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Chapter 1

Introductory Chapter: Landslides
Ka Po Wong, Yuanzhi Zhang and Qiuming Cheng

1. Introduction

1.1 Concept of landslides

Landslides, one of the catastrophic events on earth, can cause extensive impacts, 
for instance, loss of human life, destruction of infrastructures and residential 
developments, and damage to cultural and natural heritage [1]. Landslides occur 
when massive rocks, sand, debris, or a combination of these move downslope, also 
known as slumps and slope failure. Table 1 demonstrates the types of landslides 
movement, namely, falling, toppling, rotational sliding, translational sliding, lateral 
spreading and flowing [2]. Most landslides occur in mountainous regions; however, 
the incremental human activities in the natural environment lead to landslides in 
low-relief areas, such as roadways, river bluff failures, and building excavations. 
Each occurrence of the landslide has multiple causes (see Table 1).

2. Causes of landslides

The leading causes and triggering mechanisms of landslides are physical, natu-
ral and human causes [3]. The physical causes include intense rainfall, prolonged 
intense precipitation, flooding, the rapid drawdown of floods and tides, rapid 
snowmelt, earthquake, volcanic eruption, thawing, freeze-and-thaw weather-
ing and shrink-and-swell weathering. Natural causes consist of geological and 
morphological causes. Geological causes include sensitive materials, weathered 
materials, sheared materials, fissured materials, adversely oriented mass discon-
tinuity and structural discontinuity, and contrast in permeability and contrast 
in stiffness. Morphological causes consist of tectonic or volcanic uplift, glacial 
rebound, glacial melt-water outburst, fluvial erosion of slope toe, wave erosion 

Type of movement Type of material

Rock Debris Earth

Falls Rockfall Debris fall Earth fall

Topples Rock topple Debris topple Earth topple

Slides Rotational Rock slump Debris slump Earth slump

Translational Rock slide Debris slide Earth slide

Spreads Rock spread Debris spread Earth spread

Flows Rock flow Debris flow Earth flow

Complex Combination of two or more types of landslide movement

Table 1. 
Types of landslide movement.
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of slope toe, glacial erosion of slope toe, erosion of lateral margins, subterranean 
erosion, deposition loading slope or its crest and vegetative removal by forest 
fire and drought [3]. The human causes include rock, soil and slop excavation, 
unstable earth fills, loading of slope or its crest, drawdown and filling of reser-
voirs, deforestation, irrigation, mining waste containment, artificial vibration 
and water leakage from utilities. Human interventions in the natural environment 
trigger landslide, leading to the increase in the frequency of landslides and the 
severity of the damages and casualties [4]. Despite the various types of causes of 
landslides, the three main causes of the most damaging landslides in the world are 
slope saturation by water (i.e. severe rainfall), seismic activities with extremely 
high magnitude in steep landslide-prone areas and volcanic activities [5, 6]. The 
1964 Alaska Earthquake triggered widespread landslides, causing massive mon-
etary loss and loss of life [5]. An eruption in Mount St. Helens in 1980 triggered a 
severe landslide [6]. The sudden lateral shock wave hundreds of miles away made 
the top of the volcano 1,300 feet away. The shock wave and pyroclastic flow passed 
through the surrounding landscape, flattening forests, melting snow and ice, and 
creating massive mudslides [6].

3. Landslides in different types

Landslides that occur in urban areas can destroy infrastructures, for example, 
roads, residential buildings and public power supplies. Rainfall-induced landslides 
are ubiquitous in many metropolitan cities [7]. Most landslides caused by rainfall 
are shallow (i.e. less than a few meters deep), small in size, and moving quickly. 
Many rainfall-induced landslides turn into mudslides as they move along steep 
slopes, especially those entering the river, where they may mix with additional 
water and sediment. Apart from the landslide in the urban area, during the life 
of the reservoirs, some ancient landslides can be reactivated, and potential new 
landslide can be triggered in the reservoir areas [8]. The failure of the landslides 
is affected by the increase in pore water pressure and the decrease in the average 
effective stress. It is considered as a complex slope instability phenomenon because 
landslides show obvious kinematics in the failure, post-failure and propagation 
stages [9]. Landslide can also be caused by volcanic activities in which volcanic gas 
explosions can be triggered [10]. These landslides can form dams, block rivers and 
bury roads, bridges and houses. Tsunami, which is the results of submarine earth-
quakes and collapse of coastal volcanoes, can also be triggered by underwater and 
coastal landslides, like the 1980 Mount St. Helens eruption. When a fast-moving 
landslide body enters the water or the water is displaced before, and after the fast-
moving underwater landslide, a tsunami may be generated upon impact [11].

4. Remote sensing and GIS applications

Numerous researchers have adopted landslide detection techniques to identify the 
landside boundaries on the land surface. The conventional techniques for landslide 
detection are geomorphologic field survey and visual analysis of aerially surveyed 
images (i.e., orthophotographs) [12]. The purposes of geomorphologic field survey 
and mapping are to detect and map landslides caused by earthquakes and other spe-
cific events, observe the types and characteristics of landslides to improve the visual 
quality of satellite images or orthographic images and investigate and verify the 
existing slope evolution inventory map developed using different methods [12]. Due 
to the reduction in the visualization of slope failure and the limited ability of accurate 
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information of the landslide boundary, there are defects in the field mapping of the 
landslide [12]. Visual analysis of aerially surveyed images is the oldest remote sensing 
methodology for detecting landslides. This method is unreliable; however, visual 
analysis of aerial images have widely been used due to the fact that experienced geo-
morphologists can effortlessly map and identify landslides on aerial images, trained 
geomorphologists do not need complex technical skills to obtain aerial photographs, 
the scale and the size of the aerial survey images allow for an extensive spatial range 
of terrain with a feasible number of images, and due to the large number of aerial 
survey photographs from the 1950s, investigators were able to analyze slope failures 
in the same area. The recent techniques developed for landslide detection are analysis 
of surface morphology using a high-resolution digital elevation model (HR-DEM) 
and investigation and analysis of satellite imagery (e.g. panchromatic band images, 
multiple band images, and radar). Surface morphology using HR-DEM is a sophis-
ticated form of high spatial resolution image which is invisible to the naked eye [13]. 
HR-DEM is derived from airborne LiDAR data in the south and satellite images in the 
north. Satellite images of the landslide occurrence were demonstrated by modifying 
the model and the cover type and electromagnetic radiation from VIS to SWIR of 
the earth surface [14]. Furthermore, deep learning is the recent trend for landslide 
investigation using remotely sensed images and can be used for surface classifica-
tion, transformation detection and object detection [15]. To improve the target of 
remote sensing-based application, using deep learning methods to achieve the latest 
results based on computer vision. Geographic Information System (GIS) was used 
to view different types of information simultaneously since maps and other forms 
of information are sometimes superimposed on each other using GIS [16]. Different 
types of information are used for constructing layers in GIS analysis, including the 
topographic map, terrain map, bedrock map, engineering soil map, forest cover map, 
aerial photography remote sensing and InSAR imaging [16]. The topographic map is 
used to indicate the gradient of slopes, configuration of terrain and drainage pattern.

The terrain map is to identify depth, material, terrain configuration, geological 
processes, the surface of drainage and slope gradient. The bedrock map can identify 
the types of bedrock, surface and subsurface of the structures and rock age over a 
topographic map base. The engineering soil map is used to identify the types of sur-
ficial material type, drainage and the covers of soils and vegetation. The forest cover 
map can identify the surface of vegetation, topographic features, surface drainage 
pattern, and soil drainage character. The identifiable features on aerial photographs 
can help users identify the type of landslide and reasonably evaluate the overburden 
features. These, in turn, provide a method for estimating the hazard of landslides 
on site. Most InSAR devices can penetrate fog and rain and can be used in difficult 
areas to reach on foot. Two satellite images can be merged to demonstrate the 
ground displacement for indicating any movement that occurs. Thus, the users can 
use this means to determine if the hillside moves.

5. Landslide risk assessment and management

To mitigate the damage brought by landslides, governments and related depart-
ments corporate to develop landslide risk assessment and management to address 
the uncertainty of the landslide hazards [17]. Recent landslide risk analysis and 
assessment provided a systematic and rigorous slope engineering practice and man-
agement. The framework of a landslide risk assessment and management consists 
of the estimation of the risk, the decision of acceptance level and the measures to 
control the unacceptance level of landslides. The issues required to be addressed 
are the probability of the occurrence of the landslide, runoff behavior of debris, 
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risk threatening human and property and vulnerability assessment of human and 
property. Morgan et al. [18] generated the formulas for computing the annual prob-
ability of loss for an individual life (Eq. (1)) and property value (Eq. (2)).

 ( ) ( ) ( ) ( ) ( )DI H S|H T|S L|TR P P P V= × × ×  (1)

where R(DI) is the annual probability of loss of an individual life; P(H) is the 
annual probability of the landslide event; P(S|H) is the probability of spatial impact 
given the event; P(T|S) is the probability of temporal impact given the spatial 
impact; and V(L|T) is the vulnerability of the individual (probability of loss of life 
given impact).

 ( ) ( ) ( ) ( )R PD P H P S|H V P|S E= × × ×  (2)

where R(PD) is the annual loss of property value; P(H) is the annual probability 
of the landslide event; P(S|H) is the probability of the landslide impacting the 
property; V(P|S) is the proportion of property value lost; E is the element at risk 
(e.g. the value of the property).

6. Landslide measures

Several measures have been implemented. Artificial slope upgrading is a signifi-
cant engineering work to improve and enhance the slope [19]. This practice is based 
on four main principles, namely removal, reinforcement, retention and replace-
ment. There are four standard practices: fill slopes, soil cut slopes, retaining walls, 
and rock-cut slopes. For fill slopes, substandard fill slopes usually contain loose 
filling materials that tend to liquefy when they become saturated and subjected to 
shear. It needs to install soil nails through filling materials and provide a surface 
grid to connect the soil nail heads [19]. Existing trees can be preserved during the 
construction process. The soil nails are embedded in the influential underground 
stratum to ensure sufficient anchorage to prevent pulling out. Regarding soil cut 
slopes, trimming the slopes to a gentler profile is the usual method. The main 
construction activity is the excavation and removal of soil material from the slope 
[20]. Further, retaining walls for restraining the soil are usually used in steep slopes 
or the landscapes required to be shaped for engineering or construction works [21]. 
Gravity walls, pilling walls, cantilever walls and anchored walls are the common 
types of retaining wall as a landslide solution. The type of wall to be adopted is 
based on the circumstances, and the critical factors are soil type, slope angle, 
groundwater, and go on. For rock cut slopes, this construction practice is to upgrade 
the existing rock cut slopes [22]. The stabilization practices are scaling rocks, 
buttresses, dentition, rock dowels, rock bolts, rakings drains and mesh netting 
[22]. Importantly, all these practices are to keep the slope safe and make them look 
natural so that people can live in a safer and better environment.

7. Summary and future perspective

The research related to the types and causes of landslides have been investi-
gated over time and the findings are similar. More regions are recommended to be 
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assessed to ameliorate the accuracy and generalizability of the previous findings. 
Furthermore, machine learning and deep learning methods have popularly been 
applied in the landslide susceptibility mapping and landslide identification. The 
overall robustness of the results generated from machine learning and deep learn-
ing is outstanding. Therefore, adopting machine learning and deep learning in 
detecting landslides is utterly significant for preventing landslides since human and 
property losses can be mitigated.
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Chapter 2

The Effect of Aspect on Landslide 
and Its Relationship with Other 
Parameters
Seda Cellek

Abstract

Aspect is one of the parameters used in the preparation of landslide susceptibility 
maps. The procedure of this easily accessible and conclusive parameter is still a matter 
of debate in the literature. Each landslide area has its own morphological structure, 
so it is not possible to make a generalization for the aspect. In other words, there is no 
aspect in which landslides develop in particular. Generally, landslides occur in areas 
facing more than one direction. The biggest reason for this is that those areas are 
under the influence of other parameters. Therefore, it is wrong to evaluate the aspect, 
alone. Since it is a part of the system, it should be evaluated together with other 
conditioning factors. In this research, many landslides susceptibility studies have 
been investigated. The directions and causes of landslides have been determined from 
the studies. In addition, the criteria of the used aspect classes have been investigated. 
In the literature, the number of class intervals chosen, and their reasons were inves-
tigated, and the effects of this parameter were tried to be revealed in new sensitivity 
studies.

Keywords: Landslide, susceptibility, aspect, parameter, classification

1. Introduction

There are many different definitions of aspect in the literature. These definitions 
are made in three ways: by direction, by maximum variation, and by degree. The first 
definition group is the most commonly used. The concept of direction is to the come 
to the forefront. According to some researchers, the aspect at a point on the land 
surface is the direction that the tangent plane passing through that point faces and is 
expressed in degrees (the angle defined in the clockwise direction from the north) 
[1]. In its simplest form, the aspect is a data type that expresses the geographical 
direction in which the slopes develop.

According to the second definition, the aspect represents the maximum slope 
direction of the land surface [2]. Or, for any point, the aspect represents the direc-
tion of the maximum variation of the degree of variation of the height value [3]. 
According to some researchers, it is defined as the compass direction of the maxi-
mum rate of change [4, 5]. According to some researchers, it can also be defined as 
the slope direction, which defines the downward direction of the maximum rate 
of change in maximum, or as the dip direction, which defines the downward slope 
direction of the maximum altitude change rate [6, 7].
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According to the third and last definition, the expression of the directions in 
degrees is in the foreground. Aspect defined it as the clockwise faces of a slope vary-
ing between 00 and 3600, measured in degrees from the north [8, 9]. Generally, the 
aspect ranges from 0° to 360° and are handled as 45° groups, and the directions are 
grouped clockwise as north, northeast, east, southeast, south, southwest, west and 
northwest.

An aspect map shows both the direction and grade of a terrain at the same time. 
Therefore, it is an important factor in the analysis and production of landslide 
susceptibility maps. In the literature, there are many studies that accept and use 
aspect, landslide, as the main conditioning factor [2–12]. While some authors 
[13–16] consider landslides as a controlling factor, others [17, 18] do not see it as a 
conditioning factor. While some researchers say that aspect has no significant effect 
on landslides [19], some researchers have also argued that there is an important 
relationship between slope aspect and landslide occurrence [20]. According to most 
researchers, aspect has an indirect effect on landslide [21]. While some researchers 
associate this relationship mainly with precipitation [22–31], others have associated 
this with the general morphological trend of the area [27, 32]. According to most 
researchers, it has been argued that the relationship between landslide and aspect is 
also related to the dominant wind direction [33–35]. Some researchers, on the other 
hand, consider the effect of the aspect on the landslide, the general precipitation 
direction of the region, freeze–thaw, sunlight [35], longer snow retention on sun-
drenched slopes, moisture retention, soil type, permeability, porosity, moisture, 
organic components, land and vegetation (forest, grassland, bushland, farmland), 
evapotranspiration [36], evaporation transpiration, climatic season, rock structure 
[37], It explains that factors such as discontinuities and fault orientation decrease 
the slope stability [10, 11, 24, 28, 30, 32, 38, 39]. Many parameters are used in 
landslide susceptibility studies, but it is stated that there are very few parameters 
that are thought to have a direct effect on landslides. The aspect parameter has also 
been investigated for a long time [3, 16, 28, 40–43], but it is one of the parameters 
on which no consensus can be reached [3, 44–47]. In the examined studies, it was 
determined that the aspect parameter indirectly affects the landslide. It is thought 
that this parameter triggers the landslide together with other parameters. Some 
researchers, especially in their studies on small-scale landslides, have determined 
that the angle with the slope affects the stability negatively [48–50]. Many research-
ers state that aspect is as effective as slope in the formation of landslides [11–13, 23, 
24, 28, 30, 45, 51–55]. Apart from slope, aspect is one of the most important param-
eters in preparing hazard and zoning maps [13, 23, 24, 28, 30, 54].

As seen from the studies examined, the aspect parameter is a parameter that 
differs in each study area. For this reason, it has been interpreted that it should be 
examined together with other parameters rather than being an effective parameter 
in terms of landslide susceptibility alone [46]. According to Ramakrishnan et al. 
[56] stated in their study that different types of mass movements (plane, wedge, 
slope and soil slide) play an important role in control. However, there is no determi-
nation as to the extent to which the bee affects the landslide susceptibility.

In studies, landslides must be concentrated on slopes with a certain orienta-
tion in order to take into account the aspect. In many studies, researchers have 
determined that landslides are concentrated on slopes with certain orientations in 
their statistical evaluations [13, 22–30, 51, 57]. However, there are studies using 
the parameter in studies conducted in areas with equal landslide distribution in 
all directions. Generally, in such a finding, the lowest score is given to the aspect 
parameter.

The aspect factor is controlled by the climate process. Elevation and slope angle 
are also effective factors on this parameter. On the other hand, there are processes 
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controlled by the aspect factor. The most important of these is plant ecology. This 
is followed by forestry, site selection and planning. Land morphology is under the 
influence of structural elements. It takes a long time to change. The biggest factor 
controlling the view is the structural and dynamic morphological conditions that 
form the silhouette of the field from past to present [58].

Although there are parameters that are agreed upon among researchers in the 
literature, look is not among them. For this reason, with this study, the relationship 
between aspect and landslide was tried to be revealed and this uncertainty in the 
literature was examined.

2. Effect on other parameters and landslide

It is stated that the parameter contributes to the landslides by affecting other 
parameters. Since wind direction causes precipitation intensity and erosion of 
sun-facing slopes, aspect indirectly affects landslide [33, 34]. Although it is stated 
in the literature that the effect increases with the angle of slope and elevation, the 
effect on landslides is mostly mentioned together with the climatic conditions. 
Aspect parameter is generally in close relationship with climatic conditions [59]. 
The parameter determines the effect of rain direction, amount of sunlight, solar 
heat, soil moisture, wind and air dryness [39, 60]. Since it controls the soil moisture 
concentration with the effect of climate, it is considered as an important factor 
indirectly triggering landslides [61–63]. Therefore, due to its morphology, how the 
aspect factor affects the climatic parameters by modifying it should be correlated.

The conditions for the slopes facing different directions to be affected by 
atmospheric events such as precipitation, sun, light, freeze–thaw are also differ-
ent. Therefore, it is possible to evaluate the relationship of the parameter with the 
climate in 3 parts. These are precipitation, sun and wind.

2.1 Aspect-precipitation relationship

The most important factor affecting aspect is precipitation. Most of the 
researchers studying the aspect parameter associated landslide with precipitation. 
In the literature, there are studies that argue that slopes that receive precipitation 
and are in the shade are more susceptible to landslides. In the literature, there 
are researchers who stated that landslides are very common on the slopes where 
monsoon precipitation falls more frequently in the study areas [2, 35, 64–66]. After 
exposure to physical weathering during the dry season, they are prone to landslides 
with the emergence of strong monsoon precipitation and winds [67]. In their study 
in Greece, Alexakis et al. [68] and Kouli et al. [69] determined that the slopes facing 
northeast and northwest received heavy rainfall and the most landslides were 
observed here.

If precipitation exceeds the threshold value in an area and the area is unstable, 
landslides are likely to occur. In this respect, precipitation should be considered as 
a triggering factor and aspect as a preparatory factor. Critical slope angle values 
of soils in dry and saturated conditions are examined. It has been determined that 
the saturation or dryness of the soil affects the critical slope angle by about 40%. 
In this case, the slopes receiving the most precipitation were considered the most 
dangerous, and the slopes receiving the least precipitation were considered the least 
dangerous [27, 70].

The reason for the fact that landslides are significantly higher on a slope facing 
any direction compared to the others is that the torrential rains and heavy rains 
that developed during the landslide occurred along a line from that direction. 
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For this reason, it can be observed that landslides are more intense on slopes that 
receive heavy rainfall. This depends on the infiltration capacity, which is controlled 
by many factors such as the type of soil, its permeability, porosity, moisture and 
organic matter content, vegetation and the season in which precipitation occurs. 
Slopes that receive precipitation reach saturation more quickly and cause higher 
pore water pressure to develop within the soil. As a result, the pore water pressure 
on these slopes increases [11, 42, 67, 71, 72].

2.2 Aspect-snow water/freeze: thaw relationship

It has been determined that there is a negative effect on the landslide mecha-
nism in the form of the reason that the snow cover stays longer in the places that 
are not exposed to the sun and the water holding capacity increases accordingly 
[20, 73–76]. Avcı [76] determined that in the Esence Stream Basin, which is the 
study area, the south-facing slopes receive plenty of precipitation with the effect 
of the facade systems, this precipitation falls in the form of snow in the winter 
season, and the increase in the amount of snow melts and precipitation in the 
spring season facilitates the landslides.

Landslides occurring in a certain slope direction are associated with long-term 
freezing and thawing movements [20, 73, 77]. In certain directions it is associated 
with increased snow concentrations and thus longer times for freeze and thaw 
action and intense erosion [77].

2.3 Aspect- solar radiation and wind relationship

Calligaris et al. [78] defined the aspect as the reflection of the sun’s insolation. 
Aspect affects solar radiation and therefore temperature. Aspect affects the amount 
of heat energy taken from the sun and thus water loss by transpiration and evapora-
tion [79]. The slopes that are most exposed to the sun’s rays reveal evapotranferance 
[9]. This affects the soil moisture in the ground. In addition, evaporation affects 
vegetation distribution and type. In the literature, there are researchers who 
determined that landslides occur more intensely on slopes that are more exposed 
to sunlight [9, 11, 35, 39, 42, 71, 72, 80, 81]. In the literature, there are studies that 
determine that slopes that receive sun are more prone to landslides than slopes that 
receive rain. Bijukchhen et al. [82] determined that in their study areas, in general, 
slopes sloping towards the sunlight and precipitation region have a higher landslide 
hazard propensity compared to the slope in the rain shadow. Although this param-
eter is usually evaluated together with the aspect, Görüm [83] determined in her 
literature research that 72 studies used aspect and 3 studies used sun exposure as an 
input parameter.

Remondo et al. [84], on the other hand, used the values on this date in their 
studies for landslide susceptibility assessment, since 21 March will be the most sun 
exposure. Tasoglu et al. [85], in their work; they determined that it was exposed to 
direct sunlight in east, southeast, south and southwest directions and sunlight was 
quite effective in inducing landslides.

Like exposure to sunlight, the drying wind also controls soil moisture concentra-
tion. This is a determinant of landslide occurrence [61, 62, 67, 71]. Slope exposure 
shows possible effects of prevailing winds, differential weather and related effects.

2.4 Aspect-geology relationship

Lithology: indirectly, it triggers the landslide together with the view. Afungang 
et al. [86] determined that thick pyrolastics as debris in the study areas were more 
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susceptible to landslides in windward slope directions. Yeşiloğlu [87] evaluated 
the effects of lithology and landslide together in his study. An aspect map has been 
created to be used in the evaluation of the relationship between the production of 
debris material from limestones and aspect. According to Ayalew et al. [70] stated 
in their study that the distribution of landslides in regions close to the oceans 
increases with the effect of wave effect, weathering and subsequent coastal erosion.

Along with the fault, there are also those who research the effect of the landslide 
on the landslide, there are also those who research the effect of the landslide on the 
landslide. There are researchers who observed that landslides intensified in certain 
slope directions before and after the earthquake in the study areas [2, 39, 88, 89].

Guillard and Zezere [90] stated that south-facing slopes receive more sunlight 
than north-facing slopes in their study area, but since the geological structure of 
the area is characterized by a monocline dipping to the south and southeast, more 
landslides occur on south-facing slopes.

2.5 Aspect- vegetation cover relationship

Aspect plays an important role in stability assessment; because it controls 
vegetation distribution, type, density and root growth on a land [11, 39, 80, 91]. 
It also controls moisture content in soil and vegetation growth due to exposure to 
sunlight, which also affects soil strength, landslide, infiltration and run-off rates 
[63, 92]. Dahal [93] added aspect data in his research for the purpose of detecting 
plant propagation and increasing the accuracy rate according to the aspect effect in 
the study area.

Champati ray et al. [94] and Srivastava et al. [95] found that most of the south-
facing slopes in the Himalayan study areas were devoid of or have insufficient 
vegetation due to low soil moisture, which plays an important role in the assessment 
of slope stability in their field. On the other hand, the north side is less exposed to 
the sun’s rays, thus conserving the moisture in the soil. For this reason, taller trees 
are growing, which tends to stabilize the northern slope. The absence of vegetation 
provides the slope material with dryness and therefore reduces its adhesion strength.

3. Relation of aspects to each other

During the literature review, it was determined that while more intense 
landslides were observed on the slopes facing one direction, less landslides were 
observed on the opposite side of this direction. Since the “south, southeast, 
southwest and west” aspects are generally warmer in Turkey, they are called sunny 
aspects. On the contrary, “north, northeast, northwest and east” aspects are also 
called shaded aspects because they are cooler. The sun exposure times of these two 
groups differ markedly. Since the slopes facing south and west are more exposed to 
sunlight, evaporation is rapid in these regions. Otherwise, since evaporation is slow 
and the soil stays moist for a long time, the risk of flooding is higher on north and 
east facing slopes in case of excessive precipitation [96]. Again, in his field study 
in Turkey, Ozsahin [97] determined the probability of the highest landslide occur-
rence as N and W directions and stated that the humidity was relatively higher on 
the slopes facing these directions.

3.1 South (S)

In areas where landslides occur on the south side, a higher amount of solar 
insulation occurs. On slopes with higher insulation and higher temperatures, 
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erosion increases. Areas where vegetation is removed are exposed to direct sunlight, 
creating drier soil conditions, which increases the likelihood of landslides [98]. 
According to Devkota et al. [47], Hong et al. [99] and Chena et al. [11], most of the 
landslides occurred on the slopes facing south and southeast in the study areas. The 
biggest reason for this is that the highest precipitation rate is seen on the south-
facing slopes. Meinhardt et al. [65] determined that the water saturation of the 
slopes increased with the effect of southwest monsoon rains in the study areas and 
the highest slip density was found in the south and southwest. Tombus [100], on the 
other hand, determined in his study that the erosion value is higher on slopes facing 
south than on slopes facing other directions.

3.2 North (N)

In the studies conducted in the Black Sea, it was observed that landslides were 
intense on the slopes facing north. The reason is that the region is under the influ-
ence of precipitation from the north and north-facing slopes are more affected 
by precipitation. From this, it can be concluded that the air currents coming from 
the sea in the study areas close to the sea will affect more areas in the region. It is 
known that the Black Sea receives more precipitation than the north due to the high 
evaporation of precipitation. For this reason, north-facing slopes are examined as 
the most dangerous in terms of soil saturation in the study area, and south-facing 
slopes are examined as the least dangerous. [101, 102]. According to Hadji et al. [9] 
determined that the slopes in the study area are mostly in the north-facing direc-
tions. In addition, they determined that the most precipitation in winter comes 
from the northwest. They also determined that they affect the clays in the ground 
and therefore trigger landslides.

3.3 South (S)-North (N)

In their study, Lineback et al. [103] found more landslides in the north and 
northwest-facing directions than in the south-facing directions. They stated that 
the southern parts remained drier as the reason for this. Wang and Unwin [104], 
on the other hand, found evidence in their study that the probability of slipping 
increases in the north-facing slope direction. As justification, they showed that 
the main precipitation directions in the Zagros Mountain Belt are north and west, 
and the main solar direction is east and south [105]. According to Saha et al. [4] 
determined that, in general, south-sloping slopes have less vegetation density than 
north-facing slopes, and therefore they are more sensitive to landslide activity in 
the study areas. On the other hand, Marston et al. [106] observed that, due to geo-
graphical conditions, north and west facing slopes have a higher moisture content 
for a longer period of time and cause higher landslide susceptibility in their study 
area. They emphasize that exposed soil on south-facing slopes is subject to cycles 
of wetting and drying, thereby increasing landslide activity in the Himalayas [20]. 
According to Rahman et al. [79] found that south-facing slopes were more exposed 
to the sun and north-facing slopes were least exposed to the sun in their study area.

As a result, they determined that the north direction and the least south direc-
tion were sensitive to landslides in their fields. They showed that the reason for 
this is that it takes longer time for the soil to dry in the shaded areas on rainy days. 
According to Akinci et al. [107] found that in the study areas, the slopes are more 
north-oriented and again, landslides occur mostly in this direction. They stated  
that these slopes are more humid with the effect of aspect, while the temperature 
and evaporation are low on the slopes facing north, and the soil moisture is high.  
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In addition, they stated that the amount of precipitation and snow melts are high 
on the southern slopes. Afungang et al. [86] found that north and northwest-facing 
slopes at higher altitudes received more precipitation and sun than south-facing 
slopes. Therefore, it was determined that the southwest-facing slopes were drier, 
less windy, and received less solar radiation with less landslides. Champati ray 
et al. [94] and Srivastava et al. [95], in their study in Himelaya, found that more 
landslides occurred on the southern front compared to the northern front. Temiz 
[101] and Yalçın [102], on the other hand, determined that north-facing slopes were 
the most dangerous in terms of soil saturation in the study area, and south-facing 
slopes were the least dangerous.

4. Aspect classes

The reasons for the change in the number of class intervals can be counted as the 
slopes being oriented in a certain direction, the absence of landslides in some direc-
tions or the presence of very few pixels. It is usually given to flat areas such as lakes 
and seas [20]. For example, the probability of landslides in “flat” areas is almost 
zero [34]. However, Yeşilnacar and Topal [108] with Çevik and Topal [109] stated 
that the landslides in the study area occurred equally in different slope orientations 
and emphasized that it is not an effective parameter in their studies. Aspect is mea-
sured clockwise towards north and takes positive values between 0 and 360 degrees. 
Aspect is measured clockwise towards north and takes positive values between 0 
and 360 degrees. In order to create a slope orientation map, on the basis of 4 main 
geographical directions and these main directions (NE, NW, SE and SW), which of 
these directions the slopes face in the study area and their relations with the direc-
tions of the landslides are determined [101, 102]. It indicates 0° north, 90° east, 180° 
south and 270° west [32]. In the landslide analysis, a categorical structure is formed 
according to 450 angles. When the researchers grouped the slope orientation values 
in their studies, they determined which orientations the landslides intensified. The 
perspective angles and values made in the studies are given in Table 1.

In studies, very different grade ranges from 4 to 10 are used. According to the 
literature, the most preferred 8 grade ranges.

Some researchers preferred to use 4 main aspects in the aspect parameter they 
used in their studies. There are researchers who use the aspects divided into 4 groups 
in their studies in different ways. According to Temesgen et al. [110] used 4 cardinal 
directions: north, south, east and west. Özşahin and Kaymaz [111] have 4 classes; 
they used it by arranging it as straight/N-NE-NW/S-SE-SW/E-W. There are studies 
that use the aspect by classifying it in 5 ways [6, 97, 105, 112].

In the literature, three different directions were found in the 5-category. The first 
of these; flat (−1°), north (315°-360°, 0°-45°), east (45°-135°), south (135°-225°) 
and west (225°-315°) [113]. The second classification is; (1) SW 1810–2250, (2) SE 
1360–1800, (3) ESE 910–1350 and SWW 2260–2700, (4) NEE 460–900 and WNW 

North Northeast East Southeast

00–22.50, 337.50–3600 22.50–67.50 67.50–112.50 112.50–157.50

South Southwest West Northeast

157.50–202.50 202.50–247.50 247.50–292.50 292.50–337.50

Table 1. 
Slope directions and angles.
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2710–3150, (5) NNE 00–450 and NWN 3160–3600 [74]. The third and final classifica-
tion is; It is flat, NE, SE, SW and NW [50].

Aspect maps divided into 6 classes are very common in the literature. Kumtepe 
et al. [114] prepared this classification as 0–60°, 60–120°, 120–180°, 180–240°, 
240–300°, 300–360°.

The second most preferred classification in the literature is 8 classes prepared 
with groups of 450 divided into equal class intervals [35, 43, 45, 54, 65, 79, 94, 95]. 
This classification; N (337.5–22.5), NE (22.5–67.5), E (67.5–112.5), SE (112.5–157.5), 
S (157.5–202.5), SW (202.5–247.5), W (247.5–292.5) and NW (292.5–337.5) [37]. 
Ramakrishnan, et al. [56], on the other hand, arranged the 8-class classification dif-
ferently as 45–90, 90–135, 135–180, 180–225, 225–270, 270–155 and 315–360 degrees.

Figure 1. 
Distribution of class range values used according to the literature.

Figure 2. 
Distribution of landslide areas according to directions.
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According to the literature, the most preferred classification is groups of 9  
[11, 32, 47, 52, 53, 66, 68, 69, 71, 87, 93, 95, 109, 102, 113]. In studies, this classification 
is; flat area (−1°), north (337.5° -22.5°), northeast (22.5° -67.5°), east (67.5° -12.5°), 
southeast (112.5° -12.5°) 157.5°), south (157.5° -202.5°), southwest (202.5° -247.5°), 
west (247.5° -292.5°), and northwest (292.5° -337.5°) [49, 46, 67, 73]. According to 
Rozos et al. [74] is this group; They used NNE, NEE, SEE, SSE, SSW, SWW, NWW, 
NNW, as flat shapes. The interesting thing about this classification is that the surface 
is displayed from 2 different angles.

The graph in Figure 1 was prepared using the literature data. It is seen that the 
most used classification is the groups of 56% and 9 percent. Again, it is seen from 
the graph that the group of 1 to 4 is the least used class.

According to the literature, the most used direction classes are given in 
Figure 2. The direction of the landslide areas varies according to the study areas. 
However, in the studies examined, it is understood that the directions where 
landslides occur most are the slopes facing south and west. The probability of 
landslides in other directions is almost equal. In some studies, landslides were 
encountered at an equal level in all directions.

5. Conclusions

In this study, the use of aspect parameter in landslide susceptibility studies 
and its effect on landslide were investigated. It is one of the parameters that can-
not be agreed upon by the researchers. While some researchers associate landslide 
occurrences in the study area with this parameter, some researchers argued 
that landslides are equally distributed in all directions and that the parameter is 
ineffective.

It is a fact that this parameter should not be evaluated alone, as in other param-
eters. The parameter is the predisposing factor for the triggers. One of these triggers 
is precipitation. There are many studies showings that intense landslides occur on 
slopes that receive rainfall. Climatic events such as sun, wind, snow water, freeze–
thaw are also associated with the aspect parameter. The other two parameters most 
associated with climatic factors are geology and vegetation.

The other subject discussed in the study is the relationship of the directions with 
each other and with the landslide. The most common landslides seen in the studies 
examined are south and north directions. There is an opposite relationship between 
them. If there are frequent landslides on the south-facing slopes, there are almost 
no landslides on the north-facing slopes. Again, on the contrary, if landslides are 
concentrated on the north-facing slopes, landslides are not expected in the southern 
part. If a landslide occurs more in the south, it is associated with sun exposure, 
drought and lack of vegetation. Those occurring in the north are mostly evaluated 
by heavy rainfall, humidity and the water holding capacity of the soil.

Finally, the class ranges used in the literature are included in the study. Aspects 
used in the literature. In the studies, this classification is; flat area (−1°), north 
(337.5° -22.5°), northeast (22.5° -67.5°), east (67.5° -12.5°), southeast (112.5° -12.5°) 
157.5°), south (157.5°) ° -202.5°), southwest (202.5° -247.5°), west (247.5° -292.5°) 
and northwest (292.5° -337.5°). Depending on the user’s preference, some prefer 
the main classes, while others include intermediate aspects in their work. Some 
studies do not include aspects that do not appear to have landslides in their studies. 
In this way, various classifications such as 4, 5, 6, 8 and 9 are used. While the most 
preferred 9 classes are the least preferred groups of 4. With this study, the use of the 
aspect parameter in landslide susceptibility studies and its effect on the landslide 
together with other parameters were revealed.
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Abstract

Generally, soil characteristics have a significant influence on landslide
occurrence. This issue has, however, not yet been adequately analysed in Kigezi
highlands of South Western Uganda. In this study, soil properties such as disper-
sion, grain size distribution, Atterberg limits, shear strength and clay mineralogy
were analysed to establish their contribution to the spatial distribution of landslides
in Kigezi highlands. The results demonstrate that deep soil profiles ranging between
2.5 and 7 meters were dominated by clay-pans at a depth between 0.75 and 3 meters.
Although the uppermost surface horizons of the soil profile are loamy sand, the clay
content is more than 35% especially in the sub soil. This suggests that the soil
materials are Vertic in nature. In addition, the upper soil layers predominantly
contain quartz, while subsurface horizons have considerable amounts of illite as the
dominant clay minerals, ranging from 43–47%. The average liquid limit and plas-
ticity index was 58.43% and 33.3% respectively. Besides, high average computed
weighted plasticity index (28.4%) and expansiveness (38.6%) were obtained. These
soil characteristics have great implication on the timing and nature of landslide
processes in the study area. A change in soil material due to varying moisture
content is thought to be a major trigger of landslides in Kigezi highlands of
South Western Uganda. This understanding of soil characteristics is a key step in
mitigating landslide hazards in the area.

Keywords: soil properties, landslide occurrence, Kigezi highlands

1. Introduction

Landslides are among the major life threatening global natural disasters that
cause great environmental and developmental challenges [1]. Landslides normally
occur on terrains with steep slopes [1, 2]. Slope failures are attributed to factors like
topography, geotechnical properties of the material as well as the existence of
discontinuities [3, 4]. Most of these factors are specific to particular areas and thus,
site-specific studies are important [2]. In Ref. [5] noted that soil types and soil
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texture are primary-level factors, while elevation, land cover types, and drainage
density are next in terms of landslide inducement. In [6] the low permeability of
fine textured clayey soils exacerbates the vulnerability to landslides. This is due to
increased saturation and pore water pressure which reduces soil shear strength [1].
In [7] it is also noted that landslide occurrence is common in regions where sandy
clay loams are underlain by sandy clay soils. The stability of slope materials is also
influenced by the presence of swelling clay minerals [8]. Soils with high clay con-
tent are considered to be the leading cause of landslides in most East African
highlands [7]. Soil materials with clay content exceeding 30% and classified as
vertic soils, have swell-shrink characteristics [9] which make them highly vulnera-
ble to landslides [10].

In Ref. [11] it is indicated that clay mineralogy affects the shear and frictional
resistance of the soils. Among the clay minerals, smectite, particularly montmoril-
lonite, and illite decrease the soil residual strength, owing to their peculiar colloid-
chemical characteristic [12] and contribute to landslide occurrence [7]. Montmoril-
lonite a swelling clay mineral, has a negative behaviour, very strong attraction for
water and can induce soil collapse due to susceptibility to volume change [13]. The
dispersive, collapsible and expansive nature of clay soils constitutes what is referred
as problem soils [14]. In [15] it is noted that problem soils are widespread around
the world, notwithstanding the little attention they receive in many landslide stud-
ies. At various moisture contents, landslides may be induced by problem soils due to
their distinct shrink-swell properties [14].

The stability of any slope is affected by specific soil parameters including bulk
density, shear strength, clay mineralogy and particle size distribution [1, 7, 16].
Such soil properties vary significantly in space and require site-specific investiga-
tions to understand their contribution to landslide occurrence [1, 17]. Whereas
previous landslide studies have focused on volcanic soils of Mount Elgon region in
Eastern Uganda [1, 7, 18, 19], the present study examines the influence of selected
morphological properties of non-volcanic soils on landslide occurrence in Kigezi
highlands. The study results provide a comparative analysis of the correlation
between soil properties and landslide occurrence in both mountainous as well as
highland areas of Uganda.

2. Materials and methods

2.1 Study area

The study was carried out in Rukiga uplands located within Kigezi highlands of
South Western Uganda. The study area is situated between 01°21025″ and 0°58008″
South, and 29°43030″ and 30°05051″ East (Figure 1). Rukiga uplands an area cover-
ing 427 km2 [20], span the attitudinally heterogeneous landscapes of Rwamucucu,
Maziba, Kashambya, Bubaare, Bukinda, Kamwezi and Kaharo [21] was selected for
this study on the basis of its unique topography which is synonymous with reported
high incidences of landslides, with visible scars unlike other parts of the highlands
where landslide scars have been concealed owing to rapid regeneration [22]. The
topography is very rugged, with narrow steep convex slopes and high valleys
between hills. Most of these valleys have drainage lines connecting to the main
valley [23]. The topography has substantial flat-topped ridges and hills, with short,
steep-sided deep valleys fragmented by fluted spurs [24]. Landslide scars were,
therefore, identified following an inventory with the help of local communities
(Figure 2). The landslide scar zones provided soil sampling sites for analysis of soil
characteristics and their influence on landslides (Figure 3).
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The highland’s geology is sedimentary in nature of the Precambrian rock system
[25], categorised by [26], as phyllite, shale, sandstone, quartzite, granite and
gneisses of granitic composition. Other rock types of the study area include grades
of schists like quartz-schists and fine textured mica-schists which belong to both the
Ankole-Karagwe rock system as well as the Achaean basement complex [25].

Since rock types have influence on slope factors like slope angle and stability,
slopes with phyllites and shales underneath are more affected by instability pro-
cesses compared to those covered by quartzite and micaceous sandstones [25].
Additionally, slope sections with relatively weaker rocks beneath like shales have
deep soil profiles attributed to high weathering rates [23]. Besides, slopes underlain

Figure 1.
Location of the study area and soil sampling sites.

Figure 2.
Field investigations to identify landslide scars and soil sampling. Photo credit, Nseka. November, 2019.
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by quartzite and granitic intrusions are less prone to landslides because they are
covered by shallow soils and in some cases by bare rocks [25]. Most of the water
courses within the highlands contain varied patches of alluvia sand and clay [26].
For example, coarse sands have been oberved in the warped valleys with gneiss and
granite intrusions beneath, while shale and phyllite are associated with clay deposits
[25]. By implication, the local geology has an important influence on landslide
occurrence in the highlands. The soil types in the study area include Luvisols,
Histosols, Acric Ferralsols and Dystric Regosols [23].

The climate of Kigezi highlands is warm to cool humid, characterised by a
bimodal rainfall pattern with annual rainfall of 1092 mm [20] classified as moder-
ate. Rainfall, however, increases from 1250 to 1540 mm or more in high altitude
areas of greater than 2000 m above sea level [27, 28]. The main rainfall seasons span
from mid-February to May with a peak in March/April, and September to Decem-
ber with a peak in October/November [29]. Since the highland receives significant
amounts of rainfall, the study area has various highlands streams which drain
valleys incised within the ridges and hills [30]. Until about a century ago, the
highlands’ vegetation cover was characterised by montane forests [23]. Depletion of
vegetation cover has occurred in the highlands due to increased human interference
[31]. The highlands of the study area are currently characterised by Eucalyptus
globulus, Pinus leiophylla and farmlands [28].

2.2 Soil morphological analysis

To evaluate the soil morphology-landslide relationships, field investigations
were conducted and soil samples taken at different depths and points along the
slope profile and positions. In this study, 120 soil samples were collected and used in
the analysis of soil morphological characteristics. Soil description was done
according to FAO guidelines [32]. Visible landslide scars were identified and
categorised into 10 groups based on their morphological characteristics.

Profiles in the upper slope sections were dug to a depth of 1 to 1.5 m (classified as
shallow). Profiles in the middle slopes ranged between 2 to 4 m (medium) while
those in the lower sections were greater than 5 m (deep). Soil samples were
obtained from within and outside the landside scars. Onsite analysis of physical soil
properties was conducted within landslide scars, min pits, auger holes, and full
profile representative sites (Figure 3). Site analysis sought to characterise among

Figure 3.
In-situ soil property analysis within the landslide scars. Photo credit, Nseka. November, 2019.
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other things, soil matrices and bedrock within each landslide. Soil horizons were
analysed in detail with a specific focus on depth, colour, texture, presence and
location of claypans, and structure.

2.2.1 Soil-water infiltration

Characterisation of soil infiltration levels is an importance aspect when
analysing any landslide occurrence in a given region [26]. Quantification of infil-
tration rates is important to understand the mechanism of slope failure [25]. In situ
infiltration tests were performed purposely to measure soil-water infiltration rates.
Infiltration tests were performed at various slope positions including lower-bottom,
lower-middle, upper-middle and uppermost. This was done owing to variations
between topographic configurations and soil characteristics. A total of 32 experi-
ments were performed on 4 landslide sites with different land use and cover cate-
gories. Field measurements of soil-water infiltration were done using the double
ring infiltrometer method [33] consisting of two concentric metal rings [34, 35].

2.2.2 Rainfall data

The frequent heavy rainfall received within Kigezi highlands have been
observed to be a main trigger of landslides because, the rains increase pore water
pressure in voids [28]. Given the importance of pore water pressure and antecedent
moisture in triggering landslides in the study area [23, 29], rainfall data are impor-
tant in their analysis [24]. The rainfall data used in this study were obtained from
Kabale Meteorology Station, weather data 2015: WMO No. 63726, National No.
91290000, station name Kabale, at Elevation 1867 m, Latitude 01°150, Longitude 29°
59″. Rainfall data were compared with landslide occurrence periods to ascertain
their relationships.

2.3 Laboratory analyses

The scope of laboratory testing comprised shear box, Atterberg limits, sieve and
hydrometer analysis, specific gravity using test standards and XRD analysis. For
purposes of defining the dominant soil mechanical and physical properties, several
laboratory tests were undertaken. The grain size distribution, unit weight, natural
water content, degree of saturation and Atterberg limits were among the major
physical and mechanical soil properties examined. Soil property tests were under-
taken in accordance with the British Standard BS 1377 procedures [36]. These tests
were used in the estimation of porosity, dispersion, saturated specific weight, and
saturation humidity. These soil properties were considered relevant in understand-
ing and characterising site-specific landslide controls (“For example, see [1, 7, 17]”).

2.3.1 Determination of particle size

Particle size was determined using mechanical analysis. In this method, the size
range of particles within a soil sample was determined and the results were
expressed as a percentage of the total dry weight. To determine the soil particle-size
distribution, Sieve analysis and Hydrometer analysis methods were used on particle
sizes greater and less than 0.075 mm in diameter respectively. Sieve analysis
involved shaking of the soil sample through a set of sieves (ranging from 75.00 mm
to 0.075 mm). The percentage of the finest size and that of the weights retained on
each of a series of standard sieves of decreasing size were used to infer particle size
distribution.
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2.3.2 Atterberg limits

A number of soil samples obtained from the landslide sites were used for
Atterberg limit tests undertaken in the geotechnical laboratory. The tests were
conducted to determine among others the clay plasticity and measure the threshold
water contents of a fine soil. Atterberg limits were used to determine soil plasticity
which provides a clue to the type of mass movement that would characterise a given
area (“For example, see [37]”). The Atterberg limits were important in determining
among others, soil strength, type, stability, behaviour, and state of consolidation.
Using the procedures in ASTM Standard D 4318 and D431/84 and also CNR UNI
100141 (“For example, see [38]”) the limits were determined as Liquid Limit (LL)
and Plastic Limit (PL). The tests gave an indication of the levels of saturation and
response of a soil material to landslides. The results of grain-size distribution and
Atterberg limits tests were used to classify the colluvium soils according to the
Unified Soil Classification System which enabled further classification of fine
materials.

