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Preface

Elasticity is the ability of a material body to return to its original shape and size 
after the removal of a deforming force. The elasticity of materials can be predicted 
by computational simulations and/or measured in laboratory experiments.

The first section of this book, covering simulation and modeling, contains four 
chapters. In Chapter 1, Sanjay Pal et al. discuss the elasticity of rubber. Chapter 2, 
by José Moreira de Sousa, considers failures of nanostructures and fully atomistic 
molecular dynamics simulations. Kirill Komkov’s Chapter 3 describes elements of 
the nonlinear theory of elasticity based on tensor nonlinear equations. In Chapter 4, 
Eusebio Jiménez Lopéz et al. describes laminate composite material models.

The second section, on characterization, comprises seven chapters. In Chapter 5, 
Yohichi Kohzuki highlights the temperature dependence of stress within additive 
single crystals. Jeremiah Rushcitsky (Chapter 6), illustrates the elasticity of auxetic 
materials. Chapter 7, by Seiki Chiba et al., covers the improvement of elastomer 
elongation and output for dielectric elastomers. In Chapter 8, Ramratan Guru et al. 
describes the functional application of compression and recovery in sportswear 
fabrics. Chapter 9, by IIndrani Sen and S. Sujith Kumar, discusses the characteristic 
stress-strain behavior of materials caused by nanoindentation. In Chapters 10 and 11, 
Bryer Sousa et al. discuss the origins of the Oliver‒Pharr instrumented strength 
microprobe method and continued advancements in nanoindentation.

We would like to take this opportunity to thank all the researchers who have made 
direct contributions to the writing of this book. We also thank all the editorial staff 
at IntechOpen, in particular Nera Butigan, Author Service Manager, for her effective 
editing and support during different stages of the production of this book.

Gülşen Akın Evingür
Faculty of Engineering,

Pîrî Reis University,
Tuzla, İstanbul, Turkey

Önder Pekcan
Faculty of Engineering and Natural Sciences,

Kadir Has University,
Cibali, İstanbul, Turkey
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Chapter 1

Origin of Rubber Elasticity
Sanjay Pal, Mithun Das and Kinsuk Naskar

Abstract

Under suitable conditions, virtually all rubbery materials exhibit the ability to
sustain deformations followed by complete recovery upon removal of the stress.
This phenomenon holds significance beyond the narrow confines of the term “rub-
ber elasticity” This elasticity theory is also of great importance in the deformation of
any substances., e.g., in the deformation of amorphous or semi-crystalline poly-
mers. Rubber elasticity is also essential to the functions of elastic proteins and
muscles. Thus, the theory of rubber elasticity is centrally essential to much of
polymer science. In this chapter, we have touched upon some of the basic concepts
of thermodynamics of rubber elasticity and other factors affecting it.

Keywords: Thermodynamics, Elasticity, Phenomenological Treatment,
rubber elasticity, rubber

1. Introduction

The capability of Rubber-like materials to extend to several-fold their original
length is undoubtedly the most striking characteristic, which has been the subject of
research interest for decades. Questions like what factor contributes to such substan-
tial deformation and what effects temperature and pressure cast on the elasticity of
rubber, all these have been pursued by several investigators. Having these questions
in the back of our mind, we shall try to cement our concepts regarding how rubber
elasticity is different from those of crystalline solid [1, 2] and glasses [3] which cannot
normally be extended to more than a small fraction of their original length without
undergoing failure, and ductile materials such as metals [4–6] which can undergo
large deformation but cannot return to their original length upon removal of stress.

In this chapter, we will first get up to understanding the thermodynamics of
rubber elasticity. It should be noted that the classical thermodynamic approach is
only concerned with the macroscopic behavior of material under investigation and
has very little thing to do with their molecular structure. The next section of this
chapter presents the quantitative description of elasticity of the network of rubber
chains based on the classical principles of statistical mechanics. Finally, we discuss
various factors affecting the elasticity of rubber.

2. Effect of various factors on the elasticity of rubber

2.1 Effect of temperature on rubber elasticity

We need an experimental setup for investigating the effect of temperature on
rubber elasticity. There are numerous ways to measure this experimentally.
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One such experimental design that is widely used to probe the fundamentals of
rubber elasticity is mentioned in Table 1. This experiment is primarily based on
the automatic stress-relaxometry setup as shown in Figure 1, which was used by
M.C. Shen and D.A. McQuarrie [7].

An outcome of such experimental exercise on natural rubber samples is shown
in Figure 2, which exhibits the effect of temperature on the restoring force at
various extension ratios. The testing sample was prepared from NBS pale creep
rubber, which was cured by 1.5 phr dicumyl peroxide at 145°C temperature for
40 min duration. The restoring force is seemed linearly varying over a wide range of
temperatures. The slop of the force-temperature curve however changes depending
upon the extension ratio. The shift from negative slope at low degree of elongation
to the positive slope at a higher extension ratio is called the thermoelastic inversion.
The thermoelastic inversion value may lies around 10% for rubbery materials. It
should be noted that this behavior is not confined to natural rubber, but it is general
for all rubbery materials.

Now is the right time to get fully involved with the constitutive relationship
between the restoring force (f) and various thermodynamic state variables such as
temperature (T), pressure (P), etc. Most thermodynamic theories in general

Step 1. Extend the rubber sample to a desired
fixed length

Step 2. Allow the sample to equilibrate, i.e.,
allowing the stress-relaxation to proceed until
constant modulus is achieved.

Step 3. Under equilibrium conditions, measure
the restoring force as a function of temperature at
constant pressure.

Step 4. Repeat steps 1 to 3 on a fresh sample at
different elongated lengths.

Table 1.
Procedure for measuring the effect of temperature on the elasticity of rubber.

Figure 1.
The automatic stress relaxometry. By permission of the American Institute of Physics [7].
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textbooks are confined to the gaseous pressure-volume form of work (dW ¼ PdV).
However, in the case of the deformation of rubber, there is something more than
just pressure-volume work. When a strip of rubber sample is elongated by a length
dl, a restoring force is generated inside the rubber system (Figure 3). Therefore, the
tiny amount of work involved in this process can be expressed as,

dW ¼ PdV � fdl (1)

In the expression above, the dV factor is the volume change that arises due to the
elongation of the rubber sample. Usually, PdV is so small relative to the fdl that PdV
can be dropped out from Eq. (1). However, we are going to have PdV for the sake of
completeness. Now, for the reversible processes, we may combine the first and
second law of thermodynamics and write it as,

dU ¼ TdS� dW (2)

From Eqs. (1) and (2)

dU ¼ TdS� PdV þ fdl (3)

Figure 2.
Stress-temperature curves of natural rubber [7].

Figure 3.
Schematic representation of change in configuration of rubber chains under the applied stress.
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Since the experiment is usually conducted at a constant atmospheric pressure
value (1 atm or 14.696 psi), the enthalpy transfer dH accompanying the volume
change due to the elongation of the rubber may be written as,

dH ¼ dU þ PdV (4)

By combining Eqs. (3) and (4), we arrive at the expression,

dH ¼ TdSþ fdl (5)

By partially differentiating Eq. (5) and treating temperature and pressure as
constant, we get,

f ¼ ∂H
∂l

� �

T,P
� T

∂S
∂l

� �

T,P
(6)

f ¼ ∂H
∂l

� �

T,P
þ T

∂f
∂T

� �

l,P
(7)

Eqs. (6) and (7) hold an essential piece of information regarding the origin of
elastic force. Let us take a moment to behold this relationship between restoring
force and temperature and what role enthalpy and entropy play in this Eq. (6).
According to Eq. (6), the restoring force depends on two factors: enthalpy and
entropy change that occur in rubber due to elongation (or deformation in general
terms). Generally, rubber molecules are so long that almost every chain participates
in crosslinking and entanglement processes. During deformation or stretching,
some rubber chains are forced to become linearly oriented, which causes a decrease
in entropy of the rubber system. This decrease in entropy gives rise to the elastic
force in the network chains, (Figure 4).

Figure 4.
Graphical representation of the relationship between restoring force and temperature.
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It is important to understand the limitation of Eq. (6) that it does not fully
comply with the behavior of rubber at extremely high elongation. The ∂H

∂l

� �
T,P part

has a finite value and cannot be ignored. At sufficiently high elongation, most
rubber crystalizes and thus ∂H

∂l

� �
T,P factor may overweight �T ∂S

∂l

� �
T,P. The coefficient

∂H
∂l

� �
T,P can be experimentally obtained from the force-temperature curve as the

intercept on restoring force axis at zero temperature value. The coefficient ∂H
∂l

� �
T,P

has a fundamental relationship with other thermodynamic quantities, which may be
expressed as

∂H
∂l

� �

T,P
¼ ∂U

∂l

� �

T,V
þ T

α

β

∂V
∂l

� �

T,P
(8)

where, α is the cubical coefficient of thermal expansion,

α ¼ 1
V

∂V
∂T

� �

P,l
(9)

and β is the coefficient of isothermal compressibility,

β ¼ 1
V

∂V
∂P

� �

T,l
(10)

The coefficient value α and β can be measured experimentally, however the
coefficient ∂V

∂l

� �
T,P is usually exceedingly small for most of the rubbers. Therefore, a

great deal of experimental accuracy is required. Eqs. (7) and (8) can be combined to
one the more refined and insightful expressions about the relative contributions of
enthalpy and entropy towards the rubber elasticity. It should be noted that Eq. (11),
in practice, does not comply well with the real behavior of rubber-like materials due
to a lack of accurate ∂V

∂l

� �
T,P data [8–10]. Therefore, various approximations have

been suggested, which is beyond the scope of this chapter.

ð11Þ

2.2 Effect of crosslinking on rubber elasticity

As discussed in the introduction section, rubber materials have the outstanding
ability to return to their initial position almost instantaneously upon the removal of
deforming load with virtually zero permanent deformation within the network
chain structure. This snapping of rubber primarily happens due to the presence of
crosslinks. We can think of crosslinks as the knot holding two or more threads
together. Crosslink inhibits the long-range mobility of rubber chains. Therefore,
based on our general understanding, we can confidently say that the crosslinked
rubber would require a lot more force to stretch for the same amount of strain as the
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uncrosslinked rubber [11–13]. Figure 5 schematically represents the crosslinking
process of the linear polymer chains into an infinite network. In practice,
crosslinking process is performed by incorporating the appropriate crosslinking
agents like sulfur or peroxide into the rubber matrix and heating it at elevated
temperature under some pressure. The crosslinking process enhances dimensional
stability, abrasion resistance, and many other properties [14–17].

The extent to which a rubber chain network is crosslinked directly impacts the
elasticity of rubber. According to the statistical mechanics, rubber elastic modulus
under a uniaxial elongation is directly proportional to the number of crosslinks per
unit volume (No or mol=cm3Þ of the rubber chain network. If the rubber density is
given as d g=cm3ð Þ, and the average molecular weight of network chain is
Mc g=molð Þ, then

No ¼ d
Mc

(12)

For a small uniaxial strain value, the relationship between the elastic modulus Eo
and crosslink concentration No can be mathematically written as

Eo ¼ 3NoRT
��r2o
r2f

(13)

or

Eo ¼ 3dRT
Mc

��r2o
�r2f

(14)

Here,��r2o represents themean square end-to-end distance of the chains within the
network, and r2f represents themean end-to-end distance of the isolated chains [18, 19].

Since rubber is considered an incompressible material in relation to their shear
deformation, that is poisson’s ratio of rubber is close to 0.5, i.e., elastic modulus Eo is
approximately equal to three times the shear modulus Go. Therefore, Eq. (14) can
be rewritten as,

Go ¼ dRT
Mc

��r2o
r2f

(15)

Figure 5.
Schematic representation of crosslinks in an ideal chain network structure.
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Eq. (15), however is based on the idealized image of a perfect rubber chain
network in which all network chains contribute to the elasticity of rubber. It is
assumed that each crosslink combines four chains, and two crosslinks terminate
each such chain. But in reality, there are several imperfections present in the rubber
chain network. As illustrated in Figure 5, the non-effective crosslinks like wasted
crosslinked, chain loops, and terminal ends significantly affect the elastic stress in
the strained network of rubber chains. For example, linear polymer chains of
average molecular weight M would have 2d/M number of terminals. Since these
terminals would not take part in the elasticity, they should be excluded from the
number of effective chains.

Go ¼ RT
��r2o
r2f

d
Mc

� 2d
M

� �
(16)

or,

Go ¼ dRT
Mc

� �
��r2o
r2f

1� 2Mc

M

� �
(17)

Entanglements in rubber chain network also impose additional restriction,
which leads to increment in the elastic stress. In a closed packed network of rubber
chains, it is quite natural to expect several such entanglements between two con-
secutive crosslinks [20, 21]. Therefore, the contribution of such entanglements to
elastic stress cannot be overlooked, especially chains that are long enough to permit
multiple entanglements. The deviation from the “normal” crosslinked structure can
be accounted for by adding the entanglement factor (a) in Eq. (18),

Go ¼ dRT
Mc

þ a
� �

��r2o
r2f

1� 2Mc

M

� �
(18)

2.3 Effect of filler on rubber elasticity

Raw rubber is a mechanically weak material. Thus, rubber needs some extra
compounding ingredients to enhance its physical properties in addition to
crosslinking. Therefore, filler is an indispensable ingredient in the rubber industry.
Carbon black, zinc oxide, silica, clay are some commonly used filler examples. Filler
can be of two types, reinforcing and non-reinforcing. Reinforcing fillers increase the
rubber’s stiffness without impairing the strength and losing the rubbery characteristic.

The most common expression describing the effect of filler on rubber elasticity
is popularly called as Guth-Smallwood equation

E f

Eo
¼ 1þ 2:5 ∗∅ f þ 14:1 ∗∅2

f (19)

where, ∅ f is the volume fraction of filler and subscripts f and 0 refer to the filled
and unfilled rubber respectively. Eq. (19) is inspired by the Einstein’s equation that
relate viscosity of fluid containing small solid suspension particles [22, 23]. The
validation of Eq. (19) is to be found in its good agreement with the experimental
data as shown in Figure 6.

Stress softening is another exciting behavior that is commonly seen in the filled
rubber system. It was first observed by the Mullins, after whom it is named [24].
According to the stress-softening effect, the stress–strain curve depends on the
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maximum loading previously encountered. The term “Mullins effect” is also com-
mon to all rubbers, including non-filled rubber. Figure 7 illustrates the softening of
stress with each step.

Bueche gave the first molecular interpretation of the Mullin’s effect and the
explanation for the Figure 7 [25]. As illustrated in Figure 8, two nearby filler
particles in a reinforced rubber are connected via polymer chains. One of them is
relaxed, but the others are relatively elongated. When the rubber sample is
stretched, the “prestrained” chains first reach maximum extension, and then they
either become detached or break. In the second cycle, the detached/broken chains
no longer share the overall applied load, thus giving rise to the observed softening of
stress behavior. The same thing happens when the sample is stretched a third time.

2.4 Effect of stress-induced crystallization

In unstrained conditions, the rubber sample is assumed to hold isotropic prop-
erties. However, when the rubber sample is stretched, anisotropic change occurs at

Figure 6.
Effect of filler volume fraction on filled to non-filled rubber modulus ratio.

Figure 7.
Stress–strain curves for a filled rubber showing progressive cyclic softening, also known as the Mullins effect.
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the microscopic level. Polymer chains tend to orient more in the direction of stretch
than in the lateral directions. Therefore, a greater number of ordered chins favor the
formation of crystallites. These crystallites combine numbers of nearby network
chains, which then act as crosslinks. As the sample is stretched further, more
crystallite is formed and get transformed into physical crosslinks. These crosslinks
then, in turn, cause a rise in elastic stress. It is known that such crystallites have very
high elastic moduli (�1011 Pa), which is usually five orders of magnitude higher
than the elastic moduli of rubbery materials (�106 Pa). At higher elongation, such
crystallites also play the role of reinforcing filler, which further increases the elastic
stress of the rubber sample.

Figure 9 illustrates the stress–strain behavior of natural rubber carried at two
temperatures, i.e., 30 and 60°C. The graph shows how stress steeply rises above a
certain ratio, i.e., λ = 0.3. However, it should be noted that the stress-induced
behavior also depends on the temperature at which experiment is conducted. At
60°C natural rubber sample exhibit slight upturn in the elastic stress towards the
extension ratio, which is primarily caused by the finite extensibility of the polymer
chain in the network [27].

2.5 Time-temperature superposition principle

So far, we have done a quantitative and qualitative discussion on the influence of
various factors like temperature, extension ratio, crosslink density, fillers, and
crystallinity affecting the elastic stress of modulus of the rubber sample. These
considerations present a fair picture of physical behavior of a rubber material.
However, the constitutive relations those we have seen till now are based on the
static experimental data that is the effect of an immediate change to a system is
calculated without regard to the longer-term response of the system to that change.

Rubber is regarded as a highly viscoelastic material that is rubber resembles
characteristics of both elastic and viscous material. There are three main character-
istics of viscoelastic materials: creep, stress relaxation, and hysteresis. These visco-
elastic phenomena arise due to the long-term response of the material to a constant
load or strain. Clearly, there is a time factor involved in these observations, which
leads to the question that how one can relate viscoelastic responses with time scale
mathematically. There are quite some constitutive models that quantitatively
express viscoelastic response as a function of time. Maxwell, Kelvin–Voigt,

Figure 8.
Schematic representation of molecular mechanism for stress-softening effect. (a) Unstrained rubber chain-filler
particle assembly, and (b) rubber chain-filler particle assembly after deformation.
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Generalized Maxwell models are some well-known examples. Detailed discussion
on these models is however beyond the scope of this chapter. Rather, we shall focus
on understanding the time-dependent variation of elastic modulus by using time–
temperature superposition principle.

To better understand time–temperature superposition principle let us us take an
example of a stress relaxation experiment conducted at different temperature. At a
given temperature T1, a polymer sample of unit cross section area is subjected to an
instantaneous strain that is maintained constant throughout the whole experiment.
Then the stress as function of time is measured and stress relaxation modulus is
obtained according to the Eq. (20). Where t can be experimentally accessible time
period. Polymer sample is then set free from stress and allowed to undergo relaxa-
tion. Next, temperature is changes to T2, and same procedure is repeated yielding
E tð Þtensile stress relaxation modulus at new T2 temperature. Theis process is
repeated at several different temperature and “t second stress-relaxation modulus” is
obtained as a function of temperature.

E tð Þ ¼ σ tð Þ
ϵ0

(20)

where, σ tð Þ is stress as a function of time, and ϵ0 is constant strain value.
Time–temperature superposition principle states that the change in temperature

from T1 to T2 is equivalent to multiplying the time scale by a constant factor aT that
is only a function of the two temperatures T1 to T2 according to the Eq. (21).

E t1,T1ð Þ ¼ E t1=aT,T2
� �

(21)

log aT ¼ log
t1
t2

(22)

where t2 is the time required to reach E t2,T2ð Þ stress relaxation modulus mea-
sured at T2 temperature. Figure 10(left). exhibits data obtained from one such
experiment (i.e., stress relaxation) conducted on bis-phenol-A-polycarbonate
(Mw = 40,000 g/mol), and Figure 10(right) represents the transformed
modulus-time curve for a referenced temperature of 141°C [26].

Figure 9.
Natural rubber stress–strain curve measured at two different temperatures [26].
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3. Conclusions

Overall, we have discussed the basic concepts of thermodynamics of rubber
elasticity. The quantitative effect of temperature on the elasticity of rubber has been
scribbled down. Then the qualitative discussion on the role of crosslink density,
filler concentration and strain induced crystallization on the elastic modulus of
rubber-like materials provide supporting explanations backed by mechanism from
statistical to molecular scale standpoint. Additionally, we discussed what role time
scale plays in elastic modulus of general polymer at a given temperature using time–
temperature superposition principle. The contents discussed in this chapter is sim-
ple and sufficient to develop an interest in readers’ mind to take next step towards
studying more complex rubbery materials.
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Chapter 2

Nanostructures Failures and Fully
Atomistic Molecular Dynamics
Simulations
José Moreira de Sousa

Abstract

Nowadays, the concern about the limitations of space and natural resources has
driven the motivation for the development of increasingly smaller, more efficient,
and energy-saving electromechanical devices. Since the revolution of “microchips”,
during the second half of the twentieth century, besides the production of micro-
computers, it has been possible to develop new technologies in the areas of mecha-
nization, transportation, telecommunications, among others. However, much room
for significant improvements in factors as shorter computational processing time,
lower energy consumption in the same kind of work, more efficiency in energy
storage, more reliable sensors, and better miniaturization of electronic devices. In
particular, nanotechnology based on carbon has received continuous attention in
the world’s scientific scenario. The riches found in different physical properties of
the nanostructures as, carbon nanotubes (CNTs), graphene, and other exotic allo-
tropic forms deriving from carbon. Thus, through classical molecular dynamics
(CMD) methods with the use of reactive interatomic potentials reactive force field
(ReaxFF), the scientific research conducted through this chapter aims to study the
nanostructural, dynamic and elastic properties of nanostructured systems such as
graphene single layer and conventional carbon nanotube (CNTs).

Keywords: molecular dynamics method, interatomic reactive force field—ReaxFF,
graphene monolayer, convetional carbon nanotubes—(CNTs), elastic properties

1. Introduction

Failures in condensed materials can be observed from the naked eye, Earth’s
crust in earthquakes, to the interatomic interaction of atoms and molecules at the
nanoscale (nanoscience), not visible in experimental procedures that require expla-
nations of certain physical phenomena on the nanometric scale [1].

Thus, understanding the condensed matter under mechanical load is of funda-
mental importance in the sustained development of new materials with superior
qualities to the existing ones. Understanding the structural failure (even at the
nanometric scale), the mechanical limits of new materials allow us to establish
nanostructure applications and new materials for certain purposes the applicability
in the development of new electromechanical devices to specific applicability’s in
advance nanotechnologies. Over several thousands of years, knowing the behavior
of condensed matter under extreme conditions of mechanical stress has provided
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the way for a new era in the science of materials and its modern technologies for
improving the quality of life for humans and planet Earth. Due to nanotechnological
advances, the human quality of life has important improvements in material science
and its technologies. So, the basis of this advance is in the study of the physical
properties of materials and nanostructures (theoretically as well as experimentally)
and their various length and time scales for theoretical study for physicochemical
predictions of nanostructures and materials. Fully atomistic molecular dynamics,
like computational modeling, is becoming increasingly important and indispensable
in theoretical description and predictions not understandable by experimental sci-
entists in the development of new technologies [2, 3]. Nevertheless, starting to
create nanostructures at the scale of atoms and molecules, atomistic models are
described in terms of length-scale computational cost to obtain theoretical results of
the physical properties of nanostructures and new materials. The following is an
illustration of the computational cost of fully atomistic modeling at the scale of
atoms and molecules [4], together with its computational methods widely used in
computational modeling in materials science [5] (see Figure 1).

A fundamental and very important concept in the study and analysis of
mechanical failure in nanostructures and new materials is to establish valid methods
obtained from experimental averages. Thus, it is possible to establish a fully atom-
istic computational modeling to model the physical properties of nanostructures
and new materials, where the set of parameters described in the reactive and non-
reactive force fields are obtained directly from the results provided by the experi-
ments. Currently, the combination of experimental tests with computational
modeling concepts has shown promising and efficient results in the study of the
physical properties of nanostructures and new materials at accessible computational
cost scales with the dimensions of the nanostructure (number of atoms and mole-
cules) [6, 7]. This strategy in nanotechnology has contributed to important results
in simulations of atoms and molecules in scientific and technological innovation and
applications [4, 8]. Thus, simulations with carbon nanostructures have received
particular attention after the synthesis of graphene, which won a Nobel Prize for
K.S. Novoselov, A.K. Geim in 2004 [9] (by mechanical exfoliation method of
graphite), thus suggesting a new era in materials science and fully atomistic

Figure 1.
Overview of a diagrammatic representation of timescales and lengthscale associated with computational
methods used for computational simulation in the development of new materials in time and length scales [4].
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computational simulations of systems formed by carbon atoms, particularly such as
“graphene”, a single layer of graphite and carbon nanotubes (CNTs), the cylindrical
shape of roll-up one-dimensional graphene membrane (CNTs) [10].

In this chapter, we present the mechanical properties of graphene and CNT. We
seek to show the efficiency of computational methods of reactive molecular
dynamics with interatomic potentials parameterized by experimental results. We
show theoretical results of mechanical failures in graphene monolayers and CNTs at
the nanometer scale. Through computer simulations via classical molecular dynam-
ics (CMD) method using the reactive force field (ReaxFF) reactive interatomic
potential, we show mechanical failures (fracture pattern), Young’s modulus, ulti-
mate tensile strength (UTS), and critical strain for graphene and CNT and thus
compare with the experimental results obtained in the literature. We hope that this
chapter will add to future scientists who seek to start their academic activities using
the molecular dynamics method with reactive potentials for studies not only of
mechanical failures in nanostructures, but also more complete and detailed studies
of the physical properties of nanostructured systems in nanometric scale.

2. Classical molecular dynamics simulation method

Classical molecular dynamics (CMD) is a technique that studies the behavior of
a system of particles (atoms and molecules) as a function of time. The temporal
evolution of set of these particles, in certain interacting systems, are obtained by the
integration of equations of motion. Based on this, terms like “modeling” and “sim-
ulation” are widely used in conjunction with the numerical solution of physical
problems involving interacting particles. However, it is important to note that these
words have different meanings. The term “Modeling” refers to the development of
the mathematical model of a physical situation, while “Simulation” refers to the
procedure for solving equations, resulting in the developed model. This makes MD
a widely used tool for studying material properties as an intersection of various
scientific disciplines as shown in Figure 2 [3].

Figure 2.
Classical molecular dynamics method (CMD) as an intersection of several disciplines.
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CMD simulations is a method that calculates the equilibrium and thermal trans-
port properties in classical systems involving many bodies (in this case atoms as
classical particles). In this context, the word “classic” means that the movement of
these particles obeys the laws of classical mechanics (Newton’s laws), being an
excellent approximation for the study of the physical properties of a large number
of nanostructures and new materials, especially graphene and CNT (in a study in
this chapter). This method consists of solving Newton’s equations for a set of
atoms and molecules, thus obtaining the speed and position of each particle that
makes up the physical system at each instant of the simulation. The theoretical basis
of CMD embodies many of the results produced by great names in analytic
mechanics such as: Euler, Hamilton, Lagrange, and Newton. Your contributions can
be found in mechanics textbooks [11–13]. Some of these results contain fundamen-
tal observations of nature, while the others are elegant reformulations in the theo-
retical development of a classical mechanics set of linked computers that work
together (computer cluster), perform computational calculations as a single system.
The shared memory is performed by multi-threading parallelism (OpenMP) for
computational clusters. Thus, after having the code installed and depending on what
you want to simulate, it is necessary to build a computational code in C++ language,
where we establish the physical properties of the problems to be studied by
performing the computational modeling. For example, in this review chapter, we will
simulate the mechanical failures of graphene and CNTs by the CMD-ReaxFF method.
The code is written in computational language C++, where the thermodynamic quan-
tities output via the “thermo-style” command is important to normalize all physics
quantities by the number of atoms. This behavior can be changed via the thermo-
modify (in real units) norm command. After the initial definitions of the code, we
establish the statistical set that will describe the physical properties of the computa-
tional sample that we intend to computationally simulate, such as the NVT statistical
canonical ensemble. In many cases, because the system has a very large number of
particles, it is impossible to find the properties of such complex systems analytically.
The trajectories of atoms and molecules are determined through from the numerical
solution of Newton’s equations of motion, to a system with interacting particles,
where the force between the particles and the potential energy are defined by
mechanics force field molecular (here reactive force field—ReaxFF discussed in
following section).

Therefore, the objective in an atomistic simulation is to predict the movement of
each atom in a material, characterized by a set of linked computers that work
together (computer cluster), perform computational calculations as a single system.
The shared memory is performed by multi-threading parallelism (OpenMP) for
computational clusters. Thus, after having the code installed and depending on
what you want to simulate, it is necessary to build a computational code in C++
language, where we establish the physical properties of the problems to be studied
by performing the computational modeling. For example, in this review chapter, we
will simulate the mechanical failures of graphene and CNTs by the CMD-ReaxFF
method. The code is written in computational language C++, where the thermo-
dynamic quantities output via the “thermo-style” command is important to nor-
malize all physics quantities by the number of atoms. This behavior can be
changed via the thermo-modify (in real units) norm command. After the initial
definitions of the code, we establish the statistical set that will describe the
physical properties of the computational sample that we intend to computationally
simulate, such as the NVT statistical canonical ensemble: the atomic position ri tð Þ,
the velocities vi tð Þ, and accelerations ai tð Þ, as shown in Figure 3. The general
idea of running a molecular dynamics simulation is presented by two factors as
followed:
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1.Particle under the effect of potential energy, of where the forces governing the
system can be calculated.

2.Equations of motion that determine the dynamics of particles, in which case
Newton’s laws are applied. Molecular dynamics uses Hamilton’s classical
equations of motion.

