). All the beams have a similar scintillation levels at short propagation
distance. On the other hand, the scintillation indices of the single vortex beams
increase gradually at longer propagation distance [66]. Flat-topped Gaussian
vortex beam propagating in a weakly turbulent atmosphere is investigated and
scintillation properties are observed. It is found that flat-topped Gaussian vortex
beam with high topological charges has less scintillation than the fundamental
Gaussian beam [69].

4.3 Oceanic turbulence

Underwater Optical communication has attracted much attention due to its
ability to provide the required large capacity and high-speed communication.
Accordingly, many scientific research and exploration regarding the underwater
environment are on progress. Among these, studying the propagation of laser
beams under the effect of oceanic parameters namely spatial correlation length (σ),
dissipation rate of temperature (χt), kinetic energy per unit mass of fluid (ε),
relative strength of temperature, salinity fluctuations (ζ) and wavelength (λ). In
this context, the detection probability characteristics of a Hyper geometric-
Gaussian (HyGG) vortex beam propagating in oceanic turbulence are analyzed with
different wavelengths as in Figure 5a. Beams operating at higher wavelengths have
higher detection probability [70]. Further, HyGG beam with smaller topological
charge is more resistant to oceanic turbulence. Furthermore, detection probability
of Hermite Gaussian vortex beam tends to increase by the increase of ε [74].
Scintillation index of Gaussian vortex beam in oceanic turbulence is investigated for
different waist widths as given in [75]. Besides that, Flat-topped vortex hollow
beam is analyzed, where it recognized that this beam keeps its original intensity
pattern in short propagation distances. Yet, it evolves into Gaussian like beam in
far-field. Also, flat-topped vortex beam transforms into a Gaussian beam with
decreasing of σ, ζ and ε as well as increasing of χt [76]. As given in Figure 5b, the
detection ratio of Airy vortex beam is higher than that of LG beam when topological
charge is higher than 5. Otherwise, it is the opposite when the topological charge is
less than or equal 4. Likewise, the interference of Airy vortex beam becomes
stronger when χt, ζ and the propagation distance increases [71]. Stochastic
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electromagnetic vortex beam depending on the topological charge is analyzed in
oceanic turbulence. While the topological charge increases, larger dark vortex core
is obtained as in Figure 5c [72]. The effect of χt on rotating elliptical chirped
Gaussian vortex beam (RECGVB) is illustrated in Figure 5d. It is obvious that,
while χt increases, the minimum normalized intensity distribution of RECGVB
increases and the spreading of the beam becomes wider which turn into Gaussian-
like distribution at the receiver [73]. Finally, Lorentz-Gauss vortex beam propagat-
ing through oceanic turbulence is studied. As a result, it is obtained that beams with
higher order topological charges have larger dark center and the beam can protect
these properties as the distance increases [77].

4.4 Other mediums

Besides the oceanic and atmospheric medium, propagation of vortex beams in
other mediums is important for the optical communication system. The propagation
properties of Gaussian vortex beam in gradient index medium are investigated
where the phase distribution of the beam is calculated by the Gradient index
parameter. While the gradient index parameter increases, periodical cycles become
shorter. The topological charge can also influence the period of the phase distribu-
tions [78]. Finally, anamalous vortex beam is investigated in strongly nonlocal
nonlinear medium. The results present that, the input power plays a key role in
the beam evolution. By selecting a proper input power, the beam width can be
controlled [79].

Figure 5.
(a) Detection probability of HyGG vortex beam with different wavelength and (b) detection ratio of LG versus
airy vortex beam, (c) average intensity of stochastic electromagnetic vortex beam with different topological
charges and (d) elliptical chirped Gaussian vortex with different value of χt [70–73].
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5. Propagation properties of partially coherent vortex beams

A partially coherent beam is the beam with a low coherence length which was
first demonstrated by Gori et al. [80]. This beam types have some unique proper-
ties, such as the cross-spectral density, and correlation function which is different
than that of fully coherent beams. On the other hand, partially coherent beams are
able to reduce the scintillation induced by the turbulence, the beam spreading, and
the image noise when compared with the fully coherent beams [81, 82]. Recently,
many research groups have conducted a wide range of studies regarding the prop-
agation of partially coherent vortex beams either in atmosphere, ocean or other
mediums.

5.1 Atmospheric turbulence

GSM vortex beam can be introduced as a partially coherent vortex (PCV) beam
and many studies have inquired into this beam type. The influence of structure
constant, spatial correlation length and beam index on GSM beam is investigated in
details. As given in Figure 6a as the structure constant increases, the normalized
propagation factor increases as well. Additionally, the beam width increases like-
wise [83, 86]. Similarly, multi GSM vortex beam with smaller correlation length
tends to lose its dark hollow center and evolve into a Gaussian beam as obtained in
Figure 6b [84, 87]. Figure 6c illustrates the scintillation index of GSM beam against

Figure 6.
(a) Average intensity of GSM vortex beam for different structure constant values, (b) average intensity of multi
GSM vortex beam at different correlation lengths, (c) scintillation index of GSM beam against GSM vortex
beams and (d) beam spreading of fully and partially coherent beam types [9, 83–85].
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GSM vortex beam. It is clear that, the scintillation index of the two beams increases
as the coherence length increases. Also, for the coherence length being larger than
0.35 mm, GSM vortex beam is less affected by the turbulence than the GSM beam
[9]. Moreover, beam index is another important parameter that affect the GSM
vortex beam. While the beam index increases, the focused beam profile becomes
flatter [88, 89]. Finally, Figure 6d explains that, the PCV beam is obviously suffers
from less beam spreading than the fully coherent vortex beam as expected [85].

Besides that, the propagation of partially coherent double-vortex beams in tur-
bulent atmosphere is investigated deeply. Accordingly, it is observed that the topo-
logical charge, source beam width, degree of coherence at the source plane and the
propagation distance are effective parameters on the intensity distributions. Conse-
quently, as the propagation distance increases, beam profile changes to a Gaussian
beam shape [90]. Moreover, the spreading of partially coherent flat-topped and
Gaussian vortex beams in atmospheric turbulence is analyzed. It is achieved that the
beam width of partially coherent beams increases as the distance increases and
vortex beams are less affected by the atmospheric turbulence than the non-vortex
ones. [91, 92]. Another study analyzes the partially four-petal elliptic Gaussian
vortex beams propagating in turbulent atmosphere. It is achieved that partially
coherent four-petal elliptic Gaussian beams with larger topological charge, smaller
beam order, and larger ellipticity factor are less influenced by atmospheric turbu-
lence. Moreover, vortex beams spread faster with the decreasing of the coherence
length [93]. Scintillation index of partially coherent radially polarized vortex
(PCRPV) beams, and PCV are analyzed as well. According to the obtained numer-
ical results, scintillation index of PCRPV beams is lower than that of the PCV beams
[94]. The propagation of partially coherent electromagnetic rotating elliptical
Gaussian vortex (PCEREGV) beam through non-Kolmogorov turbulence is investi-
gated numerically. Thus, it is realized that the normalized spectrum density of
PCEREGV beam is slightly affected by the inner scale, while the operating wave-
length greatly influences the spectrum density. Normalized spectrum density dis-
tributes more dispersedly and its minimum becomes larger when operating at
higher wavelengths [95]. Finally, partially coherent twisted elliptical and circular
vortex beams are analyzed and it is obtained that, elliptical vortex structure beam
has advantage over the circular vortex with twisted phase modulation [96].

On the other hand, partially coherent LG and GSM vortex beams in slant atmo-
spheric medium are analyzed by the researchers in [97, 98]. The beam wandering of
GSM vortex beams along a slant path is lower than the horizontal path in case of
long propagation distances [97]. Also, when partially coherent LG vortex beam is
propagating in a slant path, bigger source coherence parameter causes a smaller
transverse coherence length. A large zenith angle results in a small transverse
coherence length of the beam [98].

5.2 Oceanic turbulence

Cross-spectral density and average intensity of GSM vortex beams propagating
in oceanic turbulence are discussed and their analytical expressions are obtained
using extended Huygens–Fresnel principle. The intensity equals zero at the center
then as the distance increases, flat-topped beam takes place and, consequently,
evolves into a Gaussian beam shape [99]. Not only the increase in χt, and ζ but also
the decrease in ε lead the partially coherent GSM vortex beams to lose their dark
hollow center pattern and evolve into a flat-topped beam and Gaussian-like beams
as the propagation distance increases under the strong oceanic turbulence [87, 100].
In addition, Lorentz–Gauss vortex beam generated by a Schell-model source
becomes wider with the increase of the oceanic turbulence parameters namely χt,
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and ζ [101]. Furthermore, partially coherent flat-topped vortex hollow beam in
oceanic turbulence with higher beam order loses its initial dark hollow center slower
compared to the beam with lower beam order [23]. Partially coherent four-petal
Gaussian vortex, anomalous hollow vortex beams are also discussed under the
effect of oceanic turbulence. It is found that the partially coherent four-petal
Gaussian vortex that has four petals profile in near field propagation, then turns
into a Gauss-like beam rapidly with either decreasing σ, ς and ε, or increasing the
oceanic parameter χt in the far field [102]. For partially coherent anomalous hollow
vortex beam, the parameters χt and ς give rise to larger spreading of beam rather
than ε [103].

5.3 Other mediums

The propagation of PCV beams in other mediums is also investigated. Conse-
quently, the propagation properties of PCV beams in gain media are investigated.
For longer propagation distances, PCV beams keep their original dark hollow
intensity profile when having a higher topological charge value and larger coher-
ence length. As the coherence length increases, the effective transmission distance
of PCV beams with hollow distribution increases. However, fully coherent
vortex beams always keep the hollow distribution while propagating in the gain
medium [104].

6. Conclusion

The increasing importance of underwater and atmosphere wireless optical com-
munication in a wide range of applications, has shaded the light on understanding
the laser beam propagation in random media. In this context vortex beams play a
role as one of the attractive laser beams which have become a widely investigated
beam. The interest that these beams gained is due to their phase distribution that
can be modulated to transmit the message signals. This way, they pose an alterna-
tive to the classical intensity or phase modulations that wireless optical communi-
cation links use. Thus, vortex beams are able to increase the ability of optical
communication systems through mode multiplexing and high ratio terabit free-
space data transmission. On the other hand, vortex beams are able to reduce the
turbulence-induced scintillation, that leads to a better system performance.

In this context, this chapter introduces the research conducted up to date
regarding the propagation of different vortex beam types in random medium.
Besides summaries the effects of a variety of parameters such as the beam order,
topological charge, coherence length, wavelength, source size, relative strength of
temperature and salinity fluctuations on the beam properties. It observed that both
Gaussian–Schell model vortex and elliptical vortex beams are able to improve the
system performance through the reduction of scintillation that is induced by the
atmospheric turbulence. Besides that, Laguerre–Gaussian vortex beam as an infor-
mation carrier in the free-space optical link decreases the aperture averaged scintil-
lation when increasing the topological charge value. The Laguerre–Gaussian vortex
and combined Gaussian-vortex beams provides a room for the system performance
improvement which is originated from the effective reduction of the scintillation
index especially with the increase of the topological charge. Therefore, vortex
beams are capable to propagate longer distances. In addition, beams with OAM
mode provide another degree of freedom for multiplexing applications, especially
space-division-multiplexing (SDM) systems which is sufficient for higher commu-
nication capacity. On the other hand, the double vortex beams offer advantages
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over the single vortex beams for long communication links. Moreover, a compara-
tive study investigated the propagation of different of vortex beam types in strong
turbulence, and revealed that as the values of topological charge increases the
scintillation level decreases. Partially coherent vortex beams are able to reduce the
scintillation, and beam spreading when compared to the fully coherent beams.

This chapter sets the models of optical wave propagating in random medium
such as atmosphere, ocean and gain media. Then, focuses on the propagation of
different vortex beams, either fully coherent or partially coherent, in different
turbulent mediums. The presented results serve as an adequate database for under-
standing the propagation of vortex beams in random medium. Thus, provides an
essential aid for further investigations in utilizing vortex beams in a wide range of
application namely not only underwater optical communication, laser satellite
communication systems but also sensing systems.
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Chapter 3

Searching of Individual Vortices
in Experimental Data
Daniel Duda

Abstract

The turbulent flows consist of many interacting vortices of all scales, which
all together self-organize being responsible for the statistical properties of
turbulence. This chapter describes the searching of individual vortices in
velocity fields obtained experimentally by Particle Image Velocimetry (PIV)
method. The vortex model is directly fitted to the velocity field minimazing the
energy of the residual. The zero-th step (which does not a priori use the vortex
model) shows the velocity profile of vortices. In the cases dominated by a single
vortex, the profile matches the classical solutions, while in turbulent flow field,
the profile displays velocity decrease faster than 1=r. The vortices fitted to measured
velocity field past a grid are able to describe around 50 % of fluctuation energy by
using 15 individual vortices, and by using 100 vortices, the fluctuating field is
reconstructed by 75 %. The found vortices are studied statistically for different
distances and velocities.

Keywords: vortex, turbulence, Particle Image Velocimetry, grid turbulence,
individual vortex searching algorithm, vortex model

1. Introduction

Contemporary exploration of turbulent flows focuses on statistical characteris-
tics [1] such as study of distributions [2, 3], Fourier analysis [4], correlations [5, 6],
or the Proper Orthogonal Decompositions [7–9]. The success of statistical approach
is declared by the large applicability of numerical simulations, which are able to
perfectly match the experimental data. Although it is possible to predict the statis-
tical development of turbulent flow, this is still far from understanding the turbu-
lence. The turbulence consists of vortices [10] and other coherent structures [11]
whose multi-body interactions are responsible for the life-like behavior—the flow
can be infected by turbulence [12], and it dies when it is not fed [13]; turbulence
fastens the energy transfer from low-entropy energy source to large-entropy energy
(heat) by decreasing its own entropy via self-organization and the rise of coherent
structures.

The importance of individual vortices to the turbulent statistics is best shown by
the problem of quantum turbulence [14, 15], which consists of quantized vortices [16],
which fulfill the Helmholtz circulation theorems [17]—their circulation is constant
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and equal to Γ1qv ¼ κ ¼ 2πℏ=m4 ≈ 9:997 � 10�8m2=s, (m4 is the mass of single
helium 4 atom, it applies 2�m3 for helium 3 as it is a fermion); thus the vortices
cannot end anywhere in the fluid, only at the fluid domain boundary, or they can
form closed loops. The energy cascade can be realized only via vortex interactions,
reconnections [16], and the helical Kelvin waves on the quantized vortices leading
to phonon emission due to nonlinear interactions [18]. This nature of turbulence
made of a tangle of identical vortices instead of different vortices as it is in Rich-
ardson cascade leads to polynomial velocity distribution [19] instead of almost-
Gaussian distribution observed in classical turbulence [3, 20]. Despite this fact, the
large-scale observation of superfluid flows shows the same picture as the classical
flows do [21, 22]. The transition between both regimes depends on the length scale
[2]. The interacting tangle of quantized vortices builds up the turbulence, whose
structure is classical on large scale.

The fluid simulation by using the quantized vortices [23] is able to reconstruct
the velocity spectra [18] and overall topology [24]. This method is applied in
classical turbulence among others by the group of Ilia Marchevsky [25–27].

The behavior of individual vortices in experiment is studied by many groups;
however, it is often limited to the case of some single vortex or vortex system
dominating the flow. Among others, let us mention the work of Ben-Gida [28],
who detected vortices in a wake past accelerating hydrofoil in stably stratified or
mixed water. He used the maxima of λ2 criterion [29]. De Gregorio [30] observed
the tip vortex of helicopter rotor blade, and for its detection used the Γ2 criterion
[31]. They measured the vortex velocity profile and found that it is similar to the
Vatistas model (discussed later here); they studied the development of the tip
vortex and observed the interactions of tip vortices of various blades and various
turn ages downstream the helicopter jet. Graftieaux et al. [31] developed the the
functions Γ1 and Γ2 for the study of swirling flow in a duct. They detected a single
vortex in each snapshot and in average field measuring the distribution of the
distance of average and instantaneous vortex center. Their scalar function used for
vortex detection is effectively similar to smoothed circulation over some
neightborhood; therefore it nicely solves the issue of all experimental data: the
noise; on the other hand, it introduces a new artificial parameter of the detection:
the neighborhood area. Kolář [32] developed probably the most accurate criterion
for identifying the three components of velocity gradient tensor—the shear, strain,
and rotation. But his method needs a large number of transformations in each point.
Maciel et al. [33] noticed that eigen axes of the velocity gradient tensor might do the
same job.

In this chapter, the method is based on direct fitting of the instantaneous veloc-
ity field by some vortex model with scalar criterion used for the prefit only. In the
next section, the available vortex models are introduced, then the velocity profiles
on experimental data are shown introducing a new vortex model. Later the prefit
function and the fitting procedure are shown, and at the end, some results obtained
in the grid turbulence are presented.

1.1 Vortex profiles

A principal disadvantage of any fitting algorithm is the need of a priori knowl-
edge of the functional dependence of the data, in our case, to know the vortex
model fitted to the data. There have been a lot of different vortex models developed
in the past. The basic idea of a vortex model is the circulation-free potential vortex,
whose entire circulation is focused inside an infinitesimal topological singularity—
the vortex filament. Everywhere else, the vorticity ω is zero.
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uPVθ rð Þ ¼ Γ
2πr

(1)

The vorticity ω of this potential vortex is a scalar in the discussed simple two-

dimensional case: ω ¼ ∂v
∂x � ∂u

∂y

� �
¼ Γ

2π
1� x2þy2ð Þ�x� 2xð Þ

x2þy2ð Þ2 � �1� x2þy2ð Þþy� 2yð Þ
x2þy2ð Þ2

� �
¼ Γ

2π � 1�1
x2þy2

Among the infinite velocity of undefined direction in the center, the large
velocity gradients smoothen the flow in a way, that there is minimum relative
motion at small scales leading to the solid-body rotation with tangential velocity
linearly increasing with the distance from the center

uSBRθ rð Þ ¼ Γ
2πR

� r
R

(2)

and vorticity ω being constant everywhere

ω ¼ ∂v
∂x

� ∂u
∂y

� �
¼ Γ

2πR2
∂x
∂x

� ∂ �yð Þ
∂y

� �
¼ Γ

πR2

Simple connection of these two ideas is called Rankine vortex. A new
parameter of the vortex is introduced: the vortex core radius R (in solid body
rotation vortex (2), R played only the unit role: r=R is dimensionless distance,
Γ=2πR is tangential velocity at dimensionless distance r=R ¼ 1). The fluid in this
vortex rotates as a solid body inside the sharply bounded vortex core, while it
orbits without internal rotation as a potential vortex outside of the circle
bounded by R

uRVθ rð Þ ¼ Γ
2πR

� r=R for r < R
R=r for r > R

�
(3)

Generally, there are not much sharp changes in the nature; therefore, a smooth
solution is introduced by Oseen

uOVθ rð Þ ¼ Γ
2πR

� R
r
� 1� e� r=Rð Þ2
� �

(4)

This is one of the exact solutions of Navier-Stokes equations containing the
temporal evolution as well, and it is called Lamb-Oseen vortex and then the
core scales as R � ffiffi

t
p

with time. However, we focus on descriptive analysis of
instantaneous two-dimensional velocity fields observed experimentally without the
temporal development. There exists more possible exact solutions of Navier-Stokes
equations, let us mention at least the Burgers vortex, the Kerr-Dold vortex, or the
Amromin vortex [34] with turbulent vortex core and potential envelope.

Mathematical simplification of Oseen vortex is suggested by Kaufmann [35] and
later discovered independently by Scully et al. [36]. It uses just the first term of
Taylor expansion of the exponential in the Oseen vortex, Eq. (4), as it is shown by
Bhagwat and Leishman [37], and it is generalized by Vatistas [38].

uVVθ rð Þ ¼ Γ
2πR

� r=R

1þ r=Rð Þ2n
h i1

n
, (5)

which equals to Kaufmann vortex for n ¼ 1, and it converges to Rankine vortex
for n ! ∞.
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All the vortex models mentioned up to here display the hyperbolic decrease of
tangential velocity with distance, uθ � r�1, see Figure 1. Such a vortex has infinite
energy! No matter, which profile is found in its core. Let us integrate the kinetic
energy of the orbiting fluid since some distance A large enough to eliminate the
different core descriptions:

E ¼
ð∞
A

1
2
u2 rð Þ � 2πr � dr ¼ 1

2
Γ

2πR

� �2

2π
ð∞
A

R
r

� �2

rdr ¼ π
Γ

2πR

� �2

R2 ln
r
R

h i∞
A
¼ ∞

(6)

independently on A or other details near the core. This divergence is often
solved by declaring some maximum size B of the area influenced by the vortex,
which is the size of the experimental cell. It could be the size of a laboratory or the
circumference of a planet. Anyway, it is an arbitrary parameter the total energy
depends on. It signifies that the distant regions have the same weight as the near
regions. This is a very uncomfortable property.

A faster decay of tangential velocity can be found in the Taylor vortex [39].

uTVθ rð Þ ¼ Γ
2πR

� r
R
� e�1

2 r=Rð Þ2 , (7)

which is obtained as the first order of Laguerre polynomials solution for vorticity,
whose zero-th order is the already mentioned Oseen vortex. The detailed
mathematics can be found in the book [40], specifically, the Section 6.2.1., and it
will be not reproduced here. The velocity decays quite fast and thus the energy
converges

E ¼ 1
2

ð∞
0
u2 rð Þ2πrdr ¼ πG2R2

ð
x3e�x2dx ¼ π

2
G2R2, (8)

Figure 1.
(a) The tangential velocity profile of discussed vortex models. The velocity is normalized by the circumferential
velocity G ¼ Γ=2πR, the distance is normalized by the vortex core radius R. (b) The profiles of theoretical
vorticity of the discussed vortex models. The mainstream of vortex models converges to hyperbolic velocity decay
� 1=r for large r thus having zero vorticity in the far field. Faster velocity decay is redeemed by a skirt of
opposite vorticity around the core, see curves denoted “Taylor” and “VNPE.”
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where1 G ¼ Γ
2πR represents an characterisitc vortex core velocity and x ¼ r

R is the
dimensionless distance.

The other hand of faster velocity decay is a skirt of vorticity opposite to that in
the core. Let us apply the vorticity operator in cylindrical coordinates

ωz rð Þ ¼ ∇� u!
� �

z
¼ 1

r
∂ruθ
∂r

� ∂ur
∂θ

� �
¼ 1

r
∂

∂r
rG

r
R
e�r2=2R2 ¼ G

R
e�r2=2R2

2� r2

R2

� �
, (9)

which changes the sign at r=R ¼ ffiffiffi
2

p
, the opposite vorticity value reaches its

maximum at r=R ¼ 2, and then it decays toward zero. The skirt of opposite vorticity
is a property of any profile with tangential velocity decay faster than 1=r, as the
profile 1=r is the limiting case for zero vorticity, see Figure 1.

2. Experimental setup and methods

2.1 Particle Image Velocimetry

The experimental data were obtained by using the standard method of Particle
Image Velocimetry (PIV) [41], which is already a standard tool in hydrodynamic
research in air or water and even in superfluid helium [42] as well as in high-speed
applications [43]. Contrary to the pressure probes, hot wire anemometry, or laser
Doppler anemometry, the result of this method is an instantaneous two-dimensional
velocity field [44],2 which opens the exploration of the turbulent flows topology
[8, 45, 46]. It is based on the optical observation of small particles [47] carried by the
fluid. The particles are illuminated by a double-pulsed laser in order to capture their
movement during the time between pulses. There exists even a time-resolved PIV,
which uses fast laser and camera, and thus it is able to capture the temporal develop-
ment and measure, e.g., the temporal spectra [48]. Our system at the University of
West Bohemia in Pilsen belongs to the slow ones with repeating frequency 7:4Hz;
therefore, only the statistical properties can be studied with quite good spatial reso-
lution 64� 64 grid points sampled on a 4Mpix (2048� 2048pix2) camera images.

2.2 Observed velocity profiles

Let us look at the experimental data. To get the velocity profile of a vortex, it is
needed to know vortex parameters: position, radius, and circulation or the effective
circumferential velocity G ¼ Γ=2πR respectively. The listed parameters are results
of the fitting procedure; however, the fitting procedure needs to use some vortex
model to minimize its energy and, therefore, the result is already a product of the
used vortex model. To avoid this back-loop effect, only the prefit is used. This
function is explained later; it uses the spatial distribution of modified Q-invariant of
the velocity gradient tensor and does not need any vortex model explicitly. The
vortex velocity profile is obtained as an ensemble average of measured velocity
profiles across the vortex; the spatial coordinate is normalized by the vortex radius
R and the velocity by the vortex circumferential velocity G. The standard deviation
of such ensemble is displayed as a shadow area in Figures 2–6.

1 The integral
Ð
x3e�x2 dx is solved by substituting ξ ¼ x2, then dξ ¼ 2xdx and integral is 1

2

Ð
ξe�ξdξ; per-

partes we get � 1
2 ξe�ξ � Ð e�ξdξ
� � ¼ � 1

2 e
�ξ ξþ 1ð Þ, i.e. � 1

2 e
�x2 x2 þ 1ð Þ.

2 To obtain the full velocity gradient tensor, Regunath and coworkers had to use 2 laser systems of

different colors with slightly shifted planes [44].
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Figure 2(a) shows the experimental data measured in a plane perpendicular to
suction vortex formed near the inlet to a pump pumping water from reservoir. The
flow field is dominated by this single vortex, which has strong divergence compo-
nent, it slightly moves around the center, and other parameters vary as well.
Figure 2(b) shows that the vortex profile in this case roughly follows the Oseen
vortex; however, in one direction (toward the left-hand side in the figure), the
velocity decays even slower than the Oseen vortex model predicts. This is caused
probably by the reservoir geometry. This data were measured by prof. Uruba.

Figure 3 shows the secondary flow in a corner (bottom and left edge of the
figure) of a channel, the main flow is perpendicular to the measured plane. The

Figure 2.
(a) Example of instantaneous velocity field measured at a plane perpendicular to the axis of a pump sucking
the fluid out. There is found a single vortex in each snapshot, no fitting is used, only the prefit based on the Q
criterion. (b) The velocity profile across the found vortices. The profile line is adapted to the position of each
vortex, it is rescaled to each vortex radius and each velocity is normalized by the circumferential velocity G, then
it is averaged; standard deviation of the ensemble is displayed as a transparent shadow. The theoretical profiles
of Taylor vortex (dash-dotted) and Oseen vortex (dashed) are displayed as well.

Figure 3.
Example of instantaneous velocity field measured in a plane perpendicular to the main flow through a channel
close to the channel corner (physical corner is in the bottom left corner of the figure). When the boundary layers
are laminar, a single symmetry-breaking vortex is formed close to the channel corner. (b) Vertical profiles of
horizontal velocity and horizontal profiles of vertical velocity across the vortex.
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displayed vortex forms, when the boundary layers are laminar, this vortex sponta-
neously brakes the symmetry, and it leads to faster transition to turbulence of the
boundary layers at higher velocities. More details about this measurement can be
found in our previous publications [49, 50]. In this case, the vortex profile is pushed
toward the Taylor profile, which is caused by the presence of solid wall and thus
zero velocity at the left and bottom side. In the upper direction, there is observed
even an overshoot of the profile caused by the stream supplying the vortex from the
central flow.

Figure 4 shows the turbulent flow behind a grid; the distance is 200mm, i.e.,
12:8M,M is the mesh parameter, Reynolds number is 3:1 � 103. The main flow points
from left to right and the convective velocity component is subtracted. More details
about this experiment can be found in our previous publication [51]. In this case, the
flow field is not dominated by a single vortex; instead, there are more vortices of
similar level. A consequence is that the standard deviation is much more massive
than in the previous cases. The averaged profile displays velocity decay faster than
the potential envelope (� r�1), but not as fast as the Taylor vortex model (7).

A similar velocity profile can be seen in a very different case—the jet flow, see
Figure 5, which shows the data measured in a plane perpendicular to the jet axis at
distance of one nozzle diameter past the nozzle. The jet-generating device misses the
flow straightener; therefore the jet core contains turbulence originating in the fan;
more details can be found in our conference contribution [52]. The vortices prefitted
within the jet core (depicted by the blue rectangle in Figure 5) display slightly faster
velocity decay than the vortices elsewhere, i.e., mainly in the shear layer.