2.3.3 Soil dispersion tests

A double hydrometer test was used based on Stoke’s law of settling velocity as an
indicative laboratory test for identification of dispersive soils (“For example, see
[11, 14]”).

2.3.4 Soil expansiveness

To determine whether the soils in the study area are susceptible to slope failure,
investigations were done to determine the expansiveness of the soil. Three pro-
cedures were done to determine the expansiveness of the soil in the study area.
During such field surveys, a description of the crack patterns on the soil surface was
done at different sites to determine the swelling-shrinking characteristics of partic-
ularly clay soils. The second procedure entailed calculating the weighted Plasticity
Index (PIw) on the fraction <425 μm and weighted for the sample’s actual content
of particles <425 μm using the formula:

PIw ¼ PI ∗ %passing 425μmð Þ=100: (1)

Where PI is the Plasticity index.
The third procedure involved calculating the expansiveness (ɛex) using the

formula:

ɛex ¼ 2:4wp � 3:9ws þ 32:5, (2)

Where; wp = (Plastic Limit) * (%passing 425 mm)/100 and ws = (Shrinkage
Limit) * (%passing 425 mm)/100.

2.3.5 Clay mineralogy analyses

Clay mineralogical composition was analysed using X-ray diffraction. Soil
samples were prepared for XRD analysis using the back loading preparation method
(“For example, see [39]”). A PANalytical Aeris diffractometer with PIXcel detector
in combination with fixed relative phase amounts (weight %) were estimated by
X’Pert Highscore plus software and Rietveld method respectively.
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2.3.6 Shear strength tests

To determine material strength, shear strength tests were executed on samples
obtained from the landslide sites. These tests included Shear Box and Unconsoli-
dated – Undrained (UU) tests. The tests were conducted to determine the shear
strength parameters of soil cohesion (c) and the angle of internal friction (ϕ) in
accordance to British Standard (BS) 1377: Part 7: 1990 [36].

3. Results

3.1 Soil morphological properties

3.1.1 Soil profile characteristics

At the depth less than 0.85 m, shallow soil groups were observed and these occured
on very steep (i.e. between 35° and 45°), and precipitous (i.e. >45°) slopes. Medium
and deep soil groups in the range of 1.5–4 m and greater than 6 m, were found
occupyingmidslopes along topographic hollows and lower slopes respectively. Surface
layers were covered by deposited black soils with an average depth of 0.5 m to 1 m.
The B and C horizons had depths ranging from 0.65 m to 3.44 m and 0.88 m and
5.7 m, with a reddish-brown colour and coarse-textured materials concentrated in the
lowest layers, respectively. At a 1.3 m depth along the spur slopes, unweathered
materials were observed. Other unweathered materials were observed at a depth of
4.5 m along topographic hollows and 7 m deep in the valley bottoms. Along the soil
profiles, visible colours and textural gradationwithin 3 distinct horizons were seen. An
abrupt change in colour from yellow (5Y8/2) to brown (7.5YR5/2) clay with Gs 2.9 g/
cm3 and γ 2.06 g/cm3 was exhibited in the upper slope elements for most of the
analysed profiles. Dark reddish brown (5YR 3/6) and orange (7YR 5/6) colour in moist
and dry conditions respectively characterised most of the surface horizons. Surface
horizons with brown (7.5YR 4/4) colour in both moist and dry conditions and a dark
to dull reddish-brown colour (7.5YR 4/6) in underlying horizons dominated most of
lower slope element profiles. Soil colour in combination with other physical proper-
ties, were used to differentiate horizon types of the same and different soil profiles.

A relationship was noticed between the regions topographic characteristics and
the depth of soil. Basing on the soil profile description, it was noted that the depth
of soil reduced with an increase in slope angle. Whereas very deep soils (>5 m) were
dominant on slope sections with slope angles less than 10°, moderately deep soils (2
to 5 m) were noticed on slope angles between 15° and 35°. Slope elements with slope
angles greater than 35°, were characterised with shallow thin soils of less than 1 m
(Appendix 1). A relationship was also established between slope curvature and the
depth of the soil. Very deep, deep and moderately deep soil profiles (>2.5 m) were
dominant along concave profile elements common in topographic hollows. Convex
profile elements along spur slopes and hilltops were dominated by shallow thin soils
of less than 1 m (Appendix 1).

3.1.2 Location of clay pans

Field observations within dug profiles indicated the presence of claypans at a
depth of 0.75 m to 3 m (Figure 4). Variations in the location of claypans is notice-
able along the soil profile. In some profiles, the claypans were found close to the
surface while in some horizons they were identified at greater depths. Whereas the
upper slope soil profiles had claypans close to the surface at less than 0.85 m depth,
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lower slope soil profiles had pans at greater than 2 m depth. Claypans in soil profiles
along the middle slope sections existed at depth ranging between 1 and 2 m.
Characterising variations in depth of claypans horizon is an important step in
explaining other soil properties, as expounded in the discussion section.

3.2 Effect of particle size on landslide occurrence

The study area is dominated by clay soils in the subsurface horizons. The particle
size determination (Figure 5) shows that soils are dominated by clay presence,
except for the uppermost surface horizons.

From the materials analysed, fine grained materials of either clay or silt were
predominant (Figure 5). The texture of the soil varied with profile depth as

Figure 4.
Soil profiles dominated by claypans in the sub-surface soil horizons. Photo credit, Nseka, may 2019.

Figure 5.
Particle size distribution curves.

38

Landslides



revealed by sieve analysis. In the subsurface horizons, finer clay and silt materials
dominates, while sand particles are the most dominant in surface soils. It was
observed that all surface horizons had sand (33–55%), silt (22–40% and clay
(10–30%). In the deeper horizons, sand was observed to reduce drastically to less
than 23%, while clay increased to greater than 50% (Appendix 1). The clay content
for all the samples in the sub soil and deep soil horizons is well above the 32%
threshold for vertic soils. The swelling and shrinkage characteristics of vertic soils
are very important in the localisation of landslides, as explored in the subsequent
section.

3.3 Clay mineralogy and landslide occurrence

The results of the X-ray diffraction tests are provided in Figure 6 and Table 1.
Following the X-ray diffraction patterns, it was established that quartz, illite/

muscovite and kaolinite are the dominant minerals in the soil materials. From the
soil mineralogical analysis conducted, it was established that quartz was the domi-
nant soil constituent within the top layers. By implication, these high amounts of
quartz within surface soil horizons affect the behaviour of the soil to incoming
rainfall as will be unravelled in the subsequent section. Considerable amounts of
illite/muscovite as the dominant clay minerals, ranging between 43% and 47%
(Table 1 and Figure 6) were present in the subsurface soil horizons. Notwith-
standing the absence of smectite clays, the soils contain large amounts of
moderately expansive clays, particularly illite/muscovite.

3.4 Soil dispersion and landslide occurrence

The LL and Plasticity Index for all the tested samples are greater than 50% and
30% respectively (Figure 7 and Table 2).

The fine-grained soil materials tested had LL with an average value of 58.43%,
ranging between 50.43% and 66.43%, which is considered to be of high plasticity.
Whereas the plasticity index ranged between 22.4% and 44.2%, the plastic value
ranged between 21.3% and 28.9% (Figure 7). High plasticity index of more than 30

Figure 6.
XRD patterns of clay minerals.

39

Implications of Soil Properties on Landslide Occurrence in Kigezi Highlands of South…
DOI: http://dx.doi.org/10.5772/intechopen.99865



was detected in the clay materials, thus rendering them as highly plastic and
expansive. The computed Linear Shrinkage (LS) ranged between 10.53 and 20.76.
Whereas soil expansiveness (ɛex) ranged between 10.7 and 54.8 averaging 38.6, the
computed weighted Plasticity Index (PIw) ranged between 17.92% and 34.92%
averaging 28.4% from all the analysed soil samples (Figure 7). As regards to soil

Samples Soil
horizon

Quartz Illite/
muscovite

Kaolinite Paragonite Haematite Microcline Lizardite

1 Top soil 56 26 9 4 1 0 4

2 sub soil 46 43 7 2 1 0 1

3 Top soil 60 27 6 6 2 0 0

4 sub soil 39 43 8 4 3 1 1

5 sub soil 42 41 10 3 2 1 1

6 sub soil 43 45 8 2 1 1 0

7 sub soil 43 42 9 3 1 1 0

8 sub soil 36 47 11 3 1 1 1

9 sub soil 36 44 12 5 1 1 1

10 Top soil 75 18 5 0 2 0 0

11 Top soil 62 28 6 2 1 0 2

12 Top soil 76 16 6 1 0 1 0

13 Top soil 71 22 5 0 1 0 2

14 sub soil 41 46 7 4 0 1 1

15 Top soil 64 22 6 4 2 0 2

16 Top soil 82 12 3 2 0 2 0

0 = n.d. – not detected above the detection limit of 0.5–3 weight percent.

Table 1.
XRD mineral distribution in percentages.

Figure 7.
Plasticity index parameters.
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Soil sample Plasticity Shear strength
parameters

Soil class USCS

C0 φ0

LL PL PI LS wp ws PIw ɛex kPa (Degree)

1 58 26 31 15 20 11 24 37 7 3 Clayey CH

2 54 21 32 15 16. 4 12 25 26 7 4 Clayey CH

3 66 22 44 21 18 16 35 11 5 5 Clayey CH

4 58 27 31 15 20 11 23 39 7 4 Clayey CH

5 53 29 24 11 19 8 16 50 9 5 Fat Clay CH

6 60 26 35 16 18 11 24 32 10 7 Clayey CH

7 54 27 27 13 20 9 20 45 8 6 Clayey CH

8 52 25 27 12 17 9 18 40 6 3 Clay Loam CH

9 56 24 32 15 19 12 26 31 9 3 Clay Loam CH

10 66 25 42 20 18 15 31 20 10 8 Clay Loam CH

11 50 23 27 13 18 10 21 37 11 7 Clay Silt CH

12 49 29 22 11 23 8 18 55 5 4 Clay Silt CH

13 60 27 33 16 20 12 25 35 7 4 Sand Clay CH

14 57 23 34 16 19 13 27 28 8 4 Sand Clay CH

15 57 28 29 14 21 10 21 43 7 3 Clay Loam CH

16 53 26 28 13 20 10 15 36 8 5 Clay Loam CH

17 49 24 27 13 18 8 21 41 7 3 Clay Silt CH

18 50 26 31 15 20 11 24 37 7 4 Silty Clay CH

19 52 21 32 15 16 12 25 26 5 5 Silty Clay CH

20 66 22 44 21 18 16 35 11 7 4 Clay Loam CH

21 58 27 31 15 20 11 23 39 9 5 Sand Clay Loam CH

22 53 29 24 11 19 8 16 50 10 7 Clay Silt CH

23 60 26 35 16 18 11 24 32 8 6 Clay Loam CH

24 54 27 27 13 20 9 20 45 6 3 Sand Clay CH

25 52 25 27 12 17 9 18 40 7 3 Sandy Loam CH

26 56 24 32 15 19 12 26 31 7 4 Clayey CH

27 66 25 42 20 18 15 31 20 5 5 Silty Clay CH

28 50 23 27 13 18 10 21 37 7 4 Clay Loam CH

29 49 29 22 11 23 8 18 55 9 5 Clayey CH

30 60 27 33 16 20 12 25 35 10 7 Silty Clay CH

31 57 23 34 16 19 13 27 28 8 6 Clay Loam CH

32 57 28 29 14 21 10 21 43 6 3 Clay Loam CH

33 53 26 28 13 20 10 21 41 9 4 Sandy Loam CH

34 49 24 27 13 17 9 20 39 9 6 Clayey CH

Table 2.
Plasticity index and shear strength parameters.
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expansiveness (ɛex), all the tested samples were in the range between 20 and 50, and
this indicated medium expansive soils which were susceptible to landslides.

From the plasticity chart (Figure 8), all the soil samples tested were inorganic
clay of high plasticity belonging to the CH group. Such soils can easily move when
saturated, leading to a high incidence of landslides.

From Figure 8, it is evident that soils in the study area have high plasticity as
already revealed by XRD results. Such soils can easily move when saturated, leading
to high incidence of landslide occurrence. The presence of many cracks, observed
on the soil surface during field investigations confirms the high plasticity nature of
the soil materials (Figure 9). The presence of such cracks on the surface is also a
characteristic of Vertisols with high expansive potential.

From the double hydrometer test, it can be vividly observed that most of the
samples have dispersion values greater than 30%. By implication, such soil materials
are susceptible to landslide occurrence. From the soil samples examined, critical
dispersion values greater than 50% were established from more than 90% of the
samples (Figure 10). Such high dispersion values imply greater susceptibility to
landslides in the region. This study established that, highly dispersive soils are
particularly dominant in the surface soil layers associated with greater percentages
of illite/muscovite clay minerals.

Figure 8.
The distribution of samples on the plasticity chart for the USCS.

Figure 9.
Highly expansive materials with numerous surface cracks. Photo credit, Nseka, march 2019.
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The linear shrinkage computed from the soil samples ranged between 10.53 and
20.76 (Table 2). The computed weighted plasticity index (PIw) from the analysed
soil materials ranged between 17.92% and 34.92%, averaging 28.4%.

The computed weighted plasticity index for most of the tested soils is above the
20% threshold for expansive soils, signifying highly unstable soils. All the tested
samples had expansiveness (ɛex) between 20 and 50 indicating medium expansive
soils which are highly vulnerable to slope failure. More than 90% of the analysed
samples have expansiveness above the 20% threshold. More than 80% of the
samples have values between 20 and 50% showing medium expansive soils
(Table 2).

3.5 Shear strength parameters

Shear strength parameter test results show that the soils have low cohesion (C).
From the samples analysed, soil cohesion ranged between 5.2 kPa and 11.1 kPa
averaging 8.2 kPa. The angle of internal friction obtained from the analysed soil
samples ranged between 2.6° and 8.1° averaging 5.4° (Table 2). From the soils
completely saturated with water, a lower cohesion of 5.2 kPa was detected. A
minimal cohesion value of 8.2 kPa was considered as the critical state equilibrium all
over the area. This is due to the fact that slope failure is expected to occur when soil
materials are saturated. The present study established that most of tested soil sam-
ples had a very low internal friction angle (<8.5°). Such soil materials with very low
internal friction angle were considered weak with high vulnerable to landslides.

3.6 Soil water infiltration

High infiltration rates were observed in the top soils with depth ranging from 0.3
to 0.8 m, but drastically reduced in the sub soils. Steady infiltration rates greatly
varied with topographic characteristics and land use/cover types. Higher infiltration
values were noticed in the lower slope elements than the upper sections (Figure 11).
From the infiltration experiments conducted, it was revealed that the average soil-
water infiltration was 24 cm/h�1 in uppermost slope sections. On the upper-middle,
lower-middle slope sections and bottom valleys, soil-water infiltration rates of
30 cm/h�1, 70 cm/h�1 and greater than 80 cm/h�1 respectively were achieved from
the experiments conducted. Along the hollows within the upper slope sections, the

Figure 10.
Double hydrometer test results.

43

Implications of Soil Properties on Landslide Occurrence in Kigezi Highlands of South…
DOI: http://dx.doi.org/10.5772/intechopen.99865



observed infiltration rates were greater than 30 cm/h�1 and less than 12 cm/h�1

along the spur slope sections. Whereas the infiltration rates within topographic
hollows along the middle slope sections was greater than 70 cm/h�1, it was less than
45 cm/h�1 on the spur slope elements (Figure 11). Within the top soil layers, high
infiltration rates are explained by the dominancy of loamy sandy soils. The pre-
dominance of clay materials in the subsoil, with claypans distinctly underlying the
top soils, limits water infiltration in the study area. Such soil characteristics affect
their response to incoming rainfall and consequently the timing of landslides, as
explored in the discussion section.

The land use and cover characteristics influence soil water infiltration in the
study area. Within the agricultural land uses particularly along cultivated zones,
infiltration rates were noticed to be higher than those observed on natural land
cover types. The infiltration rates along the agricultural land uses were generally
greater than 65 cm/h�1 with the exception of beans covered areas where infiltration
rates were noticed to be lower than 42 cm/h�1. On the natural land cover types
including grasslands, thickets and shrubs, infiltration values lower than 30 cm/h�1

were generally observed (Figure 11). Areas covered by forests, however, tended to
have infiltration values higher than 45 cm/h�1 (Figure 11). Basing on these results,
it was deduced that infiltration values in the study area vary greatly between rapid
and very rapid. They also vary with slope characteristics including gradient and
curvature as well as land use and cover properties. Following the experiments
conducted, it was concluded that the steady state water infiltration values in the
study area range from 12.2 cm h�1 to 88.5 cm h�1.

3.7 Rainfall distribution and soil behaviour

The behaviour of soil materials and its susceptibility to landslide occurrence
greatly depends on rainfall amounts and distribution in the region. During the

Figure 11.
Infiltration rates along slope positions, topographic configurations and land uses/covers.
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analysis of landslide occurrence, considering the influence of soil antecedent mois-
ture and its implication on soil pore water pressure is very important. Monthly
rainfall distribution shows that March, April, October and November are the wet-
test months in the study area (Figure 12). Rainfall amounts and distribution have
great implications for soil behaviour and hence landslide occurrence in the study
area. Seasonal rainfall distribution shows more rains are received during the MAM
(352.5 mm) and SON (327.8 mm) seasons, while DJF (238.4 mm) and JJA
(104.72 mm) seasons receive less rainfall (Appendix 2). It is noteworthy, however,
that landslide occurrence in the study area is not linked to individual rainfall events,
but correspond with seasonal rainfall distribution.

Following an interaction with the local communities as well as local government
reports, it was established that most of the landslides are experienced during
months of May and November. These are, however, not the wettest months in the
region (Appendix 2). In 2010, for example, more landslides occurred during the
month of May which, however, received lower rainfall amounts (97.7 mm) com-
pared to the preceding months of March (149 mm) and April (133 mm). During
2013, landslides were similarly experienced during the month of November with
lower rainfall amounts (122. 2 mm) compared to the preceding months of Septem-
ber (134.1 mm) and October (154 mm) (Appendices 2 and 3). It is therefore,
noteworthy that landslides in the study area do not necessarily occur in the wettest
months of the year. The implications of this phenomenon is unravelled in the
subsequent section.

4. Discussion

4.1 Soil profile characteristics

Deep soil profiles ranging between 2.5 and 7 m are a major characteristic of the
study area. Deeper soil profiles are more pronounced along topographic hollows and
valley bottoms. Soil depth forms one of the conditions for assessing the stability of
the soil materials and landslide susceptibility of the landscape [40]. Soil depth and
its moisture content determine how water can be stored in the soil before saturation

Figure 12.
Long term average monthly rainfall distribution for 1980 to 2020.
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is reached [41]. Although most of the ridges in the study are characterised by deep
to very deep soils profiles (greater than 6 m on most slopes), majority of the
landslide features are shallow, concentrating within 1 to 3 m of the profile. Shallow
landslide scars are not uncommon in slope sections covered by deep and very deep
soil materials. As has been illustrated by [7], most sections covered by deep soils on
the slopes of Mt. Elgon in Eastern Uganda experience deep seated landslides. Shal-
low landslides on deep soil covered slopes in the Kigezi highlands was, therefore,
considered as an anomaly. Soil profile analysis was undertaken to establish the cause
of this irregularity. The profile characterisation indicated the existence of 0.9 to 3 m
dense claypans within the profiles. Following the infiltration experiments
conducted, it was established that claypans decreased the rate of water infiltration
within the soil materials. The restraint of perpendicular water flow within the soil
materials by claypans has also been confirmed by [42]. The accumulating water
leads to saturation of claypans sandwiched between more stable materials. Satu-
rated claypans can act as a sliding surface for the overlying materials, consequently
inducing landslides. Other studies elsewhere also confirm that variations of claypan
profile properties over the landscape greatly influence soil-water holding capacity
[35, 43]. It can, therefore, be inferred that the occurrence and characteristics of
landslides in Kigezi highlands is highly influenced by the presence and position of
claypan horizons within the soil profile.

4.2 Particle size distribution

Fine-grained silt and clay soils predominate the study area. From the mechanical
analysis conducted to determine soil particle sizes, it was established that clay is the
dominant material, with greater than 40%. The distribution of sand and silt in the
soil materials was less than 35% and 25% respectively. The soil materials in Kigezi
highlands can be classified as Vertisols due to the high clay content of more than
than 35% on average and plasticity index (PI) greater than 33%. Such soils are
known for inducing landslides [1]. Vertic soils characteristically expand when wet
and shrink in dry conditions due to their high clay content [9]. The presence of large
amounts of clay in soils of the study area is a major factor in landslide occurrence,
since it affects the stability of the soils when wet. Likewise [7], also observed that
the susceptibility to landslide occurrence on the slopes of Mount Elgon is due to
abundance of fine-grained materials in the subsurface. The study results are,
therefore, consistent with several studies elsewhere which have demonstrated the
influence of high clay content on landslide occurrence [1, 18, 44].

4.3 Clay mineralogy

XRD Clay mineral analyses indicated the presence of moderately expansive
clays, particularly illite/muscovite. Previous studies indicate that the presence of
illite clays can lead to landslide occurrence due to their swelling potential and low
shear strength [10, 45]. In the same vein [7], also confirmed that the occurrence of
landslides on Mount Elgon slopes in Eastern Uganda is associated with the existence
of greater amounts of kaolinite and illite clay minerals in the soil materials. The
existence of significant amounts of illite/muscovite clay minerals in the study area
further confirmed that Vertisols with high shrink-swell properties can result into
landslides. The behaviour of the soil materials greatly determine the timing of
landslide occurrence during rainfall seasons. There is fast flow of water through
the surface soil materials with greater amounts of quartz into the deep soil
profiles with clay abundance at the start of the rainfall season. Greater amounts of
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illite/muscovite clay minerals in the subsurface absorb the arriving water resulting
into moisture build-up. The amassing water in the soil materials leads to soil
behavioural change which can swell and loose cohesion [46]. This phenomenon,
therefore, explains why landslides in the study area are not experienced at the
beginning of the rainfall season or immediately after extreme rainfall events, as is
the case with Mt. Elgon region in Eastern Uganda.

4.4 Soil dispersion

The study area is characterised by soil materials associated with high plasticity
and are, therefore, inorganic in nature (CH), signifying weak soils of high satura-
tion (Figure 7). Results from soil dispersion tests revealed high plasticity index of
greater than 30% signifying Vertic soils. During continuous rainfall events, such
soils with high plasticity can easily slide. The LLs for all samples analysed was above
50%, signifying high plasticity. Following soil expansiveness analysis, it was
established that the average weighted plasticity index (PIw) and expansiveness were
26.4% and 32.8% respectively. By implication, such soils are highly dispersive and
excessively susceptible to landslide occurrence [10]. Landslide occurrence in the
study area is, therefore, associated with expansive soils which shrink and swell
leading to loss of soil strength. The expansive potential of the soils influenced by
high clay content and type especially illite/muscovite is one of the major factors
promoting landslides in Kigezi highlands.

4.5 Soil water infiltration

Soil water infiltration was noted to vary across slope position and topographic
configuration. Whereas upper slope sections and spur slopes with shallow soils
experience low infiltration rates, lower slope sections and topographic hollows with
deeper soils are associated with high infiltration rates. This variation in infiltration
rates also signifies differences in soil saturation levels (“For example, see [47]”).
The lower slope sections are associated with greater saturation rates which result
into saturation overland flow processes. Along the topographic slope elements, the
saturation overland flow incrementally moves upslope from the slope base [48].
Materials along topographic hollows remain saturated most times due to greater
clay content dominated by illite/muscovite minerals. This phenomenon leads to
decreased soil material strength along the topographic hollows, inducing landslide
occurrence. Equally noticed in this study was a relationship between topographic
characteristics and soil water infiltration. Greater soil-water infiltration values are
experienced along topographic hollows and lower slope elements than the spurs and
upper sections. Such variations in infiltration values in relation to topographic
characteristics are associated with differences in soil depth along the slope configu-
rations. This study, therefore, approves that using the soil-water infiltration exper-
iments along different slope sections and gradients it is possible to predict landslide
occurrence.

4.6 Change in soil behaviour with rainfall distribution

As opposed to the situation on the slopes of Mt. Elgon in Eastern Uganda,
landslide occurrence in Kigezi highlands is not related to extreme rainfall events. On
the slopes of Mt. Elgon in Eastern Uganda, majority of the landslides are commonly
witnessed during or immediately after extreme rainfall events [1, 7, 18]. Local
communities and regional government reports confirmed that landslide occurrence
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in the study area is usually not experienced during or immediately after peak
rainfall seasons. Paradoxically, they occur during the less wet months of the rainfall
season. Most landslides in the study area are experienced during the months of May
and November, despite the preceding months of April and October receiving more
rainfall amounts. This phenomenon can be explained by the unique infiltration
dynamics through quartz dominated top soil layers and saturation of the claypans
dominated by illite/muscovite clays in the lower soil horizons. This leads to ante-
cedent moisture building up in the sub soil materials as more rainfall is received
hence landslide occurrence in the region. Antecedent soil moisture condition prior
to a rainfall event has been confirmed as the most significant factor in landslide
occurrence [49].

5. Conclusion

Deep soil profiles are a major characteristic of the study area. Notwithstanding
the deep soil profiles on most slope elements in the study area, majority of the
landslide scars are shallow, occurring within less than half of the profile due to
presence of claypans. The claypans act as a slipping zone for the overlying soil
materials. The study area is dominated by fine silt and clay soil materials. In associ-
ation with greater amounts of clay percentage of more than 35% on average and PI
greater than 33%, the soil materials in the study area are classified as Vertisols,
which are synonymous with landslide occurrence. The predominance of reasonable
amounts of expansive clays, mainly illite in the study area influences the stability
and vulnerability of slope materials to landslide occurrence. In Kigezi highlands,
landslides are not normally experienced during or immediately after extreme rain-
fall events but occur later in the rainfall season due to initial infiltration through
quartz dominated upper soil layers, before illite/muscovite clays in the lower soil
horizons get saturated. This behavioural change in the soil material due to moisture
content is, therefore, the major trigger of landslides in Kigezi highlands. An under-
standing of these soil characteristics is an important step in landslide hazard
mitigation in Kigezi highlands.
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Appendix 2. Temporal distribution of rainfall in Kabale highlands

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1980 56.6 75.3 51.8 164 188 5.3 8.2 39.4 103.3 111.4 137.5 47.8

1981 67 16.7 147.8 138.2 102.8 22.4 7.3 128.8 58.2 122.4 58 74.7

1982 18.9 8.3 42.7 272.2 131.9 15.5 7.5 2.8 107.6 123.4 167.5 22.3

1983 13.4 51.8 88.7 126.3 45.2 12.5 19.2 88.4 70.4 236.5 74.3 95

1984 37.2 108.3 175.4 157.3 20.3 11.2 49.7 21.6 78.8 113.7 97.2 128.2

1985 32.4 34.7 103.4 148.5 40.6 2.8 12.2 23.8 90.4 122.4 72.5 37

1986 0 0 102.6 184 64.3 31.7 18.2 16.4 44.3 121.7 71.1 488.4

1987 82.7 99.2 113.5 131.1 178.4 44.6 3.9 23.3 108 129.1 261.5 31.3

1988 83.9 90.9 161.7 139.1 82.2 4 64.2 142.6 166 132.8 60.8 47

1989 34.7 99.8 82 89.6 134.9 35.6 10.1 74.7 180.8 128.5 72.3 74.3

1990 49 161.8 128.4 182.6 72.6 0 0 45 158.5 66.5 93.6 68.9

1991 72 73 158 101 117 39 18 18 54 135 51 71

1992 18 49 151 98 50 54 27 16 149 205 89 74

1993 96 28 176 87 160 34 0 61 10 59 95 77

1994 58 70 128 150 87 2 2 79 148 125 134 93

1995 45 128 105 82 147 123 1 6 114 166 105 102

1996 70 56 146 93 46 72 50 118 123 144 202 102

1997 101 0 114 122 149 33 27 37 25 155 196 151

1998 184 97 101 171 170 19 25 23 87 154 58 80

1999 77 37 145 72 51 0 0 167 65 87 116 49

2000 50.9 83.5 118.9 120 55.7 8.1 5.9 69.6 69.9 179.8 146.8 83.8

2001 86.3 51.2 83.9 135.7 77.8 22.4 46.7 65.7 231.1 201.9 139.5 63.9

2002 120.2 89.7 63.1 74.9 115.7 0 4.4 48.4 49.5 187.6 91.5 91

2003 66.9 80.6 74.7 139.1 96 29 22.8 25.5 82.6 86.5 94 57.3

2004 69.4 93.8 84.5 183.2 84.6 0 1.1 31.9 148.8 76.9 114.2 124.9

2005 25.7 121.8 170.1 123.4 122.1 40.5 0 29 84 107.6 66.1 41.1

2006 85.5 133.5 127.7 112.7 207.8 2.9 30.1 79.5 74.2 70.7 156.2 62.3

2007 55.2 102.5 80.3 103.6 87.9 34.1 42 23.6 99.5 112.1 162.9 25.2

2008 99 65.3 206.1 54.2 53.5 65.9 24 36.5 77.4 172.8 107.6 99.1

2009 61 114.2 122.7 99.5 90.7 19.8 1.1 94.6 87 86.6 174.1 98.8

2010 97.7 189 149.1 132.9 97.7 9.3 1.4 16.4 124.1 197 86.4 71

2011 33.5 64 139.2 88.2 63.9 62.5 12.1 103.8 71.7 73.9 157.5 54.7

2012 2.8 52.8 110.6 197 146.8 11.6 9.4 62.6 95.7 114.4 179.8 128

2013 30.1 101.1 142.2 98 192 21.1 3.2 74.5 134 154 122.2 77.1

Source: Kabale meteorology station, weather data: WMO No. 63726, National No. 91290000, station name
KABALE, Elevation 1867 m, Latitude 01°150, Longitude 29°590.
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Appendix 3. Relationship between seasonal rainfall distribution and
landslide occurrence

Year Season Rainfall in mm No of landslide occurrences Month of occurrence

2005 MAM 414.6 6 May

2006 MAM 447.2 5 May

2007 MAM 272.8 5 April

2008 MAM 464.8 13 May

2009 SON 348.7 5 October

2010 MAM 457.7 31 May

2011 MAM 461.2 22 May

2012 MAM 453.4 8 May

2013 SON 304.1 5 November

2014 SON 253.2 3 October

2015 MAM 254.7 17 May

2016 SON 298.3 9 October

2017 MAM 213.8 11 May

2018 MAM 417.8 21 April

2019 SON 314.7 13 November

2020 MAM 339.9 17 May
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Chapter 4

Landslide Mitigation through 
Biocementation
Azizul Moqsud

Abstract

Landslide and other geo-disasters are causing a great damage to people and the 
resources all over the world. An environment friendly countermeasure of landslide 
disasters is necessary. Microbially induced calcite precipitation (MICP) is a bio-
cementation process that can improve the geotechnical properties of granular soils 
through the precipitation of calcium carbonate (calcite) at soil particle contacts. 
This MICP can be an environment friendly solution for the biocementation of 
soil. In this study, an evaluation of biocemented soil has been carried out through 
direct shear test and direct simple shear test. Scanning Electron Microscopy 
(SEM) and Energy Dispersive X-ray Spectrometry (EDS) and X-ray Computed 
Tomography (X-ray CT) tests were conducted to analysis the calcite precipitation 
inside the biotreated soil by bacteria by using Toyoura sand and silica sand no. 4. 
It was observed that the amount of calcite generated in silica sand was larger than 
Toyoura sand. The particle shape influences the result of calcite precipitation and 
consequent strength of the bio-cemented sand. The amount of strength which was 
obtained by direct shear test and direct simple shear test indicated the granular soil 
became bio-stabilized within 7 days of application of nutrients from the surface. 
However, the amount of generated calcite was not uniformed in different layers 
while applying the nutrients and bacterial from the surface which was revealed by 
X-ray CT scan test.

Keywords: Biocementation, landslide, Microbial induced calcite precipitation

1. Introduction

Landslide and slope failures are very dangerous and caused a lot of damages 
to the people all over the world every year. Environmentally friendly approach to 
improve the soil condition is necessary for the sustainable global environment. The 
traditional methods to protect the land against the geo-disasters such as landslide 
and liquefaction are mainly mechanical or chemical approach to soil and are not 
environment friendly. Nature has provided a significant biologically based solu-
tion to some of the challenges that vex geotechnical infrastructure systems. Recent 
studies on applications of bio-mediated soil improvement methods have proved 
the viability of the approach for effective performance and environmental sustain-
ability. The potential outcomes of these studies have shown greater promise of 
exploring a wider application of the technique in geotechnical engineering. The 
great promise of the use of biological treatments has been demonstrated in many 
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applications, such as improving the shear strength and decreasing the permeability 
of soils [1–5] improvement in strength and durability of concrete and morter, reme-
diation of cracks in buildings [6–10]; improvement in engineering properties of soil 
and cementation of sand column [11–16]. However, the uniformity of biocementa-
tion inside the soil is not well-known yet.

The objective of this research is to look at the difference of mechanism of 
biocementation between the Toyoura sand and silica sand no. 4 through scanning 
electron microscope and x-ray CT analysis.

2. Materials and methods

2.1 Microbial preparations

There are several ideas of ground improvement method utilizing microbial 
metabolism, among which the calcium carbonate method has been vigorously 
researched in Japan and abroad recently due to the applicability to the real ground 
and the formation of solid matter derived from microorganisms. (ATCC 11859) 
used in this study as a source of microorganism [16, 18]. The characteristic of 
this microorganism is that it has the function of decomposing urea called urease 
enzyme. In addition, it is known that this microorganism has pressure, tempera-
ture, salt tolerance and alkali resistance, and it has a relatively strong resistance 
under various ground environments. The chemical reaction at that time is shown 
below. Cementation action between particles is caused by calcium carbonate 
precipitated between the soil particles, of the applied ground.

2.2 Sand used in the experiment

Two types of sands were used in the experiment to compare the effects of the 
size of the particles on biocementation. Toyoura sand and silica sand no. 4 were 
used for biocementation. The grain size analysis of those sands is shown in Figure 1. 
The particle size of silica sand is larger than Toyoura sand.

Figure 1. 
Grain size analysis of Toyoura sand and silica sand used in the experiment.
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2.3 Direct simple shear test

The shear strength properties measured by using direct simple shear test 
apparatus. The sample dimension used was 60 mm x 22.6 mm. The samples have 
been sheared by above mentioned apparatus under three normal loads magnitudes, 
namely10, 30 and 50 kN/m2. The samples under the same load magnitude have been 
sheared at least three times. The constant velocity of magnitude 0.2 mm/min was 
applied. The test is finished when the shear strain reaches 26% (Figure 2).

2.4 SEM and EDS analysis

The scanning electron microscope (SEM) analysis was carried out by using 
JSM-7600F and consequently analyzed the energy dispersive spectroscopy (EDS) 
to observe the surface of the bio-cemented soil particles and the mineral amount in 
different samples.

2.5 Micro-focus X-ray CT system

X-ray CT scan was carried out of the treated samples after 1 week of treat-
ment for both Toyoura sand and silica sand to observe the location of the calcite 
generation.

Figure 2. 
Direct simple shear test apparatus.
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Figure 4. 
Scanning electron microscope (SEM) analysis of the Toyoura (left) and silica (right)sand.

3. Results and discussion

Figure 3 illustrates that the result if the X-ray CT scan of the 1 week bio-treated 
sand samples. It was observed that in silica sand the amount of CaCO3 was more 
than that of Toyoura sand. The shape of the sand particles has influence to gener-
ate the amount of calcite [17–22]. Another thing was observed that the amount of 
calcite was more in the lower portion than the upper portion of the samples. The 
bacteria and the nutrient was applied from the surface of the sample and this has 
made the influence to precipitate the calcite at the lower portion more as liquid 
flows through the pore spaces.

Figure 4 shows that the scanning electron microscopic view of the biotreated 
sand after 1 week of treatment. It was observed that the shape of the crystal is dif-
ferent in Toyoura and Silica sand. This type of shape of crystal might be give some 
influence on the strength of the biotreated sand.

Figure 3. 
X-ray CT analysis (left photo Toyoura sand and right photo silica sand).
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Figure 5 displays the EDS analysis of the biotreated soil samples. Rhombohedral 
crystal (calcite) was present on the surface of the particle and Ca element was 
extracted from the element mapping, and the tendency that calcium carbonate is 
widely distributed on the surface of the particle of silica sand than Toyoura sand.

Figure 6 shows the relationship between Pca and depth of Toyoura sand and 
silica sand. As shown in Figure 1, the particle size was larger than Toyoura sand, 
and it was considered that calcium carbonate covered and enlarged around the 
particle. Rhombohedral crystal (calcite) was present on the surface of the particle 
and Ca element was extracted from the element mapping, and the tendency that 
calcium carbonate is widely distributed on the surface of the particle of silica sand 
than Toyoura sand. An aggregate of rhombohedral crystals with a grain diameter of 
rhombohedral crystal (calcite) of 10 μm to 50 μm was observed. A spherical crystal 
(vaterite) different from rhombohedral crystal was observed in Toyoura sand. In 
silica sand, existence of spherical crystal (vaterite) could not be confirmed. In addi-
tion, it was considered that the transition from vaterite to calcite was proceeding 
in silica sand. As the Toyoura sand and the silica sand, the shape of the particle is 
different they also influenced the shape of crystals.

Figure 5. 
EDS analysis of Toyoura (left) and silica (right) sand.

Figure 6. 
Relation between calcium production and depth.
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From Figure 6 it was confirmed that silica sand Ca (calcium) element 
increased as compared with Toyoura sand under the same treatment condition. 
Since the particle size of silica is larger than Toyoura sand, calcium carbonate 
covers the particle surface particles, and the amount of Ca (calcium) element is 
higher than Toyoura sand. It was considered that it increased shear test by calcium 
carbonate method.

Figures 7 and 8 show the relation among the shear stress and shear strain 
and volumetric strain by direct simple shear test of Toyoura sand and silica sand, 
respectively. It shows the stress–strain relation of Toyoura sand the stress–strain 
relation of Toyoura sand cemented 1 Week by bio-treatment. It was observed  
that the shear stress value increased by 1.3 to 2.0 times in the case of no addition 
of microorganisms of silica sand and Toyoura sand and addition of microorgan-
isms with 1 Week. An increase in shear stress was confirmed and from the point of 
comparison the shear stress of Toyoura sand was higher than the silica sand.

Figure 9 shows the relationship between the shear strength and the  
normal stress determined from Figures 7 and 8. Table 1 shows the cohesion force 

Figure 8. 
Relation between shear stress and shear strain and volumetric strain of silica sand without (left) and after 
1 week of treatment.

Figure 7. 
Relation between shear stress and shear strain and volumetric strain of Toyoura sand without (left) and after 
1 week of treatment.
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c (kN / m2) and internal friction angle φ (°) under each condition. From  
Figure 9, it was confirmed that the silica sand has increased cohesion force 
c (kN/m2) and internal friction angle φ (°) because precipitation of calcium 
carbonate on the particle surface increases the frictional force of the particle 
surface and the increase in density due to calcium carbonate particles. From the 
tendency that calcium is widely distributed, it was considered that shear stress 
and cohesion could be increased [23–26]. In the Toyoura sand, the shear stress 
increased, but the cohesion was decreased. In the Toyoura sand, precipitation 
of calcium carbonate on the particle surface was partially precipitated, and 
the calcium carbonate played the role of fine grain. After the test, Pca (%) was 
measured, and the calcium carbonate precipitation ratio to the sand mass was 1.8 
to 2.4% The results are shown in Table 2. In the solidification period 1 Week by 
the calcium carbonate method, an average of 2% calcium carbonate precipitation 
could be confirmed. The slope stabilization has been also carried out by using the 
native bacteria and found that the soil strength has been increased significantly 
to protect the landslide.

Figure 9. 
Relation between shear stress and normal stress.

Silica No 4 Sand Toyoura Sand Silica No 4 1 Week Toyoura 1 Week

ϕ (°) 35.9 30.9 57.2 57.4

c (kN/m2) 12.38 12.19 15.07 6.56

Table 1. 
Cohesion and degree of internal friction of Toyoura and silica sand without and 1 week of treatment.

Stress Pca (%)

Silica No 4 1 Week Toyoura 1 Week

10 (kN/m2) 2.13 1.99

30 (kN/m2) 2.06 1.84

50(kN/m2) 2.37 2.04

Table 2. 
Amount of calcite generation after 1 week.
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4. Conclusions

It was observed through the X-ray CT and SEM-EDS analysis that the effect 
of particle size on bio-cementation was great. The amount of calcite generation 
is more in silica sand than in the Toyoura sand. In addition, it was confirmed that 
calcium carbonate precipitated was more in the lower part than in the upper part 
by infiltrating the bacteria and nutrient from the surface. It was evaluated that 
the precipitation distribution of calcium carbonate inside the specimen could 
be confirmed by X-ray CT. It was confirmed that from 10 μm to 50 μm calcite of 
rhombohedral crystal and vaterite of spherical crystal could be confirmed in the 
crystalline state of calcium carbonate in Toyoura and silica sand, respectively. It 
was seen the increase of 1.3 to 2.0 times of shear stress after 1 week of biotreated 
by using Bacilius Pasturii. In the cementation period of 1 week an average of 2% 
calcium carbonate precipitation could be confirmed.
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Chapter 5

Evaluation of Landslide 
Susceptibility of Şavşat District of 
Artvin Province (Turkey) Using 
Machine Learning Techniques
Halil Akinci, Mustafa Zeybek and Sedat Dogan

Abstract

The aim of this study is to produce landslide susceptibility maps of Şavşat 
district of Artvin Province using machine learning (ML) models and to compare 
the predictive performances of the models used. Tree-based ensemble learning 
models, including random forest (RF), gradient boosting machines (GBM), and 
extreme gradient boosting (XGBoost), were used in the study. A landslide inventory 
map consisting of 85 landslide polygons was used in the study. The inventory map 
comprises 32,777 landslide pixels at 30 m resolution. Randomly selected 70% of the 
landslide pixels were used for training the models and the remaining 30% were used 
for the validation of the models. In susceptibility analysis, altitude, aspect, curva-
ture, distance to drainage network, distance to faults, distance to roads, land cover, 
lithology, slope, slope length, and topographic wetness index parameters were 
used. The validation of the models was conducted using success and prediction rate 
curves. The validation results showed that the success rates for the GBM, RF, and 
XGBoost models were 91.6%, 98.4%, and 98.6%, respectively, whereas the predic-
tion rate were 91.4%, 97.9%, and 98.1%, respectively. Therefore, it was concluded 
that landslide susceptibility map produced with XGBoost model can help decision 
makers in reducing landslide-associated damages in the study area.

Keywords: landslide susceptibility mapping, machine learning, RF, GBM, XGBoost, 
Şavşat

1. Introduction

Natural disasters cause displacement of people, injuries, loss of life, and 
 damage to infrastructure facilities and cultural heritage, which can directly give 
rise to extreme economic losses. According to the data from Emergencies Database 
(EM-DAT), managed by the Center for Research on the Epidemiology of Disasters 
(CRED), 11,755 people died worldwide due to 396 natural disasters that occurred 
in 2019; 94.9 million people were affected by these disasters and an economic loss 
of 103 billion dollars was suffered [1]. On the contrary, according to the report 
prepared by the AON company, which provides insurance and reinsurance broker-
age and risk management consultancy services, the damage caused by natural 
disasters in 2020 is estimated to be 268 billion dollars [2]. In the AON report 
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prepared in 2020, the value of total economic losses caused by natural disasters in 
the 2010–2019 period was calculated as 2.98 trillion dollars. In the same report, the 
economic losses in question were reported to be 1.1 trillion dollars higher than that 
in the 2000–2009 period [3].

Landslide is generally defined as the downward movement and displacement of 
the material forming a slope with the effect of gravity [4]. Rabby and Li [5] stated in 
their study that landslides are a very common phenomenon and account for 9% of 
disasters in the world. Landslides, especially those caused by rainfall, are the most 
damaging natural disasters in mountainous and rugged regions, resulting in loss 
of life, damage to property, and economic loss [6]. Landslide susceptibility maps 
are one of the important data needed to identify landslide-hazardous areas and to 
reduce losses due to landslides [7, 8]. Many different approaches and models have 
been implemented in the production of landslide susceptibility maps. Merghadi et al. 
[9] and Tang et al. [10] classified the modeling approaches into four categories: the 
heuristic, physically based, statistical, and machine learning (ML) models. Heuristic 
and physically based models (also known as deterministic models) have their own 
characteristics and disadvantages. Heuristic models are highly subjective and rely on 
experts’ opinions and experience on assigning weightage to landslide-conditioning 
factors [11–14]. In this approach, differences in expert opinions or insufficient infor-
mation about the study area may cause inconsistent results [15]. Physically based or 
deterministic models use laws of mechanics to analyze slope stability. The advantages 
of these models are that they do not require long-term landslide inventory data and 
are more useful in areas where landslide inventories are missing [15]. However, 
deterministic models are suitable for small areas where landslide types are simple 
and ground conditions are fairly uniform [14], but they require detailed geotechnical 
and hydrogeological data on these areas [13]. To overcome the disadvantages of the 
above two approaches and to produce reliable landslide susceptibility maps, statis-
tics-based models have been developed [14]. Statistics-based models evaluate the 
correlation between past landslides and the conditioning factors that had an impact 
on their occurrence [16] and they need landslide inventory data for this [17].

In recent years, machine learning (ML) techniques such as support vector 
machine [18, 19], decision tree [20, 21], generalized linear model [22, 23], logistic 
model tree [13, 16], artificial neural networks [6, 24, 25], and Naïve Bayes [26–28] 
have been widely applied for landslide susceptibility mapping (LSM). Sahin [29] 
and Merghadi et al. [9] stated that tree-based ensemble algorithms provide better 
prediction performance for LSM compared to any single model. In addition, Sahin 
[30] stated that ensemble learning techniques, such as random forest (RF), gradient 
boosting machine (GBM), and extreme gradient boosting (XGBoost), are efficient 
and robust for creating landslide susceptibility maps and that these algorithms 
would be preferred more frequently in the future for their robustness.