The classical Hamiltonian is defined as the sum of kinetic energy and energy
potential:

p ¼ � ∂H
∂Ri

(1)

and

_R ¼ � ∂H
∂pi

(2)

that lead to Newton’s equations of motion. The classical Hamiltonian is defined as:

H pi,Ri
� � ¼

XN
i¼1

p2i
2Mi

þ V Rið Þ (3)

The force on an atom can be calculated by Newton’s law as the derivative of
energy in relation to the change in the position of the atom:

Fi ¼ mi
d2Ri
dt2

¼ �∇iV Rið Þ ¼ � dV
dRi

(4)

leading to the set of Newtonian equations of motion for each particle iwith mass
mi and Cartesian coordinate Ri. Therefore, for a closed system composed of N
carbon atoms that interact through a potential energy function (here the
interatomic reactive force field—ReaxFF), the CMD consists of solving the coupled
N Newton equations. Therefore, in a computer simulation, we use a numerical
integration algorithm to solve N differential equations [14].

Figure 3.
Illustration of a system with N carbon atoms interacting with each other by interatomic reactive potentials, here
in this chapter the ReaxFF reactive force field will be presented (see [4]).
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In the classical formalism of CMD, the carbon atoms are treated as a collection of
classical particles that can be described by Newtonian forces, where they are treated
by harmonic or elastic forces. A complete set of interaction potentials between
particles is known as the force field [15]. Parameters associated with force fields can
be determined via first-principle calculations (Density Functional Theory—DFT) or
via experimental results. Currently, there are numerous cam types of forces that are
widely used in the study of the physical and chemical properties of nanostructured
systems. We present in this chapter the interatomic force field—ReaxFF in the
study of mechanical failure (mechanical properties) of a single layer of graphene
and CNTs (armchair and zig-zag). In followed section, we show a brief description
of the force field used in the simulations presented here in this chapter about the
mechanical properties of graphene and CNT.

3. Interatomic reactive force field: ReaxFF

The reactive force field (ReaxFF) was developed to be a bridge between the
chemical-quantum (QC) and the empirical (EFF) force fields [16, 17]. The EFF
methods [18] describe the relationship between energy and geometry using a rela-
tively simple set of functions. In the simplest form, EFF methods treat CMD sys-
tems or condensed matter systems by simple harmonic equations that describe the
stretching and compression of bonds and the bending of bond angles. Unbound
interactions are described by van der Waals potentials and Coulomb interactions
(Lennard-Jones potential):

VLJ ¼ 4∈
x
σ

� ��12
� x

σ

� ��6
� �

(5)

The Lennard-Jones potential consists of a two-body interaction function com-
posed of the sum of two terms, an attractive interaction of the van der Waals type
≈10�6 and a short-range repulsive interaction ≈10�12 associated with the repulsion
between orbitals atomic due to the Pauli exclusion principle. The terms # is a
measure of the depth of the potential well and the term σ is the coefficient of the
expression of the equilibrium distance of the pair of atoms. Classic models are not
the only possible way to develop the potentials of many bodies. Developments
based on first principles can lead to more accurate potentials for describing cases of
interest. In this class of more modern potentials are included the so-called reactive
potentials, developed specifically for a description of the dynamics of formation and
breaking of bonds in materials. As reactive potential, we have the ReaxFF [16, 17],
potential using in the chapter in the description of the physical properties of failure
mechanics of graphene single layer and CNT. The CMD-ReaxFF is performed in all
calculations in this chapter in the review study of mechanical properties of
graphene single layer and CNTs. We show the interesting and important method,
because through the theoretical results the values obtained in all simulations are in
good agreement with experimental results and with results based on quantum
methods (ab initio and DFT).

The modern reactive force field (ReaxFF) is parametrized whit first-principles
calculations and compared with experimental results. The heath formations of the
carbonous nanostructures values change between 2.8 and 2.9 kcal/mol when com-
pare reactive molecular dynamics simulations and data experimental [16, 17]. The
set parameter validity used for performed reactivity between carbon atoms ligands
in this reviewer is divided by partial energy contributions [16, 17]:
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Esystem ¼ Ebond þ Eover þ Eunder þ Eval þ Epen þ Etor þ Econj þ EvdW þ E∞, (6)

where, here the terms of Eq. (6), respectively, represents the energies
corresponding to the bond distance Ebondð Þ, the over-coordination Eoverð Þ, the
undercoordination Eunderð Þ, the valence Evalð Þ, the penalty for handling atoms with
two double bonds Epen

� �
, the torsion Etorð Þ, the conjugated bond energies Econj

� �
, the

van der Waals EvdWð Þ, and coulomb interactions Ecoð Þ. The fundametation of
ReaxFF is bond order BO0

ij between a pair of atoms as [16, 17]:

BO0ij ¼ exp pbo, 1:
rij
ro

� �pbo,2
" #

þ exp pbo, 3:
rπij
ro

� �pbo,4
" #

þ exp pbo, 5:
rπij
ro

� �pbo,6
" #

(7)

where the atomic configurations is obtained from interatomic distance rij of three
exponential terms, such as, the σ bond pbo, 1ð Þ and pbo, 2ð Þ, first π bond pbo, 3ð Þ and
pbo, 4ð Þ and ππ bond pbo, 5ð Þ and pbo, 6ð Þ, with their respective dependencies in
interatomic distances CdC bond σ � 1:5̊Að Þ, π � 1:2̊Að Þ and ππ � 1:0 ̊Að Þ.

The bond order is corrected for cases where there is over-coordination (more
bonds than allowed), through f1 and residual link order BO0 for valence angles,
through f 4 and f 5. The correction due to over-coordination occurs only for bonds
between two carbon atoms, while the correction for the residual bond order BO0 for
valence angles occurs for all connections. The corrections f i, f i ¼ 1:::5

� �
are

presented in Eqs. (11)–(15). Bond order BO0 for valence angle refers to the bond
order existing between two atoms, not directly connected, where both are
connected to a third, forming a valence angle [16, 17]:

BOij ¼ BO0
ij: f 1 Δ0

i,Δ
0
j

� �
: f 4 Δ0

i,BO
0
ij

� �
: f 5 Δ0

j,BO
0
ij

� �

BOσ
ij ¼ BO0σ

ij : f 1 Δ0
i,Δ

0
j

� �
: f 4 Δ0

i,BO
0
ij

� �
: f 5 Δ0

j,BO
0
ij

� �

BOπ
ij ¼ BO0π

ij : f 1 Δ0
i,Δ

0
j

� �
: f 1 Δ0

i,Δ
0
j

� �
: f 4 Δ0

i,BO
0
ij

� �
: f 5 Δ0

j,BO
0
ij

� �
(8)

BOππ
ij ¼ BO0ππ

ij : f 1 Δ0
i,Δ

0
j

� �
: f 1 Δ0

i,Δ
0
j

� �
: f 4 Δ0

j,BO
0
ij

� �
: f 5 Δ0

j,BO
0
ij

� �
(9)

BOij ¼ BOσ
ij þ BOπ

ij þ BOππ
ij (10)

f 1 Δ0
iΔ

0
j

� �
¼ 1

2

Vali þ f 2 Δ0
iΔ

0
j

� �

Vali þ f 2 Δ0
iΔ

0
j

� �
þ f 3 Δ0

iΔ
0
j

� �þ
Vali þ f 2 Δ0

iΔ
0
j

� �

Vali þ f 2 Δ0
iΔ

0
j

� �
þ f 3 Δ0

iΔ
0
j

� �
0
@

1
A

(11)

f 2 Δ0
iΔ

0
j

� �
¼ exp λ1Δ0

j

� �
þ exp �λ1Δ0

j

� �
(12)

f 3 Δ0
iΔ

0
j

� �
¼ 1

λ2

0
ln

1
2

exp �λ2Δ0
i

� �þ exp �λ2Δ0
j

� �h i� �
(13)

f 4 Δ0
iBO

0
ij

� �
¼ 1

1þ exp �λ3: λ4BO0
ijBO

0
ij � Δ0

i

� �
þ λ5

h i (14)
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f 5 Δ0
iBO

0
ij

� �
¼ 1

1þ exp �λ3: λ4BO0
ijBO

0
ij � Δ0

i

� �
þ λ5

h i (15)

There are ReaxFF implementations, developed by individual research-based in
[16, 17] formalism. Nowadays, the current ReaxFF parameter set developed by CMD-
ReaxFF based on the periodic table of elements found on our planet Earth are [18, 19]:

• Group 1: H (non-metal), Li, Na, K, Rb, Cs (metals).

• Group 2: alkaline Earth metal: Mg, Ca, Sr and Ba.

• Group 3: lanthanide: Y.

• Group 4: lanthanide: Ti, Zr and Hf.

• Group 5: lanthanide: V and Nb.

• Group 6: lanthanide: Cr, Mo and W.

• Group 7: lanthanide: Mn.

• Group 8: lanthanide: Fe and Ru.

• Group 9: lanthanide: Co.

• Group 10: lanthanide: Ni, Pd and Pt.

• Group 11: lanthanide: Cu, Ag and Au.

• Group 12: lanthanide: Zn.

• Group 13: B, Al and Ga.

• Group 14: C and Si.

• Group 15: N and P.

• Group 16: O, S, Se and Te.

• Group 17: F, Cl and I.

• Group 18: He, Ne, Ar, Kr and Xe.

So, in this chapter, we performed reactive molecular dynamics simulations with
ReaxFF to obtain the failure mechanics of a single layer of graphene and CNT. The
results of reactive molecular dynamics simulations performed in this chapter
(CMD-ReaxFF) of review are discussed in the next section.

4. Large-scale atomic/molecular massively parallel simulator code:
LAMMPS

All simulations developed in this thesis were performed using the large-scale
atomic/molecular massively parallel simulator (LAMMPS) code [20]. LAMMPS is a
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code that simulates a set of particles (solid, liquid or gas) using the classical molec-
ular dynamics method. It is a code designed to obtain efficiency in the simulation
when it is performed on parallel processors for systems whose particles are in a 3D
rectangular box with density approximately uniform. It is an open source program
maintained and distributed by researchers at Sandia National Laboratories [20],
written in C++. It’s a stable program that has the ability to simulate from a few
particles to billions of them. In the following chapters we present the results that
were obtained with the use with LAMMPS code.

4.1 Computational modeling of mechanical failure of nanostructures

LAMMPS code is a classical molecular dynamics simulation in language C++
designed to run efficiently on parallel computers. Is an open-source code, distrib-
uted freely under the terms of the GNU Public License (GPL) developed at Sandia
National Laboratories [20]. The LAMMPS runs on a single processor or in parallel,
or in single laptops or advanced computational clusters parallel using memory
message-passing parallelism (MPI) [21].

A set of linked computers that work together (computer cluster), perform com-
putational calculations as a single system. The shared memory is performed by
multi-threading parallelism (OpenMP) for computational clusters. Thus, after
having the code installed and depending on what you want to simulate, it is
necessary to build a computational code in C++ language, where we establish the
physical properties of the problems to be studied by performing the computational
modeling. For example, in this review chapter, we will simulate the mechanical
failures of graphene and CNTs by the CMD-ReaxFF method. The code is written in
computational language C++, where the thermodynamic quantities output via the
“thermo-style” command is important to normalize all physics quantities by the
number of atoms. This behavior can be changed via the thermo-modify (in real
units) norm command. After the initial definitions of the code, we establish the
statistical set that will describe the physical properties of the computational sample
that we intend to computationally simulate, such as the NVT statistical canonical
ensemble:

fix ID group� ID nvt temp Tinitial Tfinal Tdamp (16)

After the initial definitions of the code, we establish the statistical set that will
describe the physical properties of the computational sample that we intend to
computationally simulate, such as the NVT statistical ensemble. The NVT com-
mands perform time integration on Nose-Hoover thermostat [22] style designed to
generate positions and velocities of computational sampled under computational
modeling by CMD-ReaxFF.

5. Canonical ensemble in statistical mechanics and thermodynamics
quantities

Characterized by a set of macroscopic parameters, graphene, and CNT are in
contact with the thermal reservoir (see Figure 4). Considering the very large
reservoir compared to the computational sample that we intend to study, the total
energy of the E0 system, we have the validity of the thermodynamic postulates and
statistical mechanics. Thus, the probability Pi of obtaining physical quantities of
interest, in these cases, in the study of the mechanical failure of graphene and CNTs
is given by [23]:
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Pi ¼ ΞζR E0 � Eið Þ (17)

where Ξ is a normalization constant, Ei is the energy of the system in the
particular thermodynamics state i, and ζR is a microscopic state accessible to the
thermal reservoir with energy E.

After coupled canonical thermostat NVT in the graphene and CNT, we applied a
constant engineering strain rate of δ ¼ 10�6 fs�1, see de command line in LAMMPs
code:

fix ID group� ID deform N parameter args… keyword value… (18)

and so, adapt the code to the mechanical problem that seeks to study its elastic
physical properties.

6. Fully atomistic computational simulation: elastic properties of
graphene and CNT

After all the technical and physical properties in the study of mechanical failure
in nanostructured systems, we present below the elastic properties of graphene
single layer and CNTs (see Figure 5). In the Figure 5, we showed que atomistic
configurations of graphene single layer 90� 90 ̊A whith 3256 carbon atoms, con-
ventional carbon nanotubes whthi chirality armchair (11, 11) whith 616 carbon
atoms and zig-zag (11, 0) whith 352 carbon atoms.

Thus, in Figure 6, we can see the graphical representations of the stress/strain
curve for graphene monolayer at 300, 600, and 1000 K temperatures. For graphene
monolayer at 300, 600 and, 1000 K (black, red, and blue curves), we clearly note
two regimes: first, a linear regime followed by a plastic regime up to the complete
fracture (see Figure 6). At 300 K, our results obtained by fully-atomistic reactive
molecular dynamics simulations performed with interatomic force field ReaxFF we
can see at room temperature a linear regime, we do not see permanent deformations
which are different from what occurs for the plastic regime, where the graphene
monolayer present breaking bonds (aligned in directions of load strain applied)
between carbon atoms CdC up to the fracture point, which is characterized by an

Figure 4.
Computational sample (graphene and CNT) in contact with a thermal reservoir R at a specific temperature
different at 0.
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abrupt drop of stress values to zero at 0.10 (0.13)—critical strain, respectively for
X-direction (Y-direction). For higher temperatures (600 K and 1000 K), the stress/
strain curves for graphene shows a reduction in ultimate tensile strength (UTS) and
critical strain σCð Þ values. Those results for graphene were already observed for
another theoretical investigation of graphene monolayer under thermal effects, see
the bibliographic references [24, 25]. So, our results have good correspondence with
results already obtained in the literature [26–28]. Therefore, the averages of the
mechanical properties are listed in the following Table 1. In Figures 6 and 7, we
show the temporal atomistic evolutions of frames of the results obtained by reactive
molecular dynamics simulations with an interatomic reactive force field ReaxFF,
when the set of atomic configurations of load strain applied in graphene are in X
and Y-direction and CNT.

In the results in Figures 6 and 7, we can see the fully atomistic reactive molec-
ular dynamics simulations with ReaxFF-potential for graphene monolayer for strain
applied in X and Y-direction of mechanical load strain applied respectively. The
results obtained whit ReaxFF potential show that the failure starts at CdC bonds
which are aligned (in X and Y-direction of load strain applied). In all temperatures
(300, 600, and 1000 K) we can see a clean failure rupture. The color bar in down of
snapshot frames, shows the stress concentration in the monolayer the stretching
dynamics, where the color blue are low-stress concentration and red color are high-
stress concentrations in graphene monolayer. The results of CMD-ReaxFF for CNTs
(armchair and zig-zag) (Figure 7), the stress is highly accumulated on the zigzag

Figure 5.
Computational sample (graphene and CNT) in contact with a thermal reservoir R at a specific temperature
different at 0.
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Figure 6.
Stress versus strain curves for graphene monolayers predicted by reactive molecular dynamics simulations
with the ReaxFF interatomic potential at 300 K, 600 K and 1000 K in X-direction (left panels) and in
Y-direction (right panels). Atomic frames representations of graphene monolayer under strain load in X-
direction (room temperature): left side: (a) stretched (0%) of strain, in (b) 9.24% of strain, in (c) start
break some chemical bonds CdC at 10.14% of strain and (d) the complete fracture of graphene monolayer
at 10.96% of strain. In right side: atomic frames representations of graphene monolayer under load strain in
Y-direction (room temperature): (a) un stretched (0%) of strain, in (b) 12.14% of strain, in (c) start break
some chemical bonds CdC at 12.79% of strain and (d) the complete fracture of graphene monolayer at
13.24% of strain.

Graphene monolayer

Temperature (K) YMOD GPa nmð Þ UTS GPa nmð Þ Critical strain

X-Direction 300 3:14� 3:60 16:19� 0:03 0.10

600 273:20� 3:17 15:63� 0:02 0.10

1000 243:87 � 2:27 14:76� 0:04 0.09

Y-Direction 300 3:13� 3:66 16:53� 0:02 0.13

600 273:79� 3:37 15:86� 0:03 0.12

1000 273:80� 2:88 15:86� 0:03 0.09

Table 1.
Mechanical properties values for graphene monolayer obtained by reactive molecular dynamics simulations
with interatomic reactive potential ReaxFF calculated over a linear limit of 3%.
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Figure 7.
Representative MD snapshots of a tensile stretch of conventional CNTs (armchair (11, 11) (top) and zigzag
(11, 0) (bottom)). (a and d) Lateral view of the strained nanotube colored accordingly to the von Mises stress
values (low stress in blue and high stress in red). (b and e) Zoomed view of the starting of bond breaking. (c and
f) CMD-ReaxFF snapshot of the CNTs just after fracture [29].

Figure 8.
Graphical representation of stress-strain curves obtained by CMD-ReaxFF for CNTs (11, 11)—black color
and CNT (11, 0)—red color, at room temperature [29].
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chains along the direction of the nanotube main axis. The fracture starts from the
bonds parallel and nearly parallel to the nanotube main axis for the zigzag and
armchair CNTs, respectively. Because CNTs lack the acetylene chains, the structure
is more rigid, the stress is accumulated directly on the hexagonal rings, the critical
strains are smaller, and the ultimate strength value is larger [29]. The obtained
Young’s modulus (see Figure 8) of the (11, 11) and (11, 0) CNTs were 955 GPa and
710 GPa, respectively. The ultimate tensile strength (UTS) 166 GPa and 122 GPa
and σC ¼ 18% and σC ¼ 16% in good agreement with the average value of single-
walled CNTs obtained by Krishnan et al. [30].
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Chapter 3

Elements of the Nonlinear
Theory of Elasticity Based on
Tensor-Nonlinear Equations
Kirill F. Komkov

Abstract

The chapter contains information that forms the basis of a new direction in the
nonlinear theory of elasticity. The theory, having adopted the mathematical appara-
tus obtained in the middle of the last century, after its analysis, is used with signif-
icant changes. This concept allows us to more accurately reveal the mechanism of
deformation of materials, the elastic nature of which significantly depends on the
type of stress state, due to the growth of additional volumetric deformation associ-
ated with the accumulation of defects, called dilatation. The work is original — after
abandoning the elasticity characteristics in the form of modules - constants, the main
role is assigned to material functions, which represent statistical characteristics.
Their relation can be considered a coefficient of variation and a parameter of tensor
nonlinearity, which makes it possible to represent the deformation in the form of
two parts, different in origin.

Keywords: dilatancy, volume deformation, shape change, phase similarity of
deviators, volume deformation, coefficient of variation, tensor nonlinearity,
anisotropy, variable elasticity parameter

1. Introduction

Experimental studies of well-known mechanics with various materials already in
the eighteenth century revealed numerous nonlinear effects described in the book
[1]. From the standpoint of the linear theory of elasticity, many of them could not
be explained, so they were called second-order effects, as not significant. However,
in the middle of the twentieth century, they pushed M. Rayner [2], and a little later,
V. V. Novozhilov [3], to the need to develop a theory based on a new concept of
tensor-nonlinear equations [4, 5] that more accurately reflect the nonlinearity of
materials. The widespread introduction of composite media and the study of their
mechanical properties began at the end of the last century. In the same years, a lot
of experimental works appeared to study the mechanical properties of various
composites, illuminating the properties of not only reinforced materials, but also
grain composites, which differ in different reactions to tension and compression.
This property is possessed by media whose longitudinal modulus of elasticity and
other characteristics depend on the type of stress state, determined at values of
deformations close to zero. It should be called the work of Tolokonnikov L. A.,
Makarov E. S. [6] and many others who have devoted research to the properties of
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these media, in which the presence of damage to internal connections and loosen-
ing, that is, the development of dilatancy, is stated. The theories put forward by
them are based on tensor-linear equations. As a rule, in them all the characteristics
of different-modulus media are determined from the condition of the existence of a
specific deformation potential.

In this paper, in continuation of the study [7], to take into account the noted
effects, such a transformation equations was found, which made it possible to
develop methods for determining the elasticity characteristics. These equations
presented for the main deformations made it possible not only to describe the
deformation of the shape change, the coefficients of transverse deformations along
different axes, to determine the volume deformation depending on the average
stress, but also the dilatancy associated with the shape change.

2. About of different-module materials

The development of methods was carried out based on the results of studies
of grain composite [8], and in earlier works of gray cast iron, using the research
of [9]. The first is a hardened mechanical mixture of a mineral filler with a
polymer matrix, the test results and information about its properties are published
in [8, 10–12]. These materials have not only the presence of divergence of the initial
longitudinal modules under tension and compression, but also show the depen-
dence of elastic properties on time; therefore, in this work, the test results obtained
at a single strain rate are used. The nonlinearity of the diagrams of a grain composite
is clearly represented by the results of testing cross-shaped samples under repeated
static stretching. It has a high malleability at normal temperature. The main purpose
of testing such samples was to more fully reveal the mechanism of deformation of
different-modulus materials. Figure 1a shows the curve 1—the ascending branch at
the first cycle of active deformation along the axis 1–1 represents the initial proper-
ties of the material. Where P is the force in H, Δl is the elongation in millimeters.
When unloading, the curve decreases sharply, which indicates a significant
decrease in the number of bonds that break down with small deformations. The
residual deformation does not represent plastic properties, but a residual dilatancy,
from which it is possible to make a quantitative assessment of the initial deforma-
tion anisotropy for the next loading cycle. Curve 2—the ascending branch of the
second cycle illustrates the resistance of the restored “short” and remaining “long”
bonds. In Figure 1b, curve 1 is the ascending branch of the test at the first cycle
along the axis 2–2. For comparison, a diagram (dashed) is shown, marking the
initial properties of the composite. The difference in the curves of the first cycles in
different directions suggests that the connection break occurs in the transverse
direction as well. The first curve shows that the “short” connections in the direction
2–2 are partially preserved.

The difference between the ascending branches of the first and second
stretching cycles along the 1–1 and 2–2 axes is a real one, called [3] by V. V.
Novozhilov “real” anisotropy. The second cycle shows that the material has notice-
ably softened, the slope of the curve has decreased, but the tangential longitudinal
elastic modules manifest themselves on the second part of the branch as increasing,
differing from the first cycle. This emphasizes the fact that the links are divided into
“short” and “long”—stronger, although in [13] a more detailed gradation of links is
given, which will be superfluous for this work.

Both in [8, 12], it is noted that stretching is accompanied by a noticeable increase
in volume. The same is observed with compression, although to a lesser extent. The
loss of bonds and softening are the cause of the loss of elastic energy, which is taken
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into account by the mathematical model with a proportional increase in stresses
only by the growth of additional volume deformation, as in the deformation theory,
plastic shifts. For practical calculations, test diagrams of standard samples were
used according to the method described in [8]. The tensile diagram for testing along
the 1–1 axis, curve 1, Figure 1a, is a sequence of limit values of groups of bonds that
are close in strength. The same is true for other types of loading, but to a lesser
extent.

The purpose of this work is to fully reveal the possibilities tensor-nonlinear
equations: transformed to a form convenient for the formulation of material func-
tions, analysis, and processing of test results. On their basis, to develop methods for
calculating all characteristics, including the coefficients of transverse deformations,
elastic modulus, and compliance, as well as parameters that characterize the loos-
ening of the structure and the change in elastic properties both with increasing load
and with a change in the type of stress state.

3. On tensor-nonlinear equations

To describe the deformation of different-modulus materials, considering them
isotropic, we used tensor-nonlinear equations of the connection of the strain devia-
tor De with the stress deviator Dσ by V. V. Novozhilov [3], which, unlike the
equations of M. Reiner [2], do not yet require the equation of the connection of the
average strain with the average stress:

εij � 1
3
ê1δij ¼ 1

2G
cos 2ξþ ψð Þ

cos 3ξ
Sij þ

ffiffiffiffi
3
ŝ2

r
sinω
cos 3ξ

SiαSαj � 2
3
ŝ2δij

� �� �
: (1)

In the left part: eij ¼ εij � ε0δij� components of the strain deviator; ε0 ¼ εiið Þ=3 ¼
ê1=3� average strain; ê1 � the first, ê2 ¼ 3e20=4� the second and ê3 ¼ 3det∣De∣� the
third invariants of the strain tensor;

e0 ¼ 2=3eijeij
� �1=2 (2)

Figure 1.
a—Curve 1—The ascending branch at the first cycle of active deformation on the axis 1–1, curve 2—The
ascending branch of the second cycle; b—Curve 1—The ascending branch at the first cycle on the axis 2–2.
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Strain intensity. In the right part: Sij ¼ σij � σ0δij� components of the stress
deviator; σ0 ¼ σiið Þ=3 ¼ ŝ1=3– medium voltage, ŝ1� first, ŝ2 ¼ S20=3� second and

ŝ3 ¼ �3det∣Dσ ∣�third invariants of the stress tensor; S0 ¼ 32SijSij
� �1=2� is the

intensity of the stress; Si ¼ S0сi=3- principal values of the stress deviator; ei ¼
e0di=2� the main values of the deviator of the strain used in [3]; c1 ¼ 2 cos ξ, c2 ¼ffiffiffi
3

p
sin ξ� cos ξ, c3 ¼ � ffiffiffi

3
p

sin ξþ cos ξ
� �� trigonometric values that relate the

main stresses to the stress intensities and similar di to the strain intensities.
Abandoning the constancy of the phase similarity diverters ω, which was pro-

posed in [4], the generalized modulus G and the phase can be expressed through the
coefficients of the tensor arguments:

X ¼ 1
2G

cos 2ξþ ψð Þ
cos 3ξ

, Y ¼ 1
2G

ffiffiffiffi
3
ŝ2

r
sinω
cos 3ξ

¼ 1
2G

3
S0

sinω
cos 3ξ

(3)

For this we can use Eq. (1) presented for the main component of the deviator of
the strain

ei ¼ XSi þ Y S2i � 2=9S20
� �

: (4)

The coefficients X and Y can be given an unambiguous physical meaning and
formulas for determining them can be derived. Using three shear pliabilities φi ¼
γi=τi i in sites with principal tangential stresses τi ¼ S j � Sα

� �
=2, where γi ¼

ej � eα� a are the principal shifts, Eq. (12) allow us to find three shear pliabilities
φi ¼ 2 X� Ŷci

� �
, where Ŷ ¼ YS0=3. Given that the sum cið Þ ¼ 0, from the relations

for the pliabilities we find their average value and standard deviation:

Φm ¼ ϕið Þ=3 ¼ 2X; Φd ¼ ϕj � ϕα

� �2� �
=8

� �1=2

(5).

Thus, the analysis of the Eq. (1) allows, without any assumptions, to be free
from uncertainty and to find an approach to the characterization of the deformation
Φm and Φd that are already used for different materials, therefore will continue to
remain the same notation, naming the material features:

Φm ¼ 2X ¼ cos 2ξþ ψð Þ
G cos 3ξ

; : Φd ¼ 1
3
Ŷ ¼ sinω

2G cos 3ξ
(6)

The sum of the squares of the differences of the main values of the deformation
deviator

ei � ej
� �2 ¼ S02

9
ci � cj
� �2 X2 þ 2XŶcα þ Ŷ

2
c2α

� �
(7)

leads to the need to calculate the relations:
P

ci � cj
� �2 ¼ 18,

P
cα ci � cj
� �2 ¼

18 sin 3ξ,
P

c2α ci � cj
� �2 ¼ 18; i, j, α ¼ 1, 2, 3; i 6¼ j 6¼ α. Finally, the relationship

between the strain intensity (2) and the stress intensity is reduced to the equation:

e0 ¼ 2S0
3

X2 þ 2XŶ sin 3ξþ Ŷ
2

� �h i1=2
: (8)

It leads to generalized malleability:

Φξ ¼ 3e0
S0

¼ Φ2
m þ 4=3ð ÞΦmΦd sin 3ξþ 4=9ð ÞΦ2

d

� �1=2
, (9)
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as a function of the angle ξ, and the inverse of the malleability to the generalized
modulus of elasticity under shear:

G ¼ 1=Φξ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
ŝ2=ê2

p
¼ 1= 2 X2 þ 2XŶ sin 3ξþ Ŷ

2
� �h i1=2� �

: (10)

It follows from this relation that the modulus clearly depends on the type of
stress state, and it can be a constant value only in the special case, as it was
envisaged in [4]. After replacing the second invariants on the stress intensity and
strain intensity and replacing the sequence of main stresses: σ1 ≥ σ2 ≥ σ3, it is possi-
ble to give the original (1) equations of V. V. Novozhilov a form that was used
without simplifications in the work [7]. After replacing the second invariants on the
stress intensity and strain intensity and replacing the sequence of main stresses:, it is
possible to give the original equations of V. V. Novozhilov (1) the form, without any
simplifications, which was also used in the work [7]:

eij ¼ ΦmSij=2þΦd SiαSαj � 2S20=9δij
� �

=S0: (11)

After replacing the third invariants, the formulas for the angles take the form:
the first ξ ¼ 1=3 arccos 27SijSjαSαi= 2S30

� �� �� is the angle of the stress state view, and
the second one is ψ ¼ 1=3 arccos 4eijejαeαi= 3e30

� �� �� the angle of the view of the
deformed state, which change already in other limits: 0≤ ξ и ψ≤ π=3; i, j, α ¼ 1, 2, 3;
i 6¼ j 6¼ α. The coefficients for tensor arguments (6) make it possible to find a
formula for determining the phase the similarity of deviators:

ω ¼ ξ� ψ: (12)

The exact definition of which is given below. Performing trigonometric trans-
formations taking into account the new sequence of principal stresses, the material
functions in Eq. (8) can be represented:

Φm ¼ Φξ sin 3ξ� ωð Þ= sin 3ξ ¼ φi=3; (13)

Φd ¼ 3Φξ sin ωð Þ= 2 sin 3ξð Þ ¼ 3=8 Φm � φið Þ2
h in o1=2

: (14)

where they acquire values that have a physical meaning of average and standard
compliance, manifesting themselves by statistical characteristics. The deviatory
part of M. Rayner’s equations [2] leads to the same results of the functions φi.