A highly turbulent flow emerges in the steam turbines; the data measured in a
model axial air turbine are shown in Figure 6. Here, the strong advection in the
axial direction (from left to right in the figure) is subtracted, the rest shows a wide
horizontal strip of lower turbulence, which is caused by the rotor jet (fluid passing
the interblade channel), this structure overlays a less apparent structure of wakes
past rotor wheel, which display as strips of wilder flow in top-bottom direction.

Figure 4.
(a) Example of instantaneous fluctuating velocity field (fluctuating in respect to the instantaneous field
average) with five vortices in each snapshot, no fitting is used. The radius of the vortex is calculated by using the
number of grid points contributing to the corresponding patch of Q-criterion. (b) Profiles of the found vortices.
The set denoted small contains approx. 10% of vortices with the smallest radius, the large set consists of approx
10% of the largest vortices. The theoretical profiles of Taylor vortex (dash-dotted), Oseen vortex (dashed), and
a vortex with non-potential envelope (dotted) are displayed as well.
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This pattern would be better apparent in an averaged image, but here the instanta-
neous field is shown. More detailed description of this interesting flow can be found
in our article [53]. The vortices in this case display a strong asymmetry—in tangen-
tial direction (up-down in the figure), their peak velocity is significantly smaller
than the peak velocity in axial direction (left-right). In the axial direction, there is a
strong “overshoot” of velocity decay, which is caused by the alternating velocity
pattern.

The observation made in very different cases does not support the generally
accepted hypothesis of potential envelope around the vortex. This envelope forms,
when there is only single vortex dominating the flow (see Figure 2 with single

Figure 5.
(a) Example of instantaneous in-plane velocity field perpendicular to a turbulent jet axis with five vortices in
each snapshot, no fitting is used. (b) Profiles of the found vortices. The set is approximately separated into
vortices in the jet core and elsewhere according to the blue rectangle in panel (a).

Figure 6.
(a) Example of instantaneous velocity field in the axial � tangential plane inside an axial turbine past the first
stage (stator + rotor); the convective velocity in axial direction (from left to right) is subtracted. (b) Profiles of
the found vortices. The profiles in axial direction display strong overshoot caused by the pattern of wakes past
rotor wheel (such wakes pass the field of view from top to bottom with small left-right drift as the rotor wheel
rotates from bottom to top in the field of view perspective).

54

Vortex Dynamics - From Physical to Mathematical Aspects



suction vortex), in the case of turbulent field consisting of multiple vortices, the
velocity decay is faster, but not as fast as in the Taylor vortex model (7). Therefore
we venture to offer another model of vortex with non-potential envelope

uVNPE
θ rð Þ ¼ Γ

2πR
� r=R

1þ 1
4 r=Rð Þ2

� �2 (10)

which decays as r�3 at large r and at smaller r, it roughly follows the Oseen
vortex model, see Figure 1. It is important to note that this vortex is not a solution
of Navier-Stokes equations! It is based on the observations only, and there is no any
theoretical argument for it.

Similarly as the Taylor vortex, this model displays a skirt of opposite vorticity as
well. The vorticity profile is

ωz rð Þ ¼ G
2� 1

2 r=Rð Þ2

1þ 1
4 r=Rð Þ2

� �3 : (11)

It reaches zero at the distance

0 ¼ 2� 1
4

r0
R

� �2
) r0

R
¼ 2, (12)

see Figure 1; since this distance, the vorticity approaches zero from opposite
direction as � r�4 for large r. The energy of this vortex model is finite even in
unbounded domain:

E ¼ 1
2

ð∞
0

G
r=R

1þ r=Rð Þ2
4

� �2

2
64

3
75
2

� 2πrdr ¼ 4
3
πG2R2: (13)

2.3 Vortex prefit

Any general fitting algorithm falls into some local minimum. This minimum
does not need to be the really wanted results, it can be just a small dimple in a wall
of huge valley. To avoid this effect, one can (i) modify the fitting algorithm to see
larger surroundings of the point, e.g., by using simulated annealing [54, 55], or (ii)
just start close to the result. The second possibility solves another small issue—the
starting point of the fitting algorithm. In the single particular case solved here, it
means to find a peak of appropriate scalar variable, which would signify the
presence of vortex.

The prefit is sketched in Figure 7: the starting point is the spatial scalar field offfiffiffiffiffiffi
Qd

p � sgnω, where sgnω ¼ ω
ωj j is the sign of vorticity. Qd is the Q-invariant with

subtracted divergence. Alternatively, any scalar with sparse non-zero values could be
used (i.e., not simply the vorticity). Then the separated patches of non-zero signal are
detected, see panel (c) of Figure 6. The vortex is built up by using the most energetic
patch (label 3 in Figure 7(c)); the vortex position is the center of mass of the patch,
the vortex radius R ¼ ffiffiffiffiffiffiffiffi

n=π
p

, where n is the number of points of the patch (note that
the unit of R is the grid point). The circumferential velocity G is calculated as the
average of tangential projection of the measured velocities at eight locations around
the vortex in the distance R from its center (crosses in Figure 7(d)).

55

Searching of Individual Vortices in Experimental Data
DOI: http://dx.doi.org/10.5772/intechopen.101491



The just described procedure does not use the vortex model; therefore it is
suitable for velocity profile estimation as has been done in the previous section. On
the other hand, vortex parameters are only estimated; therefore the fitting is needed
to adapt the vortex parameters to the actual velocity field.

2.4 Vortex fitting

A single vortex is described by four fitting parameters: the position x and y, core
radius R, and circumferential velocity G, which is easier to use than the circulation
Γ ¼ 2πG. Of course, this set of parameters describes only the cases, when the vortex
tube crosses the measured plane perpendicularly; other angles might produce
deformation from the ideal circular shape. But, as John von Neumann said: With
four parameters I can fit an elephant, and with five I can make him wiggle his trunk
[56]. Therefore, it is preferred to avoid using too many fitting parameters; the listed
set is considered to be a minimum. This issue will be a true challenge in the case of
instantaneous volumetric data in the future.

The used fitting algorithm is called Amoeba [55] or Downhill simplex method or
Nelder-Mead by its inventors [57]. The energy of residual velocity field is calculated
for each variant serving as a score. Here comes the need of specific vortex model
discussed earlier. The algorithm selects single movement from a closed set of
movements in the parameter space in order to keep away from areas with high
residual energy and converging to some local minimum. The algorithm is in much
more detail described in the book [55].

Once the energy residual of a single vortex reaches local minimum, this vortex is
subtracted from the velocity field. Then the entire procedure is repeated by using
the residual velocity field as the input.

Figure 8 shows the results of fitting a single instantaneous velocity field by
depicted number of vortices. It is clearly visible that the energy decreases as the
field is approximated by more and more vortices. It can be seen as a kind of
decomposition, although its effectivity is poor in comparison with pure mathemat-
ical approaches, e.g., the Proper Orthogonal Decomposition [8, 9]. On the other
hand, it describes the fluctuating velocity field by using objects with clear physical
interpretation, while the physical interpretation of POD modes is not straightfor-
ward [58]. Still, a question remains here: whatever the found vortices are real. To be
specific, in Figure 8, a large vortex can be seen even in the first set, the core of this

Figure 7.

Steps of prefit: (a) calculate the scalar field of
ffiffiffiffiffiffiffi
Qþ

d

q
sgnω, which produces a lot of zeros, thus the areas with

non-zero value (panel (b)) are sparse and thus the percolation does not occur. (c) The patches or individual

continuous areas of non-zero
ffiffiffiffiffiffiffi
Qþ

d

q
sgnω are identified and the one with the largest energy (label three in this

case) serves for generating the prefitted vortex. Note that the patches numbered 26 and 30 would merge if the
sign of local vorticity was not used to separate the opposite orientations. (d) The prefitted vortex with estimated
radius from the number of points in the patch; the crosses around the vortex show the eight positions of velocity
estimation.
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vortex spans out of the field of view, thus no one knows, if the vortex was still there
in the case that areas were measured. For example, a simple advective motion can
be explained by a pair of huge vortices up and down the measured area. Of course,
that is unphysical. As the number of vortices increases, even smaller and smaller
vortices are added converging to a situation, that each single noise vector is
described by a single vortex. This limit is unphysical as well, but where is the
boundary?

Figure 9 shows the decrease of effectivity of this procedure—as the number of
vortices increases, there remains structures less and less similar to a vortex in the
instantaneous velocity field. While the first vortex typically covers around 10% of
the energy of input fluctuating velocity field (in this case). The convergence of the
energy of the rest gets slower, and it becomes to be quite ineffective to describe 75%
of the fluctuations by the simple vortices described here. The parameters of found
vortices develop as well, see Figure 10, which shows the probability density func-
tions of vortex core radii and circumferential velocities. The vortices found later are
typically smaller and have smaller circumferential velocity (the positive and
negative values count together in the logarithmic plot of Figure 10(c) and (d)).

Figure 8.
Vortices fitted in a single instantaneous velocity field measured past a grid; the same example field as in previous
figures. (a) The input velocity field, (b, c, d, e) the velocity field calculated from theoretical vortex profiles.
(f, g, h, ch) The residual field, i.e., input field minus the field of found vortices.

Figure 9.
(a) Energy of the residual velocity field after subtracting the nth vortex as a function of number of vortices. The
area represents the standard deviation of the ensemble of 1476 snapshots. (b) The energy “saved” by nth vortex,
again, the area represents the standard deviation of the ensemble.
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3. Results

The aim of this chapter is mainly to describe the ideas of the developed algorithm.
The results and their physical interpretation need more effort in the future. In this
section, some ways of result analysis are shown based on the distribution study. As a
example case, the grid turbulence is selected, because this is a deeply explored
canonical case, see [59] and many more experimental data, e.g., in [4, 60–65].

When exploring the vortices in grid turbulence in dependence on the distance
behind the grid or on the Reynolds number, the effectivity of vortex fitting remains
almost constant. Figure 11 shows, that themaximumpopulation is around 1 in all cases.
There is slow decrease of the number of vortices with low effectivity (i.e., structures
with large radius or large velocity causing large theoretical energy, Et � R2G2, which
do not correspond to the energy saved), and there exist cases with saved energy larger
than the theoretical one; however, this distribution decreases much faster.

The vortex core radii in Figure 12(a) do not seem to depend on the distance x past
the grid, although it is known that the characteristic turbulent length scales (Kolmo-
gorov and Integral one) typically increase with distance. At the lowest distance, there
can be observed a weak wavening of the distribution. The distribution dependence on
Reynolds number is weak as well (Figure 12(b)), although a very fine change of
vortex core radii scaling at radii larger maximal population. Honestly speaking, the
similarity of the distributions is suspicious, and it has to be proven in the future that
the shape of the radii distribution is not affected by the measurement spatial
resolution (the studied datasets have all the same spatial resolution).

Figure 10.
Probability density functions (PDFs) of core radii R (a and b) and circumferential velocities G (c and d) for
several number of vortices searched in a single instantaneous velocity field—Black: Single vortex in each field,
maroon: 5 vortices, yellow: 10 vortices, green: 30 vortices and blue: 100 vortices. The PDF can be weighted by the
number of vortices (i.e., one vortex, one vote) or by the energy, panels (b and d).
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The circumferential velocities G ¼ Γ=2πR of the vortices move toward smaller
values with increasing distance, see Figure 13(a). This effect is clearly caused by the
decreasing turbulence intensity [51] as the vortices are searched within the fluctu-
ating velocity field. Figure 13(b) shows that the velocity normalized by the wind
tunnel velocity of maximum population increases. At lower velocities, the PDF
decrease with increasing G displays two regimes, first it decreases slower, then
faster, while at higher velocities, only the fast decay is observable. It has to be
mentioned, in the light of observations in Figure 9, that this effect can be caused by
the number of fitted vortices, which do not need to be appropriate for the actual
datasets. It is quite difficult to distinguish the effects of the method and the physical
phenomena.

The distance to nearest other vortex seems to be unaffected by the grid distance
and flow velocity, see Figure 14. But the absolute values of the nearest vortex
cannot have some physical sense, as this quantity is the first one dependent on the
number of searched vortices, thus the vortex density. But the non-changing shape
of this distribution suggests that there is nothing like evolution pattern of vortices
or vortex lattice.

Figure 11.
Probability density functions (PDFs) of the vortex effectivity, i.e., the ratio of energy saved by the probed vortex
and the theoretical energy of the vortex. Left panel (a) shows the data at different distances behind the grid, the
mesh-based Reynolds number is 3:1 � 103; panel (b) shows the data at different Reynolds number, the distance
x=M ¼ 12:8. The “k” in the legend plays for �103.

Figure 12.
Probability density functions (PDFs) of core radii R found in fields of view in several distances past the grid,
panel (a); and at several Reynolds numbers, panel (b). The dotted lines highlight scalings of R�3 and R�2 the
observed data lie in between. It seems that the scaling exponent slightly decreases with Re.
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4. Conclusions

The turbulent flows consist of many interacting vortices of all scales, which
all together self-organize being responsible for the statistical properties of turbulence.
In this contribution, the algorithm for detection of individual vortices via direct
fitting of measured velocity field has been presented. It has been shown via the zero-
th step of fitting that the velocity profile of vortex in turbulent flow decreases faster
than the generally accepted models suggest. This is advantageous, because the energy
of vortex with velocity decrease faster than 1=r converges. On the other hand, it has a
“skirt” of vorticity opposite to the center one. The vortices found in grid turbulence
display average radius decreasing with distance and Reynolds number, while the
scaling at larger R seems to not depend on those parameters. The effective circum-
ferential velocity G ¼ Γ=2πR decreases with distance and increases with Reynolds
number (faster than expected linear). The algorithm is still under development and
mainly the physical interpretation of the results needs more work in the future
studying and comparing results of different flow cases.
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Figure 14.
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Nomenclature

E energy; Ein energy of the input velocity field, Es energy saved by removing
fitted vortices, Eres energy of the velocity field after removing vortices, Et
theoretical energy of the vortex

G vortex core circumferencial velocity, G ¼ Γ
2πR

M mesh parameter of the grid, i.e., the distance of the rods
R vortex core radius
Q invariant of velocity gradient tensor, in 2D: Q ¼ ∂xu∂yv� ∂yu∂xv
Qd Q invariant without the divergence, in 2D: Qd ¼ �∂xu∂yv� ∂yu∂xv�

∂xuð Þ2 � ∂yv
� �2

u instantaneous velocity, u! vector, uθ tangential velocity,
v velocity component perpendicular to u in 2D.
Γ vortex circulation
ω vorticity ω

! ¼ ∇� u!

Abbreviations

AV Amromin vortex uθ rð Þ ¼ G � r
R � 1� ln r

R

� �
for r<R and potential vortex

outside
KV Kaufmann (often reported as Scully) vortex, uθ rð Þ ¼ G � r=R

1þ r=Rð Þ2
OV Oseen Vortex, uθ rð Þ ¼ G � Rr 1� exp � r2

R2

� �� �

PDF probability density function
PIV Particle Image Velocimetry
PV potential vortex, uθ rð Þ ¼ G � Rr
SBR solid-body rotation, uθ rð Þ ¼ G � r

R
TV Taylor vortex, uθ rð Þ ¼ G � r

R exp � r2
2R2

� �

VNPE vortex with non-potential envelope, uθ rð Þ ¼ G � r=R

1þ r
2Rð Þ2

� �2
VV Vatistas vortex system, uθ rð Þ ¼ G � r=R

1þ r=Rð Þ2n½ �1=n

61

Searching of Individual Vortices in Experimental Data
DOI: http://dx.doi.org/10.5772/intechopen.101491



Author details

Daniel Duda
University of West Bohemia in Pilsen, Pilsen, Czech Republic

*Address all correspondence to: dudad@kke.zcu.cz

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

62

Vortex Dynamics - From Physical to Mathematical Aspects



References

[1] Uriel Frisch and Andre Nikolaevich
Kolmogorov. Turbulence: The Legacy of
AN Kolmogorov. Cambridge:
Cambridge University Press; 1995

[2] La Mantia M, Švančara P, Duda D,
Skrbek L. Small-scale universality of
particle dynamics in quantum turbulence.
Physical Review B. 2016;94(18)

[3] Tabeling P, Zocchi G, Belin F,
Maurer J, Willaime H. Probability
density functions, skewness, and flatness
in large reynolds number turbulence.
Physical Review E. 1996;53:1613-1621

[4] Burgoin M et al. Investigation of the
small-scale statistics of turbulence in the
modane s1ma wind tunnel. CEAS
Aeronautical Journal. 2018;9(2):269-281

[5] Azevedo R, Roja-Solórzano LR,
Leal JB. Turbulent structures, integral
length scale and turbulent kinetic
energy (tke) dissipation rate in
compound channel flow. Flow
Measurement and Instrumentation.
2017;57:10-19

[6] Schulz-DuBois EO, Rehberg I.
Structure function in lieu of correlation
function. Applied Physics. 1981;24:
323-329

[7] Kirkpatrick S, Gelatt CD, Vecchi MP.
Optimization by simulated annealing.
Science. 1983;220:671-680

[8] Uruba V. Decomposition methods
for a piv data analysis with application
to a boundary layer separation
dynamics. Transactions of the VŠB –

Technical University of Ostrava
Mechanical Series. 2010;56:157-162

[9] Uruba V. Energy and entropy in
turbulence decompositions. Entropy.
2019;21(2):124

[10] Richardson LF. Atmospheric
diffusion shown on a distance-

neighbour graph. Proceedings of the
Royal Society A. 1926;110:709-737

[11] Fiedler HE. Coherent structures in
turbulent flows. Progress in Aerospace
Sciences. 1988;25(3):231-269

[12] Barkley D, Song B, Mukund V,
Lemoult G, Avila M, Hof B. The rise of
fully turbulent flow. Nature. 2015;
526(7574):550-553

[13] Valente PC, Vassilicos JC. The decay
of turbulence generated by a class of
multiscale grids. Journal of Fluid
Mechanics. 2011;687:300-340

[14] Barenghi CF, Skrbek L,
Sreenivasan KR. Introduction to
quantum turbulence. Proceedings of
National Academy of Sciences of the
United States of America. 2014;111:
4647-4652

[15] Vinen WF. An introduction to
quantum turbulence. Journal of Low
Temperature Physics. 2006;145(1–4):
7-24

[16] Fonda E, Meichle DP, Ouellette NT,
Hormoz S, Lathrop DP. Direct
observation of Kelvin waves excited by
quantized vortex reconnection.
Proceedings of the National Academy of
Sciences. 2014;111(Supplement_1):
4707-4710

[17] Helmholtz H. Über integrale der
hydrodynamischen gleichungen, welche
den wirbelbewegungen entsprechen.
Journal für die reine und angewandte
Mathematik. 1858;55:25-55

[18] Baggaley AW, Laurie J,
Barenghi CF. Vortex-density
fluctuations, energy spectra, and
vortical regions in superfluid
turbulence. Physical Review Letters.
2012;109(20):205304

63

Searching of Individual Vortices in Experimental Data
DOI: http://dx.doi.org/10.5772/intechopen.101491



[19] La Mantia M, Duda D, Rotter M,
Skrbek L. Velocity statistics in quantum
turbulence. In: Procedia IUTAM. Vol. 9.
2013. pp. 79-85

[20] Staicu AD. Intermittency in
Turbulence. Eidhoven: University of
Technology Eidhoven; 2002

[21] Duda D, Švančara P, La Mantia M,
Rotter M, Skrbek L. Visualization of
viscous and quantum flows of liquid he
4 due to an oscillating cylinder of
rectangular cross section. Physical
Review B—Condensed Matter and
Materials Physics. 2015;92(6)

[22] Duda D, Yanovych V, Uruba V. An
experimental study of turbulent mixing
in channel flow past a grid. PRO. 2020;
8(11):1-17

[23] Hänninen R, Baggaley AW. Vortex
filament method as a tool for
computational visualization of quantum
turbulence. Proceedings of the National
Academy of Sciences of the United
States of America. 2014;111(Suppl. 1):
4667-4674

[24] Varga E, Babuin S, V. S. L’vov, A.
Pomyalov, and L. Skrbek. Transition to
quantum turbulence and streamwise
inhomogeneity of vortex tangle in thermal
counterflow. Journal of Low Temperature
Physics. 2017;187(5–6):531-537

[25] De Gregorio F, Visingardi A, Iuso G.
An experimental-numerical
investigation of the wake structure of a
hovering rotor by piv combined with a
γ2 vortex detection criterion. Energies.
2021;14(9):2613

[26] Marchevsky IK, Shcheglov GA,
Dergachev SA. On the algorithms for
vortex element evolution modelling in
3d fully lagrangian vortex loops method.
In Topical Problems of Fluid Mechanics.
2020;2020:152-159

[27] Kaufmann W. Über die ausbreitung
kreiszylindrischer wirbel in zähen

(viskosen) flüssigkeiten. Ingenieur-
Archiv. 1962;31(1):1-9

[28] Ben-Gida H, Liberzon A, Gurka R. A
stratified wake of a hydrofoil
accelerating from rest. Experimental
Thermal and Fluid Science. 2016;70:
366-380, 105374 p.

[29] Jeong J, Hussain F. On the
identification of a vortex. Journal of
Fluid Mechanics. 1995;285:69-94

[30] Dergachev SA, Marchevsky IK,
Shcheglov GA. Flow simulation around
3d bodies by using lagrangian vortex
loops method with boundary condition
satisfaction with respect to tangential
velocity components. Aerospace Science
and Technology. 2019;94:105374

[31] Graftieaux L, Michard M,
Grosjean N. Combining PIV, POD and
vortex identification algorithms for the
study of unsteady turbulent swirling
flows. Measurement Science and
Technology. 2001;12(9):1422-1429

[32] Koschatzky V, Moore PD,
Westerweel J, Scarano F, Boersma BJ.
High speed piv applied to aerodynamic
noise investigation. Experiments in
Fluids. 2011;50(4):863-876

[33] Maciel Y, Robitaille M, Rahgozar S.
A method for characterizing cross-
sections of vortices in turbulent flows.
International Journal of Heat and Fluid
Flow. 2012;37:177-188, 118108 p.

[34] Amromin E. Analysis of vortex core
in steady turbulent flow. Physics of
Fluids. 2007;19:118108

[35] Keshavarzi A, Melville B, Ball J.
Three-dimensional analysis of coherent
turbulent flow structure around a single
circular bridge pier. Environmental
Fluid Mechanics. 2014;14:821-847

[36] Scully MP, Sullivan JP. Helicopter
rotor wake geometry and airloads and

64

Vortex Dynamics - From Physical to Mathematical Aspects



development of laser doppler
velocimeter for use in helicopter rotor
wakes. In: Technical Report. MIT; 1972.
Available from: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=
10.1.1.982.2439

[37] Bhagwat MJ, Leishman JG.
Generalized viscous vortex model for
application to free-vortex wake and
aeroacoustic calculations. Annual
Forum Proceedings-American
Helicopter Society. 2002;58:2042-2057

[38] Vatistas GH, Kozel V, Mih WC. A
simpler model for concentrated vortices.
Experiments in Fluids. 1991;11(1):73-76

[39] Taylor GI. On the Dissipation of
Eddies. ACA/R&M-598. London: H.M.
Stationery Office; 1918

[40]Wu JZ, Ma HY, Zhou MD. Vorticity
and Vortex Dynamics. Berlin
Heidelberg New York: Springer; 2006

[41] Tropea C, Yarin A, Foss JF. Springer
Handbook of Experimental Fluid
Mechanics. Berlin Heidelberg: Springer;
2007

[42] La Mantia M, Skrbek L. Quantum
turbulence visualized by particle
dynamics. Physical Review B—
Condensed Matter and Materials
Physics. 2014;90(1):1-7

[43] Kurian T, Fransson JHM.
Grid-generated turbulence revisited.
Fluid Dynamics Research. 2009;41(2):
021403

[44] Regunath GS, Zimmerman WB,
Tesař V, Hewakandamby BN.
Experimental investigation of helicity in
turbulent swirling jet using dual-plane
dye laser PIV technique. Experiments in
Fluids. 2008;45(6):973-986

[45] Agrawal A. Measurement of
spectrum with particle image
velocimetry. Experiments in Fluids.
2005;39(5):836-840

[46] Romano GP. Large and small
scales in a turbulent orifice round jet:
Reynolds number effects and
departures from isotropy. International
Journal of Heat and Fluid Flow. 2020;83:
108571

[47] Jašková D, Kotek M, Horálek R,
Horčička J, Kopecký V. Ehd sprays as a
seeding agens for piv system
measurements. In: ILASS –

Europe 2010, 23rd Annual Conference
on Liquid Atomization and Spray
Systems; 23 September 2010; Brno,
Czech Republic. p. 2010

[48] Jiang MT, Law AW-K, Lai ACH.
Turbulence characteristics of 45 inclined
dense jets. Environmental Fluid
Mechanics. 2018;19:1-28

[49] Bém J, Duda D, Kovařík J,
Yanovych V, Uruba V. Visualization
of secondary flow in a corner of a
channel. In: AIP Conference
Proceedings. Vol. 2189. 2019.
pp. 020003-1-020003-6

[50] Duda D, Jelínek T, Milčák P,
Němec M, Uruba V, Yanovych V, et al.
Experimental investigation of the
unsteady stator/rotor wake
characteristics downstream of an axial
air turbine. International Journal of
Turbomachinery, Propulsion and
Power. 2021;6(3)

[51] Duda D. Preliminary piv
measurement of an air jet. AIP
Conference Proceedings. 2018;2047:
020001

[52] Duda D, Bém J, Yanovych V,
Pavlíček P, Uruba V. Secondary flow of
second kind in a short channel observed
by piv. European Journal of Mechanics,
B/Fluids. 2020;79:444-453

[53] Duda D, La Mantia M, Skrbek L.
Streaming flow due to a quartz tuning
fork oscillating in normal and superfluid
he 4. Physical Review B. 2017;96(2):
024519

65

Searching of Individual Vortices in Experimental Data
DOI: http://dx.doi.org/10.5772/intechopen.101491



[54] Kolář V. Vortex identification: New
requirements and limitations.
International Journal of Heat and Fluid
Flow. 2007;28(4):638-652

[55] Press WH, Teukolsky SA,
Vetterling WT, Flannery BP. Numerical
Recipes 3rd Edition: The Art of
Scientific Computing. Cambridge:
Cambridge University Press; 2007

[56] Meyer J, Khairy K, Howard J.
Drawing an elephant with four complex
parameters. American Journal of
Physics. 2010;78:648-649

[57] Nelder JA, Mead R. A simplex
method for function minimization.
The Computer Journal. 1965;7(4):
308-313

[58] Uruba V, Hladík O, Jonáš P.
Dynamics of secondary vortices in
turbulent channel flow. Journal of
Physics: Conference Series. 2011;318:
062021

[59] Kuzmina K, Marchevsky I,
Soldatova I. The high-accuracy
numerical scheme for the boundary
integral equation solution in 2d
lagrangian vortex method with semi-
analytical vortex elements contribution
accounting. In: Topical Problems of
Fluid Mechanics 2020. Prague: Czech
Academy of Sciences; 2020. pp. 122-129

[60] Comte-Bellot G, Corrsin S. The use
of a contraction to improve the isotropy
of grid-generated turbulence. Journal of
Fluid Mechanics. 1966;25:657-682

[61] Wierciński Z, Grzelak J. The decay
power law in turbulence. Transactions
of the Institute of Fluid-flow Machinery.
2015;130:93-107

[62] Jonáš P, Mazur O, Uruba V. On the
receptivity of the by-pass transition to
the length scale of the outer stream
turbulence. European Journal of
Mechanics, B/Fluids. 2000;19(5):
707-722

[63] Mohamed MS, LaRue JC. The decay
power law in grid-generated turbulence.
Journal of Fluid Mechanics. 1990;219:
195-214

[64] Roach PE. The generation of nearly
isotropic turbulence by means of grids.
International Journal of Heat and Fluid
Flow. 1987;8:82-92

[65] Warhaft Z, Lumley JL. An
experimental study of the decay of
temperature fluctuations in grid
generated turbulence. Journal of Fluid
Mechanics. 1978;88:659-684

66

Vortex Dynamics - From Physical to Mathematical Aspects



Chapter 4

Vortex Dynamics in Complex
Fluids
Naoto Ohmura, Hayato Masuda and Steven Wang

Abstract

The present chapter provides an overview of vortex dynamics in complex fluids
by taking examples of Taylor vortex flow. As complex fluids, non-Newtonian fluid
is taken up. The effects of these complex fluids on the dynamic behavior of vortex
flow fields are discussed. When a non-Newtonian shear flow is used in Taylor
vortex flow, an anomalous flow instability is observed, which also affects heat and
mass transfer characteristics. Hence, the effect of shear-thinning on vortex dynam-
ics including heat transfer is mainly referred. This chapter also refers to the concept
of new vortex dynamics for chemical process intensification technologies that apply
these unique vortex dynamics in complex fluids in Conclusions.