The most common natural disasters in Turkey are landslides and floods. Artvin 
is one of the provinces in Turkey that experiences the most frequent natural disas-
ters. Landslides occur almost every year in the province of Artvin, especially due to 
meteorological conditions (extreme rainfall) and anthropogenic activities, such as 
agricultural activities, excessive irrigation, and road excavations. Şavşat is one of 
the districts of Artvin where landslides are most common. Şavşat, a Cittaslow city, 
stands out with its historical and natural beauties and has a high tourism potential. 
For this reason, it is very important to evaluate the landslide susceptibility to reduce 
the landslide-associated damages in the district. The aim of this study is to produce 
landslide susceptibility maps of Şavşat district of Artvin Province using RF, GBM, 
and XGBoost ML models and to evaluate the performances of the models. Eleven 
factors commonly used in LSM studies were used in the study. The produced 
landslide susceptibility maps were validated using the validation dataset.
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2. Study area and data used

Şavşat, like other districts of Artvin, is a district with a rugged terrain. Şavşat, 
spreading on a 1272.27 km2 land, is located between 41°05′11″ and 41°30′56″ north 
latitudes and 42°04′30″ and 42°35′47″ east longitudes (Figure 1). In the study 
area, the altitude varies between 590 and 3005 m with the average altitude being 
1789.14 m. The average slope of the study area is 21.17°, whereas the maximum slope 
is 72.53°. The slope is over 20° in ~55% of the study area.

According to the data from the Turkish Statistical Institute (TURKSTAT), the 
total population of Şavşat district in 2020 is 17,024. Of this population, 6,123 live 
in the town and 10,901 live in villages [31]. There is a transitional climate between 
the Black Sea climate and the continental climate in the district. While semi-humid 
climatic conditions are observed in the low valley floors, cold humid climatic 
conditions are observed in the higher elevations. In addition, winters are very long 
in places with high altitudes. According to the data (November 2012–March 2021) 
from the General Directorate of Meteorology, sum of monthly average rainfall in 
the study area is 715.60 mm. The monthly average rainfall is minimum in February 
with 27.8 mm and maximum in May with 111.03 mm. In the study area, the monthly 
average temperature was maximum at 32.8°C in August and minimum at −7.4°C in 
December [32].

Şavşat is located in the eastern part of the Eastern Pontides and the southern 
part of Transcaucasia. In the study area, intrusive, volcanic, and volcano-
sedimentary facies have developed due to the magmatic activities that took place 
in the Dogger, Late Cretaceous, and Eocene ages. In the north and northwest part 
of the region, units representing the same stratigraphic unity surfaces in a range 
extending from the Liassic to the Early-Middle Eocene. In the southern part, units 
representing two separate stratigraphic units are surfaced. The sequence in the west 
of the southern section is characterized by units of Early-Middle Jurassic and Late 

Figure 1. 
Study area.
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Cretaceous age, and the sequence in the east of the southern section is characterized 
by units of Late Cretaceous and Middle Eocene age. Tertiary units surfacing in the 
eastern and southeastern parts of the region are considered as common units [33]. 
According to the earthquake zone map of Turkey, Şavşat district is located in the 
third degree earthquake zone. However, the most common natural disaster in the 
district is landslide [34]. The landslides occurring in the study area are mostly of 
complex type. Landslides are observed in larger areas with respect to Quaternary 
alluvium and slope debris [33].

2.1 Landslide inventory map

To reliably predict future landslides, reliable landslide inventory maps contain-
ing information about past landslides are needed [16]. As stated by Parise [35], 
landslide inventory maps represent the spatial distribution of landslides and pro-
vide information about the location, typology, and activity status of landslides. In 
this study, the landslide inventory map produced by Artvin Provincial Directorate 
of Disaster and Emergency was used. The landslide inventory map contains 85 
landslide polygons. The area of the smallest landslide polygon in the study area is 
0.01 ha (99.34 m2), and the area of the largest landslide polygon is 325.97 ha. The 
average area of the landslide polygons is 34.75 ha. Landslides cover ~3% of the 
study area. The lengths of the landslides in the region vary between 13 and 3100 m 
and their widths vary between 10 and 2780 m. According to their activities, 28 of 
these landslides are active, 32 are stalled, and 25 are inactive landslides. According 
to Varnes [4] classification of mass movements, 6 of the landslides were classified 
as slide, 2 as lateral spread, 20 as flow, and the remaining 57 as complex.

2.2 Landslide-conditioning factors

Evaluation of landslide susceptibility in a region depends on determining 
the factors that are effective in the formation of landslides in that region and on 
collecting spatial data related to these factors [36]. Yi et al. [8] stated that there is 
no widely accepted procedure for the selection of factors used in LSM. Yanar et al. 
[37], on the contrary, stated that the main limitation in determining the factors 
to be used to create landslide susceptibility maps is the availability of data. In this 
study, 11 factors including altitude, aspect, curvature, distance to drainage net-
work, distance to faults, distance to roads, land cover (CORINE 2018), lithology, 
slope, slope length, and topographic wetness index (TWI) were used based on the 
availability of data, geo-environmental conditions of the study area, and literature 
survey. Spatial data on these factors are collected from different sources (Table 1). 
Landslide-conditioning factor maps were generated using ESRI ArcGIS 10.5 and 
SAGA GIS 7.9.0 software and were converted into raster format with 30 m spatial 
resolution.

2.2.1 Altitude

Altitude is associated with various geomorphological and meteorological factors 
such as weathering, weather conditions, wind effect, and precipitation, which 
are effective in the formation of landslides [6]. For this reason, it has been used in 
almost all LSM studies. The digital elevation model (DEM) of the study area was 
created using 10-m-interval contours on the topographic maps and it was converted 
to raster format with 30-m spatial resolution. The altitude map of the study area 
was generated from this DEM. The altitude in the study area varies between 590 and 
3005 m. DEM was reclassified into 10 classes at 240 m intervals (Figure 2a).
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2.2.2 Aspect

Aspect has an important role in landslide formation as it affects factors such 
as exposure to sunlight and the intensity of solar radiation, wind, rainfall and, 
soil moisture [38, 39]. For this reason, aspect is widely used in LSM studies  
[6, 26, 36, 40]. The aspect map used in this study was produced from DEM and 
divided into nine classes (flat, north, northeast, east, southeast, south,  
southwest, west, and northwest) (Figure 2b).

2.2.3 Curvature

Curvature, which is widely used in geomorphometric analysis, is one of the 
basic terrain parameters and reflects the shape of the land surface [23, 41]. In 
curvature map, positive curvature values indicate that the surface is convex, 
negative curvature indicates that the surface is concave, and zero indicates that 
the surface is flat [42]. In this study, curvature map was derived from DEM using 
ArcGIS 10.5 software and divided into three subclasses, i.e., concave, flat, and 
convex (Figure 2c).

2.2.4 Distance to drainage network

The distance to the drainage networks is one of the important conditioning 
factors used in landslide susceptibility studies, since the pore water pressure 
that causes the formation of landslides increases in areas close to the drainage 
networks [23]. Drainage networks in the study area were generated from DEM 
using functions in ArcHydro toolbox in ArcGIS 10.5 software. The distance to the 
drainage networks was calculated using the Euclidean distance tool in ArcGIS 10.5. 

Original data Factors Data type Scale Data provider

Landslide 
inventory

Landslide 
locations

Polygon 1/25,000 Artvin Provincial Directorate 
of Disaster and Emergency

Geological map Lithology Polygon 1/100,000 General Directorate of Mining 
Research and Exploration 

(GDMRE)Distance to 
fault lines

Polyline 1/100,000

Topographical 
map

Altitude GRID 1/25,000 General Directorate of 
Mapping

Slope GRID 1/25,000

Slope length GRID 1/25,000

Aspect GRID 1/25,000

Curvature GRID 1/25,000

TWI GRID 1/25,000

Distance 
to drainage 

network

GRID 1/25,000

Road network Distance to 
roads

Polyline 1/25,000 Basarsoft Information 
Technologies Inc.

CORINE 2018 Land cover Polygon 1/100,000 European Union Copernicus 
Land Monitoring Service

Table 1. 
Data and data sources.
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The maximum distance to the drainage networks in the study area has been 
 calculated as 1830.98 m. The distance to the drainage networks is reclassified into 
10 subclasses with equal intervals of 180 m (Figure 2d).

2.2.5 Distance to faults

Areas close to faults are highly susceptible to landslides as the strength decreases 
due to tectonic fractures [28]. Ba et al. [43] stated that landslides tend to occur 
around faults due to fractures in the rock mass. For this reason, the distance to the 

Figure 2. 
The landslide conditioning factor maps: a) altitude b) aspect c) curvature d) distance to drainage network.
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faults is taken into account in the landslide susceptibility analysis [14, 40, 44]. In 
this study, the distance to the faults was obtained using the Euclidean distance tool 
of ArcGIS 10.5 software. The maximum distance to the faults in the study area has 
been calculated as 13,016.61 m. The distance to the faults was classified into 10 
subclasses with 1200 m intervals and used in the landslide susceptibility analysis 
(Figure 3a).

Figure 3. 
The landslide conditioning factor maps: a) distance to faults b) distance to roads c) land cover d) slope.
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2.2.6 Distance to roads

Road construction, which is considered to be one of the most important anthro-
pogenic factors, destabilizes the slopes, so the probability of landslides along a road 
increases [43]. Roads built on slopes in areas with rough topography cause loss of 
toe support, change in topography, increase in tension behind the slope, and devel-
opment of tension cracks [45, 46]. For this reason, distance to the road has been 
considered as one of the important conditioning factors in many studies [14, 17, 47]. 
The road network in the study area was supplied in digital format from Başarsoft 
Information Technologies Inc., which collects road data for the production of naviga-
tion maps in Turkey. Distance to roads was calculated using the Euclidean distance 
tool in ArcGIS 10.5 and reclassified into 10 subclasses at 450 m intervals (Figure 3b).

2.2.7 Land cover

Land cover maps, in general, represent what physical classes or materials (e.g., 
forest, pasture, field, lake, and wetland) the Earth’s surface is spatially covered 
with. Land use or land cover maps are usually used in LSM studies for taking into 
consideration the effects of anthropogenic activities on rugged slopes on landslide 
formation [5]. In this study, CORINE 2018 land cover (CLC 2018) data provided 
by Copernicus Land Monitoring Service, one of the European Union’s Earth 
Observation Programme services, were used. According to this dataset, the study 
area includes 14 different land cover classes (Figure 3c).

2.2.8 Slope

The slope angle, one of the most important factors governing the stability of 
slopes, is closely related to the shear forces acting on the slopes. As the angle of 

Figure 4. 
The landslide conditioning factor maps: a) slope length b) TWI.
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inclination increases, the shear stress in the materials forming the slope generally 
increases [48]. For this reason, slope angle has been used in all LSM studies, as is the 
case for the lithology parameter [18, 40, 49–51]. The slope in the study area varies 
between 0° and 72.53°. In this study, the slope was divided into 10 classes with 5° 
spacing, and a slope map of the study area was produced (Figure 3d).

2.2.9 Slope length

Slope length is one of the important topographic factors that affect the formation 
of landslides [6]. Kavzoglu et al. [18] defines the slope length as “the distance along a 
slope subject to uninterrupted over land flow.” Slope length affects hydrological pro-
cesses and soil loss, especially in mountainous areas [23]. This factor is closely related 
to the formation of landslides, because the potential for the materials forming the 
slopes to be carried downhill also increases with the increase of the slope length [52]. In 
this study, slope length was produced from DEM using SAGA GIS software and it was 
reclassified into 10 classes using the natural break classification method (Figure 4a).

2.2.10 Topographic wetness index (TWI)

TWI is an index generally used to characterize the spatial distribution of soil 
moisture [53] and is considered as an important factor contributing to the occur-
rence of landslides. Yanar et al. [37] stated that TWI indicates the locations and 
size of the water-saturated regions. For this reason, TWI has been used in many 
landslide susceptibility studies [26, 54, 55]. The following equation is used to 
calculate TWI:

 ln sATWI
tanβ

 
=  

 
 (1)

In the Eq. (1), As is the specific basin area and β is the slope in degrees. TWI 
index in the study area, varying between 1.002 and 24.160, was produced using 
SAGA GIS software. TWI index values were divided into 10 subclasses using the 
natural break classification method and used in sensitivity analysis (Figure 4b).

2.2.11 Lithology

Kavzoglu et al. [18] stated that lithology is one of the main factors that have a 
direct impact on the formation of landslides, as lithological and structural varia-
tions lead to changes in the strength and permeability of rocks and soils. For this 
reason, lithology has been one of the most important conditioning factors used 
in all landslide susceptibility evaluation studies. In this study, 1/100,000 scaled 
digital geological map obtained from General Directorate of Mineral Research and 
Exploration (GDMRE) was used to produce the lithological map of the study area. 
The geological map of the study area includes 16 lithological units (Figure 5).

3. Methodology

3.1 Random forest

First proposed by Breiman [56], RF is an ensemble learning method that cre-
ates multiple decision trees from the training dataset and combines the results of 
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the decision trees to improve the predictive ability of the model [57]. According to 
Arabameri et al. [44] and Merghadi et al. [9], one of the most important advantages 
of RF is that it avoids the risk of overfitting, which is a common problem in other 
decision tree models. In the study conducted by Sahin [29], it is stated that requir-
ing less hyperparameter tuning, compared to gradient boosting algorithms, was 
RF’s main advantage. To create a classification model in RF, two parameters must 
be defined: ntree parameter, which refers to the number of decision trees generated 
by RF, and mtry parameter, which refers to the number of factors or variables used 
in each node of the decision tree. In this study, “rf” method of the “caret” package 
[58] was used in R 3.6.3 to apply the RF model. In the study, the ntree parameter was 
set to 100 and the mtry parameter to 8, and a 10-fold cross validation approach was 
used to reduce the variability of the model results.

3.2 Gradient boosting machine (GBM)

GBM [59] is a ML technique that combines multiple different models through 
boosting and regression trees to increase prediction precision [60]. The main 
feature of GBM is that it combines multiple weak learners to improve their perfor-
mances. GBM, an ensemble learning method, combines multiple decision trees to 
create a more powerful model that can be used for classification or regression. In 
GBM, unlike RF, each tree tries to correct the error of the previous tree [61]. For this 
purpose, the residual errors calculated as a result of the prediction of the previous 
tree are minimized and the next tree is obtained, and these processes continue until 
the prediction results are stable or until the maximum number of trees is reached. 
In practice, the number of trees is chosen to be 100 or greater. There are four param-
eters that must be set by the user during the execution of the GBM, namely number 
of trees (n.trees), shrinkage, number of levels of trees (interaction.depth), and the 
minimum number of observations in trees’ terminal nodes (n.minobsinnode). For 

Figure 5. 
Lithological map of the study area.
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low-variance and accurate predictions, the learning rate is chosen so that it con-
verges to the optimum value with small steps in the right direction. The number of 
levels of trees is chosen between 8 and 32. In this study, GBM was performed using 
the “gbm” method in R 3.6.3.

3.3 Extreme gradient boosting (XGBoost)

XGBoost, developed by Chen and Guestrin [62], is based on the gradient boost-
ing approach. XGBoost is based on the efficient and effective implementation of the 
gradient boosting algorithm. For this purpose, it interprets the approximate greedy 
algorithm with the Newton–Rapson method. XGBoost uses several classification 
and regression trees and integrates them using gradient boosting [63]. It produces 
fast and accurate solutions with univocal regression trees, weighed quantile 
approach, and sparsity aware split finding. It is trained very quickly, and since it 
is suitable for parallel learning technique, XGBoost increases the overall accuracy 
(performance) of the model by avoiding the overfitting problem during the train-
ing process [64]. XGBoost uses two additional techniques called shrinkage and 
column (feature) subsampling to avoid overfitting [62]. Wang et al. [61] noted that 
the computational speed and accuracy of XGBoost has been significantly improved 
compared to GBM. In this study, the XGBoost model is implemented in R 3.6.3 using 
the “xgbTree” method of the “caret” package.

3.4 Preparation of training and validation dataset

“Landslide (or positive)” and “non-landslide (or negative)” samples are needed 
in the study area during the training and validation of the models used to create 
landslide susceptibility maps. The ratio of 70:30 has been commonly used in the 
literature to produce training and validation datasets [6, 8, 65, 66]. In particu-
lar, 70% of the landslide inventory data is used for training the models and the 
remaining 30% is used for the validation of the models. Huang and Zhao [67], 
on the contrary, stressed that the number of positive and negative samples in the 
training and validation datasets should be equal, i.e., having a ratio of 1:1. For this 
reason, as many negative samples as the number of positive samples are selected 
in the study area. In this study, 85 landslide polygons on the inventory map were 
converted to 30 m × 30 m resolution raster format and 32,777 landslide pixels were 
obtained. A value of “1” was assigned to positive or landslide pixels in the study 
area. Then, 32,777 non-landslide pixels were randomly selected in the study area 
in the R program and the value of “0” was assigned to these pixels. Randomly 
selected 70% of the landslide and non-landslide pixels (45,888 pixels in total) were 
used for training the models and the remaining 30% (19,666 pixels) were used for 
the validation of the models.

3.5 Multicollinearity analysis for landslide-conditioning factors

One of the important steps of LSM is to control the multicollinearity between 
landslide-conditioning factors [8]. Multicollinearity is an important analysis used 
to determine the conditional independence between the factors during the selection 
of the conditioning factors to be used in susceptibility models, and thus, to prevent 
the models from producing erroneous predictions [9, 68]. Commonly used indica-
tors for multicollinearity analysis are tolerance (TOL) and variance inflation factor 
(VIF). A TOL value less than 0.1 or a VIF value greater than 10 indicates multicol-
linearity [8, 16, 44]. TOL and VIF values calculated using the training dataset for 
this study are shown in Table 2. The results show that there is no multicollinearity 
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among the landslide-conditioning factors used in the study. Therefore, all selected 
factors were used to produce landslide susceptibility map of the study area.

4. Results and discussion

4.1 Landslide susceptibility mapping

In this study, RF, GBM, and XGBoost models were successfully applied and 
landslide susceptibility index (LSI) maps were produced via R 3.6.3 using the 
training data set for each model. Then, landslide susceptibility maps were obtained 
by reclassifying the LSI maps into five classes: very low, low, medium, high, and 
very high, using the natural breaks (Jenks) classification method in ArcGIS 10.5 
software (Figure 6).

The spatial distributions (in percentages) of the susceptibility classes for each 
model are given in Figure 7. It has been determined that the study area is highly or 
very highly susceptible to landslides by 27.27%, 11.13%, and 16.89% according to 
the GBM, RF, and XGBoost models, respectively (Figure 7).

The significance degrees of the landslide-conditioning factors used in the study 
are presented in Figure 8. It has been observed in all models that the lithology is 
the most important parameter. After lithology, the most important or most effec-
tive parameters in the study area were determined to be altitude, distance to faults, 
slope, and land cover parameters. Slope length and curvature were the least signifi-
cant parameters in all models (Figure 8). The findings related to the parameters 
found to be effective in terms of landslide are explained in the following sections.

When Table 3 is examined, ~76% of the landslides in the study area can be 
seen to have occurred at altitudes between 1070 and 2030 m. In respect of altitude, 
1070–1310, 1310–1550, 1550–1790, and 1790–2030 m altitude classes were found to 
be susceptible to landslides (Table 3). The main reason why these altitude classes 
are susceptible to landslides is that more than 90% of the village settlements in 
the study area are located between these altitudes. Uncontrolled excavations and 
uncontrolled agricultural activities in villages are the most important factors that 
trigger landslides. In the study by Erener et al. [34], conducted in Şavşat district and 

Landslide conditioning factors Statistics

TOL VIF

Altitude 0.4713 2.1217

Aspect 0.9770 1.0235

Curvature 0.7879 1.2692

Distance to drainage network 0.7916 1.2633

Distance to faults 0.7786 1.2844

Distance to roads 0.5552 1.8011

Land cover 0.7206 1.3877

Lithology 0.8763 1.1412

Slope 0.5373 1.8610

Slope length 0.7345 1.3615

Topographic Wetness Index 0.4595 2.1761

Table 2. 
Multicollinearity analysis of landslide-conditioning factors.
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covering a more limited (small) region compared to this study, the altitude class 
between 1500 and 2000 m was found to be susceptible to landslides.

When the study area is examined in terms of slope, it is seen that 0°–5°, 5°–10°, 
10°–15°, and 15°–20° slope classes are more susceptible to landslides (Table 3). In 
these slope classes, 82.31% of the landslides occurred in the study area. The fact that 
complex mass movements (creeping and spreading) in the study area are generally 
seen in areas with low slope degrees (approximately in the range of 7°–12°) have 
provided these results in terms of slope.

Figure 6. 
Landslide susceptibility maps produced using a) GBM b) RF c) XGBoost.
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When Table 3 is examined, it is seen that ~55% of the landslides in the study 
area occur on slopes with north, northeast, and northwest aspects. When the 
frequency ratios in Table 3 are examined, it is clearly seen that the slopes with 
these aspects have the highest frequency ratio value, and therefore, they are more 
susceptible to landslides. In the study conducted by Akıncı and Zeybek [69], in 
the Ardanuç district, which is adjacent to the Şavşat district and has similar topo-
graphical and geomorphological characteristics with the study area, the slopes with 
north, northwest, and northeast aspects were determined to be more susceptible to 
landslides.

Within the first 3600 m margin of the faults, 74% of the landslides occurred 
in the study area (Table 3). In the study area, the landslide susceptibility tends to 
decrease with distance from the faults. Although the region most susceptible to 
landslides in terms of distance to faults is 4800–6000 m, it is seen that distance 
classes of 0–1200, 1200–2400, and 2400–3600 m are also susceptible to landslides 
(Table 3). Althuwaynee et al. [70] stated that the probability of landslide decreases 
as the distance to the faults increases. Also in the LSM study conducted by Akinci 
et al. [40] in the area covering Arhavi, Hopa, and Kemalpaşa districts of Artvin 
Province, the areas within the first 2000 m distance to the faults were determined to 
be more susceptible to landslides.

Considering the CORINE 2018 land cover data, it was determined that ~56% 
of the landslides in the study area occurred in agricultural areas (Table 3). 

Figure 7. 
Percentage distributions of susceptibility classes.

Figure 8. 
Importance of landslide-conditioning factors for a) GBM b) RF c) XGBoost.
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Non-irrigated arable lands (CORINE land cover code 211), agricultural areas within 
natural vegetation (243), mixed agricultural areas (242), discontinuous urban 
structure (112), and bare rocks (332) were determined as landslide sensitive areas. 
The scattered settlements in the villages cause uncontrolled excavations, which in 
turn triggers landslides. In the landslide susceptibility study conducted by Erener et 
al. [34] in Şavşat district, it was reported that landslide activity increased in areas 
where the original vegetation was removed or changed. In the same study, it was 
determined that farming areas, irrigated or dry, were more susceptible to landslides. 
Researchers attributed this to the deforestation in agricultural areas.

4.2 Validation and comparison of landslide susceptibility models

Thi Ngo et al. [7] stated that it is important to identify landslide-prone areas 
with high accuracy and to use an appropriate metric for the performance evalu-
ation to produce a reliable landslide susceptibility map. The performances of the 
models used in the production of landslide susceptibility maps are mostly evaluated 
using the receiver-operating characteristics (ROC) curve [28, 38, 45, 60, 71–73]. 
Therefore, in this study, the receiver-operating characteristic-area under the curve 
(ROC-AUC) approach was applied to evaluate and measure the performances of 
ML models. The ROC curve is a graph showing the true positive rate (TPR or sen-
sitivity) on the vertical axis and the false positive rate (FPR or 1-specificity) on the 
horizontal axis. In the ROC curve, the most important indicator used to evaluate the 
accuracy or performance of the susceptibility model is the AUC. AUC takes values 
between 0.5 and 1 [71]. An AUC value close to 1.0 indicates high performance of 
the model and close to 0.5 indicates low performance of the model. On the contrary, 
Chen et al. [74] and Wang et al. [17] stated that the AUC value can be classified 
in five classes: poor (0.5–0.6), moderate (0.6–0.7), good (0.7–0.8), very good 
(0.8–0.9), and excellent (0.9–1.0).

In the study, success rate and prediction rate curves were created using training 
and validation data sets, respectively. The success rate curve is used to understand 
how well the models used to produce landslide susceptibility maps to classify exist-
ing landslide areas [74]. In this study, the AUC values of the success rate curves for 
the GBM, RF, and XGBoost models were calculated as 91.6%, 98.4%, and 98.6%, 
respectively (Figure 9a). Since the success rate curve is produced using the training 

Figure 9. 
a) Success rate b) prediction rate curves for ML models.
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data set, it is not an appropriate indicator to evaluate the predictive capabilities 
of the models [21, 42]. The prediction rate curve should be used to evaluate the 
prediction capabilities of the models [75]. The prediction rate curve shows how well 
the models predict unknown or probable future landslides [5]. The AUC values of 
the prediction rate curves produced for the GBM, RF, and XGBoost models were 
calculated as 91.4%, 97.9% and 98.1%, respectively (Figure 9b). AUC value being 
close to 1.0 in three models show, according to the classification made by Chen et al. 
[74] and Wang et al. [17], that their performances, i.e., their prediction capacities, 
are excellent.

5. Conclusions

In this study, RF, GBM, and XGBoost algorithms were used for landslide suscep-
tibility mapping of Şavşat district of Artvin Province. The performances of these 
models were evaluated using success rate and prediction rate curves. According 
to the AUC values, the models used in the study showed excellent performance. 
However, the XGBoost model outperformed the other two models in landslide 
susceptibility mapping of the study area. Therefore, it was concluded that the 
susceptibility map produced by the XGBoost model can help decision makers and 
planners in reducing the risks caused by landslides in the region and in land use 
planning. In this study, 11 factors—altitude, aspect, curvature, distance to drainage 
network, distance to faults, distance to roads, land cover, lithology, slope, slope 
length, and TWI—were used based on the availability of the data, geo-environ-
mental conditions of the study area, and literature survey. As a result of the study, 
it was concluded that the main factor governing the landslides in the study area in 
all three models is lithology. The artificial factors that trigger landslides across the 
province of Artvin, as in Şavşat district, are uncontrolled excavation works (usually 
road widening), uncontrolled explosive excavations, and uncontrolled agricultural 
land irrigation. In this respect, providing basic disaster awareness trainings to 
citizens residing in areas susceptible to landslides in the study area and trainings 
on the causes, effects, and consequences of landslides will be beneficial in terms 
of risk reduction. Similarly, taking into account landslide susceptibility maps in 
selecting dwelling zones in rural areas and in determining the routes through which 
infrastructure facilities such as drinking water, natural gas, electricity, and sewer-
age will pass, will be effective in reducing the risks associated with landslides in the 
study area.
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Chapter 6

Performance Evaluation of 
Geometric Modification on the 
Stability of Road Cut Slope Using 
FE Based Plaxis Software
Fentahun Ayalneh Mekonnen

Abstract

Slope failures are among the common geo-environmental natural hazards in the 
hilly and mountainous terrain of the world. Specially it is the major difficulty for 
the development of construction as it causes considerable damage on the infra-
structure, human life and property. Different causes of slope failure and stabiliza-
tion methods are proposed by different scholars. In this study the performance of 
geometric modification in slope stability was investigated using numerical method. 
The study uses slope height, slope angle and slope profile i.e. single slope, multi 
slope and bench slope as a governing parameter in the performance evaluation of 
geometric modification on the slope stability. The evaluation was conducted on a 
newly constructed road cut slope using a finite element based plaxis software. The 
result from performance evaluation of slope profiles show that geometric modifica-
tion provides better and economical slope stability. The stability of slope decreases 
with increase in slope height and slope angle leading to an uneconomical design 
of high slopes in a single slope profile. However, the use of benching improves the 
stability of cut slope (i.e. the use of 2 m and 3 m bench improves the factor of safety 
by 7.5% and 12% from single slope profile). The method is more effective in steep 
slopes. Similarly, the use of a multi slope profile improves the stability of slope in 
stratified soil with varied strength. The performance is more significant when it 
is used in combination with benches. The study also provides comparison of slope 
profiles based on different criteria’s and recommend the selection profile based on 
site-specific considerations.

Keywords: slope profile, bench slope, multi slope

1. Introduction

A slope is an inclined ground surface formed naturally or by excavation for  
different human activities. Its stability is the major consideration in civil engi-
neering infrastructural projects such as open-pit mining operations, road cut or 
embankment slopes as its failure causes considerable damage on the infrastructure, 
human life and property.

Instability of slope can be occurred due to internal or external factors which 
causes failure either by reducing the shear strength of slope material or by 
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increasing the shear stress on the slope [1]. Different processes such as increased 
pore pressure, cracking, swelling, decomposition of clayey rock fills, creep under 
sustained loads, leaching, weathering, and cyclic loading are responsible to a reduc-
tion in shear strengths [2]. In contrast to this, the shear stress in slopes may increase 
due to additional loads at the top of the slope, increase in water pressure, increase 
in soil weight due to saturation, excavation at the bottom of the slope, and seismic 
effects [1]. Also, it must be noted that, slope geometry, state of stress, and erosion 
contributes to the failure of slope. The mechanism of slope failure varies and takes 
place as speed or slow rate, depending on the type of material, slope geometry, and 
types of triggering factors. Slide, fall, earth flow, debris flow, topple, planar and 
wedge failure are the common methods of slope failure.

As both natural and human activities are responsible for the failure of slopes, 
it is difficult to avoid the problem entirely. However, the level of damage can be 
significantly reduced by assessing the stability condition and adopting different 
preventive measures on it. There are various remedial measures applied during and 
after construction to reduce the impact of slope failure and these can be grouped 
into four general classes i.e. geometric modification, drainage control, slope rein-
forcement, and retaining structure [3].

Now a day slope stability studies have been attracted researcher’s attention as 
their understanding on the impact of slope failure in human life and infrastructural 
development increases. Numerous slope stability studies were carried around the 
world so far and better understandings are established about causes of failure, 
mechanisms of failure, methods of analysis, and possible remedial measures. 
However, the damages due to slope failure are increasing from year to year and 
still the major difficulty for the development of infrastructural constructions in 
Ethiopia. A review of previous slope stability assessments [4–6] indicates that slope 
failures are the main constraint for road and railway construction in Ethiopia. To 
overcome this problem and acquire better solutions a continuous effort is needed. 
Hence, this study was carried to evaluate the performance of geometric modifica-
tion i.e. slope profiles (single slope, multi slope and multi slope) on slope stability 
using numerical methods.

2. Description of the study area

The study area is located at Adama city in Ethiopia on a newly constructed ring 
road project. The area is in the east African refit valley system which is dominated 
by escarpments of various landscapes and bordering. The slope is formed by exca-
vation of volcanic ridges and its height extends up to 40 m with 3 m bench every 
10 m. Reddish to brownish color residual soils formed by a physical and chemical 
process from parent rock and volcanic rocks of different degree of weathering are 
the major type of materials found in the cut slope (Figure 1).

3. Geometry of slope

Geometry is among the most critical factors controlling the stability of the 
slope [7, 8]. Generally, slope height, slope angle and slope profile are the major 
parameters in geometric modification. Cut and embankment slopes can be 
formed using one of the three profiles i.e. single slope, multi slope and bench 
slope. But depending on the composition of slope material, height of the slope, 
and hydrological conditions these profiles have different performance in the 
stability of slope.
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Single slope profile is used in cut and embankments of dense soils with enough 
resistance against failure with a limited height [9]. Increasing height (h) and angle 
of slope (α) will increase the shear stress and decrease normal stress on the poten-
tial rupture plane [2]. As a result, h and α are major parameters control the perfor-
mance of single slope profile.

Multi-sloped profiles are provided in cuts where the stratigraphy of soil consists 
of two or more layers with different strength characteristics [9]. The method allows 
the use of both steep and gentle slopes in stiff and weaker layer of the slope section 
respectively.

Figure 1. 
Location of the study area and slope section of the road.

Figure 2. 
Geometric profiles of cut slope.
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Bench slope profile is a technique in which the overall slope is divided into 
multiple small slopes. It reduces the driving forces above the failure surface by 
reducing the weight of slope [8]. Bench slope, bench height and bench  
width are the major parameters control the performance of bench slopes 
(Figure 2).

4. Methodology

To investigate the performance of slope profiles a newly constructed road cut 
slope in Adama city was used. Under this investigation the effect of slope profiles 
and its parameters (slope height, slope angle, bench width, no of bench, and bench 
angle) on the stability of slope was evaluated interims of FS and deformation. The 
performance of multi-slope and bench slope profiles was evaluated with respect to 
single slope profiles and further comparison was made between them interims of 
construction difficulty, appearance or esthetic value, drainage control, and acces-
sibility for maintenance.

4.1 Numerical modeling

The numerical modeling was carried using finite element method (FEM).  
The method discretizes a continuum into elements to describe the behavior or 
actions of individual pieces and reconnecting them to represent the behavior of the  
continuum [10–12].

5. Material parameters for modeling

For this FE modeling an elastic perfectly plastic Mohr-Coulomb material model 
was used. The model uses material stiffness (E and v) as elasticity parameter, mate-
rial strength (𝜑𝜑, and c) as soil plasticity and 𝜓𝜓 as angle of dilatancy [10]. The slope 
section used for this investigation has both soil and rock layers, hence to determine 
the parameters both field and laboratory tests were carried. The soil shear strength 
parameters were obtained from direct shear test and its stiffness parameters were 
correlated with SPT data. Similarly, the strength and deformation parameters of 
rock layers were determined by correlating field and laboratory tests with rock data 
software. The geometric and material data used for this investigation were summa-
rized in Figure 3 and Table 1.

Figure 3. 
Cross-section of the newly constructed road cut slope.
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5.1 Stability analysis

To evaluate the stability of slope in different profiles first initial stress and 
pore water pressure distribution was generated using 𝑘𝑘0 procedure and phreatic 
water level respectively. Then the deformation and safety analysis were carried 
with plastic calculation and phi-c reduction method for the same loading  
conditions. Phi-c reduction is a method where the shear strength parameters  
(c and tan∅) are successively reduced until the failure occurs [13]. During the  
process the strength reduction factor (∑ 𝑀𝑀𝑀𝑀𝑀𝑀) is increased start from 1. The 
global safety factor is equal to the total multipliers ∑ 𝑀𝑀𝑀𝑀𝑀𝑀 at the point of  
failure which is expressed as the ratio of initial and reduced strength  
parameters [10].

 input input

reduced reduced

tan C
FS MSF

tan C
∅

= ∑ = =
∅

 (1)

6. Numerical validation

To validate the numerical model a slope section for this study was evaluated 
using Fellenius method (analytical solution) and the result was compared with 
numerical value both in FEM (plaxis) and LEM (slide) software’s (Figure 4).

Validation also made using slope section first introduced by Zhang [14] and 
later used by numerous investigators i.e. Ferdlund and Krahn [15], Chen et al. 
[16], Griffiths and Marquez [17], Zhang et al. [18], and Chaowei et al. [19] to 
validate their 2D and 3D slope stability evaluations (Figure 5). The section 
was modeled using a slide, Plaxis-2D, and Plaxis-3D software with the same 
material and boundary condition. The result in Figure 6 shows a drift of ± 5% 
from previous investigators. Generally, from both validations the result from 
numerical modeling shows good agreement with the analytical solution and the 
 previous works.

Figure 4. 
FS determination using analytical solutions.
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7. Effect of slope height and slope angle

Increasing angle and height of slope affects the stability by increasing the shear 
stress and decreasing shear strength on the potential rupture plane. To examine the 
effect of these parameters numerical models on Figure 3 was made for different 
slope height and slope angles.

Figure 7A shows FS of slope for 27°, 34°, 45°, 63°, and 73° (i.e. increasing slope 
angle reduces the FS). Similarly, Figure 7B shows the effect of slope height on FS 

Figure 5. 
Modeling of slope section used for validation in slide, Plaxis-2D, and Plaxis-3D.

Figure 6. 
FS from different researchers and this study on Zhang [14] slope section.

Figure 7. 
Effect of slope angle and slope height on the performance of single slope profile.
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in an ideally sandy lean clay slope for different slope heights (i.e. increasing slope 
height increases the deformation and decrease the FS of the slope). Hence it is 
recognized that both slope height and slope angle reduce the FS of slope in the same 
principle i.e. increasing self-weight (driving force) above the failure surface and 
decreasing the normal force on the failure surface.

8. Performance of bench on slope stability

Bench width, cut angle and no bench are the major parameters which control the 
performance of bench slope profile. To examine the performance of benching and its 
parameters on the stability of slopes a typical slope section given in Figure 3 was used. 
Figure 8A shows the FS of slope for 1, 2, 3, 4, 5 and 6 m bench width with a constant 
10 m bench height. As the figure indicates stability increases with increasing bench 
width (i.e. FS increases in 3.5%, 7.7%, and 12% from single slope profile in 1:1 slope 
ratio for 1 m, 2 m and 3 m bench widths respectively). The percentage change of FS 
from equivalent single slope profile is 1.7%, 3.6%, 7.7% and 17.4% for 27°, 34°, 45° and 
63° respectively in a constant 2 m bench width as shown in Figure 8B. Hence the use 
of benching is more effective in steep slopes.

Similarly, the effect of bench height was evaluated using uniform clayey sand 
soil in two cases (i.e. case 1, when the overall cut varies with constant slope within 
bench. Case 2, when overall cut is constant with varied slope within bench as shown 
in Figure 8C). Accordingly, decreasing bench height (increasing no of bench) 
increases the FS of slope in case 1. However, it has no significant effect in case 2. 
Generally, benches improve stability of slope in the opposite principle of slope 

Figure 8. 
Effect of bench width, bench slope and bench height on the performance of bench slope profiles.
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height and slope angle by decreasing the driving force of the slope above the failure 
surface. The method is effective to avoid the use of gentle and high slopes in the 
design of cut slope.

9. Performance of multi slope profile

To assess the performance of multi slope profile in stratified soils a layered slope 
section shown in Figure 3B is evaluated for different combinations of slope angle 
(i.e. in the weaker and stronger section). Table 2 and Figure 9 shows FS for differ-
ent combination of weaker and stiffer slope section. Accordingly, FS is improved 
up to 30% from a single slope profile by adjustment of cut angle (i.e. decreasing 
weaker section and increasing stiffer section). But it should be reminded that the 
amount of change in FS depends on the strength characteristics of the slope section. 
Generally, multi slope profile allows the use of steep and gentle slope in stiff and 
loses materials respectively in stratified soil.

10. Comparison of slope profiles

Further comparison was made on the performance of profiles by evaluating the 
slope section in Figure 10A for single, multi, bench slope and combination both. 
Figure 10B shows the result of the comparison i.e. FS changes in 13%, 22.7%, and 
37.5% from single slope profile in bench, multi-slope, and the combinations of both 
methods respectively. Hence the use of bench slope, multi slope and combination 
them provide effective stability in high and stratified slope.

Slope a (stronger layer) 45 48 51.3 55 59 63.4 68 78.67 90

b (weaker layer) 45 42.3 39.8 37.5 35.5 33.69 32 29 26.5

FS 1.202 1.251 1.325 1.414 1.472 1.513 1.55 1.5 1.45

Table 2. 
FS for different combination multi-slope profiles (a= stronger slope & b= weaker slope).

Figure 9. 
FS and its change from single slope in % for d/t combination of multi-slope profiles.
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Figure 11. 
Advantages and limitations of slope profiles.

From the above evaluation, it is recognized that modification of slope geometry 
is one and the very first economical alternative of slope stability improvement. 
Although this investigation is made in a specific type of slope material there is no 
doubt in the role of geometric modification in slope stability. However, the selection 
of these slope geometry should depend on site-specific parameters i.e. susceptibility 
of the slope to erosion and infiltration, the variability of slope material, the height of 
slope, and adjacent area of the slope.

According to the evaluation result, the use of a single slope profile is effective in 
homogenous stiff slope material when the height of the slope is low. Otherwise, the 
method may not be safe and economical choice as weak and high slope sections need 
very gentle slopes. Multi slope profiles are suitable in slopes where there is material 
strength variability. It provides a very economical slope design without extra excava-
tion by making adjustments only within the slope section. Especially the method is 
ideal in slopes comprise both rock and soil. The use of bench is an effective geometric 
measure when the height of the slope is large. It increases FS by reducing the driving 
force above the failure surface. In addition to this the use of bench slope can provide 

Figure 10. 
FS and deformation for different slope profiles.
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the following advantages. (1) It reduces the area of the slope exposed to rainfall 
infiltration as it allows the use of steep slope between every benching. (2) It provides 
effective drainage control by collecting the rainwater from each slope profile and 
draining it laterally to ditches. (3) It provides access to side slopes for maintenance, 
plantation of vegetation, and decoration. (4) It uses for collection of debris falls 
above it. (5) It provides esthetic value and better appearance for slopes especially 
when it located around towns. In general slope profiles have advantages and limita-
tions depending on site specific conditions as shown in Figure 11.

11. Conclusion

The performance evaluation of slope profiles in this study was made for the 
objective of creating awareness on the effect and its suitable condition of different 
geometric profiles on slope stability. The effect of geometric parameters like slope 
height, slope angle, bench width, no of bench and bench angle on slope stability 
were evaluated interims of FS and deformation on selected critical slope sections 
from the newly constructed road cut slope. From the result, it has been seen that 
geometric modification will provide better and economical slope stability compared 
to other structural remedies.

Accordingly, the stability of slope decreases with an increase in slope height and 
slope angle in single slope profile leading to an uneconomical design of high slopes 
in a single slope profile. Benching provides an important stability for cut slope espe-
cially for slopes having larger height and its performance is more effective in steep 
slopes. Bench width and bench height also parameters which affect the performance 
of benching. Multi-slope profile provides an effective slope stability in a stratified 
soil of varied strength. It allows economical slope design without extra excavation 
by making adjustments only within the slope section. In addition to its direct effect 
on the FS, slope profiles have different performance on drainage control, access to 
maintenance, and its esthetic value. Therefore, the selection of slope profiles during 
design should be based on site-specific considerations.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 7

Assessment of Landslide Risk in 
Ethiopia: Distributions, Causes, 
and Impacts
Getnet Mewa and Filagot Mengistu

Abstract

The complex geological and geomorphological settings of Ethiopia, consisted 
of highland plateaus, escarpments, deeply dissected valleys, and flat lowlands, 
are results of multiple episodes of orogenesis, peneplanation, crustal up-doming, 
faulting, and emplacement of huge volumes of lava. The broad elevation contrast 
raging from about −125 m to 4550 m Above Mean Sea Level (AMSL) is an impor-
tant factor in determining the climate regimes, vegetation types, and even popula-
tions’ lifestyles. In Ethiopia landslides, mostly manifested as rockfall, earth slide, 
debris, and mudflow, are among the major geohazard problems that immensely 
affects life, infrastructures, and the natural environment. They widely occur in the 
central, S-SW, and N-NW highland regions. This study discusses the distributions, 
causes, and impacts of landslides and presents a susceptibility zoning map pro-
duced applying the weighted overlay analysis method in the ArcGIS environment. 
For this purpose, key parameters (lithology, elevation, rainfall, slope angel, land 
use-land cover, and aspect) were selected and assigned weights by considering their 
contributions to slope failures. Correlations with inventory data have shown very 
good matching, where more than 90% of the observed data fall in areas categorized 
either as moderate, high, or very high susceptible zones, where appropriate risk 
assessments could be mandatory before approval of major projects.

Keywords: orogensis, landslide susceptibility, plateau, rockfall, earth slide

1. Introduction

Landslide is a phenomenon that represents the downward movements of a 
wide range of slope-forming materials (soils/rocks) due to gravitational and other 
driving forces [1, 2]. Considering the characteristics of the sliding materials and 
mechanisms of movements they can be classified as falls, topples, slides, flows, 
spreads, or any mixture of these and occur either slowly or suddenly. Situated in 
the horn of Africa between 33 and 48°E longitude and 3.40 and 14.85°N latitude, 
Ethiopia is the second African nation with a population of about 115 million 
(www.worldometers.info) and a surface area of 1.122 million km2. The landscape 
constitutes highlands plateaus, dissected valleys, escarpments, gentle slopes, and 
flat plains. These land features are results of geodynamic processes associated 
with the establishment of the East African Rift System (EARS), which is a narrow 
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North-west - South-east (NE-SW) elongated rift with thin continental litho-
sphere. This rift dissects Ethiopia diagonally into western and eastern plateaus 
that represent the Nubian and Somalian plates, respectively (Figure 1) [3–5]. 
Active rifting processes combined with local and global drivers (like seismicity, 
hydrometeorological events, and demographic factors) have created a suitable 
environment for the widespread effects of landslides. It occurs in the mountain-
ous regions of Ethiopia dominantly in the North-Northwest (N-NW), central and 
South – Southwest (S-SW) highlands, and rift-margins, usually following inten-
sive precipitations and brings variable impacts on life, built infrastructures, and 
natural environment [6–9].

In this work, the distributions, probable causative factors, and impacts of 
landslides are described with more emphasis on infrastructures using few selected 
case studies. Applying different secondary sources, a landslide inventory map is 
compiled and relationships between the natural attributes (lithology, slope height, 
slope angle, rainfall, and land use-land cover) and spatial distributions of landslides 
are assessed. Moreover, a susceptibility zoning map is generated involving the 
mentioned parameters to which weights were assigned considering their signifi-
cance to slope failure. Such a map serves as an input to delineate areas according to 
their importance to various developmental activities and also helps to identify risk 

Figure 1. 
Generalized map of the East African Rift System (the dotted lines show boundaries of the East African Rift 
System, while the triangles represent volcanic centers (from Riftvolc consortium, 2013).
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potential ones that demand more evaluations and implementation of mitigation 
measures before major projects are supported.