4. Initial data

Due to the lack of proven methods, the first calculations in [8] used only the
results of tensile and compression tests. Generalized compliance is determined by
the relation (6), which for these states is taken by simple expressions:

Φξp ¼ Φm þ 2=3Φd, Φξc ¼ Φm � 2=3Φd (15)

Assuming the independence of these functions from the type of stress state, we
find a simple way to approximate the calculation of the shear modulus and the
phase similarity of deviators according to the formula (6). The form change for any
stress state, although approximate, can be described. To refine it, you can use the
same ratio, but for a pure shift. At the same time, difficulties arose due to the fact
that the tests were usually carried out on other equipment and other means of
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measuring deformations, so the lack of initial data was compensated by algorithms
that were derived from the same equations converted to equations for anisotropic
media [8, 10].

Experimental data obtained by tensile testing and compression of grain com-
posite [8, 11], which has the maximum deformation under compression εc > 10% in
the form of primary charts σi � ε and graphs for the coefficients of lateral defor-
mations, νi � ε, νi ¼ �εn=ε, stress and strain have to specify, according to the
formulas of [4], which can be given as follows:

σ ∗ ¼ σ 1þ 2ε ∗n
� �2

= 1þ 2ε ∗ð Þ
h i1=2

, (16)

where ε ∗ ¼ ε 1þ ε=2ð Þ; ε ∗n ¼ εn 1þ εn=2ð Þ; ν0i ¼ �ε ∗n =ε ∗� are the coefficients of
transverse deformations; i ¼ p, c; index n – indicates transverse deformation. The
stresses σ* and deformations ε* are called reduced [4]. Then the asterisk above the
given stresses and deformations is removed. The ratio of material functions can be
considered a coefficient of variation [14, p. 544]:

p ¼ Φd=Φm ¼ 3sinω=2 sin 3ξ� ωð Þ, (17)

Since the material functions exhibit a statistical character, and its values corre-
spond to the condition: p < 1. The study of its extremum shows that the derivative
with respect to the angle ξ is zero if the phase of similarity of deviators obeys
equality:

ω ¼ arctg 2psin3ξ= 3þ 2pcos3ξð Þ½ �: (18)

The graphs for the phase differ slightly from the half-wave of the sine wave
when the angle ξ changes from zero to π/3.

For phase values other than zero, the ratios of the deviator components belong-
ing to the same stress state are not equal: e1=S1 6¼ e2=S2 6¼ e3=S3� is the condition of
their disproportionality. However, for the states of tension and compression, this
inequality becomes an equality: S1=S2 ¼ e1=e2 ¼ 1, since similarity conditions are
implemented for them, since S2 ¼ S3 and e2 ¼ e3, so the phase is zero regardless of
the properties of the This conclusion is consistent with the relation (13), which
directly follows from the formulas (13) and (10). The material functions are similar:
Φd ¼ pΦm� for all states. This connection of functions allows us to consider both
shape-changing deformations and volumetric deformations in the form of two
parts. The first part should be associated with a change in the intermolecular
distances in the rigid elements of the structure, and the second part of the defor-
mation, including the coefficient of variation, should be attributed to the loss of
bonds [8]. These deformations, despite their different physical origin, are included
in the model as elastic. The initial data were taken based on the results of tests [8]
obtained during tests of grain composites, the diagrams of which are shown in
Figure 2a with dashed lines.

Solid lines represent two diagrams, after the refinement performed according to
formulas (11). The dependence of S0τ on the strain, taken as a diagram for pure
shear (fine stroke), is obtained from diagrams for stretching and compression,
according to an algorithm [7] using transformed equations. The stress values along
the ordinate axis in Figure 2a in MPa.

Graphs for the coefficient of variation p (dashed line), the maximum values of
the similarity phase of the deviators ωmax (small stroke), and the functions by which
they are determined are shown in Figure 2b. These functions include Φd and Φξ for
stretching and compressing (solid lines).
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5. On the equations for form-changing

The rejection of the constancy of the phase gives the ratio of (6), which after the
transition to the second sequence of the principal stresses is the law of deformation:

e0 ¼ ΦξS0=3, (19)

where the main characteristic becomes generalized compliance (7):

Φξ ¼ Φm 1þ 4=3ð Þpcos3ξþ 4=9ð Þp2� �1=2 ¼ 1=G, (20)

as the inverse of the generalized shift modulus of G, they are represented in a
discrete (digital) form by a mathematical model, as well as material functions. After
replacing the sequence of main stresses, sin3ξ in the expression (6) is transformed in
the ratio (15) into cos 3ξ. If the relation (15) is simplified by getting rid of the square
root, then the second part with the coefficient of variation can be represented as:

e ∗0 ¼ Φ ∗
ξ S0=3, Φ ∗

ξ ≈pΦm cos 3ξþ 1=3ð Þp½ � (21)

where the compliance for the second part is the value Φ ∗
ξ .

From the ratio (15) for stretching and compression, it also follows:

Φξi ¼ Φmi 1� 2=3pð Þ, (22)

where i ¼ p, c; (p� stretching, c - compression). The functionsΦmi andΦdi, as the
characteristics of the shape change, are determined for these states using the first
Cauchy sign [14]. On this basis, their values follow from the relations (13) and (10), if
the angle ξ is shifted by a small deviation from the original angles. The second variant
of determining the coefficient of variation follows from the relations (16):

p ¼ 3 κ� κmð Þ=2 κþ κmð Þ: (23)

It protects the characteristics of the shape change from errors in their calcula-
tions: Φm, Φd and Φξ, where κ ¼ Φξp=Φξc� is the ratio of generalized and κm ¼
Φmp=Φmc� is the average compliance. Calculation of material functions by formulas
(13) and (10), or rather by their second equalities, cannot be carried out, since there

Figure 2.
a: Test diagrams of granular composites: Curve σp– During the tensile test, curve σc� for compression, curve
S0τ�according to the algorithm using data on tension and compression; curves σ ∗

p and σ ∗
с � after the transition

to the reduced stresses. b: Curves based on the results of calculations: The change in the р – Coefficient of
variation and the ω�phase of the similarity of deviators and the curves Φd, Φm, and Φξ for the characteristics of
the shape change with increasing deformation.
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is no initial information about the functions φi ¼ γi=τi for the same state. This
obstacle can be overcome if we use the following postulates: the first one states that
the values of the functions φi can be considered the values of the malleability φi ¼
3e0=S0 ¼ Φξi for three stress states: stretching, net shear, and compression.
According to the second one, the functions φi ¼ Φξiare equal.

The results of calculations for two variants according to the formulas (12) and
(17) showed that they differ only by the fifth significant digit after the decimal
point for any loading stage. It is for checking the postulates that duplication is
necessary. If there is a coefficient of variation, the calculation of material functions
for any other states is significantly simplified: first, Φm by relation (13) is deter-
mined, and then Φd ¼ pΦm, as a function of the angle ξ and the load level, since the
coefficient of variation is the only value independent of the type of stress state.

6. On the equation for volumetric deformation

The derivation of equality (21), as an additional part of the deformation of the
form change, is proposed as an unknown formula for dilatancy, as a part of the
volume deformation, consistent with the previously expressed idea that the param-
eter p allows the deformation, divided into two parts. This thought, the results of
experimental studies and already published works allow us to propose an equation
for the volumetric strain in the following form:

ε0 ¼ εy þ εg ¼ σ0=3Kξ þ 2pΦmæS0 1þ kζð Þ=9: (24)

The first part εy� linearly dependent on the mean stress refers to the defor-
mation of the stiffer elements of the structure, where the value Kξ is the theoretical
bulk elasticity modulus. The formula for linear-elastic deformation is inherited
from linear elasticity theory, and the second part εg� dilatancy with the parameter
p, including œ – the loosening parameter and Φd� the function reflecting the
dependence of the volume strain on the form change. The coefficient k in for-
mula (18) was introduced in order to take into account the influence of average
stress on dilatancy as well as for convenience of checking the proposed relation. So,
at k ¼ 0 the formula for dilatancy takes the form that has already been used in
several works of the author, including [7, 15], because at k ¼ 0:3 the curves for
volume deformations under tension and compression are well superposed on the
experimental curves.

The process of transformation of the tensor-nonlinear equations mentioned
above is covered in sufficient detail in [7 , p. 56] and probably first implemented in
[10]. The equations for coupling the strain tensor to the stress tensor (8), together
with the equation for average strain with average stress (18), lead to the equations
for coupling the strain tensor to the stress tensor

εij ¼
3Фjkþ 2œФdkð Þσ0δij

9
þФmSij

2
þФd

S0
SiαSαj �

2 1�œð ÞS20δij
9

" #
: (25)

The equations reduced to the principal deformations are used for the matrix
transformation: εi ¼ aijσi, which can then be reduced to the form of equations
characteristic of anisotropic media:

εi ¼ σi=Ei � νjiσj=Ej � ναiσα=Eα, (26)
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with the known specifications for the diagonal components:

aii ¼ 3Фm þ фh þФdcii½ � ¼ E�1
i (27)

and non-diagonal matrix components:

aij ¼ 3Фm

2
� фh �Фdcij

� �
¼ �νijE�1

j , (28)

where фh ¼ 1=Kξ þ 2Φdæk=9 ¼ фξ þ aΦd
� �

=3; a ¼ 2kœ=3; Ei�moduli of
longitudinal elasticity, νij� coefficients of transverse deformation.
Reconciliation of Eqs. (7.6) leads to the equation for the relation of average strain
with stresses:

ε0 ¼ σ1ϕk1 þ σ2ϕk2 þ σ3ϕk3ð Þ=3, (29)

where ϕki ¼ 1=Ki is the bulk elasticity yield

ϕki ¼ 3 1� νij � νiα
� �

=Ei ¼ 3 1� νið Þ=Ei: (30)

Pairs of coefficients νi ¼ νij þ νiα
� �

=2 determine the transverse deformations
in three directions of the main stresses and volumetric deformations; where
i ¼ 1, 2, 3; i 6¼ j 6¼ α. The relations (23) are an integral part of the methodology of
determining Kξ� theoretical bulk modulus of elasticity and œ� the loosening
parameter. In this process, the most critical importance is assigned to the procedure
of matching theoretical curves for transverse strain coefficients [7].

7. Supplement to the methodology

The high values of the theoretical modulus of volumetric elasticity, but low for
compliance with tension, and low for compression, can be explained by a simple
transformation of the ratio (18), if we isolate from it εy ¼ ε0i � εgi ¼ σ0фki=3�linear
volumetric deformation. It allows you to find the pliability фki for stretching and
compression, which are required to combine experimental curves with theoretical
curves during the transformation. Taking ζc ¼ �ζp, 1=ζi ffi �3; 1=ζ ¼ 3, 0009 и
Ki ¼ Ei=3 1� 2νið Þ, simple actions lead to the formulas:

фkp ¼
1
Kp

� 2œpΦdp 1=ζþ kð Þ ffi 1
Kp

� 6:6œpΦdp, (31)

фkc ¼
1
Kc

þ 2œcΦdc 1=ζ� kð Þ ffi 1
Kc

þ 5:4œcΦdc: (32)

It follows from the first that the second term reduces the flexibility for
stretching, and the value of the theoretical module, on the contrary, increases as an
inverse value. In the second formula, the second term increases the malleability for
compression, although dilatancy is present. The second terms in these relations
allow us to quantify its influence on the values of theoretical compliance. From the
second formula, for compression, greater malleability is required, although dilat-
ancy is present. The second terms in these relations allow us to quantify its influ-
ence on the values of theoretical compliance. Since the pliability of фkp is
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determined by the initial value of the function Φdp, it makes sense to refine it by

redefining the loosening parameter œp ffi фp � фkp

� �
=6:6Φdp and then dilatancy.

The mean stress in pure shear is zero, but given that, ζp þ ζc ¼ 0, as the value of the
parameter ζτ, it is suggested algorithm, as a response to the question about the
significance of the theoretical module, and for this condition: фkτ ¼ 1

Kτ
þ

œτΦdτ≈Kξi=2, where i ¼ p, c; (p� stretching, c� compression).
It follows from the relations (24) and (25) that in the process of converting

tensor-nonlinear equations to matrix equations, the pliabilities фki ¼ 1=Kξi are real-
ized, the values of which along the axes 2 and 3 satisfy the conditions of continuity
and smoothness, as functions of the main stresses. These formulas contain an
answer to the reasons for the large difference in the values of the theoretical
module. It is called theoretical, because its values correspond to the inequality with
respect to the classical module: Kξ >K. The considered technique made it possible to
find such values of the theoretical elastic modulus that lead to more accurate values
of the linear elastic volume deformation.

8. On deformation anisotropy

V. V. Novozhilov in his work [3] expressed his opinion about this phenomenon,
for the description of which the mathematical apparatus of tensor-nonlinear equa-
tions can be used, as an “important phenomenon,” without emphasizing on what
characteristics it manifests itself. The studies show that the effect of dilatancy on the
longitudinal elastic moduli Ei is not significant. Their divergence with different
indices is less than 5%, but leads to appreciable strain anisotropy of the transverse
strain coefficients. In the history of the mechanics of materials described in the book
[1], much space is devoted to the research of its initial value (the Poisson’s ratio),
since not only modules, but also the theories of authoritative scientists depended on
it. However, the latter values, for example, at destructive stresses, are not given due
attention, especially in other areas of the main stresses. In this paper, perhaps for the
first time, graphs of the theoretical coefficients of transverse deformations are given.
They are easier to describe not by formulas, but by graphs for: ν12, ν31, νp, νc, and νi,
Σνi=3. The line in Figure 3a, represented by points, here repeats the curves for ν12 ¼
ν13, which are combined with the values of the coefficient νp by the method. The
deviation of the curve for the coefficient νp from its initial value should be considered
the main “source” of dilatancy and all other coefficients. If this curve for the coeffi-
cients νp and ν1coincided with the graph for Σνi=3, then all the curves presented in

Figure 3.
The change in the coefficients of transverse deformations: a – Under tension; b – Under compression.
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Figure 3a, would merge into one curve, and there would be no dilatancy. The main
direction is the voltage σ1.

The lower the values of the last points of the curve for νp fall, the greater the
dilatancy takes on and the higher the values of the coefficients of the other two pairs, ν2
and ν3, which overlap each other, rise. Since the dilatancy is stretched in the direction
of stretching, it is transverse for deformations of other directions. The coefficients of
the first pair have the same values, ν12 ¼ ν13, but the coefficients of the other two pairs,
ν2and ν3, differ significantly. The graphs that make up the second pair of coefficients,
ν3 and ν23, reveal their behavior—the values of ν23, exceed the number 0.5.

Figure 3b shows graphs of the dependence of transverse deformations during
compression. The line shown by the dots refers to the main direction coinciding
with the voltage σ3, and the graphs with the symbols νc and ν3should be considered
the main “source” of dilatancy. As they increase, they cross the value of 0.5, which
is typical for many loosening materials. The graphs for the coefficients with the
symbols ν1 and ν2 coincide, slightly deviating from the graph for the curve Σνi=3,
although the curves that make up them, ν21 and ν23, are almost symmetrical.

The deformation anisotropy is more clearly shown on the graphs for the pliability of
the bulk elasticity in the direction of the main stresses. The total volume deformation is
determined by the formula (22), where ϕki ¼ фk þ æ aþ cið ÞФd ¼ 3 1� νið Þ=Ei� the
compliance of the volume elasticity in the directions of the main stresses. In contrast to
the theoretical volume compliance of ϕk the characteristics of ϕki are smooth and
continuous functions of stresses. Its first term is the pliability ϕk, established by the
methodology, the second with a coefficient a ¼ 2k=3, which is responsible for taking
into account the dependence of the average voltage, and the third with a coefficient ci:

which determines the directions of the axes. Give ϕki, value (reverse module), to
allow any state to find the values of three parameters changing of elasticity:

ϑξi ¼ фk

фki
¼ Kξi

Kξ
, (33)

defining them as the degree of deviation from the theoretical volumetric compli-
ance, which is the average, фk ¼ фki=3, for three compliance фki. Each of them refers
to the main stress, in the direction of which the initial values of the volume elasticity
modules Kξi ¼ 1=фki are calculated (for σi ¼ 0). In Figure 4 curves 1, 2, and 3
represent graphs of these parameters ϑξ1 по оси. The value of the parameter ϑξ1 on
curve 1 exceeds the values of other curves with a rapid decrease along the axis ξ to the
value ϑ0 ¼ 1. Judging by the shape of these curves, the elementary volume acquires
the greatest deformation anisotropy in the direction with index 1. Curves with indices
2 and 3, having at first equal and small values compliance with the growth of the

Figure 4.
Curves of changes in the values of the parameters of the changing elasticity ϑξi.
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angle ξ, increase slowly and in different ways. The third curve is affected by the
presence of negative stress along the axis 3, given that the curves for these coeffi-
cients of transverse deformations overlap each other. Curve 4, denoted by the symbol
ϑ ∗
ξ ¼ фk=фkmax, is the ratio of the pliability of фk ¼ фki=3 to its first value.
The behavior of the curves for the parameters ϑξi can be associated with the

behavior of the interstructural connections involved in creating the dilatancy for
each state. The ordinates of the points of the curves, as it were, show the number of
lost connections related to dilatancy. Numerical values of parameters can be useful
for comparing the behavior of different materials, which is an important procedure
for their analysis and practical selection of materials that differ, for example, in the
binding matrix. At the same time, the material more clearly exerts a real deforma-
tion anisotropy [16, p. 151].

Briefly still on the shape change, it should be noted that the initial values of shear
moduli Gξi or their yields Фξi during the shape change deformation have no such
features as the bulk yields, although the different values of the transverse strain
ratios νij, analyzed above, naturally influence their behavior. Nevertheless, the
ratios of the strain intensities found, as from the initial data associated with the
experimental results, to the strain intensities found after the matrix transformation
of Eq. (19) are equal to 1. The high accuracy of each strain is especially valuable in
determining the Lode parameters [15] when processing the results of experimental
studies carried out in the 30–50 years of the last century. In order to estimate the
nonlinear properties of the materials used, researchers resorted to constructing
Lode diagrams based on the results of experimental studies, for example, in [17–19]
by testing tubular specimens. In the test process, two strains are most often mea-
sured: axial and circumferential. And the researchers had to calculate the radial
strain from the condition of “incompressibility,” considering the sum of these three
strains equal to zero. This led to a noticeable discrepancy in the results of each
author, so that the author of the already quoted book [1] placed in it a diagram of
the S-shaped curve with a minimum and a maximum.

The solution to this problem is formulated using tensor-nonlinear Equations
[15]. Using the material functions of the proposed equations, finding the difference
of Lode parameters, Δλ ¼ λσ � λε, without assumptions, diagrams with one mini-
mum were obtained. The first λσ for stresses and the second for deformations:

λε ¼ 3 ε2 � ε1 � ε3ð Þ= ε1 � ε3ð Þ, (34)

where the former repeats the same fraction with the principal stresses by which
it is determined. The problem of the researchers was to determine λε.

9. Conclusion

A variant of the tensor-nonlinear equations, which can become the main direc-
tion in the nonlinear theory of elasticity, is proposed for wide use. This concept
leads to taking into account dilatancy and strain anisotropy, about which
Novozhilov V.V. prudently expressed in his work. They were used to study the
properties of different-module materials and show that this mathematical apparatus
is suitable not only for describing second-order smallness effects but also for
describing effects associated with changes in the material structure. The influence
of dilatancy on all the characteristics of form change and bulk elasticity is revealed,
since its development with proportional stress growth is the main cause of defor-
mation anisotropy, both of transverse strain coefficients and of bulk elasticity yields
(or modules), which are directly related to the changing elasticity parameter, which
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is a quantitative estimate of these changes. In tensile and near-tensile states, its
values significantly exceed unity. This can be explained by the fact that, in the first
direction, dilatancy, being transverse for the other directions, causes transverse
strain coefficients with values exceeding the number 0.5. The assumption of dilat-
ancy to elastic deformations is an unavoidable step to trace the behavior of all
deformations along the three directions. The exact coincidence of the total bulk
strain as the sum of its components in the direction of the principal stresses, or, as
the sum of linear-elastic and dilatancy, indicates recognition of the fact that the
apparatus of the proposed equations may be a major trend in nonlinear elasticity
theory. Whatever concepts other elasticity theories may adhere to, taking into
account the real values of transverse strain coefficients in tension and compression
will implicitly lead to the consideration of dilatancy and, consequently, to the
difference in the values of the bulk elasticity characteristics. The next stage in the
development of the nonlinear theory of elasticity is the involvement of the
apparatus of thermodynamics.
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Chapter 4

Obtaining of a Constitutive
Models of Laminate Composite
Materials
Mario Acosta Flores, Eusebio Jiménez López
and Marta Lilia Eraña Díaz

Abstract

The study of the mechanical behavior of composite materials has acquired great
importance due to the innumerable number of applications in new technological
developments. As a result, many theories and analytical models have been devel-
oped with which its mechanical behavior is predicted; these models require knowl-
edge of elastic properties. This work describes a basic theoretical framework, based
on linear elasticity theory and classical lamination theory, to generate constitutive
models of laminated materials made up of orthotropic layers. Thus, the models of
three orthotropic laminated composite materials made up of layers of epoxy resin
reinforced with fiberglass were also obtained. Finally, by means of experimental
axial load tests, the constants of the orthotropic layers were determined.

Keywords: composite materials, elasticity theory, orthotropic materials,
experimental methods, Sheet theory

1. Introduction

One of today’s engineering needs is to develop new materials capable of
improving the common materials that exist today (such as metals), in weight, wear
resistance, corrosion resistance, high strength and stability at high temperatures,
among others [1, 2]. The properties are improved through the use of reinforcements
with fibers or particles in polymers, metals and ceramics, among others, giving rise
to composite materials. The uses of composite materials can be found in the auto-
motive industry, in the wind, aerospace and military industries, in civil applica-
tions, among others [3, 4]. The mechanical behavior of CM in tension, bending,
torsion, etc., have been studied for decades [5–7]. For example, Sun [8] used glass
fiber reinforced polyester resin to improve mechanical properties such as tensile
strength, flexural strength, and Young’s Modulus for single and multiple fibers.
Acosta [9] developed a novel method to determine the stresses in torsion problems
of laminated trimetallic and bimetallic composite bars, for which experimental and
numerical analysis were carried out.

On the other hand, a necessary task for engineering applications is obtaining the
mechanical properties of composite materials such as Young’s Modulus (E), Rigidity
Modulus (G), Yield Stress and Maximum Stress at traction, among others. In this
regard, various authors have developed various numerical models and experimental
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techniques (photo-acoustic, ultrasound, Moiré interferometry, electrical
extensometry, etc.) which have been applied to the design of composite materials
[10, 11]. To obtain the effective properties of composite materials with different
configurations, the authors Acosta et al. [12], developed an analytical constitutive
model that is used for the mechanical analysis of intralaminar and global stresses in
laminated composite materials with isotropic plies subject to axial load and to
determine the elastic constants (E, v, and G)) of each of its components, using the
method of electrical extensometry.

Of the laminated composite structures, the most widely used are those formed
by layers of orthotropic materials. The design and mechanical analysis of laminated
composite material structures involves a large number of variables (fiber orienta-
tion, layer thickness and stacking sequence, material densities, topological design,
etc.) [13]. Of the laminated composite structures, the most widely used are those
formed by orthotropic layers.

The study of the mechanical behavior of laminate composite materials is of great
importance for engineering, so it is necessary to have a theoretical framework for its
analysis, both globally and locally. In this work, the conceptual and analytical
models foundations of the theory of linear elasticity and of the classical theory of
laminated composite materials are presented for the theoretical and experimental
approach of models that predict the mechanical behavior and allow obtaining its
effective mechanical properties of a multi directionally reinforced laminated com-
posite by orthotropic layers reinforced with longitudinal fibers [14–17]. With the
models, the real properties obtained imply the effects of the existing defects in the
interfaces between the layers (glue, gluing defects, layer fusion, etc.), which should
considerably improve the efficiency in stress analysis.

2. Theory of elasticity

Stresses are internal forces that occur in bodies as a result of applying forces on
their boundaries. If an imaginary cut is made in a body and if the internal distribu-
tion of forces on the cut surface is analyzed, then the stresses can be obtained as
follows:

σij ¼ Lim
ΔA!0

ΔF
ΔA

(1)

where i and j are the Cartesian components x, y or z. For this case, i corresponds
to the normal to the imaginary plane analyzed and j is associated with the direction
of the force ΔF applied on the element of area ΔA. The state of stresses at a point
can be represented graphically, as shown in Figure 1.

The stresses that act normally to the surface are called normal stresses (σx, σy, σz),
while those forces that act tangent to the surface are known as shearing stresses
τxy, τxz, τyz
� �

. The complete stress analysis in a body implies determining the state of
stresses in each of the points that make it up, and a partial analysis, in one or a set of
points sufficient to solve a particular problem. The stress model is continuous and
linear, from the mathematical point of view, which implies working with neighbor-
hoods of infinitesimal points. By applying static equilibrium, the following field or
equilibrium equations are obtained [14]:

∂σx
∂x

þ ∂τyx
∂y

þ ∂τzx
∂z

þ Fx ¼ 0 (2)
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∂τxy
∂x

þ ∂σy
∂y

þ ∂τzy
∂z

þ Fy ¼ 0

∂τxz
∂x

þ ∂τyz
∂y

þ ∂σz
∂z

þ Fz ¼ 0

On the other hand, a strain is defined as the relative displacement between the
internal points of a body. If we consider a change in length in a straight-line
segment in the x, y and z axes, we have normal or longitudinal strain εx, εy y εz. In
the same way, if we have a transformation between the angles of two straight
lines, the shear, or angular, strains γxy, γxz, y γyz, are obtained in the xy, xz and yz
planes, respectively. The following expression represents the strain–displacement
equations for normal and shear strains:

εij ¼ ∂ui
∂x j

þ ∂u j

∂xi
(3)

Or, explicitly:

εx ¼ ∂u
∂x

; εy ¼ ∂v
∂y

; εz ¼ ∂w
∂z

; (4)

γxy ¼
∂u
∂y

þ ; γxz ¼
∂u
∂z

þ ∂w
∂x

; γyz ¼
∂v
∂z

þ ∂w
∂y

The strain model described in expressions (Eq. (3)) is considered linear
and continuous, which implies a model of infinitesimal strains. According to
(Dally), the linear equations between stresses and strains give rise to the
constitutive model. These equations are determined according to the following
expression:

σi ¼ Cijε j; i, j ¼ 1, 2, 3, … , 6 (5)

Figure 1.
State of stresses on a point.
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where σi are the stress components, Cij is the stiffness tensor and ε j are the strain
components. The explicit form of expression (Eq. (5)) is known as Hooke’s
Generalized Law. This is:

σx ¼ C11εx þ C12εy þ C13εz þ C14γxy þ C15γyz þ C16γzx
σy ¼ C21εx þ C22εy þ C23εz þ C24γxy þ C25γyz þ C26γzx
σz ¼ C31εx þ C32εy þ C33εz þ C34γxy þ C35γyz þ C36γzx
τxy ¼ C41εx þ C42εy þ C43εz þ C44γxy þ C45γyz þ C46γzx
τyz ¼ C51εx þ C52εy þ C53εz þ C54γxy þ C55γyz þ C56γzx
τxz ¼ C61εx þ C62εy þ C63εz þ C64γxy þ C65γyz þ C66γzx

(6)

Here, C11,C12, …C66 (Cij for i, j ¼ 1, 2, … , 6), are called the stiffness constants of
the material and are independent of the stress values or the strain values. The
following expression shows the inverse form between strains and stresses:

εi ¼ Sijσ j, i, j ¼ 1, 2, 3, … , 6 (7)

Here, Sij is known as the compliance tensor. According to Durelli [14] and when
considering the strain energy in the analysis, the following expressions are fulfilled:

Cij ¼ Cji; Sij ¼ Sji (8)

It is worth mentioning that the constants of the constitutive models can be put as
a function of the so-called engineering constants (Young’s modulus (E), Poisson’s
ratios (ν) and shear modulus (G)), which can be obtained through tests of pure
tension and shear. According to Durelli [14] the model of the Theory of Linear
Elasticity that governs the bodies´ mechanical analysis, is composed of a system of
15 partial differential equations and 15 unknowns (σij, εijyuiÞ. On the other hand, for
practical purposes, it is necessary to characterize the state of stress at a body’s point
on an arbitrary plane. The analytical equations that govern the state of stress at a
body’s point that make it possible to linearly transform the stress components, refer
to a reference coordinate system and find the stress components regarding any
other system. Figure 2 shows a graphic example of a state of plane stresses.