Keywords: Taylor vortex flow, complex fluid, non-Newtonian fluid, heat transfer,
process intensification

1. Introduction

Historically, innovative processes have been created using organized vortices.
For example, in Japan, Kiyomasa Kato, a Sengoku daimyo (Japanese territorial lord
in the Sengoku period) in Kumamoto Prefecture, made a canal (called “hanaguri
canal”) with a partition (baffle) having a semicircular hole at the bottom as shown
in Figure 1. The flow velocity of the water flowing through the hole in the lower
part of the partition increases due to the effect of the contraction of the flow, and a
strong circulating vortex is formed in the water channel divided by the partition. By
intensifying the flow in the canal, water can be supplied to about 95 ha of land in
nine villages in the downstream without piling up volcanic ash or earth and sand,
and the harvest has increased about three times. Based on this idea by Kiyomasa
Kato, in order to solve the particle sedimentation problem in oscillatory baffled
reactors (OBR) which is one of the hopeful process intensification techniques, our
group [1] succeeded in preventing the particle sedimentation to the bottom of the
reactor and obtaining extremely monodispersed particles in a calcium carbonate
crystallization process by changing from a normal baffle with a hole in the center to
a snout-type baffle as shown in Figure 2.

In addition, the function of vortex flow is not only to intensify the previously
noticed transport phenomena such as mixing, heat transfer, and mass transfer, but
also to have a new function that has not been previously noticed, such as classifica-
tion and separation of particles. Ohmura et al. [2] found that particles with different
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sizes move on different streamlines within a Taylor cell and proposed that this could
be applied to a particle classification device. Kim et al. [3] applied this idea to a
continuous crystallizer and proposed a device for granulating particles of different
sizes while classifying them. Wang et al. [4] also proposed a novel solid–liquid
separation system that breaks the conventional stereotype of mixing equipment by
applying the particle clustering phenomenon in isolated mixing regions in stirring
tanks. In this way, vortices with a systematic structure have very attractive proper-
ties, such as solid accumulation, mixing and reaction enhancement, particle classi-
fication, and mass transport. If we can understand the characteristics of this
organized vortex structure and manipulate it freely, we may be able to develop
innovative chemical processes.

In many industrial processes, such as chemical, food, and mineral processes, the
fluids handled are not only simple homogeneous Newtonian fluids, but also often
complex fluids, such as non-Newtonian fluids, multi-phase fluids with highly dis-
persed phases, and viscoelastic fluids. Therefore, in order to apply the new “vortex
dynamics” currently being constructed to process intensification technologies and
implement it in society, it is necessary to develop the concept of new “vortex
dynamics” from simple fluids to complex fluids. According to the abovementioned
background, the present chapter provides an overview of vortex dynamics in com-
plex fluids by taking examples of Taylor vortex flow.

Figure 1.
Schematic of Hanaguri Canal.

Figure 2.
Comparison of performance of an oscillatory baffled crystallizer between using normal and Hanaguri-type
baffles.
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2. Vortex dynamics with non-Newtonian fluids

A non-Newtonian fluid property causes a multiple fluid motion. These motions
are quite interesting from fundamental and practical viewpoints. Especially, in
vortex flow systems, fluid elements experience curved streamlines. In polymeric
fluid systems, the polymer molecule chain does not line along curved stream lines,
and consequently, hoop stress in a normal direction occurs. As a result, coupling
normal stresses and curved streamlines causes elastic instabilities [5]. These insta-
bilities are observed in various flows, e.g., Poiseuille flow [6], microchannel flow
[7], and swirling flow [8]. Many polymeric fluids show not only viscoelastic behav-
ior but also shear-thinning behavior. The shear-thinning property causes the vis-
cosity distribution accompanied by the shear-rate distribution in the fluid system.
Coelho and Pinho [9] showed that the shear-thinning affects the flow transition of
vortex shedding in a cylinder flow. Ascanio et al. [10] reported that the mixing
process of shear-thinning fluids under a time-periodic flow field is different from
that of Newtonian fluid. Thus, vortex dynamics in non-Newtonian fluid systems is
far from complete.

To investigate the effect of non-Newtonian property on vortex dynamics in
more detail, many researchers have been utilizing Taylor–Couette flow, which is
one of the most canonical flow systems in fluid mechanics, with non-Newtonian
fluids [11–14]. Taylor–Couette flow is the flow between coaxial cylinders with the
inner one rotating. This flow shows a cascade transition from laminar Couette flow
to fully turbulent wavy vortex flow with the increase in circumferential Reynolds
number (Re). When the value of Re exceeds the critical Re (Recr), Taylor vortex flow
firstly appears. As mentioned above, many researchers have been studied the Tay-
lor–Couette flow with non-Newtonian fluids. For example, Muller et al. [11] and
Larson et al. [12] revealed that the elastic instability occurs in Taylor–Couette flow
and organized flow modes based on Deborah number (De), which the ratio of a
characteristic relaxation time of the fluid to a characteristic residence time in the
flow geometry [5]. Figure 3 shows laminar Taylor–Couette flow with Newtonian
(40 wt% glycerol aqueous solution) and viscoelastic fluid (0.75 wt% sodium
polyacrylate aqueous solution).

The flow pattern was visualized by adding a small amount of Kalliroscope
AQ-1000 flakes. As shown in Figure 3, the cellular structure of Taylor vortices
seems to be complicated in the viscoelastic fluid even at the relatively low Re. The
detailed mechanism is found in their papers [11–14]. Other interesting point is an

Figure 3.
Flow visualization: (a) Newtonian fluid at Re = 212 and (b) viscoelastic fluid at Reeff = 218.
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enlarged vortex structure by shear-thinning property. Escudier et al. [15] found that
the cellular vortex is axially stretched and the vortex eye (the location of zero axial
velocity in the vortex interior) is radially shifted toward the center body.

However, the first Taylor–Couette instability has not been fully understood yet
in non-Newtonian fluid systems. One of the reasons is the discrepancy between Recr
reported by several researchers for non-Newtonian fluids. Alibenyahia et al. [16]
reviewed the discrepancy; Jastrebski et al. [17] reported Recr decreased with the
shear-thinning property, on the other hand, Caton et al. [18] found the opposite
tendency. Actually, this discrepancy is explained by the difference in how to define
the effective Reynolds number, Reeff, in their papers. In non-Newtonian fluids, how
to define Re is quite complicated because the viscosity locally varies as shown in
Figure 4 [19]. Practically, Reeff based on the effective viscosity in the system should
be discussed. Several researchers have been trying to define more rational Reeff in
various flow systems, e.g., rising bubble flow in shear-thickening fluid [20],
Rayleigh–Bénard convection with shear-thinning fluids [21], and non-Newtonian
fluid flow past a circular cylinder [22].

We previously proposed a new definition of Reeff based on the effective viscosity
(ηeff), which is obtained by numerical simulation. ηeff is calculated by averaging the
locally distributed viscosity using a weight of dissipation function as follows [23]:

ηeff ¼
XN
i¼1

_γ2i ηiΔVi=
XN
i¼1

_γ2iΔVi, (1)

where N is the total mesh number, ηi [Pa�s] is the local viscosity, _γi [1/s] is the
local shear rate, and ΔVi [m

3] is the local volume for each cell. It should be noted
that ηeff is obtained using numerical simulation. The computational domain is
shown in Figure 5. The governing equations are as follows:

∇ � u ¼ 0, (2)

∂u
∂t

þ u � ∇ð Þu ¼ �∇p
ρ

þ 1
ρ
∇ � 2ηDð Þ þ g, (3)

Figure 4.
Viscosity distribution in the annular space obtained by numerical simulation [15]. The fluid was assumed to be
a shear-thinning fluid.

Figure 5.
Computational domain [22]. Ri and Ro are the radii of inner and outer cylinders, respectively.
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where u [m/s] is the velocity, p [Pa] is the pressure, ρ [kg/m3] is the density, η
[Pa�s] is the viscosity depending on the shear rate, D (= (∇u + ∇uT) / 2) [1/s] is the
rate of deformation tensor, g [m/s2] is the gravitational acceleration. The rheologi-
cal property is characterized by Carreau model as follows [24]:

η ¼ η0 1þ β � _γð Þ2
h i n�1ð Þ=2

, (4)

where η0 [Pa�s] is the zero shear-rate viscosity, _γ [1/s] is the shear rate, β [s] is
the characteristic time, and n [�] is the power index, which indicates the slope of
decreasing viscosity with shear rate. In the case of n < 1, the fluid shows the shear-
thinning behavior. The detailed information of numerical procedure is written in
our paper [23].

Figure 6 shows the critical value of Reeff for various shear-thinning fluids as a
function of gap ratio Ri / Ro. The theoretical Recr for Newtonian fluids derived by
Taylor [25] was denoted by the dashed line in Figure 6. It is found that the critical
Reeff for shear-thinning fluids was in agreement with the theoretical value at Ri /
Ro > 0.7. Thus, Reeff defined based on ηeff by Eq. (1) is rational as a practical basis.
The effect of shear-thinning property on the vortex structure is also interesting
from the viewpoint of fluid dynamics. Figure 7 shows the number of pairs of Taylor

Figure 6.
Recr for various shear thinning [18].

Figure 7.
Variation in the number of pairs of Taylor vortices [23].
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cells, N, as a function of Reeff at the aspect ratio Γ = 20 [26]. In all fluid systems, N
tended to increase with Reeff. This tendency agrees with reports by other researchers
[27]. Furthermore, the shear-thinning property seems to make Taylor cells large
because N decreases with the shear-thinning property at the same degree of Reeff.
This tendency was remarkable in the case of n = 0.3. This means that the shear-
thinning property axially enlarges Taylor cells. Although the detailed mechanism of
enlarging Taylor cells is under consideration, it will be clarified by numerical simu-
lation of development process of Taylor vortices.

We also introduce heat transfer characteristics of Taylor–Couette flow
with shear-thinning fluids. In addition to Eqs. (2) and (3), energy equation was
solved:

∂

∂t
ρCp
� �þ ∇ � ρCpTu

� � ¼ ∇ � κ∇Tð Þ, (5)

where Cp [J/kg�K] is the specific heat capacity,T [K] is the temperature, and
κ [J/m�s�K] is the thermal conductivity. Figure 8 shows the axial variation in the
local Nusselt number, NuL, at the surface of the outer cylinder at Reeff = 158 [26].
The NuL at the surface of the outer cylinder was calculated as follows:

NuL ¼ 2hd
κ

, (6)

where h is a local heat transfer coefficient. As clearly shown in Figure 6, NuL
decreases with the increase in the shear-thinning property. This decrease is
explained by increasing the thickness of velocity boundary layer for shear-thinning
fluid systems (Figure 9). Generally speaking, it is said that the shear-thinning
property improves heat transfer performance at same Re [28, 29]. This is because
the viscosity reduction by the shear-thinning property is not adequately reflected in
Re used in papers. In other words, the actual flow condition is underestimated in the
case of shear-thinning fluids. Thus, the heat transfer performance is not accurately
compared between Newtonian and shear-thinning fluids unless Reeff is used for
representation of flow condition.

Figure 8.
Axial variation in the local Nusselt number (NuL) along the surface of the outer cylinder at Reeff = 158 [23].
λeff is the wavelength of Taylor cells.
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3. Conclusions

In this section, we mainly refer the effect of shear-thinning on vortex dynamics
including heat transfer. However, the viscoelastic property further complicates
vortex dynamics as shown in Figure 3. In the future, vortex dynamics and transport
phenomena in viscoelastic fluid systems should be investigated in more detail. In
this case, it is considered to be important to construct a mathematical model by
multi-scale analysis focusing on the interaction among scales of microstructure
(molecular structure of polymers, micelles, particles, etc.), mesostructure
(entanglement of polymer, particle aggregation, etc.), and macrostructure (vortex
flow) of complicated fluid. For example, when a polymer solution flows in a micro
channel having a sharp contraction part, an unsteady vortex called viscoelastic
turbulence is generated in a corner part of the contraction part at higher
Weissenberg number [30]. When the scale of the microchannel becomes small, the
scale of the flow can be compared with the scale of the polymer. Since the influence
of the elasticity derived from the deformation of the polymer itself on the flow
becomes large, there is a possibility that the dynamic characteristics of the vortex
generated in the contraction part can be controlled by the channel shape. In order to
construct a methodology of controlling the viscoelastic vortex, a multi-scale simu-
lation combined with molecular dynamics and computational fluid dynamics may
be important.

As this viscoelastic vortex example shows, the field in which the vortex occurs
affects the characteristics of the vortex. In the case of a Taylor vortex flow system,
for example, the structure and dynamic characteristics of the vortices largely
depend on the surface properties. It has been reported that heat transfer is enhanced
by processing regular unevenness in the circumferential direction on the outer
cylinder surface [31]. In the case of conical Taylor vortex flow, our previous work
[32] successfully reproduced the phenomenon that the vortices move upward
spontaneously under specific conditions by numerical analysis, and it was found
that mass transfer was enhanced in polymer fluid system. In this way, it is possible
to control the characteristics of the vortex flow by a structurally organized (having
low entropy or fractal) nonuniform field rather than simply a random (high-
entropy) nonuniform field. Therefore, in order to systematize a new vortex
dynamics for freely manipulating vortices, it is necessary to quantitatively express
the heterogeneity by introducing the concept of entropy and fractal and to clarify
the relationship between the structure of the field and the characteristics of
vortices.

Figure 9.
Dependence of the dimensionless thickness of the velocity boundary layer [23].
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Chapter 5

Vortex Analysis and Fluid
Transport in Time-Dependent
Flows
Stefania Espa, Maria Grazia Badas and Simon Cabanes

Abstract

In this contribution, we present a set of procedures developed to identify fluid
flow structures and characterize their space-time evolution in time-dependent
flows. In particular, we consider two different contests of importance in applied
fluid mechanics: 1) large-scale almost 2D atmospheric and oceanic flows and 2)
flow inside the left ventricle in the human blood circulation. For both cases, we
designed an ad hoc experimental model to reproduce and deeply investigate the
considered phenomena. We will focus on the post-processing of high-resolution
velocity data sets obtained via laboratory experiments by measuring the flow
field using a technique based on image analysis. We show how the proposed meth-
odologies represent a valid tool suitable for extracting the main patterns and
quantify fluid transport in complex flows from both Eulerian and Lagrangian
perspectives.

Keywords: pattern identification, laboratory experiments, image analysis, rotating
turbulence, flow in the left ventricle

1. Introduction

In most of the fluid flows of interest in nature and technology (i.e., geophysical
flows, blood flow in the human circulation as well as flows in turbomachinery and
around vehicles) the presence of turbulence in normally observed; therefore, their
reproducibility and repeatability have always represented a crucial issue. In this
regard, it is widely recognized that laboratory experiments represent a valid tool for
the simulation and investigation of complex fluid flows under controlled conditions.
With the improvement of measuring techniques, the possibility of acquiring huge
high-resolution data sets in space and time is continually increasing. It is then
fundamental to consider procedures suitable for a proper analysis of these data
aimed at the definition and the characterization of the main flow pattern and of
their evolution. In this contribution, we consider two examples of different contests
of importance in applied fluid mechanics: 1) β-plane turbulence in the framework of
large-scale almost 2D atmospheric and oceanic flows and 2) effect of artificial valves
on the flow in the left ventricle in the framework of an in vitro model of human
blood circulation. In both cases, the complexity of the flow arises from the embed-
ded non-linear phenomena i.e., interaction of structures at different scales, the
interplay between vortices waves and turbulence, anisotropy in the energy
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transfers, and in transport phenomena. Due to chaotic advection, the Lagrangian
motion of passive particles can be very complex even in regular, i.e., non-turbulent,
flow fields [1] as in the situations here discussed in which we considered almost 2D
and time-periodic velocity fields. The chapter is organized as follows. In Section 2,
we describe the case studies and the considered experimental apparatus. Theory, its
application to the experiments, and the different post-processing methodology are
described in Section 3, Section 4 contains some results. We discuss and give our
conclusions in Section 5.

2. Material and methods

We provide below the description of the experimental models designed to
reproduce: 1) turbulent flows affected by a β-effect, 2) the flow downstream a
natural/artificial valve in the left ventricle as well as an overview of the technique
used to measure the velocity fields.

2.1 Rotating turbulent flows with a β-effect

In rotating turbulent flows, the latitudinal variation of the Coriolis parameter,
the so-called β-effect, may redirect the upward energy flux towards the zonal
modes thus inducing the anisotropization of the inverse energy cascade, typically
observed in large-scale geophysical flows. Due to the combined effects of planetary
rotation, topographical constraints, and fluid stratification, these circulations can be
assumed quasi-two-dimensional to the first degree of approximation. Actually, the
anisotropic inverse energy cascade represents one of the leading causes for the
formation and maintenance of jet-like structures along the zonal direction, the so-
called zonation [2–5] observed in the atmospheres of the Giant Planets and in the
terrestrial oceans. These environments are characterized by the existence of a
banded structure, i.e., eastward and westward zonal flows, as well as by the coexis-
tence of turbulence and waves on all scales [6].

In this contest, in addition to the characteristic scales of 2D turbulence [7]
associated with the small-scale forcing kf and the large-scale friction kfr, two more
wavenumbers have to be considered: the Rhines wavenumber kRh and the transi-
tional wavenumber kβ. The Rhines wavenumber is defined as the scale at which the
velocity root-mean-square URMS is equal to the phase speed of Rossby waves
kRh = (β/2URMS)

1/2 [2] and can be related to the meridional size of the jet. If the flow
is continuously forced at small scales and at a constant rate ε, the balance between
the eddy characteristic time and the Rossby wave period exists in correspondence of
kβ = (β 3/ε)1/5, i.e., the so-called anisotropic transitional wavenumber which charac-
terizes the threshold of the inverse cascade anisotropization [8]. The ratio between
the transitional wavenumber and the Rhines wavenumber provides the non-
dimensional number, Rβ = kβ/kRh, known as the zonostrophy index. This represents
a key parameter in turbulent flows subjected to a β-effect, since it discerns different
flow regimes of the so-called β-plane turbulence. Indeed Rβ < 1.5 pertains to flows
with strong large-scale friction (friction dominated regime), in the range 1.5 < Rβ

< 2.5 a flow shows a transitional behavior, and for Rβ > 2.5 a flow develops within
the regime of zonostrophic turbulence [8].

To deeply investigate these features, we carried out several experimental cam-
paigns in a rotating tank facility available at the Hydraulics Laboratory of the
Sapienza University of Rome. As reported in previous papers [9, 10], the
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experimental setup consists of a square tank 1 m in diameter placed on a rotating
table whose imposed rotation is counter-clockwise in order to emulate flows in the
Northern hemisphere of a planet. To simulate the dynamics associated with the
latitudinal variation of the Coriolis parameter in the Polar Regions, we consider the
effects induced by the parabolic shape assumed by the free surface of a rotating
fluid. In fact, it is represented by a quadratic variation in r, being r the radial
distance from the pole and assuming the pole as the reference point (polar β-plane
or γ plane approximation) [10, 11]. In this model, the center of the tank (i.e., the
point of maximum depression of the fluid surface) represents the pole, while the
periphery of the domain corresponds to lower latitudes.

In particular, a local Cartesian frame of reference at the midlatitude of the tank
(rm = R/2; where R is the radius of the tank) was considered to evaluate the strength
of the β term in each experiment [9]. We run a huge set of experiments by
changing the main parameters of the flow, i.e. the rotation rate of the system, the
fluid thickness, the amount of energy introduced into the system as well as the
forcing characteristics [12–15]. Here, we focus on the analysis of the flow induced
by a localized forcing, i.e. the formation of a single eastward/westward jet. To this
aim, we consider an electromagnetic forcing obtained with the Lorentz
force arising from the interaction of a horizontal electric field and a vertical
magnetic field.

We perform a set of runs in which the magnets are located along an arc of
latitude in the range 180° < φ < 360° at a distance r = 17 cm from the pole; the
considered angular velocity and fluid depth at rest are Ω = 3rads�1 and H0 = 4 cm,
respectively. To force the flow, we considered the same orientation of polarity
chosen such as to introduce an eastward/westward momentum and facilitate the
formation of an eastward/westward zonal jet; in fact, the stationary position of the
magnets locked the jet’s location. In each of these runs, we vary the intensity of the
current in the range 2A ≤ I ≤ 6A; the forcing was continuously applied for all the
duration of the experiments.

2.2 Flow in the left ventricle in the human blood circulation

The overall functionality of the heart pump is strongly related to the intraven-
tricular flow features. Complexity in the ventricular flow is mainly due to fluid-wall
interactions and turbulence onset in correspondence of the boundaries, three-
dimensionality, and asymmetry in the pattern development. Here, the focus is on
the investigation of the flow in the left ventricle (LV) during a cardiac cycle: it
consists of an intense jet forming downstream of the mitral valve and in the devel-
opment of the related coherent structures i.e., a vortex ring, which grows up during
the systole, impinges on the ventricle walls and vanishes almost completely during
the systole. A deeper analysis of the flow pattern evolution has shown on one hand
that the observed flow structure appears to be favorable to ejection through the
aortic valve during the systole [16] and on the other hand the mutual relationships
between the formation and development of coherent structures in the LV and its
functionality. Actually, one of the main reasons for the deviation from physiological
conditions is represented by the replacement of the mitral valve with a prosthetic
one, which obviously causes deep modifications in the hemodynamics and, conse-
quently, in the associated flow pattern [17–19].

We reproduce in the laboratory the ventricular flow by means of a pulse
duplicator widely described in previous papers [19–21], below we summarize its
working principle. A flexible, transparent sack made of silicone rubber (wall
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thickness � 0.7 mm) simulates the LV allowing at the same time for the optical
access. The model ventricle is fixed on a circular plate, 56 mm in diameter, and
connected to a constant-head tank by means of two Plexiglas conduits. Along the
outlet (aortic) conduit a check valve was mounted, whereas different types of
valves were placed on the inlet (mitral) orifice.

We consider three different scenarios: a) the inlet was designed in order to
obtain a uniform velocity profile at the orifice mimicking physiological conditions,
b) a monoleaflet (Bjork–Shiley monostrut) in mitral position 3) a bileaflet bicarbon
prosthetic valve in mitral position; both valves were 31 mm in nominal diameter.
The model of the LV was placed in a rectangular tank with Plexiglas (transparent)
walls; its volume changed according to the motion of the piston, placed on the side
of the tank. The piston was driven by a linear motor, controlled by means of a
speed-feedback servo-control. The motion assigned to the linear motor was
tuned to reproduce the volume change by clinical data acquired in vivo by
echo-cardiography on a healthy subject [20].

2.3 Measuring technique

Two-dimensional velocity fields are measured by means of an image analysis
technique called Feature Tracking, FT [22, 23]. The measurement chain can be
summarized in the following steps: 1) identification of a proper measurement plane
in the fluid domain; 2) seeding of the working fluid with a passive tracer; 3)
illumination of the measurement plane previously identified; 4) image acquisition;
5) image pre-processing of the acquired images; 6) particle detection and temporal
tracking to isolate particles and track them in consecutive frames; 7) data post-
processing to obtain the relevant flow parameters. Obviously, flow images are
acquired at a certain space–time resolution, depending on the characteristic time
and length scales of the investigated phenomena, the details for each apparatus are
provided in the corresponding subsection.

Pre-processing includes the sequence of operations carried out to improve
the quality of acquired images for the subsequent core of the processing
phase. Basically, the procedure implies the background removal as well as the
removal of parts of the image which are not significant for the flow analysis as for
instance regions close to the boundaries. In fact, the glares due to the interaction
between the lighting system and the domain walls may affect the processing
algorithm.

FT is a multi-frame algorithm based on the assumption of image light intensity
conservation in space and time between two successive frames and in the
neighborhood of the seeding particles; this assumption holds for small time
intervals. The algorithm essentially considers measures of correlation windows
between successive frames and evaluates displacements by considering the best
correspondence (in terms of a defined matching measure) of selected interrogation
windows between subsequent images. Sparse velocity vectors are then obtained by
dividing the displacement by the time interval between two frames; FT then pro-
vides a Lagrangian description of the velocity field. These sparse data can be inter-
polated on a regular grid through a resampling procedure allowing for the
reconstruction of the instantaneous and time-averaged Eulerian velocity fields as
well. The advantage of having at the same time both the Lagrangian and the
Eulerian description of the flow is evident; in addition, if compared to other track-
ing algorithms, FT is not constrained by low seeding density, so it provides accurate
displacement vectors even when the number of tracer particles within each image is
very large [22].
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3. Data analysis

3.1 Traveling waves and eddies

As mentioned before, in these jet flows waves and eddies co-exist; to highlight
the propagation of the traveling structures in the physical space, we consider both a
measure based on Hovmöller diagrams and the theoretical phase speed of the
Rossby wave.

As for the former, we map the time evolution of the stream function ψ as a
function of φ at different radius, and in particular in correspondence of r = rMS, i.e.,
the radius where the radial shear is a maximum. The diagrams may show linear
features with negative or positive slopes, indicating westward/eastward propagat-
ing structures; the propagating structures could be waves or eddies, or both. To
calculate the propagation velocity Vp in correspondence of a radius r we estimate
the slope Δφ=Δt of the contour lines in the azimuthal diagrams:

Vp ¼ r
Δφ
Δt

(1)

then the net speed of the propagating structures is evaluated by subtracting the
mean zonal velocity from Vp:

Vpn ¼ Vp � Vzh iφ (2)

where Vzh iφ is the mean zonal velocity averaged over a range of φ corresponding
to the forced sector and time interval of �300 s.

As for the theoretical speed, we have shown in [14] how to derive the dispersion
relation of a linear Rossby wave in polar coordinates; here, we reported the final
expression:

Vt ¼ U � β
R2

α2
(3)

being R the radius of the device (in this case the radius of the circle inscribed in
the square tank), U the average zonal velocity in correspondence of the chosen
radius r, and α the coefficient of the Bessel Fourier decomposition, depending
on the geometry of the system and on the width of the forced sector and the
characteristic of the forcing.