2. Geomorphology, climate, and general geology

Ethiopia’s land surface is characterized by wide elevation contrast that varies 
from about 125 m below sea level to 4550 m above mean sea level which represents 
the lowest point in the world, Danakil Depression, and Ras-Dashen mountains 
(Figure 2c). The elevation is the key determinant that defines the climatic condi-
tions of Ethiopia. Accordingly, the country is divided into five climatic zones 
(Figure 2a) that locally known as Wurch (very cold), Dega (cold), Weyinadega 
(moderate), Kola (hot), and Breha (very hot temperature zone) [10]. They are 
distinguished by distinct precipitation and temperature regimes, vegetation and 
crop types, and even lifestyles of the populations. Wurch, Dega, and Weyinadega 
climatic zones typically represent the northern, central, and SW highlands as well 
as rift neighboring plateaus (Figure 2b and c). They are described by medium-
high altitudes (mainly above 1500 m amsl), moderate-high precipitation (above 
1000 mm/year), and low-moderate average temperatures (below 25°C). Areas like 
Tarmaber, Meket, Gashena, Semen Mountains, Arsi, and Bale mountains with 
elevations above 3200 m amsl that intermittently receive snow and hail (personal 
communications with local people in 2019; World Institute of Conservation & 
Environment) constitute this category. Meanwhile, Kola and Bereha climatic zones, 
representing the NE (Afar), western (Humera-Metema), S-SW (Gambela, south-
ern Omo), and eastern Ethiopia, show low altitudes, high-very high temperature 
(above 30–50°C), and very low precipitation (<500, rarely up to 750 mm/year).

The rifting process has defined not only the geomorphology but also the geo-
logical settings of Ethiopia, which are discussed in many works [3, 6, 11, 13, 14]. 
Hence, the formations that underlay the Ethiopian territory differ in composition 
and age, which ranges from Quaternary to Precambrian (Figure 2c). The oldest 
Precambrian basement rocks are represented by high-grade ortho- and paragneisses 
and migmatites as well as low-grade volcano-sedimentary—ultramafic assemblages 
and granitoids [13]. These Precambrian rocks constitute part of the Pan-African 
Mozambique belt and are distributed in the northern, western, and southern parts 
of Ethiopia. These formations have undergone prolonged erosion and denudation 
during Paleozoic that resulted in undulated terrain over which thick Mesozoic 
sediments (mainly sandstone and limestone) were deposited. The Jurassic sedi-
ments cover wide areas of eastern and some places in central and northern Ethiopia. 
Uplifting of the Afro-Arabian block during Tertiary has resulted in the eruption of 
a large volume of lava through fractures and covers a substantial part of the country 

Figure 2. 
Climatic zones (a), average annual rainfall distribution (b), and simplified geological (overlain on the 
topographic) maps of Ethiopia (c). Sources: [10–12].
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forming elevated terrains. During this period, sediments deposition took place that 
cover eastern Ethiopia. Meanwhile, the quaternary period is known for the place-
ment of volcanic lava in areas from Afar depression up to the Lakes Region in the 
central main Ethiopia rift. Thick Quaternary sediments are distributed in Gambela, 
Borena, Metema, and few other flat lowland areas (Figure 2c).

From the demographic perspective, areas categorized as Wurch, Dega, and 
especially Weynadega zones, are the most ideal and preferred for settlement due to 
the availability of sufficient water, fertile lands, and suitable climate for life. But the 
spread, frequency, and severity of landslides in these areas are more than in Kola 
and Breha zones, where the climates are more hostile and flatness of terrain and 
scarcity of waster do not favor mass movements.

3. Objectives

The basic objective of this study is to examine the distributions, causative 
factors, and impacts of landslides and acquire a fundamental understanding 
enabling to develop effective mitigation measures that help to save life and the 
economy. Accordingly, its specific objectives are: (a) conduct inventory of landslide 
occurrences across the nation; (b) map links between the spatial distributions and 
natural attributes that trigger and/or aggravate landslides; (c) assess impacts of 
landslides on life and infrastructures; d) produce landslide susceptibility zoning 
map of Ethiopia.

4. Methods and materials

The methodology used in this study comprises—(a) collection and analyses of 
geological, engineering geological, and geo-hazard data from published and unpub-
lished reports and research publications [11, 15–23]. All data are compiled in the 
geographic coordinate system using WGS84 datum; (b) collection of rainfall data—
the Chirps gridded data for the year 2015 available online was used after comparing 
it with the National Meteorological Agency (NMA) data, which was found almost 
alike; (c) download land use-land cover map from National Aeronautics and Space 
Administration (NASA) web page; (d) data about past landslides events and their 
impacts. This includes information about the date and time of occurrences, deaths, 
injuries, forced resettlements, damages to infrastructure, and possible causes; 
Government offices, non-governmental organizations (NGOs), private firms, 
research publications, mass media, and local communities, including elder people 
with knowledge previous events, have served as sources; (e) 30 m resolution DEM 
data—important inputs about slope height (elevation), slope gradient, and slope 
direction (aspect) are extracted. These data are closely linked to rainfall and tem-
perature distributions, soil humidity, soli thickness, vegetation types, and density 
as well as hydrological features of sloppy areas that determine the scale/rates of 
mass movements; (f) applying a multi-class scoring system based on assigning 
of weights to selected parameters contributing to slope failure, produce landslide 
susceptibility zoning map [24, 25].

5. Inventory, distribution, and impacts of landslide

This landslide inventory has identified more than 600 locations across the 
nation, where landslides occurrences are clearly observed, very few of them are 
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even known with a history of repeated events. Moreover, it reflects localities, 
where potential landslide risks are imminent [7–9, 15–23, 26–29]. The distribution 
of inventory data well correlates with lithology, elevation, structural, rainfall, 
and seismicity maps. Only considering the patterns, landslides occurrences are 
tentatively classified into four blocks, Block A–D (Figure 3). Block A represents 
the N-NE parts of the country, including the eastern part of the western plateau, 
western rift escarpments, and some places on the rift floor. It stretches from north 
of Mekele through Michew, Woldiya, Dese, Kombolcha, Kemisse, Shewarobit and 
continues to the south of Debrebirhan. Major parts of this block are underlain by 
Tertiary and Quaternary volcanic, whereas Mesozoic sediments are distributed at 
the NE part of the block covering limited areas of SE Tigray.

Dese and its surrounding are the most well-known areas, where recurrent land-
slides cause impacts on settlements, roads, and other properties (Figure 4a and b). 
At many places, emerging springs from near surfaces are observed which indicate 
shallow groundwater. So, steep terrain, undercutting of stream banks, slope erosion, 
and shallow groundwater are key factors that trigger/aggravate displacement of 
slope materials. Meanwhile, huge volcanic blocks that are almost detached from the 
parent rocks are observed at the southern end of the block, in Mushmado village, 
Say-Debir district, about 8 km from Lemi town (Figure 4c). The probability that 
these blocks would crumble into the valley side is very high if triggered by extreme 
hydrometeorological, seismic, or other events and will put life, infrastructures, and 
farmlands in the valley under very high rockfall risk.

Block B encompasses areas between 8 and 13°N latitude and 36.5 and 39°E 
longitude. Many zones in East and West Gojam (Gozamin, Gonch-Siso Ense, Hulet-
Ej-Ense, Shebel-Berenta, Awabel, Aneded, Machakil, Dejen, Adet, Sekela), East 
Wollega (Ambo, Gedo, Weliso), and Gonder (Lai-Armachoho, Ebinat, Guangua, 
Quarit) are found here. Moreover, such rivers like Abay, Tekeze, Beshilo, and their 
main tributaries that formed deep valleys are also among the risk vulnerable areas. 
The dominant landslide types are rockfall and rock/soil slides, to some extent 
mudflows. Their impacts on infrastructures and farmlands are quite significant.

The landslides in the Abay gorge, between Dejen and Gohatsion main road, have 
long and repeated histories, and this economically vital route passes through the 
40 km wide Abay (Nile) valley (Figure 5). Subsurface investigations carried out 
within this valley revealed the depths to the slip planes mainly vary are the range of 
14–25 m [22]. Even though deaths are not reported, unofficial sources disclosed that 
the cost of monitoring and road maintenance exceeds 1.5 million USD/year.

Figure 3. 
Landslide inventory map (left) and landscape of NE part of Ethiopia (right).
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Block C represents south-southwestern Ethiopia and the landslide occurrences 
are identified within 36–39°E longitude and 5–8°N latitude. It includes Ziway, 
Shashemene, Hawasa, Hosaina, Adami-Tulu, Jima, Dila, Sodo, Agremariam, Koso 
Jinka, Sawla, Arbaminch Zuria, Chincha, Gofa, Gidole, Konso, Bako-Gazer, Basketo, 
and many others places. Along the rift margins, where slope gradients are relatively 
high, the landslides are manifested by rockfall, debris, and mudflows. A massive 
landslide that occurred in Gidole, about 55 km SE of Arbaminch town, is a good 
example that demonstrates how severe is the economic, social, and environmental 
impacts of landslides in the region (Figure 6).

This recent occurrence within the deeply excavated zone (up to 25 m) started in 
2009 following intensive rainfalls that saturate the subsurface. The road construc-
tion intended to connect Gidole with the Arbaminch-Konso main road has affected 
the toe parts of the old landslide zone and resulted in the release of shallow ground-
water that triggered that landslide. To prevent mass movement slope regarding, 
about 250 m long retaining walls and drainage ditches were constructed. But due 
to the large extent of the sliding zone these measures did not change the situation, 
rather doubled the project cost. So, construction across the failed was abandoned 
in 2013.

The landslide observed in Alem village, Dodota district, in September 2019 
has severely damaged a section on the Dera-Asela main road (Figure 7a). The 
mudflow occurred on May 28, 2018 (Figure 7a and b) following heavy rainfalls 
has triggered the sudden movement of a huge volume of earth mass from the head 
of the landslide and buried houses with 22 people in Western Arsi Zone, Tulu-
Gola village, of which 14 were from the same family (May 30, 2018, the Ethiopian 
reporter).

Block D mainly constitutes the eastern part of the Main Ethiopian Rift, such 
as different districts of East Shewa, Arsi, Harage, Diredawa, and Jigjiga zones. 
Accordingly, Adama, Chole, Cheleleka, Merti, Fentale, Golelcha, Mechara, Lome, 
Asebe-Teferi, Bedeno, Kersa, Deder, Chiro, Haromay, Melka-Jilo, Fedis, Gursum, 
and the areas with landslide records. Rockfall, rock slide, and debris flows are the 

Figure 4. 
Panoramic views of landslides: (a) partial settlement of house foundation, in Dese town; (b) debris slide 
threatening the Addis Ababa-Dese main road, Kewet district, Debresina town; (c) rockfall risk in Mushmado 
village, Saya-Debir district, North Shewa zone.

Figure 5. 
View of landslide occurred in Kurar village, Dejen side (a), the same route, but on the Gohatsion side (b–d): 
road under maintenance in June 2010 (b), rockfall and debris slide damaged it in August 2010 (c), the site was 
visited in September 2019 (d).
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widely observed landslide phenomena. At many places, the landslides are associated 
with highly weathered and fractured volcanic (ignimbrites and basalts) with steep 
slope gradients (up to 75°).

In general, this inventory survey has provided tangible information about the 
spatial distribution, main causative factors, and impacts of landslides. Meanwhile, 
lack of well-organized records about the types and extents of damages, at this stage 
it is impossible to give any credible estimations of the economic and environmental 
losses caused by landslides. Abay A. [30] estimated the losses from 1998 to 2003 to 
be 135 death, 3500 displaced households, and 1.5 million USD worth of property 
damages. B. Abebe, et al. [8] stated that landslides that occurred between 1993 and 
1998 have claimed hundreds of human lives, damaged over a hundred kilometers 
of asphalt roads, destroyed many houses, farmlands, and natural vegetations. 
Similarly, a compilation of data from mass media, newspapers, different reports, 
and affected communities, (including Fana Broadcasting Corporation; Ethiopian 
Broadcast Corporation (EBC); Walta Information Center; GSE unpublished techni-
cal reports published in 2003–2019) revealed that only between 2016 and 2020 more 
than 302 people and 1500 domestic animals were killed (Table 1).

The landslide in different parts of the country is associated related with three 
distinct geological setups—(a) landslides developed within the Territory volcanic 
environment where saturated pyroclastic materials and clay are present as interca-
lations within the volcanic flows that cover a wide area of the Ethiopian highlands; 
(b) landslides formed within the sedimentary terrain and the presence of silt-
stone, shale, and marl as intercalations within the limestone sequence. These are 
common in the Abay (Nile) valley, in areas south of Mekele (Northern Ethiopia); 
(c) presence of unstable colluvial materials (silt and clay with gravel and boulder 
matrix) in areas of relatively gentle terrain covering different formations. Overall, 
the intercalation within the volcanic and sediments acts as rupture surfaces that 
aggravate easily displacement of landmasses whenever absorb more fluid in the 
rainy season.

Figure 6. 
Panoramic view of a landslide body in Welaite village, 2 km NE of Gidole town observed in March 2011  
(a), and the same body observed in March 2016 (b). Note that in 2011 its width was about 40 m whereas in 2016 
it expanded to about 200 m.

Figure 7. 
Road collapse at Alem village, Dodota district, along with the Dera-Assela road (a) and mudslide that killed 
22 people and domestic animals in Tulu-Gola village, Western Arsi zone (b and c).
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6. Landslide causative factors

The root causes that initiated or accelerated landslide observed at various locations 
could be associated with the following factors—(a) presence of physically incompe-
tent (soft) earth materials that make up slope surfaces or elevated terrains and also 
effects of structural discontinuities in areas; (b) intensity and duration of rainfall and 
effects flooding, erosion a well as groundwater level fluctuations; (c) slope heights 
and (elevation) and slope angles, which favor mass movements; (d) poor earthwork 
practices during infrastructure developments (constructions of roads, bridges, dams/
reservoirs), and quarrying for mine exploitations. These works involve the removal 
of earth masses from one place and dumping it into another place which causes either 
mass deficiency or excess load or both; the effects destabilize slop balances; (e) demo-
graphic factor expressed by fast population growth that accompanied by a continuous 
struggle for resource share. Such struggles put too much pressure on the natural envi-
ronment and aggravate slope movements; (f) passiveness to enforce code of land-use 
practices and make accountable those who violate norms; (g) lack of awareness (illit-
eracy) among rural communities about the influence of landslides in their livelihoods; 
(h) absence of alternative means of subsistence for rural youth community who have 
little access to land ownership. So, they rely on over-using of the natural environment 
that leads to intensive land degradation. Except the natural factors, the human-related 
ones seem to be fully manageable if better awareness is created, job opportunities are 
improved and extreme poverty is reduced, land use and land administration codes 
and practices are enforced, and traditional community practices on land and forest 
preservations are fully respected. These measures play their role to improve com-
munities’ resilience to cope up with the impacts of landslides. The spatial associations 
between landslide and seismicity are explained in different works [4, 31–33]. In the 
Ethiopian context, the occurrences of landslides and earthquake epicenters that are 
practically concentrated within the rift system and surrounding plateaus are found to 
have very close correlations. But no instrumental records are available that justify the 
contribution of ground vibrations to triggering landslides.

Region Landslide affected district (woredas) Death

Tigray Hintalo-Wajirat, Hawzen, Atsbi-Wenbera, Degua-Temnbie, Enderta, and 
Samri-Shart

NR

Amhara Harbu, Ambassel, Guba-Lafto, Kalu, Dawint, Delanta, Werebabu, Bati, 
Bugna, Kutaber, Dese-Zuria, Artuma-Farsina, Jille, Efratana-Gidim, 
Debresina, Kewet, Wagide, Mafud, Mezezo, Chefie-Golana, Dawe-Rahmedo, 
Gozamin, Gonch-Siso Ense, Hulet-Ej-Ense, Shebel-Berenta, Adet, Sekela, 
Awabel, Machakil, Dejen, Lai-Armachoho, Ebinat, Guangua, Quarit

11 deaths

Oromiya Wolmera, Ambo, Guder, Were-Jarso, Kuyu, Jeldu, Tikur, Golelcha, 
Dodotanasire, Merti, Boset, Aseko, Sude, Dugda-Bora, Wenchi, Welesona 
Gora, Chela, Chole, Guba-Korcha, Chiro, Dendi, Deder, Kombolcha, Babile, 
Tullo, Jeju, Daro-Lebbu, Dobba, Seke-Chekorsa, Dedo, Omo-Nada, Goma, 
Limu-Kosa, Tiro-Afeta, Haromaya, Girawa, Gursum, Chelenko, Bedno, 
Horo-Guduru

73 deaths 
and 20 
injuries

Southern 
Nations and 
Nationalities 
People 
(SNNP)

Aleta-Wondo, Kokir Gedebano, Ameya, Gorro, Gumer, Enemorna-ener, 
Soddo, Meskanena-mareko, Silti, Esara-Tocha, Ela, Marekagena, Decha, 
Gimbo, Aroresa, Bensa, Dale, Yiga Dera, Shebedino, Yirgachefe, Derashe, 
Arbaminchzuria, Amaro, Gofazuria, Basketo, Bako-Gazer, Gidole, Konso

102 deaths 
in one 
incident

Others Addis Ababa 116 deaths

Table 1. 
Summary of landslide inventory showing affected districts and death and injury reported from 2016 to 2020.
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7. Landslide risk susceptibility zoning

Landslide susceptibility zoning maps are useful tools to differentiate areas 
that are suitable for agriculture, infrastructure development, national parks, or 
other purposes as well as delineate risk-prone areas that should be either protected 
or rehabilitated before approval of any developmental projects [24, 34, 35]. In 
Ethiopian landslide, mapping and risk zonation were  
carried out in specific hazard affected areas, mostly in the highlands and rift 
regions, using ground survey and remote sensing data [8, 22, 27, 28, 30, 36–40]. 
However, in this work attempt is made to produce a landslide susceptibility zon-
ing map of the country and correlated with the inventory data acquired through 
extensive fieldworks mainly by the Geological Survey of Ethiopia, where the lead 
author has been working for a long time. The field observation data was also used 
for validation purposes. Thus, the parameters for analyses were selected based on 
the expert’s decision to which weighted values were assigned according to their con-
tributions or influence to slope instabilities [24, 25]. The weights given to involved 
parameters are as follows: For lithology, elevation, and rainfall—20% each, for 
slope angle and land use-land cover—15% each, and for aspect—10%. Initially, each 
of these parameters was sub-divided into five categories, which represent the very 
low, low, moderate, high, and very high landslide susceptibility zones.

Then using the weighted overlay method in the ArcGIS environment, the map 
displayed in Figure 8 is generated. The spatial coverage of each class was calculated 
by multiplying the corresponding raster counts by the grid pixel sizes and divid-
ing a single class value by the total areal coverage and then multiplying by 100%. 
Accordingly, about 49.1% of Ethiopia’s land surface is susceptible to landslides, of 
which 39% moderate, 10% high, and 0.1% very high-risk zones. Similarly, 50.9% 
of the territory is categorized either as very low (5.9%) or low (45%) susceptible 
zones (Table 2).

Figure 8. 
Landslide susceptibility zoning map of Ethiopia and known landslide occurrences.
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8. Conclusions

This assessment clearly indicated that landslides are major threats to life, 
infrastructures, and the natural environment. Natural and human-induced fac-
tors (existences of poorly consolidated, easily erodible, saturated and soft earth 
materials, high slope gradients, intensive or continuous precipitations with sub-
sequent flooding and erosion, scarcity or absence of vegetation cover in sloppy 
terrains, ground vibrations or seismicity, and continuous growth of population 
with poor land-use practices) are among the key causes that exposed about 49% 
of the country to landslide risks. Unfortunately, until the road sector sensed the 
real challenges posed by a landslide and the ever-increasing rates of fatalities 
and environmental losses became evident, the issue has never been taken seri-
ously. Hence, it is quite important to proceed with landslide risk assessments to 
identify and prioritize areas based on their extents, frequency of occurrences, 
the severity of consequences, as well as nature of different elements exposed to 
risk. This could be possible through careful considerations of updated landslide 
inventory data/maps and introducing varieties of risk susceptibility models 
based on integrated analyses of high-resolution remote sensing and ground 
observation data, which represent distributions of natural and human-related 
factors. Ultimately, such comprehensive assessments will play a positive role to 
ease consequences on life, infrastructures, and the natural environment. It is 
important to underline that the existing trends of land-use practices are com-
pletely inadequate to manage impacts of human-induced landslides that occur 
very widely. Therefore, implementing zero tolerance for improper land uses 
through stringent monitoring and enforcement of relevant policies, guidelines, 
directives, and respecting important social norms must be taken as fundamental 
tasks of all concerned bodies.
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No Susceptible zone Areal coverage (sq. km) Country coverage (%)

1 Very low 66,287 5.9

2 Low 504,791 45.0

3 Moderate 437,421 39.0

4 High 112,152 10.0

5 Very high 1448 0.1

Total coverage 1,122,104 100

Table 2. 
Landslide susceptibility zoning.
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Chapter 8

Landslide Analysis over Creep
Theory - Crack Propagation of
Shale Slopes in Şırnak Asphaltite
Coal Mine Site 1 and 2
Yildirim İsmail Tosun

Abstract

The soft rock and wet slopes increase landslides over 50 m long creep slide and
risk assessment for long steep slide in Şırnak open-pit coal mining should be
searched in asphaltite quarries. The Avgamasya quarries No1 and 2 at critical depths
and road bench sites in Şırnak, reaching over 120 m height with 60–65° shale slopes,
developing major creep factors and other factors for landslide in the deep quarry
locations is resulting debris rock falling or free sliding. The pore pressure measure-
ments by measurements of water levels in four wells and water flow counting as the
mining safety in recent years. This research provided rock slope stability patterns
and crack propagation control of the hazardous location and formation cracks. The
stages of creep experimentation explored the geophysical characteristics and thaw
and freeze testing of rock samples. For this aim, two different long sliding areas
with similar geoseismical conditions, two main analyzing methods, and patterns of
researches were developed. Firstly, data on crack propagation in situ rock shale
faces over certain time periods were determined. Displacement measurements over
highly saturated shale—limestone contacts over the base of crack counting in a
meter scale such as Rock Quality Designation (RQD) scoring of drilling logs. Sec-
ondly, hydrological water level logs were taken into consideration. On the other
hand, due to that creep effect over freeze crack propagation unseen cause instability
over wet sliding surfaces over 50 m, long sliding surface matter over slopes, poly
linear or circle type creep sliding or rock tumbling falling failure types, and GEO5
slope stability, slice analysis will be advantageous instead of Finite Element Method
(FEM) method.

Keywords: landslide analysis, Şırnak asphaltite quarry, active potential landslide,
creep failure, geotechnical stability, GEO5 slope stability

1. Introduction

The time-dependent failure propagation occurs on the local mountainous natu-
ral rockfalls in the hard winter conditions of freezing and thaw cycles observed on
road slopes. Hazardous deep quarries in the Şırnak will make a great concern in
asphaltite production as significant to the local economy. The hydrology of the area,
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few months hard fill snow on the quarry avoiding production is important in creep
failure or landslides as illustrated in Table 1 [1] due to loosen rock fallings and free
slide of saturated shale slopes over safety limit grade zone [1–3]. Formations such as
shale in the regional quarries allow crack propagation by freeze and thaw cycling in
the winter climates [4, 5]. The pore structure and low mechanical strength cause a
negative effect on creep-dependent breakage quality and stone falling [6–9]. For this
reason, the freeze-thaw cycling time and crack texture were critical for creep behav-
ior at the local slope durability [10–12].

Although the 65° (72°gr) of bench slopes of quarries 1 and 2 as steeper
will reduce the excavation costs, it has a negative effect on the creep stability of
the quarry at the end of winter, opening the excavation over melted ice period. The
highly fractured rock masses have undergone crack propagation, extremely frac-
tured, and showed counting effects on RQD values. The geological strength index
GIS, Rock Mass Rating (RMR), and RQD points were determined, by creep texture
properties of rock mass in the classification ensured long-term planning stability in
the coal quarry excavations [11].

It is quite difficult to creep the block samples depending on the quarry develop-
ment. Various rock mass classification methods have been proposed. The high
groundwater levels and water pressure make ease landslides in the quarry caused
major problems in terms of safety. The creep effect in rock mass assessment by
freeze and thaw test method is proposed. Q classification system and the Hoek–
Brown empirical failure criterion [6–8] were most frequently used by researchers.
By the high creep matter, the geomechanical properties critically change the sawing
rate resulting in failure by lowering the shear strength and similar methods are used.

Quarry medium/
soft rock

Failure cause:
water content

Quarry medium/
soft rock, road
slope, mountain
steep hill
Failure cause:
water content
and creep

Quarry medium/
soft rock, road
slope, medium
hill, urbanization
area
Failure cause:
flood, water
content, creep

Table 1.
Creep effect and type of landslides, the sites observed [1].

128

Landslides



The creep failure in rock masses is dependent on discontinuity features that con-
trolled crack face filling and roughness. The slopes failures and discontinuity-controlled
failures can be divided into creep discontinuity failures that critically occur in hetero-
geneous rock conditions as alluvial shale mixed formations. Those creep failures cannot
be controlled. The failures are severely fractured and cracked and time depended
propagated unseen. It mainly occurs in highly weathered rock masses [6–10].

In the stability analysis, the shear strength of the rock mass at the time of failure
was determined. The water pressure parameters for all sliding geometry of the
failure surface should be analyzed by the calculated block weight slice method. This
method is used in soft rock and heterogeneous rock masses although it describes the
failures that occur [1–5], the rock masses are also linear or irregular failure enve-
lopes in different soft rock mass and heterogeneity. However, this cannot fully
calculate by the medium the shear strength.

Therefore, The Mohr–Coulomb method is not a preferred measure of instability
for rock mass in creep propagation. In the failures that occur in soft and heteroge-
neous rock masses, Hoek–Brown [6–8] failure criterion is more preferred for the
determination of geomechanical strength change.

On quarries no 1 and 2, the south side shale and altered alluvial debris covers and
groundwater levels increase in September and reach the highest level in April.
December-February period of mining is a closed and active time for creep crack
propagation even saturation time [11–14]. The water level increase and freeze and
thaw cycle causes of the rock failures occur determined by extensive in situ tests.
Planning attention to slope geometry in the quarry asphaltite facings contact to water
level, drainage, and overburden excavation operations can start in March at the
highest water flow of April reaching 50+% filling the bottom of the pit. In order to
understand the creep mechanism of slopes S1, S2, S3, and S4 is the main essential
issues. While the study is designing the critical hazardous slopes, the geotechnical
properties of the rock mass receiving data from the Los Angeles and Blade Sawing
tests, freeze-thaw Unaxial Compresssive Strength (UCS) strength is determined [15–
20]. Slope angles should be planned considering the quarry safety with a factor count
of 1, 35 by GEO5 Slope Stability software. The creep determination process is carried
out by freeze-thaw analysis [6].

1.1 Geology in asphaltite quarry in Avgamasya, Şırnak

Study area geology sedimentary alluvial, shale, and calcareous rocks of the
Gercus Massif formation Jurassic aged in the Avgamasya, Şırnak province. There
are highly disseminated chlorites and calcites are exposed (Figure 1). In the south-
ern part, the late Mesozoic aged limestone anticline zone, in the northern part early
Eosin age altered porous limestone calcite are located heterogeneous shale contact
to Cudi formation and Cizre formation.

In the field studies, the study including the open-pit area has a very heteroge-
neous layered shale and alluvial contact with vertical asphaltite structure. (Figure 1).
The hazardous areas of asphaltite quarries are studied as slopes S1, S2, S3, and S4
over the excavation area. The discontinuity intervals were determined. The creep act
by freeze and thaw effect is critical for time-dependent rock loose and free landslides
developing in mining quarries and urbanization lands in the Southeastern Anatolian
regions at height over 1400 m attitudes by high tectonically soft ground conditions
[10–14]. The instability of rock loss in the asphaltite coal quarry area creep cracks
were developed with advanced mining operations over decades and loosen geotech-
nical characters of soft heterogeneous formations determined. The detailed investi-
gations in the quarries during mining operations have two fundamental causes of
free sliding over freeze and thaw effect on the geotechnical conditions [15–21]. First
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of all, the tumbling rock falling landslides occurred at the top of the quarries by
groundwater saturation and hard rainwater taking surface conditions as clearly seen.
In terms of the past, fatal disasters of instability were observed widely in the differ-
ent quarries. Secondly, free flow sliding land rocks as debris flows as land flows were
similar to the other high deep quarries [22–34]. Therefore, stability conditions and
soft rock properties causing past landslides and rock tumbling were so important in
order to evaluate and criticize that may develop in the mining excavation areas and
even urbanization areas [34–44]. Debris areas or possible free flow loosen landfill
areas in mountainous and high-steep rocks were evaluated for free creep flow and
tumbling depending on the topology. The unsuitable land use for urbanization over
hills increases the creep probability for the development of free land flows [45–53].
In the case of creep landslides, the stability analysis revised by time and related to
crack propagation can be achieved and change the safety factor on avoiding the fatal
disasters of the quarry or urbanization area concerned [54–60].

The stability analyzes of the top benches in quarries 1 and 2 south side slopes are
managed to protect the asphaltite coal excavation equipment and fatal casualties
caused by landslides. For this aim, in the quarries 1 and 2 slopes S1, S2, S3, and S4,
the free slide top benches three over 35 m long sliding surface excavation area are
considered. The fatal experiences of Şırnak Avgamasya and Silopi open-pit mining
were carrying high landslide or rock falling risk (Figure 1) [11–14]. The creep effect
over soft mechanical properties of the soft rock formations of soft limestone, allu-
vium, and shale layers heterogeneously oriented in the vertical belt form where
creep rock falling or free top land flows occurred in the asphaltite quarries. The poly

Figure 1.
(a and b) View and contour topography of Avgamasya No 1 pit Şırnak asphaltite coal mine site and survey
area 1/5000.
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linear surface or circle shape slope stability analyzes for top benches are carried out
with GEO5 Slope stability software and GEO5 FEM methods. The slice weight
charts of the GEO5 program on the scope of this investigation regarding creep
effect, a 1/5000 scale quarry no 1 bench isocontour map covering 3.7 km2 of the
study area are shown in Figure 1a and b. The high risk of tumbling top rocks and
free flow uncohesive sliding over the asphaltite excavation zone is seen as shown in
Figure 2a and b. The blackish zone area is representing a wet asphaltite coal
extraction area.

The asphaltite excavation is carried out over 2–4 m thick asphaltite seam placed
vertical whirled form in the limestone rock with approximately somehow 1/2 m
thick at 62° to SE and approximately 10–25 m for shale 87° to NW and completely
changed the orientation to horizontal layer (Figures 2-4). The discontinuity sur-
faces were slightly flat in limestone. It is clear that the crack surfaces are quite
slippery in shale rocks. The shale rock mass in the Şırnak quarry pit is extremely
fractured (Figures 3 and 4). Since it is fractured and heavily weathered over
alluvial heterogeneous layers mainly controls free sliding by water saturation and
expected collection at the contact surface. In this type of rock formation, landslides
and creep failures usually occurred over near-circular failure planes.

2. Method

In the scope of this study, Şırnak asphaltite quarries 1 and 2 in the 940–830 m
elevations and 920–810 m elevations. The slope stability analysis for the critical
shale slopes were made. The shear stress change corresponding to the creep
parameters of rock masses were concluded with tests in situ wire extensometers
placed. In addition, the RQD and RMR values calculated on the logs as illustrated
in Figure 5 are compared with the values obtained as a result of the freeze-thaw
analysis. Later GEO5 stability analysis is carried out to provide operational safety
in the quarries in the mine management.

Figure 2.
North and south steep slope face of Avgamasya No 1 pit of Şırnak asphaltite coal mine site and sliding surfaces
on a steep slope in the survey area.
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2.1 Rock mass properties in asphaltite quarry in Şırnak

2.1.1 RMR and RQD

Determination of rock mass properties by RMR method as a result of field
studies, RMR and RQD crack counting for shale Jurassic alluvial unit of Pliocene
aged are carried out to provide rational stability analysis on creep base regarding
two months saturation time cycle. The study area has a lot of facing cracks and cores
suitable for determining RQD from the field. RQD value measured as a result of
discontinuity in a meter scale line as standard studies is given in Figure 5.

RMR score was determined for the determined RQD value and scoring is shown
in Figure 4. Uniaxial compressive strength UCS and RMR scores of discontinuity

Figure 3.
North and south steep slope faces of Avgamasya No 1 and 2 pit survey area.
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gap measurements (Figure 5) and RMR value and rock classification are presented
in Tables 2 and 3.

RQD value as scoring for two soft limestones of early Eosins’ and Miocene aged
in Avgamasya were determined as 45 and 40 scores, respectively. It is concluded
that the limestone unit is of medium rock quality and the shale and alluvial unit
Pliocene aged is of poor rock quality.

2.2 Pore pressure

The geological rock classification method is useful for slope stability analysis
even for complex rock and soil formations. There was a real issue for alluvial pore

Figure 4.
South steep slope faces of Avgamasya No 1 pit of survey area.

Figure 5.
Shale and alluvium logs of south steep slope faces of Avgamasya No 1 pit survey area.

Rock
formations

Thickness
(m)

RQD
(%)

c0

(kPa)
φ0 Pı

(MPa)
Iı (MPa)
(50 mm)

Shear
strength
(mm/s)

γsat n
(g/cm3)

γdry
(g/cm3)

S1 25 20.9 700 17 12.0 0.6 34 2.62 2.48

S2 34 22.9 1300 22 15.0 1.1 33 2.65 2.47

S3 35 30.8 1300 23 26.0 1.5 24 2.67 2.52

S4 27 35.9 2700 28 48.0 2.2 14 2.69 2.51

Table 2.
Results from geotechnical tests on samples taken from landslide slopes.
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pressure and rock pore pressure difference and even crack propagation changes the
pore pressure in the rock layer put in the calculation. The alluvial soft rock proper-
ties are given in Table 3.

The pore pressure changing the strength of limestone is illustrated in Figure 6.

2.3 UCS compression strength

Samples with volumes 0, 1, 3, and 5% are soaked in water-filled jar. The advan-
tage of this experiment is that it minimizes the errors of the course over 50 mm
according to the standard freeze-thaw propagation [15–20]. The UCS change with
pore content changing the two limestones, alluvium, and shale in the quarry is
illustrated in Figure 7.

Considering inferences, extreme deformations can be observed undersaturated
with water of pores depending on time. Due to these negative weight effects,
various stress changes on complex texture are required for the stable sliding surface
in order to reduce cracking and prevent the negative consequences of permeability
on the slippery creep. Lower porosities and cracks are seen in two soft limestones.
The alluvium and shale reached 22 and 45% cavities by cracking effects of creep.

The pore content of the shale sample containing 30% saturation was determined
as 30.5% strength reduction and the maximum dry unit volume weight was
2.85 kN/m3. Altered limestone reaches a pore saturation of 25% and the maximum
dry unit weight of 2.6 kN/m3 for Şırnak asphaltite quarry (Figure 8).

Rock no S1 S2 S3 S4

γsat max (g/cm3) 2.92 2.85 2.87 2.67

wopt (%) 15.9 11.9 11.0 12.3

Permeability (k) (cm/s) 5.3 � 10–4 3.0 � 10�5 6 � 10�5 5.3 � 10�4

Table 3.
Proctor of ground samples and permeability test results.

Figure 6.
The UCS compression strength change by pore pressure of soft limestone in Avgamasya asphaltite quarries No 1
and 2.
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2.4 Shear strength

The sawing indentation depth for soft and porous rock stones changed by rock
microstructure and pore size as given below Eqs. (1) and (2); [16, 17].

Considering filling material by creep moves, extreme deformations can be
observed under saturated sliding surfaces depending on time till 35–40 mm scale
relative control length at 10 m wire. Due to slippery filling shale mud fines affected
uncohesive free slippery surfaces, even internal change on internal friction angle
loses caused for the instable sliding surface with increase cracking and prevent the
negative consequences of instability on the slippery creep surface.

Deformation crð Þ ¼ �af
XM
m¼1

Lcr 1þ rð Þm (1)

Figure 7.
The UCS compression strength of soft limestones, alluvium, and shale in Avgamasya quarry No 1/2.

Figure 8.
The shear strain change for Şırnak shale at saturated pore pressure without any creep time for soft limestone.
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E Elasticity crð Þ ¼ f
XM
m¼1

Lcr 1þ rð Þm (2)

After this shear process at 70 mm cylindrical disks, the strain amount of the box
was determined from the electronic measuring stick on the device. Some samples
taken from the submerged part of the box were dried in the oven and the water
content corresponding to the pore saturation at the end of the test was found
(Figure 9).

3. Creep failures of rocks

The stability is provided by water discharge resulted in low deformations of 10–
20 mm can be observed under low water pressures of 10 mmw depending on time.
The higher weight load of slope slices increases resistive stress change on complex
sliding surface texture for the stability with reduction cracking and prevents the
negative consequences of permeability on the slippery creep. Eq. (3) shows shear
stress with deformation amount θ at time t [30]:

u x; t; θð Þ ¼
Xn
i¼0

u x, tð Þ þ ɸ x; t; θð Þ:e�tiθ (3)

4. Results and discussions

4.1 GEO5 slope stability analysis on creep theory

GEO5 model weight slice chart construction carried out as given below serial
Eqs. (4)–(7) sum [36–41]:

F ¼
Xi

0

NiFi ¼ Ni
Ci

γH
cos βi (4)

Figure 9.
The shear strength changes by sawing indentation regarding hardness factor of rock depending on creep porosity
change by the time.
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Ni slice weights the load Fi kN, anisotropic cohesion value of C1
Ci
, β free creep

slope angle. The free slip surface stability weights show resistance by load
chart slice calculations depending on slip surface angle and creep effect. Safety
scorings calculated by this resistance to shear should be over 1.35 confirming the
stability.

Regarding the crack orientation and intersection with water pore pressures
changed by creep (Figure 6) in Eq. (5) shear factor Rc varied by slip surface angle
exponential rate.

About 2–3 m length slice at i discontinuity at the angle of crack and creep
propagated crack density and percentage distribution on slip surface change of dy

dx
was calculated by integral as given below Equations 5, 6.

Rc ¼
Xi

0

RiFi tan θ ¼
ðb
a
e�tiθdyi (5)

dy
dx

¼ e�tiθdy (6)

The studied areas shear loads were regressed as exponential functions given
below:

The stability mechanism and control by creep crack propagation and creep pore
pressure effect for each slice as given in Eq. (7)

dy
dx

¼ u ¼
Xi

0

RiFi= tan a 1� e�tRi=μ
� �i

(7)

u shear deformation by highlighted in the creep theory, the lowered intrinsic
friction resistance, F weight slice, a shear fracture inclination angle t time, μ crack
free low viscosity at i weight slice.

The safety scoring in toppling and creep flow or landslide is calculated by
following the shear force and resisting load over the slope as shear deformations
based on the lowered internal friction angle patterns. Rock falling caused by
cohesion-free bottom cracking and propagated shear dislocations and pore pres-
sures can be observed in free-fall displacements above 40 mm displacements. The
stability analysis carried out by calculations depending on the crack propagation
overslip surface for each slice was calculated by the Eqs. (8)–(15) sequentially as
below:

Ji ¼
Xi

0

NiFi tan ai (8)

Ri ¼
Xi

0

SiWi cos ai ¼ (9)

pu ¼ ϒ 0

ϒ
Hi (10)

Fiu ¼
Xi

0

Wi sin ai � Su ¼
Xi

0

Wi � pu (11)

Siu ¼
Xi

0

cu0l sec ai þ Fiu
ϒ0

ϒ
Hi tan 2ϕ0 ≤ 1:25 (12)
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σ0θ ¼ σ � ua þ χ ua � uwið Þ (13)

τθi ¼ c0i þ σ � ua þ χ ua � uwið Þð Þ tanϕ0 (14)

Siu ¼
Xi

0

cu0l sec ai þ σ � ua þ χ ua � uwið Þð Þ tan 2ϕ0 ≤ 1:25 (15)

The safety scoring of Siu water-saturated effective mechanical strength parame-
ters regarding creep failure.

5. Slope analysis of S1, S2 and S3 shale soil/rock face slopes

The top alluvium shale heterogeneous benches of S1, S2, and S3 benches fol-
lowing closed excavation period of winter December and January term started
deformation shears at 10 mm sized and the cracks propagated at 11% more and
2 mm widened size gaps caused the little movements that observed and measured
in field studies. In quarry No 2, S3 showed free developed slip with top alluvium
bench covered with alluvium 10 m sliding depth at steep bench rock stability
analyzed by GEO5 programs. The results showed a slip failure problem due to
heterogeneous structure and complexity with the wet saturated sliding surface
over high 40% saturation on slip surface as given in Table 4 (Figures 7 and 10). In
quarry No 1, top shale bench S2 showed similar lowered stability as given in
Table 5 and shown in Figure 11. The top bench of soft limestone at slice showed
better stability safety factor as given in Table 6 and illustrated in Figure 11 as the
higher stack and even the maximum height difference between the heel points
30–35 m, the slope of the maximum height of 50 m, the slope of the surface tilt
angle is 60°.

The calculation style given in Tables 4-6 are the results of original wet and creep
cohesive resistive parameters obtained from the soft shattered rock formations
made in alluvium c0 = 0.9 kPa, φ0 = 20°, γsat. = 2.57 g/cm3 c0 = 0.4 kPa, φ0 = 21°, γsat. =

Chart Block
height

Block
width

Block
weight
ton

Block
weight
(kN)

Block
shear
(MPa)

Resistance to
shear (MPa)

Safety Creep

1 3 4 1.33 13.09 0.77 0.66 1.53 1.32

2 5 6 3.34 32.73 1.62 1.35 1.29 1.08

3 10 8 8.90 87.27 3.97 3.26 1.19 0.98

4 15 9 15.01 147.27 6.57 5.37 1.16 0.95

5 18 7 14.01 137.45 6.14 5.02 1.17 0.95

6 16 5 8.90 87.27 3.97 3.26 1.19 0.98

7 14 4 6.23 61.09 2.84 2.34 1.21 1.00

8 11 4 4.89 48.00 2.28 1.88 1.24 1.03

9 9 3 3.00 29.45 1.47 1.23 1.31 1.09

10 7 3 2.34 22.91 1.19 1.00 1.36 1.14

Total 7.55 666.52 30.82 25.38 1.21 0.99

Table 4.
Weight chart calculations for S1 creep sliding on alluvium.
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2.57 g/cm3 in shale, and c0 = 1.7 kPa, φ0 = 25°, γsat. = 2.62 g/cm3 in soft limestone are
used to score safety value. According to calculated safety scores on the potential free
creep, surface deformation is lowered to 32° slope as seen in Figure 11.

The fracture or discontinuity angle t frequency% in the 20 m sliding on slope
direction and the variable position in the design card dy

dx were calculated as give
below equations and Tables 4-6.

Rc ¼
Xi

0

RiFi tan θ ¼
ðb
a
e�tiθdyi (16)

dy
dx

¼ e�tiθdy (17)

Figure 10.
Creep deformation by time over freeze-thaw time cycle as day periods for soft limestone, alluvium, and shale.

Chart Block
height

Block
width

Block
weight
(ton)

Block
weight
(kN)

Block chart
share (MPa)

Resistance to
shear (MPa)

Safety Creep

1 1.7 2.0 3.34 32.73 1.90 1.62 1.52 1.29

2 2.3 2.3 5.45 53.45 2.97 2.51 1.45 1.23

3 4.0 2.7 10.68 104.72 5.64 4.73 1.41 1.18

4 5.7 3.0 17.01 166.90 8.86 7.42 1.39 1.16

5 6.0 2.3 14.01 137.45 7.33 6.14 1.39 1.17

6 5.7 1.7 9.45 92.72 5.01 4.21 1.41 1.19

7 5.0 1.3 6.67 65.45 3.60 3.03 1.44 1.21

8 4.0 1.3 5.34 52.36 2.92 2.46 1.46 1.23

9 3.0 1.0 3.00 29.45 1.73 1.47 1.53 1.31

10 2.3 1.0 2.34 22.91 1.39 1.19 1.58 1.36

Total 8.59 758.16 41.35 34.79 1.42 1.20

Table 5.
Weight chart calculations for S2 creep sliding on soft limestone.
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The safety risk parameter was calculated as 1.42 stable for 40° slopes, but 50°
and 60° slopes the safety factors decreased to 1198 and 1060. As given in figure the
equation slope 44.2° has given the safety factor for a stable slope as 1120 is shown in
Figure 11.

Figure 11.
The shear resistivity on slice weight chart calculations and GEO5 stability analysis for soft limestone, alluvium,
and shale with creep.

Chart Block
height

Block
width

Block
weight
(ton)

Block
weight
(kN)

Block
shear
(MPa)

Resistance to
shear (MPa)

Safety Creep

1 3.0 3.0 9.01 88.36 3.56 3.03 1.05 0.89

2 3.7 3.0 11.01 108.00 4.32 3.68 1.05 0.89

3 5.0 3.0 15.01 147.27 5.86 4.98 1.04 0.88

4 5.7 3.0 17.01 166.90 6.63 5.63 1.04 0.88

5 6.0 2.3 14.01 137.45 5.48 4.65 1.04 0.88

6 5.7 1.7 9.45 92.72 3.73 3.17 1.05 0.89

7 4.7 1.3 6.23 61.09 2.49 2.12 1.06 0.91

8 3.7 1.3 4.89 48.00 1.98 1.69 1.08 0.92

9 3.0 1.0 3.00 29.45 1.25 1.08 1.11 0.95

10 2.3 1.0 2.34 22.91 1.00 0.86 1.14 0.98

Total 10.22 902.15 36.28 30.86 1.05 0.89

Table 6.
Weight chart calculations for S3 creep sliding on shale.
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S ¼
P

c0 þ σ0 � tanϕ0ð Þ � ℓP
W � sin αð Þ (18)

Data obtained as a result of GEO5 steep discontinuity line studies regarded by
shale and alluvial contact layers. The lower internal friction angle and cohesion was
giving the safety factor of safety below 1.35 due to a sharp 15–25 m long sliding
surface.

In this study, in the estimation of rock mass strength, RQD value for shale and
alluvial zone as a result of RQD as an alternative to the method specified forward 41
and 35, respectively (Table 1). Use the normal stress(s) value when determining
the strengths; m value to be used in GEO5 circle sliding surface analysis on creep
base with defeat criterion from 3 for shale, 2 for alluvial clay, and a 35° slope are
calculated as a function of RMR shale unit its value be 30 RMR crack propagation as
determined at the end of creep period for limestone and shale alluvium.

In laboratory experiments for soft limestone rock, uniaxial test strength 42 MPa,
dry unit weight 25.8 kN/m3, shale uniaxial compressive strength of the rock 12 MPa,
dry unit volume and its weight was determined as 24.45 kN/m3.

2-4 month periods in the winter term results in severe weathering. RQD score is
determined as the sum of the cracks and cracks filling points.

6. Conclusions

In this study, two different slope instabilities occurring in the enterprise were
investigated. Extremely fractured, fractured, and altered creep saturated units were
loaded to software as fill material as sliding saturated creep evaluated by the GEO5
slice analysis method.