In the case of the strain transformation laws, a similar process is carried out.

3. Mechanical analysis in orthotropic materials

An orthotropic material is one in which the values of its elastic properties are
different for each orientation, referred to three coordinate axes, each perpendicular
to another (see Figure 3). Examples of orthotropic materials are: wood, unidirec-
tionally materials reinforced with fiberglass, carbón, Kevlar, among others. In
orthotropic materials, the stiffness changes depending on the orientation of the

Figure 2.
Transformation of stresses at a point with state of plane stresses.
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fibers. To determine the stress or strain components in any direction, it is necessary
to know the states of stress or strain at a point and apply the analytical transforma-
tion equations. The stress–strain relations and the stress and strain transformation
equations are the basis for the construction of constitutive models to study the
stresses and to determine the effective mechanical properties of laminated
composite materials as a function of the orientation and direction [16].

To clarify the analysis, the xy system will be used when it coincides with the axes
of symmetry of the properties of the unidirectional material and the system of 12
will be used for any coordinate system outside of it (see Figure 4).

The equations that govern the transformation of plane stresses, in a unidirec-
tionally reinforced laminate, allow the obtention of the value of the stresses in the
xy system once the stresses in the 12 system are known (see Figures 5 and 6).

To know the relations between the stresses of the xy system regarding the
stresses in the 12 system, a cut perpendicular to the fibers is analyzed and the
director cosines, m = cos θ and n = sin θ, are used (see Figure 6). These equations
are expressed as follows:

σx ¼ σ1m2 þ σ2n2 þ σ6mn6; σy ¼ σ1n2 þ σ2m2 � 2σ6mn;
σs ¼ �σ1mnþ σ2mnþ σ6 m2 � n2½ � (9)

Here, σx and σy are the normal stresses and σs corresponds to the shear stress in the
xy system; σ1 and σ2 are the normal stresses and σ6 is the shear stress in the 12 system.

Figure 3.
Axes of symmetry of a plane orthotropic material.

Figure 4.
System xy in the direction of the fibers and system 12 in a different orientation.

Figure 5.
Transformation of stress.
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The strain transformation equations, between the xy Cartesian strains and the strains
in system 12, in terms of the director cosines are shown in equations (Eq. (10)).

εx ¼ ε1m2 þ ε2n2 þ ε6mn6; εy ¼ ε1n2 þ ε2m2 � ε6mn
εs ¼ �ε1mnþ ε2mnþ ε6 m2 � n2½ � (10)

Here, εx and εy are the normal strains and εs corresponds to the shear strain in
the xy system; ε1 and ε2 are the normal strains and ε6 is the shear strain in the 12
system. The linear relations, between stresses and strains in a plane system for an
orthotropic composite, are obtained by means of Hooke’s generalized law. These
relations are as follows:

σx ¼ C11εx þ C12εy þ C13εz; σy ¼ C21εx þ C22εy þ C23εz;

σz ¼ C31εx þ C32εy þ C33εz τxy ¼ C44γxy; τyz ¼ C55γyz; τxz ¼ C66γzx
(11)

It is worth mentioning that the state of stress at all points is considered plane
stress because it is assumed that the distribution of strains is homogeneous through
the thickness of the orthotropic composite. The planes of symmetry correspond to
the longitudinal direction of the fibers and the transverse direction, respectively.
The composite material and its symmetry planes are shown in Figure 3. The mate-
rial stiffness coefficients are obtained from the development of the following simple
axial tests (see Figure 7): 1) Tension test in the longitudinal direction of the fibers,
2) Tension test in the cross-fiber direction and 3) Pure shear test.

For a uniaxial state of stress, we have the equations εx ¼ S11σx and εy ¼ S21σy. By
Hooke’s law, the stress in the direction of the applied load P is: σ ¼ P

A, if and only if it
is assumed that the P force is applied uniformly to a cross section and the change of
the latter for any P value is negligible [14]. The equations between the stress σ and
the strain Ɛ (in the direction of σ) within the elastic-linear range is: σ ¼ εE, where E
is the Young’s modulus of the material. Note that if S11 ¼ 1

Ex
, then

Figure 6.
Stress components in system xy as a function of stress components in system 12.

Figure 7.
Tests, tension in the direction of the fibers, tension in the direction transverse to the fibers and pure shear at 45°.
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εx ¼ σx
Ex

; εy ¼ � υxσx
Ex

(12)

Here, νx ¼ � εy
εx
is the longitudinal Poisson’s ratio and εx and εy are the

longitudinal and transverse deformations, respectively.
By following a similar process performed in the previous test (see Figure 1.4),

the following equations are obtained:

εx ¼ � νyσy
Ey

; εy ¼ � σy
Ey

(13)

where νy ¼ � εx
εy
is the transverse Poisson’s ratio, Ey is the transverse Young’s

Modulus and εy and εx are the longitudinal and transverse strains, respectively. In a
pure shear test (see Figure 7), the constitutive relation between shear stress and
shear strain is as follows:

γxy ¼
τxy
Gxy

(14)

Here, τxy is the shear stress, γxy is the shear strain, and Gxy is the shear modulus
of the material. As result of the three tests, the following constitutive relations are
obtained:

εx ¼ σx
Ex

� νyσy
Ey

; εy ¼ � νxσx
Ex

� σy
Ey

; γxy ¼
τxy
Gxy

(15)

The relations that define the stiffness constants as a function of the engineering
constants are as follows:

Qxx ¼
Ex

1� υxυy
;Qyy ¼

Ey

1� υyυx
;Qyx ¼

υxEy

1� υxυy
;Qxy ¼

υyEx

1� υxυy
;Qss ¼ Ess (16)

The relations between compliance constants and engineering constants are:

Sxx ¼ 1
Ex

; Syy ¼ 1
Ey

; Syx ¼
υy
Ey

; Sxy ¼ υx
Ex

Qss ¼
1

Gxy
(17)

By symmetry of the stiffness tensor and the compliance tensor, we have: υxEx
¼ υy

Ey
:

This relation reduces the number of independent constants, from five to four, in the
plane problem. To determine the stresses in terms of the strains (for a reference
system), different from the material’s symmetry axes, system 12 (see figure 8). Is
necessary to apply a strain transformation process to change to the symmetry axes
(system xy), configuration (a) to (b) and determine the state of stresses with
constitutive model, configuration (b) to (c) to subsequently apply a stress transfor-
mation and come at the stresses in axes 12 (configuration (c) to (d)). To transform
configuration (a) to (d), knowing the stiffness constants in the specific orientation
and the value of the strain components in same direction, are the following steps:

Step 1) The step from configuration (a) to (b) is obtained by making a positive
strain transformation and using equations (Eq. (10)), that is:

εx ¼ m2ε1 þ n2ε2 þmnε6; εy ¼ n2ε1 þm2ε2 �mnε6;
εs ¼ �2mnε1 þ 2mnε2 þ m2 � n2

� �
ε6

(18)

53

Obtaining of a Constitutive Models of Laminate Composite Materials
DOI: http://dx.doi.org/10.5772/intechopen.100607



Step 2) To go from configuration (b) to configuration (c), the stress–strain
relations are used in the material’s symmetry axes. These relations are as follows:

σx ¼ Qxx m2ε1 þ n2ε2 þmnε6½ � þ Qxy n2ε1 þm2ε2 �mnε6½ �;
σy ¼ Qyx m2ε1 þ n2ε2 þmnε6½ � þ Qyy n2ε1 þm2ε2 �mnε6½ �;
σss ¼ Qss �2mε1 þ 2mnε2 þ m2 � n2½ �ε6½ �

(19)

Step 3) To go from configuration c) to d), the stress transformation equations
with negative angle of rotation are used. This is:

σ1 ¼ m2 Qxx m2ε1 þ n2ε2 þmnε6
� �þQxy n2ε1 þm2ε2 �mnε6

� �h i

þ n2 Qyx m2ε1 þ n2ε2 þmnε6
� �þQyy n2ε1 þm2ε2 �mnε6

� �h i

� 2mn Qss �2mnε1 þ 2mnε2 þ m2 � n2
� �

ε6
� �� �

σ2 ¼ n2 Qxx m2ε1 þ n2ε2 þmnε6
� �þ Qxy n2ε1 þm2ε2 �mnε6

� �h i

þm2 Qyx m2ε1 þ n2ε2 þmnε6
� �þQyy n2ε1 þm2ε2 �mnε6

� �h i

þ 2mn Qss �2mnϵ1 þ 2mnϵ2 þ m2 � n2
� �

ϵ6
� �� �

σ6 ¼ mn Qxx m2ε1 þ n2ε2 þmnε6
� �þQxy n2ε1 þm2ε2 �mnε6

� �h i

�mn Qyx m2ε1 þ n2ε2 þmnε6
� �þQyy n2ε1 þm2ε2 �mnε6

� �h i

þ m2 � n2
� �

Qss �2mnε1 þ 2mnε2 þ m2 � n2
� �

ε6
� �� �

(20)

Considering the strains and the symmetry of the stiffness tensor, the constitutive
relations can be obtained in an arbitrary orientation, system 12 (see Figure 9), to a
direct transformation from the state of strain to the state of stress. What would be:

σ1 ¼ Q11ε1 þQ12ε2 þQ16ε6; σ2 ¼ Q21ε1 þQ22ε2 þ Q26ε6;

σ6 ¼ Q61ε1 þQ62ε2 þQ66ε6
(21)

Figure 8.
Transformation process, from the state of strains to the state of stresses, in a coordinate system 12. Strain
transformation process, (a) to (b), getting stresses with constitutive model, (b) to (c) and finally arrive at the
state of stresses in axes 12, (c) to (d).

Figure 9.
Direct transformation from the state of strain to the state of stress in a system 12, getting the state of stresses in
terms of the state of strains, with constitutive relations. Configuration a) to d).
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The stiffness constants in an arbitrary orientation are defined as follows:

Q11 ¼ m4Qxx þ 2m2n2Qxy þ n4Qyy � 4m2n2Qss

Q12 ¼ m2n2Qxx þ m4 þ n4ð ÞQxy þm2n2Qyy � 4m2n2Qss

Q16 ¼ m3nQxx þ mn3 þm3nð ÞQxy �mn3Qyy þ 4 mn3 �m3n½ �Qss

Q22 ¼ n4Qxx þ 2m2n2Qxy þm4Qyy þ 4m2n2Qss

Q26 ¼ mn3Qxx þ m3n�mn3ð ÞQxy �m3nQyy þ 2 m3n�mn3½ �Qss

Q66 ¼ m2 n2Qxx � 2m2n2Qxy þm2n2Qyy þ m2 � n2½ �2Qss

(22)

The obtained results are of great importance due to these are the equations that
define the variation of the constants as a function of the orientation. On the other
hand, the constitutive relations and the compliance constants, in a different orien-
tation from the axis of symmetry of the material, are obtained by applying a similar
process to the one in the previous section. But now we start from the known state
of stresses and is required to know the state of the strains. To process it, need to
apply a stresses transformation process to change to the symmetry axes (system
xy), configuration (a) to (b), determine the state of strains with constitutive model,
configuration (b) to (c) to subsequently apply a strain transformation and get the
strains in axes 12, configuration (c) to (d), see Figure 10. The relations between the
constants of compliance, on the lines of symmetry and outside of them, are:

ε1 ¼ S11σ1 þ S12σ2 þ S16σ6; ε2 ¼ S21σ1 þ S22σ2 þ S26σ6; ε6 ¼ S61σ1 þ S62σ2 þ S66σ6
(23)

The relations between the compliance constants, corresponding to the lines
symmetry and outside of them, are:

S11 ¼ m4Sxx þ 2m2n2Sxy þ n4Syy þm2n2Sss

S12 ¼ m2n2Sxx þ m4 þ n4ð ÞSxy þm2n4Syy �m2n2Sss

S16 ¼ 2m3nSxx þ 2 mn3 �m3nð ÞSxy � 2mn3Syy �mn m2 � n2ð ÞSss
S22 ¼ n4Sxx þ 2m2n2Sxy þm4Syy þm2n2Sss

S26 ¼ 2m3nSxx þ 2 mn3 �m3nð ÞSxy � 2mn3Syy �mn m2 � n2ð ÞSss
S66 ¼ 4m2n2Sxx � 8m2n2Sxy þ 4m2n2Syy þ m2 � n2ð Þ2Sss

(24)

Figure 10.
Transformation process from the state of stresses to the state of strains in a coordinate system 12. Stresses
transformation process, (a) to (b), getting strains with constitutive model, (b) to (c), and to finally obtain the
state of strains in axes 12, (c) to (d).
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Equations (Eq. (22)) can be put in terms of trigonometric identities. This is:

Q11 ¼
1
8

3Qxx þ 2Qxy þ 3Qyy þ 4Qss

� �
þ 1
8

4Qxx � 4Qyy

� �
cos 2θ

þ 1
8

Qxx � 2Qxy þQyy � 4Qss

� �
cos 4θ

Q12 ¼
1
8

Qxx þ 6Qxy þQyy � 4Qss

� �
� 1
8

Qxx � 2Qxy þ Qyy � 4Qss

� �
cos 4θ

Q16 ¼
1
8

2Qxx � 2Qyy

� �
sen2θ þ 1

8
Qxx þ Qyy � 2Qxy �Qss

� �
sen4θ

Q22 ¼
1
8

3Qxx þ 2Qxy þ 3Qyy þ 4Qss

� �
� 1
8

4Qxx � 4Qyy

� �
cos 2θ

þ 1
8

Qxx � 2Qxy þQyy � 4Qss

� �
cos 4θ

Q26 ¼
1
2

Qxx �Qyy

� �
sen2θ � 1

8
Qxx � 2Qxy þQyy � 4Qss

� �
sen4θ

Q66 ¼
1
8

Qxx � 2Qxy þ Qyy � 4Qss

� �
� 1
8

Qxx þQyy � 2Qxy �Qss

� �
sen4θ

(25)

If and only if the following relations are satisfied:

m4 ¼ 1
8

3þ 4 cos 2θ þ cos4θð Þ;m3n ¼ 1
8

2sen2θ þ sen4θð Þ;m2n2 ¼ 1
8

1� cos 4θð Þ;

mn3 ¼ 1
8

2sen2θ � sen4θð Þ; n4 ¼ 1
8

3� 4 cos 2θ þ cos 4θð Þ
(26)

By defining the following relations:

U1 ¼ 1
8

3Qxx þ 2Qxy þ 3Qyy þ 4Qss

� �
;U2 ¼ 1

2
Qxx � Qyy

� �
;

U3 ¼ 1
8

Qxx � 2Qxy þQyy � 4Qss

� �
;U4 ¼ 1

8
Qxx þ 6Qxy þQyy � 4Qss

� �
;

U5 ¼ 1
8

Qxx � 2Qxy þ Qyy � 4Qss

� �
(27)

And, when ordering terms, the following relatios are obtained:

Q11 ¼ U1 þ U2 cos 2θ þU3 cos4θ;Q12 ¼ U4 � U3 cos 4θ;Q16 ¼
1
2
U2sen2θ þ U3sen4θ

(28)

Q22 ¼ U1 � U2 cos 2θ þU3 cos4θ;Q26 ¼
1
2
U2sen2θ � U3sen4θ;Q66 ¼ U5 � U3 cos 4θ

4. Laminate composite materials theory

A laminate is a set of plies or ply groups that have different orientations from
their main axes [16]. The classical laminate theory assumes, in the mechanical
model, the following [16, 17]: the laminate is symmetric; the behavior of the plies
and the laminate complies with Hooke’s law; each ply is considered orthotropic; the
union between plies is perfect and thin; the functions of the displacements and
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strains are considered continuous through the interface; the laminate is
homogeneous, elastic and linear; and the ply thicknesses are constant, thin and
homogeneous throughout the laminate.

For the study of global stresses, the following aspects are assumed: the model is
linear [14]; and the state of stress is homogeneous throughout the laminate. Thus,
edge effects on the laminate can be ignored, allowing the problem to be about plane
stresses. For the stress analysis at the local level, it is assumed that the problem for
each of the plies is biaxial of stresses, and that the normal stresses have an average
constant distribution through the thickness of the plies (see Figure 11). On a global
level at a symmetric laminate: it is made up of homogeneous plies; the union
between plies is perfect; and the laminate’s composite thickness is homogeneous.
Finally, when considering a state of homogeneous strain in the laminate and in the
plies, the intralaminar stresses τyz can be ignored, so that all the points in the
laminate and locally in the plies present a state of plane stresses.

A laminate composite material can be defined by means of a code [16]. Figure 12
shows a diagram of a symmetrical laminate. Its code is 4503=90

0
1=0

0
2

� �
S and it is

interpreted as follows: if the analysis is started from z = �h / 2, we have three plies
oriented at 450, followed by a ply with orientation 900, and finally two plies at 00. The
subscript S means that the laminate is symmetric and that from the central axis up,
the sequence is in reverse order. If instead of S there were the subscript T, this would
mean that the code would be written in full, that is: 4503=90

0
1=0

0
2=0

0
2=90

0
1=45

0
3

� �
T.

If the laminate were not symmetric, we would have a code like the following:
4503=90

0
1=0

0
2=45

0
3=90

0
1=0

0
2

� �
T .

4.1 Mechanics of symmetric laminate

In the study of symmetric laminates, the strains in the xy plane are constant
throughout the lamina if and only if its thickness is small compared to the length

Figure 11.
Intralaminar stress state for a three-ply laminate.

Figure 12.
Sequence of a symmetric laminate.
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and width. Therefore, ε1 zð Þ ¼ ε01 , ε2 zð Þ ¼ ε02 and ε12 zð Þ ¼ ε012 . The exponent (0)
means that the strains as a function of z are constant. It is worth mentioning that the
stress distribution is not constant and varies from plies or ply group to plies. If a
global analysis of the laminate is carried out, the constitutive relations are obtained
based on the properties and orientation in each ply group [16]. For this study it is
necessary to start from the concept of average effort, (see Figure 13). This is:

σ1 ¼ 1
h

ðh
2

�h
2

σ1dz; σ2 ¼ 1
h

ðh
2

�h
2

σ2dz; σ6 ¼ 1
h

ðh
2

�h
2

σ6dz (29)

On the other hand, the stresses are defined as a function of the stiffness con-
stants in any direction. The stress–strain relations are as follow:

σ1 ¼ Q11ε1 þ Q12ε2 þQ16ε6; σ2 ¼ Q21ε1 þ Q22ε2 þ Q26ε6;

σ6 ¼ Q61ε1 þ Q62ε2 þQ66ε6
(30)

If the strains are constant, then the average stresses are expressed as follows:

σ1 ¼ 1
h

ðh
2

�h
2

Q11ε
0
1 þQ12ε

0
2 þQ13ε

0
6

� �
dz; σ2 ¼ 1

h

ðh
2

�h
2

Q21ε
0
1 þQ22ε

0
2 þ Q23ε

0
6

� �
dz

(31)

σ6 ¼ 1
h

ðh
2

�h
2

Q61ε
0
1 þ Q62ε

0
2 þ Q66ε

0
6

� �
dz

Considering that the constants Q vary from ply to ply, the average stresses take
thefollowing form:

σ1 ¼ 1
h

ðh
2

�h
2

Q11dzε
0
1 þ

ðh
2

�h
2

Q12dzε
0
2 þ

ðh
2

�h
2

Q13dzε
0
6

" #
;

σ2 ¼ 1
h

ðh
2

�h
2

Q21dzε
0
1 þ

ðh
2

�h
2

Q22dzε
0
2 þ

ðh
2

�h
2

Q23dzε
0
6

" #

σ6 ¼ 1
h

ðh
2

�h
2

Q61dzε
0
1 þ

ðh
2

�h
2

Q62dzε
0
2 þ

ðh
2

�h
2

Q66dzε
0
6

" #

(32)

Figure 13.
Representation of mean stresses in a multidirectional lamina.
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If:

A11 ¼
ðh

2

�h
2

Q11dz;A21 ¼
ðh

2

�h
2

Q21dz;A22 ¼
ðh

2

�h
2

Q22dz;A61 ¼
ðh

2

�h
2

Q61dz;

A62 ¼
ðh

2

�h
2

Q62dz;A66 ¼
ðh

2

�h
2

Q66dz

(33)

And: A21 ¼ A12; A61 ¼ A16 y A62 ¼ A26 (The equivalent modulus tensor Aij is
symmetric), the average stresses are rewritten as follows:

σ1 ¼ 1
h

A11ε
0
1 þ A21ε

0
2 þ A61ε

0
6

� �
; σ2 ¼ 1

h
A21ε

0
1 þ A22ε

0
2 þ A62ε

0
6

� �
;

σ3 ¼ 1
h

A61ε
0
1 þ A62ε

0
2 þ A63ε

0
6

� � (34)

These last equations are known as the effective or global constitutive relations,
where the equivalent modulus of a multidirectional laminate is the arithmetic
average of the individual modulus of stiffness outside their axis of symmetry of the
plies or ply groups. The units of the Qs are Pa (or N / m2) and the As are in Pa ∙ m
(or N / m). A stress resultant (N’s) can be defined, with units of force per unit of
length or force per unit of thickness h. This is:

N1 ¼ hσ1;N2 ¼ hσ2;N6 ¼ hσ6 (35)

Or, equivalently:

N1 ¼ A11ε01 þ A21ε02 þ A61ε06;N2 ¼ A21ε01 þ A22ε02 þ A63ε06;

N3 ¼ A61ε01 þ A62ε02 þ A66ε06

(36)

These equations relate the resultant stresses to the strains. To know the stress in
each ply or ply group from the strains and global stresses, it is shown schematically
in Figure 14. First, determine the average strains in terms of the average stresses,

Figure 14.
Process to obtain the state of stress in each ply group from the average state of stress, determining the average
strains in terms of the average stresses, (a) to (b), getting the strains for the symmetry axes (system xy),
configuration (b) to (c) and finally, determine the state of stress of each ply or plies group, (c) to (d).
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for a reference system 12 and apply an effective or global constitutive relations,
configuration (a) to (b). Second, getting the strains for the symmetry axes (system
xy) of each orthotropic plies or orthotropic ply groups with different orientation,
configuration (b) to (c). Finally, apply the constitutive relations to determine the
state of stress of each ply or ply group.

Equivalent modulus can also be expressed in terms of the multi-angle equations,
that is:

A11 ¼
ðh

2

�h
2

Q11dz ¼
ðh

2

�h
2

U1 þU2 cos 2θ þ U3 cos 4θð Þdz

¼ U1

ðh
2

�h
2

dzþ U2

ðh
2

�h
2

cos 2θdzþ U3

ðh
2

�h
2

cos 4θdz

A21 ¼
ðh

2

�h
2

Q21dz ¼
ðh

2

�h
2

U4 � U3 cos 4θð Þdz ¼ U4

ðh
2

�h
2

dz� U3

ðh
2

�h
2

cos4θdz

A22 ¼
ðh

2

�h
2

Q22dz ¼
ðh

2

�h
2

U1 � U2 cos 2θ þ U3 cos 4θð Þdz

¼ U1

ðh
2

�h
2

dz� U2

ðh
2

�h
2

cos 2θdzþ U3

ðh
2

�h
2

cos 4θdz

A61 ¼
ðh

2

�h
2

Q31dz ¼
1
2
U2

ðh
2

�h
2

sen2θdzþ U3sen4θÞdz ¼ 1
2
U2

ðh
2

�h
2

sen2θ þU3

ðh
2

�h
2

sen4θdz

A62 ¼
ðh

2

�h
2

Q32dz ¼
ðh

2

�h
2

1
2
U2sen2θ �U3sen4θ

� �
dz ¼ 1

2
U2

ðh
2

�h
2

sen2θ �U3

ðh
2

�h
2

sen4θdz

A66 ¼
ðh

2

�h
2

Q33dz ¼
ðh

2

�h
2

U5 �U3 cos4θð Þdz ¼ U5

ðh
2

�h
2

dz�U3

ðh
2

�h
2

cos 4θdz

(37)

As the Us have no variation with respect to the z axis, they are considered
constant. If:

V1 ¼
ðh

2

�h
2

cos 2θdz;V2 ¼
ðh

2

�h
2

cos 4θdz;V3 ¼
ðh

2

�h
2

sen2θdz;V4 ¼
ðh

2

�h
2

sen4θdz (38)

Then:

A11 ¼ U1hþU2V1 þU3V2;A21 ¼ U4h� U3V2;

A22 ¼ U1h�U2V1 þU3V2;A61 ¼ 1
2
U2V3 þ U3V4

A62 ¼ 1
2
U2V3 � U3V4;A66 ¼ U5h�U3V2

(39)

The V values now depend on the orientation of the plies or ply groups in the
multidirectional laminate (see Figure 15). When normalizing the equations’ Vs in
terms of the thickness of the laminate so that the values are dimensionless, the
following expressions are obtained:
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V ∗
1 ¼ V1

h
¼ 1

h

ðh
2

�h
2

cos 2θdz;V ∗
2 ¼ V2

h
¼ 1

h

ðh
2

�h
2

cos 4θdz;

V ∗
3 ¼ V3

h
¼ 1

h

ðh
2

�h
2

sen2θdz;V ∗
4 ¼ V4

h
¼ 1

h

ðh
2

�h
2

sen4θdz

(40)

If the plies or ply groups that make up the laminate have the same orientation
and the same material, the expressions described above take the following form:

V ∗
1 ¼ 1

h

Xh
i¼1

cos 2θi zi � zi�1½ � ¼ 1
h

Xh
i¼1

cos 2θihi;

V ∗
2 ¼ 1

h

Xh
i¼1

cos4θi zi � zi�1½ � ¼ 1
h

Xh
i¼1

cos4hi

V ∗
3 ¼ 1

h

Xh
i¼1

sen2θi zi � zi�1½ � ¼ 1
h

Xh
i¼1

sen2θihi;

V ∗
4 ¼ 1

h

Xh
i¼1

sen4θi zi � zi�1½ � ¼ 1
h

Xh
i¼1

sen4θihi

(41)

Where hi is the thickness of i-th ply group and starts from h
2, as in Figure 15.

The volumetric fraction can be expressed as follows: vi = hi
h and if each i

represents an orientation, then Equations (Eq. (41)) are as follows:

V ∗
1 ¼P

h

i¼1
cos 2θivi ¼ v1 cos 2θ1 þ v2 cos 2θ2 þ v3 cos 2θ3 þ …

V ∗
2 ¼P

h

i¼1
cos 4θivi ¼ v1 cos 4θ1 þ v2 cos4θ2 þ v3 cos4θ3 þ …

V ∗
3 ¼P

h

i¼1
sen2θivi ¼ v1sen2θ1 þ v2sen2θ2 þ v3senθ3 þ …

V ∗
4 ¼P

h

i¼1
sen4θivi ¼ v1sen4θ1 þ v2sen4θ2 þ v3sen4θ3 þ …

(42)

Figure 15.
Graphic representation of n ply groups in a multidirectional symmetric laminate.
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The sum of the volume fractions fulfills the condition v1 þ v2 þ v3 þ … ¼ 1 and
the limits of V ∗ ´s are �1≤V ∗ ´s≥ 1. By considering the above, the effective or
global mechanical properties can be determined, if the orientation and fraction
volume of each ply group is known.

5. Theoretical approach to obtain the constitutive models

This section presents the algebraic development to generate the constitutive
mathematical model of a laminate composite material taking into account the
properties of the constituent orthotropic plies. The laminate to be modeled is made
up of longitudinal plies of fiberglass reinforced with epoxy resin, oriented orthogo-
nally. The mechanical engineering properties that characterize an orthotropic lam-
inate are five: 1) Two Young’s moduli (Ex and Ey, two Poisson’s ratios νxy and νyx,
and 2) a shear modulus (E6 or Gxy). Figure 16 shows an orthotropic lamina.