In oceanography, one of the most popular methods used to detect coherent long-
lived coherent structures, such as mesoscale eddies, is based on the estimation of the
Okubo-Weiss parameter [24, 25]. This quantity describes the relative dominance of
deformation with respect to rotation of the flow and it is defined as:

OW ¼ sn � ss � ω2 (4)

where sn ¼ ux � vy and ss ¼ vx þ uy are the normal and shear components of
strain, respectively, ω ¼ vx � uy is vorticity. The subscripts ()x and ()y indicate
partial differentiation of the horizontal velocities (u and v) in the x and y directions,
respectively. In order to distinguish regions characterized by different topology
within the flow domain, one has first to fix a positive threshold OW0 of the
Okubo-Weiss parameter. Then, according to it, the domain can be divided into
zones corresponding to vortex cores (OW < �OW0), organized structures
surrounding vortex cores (OW > OW0), and the background field (|OW| ≤ OW0).
A value typically assumed for the threshold is OW0 = 0.2σOW, where σOW is the
standard deviation of OW parameter [26, 27].
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3.2 Finite-time Lyapunov exponents and Lagrangian coherent structures

Finite-Time Lyapunov Exponents (FTLE) represents a powerful tool suitable to
track coherent structures and to unveil their connections to energetic and mixing
processes, in fact, it has been used extensively in different contexts, including
biological and geophysical flows [28, 29]. Basically, the FTLE measure the maxi-
mum linearized growth rate of the distance among initially adjacent particles
tracked over a finite integration time. In brief, the computation of FTLE follows
from the definition of the flow mapΦ xð ÞtþT ∗

t over a finite time interval T*:

Φ xð ÞtþT ∗

t : x tð Þ ! x tþ T ∗ð Þ (5)

mapping a material point x(t) at time t to its position at t + T* along its trajec-
tory. After linearization, the amount of stretching about a trajectory is defined in
terms of the Cauchy-Green deformation tensor by the matrix:

Δ ¼ dΦ xð ÞtþT ∗

t

dt

 !2

(6)

Since the maximum stretching occurs when the initial separation is aligned with
the maximum eigenvalue of Δ, the FTLE is defined as:

σ x, t,T ∗ð Þ ¼ 1
T ∗j j ln

ffiffiffiffiffiffiffiffiffi
λmax

p
(7)

Where λmax is the maximum eigenvalue of Δ and
ffiffiffiffiffiffiffiffiffi
λmax

p
corresponds to the

maximum stretching factor. In particular, if a positive time interval is considered,
the FTLEs measure separation forward in time, thus identifying repelling struc-
tures. On the contrary, if negative time intervals are considered, FTLEs measure
separation backward in time, thus highlighting attracting structures [28, 30].

In addition, Lagrangian Coherent Structures (LCS) can be inferred from FTLE,
[31]. LCS analysis represents a very powerful tool in cardiovascular fluid dynamics
[32]; allowing for the identification of stagnant fluid areas, which are associated
with an increased risk of thrombus as well as with blood cell damage. In addition, it
helps to discern the regions directly affected by the vortices within the fluid domain
and, possibly, their, modifications related to pathologies. FTLE investigation was
successfully applied to the analysis of data sets obtained from both numerical
simulations [27] and in vitro study [33] of a mechanical heart valve, as well as for
the in vitro investigation of coherent structures educed from two-dimensional
velocity fields in a LV model [21]. Recently, FTLE is also being used in the analysis
of data sets collected in vivo [34, 35] and have been recognized as one of the main
methods for the analysis of Lagrangian transport in blood flows [36, 37].

4. Results and discussion

4.1 Rotating flows affected by a β-effect

Before running each experiment, the fluid surface is seeded with styrene particles
(mean size dm = 50 μm) acting as passive tracers and the fluid surface is lighted with
two lateral lamps. The rotation rate of the table is then raised up to the chosen value
and, once the solid body rotation is established, the forcing is switched on, and flow
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images are acquired at 20fps by a high-resolution video camera (1023x1240 pixels)
co-rotating with the system, perpendicular to the tank and with the optical axis
parallel to the rotation axis. FT allows to reconstruct particle trajectories i.e., to
provide a description of the flow in a Lagrangian framework; once the instantaneous
sparse velocity vectors have been detected, they are interpolated onto a regular grid.
In this case, it was convenient to choose a polar coordinate (r, φ) system with the
pole corresponding to the center of the tank: the azimuthal direction φ identifies
points with the same fluid depth (the so-called zonal direction) and at constant
radius r. Sparse data have then been rearranged on a polar grid with 120 radii and 60
circles using a standard cubic spline interpolation procedure. The non-dimensional
parameters of importance in our model are: the aspect ratio i.e., the ratio between
the horizontal and vertical dimension of the flow domainH0/L < <1 (shallow fluid);
the Ekman number Ek = ν /Ω H2

0 is order O(10�4), ν is the kinematic viscosity; the
Rossby number Ro = U/2ΩL order O(10�3), U is the velocity scale; the Reynolds
number Re = Ulv/ν is order O(102), lv is the characteristic length scale of the eddies.
We summarize here some of the main results obtained in the characterization of
eastward/westward flows, hereafter indicated as EW and WW case.

4.1.1 Waves and eddies propagation

In Figures 1 and 2 we plot the instantaneous and time-averaged flow fields
obtained in one run (I = 4A) of the experiments WW and EW; the plots are shown
hereafter refer to experiments performed using the same forcing amount. Figure 1
clearly shows a meandering jet squeezed between westward propagating eddies in
the instantaneous flow field; on the contrary, the averaged field reveals strong
alternating zonal jets and no eddies. These experimental features resemble ocean
observations that highlight numerous westward propagating eddies on short time
scales [12]. At the difference, the eastward jet is not associated with eddy shedding
and traveling structures and the instantaneous and averaged flow appear to be
rather similar (Figure 2).

To characterize the traveling structure observed in the WW case, we map the
velocity stream function ψ as a function of time t and longitude φ in correspondence
of the radius of maximum radial shear, rMS (Figure 3). In fact, in [14] we were able
to demonstrate that the best match between the theoretical and experimental esti-
mation of the speed of propagating structures is found in the correspondence of this
radius. To emphasize this aspect, we plot in Figure 4, from left to right: the

Figure 1.
Instantaneous (left) and time mean (right) normalized stream function superimposed on the streamlines for a
WW flow.
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azimuthal (φ-t) Hovmöller diagram of ψ, the radial t-r Hovmöller diagram of ψ, the
radial profiles of the mean radial shear d VZ

� �
φ
=dr and the mean azimuthal velocity

VZ
� �

φ
. The profiles show a maximum of the mean zonal velocity in correspondence

of the radius rC corresponding to the jet centerline while the maximum of the mean
shear is at a radius rMS > rC. We recall that the definition of the jet boundaries and
of its time evolution is crucial in the definition of the barriers to meridional
transport [5, 13].

Figure 2.
Instantaneous (left) and time mean (right) normalized stream function superimposed on the streamlines for a
EW flow.

Figure 3.
Azimuthal Hovmöller diagram of the stream function ψ with the radius of the maximum radial shear chosen as
the reference radius, WW flow.

Figure 4.
From left to right: Azimuthal Hovmöller diagram of the stream function ψ with the radius of the maximum
radial shear chosen as the reference radius; radial Hovmöller diagram of ψ averaged azimuthally in the
range forced sector; radial shear profiles of the azimuthal velocity Vz averaged azimuthally in the same sector
and in time.
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As discussed in Section 3.1, by measuring the slope of the lines of the same color,
we were able to estimate experimentally the speed of the propagating structures
relative to the zonal flow with Eq. (2); we then calculate the theoretical speed using
Eq. (3) and compare the obtained values. The comparison shows that the relative
error, i.e. the ratio between the measured and the expected speed, is minimum in
correspondence of rMS (O(10�2)).

In order to compare our method to evaluate the eddies propagation speed with a
method widely used in the applications we also applied an OW-based method to our
experimental data sets. At first, we evaluated OW parameter through Eq. (4) at
each time instant. Then, using a threshold of OW0 = 0.5σOW we identified the
vortex cores and their surrounding area. We refined the detection by combining the
OW parameter with the physical properties of the flow field (high vorticity areas,
velocity vectors) and by applying geometrical constraints. An example is provided
in Figure 5 in which we show a snapshot of the vorticity field ζ (left) and of the
Okubo–Weiss parameter QOW (right) superimposed on the corresponding velocity
field. In the vorticity map, regions of dark blue (dark red) identify strong anti-
cyclonic (cyclonic) circulation. In the Qow field, dark blue identifies regions where
vorticity is much stronger than strain (i.e., eddy cores), and dark red where strain is
much greater than vorticity.

Finally, once identified the coherent vortices, we detected the center of each
structure and tracked them in the considered time interval. We found values of the
propagating speed close to the ones found through the Hovmöller diagrams. We
conclude that waves and propagating eddies coexist in the zonal pattern and con-
firm their duality nature [14]. The application of the same procedure of analysis
overall the EW experiments is actually in progress [38].

4.1.2 Characteristic scales and flow regime

The estimation of flow characteristic length scales is crucial to identify the flow
regime in rotating turbulent flows with a β-effect. To this aim, as discussed in
Section 2.1, we calculate the Rhines number, kRH, the transitional wave number, kβ,
and their ratio Rβ. The results for a set of WW and EW experiments are reported in
Table 1.

According to the classification provided in [8] we conclude that all our experi-
ments reproduced flows in a transitional regime.

Figure 5.
Instantaneous fields of vorticity field ζ (left) and Okubo–Weiss parameter Qow (right); velocity field
superimposed (blue arrows) for a WW flow.
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4.2 Flow patterns in the left ventricle downstream of prosthetic valves

To perform flow measurements in the LV, the vertical symmetry plane aligned
with the mitral and aortic valve axes is illuminated by a 12 W, infrared laser. The
working fluid inside the ventricle (distilled water) is seeded with neutrally buoyant
particles (dm � 30 μm). A high-speed digital camera (250 frames/s, 1280 � 1024
pixel resolution) is triggered by the motor to frame the time evolution of the
phenomenon for N cardiac cycles. The acquired images are processed by means of a
FT algorithm and velocity fields on a regular grid 51 � 51 are obtained for the
considered time interval. Two-dimensional Eulerian velocity data were then phase
averaged overN = 50 cycles. Here, we discuss two groups of experiments performed
considering a period T = 6 s and stroke volumes SV1 = 64 ml, SV2 = 80 ml. We briefly
recall that during the cardiac cycle the flow rate change according to the
considered law [21]: the fluid enters the LV through the mitral valve during the
diastole (0.00 T – 0.75 T) and is ejected out through the aortic valve during
the systole (0.75 T – 1.00 T). Two peaks separated by the diastasis characterize the
diastole phase: the first is called E-wave and corresponds to the dilation of the
ventricle, and the second, called A-wave, is due to the contraction of the left atrium.

For the dynamic similarity, we consider the Reynolds number Re ¼ UD=υ and the

Womersley numberWo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=Tυ

q
; respectively equal to Re1 = 8322; Re2 = 10403;

Wo = 22.8; in both cases within the physiological range. Here,D is the maximum
diameter of the ventricle, U the peak velocity through the mitral orifice, ν the
kinematic viscosity of the working fluid i.e., distilled water.

We use the public domain code NEWMAN [39] to compute the FTLEs from the
planar velocity dataset above described, for the details see [40]. We remark that
FTLE fields are computed from 2D measurements even if it is well known that the
observed phenomenon is 3D; indeed, as the measurement plane is a plane of
symmetry the assumption of two-dimensionality is quite acceptable.

Figure 6 shows backward FTLE at the end of the E-wave for the three simulated
conditions. Backward FTLE ridges correspond to the front of the diastolic
jet, sharply separating the fluid which just entered the ventricle from the
receiving fluid.

The analysis of the FTLE patterns throughout the cardiac cycle (not shown here)
highlights how in the physiological configuration the observed coherent structures
appear to be optimal for the systolic function. Indeed, the modifications in the
transmitral flow due to the presence of a prosthetic valve deeply impact on the
interaction between the coherent structures generated during the first phase of the
diastole and the incoming jet during the second diastolic phase. We observed that

Run kRh(cm�1) kβ (cm�1) Rβ

WW1 1.41 2.20 1.55

WW2 1.09 1.75 1.60

WW3 0.94 1.16 1.70

EW1 1.19 1.90 1.59

EW2 0.85 1.45 1.70

EW3 0.74 1.29 1.75

Table 1.
Characteristic scales and zonostrophy index estimated from experimental data.
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while the flow generated by a bileaflet valve preserves most of the beneficial
features of the top hat inflow, downstream of a monoleafleat one the strong jet
forming at the end of the diastole prevents the permanence of large coherent
structures within the LV (Figure 7).

In order to complete the FTLE analysis, we reconstruct the trajectories of a
number (O(104)) of synthetic fluid particles entering the ventricle through the mitral
orifice during the LV filling by numerically integrating the experimental velocity
fields; for each run, synthetic particles were released during each time step of the
diastolic waves from the mitral orifice section and were subsequently tracked during
the cardiac cycle. The aim was to further clarify the role of LCS by overlapping the

Figure 7.
Same as above in correspondence of the systolic peak.

Figure 6.
Velocity fields and backward FTLE at the end of E-wave (the small inset shows the current time in the cardiac
cycle as a black dot): Left: Physiological configuration, center: Monoleaflet valve, and right: Bileaflet valve.

Figure 8.
Syntetic particles overlapped on FTLE maps at the end of the a wave.
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particle positions on the FTLE maps, and to verify if and how LCS may act as
pseudo-barriers for transport and mixing. An example is reported in Figure 8.

We finally compute the shear stress experienced by the particles along their
trajectories in order to emphasize the differences among the simulated conditions
and to clarify the possible implications on the hemodynamics. Results
corresponding to the end of the A wave are shown in Figure 9.

The plots show that, in case (a) the stress magnitudes induced by the smoother
flow pattern are lower than values measured in case (b) and (c). In fact, while
in physiological conditions particles characterized by the highest shear are washed
out by the systolic wave, in presence of prosthetic valves they tend to be advected
towards regions of the LV not affected by the systolic ejection (see Figure 3).

5. Conclusions

In this work, we review a set of methodologies suitable for the characterization of
time-periodic complex flows; in particular, here, the focus is on rotating flows
affected by a β-effect and blood flow in the left ventricle. The interest in deepening
these contexts depends on their importance from both an applicative and a method-
ological point of view. Indeed, we consider almost 2D and time-periodic flows in
which, due to chaotic advection, the Lagrangian motion of passive particles can be
very complex even in regular, i.e., non-turbulent, Eulerian flow fields. We believe
that the obtained results show, on one hand, that the designed experimental
models prove suitable to reproduce the investigated phenomena, and on the other
hand confirm that the proposed methodologies represent valid and powerful tools for
identifying and characterizing the main flow patterns in their space–time evolution.
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Chapter 6

Relaxation Dynamics of Point
Vortices
Ken Sawada and Takashi Suzuki

Abstract

We study a model describing relaxation dynamics of point vortices, from quasi-
stationary state to the stationary state. It takes the form of a mean field equation of
Brownian point vortices derived from Chavanis, and is formulated by our previous
work as a limit equation of the patch model studied by Robert-Someria. This model
is subject to the micro-canonical statistic laws; conservation of energy, that of mass,
and increasing of the entropy. We study the existence and nonexistence of the
global-in-time solution. It is known that this profile is controlled by a bound of the
negative inverse temperature. Here we prove a rigorous result for radially symmet-
ric case. Hence E=M2 large and small imply the global-in-time and blowup in finite
time of the solution, respectively. Where E and M denote the total energy and the
total mass, respectively.

Keywords: point vortex, quasi-equilibrium, relaxation dynamics

1. Introduction

Our purpose is to study the system

ωt þ ∇ � ω∇⊥ψ ¼ ∇ � ∇ωþ βω∇ψð Þ in Ω� 0,Tð Þ,
∂ω

∂ν
þ βω

∂ψ

∂ν

����
∂Ω

¼ 0, ωjt¼0 ¼ ω0 xð Þ (1)

with

�Δψ ¼ ω in Ω, ψ j∂Ω ¼ 0, β ¼ �
Ð
Ω∇ω � ∇ψÐ
Ωω ∇ψj j2 , (2)

where Ω⊂R2 is a bounded domain with smooth boundary ∂Ω, ν is the outer unit
normal vector on ∂Ω, and

∇ ¼
∂

∂x1
∂

∂x2

0
BB@

1
CCA, ∇⊥ ¼

∂

∂x2

� ∂

∂x1

0
BB@

1
CCA, x ¼ x1, x2ð Þ: (3)

The unknown ω ¼ ω x, tð Þ∈R stands for a mean field limit of many point
vortices,
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ω x, tð Þdx ¼
XN
i¼1

αiδxi tð Þ dxð Þ: (4)

It was derived, first, for Brownian point vortices by [1, 2], with β ¼ β tð Þ standing
for the inverse temperature. Then, [3, 4] reached it by the Lynden-Bell theory [5] of
relaxation dynamics, that is, as a model describing the movement of the mean field
of many point vortices, from quasi-stationary state to the stationary state. This
model is consistent to the Onsager theory [6–12] on stationary states and also the
patch model proposed by [13, 14], that is,

ω x, tð Þ ¼
XNp

i¼1

σi1Ωi tð Þ xð Þ, (5)

where Np, σi, and Ωi tð Þ denote the number of patches, the vorticity of the i-th
patch, and the domain of the i-th patch, respectively [15–17].

This chapter is concerned on the one-sided case of

ω0 ¼ ω0 xð Þ>0: (6)

If this initial value is smooth, there is a unique classical solution to (1)–(4) local in
time, denoted by ω ¼ ω x, tð Þ, with the maximal existence time T ¼ Tmax ∈ 0,þ∞ð �.
More precisely, the strong maximum principle to (1) guaranttes

ω ¼ ω x, tð Þ>0 on Ω� 0,T½ Þ: (7)

Then, the Hopf lemma to the Poisson equation in (2) ensures

∂ψ

∂ν

����
∂Ω

<0, (8)

and hence the well-definedness of

�β ¼
Ð
Ω∇ω � ∇ψÐ
Ωω ∇ψj j2 : (9)

We confirm that system (1)–(3) satisfies the requirements of isolated system
of thermodynamics. First, the mass conservation is derived from (1) as

d
dt

ð

Ω
ω ¼ 0, (10)

because

ν � ∇⊥ψ
��
∂Ω ¼ 0 (11)

holds by (2). Second, the energy conservation follows as

1
2
d
dt

∥∇ψ∥22 ¼ ∇ψ ,∇ψ tð Þ ¼ ωt,ψð Þ

¼ ω∇⊥ψ ,∇ψ
� �� ∇ωþ βω∇ψ ,∇ψð Þ

¼ � ∇ω,∇ψð Þ � β

ð

Ω
ω ∇ψj j2 ¼ 0

(12)
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by (1) and (2), because

∇⊥ψ � ∇ψ ¼ 0, (13)

where ,ð Þ denotes the L2 inner product. Third, the entropy increasing is
achieved, writing (1) as

ωt ¼ ∇ � ω �∇⊥ψ þ ∇ logωþ βψð Þ� �
,

∂

∂ν
logωþ βψð Þ

����
∂Ω

¼ 0: (14)

In fact, it then follows that

ð

Ω
ωt logωþ βψð Þ ¼

ð

Ω
ω∇⊥ψ � ∇ logψ þ βψð Þ � ω ∇ logωþ βψð Þj j2 dx (15)

with

ð

Ω
ω∇⊥ψ � ∇ logωþ βψð Þ ¼

ð

Ω
∇ω � ∇⊥ψ

¼
ð

∂Ω
ων � ∇⊥ψ �

ð

Ω
ω∇ � ∇⊥ψ

� � ¼ 0

(16)

from (11) and

∇⊥ � ∇ ¼ ∇ � ∇⊥ ¼ 0: (17)

Since

ð

Ω
ωt logω ¼ d

dt

ð

Ω
ω logω� 1ð Þ,

ð

Ω
ωtψ ¼ 1

2
d
dt

∥∇ψ∥22 ¼ 0, (18)

We thus end up with the mass conservation

M ¼
ð

Ω
ω, (19)

the energy conservation

E ¼ ∥∇ψ∥22 ¼ ψ ,ωð Þ, (20)

and the entropy increasing

d
dt

ð

Ω
ω logω� 1ð Þ ¼ �

ð

Ω
ω ∇ logωþ βψð Þj j2 ≤0: (21)

Henceforth, C>0 stands for a generic constant. In the previous work [4] we
studied radially symmetric solutions and obtained a criterion for the existence of
the solution global in time. Here, we refine the result as follows, where B 0, 1ð Þ
denotes the unit ball.

Theorem 1 Let

Ω ¼ B 0, 1ð Þ, ω0 ¼ ω0 rð Þ, ω0r <0, 0< r ¼ ∣x∣ ≤ 1: (22)
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Then there is C0 >0 such that

C0∥ω0∥32 ≤Eω ) T ¼ þ∞, ∥ω �, tð Þ∥∞ ≤C, t≥0, (23)

where

ω ¼ min
Ω

ω0 >0: (24)

Theorem 2 Under the assumption of (22) there is δ0 >0 such that

E
M2 < δ0 ) T < þ∞: (25)

Remark 1 Since

∥ω0∥32 ¼
ð

Ω
ω2
0

� �3=2

≥ ω2=3
ð

Ω
ω4=3
0

� �3=2

¼ ω

ð

Ω
ω4=3
0

� �3=2

≥ω Ωj j�1=2
ð

Ω
ω0

� �2

¼ ω Ωj j�1=2M2

(26)

the assumption (23) implies

E
M2 ≥C0 Ωj j�1=2: (27)

Therefore, roughly, the conditions E=M2 ≫ 1 and E=M2 ≪ 1 imply T ¼ þ∞ and
T < þ∞, respectively.

Remark 2 The assumption (22) implies

β ¼ β tð Þ<0, 0≤ t<T, (28)

and then we obtain Theorem 1. In other words, the conclusion of this theorem arises
from (28), without (22).

Remark 3 Since

E
M2 ¼

Ð
Ω ∇ψj j2Ð
Ωω

� �2 (29)

it holds that

E
M2 ¼ ∥∇c∥22, c ¼ �Δð Þ�1ω0Ð

Ωω0
¼ ψ0Ð

∂Ω � ∂ψ0
∂ν

, (30)

where ψ0 ¼ �Δð Þ�1ω0.
The system (1)–(4) thus obays a profile of the micro-canonical ensemble. In a

system associated with the canonical ensemble, the inverse temperature β is a
constant in (1) independent of t, with the third equality in (2) elimiated:

ωt þ ∇ � ω∇⊥ψ ¼ ∇ � ∇ωþ βω∇ψð Þ, ∂ω

∂ν
þ βω

∂ψ

∂ν

����
∂Ω

¼ 0, ωjt¼0 ¼ ω0 xð Þ>0

�Δψ ¼ ω, ψ j∂Ω ¼ 0:

(31)
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Then there arise the mass conservation

d
dt

ð

Ω
ω ¼ 0, (32)

and the free energy decreasing

d
dt

ð

Ω
ω logω� 1ð Þ þ β

2
∇ψj j2 dx ¼ �

ð

Ω
ω ∇ logωþ βψð Þj j2 ≤0: (33)

The system (31) without vortex term,

ωt ¼ ∇ � ∇ωþ βω∇ψð Þ, ∂ω

∂ν
þ βω

∂ψ

∂ν

����
∂Ω

¼ 0, ωjt¼0 ¼ ω0 xð Þ>0

�Δψ ¼ ω, ψ j∂Ω ¼ 0:
(34)

is called the Smoluchowski-Poisson equation. This model is concerned on the
thermodynamics of self-gravitating Brownian particles [18] and has been studied in
the context of chemotaxis [19–23]. We have a blowup threshold to (34) as a conse-
quence of the quantized blowup mechanism [19, 23]. The results on the existence of
the bounded global-in-time solution [24–26] and blowup of the solution in finite
time [27] are valid even to the case that β is a function of t as in β ¼ β tð Þ. provided
with the vortex term ∇ � ω∇⊥ψ on the right-hand side. We thus obtain the following
theorems.

Theorem 3 It holds that

�β tð Þ≤ δ, ∥ω0∥1 < 8πδ�1 ) T ¼ þ∞, ∥ω �, tð Þ∥∞ ≤C (35)

in (31), where δ>0 is arbitrary.
Theorem 4 It holds that

�β tð Þ≥ δ, ∥ω0∥1 > 8πδ�1 ) ∃ω0 >0, ∥ω0∥1 > 8πδ�1 such that T < þ∞ (36)

in (31), where δ>0 is arbitrary.
Remark 4 In the context of chemotaxis in biology, the boundary condition of ψ is

required to be the form of Neumann zero. The Poisson equation in (34) is thus replaced by

�Δψ ¼ ω� 1
∣Ω∣

ð

Ω
ω,

∂ψ

∂ν

����
∂Ω

¼ 0 (37)

or

�Δψ þ ψ ¼ ω,
∂ψ

∂ν

����
∂Ω

¼ 0 (38)

by [28] and [29], respectively. In this case there arises the boundary blowup, which
reduces the value 8π in Theorems 3–4 to 4π. The value 8π in Theorems 3–4, therefore, is a
consequence of the exclusion of the boundary blowup [30]. This property is valid even for
(37) or (38) of the Poisson part, if (22) is assumed.

Remark 5 The requirement to ω0 in Theorem 4 is the concentration at an interior
point, which is not necessary in the case of (22). Hence Theorems 3 and 4 are refined as

�β tð Þ≤ δ, ∥ω0∥1 < 8πδ�1 ) T ¼ þ∞, ∥ω �, tð Þ∥∞ ≤C (39)
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and

�β tð Þ≥ δ, ∥ω0∥1 > 8πδ�1 ) T < þ∞, (40)

if (22) holds in (35). The main task for the proof of Theorems 1 and 2, therefore,
is a control of β ¼ β tð Þ in (1).

This paper is composed of four sections and an appendix. Section 2 is devoted to
the study on the stationary solutions, and Theorems 1 and 2 are proven in Sections 3
and 4, respectively. Then Theorem 4 is confirmed in Appendix.

2. Stationary states

First, we take the canonical system (31) with β independent of t. By (32) and
(33), its stationary state is defined by

logωþ βψ ¼ constant, ω ¼ ω xð Þ>0,
ð

Ω
ω ¼ M: (41)

Then it holds that

ω ¼ Me�βψ

Ð
Ωe

�βψ
(42)

and hence

�Δψ ¼ Me�βψ

Ð
Ωe

�βψ
, ψ j∂Ω ¼ 0: (43)

There arises an oredered structure arises in β<0, as observed by [11], as
a consequence of a quantized blowup mechanism [19, 20, 31]. In the micro-
canonical system (1) and (2), the value β in (43) has to be determined by E
besides M.

Equality (21), however, still ensures (41) and hence (42) in the stationary state
even for (1)–(3). Writing

v ¼ �βψ , μ ¼ �βMÐ
Ωe

�βψ
, (44)

we obtain

�Δv ¼ μev in Ω, vj∂Ω ¼ 0,
E
M2 ¼

∥∇v∥22Ð
Ω � ∂v

∂ν

� �2 (45)

by (30) and (43).
This system is the stationary state of (1) and (2) introduced by [4]. The first two

equalities

�Δv ¼ μev, vj∂Ω ¼ 0 (46)

comprise a nonlinear elliptic eigenvalue problem and the unknown eigenvalue μ
is determined by the third equality,
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E
M2 ¼

∥∇v∥22Ð
Ω � ∂v

∂ν

� �2 : (47)

The elliptic theory ensures rather deailed features of the set of solutions to (46).
Here we note the following facts [31].

1.There is μ ¼ μ Ωð Þ>0 such that the problem (46) does not admit a solution for
μ> μ.

2.Each μ≤0 admits a unique solution.

3.Each 0< δ< μ admits a constant C ¼ C δð Þ>0 such that ∥v∥∞ ≤C for any
solution v ¼ v xð Þ.

4.There is a family of solutions μ, vð Þf g such that μ↓0 and ∥v∥∞ ! þ∞.

We show the following theorem, consistent to Theorem 2.
Theorem5 IfΩ ¼ B 0, 1ð Þ⊂R2, there is δ>0 such that any solution v, μð Þ to (45) admits

E
M2 ≥ δ: (48)

Proof: If μ ¼ 0, it holds that v ¼ 0. We have �v>0 exclusively in Ω, provided
that �μ>0, respectively. By the elliptic theory [32], therefore, any solution v to
(46) is radially symmetric as in v ¼ v rð Þ, r ¼ ∣x∣. We have, furthermore, �vr <0 in
0< r≤ 1, if �μ>0, respectively.