The rock mass creep was based on the shear. It was demonstrated using the
Hoek–Brown failure criterion. GEO5 FEM analysis was not chosen for the hetero-
geneous sliding manner. The shear stress-normal stress graphs gave higher safety
values for long sliding surfaces. The slice charts as seen from Figure 11, the
Avgamasya slopes 1, 2, 3, and 4 in the quarries 1 and 2 for two-dimensional (2D)
and three-dimensional (3D) evaluation carried out. The hazard of the sharp
slopes in the deep quarry was controlled with the slope stability analyses. The
safety coefficients over 1.35 should be considered for steep bench slopes and
improved safety working area in bench slopes prepared in Avgamasya asphaltite
mining operations. There is also a great creep issue in slope stability is one of the
biggest problems. The high pore water saturation comes out of hazardous free
sliding. Before instability results arise on slopes various precautions and reinforce-
ment methods or appropriate slope design preventing creep failures by applying
top alluvial layer geometry, lower slope angels will be necessary for the security of
production. For this reason, the displacement on the slopes that are likely to be
defeated your angels regularly followed up with monitoring systems.

Finally, the high rainwater conditions or hard and long winter conditions
are forced to creep analysis with slope stability charts practiced over the study
area.

The 10–40 m long slip surfaces may cause free landslides unexpected in the
quarry. The possibility of creep failure land flows may cause fatal accidents for
asphaltite coal excavation areas. The stability analysis calculation should be carried
out over highly shattered representative specimens at wet saturated effective
strengths geotechnical parameters and the results should consider free land flows
and tumbling rockslide prevention. The precautious methods appropriate for the
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asphaltite quarry were water discharge on the site to prevent instability within the
scope of the creep in the quarries in the region.

Freeze-thaw cycling in 60 days or two months period decreased the strength
values by about 34% over a month period for shale and alluvium. The pore ratio was
also similar in the limestone samples. It was increased saturation by 27%. The creep
values were also obtained in the shear box strength test.

Creep conditions depending on the pore density in the development of cracks
and consequently the formation of wet saturated surfaces and lower shear resis-
tance were observed.

Water discharge over alluvium and shale infiltration of rainwater through the
rock slope mass will slow down creep matter and reduce free landslide or flow.

Abbreviations

c0 effective cohesion (kg/cm2)
c cohesion (kg/cm2)
Φ’ο effective internal friction angle
Φο internal friction angle
τ shear stress (kg/cm2)
σ normal stress (kg/cm2)
Is point load index
Bs bending strength
Ps compression strength
Wopt optimum water content
γNatural natural unit volume weight (g/cm3)
γSaturated saturated unit volume weight (g/cm3)
γDry dry unit volume weight (g/cm3)
γkmax maximum dry unit volume weight (g/cm3)
γs grain unit volume weight (g/cm3)
k permeability coefficient
S1, S2, S3, S4, C1, C2 south and north landslide risk slopes no. 1, 2, 3, 4
S11, C11 sample taken from south and north landslide risk

slopes no.
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Chapter 9

Analysis of Landslide and Land
Subsident Using Geophysical
Method in the East Java Province,
Indonesia
Adi Susilo, Sunaryo Sunaryo, Eko Andi Suryo,
Turniningtyas Rachmawati
and Muwardi Sutasoma

Abstract

East Java Province, which is geologically very complex, often occurs natural
disasters, especially landslide and land subsidence. The area of East Java is divided
into 3 parts, namely the southern part which is the result of volcanic lahar, and also
the uplift from the southern sea. Those two kinds of sediment, geologically is
quarter and tertiary volcanic deposits age, and limestone. The Middle part, is a
cluster of active volcanoes that are quarter old, which provide quarter-aged sedi-
ments and these area is rich in geothermal. The Northern part, which is a sediment
from the Java Sea and the Madura Strait, with several limestone mountains, is an
area rich in hydrocarbons. The area to be studied is the Southern area, namely the
quarter sediment from volcanic lava and the lifting of limestone which has the
potential to occur landslides and land subsident. The landslide and land subsident
symptoms will be analyzed using the geophysical method, to predict the landslide
volume and also the dangerous areas with regard to the land subsident.

Keywords: Sediment, Landslide, land subsident, Geophysical Method, Indonesia

1. Introduction

Indonesia is a country that often experiences hydrometereological disasters,
including disasters caused by climate change and weather [1]. The National Disaster
Management Agency (BNPB) noted that, in the period of 2020, Indonesia has expe-
rienced 2,925 natural disasters, starting from Wednesday (1/1/2020) to Tuesday (28/
12/2020). According to data compiled by BNPB, the disasters that occurred through-
out 2020 were dominated by hydrometeorological natural disasters such as floods,
flash floods, landslides, hurricanes, droughts, forest and land fires. Based on the
details of hydrometeorological disaster data, flood events have occurred up to 1,065
events throughout 2020. Disasters caused by hurricanes have occurred as many as
873, landslides as many as 572 events. Furthermore, for forest fires there have been
326 incidents, tidal waves and abrasion have occurred 36 events, and droughts have
occurred as many as 29 events. For the types of geological and volcanic disasters,
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there are 16 and 7 events, respectively. There were 370 people who died as a result of
the natural disaster, 39 people were missing and 536 people were injured.

East Java, is one of the provinces in Indonesia, which is on the island of Java.
This province is located in the west of the province of Bali and in the east of the
province of Central Java, Figure 1.

East Java has the largest area among 6 provinces on the island of Java (about
407,803 km2), and has the second largest population (40.67 million people). Based on
province, West Java province has the largest population in Indonesia in 2020, which
is 48.27 million people. Meanwhile, East Java province is bordered by the Java Sea in
the north, the Bali Strait in the east, the Indian Ocean in the south, and Central Java
Province in the west. Several small islands, namely the islands of Madura, Bawean,
Kangean and a number of small islands in the Java Sea (Masalembu) and the Indian
Ocean (Sempu Island and Nusa Barung) are also the East Java Region.

Administratively, the total number of Districts and Municipalities in East Java is
38, as seen in Table 1.

2. Disaster in East Java

Cumulatively, based on calculations from the records of the National Disaster
Management Agency (BNPB), from 2013 to 2019, in East Java there have been 2676
hydrometeorological disasters. The details are: floods as many as 743 cases, land-
slides 514 cases, drought 66 cases, forest fires 361 cases, tidal waves 22 cases and
strong winds as many as 970 cases. When viewed from a case-by-case approach, it
can be seen that every year there is an increase in the number of disasters. Between
2013 and 2014 there were about 233 cases, then increased to 297 cases in 2015,
increasing again in 2016 by 404 cases, 2017 around 434 cases, 2018 increasing to 455
cases and increasing rapidly in 2019 with the number of cases amounting to 620
cases. The trend of increasing hydrometeorological disasters in each type of disaster
has undergone significant changes. This condition can be checked by conducting
media studies, by looking for disasters that occurred in the period 2019 to 2020.
Around 50 more local journalists wrote about hydrometeorological disasters, from
floods, landslides, forest fires, droughts, tidal waves and droughts in East Java.

The East Java Regional DisasterManagementAgency (BPBD) revealed that in 2019
there had been floods covering 15 districts, namely: Madiun, Nganjuk, Ngawi,
Magetan, Sidoarjo, Kediri, Bojonegoro, Tuban, Probolinggo, Gresik, Pacitan,

Figure 1.
Map of East Java [2].
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No. Region Name Capital city Area

1 District Bangkalan Bangkalan 1,001.44 kms (2.10%)

2 District Banyuwangi Banyuwangi 5,782.40 kms (12.10%)

3 District Blitar Kanigoro 1,336.48 kms (2.80%)

4 Bojonegoro Bojonegoro 2.198,79 kms (4.60%)

5 District Bondowoso Bondowoso 1.525,97 kms (3.19%)

6 District Gresik Gresik 1.191,25 kms (2.49%)

7 District Jember Jember 3.092,34 kms (6.47%)

8 District Jombang Jombang 1.115,09 kms (2.33%)

9 District Kediri Ngasem 1.386,05 kms (2.90%)

10 District Lamongan Lamongan 1.782,05 kms (3.73)

11 District Lumajang District Lumajang 1.790,90 kms (3.75%)

12 District Madiun Caruban 1.037,58 kms (2.17%)

13 District Magetan Magetan 688.84 kms (1.44%)

14 District Malang Kepanjen 3,530.65 kms (7.39%)

15 District Mojokerto Mojosari 717.83 kms (1.50%)

16 District Nganjuk Nganjuk 1,224.25 kms (2.56%)

17 Ngawi Ngawi 1,295.98 kms (2.71%)

18 District Pacitan Pacitan 1,389.92 kms (2.91%)

19 District Pamekasan Pamekasan 792.24 kms (1.66%)

20 District Pasuruan Bangil 1,474.02 kms (3.08%)

21 District Ponorogo Ponorogo 1,305.70 kms (2.73%)

22 District Probolingge Kraksaan 1,696.21 kms (3.55%)

23 District Sampang Sampang 1,233.08 kms (2.58%)

24 Sidoarjo Sidoarjo 634.38 kms (1.33%)

25 District Situbondo Situbondo 1,669.87 kms (3.49%)

26 District Sumenep Sumenep 1,998.54 kms (4.18%)

27 District Trenggalek Trenggalek 1,147.22 kms (2.40%)

28 District Tuban Tuban 1,834.15 kms (3.84%)

29 District Tulungagung Tulungagung 1,055.65 kms (2.21%)

30 Municipality, Batu Kota Batu 136.74 kms (0.29%)

31 Municipality, Blitar Blitar 32.57 kms (0.07%)

32 Municipality, Kediri Kediri 63.40 kms (0.13%)

33 Municipality, Madiun Madiun 33.92 kms (0.07%)

34 Municipality, Malang Malang 145.28 kms (0.30%)

35 Municipality, Mojokerto Mojokerto 16.47 kms (0.03%)

36 Municipality, Pasuruan Pasuruan 35.29 kms (0.07%)

37 Municipality, Probolinggo Probolinggo 56.67 kms (0.12%)

38 Municipality, Surabaya Surabaya 350.54 kms (0.73%)

Table 1.
The district and major cities in East Java.
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Tranggalek, Ponorogo, Lamongan and Blitar. The worst flooding occurred in the
Madiun area. The disaster affected 12,495 families from the population of 15 districts
in East Java. In 2019, BPBD recorded areas affected by drought and lack of cleanwater
covering 22 districts, 128 sub-districts and 450 villages. Meanwhile for forest and land
fires, where East Java has 8 active volcanoes, forest fires occur when entering the peak
of the dry season. The mountains are Arjuna,Welirang, Kawi, Kelud,Wilis, Semeru,
Bromo, and Ijen. According to the Ministry of Environment and Forestry (KLHK)
there were approximately 23,655 hectares of forest area and land burned in 2019.

In 2020, there are several records related to disasters such as strong winds that
hit Ponorogo, landslides that occurred in Lumajang and floods that hit Pasuruan,
Mojokerto, Jombang, Madiun and Trenggalek. In 2020, according to data from the
Ministry of Environment and Forestry, there were around 19,148 hectares of land
and forest burned in East Java. Throughout 2020, there were around 31 regions in
East Java that experienced drought and lack of clean water. Meanwhile, in early
2021, East Java was faced with floods that hit several areas, the worst occurred in
Jember which almost affected 7 sub-districts.

3. Field site study

This research was conducted in two places, namely Jawar Hamlet, Srimulyo
Village, Malang Regency and Banaran Village, Ponorogo Regency, both of which are
in East Java. These two areas have experienced land subsidence and landslides, as
well as flash floods.

Jawar Hamlet, Sri Mulyo Village, Dampit Subdistrict, Malang Regency is one of
the villages prone to landslides in East Java Province [3], Preliminary Study of
Landslide In Sri Mulyo, Malang, Indonesia Using Resistivity Method And Drilling
Core Data). On January 24, 2006, there was a landslide in the village which caused 1
house to be destroyed, 14 houses cracked on the walls and foundation. In addition,
the landslide also resulted in 3 large landslide areas, and 12 small landslides that cut
off access to village roads as deep as 60 cm. The area where the landslide occurred,
after being examined geologically, was found to be located above weathered breccia
rocks that lay on top of the limestone of the Wonosari Formation. When viewed
from the angle of inclination, the landslide area actually has a slope of 120–200 or
not too steep. The landslide incident showed that the cause of the landslide was not
purely due to the slope, but because the area was located in a gravity fault area,
which is thought to have caused the landslide of limestone, which is located at the
bottom of the landslide area [4].

The village of Sri Mulyo, Dampit subdistrict (Figure 2) is geographically located
at 8.2928 0 SL 112.7991 0 EL. Administratively, Sri Mulyo village in the north is
bordered by Bumirejo Village, Ampelgading Sub-District in the east,
Sumbermanjing Wetan Sub-District in the west, and Sukodono Village in the south.
In general, the soil structure in Sri Mulyo village is podzolic soil, where the topog-
raphy is plains and mountains with an altitude of 400–790 meters above sea level,
and the slope of the slope is less than 40%. The average annual rainfall is 5229
millimeters. The majority of the population is coffee and salak farmers.

The second research area is Banaran village. Banaran village is located in Ponorogo
Regency, East Java (Figure 3). Banaran village has a land area of 2827,713 ha divided into
four small villages (hamlet), namely Krajan, Gondang Sari, Tangkil, and Sooro. Banaran
Village is one of 18 villages in Pulung District. The locations of Banaran village is: In the
west it is bordered by Bekiring Village, Pulung Sub-District; in the east bordering the
Tambang Village, Pudak Sub-District; In the north it is bordered by Talun Village,
Ngebel Sub-District and in the south byWagir Kidul Village, Pulung Sub-District.
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One method to analyze a landslide is to use geophysical methods. Geophysical
method is a method to determine the subsurface conditions of the earth based on
physical parameters. The resistivity method is one of the most widely used geo-
physical methods in the fields of hydrogeology, disaster mitigation, and archeology
[5–9]. Several previous studies has shown that the resistivity method is effective for
knowing the subsurface conditions of landslide-prone areas [4, 10–14].

It is important to conduct research in the Jawar Hamlet, Sri Mulyo Village,
Malang Regency and Banaran Village, Ponorogo Regency so that the area’s vulner-
ability to landslides is known. This landslide analysis was carried out as one of the
disaster mitigation efforts, because the area had experienced landslides in the past.
The core drilling method was also carried out to confirm the results of the
geoelectrical interpretation, especially for the Jawar hamlet area. The landslide
analysis is expected to provide an overview of subsurface conditions supported by
Turen and Ponorogo Geological Map, and it can determine the landslide fields as
well thickness of landslide potential material at the study site.

4. Method

4.1 Sri Mulyo Village

The resistivity method basically utilizes the electrical properties of the earth, by
interpreting the apparent resistivity parameters of subsurface rocks. This method is

Figure 3.
Banaran Village, Ponorogo regency, Indonesia (Google maps, 2018).

Figure 2.
Geoelectrical resistivity measurement survey design, Sri Mulyo Village.
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an active method, where an electric current is injected into the earth through two
current electrodes (C1 and C2) then the resulting potential difference is captured by
two potential electrodes (P1 and P2). By considering the geometry factor of the
configuration used, it can be calculated the apparent resistivity of the rock below
the surface.

In this study, the configuration used is dipole–dipole (Figure 4). Measurements
are made by moving the potential electrode in a path with a fixed current electrode.
Next, the current electrode is moved at a distance to the next “n”, which is followed
by moving the potential electrode along the cross-section. This is done until
between C1 and P1 has a distance of “na”, according to the conditions of the surface
in the study area.

The research in Jawar Hamlet, Sri Mulyo Village was carried out in 2015 which is
located at the coordinates of 08018044,86″ - 08011005,16” SL and 112049022,02″-
112041056,47” WL. There are 5 measurement lines for the resistivity method
(Figure 3). Lines 1, 2, and 3 with a track length of 180 meters, 200 meters and 100
meters, respectively, and the spacing between electrodes is 10 meters. Lines 1 to 3
are measured from Southeast to Southwest. Line 4 with a track length of 200 meters
with an electrode spacing of 10 meters while line 5 with a line length of 300 meters
and an electrode spacing of 15 meters. Lines 4 and 5 are measured from West to
East.

In this study, drilling points were also carried out. This drilling point is carried
out in the red and yellow lines. This core extraction is used as a sample for labora-
tory tests in determining soil characteristics. Drilling was carried out at two points,
namely point 1 located on the 60 meter track line 1 and point 2 located 70 meter line
length line 2. The results of the drilling were used as supporting data for landslide
analysis for the resistivity method. Geoelectric data processing is done with Re2dinv
software. Interpretation is carried out by correlation with the Geological Map of the
Turen Sheet.

4.2 Banaran Village, Ponorogo District

The method used in this research is geo-electric resistivity method, sama seperti
yang dilakukan di desa Srimulyo. There are many configurations used in this
method. In this research, we used a modified Wenner-Schlumberger configuration
(Figure 5) with fixed electrode potential and the current electrode to obtain Verti-
cal Electrical Sounding (VES). To obtain the lateral direction variation, the VES
through interpolation dots are measured. This configuration is the right choice if the
desired target is the VES with optimal field effectiveness and reduction accumula-
tion error. Measurements were made at 12 points. The selection of this measure-
ment point is based on the fact that the area is still relatively flat and the results of
the interpretation can be correlated from one location to another.

Figure 4.
Dipole–dipole configuration with, “a” spacing between electrodes (m), “ΔV” potential difference (mV), “I”
injected current (mA), “n” number of layers, “ρa” apparent resistivity of rocks (ohm.m), and “k” geometry
factor (m).
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5. Result and discussion

5.1 Jawar Hamlet, Srimulyo Village, Malang regency

Based on the results of resistivity data processing and information on the Turen
Sheet Geological Map, it can be seen that Jawar Hamlet, Dampit Subdistrict is
composed of three rock layers. The lithology of the local area is composed of clay
(9,28–85,8 Ω:m), tuff (178–779 Ω:m) and breccia (≥ 1629 Ω:m). Figure 6, is 2D
cross-sections of resistivity data processing, where the dotted line indicates the
estimated landslide slip area at the study site, and Figure 7 is 2D cross sectional. The
slip plane in this study is the boundary between clay and tuff.

Figure 7 shows the presence of clay dominance on the three parallel lines. It is
seen that clay predominates to a depth of about 10 meters below the ground surface.
This will result in the weight of the soil during the rain will be even greater, due to
the infiltration of rainwater into the soil which does not easily come out, due to the
very low permeability of the clay. As a result, the boundary between clay and tuff
will become increasingly slippery. If this continues for a long time, and if the slope
is not able to withstand a large load, there will be a movement of soil down the slope
which is commonly referred to as a landslide. The potential for landslides is also
higher because the vegetation above the surface of the research site is in the form of
seasonal plants (coffee), whose roots are not too deep. This type of plant (coffee),
has roots that are not strong enough to bind soil grains.

Figure 5.
Distribution of geo-electric resistivity measurement points.

Figure 6.
2D cross section of resistivity line 1.
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Figures 8 and 9 show the correlation between the resistivity data and the drilling
data. Drilling was carried out on twomeasurement lines, namely line 1 and line 2 with
a depth of 8 meters, which indicates that up to a depth of 8 meters the soil type at the
study site was predominantly clay. This, in accordance with the interpretation of
resistivity data from the five measurement lines, indicates that to a depth of about 10
meters, the study site is dominated by clay. The correlation of the five measurement
lines shows that the avalanche direction is from Northwest to Southeast this is due to
the difference in height between lines 4 and 5. When viewed from the results of the
study, that the landslide area is relatively flat and the research location is relatively
not steep, then the type of landslide in the research location is likely to be a creep
type. This type of avalanche is a type that moves slowly down the slope.

Based on the correlation of all data, the data shows that the potential for land-
slides in the research location has a high level of vulnerability. This is because the
thickness of the clay has exceeded 5 meters with a high average annual rainfall of
5299 mm/year, so this will increase the weight of the soil when it rains. In addition,
the carrying capacity of plant vegetation is inadequate at the study site, causing
settlements to be unsafe from landslide hazards. The results of this study may be
one of the considerations of the local government in disaster mitigation at the
research location so as to minimize casualties and losses due to landslides.

5.2 Banaran Village, Ponorogo District

The results of data processing show that the subsurface conditions at the
research site are divided into four constituent rocks, namely; clay (0–100 Ω.m,) tuff

Figure 7.
Correlation of 2D cross-sectional resistivity lines 1, 2 and 3 respectively.

Figure 8.
Correlation of 2D resistivity and drilling points.
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(100–1000Ω.m), volcanic breccia (1000–3000Ω.m), and andesitic lava (>3000Ω.m).
The depiction of the interpolation results for several depths can be seen in Figure 10.
From the analysis results, the subsurface rock at the study site is dominated by clay. The
further down, it was detected that the clay became more dominant. This indicates that
the landslide material at the study site is very thick.

If the correlation is made for inline points, the following results (Figure 11) will
be obtained:

Figure 9.
Soil sample test results (a) line 1 and (b) line 2.

Figure 10.
Contour resistivity at 5 meters depth.
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The results of data processing from this resistivity method indicate that the
landslide field is located at a depth of 8 to 35 meters. Tuff is indicated as a landslide
field. Interpretation of resistivity data for lithological correlation shows that the
upper part of the landslide area is dominated by rocks with low resistivity (conduc-
tive) and quite thick (5–35 m) which is indicated as clay. Clay is a type of rock that
has very small permeability, which is 10�7 cm/s. In addition, the research location is
a steep slope. From the interpretation of the lithological correlation, the estimated
slope of the location is ≥400, and the rainfall was quite high at that time, namely
18.95 mm per day. The length of the rainy month is nine months.

The presence of clay with a thickness of more than 5 meters on steep slopes with
high rainfall, will cause greater soil weight, especially when rainwater seeps into the
soil. When it is found that the bottom layer is clay, the soil will be saturated with
water and can no longer come out, because clay is almost impermeable. In addition,
the soil which is dominated by clay will be very prone to landslides, because it is soft
and slippery when it rains and cracks when it is hot. As a result, if it rains, the steep
slope will accelerate the movement of the soil down the slope, which is known as a
landslide. In addition, the use of land in the form of settlements and plantations of
seasonal crops, such as ginger, spices and so on, makes plant roots not strong
enough to withstand soil movement, and not strong enough to absorb rainwater. So,
in the end there was a landslide.

6. Conclusion

The results of this study in Jawar Hamlet, Sri Mulyo Village indicate that the
resistivity method can provide a good picture for investigations in locations that
have the potential for landslides. The results of the correlation of resistivity data
with drilling show that the research location is dominated by clay to a depth of
about 10 meters. The level of vulnerability to landslides in Jawar Hamlet, Sri Mulyo

Figure 11.
Correlation of lithology of measuring points 11, 06, and 03 (from top to bottom).
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Village is high. The results of the investigation of the location’s vulnerability to
landslides are expected to be one of the references for the local government in
efforts to mitigate landslides. One of the ways to do this is by replacing annual
plants to strengthen the binding of the soil grains.

In addition, based on the interpretation of resistivity data, tuff and clay are
indicated as slip planes, which are found at depths ranging from 8 meters to 35
meters. The landslide material is the part above the slip plane, which is dominated
by clay with a thickness of 5–35 meters. Banaran Village, Ponorogo Regency is an
area that is very prone to landslides, based on a landslide-prone area score. Param-
eters that actively support the occurrence of landslides at the study site are the
presence of slip fields, steep slopes, high rainfall and inappropriate land use. There-
fore, residents who live in the area are highly expected to be aware of landslides,
which can occur at any time, especially during the rainy season. The level of
vulnerability to landslides in the Banaran area is relatively high, so it is necessary to
relocate residents’ settlements around the Banaran area.
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Chapter 10

Landslide Movement Monitoring
with InSAR Technologies
Peifeng Ma, Yifei Cui, Weixi Wang, Hui Lin,
Yuanzhi Zhang and Yi Zheng

Abstract

Synthetic aperture radar interferometry (InSAR) is a technology that has been
widely used in many areas, such as topographic mapping, land and resource survey,
geological exploration, disaster prevention and mitigation, volcanic and seismic
monitor and so on. Landslide, as a representative geohazard, include a wide range of
phenomena involving downhill ground movement. InSAR, a technology which can
measure surface deformation at the millimeter level over serveral days or years, is
suitable to detect landslides with chronical and widespread movements. In this
chapter, we introduce main process methods of InSAR data, including Persistent
Scatter Interferometry (PSInSAR) and Distributed Scatter Interferometry
(DSInSAR). A study area, Daguan County Town, one of the most landslide-prone
areas in China is induced to demonstrate the practicability of InSAR in detecting
landslides. Combined InSAR results with geological, geotechnical and meterological
data, the distribution of landslide in Daguan County in spatial and temporal
dimensions would be displayed. We also coupling numerical modeling and InSAR
for characterizing landslide movements under multiple loads. The numerical results
revealed that body loads dominated the cumulative downhill movements by
squeezing water and air from voids, and precipitation caused seasonal movements
with the direction perpendicular to the slope surface.

Keywords: InSAR, landslide movement, numerical modeling, spatial–temporal
analysis, human activities

1. Introduction

Landslides represent a major geological hazard causing injury or death and causing
economic loss [1–5]. More than 20,000 hazards associated with landslides occurred in
China from 2013 to 2014, totally causing 10 billion CNY loss approximately [6].
Landslides tend to occurred in areas where natural or human activities are more
frequent [7–11]. Exposing the causes of landslides is essential for characterizing slope
mobility and hazard mitigation. The traditional method of landslide investigation is to
conduct field surveys [10], but it is laborious and difficult to find the landslide
boundaries. Synthetic aperture radar interferometry (InSAR) monitoring, based on
satellite, is now an effective way for landslide deformation monitoring from regional
to local scales [12–14]. In particular, the launch of Sentinel-1 satellites opens a new era
of global coverage monitoring with revisit times of 12 days using one satellite and
6 days using two, making regular landslide monitoring feasible [15, 16]. Advanced
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multitemporal InSAR methods have been proposed to achieve centimeter-to-milli-
meter deformation monitoring using multi-baseline SAR images by detecting tempo-
rally coherent targets [17–19]. With advances in algorithm development, InSAR has
been widely used to monitor slope movement [20–22], update landslide inventory
maps [11, 23], and generate landslide risk maps [24, 25]. Multi-source space-air-
ground monitoring technologies are also combined with InSAR to study landslide
movements to overcome the limitations of single technology [11, 26].

Landslides in built-up areas should first be considered for monitoring, compar-
ing with landslides in non-built-up areas. Human activities, e.g., land development,
are frequent in these areas, so monitoring is necessary to prevent greater economic
losses and casualities. In earthquake area zone of southeast China, with scarce land
resources, the construction of new cities is often carried out on steep slopes. In these
areas, infrastructures and buildings are at high risk since the land urbanization may
destroy the original ecological environment [7]. InSAR can measurement surface
deformation and the landslides boundaries can be confirmed through vertical
deformation velocity. However, this method can only monitor the movement on
surface. To reveal the physical mechanisms of landslide, the numerical modeling
should be introduced to simulate physical process underground. Numerical model-
ing is purely mathematical and thus is very different from physical modeling in the
laboratory or field modeling [27]. The models are an abstract of the real geology
object, so the geometries are usually simplified. Besides, the material properties of
the simulated strata are retrieved through back analysis method based on InSAR
measurements. The phenomena of landslides could be simulated after the definition
of model, using Finite Element Analysis (FEA) method [28, 29].

The coupling analysis of numerical modeling and InSAR measurements have
been proved an effective method to deduce the deformation of dams [30]. In this
chapter, we review an experimental study [31] to show the performance of coupling
numerical modeling and InSAR for monitoring slope. Daguan County Town, a
built-up area located on a hillside, is considered as our study area. An advanced
multi-temporal InSAR method would be used to measure surface movements with
robust detection of persistent scatterers (PSs) and distributed scatterers (DSs).
Then, the detection results would be validated by ground data from Global Naviga-
tion Satellite System (GNSS) stations and inclinometer tubes. The coupling analysis
of numerical modeling and InSAR measurement results would reveal the mecha-
nisms of landslides, and influence of three main factors (e.g., precipitation, body
loads and construction-induced loads) would be discussed.

2. Study area and datasets

Daguan County, located in the northeast of Yunnan and southwest of the Sich-
uan earthquake fault zone (Figure 1), is one of the most landslide-prone areas in
China [6]. From 1844 to 1974, nine earthquakes with magnitude greater than 5
occurred in Daguan County. Earthquake and fault activity have led to a wide
distribution of ancient landslides in this area [32, 33]. The region has a subtropical
monsoon climate, with the rainy season normally lasting from June to September
[6]. The historical geological evolution of the county consists of three main periods
of movements (i.e., the Jinning Movement, the Yanshan Movement and Jialing
River Movement), which formed folds and fractures. The geological strata range
from the oldest to the youngest include the Silurian (consisting of the Lower
Huanggexi, Middle Shichuankan and Upper Caidianwan formations), the Devonian
(consisting of the Lower Cuifengshan and Middle Qingmen formations) and the
Quaternary (consisting of artificial, remnant slopes, fallen rocks and alluvial

162

Landslides



deposits) [33]. Accompanied by frequent crustal movements, the rocks in the area
are extremely fragmented and therefore easily infiltrated by rain and groundwater.
Prolonged rainfall can saturate, soften, and erode the soil, presumably leading to
slope failure. The main soft and hard interaction surfaces that are prone to land-
slides include artificial and rockfall layers, joint fractures and relief joints, overlying
soft soils and underlying bedrock, soft and hard rocks, and the interaction between
different weathering surfaces. Totally speaking, the steep topography, tectonic
action and stratigraphic lithology together shape the landslide-prone environment.

Daguan County Town is built on an ancient landslide (Figure 2(a)). The altitude
ranges from 500m to 1500m and the angle of slope from 10∘ to 60∘. Its main aspect
of the slope is to the west. Human activity has significantly altered the landscape
and topography, with buildings and infrastructure densely located in this area. In
order to promote sustainable development, the Daguan County government began
rezoning and revising the land use in 2010, and the land has been rapidly developed
over the past few years. Construction works have triggered instability and response
of ancient landslides by altering above-ground loads and subsurface geological and
hydrological conditions [34, 35]. The Yunnan Geotechnical Engineering Survey and

Figure 1.
(a) Study area and SAR images coverage. Rectangle a and D indicate the coverage of the ascending and
descending Sentinel-1 images, respectively. The black rectangle indicates the location of Daguan. (b) the
geological environment of Daguan County town. (c) Landslide inventory map. S1-S22 are the 22 landslides,
D1-D5 are the 5 debris flows and R1-R4 indicate 4 rockfalls. The polygon colors indicate: (1) large and high
risk; (2) large and medium risk; (3) medium and high risk; (4) medium and medium risk; (5) small and high
risk; (6) small and medium risk landslides; (7) high risk and (8) medium risk debris flows; and (9) high and
(10) medium risk rockfalls [31].
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Design Institute conducted a field survey of the geological environment and distribu-
tion of geological hazards in the area in 2011 and generated an inventory map based
on its identification of 31 landslides, including 22 landslides, 5 debris flows and 4
rockfalls (Figure 1(c)). Figure 2(d) and (e) are stratigraphic cross-sections of the two
most severe landslides (e.g., S12 and S15). The geological setting consists of Silurian
marl remants (S2d) and artificial fill, and the sliding soils are loose Quaternary
gravelly soils. The slides of S12 and S15 caused buckling of the stairs and cracking of
the walls. Daguan No.1 Middle School is located close to the top of the landslide in
S12 (Figure 2(d)), and a building (e.g., Genyun Building) here was rebuilt in
May 2018. In S15, near the toe of the slope, is the retaining wall (Figure 2(e)), whose
construction began in June 2018, to dampen movement by applying lateral foces.
These construction works may affect the mobility of the landslide.

The SAR images is from Sentinel-1 in the wide swath imaging mode. The mon-
itoring coverage is as shown in Figure 1(a). A total of 60 ascending images from
February 12, 2017 to February 26, 2019 and 56 descending images from February 19,
2017 to March 5, 2019.

3. Methods

3.1 Deformation estimation of PS and DS points in a two-tier network

3.1.1 Detection of the most reliable PS in the first-tier network

The problem of decorrelation usually occur in landslide areas. To solve this
problem, we used a two-tier network to detect PSs and DSs with robust deformation

Figure 2.
(a) Photo of the Daguan County town. (b) Stair buckling in the region of S12. (c) Wall cracking in the region
of S15. Stratigraphic cross-sections of S12 (d) and S15 (e) [31].
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estimation [36–38], which can help improve the measurement points density. The
first-tier network was constructed to find the most reliable PSs over the study area.
Depend on amplitude dispersion, the primary PSs candidates (PPSC) could be
selected firstly [39]. A Delaunay Triangulation Network (DTN) could then be
constructed using PPSC. Some additional redundant arcs should be added to
improve the density of the DTN, because of the sparse PPSC [37]. After removing
the atmospheric phase screen (APS), the signal model of N observations was
written like [40, 41]:

y ¼ Aγ (1)

where y ¼ y1, … , yN
� �T ( �ð ÞT is the transpose operation) represents the complex

values of interferograms after removing the APS, γ is the reflectivity vector and A is
the sensing matrix containing the steering vector a Δh,Δvð Þ as its columns:

a Δh,Δvð Þ ¼ exp j2π ξ1Δhþ η1Δvð Þð Þ, … , exp j2π ξNΔhþ ηNΔvð Þð Þ½ �T (2)

where ξi ¼ 2b1= λr0 sin βð Þ (bi is the perpendicular baseline, λ is the wavelength,
r0 is the slant range and β is the incidence angle) and ηi ¼ 2ti=λ (ti is the temporal
baseline). Δh and Δv are relative height and mean deformation velocity to be
determined, respectively. We used beamforming and an M-estimator to calculate
the relative estimates [36]. The beamforming-based inversion is as follows:

γ Δh,Δvð Þ ¼
a Δh,Δvð ÞHy
���

���
a Δh,Δvð Þk k2 yk k2

(3)

where �j j is modulus operation for each element, �k k2 is 2-norm, and �ð ÞH stands
for the conjugate-transpose operation. The maximum value of γ is calculated by
sampling Δh and Δv to describe the temporal coherence of points. The arc between
points would retain if the corresponding temporal coherence is larger than a given
threshold; otherwise, the arc would be removed. The threshold we set here is 0.72,
typical for millimeter-level deformation estimation [42]. For the preserved arcs, the
preliminary estimates were used to unwrap the temporal phase. Then the inversion
problem is transformed to:

ΔΦ ¼ DJ ¼
2πξ1 2πη1
⋮ ⋮

2πξN 2πηN

2
64

3
75 Δh

Δv

� �
(4)

where ΔΦ is the unwrapped phase. In the presence of low-quality images, the
preliminary relative estimates may be biased. To address this issue, we introduced
an M-estimator to re-calculate the estimates using the unwrapped phase [43]:

J ¼ DTWMD
� ��1

DTWMΔΦ (5)

where WM is an iteratively computed weight matrix that represents the phase
quality. Compared to the unweighted least square estimate, the M-estimate assigns
smaller weights to the phase outliers, thus improving the robustness of the estimate.
After solving the relative estimates, we integrate them with the network adjustment
method. When the adjustment matrix is poorly conditioned, its inversion may be
unstable. To solve this problem, we apply a ridge estimator to the network
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adjustment [44]. It introduces a conditioning matrix σI (I is the identity matrix) in
the inversion:

X ¼ GTWR þ σI
� ��1

GTWRH (6)

where X contains the absolute estimates of PS, G is the conditioning matrix
consisting of �1,0 and 1 (�1 and 1 represent the start and end of the arc, respec-
tively),WR is a diagonally weighted matrix containing the temporal coherence, and
H contains the arc on relative estimates. The adjustment parameter σ is determined
according to the L-curve method [44]. The ridge estimator outperforms the tradi-
tional least-square estimator in regulating possible ill-conditioned problems. The
effectiveness of the M-estimator and the ridge estimator has been evaluated in [36]
and is omitted here for simplicity.

3.1.2 Detection of the remaining PS and all the PS in the second-tier network

The PSs detected in the first-tier network were regarded as reference points to
build the second-tier network. Identifying statistically homogeneous pixels (SHPs)
by Kolmogorov–Smirnov (KS), the complex covariance matrix (CCM) C could be
calculated. Then the inversion of C could be used to change the optical phase by the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. It should be noted that C is
rank deficient, and the inversion is not stable when the amount of SHPs is less than
N. To solve this problem, we have revised it as following [19, 45]:

θ ¼ argmax
θ

ΛH C∘Ψð ÞΛ� � ¼ argmax
θ

ΛHCΛ
� �

(7)

This expression improves the robustness of estimation by assigning a larger
weight to the higher-coherence phase and avoiding matrix inversion. Then, we
employed a more efficient phase-linking method to obtain the optimal phase [46].
This method is called a coherence-weighted phase-linking (CWPL) method [45].
Finally, we used the reconstructed optimal phase to identify whether the DSC is a
true DS using temporal coherence (T_DS) thresholding (0.65 in this case). The
workflow we can see on the top left of Figure 3.

3.2 2D deformation velocity decomposition

Landslides are always described as a movement with a predominantly vertical
orientation. However, a single track only provides deformation in the LOS direction.
To describe the movement of landslides properly, we appreciated that the up-down
and east–west components of the deformation could be calculated using the observa-
tions obtained from both ascending and descending orbits [47]. Suppose that in the
Cartesian coordinate system, the direction of the X-axis is east, the direction of the Y-
axis is north, and the Z-axis is up. The deformation of a target on the earth’s surface is:

U ¼ Uxsx þ Uysy þ Uzsz (8)

where Ux, Uy and Uz are the eastern, northern, and vertical components of U
(the real movement of a landslide), and sx, sy, and sz are unite vectors in the
respective directions [48]. Because of the polar-orbit of Sentinel-1, the LOS defor-
mation is insensitive to movement in the north–south direction, and the Uy is
negligible. UA and UD were used to represent the LOS deformation velocity for the
ascending and descending, respectively. It should be noted that we assumed that the
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mean velocity of the landslide motion is the same for both types of orbit images,
since their time spans are similar. Therefore, the projections of the east–west and
up-down motions in the LOS direction could be written as:

Ua ≈Uxax þ Uzaz
Ud ≈Uxax þUzaz

�
(9)

where ax and az represent the unit LOS vectors obtained from the orbit
parameters (Figure 3).

3.3 Numerical modeling of landslide movements using finite element analysis

In order to describe the underground process of landslide movement, we
performed numerical model of landslide movement in GeoStudio software [49, 50].
SIGMA/W is a tool in GeoStudio that can perform stress and deformation analyses
of earth structures, we can use it to simulate the physical process of ground volume
change in response to self or external loading. Before solving, three components
should be identified, which are geometry, material properties and boundary condi-
tions. The geometry is the cross-section of a slope, it can be defined by simplifying
the stratigraphic data.

The settings of material properties is crucial to make the model we defined close
to the reality. We decided the material properties by combining the empirical
knowledge and back analysis method [30, 51]. The purpose of Back analysis is to
make the deformation of numerical modeling and InSAR measurement results
consistent by modifying material properties. We first defined an objective
function using the 2-norm of the difference between the modeled and measured
deformation:

Figure 3.
Workflow of PS and DS detection, 2D deformation decomposition, and numerical modeling [31].
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f p1, p2, … , pm
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
U ∗

i �Ui

r
(10)

where p1, p2, … , pm
� �

is the material properties set to be defined, U ∗
i and Ui are

simulated and InSAR measurement results, respectively. �j j is the absolute value
operation and n means the number of InSAR scatterers located at the landslide.
We then used the genetic algorithm (GA) to iteratively search for the optimal
material properties [52]. The range and precision of soil properties were initialized
in the GA based on a empirical knowledge [53–55]. The optimal set of property
is the combination of material parameters by minimizing the objective function.
If the objective function was not minimized, the GA is subjected to natural
selection and mutation with crossover and mutation probability set to 0.9 and 0.1,
respectively. Considering the case of non-convergence, we set an upper limit on
the number of iterations to 50, which is also considered optimal when it is
reached.

The boundary conditions were used to replicate real-world loading in
deformation simulation. Considering the actual forces of the study area, three
kinds of boundary condition are introduced in modeling. The first one is body
load, which represents the body gravity related to the volume of the element and
material, and it can be calculated by the unit weight and volume of soils. The
second one is precipitation-induced hydraulic condition. The precipitation-
induced hydraulic condition was regarded as a function varied with time. The
input precipitation data was collected during the acquisition time of Sentinel-1
images. Amplitude of InSAR seasonal deformation varies with altitude under the
influence of precipitation accumulation and stratified atmospheric delay [56, 57].
To calibrate this effect, we set different rainfall intensity at different elevations.
The third boundary condition is construction-induced force (e.g., building loads).
The building pressure was estimated by the concrete-steel density, thickness of
walls and number of floors in the buildings obtained from field survey. After
setting boundary conditions, we used the linear elastic model to simulate the
deformation [58]. Linear elastic model assumes that stress is proportional to
strain, and the load–displacement response is likely linear elastic along the lower
initial portion of the stress–strain curve (Figure 3).

4. Experimental results

4.1 InSAR results and validation

4.1.1 2-D deformation mapping

Before decomposition of deformation, we identified the common points
detected from ascending and descending tracks. The InSAR results are converted to
raster data at 20m� 20m resolution, the value of each grid cell was taken as the
mean value of all points within it, and the position was in the center of each grid
cell. Figure 4(a) and Figure 4(b) present the east–west and up-down direction
deformation velocity map, respectively. The positive and negative velocities in
Figure 4(a) indicate the eastward and westward motion, respectively, whereas the
positive and negative velocities in Figure 4(b) indicate vertical uplift and subsi-
dence, respectively. Sparse points were observed in the area with low elevation
close to the Daguan River, caused mainly by slope-induced shadow and layover
problems. High-elevation area also displayed a sparse distribution of points, caused
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mainly by vegetation-induced decorrelation effects. The results demonstrated that
the moving direction was generally westward and downward, following the down-
hill direction. The westward movement was more significant than the downward
movement because the slope angles of most positions were less than 45∘ and the
horizontal projection of downhill movements was larger than the vertical projec-
tion. The overlap between the landslide polygons and 2D deformation suggests that
the movements generally agreed well with the landslide areas. However, the spatial
extents of landslides and monitored movements differed, indicating a possible
change in landslide mobility from the time of the field survey (2011) to the acqui-
sition time of the Sentinel-1 images (2017–2019). There was a sharp boundary
between the moving and stable areas in the north of the study area (Figure 4). We,
therefore, infer a fault here. Considering that Fenping Fault crossed the study area
in Figure 1(b), we conclude that the sharp boundary indicates the location of
Fenping Fault. The Fault acts as barriers to groundwater flow, resulting in large
differential deformation between the two sides of the fault. Considering the types of
landslide may influence the interpretation of measurement results and subsequent
numerical modeling, we confirmed that all landslides in this area are translational
slides from field surveys. The polygon with more than 10 InSAR points within the
boundary would be considered to be detected successfully. So, 24 of 31 landslides in
the inventory map were successfully detected. The undetected landslides are almost
small-sized (smaller than 0:01km2) except S21. There are some landslides without
sufficient points or without significant movements (larger than 5mm=yr), but we
cannot guarantee that they are stable because rapidly moving targets may be
shadowed or exceed the detection limitation of InSAR methods [59].

Figure 4.
Spatial pattern of InSAR measurements. (a) and (b) deformation velocitity in east–west and vertical direction,
respectively. The black triangles indicate the locations of the reference point and the white dashed line marks the
boundary of the moving and stable areas. The polygons in the map indicate the landslide boundaries from the
inventory map, and two landslides with blue boundaries are S12 and S15 [31].
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4.1.2 Validation of InSAR measurements using ground data

As the yellow labels shown in Figure 5, there are three global navigation satellite
system (GNSS) stations (G1, G2 and G3) and two inclinometer tubes (I1 and I2) in
the study area. We selected neighboring points from InSAR measurement results
and ground monitor stations for comparison.

The measurements from GNSS are in three directions. We selected GNSS mea-
surements along east–west and up-down directions to compare with InSAR 2-D
deformation results. The linear deformation velocity was derived by linear fitting
function. It should be noticed that there are missing data at G2 and G3, so we extend
the time span of fitted data to July 2019 for them. The results implicated that the
movements in horizontal were more significant than that in vertical movements.
We can see from the mean deformation velocity that most InSAR results agreed
well with the GNSS results except the horizontal movement of G2. That may be due
to the fact that the InSAR point selected for comparison was located on a relatively
stable structure rather than moving ground.

Figure 5.
Comparison between InSAR and ground data. (left top) location of GNSS stations and inclinometer tubes.
(right top) comparison between InSAR and inclinometer data. (bottom) comparison between InSAR and
GNSS data, horizontal movement in the upper row and vertical movement in the lower row [31].
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Inclinometer tubes were installed to measure the deformation at different
depths. The oscillation range of these two tubes was �15∘. We can obtain the
deformation of I1 at depth of 1m, 15m and 30m, the deformation of I2 at depth of
1m, 13m and 25m. The measurement result provided two direction movement, x-
direction is the tangential direction of the ground, y-direction is the vertical direc-
tion. We assumed that x-direction movement is along western because it is the same
as the slope orientation, and the x-direction movement of I1 and I2 at different
depth from August 2018 to February 2019 are shown on Figure 5 (Right top). We
use the deformation velocity at the depth of 1m to validate InSAR measurement
results. The InSAR results agreed well with I1, but not with I2. The difference is
4:9mm=yr and 31:2mm=yr, respectively. The reason is that the InSAR scatterer
selected for comparison may be located on a relatively stable structure. After vali-
dation, we can reasonably integrate them into numerical modeling for geological
parameter retrieval.

4.2 Numerical modeling results

Two cross-sections of slopes (S12 and S15) are selected for numerical modeling
analysis since they are typical slopes in this area and had been mapped by field
survey. The size of each element of models was set to 15m. The InSAR measurement
results of S12 and S15 were coupled to estimate the optimal material properties
using GA. Table 1 shows the range, precision and the optimal result of eight main
parameters we used. The external stress loading was set as a function with four
variables, and they are Max depth, K-Modulus, N-exponent and k(0). Cohesion and
friction angle were set according to empirical knowledge. The minimized deforma-
tion is 1:3mm=yr and the corresponding material parameters were assumed to be
optimal.