The constitutive relations for a lamina in terms of the engineering constants of
each of the layers are obtained by considering equations (Eq. (16)) and (Eq. (27)),
that is:

U1 ¼ 1
8

3Ex

1� νxνy
þ 3Ey

1� νxνy
þ 2νyEx

1� νxνy
þ 4Ess

� �
¼ 1

8
3Ex þ 3Ey þ 2νyEx

1� νxνy
þ 4Ess

� �
;

U2 ¼ 1
2

Ex � Ey

1� νxνy

� �
;U3 ¼ 1

8
Ey þ Ex � 2νyEx

1� νxνy
� 4Ess

� �
;

U4 ¼ 1
8

Ey þ Ex þ 6νyEx

1� νxνy
� 4Ess

� �
;U5 ¼ 1

8
Ey þ Ex � 2νyEx

1� νxνy
þ 4Ess

� �

(43)

By considering equations (Eq. (40)) and (Eq. (42)), the relations for any
multidirectional lamina are obtained. This is:

V1 ¼ ν1 cos 2θ1 þ ν2 cos 2θ2 þ ν3 cos 2θ3 þ …ð Þh;
V2 ¼ ν1 cos 4θ1 þ ν2 cos 4θ2 þ ν3 cos 4θ3 þ …ð Þh;
V3 ¼ ν1sen 2θ1 þ ν2sen 2θ2 þ ν3sen 2θ3 þ …ð Þh;
V4 ¼ ν1sen 4θ1 þ ν2sen 4θ2 þ ν3sen 4θ3 þ …ð Þh

(44)

From the relations of (Eq. (43)), the following expressions are obtained:

A11 ¼ U1hþ U2V1 þU3V2;A21 ¼ U4h� U3V2;A22 ¼ U1h�U2V1 þU3V2

A61 ¼ 1
2
U2V3 þU3V4;A62 ¼ 1

2
U2V3 �U3V4;A66 ¼ U5h� U3V2

(45)

Figure 16.
Orthotropic laminate.
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The average values of the modules for “n” plies or “n” ply groups are obtained by
making equations (Eq. (45)) explicit. This is:

A11 ¼ 1
8

3Ex þ 3Ey þ 2νyEx

1� νxνy
þ 4Ess

� �
h

þ 1
2

Ex � Ey

1� νxνy

� �
ν1 cos 2θ1 þ ν2 cos 2θ2 þ ν3 cos 2θ3 þ …ð Þh

þ 1
8

Ey þ Ex � 2νyEx

1� νxνy
� 4Ess

� �
ν1 cos 4θ1 þ ν2 cos 4θ2 þ ν3 cos 4θ3 þ …ð Þh

A21 ¼ 1
8

Ey þ Ex þ 6νyEx

1� νxνy
� 4Ess

� �
h

� 1
8

Ey þ Ex � 2νyEx

1� νxνy
� 4Ess

� �
ν1 cos 4θ1 þ ν2 cos 4θ2 þ ν3 cos 4θ3 þ …ð Þh

A22 ¼ 1
8

3Ex þ 3Ey þ 2νyEx

1� νxνy
þ 4Ess

� �
h

� 1
2

Ex � Ey

1� νxνy

� �
ν1 cos 2θ1 þ ν2 cos 2θ2 þ ν3 cos 2θ3 þ …ð Þh

þ 1
8

Ey þ Ex � 2νyEx

1� νxνy
� 4Ess

� �
ν1 cos 4θ1 þ ν2 cos 4θ2 þ ν3 cos 4θ3 þ …ð Þh

A61 ¼ 1
4

Ex � Ey

1� νxνy

� �
ν1sen 2θ1 þ ν2sen 2θ2 þ ν3sen 2θ3 þ …ð Þh

þ 1
8

Ey þ Ex � 2νyEx

1� νxνy
� 4Ess

� �
ν1sen 4θ1 þ ν2sen 4θ2 þ ν3sen 4θ3 þ …ð Þh

A62 ¼ 1
4

Ex � Ey

1� νxνy

� �
ν1sen 2θ1 þ ν2sen 2θ2 þ ν3sen 2θ3 þ …ð Þh

� 1
8

Ey þ Ex � 2νyEx

1� νxνy
� 4Ess

� �
ν1sen 4θ1 þ ν2sen 4θ2 þ ν3sen 4θ3 þ …ð Þh

A66 ¼ 1
8

Ey þ Ex � 2νyEx

1� νxνy
þ 4Ess

� �
h

� 1
8

Ey þ Ex � 2νyEx

1� νxνy
� 4Ess

� �
ν1 cos 4θ1 þ ν2 cos 4θ2 þ ν3 cos 4θ3 þ …ð Þh

(46)

By substituting equations (Eq. (46)) in equations (Eq. (36)), the following
relations are obtained:

N1 ¼ A11ε
0
1 þ A21ε

0
2 þ A61ε

0
6;N2 ¼ A21ε

0
1 þ A22ε

0
2 þ A62ε

0
6;

N6 ¼ A61ε
0
1 þ A62ε

0
2 þ A66ε

0
6

(47)

And, when considering the expression (Eq. (35)) the following relations are
obtained:
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σ1 ¼ h
N1

; σ2 ¼ h
N2

; σ6 ¼ h
N6

(48)

If the volume fractions and the orientations of each ply group are known,
equations (Eq. (48)) represent the constitutive relations for any multidirectional
laminate. These equations contain global or effective properties A’s and the average
stresses and strains.

5.1 Constitutive equations for laminate

The constitutive model for a configuration laminate 00=900=00=900=00� �
T is

obtained from equations (Eq. (47)) and (Eq. (48)) by considering θ ¼ 00 and θ ¼
900 with volume fractions v1 ¼ 3

5 and v2 ¼ 2
5. This is:

σ1 ¼ 1
5

3Ex þ 2Ey

1� νxνy

� �
ε01 þ

νyEx

1� νxνy

� �
ε02 ; σ2 ¼

νyEx

1� νxνy

� �
ε01 þ

1
5

2Ex þ 3Ey

1� νxνy

� �
ε02 ; σ6 ¼ Essε

0
6

(49)

For the case of the laminate 900=00=900=00=900� �
T the constitutive model is

obtained considering θ ¼ 900 and θ ¼ 00 with volumetric fractions v1 ¼ 2
5 y v2 ¼ 3

5.
This is:

σ1 ¼ 1
5

2Ex þ 3Ey

1� νxνy

� �
ε01 þ

νyEx

1� νxνy

� �
ε02 ; σ2 ¼

νyEx

1� νxνy

� �
ε01 þ

1
5

3Ex þ 2Ey

1� νxνy

� �
ε02 ; σ6 ¼ Essε

0
6

(50)

Finally, the constitutive model for the laminate 00=900=00� �
T is generated

considering that θ ¼ 00 and θ ¼ 900 with volume fractions v1 ¼ 2
5 and v2 ¼ 3

5 . The
model is as follows:

σ1 ¼ 1
3

2Ex þ Ey

1� νxνy

� �
ε01 þ

νyEx

1� νxνy

� �
ε02 ; σ2 ¼

νyEx

1� νxνy

� �
ε01 þ

1
3

2Ex þ Ey

1� νxνy

� �
ε02 ; σ6 ¼ Essε

0
6

(51)

6. Experimental obtaining of the elastic engineering properties to ply

In order to obtain the engineering properties of laminated plies, the experimen-
tal electrical extensometry method is used, which is supported by Perry [18]. It is
worth mentioning that, due to the arrangement of plies in the proposed composite
laminate, the number of constitutive analytical equations are three and the number
of elastic constants of orthotropic plies are five, so five- and three-ply laminate are
used. A CEA-O6-240UZ-120 strain gage is selected for the study (see Figure 17).

For the experimental tests, an INSTRON Universal Testing Machine was used.
The engineering properties Ex, Ey, νx and νy were determined. Several tests were
carried out and, in the solution, the equations of two models were combined due to
the number of constants to be determined.

Figure 18 shows the tests as well as the location of the installed strain gages, two
for each deformation in a full Wheatstone bridge configuration to eliminate signals
outside the required measurement (deflections, temperature changes, etc.). Tests
were performed with laminates 00=900=00=900=00

� �
T and 900=00=900=00=900

� �
T

for characterization and 00=900=00� �
T for evaluation of results. The measurement
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of the strains was carried out with electrical resistance strain gages on a theoretically
homogenized surface, and the values obtained are average and not punctual. From
the readings provided by the meter, the effective properties for both a laminate and
plies are calculated.

Combining test specimens 3–2 and 2–3 and from equations (Eq. (49)) and
(Eq. (50)), the following equations are obtained to determine the constants Ex, Ey,
νx and νy:

vx ¼ ε012ε
0
22

2ε012ε
0
21 � 3ε011ε

0
22

� �
;

vy ¼ ε012ε
0
22

2ε011ε
0
22 � 3ε012ε

0
21

� �

Ex ¼
5σ11vx 1� vxvy

� �

3vxε011 þ 2vyε011 þ 5vxvyε012;
Ey ¼

5σ11vy 1� vxvy
� �

3vxε011 þ 2vyε011 þ 5vxvyε012
� �

(52)

Here, σ11, σ12, ε011, ε
0
12 are the global average stress and strain values, respectively,

in directions 1 and 2 for the laminate 00=900=00=900=00� �
T, and σ21, σ22, ε021, ε

0
22 are

the average stress and strain values in directions 1 and 2 for the
laminate 900=00=9 00=00=900� �

T. In the tests, σ 12 = σ 22 = 0.

6.1 Analysis of results

The analysis of the data complied with the symmetry of the stiffness and com-
pliance tensor, the identity υx

Ex
¼ υy

Ey
, for calculated values of a ply. For the results of

115 mm

15 mm h=0.8 mm

A1 A2

B1 B2

B2

A3
A4

B3

B4A2

A3

A4

V G-
+

B3

B4

,

,

,

,

Figure 17.
Installation of strain gages, active and dummy.

Figure 18.
Tension test system with test specimens 3–2, 2–3 and 2–1 and installation of strain gages.
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the effective mechanical properties obtained experimentally Ex, Ey, νx and νy of the
plies that make up the laminate composite material, see Table 1. Figure 19 shows a
representative test on laminate 3–2.

The consistency of the tests was carried out by comparing the results obtained
for tests 3–2 and 2–1, showing very proximate values.

7. Conclusions

In this chapter, a theoretical framework based on the theory of linear elasticity
and the classical theory of composite laminates was established for the analysis of
axial load problems by analyzing concepts and establishing scopes and restrictions
of the models applied by the theories. The necessary bases were established for the
general obtention of the composite laminates’ constitutive models made up of
orthotropic plies or orthotropic ply groups with different orientations. With the
established models, it is possible: a) with the known stiffness constants, to calculate
the state of plane stresses at a point from the state of deformations and b) with the
known conformity constants, to calculate the state of strains from the state of
stresses. For ease of use, both the stiffness constants and the compliance constants
were made explicit in terms of the engineering constants. This allows an analysis of
overall or average stresses in the laminates under axial load. To show the efficiency
of the developments presented, the constitutive models of three orthotropic com-
posite laminates were obtained. Furthermore, by performing simple stress tests on
the laminates and measuring the state of strain with strain gages, the engineering
constants of the plies were determined.

Engineering Constants Plies Magnitude

Ex 53.05 GPa

Ey 23.3 GPa

υx 0.233

υy 0.1

Table 1.
Properties of the average experimental engineering constants.

Figure 19.
Graph of laminate 3–2 under tension.
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Section 2

Characterization
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Chapter 5

Temperature Dependence of the
Stress Due to Additives in KCl
Single Crystals
Yohichi Kohzuki

Abstract

The influence of the state of additive cations on the various deformation char-
acteristics was studied for KCl:Sr2+ single crystal at room temperature. This result
gives the heat treatment suitable for the crystal immediately before deformation
tests, such as compression and tension. Four kinds of single crystals (KCl: Mg2+,
Ca2+, Sr2+ or Ba2+) were plastically deformed by compression at 77 to room temper-
ature. The plasticity of the crystal depends on dislocation motion from a micro-
scopic viewpoint. When a dislocation breaks away from the defect around the
additive cation with the help of thermal activation on the slip plane in the crystal,
the variation of effective stress with the temperature was investigated by the com-
bination method of strain-rate cycling tests and ultrasonic oscillations. Further-
more, the critical temperature Tc at which the effective stress due to the additives is
zero was estimated for each of the crystals. As a result,Tc value tends to be larger
with the divalent cationic size.

Keywords: dislocation, divalent cation, effective stress, yield stress, heat treatment

1. Introduction

In alkali halide crystals doped with divalent cations (divalent impurities), the
additive cations are expected to be paired with vacancies to conserve the electrical
neutrality. They are often formed a divalent impurity-vacancy (I-V) dipole for the
impure crystals quenched from a high temperature. Then, the asymmetrical distor-
tions are produced around the I-V dipoles. Mobile dislocations on a slip plane
interact strongly only with these defects lying within one atom spacing of the glide
plane [1]. The solution hardening is named “rapid hardening,” which can be distin-
guished from “gradual hardening” due to the defects of cubic symmetry around the
monovalent dopants in the crystals [2–4]. Effects of different defects on the hard-
ness of some alkali halide crystals are listed in Table 1. The effects are expressed as
an increase in flow stress per square root of concentration of point defects (i.e., Δτ /
Δc1/2) in terms of the shear modulus, μ. Despite the same matrix (see NaCl in
Table 1), the hardening due to substitutional divalent additions is much larger than
the case of monovalent ones. It has been well known for many years that aliovalent
impurities (aliovalent cations) are a much more potent source of solution strength-
ening in ionic crystals than isovalent cations [5].
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In view of the different types of atomic defects, solution hardening may be
divided into two classes: rapid hardening and gradual hardening by Fleischer and
Hibbard [3] and Johnston et al. [4]. Roughly speaking, the value of Δτ /Δc1/2 for
rapid hardening is over several ten times as large as that for the gradual hardening
as shown in Table 1.

It is well known that various characteristics of deformation are influenced by the
state of impurities in a crystal. The following is concerned with it and presents the
heat-treatment condition suitable for the deformation tests such as compression
and tension for KCl:Sr2+ crystals. Furthermore, the influence of divalent cationic
size on the deformation characteristics is reported analyzing the data obtained by
the original method (strain-rate cycling tests associated with ultrasonic oscillation),
which can separate the effective stress due to weak obstacles such as additive ions
from that due to dislocation cuttings.

2. Experimental procedure

The initial dislocation density, the dielectric loss peak due to the I-V dipoles, and
yield stress were measured for KCl:Sr2+ crystal as explained in Sections 2.2 to 2.4.

2.1 Preparation of specimens

KCl doped with SrCl2 was grown from the melt of reagent-grade powders by the
Kyropoulos method in air. The specimens, which were cloven out of single-
crystalline ingots to the size of 5 � 5 � 15 mm3, were kept immediately at 973 K for
24 h, followed by cooling to room temperature at a rate of 40 Kh�1. This treatment
is because the density of dislocations is reduced as much as possible. Owing to the
gradual cooling, the additive ions (Sr2+) are expected to aggregate in the crystal.
Accordingly, the specimens were further kept at 373 to 873 K for 30 min, followed
by quenching to room temperature to disperse the additive ions (Sr2+) into them.

2.2 Initial dislocation density (ρ)

Using an etch pits technique, the initial density (ρ) of dislocations in KCl:Sr2+

(0.3 mol.% in the melt) was detected with a corrosive liquid (saturated solution of
PbCl2 + ethyl alcohol added two drops of water). The etching was made at room

Crystal Different types of point defects Δτ /Δc1/2 (�2
ffiffiffi
c

p
) a

NaCl Monovalent substitutional impurities < μ /30

KCl F-centers, additive coloring μ /2.5

NaCl Divalent substitutional impurities 2 μ

KCl (irradiated) Interstitial chlorine 18 μ

LiF Divalent impurity clusters 6 μ

LiF I-V dipoles (at 77 K) 10 μ

LiF (irradiated) VK-centers (at 77 K) 25 μ

LiF (irradiated) Interstitial fluorine 5 μ
aΔc represents the increment of the concentration of point defects and μ is the shear modulus. The measurements were
made at room temperature unless otherwise noted. Δτ /Δc in Refs. [2–4] is replaced by Δτ/Δc1/2.

Table 1.
Hardening due to various defects in alkali halide crystals. Defects concentration is below 10�4 [2–4].
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temperature for 30 min. The measurement of dislocation density in a crystal was
carried out by the etch pit technique.

2.3 Dielectric loss factor (tan δ)

The dielectric loss factor tan δ as a function of frequency was measured for KCl:
Sr2+ (1.0 mol.% in the melt) in a thermostatic bath at 300 to 873 K by using an
Andoh electricity TR-10C model.

2.4 Yield stress (τy)

The values of yield stress τy were obtained at room temperature for KCl:Sr2+

(1.0 mol.% in the melt) compressed along the <100 > axis at the crosshead speed of
20 μm min�1. The τy values were determined by the intersection of the tangent to
the easy glide region in the stress-strain curve and the straight line extrapolated
from the elastic region of the curve.

2.5 Combination method of strain-rate cycling tests and ultrasonic oscillation

Four kinds of single crystals (KCl:Mg2+ (0.035 mol.% in the melt), Ca2+ (0.050,
0.065 mol.% in the melt), Sr2+ (0.035, 0.050, 0.065 mol.% in the melt) or Ba2+

(0.050, 0.065 mol.% in the melt)) were prepared by cleaving the single crystalline
ingots to the size of 5 � 5 � 15 mm3. The test pieces were kept immediately below
the melting point (1043 K) for 24 h and were gradually cooled to room temperature
at a rate of 40 Kh�1. Further, they were held at 673 K for 30 min and were rapidly
cooled by water-quenching immediately before the following tests.

The heat-treated test pieces were compressed along the <100> axis at 77 K to
the room temperature and the ultrasonic oscillatory stress (τv) was intermittently
superimposed in the same direction as the compression. The strain-rate cycling test
off or on the ultrasonic oscillation (20 kHz) is illustrated in Figure 1. Superposing
oscillatory stress, a stress drop (Δτ) is caused during plastic deformation. The
strain-rate cycling between strain-rates of _ε1 (2.2� 10�5 s�1) and _ε2 (1.1� 10�4 s�1)
was undertaken keeping the stress amplitude of τv constant. This led to the increase
Δτ’ in stress due to the strain-rate cycling. The strain-rate sensitivity (Δτ’/Δln _ε) of
the flow stress, which is derived from Δτ’/1.609, was used as a measurement of the
strain-rate sensitivity.

Figure 1.
Change in applied shear stress (τa) for the strain-rate cycling tests between the two strain rates, _ε1
(2.2 � 10�5 s�1) and _ε2 (1.1 � 10�4 s�1), off or on the ultrasonic oscillatory stress (τv) due to the oscillation
(20 kHz).
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3. Results and discussion

3.1 Deformation characteristics influenced by different heat treatments for
KCl:Sr2+ crystals

Figure 2 shows the optical micrograph of the etch pits for KCl:Sr2+ (0.05 mol.%
in the melt) at room temperature after the annealing at 973 K for 24 h. The position
of the dislocation after the annealed treatment is marked by a pyramidal pit, and the
position where a dislocation slipped out of the crystal after the treatment is marked
by a flat-bottom pit.

Although, it is difficult to resolve the individual etch pits for high dislocation
density, the dislocation density on a (100) plane is found to be 1.27 � 104 cm�2

from this micrograph for the annealed specimen (i.e., KCl:Sr2+ (0.05 mol.% in the
melt)).

The height of the loss peak is related to the concentration of the isolated I-V
dipole (see Eq. (1)). The details are explained about KCl:Sr2+ (0.05 mol.% in the
melt) below.

Dielectric absorption of an I-V dipole causes a peak on the relative curve of tan δ

-frequency. The Debye peak height is proportional to the concentration of I-V
dipoles as expressed by the following Eq. (1) [6].

tan δ ¼ 2πe2c
3ε0akT

, maximumð Þ (1)

where e is the elementary electric charge, c is the concentration of I-V dipoles, ε0

is the dielectric constant in the matrix, a is the lattice constant, k is the Boltzmann
constant, and T is the absolute temperature. Figure 3 shows the tan δ-frequency
curves for KCl:Sr2+ at 393 K. The solid and dotted curves correspond to the
quenched KCl:Sr2+ (0.05 mol.% in the melt). That is to say, the crystals were held

Figure 2.
Dislocations on a (100) plane for KCl:Sr2+ (0.05 mol.%) after the heat treatment at 973 K for 24 h.
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within 673 K for 30 min, followed by quenching to room temperature. The dotted
line shows Debye peak obtained by subtracting the d.c. part which is obtained by
extrapolating the linear part of the solid curve in the low-frequency region to the
high-frequency region. By introducing the peak height of the dotted curve into
Eq. (1), the concentration of the isolated I-V dipoles was determined to be 98.3 ppm
for the quenched crystal by dielectric loss measurement.

As mentioned above, the dielectric loss factor tan δ is proportional to the
concentration of the isolated I-V dipoles at a given temperature.

Figure 4 shows the variations in the initial dislocation density (ρ), the dielectric
loss peak due to the I-V dipoles (tan δ), and yield stress (τy) as against the
temperature quenched KCl:Sr2+ (0.3 and 1.0 mol.% in the melt) single crystals [7].
The ρ value is about 5� 1� 104cm�2 independently of quenching temperature
below 673 K, but it remarkably increases above 673 K. The τy value also remarkably
increases for the crystals quenched at the temperature above 673 K as the variation
in dislocation density. And then it becomes a constant value 29 MPa above 723 K.
While the tan δ value does not vary and is almost constant by quenching from
the temperature below 573 K or above 673 K. Its value becomes 0.3 �10�2 up to
0.9 �10�2 between the two quenching temperatures (i.e., 573 K and 673 K). The
variation in tan δ value is similar to it in the yield stress within the temperature.

The difference in dislocation density is slight and the tan δ obviously becomes
larger with a higher quenching temperature between 573 and 673 K as shown in
Figure 4. The concentration of isolated I-V dipoles, which is proportional to the
tan δ (see Eq. (1)), affects the yield stress, as reported in the papers [8–11]. There-
fore, the specimens are determined to be quenched from 673 K to room temperature
immediately before deformation tests such as compression in this chapter.

3.2 Temperature dependence of τp1, τp2, and yield stress (τy)

The variation of the strain-rate sensitivity and the stress decrement with the shear
strain is shown in Figure 5 for KCl:Sr2+ (0.050mol.% in melt) single crystals at 200 K.
Δτ 0/Δln _ε tends to increase with shear strain and decrease with stress amplitude in

Figure 3.
Dielectric loss in KCl:Sr2+(0.05 mol.% in the melt) at 393 K. Dotted line (�� - -) shows the losses coming from
the I-V dipoles.
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Figure 4.
Quenching temperature dependence of initial dislocation density (ρ), the dielectric loss peaks due to the I-V
dipoles (tanδ), and yield stress (τy) for KCl:Sr

2+ crystals (reproduced from Ref. [7]).

Figure 5.
Shear strain (ε) dependence of (a) the strain-rate sensitivity (Δτ 0/Δln _ε) and (b) the stress decrement (Δτ) for
KCl:Sr2+ (0.050 mol.%) at 200 K. τv (arb. units): (○) 0, (●) 10, (▲) 25, (▽) 35, (▼) 45, and (□) 50
(reproduced from Ref. [12] with permission from the publisher).
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Figure 5(a). Δτ does not change significantly with shear strain but increases with
stress amplitude at a given temperature and shear strain in Figure 5(b).

Δτ 0/Δln _ε vs. Δτ curve is further obtained from Figure 5 at a given strain, which
provides the relative curve for a fixed internal structure of the crystal and is shown
by open squares in Figure 6 for KCl:Sr2+ (0.050 mol.% in melt) crystal at the shear
strain of 10%. The details were described in the review article [14].

Relation between the strain-rate sensitivity and the stress decrement for KCl:Sr2+

(0.050 mol.% in melt) at the shear strain of 10% is shown by open symbols in
Figure 6. The relative curve has a stair like shape. Figure 6 shows the influence of
temperature on the relation between the strain-rate sensitivity, Δτ 0/Δln _ε, and the
stress decrement, Δτ, for KCl single crystals doped with Sr2+ as weak obstacles. As
the temperature is high, the Δτ value at first bending point, τp1, shifts in the
direction of low stress decrement and does not appear up to 225 K. The first plateau
region indicates that the average length of the dislocation segment remains constant
in that region. This is because the strain-rate sensitivity of effective stress (τ*) due to
impurities is inversely proportional to the average length of the dislocation segment.
That is to say, it is given by

Δτ ∗

Δ ln _ε

� �

T
¼ kT

bLd
(2)

where b is the magnitude of the Burgers vector, L is the average length of
dislocation segments, and d is the activation distance. Therefore, the application of

Figure 6.
Strain-rate sensitivity (Δτ 0/Δln _ε) vs. the stress decrement (Δτ) at strain of 10% for KCl:Sr2+ (0.050 mol.%) at
temperatures of (○) 103 K, (Δ) 133 K, (□) 200 K, (⋄) 225 K (reproduced from Ref. [13] with permission
from the publisher).
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oscillation with low-stress amplitude cannot influence the average length of the
dislocation segment at low temperature, but even a low-stress amplitude can do so
at a temperature of 225 K. Such a phenomenon was also observed for the other
specimens: KCl doped with Mg2+, Ca2+ or Ba2+ separately.

Figure 7(a)–(c) shows the dependence of τp1, τp2, and yield stress (τy) on
temperature for KCl:Sr2+ ((a) 0.065, (b) 0.050 and (c) 0.035 mol.%, respectively)
crystals. τp2 is the Δτ value at the second bending point on the plots of Δτ vs.
(Δτ 0/Δln _ε). It is clear from the figure that both τp1 and τp2 tend to increase with
decreasing temperature as well as τy for the three crystals and the τy curve seems to
approach a constant stress at high temperature. Two values of τp1 and τp2 increase
with increasing Sr2+ concentration at a given temperature as shown in the figure.
Similar results as the case of KCl:Sr2+ are also observed for the other crystals
(i.e., KCl: Mg2+, Ca2+ or Ba2+).

3.3 Critical temperature (Tc)

Figure 8(a)–(d) shows the dependence of τp1 on the temperature for KCl
doped with Mg2+ (0.035 mol.% in melt), Ca2+ (0.065 mol.% in melt), Sr2+

(0.050 mol.% in melt) or Ba2+ (0.065 mol.% in melt). τp1 is considered the
effective stress due to the weak obstacles (Mg2+, Ca2+, Sr2+ or Ba2+ ions in this
Section 3.2) on the mobile dislocation during plastic deformation [13]. τp1
decreases with increasing temperature for the four kinds of crystals in the figure.
The critical temperature (Tc) at which τp1 is zero can be determined from the

Figure 7.
Temperature dependence of (○) τp1, (Δ) τp2, and (□) τy for KCl:Sr2+ ((a) 0.065, (b) 0.050, (c) 0.035 mol.%
in the melt) (reproduced from Ref. [12]).
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intersection with the abscissa and is around 180, 220, 230 and 260 K for KCl:Mg2+,
KCl:Ca2+, KCl:Sr2+, and KCl:Ba2+, respectively.

The tetragonal distortion resulting from the introduction of the divalent cations
into alkali halides is generally formed in the lattice. A dislocation moves on a single
slip plane and interacts strongly only with those defects. Then, the relation between
the effective stress and the temperature can be approximated as the linear relation-
ship of τ ∗ 1=2 vs. T1/2 (i.e., the Fleischer’s model [1]). τ ∗ is the effective stress due to
the divalent cations. The critical temperature can be also determined from τp1

1/2 vs.
T1/2 for each specimen. The values of Tc are given in Table 2. When the divalent
ionic size becomes closer to it of K+ from the small divalent cationic size side,Tc

tends to increase. Tc is not influenced by the concentration of additives (i.e., Mg2+,
Ca2+, Sr2+or Ba2+ here) [12, 15, 16] and is expressed by

Figure 8.
Temperature dependence of τp1 for various crystals: (a) KCl:Mg2+ (0.035 mol.% in the melt), (b) KCl:Ca2+

(0.065 mol.% in the melt), (c) KCl:Sr2+ (0.050 mol.% in the melt), and (d) KCl:Ba2+ (0.065 mol.% in the
melt). (Reproduced from Ref. [13] with permission from the publisher).

Single crystal Tc (K) Ionic radius (Å)

KCl:Mg2+ 191 Mg2+ 0.72

KCl:Ca2+ 221 Ca2+ 1.00

KCl:Sr2+ 227 Sr2+ 1.13

KCl:Ba2+ 277 Ba2+ 1.36

K+ 1.38

Table 2.
Tc and ionic radius values for various crystals.
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Tc ¼ ΔG0=kð Þ ln _ε= ρmb
2νD L0=Lð Þ2

n oh i
, (3)

where ΔG0 is the Gibbs free energy for the breakaway of a dislocation from an
impurity, ρm is the density of mobile dislocations, the νD is the Debye frequency,
and L0 is the average spacing of divalent cations on a slip plane. At the temperature
of Tc, thermal fluctuations can provide the entire energy for breaking through the
impurity. The additive ions act no longer as obstacles to dislocation motion.

4. Conclusions

The concentration of isolated I-V dipoles affects the τy values. The values of τy
and ρ remarkably increase with the quenching temperature above 673 K. As for
tan δ, it does not vary by quenching from the temperature below 573 K or above
673 K. Within 573 to 673 K, the difference in ρ is slight and the values of tan δ and
τy obviously become larger with a higher quenching temperature. Based on these
results, KCl:Sr2+ single crystals are determined to be quenched from 673 K to room
temperature immediately before deformation tests such as compression.

The following two points were mainly mentioned from the experimental results
and the discussion based on the data τp1 of the first bending point on the plots of Δτ
vs. (Δτ’/Δln _ε).

1.The plots of Δτ vs. (Δτ’/Δln _ε) have a stair like shape (two bending points and
two plateau places) for the KCl doped with the divalent cations. The Δτ values
at the first and second bending points, τp1 and τp2, become obviously larger at
lower temperature as well as τy for the crystals within the temperature.