Then it holds that ψ ¼ ψ rð Þ, and hence

� 1
r
rψ rð Þr ¼ ω in 0< r≤ 1, ψ jr¼1 ¼ 0 (49)

by (42) and (43), which implies

�rψ r rð Þ ¼
ðr
0
sω sð Þds>0, 0< r≤ 1: (50)

We thus obtain μ 6¼ 0, in particular.
If μ<0 we have β>0 by (44), and therefore, ψ r >0 in 0< r≤ 1 by vr >0 there. It

is a contradiction, and hence μ>0. In this case, the solution v ¼ v rð Þ to (46) is
explicit [31]. The numbers of the solution is 0, 1, and 2, according to μ> 2, μ ¼ 2,
and 0< μ< 2, respectively, and if 0< μ≤ 2 the solutions v ¼ v� are given as

v� rð Þ ¼ log
8γ�r

1þ γ�r2ð Þ2 , γ� ¼ 4
μ

1� μ

4
� 1� μ

2

� �1=2� �
: (51)

In fact, we have γþ ¼ γ� for μ ¼ 2.
This solution is parametrized by

σ ¼
ð

Ω
μev ∈ 0, 8πð Þ: (52)

Hence each 0< σ < 8π admits a unique solution v, μð Þ to (46), and v ¼ vþ and
v ¼ v� according as σ ≥ 4π and σ ≤ 4π, respectively. It holds also that μ↓0 if either
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σ↑ 8π or σ↓0. Thus we have only to confirm that E=M2 is bounded, both as σ↑ 8π
and σ↓0.

As σ↑ 8π, we have

v ¼ vþ xð Þ ! 4 log
1
∣x∣

locally uniformly on Ωn 0f g (53)

and hence

∥∇v∥22 ! þ∞,
ð

∂Ω
� ∂v
∂ν

! 8π, (54)

which implies

lim
σ↑ 8π

E
M2 ¼ þ∞: (55)

As σ↓0, on the other hand, we have

v ¼ v� xð Þ ! 0 uniformly in Ω: (56)

Since μ↓0, furthermore, there arises that

γ ¼ γ� ¼ 4
μ

1� μ

4
� 1� μ

2

� �1=2� �
¼ μ 1þ o 1ð Þð Þ: (57)

It holds also that

v rð Þ ¼ log
8γ
μ
� 2 log 1þ μr2

� �
(58)

and hence

vr rð Þ ¼ � 4μr

1þ μr2ð Þ2 ¼ �4μr 1þ o 1ð Þð Þ uniformly on Ω: (59)

Then, (59) implies

∥∇v∥22 ¼ 2π
ð1
0
v2r r dr ¼ 2π � 16μ2 �

ð1
0
r3 dr � 1þ o 1ð Þð Þ

¼ 8πμ2 1þ o 1ð Þð Þ
(60)

as well as

ð

∂Ω
� ∂v
∂ν

� �2

¼ 16μ2 � 2π 1þ o 1ð Þð Þ: (61)

It thus follows that

lim
σ↓0

E
M2 ¼

1
4

(62)

and hence the conclusion. □
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3. Proof of Theorem 1

The first observation is the following lemma.
Lemma 1 Under the assumption of (22), it holds that

β ¼ β tð Þ<0, ωr r, tð Þ<0, 0< r≤ 1, 0≤ t<T: (63)

Proof:We have (7) and hence

ψ r r, tð Þ<0, 0< r≤ 1, 0≤ t<T (64)

by (49), which implies, in particular,

β ¼ � ∇ω,∇ψð ÞÐ
Ωω ∇ψj j2 <0 (65)

at t ¼ 0 by (22).
Since ω ¼ ω r, tð Þ and ψ ¼ ψ r, tð Þ, we obtain ∇⊥ψ ¼ 0, and hence

ωt ¼ ωrr þ 1
r
ωr þ βψ rωr � βω2 (66)

by (1). Then z ¼ ωr satisfies

zt ¼ zrr � 1
r2
zþ 1

r
zr þ βψ rrzþ βψ rzr � 2βωz, 0< r≤ 1, 0≤ t<T

zjr¼0 ¼ 0, zjt¼0 ¼ ω0r rð Þ<0, 0< r≤ 1
(67)

and

z ¼ �βωψ r, r ¼ 1, 0≤ t<T: (68)

Putting

m tð Þ ¼ min
∂Ω

z �, tð Þ ¼ ωr �, tð Þjr¼1, (69)

we obtain m 0ð Þ<0 from the assumption. If there is 0< t0 < such that

m tð Þ<0, 0≤ t< t0 <T, m t0ð Þ ¼ 0, (70)

we obtain z r, tð Þ>0 for 0≤ t< t0, 0< r≤ 1, and t ¼ t0, 0< r< 1 by the strong
maximum principle. By (64), we have (65) for 0≤ t≤ t0, that is,

β ¼ �
Ð 1
0ψ rzr drÐ 1
0ωψ

2
r r dr

<0, 0≤ t≤ t0, (71)

and hence

z ¼ �βωψ r <0 r ¼ 1, t ¼ t0, (72)

a contradiction. It holds that z ¼ ωr <0 for 0≤ t<T, r ¼ 1, and hence

β ¼ �
Ð 1
0ψ rωrrdrÐ 1
0ωψ

2
r r dr

<0, 0≤ t<T: □ (73)
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The proof of Theorem 3 relies on the fact

β≥ � C,
ð

Ω
ω logω� 1ð Þ≤C ) T ¼ þ∞, ∥ω �, tð Þ∥∞ ≤C: (74)

This property is known for the Smoluchoski-Poisson equation (34), but the
proof is valid even to (31) with vortex term. Having (21), therefore, we have to
provide the inequality β≥ � C.

The inequality β<0, on the other hand, is sufficient for the following
arguments.

Lemma 2 If β≤0, 0≤ t<T, it holds that

ω≥ω � min
Ω

ω0 >0 on Ω� 0,T½ Þ: (75)

Proof: Since (17) we obtain

ωt þ ∇⊥ψ � ∇ω ¼ Δωþ β∇ψ � ∇ωþ βΔψ

¼ Δωþ β∇ψ � ∇ω� βω2

≥Δωþ β∇ψ � ∇ω in Ω� 0,Tð Þ

(76)

with

� ∂ω

∂ν
¼ βω

∂ψ

∂ν
>0 on ∂Ω� 0,T½ Þ (77)

by (8). Then the result follows from the comparison theorem. □
Lemma 3 Under the assumption of the previous lemma, there is C0 ¼ C0 Ωð Þ>0

such that

C0∥ω0∥32 ≤Eω ) ∥ω �, tð Þ∥2 ≤∥ω0∥2, � β tð Þ≤ α � ∥ω0∥22
Eω

, 0≤ t<T: (78)

Proof: Using (11) and (17), we obtain

ð

Ω
∇ � ω∇⊥ψ
� �� �

ω ¼
ð

Ω
ω∇ω � ∇⊥ψ ¼ 1

2

ð

Ω
∇ω2 � ∇⊥ψ

¼ � 1
2

ð

Ω
ω2∇ � ∇⊥ψ ¼ 0:

(79)

Hence (1) with (2) implies

1
2
d
dt

∥ω∥22 þ ∥∇ω∥22 ¼ �β

ð

Ω
ω∇ψ � ∇ω ¼ � β

2
∇ψ ,∇ω2� �

¼ � β

2

ð

∂Ω
ω2 ∂ψ

∂ν
þ β

2
Δψ ,ω2� �

≤ � β

2
∥ω∥33

(80)

by β≤0 and (88). Since

ð

Ω
∇ω � ∇ψ ¼

ð

∂Ω
ω
∂ψ

∂ν
þ
ð

Ω
ω �Δψð Þ≤

ð

Ω
ω2 (81)
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follows from (8), furthermore, it holds that

�β ¼
Ð
Ω∇ω � ∇ψÐ
Ωω ∇ψj j2 ≤ω�1 � ∥ω∥22

∥∇ψ∥22
¼ 1

Eω
∥ω∥22: (82)

Then ineqality (80) induces

1
2

d
dt

∥ω∥22 þ ∥∇ω∥22 ≤
1

2Eω
∥ω∥22 � ∥ω∥33: (83)

Here we use the Gagliardo-Nirenberg inequality (see (4.16) of [19]) in the
form of

∥ω∥33 ≤C∥ω∥H1 � ∥ω∥22 ¼ C∥ω∥22 ∥∇ω∥2 þ ∥ω∥2ð Þ, (84)

to obtain

1
2
d
dt

∥ω∥22 þ ∥∇ω∥22 ≤
C
Eω

∥ω∥42 ∥∇ω∥2 þ ∥ω∥2ð Þ

≤
1
2
∥∇ω∥22 þ

C2

8 Eωð Þ2 ∥ω∥
8
2 þ

C
2Eω

∥ω∥52

(85)

and hence

d
dt

∥ω∥22 þ ∥∇ω∥22 ≤
C
Eω

∥ω∥52
C
Eω

∥ω∥32 þ 1
� �

: (86)

Then, Poincaré-Wirtinger’s inequality ensures

d
dt

∥ω∥22 þ μ∥ω∥22 ≤
C
Eω

C
Eω

∥ω∥62 þ ∥ω∥32

� �
∥ω∥22, (87)

where μ ¼ μ Ωð Þ>0 is a constant.
Writing

y tð Þ ¼ C
Eω

∥ω∥32, (88)

we obtain

d
dt

∥ω∥22 þ μ∥ω∥22 ≤ y2 þ y
� �

∥ω∥22, (89)

and therefore, if

y2 þ y< μ=2 (90)

holds at t ¼ 0, it keeps to hold that

d
dt

∥ω∥22 ≤0 (91)

and (90) for 0≤ t<T. Then, we obtain
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∥ω �, tð Þ∥2 ≤∥ω0∥2, 0≤ t<T, (92)

and hence

�β tð Þ≤ ∥ω0∥22
Eω

¼ α, 0≤ t<T (93)

by (82).
The condition y 0ð Þ< μ

2 means

C0∥ω0∥2 ≤Eω (94)

for C0 >0 sufficiently large, and hence we obtain the conclusion. □
Proof of Theorem 1: By the parabolic regularity, it suffices to show that

∥ω �, tð Þ∥∞ ≤C, 0≤ t<T (95)

under the assumption. We have readily shown

∥ω �, tð Þ∥2 ≤C, 0≤ � β tð Þ≤C, 0≤ t<T (96)

by Lemma 3. Then, the conclusion (95) is obtained similarly to (34). See [26] for
more details.

In fact, we have
ð

Ω
∇ � ω∇⊥ψ
� �� �

ωp ¼ �
ð

Ω
ω∇⊥ψ � ∇ωp ¼ �p

ð

Ω
ωp∇⊥ψ � ∇ω

¼ � p
pþ 1

ð

Ω
∇⊥ψ � ∇ωpþ1 ¼ p

pþ 1

ð

Ω
ωpþ1∇ � ∇⊥ψ

� � ¼ 0

(97)

for p>0 by (11) and (34). Then it follows that

1
pþ 1

d
dt

ð

Ω
ωpþ1 þ 4p

pþ 1ð Þ2 ∥∇ω
pþ1
2 ∥22 ¼ �β

ð

Ω
ω∇ψ � ∇ωp

¼ �β � p
pþ 1

ð

Ω
∇ψ � ∇ωpþ1 ≤ � β

p
pþ 1

ð

Ω
ωpþ1 �Δψð Þ

¼ �β
p

pþ 1

ð

Ω
ωpþ1 ≤C

ð

Ω
ωpþ2

(98)

by β<0 and (8). Then, Moser’s iteration scheme ensures (95) as in [33].

4. Proof of Theorem 2

We begin with the following lemma.
Lemma 4 Under the assumption of (22), it holds that

�β tð Þ≥ δ, 0≤ t<T, M ¼ ∥ω0∥1 >
8π
δ

) T < þ∞ (99)

in (31), where δ>0 is a constant.
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Proof:We have ω ¼ ω r, tð Þ and ψ ¼ ψ r, tð Þ for r ¼ ∣x∣ under the assumption,
which implies ∇⊥ψ ¼ 0. Then we obtain

∇ � ω∇⊥ψ ¼ ∇ω � ∇⊥ψ ¼ 0 (100)

by (17). It holds also that

∇ � ω∇ψð Þ ¼ ∇ � ωψ r
x
r

� �
¼ ∇ � x

r

� �
ωψ r þ

x
r
� ∇ ωψ rð Þ

¼ 1
r
ωψ r þ ωψ rð Þr ¼

1
r
rωψ rð Þr,

(101)

and therefore, there arises that

ωt ¼ 1
r
rωr þ βrωψ rð Þr, ωr þ βωψ rjr¼1 ¼ 0: (102)

from (31).
Then (102) implies

d
dt

ð1
0
ωr3 dr ¼

ð1
0
ωtr3 dr ¼

ð1
0
rωr þ βrωψ rð Þrr2 dr

¼ �
ð1
0
2r2 ωr þ βωψ rð Þ dr

¼ �2r2ω
��r¼1
r¼0 þ

ð1
0
4rω� 2βωψ rr

2 dr:

(103)

Here we use (50) derived from the Poisson part of (31), that is,

�rψ r r, tð Þ ¼ A r, tð Þ �
ðr
0
sω s, tð Þds: (104)

Putting

λ ¼
ð1
0
ωr dr ¼ M

2π
, (105)

we obtain

d
dt

ð1
0
ωr3 dr ¼ �2ωjr¼1 þ 4λþ 2β

ð1
0
AAr dr

¼ �2ωjr¼1 þ 4λþ βA2
��r¼1
r¼0

¼ �2ωjr¼1 þ 4λþ βλ2

<4λ β þ M
8π

� �
≤ 4λ �δþ M

8π

� �
:

(106)

Since �δþ M
8π <0, therefore, T ¼ þ∞ is impossible, and we obtain T < þ∞. □

Lemma 5 Under the assumption (22), there is δ>0 such that

E
M2 < δ, β tð Þ≤0, 0≤ t<T ) β tð Þ≤ � 1

CE1=2 0≤ t<T: (107)
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Proof: First, Lemma 1 implies

ω≥ω ∗ � ωjr¼1: (108)

Second, we have

ð

Ω
∇ψ � ∇ω ¼

ð

∂Ω

∂ψ

∂ν
ωþ

ð

Ω
�Δψð Þω ¼ ω ∗

ð

∂Ω

∂ψ

∂ν
þ ∥ω∥22

¼ ω ∗

ð

Ω
Δψ þ ∥ω∥22 ¼ ∥ω∥22 � ω ∗M,

(109)

and hence

�β ¼
Ð
Ω∇ψ � ∇ωÐ
Ωω ∇ψj j2 ¼ ∥ω∥22 � ω ∗MÐ

Ωω ∇ψj j2 : (110)

Here, we use the Gagliardo-Nirenberg inequality in the form of

∥w∥24 ≤C∥w∥2∥w∥H1 , (111)

which implies

ð

Ω
ω ∇ψj j2 ≤∥ω∥2∥∇ψ∥24 ≤C∥ω∥2∥∇ψ∥2∥∇ψ∥H1

≤CE1=2∥ω∥22

(112)

by the elliptic estimate of the Poisson equation in (2),

∥ψ∥H2 ≤C∥ω∥2: (113)

We have, on the other hand,

ω ∗M≤
M
E

ð

Ω
ω ∇ψj j2 (114)

by (110), and therefore,

�β≥
1

CE1=2 �
E
M

≥
1

2CE1=2 , (115)

provided that

E
M2 <

1
2C

� �2

: (116)

Then the conclusion follows. □
Proof of Theorem 2: By Lemma 5, there is δ0 > such that

E
M2 < δ ) �β≥

1

CE1=2 � δ1, (117)
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and then, Lemma 4 ensures

M>
8π
δ1

) T < þ∞: (118)

The assumption in (118) means

E
M2 <

1
8πc

� �2

, (119)

and hence we obtain the conclusion. □

Appendix Proof of Theorem 4

This theorem is valid to the general case of Ω and ω0 without (22). We assume
δ ¼ 1 without loss of generation, so that

β≤ � 1: (120)

We follow the argument [27] concerning (34) with the Poisson part replaced by
(42) or (43). Thus we have to take case of the vortex term ∇ � ω∇⊥ψ , time varying
β ¼ β tð Þ, and the Dirichlet boundary condition in (31).

We recall the cut-off function used in [34] (see also Chapter 5 of [19]). Hence
each x0 ∈Ω and 0<R≤ 1 admit φ ¼ φx0,R ∈C2 Ω

� �
with

∂φ

∂ν

����
∂Ω

¼ 0, 0≤φ≤ 1, φ ¼ 1 in Ω∩ B x0,R=2ð Þ, φ ¼ 0 in Ωn B x0,Rð Þ,

(121)

and

∣∇φ∣ ≤CR�1φ1=2, ∣∇2φ∣ ≤CR�2φ1=2: (122)

In more details, we take a cut-off function, denoted by ψ, satisfying (121), using
a local conformal mapping, and then put φ ¼ ψ4.

Let

φ∈C2 Ω
� �

,
∂φ

∂ν

����
∂Ω

¼ 0: (123)

be given. First, we have

d
dt

ð

Ω
ωφ ¼

ð

Ω
ω∇⊥ψ � ∇φ� ∇ωþ βω∇ψð Þ � ∇φ dx

¼
ð

Ω
ω∇⊥ψ � ∇φþ ωΔφ� βω∇ψ � ∇φ dx

(124)

by (11). It holds that
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ð

Ω
ω∇ψ � ∇φ ¼

ðð

Ω�Ω
ω x, tð Þ ∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

¼
ðð

ΩΩ
ω x, tð Þφx0,2R x0ð Þ ∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

þ
ðð

Ω�Ω
ω x, tð Þ 1� φx0,2R x0ð Þ� �

∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

¼ I þ II:

(125)

Let, furthermore, x0 ∈Ω and 0<R≪ 1 in the above equality. Then,

φ ¼ x� x0j j2φx0,:R (126)

satisfies the requirement (123).
It holds that

∇φ ¼ 2 x� x0ð Þφx0,R þ x� x0j j2∇φx0,R (127)

and hence

∣∇φ∣ ≤C∣x� x0∣ φx0,Rþjx� x0jR�1φ1=2
x0,R

� �
≤C∣x� x0∣φ

1=2
x0,R: (128)

We obtain, furthermore,

∣x0 � x0∣ ≥ 2R, ∣x� x0∣ ≤R ) ∣x� x0∣ ≥R, (129)

and hence

∣∇xG x, x0ð Þ∣ ≤CR�1 (130)

in this case. Then it follows that

∣II∣ ≤CR�1M
ð

Ω
∣x� x0∣φ

1=2
x0,Rω x, tð Þ dx≤CR�1M3=2A1=2, (131)

where

A ¼
ð

Ω
x� x0j j2φx0,Rω: (132)

We have, on the other hand,

I ¼
ðð

Ω�Ω
ω x, tð Þφx0,2R x0ð Þ ∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

¼ 1
2

ðð

ΩΩ
φx0,2R x0ð Þ∇φ xð Þ � ∇xG x, x0ð Þ þ φx0,2R xð Þ∇φ x0ð Þ � ∇x0G x, x0ð Þ� �

ω⊗ω,

(133)

where G ¼ G x, x0ð Þ is the Green’s function to

�Δψ ¼ ω, ωj∂Ω ¼ 0 (134)

and
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ω⊗ω ¼ ω x, tð Þω x0, tð Þ dxdx0: (135)

Here we use the local property of the Green’s function

G x, x0ð Þ ¼ Γ x� x0ð Þ þ K x, x0ð Þ, K ∈C2 Ω� Ω
� �

∩C2 Ω�Ω
� �

, (136)

where

Γ xð Þ ¼ 1
2π

log
1
∣x∣

(137)

stands for the fundamental solution to �Δ.
Let

ρ2x0,R x, xðÞ ¼ φx0,2R x0ð Þ∇φ xð Þ � ∇xK x, x0ð Þ þ φx0,2R∇φ x0ð Þ � ∇x0K x:x0ð Þ:�
(138)

Since (128) implies

∣φx0,2R x0ð Þ∇φ xð Þ∣ ≤Cφx0,2R x0ð Þ∣x� x0∣φ
1=2
x0,R xð Þ

≤C∣x� x0∣φ
1=2
x0,R xð Þ,

(139)

it holds that

∣ρ1x0,R x, x0ð Þ∣ ≤C jx� x0jφ1=2
x0,R xð Þþjx0 � x0jφ1=2

x0,R x0ð Þ
� �

: (140)

Then, we obtain

I ¼ 1
2

ðð

Ω�Ω
ρ0x0,R x, x0ð Þω⊗ωþ III (141)

with

∣III∣ ≤CM3=2A1=2 ≤CR�1M3=2A1=2, (142)

where

ρ0x0,R x, x0ð Þ ¼ ∇Γ x� x0ð Þ � φx0,2R x0ð Þ∇φ xð Þ � φx0,2R xð Þ∇φ x0ð Þ� �
: (143)

Here, we have

∇Γ xð Þ ¼ � x

2π xj j2 , (144)

and therefore,

ρ0x0,R x, x0ð Þ ¼ ρ2x0,R x, x0ð Þ þ ρ3x0,R x, x0ð Þ (145)

fo

ρ2x0,R x, x0ð Þ ¼ � 1
2π

x� x0

x� x0j j2 φx0,2R x0ð Þ � ∇φ xð Þ � ∇φ x0ð Þð Þ (146)

ρ3x0,R x, x0ð Þ ¼ � 1
2π

x� x0

x� x0j j2 φx0,2R x0ð Þ � φx0,2R xð Þ� � � ∇φ xð Þ: (147)
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Since (128) implies

∣ρ3x0,R x, x0ð Þ∣ ≤CR�1∣∇φ xð Þ∣ ≤CR�1∣x� x0∣φ
1=2
x0,R xð Þ, (148)

there arises that

I ¼ 1
2

ðð

Ω�Ω
ρ2x0,R x, x0ð Þ ω⊗ωþ IV, (149)

with

∣IV∣ ≤CR�1M3=2A1=2, (150)

similarly.
We have, furthermore,

∇φ xð Þ � ∇φ x0ð Þ ¼ 2 x� x0ð Þφx0,R xð Þ þ 2 x0 � x0ð Þ φx0,R xð Þ � φx0,R x0ð Þ� �

þ x0 � x0j j2 ∇φx0,R xð Þ � ∇φx0,R x0ð Þ� �þ x� x0j j2 � x0 � x0j j2
� �

∇φx0,R xð Þ,
(151)

and hence

ρ2x0,R x, x0ð Þ ¼ � 1
π
φx0,2R x0ð Þφx0,R xð Þ þ ρ4x0,R x, x0ð Þ þ ρ5x0,R x, x0ð Þ þ ρ6x0,R x, x0ð Þ (152)

with

∣ρ4x0,R x, x0ð Þ∣ ≤C x� x0j j�1φx0,2R x0ð Þ∣x0 � x0kφx0,R xð Þ � φx0,R x0ð Þ∣
≤CR�1∣x0 � x0∣φx0,2R x0ð Þ,

(153)

∣ρ5x0,R x, x0ð Þ∣ ≤C x� x0j j�1φx0,2R x0ð Þ x0 � x0j j2∣∇φx0,R xð Þ � φx0,R x0ð Þ∣
≤CR�2 x0 � x0j j2φx0,2R x0ð Þ
≤CR�1∣x0 � x0∣φx0,2R x0ð Þ,

(154)

and

∣ρ6x0,R x, x0ð Þ∣ ≤C∣x� x0 φx0,2R x0ð Þkx� x0
�� ��2 � x0 � x0j j2∣ � ∣∇φx0,R xð Þ∣

≤CR�1 jx� x0j þ jx0 � x0jð Þφx0,R xð Þφx0,2R x0ð Þ
≤C R�1jx� x0jφx0,R xð Þ þ R�1jx0 � x0jφx0,2R x0ð Þ� �

(155)

by

kx� x0j2 � x0 � x0j j2∣ ¼ ∣ x� x0, xþ x0 � 2x0ð Þ∣ ≤ ∣x� x0∣ jx� x0j þ jx0 � x0jð Þ:
(156)

The residual terms are thus treated similarly, and it follows that

I þ 1
2π

ð

Ω
ωφx0,R �

ð

Ω
ωφx0,2R

����
����≤CR�1M3=2A1=2, (157)

which results in
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ð

Ω
ω∇ψ � ∇φþ 1

2π

ð

Ω
ωφx0,R �

ð

Ω
ωφx0,2R

����
����≤CR�1M3=2A1=2: (158)

We can argue similarly to the vortex term in (124). This time, from

∇⊥Γ xð Þ � x ¼ 0 (159)

it follows that

ð

Ω
ω∇⊥ψ � ∇φ

����
����≤CR�1M3=2A1=2: (160)

Concerning the principal term of (124), we use

Δφ ¼ 4φx0,R þ 4 x� x0ð Þ � ∇φx0,R þ x� x0j j2Δφx0,R: (161)

From

∣ x� x0ð Þ � ∇φx0,R∣ ≤CR�1∣x� x0∣φ
1=2
x0,R (162)

and

�x0j j2Δφx0,R

�� ��≤CR�2 x� x0j j2φ1=2
x0,R

≤CR�1∣x� x0∣φ
1=2
x0,R,

(163)

it follows that

ð

Ω
ωΔφ� 4

ð

Ω
ωφx0,R

����
����≤C

ð

Ω
R�1∣x� x0∣φx0,Rω

≤CR�1M1=2A1=2:

(164)

Let M1 ¼ Mx0,R and M2 ¼ Mx0,2R for

Mx0,R ¼
ð

Ω
ωφx0,R: (165)

Then, using (120), we end up with

dA
dt

≤4M1 �M2
1

2π
þ CR�1 M3=2 þM1=2

� �
A1=2 þ C M2 �M1ð Þ: (166)

Inequalilty (166) implies T < þ∞ if A 0ð Þ≪ 1, as is observed by [27] (see also
Chapter 5 of [19]). Here we describe the proof for completeness.

The first observation is the monotoniity formula

d
dt

ð

Ω
ωφ

����
����≤C MþM2� �

∥∇φ∥C1 , (167)

derived from (124) and the symmetry of the Green’s function: G x, x0ð Þ ¼
G x0, xð Þ. The proof is the same as in (34) and is omitted.
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Second, we put I1 ¼ Ix0,R and I2 ¼ Ix0,2R for

Ix0,R ¼
ð

Ω
x� x0j j2ωφx0,R: (168)

Then it holds that

M2 �M1 ≤
ð

R< ∣x�x0∣< 2R
φx0,2Rω

≤ 2R�1
ð

Ω
∣x� x0∣φx0,2Rω≤ 2M1=2R�1I1=22

(169)

and

A2 ¼ A1 þ
ð

Ω
x� x0j j2 φx0,2R � φx0,R

� �
ω

≤A1 þ 4R2
ð

Ω
φx0,2R � φx0,R
� �

ω,

(170)

which implies

dA1

dt
≤ 4M1 �M2

1

2π
þ CR�1 M3=2 þM1=2

� �
A1=2

1

þC M3=2 þM1=2
� � ð

Ω
φx0,2R � φx0,R
� �

ω

� �1=2

:

(171)

Here, we use (167) to ensure

d
dt

4M1 �M2

2π

� ����≤C MþM2� �
R�2

���� (172)

and

d
dt

ð

Ω
φx0,2R � φx0,R
� �

ω

����
����≤C MþM2� �

R�2: (173)

Then, it follows that

4M1 �M2
1

2π
≤ 4M1 0ð Þ �M1 0ð Þ2

2π
þ CBa R�1t1=2

� �
(174)

and

ð

Ω
φx0,2R � φx0,R
� �

ω≤
ð

Ω
φx0,2R � φx0,R
� �

ω0 þ CBa R�1t1=2
� �

≤ 2R�2A2 0ð Þ þ CBa R�1t1=2
� � (175)

for

B ¼ M3=2 þM1=2, a sð Þ ¼ s2 þ s: (176)

114

Vortex Dynamics - From Physical to Mathematical Aspects



Thus we obtain

dA1

dt
≤4M1 0ð Þ �M1 0ð Þ2

2π
þ CR�1BA1=2

1 þ CBA2 0ð Þ1=2 þ CBa R�1t1=2
� �

¼ J 0ð Þ þ CBa R�1t1=2
� �

þ CBR�1A1=2
1

(177)

for

J ¼ 4M1 �M2
1

4π
þ CBR�1A1=2

2 : (178)

Assume M1 0ð Þ> 8π, and put

�4δ ¼ 4M1 0ð Þ �M1 0ð Þ2
2π

<0: (179)

Let, furthemore,

1
R2

ð

Ω
x� x0j j2φx0,2Rω0 ≤ η: (180)

Now we define s0 by

CBa s0ð Þ ¼ δ (181)

in (177), and take 0< η≪ 1 such that

η≤ δs20: (182)

Then, if R and T0 satisfy R�2T0 ¼ ηδ�1, it holds that

A1 0ð Þ≤R2η< 2δT0: (183)

Making 0< η≪ 1, furthermore, we may assume

J 0ð Þ þ CBR�1A1 0ð Þ1=2 ≤ � 4δþ CBR�1A2 0ð Þ1=2

≤ � 4δþ CBη1=2 ≤ � 3δ,
(184)

which results in

dA1

dt
≤ J 0ð Þ þ CBa R�1T1=2

0

� �
þ BR�1A1 tð Þ1=2

¼ J 0ð Þ þ δþ CBR�1A1=2
1 , 0≤ t<T0, (185)

provided that T ≥T0.
A continuation argument to (184)–(185) guarantees

dA1

dt
≤ � 2δ, 0≤ t<T0, (186)

and then we obtain
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A1 T0ð Þ≤A1 0ð Þ � 2δT0 <0 (187)

by (183), a contradiction. □
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Chapter 7

Vortex Dynamics in the Wake  
of Planetary Ionospheres
Hector Pérez-de-Tejada and Rickard Lundin

Abstract

Measurements conducted with spacecraft around Venus and Mars have shown 
the presence of vortex structures in their plasma wake. Such features extend across 
distances of the order of a planetary radius and travel along their wake with a few 
minutes rotation period. At Venus, they are oriented in the counterclockwise sense 
when viewed from the wake. Vortex structures have also been reported from mea-
surements conducted by the solar wind-Mars ionospheric boundary. Their position 
in the Venus wake varies during the solar cycle and becomes located closer to Venus 
with narrower width values during minimum solar cycle conditions. As a whole 
there is a tendency for the thickness of the vortex structures to become smaller with 
the downstream distance from Venus in a configuration similar to that of a cork-
screw flow in fluid dynamics and that gradually becomes smaller with increasing 
distance downstream from an obstacle. It is argued that such process derives from 
the transport of momentum from vortex structures to motion directed along the 
Venus wake and that it is driven by the thermal expansion of the solar wind. The 
implications of that momentum transport are examined to stress an enhancement 
in the kinetic energy of particles that move along the wake after reducing the rota-
tional kinetic energy of particles streaming in a vortex flow. As a result, the kinetic 
energy of plasma articles along the Venus wake becomes enhanced by the momen-
tum of the vortex flow, which decreases its size in that direction. Particle fluxes 
with such properties should be measured with increasing distance downstream 
from Venus. Similar conditions should also be expected in vortex flows subject to 
 pressure forces that drive them behind an obstacle.