4.2.1 Numerical modeling of landslide S12

We combined the 2-D deformation to calculate the downhill movements of S12
(Figure 6(a)). The maximum combined movement was 23:2mm=yr and the direc-
tion was generally consistent with the downhill direction. Numerical modeling was
conducted to derive the movements of S12. By iteratively searching for the optimal
soil properties using GA, surface deformation by numerical modeling became con-
sistent with measured movements by InSAR, and then we assumed that the material
property set was valid. The cumulative deformation by numerical modeling is
shown in Figure 6(c). InSAR can measure only surface deformation, whereas
numerical modeling depicted full-scale movements of S12 from the surface to the
bottom. Deformation at the surface was generally more significant than that at the
bottom, consistent with inclinometer data. Daguan No. 1 Middle School is close to
the head of the slope, and the weights of three main buildings (Science and

Material
property

E-Modulus
Max depth

(m)

K-Modulus N-exponent k(0) Poisson’s
ratio

Pore water
pressure
(KPa)

Cohesion
(MPa)

Friction
angle

(degree)

Range [11, 20] [160, 250] [0.1, 0.5] [1.1, 2] [0.1, 0.4] [�600, 0] 0.2 20

Precision 1 10 0.1 0.1 0.05 100 0 0

Result 15 200 0.2 1.2 0.2 �200 0.2 20

Table 1.
Main material properties estimated by the GA.
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Technology building, Gengyun Building, and Zizhi Building) along the cross-
section were estimated to impose building-induced loads, aggravating landslide
movements. In particular, Genyun Building was rebuilt during this time, and led to
the maximum cumulative deformation of 34:9mm in numerical modeling. In con-
trast, there are no buildings or infrastructures at the toe of S12, and the retaining
walls mitigate downhill movements by imposing lateral loading. That makes the
movement here less than that of the head, despite the relatively equal thickness of
the soil layers (i.e., similar body load). In the central position of S12, the gravel soil
is thin due to the location of Cuiping Road, which reduces the body load, and the
movement here is relatively small.

Figure 6.
(a) Combined deformation velocity of the landslide S12 by InSAR. The background is optical image from
Google earth. P1 and P2 are selected for time series analysis in figure 7. (b) Relationship between the thickness
of gravel soils and deformation by InSAR and numerical modeling. Two photos show the Gengyun building
before and after reconstruction, respectively. (c) Simulated deformation of the sliding layer in numerical
modeling. The black and purple arrows indicate the surface downhill movements by InSAR and numerical
modeling, respectively. The rectangles b1, b2 and b3 indicate the locations of science and technology building,
Gengyun building, and Zizhi building, respectively. The black solid rectangles indicate the retaining walls. P3 is
selected for time series analysis in figure 7.
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Two moving scatterers (P1 and P2 in Figure 6(a)) are selected to study the
temporal evolution (Figure 7). The independent deformation induced by three
boundary conditions is also demonstrated. In the ascending track of Sentinel-1,
seasonal movement is highly correlated with precipitation with a 1 to 3 month
delay. The boundary conditions we defined for Daguan County are body loads,
precipitation-induced hydraulic changes and construction-induced forces. Since the
model has shown to be close to the measurements, we control for a single boundary
condition to discuss the effect of each boundary condition on the landslide and the
results are shown in Figure 7. The simulated time series deformation under
precipitation-induced hydraulic condition showed similar trend with InSAR results
(Figure 7(a) and (c)). We conclude that the seasonal trend is caused by precipita-
tion, which drives movements by changing pore pressures that decrease when
surface water cannot infiltrate the landslide body, and increase when surface water
infiltrates the landslide body [60–62]. The delay is related to the pore pressure
diffusion time since the onset of intense precipitation [63]. Interestingly, seasonal
movement was not distinct from the descending track. This is because the LOS
direction of the descending track is generally parallel to the slope surface. The
simulated results showed that the direction of seasonal deformation was generally
perpendicular to the surface (Figure 7(f)). Consequently, the LOS deformation
from the descending track is insensitive to the seasonal rebound and subsidence. In
the descending track, P1 and P2 showed continuous movements away from the
sensor, which indicated a continuous downhill movement. Gravel soils were con-
solidated in response to body loads due to squeezing of water and air from the voids.
The resulted movements were continuous and showed a decelerating trend with the
increased consolidation (Figure 7(d)). Body loads caused larger cumulative defor-
mation than the other two boundary conditions, indicating that it dominates

Figure 7.
Time series deformation of P1 and P2 in the (a) ascending (P1-a and P2-a) and (b) descending (P1-D and
P2-D) images. Linear fitting is conducted before and after may 2018 for P1-D and P2-D. monthly rainfall
data is collected from the National Meteorological Information Center. (c–e) Are time series deformation of P3
numerically modeled by precipitation-induced hydraulic change, body loads, and construction-induced force,
respectively. (f–h) Are cumulative deformation numerically modeled by precipitation-induced hydraulic
change, body loads, and construction-induced force, respectively [31].
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cumulative downhill movements. The continuous movements of P1-D and P2-D
implicated a constant velocity before May 2018 and a subsequent acceleration,
suggesting different causes. As described above, the Gengyun Building started
reconstruction in May 2018. Construction works caused additional loading associated
with softened soils and hydrological change [64]. To model it, we defined that
Gengyun Building-induced force started to be effective from May 2018 and the
pressure increase from 0 to 48kPa gradually based on the calculated building weight.
In this sense, Gengyun Building-induced force became a transient boundary condi-
tion during the monitoring period. The simulated results showed that P3 was rela-
tively stable at the beginning and moved significantly after May 2018 due to
reconstruction works of Gengyun Building (Figure 7(e)). This component was added
to the movements caused by body loads and yielded an acceleration in time series
deformation. Compared with seasonal fluctuation caused by precipitation, construc-
tion works caused permanent change of the time series trend.

Figure 8.
(a) Combined deformation velocity of the landslide S15 by InSAR. The background is optical image
from Google earth. P1 and P2 are selected for time series analysis in figure 9. The blue lines indicate the
gullies. (b) Relationship between the thickness of gravel soils and deformation by InSAR and numerical
modeling. The photo shows the retaining walls. (c) Simulated deformation of the sliding layer in
numerical modeling. The thickness of cross-section has been increased by 4 times for better visualization.
The black and purple arrows indicate the surface downhill movements by InSAR and numerical modeling,
respectively. The black solid rectangles indicate the retaining walls. P3 is selected for time series analysis in
figure 9.
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4.2.2 Numerical modeling of landslide S15

Landslide S15 is located lower than S12 and has caused wall cracking and
fracturing at Daguan Vocational School (Figure 2(c)). InSAR points were only
present in the upper part of S15 because the lower part is covered by vegetation
(Figure 8(a)). The maximum combined movement velocity was 21:4mm=yr. Two
buildings were located close to the landslide head. However, because they were
constructed many years ago, gravel soils have been consolidated and measured
movements were not significant at the head. The relationship between the thickness
of gravel soils and deformation implicated that the movements were more signifi-
cant in the lower part. The effective modulus of elasticity in the lower part of S15
calculated by GA was smaller than that in the upper part. Two gullies formed the
landslide boundary (Figure 8(c)). In rainy seasons, the rainfall converged to the
gullies, ingressing and washing away the soils and decreasing slope stiffness [65, 66].
That decreased the effective modulus of elasticity of the sliding layer. The move-
ments were therefore more significant in the lower part of S15. The largest cumula-
tive deformation is 54:7mm. The movements became small at the landslide toe,
because retaining walls were used to maintain stability of Zhaoma Highway therein.

Similar to S12, the seasonal movements were significant in the ascending Sentinel-
1 images and were less distinct in the descending images (Figure 9). The seasonal
trend of S15 showed a rebound in winter and subsidence in summer, which is
opposite to the seasonal variance of S12 and precipitation. That may be caused by the
different positions of the reference points when processing the data. The phenome-
non that amplitude of seasonal trend is different at different elevations has been
studied in [56, 57]. Hu et al. [57] attributes it to different accumulated precipitation at
different elevations. The total precipitation accumulated during the wet seasons in
the mountains at higher elevation is larger than that in the valleys/basins at lower

Figure 9.
Time series deformation of P1 and P2 in the (a) ascending (P1-a and P2-a) and (b) descending (P1-D and
P2-D) images. Linear fitting is conducted before and after July 2018 for P1-D and P2-D. monthly rainfall
data is collected from the National Meteorological Information Center. (c–e) Are time series deformation of P3
numerically modeled by precipitation-induced hydraulic change, body loads, and construction-induced force,
respectively. (f–h) Are cumulative deformation numerically modeled by precipitation-induced hydraulic
change, body loads, and construction-induced force, respectively. The thickness of cross-section has been
increased by 4 times for better visualization [31].
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elevation. Dong et al. [56] suggests that different amplitude of seasonal trend is
caused by stratified atmospheric delay at different elevations. These two factors may
both exist and influence the seasonal amplitude. To facilitate numerical modeling, we
set different rainfall intensity at different elevations to calibrate the stratification
effect of seasonal deformation. The simulated seasonal movement of S15 is present in
Figure 9(c). In this study, the elevation of S15 was lower than the reference point
(Figure 4) and thus, the seasonal movements showed an opposite variance. Body
loads dominated cumulative downhill deformation among the three conditions
(Figure 9(g)), and the time series deformation showed a continuous trend
(Figure 9(d)). Contrary to the accelerated deformation of S12, P1 and P2 in S15
showed a decelerated trend from July 2018, suggesting that the slope tends to be
stable. This is the result of constructing retaining walls (Figure 8(b)). In numerical
modeling, we configured the retaining walls from July 2018. The retaining walls
imposed force opposite to body loads and prevented landslide movements [67].
Theoretically, retaining walls cannot cause deformation. To facilitate modeling, we
assumed that it caused deformation opposite to downhill deformation. In this sense,
retaining wall-induced force became a transient boundary condition. For S12, the
new building construction aggravated downhill movements in time series. For S15,
the deformation induced by new retaining walls counteracted downhill deformation
induced by body loads, and thus, the total time series deformation tended to be stable
after July 2018.

5. Conclusions

On slopes in urban areas, landslides usually have complex loading characteris-
tics, including those influenced by natural and human factors. In this chapter, we
reveal the landslide motion in Daguan County through the coupling of InSAR and
numerical modeling methods. The coupled approach makes it possible for us to
derive full-scale motions. We summarize the main findings as follows:

1.The scatterers detected from SAR images are mainly located in the buit-up areas
of Daguan County. Because of the geometric distortion and decorrelation, the
scatterers were relatively sparse at lower and higher elevations. 24 of 31
landslides were identified successfully based on the InSAR measurement results.
Besides, there was good agreement between InSAR and GNSS and inclinometer
data, and the few large errors may have been selected for comparison due to
inconsistencies between them. In general, the InSAR measurement results could
reflect the landslide movement of this area accurately.

2.By coupling InSAR measurement, we used GA to calculate the optimal
material properties. The objective function was minimized to 1:3mm=yr. The
numerical modeling described the full-scale landslide motion from surface to
bottom, which could help us to understand the physical process of landslide.
The simulated results implicated that the the head of S12 suffered a maximum
cumulative deformation because of the external loading caused by buildings of
Daguan No.1 Middle School. The maximum deformation of S15 occurred at the
toe. This may be due to the reduction of the effective modulus of elasticity of
the stratum after soil washing.

3. In the numerical modeling, three boundary conditions are set as external
loading. It becomes feasible to evaluate the independent effects of each
boundary condition. The results showed that the main load dominates the
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cumulative deformation of the landslide by squeezing the water and air in the
void. Precipitation induced seasonal motion in a direction perpendicular to the
slope surface, and this seasonal feature only appeared in the ascending SAR
images. The human activities led to the permanent changes in the time series
trend, both positive and negative effects. In particular, the reconstruction
projection of Genyun Building accelerated the downhill movement in S12 after
May 2018. In S15, the construction of the retaining walls applying a force
opposite to the body load, which reduced the downhill movement after
July 2018.
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Chapter 11

Landslide Inventory, 
Susceptibility, Hazard and Risk 
Mapping
Azemeraw Wubalem

Abstract

Landslide is that the downslope movement of debris, rocks, or earth material 
under the influence of the force of gravity. Although the causes and mechanisms 
of landslides are complicated, human action, earthquakes, and severe rainfall can 
trigger them. It can happen when the driving force surpasses the resisting force due 
to natural soil or rock slope destabilization. Landslide is one of the foremost destruc-
tive and dangerous natural hazards that cause numerous fatalities and economic 
losses worldwide. Therefore, landslide investigation, susceptibility, hazard, and risk 
mapping are vital tasks to disaster loss reduction and performance as a suggestion 
for sustainable land use planning. The determination of the cause variables, identi-
fication of existing landslides, and production of a landslide susceptibility, hazard, 
and risk map are all necessary steps in the mitigation of landslide incidence on the 
globe. Landslide susceptibility, hazard, and risk maps are the outcome of a statistical 
relationship between environmental conditions and previously occurring landslides. 
It provides critical scientific support for the government’s reaction to land use 
practices and the management of landslide threats. The type, concept of landslides, 
factor, inventories, susceptibility, hazard, and risk, as well as mapping and valida-
tion methodologies, have all been examined in this chapter. The distinction between 
landslide susceptibility and hazard has surely been debated.

Keywords: susceptibility, hazard, risk, inventory

1. Introduction

Landslide inventory, susceptibility, hazard, and risk mapping may be a complex 
job thanks to a good spectrum of conditioning and triggering factors, lack of record 
data, and non-uniqueness of mapping methods. As a result, a geologist’s participation 
in landslide inventory, susceptibility, hazard, and risk mapping is critical. In landslide 
susceptibility, hazard, and risk mapping, mapping and analysis of previous and active 
landslide incidence are demanding tasks that can be used for landslide prevention and 
mitigation. Landslide disaster prevention and mitigation will not be effective unless 
the landslide-prone area is correctly mapped [1]. Landslides can bury animals and 
persons; demolish houses, farms, and infrastructures in a short amount of time [2] 
and Wubalem [3]. Hong et al. [2], Wubalem [4] are stated that within a short period, 
landslides can bury animals and humans, destroy houses, farms, and infrastructures. 
Landslide is one of the foremost destructive and dangerous natural hazards that cause 
numerous fatalities and economic losses worldwide [2, 5–7]. Therefore, landslide 
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inventory, susceptibility, hazard, and risk mapping and assessment are vital to disas-
ter loss reduction and function as a suggestion for sustainable land use planning.

The extenuation actions of landslide incidence within the planet are required 
determination of the causal factors, identification of prevailing landslides, and 
generation of landslide susceptibility, hazard, and risk map [8]. Landslide inventory 
mapping is extremely important to work out landslide type, failure mechanism, 
spatial distribution, and size in a given region. Landslide inventory is also impor-
tant for landslide susceptibility, hazard, and risk mapping. Chen and Wang [9] 
explained that susceptibility, hazard, and risk maps of landslides are the results of 
the statistical relationship in between landslide governing factors and preexisting 
landslides. Susceptibility, hazard, and risk map of landslides are imperative for 
scientific support of the government’s response to land use practice and landslide 
hazards management [9, 10]. The landslide susceptibility or hazard mapping is 
not only to determine the factors that are most influential to the landslides that 
occurred within the region but also to appraisal the comparative influence of 
every landslide governing factors [9]. As stated by Chen and Wang [9], landslide 
susceptibility or hazard mapping is also significant to inaugurate an association 
between the factors and landslides to foresee the landslide hazard in the future. As 
a result, extensive and accurate landslide inventory mapping, as well as the creation 
of landslide susceptibility, hazard, and risk maps, is critical. Although the reason 
for landslide incidence and its mechanisms are so complex, human interventions, 
earthquakes, and heavy rainfall can trigger it. As Kifle [11]; Wubalem and Meten 
[4] stated that landslide incidence can also occur when the resistance force exceeds 
by driving force thanks to the destabilization of natural soil or rock slopes. This 
chapter is provided a summary of the sort of landslide type, factor, landslide inven-
tory, landslide susceptibility, hazard, risk mapping, and validation approaches.

2. Definition and concepts

Landslide is that the movement of the mass of rock, debris, and earth downslope 
[12–15]. Landslides are also defined as an outsized range of geotechnical phenomena 
under the influence of gravity. On another hand, a landslide is that the type of mass 
wasting activity that denotes any outward or downslope movement of soil and rock 
under the direct influence of gravity when the drive exceeds the resistance force of a 
slope [13, 14, 16]. These masses may range in size from card to entire mountainsides. 
Their movements may vary in velocities. Landslide as a geological hazard is caused 
by earthquake or eruption, rainfall, and act. This is often initiated when an area of a 
hill slope or sloping section of the seabed is rendered weak to support its weight. It is 
one of the foremost destructive natural hazards triggered by natural and man-made 
factors like an earthquake, rainfall [17], and act like an improper/poor quarry, and 
road construction/inadequate maintenance in mountainous terrain [18].

In geohazard mapping, susceptibility/vulnerability, hazard, and risk mapping are 
the foremost important activities to understand, mapping, and evaluating the spa-
tiotemporal condition and level of risk because of geo-hazards. These terms have dif-
ferent meanings but some researchers use the terms interchangeably. Susceptibility 
refers to the probability of occurrence of an event within a selected type during a 
given location whereas hazard refers to the probability of occurrence of an event 
within a selected type and magnitude during a given location within a reference 
period. This means, susceptibility is usually used to predict the spatial occurrence 
of events, but the hazard is usually used to predict the spatiotemporal occurrence of 
events during a given terrain. The term risk refers to the expected losses or damage 
by events during a given region, which are the products of susceptibility, hazard, 
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and elements in peril. Vulnerability means the degree of loss to a given element of 
the set of elements in peril resulting from the occurrence of natural phenomena of a 
given magnitude. It is expressed on a scale from 0 (no damage) to 1 (total damage). 
Elements at risk is potentially vulnerable of properties, population, and economic 
activities including public services in peril during a given area.

2.1 Type of landslide or failure mechanism

Landslides are usually classified based on the materials involved (rocks, debris, and 
soils) and on their mechanism and failure (Table 1). Other factors include groundwater 
content and the rate and dimension of the movement. Classifying and studying this 
phenomenon is important to manage damages because of the landslide. Classification of 
the landslide is the primary step to investigate landslides. According to Varnes [13, 19], 
landslides are classified based on the types of material, mode of movement, landslide 
activity, the rate of movement, depth, the magnitude of slide and moisture content.

2.1.1 Rotational landslides

Rotational landslides are more common in cohesive, homogeneous soils. The 
failure, which can be superficial or deep-rooted, occurs along curved surfaces 
concave upwards, having a shape of a spoon. Successive landslides occur mainly in 
stiff fissured clays with gradients similar to their angle of equilibrium and in soft 
very sensitive clays, where the initial landslide causes an accumulation of remolded 
clay, which as it flows, leaves the material higher up without support, so promot-
ing successive failures. These failures are shallow but can have considerable lateral 
continuity [20]. Weak rock masses or those with a high degree of fracturing or 
weathering, where the structural discontinuities do not form preferred surfaces for 
failure may also suffer this type of successive landslides.

2.1.2 Translational slides

In translational slides, failure takes place along pre-existing planar surfaces 
or discontinuities (bedding planes, contact between different types of materials, 

Movement type Slope material type Source

Bedrock Soil mass in failed slope [13]

Principal 
coarse

Principal fine [13]

Topples Rock topple Debris topple Earth topple [13]

Fall Rock fall Debris fall Earth fall [13]

Lateral spread Rock spread Debris 
spread

Earth spread [13]

Slide Translational 
slide

Rockslide Debris slide Earth slide [13]

Rotational slide

Flows Rock flow
(Deep 
creep)

Debris flow Earth flow [13]

Composite or complex Two or more principal types of movement in combination [13]

Table 1. 
Landslide classifications based on material and types of movements [13].
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structural surfaces, etc.) and sometimes the failure plane is a fine layer of clay mate-
rial between more competent strata [20].

The sliding mass can be sometimes rectangular blocks that have been detached 
from the mass at discontinuities or tension cracks (block landslides). Translational 
slides generally move faster than rotational ones, because of their simple geometry 
of failure mechanism.

2.1.3 Flows

As defined by Vallejo and Ferrer [20], flows are mass movements of soil (mud 
or earth flows), debris (debris flows), or rock blocks (rock fragment flows) often 
with high water content, where the material behaves as a fluid undergoing continu-
ous deformation but without having well-defined failure surfaces. Water is the main 
triggering factor because water decreases the strength of materials having low cohesion 
[20]. Flows mainly affect sensitive clay soils which show considerable loss of strength 
when mobilized; these movements are not very deep in their extent and develop on 
slopes <10°.

2.1.3.1 Mud or earth flows

Mud or Earth flows occur in predominantly fine and homogeneous  materials 
and may move at a speed of the many meters per second; the loss of strength 
is typically caused by water saturation. They are classified consistent with 
the sort of fabric, its strength, and its water content. Mudflows are generally 
small-scale and slow but sometimes especially in-saturated conditions, they 
are extensive and fast, with catastrophic consequences once they reach popu-
lated areas. Fine volcanic materials are particularly vulnerable to this sort of 
process.

2.1.3.2 Debris flows

Debris flows are complex movements, which include rock fragments, blocks, 
cobbles, and gravel in a fine-grained matrix of sands, silts, and clays. They occur on 
slopes covered with loose or non-consolidated material, especially where there is no 
vegetation cover.

2.1.4 Creep

Creep may be a very slow, almost imperceptible superficial movement (a few 
decimeters deep), which affects soils and weathered materials, causing continu-
ous deformations that becomes progressively noticeable on slopes over time. This 
causes fences, walls, or posts to lean or offset and trees to be bent. Creep may be a 
time-dependent deformation and defines the deformational behavior of the fabric 
instead of the sort of movement.

2.1.5 Solifluction

Solifluction affects the saturated surface layer of slopes. This is often a slow 
movement produced by the freeze–thaw process because the daily or seasonal 
temperature variations change the water phase and water content of fine-grained 
soils in cold regions.
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2.1.6 Rock falls

Rock falls are very quick free falls of rocks, which are dislodged from pre-existing 
discontinuity planes (tectonic, bedding surfaces, and tension cracks). The move-
ment could also be by a vertical fall, by a series of bounces, or by rolling down the 
slope surface. They are common on steep slopes in mountainous areas, on cliffs, and 
generally, on rock walls and therefore the blocks are bounded by different sets of 
discontinuities often forming wedge-shaped blocks. The factors that cause rock falls 
include erosion and loss of support for previously loosened blocks in steep slopes, 
water pressures in discontinuities, and tension cracks and seismic shakes. Although 
the fallen blocks could also be relatively small in terms of volume, rock falls are sud-
den processes that pose a big risk to communication routes and buildings in moun-
tainous zones and at the foot of steep slopes. Masses of soil can also fall from vertical 
natural and excavated slopes, thanks to the existence of tension cracks generated by 
tensional stresses or shrinkage cracks within the ground that has dried.

2.1.7 Toppling

The toppling of strata or blocks of rock may be included in rock falls. Toppling 
occurs when the strata dip in the opposite direction to the slope and form natu-
rally inclined blocks, which are free to rotate because of failure at the foot of the 
slope. Toppling tends to occur mainly on rocky slope faces, which intersect steeply 
dipping strata [20].

2.1.8 Rock avalanches

Rock avalanches are rapidly falling masses of rock and debris that detach 
themselves from steep slopes, sometimes amid ice or snow. The rock masses 
disintegrate during their fall and form deposits of very different block sizes and 
form deposits of very different block sizes, with no rounding from abrasion and 
chaotic distribution [20]. Rock avalanche deposits are unstructured and have great 
porosity [20]. Avalanches are generally the results of large-scale landslides or rock 
falls during which due to the steep gradient and therefore the lack of both struc-
ture and cohesion in their materials, travel down over steep slopes at great speed 
(up to 100 Km/h).

2.1.9 Debris avalanches

Debris avalanches are formed from rock material containing an excellent sort of 
sizes and should include large blocks and abundant fines [20]. Loose deposits and 
loose materials resulting from volcanic eruptions are susceptible to this process. The 
most difference with debris flows, aside from water content (which is not necessary 
for debris avalanches), is that the rate and speed of movement of the avalanche in 
areas of a steep gradient.

2.1.10 Lateral displacements

This sort of movement (also called lateral spreading) refers to the movement of 
rock blocks or coherent, cemented soil masses that rest on soft & deformable slopes. 
These movements are thanks to the loss of strength of the underlying material, 
which either flows or deformed under the load of the rigid blocks. Lateral spreading 
can also cause by liquefaction of the underlying material or by lateral extrusion of 
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sentimental, wet clays under the load of the masses above them [20]. These move-
ments occur on gentle slopes and should be very extensive.

2.2 States and distribution of landslide

Determining the states and distribution of landslides is extremely important 
to repair the consequences of landslides on infrastructures, lives, farmlands, and 
environments. The landslide are going to be found within the following different 
states of condition. Active landslide is currently moving. A suspended landslide 
has moved within the last twelve months but is not active at the present. A reacti-
vated landslide is a lively landslide that has been inactive. An inactive landslide is a 
landslide, which did not moved at most for year.

Inactive landslides are often subdivided into these states:

• A dormant landslide is an inactive landslide, which will be reactivated by its 
original causes or other causes.

• An abandoned landslide is an inactive landslide that is not suffering from its 
original causes.

• A stabilized landslide is an inactive landslide that has been shielded from its 
original causes by artificial remedial measures.

• A relict landslide is an inactive landslide that developed under geomorphologi-
cal or climate considerably different from those at the present.

2.3 Recognition of landslides

Potential and existed landslides can be identified or recognized using different 
techniques considering various features that existed on the earth’s surface. Different 
features indicate landslide signs like

• Depression at top (water ponding)

• Bulging at toe Tension cracks

• Water seepage (generally at toe)

• Tilted and crooked trees

• Change in vegetation

• Change in topography

• Change in drainage pattern

2.4 Landslide factors

2.4.1 Introduction

In hazard minimization, the evaluation of landslide conditioning and trigger-
ing factors is a very important task. Geodynamic processes affecting the earth’s 
surface cause mass movements of different types, sizes, and speeds [20]. Landslide 
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movement is that the most frequent and widespread sort of mass movement gen-
erated by the gravitational downslope displacement of soil and rock masses [20]. 
The force of gravity and therefore the progressive weakening of geological materi-
als, mainly thanks to weathering, alongside the action of other natural and envi-
ronmental phenomena, make mass movements relatively common on the earth’s 
surface [20]. These processes create potential geological risks, as they will cause 
economic loss and social damage if they affect human activities, buildings, and 
infrastructure [20]. How to avoid these adverse effects is the subject of research 
including mass movements, their characteristics, instability mechanisms, control-
ling factors, and causes. To carry out this research, it is necessary to understand 
the characteristics and therefore the geological, geotechnical, and hydrogeological 
properties of the soil and rock materials involved and their mechanical behavior 
also because the factors that condition and trigger such movements [20]. Studies 
during this field should specialize in the investigation of [20]

• Particular processes for the design of stabilizing measures to either mitigate or 
reduce damage.

• Analysis of the factors, which control and trigger processes at particular  
locations, to stop possible movements.

• Mapping either unstable or potentially unstable zones, in order that the  
hazardous areas are often delimited and preventive measures are often 
applied.

As usual, landslides might transpire when shear stress exceeds the shear strength 
of slope material. The factors that cause landslide have been classified as factors 
that contribute to an increase of the shear stress and factors that contribute to 
the decrease of shear strength; however, water is another factor contributing to 
both increasing and decreasing shear stress and shear strength of slope material 
respectively. Factors these increase shear stresses are included removal of lateral 
support; surcharge/ overloading, transitory earth stress, regional tilting, removal 
of underline support, and increase in lateral pressure. The factors that contribute 
to the decrease of shear strength of slope material include factors like initial state 
or inherent characteristics of materials and the changing or variable factors that 
tend to lower the shear strength of a material. On other hand, factors that control 
landslides are classified into two such as intrinsic/inherent/static and external/
dynamic landslide factors [21–23].

2.4.2 Intrinsic controlling factors

According to Anbalangan [21], and Raghuvashi et al. [24], intrinsic param-
eters are the inherent controlling factors that outline the favorable or unfavorable 
condition within the slope. These include slope material, slope geometry, structural 
discontinuity, land use/cover, and groundwater. These factors have an excellent 
influence to decrease the strength of the slope material. Hence, mapping and 
perception of their impression are crucial for slope stability analysis.

2.4.2.1 Lithology

The kind of fabric during a slope is closely associated with the sort of instability. 
Different lithology are going to be showed different degrees of susceptibility to poten-
tial slippage or failure. The stress–strain behavior of materials is governed by their 
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strength properties, which also depend upon the presence of water. Sorts of failure 
and therefore the location of failure surfaces depend upon factors like alternating 
materials of various lithology, the extent of weathering, and therefore the presence 
of layers of sentimental material or hard strata. Soils, which are considered homo-
geneous materials, compared to rock masses, instability could also be generated by 
differences within the degree of compaction, cementation, and grain size, which can 
make sure areas more vulnerable to weakness and water flow. In rock masses, charac-
terization and analysis of slope behavior are further complicated by the presence of 
layers of strata with differing strengths and properties [20].

2.4.2.2 Discontinuities

Geological structures or discontinuities play a definitive role in conditioning 
the slope stability in rock masses. A mixture of structural elements and geometric 
slope parameters, like height, gradient, and orientation, defines problems, which 
will occur. The spatial distribution of discontinuities is that the structure of the 
rock mass [20]. The presence of those surfaces of weakness (bedding surfaces, 
joints, and faults) dipping towards the slope face implies the existence of poten-
tial failure planes on which sliding can readily occur.

The orientation and spatial distribution of discontinuities will condition the sort 
and mechanism of the instability. A specific system of fracturing will condition 
both the direction of movement and therefore the size of blocks susceptible to slide 
or the presence of a fault dipping towards a slope face will limit the unstable area. 
Structural changes and singularities within the rock mass, like Tectonized or shear 
areas, or abrupt changes within the dip of the strata, indicate heterogeneities from 
which failure might originate. Slope stability could also be suffering from changes 
to the initial conditions during excavation; for instance, the existence of tectonic in 
place stress related to compressive or extensional structures like folds and faults.

2.4.2.3 Hydrogeological conditions

Most failures are caused by the effects of water in the ground, including pore 
pressures and erosion of the slope materials. Water is considered the worst enemy of 
slope stability, together with human actions where excavations are carried out 
without adequate geotechnical care. The presence of water in a slope reduces 
stability by decreasing ground strength and increasing forces, which favor instabil-
ity. The main effects of water are a reduction in the shear strength of failure surfaces 
as effective normal stress, σ’n, decreases. ( )c tann u′τ = + σ − ϕ . Increase in the 
downslope shear forces as water pressure is exerted in tension cracks. Increase in 
weight of the material due to saturation: ɣ = ɣd + Snɣw where ɣd = dry apparent unit 
weight; S = degree of saturation; n = porosity and ɣw = unit weight of water. 
Softening of soils associated with an increase in their water content. Internal 
erosion or piping caused by surface or underground flow. The shape of the water 
table on a slope depends on such factors as the permeability of materials and the 
geometry or shape of the slope. In rock masses, the configuration of the water table 
is greatly influenced by the geological structure and the alternation of permeable 
and impermeable materials, which in turn affect the distribution of pore water 
pressures on any potential slip surfaces. The influence of water on the properties of 
materials depends on their hydrogeological behavior. The greatest effect is produced 
by the pressure exerted defined by the piezo metric head [20].

The following aspects should be known to understand the effects of water in a 
slope [20]: 1) Hydrogeological behavior of the materials 2) Presence of water table and 
piezo metric heads 3) Water flow in the slope 4) Relevant hydrogeological parameters: 
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permeability coefficient or hydraulic conductivity, hydraulic gradient, transmissivity, 
and storage coefficient. One way of obtaining an approximate assessment of the entire 
force exerted by water on discontinuity surfaces or tension cracks is to assume the 
triangular distribution of hydrostatic pressure on these surfaces.

2.4.2.4 Properties of soil and rock masses

The possible failure of a slope along a surface depends on the strength, which 
depends on cohesion and therefore the interior angle of friction. The influence of 
geological history (e.g. consolidation, erosion, diagenetic processes, in situ stresses, 
and weathering) on the mechanical (shear strength) properties of soils must be 
determined considering the geological characteristics. In rock masses, mechanical 
behavior is decided by the strength properties of the discontinuities and therefore 
the intact rock counting on its degree of fracturing and the nature of the materials 
and discontinuities within it. The behavior of a tough rock mass generally depends 
on the characteristics of its discontinuities, although the lithology and its geological 
evolution can also play a crucial role. The shear strength of surfaces of weakness 
depends on their nature and origin, persistence, spacing, roughness, type and 
thickness of infill, and thus the presence of water.

Slope stability is highly control by in situ stresses [20]. The strain relief from 
decompression when the slope is excavated may transform its material properties 
[20]. In rock slopes, the weakest areas are often degraded and begin to behave like 
soft rock or granular soil. This effect is common in mudstone or mud-shale slopes 
subjected to high in place stresses; the rock formation is weakened into a granular 
material with cement-sized fragments several meters thick inside the slope, result-
ing in disintegration and collapse of the slope.

2.4.2.5 Geomorphological factors (slope, aspect, and curvature)

Slope morphometry refers to the steepness of the slope, which controls not only 
the strain distribution inside the slope mass but also affects weathering layer depth 
and surface runoff [25]. As reported by Lai [25], the degree and height of the slope 
influence the quantity of runoff and thus the extent of erosion. The steeper the 
slope, the upper velocity of water flowing down a slope and have higher erosive 
power. Thus, the slope material that supports the slope are getting to be removed 
and heighten the slope instability problem.

Aspect is that the orientation of the slope. Different slope direction has different 
weather, land cover, and radiation intensity that affects the exposure of the slope to 
radiation, wind impact, and rainfall [26, 27].

Curvature is that the measure of the roughness of a given terrain. The curva-
ture may ask the concaveness, concaveness, and flatness of a slope. According to 
Pradhan [28, 29]; Alkhasawneh et al. [30], as cited in Meten et al. [26] the negative 
value refers to the valley, the positive value refers to Capitol Hill slope, and zero/ 
approaches zero value refers to flat acreage. The curvature condition controls the 
hydraulic condition and thus the consequences of gravity for slope stability.

2.4.3 External triggering factors

External triggering factors are dynamic factors, which may trigger slope move-
ment by increasing driving force. These triggering factors include rainfall, seismic 
and act. Static and dynamic loads exerted on slopes modify the force distribution 
and may produce instability. Static loads include the load of structures or buildings 
on a slope or loads derived from fills, waste dumps, or heavy vehicles, and when 
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Figure 1. 
Landslide inventory map of the study area [36].

these loads are exerted on the slope head, they create a further weight, which will 
contribute to the destabilizing forces. Dynamic loads are mainly thanks to natural 
or induced seismicity and vibrations caused by nearby blasting. These mainly affect 
jointed rock masses by opening up pre-existing discontinuities, reducing their shear 
strength, and displacing rock blocks, which can then fall. Dynamic forces produced 
by an action earthquake can be given as a function of the maximum horizontal 
acceleration. Precipitation and climate regime influence slope stability by modify-
ing groundwater content. The strength of the soil mass becomes loss due to changes 
in soil structure by alternating periods of rainfall and drought.

Man Made Factors: Abebe et al. [31]; Kifle [11, 32] is explained that the demand 
for new land for infrastructure, settlement, and agriculture are primary means in 
which humans can contribute to slope instability condition through the excavation 
of slope toe or slope faces, loading of slope crest, drawdown (or reservoirs), irriga-
tion, mining, artificial vibration, deforestation, and water leakage from utilities.

2.5 Landslide inventory mapping

Landslide inventory is that the simplest sort of landslide map [33]. The landslide 
inventory map portrays the spatial distribution, frequency, activity, size, time, 
type, displace material, the intensity of injury, and density of landslide. It is often 
used because the base for future landslide susceptibility, hazard, and risk prediction 
by evaluating the connection between the prevailing landslide event and landslide 
driving factors [34]. Besides, landslide inventory is often used to evaluate the 
accuracy and performance of the landslide susceptibility, hazard, and risk maps. 
Landslide inventory map shows the past and current landslide incidences, which 
may be prepared using various techniques like the aerial photograph, Google Earth 
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imagery, field investigation, and evaluation of archive data including GIS tools. 
Depend upon the aim, the size of the base map or aerial photograph, the extent of 
the study area, and therefore the availability of resources, a landslide inventory map 
are often prepared using different techniques as expressed above [35]. For instance, 
a small-scale landslide inventory map (1,25,000) landslide inventory maps are 
often prepared for a selected area using aerial photographs at the size of >1:20,000, 
Google Earth Imagery analysis, and extensive fieldwork [3, 4, 36, 37]. The Google 
Earth Imagery may be a free tool that helps not only to spot statistic landslide 
boundary but also wont to determine the area coverage, perimeter, and distance of 
slope material movement compared to other techniques, however, it needs field for 
verification purpose. As a result, currently, from the active and old landslide scarps, 
researchers intended to spot historical landslides using statistic Google Earth 
Imagery analysis instead of an aerial photograph. Depend upon the dimensions of 

Figure 2. 
Landslide in Chemoga catchment, northwestern Ethiopia.
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the landslide and therefore the mapping scale, active and old landslide boundaries 
are often digitized into polygons employing a GIS tool with the assistance of Google 
Earth Imagery, and eventually, a landslide inventory map are often produced. The 
landslide inventory is going to be classified as training data sets and testing land-
slide data sets (Figure 1). Most of the researchers classified landslides into 70% for 
training data sets and 30% for testing landslide data sets [26, 38–40]. As shown in 
Figures 2–4, Google Earth Imagery analysis is so effective for landslide inventory 
mapping. Landslide investigation is an important task in landslide disaster reduc-
tion strategies. It can be conducted to determine and predict old, active, and future 
landslide incidence by examining land features. For example, field survey is used 
to evaluate slope gradient, geomorphology, geology, drainage, nature of soil, land 
use land cover, surface and subsurface water, geodynamic process, old and active 
landslide conditions. Generally, the methods or techniques that used to investigate 
landslides are summarized in Table 2.

Figure 3. 
Landslide in Woldia area, northwestern Ethiopia.
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Scop Phase of study Methods or thechniques Objectives

Regional 
landslide study

Preliminary Review of existing 
information and 
existing maps. Google 
Earth Imagery analysis, 
Interpretation of aerial 
photos and remote sensing.

Identify processes and type of 
movements. Identify conditioning 
factors. General evaluation of 
stability of the area. Indentify 
location and boundary of landslide.

General study Field observations. 
Processes mapping. Factors 
mapping.

Conducted 
to investigate 
landslides or 
slope failure for 
specific area

Study of process 
and causal 
factors

Field surveys. Preliminary 
underground investigation: 
geophysical methods.

Describe and classify processes and 
materials. Susceptibility analysis 
based on the existing processes 
and concurrence of conditioning 
factors. Record landslide type, 
location, magnitude, frequency, 
dimention, damage, and element 
at risk.

Detail 
investigation

Boreholes, geophysical 
methods, in situ tests, 
sampling, Laboratory tests.

Describe and classify movements. 
Collect morphological, geological, 
hydrogeological and geomechanical 
data.

Monitoring Inclinometers, 
extensometers, tiltometers, 
piezometers.

Collect data on speed, direction, 
stability analysis using Limit 
equilibrium methods and Stress–
strain numerical models. Determine 
situation of failure planes, water 
pressures.

Stability analysis Limit equilibrium 
methods.
Stress–strain numerical 
models.

Define failure models and failure 
mechanisms.
Evaluate stability. Design corrective 
measures.

Table 2. 
Summary of landslide investigation techniques [20].

Figure 4. 
Landslide in Dessie town, Ethiopia.



Landslides

198

2.6 Landslide susceptibility, hazard and risk mapping

Landslide susceptibility may be a quantitative or qualitative evaluation of landslide 
occurrence of a specific type in a given location that is wont to predict spatial distribu-
tion, classification, and area of existed or potentially prone area [12, 37]. However, a 
landslide hazard map is employed to predict future spatial and temporal landslide occur-
rence with a specific type and magnitude. Although both landslide susceptibility and 
hazard map are different concepts, many researchers are used the terms as interchange-
able. The researchers consider their susceptibility map as a hazard map during which 
magnitude and frequency did not consider in their model generation. The landslide 
risk map is employed to predict the expected spatial and temporal losses or damage by 
landslide incidences during a given region, which are the products of susceptibility or 
vulnerability, hazard, and elements in danger. Although landslide susceptibility, hazard, 
and risk maps are the results of the connection between landslide events and sets of 
landslide factors supported expert judgment or statistical analysis, hazard and risk maps 
become differ by some input parameters. For instance, a landslide hazard map will have 
additional landslide frequency, and magnitude input parameters whereas for a risk map, 
both susceptibility and hazard map become input parameters besides, the element in 
danger. As stated by Wubalem [3], landslide susceptibility and hazard map results from 
the sum of all weighted landslide factors employing a raster calculator or weighted over-
lay method in ArcGIS. Compare to landslide susceptibility mapping, landslide hazard 
mapping required excellent landslide inventories that contain magnitude, date of occur-
rence, and frequency. The shortage of frequency, date of occurrence, and magnitude of 
landslide, landslide hazard mapping become a difficult task. Thus, landslide research 
trends are shifted to landslide susceptibility mapping for the last twenty century. Now a 
day, thanks to technological advancement, landslide hazard mapping becomes a simple 
task for that area frequently suffering from landslide incidence. Lithological, geomor-
phological, geological structure, hydrological, climatological, anthropological, seismic, 
and land use/cover parameters and detailed landslide inventories are the foremost 
important input variables in GIS-based landslide susceptibility mapping. However, land-
slide frequency and magnitude are additional parameters in landslide hazard mapping. 
The susceptibility, hazard, and risk map produced from the expert judgment have a 
subjective problem for weight rating of the consequences of sets of parameters; how-
ever, the statistical analysis helps to develop maps supported the statistical relationship 
between sets of parameters and past or current landslide inventory data. Detailed land-
slide susceptibility, hazard, and risk map are often also developed for selected purpose at 
large scales using physical-based approaches. During this case, geotechnical properties 
of soil or rock slope material, angle of slope, and pore water pressure are the foremost 
important parameters to get a landslide susceptibility map supported the extent of an 
element of safety. Then, the hazard map are often produced by considering the factor of 
safety, landslide frequency, and magnitude. The danger map also can produce on large 
scale. Finally, the accuracy of the small-scale and detailed models are often validated 
using landslide inventory data using different techniques.

2.7 Landslide susceptibility and hazard mapping approaches

Landslide susceptibility or hazard zonation is a technique used to classify the 
slope into zones based on the level of actual or potential landslide susceptibility 
and hazard. Landslide susceptibility and hazard zonation are important for a rapid 
assessment of slope stability over a large area [21]. Landslide susceptibility map can 
forecast/provide important information about the spatial future landslide occur-
rence [3]. However, a landslide hazard map can forecast the spatial and temporal 
future landslide occurrence. In landslide susceptibility and hazard mapping, several 
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approaches are developed, which may be categorized into qualitative, semi-quanti-
tative, and quantitative methods [41–45].

2.7.1 Qualitative (expert evaluation) method

The expert evaluation method is a widely used technique, but a relatively 
subjective approach that explains the level of landslide condition in a descriptive 
expression based on the decision of the expert. Qualitative methods are an expert-
driven approach, which required field experience specialists [41, 43, 45–49]. Field 
geomorphological analysis, landslide inventory analysis, and parameter assignment 
superimposition are the main activities for qualitative landslide susceptibility, and 
hazard mapping. Relying on the experience and professional background knowl-
edge of experts and subjectivity is the drawback of these methods [41, 43, 45–47, 
49]. This method has included heuristic, landslide inventory mapping, landslide 
hazard evaluation factor and slope stability evaluation parameter.

2.7.1.1 Heuristic method

This method is opinion based that is used to classify landslide susceptibility 
and hazard maps by mapping all landslide factors, and landslide through proper 
rating each factor classes to prepare a landslide susceptibility and hazard map. The 
demerits of this method are its subjectivity.

2.7.1.2 Landslide inventory method

Inventory is a simple method, which records the location and dimension of 
events occurred in the given area [50]. Landslide inventory is the way that used 
to record landslide location, size, occurrence time, displace material and types of 
slope failure. This method has used as the base for landslide susceptibility, hazard, 
and risk assessments; however, it does not provide the spatial relationship between 
landslide and sets of landslide factors rather than it only shows the location and 
volume of a landslide [51]. In this approach, landslide data can obtain through field 
mapping, historical record, satellite image or Google Earth Imagery analysis, and 
aerial photograph interpretation [36, 52].

2.7.1.3 Landslide Hazard evaluation factors (LHEF)

According to Anbalagan [21] this method is used for landslide susceptibility and 
hazard zonation /mapping with consideration of the inherent controlling factors 
only. It is simple and cost-effective over a large area. Nevertheless, this method has 
the following limitations.

i. Has a rating of low value for groundwater effect on slope instability.

ii. It does not account the triggering factors.

iii.  The condition of the rock mass with structural discontinuity and characteristics 
of the structural discontinuity (roughness, aperture, etc.) are not considered.

iv. It is Subjective

v. Give the same rating for lithology and structural discontinuity but disconti-
nuities have great influence than lithology.
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2.7.1.4 Slope stability evaluation parameters (SSEP)

Slope stability evaluation parameters (SSEP) is a landslide hazard zona-
tion technique that is used to evaluate both inherent (slope material, slope 
 geometry, structural discontinuity, land use and land cover, groundwater) 
and  external factors (rainfall, seismicity, and human activity) to prepare 
landslide susceptibility map. Raghuvashi et al. [24], develop this method con-
sidering the dynamic and static landslide causative parameters. This technique 
is simple and supported by much field data but it is subjective for weighting 
assignment.

2.7.2 Semi quantitative method

Semi-quantitative methods are the combination of qualitative and quantitative 
methods, which introduce grading and weighting of the effects of landslide factors 
on landslide incidence [42, 53, 54]. In this method, both qualitative and quantitative 
methods can be applied to evaluate the effects of landslide governing factors on 
landslide occurrence [55]. Analytical hierarchy process, weighted linear combina-
tion, and expert knowledge/heuristic [42, 48, 56–59] are examples of semi-quanti-
tative methods. Although some statistical concepts are introduced in this method, it 
depends on the expert’s experience and the background of professional knowledge 
and some subjectivity remains [42, 60].