2.The values of Tc were derived from the relation between τp1
1/2 and T1/2 with

respect to the Fleischer’s model for KCl single crystals doped with Mg2+, Ca2+,
Sr2+ or Ba2+ as divalent impurities. Tc tends to increase when the additive
cationic size is increasingly close to the K+ ionic size from the smaller side than
K+ size in the matrix crystal.
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Chapter 6

Elasticity of Auxetic Materials
Jeremiah Rushchitsky

Abstract

The auxeticity of elastic materials is described and explained by the use of the
linear and nonlinear models of elastic deformations for a wide range of strain values
up to moderate levels. This chapter consists of three parts – general information on
auxetic materials, description of auxetics by the model of the linear theory of
elasticity, description of auxetics by the models of the nonlinear theory of elasticity.
The analytical expressions are offered that corresponds to three kinds of universal
deformations (simple shear, uniaxial tension, omniaxial tension) within the frame-
work of three well-known in the nonlinear theory of elasticity models – two-
constant Neo-Hookean model, three-constant Mooney-Rivlin model, five-constant
Murna-ghan model. A most interesting novelty consists in that the sample from
elastic material is deformed as the conventional material for small values of strains
whereas as the auxetic with increasing to moderate values of strains.

Keywords: auxetic material, elastic deformation of auxetics, three main effects of
auxeticity, linear elastic model (Hookean model), nonlinear elastic models (two-
constant Neo-Hookean model, three-constant Mooney-Rivlin model, five-constant
Murnaghan model, new mechanical effects

1. Introduction

To begin with, let us recall the definition of elasticity of deformation of the
material. So, the property of elasticity consists in that the body practically simulta-
neously takes the initial configuration after removing the deformation causes. In
other words, if deformations are elastic, then they simultaneously vanish after
removing the action of forces, caused the deformations.

This property, as also other properties, though, is displayed seldom in the pure
form, that is, it is accompanied in real solid materials by several other properties.
But in most cases, elasticity is the main and pre-vailing property.

It is worthy to note at beginning of this chapter that the analysis of auxetic materials
as the deforming elastically materials is dominating over other types of deformation
(thermoelastic, viscoelastic, elastoplastic, magnetoelastic, etc). Therefore, the theme
“Elasticity of Auxetic Materials” is related to the main part of studies of auxetics.

At present, the auxetic materials are thought of as some subclass of
nontraditional (nonconventional) ma-terials which are known as metamaterials.
The metamaterials include the mechanical metamaterials, which in turn include the
auxetic materials. At present, a sufficiently big group of scientists work in the area
of auxetic materials. It includes mainly specialists from material science, to the
lesser extent from statistical physics, and even to the lesser extent from experimen-
tal mechanics. The state-of-the-art in science on auxe tic materials is shown in the
monographs [1–3] and the review articles [4–23].

85



The auxetic materials were discovered and identified as a novel class of materials
about forty years ago. Usually, two publications of Gibson L.J., Ashby M.F. et al
[19, 20] are shown as the pioneer ones.

The term “auxetic material”was introduced by Evans in 1991 [21] for a new range
of materials, which he defined them “the materials with negative Poisson ratio
(NPR)”. This needs some scientific comments relative to the term and definition.

Comment 1 (to the term “auxetic material”). At present, Wikipedia and other
sources propose for such materials the name “auxetics”. Both names come from the
Greek word αυξητικοζ (that which tends to increase). But this does not explain why
just “auxetic”. The next comment on definition gives some clearness.

Comment 2 (to the definition of auxetic material). Auxetic materials are
deformed elastically exhibiting the unconventional property of increasing the cross-
section (growing swollen) of cylindrical or prismatic samp-le under uniaxial tension,
whereas in the conventional materials this cross-section decreases (grows thin). Just
this is reflected in the name “auxetic” and shown in Figure 1 [4].

The point is that the property of the decrease is described in the linear theory of
elasticity by the use of the Poisson ratio as the elastic constant. A change of the
decrease of cross-section on the increase of one means a change of positive values of
the Poisson ratio on the negative ones.

The presented short information on auxetics shows that their definition is based
on the secondary fact – the negativity of the Poisson ratio, which corresponds to the
model of the linearly elastic body. The primary fact consists in observation in the
standard for mechanics of materials (which does not depend on the model of
deformation) experiment of longitudinal tension of a prism when the transverse
deformation of the prism is positive (a material as if swells) in contrast to the
classical materials, where it is negative.

The adherence of researchers of auxetic materials to the foams can be seen in the
often used (described verbally or by the picture) demonstration of auxeticity of the
foam as increasing the volume of sample from the foam under tension. It is shown
in Figure 2 [[10] (left), [20] (right)].

These pictures are really very demonstrative because they show two basic
features.

Feature 1. The sample length is possibly not sufficient to create the classical
conditions of the test on the universal deformation of uniaxial tension-compression.

Figure 1.
Test on uniaxial tension for conventional and non-conventional materials.

Figure 2.
Usually used test-demonstration of auxeticity.

86

Elasticity of Materials



Feature 2. The longitudinal and transverse strains are seemingly not sufficiently
small in this test to be described by the linear theory of elasticity.

Starting with the first works on auxetics, the discussed real materials were the
different kinds of foams. It is considered that the first observed auxetic materials
were the foams which are characterized by the small value of density and the porous
internal structure (see Lakes [24] and Wojciechowski [25]). In the next studies, the
new auxetics were revealed, the density of which was also small and which have a
porous structure. But it was shown later that small density is not the defining
property of auxetics, because the significant part of foams has not the property of
auxeticity. The defining characteristics of auxetics are new three mechanical phe-
nomena which will be described below.

The common concept was adopted almost at the initial part of studies that the
auxeticity of materials is caused by the internal structure of these materials. This
corresponds to the general concept of mechanics (which is clearly shown in
mechanics of composite materials) that the specificities of deformation of materi-
als can be explained by the existence of some specific internal structure. Only the
answer should be found which concrete specificity is characteristic for the auxetic
materials. Therefore, an essential part of studies of auxetics consists in the finding
of diverse variants of internal structure that are further studied by methods of
molecular physics and computational simulations. The most popular is a so-called
hexagonal system (it is shown in Figure 3 [12]; left – before stretching, right – after
stretching). Just this structure shows the swelling of the sample and is given by
different authors to illustrate the auxeticity.

It should be noted that the mechanics of materials works with the continuum
models. This means that any discrete models of the internal structure must be
transformed into the continuum one (here the different ways of averaging are usually
applied). In mechanics, the internal structure of materials can appear on two differ-
ent stages of modeling the materials. First, on the stage of changing the discrete
structure of a material by the continuous one (that is when the notion of the contin-
uum is introduced according to the principle of continualization). Second, on the
stage of modeling the piece-wise inhomogeneous continuum by the homo-geneous
continuum (that is when the principle of homogenization is applied). The first stage
is usually asso-ciated with methods of molecular physics, whereas the second stage is
a standard one in mechanics of composite materials. This is peculiar to all the mate-
rials that are studied in mechanics and refers also to the theory of elasticity within the
framework of which the elastic deformation of aux-etic materials is studied.

For the presence in the material property of auxeticity, its internal structure has
to change under defor mation by the special way exhibiting the unusual
(nontraditional) mechanical effects. Note that mechanics of materials studied
traditionally first the elastic deformation and this concern both traditional
(non-auxe-tic), and nontraditional (auxetic) materials.

As far as the number of known nonauxetic materials exceeds the number of
auxetic ones on many or-ders, then the term “unusual effect” is looking

Figure 3.
The most known interpretation of the internal structure of auxetic material.
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appropriate. In contrast to the traditional effects that count tens, the effects of
auxeticity are observed as now in the identical mechanical problems in three types
of such problems that are realized experimentally and described theoretically. An
identity consists in that the samples from material must be compared when the
internal structure of a material in cases “auxetic non-auxetic” is differing by the
only geometrical shape of pores. This case is shown in Figure 4 for the sample from
the polyurethane foam (left – traditional structure, right – auxetic structure) [2].

Now, some facts from this theory should be shown concerning the phenomenon
of auxeticity. But first three specific appearances of auxeticity must be described
and commented on.

2. Three specific properties of auxetic materials

Only one of these specificities is well known – the swelling under the tension of
the standard sample (standard mechanical test). This test is described above and
shown in Figure 1.

But the fact is known that the auxeticity is generated by the special kind of
internal structure of material and appears in three basic mechanical tests on defor-
mation of material

1.Swelling under tension.

2.Hardening under indentation (impact).

3.Synclastic and anticlastic deformation of thin flexible plate.

Test 2 on indentation (statical Hertz problem, problem on hardness by
Rockwell-Brinell-Wikkers) and impact (dynamical Hertz problem) shows the effect
of hardness of auxetics in the contact zone. Within the framework of the theory of
elasticity, this problem is solving numerically with the given exactness. A scheme of
test that exhibits the essential difference in the degree of indentation of the spher-
ical indentor into the traditional (left) and auxetic (right) materials is shown in
Figure 5 [12].

Figure 4.
Sample from the polyurethane foam (left – traditional structure, right – auxetic structure).

Figure 5.
Test for hardness material (left – traditional structure, right – auxetic structure).
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Test 3 on synclastic and anticlastic deformation of flexible elastic plate is stated
within the assumption that the plate is quadratic in plan and is loaded by the
balanced system of three forces – one force is applied at the center of a plate and
directed upward, whereas two other identical forces are applied at the centers of
two opposite ends of the plate and directed downward. Within the framework of
the theory of flexible elastic plates, this problem is solving numerically with the
given exactness. The simple experiment that exhibits the essential difference in
deformation of the plate from the traditional and auxetic materials is shown in
Figure 6 [4] (left traditional material, right – auxetic material).

Note that these basic phenomena of deformation of auxetics can be described
only in the terms of the theory of elasticity.

3. Some facts from the linear theory of elasticity necessary for
describing the auxetic materials

Because the elastic deformation is described in mechanics only by the theory of
elasticity, then some facts from this theory should be recalled before the discussion
of the specificities of elastic deformation of auxetics. At that, the division of the
theory of elasticity on the linear and nonlinear theories should be taken into
account. It is important to remember that the linear theory is based on the one
(Hookean) model, whereas the nonlinear uses many different models.

3.1 Universal deformations

Universal deformations (uniform deformations, universal states) occupy a
special place in the theory of elasticity just owing to their universality [26]. This
universality consists in that the theoretically and experi-mentally determining elas-
tic constants of material in samples, in which the universal deformation is created
purposely, are valid also for all other deformed states both samples and any differ-
ent products made of this material. It is considered therefore that the particular
importance of universal deformation (their fundamen tality) consists in the possi-
bility to use them in the determination of properties of materials from tests [26–31].
To realize the universal deformation, two conditions have to be fulfilled: 1. Unifor-
mity of deformation must not depend on the choice of material. 2. Deformation of
material has to occur by using only the surface loads.

In the theory of infinitesimal deformations, the next kinds of universal defor-
mations are studied more of-ten and in detail: simple shear, simple (uniaxial)
tension-compression, uniform volume (omniaxial) tension-compression. In the lin-
ear theory of elasticity, the experiment with a sample, in which the simple shear is
realized, allows determining the elastic shear modulus μ. The experiment with a

Figure 6.
Test on synclastic (left) and anticlastic (right) deformation.

89

Elasticity of Auxetic Materials
DOI: http://dx.doi.org/10.5772/intechopen.99543



sample, in which the uniaxial tension is realized, allows determining Young elastic
modulus E and Poisson ratio ν. The experiment with a sample, in which the uniform
compression is realized, allows determining the elastic bulk modulus k.

While being passed from the linear model, which is valid for only the very small
deformations to the mo-dels of non-small (moderate or large) ones, that is, from the
linear mechanics of materials to nonlinear me-chanics of materials, the universal
states permit to describe theoretically and experimentally many nonlinear phe-
nomena. The history of mechanics testifies to the experimental observation in the
XIX century of the non linear effects that arose under the simple shear and were
named later by the names of Poynting and Kelvin [27–31]. After about a hundred
years in the XX century, these effects were described theoretically within the
framework of the nonlinear Mooney-Rivlin model [31–35].

The mechanics of composite materials is one more area of application of universal
deformations. The mo-del of averaged (effective, reduced) moduli is in this case the
simplest and most used model. In the theory of effective moduli, the composite
materials of the complex internal structure with internal links are treated usually as
homogeneous elastic media. A possibility to create in such media the states with
universal deformations was used in the evaluation of effective moduli by different
authors and different methods. It was found that it is sufficient for isotropic (granular)
composites to study the energy stored in the elementary volumes of composites under
only two kinds of universal deformations: simple shear and omniaxial compression. In
the case of transversely isotropic (fibrous or layered) composites, the different direc-
tions need analysis of universal deformations for each direction separately.

3.2 Classical procedures of estimating the values of elastic moduli in the linear
theory of elasticity

Perhaps, the eldest and exhausting procedures are shown in the classical Love’s
book [36]. Let us save the Love’s notations and write according to [36] the internal
energy of deformation of the linearly elastic isotropic body W in the form

W ¼ λ εxx þ εyy þ εzz
� �2 þ 2μ ε2xx þ ε2yy þ ε2zz

� �
þ μ ε2xy þ ε2xz þ ε2yz

� �
, (1)

where λ, μ are the Lamemoduli, εxx, … , εyz are the components of the strain tensor.
The Hooke law has the form

Xx ¼ λΔþ 2μεxx,Yy ¼ λΔþ 2μεyy,Zz ¼ λΔþ 2μεzz,

Xy ¼ 2μεxy,Zx ¼ 2μεzx,Yz ¼ 2μεyz:
(2)

Here Δ ¼ εxx þ εyy þ εzz is the dilatation.
The classical procedure of introducing the Young modulus and Poisson ratio is as

follows: the cylinder or prism of any shape is considered, then the axis of the
cylinder is chosen in direction Ox and the prism is stretched at the ends by a
uniform tension T. Because the lateral surface of the prism is assumed to be free of
stresses, then the stress state of a prism is uniform and is characterized by only one
stress Xx ¼ T. In this case, the Hooke law becomes simpler

T ¼ λΔþ 2μεxx, 0 ¼ λΔþ 2μεyy, 0 ¼ λΔþ 2μεzz: (3)

An expression for dilatation follows from equalities (3) T ¼ 3λþ 2μð ÞΔ ! Δ ¼
T= 3λþ 2μð Þ.
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The substitution of the last expression for dilatation into the first equality (2)
gives relations

T ¼ λ

3λþ 2μ
T þ 2μεxx ! T ¼ μ 3λþ 2μð Þ

λþ μ
εxx: (4)

The expression (4) represents the elementary law T ¼ Eεxx of link between
tension and deformation of the prism, in which the Young modulus E is used

E ¼ μ 3λþ 2μð Þ
λþ μ

: (5)

The substitution of expression for dilatation into the second and third equalities
(2) gives relations

�εyy ¼ �εzz ¼ λ

2 λþ μð Þ εxx, (6)

which express the classical Poisson law on the transverse compression under the
longitudinal extension and permit to introduce of the Poisson ratio

σ ¼ �εyy
εxx

¼ �εzz
εxx

¼ λ

2 λþ μð Þ : (7)

Let us repeat now the procedure associated with introducing the universal (uni-
form) deformation – the uniform compression. Thus, the body of arbitrary shape is
considered, to all points of which the constant pressure �p is applied. In this body,
the uniform stress state arises which is characterized by stresses Xx ¼ Yy ¼ Zz ¼
�p, Xy ¼ Yz ¼ Zx ¼ 0. The Hooke law becomes simpler

�p ¼ λΔþ 2μεxx, � p ¼ λΔþ 2μεyy, � p ¼ λΔþ 2μεzz, εxy ¼ εyz ¼ εzx ¼ 0: (8)

The relations (8) can be transformed to �3p ¼ 3λþ 2μð Þ εxx þ εyy þ εzz
� �!

�p ¼ λþ 2=3ð Þμ½ �Δ.
In this way, the modulus of compression k is defined

k ¼ λþ 2=3ð Þμ: (9)

The classical Love’s reasoning, which is repeated in most books on the linear theory
of elasticity, is based on the representation of moduli λ, μ, k through moduli E, σ

λ ¼ Eσ
1þ σð Þ 1� 2σð Þ , μ ¼ E

2 1þ σð Þ , k ¼ E
3 1� 2σð Þ : (10)

The formulas (10) are commented in ([36], p. 104) as follows: “If σ were > 1=2,
k would be negative, or the material expands under pressure. If σ were < � 1, μ
would be negative, and the function W would not be a positive quadratic function.
We may show that this would also be the case if k were negative. Negative values σ
are not excluded by the condition of stability, but such values have not been found
for any isotro-pic material.”

Because the comments of negativity of Poisson ratio is found in the books on the
theory of elasticity very seldom, therefore a few sentences from Lurie’s book ([29],
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p. 117) are worthy to be cited: “A tension of the rod with negative ν (but the more
than �1) would be accompanied by increasing of transverse sizes. Ener-getically,
the existence of such elastic materials is not excluded.” “In hypothetic material with
ν< � 1, the hy-drostatic compression of the cube would be accompanied by
increasing its volume.”

Note that the Poisson ratio is denoted in the theory of elasticity by σ “sigma” and
ν “nu”. Love uses σ, whereas Lurie uses ν.

It should be also noted that not all authors of books on the linear isotropic theory
of elasticity discuss the restrictions on changing the Poisson ratio (for example,
Germain, Nowacki, Hahn do not made this in their well-known books [37–39]). The
constitutive relations and classical restrictions on elastic constants are discussed in
the most comprehensive and modern treatment of the theory of elasticity [28]
(Subsection 3.3 “Constitutive relations”).

But in some books, the discussion is presented and all authors start with one and
the same postulate: in the procedure of restrictions in changing the Poisson ratio,
the primary requirement is a positiveness of internal energy W (1). The represen-
tation of energy can be different for different elastic moduli. For example,
Leibensohn [40], Love [36], Lurie [29] choose the pair λ, μ and use the representa-
tion (1). Landau and Lifshits [41] use the pair k, μ. In all the cases,W has a form of a
quadratic function with coefficients composed of elastic moduli.

Thus, in most cases, the expression (1) is analyzed. It is assumed that the
sufficient and being in line with experimental observations condition is the
condition of positiveness of Lame moduli

λ>0, μ>0: (11)

Further, the formulas (10) are considered, in which without controversy the
Young modulus is assumed positive E>0. Then positiveness of expressions 1þ
σ >0, 1� 2σ >0 provides validity of formula (11), from which the well-known
restriction on the Poisson ratio follows

�1< σ < 1=2: (12)

Let us recall that all the elastic moduli in the classical linear isotropic theory of
elasticity are always posi-tive. The obvious contradiction between the assumption of
negativity of the Poisson ratio and the primary statement on the positivity of Lame
moduli (11) in conditionwhen the Poisson ratio is defined by formula (7) is commented
in the classical theory of elasticity anybody. To all appearances, this situation is occurred
owing to the incredibility of negative values if only one of the elastic moduli λ, μ,E, k.

Note finally that two experimental approaches to determine the value of Poisson
ratio for concrete material are used at present time ([27], subsections 2.18, 3.27,
3.28). The first approach is the older one. It is based on the experimental determi-
nation of Young, shear, and compression moduli and subsequent calculation of
Poisson ratio by formulas (10) σ ¼ E=2μð Þ � 1, σ ¼ 1=2ð Þ E=3kð Þ � 1½ �. Here, the
problem of the exactness of calculation arises. Let us cite Bell’s book ([27], subsec-
tion 3.28): “Remind of the Grüneisen’s conclusion that the errors of �1% in values E
and μ result in the error of 10% in the value of Poisson ratio.” Therefore, the second
approach seems to be more preferable. It is associated with Kirchhoff’s experiments
(1859), in which the Poisson ratio is determined from the direct experiment on
simultaneous bending and torsion.

Let us recall that the primary phenomenon in the determination of the Poisson
ratio is the contraction of a sample (transverse deformation of a sample) under its
elongation (its longitudinal deformation).
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3.3 Refinement of procedures of estimating the values of elastic moduli

Let us save the initial postulate that the primary requirement is the positivity of
internal energy W (1) and reject the sufficient (and not necessary) condition of
positivity ofW when the positivity of Lame moduli λ, μ is assumed and suppose the
general condition of positivity of W.

Because the Lame modulus μ has a physical sense of the shear modulus and until
now the facts of observation its negativity (a shear in the direction opposite to the
direction of shear force) are not reported, then we can agree to its positivity. This
condition of positivity can be also substantiated theoretically based on ana-lysis of
universal deformation of simple shear. To describe the simple shear, the coordinate
plane (for example, xOy) should be chosen and only one non-zero component ux,y
of the displacement gradient should be given. This can be commented geometrically
as deformation of the elementary rectangle ABCD with sides dx, dy parallel to the
coordinate axes into the parallelogram AB0C0D, which results from the longitudinal
shift of the rectangle side BC. Then the shear angle ∡BAB0 ¼ γ is linked with ux,y in a
next way ux,y ¼ tan γ ¼ τ and εxy ¼ 1=2ð Þτ. The Hooke law becomes the simplest
form σxy ¼ 2μεxy and the corresponding representation of internal energy is as
follows W ¼ 1=2ð Þμτ2. Then the positivity of shear modulus (14) follows from the
positivity of energy W.

Now, the next refinement can be formulated.
Refinement 1. The Lame modulus λ can be negative if the Poisson ratio σ ¼

λ= 2 λþ μð Þ½ � can be assumed possible negative.
Refinement 2. If the Poisson ratio σ is assumed to be possible negative and the

shear modulus μ is positive, then according to definition (7) the negative Lame
modulus λ can not exceed by its absolute value the shear modulus

λj j< μ: (13)

Let us return to the primary definition of the Poisson ratio (7), which is found
from the solution of the problem of unilateral tension. In this case, the internal
energy has the form

W ¼ λ ε11 þ ε22 þ ε33ð Þ2 þ 2μ ε211 þ ε222 þ ε233
� � ¼ λ ε11 þ 2σε11ð Þ2 þ 2μ ε211 þ σε11ð Þ2 þ σε11ð Þ2

� �

¼ λ 1þ 2σð Þ2 þ 2μ 1þ 2σ2
� �h i

ε11
2 >0:

(14)

Then λþ 2 1þ 2σ2ð Þ= 1þ 2σð Þ2
h i

μ>0: permits to the formulation of some new

refinements.
Refinement 3. If the Poisson ratio σ is assumed to be possible negative and the

shear modulus μ is positive, then the condition of positivity of internal energy
admits arbitrary negative values of the Poisson ratio.

(because the coefficient ahead of μ is always positive). The case 1þ 2σ ¼ 0 !
σ ¼ �0, 5 is the peculiar one – the value of modulus λ is practically not restricted at
its neighborhood.

Refinement 4. The Lame modulus λ is already restricted from below according to
(14), but also the additional condition (16) exists

λj j< 2 1þ 2σ2
� �

= 1þ 2σð Þ2
h i

μ: (15)
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The condition (15) is less strong: the coefficient ahead of μ exceeds 1 for all
negative σ (in condition (13), the coefficient ahead of μ is equal to 1). Therefore, the
condition (13) remains.

Let us turn to formula (9), which expresses the compression modulus k through
the Lame moduli λ, μ. It follows from (9) that the modulus k will be negative if only
the negative Lame modulus λ exceeds 2=3ð Þμ by absolute value

k ¼ λþ 2=3ð Þμ<0 ! λj j> 2=3ð Þμ ¼ 0, 667μ: (16)

Comparison with restrictions (13) and (15) on the absolute values of negative
Lame modulus λ in the case of negative values of Poisson ratio σ shows that (16)
does not conflict with (13) and (15).

Refinement 5. If the Poisson ratio σ is assumed to be possible negative and the
shear modulus μ is positive, then the compression modulus k can be negative.

The situation with refinements becomes clearer if the moduli λ,E and k are
written through μ and σ

λ ¼ 2σ
1� 2σ

μ,E ¼ 2 1þ σð Þμ, k ¼ 2
3

1þ σ

1� 2σ
μ: (17)

A few statements can be formulated at the end of this subchapter.
Statement 1. The classical restrictions of positivity of the elastic moduli in the

isotropic theory of elasticity should be refined for auxetic materials: most elastic
moduli can be negative.

Statement 2. Seemingly, the auxetics should be defined by the primary physical
phenomenon of positivity of transverse deformation of a prism, which is observed in
the standard in mechanics of materials experiment of longitudinal tension of a prism.
In this case, the auxetics will be associated not only with the isotropic elastic materials.

Statement 3. In the case of auxetic materials, the Lame modulus λ is always
negative and the Young E and compression kmoduli are negative when the negative
Poisson ratio is less than �1: σ < � 1.

Statement 4. When the problems of the linear isotropic theory of elasticity being
studied for auxetic materials, then at least two elastic moduli for these materials
should be determined from the direct experiments (unilateral tension, omnilateral
compression, simple shear, torsion).

4. Specificities of describing the auxetic materials by the nonlinear
theory of elasticity

4.1 Essentials of nonlinear theory of elasticity

While being studied the auxetics from the position of the nonlinear theory of
elasticity, some essential differences between the linear and nonlinear descriptions
should be taken into account. Therefore, the basic notions of the nonlinear approach
seem to be worthy to show here very shortly [31, 34, 35, 42, 43].

A body is termed some area V of 3D space R3, in each point of which the density
of mass ρ is given (the area occupied by the material continuum). In this way, a real
body, the shape of which coincides with V, is changed on a fictitious body. This
fictitious body is the basic notion of mechanics. The Lagrangian xkf g or Eulerian
Xkf g coordinate systems can be given in R3. In the theory of deformation of a body

as a change of its initial shape, the notions are utilized that are associated with a
geometry of body (kinematic notions) and with the forces acting on the body from
outside and inside (kinetic notions). The notions of the configuration χ, the vector
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of displacement u! ¼ ukf g, the principal extensions λk, the strain tensor εik are
referred to as the notions of kinematics. The external and internal forces, as well as
the tensors of internal stresses, refer to the notions of kinetics,

The configuration of the body at amoment t is called the actual one, whereas the
configuration of the body at arbitrarily chosen initial moment to is called the reference
one. The coordinates of the body point before deformation are denoted by xk. It is
assumed that after deformation this point is displaced on the va-lue uk x1, x2, x3, tð Þ:
Then the vector with components uk is called the displacement vector and the coordi-
nates of the point after deformation are presented in the form ξk ¼ xk þ uk x1, x2, x3, tð Þ.
The frequently used Cauchy-Green strain tensor is given by the known displacement
vector u! xk, tð Þ in the Lagrangian coordinates xkf g and the reference configuration

εnm xk, tð Þ ¼ 1=2ð Þ un,m þ um,n þ un,ium,ið Þ: (18)

As a result, the deformation of the body is given by nine components of dis-
placement gradients ui,k. Such a description of deformation is used in most models
of the nonlinear theory of elasticity. But the process of deformation can be
described also by other parameters of the geometry change of the body. It seems
meaning ful to use often the first three algebraic invariants of tensor (18) A1 ¼
εmnδmn, A2 ¼ 1=2ð Þ εmnδmnð Þ2 � εikεik

h i
, A3 ¼ det εmn, which can be rewritten

through the principal values of tensor (18) εk by the formulas A1 ¼ ε1 þ ε2 þ ε3,
A2 ¼ ε1ε2 þ ε1ε3 þ ε2ε3, A3 ¼ ε1ε2ε3: The often used invariants I1, I2, I3 of tensor εik
are linked with the algebraic invariants of the same tensor by relations

I1 ¼ 3þ 2εnn ¼ 3þ 2A1, I2 ¼ 3þ 4εnn þ 2 εnnεmm � εnmεmnð Þ ¼ 3þ 4A1 þ 2 A2
1 � A2

� �
,

I3 ¼ det δpq þ 2εpq
�� �� ¼ 1þ 2A1 þ 2 A2

1 � A2
� �þ 4=3ð Þ 2A3 � 3A2A1 þ A3

1

� �
:

In several models of nonlinear deformation of materials, the elongation coeffi-
cients (principal extensions) defined as a change of length of the conditional linear
elements (the infinitesimal segments that are directed arbitrarily) are used

λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2εk

p
: (19)

A simpler formula λk � 1≈ εk is valid for the case of linear theory. Additionally to
three parameters (19), three parameters should be introduced that characterize a change
of the angles between linear elements and areas of elements of coordinate surfaces.

It seems to be necessary to show the very often used notation of the displace-
ment gradient

F ¼
1þ u1,1 u1,2 u1,3
u2,1 1þ u2,2 u2,3
u3,1 u3,2 1þ u3,3

2
64

3
75

and notation of the left Cauchy-Green strain tensorB = F FT associatedwith it. The
most used are two ten-sors of internal stresses: the symmetric Cauchy-Lagrange tensor
σik, which ismeasured on the unit of area of the deformed body, and the nonsymmetric
Kirchhoff tensor tik, which is measured on the unit area of the undeformed body.

4.2 Universal deformation of simple shear in the nonlinear approach

The simple shear is described in subsubsection 3.3, where the basic formula
u1,2 ¼ tan γ ¼ τ>0 is shown.
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In the linear theory, the shear angle is assumed to be small and then γ ≈ tan γ ¼ τ.
The nonlinear app-roach introduces some complications. The Cauchy-Green strain
tensor is characterized by only three non-zero components

ε11 ¼ 1=2ð Þ u1,1 þ u1,1 þ u1,ku1,kð Þ ¼ 1=2ð Þ u1,2u1,2 þ u1,3u1,3ð Þ ¼ τ2; ε12 ¼ ε21

¼ 1=2ð Þ u1,2 þ u2,1 þ u1,ku2,kð Þ ¼ 1=2ð Þτ, (20)

The principal extensions are written through the shear angle by formulas
λ1 ¼ 1, λ2 ¼ λ3 ¼ τ.