Keywords: vortex Venus plasma wake, solar wind-Venus interaction, plasma 
acceleration in the Venus wake

1. Introduction

Measurements conducted with the Pioneer Venus Orbiter (PVO) and the Venus 
Express spacecraft (VEX) around Venus have provided evidence on the existence of 
vortex structures in the Venus plasma wake [1–5]. Much of what has been learned led 
to estimate the (~ 1 RV) scale size of those features across the wake, which are shown 
in the left panel of Figure 1 with a view of the velocity vectors projected on the plane 
transverse to the solar wind direction. The flow pattern corresponds to a vortex gyra-
tion of the velocity vectors of the solar wind H+ ions, which is also accompanied by 
a similar distribution of the velocity vectors of the planetary O+ ions that have been 
dragged by the solar wind from the Venus upper ionosphere. Comparative indica-
tions on the presence of vortex structures in the Mars plasma environment have also 
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been inferred from the observation of ionospheric-sheath boundary oscillations 
from the MAVEN plasma data [6]. In this case, measurements suggest Kelvin-
Helmholtz oscillations with a periodicity of ~3 min but that have not yet completed 
a full vortex turn. At Venus, there is evidence of a reversal in the direction of the 
velocity vectors of plasma particles that lead them back to the planet in the central 
part of the Venus wake as is shown in the right panel of Figure 1.

Evidence of vortex structures in the Venus wake is also available from changes 
in the magnetic field direction in the VEX measurements. In previous reports [4, 8], 
it has been pointed out that at the time when a vortex structure is identified by a 
local increase of the plasma density in the Venus wake, there is an accompanying 

Figure 2. 
Energy spectra of the H+ and O+ ions (upper panels) with measurements in the Sept 26–2009 VEX orbit where 
there are strong oscillations in the magnetic field components between 02:05 UT and 02:30 UT (bottom panel). 
In that time span there are enhanced density and speed values of the O+ ions (third and fifth panels).

Figure 1. 
(Left panel) Velocity vectors of H + ≈ 1–300 eV ions measured with the VEX spacecraft in the Venus near wake 
projected on the YZ plane transverse to the solar wind direction. Data are averaged in 1000 × 1000 km columns 
at X < −1.5 RV (adapted from Figure 4 of [2]). (Right panel) Average direction of solar wind ion velocity 
vectors across the Venus near wake collected from many VEX orbits and projected in cylindrical coordinates [7].
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decrease of the local magnetic field convected by the solar wind with distinct 
changes in the orientation of its components. A useful example with such properties 
is reproduced in Figure 2 to show evidence of sudden changes in the orientation of 
the magnetic field components between 02:00 UT and 02:30 UT (bottom panel) 
when the plasma density and speed of planetary particles in the Venus wake show 
enhanced values (third and fifth panels). Despite the fact that the data has provided 
notable information on the general characteristics of vortex structures, there 
remains to address important aspects related to their origin and to the dynamics of 
their motion. These issues will be examined by considering the various fluid forces 
that are imposed by the solar wind on the planetary ions that stream in the wake. 
The description to be addressed here refers to the Venus observations where there 
is ample evidence on the geometry, distribution, and time variations of vortex 
structures. Despite the presence of small fossilized magnetic field areas in the 
Mars surface [9], much of the information for the Venus wake will apply to plasma 
vortices that stream along the Mars plasma wake.

2. Fluid dynamic forces in the Venus wake

A dominant feature in the motion of the solar wind particles that stream around 
the Venus ionosphere is that different from the pile-up of magnetic field fluxes 
convected by the solar wind over the dayside hemisphere, the plasma experiences 
local heating processes when it moves by the terminator of the Venus ionosphere. 
Indications of that plasma heating were first obtained from the Venera measure-
ments through crossings of that spacecraft across the Venus wake with enhanced 
plasma temperature values along the flanks of the Venus ionosheath and that is 
reproduced in Figure 3 [10, 11]. The heating derives from dissipation processes 
produced by the transport of solar wind momentum mostly over the Venus polar 
ionosphere where the local pile-up of the solar wind magnetic field fluxes is not 
strong. A suitable added information in the data of Figure 3 is the presence of a 
plasma transition in the temperature and speed profiles (at ~02:00 Moscow time), 
which together with the vortex structure shown in Figure 1 are unrelated to the 
dynamics expected from sling shot effects produced by the magnetic field fluxes 
draped around Venus [12]. While measurements have shown an antisolar directed 
motion of planetary ions in the Venus wake, a vortex flow configuration like that 
shown in Figure 1 is more complex than that expected from a slingshot geometry.

As a result of the enhanced plasma temperature values, the solar wind expands 
by thermal pressure forces and then moves into the Venus wake from both polar 
regions. An implication of that displacement is that there are two separate flows of 
plasma particles reaching the central wake from two opposite directions along the 
Z-axis. They move from both polar regions where the planetary O+ ions are first 
subject to low values of the rotation of the Venus ionosphere, and then they are 
displaced to equatorial latitudes where the rotation speed of the Venus ionosphere 
is larger. Since both plasma flows are also streaming along the X-axis following 
the solar wind direction, there should be a Coriolis force that deflects them in 
opposite directions along the Y-axis. For both flows the deflection of the particles 
should not be in the same sense since in the northern hemisphere the particles will 
move in the –Z direction and in the southern hemisphere in the +Z-direction. In 
addition to such opposite deflection along the Y-axis, the streaming particles will 
also be influenced by the effects of the aberrated direction of the solar wind and a 
general Magnus force that drive all planetary ions in motion around the planet with 
a velocity component directed in the +Y sense ([13], see their Fig. 15; [14]). Since 
that effect is contrary to the direction of motion along the -Y sense imposed by the 
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Coriolis force to the O+ ions that stream in the southern hemisphere, their resulting 
total velocity will be smaller than that of the O+ ions in the northern hemisphere 
where the velocity components implied by the Coriolis and the Magnus force are 
oriented in the same sense along the +Y direction.

An implication of that velocity difference between both hemispheres is that the 
momentum flux of the O+ ions along the Y-axis in the southern hemisphere will 
be smaller than the momentum flux of the O+ ions in the northern hemisphere. 
Consequently, a fraction of the momentum flux of the O+ ion fluxes that move 
north along the Z-axis in the southern hemisphere from the polar region (derived 
from the enhanced thermal pressure force at that region) will be transferred to 
that in the Y-sense to compensate for the smaller values of their momentum flux 
with respect to the larger Y-directed momentum flux of the O+ ions that stream in 
the northern hemisphere. Thus, in addition that the larger momentum flux of the 
O+ ions in the XY plane in the northern hemisphere over that of the O+ ions in the 
southern hemisphere, there will also be smaller values for the momentum flux of 
the O+ ions that move north along the Z-axis in the southern hemisphere. Under 
such conditions the momentum flux of the O+ ions that are directed south in the 
northern hemisphere will be dominant over that directed north in the southern 
hemisphere. As a result, the motion of the O+ ions in the northern hemisphere will 
force the vortex structure to be displaced toward the –Z direction. Such an effect 

Figure 3. 
Ion speed and temperature measured along the orbit of Venera 10 on Apr. 19, 1976. The Venera orbit in 
cylindrical coordinates is shown at the top. The temperature burst at position 1 was recorded during a flank 
crossing of the shock wave. The boundary layer is apparent by the increase in temperature and decrease in speed 
and is initiated by the intermediate transition at position labeled 2. The discontinuity in the boundary layer 
temperature profile corresponds to the boundary of the magneto-tail. (from [10]).
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agrees with the data of the VEX position of the vortex structures measured in the 
XZ plane during the 2006 and 2009 orbits listed in Table 1 and that is also repre-
sented in their profiles in Figure 4 showing how they become directed to lower –Z 
values with increasing distance downstream from Venus ([8], see their Figure 3). 
As a result, the outcome of the different momentum flux of the planetary O+ ions 
in the northern and in the southern hemispheres in the Venus wake is related to the 

Inbound Outbound

Date UT X Y Z v UT X Y Z v δ Δ

Aug 
22/06

01.44 −2.90 −0.15 −0.85 25 01:54 −2.55 −0.15 −0.40 25 0.35 0.45

Aug 
23/06

01:56 −2.75 −0.07 −0.60 15 02:05 −2.20 −0.07 −0.20 15 0.35 0.40

Aug 
24/06

02:10 −2.45 −0.01 −0.20 30 02:20 −2.05 −0.02 0.20 30 0.40 0.40

Aug 
28/06

02:22 −2.40 −0.28 −0.35 20 02:28 −1.90 0.20 0.00 20 0.50 0.35

Sep 
19/09

01:54 −2.38 −0.04 −0.80 15 02:03 −2.11 −0.05 −0.40 15 0.30 0.40

Sep 
21/09

02:02 −2.30 0.09 −0.65 15 02:12 −1.95 0.06 −0.12 15 0.35 0.53

Sep 
25/09

02:14 −2.10 0.33 −0.45 20 02:27 −1.60 0.23 0.25 28 0.50 0.70

Sep 
26/09

02:12 −2.30 0.42 −0.70 20 02:21 −1.95 0.35 −0.20 20 0.35 0.50

Table 1. 
VEX coordinates along the X, Y, and Z-axis (in RV) together with the speed v of the planetary O+ ions (in 
km/s), measured during the inbound (left columns) and the outbound (right columns) crossings of a vortex 
structure in selected VEX orbits across the Venus wake (the last two columns are the extent of the vortex 
structure measured in the X and in the Z directions in RV).

Figure 4. 
Position of the VEX spacecraft projected on the XZ plane during its entry (inbound) and exit (outbound) 
through a corkscrew plasma structure in several orbits. The two traces correspond to four orbits in 2006 and four 
orbits in 2009 listed in Table 1 [8].
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effects produced by the Coriolis and the Magnus force and that lead to the south-
bound displacement of the vortex structures shown in Figure 4.

3. Cross section of the vortex structures along the Venus wake

Data corresponding to the 2006–2009 orbits discussed in Figure 4 have been 
further addressed to examine the shape of the vortex structures along the Venus 
wake with results that are presented in Table 1. We have separately collected 
information obtained for the inbound (left side) and for the outbound (right side) 
columns in each set of orbits. Values for the extent between both crossings along the 
X and Z-axis are indicated in the two last columns.

A notable aspect of the data in Table 1 is that the values of the X-coordinate for 
the inbound and the outbound crossings of the four orbits during 2006 are larger 
than those for 2009. The implication is that the vortex structure is located closer to 
Venus during conditions approaching the solar cycle minimum by 2009. The same 
conclusion has also been inferred from the relative position of the 2006 and 2009 
profiles in Figure 4. At the same time, the values of the X-coordinate during the 
inbound crossings in all eight orbits of Table 1 (left side columns) are larger than 
those of the outbound crossings. Such difference derives from the tilted orientation 
of the trajectory of the VEX spacecraft on the XZ plane, which is directed toward 
Venus from the wake as it moves from the southern to the northern hemispheres 
(the inbound crossing of VEX is encountered at a larger distance downstream from 
Venus in the southern hemisphere as it then moves to a closer distance to Venus 
during its outbound crossing in the northern hemisphere).

A detail calculation has now been conducted to the data in the orbits of Table 1 
to estimate the width and the location of the vortex structures measured in both the 
2006 and the 2009 orbits. The results are shown in Figure 5 and indicate that there 
is a tendency for the vortex structures in the 2006 orbits to occur farther away from 
Venus than those in the 2009 orbits. At the same time there is an indication that the 
time width ΔT between the inbound and the outbound encounters marked by the 
vertical coordinate in Figure 5 occurs at smaller values in the 2006 orbits, which 
trace the wake farther away from Venus. Such would be the case in a corkscrew flow 
configuration in fluid dynamics where its width becomes smaller with downstream 
distance from an obstacle as is represented in Figure 6.

Figure 5. 
Segments measured between the inbound and the outbound crossings of vortex structures by VEX in the eight 
orbits included in Table 1 (they are identified by changes in the particle flux intensity measured in the energy 
spectra of the O+ ions). Their position along the X-axis shows that the 2009 orbits (marked in blue) are located 
closer to Venus and that the width of the 2006 orbits (marked in red) is smaller since they have lower ΔT values 
and are encountered further downstream along the wake.
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A view that can be proposed from such difference is that the width of the vortex 
structures is larger during the 2009 orbits (when they are located closer to Venus) 
rather than in 2006 (when they occurred further downstream). A general descrip-
tion of vortex structures measured in the Venus wake is that as shown in Figure 4, 
they are formed closer to Venus during minimum solar cycle conditions by 2009 
and at the same time they are wide features. Different properties are encountered 
as the solar cycle progresses since they will now be formed further downstream 
from Venus and as shown in Table 1 and in Figure 5, they will now extend across a 
smaller cross section within the wake. More extended calculations are still required 
to examine the geometric properties of the vortex structures listed in the 20 VEX 
orbits reported by Pérez-de-Tejada and Lundin [8]. In particular, it will be necessary 
to address whether the width of the vortex structures becomes narrower when they 
are measured further downstream from Venus. It was pointed out in that report 
that the width of the vortex structures becomes narrower when they are measured 
further downstream from Venus.

Thus, the thickness of the vortex structures gradually decreases with distance 
downstream from Venus and eventually fade away and diffuse with the solar wind 
plasma. Further studies of more extended data are required to examine the evolu-
tion of the vortex structures far downstream along the Venus tail. A view of the 
distribution of vortex structures along the Venus wake as they follow the motion of 
plasma particles can be inferred by comparing their cross section formed between 
the inbound and the outbound crossings on the XZ plane for the different orbits in 
Table 1. The result of that comparison is presented in Figure 7 where the width ¨Δ¨ 
of the vortex structures along the Z-axis is compared with that of their extent ¨δ¨ 

Figure 6. 
View of a corkscrew vortex flow in fluid dynamics. Its geometry is equivalent to that of a vortex flow in the 
Venus wake with its width and position varying during the solar cycle. Near minimum solar cycle conditions, 
the vortex is located closer to Venus (right side) and there are indications that its width becomes smaller with 
increasing distance downstream from the planet. Such is the case for the 2006 orbits (marked in red) traced in 
Figure 5 and that were conducted before the solar cycle minimum at 2009–2010, thus implying that the vortex 
flow becomes thinner when it is detected further downstream along the wake.
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along the X-axis. It is notable that this latter quantity is correlated with their width 
along the Z-axis implying that thin vortices have a shorter extent along the wake 
and that wide vortices have a larger extent in that direction. A peculiar character-
istic of the ¨δ¨ and the ¨Δ¨ values in the trace shown in Figure 7 is that Δ > δ (by 
comparison, a linear relation between them is shown by the straight line for the case 
in which they have the same value). Thus, as is indicated in the last two columns of 
Table 1, there is a tendency that along the VEX trajectory the vortex structures have 
a larger width along the Z-axis (that difference may be due to the tilted orientation 
of the VEX trajectory on the XZ plane or to enhanced Δ values produced by an 
asymmetric shape of the vortex structure in that plane).

4. Velocity values of plasma particles along the Venus wake

In Table 1, there is evidence that the speed values of the planetary O+ ions vary 
between 15 and 30 km/s by the inbound and the outbound crossings of vortex 
structures in the 2006 and 2009 orbits. Such values correspond to measurements 
conducted along the sun-Venus direction (X-axis) and thus are not related to 
changes produced by the vortex motion whose speed values vary across the wake. 
Vortex motion involves speed values of the order of ~200 km/s, which are derived 
from the transit time of particles around structures with a 1 RV planetary radius 
during a ~ 3 min rotation period T [6]. With such high-speed values the plasma par-
ticles contain a large fraction of the momentum flux brought in by the solar wind 
and that has been employed to produce the vortex motion that they follow within 
the wake. As noted above, the vortex features are displaced in a consistent unified 
manner along the wake with much smaller speed values.

In addition to the different speed of the vortex structures and that of the parti-
cles that move within them, it should be noted that vortex motion marks a response 
different from that expected from motion produced by the convective electric field 
of the solar wind. Rather than following the directional motion of the solar wind 
with a gyrotropic trajectory at nearly the same speed as is predicted in that view the 
available momentum flux is employed to produce, instead, an alternate vortex flow 
configuration that is displaced coherently with more moderate speeds.

Despite the fact that there is no indication in the data of Table 1 on the man-
ner in which the speed values of the vortex structure change with distance along 
the Venus wake, it is possible to obtain that information from the varying values 
of the width ¨Δ¨ of the vortex structures that is implied from those obtained 

Figure 7. 
Values of the extent ¨δ¨ of vortex structures along the wake (X-axis) and their width ¨Δ¨ along the Z-axis as 
derived from the data in Table 1. Thin features (small ¨Δ¨ values) are obtained in the 2009 orbits while wider 
vortices correspond to the 2006 orbits.
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during 2006 and 2009. From the data in Table 1 we can assume Δ = 0.765 RV as 
the average value for the width of the vortex structures during the 2006 orbits and 
Δ = 0.532 RV for that obtained in the 2009 orbits. Since such change implies a scale 
size decrease by a factor of 0.50% in the area ¨A¨ of the vortex structures, we can 
apply conservation of mass flux ρv2A = cst to suggest that their speed will increase 
to nearly double values assuming that the plasma density remains the same. 
By applying this procedure, it is possible to argue that as the vortex structures 
become narrower with downstream distance from Venus, the kinetic energy of 
planetary particles that stream along the wake will be increased as a result of the 
decreased values of the cross section of the vortex structures. Thus, it should not 
be unexpected to measure higher-speed planetary ions moving in the far reaches 
of the Venus wake.

While most measurements of the vortex structures reported in Table 1 are appli-
cable to conditions that occur near the midnight plane of the Venus wake (small 
values of the Y-coordinate in the data of Figure 2), there are a few cases (orbits Sept 
25–26 in 2009 and Aug 28 in 2006 in Table 1) where such structures are encoun-
tered at large distances away from that plane; that is, with larger Y-values. Those 
features also involve enhanced values of the O+ ion density values separated from 
the Venus ionosphere and that are included in the corresponding panels of figures 
like those shown in Figure 2. In particular, the location where the enhanced density 

Figure 8. 
Projected orientation of VEX orbits on the ecliptic plane XY with data of vortex structures in Table 1 during Sept 
252,009 (labeled A) and Sept 262,009 (labeled B). The inbound and the outbound VEX crossings have the subscript 
1 and 2 for each orbit. In both cases the traces are not directed along the midnight plane but have been shifted 
in the +Y direction following the effects of the Magnus force on the rotating Venus ionosphere (from [14, 15]).
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values of the O+ ions are observed in those orbits has now been placed in the XY 
(ecliptic) plane in Figure 8 to show that they are also shifted to the +Y direction. 
That region coincides with that where other features produced by the interaction 
of the solar wind with the Venus ionosphere are shifted in that direction (trans-
terminator plasma flow, [16]; ionospheric polar channels, [15]).

Since polar plasma channels are mostly distributed near the midnight plane 
of the Venus wake rather than by its flanks [15], vortex structures should follow 
them and as shown in the data of Table 1 maintain small Y values. However, vortex 
structures should also be subject to the effects of the aberrated direction of the 
solar wind and also from the fluid dynamic Magnus force both being directed in 
the +Y direction. Figure 8 shows the position of the inbound and outbound VEX 
encounters of vortex structures along the Sept 25, 2009 and also Sept 26, 2009 
orbits that trace the wake with a ~ 10° angle from the midnight plane. It should 
be noted that both crossings of each orbit occur nearly at the same position in the 
XY plane despite the fact that they are located at different values along the Z-axis. 
Thus, vortex structures develop as a near planar structure. Different conditions are 
encountered in the August 24, 2006 orbit where a wide vortex structure extends 
along all three coordinates. In fact, similar distances are measured between the 
inbound and the outbound crossings in the X and in the Y axis. As a result, the 
structure should not be viewed as a feature that mostly extends in the X direction 
but that equally applies along the Y direction. Thus, vortex structures may turn out 
to be complicated features distributed along the wake.

5. Summary of results

A basic issue that is ultimately responsible for the fluid dynamic interpretation 
employed to account for the motion of the plasma particles within vortex structures 
is related to their acceleration. Rather than solely applying the convective electric 
field E = V × B of the solar wind along their trajectories (V and B being its velocity 
and magnetic field intensity), it is remarkable that other sources are required to 
account for the complicated features that are measured. In particular, slingshot tra-
jectories applied to the ionospheric plasma by the magnetic polar regions of Venus 
and Mars are not sufficient to explain the intricate configuration that is produced 
from the particle motion and that gives place to the complex vortex flow configura-
tion of their velocity vectors indicated in the left panel of Figure 1. A more internal 
contact between the solar wind and the planetary ions is necessary to deflect their 
streamlines in a manner that the projection of the velocity vectors on the YZ plane 
accounts for the peculiar aspect of a vortex flow.

At the same time, while the convective electric field of the solar wind is useful 
to describe differences in the density and speed of the accelerated planetary ions 
between the hemispheres where it has a different direction away or toward the 
planet [12], it is not sufficient to justify the generation of a sharp plasma boundary 
as that reproduced in Figure 3 from the Venera measurements. Charge exchange 
activity between the solar wind hydrogen ions and heavy planetary particles is not 
satisfactory because it is unrelated to the notable temperature increases reported 
in those measurements. Instead, concepts based on a fluid dynamic approach rely 
on arguments that seem to be more accessible to a different acceleration process 
by invoking wave-particle interactions as the origin of the manner in which both 
particle populations share their properties. Such condition is expected from the 
oscillations and fluctuations in the direction and magnitude of the magnetic field 
measured around the wake [17, 18] and serves to produce the transfer of statistical 
properties among both plasma populations.
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In terms of that description it is of interest to note that it has been useful to 
account for the following main aspects discussed in this report and that are related 
to: (i) There is a correlation indicated in Figure 7 between the width Δ and the 
extent δ of the vortex structures along the Z axis and the X axis, with Δ > δ values 
implied from the data of Table 1; (ii) as noted in Figure 4, vortex structures are 
measured closer to Venus near solar minimum conditions by 2009; (iii) a notable 
property in the distribution of vortex structures in the Venus wake is the tendency 
of their width to become smaller with increasing downstream distance from Venus 
as can be inferred from the position of their segments in Figure 5. That difference 
implies that the thickness of the vortex region decreases along the wake and thus is 
reminiscent of a corkscrew flow in fluid dynamics represented in Figure 6; (iv) an 
important consequence in the shape of that region is that mass flow conservation 
across the vortex structure implies larger speed values of particles that move along 
the wake (particles with larger speeds should be detected far downstream from 
Venus); (v) as noted above in Figure 8, planetary O+ ion fluxes can also be sig-
nificantly shifted along the Y-axis in response to effects produced by the aberrated 
direction of the solar wind and the Magnus force on the motion of planetary O+ 
ions that are dragged by the solar wind.
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Chapter 8

Vortex Dynamics in Dusty Plasma
Flow Past a Dust Void
Yoshiko Bailung and Heremba Bailung

Abstract

The beauty in the formation of vortices during flow around obstacles in fluid
mechanics has fascinated mankind since ages. To beat the curiosity behind such an
interesting phenomenon, researchers have been constantly investigating the under-
lying physics and its application in various areas of science. Examining the behavior
of the flow and pattern formations behind an obstacle renders a suitable platform to
realize the transition from laminar to turbulence. A dusty plasma system compris-
ing of micron-sized particles acts as a unique and versatile medium to investigate
such flow behavior at the most kinetic level. In this perspective, this chapter pro-
vides a brief discussion on the fundamentals of dusty plasma and its characteristics.
Adding to this, a discussion on the generation of a dusty plasma medium is pro-
vided. Then, a unique model of inducing a dusty plasma flow past an obstacle at
different velocities, producing counter-rotating symmetric vortices, is discussed.
The obstacle in the experiment is a dust void, which is a static structure in a dusty
plasma medium. Its generation mechanism is also discussed in the chapter.

Keywords: vortices, vorticity, fluid flow, Reynolds number, plasma, dusty plasma,
obstacle, dust void, viscosity

1. Introduction

Vortices are common in fluid motion that originates due to the rotation of fluid
elements. They occur widely and extensively in a broad range of physical systems
from the earth’s surface to interstellar space. A few examples include spiral galaxies
in the universe, red spots of Jupiter, tornadoes, hurricanes, airplane trailing vorti-
ces, swirling flows in turbines and in different industrial facilities, vortex rings
formed by the firing of certain artillery or in the mushroom cloud resulting from a
nuclear explosion. The physical quantity that characterizes the rotation of fluid
elements is the vorticity ω = ∇ � u where u is the fluid velocity. Qualitatively, it can
be said that in the region of vortex formation, the vorticity concentration is high
compared with its surrounding fluid elements. Vortices formed behind obstacles to
a fluid flow are also an interesting observation in various aspects of daily life. Study
on the fluid flow around obstacles dates back to the fifteenth century when
Leonardo da Vinci drew some sketches of vortex formation behind obstacles in
flowing fluids. It has been an interesting and challenging problem in fluid mechan-
ics and is of basic importance in several areas such as the study of aircraft designing,
oceanography, atmospheric dynamics, engineering, human blood circulation [1–4].
Analyzing the behavior of flow around such obstacles also provides a medium to
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study the physical mechanism of transition from laminar to turbulent flow. If a
stationary solid boundary lies in the path of a fluid flow, the fluid stops moving on
that boundary. Thereby, a boundary layer is formed and its separation from the
solid boundary generates various free shear layers that curl into concentrated vor-
tices. These vortices then evolve, interact, become unstable and detach to turbu-
lence. The dynamics of fluids is very diverse and the detail characteristics of
transition to turbulence are quite complicated, which also differ from flow to flow.
Such understandings can only be realized by experiments and computational
models. However, there are a few unifying themes in the theory and a few routes to
turbulence that are shared by many flows. One such theme is that when the Reyn-
olds number (the parameter measuring the speed of a class of similar flows with
steady configuration) increases, the temporal and spatial complexity of the flows
increases eventually leading to turbulence. At a low Reynolds number, a pair of
counter-rotating vortices forms behind the cylinder. As the Reynolds number
increases, the vortices become unstable and gradually evolve into a von Karman
vortex street [5–9]. The topic of flow past an obstacle is of utmost importance from
the experimental point of view also. Its understanding is applicable in the stability
of submerged structures, vortex-induced vibrations, etc. [10].