2.7.3 Quantitative (statistical) method

According to Canoglu [61]; Chen et al. [62], the quantitative methods are 
grouped into three categories such as machine learning/data mining, physical-based, 
and statistical methods. The statistical methods are indirect methods which is 
extensively or routinely used to assess the association between landslide governing 
factors and landslides based on mathematical [9, 41]. They are classified into mul-
tivariate and bivariate statistical methods [3]. The statistical methods are provided 
reliable results [4, 26, 42, 63–69]. The numerical methods rely on the mathematical 
model, expression, and less expert judgments, which provides comparatively reliable 
results, unlike the qualitative method. Among quantitative methods, the statistical 
method is the one, which used to evaluate the spatial slope instability based on the 
relationship between the past/active landslide and landslide factors [70]. A statistical 
method is an indirect method used to prepare a landslide hazard/susceptibility map, 
which is considered as objective and worked by integrated GIS tool with statistical 
analysis based on the landslide and sets of landslide factors spatial relationship. 
However, in this method, the most difficult thing that we have to consider is accurate 
database construction, model calibration, and model validation iteration procedures 
[71]. In this method, each factor has mapped and overlaid over past/active landslides 
to carry out the contribution of each factor and subclass on the instability of the 
slope [24, 52, 72]. The limitation of the statistical method is its requirement for 
detailed and quality landslide and landslide factor data, and it is time-consuming to 
acquire them over a large area Raghuvashi et al. [24]. The statistical method cannot 
apply to the area where a landslide has not occurred. This is one of the limitations of 
statistical methods in landslide susceptibility, hazard, and risk mapping.

2.7.3.1 Bivariate statistical analysis

The bivariate statistical procedure is straightforward to use and update, which 
is capable to differentiate the consequences of every sub factor class for landslide 
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occurrence. Within the bivariate statistical procedure, the presence of landslide has 
been considered because the variable and therefore the parameters that enhanced 
the occurrence of the landslide has been considered as the independent variable [73]. 
In this technique, each determinant map has been classified into sub-classes to work 
out the response of individual factor classes to landslide occurrence. The landslide 
factor classes are often combined with a landslide distribution map and weighting 
values supported the landslide densities of every determinant class. After weight value 
calculation, the weighted raster map is carefully sum up employing a raster calculator 
in Math algebra under the GIS tool to urge the landslide susceptibility index map. The 
landslide susceptibility or hazard index map are often reclassified using various meth-
ods like natural break under the GIS tool to urge the ultimate landslide susceptibility 
map. The benefits of bivariate statistical methods are they will cover an outsized area 
with effective cost; it is simple to apply; it can provide spatially distributed landslide 
information and its relationship with landslide factors. However, the bivariate statisti-
cal methods have the subsequent limitation 1. It cannot distinguish which factor is 
more influential and non-influential. 2. It cannot provides the knowledge about the 
inherent condition of the slope material like geotechnical method 3. It can predict 
the landslide susceptibility regions but it cannot be predicted when this landslide will 
occur and it needs landslide occurrence during a certain region to predict the opposite 
region which has some environmental factor. The load of evidence, information value, 
certainty factor, and frequency ratio is that the commonest techniques in bivariate 
statistical analysis.

2.7.3.2 Multivariate statistical analysis

This method will provide more realistic and accurate results. It also considers the 
mutual relationship among landslide factors, unlike bivariate statistical methods. 
The weight of causal factors indicates the relative contribution of every factor to the 
degree of hazard in a given land unit. The multivariate statistical procedure helps 
to perform multivariate statistical analysis unlike the bivariate statistical proce-
dure. One among the merits of the multivariate method is capable to work out the 
influential power of individual landslide factors on landslide occurrence. Logistic 
regression, discriminant analysis, and cluster analysis are the foremost commonly 
applied techniques in this method.

2.7.3.3 Data mining method

In recent times, advanced data mining methods have been widely used in 
landslide susceptibility modeling., including random forest [56–58], boosted regres-
sion tree [74], classification and regression tree [74], Naïve Bayes [53, 75], support 
vector machines [32, 76], kernel LR [77], logistic model tree [56–58, 77], index of 
entropy [39], and artificial neural networks [56–58, 78, 79]. Data mining methods 
are incapable to work out the consequences of every landslide factor class, need 
high computing capacity, time-consuming, and therefore the internal calculation 
process of those methods is intensive and cannot easily be understood. Although 
both statistical and data mining methods have a bit little difference in the degree of 
predictive accuracy, they can provide reliable predictive accuracy landslide suscep-
tibility map in landslide susceptibility or hazard mapping [78, 80].

2.7.3.4 Physical based approach

The physical-based approach includes limit equilibrium and finite element 
numerical models. These methods can be applied for both soil and rock slope 
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stability analysis. This method can provide hazard in absolute value /factor of 
safety or probability/quantitative results that can directly use for design purposes 
[52] and Raghuvashi et al. [24]. Physical-based methods are used to calculate the 
quantitative value of the inherent slope materials of the factor of safety over a 
defined area [81]. These methods can be applied when landslide types are simple 
(shallow landslides) and the intrinsic properties of slope material are homo-
geneous [81]. It requires detailed ground data such as unit weight of soil, soil 
strength, soil layer thickness, slope angle, pore water pressure, depth below the 
terrain surface, and slope height. The physical-based method has been employed 
over a small area, and oversimplification, data availability to acquire frequently is 
impossible are the drawback of these methods [81]. These methods can be focused 
on an on-site investigation to assess the geotechnical properties of soil/rock, 
soil depth, surface and subsurface water condition, the geometry of the slope, 
landslide location, failure mechanism, depth, and distance of landside. These 
methods are used to analyze slope conditions by calculating factors of safety using 
different software like PLAXIS and Slope/w in GeoStudio software package as two 
or three-dimensional models. The oversimplification of geological, geotechnical 
model and the difficulty to predict pore water pressure and its relationship with 
rainfall /snowmelt are the main problems that challenge use the of geotechnical 
approaches [82].

2.8 Landslide risk mapping approaches

Landslide risk is the expected loss or damage due to landslide Incidences, which 
include fatalities, damage to properties, infrastructure, farmland, environment, 
interruption of services, and economic activities. As compare to landslide suscep-
tibility, and hazard mapping, landslide risk mapping is not common so far due to it 
requires complex input parameters. It is a complex task due to the lack of necessary 
information to produce input parameters including vulnerability/susceptibility, 
hazard, and element at risk [33]. In addition to landslide susceptibility/vulnerabil-
ity, and hazard maps, landslide risk map is very important in the regulation of land 
use, landslide risk management, and mitigation strategies. One has a plan to prepare 
a landslide risk map, it is necessary to estimate landslide susceptibility, hazard, and 
element at risk.

In landslide risk mapping, qualitative and quantitative techniques are commonly 
practiced methods. The qualitative (heuristic) method is used to estimate the level 
of risk in an area qualitatively, when the numerical estimation of hazard, vulnerabil-
ity, and element at risk is difficult due to lack of landslide frequency, date of occur-
rence, and magnitude data [33, 83]. The landslide risk map can be produced based 
on the knowledge of experts about landslide vulnerability, hazard, and element at 
risk. In a quantitative approach, landslide risk can be estimated numerically using 
a mathematical equation developed by Varnes and IAEG Commission on landslides 
and other mass movements on slopes (1984). Risk = hazard*vulnerability*element 
at risk. Where the hazard is the probability of landslide occurrence in a particular 
type and magnitude in a given location within a referenced period. Vulnerability is 
the expected degree of loss due to landslides. Element at risk is potentially affected 
elements in landslide-affected areas.

2.9 Landslide susceptibility, hazard, and risk model validation

In the case of model validation, landslide area has been classified based on time, 
space, and random partition [26, 84, 85]. The model can be validated by applied 
various validation techniques like predictive rate curve, success rate curve, simple 
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overlay, a landslide percent comparison column chart, relative error, relative 
landslide density index (R – index), receiver operating characteristics (ROC), and 
landslide density.

2.9.1 Success and predictive rate curve

As indicated in [26], the success rate curve can be plotted using training 
landslide against the landslide susceptibility or hazard or risk map area. Success 
rate and a predicted rate curve can be plotted using a cumulative percentage of 
training/testing landslide area against the cumulative percentage of the land-
slide susceptibility/hazard/risk map area [86]. For this purpose, the landslide 
susceptibility or hazard or risk index has to be reclassified into 100 classes by 
descending order of the value. Then landslide raster can be combined with 
these classes to obtain landslide pixels. Both landslide and map area pixels have 
converted into a cumulative percentage to plot the success and predicted rate 
curve. The success rate curve can be plotted using the cumulative percentage of 
training landslide vs. a cumulative percentage of map area while the predicted 
rate curve can be plotted using a cumulative percentage of testing or validation 
landslide area vs. map area. The success rate explains how well the model and 
how landslide susceptibility, hazard, and risk mapping results are classified the 
study area using training landslide data. The predict rate curve explains the pre-
dictive capability of the conditioning factor for the model. If the curve deflects 
and closes to the top left of the reference line along the diagonal, the model has 
higher accuracy.

2.9.2 Landslide density

As states by Pham et al., [87] and Fayez et al., [88], the landslide density has 

calculated using the equation of landslide density (LD). LD percent of observed landslide
=

percent of predicted landslide
. 

The higher landslide density on the high, and very high landslide susceptibility, hazard, 
and risk region confirms that the model is reliable and accurate [87].

2.9.3 Relative landslide density index (R: Index)

Landslide susceptibility, hazard, and risk models can also be validated using 
the relative landslide density index, which is calculated using the following 

equation. 

ni
NiR - Index =

ni
* 100

NI
∑

. Where ni is the number of landslide in a landslide 

susceptibility classes while Ni is the number of landslide susceptibility/hazard/
risk class pixel within that class. The relative density can calculate using an 
equation through a comparison of landslide susceptibility with landslide inven-
tory data set [73, 89]. As the R- index value increases from the very low to very 
high landslide susceptibility/hazard/risk classes confirms that the model is 
accurate and reliable.

2.9.4 Relative error

The other model validation technique relative error calculation is one of the 
techniques that help us to evaluate and determine the quality of the model and the 
number of landslides in the higher landslide susceptibility, hazard/risk classes.  
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The higher the relative error value the poorer the model accuracy. When the relative 
error greater than 0.5, the model is not acceptable [90]. However when the relative 
error less than or equal to 0.5 and the number of landslide in the high landslide 
susceptibility/hazard/risk class more than half, the given model is accurate and 
reliable. ( ) TNLS NLS / TNLSRelative error ξ = ∑ −∑ ∑ . Where TNLS is the total 
number of landslide in a region and NLS is a number of landslide in the high and 
very high landslide susceptibility/hazard/risk classes.

2.9.5 Receiver operating characteristics (ROC)

The ROC is the curve used to evaluate the performance of the landslide suscep-
tibility, hazard, and risk models. ROC curve is the graphical representation of true 
positive rate (TPR) as y-axis and false positive rate (FPR) as x-axis. In the ROC curve, 
the area under the curve (AUC) is the most important diagnostic feature that helps 
to evaluate whether the model performance is accurate or not accurate. As stated by 
Yesilnacar and Topal [91], the value of AUC is usually found in between 0.5–1. The 
model has excellent performance when the AUC value is in between 0.9–1; the model 
has very good performance when the AUC value is in between 0.8–0.9. The model has 
good performance when the AUC value is between 0.7–0.8. When the value of AUC 
is between 0.6–0.7, the model has average performance however if the AUC value is 
between the range of 0.5–0.6 and equal to 0.5 or less than o.5, the model has poor and 
useless results.

2.10 Case study on landslide susceptibility mapping

2.10.1  Landslide susceptibility mapping using statistical methods in Uatzau 
catchment area, Northwestern Ethiopia

Recent unconsolidated soil deposits, rugged topography, active gully,  
riverbank erosion, and improper land use practice characterize the study area 
(Uatzau), making it vulnerable to a variety of landslides, including earth fall, 
soil creep, weathered rockslide, soil slide, earth flow, and debris flow. Landslide 
susceptibility zones of the study area were determine using Frequency ratio 
(FR), certainty factor (CF), and information value (IV) models. These maps 
also depict the spatial distribution of projected landslides and the locations 
where they are expected to occur. The maps, on the other hand, may not be 
able to predict the amount of material that will be displaced, as well as the time 
and frequency with which the landslide will occur. The landslide susceptibility 
models can also helpful for preventative and mitigation measure of landslide 
hazard in regional land use planning [81, 82, 92–96]. The success rate curve and 
predictive rate curve were used to validate the maps using training and testing/
validation landslide data sets. The success rate curve was used to assess how suc-
cessfully the models identified the location and supported the landslide events 
that were occurring at the time [26, 96]. The prediction rate curve was created 
to assess how effectively the models can forecast future landslide events that 
are unknown [94, 96]. Within the region, steep slopes covered by very loose 
shallow soil deposits, closer to the stream, agricultural land on a steep slope, 
active gully erosion, and concave slope shapes resulted in the high and very high 
susceptibility classes, while the moderate susceptibility class is found in high-
land landscapes. Low plain landscapes and areas covered by vast weathering-
resistant rock masses are into the realm of very low and low susceptibility of 
a region.
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Zine et al. [97] stated that higher prediction accuracy (AUC = 89.05%) and 
AUC = 85.57%) was received using the information value and frequency ratio 
methods. Similarly, the frequency ratio approach outperformed the information 
value methods for both success rates (AUC = 83.27%) and prediction rate curve 
(AUC = 88.8%) in this investigation. The accuracy of the two models falls within 
the same ranges, which may be a good performance. The frequency ratio model 
revealed a slight difference in the AUC value. Qiqing et al. [40] stated that a high 
predictive accuracy of AUC value of 75 was received using a certainty factor model 
when compared to the prediction rate curve value (AUC = 64.08%) of information 
value model. However, their accuracy values were within the same ranges, suggest-
ing that they performed well. Similarly, in the current model, the certainty factor 
model had a greater prediction rate value (AUC = 87.03%) than the information 
value model, which had a lower prediction rate value (AUC = 84.8%), but they 
both required an equivalent accuracy range, which may be a good performance. 
The work of Haoyuan et al. [98] supported the predictive rate value of the area 

Figure 5. 
Landslide susceptibility maps of frequency ratio (FR), certainty factor (CF), information value (IV) methods 
[36] and a) receiver operating characteristics curve (ROC) [36].
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under the receiver operating characteristic curve (AUC), showing that the fre-
quency ratio and certainty factor models have the more or less similar predictive 
capacity, with the certainty factor model having 81.18% and the frequency ratio 
model having 80.14%, respectively. The Frequency ratio model, on the other hand, 
performed worse than the CF model. The two models in this study had essentially 
identical AUC values for the prediction rate curve (87.03% for the certainty factor 
model and 88.8% for the frequency ratio model) (Figure 5). The closer prediction 
capacity with AUC > 64% and AUC > 80%, respectively, fall within the range of 
good and extremely good performance, according to the three bivariate statistical 
methods in the literature and this work [91]. High and extremely high susceptibil-
ity classes encompassed nearly 20% of the research area in this study (Table 3). 
The landslide validation findings for the three models are more similar than they 
are dissimilar, and they are all in the same region of outstanding performance. 
Aside from that, the percentages of landslides that fall into the high and highly 
susceptible classes are nearly the same (60.4%, 65.5% & 68.1% for FR, CF, and 
IV, respectively). Because of these findings, the research effort concludes that in 
landslide susceptibility mapping, the three models have similar potential for identi-
fying landslide-prone locations, although factor selection should take precedence 
over methodologies. However, when compared to the FR and CF approaches, the 
IV models’ moderate, high, and very high susceptibility area coverage exhibited 
minor differences in a single example. This is frequently due to flaws discovered 
in IV during weight rating for each factor class, i.e. when there is no landslide in a 
certain component class the IV results become zero. This gives a good indication 
of the model’s overall accuracy. FR and CF models are better for regional land use 

Information 
value method

LSI Value LSI Factor class 
area (%)

Validation 
data set (%)

Training 
data set (%)

AUC for 
validation 
landslide

AUC for 
training 

landslide

−0.5-0.9 VLS 15.5 3.9 6.3 0.848323 0.808265

0.9–1.5 LS 24.3 7.9 11.8

1.5–2 MS 31.5 20.1 23.8

2.0–2.6 HS 21.1 40.8 31.8

2.6–4.1 VHS 7.6 27.3 26.3

Certainty 
Factor (CF)

−2.2- −0.97 VLS 17.8 4.7 6.0 0.870348 0.871933

-0.97- −0.47 LS 31.0 12.3 16.4

-0.47-0.04 MS 28.8 17.5 24.8

0.04–0.74 HS 19.0 34.8 33.0

0.74–2.61 VHS 3.4 30.7 19.7

Frequency 
Ratio (FR)

3.1–4.3 VLS 22.7 5.4 9.3 0.888337 0.832718

4.3–4.8 LS 30.8 14.7 17.8

4.8–5.3 MS 22.4 19.5 20.0

5.3–6 HS 19.3 43.7 35.0

6–7.7 VHS 4.8 16.7 17.8

VLS is for very low susceptibility, LS stands for low susceptibility, MS stands for moderate susceptibility, HS stands for 
high susceptibility, VHS stands for very high susceptibility, LSI stands for landslide susceptibility index and AUC stands 
for area under the curve.

Table 3. 
Statistical summary of information value, certainty factor, and frequency ratio methods [36].
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planning, landslide hazard mitigation, and prevention based on the prediction 
accuracy of AUC value. Although the generated maps cannot predict when and 
how often landslides will occur, they do show the spatial distribution of land-
slide risk.

2.11 Conclusion

This chapter introduces and overview the concepts of landslide, type, factors, 
inventories, susceptibility, hazard, and risk. Moreover, different mapping and 
validation approaches were introduced. The confusing between the term suscepti-
bility and hazard is clearly discussed. Detail and quality data should tend emphasis 
in getting quality landslide susceptibility, hazard, and risk maps. Field landslide 
investigation integrated with Google Earth Imagery analysis is vital to work out 
and record, the relative occurrence date, magnitude, dimension, type, and state of 
landslide. GIS-based landslide susceptibility, hazard, and risk mapping is suitable 
for regional scale where as physical based mapping is recommendable for detail 
landslide study where geotechnical investigation is require.
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Chapter 12

Detection and Warning of
Tsunamis Generated by Marine
Landslides
Mal Heron

Abstract

Seismic signals provide an effective early detection of tsunamis that are generated
by earthquakes, and for epicentres in the hard-rock subduction zones there is a robust
analysis procedure that uses a global network of seismometers. For earthquakes with
epicentres in soft layers in the upper subduction zones the processes are slower and
the seismic signals have lower frequencies. For these soft-rock earthquakes a given
earthquake magnitude can produce a bigger tsunami amplitude than the same earth-
quake magnitude in a hard rock rupture. Numerical modelling for the propagation
from earthquake-generated tsunamis can predict time of arrivals at distant coastal
impact zones. A global network of deep-water pressure sensors is used to detect and
confirm tsunamis in the open ocean. Submarine landslide and coastal collapse tsu-
namis, meteo-tsunamis, and other disturbances with no significant seismicity must
rely on the deep-water pressure sensors and HF radar for detection and warning.
Local observations by HF radar at key impact sites detect and confirm tsunami time
and amplitude in the order of 20–60 minutes before impact. HF radar systems that
were developed for mapping the dynamics of coastal currents have demonstrated a
capability to detect tsunamis within about 80 km of the coast and where the water
depth is less than 200 m. These systems have now been optimised for tsunami
detection and some installations are operating continuously to provide real-time data
into tsunami warning centres. The value of a system to warn of hazards is realised
only when coastal communities are informed and aware of the dangers.

Keywords: tsunami, marine landslides, hazards, warnings, HF radar

1. Introduction

The phenomenon of ‘tsunami’ occurs very often in large bodies of water around
the world. The great majority of these are small, even unnoticeable, but have
the physical characteristics of a shallow-water gravity wave with periods
10–40 minutes, which define a tsunami. The recording of tsunamis has historically
been based on the amount of damage to coastal communities and the magnitude of a
submarine earthquake on the moment magnitude scale (Mw) which has been
developed from the Richter Scale [1]. These are effectively logarithmic energy
scales. Neither of these metrics relate well to the amplitude of the associated tsu-
nami wave in the open ocean, which is a more reliable metric because a medium-
scale earthquake (Mw = 7) in a landslide earthquake can generate the same tsunami
amplitude as a severe (Mw = 9) earthquake in a deeper hard-rock subduction zone.
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Because of the absence of a standard, the records of ‘notable’ tsunamis vary among
authors, but a general consensus emerges that there is one major tsunami about
every 3 years, of which about 75% are caused by earthquakes originating from
megathrusts in hard rock. The remaining 25% are mostly landslide tsunamis. The
genesis of tsunamis varies with locations and while any large water body like lakes
and inland seas are susceptible, it is the so-called ring of fire around the Pacific that
has the highest tsunami occurrence of about 80% [2].

Tsunami warning methods fall into three categories. The first arises from the
analysis of seismic data collected in the region of the earthquake epicentre. Seismic
signals recorded on seismometers located on land near to an earthquake epicentre
are used to report estimates of the magnitude and location within a few minutes of
the rupture [3]. This can be extended to differentiating between landslide tsunamis
and hard-rock megathrust tsunamis [4, 5] by analysing the periodicity in the seis-
mic signals.

The second warning category is obtained through ocean observations in the deep
ocean. A network of DART ((Deep-ocean Assessment and Reporting of Tsunamis)
moorings consist of a benthic pressure sensor to detect small, but sustained, changes
in water depth and a surface buoy for communications [6]. DART moorings can
detect tsunamis with amplitudes greater than about 3 cm, and immediately transmit
an alert via a satellite link. A network of DART moorings is coupled with seismom-
eters and numerical modelling to warn of potential tsunami impacts around the
coastal boundaries of that ocean basin.

The third warning category is at the site of potential impact. Observations of
tsunamis approaching in the shallow water on the continental at a critical site give
alerts that are accurate in timing and amplitude, but are issued typically less than
one hour before impact. The main value of these technologies is to confirm alerts if
they have already been given from the epicentre location and the mid-ocean sys-
tems, and also to issue warnings for tsunamis generated in the local area. The most
promising technology in this category is HF ocean radar that can detect an
approaching tsunami at a range of about 100 km, or at the edge of the continental
shelf if that is closer than 100 km. The resolution of DART technology and HF
radars are consistent with the suggestion that a tsunami wave with an amplitude
greater than 0.03 m in the deep ocean should be considered potentially hazardous
when it impacts the coast.

Included in this third category of warnings at the site of impact is a cultural
awareness of local people to look at the ocean and understand visible changes. For
example, any list of ‘notable’ historic tsunamis recorded would start with a report
by Herodotus in 479 BC during the Persian siege of the town of Potidaea (reported
by [7]) as “a great flood-tide, higher, as the people of place say, than any one of the
many that had been before” which obliterated the Persians who thought they had
taken a strategic advantage of the preceding retreat of the water. Herotodus had
written the first record of a tsunami impact. Up to half of tsunami impacts on the
coast have an initial draw-down which (with suitable education) serves as an
excellent warning for local people. Local warnings like HF radar are imperative
when the tsunami approaches as a crest.

The well-established global network of seismometers can produce location and
magnitude estimates within a few minutes of the event. Based on these data,
numerical modelling (e.g. [8]) is used to forecast arrival times of any resulting
tsunami at coastal sites around the world using properties of tsunamis which prop-
agate as shallow water gravity waves (even in the deepest oceans!) with a velocity
given by

c ¼
ffiffiffiffiffi
gh

p
(1)
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where g is gravitational acceleration and h is the depth of the water column.
At h = 3000 m the tsunami speed is about 170 ms�1 and on a continental shelf of
depth 50 m it is about 30 ms�1. This dramatic slowing-down near the coast raises
the value of local observations at impact sites.

The propagation characteristics of the Tohuko Earthquake 2011 shown in
Figure 1 are calculated by the MOST (Method of Splitting Tsunami, [8]) model for
the Pacific Ocean following the earthquake with epicentre 29 km deep and 130 km
from the east coast of Honshu. This computation is a heavy load and, in practice
many warning centres have a library of scalable forecasts for tsunamis that are pre-
calculated for a range of magnitudes and epicentres at regular spacing (say 100 km)
along likely fault zones.

The most critical place for rapid warnings is the adjacent coast which for the
Tohuko earthquake, had tsunami impact approximately 84 minutes after the seis-
mic signals. This is a typical warning time in the local region where the tsunami
amplitudes are greatest (Figure 1). Deep water DART Buoys in the Pacific Ocean
can confirm the magnitude of the tsunami, with appropriate delays in the order of
hours (Figure 1). Arrival of the tsunami at all impact zones can be confirmed by
local observations and warnings. In most cases the local confirmation of an immi-
nent tsunami would be issued as a follow-up on prior alerts for the event, but for
landslide tsunamis, coastal collapse tsunamis and other non-seismic tsunamis the
local observations may be the only way to give the primary warning.

2. Seismic signal warnings

Seismometers provide the traditional data for the estimation of magnitude and
location of the epicentre of an earthquake, and a global network of instruments
provides rapid and reliable information. The development of seismometry has
traditionally been focused on earthquakes from megathrusts of hard rock in the
subduction zones, but recent work has been reported on ruptures in shallow, soft

Figure 1.
Maximum tsunami amplitudes calculated by the MOST model for 24 hours following the magnitude 9.0
earthquake near Tohuko, Japan on 11 march 2011. The faint grey contours show the estimated times of arrival.
http://nctr.pmel.noaa.gov.
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rock subduction zones and submarine landslides which produce seismic signals that
have different characteristics.

2.1 Seismic signals from tsunamigenic earthquakes

Data from seismometers in the region of an earthquake have been the traditional
means of issuing tsunami warnings. So-called Tsunamigenic Earthquakes result
mainly from shearing movement at the tectonic plate boundaries and volcanic hot
spots in the lithosphere. Tsunamigenic earthquakes typically occur when there are
vertical as well as horizontal components in megathrusts on fault lines in the hard
rock deep in subduction zones beneath the ocean floor. The energy given to a
resulting tsunami comes from the potential energy released during the seismic
thrust. The original Richter Scale for earthquake magnitude is illustrated in Figure 2
from Richter’s book [1] where the maximum amplitude of the P waves, and the
delay between S and P signals are used to determine the earthquake magnitude.

The relationship between Richter’s magnitude and the rupture is given by
Aki [9] as:

M ¼ μAD (2)

where D is the slip, μ is the rock rigidity, and A is an area equal to D �W, where
W is the depth of the fracture.

Richter’s method did not take account of the spectrum of components in the
seismic signal, and saturates when M > 8. Kanamori [10] considered a range of
spectral components in the seismic signal to define a Moment Magnitude, Mw,
which agrees with Richter’s magnitude for small earthquakes, is accurate for Mw >
9, and is now widely used to specify earthquake magnitudes (even though it is often

Figure 2.
Richter’s relationship between the seismic signals and the logarithmic Richter scale. From Richter, Elementary
Seismology [1].
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called the Richter Scale). The simplest approach for tsunami warnings is that if Mw
> 8.0 and the epicentre is offshore then it is likely that a tsunami will be generated.

Working towards a strategy to provide rapid local tsunami warnings, Melgar
et al. [3] use scaling relationships

log 10D ¼ �2:37 þ 0:57Mw (3)

log 10W ¼ �1:86þ 0:46Mw (4)

to estimate the width and length of an earthquake deformation based on Mw.
Then, using the predefined slab model of Hayes et al. [11] they estimate horizontal
and vertical deformations of the sea floor, and the magnitude of resulting tsunamis.
This strategy provides estimates of tsunami genesis from hard rock ruptures that are
sufficiently accurate to provide tsunami warnings. This method is shown to deliver
warnings within a few minutes of the rupture and is the basis of warning systems in
Japan, Indonesia and Australia [12, 13]. For the 2011 Tohoku earthquake the rapid
estimate gave Mw = 9.3 when the final value was calculated at Mw = 9.0. The
subsequent propagation of the tsunami is shown in Figure 1 which is calculated by
the MOST model.

2.2 Seismic signals from landslide earthquakes

The name Tsunami Earthquake was coined by Kanamori [14] and does not
include the Tsunamigenic Earthquakes discussed in the previous section. These are
tsunamis that are significantly bigger than one would predict from the seismic data,
and are generated by deformation in the soft rock in the upper subduction layer or
by a submarine landslide in a thick, stratified sedimentary layer on a bathymetric
slope.

The Mentawai earthquake off the west coast of Sumatra, Indonesia on 25
October 2010 had a medium magnitude of 7.8 but produced a large tsunami that
caused significant coastal damage and loss of over 400 lives. This tsunami was
significantly greater than would normally be expected from an earthquake of that
magnitude. Analysis of the seismic records [4, 5] showed that the Mentawai earth-
quake was a result of slow deformation in the upper layers of the subduction zone.

Earlier work by Kanamori [14] had shown that weak earthquakes with slow
deformation time constants could produce significant tsunamis. This work was
done using data from the Aleutian Islands earthquake of 1946, and the Sanriku
earthquake of 1896, both of which were relatively weak earthquakes that produced
very large tsunamis. Slow deformation, of around 100 s, does not generate high
frequency seismic signals like those shown in Figure 2 and Kanamori’s conclusion is
that the abnormally slow deformation at the source of the earthquake generated the
tsunami. This is consistent with tsunamis from submarine landslides following
ruptures in the weakly coupled soft rock layer on the inner margins of ocean
trenches.

Sahakian et al. [15] compared the seismic signals from six earthquakes of similar
magnitude of 7.6–7.9, which were chosen because GPS data on earthquake ampli-
tudes were available from GNSS recordings, as well as a local seismometer station.
The six earthquakes were Ibaraki, Japan 2011; Nicoya, Costa Rica 2012; Iquique,
Chile 2014; Melinka, Chile 2016; and Mentawai, Indonesia 2010. In Figure 3 the
acceleration from the local seismometer, and the vertical displacement time series
are shown on the same ordinate scale.

From these data, Sahakian et al. [15] confirmed that the Mentawai earthquake
in the soft rock in the upper levels of the subduction zone did not generate the
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high-frequency seismic signals that are generated by megathrusts of earthquakes in
the hard rock deeper in the zone. If the slower fluctuations are accompanied by
large amplitudes, then it is concluded that the amplitude-to-energy ratio can be
used to detect a tsunami earthquake when the magnitude is lower. By comparing
fluctuation amplitudes (observed by GPS) with earthquake energy, Sahakian
showed that it is possible to issue an alert for a potential tsunami from a
tsunamigenic earthquake.

Sahakian et al. [15] suggested a method for early warnings of Tsunami Earth-
quakes is to estimate MPGA from the seismometer and MPGD from the GNSS vertical
displacements. Then a low MPGA coupled with a high MPGD suggests that the event
has ruptured soft and compliant rock high in the subduction zone with a high
likelihood of producing a large tsunami.

3. Open Ocean observations

Observations in the open and deep ocean are used to give tsunami warnings to
locations in the ocean basin that are a long way from the earthquake epicentre.
These warnings are relevant to the most severe earthquakes because of the attenu-
ation and geometric spreading of tsunami waves across an ocean basin as shown in
Figure 1 for the 2011 Tohuku earthquake and tsunami.

Even the largest of destructive tsunamis have relatively small amplitudes of up
to a few tens of centimetres in deep water. This is illustrated by the altimeter data
recorded by the JASON-1 satellite in an opportunistic transit 2 hours after the
Sumatra-Andaman earthquake 26 December 2004 [16]. The altimeter recorded a
maximum water elevation of about 50 cm in open ocean compared with reports of
elevations up to 30 m at some coastal impact points. A DART buoy in the Bay of

Figure 3.
Data from five earthquakes with similar magnitudes in the 7.6–7.9 range. The earthquake name and
magnitude, the seismometer station name and its distance from the epicentre are given for each event. The
Mentawi earthquake, and to a lesser extent Ecuador, have smaller accelerations in the seismic signal but
comparable vertical displacements in the GNSS data. From Sahakian [15] USGS doi.org/10.3133/circ1187.
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Bengal would have given operational confirmation of the timing and warning of the
scale of the tsunami.

DART buoys consist of a bottom-mounted pressure sensor with a cable connec-
tion to a surface buoy which communicates to a monitoring laboratory through the
Iridium network. The pressure sensor takes 15-sec time series at sensitivity of 1 mm
of sea water and filters out the high frequencies. If two successive 15-sec averages
exceed a projection from the past 3 hours by more than 3 cm the system goes into
rapid reporting mode to send data every minute [17, 18]. Following the Sumatra-
Andaman earthquake NOAA/PMEL developed an ETD (Easy to Deploy) upgrade to
the DART system [19] and this technology is being adopted widely (Figure 4) to
enable national tsunami warning centres to improve warning systems. The DART
system is robust and makes a significant contribution to tsunami warning. DART
buoys provide a critical element of the global tsunami warning capability but need
to be complemented by seismic and GPS systems for regional warnings near to the
epicentre, and systems for warnings in local impact areas whether they are near to
the epicentre or distant across oceans.

4. Local impact observations

Apart from visual observations at the beach, the only real-time technology for
imminent impacts of tsunamis is land-based HF ocean radar. Observations can only
be made over shallow waters <200 m deep in coastal waters, which can give
warnings typically 20–60 minutes before impact. To be effective as a warning
method HF radar needs to be supported as much as possible with seismic-based
alerts or warnings from DART buoys. For tsunamis generated in the local region,
especially landslide or coastal collapse events, the local warning from an HF radar
may be the only alert possible.

Figure 4.
Transit path of Jason-1 altimeter superposed on estimated elevations from the MOST model 2 hours after the
Sumatra-Andaman 2004 earthquake. The maximum water elevation was about 50 cm. From Gower [16]
Taylor and Francis tandfonline.com.

225

Detection and Warning of Tsunamis Generated by Marine Landslides
DOI: http://dx.doi.org/10.5772/intechopen.99914



A significant feature not illustrated in Figure 1 is the growth in amplitude of a
tsunami as it slows down in shallow water. As a first-order approximation this
growth can be estimated following Green [20] as

a dð Þ ¼ a Dð Þ D=dð Þ1=4 (5)

where a is tsunami amplitude, d is water depth, and D is a reference (deep
water) depth. An example of this phenomenon is illustrated by Figure 5 which
shows the amplitude of the Sumatra-Andaman tsunami as about 50 cm in the open
water of Bengal Bay, when the tsunami later rose to near 30 m in some impact areas.
Associated with the amplification is an enhancement of the velocities of water
particles in the propagating wave. The circulating water particles in a gravity wave
are manifest on the surface as the to-and-fro motion that can be observed as a swell
wave propagates past a point on the ocean. The increase in the maximum to-and-fro
velocity, vm, is [21];

vm dð Þ ¼ vm Dð Þ D=dð Þ3=4: (6)

The primary product of land-based HF ocean radars is surface currents mapped
at high spatial resolution over the coastal ocean, and over 400 systems have been
installed around the world for that purpose [22]. The potential for HF radars to
observe tsunamis was suggested by Barrick [23] and confirmed when several HF
radars in Japan as well as North and South America recorded signals as the tsunami
from the Tohuko 2011 earthquake reached the west coast of the Americas [24, 25].
In these cases the radars were configured for currents in coastal circulation dynam-
ics, and following the events of March 2011 there was a focus on optimising HF
radars for real-time tsunami observations by measuring vm(d) in Eq. (6).

There are two main HF radar technologies that are widely available for mapping
surface currents in coastal waters. Both radar systems operate by receiving radar
echoes from the rough, conducting sea surface, and both technologies use timing to
define the range of a target zone on the ocean. But they have quite different
solutions for determining the angle in the (r,θ) plane. One is the Seasonde system
which uses wide angle crossed-loop receiving antennas to define the pointing
direction of the radar [23]; and the other is the WERA system which uses a phased

Figure 5.
Global network of DART buoys. www.ndbc.noaa.gov/dart.shtml accessed 21 July 2021.
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array of elements as the receive antenna to define azimuth [26]. This differentiation
leads to quite different solutions to the challenge of issuing warnings for imminent
tsunamis.

The Seasonde software offers a q-factor calculation developed empirically from
past tsunami observations and simulations [27, 28]. The observation area is
partitioned into strips 2 km wide running parallel to the benthic contours. When the
radial current components in three adjacent strips are highly correlated, are show-
ing a trend in magnitude, and are significantly different from the background
current, the q-factor index is incremented. Figure 6 shows the q-factor calculated
for data from a Seasonde radar at Point Estero, California (marked with a solid ‘x’ in
Figure 1) following the Tohuko 2011 earthquake. Time series of the average current
in each strip are taken every 4 minutes, and Figure 6 shows the data over three
strips with the q-factor calculated from the three strips in the 8–14 km range.
Tsunami warnings are issued when the q-factor exceeds a trigger level that is set for
the conditions prevailing at the specific site, but typically the trigger level is q = 500.
Note that the data shown in Figure 6were taken from a radar installation optimised
for current dynamics, and not for tsunamis. It is a proof of concept.

A WERA station at Rumena in Chile (marked with an ‘x’ in Figure 1) also
recorded the tsunami from the Tohuko, 2011 earthquake. In Figure 7 the colours
show current anomaly, with the background removed, with time and range for the
beam in the NW direction. From these data and simulations, Gurgel et al. [30] and
Dzvonkovskaya et al. [29] developed a probability approach where a time series is

Figure 6.
SeaSonde time series of onshore velocity components and q-factors at point Estero (a) blue: 8–10 km offshore;
red: 10–12 km offshore, and black: 12–14 km offshore; (b) q-factor for the 8–14 km interval. From
Lipa et al. [25].

Figure 7.
Surface currents on a time vs. range visualisation for the Tohuko 2011 tsunami approaching the coast at
Rumena, Chile. From Dzvonkovskaya et al. [29].
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taken over 133 s for each grid point over the mapped area and a probability of an
anomalous current (compared with background currents) is assessed at each point.
A probability map is produced from 133-second overlapping time series and issued
every 33 s. An example of a probability map is shown in Figure 8 for the data set
from the Tohuko 2011 tsunami taken at Rumena at 0545 UT, some 45 minutes
before impact. Note that the data shown in Figures 7 and 8 were taken from a radar
installation optimised for current dynamics, and not for tsunamis. It is a proof of
concept.

Dzvonkovskaya et al. [29, 31] further developed this method into a robust
algorithm for an estimation of the ‘Probability of Tsunami’ for the site. The final
tsunami warning product is produced by statistical processing of successive 2D
probability maps. An example of the alerts and warnings issued in real time for a
WERA system configured for tsunami warnings is shown in Figure 9. This event

Figure 8.
Map of estimates of tsunami probability for independent grid points from the WERA radar at Rumena
following the Tohuko 2011 earthquake. From Dzvonkovskaya et al. [29].

Figure 9.
Tsunami probability for the WERA radar for Tofino, Canada. Surface currents from the whole grid are
combined to give a single probability index that is issued every 33 s in real time. ‘ATTENTION’ is issued when
the tsunami probability exceeds 50% (between yellow lines) and ‘ALERT’ is issued at 75% (between red lines)
in real-time.
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was a tsunami-like disturbance produced by a severe meteorological front at Tofino,
British Columbia, Canada in 2020. The Tsunami Probability (TP) bulletins are
issued every 33 seconds to the host system. The recommended warning levels are
issued as ‘attention’ if 50 < TP < 75, and as ‘alert’ if TP > 75 as shown in Figure 9
for the event at Tofino.

HF radars have been deployed at several places with the primary purpose of
tsunami warning where data are returned in real time to a tsunami warning centre.
One of these is in the Sunda Strait where the volcano island Anak Krakatau
appeared above the sea in 1927 on the edge of the Krakatoa Caldera formed in 1883.
After several days of seismic activity in December 2018, it erupted with an area of
about 64 hectares and volume of 0.2 km3 collapsing into the sea generating a
tsunami that resulted in 437 fatalities and over 30,000 injuries on the adjacent Java
and Sumatra islands [32]. The collapse had no strong short-period seismic signals
and did not provide a seismic tsunami warning. In view of the volcanic activity in
the area, the German Indonesian Tsunami Early Warning System (GITEWS) was
established as an integrated system for warning of locally generated tsunamis with
sensors including seismic, acoustic and HF radar [33]. The configuration of the HF
radar stations is shown in Figure 10. This radar installation is being used primarily
in the GITEWS system but is also producing maps of surface currents over the area
outlined by the irregular pentagon in Figure 10. There is a strong interest in the
ocean dynamics in the Sunda Strait because the long-term flow-through of warm
water from the Java Sea to the Indian Ocean is a key driver of ocean circulation. This
WERA system produces current maps on a 1 � 1 km grid every 20 minutes for
circulation applications, and evaluate tsunami activity every 33 s on a continuous
schedule.

5. Conclusion

Tsunamis generated by hard-rock megathrust earthquakes, like Tohuko 2011 in
the Pacific and Sumatra-Andaman 2004 in the Indian Ocean, give high-frequency

Figure 10.
WERA HF radar stations at Tanjung and Kahai deployed for detecting tsunamis in the irregular pentagon
inside the yellow lines. This is a part of the GITEWS for warning of tsunamis generated in the Krakatoa
caldera. Base image GoogleEarth.
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seismic signals from which reliable, fast estimates of tsunami amplitudes are pro-
duced, and propagation modelling across neighbouring oceans can be made, with
reliable confirmation from deep-ocean DART buoys. For these tsunamis, confirma-
tion at key coastal sites is useful because shallow-water bathymetry and coastal
topography are significant parameters for the terrestrial run-up of water. The
warning systems for tsunamis generated by hard-rock megathrust earthquakes are
robust and are widely used. Routine monitoring is being used at coastal sites that
have infrastructure or populations at risk. The use of HF radar at key at-risk sites
gives final confirmation of amplitude and timing before tsunami impact.

Tsunamigenic soft-rock earthquakes in the upper subduction zone have slow-
response seismic signals that can lead to underestimation of resulting tsunamis if
hard-rock algorithms are used. There is active development of methodology to
estimate the amplitudes of tsunamis from tsunamigenic earthquakes using regional
seismic and GPS signals. Data from the Mentawai 2010 earthquake and tsunami
have provided a foundation for the development of this method. Implementation
requires installation of GPS (GNSS) monitoring of earthquake amplitudes in regions
where there are known unstable sedimentary bedforms. Tsunamis from
tsunamigenic earthquakes are detected on DART buoys and local monitoring at key
at-risk sites on the coast gives confirmation. Local monitoring may be the primary
warning at impact sites close to the epicentre.

Submarine landslides and coastal collapse have produced damaging tsunamis
with impacts mostly confined to the local region. These tsunamis have no seismic
warnings. Other tsunami genesis mechanisms without seismicity include glacial
calving, which is localised, and meteotsunamis which are generated by meteorolog-
ical fronts and similar in scale to storm surges at the coast. The seismic and DART
technologies are less applicable to these events because most damage has been in the
source region and local monitoring takes on more urgency. HF radar is a proven
technology for tsunami detection in shallow coastal waters where warnings can be
issued in the order of 20–60 minutes before impact (depending on the width of the
shallow coastal shelf). While HF radars have been installed primarily for tsunami
detection and warning in several regions, they can also provide maps of coastal
currents for research and management of coastal industries like ports, marine
reserves and coastal engineering. There are over 400 HF radar installations world-
wide [22], usually in regions of high economic or social interest. A useful strategy in
the short term would be to retro-fit existing HF radars that have tsunami detection
capability, with tsunami detection software that is integrated into central tsunami
warning hubs.
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Chapter 13

Empirical Rainfall Thresholds for 
Landslide Occurrence in Serra do 
Mar, Angra dos Reis, Brazil
Daniel Germain, Sébastien Roy  
and Antonio Jose Teixera Guerra

Abstract

In the tropical environment such as Brazil, the frequency of rainfall-induced 
landslides is particularly high because of the rugged terrain, heavy rainfall, increasing 
urbanization, and the orographic effect of mountain ranges. Since such landslides 
repeatedly interfere with human activities and infrastructures, improved knowledge 
related to spatial and temporal prediction of the phenomenon is of interest for risk 
management. This study is an analysis of empirical rainfall thresholds, which aims 
to establish local and regional scale correlations between rainfall and the triggering 
of landslides in Angra dos Reis in the State of Rio de Janeiro. A statistical analysis 
combining quantile regression and binary logistic regression was performed on 1640 
and 526 landslides triggered by daily rainfall over a 6-year period in the municipal-
ity and the urban center of Angra dos Reis, in order to establish probabilistic rainfall 
duration thresholds and assess the role of antecedent rainfall. The results show that 
the frequency of landslides is highly correlated with rainfall events, and surprisingly 
the thresholds in dry season are lower than those in wet season. The aspect of the 
slopes also seems to play an important role as demonstrated by the different thresholds 
between the southern and northern regions. Finally, the results presented in this study 
provide new insight into the spatial and temporal dynamics of landslides and rainfall 
conditions leading to their activation in this tropical and mountainous environment.

Keywords: Landslide, rainfall thresholds, quantile regression, tropical environment, 
Brazil

1. Introduction

Because of their ability to move rapidly, mobilize large amounts of debris, and 
initiate spontaneously, landslides pose a threat to people and infrastructure [1, 2]. 
The danger is heightened by the fact that they can occur in wet or dry regions, and 
on steep or shallow slopes [3]. Synergistic effects between increasing urbanization, 
sustained deforestation, and increased rainfall variability caused by climate change 
portend an increase in the frequency of catastrophic landslides such as that experi-
enced in recent years [4].

In Brazil, as elsewhere, the mechanism of slope saturation by rainwater repre-
sents the main cause of landslide triggering [5–7]. Their onset is related to excep-
tional rainfall events of short duration, such as intense precipitation associated 
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with a thunderstorm, or events of long duration and low intensity [8]. Specifically, 
high-intensity, short-duration precipitation events are known to trigger shallow 
landslides [9] - landslides with a failure surface depth of less than two meters [10] - 
while long duration, low intensity precipitation events generally result in deep 
seated landslides [11]. However, the causal relationship between rainfall and land-
slides is not so simple [12]. Rather, their initiation is associated with the infiltration 
of water into the soil that causes an increase in hydraulic pressure and a decrease in 
resistance, ultimately leading to failure of the affected surface [13]. The effective-
ness of the process therefore depends on the hydraulic, physical and mechanical 
properties of the terrain, in addition to other factors such as slope steepness, vegeta-
tion cover and climatic characteristics [12]. In this regard, mountainous regions 
are particularly favorable to landslides because of the steep slopes, but especially 
because of the orographic uplift of humid air masses that cause significant precipi-
tation at high elevations and on slopes exposed to prevailing winds [14, 15].