4.3 Universal deformation of uniaxial tension in the nonlinear approach

This kind of deformation is also described above. It is characterized in the nonlinear
approach by only one nonzero component σ11 of the stress tensor and two nonzero
components ε11, ε22 ¼ ε33 of the strain tensor (or two principal extensions λ1, λ2 ¼ λ3).

4.4 Universal deformation of uniform (omniaxial) compression-tension

A sample has the shape of a cube, to sides of which the uniform surface load
(hydrostatic compression) is applied. Then the uniform stress state is formed in the
cube. The normal stresses are equal to each other σ11 ¼ σ22 ¼ σ33, and the shear
stresses σik i 6¼ kð Þ are absent. This type of deformation is defined as follows

u1,1 ¼ u2,2 ¼ u3,3 ¼ ε>0, u1,1 þ u2,2 þ u3,3 ¼ 3ε ¼ e, uk,m ¼ ∂uk=∂xmð Þ ¼ 0 k 6¼ mð Þ:
(21)

The Cauchy-Green strain tensor is simplified ε11 ¼ ε22 ¼ ε33 ¼ εþ
1=2ð Þε2, εik ¼ 0 i 6¼ kð Þ and the algebraic invariants are written in the form

I1 ¼ ε11 þ ε22 þ ε33 ¼ e, I2 ¼ ε11ð Þ2 þ ε22ð Þ2 þ ε33ð Þ2, I3 ¼ ε11ð Þ3 þ ε22ð Þ3 þ ε33ð Þ3:
(22)

The principal extensions are equal to each other

λ1 ¼ λ2 ¼ λ3: (23)

4.5 Three nonlinear models of hyperelastic deformation

These models are related to the models of hyperelastic materials. This class of
materials is characterized by the way of introduction of constitutive equations.
First, the function of kinematic parameters (elastic potential, internal energy) is
defined, from which later the constitutive equations are derived mathematically
and sub-stantiated physically. Model 1 is chosen as the simplest one. Model 2 is well-
working for the not-small (large or finite) deformations. Model 3 belongs to the
most used in the nonlinear mechanics of materials.

4.5.1 Two-constant Neo-Hookean model (model 1)

The elastic potential of this model is defined as follows [31, 34, 35, 42, 43]

W ¼ C1 I1 � 3
� �þD1 J � 1ð Þ2, I1 ¼ J�2=3I1, J ¼ detui,k,

W λ1, λ2, λ3ð Þ ¼ C1 λ1λ2λ3ð Þ�2=3 λ21 þ λ22 þ λ23
� �� 3

h i
þD1 λ1λ2λ3 � 1ð Þ2: (24)
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Here the elastic constants of the model are linked with the classical elastic
constants by relation 2C1 ¼ μ; 2D1 ¼ k.

The constitutive equations have the form

σnm ¼ 2C1J�5=3 Bnm � 1=3ð ÞI1δnm½ � þ 2D1 J � 1ð Þδnm (25)

σnn ¼ 2C1J�5=3 λn � 1=3ð ÞI1ð Þ þ 2D1 J � 1ð Þ:

It is considered that this model describes well the deformation of rubber under
the principal extensions up to 20% from the initial state. Since these extensions are
linked with the principal values of the strain ten-sor by relation λk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2εk

p
, then

it is assumed λk � 1≈ εkk approximately with exactness to ≤ 1% in the cases of
universal deformations for Neo-Hookean model, what is true in the case of linear
theory too. Because the extensions in the linear theory are two orders less, then this
observation testifies the fact that the Neo-Hookean model extends essentially the
area of allowable values of strains as compared with the Hookean model.

4.5.2 Three-constant Mooney-Rivlin model (model 2)

The elastic potential of the Mooney -Rivlin model is defined as follows
[31–35, 42, 43]

W ¼ C10 I1 � 3
� �þ C01 I2 � 3

� �þD1 J � 1ð Þ2, I2 ¼ J�4=3I2, (26)

W λ1, λ2, λ3ð Þ ¼ C10 λ1λ2λ3ð Þ�2=3 λ21 þ λ22 þ λ23
� �� 3

h i

þC01 λ1λ2λ3ð Þ�4=3 λ21λ
2
2 þ λ21λ

2
2 þ λ22λ

2
3

� �� 3
h i

þD1 λ1λ2λ3 � 1ð Þ2,

where the elastic constants are linked with the classical constants by relations
2 C10 þ C01ð Þ ¼ μ; 2D1 ¼ k.

The stresses are determined by formulas

σ ¼ 2J�5=3 C10 þ C01J�2=3I1
� �

B� 2J�7=3C01BB

þ 2D1 J � 1ð Þ � 2=3ð ÞJ�5=3 C10I1 þ 2C01J�2=3I2
� �� �

1,
(27)

σkk ¼ λk
∂W
∂λk

¼ 2C10 λ1λ2λ3ð Þ�5=3 λ2k � 1=3ð Þ λ21 þ λ22 þ λ23
� �� �

þ2C01 λ1λ2λ3ð Þ�7=3 λ2k λ2n þ λ2m
� �� 2=3ð Þλk λ21λ

2
2 þ λ21λ

2
2 þ λ22λ

2
3

� ��þD1 λ1λ2λ3 � 1ð Þ:�

(28)

Here the indexes knm form the cyclic permutation from numbers 123.
The Mooney-Rivlin model is the classical one. This can be seen from the next

historical information.
Information. An effect of nonlinear dependence of decreasing the shear stresses

when the torsion angle (de-formation) to the level of nonsmall values is called “the
Poynting effect” owing to his publication of 1909, where this effect was described.
At that, Poynting does not mention the results of Coloumb (1784), Wert-heim
(1857), Kelvin (1865), Bauschinger (1881), Tomlinson (1883), where this effect was
also described in one way or another. But only within the framework of finite elastic
deformations, which was developed in 20 century, this effect was satisfactorily

97

Elasticity of Auxetic Materials
DOI: http://dx.doi.org/10.5772/intechopen.99543



explained by Rivlin in 1951. He used the model of nonlinear defor-mation which
now is termed “the Mooney-Rivlin model”.

4.5.3 Five-constant Murnaghan model (model 3)

The elastic potential in the Murnaghan model has the form [31, 34, 35, 42–45]

W εikð Þ ¼ 1=2ð Þλ εmmð Þ2 þ μ εikð Þ2 þ 1=3ð ÞAεikεimεkm þ B εikð Þ2εmm þ 1=3ð ÞC εmmð Þ3,
(29)

W I1, I2, I3ð Þ ¼ 1=2ð ÞλI21 þ μI2 þ 1=3ð ÞAI3 þ BI1I2 þ 1=3ð ÞI31:

The Cauchy-Green strain tensor εik and five elastic constants (two Lame elastic
constants λ, μ and three Murnaghan elastic constants A,B,C) are used in this
potential.

The Murnaghan model can be considered as the classical one in the nonlinear
theory of hyperelastic ma-terials. It takes into account all the quadratic and cubic
summands from the expansion of the internal energy and describes the deformation
of a big class of engineering and other materials. If to unite the data on the
constants of Murnaghan model, shown in books [21, 42, 44], then the sufficiently
full information can be ob-tained on many tens of materials.

5. Description of deformations of the auxetic materials by the
models 1–3

5.1 Universal deformation of simple shear

This kind of deformation of the auxetics needs some preliminary discussion.
First, mechanics distinguishes the simple and pure shears. The state of such defor-
mations is standard in the test for the determination of the shear modulus. Second,
it is a common position in mechanics that this modulus is always positive. This
means that new effects relative to auxetic materials will most likely not be found.
Third, owing to the written above comments, the one only positive result can be
reached: the degree of the description of the classical nonlinear effects the
Poynting and Kelvin effects – can be considered for the chosen three nonlinear
models.

The following materials are used in the numerical evaluations below (elastic
constants are shown): 1. Rubber - μ ¼ 20 MPa, k ¼ 2:0 GPa. 2. Foam - λ ¼
0:58 � 109, μ ¼ 0:39 � 109, k ¼ 0:84 � 109. 3. Foam - λ ¼ 0:58 � 109, μ ¼ 0:39 � 109,
A ¼ �1:0 � 1010, B ¼ �0:9 � 1010, C ¼ �1:1 � 1010. 4. Polystyrene - λ ¼ 3:7 � 109, μ ¼
1:14 � 109, A ¼ �1:1 � 1010, B ¼ �0:79 � 1010, C ¼ �0:98 � 1010.

5.1.1 Simple shear in model 1

In this case J ¼ 1þ τð Þ2, I1 ¼ 1þ 2τ2. Then expressions for displacement
gradients F and components of tensor В are simplified

F ¼
1 τ τ

0 1 0

0 0 1

2
64

3
75,В ¼

1þ 2τ2 τ τ

τ 1 0

τ 0 1

2
64

3
75:
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As a result, the components of stress tensor have the form

σ12 ¼ σ21 ¼ σ13 ¼ σ31 ¼ 2C1 1þ τð Þ�10=3τ, σ32 ¼ σ23 ¼ 0,

σ11 ¼ 8=3ð ÞC1 1þ τð Þ�10=3 τ � 1ð Þτ þ 2D1τ τ þ 2ð Þ,
σ22 ¼ σ33 ¼ � 4=3ð ÞC1 1þ τð Þ�10=3 1þ 2τð Þτ þ 2D1τ τ þ 2ð Þ:

(30)

The formulas (30) show that the Poynting effect (when the values of shear angle
increase from the sufficiently small values to the moderate ones, then the shear
stress depends nonlinearly on the shear angle) is described by the Neo-Hookean
model, because Eq. (30) demonstrates just this nonlinear dependence for the mod-
erate values of shear angle.

Figure 7 shows the dependence of the shear stress on the shear angle σ12 � τ for
the silicon rubber (here and in all next plots, stress is measured by MPa).

5.1.2 Simple shear in model 2

The expressions for gradient F and components of tensor В are the same as for
the Neo-Hookean model. As a result, the expressions from formula (30) are simpli-

fied λ1 ¼ 1, λ2 ¼ λ3 ¼ 1þ τ, J ¼ 1þ τð Þ2, I1 ¼ 1þ 2τ2, I2 ¼ 1þ τð Þ2 2þ 1þ τð Þ2
h i

and components of the stress tensor have the form

σ12 ¼ σ21 ¼ 2C10 1þ τð Þ�10=3τ � 2C01 1þ τð Þ�14=3 1þ 4τð Þτ, (31)

σ23 ¼ σ32 ¼ �2C01 1þ τð Þ�14=3τ2, (32)

σ11 ¼ 2C10 1þ τð Þ�10=3 4=3ð Þ 1þ τ þ 2τ2
� �þ 2D1τ 1þ 2τð Þþ

þ2C01 1þ τð Þ�14=3 4=3ð Þ 3þ 5τ þ 5τ2 þ 4τ3 � 2τ4
� �

,
(33)

σ22 ¼ σ33

¼ 2C1 1þ τð Þ�2 1þ τð Þ�4=3þ
h

1þ 2τ2ð Þ 1� 1þ τð Þ�4=3
� �

� 1
i
þ 2D1τ 1þ 2τð Þ:

(34)

Thus, the Mooney-Rivlin model (that is, more complicated as compared with the
Neo-Hookean model) describes the more complicated stress state, which is charac-
terized by six components of the stress tensor. This model describes well-known
nonlinear effects. The Poynting effect follows from the representation of the shear
stresses by formula (31). The Kelvin effect follows from formulas (33) and (34).

Figure 7.
Dependence of the shear stress on the shear angle σ12 � τ.
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Also, formula (32) describes one more nonlinear effect: an initiation of shear
stresses σ23 ¼ σ32. Figure 8 shows the nonlinear dependence of shear stress σ12 on
the shear strain τ, that is built for the silicon rubber. Comparison with Figure 7,
which corresponds to the Neo-Hookean model, shows that the Mooney-Rivlin
model describes the more essential deviation from the linear Hookean description of
simple shear.

5.1.3 Simple shear in model 3

The Cauchy-Green strain tensor is characterized by three components

ε22 ¼ 1=2ð Þ u2,2 þ u2,2 þ uk,2uk,2ð Þ ¼ 1=2ð Þτ2, (35)

ε12 ¼ ε21 ¼ 1=2ð Þ u1,2 þ u2,1 þ uk,1uk,2ð Þ ¼ 1=2ð Þτ: (36)

To calculate the stresses, it is necessary to write the potential (29) concerning
the formulas (35) and (36)

W εikð Þ ¼ 1=2ð Þλ ε22ð Þ2 þ μ ε22ð Þ2 þ ε12ð Þ2 þ ε21ð Þ2
h i

þ 1=3ð ÞA ε22 ε12ε12 þ ε21ε21 þ ε12ε21ð Þ þ ε22ð Þ3
h i

þB ε22ð Þ2 þ ε12ð Þ2 þ ε21ð Þ2
h i

ε22 þ 1=3ð ÞC ε22ð Þ3,

(37)

W τð Þ ¼ 1=2ð Þμτ2 þ 1=8ð Þ λþ 2μð Þ þ Aþ B½ �τ4 þ 1=24ð Þ Aþ 3Bþ C½ �τ6 (38)

The Lagrange stress tensor is determined by the formula σik xn, tð Þ ¼ ∂W=∂εik
and has two nonlinear com-ponents

σ22 ¼ λþ 2μð Þε22 þ A ε22ð Þ2 þ 1=3ð Þ ε12ε12 þ ε21ε21 þ ε12ε21ð Þ
h i

þB 3 ε22ð Þ2 þ ε12ð Þ2 þ ε21ð Þ2
h i

þ C ε22ð Þ2

¼ 1=4ð Þ 2 λþ 2μð Þ½ þ Aþ 2Bð Þ�τ2 þ 1=4ð Þ Aþ 3Bþ Cð Þτ4,

(39)

σ12 ¼ σ21 ¼ 2με12 þ 1=3ð ÞA ε12 þ ε21ð Þ þ 2Bε12½ �ε22 ¼ μτ þ 1=6ð Þ Aþ 3Bð Þτ3: (40)

The shear stress contains the linear and nonlinear summands and describes the
simple shear. The normal stress describes the change of volume under deformation
and testifies the break of the state of simple shear in the nonlinear description of

Figure 8.
Dependence of shear stress σ12 on the shear strain τ.
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deformation. To build the plots of dependence (40) choose two nonstandard for the
Murnaghan model materials – foam and polystyrene – which can experience not
only the small by values strains but also the moderate ones. Figures 9 and 10 show
the dependence of the shear stress σ12 on the shear angle τ for the foam and
polystyrene.

The dependences σ12 � τ for models 1–3 can be commented in the following
way: these models describe well the nonlinear Poynting effect. At the same time,
many scientists working with auxetic materials report the experimental depen-
dences that coincide quantitatively with the shown here theoretical (and based on
them numerical) dependences (for example, [46–48]). Also, some conclusions to
dependence σ12 � τ for models 1–3 can be formulated: the developed in mechanics
of materials nonlinear models of deformation of elastic materials can be
recommended for the description of auxetic materials.

5.2 Universal deformation of uniaxial tension

This kind of deformation is fundamental for the auxetics because just in tests on
the uniaxial tension-compression the phenomenon of auxeticity was first observed.

5.2.1 Uniaxial tension in model 1

The formulas for the principal extensions λ2 ¼ λ3, J ¼ λ1λ
2
2, I1 ¼ λ21 þ 2λ22 are

valid in this model and the normal stresses (the shear stresses are absent in this state
of deformation) are given by the formulas

σ11 ¼ 2=3ð Þμ λ1λ
2
2

� ��5=3
λ21 � λ22
� �þ k λ1λ

2
2 � 1

� �
, (41)

σ22 ¼ σ33 ¼ � 1=3ð Þμ λ1λ
2
2

� ��5=3
λ21 � λ22
� �þ k λ1λ

2
2 � 1

� �
: (42)

Note that the stresses are depending in model 1 on two principal extensions –
longitudinal and transverse.

Figure 9.
Dependence of the shear stress on the shear angle (foam).

Figure 10.
Dependence of the shear stress on the shear angle (polystyrene).
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If to assume that all three normal stresses on the lateral surface of the sample are
absent (the surface is free of stresses), then

σ11 ¼ 3k λ1λ
2
2 � 1

� �
: (43)

It follows from (43) that the Poynting-type effect (when the principal exten-
sions increase from the sufficiently small values to the moderate ones, then the
normal stress in the direction of tension depends nonlinearly on these extensions) is
described by the Neo-Hookean model.

Figure 11 shows the dependence of the longitudinal stress on principal exten-
sions and is built for the rubber with allowance for that the value μ=3kð Þ ¼ 0, 00334
is very small compared to the unit (the bulk mo-dulus is essentially more of the
shear one). Then the dependence is valid

ε22 ¼ 1=2ð Þ 1þ 2ε11ð Þ�2 � 1=2: (44)

Figure 12 corresponds to formulas (41) and (42). and shows a dependence of
the longitudinal principal extension on the transverse principal extension. Note that
the silicon rubber is characterized by the big difference between values of shear and
bulk moduli that can reach hundred times. Therefore, the new material is chosen
further for the numerical analysis – the foam, which values of elastic constants is
characterized by about equal by the order. Figure 12 shows also that with an
increase of extension λ1 the increase of extension λ2 slows.

It looks, in this case, to be illogical to neglect the first summand in (41) and (42).
Note here that the ratio λ2=λ1ð Þ corresponds in the linear theory to the Poisson’s
ratio.

5.2.2 Uniaxial tension in model 2

The uniaxial tension in direction of the abscissa axis is characterized by param-
eters: λ2 ¼ λ3, J ¼ λ1λ

2
2, I1 ¼ λ21 þ 2λ22, I2 ¼ λ42 þ 2λ21λ

2
2, B11 ¼ λ21, BBð Þ11 ¼ λ41 . The

normal stresses are given by the formulas

Figure 11.
Dependence of the longitudinal stress on the principal extensions.

Figure 12.
Dependence of the longitudinal principal extension on the transverse principal extension.
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σ11 ¼ 2C10 2=3ð Þ λ1λ
2
2

� ��5=3
λ21 � λ22
� �þ 2C01 λ1λ

2
2

� ��7=3
λ41 þ 2=3ð Þλ21λ22 � 5=3ð Þλ42
� �

þ2D1 λ1λ
2
2 � 1

� �
,

(45)

σ22 ¼ σ33 ¼ 2=3ð ÞC10 λ1λ
2
2

� ��5=3
λ22 � λ21
� �þ 2C01 λ1λ

2
2

� ��7=3
1=3ð Þλ22 λ22 � λ21

� �þ 2D1 λ1λ
2
2 � 1

� �
:

(46)

Assume that all three normal stresses over the sample lateral surface are absent.
Then Eq. (45) is simplified to the form

σ11 ¼ 2C01 λ1λ
2
2

� ��7=3
λ41 � λ42
� �þ 6D1 λ1λ

2
2 � 1

� �
: (47)

The last formula testifies: the Mooney-Rivlin model describes the Poynting-type
effect.

Two elastic constants are presented in (47) in contrast to the Neo-Hookean
model, where the shear modulus was absent. It should be noted that in both
models – Neo -Hookean and Moo-ney-Rivlin –the tension in the longitudinal
direction stress σ11 depends already on two principal extensions. Figure 13 shows a
dependence of the longitudinal stress on principal extensions is built for the silicon
rubber. It coincides practically with Figure 11 (Neo-Hookean model) and shows
that the constant C01 of the Mooney-Rivlin model effects not essentially on the
stress σ11 and the dependence (45) rests weakly nonlinear within the accepted
restrictions.

The Eq. (46) can be transformed into the form

λ61 � λ31=σ
2 þ 2C10=6D1ð Þ

ffiffiffiffiffi
σ4

�3
p

þ 2C01=6D1ð Þ
ffiffiffiffiffi
σ2

�3
ph i

σ�4 σ2 � 1
� � ¼ 0,

σ ¼ λ2=λ1ð Þ, λ31 ¼ 1=2σ2 � 1=2σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2C10=6D1ð Þ

ffiffiffiffiffi
σ4�3

p

þ 2C01=6D1ð Þ
ffiffiffiffiffi
σ2�3

p
" #

σ�4 σ2 � 1ð Þ
vuut , (48)

The corresponding to the model 1 plot from Figure 11 is practically identical
with the plot from Figure 13 corresponding to model 2.

5.2.3 Uniaxial tension in model 3

The uniaxial tension in this model is characterized by three nonzero components
of the strain tensor εkk and one non-zero component of the stress tensor σ11. Then
the constitutive equations are somewhat simp-lified.

σ11 ¼ λI1 þ 2με11 þ A ε11ð Þ2 þ B Eþ 2ε11I1ð Þ þ C Eþ 2ε22ε11 þ 2ε33ε11ð Þ
I1 ¼ ε11 þ ε22 þ ε33, E ¼ ε11ð Þ2 þ ε22ð Þ2 þ ε33ð Þ2: (49)

Figure 13.
Dependence of the longitudinal stress on principal extensions.
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0 ¼ λI1 þ 2με22 þ A ε22ð Þ2 þ B Eþ 2ε22I1ð Þ þ C Eþ 2ε22ε33 þ 2ε22ε11ð Þ, (50)

0 ¼ λI1 þ 2με33 þ A ε33ð Þ2 þ B Eþ 2ε33I1ð Þ þ C Eþ 2ε22ε11 þ 2ε22ε33ð Þ: (51)

Let us remind that in the linear theory of elasticity, corresponding to the
Hookean model, the constitutive equations are significantly simpler

σ11 ¼ λI1 þ 2με11, 0 ¼ λI1 þ 2με22, 0 ¼ λI1 þ 2με33: (52)

Apply further to the nonlinear Eqs. (49)–(51) the procedure of analysis of the
state of uniaxial tension that is used in the linear theory of elasticity as applied to
Eqs. (52). Subtraction of Eq. (51) from Eq. (50) gives the formula

0 ¼ 2μ ε22 � ε33ð Þ þ A ε22ð Þ2 � ε33ð Þ2
� �

þ 2B ε22 � ε33ð Þ ε11 þ ε22 þ ε33ð Þ,

from which the equality of components of transverse strains ε22 ¼ ε33 follows.
The addition of formulas (36)–(38) results in the following formula

σ11= 3λþ 2μð Þ � Aþ 3Bþ Cð Þ=3λþ 2μ½ � ε11ð Þ2 þ 2 ε22ð Þ2
h i

� 2B= 3λþ 2μð Þ½ � ε11 þ 2ε22ð Þ2

� 4C= 3λþ 2μð Þ½ � ε22ð Þ2 þ 2ε22ε11
h i

¼ ε11 þ 2ε22:

(53)

Substitution of formula (53) into the relation (49) gives new relation

σ11 ¼ Eε11 þ Aþ 2λþ 3μ
λþ μ

Bþ C
� �

ε11ð Þ2 � λ

λþ μ
Aþ 4λ� 2μ

λ
B� 2μ

λ
C

� �
ε22ð Þ2

þ 2 λþ 2μð Þ
λþ μ

Bþ Cð Þε11ε22:
(54)

The relation (54) shows that model 3, like models 1 and 2, describes the
Poynting-type effect.

Figures 14 and 15 show the dependence σ11 ¼ σ11 ε11, ε22ð Þ among the
longitudinal stress σ11 and strains ε11, ε22 for the foam and polystyrene and
the moderate values of strains. Both plots demonstrate an essential nonlinearity
under moderate strains. This new nonlinear effect will be true for auxetic
materials too.

Write now the constitutive Eq. (49) with allowance for equality ε22 ¼ ε33 and
transform it to the form of a quadratic equation relative to the ratio ε22=ε11

Figure 14.
Dependence σ11 ¼ σ11 ε11, ε22ð Þ (foam).
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ε22
ε11

� �2

þ 2
λþ μð Þ=ε11ð Þ þ Bþ Cð Þ½ �

Aþ 6Bþ 4Cð Þ
ε22
ε11

þ λ=ε11ð Þ þ Bþ Cð Þ
Aþ 6Bþ 4Cð Þ ¼ 0:

The solution of this equation has the form

ε22=ε11ð Þ ¼ � λþ μð Þ=ε11 þ Bþ Cð Þ½ �= Aþ 6Bþ 4Cð Þf g 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Aþ 6Bþ 4Cð Þ λ=ε11 þ Bþ Cð Þ½ �

λþ μð Þ=ε11 þ Bþ Cð Þ½ �2
s" #

:

(55)

Thus, Eq. (55) shows that the ratio �ε22=ε11ð Þ is not constant in the Murnaghan
nonlinear model. This can be treated as the new mechanical nonlinear effect which
is looking very promising for the auxetic materials.

Figures 16 and 17 show a dependence of the ratio �ε22=ε11ð Þ on the strain ε11 and
are built for the foam and polystyrene for the moderate strains. The plot’s main
features are as follows: the ratio �ε22=ε11ð Þ is de-creased essentially from the initial
value, which corresponds to the Poisson ratio for small strain in the con-ventional
materials, to the negative values under the moderate values of longitudinal strain
that is observed in the auxetic materials. So, the ratio, that is, treated as the Poisson’s
ratio for small strain, in the case of mo-derate strain becomes the characteristics of
transition of the material from the category of conventional ma-terials into the

Figure 15.
Dependenceσ11 ¼ σ11 ε11, ε22ð Þ (polystyrene).

Figure 16.
Dependence of the ratio �ε22=ε11ð Þ on the strain ε11 (foam).

Figure 17.
Dependence of the ratio �ε22=ε11ð Þ on the strain ε11(polystyrene).
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category of nonconventional materials. This can be considered as the newly
revealed theore-tically nonlinear effect.

Thus, an analysis of universal deformation of uniaxial tension for model 3
revealed the new property: the material with conventional properties under small
strains is transformed under moderate strains into the nonconventional (auxetic)
material. The uncommonness of this observation consists in that usually the mate-
rial is considered either the conventional or the nonconventional during all the
processes of deformation.

Let us compare the plots from Figures 16 and 17 with the experimental data
from ([49], Figure 4) shown here as Figure 18 (dependence of the ratio �ε22=ε11ð Þ
on the strain ε11), where the deformation of the foams was studied for the finite
strains with increasing the longitudinal strain ε11 from 0.1 to 1.4. Note that the
theoretical plots are constructed for the range from ε11 ¼ 0 to the moderate values
0.23 (foam) and 0.33 (polystyrene). This comparison shows that ε22=ε11ð Þ increases
within the range ε11 ∈ 0, 0; 0, 3ð Þ: Thus, model 3 describes some experimental
observations of the foam.

Figures 19 and 20 show the dependence of longitudinal and transverse strains.
Three stages can be marked out: 1. A decrease of transverse strain becomes slower
under transition to the moderate strains. 2. The strain ε22 reaches the local minimum

Figure 18.
Experimental dependence of the ratio �ε22=ε11ð Þ on the strain ε11.

Figure 19.
Dependence of longitudinal and transverse strains (foam).

Figure 20.
Dependence of longitudinal and transverse strains (polystyrene).
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and further increases. 3. When the strain ε11 continues to increase, the strain ε22
possesses zero value and further increases possessing already positive values.

The shown feature confirms once again the new mechanical effect – a transition
of the material under its deformation to the level of moderate values of the longi-
tudinal stretching from the class of conventional ma-terials into the class of the
auxetic materials. In other words, the standard sample in conditions of universal
deformation of uniaxial tension is deformed for small strains as if it is made of the
conventional material (its cross-section is decreased) and with increasing the values
of longitudinal stretching to the moderate values the sample cross-section starts to
increase, what is the characteristic just for auxetic materials.

The plots from Figures 19 and 20 can be compared with the plot, obtained
experimentally in [48]. This article reports that the new metamaterials were created
from soft silicon rubber. The samples we-re deformed in conditions of uniaxial
compression up to moderate values of longitudinal strain 0,35. The shown in the
Figure 21 plot corresponds to Figure 2a in [48] and shows a dependence of longi-
tudinal and transverse strains. Comparison of plots from Figure 11 (uniaxial
stretching) and Figure 12 (uniaxial compression) demonstrates the common prop-
erty of forming the hump in the area of negative values of transverse strain, which
is transformed with the increasing values of longitudinal strain roughly into the
straight line in the area of positive values of transverse strain.

Thus, the nonlinear Murnaghan model describes within conditions of uniaxial
tension some nonlinear phenomena of deformation, which can be linked with the
properties of deformation of auxetic materials. Note that the shown feature is
clearly visible only within the framework of the Murnaghan model, but the Neo-
Hookean and Mooney -Rivlin models also describe the hump formation, as can be
seen in Figure 6.

5.3 Universal deformation of omniaxial tension

5.3.1 Omniaxial tension in model 1

In this case λ1 ¼ λ2 ¼ λ3, J ¼ λ31, I1 ¼ 3λ21 and the normal stress is equal

σ11 ¼ 2D1 λ31 � 1
� �

: (56)

The formula (56) describes the Poynting-type effect relative to the bulk modulus
(the dependence σ11 on the extension λ1 is evidently nonlinear).

Figure 22 shows a dependence of the stress on the principal extension and is
built for the silicon rubber. The plot testifies that model 1 describes the nonlinear

Figure 21.
Experimental dependence of longitudinal and transverse strains.
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change of the sample volume while being subjected to the universal deformation of
uniform compression-tension.