Vortices have been extensively studied and explored in the liquid state of matter.
However, scientists have also extended their research to study the formation and
behavior of vortices in the fourth state of matter, the plasma. Measurements done in
space have shown that plasma vortices appear in the earth’s magnetosphere as well
as along the Venus wake. On both planets, the solar wind encounters different
obstacles. For earth, it is the earth’s magnetic field and for Venus, the interaction
takes place with the ionized components in the upper layer of the planet’s atmo-
sphere. Plasma vortices in earth-based laboratories have also been studied theoret-
ically and experimentally [11–15]. Plasma is said to cover more than 99% of the
matter found in the universe and dust particles are the unavoidable, omnipresent
ingredients in it. Hence, in most cases, plasma and dust particles exist together, and
these particles are massive (billion times heavier than the protons). Their size
ranges from tens of nanometer to as large as hundreds of microns. Foreign particles
in the plasma environment get charged up by the inflow of electrons and ions
present in the plasma. The presence of these charged and massive particles increases
the complexity of the plasma environment, and hence, this class of plasma has been
named as ‘complex plasmas’ or ‘dusty plasmas’. They involve in a rich variety of
physical and chemical processes and are thus investigated as a model system for
various dynamical processes [16, 17]. Phase transition is an important and charac-
teristic feature in dusty plasmas, due to which it is considered as a versatile medium
to study all the three different phases (solid, liquid and gas) in just a single phase.
They also behave as many particle interacting systems and provide a unique plat-
form to study various organized collective effects prevalent in fluids, clusters,
crystals, etc., in greater spatial and temporal resolution. With the help of laser light
scattering, it is possible to visualize the micrometer or nanometer-sized dust parti-
cles through proper illumination. This allows to study the various phenomena in
dusty plasma in greater spatial and temporal resolution since they appear in a slower
time scale owing to their heavier mass [18, 19]. Along with a variety of dynamic
phenomena that includes waves, shocks, solitons, etc., dusty plasma medium also
supports the formation of vortices. Self-generated vortices have been observed in
many dusty plasma experiments, which have been dealt with significant attention.
The main cause of such vortex formation is the nonzero curl of the various forces
acting on the electrically charged dust particles that are commonly found in radio-
frequency (RF) discharges, microgravity conditions and subsonic dusty plasma
flow with low Reynolds numbers [20, 21]. The nonzero component of the curl
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induces a rotational motion to the charged dust particles, which leads to the forma-
tion of the vortices. Depending on the different plasma production mechanisms and
dust levitation (floating of dust particles in the plasma medium), the causes of the
rotation of dust particles vary accordingly. Most importantly, the problem of fluid
flow around obstacles can be investigated at the most elementary individual particle
level in dusty plasmas. The existence of a liquid phase of dusty plasmas provides us
the suitable conditions for the study. However, the obstacles used for such study in
dusty plasmas are different from the solid obstacles in the hydrodynamic fluid
medium.

In this chapter, we will concentrate mainly on dusty plasmas, their characteris-
tics and a model system to study fluid flow around an obstacle at the particle level.
After the introductory portion in Section 1, the fundamentals of dusty plasma are
discussed in Section 2. In Section 3, the production of a dusty plasma medium by RF
discharge will be discussed. Then in Section 4, we will discuss about the type and
behavior of the obstacle which is used in dusty plasma flows. In Section 5, we will
discuss the dusty plasma flow and the pattern formation behind the obstacle. The
final section then summarizes the chapter as a whole.

2. Fundamentals of dusty plasma

2.1 Dusty plasma

First, let us start with a very brief explanation of plasma! Basically, plasma is an
assembly of a nearly equal number of electrons and ions, and the charge neutrality
is sustained on a macroscopic scale. In the absence of any external disturbance, that
is, under equilibrium conditions, the resulting total electric charge is zero. The
microscopic space-charge fields cancel out inside the plasma and the net charge
over a macroscopic region vanishes totally. The quasi-neutrality condition at equi-
librium is given by,

ne≈ni (1)

where ne and ni are the electron and ion densities, respectively.
The ‘plasma’ state of matter differs from ordinary fluids and solids by its natural

property of exhibiting collective behavior. These collective effects result in the
occurrence of various physical phenomena in the plasma, resulting in the long-
range of electromagnetic forces among the charged particles. The very first
example of plasma that is obvious to refer is the Sun, the source of existence of life.
The protective layer to the earth’s atmosphere, known as the ionosphere, also
remains in the form of ionized particles, that is plasma. Moreover, natural plasmas
exist in interstellar space, stars, intergalactic space, galaxies, etc. On earth, the
common form of natural plasma is lightning, fire and the amazing Aurora Borealis.
Artificial plasmas are generated by applying electric or magnetic fields through a
gas at low pressures. These are commonly found in street lights, neon lights, etc.
Neon light is a gas discharge light, which is actually a sealed glass tube with metal
electrodes at both the ends of the tube and filled with one or several gases at low
pressure.

As already mentioned before, dust particles in space as well as in earth’s atmo-
sphere, are unavoidable. These particles in plasma form a new field, that is dusty
plasma or complex plasma. Dusty plasma is defined as a normal electron-ion plasma
with charged dust components added to it. Naturally, dust grains are metallic,
conducting, or made of ice particulates. Until and unless these are manufactured in
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laboratories, their shape and size vary. Depending on the surrounding plasma
environments (due to the inflow of electrons and ions), dust particulates are either
negatively or positively charged. These charged particles as a whole affect the
plasma and result in collective and unusual behavior. When observed from afar,
dust particles can be considered as point charges. As they are charged by the plasma
species (electrons and ions), the charge neutrality condition is now modified, which
is given by,

Qdnd0 þ eneo ¼ enio (2)

where ne0, ni0 and nd0 are the equilibrium densities of electrons, ions and dust,
respectively, ‘e’ is the magnitude of electron charge, Qd ¼ eZd is the charge on the
dust’s surface and Zd is the dust charge number. It is important to highlight that the
charge of the particles depends significantly on the plasma parameters. And the
basic physics of the dusty plasma medium entirely rests on the Qdnd0 term of the
charge neutrality condition.

Plasma possesses the fundamental property of shielding any external potential
by forming a space charge around it. This particular property provides a measure of
the distance over which the influence of the electric field of a charged particle (dust
particle in our case) is experienced by other particles (electrons and ions) inside the
plasma. Typically, this length is known as the dust Debye length λD, within which
the dust particles can rearrange themselves to shield all the existing electrostatic
fields. The negatively charged heavier dust particles are assumed to form a uniform
background and the electrons and ions, which are assumed to be in thermal
equilibrium, simply obey the Boltzmann distribution. The dust Debye length is
given by,

λD ¼ λDeλDiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2De þ λ2Di

� �q (3)

where λDe and λDi are electron and ion Debye lengths, respectively. These are
expressed as,

λDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe

4πneoe2

s
(4)

λDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTi

4πnioe2

s
(5)

Te,i represents the electron and ion temperatures, respectively, neo,io are the
electron and ion densities, respectively, and kB is the Botlzmann constant.

A pictorial representation of a dusty plasma medium is shown in Figure 1.
In a dusty plasma medium, the charged particles interact with each other via the

electrostatic Coulomb force. However, due to the inherent shielding property of the
plasma electrons and ions, the charged particles are shielded and hence, the inter-
action energy among them is known as Screened Coulomb or Yukawa potential
energy. Consider two dust particles having the same charge Qd and separated by a
distance ‘a’. The screened Coulomb potential energy is given by,

P:E ¼ Q2
d

4πϵ0a
e�κ (6)
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where κ ¼ a
λD

is the screening strength. The dust thermal energy is given by,

K:E ¼ kBTD (7)

where TD is the dust temperature. The ratio of the P.E to the K.E is termed as the
Coulomb Coupling parameter, given by

Γ ¼ Q2
d

4πϵ0akBTD
e�κ (8)

Depending on the coupling parameter, a dusty plasma system remains in a
weakly coupled state or a strongly coupled one. When Γ< 1, the thermal energy of
the dust particles is greater than the potential energy of the system and the system is
said to be weakly coupled. On the other hand, when the potential energy exceeds
the thermal energy, that is Γ> 1 the system becomes strongly coupled. So, from
Eq. (8), we can see that dust charge, screening parameter and the dust temperature
play an important role in determining the system’s coupling state. As Γ exceeds a
critical value Γc, called the critical coupling parameter, a dusty plasma system
attains a crystalline state. However, this critical value for crystallization is depen-
dent on the screening parameter [22]. For 1<Γ<Γc, the system remains in a fluid
(liquid or gas) state.

Thus, we see that by adjusting the dusty plasma parameters, we can obtain a
fluid state of the dusty plasma medium experimentally. This provides us a unique
model to study vortex formation behind an obstacle in the particle most level.

3. Production of a dusty plasma medium

Laboratory dusty plasmas differ from space and astrophysical dusty plasmas in a
significant manner. The discharges done in the laboratory have geometrical bound-
aries. The composition, structure, conductivity, temperature, etc., of these geome-
tries affect the formation and transport of the dust grains. Also, the external circuit,
which produces and sustains the dusty plasma, imposes boundary conditions on the

Figure 1.
Schematic of a dusty plasma medium. The pink-shaded portion is the plasma medium. The green ball is the dust
particle that is negatively charged. λD is the dust Debye length.
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dusty discharge, which vary spatially as well as temporally. Dusty plasmas in the
laboratory are generally produced by two main discharge techniques—direct cur-
rent (DC) discharge and RF discharge. In this chapter, we will mainly focus on the
production technique by RF discharge method in a DUPLEX device.

As the name suggests, DUPLEX is an abbreviation for Dusty Plasma Experi-
mental Chamber. It comprises of a cylindrical glass chamber, 100 cm in length and
15 cm in diameter. The glass chamber configuration of the DUPLEX device provides
a suitable and great access for optical diagnostics. One end of the cylindrical cham-
ber is connected to the vacuum pump systems and the other end is closed by a
stainless steel (SS) flange with Teflon O-ring between the glass chamber and the SS
flange. On this closed end, there are ports for pressure gauge fitting, probe insertion
and electrical connections. A radio frequency power generator (frequency:
13.56 MHz, power: 0–300 W) and an RF matching network are used for the plasma
discharge. The RF antennas used in this setup are aluminum strips of 2.5 cm width
and 20 cm length typically placed on the outer surface of the glass chamber. A
schematic of the setup is shown in Figure 2. This strip acts as the live electrodes.

Initially, the chamber pressure is reduced to a value of about �10�3 mbar with
the help of a rotary pump. Argon is used as the discharge gas, by injecting which the
desired chamber pressure can be maintained. A grounded base plate is also inserted
into the chamber (about �30 cm length, 14.5 cm width and 0.2 cm thickness),
which acts as the grounded electrode and the region above it is selected as the
experimental region. Applying a radiofrequency power (13.56 MHz and 5 W)
between the aluminum strips (working as live electrodes) and the grounded base
plate, a capacitively coupled RF discharge plasma is produced. Due to the applica-
tion of the RF field, initially, the stray electrons inside the chamber get energized
and in turn ionize the gas molecules present in the chamber. The aluminum strips
used as live electrode outside give the flexibility to change the electrode position
whenever required. Also, it facilitates in forming a uniform plasma over an exten-
sive area of the grounded plate, that is the experimental region. The plasma param-
eters can be varied manually by tuning the discharge conditions, viz. RF power and
neutral pressure.

Dust particles used in the experiment are gold-coated silica dust particles (� 5
micron diameter). These are initially put inside a buzzer that is fitted to the
grounded base plate. After the production of the plasma, a direct current (DC)
voltage of � (6–12)V is applied to the buzzer, which ejects the dust particles from it

Figure 2.
Schematic of a DUPLEX setup. The pink-shaded portion is the argon plasma.
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through a hole. When these dust particles enter into the plasma environment,
electrons and ions flow towards it and charge up the particles. In the laboratory, the
dust particles are usually negatively charged as the electrons are lighter and highly
mobile than the ions. These negatively charged dust particles are acted upon by two
forces mainly, the upward electric field force (QdE) due to the sheath electric field
(E) of the grounded base plate and the downward gravitational force (mdg). Dust
particles levitate at the position where these two forces exactly balance. The dust
particles are illuminated by laser light scattering, and the dust dynamics are
recorded in high-speed cameras. Figure 3 shows the levitation of dust particles in a
plasma medium. Above the dust layer, the purple color signifies argon discharge
plasma. The dark region below the dust layer and above the plate is the sheath
(where ionization does not take place) where a strong electric field (E) is present.
The charged dust particles levitate at the interface region (� 0.8 cm above the
plate) between plasma and the sheath where the force balance occurs. This is shown
by a dashed line.

4. Obstacle in dusty plasma flows

The obstacle used in dusty plasma flow experiments is actually a dust void. A
void is a dust-free region, which is encountered spontaneously in certain experi-
mental conditions or can be produced externally also [23–28]. In the past couple of
decades, there have been a few studies on the interaction of a dusty plasma medium
with dust voids. In 2004, Morfill et al. studied a laminar flow of liquid dusty plasma
with a velocity � 0.8 cms�1 around a spontaneously generated lentil-shaped void
[29]. They observed the formation of a wake behind the void that is separated from
the laminar flow region by a mixing layer. The flow also exhibited stable vortex
flows adjacent to the boundary of the mixing layer. Another study was made in 2012

Figure 3.
Photograph of a dust layer levitation in plasma.
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by Saitou et al. where they externally placed a thin conducting wire of 0.2 mm
diameter and 2.5 cm length. They made the dust particles flow with velocity in the
range � (5–15) cms�1 but did not observe any vortex formation behind the obstacle.
What they observed was a bow shock in front of it [30]. In the very next year itself
(2013), Meyer et al. also did a similar experiment with a different configuration and
dust flow mechanism (velocity � 10–25 cms�1) than Saitou’s [21]. They produced a
dust void by placing a 0.5-mm-diameter cylindrical wire transverse to the flow.
They too observed a bow shock and a tear-shaped wake in front and behind the
obstacle, respectively. Moreover, Charan et al. in 2016 did a molecular dynamics
simulation study where they used a square obstacle and observed von Karman
vortex street at low Reynolds number (i.e. low velocity) compared with normal
hydrodynamic fluids [31]. Then in 2018, Jaiswal et al. investigated dust flow
towards a spherical obstacle over a range of flow velocities � (4–15)cms�1 and
different obstacle biases [32]. The spherical obstacle also generated a dust-free area
in its vicinity. They too observed bow shock formation in front of the obstacle but
no vortex formation behind it. In 2020, Bailung et al. also investigated the study of
dust flow around a dust void with a unique flow mechanism (dust flow veloc-
ity � 3–10 cms�1) in a DUPLEX setup [33]. Dust particles are allowed to flow
towards an already existing stationary dust layer. They could observe the formation
of a counter-rotating pair of vortices behind the obstacle in a particularly narrow
range of velocity � (4–7) cms�1. Above and below this range, their vortices are not
observed. Due to the interplay between these two forces, a circular void is generated
around the pin. At the void boundary, these two forces equate with each other.

In the next section, we will study the results of Bailung et al. in detail, but before
that let us understand the mechanism of the formation of dust void due to the
insertion of an external cylindrical wire. A cylindrical pin inside the plasma attains a
negative potential for the plasma and a sheath is formed in its vicinity. Due to the
negative potential of the pin, ions try to drift towards it giving rise to a force on the
dust particles named as ion drag force. This force is directed radially inward with
the pin as the centre. Also, the negatively charged dust particles experience a
repulsive electrostatic force from the pin which is directed radially outward. The
interplay between these two forces generates a circular void around the pin. At the
void boundary, these two forces equate with each other. A typical configuration of
pin insertion through the grounded plate of a DUPLEX chamber is shown in
Figure 4. The pin is externally connected to a DC bias voltage. By varying the bias
voltage, the size of the void can be altered according to experimental requirements.
Typically, at a RF power of 5 W and chamber pressure � 0.02 mbar, the diameter of
the dust void in floating condition (i.e. no external bias) is �1.7 cm. A typical
example of a dust void is shown in Figure 5. However, unlike the solid obstacles in
the case of hydrodynamic fluids, the dust void is not a rigid kind of obstacle. As
already seen, the boundary of the void is maintained by a delicate force balance

Figure 4.
A typical configuration for insertion of a pin through a grounded base plate in DUPLEX chamber.
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between the outward electrostatic force and inward ion drag force. An incoming
dust flow, depending on the velocity of the flow, would cross the void boundary
and penetrate into the void.

5. Vortices in the wake of a dust void

Due to the non-rigidity of the dust void boundary, the behavior of the flow near
the obstacle is somewhat different than conditions of hydrodynamic fluid with a
rigid obstacle. Despite this difference, the transition from laminar to turbulence is
observed in the wake of the obstacle in the case of dusty plasma flow also. As the
flow approaches the void boundary, the middle section of the flow slightly pene-
trates into the void region and slips through the void boundary layer on both sides.
The trajectory of the flow (in the mid-section) is deflected in front of the void due
to the repulsive force exerted by the sheath electric field of the void and then flows
downstream surrounding the void. The curved dust flow again meets behind the
void and continues with the flow. As observed by Bailung et al. at a very narrow
range of velocity � (4–7) cms�1, a counter-rotating vortex pair is seen to appear.
Below and above this range, the dust particles do not form any vortices. A typical
example of three different conditions is shown in Figure 6.

In each of the images, dust particles flow from right to left shown by dashed
arrows. The top image (a) depicts a flow with dust flow velocity � 3.5 cms�1 and
the snapshot is at time t = 1370 ms from a reference time (t = 0, when dust flow
reaches the right edge of the images). The middle image (b) shows dust fluid flow
velocity � 4.5 cms�1 at t = 1033 ms showing a vortex pair formation behind the
void. The vortices are shown by the two arrow marks. It is observed that vortices
are not formed for larger flow velocity � 8 cms�1 (image (c)). For such high

Figure 5.
Snapshot of a dust void formed in DUPLEX chamber. The bright spot in the Centre is the reflection of laser light
from the cylindrical pin. The photograph is taken from the top of the chamber.
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velocities, flow trajectories behind the void are elongated and dynamics in the wake
is rather complex due to cross-flow at high speed. The bright illuminated point at
the centre of each image is the reflection of laser light from the pin. Two horizontal
lines that appear in all the images are due to laser reflection from the wall of the
glass chamber. It is noted that dust flow with unsteady laminar velocity, which is
(4–7)cms�1, and optimum dust density in the experimental region above the
grounded plate is required to generate the vortex behind the void.

For a better understanding, a pictorial representation showing the dusty plasma
streamlines around dust void at three different velocities are shown in Figure 7(a)–
(c) of Figure 7 corresponds to the observation shown in (a), (b) and (c) of Figure 6.

Figure 6.
Typical snapshots showing structures formed behind the void at (a) 3.5cms�1, (b) 4.5cms�1, (c) 8 cm�1.
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At a lower dust flow velocity, the void in the upstream is slightly compressed
and trajectories of the streamlines flowing close to the void (boundary layer) curl
behind the void. However, no structure formation in the wake appears here. Dust
particles, after meeting behind the void, just continue with the flow smoothly. For
critical flow speed (b), flow dynamics in the upstream void boundary is quite
different. Streamlines that hit perpendicularly at the void flow some distance into
the void region. They reconstruct the boundary during the flow and get ejected
backward making the streamline bifurcation to occur much ahead of the void
boundary. The curved streamlines, which are ejected backward, again flow along
with the incoming dust flow close to the boundary layer. This critical reorientation
in the front of the void generates a suitable condition for the formation of the vortex
pair behind the void. Particles get slowed down in this region and these slower

Figure 7.
A pictorial illustration of the dusty plasma flow interaction with the dust void at different flow velocities. (a)
Laminar flow, (b) unsteady laminar flow with filamentary vortex-type structure in the upstream and vortex
pair in the downstream and (c) turbulent flow.
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particles flow close to the boundary layer around the void and contribute in the
formation of the vortex pair. At higher velocities (c), that is above the critical range
for vortex formation, all the particles that hit the upstream void boundary are
flushed away by the flow along with it. The streamlines intersect and crossover at a
distance far behind the void and there is no formation of any stable structure. It is
well known that in hydrodynamic fluids, at much higher velocities, vortex streets
are observed. However, here such streets are not observed to form. This may be due
to the restriction of the experimental geometry. The transition from laminar to
turbulence is well known in fluid dynamics. But studying it in dusty plasma pro-
vides the chance to observe the individual particle-level trajectory. In turn, the
dynamics can be studied in greater detail.

To see the dust dynamics in greater detail, let us look at the vortex formation
behind the dust void step by step. At the outset of the formation, the slower
particles moving along the curved boundary layer interact with the stationary
particles behind the void and start to swirl on each side. The flow front then meets
in the wake region behind the void (Figure 8(a)) and gradually traverses a swirling
circular path. This is evident in the dotted arrow marks in (Figure b). After duration
of 966 ms from the start of the flow, two counter-rotating vortices complete their
formation (Figure c). Only the slower particles flowing close to the boundary layer
participate in this swirling motion due to the nonzero curl of the forces. Those
particles away from the boundary layer move faster and do not contribute to the
swirling. With increasing time and inflow of more particles, the swirling finally
grows into a distinct pair of the vortex with an eye in the middle (Figure (d)). As
the flow progresses by maintaining a constant inflow of particle flux, the vortex pair
sustains till 1167 ms. The one shot of dust flow in the experiment done by Bailung
et al. lasted for about 2 sec.

Hence, gradually when the particle flux started decreasing, the vortex pair starts
to die out. It is faintly visible till 1233 ms (Figure g). The time for the growth of the
vortex pair is �200 ms (from the time the particles meet behind the void) and
survives for duration of 200 ms (depending on the duration of accelerated dusty
plasma fluid flow). Finally, they disappear after 1300 ms. The rotational frequency
measured for the vortices is about �3 Hz.

It is already mentioned that the advantage of studying vortex dynamics in
dusty plasma lies in the fact that particles can be individually tracked. Different
particle tracking software and computational models are available, which can

Figure 8.
The parallel arrows depict the direction of the dust flow. (a) when both the oppositely curling flow front meet
behind the void. Dotted curve traces in (b) indicate flow trajectories. The arrows in (c) - (g) show the vortex
pair. the vortices vanish with time when flow is nearly over (h).
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generate the velocity vectors of the trajectory of the particles and hence can give a
quantitative interpretation of the experimentally observed results. One such particle
tracking platform is OpenPIV (Open Particle Image Velocimetry) in MATLAB [34].
This helps to study the evolution of the vortex pair along with its vorticity. But to
perform successful PIV from images, the recorded videos of the dust flow dynamics
should have a high-quality resolution and must be in high speed. A PIV analysis
performed on a video recorded at 100 frames per second is shown in Figure 9.

Each image in the figure is an average PIV result of 10 consecutive image
frames. The position of the void and the pin position are drawn by a red-dashed
circle and a red dot, respectively. The velocity vectors show the trajectory of the
dust particles and the color code gives the value of the vorticity at different times
in units of s�1. The slowing down of the particles in front of the void is clearly
seen by comparing the velocity vectors’ lengths in Figure 9(a) and (b). The
backflow of the incoming dust particles mentioned earlier (due to repulsive sheath
electric field force of the pin) is also observed in (b). The curling of dust particles
leading to vortex formation is evident from (c) and (d). The vorticity of the fully
formed vortex pair is about � (20–25)s�1, which is shown by the color bar in (e)
and (f)). This is nearly equal to twice the measured angular frequency. With the
decrease of the dust flow influx, the vortex structure deforms (vorticity �15 s�1)
and breaks away into smaller vortices (vorticity �10s�1) as seen from (g) to (i).
Vortices finally disappear in (j), evident from the vorticity value which almost
tends to 0.

Reynolds number is the characteristic parameter that helps to predict
flow patterns. It is the ratio of the inertial forces to the viscous forces and is
given by,

Re ¼ ρvdL
η

(9)

where ρ is mass density, vd is dust velocity, L is the obstacle dimension, that is
the void diameter and η is the viscosity of the dust fluid.

In case of dusty plasma fluids, the viscosity is estimated from the formula,

η ¼
ffiffiffi
3

p
η̂mdndωEa2 (10)

where η̂ is the normalized shear viscosity, md is the dust mass, nd is the dust
density, ωE ¼ ωpd=

ffiffiffi
3

p� �
is the Einstein frequency, ωpd is the dust plasma frequency

and a is the interparticle distance. The normalized shear viscosity in dusty plasma
fluid is a function of the Coulomb coupling parameter Γ, which has been estimated
for a range of coupling parameters in different conditions via simulation [35, 36].
For typical plasma parameters of DUPLEX chamber, that is,

md ¼ 1:7 � 10�13 kg

nd ¼ 9� 109m�3

ωpd ¼ 247:5 s�1

a ¼ 3� 10�4 m

The viscosity is calculated to be 9� 10�9 Pas.
Thus, the Reynolds number for dust flow velocity � (3–10) cms�1 is estimated

to be lying in the range 50–190. The vortex pair formation appears in a critical range
of 60–90.
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In the case of hydrodynamic fluid, the range of Reynolds number for vortex
formation is 5–40, which is much lower compared with that in dusty plasma fluid.
This is because the ratio ρ=η (which is the kinematic viscosity) is one order larger in

Figure 9.
PIV analysis showing the time evolution of the vortices for a duration of 1 sec. The velocity vectors and vorticity
profile drawn from (a) (0.53-0.62) sec (b) (0.63-0.72) sec (c) (0.73-0.82) sec (d) (0.83-0.92) sec (e)
(0.93-1.02) sec (f) (1.03-1.12) sec (g) (1.13-1.22) sec (h) (1.23-1.32) sec (i) (1.33-1.42) sec (j) (1.43-
1.52) sec are shown. The color bar shows the value of vorticity in 1/s. The dotted circle in (a) shows the original
position of the void boundary before the flow and the dot at the center of the circle depicts the pin position.
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the case of dusty plasma fluids than that in hydrodynamic fluids. The estimated
kinematic viscosity for dusty plasma fluids is �0.088 cm2s�1, whereas the
kinematic viscosity for water is �0.008 cm2s�1

.