In the Brazilian municipality of Angra dos Reis, located in the Serra do Mar 
Mountain Range, heavy summer precipitation has historically triggered several 
landslides, causing a significant number of casualties and considerable damage, 
especially in the last decade. As an example, the catastrophic events of December 
2002 and January 2010 resulted in 93 casualties, forced the evacuation of more 
than 2,500 residences and generated economic losses of approximately R$120 
million. In this tropical environment, the frequency of rainfall-induced landslides 
is particularly high due to the rugged terrain, heavy summer rainfall, and improper 
land use regarding the physical and climatic environment [7]. The risk posed by this 
geomorphological hazard is particularly high due to the fact that almost 60% of the 
population lives in slope areas [16] and more than 25% (44,000 inhabitants) live 
where a high risk of landslides is considered [17].

However, since the beginning of the research on rain-triggered landslides in 
Brazil, no suitable threshold has been proposed for the Angra dos Reis territory. 
In fact, the thresholds of Guidicini and Iwasa [18] were established for the whole 
Serra do Mar, whose area is four times larger than that of Angra dos Reis, while the 
one elaborated by Soares [19] is not representative of the triggering conditions due 
to the use of an inadequate database. Thus, despite the recurrence of this natural 
hazard and the socioeconomic risks it poses, the relationships between rainfall 
characteristics and landslide occurrence remain poorly studied and partly misun-
derstood in this rugged region of Southeast Brazil. Therefore, the establishment of 
rainfall thresholds at local and regional scales is of great interest for the municipal-
ity of Angra dos Reis and could be an effective tool of prevention and mitigation in 
the landslide risk management perspective.

2. Regional setting

2.1 Geological and geomorphological settings

The Brazilian municipality of Angra dos Reis is located in the western part 
of the state of Rio de Janeiro. It represents an area of 825 km2 composed of four 
districts (Angra dos Reis, Cunhambebe, Ilha Grande and Mambucaba) comprising 
116 neighborhoods. The urban center of the Angra dos Reis district covers an area 
of 6.5 km2, or 0.84% of the territory covered by the Angra dos Reis region, and 
includes 21 neighborhoods.

The geology is composed of 30% granites, 27% orthogneiss, 33% paragneiss 
with a minor proportion of contemporary sediments (Neogene-Quaternary).  
In terms of soils in the area, they are characterized by the presence of rock outcrops, 
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fluvio-marine deposits, colluvium, and saprolites [20]. Superficial saprolites are less 
than two meters thick, have a large amount of boulders, and are generally located on 
very steep slopes where bedrock outcrops. The thick saprolites, associated with the 
upper and lower slopes, are more than two meters thick and result from a signifi-
cant chemical alteration of the rocks in situ favored by the high heat and humidity.

The western part of the state of Rio de Janeiro belongs to the physiographic 
region of the Serra do Mar, which extends for just over 1,000,000 km along the 
southern and southeastern Brazilian coastline [21]. The Serra do Mar originated 
from tectonic movements that began ~80 million years ago (Late Cretaceous) with 
epirogenic uplift of the crystalline shield throughout southeastern Brazil [22]. 
Today, this mountain range forms an enormous tectonic barrier parallel to the coast.

Angra dos Reis is located more precisely in the southern part of the Atlantic 
Plateau, which corresponds to the Bocaína Plateau region and includes the escarp-
ments of the Serra do Mar and the narrow coastal plain of Ilha Grande Bay. In the 
Bocaína Plateau, the slopes are moderately inclined (10 to 35o), but can exceed 35o 
in places. The strong geomorphological activity is visible by landslide scars and 
scree slopes [23]. The urban center of Angra dos Reis, with a summit at 571 m above 
sea level and very steep slopes, is part of this geomorphological unit. The area of 
Ilha Grande Bay with its mountainous massif oriented East–West, which culminates 
at 1031 m of altitude, is also included in this geomorphological unit. The massif has 
steep slopes, rocky walls, and well incised river channels [23]. Finally, due to the 
East–West alignment of the Serra do Mar in this area, the slopes are mainly oriented 
to the North and South, both regionally and locally.

2.2 Climate and land use

The climate is particularly variable due to the proximity of the Atlantic Ocean 
and the rugged terrain associated with the Serra do Mar. According to the Köppen-
Geiger classification, the region is characterized by an Af-type climate; a humid 
tropical climate without a well-defined dry season corresponding to average 
monthly temperatures above 18°C and average monthly rainfall above 60 mm. 
Annual rainfall varies between 2000 and 2500 mm [24]. Typical of tropical regions, 
there is heavy rainfall in the summer (December to March; with average rainfall 
exceeding 250 mm and about 16 rainy days/month) and a period of lesser rainfall 
in the winter (June to August; with total rainfall around 80 mm and less than 10 
rainy days/month) [15, 18]. During the rainy season, which concentrates nearly 
60% of the annual precipitation [15], rainfall of 200 to 300 mm in 24 to 48 hours 
is frequent [5]. This intense rainfall is furthermore largely responsible for the high 
frequency of landslides in this part of Brazil [7, 25].

The intensity and distribution of precipitation is influenced by various static 
and dynamic factors [26]. Dynamic factors refer to the different air masses and 
their circulation patterns such as, among others, frontal systems, the South Atlantic 
Subtropical Anticyclone and the South Atlantic Convergence Zone. The static 
factors correspond rather to the geographical location (latitude, maritime proxim-
ity that facilitates solar radiation, evaporation and cloud formation) as well as to 
the topographical characteristics (elevation and perpendicular orientation of the 
Serra do Mar Mountain Range with respect to atmospheric currents that favor the 
development of intense thunderstorms through the orographic lifting of polar 
humid air masses blowing in the northwest direction) [24]. Therefore, coastal areas 
and windward-facing slopes (south-facing) tend to be wetter (2000-2500 mm/
year) due to orographic precipitation, while leeward-facing slopes (north-facing) 
are generally drier (1400-1700 mm/year) due to moisture loss from advection of air 
masses over the Mountain Range [27].
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The high population growth since the early 1970s in Angra dos Reis, related to 
the construction of the Governor Mario Covas highway (Br-101) and the Angra 1 
and Angra 2 nuclear plants [16], has generated significant pressure on the physi-
cal environment. However, the rugged topography (7% plains and 93% hills/
mountains), which limits the amount of land available and suitable for human 
settlement, as well as the lack of land-use planning regulations have caused chaotic 
development of the territory [28]. This development has led to deforestation, sur-
face sealing, transformation of plateaus into pastures and residential development 
on steep slopes, generating furthermore an accumulation of waste, a change in 
natural drainage conditions and anthropic filling and excavation activities that have 
affected the stability of the slopes and increased the likelihood of landslide occur-
rence [5]. As a result, the biophysical cover of the municipality of Angra dos Reis, 
which was once entirely Atlantic Forest (Mata Atlântica) in its original state [29], is 
now much more diverse. Indeed, it is now composed of 86% of secondary Atlantic 
Forest, with the rest being pastures, urban areas, dunes, mangroves, etc.

3. Data acquisition and methodology

3.1 Landslide database

The landslide inventory includes all the landslides that occurred in the territory 
of the municipality of Angra dos Reis. The information’s included are the geographi-
cal coordinates of the landslides and the date of occurrence. However, the inventory 
does not allow distinguishing between different mass movements (landslide, debris 
flow, etc.). Therefore, all types of landslides are considered here, without any 
particular distinction. This is a well-established approach [30, 31] and advantageous 
considering the fact that the typology of landslides is unknown, unspecified or 
uncertain since many reports come from citizens, journalists or technicians without 
adequate scientific training. Duplicate landslides, those with identical geographic 
coordinates and date of occurrence, were removed from the database. The same is 
true for cases with erroneous locations. All the recorded landslides were georefer-
enced and compiled into a geographic database using ArcGIS software [32].

Finally, each of the landslides was associated with a rainfall region according to 
its location (see Section 3.2), in order to associate or not the cases of landslides with 
the occurrence of rainfall episodes in the municipality. Subsequently, the landslides 
were matched to the rainfall data series according to the date of occurrence. This 
allowed each landslide to be assigned a daily precipitation value (R), 3-, 5-, 10-, 15-, 
and 30-day antecedent precipitation values, as well as duration (D) and cumulative 
precipitation values during the rainfall event (E).

3.2 Rainfall analysis

The rainfall data were collected from a regional network consisting of two  
rain gauges administered by the State Institute of the Environment (SIE) and 19 
rain gauges managed by the Civil Defense of Angra dos Reis. In the case of the  
SIE rain gauges, automatic recordings were made every 15 minutes, 96 times a 
day. In the case of the rain gauges of the Civil Defense, the data were daily and 
the reading was done manually every morning at 9:00 am. However, the period 
covered by the data sets varies considerably depending on the rain gauge station. 
In order to estimate the amount of rainfall responsible for the occurrence of each 
of the recorded landslides, the regional study area was first partitioned and an area 
of influence was calculated for each rainfall station using the Thiessen polygon 
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technique [33] with ArcGIS software [32]. Next, the databases associated with the 
21 rainfall stations were agglomerated based on geographic proximity to obtain 
complete time series for the 6-years period considered.

First, the daily data (R) from each station were associated (or not) with a rainfall 
event, i.e. a more or less continuous period of rainfall. A rainfall event begins when 
at least two millimeters of rain have been accumulated in 24 hours and ends at the 
beginning of a period of at least 24 hours without rainfall. Once the rainfall events 
were identified, the duration (D) in hours of each episode and the associated total 
rainfall (E) in millimeters could be calculated. These values were then used to estab-
lish thresholds based on the duration of rainfall events (ED).

In a second step, each daily precipitation (R) was associated with antecedent 
precipitation values. The antecedent precipitation values correspond to the daily 
totals accumulated over 3, 5, 10, 15 and 30 days before the daily precipitation 
considered (A (3d), (5d), (10d), (15d), (30d)). These data will allow to evaluate the 
role of the previous precipitation in the landslide triggering and to determine the 
most significant previous period.

3.3 Probabilistic rainfall event: duration thresholds (ED) for landslides

The thresholds (ED) were developed from the combination of the variables D 
and E obtained for each landslide that was triggered during a rainfall event and are 
defined respectively as the duration (h) and cumulative precipitation (mm) from 
the start of the rainfall event to the occurrence of the landslide. ED thresholds were 
developed at the regional and local scales, as well as for the North and South aspects 
and also for the wet and dry seasons. In the latter case, the considered duration of 
the dry and wet seasons has been extended to simplify the analyses. Therefore, the 
dry season is from May to October and the wet season is from November to April.

In all cases, the E (cumulated event rainfall) and D (duration of the rainfall 
event) values were first plotted in a line graph (log–log coordinates), based on 
the frequentist method assuming that the threshold curve is a power law such as 
reported by Guzzetti et al. [34] and Peruccacci et al. [35]:

 E Dγ= α  (1)

where α and γ are the scaling and the shape parameters that control the slope of 
the power law threshold curve.

The intercept α and the slope γ were then determined through a frequency analy-
sis of the empirical rainfall conditions that have triggered landslides. The large num-
ber of landsides recorded over a 6-years period in the study area appears sufficiently 
complete and representative to determine the 1% and the 5% exceedance probability 
levels. The mean values of α (intercept) and γ (slope) and their uncertainties (∆α 
and ∆γ) were estimated with the non-parametric technique of bootstrapping.

4. Results

4.1 Catalogs of landslides and rainfall events at regional scale

Using the Thiessen polygon technique, six rainfall regions were identified at the 
regional scale: three in the South (Japuiba, Angra dos Reis, and Jacuecanga – JAJ) 
and three in the North (Mambucada, Bracui, and Serra d’Agua – MBS). Then, the 
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Figure 1. 
Map of the study area (825 km2), Municipality of Angra dos Reis in the state of Rio de Janeiro, Brazil. Red 
dots show location of the 1640 landslides recorded and the black dashed line represents the limit between north 
(Mambucada, Bracui, and Serra d’Agua – MBS) and south (Japuida, Angra dos Reis, and Jacuecanga – JAJ) 
regions.

1640 landslides recorded were associated with one of the 1434 rainfall events com-
piled (≥2 mm). In that regards, only 33% (484 out of 1434) of these rainfall events 
have triggered landslides (Table 1).

A North–South disparity appears in the number of rainfall events recorded in 
the North (127) and South (357) of the municipality (Table 1). The number of 
recorded landslides is significantly higher in the South (1274) compared to the 
North (364). Therefore, 78% of the landslides occurred in the South (JAJ) of the 
region (Figure 1), where the majority of the population and urban areas are con-
centrated. On the other hand, few landslides were recorded in the North (MBS) and 
in the vegetated areas of the Bocaína Plateau (Figure 1).

Regarding the inter-annual variability of rainfall events triggering landslides for 
the 6-years period analyzed indicates that landslides occur every year. On an intra-
annual basis, the average number of triggering events and the ratios of triggering 

Extent RE LE D (h) E (mm)

(km2) Min Max Mean Min Max Mean

Municipality 825 484 1640 24 624 101,3 2 542,9 111,9

South: JAJ 374 357 1276 24 624 102,2 2 542,9 112,8

North: MBS 451 127 364 24 432 97,9 2 400,8 108,7

Urban Center 6,5 129 526 24 528 108,4 2 540,5 114,9

Table 1. 
Statistics of rainfall events (RE), landslide events (LE), duration (D) and accumulation of rainfall (E) that 
initiated landslides at the regional scale (municipality, north, south) and local scale of the urban center of 
Angra dos Reis.
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versus non-triggering events vary primarily with the seasonality. Indeed, the 
average numbers and ratios are 9 and 40% in the wet season (January to April), 5 
and 25% in the dry season (May to August), and 8 and 32% in the transition season 
(September to November).

The 484 rainfall events that likely triggered landslides lasted approximately 
4 days (101 hours; Table 1), with a minimum and maximum duration of 24 and 
624 hours (26 days), and initiated an average of three landslides. Specifically, 45% 
(219 out of 484) of the triggering events initiated a single slide, 75% (365 out of 
484) triggered three or fewer slides, and only 8% (37 out of 484) generated ten 
or more failures, with a maximum of 38 landslides per episode. In this regard, 
two rainfall events recorded in the region of Angra dos Reis triggered exactly 38 
landslides. The first one started on December 27, 2012 and ended on January 4, 
2013, accumulating 540.5 mm of rain in nine days, while the second one started on 
January 9, 2013 and ended on January 22, 2013 after dumping 372.9 mm in 14 days. 
While the first of the two rainfall events had accumulated only 46.5 mm in the 
previous 30 days, the second had accumulated 565 mm of antecedent rainfall over 
30 days. Therefore, the soils of the region had received 937.9 mm in 44 days as of 
January 22, 2013. Angra dos Reis was specifically the region the most affected by 
landslides during the study period, accounting for 39% (638 out of 1640) of all 
landslides recorded. This corresponds to an average of four landslides per trigger-
ing rainfall event, which is slightly higher than the regional average of three at the 
municipal level.

On a seasonal basis, 69% of the landslides (1130 of 1640) were initiated during 
the wet season. This significantly outweighs the amount of landslides that were 
initiated during the dry season and the transition season, both of which accounted 
for approximately 15%. On a monthly basis, January had the most landslides 
initiated, followed by March, April and December in relatively equal proportions. 
This average of 69 landslides per month in January is almost twice as the amount 
recorded in the other wet months (December, February, March, and April), which 
average 33, and five times more than in drier months (May to October), which 
average 13. Finally, the month of May represents the least likely period for landslide 
occurrence with only six landslides recorded on average. This data is nevertheless 
significant and indicates that landslides can occur in any month of the year, despite 
less precipitation in the winter period (May to August).

With respect to slope steepness, 71% of the cases occurred on gentle slopes  
(0 to 20o), 27% on slopes between 20 and 35 o and only 2% on steep slopes  
(>35 o). Regarding slope orientation, more than a third of the landslides (34%) were 
initiated on south facing slopes, i.e. facing the prevailing winds, while 24% were 
initiated on north facing slopes. The remaining cases were associated with west 
(18%) and east (16%) facing slopes and relatively flat terrain (8%). Finally, 58% of 
the landslides were triggered in urban areas compared to 27% in forested areas and 
8% in pastures.

4.2 Catalogs of landslides and rainfall events at local scale

At the urban center scale of Angra dos Reis, 526 landslides were linked to one of 
234 rainfall events compiled. The geographic distribution of landslides is relatively 
heterogeneous despite a fairly large clustering (155 cases; 30%) in the colluviums 
of the Sapinhatuba I and Monte Castelo neighborhoods in the east-central part of 
the urban center (Figure 2). The landslides were initiated during 129 of the 234 
(55%) rainfall events compiled (Table 1). These 129 rainfall events lasted a little 
more than 4 days, or 108 hours, with a minimum and maximum duration of 24 and 
528 hours (22 days). The minimum and maximum number of landslides initiated by 
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these episodes are 1 and 38, for an average of four landslides per triggering rainfall 
event. More specifically, 36% (47 of 131) of the triggering rainfall events initiated a 
single slide, 63% (83 of 131) initiated three or fewer slides, and only 9% (12 of 131) 
generated ten or more ruptures.

On a seasonal basis, two-thirds of the 526 slides (66%) were initiated during 
the wet season. Indeed, the average number of rainfall triggering events and the 
ratios of triggering versus non-triggering events are 2 and 64% in the wet season 
(January to April), 1 and 37% in the dry season (May to August), and 2 and 59% 
in the transition season (September to November). On a monthly basis, January 
was the most significant month with an average of 25 landslides compared to only 
seven for all other months. 42% of the landslides occurred on gentle slopes (0 to 
20o), 39% on slopes between 20 and 35 o and 19% on steep slopes >35 o. In this 
respect, more landslides were recorded on steep slopes at the local scale compared 
to the regional scale. The slopes facing south were the most affected with 53% of 
the landslides, compared to 21% on slopes facing north, 13% on the east and 14% 
on the west facing slopes (Figure 2). Finally, a high proportion of landslides (76%) 
occurred in urban areas, while only 22% occurred in forest and pasture areas.

4.3 Definition of the rainfall thresholds for landslide events

As we mentioned in the methodological section, several ED thresholds were 
defined at the regional and local scales based on the overall database, but also with 
different subsets for the seasonality (wet and dry seasons), and the southern (JAJ) 
and northern (MBS) parts of the study area.

Figure 3 shows, in log–log coordinates, the distribution of rainfall conditions 
(D, E) that have resulted in landslides at both scales; the municipality of Angra 

Figure 2. 
Map of the urban center of Angra dos Reis. Red dots show location of the 526 landslides recorded over an area 
of 6.5 km2.
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dos Reis (1640 landslides) and the urban center (526 landslides), with the 1% and 
5% ED thresholds curves. The urban center shows a quite similar 1% ED threshold 
(T1 UC-ADR) and 5% ED threshold (T5 UC-ADR) to those calculated at the regional 
scale (T1 ADR and T5 ADR). See Table 1 for more details about the scale and intercept 
parameters.

Figure 3. 
Rainfall duration D (x-axis) and cumulated event rainfall E (y-axis) conditions that have resulted in 
landslides at the regional scale of the municipality of Angra dos Reis (upper panel) and at the local scale of the 
urban center (lower panel). 1% and 5% ED power law thresholds are shown with their equations (solid lines) 
as well as 50% (dashed line) for reference. Inset shows the study area and the localization of the three major 
deadly events (red dots) at the regional scale.
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The ED rainfall thresholds shown in Figure 4 indicate lower 5% thresholds for 
the extended dry season (T5 M-O-ADR and T5-M-O-UC) by comparison to the wet season 
(T5-N-A-ADR and T5 N-A-UC) at both scales. Indeed, the insets clearly indicate the high 
monthly variability in occurrence of landslides recorded, showing obvious dif-
ferences between the dry and wet season. In this case, the 5% ED thresholds were 

Figure 4. 
Rainfall duration D (x-axis) and cumulated event rainfall E (y-axis) conditions that have resulted in 
landslides in the period May–October (dry season; blue dots) and for the period November–April (wet season; 
gray dots). Colored lines are the 5% power law thresholds and insets show the distribution of recorded landslides 
on a monthly basis. Upper panel shows the dataset at the regional scale and lower panel shows the dataset at 
the local scale of urban center.
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quite similar for the municipality and urban center, particularly for the dry season 
and with a very small difference for the wet season (Table 1). However, the rainfall 
events triggering landslides during the wet season appears of shorter duration at the 
local scale (24 to 336 hours) compared to the regional scale (24 to 624 hours). No 
difference was reported for the dry season.

Figure 5. 
Rainfall duration D (x-axis) and cumulated event rainfall E (y-axis) conditions that have resulted in 
landslides in the southern region (JAJ; yellow dots) and the northern region (MBS; red dots). Colored lines are 
the 5% power law thresholds and inset shows the geographical area covers by both regions as well as the number 
of landslides recorded.

Label Area RE LE Threshold Range (h) Uncertainty

T1, ADR R 484 1640 E = 0.031xD1.232 24-624 ∆α = 0.13 ∆γ = 0,002

T5, ADR R 484 1640 E = 0.058xD1.232 24-624 ∆α = 0.18, ∆γ = 0.002

T1, UC-ADR L 129 526 E = 0.026xD1.266 24-528 ∆α = 5.32 ∆γ = 0.04

T5, UC-ADR L 129 526 E = 0.048xD1.266 24-528 ∆α = 0.7 ∆γ = 0.03

T5, N-A-ADR R-Wet 1240 1240 E = 0.113xD1.166 24-624 ∆α = 0.19 ∆γ = 0.02

T5, M-O-ADR R-Dry 400 400 E = 0.05xD1.256 24-528 ∆α = 0.20 ∆γ = 0.08

T5, N-A-UC L-Wet 393 393 E = 0.081xD1.227 24-336 ∆α = 0.22 ∆γ = 0.03

T5, M-O-UC L-Dry 133 133 E = 0.05xD1.163 24-528 ∆α = 1.2 ∆γ = 0.02

T5, JAJ-ADR R-South 357 1276 E = 0.056xD1.228 24-624 ∆α = 0.12 ∆γ = 0.02

T5, MBS-ADR R-North 451 364 E = 0.066xD1.252 24-432 ∆α = 0.6 ∆γ = 0.04

Label: label of the thresholds defined in this study. Area: regional scale (R) of the municipality or local scale (L) 
of the urban center. RE: number of rainfall events. LE: number of landslide events. Threshold: D rainfall duration, 
in hours; E, cumulated event rainfall, in mm. Range: range of the validity for the threshold. Uncertainty: associated 
with the intercept α and the slope γ of the threshold model based on a power law.

Table 2. 
Rainfall ED thresholds for the possible initiation of landslides in Angra dos Reis.
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Finally, the Figure 5 shows the similar tendency of the 5% thresholds for the 
southern and northern regions, although the latter shows a slightly higher value. 
However, it is worth mentioning the significant difference between the two regions 
regarding the number of recorded landslides; 1276 in the southern part and 364 in 
the northern part of the municipality. A significant appears also in the duration of 
rainfall events triggering landslides, which is limited to 432 hours in the north by 
comparison to 624 hours in the south (Table 2 and Figure 5).

5. Discussion

5.1 Landslide hazard and risk in Brazil

Several factors of a geological (volcanic activity, earthquake, lithologic faults 
and discontinuities, etc.), meteorological (precipitation, temperature), and human 
(land use) nature influence slope stability [36]. Therefore, the dynamic relation-
ships in time and space between these different factors greatly complicate the 
objective assessment of landslide susceptibility and probability of occurrence for a 
given region and time period [37].

In the humid tropics, the majority of precipitation and its extremes are concen-
trated during the summer period. To this end, the warm and humid climate of south-
eastern Brazil favors the chemical alteration of rock and the development of saprolites, 
especially in hilly and mountainous environments. During major rainfall events, these 
are reworked by mass movements such as debris flows, superficial slides, rotational, 
and deep-seated landslides [38]. It is therefore not surprising that in the past several 
catastrophic events occurred [39–41], for example and among others in 1967 [42], 
1988 and 1996 [43–45], and more recently in 2008, 2010 and 2011 [46–48]. The rapid 
growth of urbanization in the last decades with an improper land use [38] is certainly 
responsible, at least partially, for the tragic outcome of these recent disasters.

In this context, several approaches have subsequently been used to assess 
landslide risk: landslide susceptibility zonation using GIS-based fuzzy logic [49], 
electric and electromagnetic methods with geotechnical soundings [50], structural 
geology and kinematic analysis with stereographic projections [51, 52], analysis of 
morphological parameters (drainage efficiency index, slope geometry, slope angles, 
etc.) [53], laboratory and fields observations [54], and modeling with SHALSTAB 
(shallow landsliding stability model), SINMAP (stability index mapping), GEO-
SLOPE (slope stability analysis), and TRIGRS (transient rainfall infiltration) 
software’s [55–57]. Despite the limited effectiveness of these modeling procedures 
and the interest in mapping and vulnerability of populations to landslides, e.g. 
[58–60], there is still little work on the determination of rainfall thresholds favor-
able to landslide occurrence. Indeed, the few authors who have focused on defining 
rainfall thresholds in southeastern Brazil and the Serra do Mar at the regional scale, 
are rather thresholds based on total precipitation during major events [19, 61].

5.2 Significance of ED rainfall thresholds for hazard and risk assessment

The ED thresholds presented in this study at regional and local scales highlight 
the statistical dependency of the cumulated rainfall E to the rainfall duration D. In 
that regards, they represent appropriate rainfall thresholds for the possible occur-
rence of 1640 landslides in the municipality of Angra dos Reis and 526 landslides 
at the local scale of the urban center over a 6-year period. However, because these 
thresholds result of statistical modeling applied to an empirical dataset, uncertain-
ties have been quantified using a bootstrap approach.
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Figure 4 indicates a significant difference in seasonal thresholds for all duration 
analyzed. Surprisingly, less cumulated rainfall appear required to initiate landslides 
during the dry season (May–October) by comparison to the wet summer season 
(November–April). This result was not expected considering that usually the ante-
cedent rainfall conditions of the wet season, and the resulting increased moisture 
in the soil, reduce the amount of event rainfall required to triggering landslides 
[30]. Unfortunately, the absence of details about the landslides recorded does not 
allow a better discrimination in landslide classification or typology regarding their 
temporal occurrence. However, the significant difference between the northern and 
southern regions in number of landslides triggered by rainfall events (Figure 5), 
attests for the likely influence of other environmental factors such as slope aspect, 
land cover type, lithological types, etc. Slope steepness does not appear to be a very 
important factor given the amount of landslides recorded on gentle slopes. On the 
other hand, even considering the size of the dataset analyzed (484 rainfall events 
resulting in 1640 landslides), we acknowledge that further studies are required to 
better understand the role of land use, land cover types, urbanization, and human 
induced changes that may affect the amount of rain necessary to trigger landslides 
locally and regionally. Finally, as mentioned by [62], the bootstrapping technique 
may result in optimistic estimates of the uncertainties in the thresholds determined, 
to which we suggest conducting similar analyses over longer time series.

In the Brazilian municipality of Angra dos Reis, heavy summer rainfall has 
historically triggered several landslides, causing a significant number of victims 
and considerable damage. The risk posed by this geomorphic hazard is particularly 
high due to the fact that almost 60% of the population lives in slope areas [16] 
and more than 25% live in areas considered to be at high risk of landslides [17]. In 
that regards, our data indicate that 58% of the 1640 landslides recorded occurred 
in urban areas, 71% on gentle slope, and 34% on south facing slopes, reflecting 
the exposure and risk to the population. Therefore, the interest of the municipal 
authorities of Angra dos Reis in establishing rainfall thresholds (i.e. Table 2) should 
allow a better anticipation of spatial and temporal occurrence of the phenomenon. 
The thresholds in this study could ultimately be integrated into a landslide monitor-
ing and warning system and serve as a necessary component of hazard assessment. 
This is particularly pertinent considering that since the beginning of research on 
rain-triggered landslides in Brazil, no suitable thresholds have been proposed for 
the Angra dos Reis territory.

In fact, the thresholds of Guidicini and Iwasa [18] were established for the whole 
Serra do Mar, whose area is four times larger than that of Angra dos Reis, while the 
one developed by Soares [19] is not representative of the triggering conditions due 
to the use of an inadequate database. The thresholds proposed and to come in the 
near future according to the characteristics of the territory and from recent and 
reliable data could be an effective tool for landslide risk management.

6. Conclusion

In the mountainous and tropical environment of the municipality of Angra dos 
Reis in Brazil, the high frequency of intense rainfall generates several landslides 
that recurrently interfere with human activities and infrastructures. Lithology, land 
use and vegetation cover are biophysical parameters that remain to be explored in 
relation to the spatial and temporal dynamics of landslides, especially in a context 
of climate change and increasing urbanization.

The establishment of quantitative rainfall thresholds that, when reached or 
exceeded, are likely to trigger landslides (e.g. Figures 3–5) therefore appears to 
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be a valid approach for risk management. The thresholds reported in this study 
could provide a relevant management tool for municipal authorities. Moreover, the 
establishment of thresholds based on the duration of rainfall events (ED) should 
be regarded as a research axis whose development is essential in risk management, 
particularly in order to set up a landslide monitoring and warning system. The 
detailed study of rainfall conditions that led to the initiation of 1640 landslides in 
the municipality of Angra dos Reis and 526 landslides in the urban center revealed 
that very small amounts of water accumulated over periods of up to 26 days are suf-
ficient to initiate landslides (Table 2). These precipitations represent barely 1 to 4% 
of the annual average rainfall depending on the duration of the events considered. 
The rainfall limits appear low when compared to some of the thresholds proposed 
in the literature for Brazil and other tropical regions.

Acknowledgements

Special thanks to the municipal authorities of Angra dos Reis for providing us 
the data on the occurrence of landslides as well as the data from the rainfall sta-
tions in their territory. Finally, thanks also to the Scientific Council of the Brazilian 
Government for granting research funding in the context of this Canada-Brazil 
cooperation, particularly with the department of Geography of the State University 
of Rio de Janeiro.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



249

Empirical Rainfall Thresholds for Landslide Occurrence in Serra do Mar, Angra dos Reis, Brazil
DOI: http://dx.doi.org/10.5772/intechopen.100244

References

[1] Corominas J, Moya J. Reconstructing 
recent landslide activity in relation to 
rainfall in the llobregat river basin, 
Eastern Pyrenees, Spain. 
Geomorphology. 1999;30:79-93

[2] Cepeda J, Höeg K, Nadim F. 
Landslide-triggering rainfall thresholds: 
a conceptual framework. Quarterly 
Journal of Engineering Geology and 
Hydrogeology. 2010;43:69-84

[3] Iverson R. Landslide triggering by 
rain infiltration. Water Resources 
Research. 2000;36:1897-1910

[4] Duc DM. Rainfall-triggered large 
landslides on 15 December 2005 in Van 
Canh District, Binh Dinh Province, 
Vietnam. Landslides. 2013;10:219-230

[5] Fernandes NF, Guimarães RF, 
Gomes RAT, Vieira BC, 
Montgomery DR, Greenberg H. 
Topographic controls of landslides in 
Rio de Janeiro: field evidence and 
modeling. Catena. 2004;55:163-181

[6] Berti M, Martina MLV, 
Franceschini S, Pignone S, Simoni A, 
Pizziolo M. Probabilistic rainfall 
thresholds for landslide occurrence 
using a bayesian approach. Journal of 
Geophysical Research. 2012;117:20

[7] Ribeiro MF, da Costa VC, Neto NM, 
de Freitas, MAV. An analysis of 
monthly rainfall and its relationship to 
the occurrence of mass movement and 
flooding in Pedra Branca Massif in the 
city of Rio de Janeiro, Brazil. 
Geographical Research. 
2013;51:398-411

[8] SafeLand. 2012. Landslide triggering 
mechanisms in Europe – overview and 
state of the art. 7th framework 
program, 378 p.

[9] Martelloni G, Segoni S, Fanti R, 
Catani F. Rainfall thresholds for the 

forecasting of landslide occurrence. 
Landslides. 2012;9:485-495

[10] Caine N. The rainfall intensity-
duration control of shallow landslides 
and debris flows. Geografiska Annaler: 
Series A, Physical Geography. 
1980;62:23-27

[11] Dahal RK, Hasegawa S. 
Representative rainfall thresholds for 
landslides in the Nepal Himalaya. 
Geomorphology. 2008;100:429-443

[12] Aleotti P. A warning system for 
rainfall-induced shallow failure. 
Engineering Geology. 2004;73:247-265

[13] Talebi A, Nafarzadegan AR, 
Malekinezhad H. A review of empirical 
and physically based modeling of 
rainfall triggered landslides. Physical 
Geography Research Quaterly. 
2010;70:45-64

[14] Jakob M, Weatherly H. An 
hydroclimatic threshold for landslide 
initiation on the north shore mountains 
of Vancouver, British Columbia. 
Geomorphology. 2003;54:137-156

[15] Vieira BC, Fernandes NF, Filho OA. 
Shallow landslide prediction in the Serra 
do Mar, São Paulo, Brazil. Natural 
Hazards and Earth System Sciences. 
2003;10:1829-1837

[16] Bortoloti M. 2010. Trágico, absurdo, 
previsível [Internet]. 2010. Available 
from: http://veja.abril.com.br/130110/
tragico-absurdo-previsivel-p-054.shtml 
[Accessed: 2014-03-22]

[17] Geological Survey of Brazil. Riscos 
geológicos [Internet]. 2014. Available 
from: http://www.cprm.gov.br/
publique/cgi/cgilua.exe/sys/start.
htm?sid=38 [Accessed: 2014-03-22]

[18] Guidicini G, Iwasa OY. Essai de 
corrélation entre la pluviosité et les 



Landslides

250

glissements de terrain sous climat 
tropical humide. Bulletin de 
l’Association Internationale de Géologie 
de l’Ingénieur. 1977;16:13-20

[19] Soares EP. Caracterização da 
precipitação na região de angra dos reis e 
a sua relação com a occorréncia de 
deslizamentos de encostas [thesis]. Rio 
de Janeiro, Universidade Federal do Rio 
de Janeiro; 2006

[20] Coppetec. Mapeamento de áreas de 
riscos, frente aos deslizamentos de 
encostas no município de Angra dos 
Reis. Coppe/Universidade Federal do 
Rio de Janeiro, Reports 2-4; 2011

[21] de Almeida, FDM, Carneiro CDR. 
Origem e evolução da serra do mar. 
Revista Brasileira de Geociências. 
1998;28:135-150

[22] Ferrari A, Mansur K. Ponto de 
interesse geológico: Serra do Mar. Rio de 
Janeiro: projeto caminhos 
geológicos; 2012

[23] Geological Survey of Brazil. 
Geologia da folha Volta Redonda 
sf.23-z-a-v. Contracto cprm-uerj no. 
057/pr/05. Brasília: programa de 
geologia do Brasil; 2007. 148 p.

[24] Soares FS, Francisco CN, 
Senna MCA. Distribuição espaço-
temporal da precipitação na região 
hidrografica da baía da Ilha Grande –  
Rio de Janeiro. Revista Brasileira de 
Meteorologia. 2014;29;125-138

[25] de Souza, FT, Ebecken NNF. A data 
based model to predict landslide 
induced by rainfall in Rio de Janeiro 
City. Geotechnical and Geological 
Engineering. 2012;30:85-94

[26] Mazza BC. Inventário de 
movimentos de massa gravitacionais na 
Serra do Mar no municipio de Angra dos 
Reis, Rio de Janeiro [thesis]. Rio de 
Janeiro, Universidade Federal Rural do 
Rio de Janeiro; 2007

[27] Guerra AJT, Bezerra, JFR, 
Jorge MDCO, Fullen MA. The 
geomorphology of Angra dos Reis and 
paraty municipalities, southern Rio de 
Janeiro State». Revista Geonorte. 
2013;8:1-21

[28] Pocidonio EAL, da Silva TM. Nature 
as attraction and repulsion in the city of 
Angra dos Reis, Rio de Janeiro State. Geo 
Uerj. 2011;2:422-446

[29] Instituto Brasileiro de Geografia e 
Estatística. 2014. Online Database 
[Internet]. 2014. Available from: http://
www.ibge.gov.br/home/ [Accessed: 
2014-01-13]

[30] Zêzere JL, Trigo RM, Trigo IF. 
Shallow and deep landslides induced by 
rainfall in the Lisbon region (Portugal): 
assessment of relationships with the 
North Atlantic Oscillation. Natural 
Hazards and Earth System Sciences. 
2005;5:331-344

[31] Brunetti MT, Peruccacci S,  
Rossi M, Luciani S, Valigi D, Guzzetti F. 
Rainfall thresholds for the possible 
occurrence of landslides in Italy. Natural 
Hazards and Earth System Sciences. 
2010;10:447-458

[32] Environmental Systems Research 
Institute. Arcgis, Redland: ESRI; 2013

[33] Thiessen AJ, Alter JC. Precipitation 
averages for larges areas. Monthly 
Weather Review. 1911;39:1082-1084

[34] Guzzetti F, Peruccacci S, Rossi M, 
Stark CP. Rainfall thresholds for the 
initiation of landslides in central and 
southern Europe. Meteorology and 
Atmospheric Physics. 2007;98:239-267

[35] Peruccacci S, Brunetti MT, 
Luciani S, Vennari C,  
Guzzetti F. Lithological and seasonal 
control on rainfall thresholds for the 
possible initiation of landslides in 
central Italy. Geomorphology. 
2012;139-140:79-90



251

Empirical Rainfall Thresholds for Landslide Occurrence in Serra do Mar, Angra dos Reis, Brazil
DOI: http://dx.doi.org/10.5772/intechopen.100244

[36] Gariano SL, Guzzetti F. Landslides 
in a changing climate. Earth-Science 
Reviews. 2016;162 :227-252

[37] Borgomeo E, Hebditch KV, 
Whittaker AC, Lonergan L. 
Characterising the spatial distribution, 
frequency and geomorphic controls on 
landslide occurrence, Molise, Italy. 
Geomorphology. 2014;226:148-161

[38] Alheiros MM, Filho OA.  
Landslides and coastal erosion hazards 
in Brazil. International Geology Review. 
1997;39:756-763

[39] Avila A, Justino F, Wilson A, 
Bromwich D, Amorim M. Recent 
preciptation trends, flash floods and 
landslides in southern Brazil. 
Environmental Research Letters. 
2016;11:114029

[40] Guerra A. Catastrophic events in 
Petropolis City (Rio de Janeiro State), 
between 1940 and 1990. Geojournal. 
1995;37:349-254

[41] Kabiyama M, Michel GP, 
Engster EC, Paixao MA. Historical 
analyses of debris flow disaster 
occurrences and their scientific 
investigation in Brazil. Labor & 
Engenho. 2015;9:76-89

[42] Dias HC, Dias VC, Vieira BC. 2016. 
Landslides and morphological 
characterization in the Serra do Mar, 
Brazil. In: Aversa et al. editors. Landslides 
and Engineered Slopes. Experience, 
Theory and Practice. Associazione 
Geotecnica Italiana; 2016. p. 831-836

[43] Coelho-Netto AL. Produção de 
sedimentos em bacias fluviais 
florestadas do maciço da Tijuca: 
respostas aos eventos extremos de 
fevereiro de 1996. Anais do ii Encontro 
Nacional de Engenharia de Sedimentos. 
1996;1:209-217

[44] Coelho-Netto Al. Catastrophic 
landscape evolution in a humid region 

SE Brasil: inheritances from tectonic, 
climatic and land use induced changes. 
Geografia Fisica e Dinamica 
Quaternaria. 1999;3:21-48

[45] Lacerda WA. Stability of natural 
slopes along the tropical coast of Brazil. 
In : Almeida MSS. editor. Symposium on 
recent developments in soil and 
pavement mechanics, Balkema, 
Rotterdam; 1997. p. 17-40

[46] Assis Dias MC, Saito SM, Alvala RC, 
Stenner C, Pinho G, Nobre CA, 
Fonseca MR, Santos C, Amadeu P, Silva D, 
Lima CO, Ribeiro J, Nascimento F, 
Correra CO. Estimation of exposed 
population to landslides and floods risk 
areas in Brazil, on an intra-urban scale. 
International Journal of Disaster Risk 
Management. 2018;31:449-459

[47] Graeff O, Guerra A, Jorge MC. 
Floods and landslides in Brazil. A case 
study of the 2011 event. Geography 
Review. 2012;September:38-41

[48] Coelho-Netto AL, Sato AM, 
Avelar AS, Vianna LGG, Araujo IS, 
Ferreira DLC, Lima PH, Silva APA, 
Silva RP. January 2011: The extreme 
landslide disaster in Brazil. In: 
Margottini C. et al. editors. Landslide 
Science and Practice –The second World 
Landslide Forum; 2013

[49] Bortoloti FD, Castro Junior RM, 
Araujo LC, de Morais GB. Preliminary 
landslide susceptibility zonation using 
gis-based fuzzy logic in Victoria, Brazil. 
Environmental Earth Sciences. 
2015;74:2125-2141

[50] Bortolozi CA, Motta MFB, de 
Andrade MCM, Lavalle LVA, 
Mendes RM, Simoes SJC, Mendes TSG, 
Pampuch LA. Combined analysis of 
electric and electromagnetic methods 
with geotechnical soundings as soil 
characterization as applied to a landslide 
study in Campos do Jordao City, Brazil. 
Journal of Applied Geophysics. 
2019;161:1-14



Landslides

252

[51] Cerri RI, Reis AGV, Gramani MF, 
Giordano LC, Zaine JE. Landslides 
zonation hazard: relation between 
geological structures and landslides 
occurrence in hilly tropical regiona of 
Brazil. Anaia da Academia Brasileria de 
Ciencias. 2017;89:2609-2623

[52] Cerri RI, Reis AGV, Gramani MF, 
Rosolen V, Luvizotto GL, Giordano LC, 
Gabelini BM. Assessment of landslide 
occurrences in Serra do Mar Mountain 
Range using kinematic analyses. 
Environmental Earth Sciences. 
2018;77:325

[53] Coelho-Netto AL, Avelar AS, 
Fernandes MC, Lacerda WA. Landslide 
susceptibility in a mountainous 
geoecosystem, Tijuca Massif, Rio de 
Janeiro: the role of morphometric 
subdivision of the terrain. 
Geomorphology. 2007;87:120-131

[54] Lacerda WA. Landslide initiation in 
saprolite and colluvium in southern 
Brazil : field and laboratory 
observations. Geomorpohlogy. 2007;87 
:104-119

[55] Michel GP, Kobiyama M, Goerth RF. 
Comparative analysis of SHALSTAB and 
SINMAP for landslide susceptibility 
mapping in the Cunha river basin, 
southern Brazil. Journal of Soils and 
Sediments. 2014;14:1266-1277

[56] Mendes RM, de Nadrade MRM, 
Tomasella J, de Moraes MAE, 
Scofield GB. Understanding shallow 
landslides in Campos do Jordao 
Municipality – Brazil : disentangling the 
anthropic effects from natural causes in 
the disaster of 2000. Natural Hazards 
and Earth System Science. 2018;18:15-30

[57] Vieira BC, Fernandes NF, Filho OA, 
Martins TD, Montgomery DR. Assessing 
shallow landslide hazards using the 
TRIGRS and SHALSTAB models, Serra 
do Mar, Brazil. Environmental Earth 
Sciences. 2018;77:260

[58] Listo FLR, Vieira BC. Mapping risk 
and susceptibility of shallow-landslide 
in the city of Sao Paulo, Brazil. 
Geomorphology. 2012;169-170:30-44

[59] Debortoli NS, Camarinha PIV, 
Marengo JA, Rodrigues RR. An index of 
Brazil’s vulnerability to expected 
increases in natural flash flooding and 
landslide disasters in the context of 
climate change. Natural Hazards. 
2017;86:557-582

[60] Batista JAN, Julien PY. Remotely 
sensed survey of landslide clusters : case 
study of Itaoca, Brazil. Journal of South 
American Earth Sciences. 
2019;92:145-150

[61] Almeida MCJ, Nazakawa A, 
Tatizana C. Análise de correlação entre 
chuvas e escorregamentos no Município 
de Petrópolis, Rio de Janeiro. In: 
Proceedings of the 7o Congresso 
Brasileiro de Geologia de Engenharia; 
12-16 September 1993; São Paulo. 
ABGE; 1993. p. 129-133

[62] Efron B, Tibshirani RJ. An 
Introduction to the Bootstrap. Chapman 
and Hall; 1994





Landslides
Edited by Yuanzhi Zhang and Qiuming Cheng

Edited by Yuanzhi Zhang and Qiuming Cheng

In recent years, landslides and their impacts have drawn increasing awareness globally, 
regionally, and locally. Landslides as catastrophic events can cause human injury, loss 
of life, and economic devastation as well as destroy infrastructures and cultural and 

natural heritage. New technologies, including interferometric synthetic aperture radar 
(InSAR) and geographic information systems (GIS), are being thoroughly adopted and 

applied to dynamic and process monitoring and modelling of coal mine and marine 
landslides, land subsidence, and tsunami landslides. These technologies are also being 
used for hazard mapping and assessment, early warning and evacuation, and regional 

or local landslide mitigation. This book discusses these topics and more.

Published in London, UK 

©  2022 IntechOpen 
©  robixy79 / iStock

ISBN 978-1-83969-023-5

Landslides

ISBN 978-1-83969-025-9


	Landslides
	Contents
	Preface
	Section 1 - Introduction to Landslides
	Chapter1
Introductory Chapter: Landslides

	Section 2
Landslide Mechanisms and Dynamics
	Chapter2
The Effect of Aspect on Landslide and Its Relationship with Other Parameters
	Chapter3
Implications of Soil Properties on Landslide Occurrence in Kigezi Highlands of SouthWestern Uganda
	Chapter4
Landslide Mitigation through Biocementation

	Section 3
Evaluation of Landslide Processes
	Chapter5
Evaluation of Landslide Susceptibility of Şavşat District of Artvin Province (Turkey) Using Machine Learning Techniques
	Chapter6
Performance Evaluation of Geometric Modification on the Stability of Road Cut Slope Using FE Based Plaxis Software
	Chapter7
Assessment of Landslide Risk in Ethiopia: Distributions, Causes, and Impacts

	Section 4
Landslide Analysis
	Chapter8
Landslide Analysis over CreepTheory - Crack Propagation of Shale Slopes in Şırnak Asphaltite Coal Mine Site 1 and 2
	Chapter9
Analysis of Landslide and Land Subsident Using Geophysical Method in the East Java Province, Indonesia

	Section 5
Application of NewTechnologies
	Chapter10
Landslide Movement Monitoring with InSAR Technologies

	Section 6
Landslide Inventory
	Chapter11
Landslide Inventory, Susceptibility, Hazard and Risk Mapping

	Section 7
LandslideWarning
	Chapter12
Detection and Warning of Tsunamis Generated by Marine Landslides
	Chapter13
Empirical Rainfall Thresholds for Landslide Occurrence in Serra do Mar, Angra dos Reis, Brazil