6. Conclusion

The study of vortices in the problem of flow past an obstacle is significant as it
provides a platform to investigate the transition from laminar to turbulence. Forma-
tion of vortices in the wake region behind an obstacle appears in the unsteady laminar
regime of flows and has been widely studied in hydrodynamic fluids. However, dusty
plasma medium, which is a component of the fourth state of matter, provides a
unique stage to study such phenomena at the particle level. A special property of this
medium is that it can remain in both fluids (liquid- or gas-like) as well as the
crystalline state. By mere adjustment of plasma conditions, the desired state can be
obtained. The individual tracking of micron-sized dust particles by methods such as
PIV (Particle Image Velocimetry) yields the particle trajectory in form of velocity
vector fields. This gives a very clear picture of the behavior of flow near obstacle
boundaries. However, the obstacles used in dusty plasma flow experiments differ
from those in hydrodynamic fluid experiments in the sense that unlike those in
hydrodynamics, the obstacle boundaries in dusty plasma are non-rigid. Any foreign
pin or wire inserted into the plasma would possess a negative potential with respect to
the plasma. Dust particles in its vicinity are repelled due to electrostatic force and
form a dust-free region around it, called the dust void. This dust void, whose bound-
ary is delicately maintained by dusty plasma forces, acts as a non-rigid type of
obstacle. Dusty plasma flows also generate counter-rotating vortices in the wake
region behind a dust void at a particular range of velocities. Below and above this
range, no structure formation is seen to appear. The particle behavior causing the
formation of the vortices is better understood by tracking particles in consecutive
frames. The estimated Reynolds number value for vortices to appear in the wake of a
void in a dusty plasma medium is estimated to lie in the range 60–90. This is quite
larger than the Reynolds number range for hydrodynamic fluids which is roughly
about 5–40. This higher range in dusty plasma medium is attributed to the higher
kinematic viscosity of dusty plasma fluids. However, in dusty plasma experiments,
Von Karman vortex streets (observed in the turbulent regime of hydrodynamic
fluids) are not yet explored. If such experiments could be successfully performed,
then there will be immense scope of understanding turbulence at the particle-most
level and with a better perspective. Although to study turbulent dynamics,
high-speed cameras with high-quality resolution would be necessary.
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Chapter 9

Wingtip Vortices of a Biomimetic
Micro Air Vehicle
Rafael Bardera, Estela Barroso and Juan Carlos Matías

Abstract

Wingtip vortices are generated behind a wing that produces lift. They exhibit a
circular pattern of spinning air that generates an additional drag force, the induced
drag, reducing the aerodynamic performance of an aircraft. Moreover, the wingtip
vortices can pose a hazard to airplane maneuvers, mainly in take-off and landing
operations. This chapter describes a review of the lifting-line vortex theory applied
to a biomimetic Micro Aerial Vehicle (MAV) with Zimmerman planform. There-
fore, the horseshoe vortex model is deeply explained and the estimations of vortex
velocity distribution, lift, and induced drag are obtained with this simple model.
These results are compared with experimental data obtained from wind tunnel
testing by using Particle Image Velocimetry (PIV). Finally, the vorticity maps in the
wake of this MAV are obtained from PIV measurements.

Keywords: tip vortices, biomimetic, micro aerial vehicle, induced drag, vorticity

1. Introduction

The aeronautic industry has developed a growing interest in Unmanned Aerial
Vehicles (UAVs). These vehicles have been designed for multiple missions where the
human factor is not required. Therefore, in dangerous missions, unhealthy environ-
ments, or inaccessible areas, human accidents can be avoided. The UAVs can be
distinguished into different categories according to their performance characteristics.
In this context, the relevant design parameters are weight, manufacturing costs, and
size. Mainly, the manufacturing costs have been the key point for that engineers and
researchers could be focused on developing smaller vehicles in order to perform
unmanned activities. This group of smaller vehicles is known as Micro Aerial Vehicles
(MAVs) [1–3]. Their main features are low aspect ratio (AR) and low range opera-
tion. Research centers and universities have been able to investigate new designs of
MAVs due to their low manufacturing costs and small size. This is the case of
aerodynamic challenges posed in the work of Moschetta [4]. The MAV designs have
taken into account the fixed-wing, coaxial, biplane, and tilt-body concept. Marek [5]
performed experimental tests to determine the aerodynamic coefficients in six dif-
ferent types of platforms. The Zimmerman and elliptical planforms resulted in having
the highest lift coefficient. Hence, Hassannalian and Abdelkefi [6] designed and
manufactured a fixed-wing MAV based on the Zimmerman planform. Also, other
authors designed the Dragonfly MAV using Zimmerman planform [7, 8].

The chapter will begin with a description of the biomimetic Micro Air Vehicle
(MAV) [9, 10], then the horseshoe theory will be explained and applied to the
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studied vehicle. Consequently, the experimental facility, the Particle Image
Velocimetry technique, and the description of the experimental tests will be
defined. Then, the vorticity and several vortex models will be defined and applied
to the experimental data obtained from the Wind Tunnel. At the end of the chapter,
the formulation which relates the axial vorticity and the circulation will be
presented and finally, the lift coefficient will be obtained.

2. Micro air vehicle geometry

The geometry of the studied Micro Air Vehicle (MAV) is based on Zimmerman
planform and Eppler 61 airfoils for the wing configuration and Whitcomb II airfoils
for the fuselage (see Figure 1).

Figure 1.
Biomimetic MAV model (dimensions in mm).

Figure 2.
Zimmerman planform.
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The Zimmerman wing consists of two halves of ellipses connected at one
point of reference which corresponds to 1/4 of the maximum wing root chord
(cr = 200 mm) for one half of the ellipse and 3/4 of the cr for the other half of the
ellipse. Figure 2 shows the planform of the micro air vehicle and their dimensions.
The rest of the geometrical features are shown in Table 1.

3. The horseshoe vortex: Biot-Savart law

In this section, a previous formulation of the wingtip vortex will be presented.
The 3D wings can be modeled by vortex filaments. The horseshoe is the simplest
mathematical model of potential flow to represent the aerodynamics of a wing
aircraft. That consists of the bound vortex (vortex filament of the wing) and the
trailing vortices formed by the semi-infinite filament vortex that represents the
wingtips.

The horseshoe is a 3-D vortex that can be represented with an arbitrary shape
according to the Helmholtz vortex theorems:

• The circulation Γ is constant along the vortex length.

• The vortex has to be extended to �∞, form a closed-loop, or end at a solid
boundary.

In this context, the velocity field of a 3-D vortex by applying the Biot-Savart Law
is defined by the following expression Eq. (1), [11].

V
!

x, y, zð Þ ¼ Γ

4π

ðþ∞

�∞

d l
! � r!

r!
���
���
3 (1)

where r! is extended from the integration point to the field point and the arc

length element d l
!
points follow the direction of positive circulation.

Parameter Value

Wing tip Chord ct 0.025 m

Wing root Chord cr 0.200 m

Wing taper ratio, λ 0.124

Aspect ratio, AR 2.500

Wingspan, b 0.320 m

Mean aerodynamic chord, CMA 0.141 m

Mean geometry chord, CMG 0.127 m

Wing reference area, S 0.040 m2

Dihedral angle, Dh 10°

Fuselage length, l 0.300 m

Fuselage width, d 0.060 m

Table 1.
MAV features.
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Taking into account the straight vortex of Figure 3, h is defined as the nearest
perpendicular distance from the vortex line and θ is the angle between the radius
vector r! and the vortex line (are defined in Eq. (4) and (5)).

r � r!
���
��� ¼ h

sinθ
(2)

l ¼ � h
tanθ

(3)

dl ¼ h
sin 2θ

(4)

d l
! � r! ¼ dl r sinθð Þ θ̂ (5)

Now, the velocity field can be recalculated as Eq. (6):

V
! ¼ Γ

4πh
θ̂

ðπ
0
sinθ dθ ¼ Γ

2πh
θ̂ (6)

To reproduce the wingtip vortices of the studied MAV, a simple model based on
the superposition of the freestream flow (U∞) and a horseshoe vortex is described.
The horseshoe vortex can be defined as the sum of three segments that can be seen
in Figure 4: two free-trailing vortices at each tip of the wing (segment AB and
segment CD) that are connected by a bound vortex spanning the wing (segment
BC). As explained previously, the circulation Γ along the entire vortex line is
constant, and the vortex lines have to extend downstream to infinity (see Figure 3).
This potential solution is not very effective since the local lift to span is constant
over the wingspan and in the real MAV model, the local lift is zero at the tip of the
wings. A scheme of the horseshoe vortex model is defined in Figure 4.

The velocity field downstream of the wing in x = constant planes is similar to the
potential solution generated by a horseshoe vortex except near the vortex axes.
Now, to obtain the vertical velocity distribution of the potential vortex in our MAV,
it is necessary to know the wing chord (c = 0.2 m), wingspan (b = 1.6c), and chord
distance downstream of the trailing edge of the wing (x = 3c). Therefore, the
following two non-dimensional variables (η and ζ) need to be defined (Eq. (7)):

η ¼ x
a
¼ 3:75; ζ ¼ y

a
(7)

where a is the semi-wingspan, a ¼ b
2 (see Figure 2), η and ζ are the non-

dimensional coordinates according to the x-axis and y-axis, respectively.

Figure 3.
Scheme of the straight-vortex.
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Then, the non-dimensional vertical velocity ψ ζð Þ can be defined as Eq. (8):

ψ ηð Þ ¼ w ζð Þ
Γ

4πa
(8)

which presents a different formulation depending on the vortices defined in
each of the segments (see Figure 3):

ψAB ηð Þ ¼ �1
ζ þ 1ð Þ 1þ ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ þ 1ð Þ2 þ ηð Þ2
q

2
64

3
75 (9)

ψCD ηð Þ ¼ 1
ζ � 1ð Þ 1þ ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ � 1ð Þ2 þ ηð Þ2
q

2
64

3
75 (10)

ψBC ηð Þ ¼ �1
η

ηþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ þ 1ð Þ2 þ ηð Þ2

q

2
64

3
75� η� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ � 1ð Þ2 þ ηð Þ2
q

2
64

3
75

2
64

3
75 (11)

Finally, the total non-dimensional vertical velocity is defined as the sum of the
three velocities of the vortices (Eq. (12)):

ψ ζð Þ ¼ ψAB ζð Þ þ ψBC ζð Þ þ ψCD ζð Þ (12)

In the following Figure 5, the total non-dimensional vertical velocity distribu-
tion of this MAV is presented only for the section located at 3c downstream of the
trailing edge of the wing and for the angle of attack of 10°.

To obtain a better understanding of the flow behavior of these vortices and how
they interact between them, in Figure 6 the non-dimensional vertical velocity only
of the AB free-trailing vortex region is presented. The blue line shows the velocity
distribution of the AB free-trailing vortex while the dashed red and black lines
correspond to the velocity of the bound vortex (BC in Figure 4) and the CD free-
trailing vortex, respectively. It is clearly noted that both vortices, bound vortex, and
CD free-trailing vortex are not affecting the AB free trailing vortex since their

Figure 4.
Scheme of the horseshoe vortex model.
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velocity values are very small. As a consequence, in that region only the flow
presence from the AB free-trailing vortex itself.

4. The experimental set-up

In this section, the experimental setup will be presented. All experimental tests
were carried out in a Low-Speed Wind Tunnel at the Instituto Nacional de Técnica
Aeroespacial (INTA) in Madrid (Spain). This wind tunnel has a closed circuit with
an elliptical open test section of 6 m2. The DC engine, which is situated at the
opposite side of the test section, works at 420 V, allowing a maximum airflow speed
of 60 m/s with a turbulence intensity lower than 0.5%. Figure 7 shows the
Low-Speed Wind Tunnel of INTA.

Figure 5.
The non-dimensional vertical velocity at 3c downstream of the trailing edge of the MAV wing.

Figure 6.
The non-dimensional vertical velocity at 3c downstream of the trailing edge of the MAV wing.
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The MAV model was tested with a freestream velocity of the wind tunnel of
10 m/s (U∞ ¼ 10 m=s), which results in a Reynolds number of 1.3 � 105 based on
the wing root chord cr ¼ 0:20 mð Þ. This analysis was performed for the cruise
configuration (with an angle of attack equal to 0°). The experimental tests consisted
in obtaining various transversal planes of the flow field at different sections down-
stream of the trailing edge of the wing.

The test experiments were carried out by using a full-scale model made in plastic
material (PLA) by means of additive manufacturing and attached to a wood board
by means of a streamlined support strut (see Figure 8). Only half of the model was
studied due to its symmetry. Moreover, the MAV model and the wood board had to
be painted in black in order to avoid reflections of the laser plane. The CCD camera
was located behind the model (Figure 8), parallel to the flow stream of the wind
tunnel.

The flow field velocity was determined by Particle Image Velocimetry (PIV).
PIV is an advanced experimental technique that has the advantage of measuring the
velocity field in a non-intrusive manner. This technique measures the velocity of
the flow by analyzing flow images pairs [12]. For achieving this, PIV requires tracer
particles that have to be seeded in the airflow. Olive oil was chosen for the

Figure 7.
Components of the low-speed wind tunnel of INTA.

Figure 8.
Experimental setup.
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generation of the tracer particles. A laser sheet has to be generated in order to go
through the tracer particles and illuminate them. Two Neodymium-Yttrium Alu-
minum Garnet (Nd:YAG) lasers and an optical system were used for achieving this.
The two lasers Nd:YAG has a pulse energy of 190 mJ within a time gap of 22 μs. The
location of the tracer particles has to be recorded by a high-resolution camera with
2048 � 2048 pixels equipped with a lens Nikon Nikkor 50 mm 1:1.4D. A cross-
correlation implemented via Fast Fourier Transform (FFT) is carried out over small
image regions in order to obtain the averaged displacement of the tracer particles.
The field of view (FOV) of the camera was 190 � 190 mm2. The flow images are
divided into interrogation window of 32 � 32 pixels. By using the Nyquist Sampling
Criteria, these interrogation windows are overlapped by 50%. Moreover, the peak
of correlation is adjusted to the subpixel accuracy by Gaussian approximation. A
final post-processing task to remove spurious data and fill the empty vectors is
needed. Therefore, a local mean filter based on a neighbor kernel window of 3 � 3
vectors was applied.

5. The vorticity in the wingtip wake

The vorticity is defined as the curl of the flow velocity, by the following
expressions (Eq. (13) and Eq. (14)),

ω
! ¼ ∇� V

!
(13)

ω
! ¼ ∂w

∂y
� ∂v

∂z

� �
i
! þ ∂u

∂z
� ∂w

∂x

� �
j
! þ ∂v

∂x
� ∂u

∂y

� �
k
!

(14)

The two-dimensional (2D y-z plane) streamwise vorticity ωx ¼ ξ can be deter-
mined from measured velocities by solving Eq. (15), which depends on the velocity
spatial derivatives, as follows,

ξ ¼ ∂w
∂y

� ∂v
∂z

¼ ∇� V
!� �

∙ i
!

(15)

Figure 9.
Non-dimensional axial vorticity measured by PIV at 1.4 c downstream of the trailing edge of the model
U∞ ¼ 10m=s, cruise : α ¼ β ¼ 0°ð Þ.
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The axial vorticity had to be obtained with central differencing in crossflow
velocities. The non-dimensional form of axial vorticity component ~ξ is given by the
following expression (Eq. (16)):

~ξ ¼
b
2

� �
∙ ξ

U∞
(16)

where b is the whole spanwise of the model and U∞ is the frestream velocity.
Figure 9 shows the non-dimensional axial vorticity after taking PIV measure-

ments in the wake downstream when the vehicle was flying in a cruise condition. It
can be seen that the peak of maximum axial vorticity (red region) takes place at the
wingtip, and from there it starts to decrease.

6. Circulation and vorticity

By analyzing the flow downstream of the aircraft model, this flow can be studied
as the 2D wingtip wake and the vorticity is related to the velocity circulation from
Stokes theorem by the following expression (Eq. (17)), [11].

Γ ¼ ∮ CV
! � d l! ¼

ðð
∇� V

!� �
� n! � dA (17)

where C is a closed curve, V
!
is the flow velocity on a small element defined on

the closed curve, and dl is the differential length of that small element. As the plane

streamwise is the 2D-yz plane, we have ω! ¼ ξ i
!
, and the unit normal vector n! ¼ i

!
,

then (Eq. (18)),

Γ ¼ ∮ CV
! � d l! ¼

ðð
ω
! � n! � dA ¼

ðð
ξ � dA (18)

7. Evolution of the vorticity

The Navier-Stokes equations in vector form for an incompressible flow are
given by,

∇ ∙V
! ¼ 0 (19)

∂V
!

∂t
þ V

! � ∇V! ¼ �∇
p
ρ
þ gz

� �
þ ν∇2V

!
(20)

The vorticity equation (Eq. (13)) is obtained by taking the curl of the Navier-
Stokes equation, as follows,

∇� ∇ ∙V
!� �

¼ 0 (21)

∇� ∂V
!

∂t
þ V

! � ∇
� �

V
! ¼ �∇

p
ρ
þ gz

� �
þ ν∇2V

!
 !

(22)

By calculating each term, where the conservation of vorticity is Eq. (23),
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∇� ∂V
!

∂t

 !
¼ ∂ω

!

∂t
(23)

∇� V
! � ∇
� �

V
!� �

¼ V
! � ∇
� �

ω
! � ω

! � ∇
� �

V
!

(24)

∇� �∇
p
ρ
þ gz

� �� �
¼ 0 (25)

∇� ν∇2V
!� �

¼ ν∇2ω
! (26)

and finally, the vorticity equation is,

∂ω
!

∂t
þ V

! � ∇
� �

ω
! ¼ ω

! � ∇
� �

V
! þ ν∇2ω

! (27)

The law of vorticity evolution is a convective vector diffusion equation given by
the following expression,

Dω
!

Dt
¼ ω

! � ∇
� �

V
! þ ν∇2ω

! (28)

The viscous term (ν∇2ω
!) causes the vortex to diffuse through the fluid flow.

By using index notation, the vorticity equation for 3D flow is given by,

∂ωi

∂t
þ u j

∂ωi

∂x j
¼ ω j

∂ui
∂x j

þ ν
∂
2ωi

∂xk∂xk
(29)

For a 2D flow, the stretching term is absent, and the corresponding equation is,

∂ωi

∂t
þ u j

∂ωi

∂x j
¼ ν

∂
2ωi

∂xk∂xk
(30)

Equivalently, in vector form, for a 2D flow we have the velocity is perpendicular

to the vorticity, so V
! � ω! ¼ 0 .The velocity is V

! ¼ 0,V,Wð Þ and vorticity ω
! ¼

ωx, 0, 0ð Þ, so that,

ω
! � ∇V! ¼ 0 (31)

Dω
!

Dt
¼ ∂ω

!

∂t
þ V

! � ∇
� �

ω
! ¼ ν∇2ω

! (32)

where the operator D
Dt ¼ ∂

∂t þ V
! � ∇
� �

is the material derivative and it describes

the evolution along the flow lines.

8. Decay of wingtip vortices

The study of the decay of wingtip vortices under the assumption of 2D flow with
ωy ¼ ωz ¼ 0, velocity Vx ¼ 0 and ∂=∂x ¼ 0, can be performed by the 2D viscous
diffusion of vorticity equation, given by,
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∂ω
!

∂t
¼ ν∇2ω

! (33)

∂ω
∂t

¼ ν � Δω (34)

Where ω ¼ ωx and Δ is the Laplacian operator.
Assuming axisymmetric flow, in cylindrical coordinates,

∂ω

∂t
¼ ν

r
� ∂
∂r

r
∂ω

∂r

� �
(35)

The initial vorticity for the study of decay point vortex in an unbounded domain
is given by a 2D delta function in the plane yz,

ω x!, t ¼ 0
� �

¼ Γ0δ yð Þδ zð Þ (36)

Introducing the dimensionless similarity variable [13],

ϵ ¼ rffiffiffiffi
νt

p (37)

and the nondimensional combination ωνt=Γ0 can be expressed as an unknown
function g of the variable ϵ, defined as

ωνt=Γ0 ¼ g ϵð Þ (38)

So that,

ω ¼ Γ0

νt
g ϵð Þ ¼ f tð Þ g ϵð Þ (39)

Calculating the derivatives quantities from the earlier equation,

∂ω

∂t
¼ ∂f tð Þ

∂t
g ϵð Þ þ f tð Þ ∂g ϵð Þ

∂t
¼ �Γ0

νt
1
t
g ϵð Þ þ f tð Þ dg ϵð Þ

dϵ
∂ϵ

∂t
(40)

∂ω

∂t
¼ �f tð Þ 1

t
g ϵð Þ � f tð Þ ϵ

2t
dg ϵð Þ
dϵ

¼ �f tð Þ 1
t
g þ ϵg0=2ð Þ (41)

On the other hand,

∂ω

∂r
¼ f tð Þ ∂g ϵð Þ

∂r
¼ f tð Þ ∂ϵ

∂r
dg ϵð Þ
dϵ

� �
¼ f tð Þ ϵ

r
dg ϵð Þ
dϵ

� �
(42)

∂ω

∂r
¼ f tð Þ ∂g ϵð Þ

∂r
¼ f tð Þ ∂ϵ

∂r
dg ϵð Þ
dϵ

� �
¼ f tð Þ ϵ

r
dg ϵð Þ
dϵ

� �
(43)

∂

∂r
r
∂ω

∂r

� �
¼ ∂ϵ

∂r
d
dϵ

f tð Þ ϵ dg ϵð Þ
dϵ

� �
¼ ϵ

r
f tð Þ d

dϵ
ϵ
dg ϵð Þ
dϵ

� �
(44)

And substituting in (35), the following expression is derived,

2 ϵg0ð Þ0 þ ϵ2g0 þ 2gϵ ¼ 0 (45)
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Where 0 denotes a derivative respect to, and finally, the equation is integrated

g ϵð Þ ¼ A exp
�ϵ2

4

� �
(46)

The condition of the flow circulation is equal to Γ0 at any time, gives,

Γ0 ¼
ð∞

0

ω2πr dr ¼ 4πAΓ0 (47)

so that A ¼ 1=4π, and the solution of the g ϵð Þ function is,

g ϵð Þ ¼ 1
4π

exp
�r2

4νt

� �
(48)

Finally, the solution of vorticity is given by the axisymmetric Lamb-Osteen
vortex by,

ω ¼ Γ0

4πνt
exp

�r2

4νt

� �
(49)

The swirl velocity is,

Vθ ¼ Γ0

2πr
1� exp

�r2

4νt

� �
(50)

and the circulation is,

Γ ¼ Γ0 1� exp
�r2

4νt

� �
(51)

The swirl velocity can be rewritten as,

Vθ ¼ Γ0

2πr
1� exp �1:2526 r=rc

� �2� �� �
(52)

where rc is the core radius, defined as the distance from the vortex center to the
point with the higher swirl velocity, and given by,

rc ¼ 2:24
ffiffiffiffi
νt

p
(53)

9. Analysis of vortex models and experimental data

The velocity components which define a 2-D vortex are typically the swirl
velocity Vθ, the axial velocity Vz and the radial Vr velocity. The last two compo-
nents usually are neglected in many applications as they are very small compared to
swirl velocity, and are defined as follows,

Vθ ¼ Γ

2πr
(54)

Vr ¼ 0 (55)
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Vz ¼ 0 (56)

Several tip vortex models are usually studied, but this chapter is only focused on
some of them, displayed in Figure 10. The first method is the Rankine vortex
model, being the simplest formulation with a finite core. Therefore, the vortex is
divided into two parts: the viscous core and the potential vortex. The viscous core is
rotating as a solid body near the vortex center while the potential vortex remains
away from the vortex center. The velocity in the potential vortex is decreasing
hyperbolically with the radial coordinate [14, 15]. Therefore, the following
expressions represent the swirl velocity distribution Vθ in the tip vortex,

Vθ ~rð Þ ¼ Γ
2πrc

� �
∙~r 0≤~r≤ 1 (57)

Vθ ¼ Γ
2πr

~r> 1 (58)

Where rc is the viscous core radius and ~r ¼ r
rc
is the non-dimensional radial

coordinate.
The second vortex model is the Lamb-Oseen vortex which is a simplified solu-

tion of one-dimensional Navier-Stokes equations for laminar flow which is defined
by the following expression,

Vθ ~rð Þ ¼ Γ

2πr

� �
∙ 1� e�α ~rð Þ2
h i

(59)

where α ¼ 1:2526 is the Oseen parameter.
An alternative tip vortex formulation is given byVatistas in Ref. [15]. This method is

based on a group of desingularized algebraic swirl velocity profiles for vortices which
present continuous distributions of flow quantities. The swirl velocity is defined by,

Vθ ~rð Þ ¼ Γ

2πrc
∙

~r

1þ ~r2n
� �1=n (60)

where n is an integer.

Figure 10.
Swirl velocity distribution inside a tip vortex was obtained by several tip vortex models.
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The Scully vortex model is the previous formulation when the integer is n = 1,
and it is defined as,

Vθ ~rð Þ ¼ Γ

2πrc

� �
∙

~r
1þ ~r2
� � (61)

when the integer is n = 2, the swirl velocity of the vortex formulation is,

Vθ ~rð Þ ¼ Γ

2πrc

� �
∙

~rffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~r4

p (62)

It is important to notice that when the integer n ! ∞, the swirl velocity
distribution corresponds to the Rankine method.

Figure 11 shows the flow field velocity in a normal section to the flow located at
3 chords downstream of the MAV model. The 2d vortex can be observed clearly and
the color scale indicates that the velocity is increasing near the center of the vortex.

It is possible to obtain a better visualization of the flow field distribution by
looking at Figure 12. This PIV map is obtained for the angle of attack of 10°. The
plotted streamlines reveal the location of the vortex center (places at Y = Z = 0mm),
the region of the vortex core (yellow region), and the external region (green area).

Extracting the data value of the swirl velocity as measured by the PIV technique
we can obtain Figure 13 when the experimental data are plotted with curves of
theoretical vortex models. The blue scatter dots which its trend is approached by a
6th-degree polynomial (red continue line).

Also, the distributions of the swirl velocity obtained by the theoretical vortex
models as Rankine, Lamb-Oseen, and Scully are represented in Figure 11.

The analysis of this graph shows the wingtip vortex method which presents the
most accurate fit to the MAV is obtained with the tip vortex model of Scully.
Subsequently, there is a deviation between the two approaches (experimental data
and Scully) which depends on the distance from the vortex center. The ratio
between both of them is assessed by the parameter k rð Þ defined as

Figure 11.
Wingtip vortex in the MAV wake at 3c.
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k rð Þ ¼
Vθð Þpolynomial

Vθð ÞScully
(63)

where Vθð Þpolynomial and Vθð ÞScully are the distributions of swirl velocity obtained in
the test experiments and by the theoretical model proposed by Scully, respectively.

Finally, the distribution of experimental swirl velocity is fitted to the Scully
model by the function called Vθð Þexperimental�Scully defined as,

Vθð Þexperimental�Scully ¼ k rð Þ ∙ Vθð ÞScully (64)

10. Lift coefficient

The lift of an airfoil can be determined by the Kutta-Joukowski theorem [11]
relating the velocity and the circulation, as follows,

Figure 12.
Velocity distribution at 3c.

Figure 13.
Experimental data and theoretical vortex models.
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L0 ¼ ρU∞Γ (65)

By applying the earlier formulation, the total lift of the wing L can be obtained
from the following expression

L ¼ ρU∞Γð Þ ∙ b (66)

where b is the wingspan.
The lift coefficient CL is obtained by dividing the lift by q∞Sref ,

CL ¼ ρU∞Γð Þ ∙ b
q∞Sref

(67)

where q∞ is the dynamic pressure (q∞ ¼ 1=2ρU2
∞) and Sref is the reference wing

surface.
Table 2 shows the values of the main parameters obtained from the tip vortex

analysis, including the lift coefficient, CL:

11. Conclusions

Wingtip vortices generated behind an aircraft wing affect the aerodynamic
performance of the aircraft while endangering take-off and landing maneuvers of
the subsequent aircraft.

In this chapter, it is reviewed the theoretical background of the horseshoe vortex
and several vortex models applied to a Biomimetic Micro Air Vehicle (MAV) with
Zimmerman planform. The formulation of the vorticity in the wingtip wake of the
MAV model has been presented as well as the expression which relates the axial
vorticity and the circulation.

All experimental tests have been carried out in the Low-Speed Wind Tunnel of
the Instituto Nacional de Técnica Aeroespacial (INTA) with a full-scale MAV
model. Particle Image Velocimetry has been used to obtain the transversal flow field
at 3 chords downstream of the trailing edge of the MAV model. The swirl velocity
distribution according to the horseshoe vortex model and several vortex models
(Rankine, Lamb-Oseen, Scully, and Vatistas) is plotted. The experimental results
have shown that the Scully vortex has the most similar behavior to the MAV wing

Parameters MAV model

Location x = 3 chords

α °ð Þ 0

β °ð Þ 0

U∞ m=sð Þ 10

rc (mm) 4.70

Vθmax (m/s) 7.69

Γ(m2=sÞ 0.45

CL 0.72

Table 2.
Results of the tip vortex analysis in the wake of MAV.
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vortex. The distribution of the transversal velocity as well as the axial vorticity for
the section at 3 chords are presented by PIV maps. Finally, the lift coefficient by
using the Kutta-Joukowski theorem is obtained.
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