5.3.2 Omniaxial tension in model 2

In this case λ1 ¼ λ2 ¼ λ3, J ¼ λ31, I1 ¼ 3λ21, I2 ¼ 3λ41 (note that they are identical
for any nonlinear model). The formula for normal stress coincides with the analo-
gous formula for model 1 (56) and verifies the non-linear dependence of the tension
stress on the principal extension.

5.3.3 Omniaxial tension in model 3

The components of displacement gradients and Cauchy-Green strain tensor are
as follows

u1,1 ¼ u2,2 ¼ u3,3 ¼ ε>0, u1,1 þ u2,2 þ u3,3 ¼ 3ε ¼ e, uk,m ¼ ∂uk=∂xmð Þ
¼ 0 k 6¼ mð Þ; ε11 ¼ ε22 ¼ ε33 ¼ εþ 1=2ð Þε2, εik ¼ 0 i 6¼ kð Þ (57)

The corresponding algebraic invariants of the Cauchy-Green tensor are written
in the form

I1 ¼ ε11 þ ε22 þ ε33 ¼ e, I2 ¼ ε11ð Þ2 þ ε22ð Þ2 þ ε33ð Þ2 ¼ 1=3ð Þe2, I3
¼ ε11ð Þ3 þ ε22ð Þ3 þ ε33ð Þ3 ¼ 1=9ð Þe3: (58)

The formulas for invariants (58) allow writing the potential in the simpler form

W εð Þ ¼ 3=2ð Þ 3λþ 2μð Þε2 þ 9=2ð Þλþ 3μþ Aþ 9Bþ 9Cð Þε3þ

þ 3=2ð Þ 4 3λþ 2μð Þ þ Aþ 9Bþ 9Cð Þð Þε4 þ 3=4ð Þ Aþ 9Bþ 9Cð Þε5 þ 1=8ð Þ Aþ 9Bþ 9Cð Þε6:
(59)

The stresses are evaluated by the formulas (the normal stresses only are
nonzero)

σ11 ¼ σ22 ¼ σ33 ¼ 3λþ 2μð Þεþ 3=2ð Þ 3λþ 2μð Þ þ Aþ 9Bþ 7Cð Þ½ � ε2

þ Aþ 9Bþ 7Cð Þ ε3 þ 1=4ð Þε4� �
, σ12 ¼ σ23 ¼ σ31 ¼ 0:

Thus, the stresses contain linear and nonlinear summands.
The interdependence between the first invariant of the stress tensor σkk and the

parameter of the omni-axial tension e has the form

Figure 22.
Dependence of stress on principal extension.
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σkk ¼ 3λþ 2μð Þeþ 1=2ð Þ 3λþ 2μð Þþ½ 1=3ð Þ Aþ 9Bþ 7Cð Þ�e2
þ Aþ 9Bþ 7Cð Þ 1=9ð Þe3 þ 1=108ð Þe4½ �: (60)

The plots in Figures 23 and 24 show a dependence σkk eð Þ for the foam and
polystyrene evaluated formula (60). It follows from them that they are similar to
the parabola with a vertex in a positive half of the plane σkkOe. The parabola’s right
branch then passes into the negative half of the plane. Both plots have “the hump”
in the positive branch of the plane.

A presence of “the hump” testifies that the nonlinear Murnaghan model
describes the transition of the material of the sample-cube from the class of con-
ventional materials into the class of auxetic materials. The fact is that the sample is
compressed for the small values of uniform tension and in the following increase of
the tension the strain the sample swells. But this phenomenon is characteristic of
only auxetic materials.

Thus, three nonlinear models which are used in the analysis describe the
nonlinear Poynting-type effects in conditions of three used above universal defor-
mations and the moderate strains. This agrees quantitatively with experimental
observations of nonlinear dependences σ � ε (stress versus strain) in auxetic
materials for the moderate strains.

The main new effects are revealed: the nonlinear Murnaghan model describes in
the case of uniaxial and omniaxial tension the transition of the material from the
class of conventional materials into the class of the auxetic materials. This occurs
when the material is deformed to the level of moderate values of the longitudinal
stretching. In other words, the shown experiments and proposed theoretical analy-
sis testify that the stan-dard sample in conditions of the mentioned universal
deformation of uniaxial tension is deformed for small strains as if it is made of the
conventional material (its cross-section is decreased) and with increasing the values
of longitudinal stretching to the moderate values the sample cross-section starts to
increase, what is the characteristic just for auxetic materials.

Figure 23.
Dependence σkk eð Þ (foam).

Figure 24.
Dependence σkk eð Þ (polystyrene).
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6. Final conclusions

The elasticity is the property of auxetic materials, which is especially character-
istic and most studied for these materials. Historically, the auxetics were treated
from the point of view of the linear theory of elasticity what was not quite adequate
in some cases.

As the part of classical mechanics of elastic materials, the mechanics of auxetic
materials needs at present more and more experimental studies (the level of such
studies as compared with the classical ones can be seen from the famous Bell’s
book [27]).

The nonlinear theory of elasticity is seemingly quite prospective for a
description of elastic deformation of the auxetic materials but it is essentially more
complicated in the mathematical apparatus and concrete investigations.
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Chapter 7

Perspective Chapter: Improvement 
of Elastomer Elongation and 
Output for Dielectric Elastomers
Seiki Chiba, Mikio Waki, Shijie Zhu, Tonghuan Qu  
and Kazuhiro Ohyama

Abstract

The need for light, high-strength, and artificial muscles is growing rapidly. A 
well-known type of artificial muscle meeting these requirements is the dielectric 
elastic (DE) type, which uses electrostatic force between electrodes. In hopes 
of utilizing, it practically for a variety of purposes, research and development is 
rapidly progressing all over the world as a technology for practical use. Much of 
the market demand is dominated by more output-focused applications such as DE 
power suits, DE motors, DE muscles for robots, and larger DE power systems. To 
meet these demands, the elasticity of the elastomer is very important. In this paper, 
we discussed what the important factors are for SS curves, viscoelasticity tests, etc. 
of the dielectric elastomer materials. Recent attempts have been also made to use 
new carbon foam materials such as SWCNTs and MWCNTs as electrodes for DEs. 
These electrodes bring the elastomers to a higher level of performance.

Keywords: Dielectric elastomer, Actuator, Sensor, Generator, Large deformation, 
High efficiency, Artificial Muscle

1. Introduction

The creation of artificial muscle has long been a scientific aspiration. It is well 
known that Wilhelm Conrad Röntgen, who discovered X-rays, conducted experi-
ments using rubber strings as artificial muscles [1]. In the 1950s, artificial muscles 
using EPA (Electro Active Polymer) became mainstream. Since then, the need for 
light, high-strength, and artificial muscles has been growing rapidly.

EAP type artificial muscles which drive a polymer membrane by applying 
electrical stimulation, are actuators that realize movements similar to living 
muscles by electrical control. Because they move softly, they are also called soft 
actuators. Figure 1 shows the following types are of EAPs: 1) DEs (dielectric 
elastomers) which are driven by the generated coulomb force, made by sandwiching 
an elastomer between flexible electrodes. [2, 3], 2) IPMCs (Ionic polymer-metal 
composites), which owe their power to the movement of ions and water molecules 
in the polymer film (combination of an electrolyte film and a thin metal electrode) 
[4], 3) CPs (conductive polymer) which use a drive force moving ions by applying 
a voltage between the conductive polymers [5], 4) ionic polymer gel Ion polymer 
gels, which utilize the movement of ions due to chemical changes (e.g., Ph changes) 
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within the gel [6], and 5) CNT (carbon nanotube) actuators, which are ideally for 
nanomachines and do not require ion intercalation [7]. In addition, the piezopoly-
mer utilizes a piezoelectric phenomenon [8], and some are driven by heat, air, light, 
etc. [9–13].

The most promising candidate from technologies above is the DE [2, 14]. In 
1990, Chiba and Pelrine began research and development of dielectric elastomers 
for the first time in the world. [2], but now, research and development for their 
practical uses are rapidly progressing all over the world as a technology for practical 
use [2, 3, 14–34].

Most of the current market demand is for DE power suits, DE motors, DE 
muscles for robots, and systems that drive them in reverse to generate electricity 
efficiently. To meet these demands, the elasticity of the elastomer is extremely 
important. In this paper, we discussed important factors (including cross-linking 
agents and double bond breaks) through SS (strain stress) curves, viscoelasticity 
tests, etc. of DE materials. In addition, recent attempts have been made to use new 
carbon foam materials such as SWCNTs and MWCNTs as electrodes for DEs. These 
electrodes bring the above-improved elastomers to a higher performance. They will 
also be discussed in this paper.

2. Background of DEs

The structure of a DE is very simple and consists of a polymer film (elastomer), 
which is the main material, and two electrodes that sandwich it [2, 3]. When a 
potential difference is applied between the electrodes, the Coulomb force causes the 
polymer film to contract in the thickness direction and expand in the plane direc-
tion (see Figure 2).

Figure 1. 
Typical electroactive polymers (EAP).

Figure 2. 
DE artificial muscle actuator structure and operating principle: (a) The black sheet is the flexible and 
stretchable electrode, and (b) The yellow part is the elastomer.
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At the material level, a DE actuator has a fast response speed (over 100 kHz), 
with a high strain rate (up to 680%) [15], high pressure (up to 8 MPa), and power 
density of 1 W/g [16]. A DE actuator having only 0.15 g of DE can lift the weight of 
8 kg easily by 1 mm or more with the actuation speed of 88 msec, using Single-wall 
carbon nanotubes as electrodes [17]. Since the elongation and the output are in 
inverse proportion to each other, it is possible to suppress the output and increase the 
elongation. In addition, as mentioned above, power generation is possible by revers-
ing the movement of the DE actuator. Its efficiency is excellent, at over 70% [18].

A mathematical model of the DE actuator can be described as follows: The 
strain (deformation) observed in the elastomer membrane is mainly caused by the 
interaction of electrostatic charges between the electrodes [19]. Opposite charges 
on the two electrodes attract each other, and the same charges repel each other. 
This phenomenon can be derived by using a simple electrostatic model to derive 
the effective pressure generated by the electrodes of the elastomer membrane as a 
function of the applied voltage [19]. Pressure ρ is

 ( )22  V / tr o r oEρ ε ε ε ε= =  (1)

Here, εr and εo are the permittivity and the relative permittivity (dielectric con-
stant) of the polymer in the free space, respectively, E is the electric field strength, V 
is the applied voltage, and t is the film thickness. The responsiveness of this polymer is 
similar to that of conventional electrostrictive polymers, and the pressure is propor-
tional to the square of the electric field strength. For small strains with free boundary 
conditions, the actuator energy density, ea, of the material can be written as

 ( ) ( )2 42
a z ze Ps Ys V / t / Yr oε ε= = =  (2)

where Y is the modulus of elasticity and sz is the polymer thickness strain [14]. 
Conventionally, the elastic energy density ea = 1/2 Ysz 2 is often used (see Table 1).

Polymers 
investigated

Presure 
(MPa)

Strain 
(%)

Young’s 
modulus 

(MPa)

Breakdown 
Electric 

field  
(V/μm)

Dielectric 
constant (at 

1 kHz)

Coupling 
efficiency, 

k2 (%)

Elastic 
energy 
density 
(Jrcm3)

Fluoroelastomer 1 0.11 8 2.5 32 12.7 15 0.0046

Isoprene Natural 
Rubber 1

0.11 11 0.85 67 2.7 21 0.0059

Silicone 2 0.13 41 0.125 72 2.8 65 0.026

Fluorosilicone 2 0.39 28 0.5 80 6.9 48 0.055

Silicone 3 0.51 32 0.7 144 2.8 54 0.082

Polyurethane 1 1.6 60 17 160 7.0 21 0.087

Silicone 1 1.36 102 1.0 235 2.8 54 0.22

Acrylic 1 7.2 358 2.2 412 4.8 85 3.5

*Average engineering modulus at the maximum strain. Elastic energy density.

Table 1. 
The result of performance measurements of eight polymers (elastomers).
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As described above, when the movement of the dielectric elastomer actuator is 
reversed, the power generation mode is set. This field of power generation research 
has become more active around the world since [14, 15, 18, 19, 32–56] it was first 
tested with a DE generator on a buoy [34]. The principle is simple and utilizes the 
increase in electrostatic energy generated by changing the shape of the dielectric 
elastomer actuator with an external force (see Figure 3). That is, when some 
mechanical energy is applied to the dielectric elastomer to extend it, the thickness 
direction becomes thinner and the area expands (Increase in capacitance). At this 
time, electrostatic energy is generated on the polymer and stored as an electric 
charge. When the mechanical energy decreases, the elasticity of the dielectric itself 
increases the thickness in the thickness direction and reduces the area (Reduction 
of capacitance). At this time, the electric charge is pushed out toward the electrode. 
Such changes in charge increase the voltage difference, resulting in increased 
electrostatic energy [19]. The capacitance of the DE film “C” is given as follows:

 2
0 0C A / t b / tε ε ε ε= =  (3)

where ε0 is the dielectric permittivity of free space, ε is the dielectric constant of 
the polymer film, A is the active polymer area, and t and b are the thickness and the 
volume of the polymer. The second equality in Eq. (3) can be written because the 
volume of the elastomer is essentially constant, i.e., At = b = constant. The energy 
output of a DE generator per cycle of stretching and contraction is

 ( )2
1 b 1 2E 0.5C V C / C 1= −  (4)

where C1 and C2 are the total capacitances of the DE films in the stretched and 
contracted states, respectively, and Vb is the bias voltage.

3. Materials for DEs

The main parameters that improve the performance of the DE are the withstand 
voltage of the elastomer film, the dielectric constant (including the improvement 
of the dielectric constant due to additives), Young’s modulus, the type of electrode 
used, use of a cross-linking agent, and the elastomer structure Improvements (such 
as the addition of monomers or cutting one of the double bonds).

Table 1 shows the measurement performance of some polymers [3, 20]. This 
table shows measurements of strain, electric field, modulus of elasticity, and permit-
tivity. The pressure is calculated from Eq. (1) and the elastic energy density is esti-
mated using the strain (measured value) and the pressure calculated from Eq. (2).

Figure 3. 
Operating principle of DE power generation: (a) Thick lines are compliant electrodes, and (b) the yellow line 
between the thick lines is the dielectric elastomer.
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Note:

• Silicon 1 was made by mixing two types of silicon polymers.

• Acrylic 1 was modified by us after purchasing acrylic made in the 
United States.

• The polymers (elastomers) other than the above two types were made in the 
United States and were used as they were.

As shown in Table 1, the DE polymers (elastomers) that can obtain a value with 
a large strain has a large value of any one of elastic energy density, breakdown elec-
tric field, Young’s modulus, or permittivity, or some of them are combined thereof. 
However, increasing these parameters will stiffen the elastomer and will not 
significantly deform the DE. In other words, the power obtained will not increase 
unless the elastomer is hardened and deformed (thickness) significantly.

A large deformation is important not only for actuators but also for power gen-
eration elements. That is, a large deformation produces more power (see Eq. (4)).

3.1 Elastomer properties obtained from SS curves/dynamic viscoelasticity tests

The SS curve and dynamic viscoelasticity were measured using Silicon 1 and 
Acrylic 1 [21]. The results are shown in Figures 4 and 5. First of all, we would like 
to point out that the research target is artificial muscles, and it is recommended 
to consider the tensile speed of the SS curve and the viscoelasticity test from the 
operating speed required for robots and power assist devices. In Figure 4,  
the SS curve was measured by changing the measurement speed in 4 steps, and the 
curve changed depending on the tensile speed. Similarly, in Figure 5, the curve of 
dynamic viscoelasticity changed depending on the measurement speed [14].

What is interesting here is that acrylic has higher viscoelasticity, so it depends 
more on tensile speed than silicon. This indicates that it is important to test it with 
the response required for the artificial muscle. In other words, until now, research-
ers have overlooked the importance of viscoelasticity. This meaning is easier to 
understand by looking at the results of the dynamic viscoelasticity test in Figure 5.

As the Figure 5, clearly shows, the acrylic is more affected by dynamic viscoelas-
ticity than the silicon. As a result, when the driving voltage is increased and each 
elastomer is stretched, the silicon DE becomes harder, and the amount of stretching 

Figure 4. 
Relationship of stress-strain for tensile tests: (a) Acrylic 1, (b) Silicone 1.
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is smaller. Of course, it is also a fact that the difference in the dielectric constant 
and Young’s modulus of both films is the cause (see Eqs. (1) and (2)). Nevertheless, 
the above behavior can be explained using the SS curves in Figure 4. The silicon 
curve stands up more. This does not mean that silicon has poor performance. It is 
a proposed that it is better to change the material depending on the application. 
Silicon has a faster drive speed and a higher rate than acrylic. Therefore, it is advis-
able to select the type of elastomer depending on where it is used, for example, for 
applications such as robots or power suits. Illustrating this point, in human muscles, 
there are slow muscles and fast muscles, each of which has an important mission. 
Moreover, Silicon can be used from a relatively high temperature to a considerably 
low temperature. Compared to acrylic, it could have a considerable advantage in 
devices that are used at higher or lower temperatures [21].

In terms of artificial muscles, e.g., for human uses, it seems that a flat hill-like 
shape with a gentle rise, like acrylic, is preferable.

3.2 Attempts to increase the dielectric constant of elastomers

As an attempt to increase the dielectric constant of the elastomer, there is a 
method of adding a monomer to change the structure or adding a substance having 
a very high dielectric constant such as Barium titanate. However, in general, these 
methodss make the elastomer harder and less stretchable. Examples of adding 
Barium titanate to our synthetic acrylic are shown below. Here, the acrylic we have 
synthesized is called a base acrylic.

As a method for dispersing barium titanate, a predetermined amount of barium tita-
nate was added to the polymer-containing liquid and crushed with a homogenizer. As 
a result of particle size measurement by SEM, the median diameter was about 450 nm 
[57]. It was also confirmed by using SEM that the barium titanate was uniformly mixed.

Elastomer sheets (thickness: 400 μm) were prepared by a) adding 1 wt% of 
Barium titanate to the base acrylic, and b) adding a 2 wt% of Barium titanate to the 
acrylic. The SS curves of those elastomers were measured as shown Figure 6. 
The acrylics, which are the base for the Barium titanate were slightly crosslinked. 
The permittivity of the acrylic was measured using the parallel plate capacitance 
method. The withstand voltage was measured using a general dielectric breakdown 
tester. The relationship between the withstand voltage and the capacitance of these 
films is shown in Figure 7.

From Figures 6 and 7, as we initially expected, the withstand voltage and the 
amount of capacitance of the film containing a large amount of Barium titanate 
increased, and the film became harder and less stretchable by that amount. Circular 

Figure 5. 
The frequency dependence of G’, G’’ and tan δ of (a) the acrylic 1 and (b) the silicone 1.
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actuators were produced using either the base acrylic film without adding the 
barium titanate, or the films containing 1 wt% or the barium titanate and 2 wt%, 
and the elongations of each were compared. As a result, the actuator using the base 
film showed the largest elongation. In fact, the film that was hardened by adding 
the barium titanate was superior in increasing the withstand voltage. From those 
results, it was found that even if a substance with a high dielectric constant was 
added, it did not give a significantly good effect. The dynamic viscoelasticity of the 
base acrylic +2% of Barium titanate is shown in Figure 8 (Figure 8 is in Section 3.3).

3.3 Adjustment of cross-linking agents/reduction of double bonds

Figure 8 shows the SS curve when the amount of cross-linking agent added to the 
above base acrylic is changed. Assuming that the amount of the cross-linking agent 
added to the base acrylic (blue) is 1, red, green, black, and orange are added at rations 
of 2:1, 1.5:1, 0.8:1, and 0.5:1, respectively. Not surprisingly, the less cross-linking agent 
we add, the better the elongation. Due to that reduced strength, circular actuators 
need to be manufactured and evaluated to determine how appropriate they are.

Figure 6. 
The SS curve of the elastomer sheet with a small amount of a) 1wt% and b) 2wt% of Barium titanate added to 
the base acrylics.

Figure 7. 
Relationship between the breakdown of the electric field and the capacitances of these elastomer films.
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In this experiment as well, the tensile speeds were set to 100 mm / min and 
400 mm / min, but as mentioned above, such an evaluation is important for 
artificial muscles. That is, the test should be performed according to the actual 
running speed of the muscle. In this case, 100 mm / min / sec is clearly affected by 
viscoelasticity. In other words, even if the elongation increases, the stress does not 
increase so much (the inclination angle is gentle), and as a result, it could become 
easy to deform as the DE.

Next, attempts were made to not only change the amount of additive added, but 
also to reduce the amount of double bonds. Table 2 shows the conditions of the case 
where the amount of the cross-linking agent added was changed and the case where 
the amount of the double bond was reduced by using HNBR (Hydrogenated acrylo-
nitrile butadiene rubber). HNBR is a hard material with a dielectric constant of 15, 
but as shown in Table 2, when the ratio of double bonds is reduced, the slope of the 
SS curve becomes gentle (see Figure 9). HNBR Ver.3 has a dramatically reduced slope 
because the cross-linking agent has also been reduced. The capacitance was also 11. 

Figure 8. 
The SS curve when the amount of cross-linking agent added to the above base acrylic changed. The case where 
the amount of the cross-linking agent added was changed and the case where the amount of the double bond 
was reduced by using HNBR (Hydrogenated acrylonitrile butadiene rubber).

Figure 9. 
The SS curve when the amount of cross-linking agent added to the above base acrylic changed: The case where 
the amount of the cross-linking agent added was changed and the case where the amount of the double bond 
was reduced by using HNBR (Hydrogenated acrylonitrile butadiene rubber).
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With these membranes, it is necessary to make a circular actuator and measure the 
elongation, but unfortunately it has not been done yet. Perhaps HNBR ver.3 is a little 
too soft and it could be difficult to make a DE. Or, because it is soft, the Coulomb force 
might be dispersed and it might not be possible to drive it well. Further studies are 
desired on the proportion of double bonds and the amount of cross-linking agent.

The dynamic viscoelasticity of HNBR was also measured (see Figure 10). Silicon 
and acrylic are also shown in this figure for comparison.

Figure 10 shows the frequency dependence of the storage modulus of five kinds of 
materials. From 0.032 Hz, it can be seen that the storage elastic modulus of the acrylic 
1 (see Table 1) increases. It can be seen that the storage elastic modulus of HNBR ver.3 
gradually increases, but the storage elastic modulus of the silicon (made in Germany) 
basically does not change as the frequency increases. Again, silicon could be a bit 
difficult to get the most out of as an artificial muscle. One of the reasons might be that 
the structure of silicon is generally a chain structure. Of course, silicon has excellent 
temperature characteristics and DE responsiveness, and can be driven efficiently. 
As for our recommendation, it is a good idea to use both fast (silicon) and slow 
(acrylic) muscles well, like human muscles. Since HNBR is rubber, it is resistant to 
humidity and can withstand temperature changes. In addition, the results of dynamic 

Figure 10. 
The SS curves of HNBER (base material), HNBER ver.1, HNBR ver.2 and HNBER ver.3. Note: The silicon 
for this test was used the silicon German-made. This is because the silicon 1 was tested long time ago there is no 
remaining stock.

Crosslinker (%) Double bond (%)

HNBR sheet as Base Material 8 10

HNBR ver.1 8 5

HNBR ver. 2 8 1

HNBR ver. 3 2 1

Table 2. 
The case where the amount of the cross-linking agent added was changed and the case where the amount of the 
double bond was reduced by using HNBR (hydrogenated acrylonitrile butadiene rubber).
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viscoelastic research show that it is somewhat suitable for driving a DE. In particular, 
it seems that the amount of cross-linking agent added should be selected appropri-
ately. We believe it is particularly suitable for ocean power generation. Since ocean 
power generation is exposed to a harsh natural environment, it is desirable to use a 
material that is tough and suitable for DEs. Another point that greatly contributes to 
power generation efficiency is that there are many changes in thickness (see Eq. (3)), 
and in that respect, acrylic is most suitable, but acrylic is not very suitable for harsh 
natural environments. We hope that moisture resistant acrylics will be developed. The 
film with 2% barium titanate added to the base acrylic is considerably harder than 
the other films as mentioned above, but the withstand voltage of this film is high (see 
Figure 6) and the elastic modulus is also increased. Therefore, if it could withstand a 
higher voltage, it might be used as a high-power DE in the future.

3.4 Pre-strain

Pre-strain will increase the performance of the DE. This is because when 
repeated tests were performed to know the SS curve of the elastomer sample, the 
film stretched and it could not return to its original length, so there was no choice 
but to stretch the film a little in advance and evaluate it [14, 20]. After that, if 
more pre-strain is applied, it will be advantageous because the strain is applied 
in advance compared to the case where it is not stretched, and the performance 
will be further improved [34]. In order to utilize the pre-distortion, it is advanta-
geous to use a material having a gentle SS curve, such as acrylic (see Figure 4). 
As described above, as the degree of pulling increases, the film becomes harder 
and harder to stretch. However, since the curve of acrylic is gentle, it is harder to 
harden than silicon. In the dynamic viscoelasticity test, acrylic is more frequency 
dependent and has more storage modulus than silicon (see Figures 5 and 8). This 
means that even if the film becomes hard, it can function as a DE because the 
modulus increases. Again, this frequency dependence is also important for use as 
an artificial muscle.

3.5 Adopted CNTs as electrodes

Recently, attempts have been made to use new carbon foam materials such 
as SWCNTs and MWCNTs as electrodes for DEs. These electrodes bring the 
elastomers to a positively improved higher performance. Table 3 shows how 
much weight can be lifted with a stroke of 5 mm due to the difference in elec-
trodes. The elastomer used is acrylic 1, and its weight is 0.1 g [10]. Diaphragm 
actuators with a diameter of 8 cm were manufactured and those elongations 
were measured.

Since these electrodes are not optimized, it seems possible to lift heavier weights 
while having sufficient elongation in the very near future. In addition, these are 
single layers of DEs and are very light, so it is possible to have multiple layers of 
DEs, which is close enough to the range applicable to robots and power suits.

On the other hand, these electrodes are also promising as power generation 
elements. A power generation experiment was conducted using a drape type DE 
having a height of 120 mm and a diameter of 260 mm. The amount of power 
generation when the DE was pulled by about 60 mm is summarized in Table 4 [15]. 
The drape weighs 4.6 g and uses acrylic 1. Carbon grease, Carbon black, MWCNTs 
(multi-walled carbon nanotubes), and SWCNTs (single-walled carbon nanotubes) 
were used as electrode materials.

Using MWCNTs or SWCNTs makes it possible to obtain more power, as shown 
in Table 4.
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This is because the conductivities of MWCNTs and SWCNTs are much higher 
than that of carbon black or Carbon grease. 

In this way, the highly conductive material significantly increases the elongation 
of the DE actuator, resulting in greater elongation and also increasing the amount 
of power generated by the DE element.

4. Conclusion

From the above experimental results and those discussions, the following 
was found:

• The elongation of the DE is greatly influenced by the elastomer material. If 
the material is too hard or too soft, it may not produce the desired result. DE 
performance needs to be adjusted according to product requirements. The 
same applies to the output of the DE.

• There are several methods for changing the properties of the elastomer, but 
two easy methods are to adjust the amount of the cross-linking agent added 
and/or the percentage of double bonds. Mixing additives with a high dielectric 
constant seems to be less effective.

• In order to know the properties of the polymer materials for the DE, it is 
desirable to measure the SS curve and/or dynamic viscoelasticity. In those 
cases, it is recommended to measure at a slower speed for artificial muscle 
applications.

• By using highly conductive materials, it is possible to improve the performance 
of the DE actuator and the performance of the DE power generator.

Type of electrode Power obtained (mJ)

Carbon grease 179

carbon black* 274

multi-walled carbon nanotube 445

single-walled carbon nanotube** 630
*Carbon grease, Carbon black and MWCNT are manufactured in companies in United States
**SWCNT (ZEONANO®-SG101) by Zeon Corp in Japan.

Table 4. 
Differences in power obtained when changing the electrode materials.

Electrode type Weight that can be lifted with a stroke of 5 mm

Carbon grease 6.5 N

Carbon Black 10 N

Multi-walled carbon nanotubes (MWCNT) 16 N

Single-walled carbon nanotubes (SWCNT) 22 N

Table 3. 
Types of electrodes and weight that can be lifted.
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Chapter 8

Compression and Recovery 
Functional Application for the 
Sportswear Fabric
Ramratan Guru, Rajeev Kumar Varshney and Rohit Kumar

Abstract

A sportswear fabric should have good stretch and recovery behaviour. This study 
facilitates an effective design and development of high-stretch sportswear using 
different knitted structure. Nine types of knitted fabrics were produced by varying 
the type of fibre and type of structure. An experiment work is done to study the fabric 
size, stretch and elastic recovery properties. The statistical analysis showed that type 
of fibre and type of knitted structure significantly influence the fabric stretch. Plain 
structure fabric showed higher stretch value than rib and interlock-knitted fabric. The 
high stitch density caused by reduce stretch value in the course- and wale-wise due to 
yarn floating rather than overlapping influenced the weight and thickness of knitted 
fabrics. The elastic recovery analysis indicated that the recovery value of plain-knitted 
structure with polyester-spandex blend is higher among studied fabrics. However, the 
recovery value decreased over time in comparison with stretch value.

Keywords: sportswear fabric, stretch and recovery performance, polyester,  
micro-polyester, polyester-spandex

1. Introduction

The stretchable knitted structures play an important role in body comfort 
and fit. The knitted structures allow wearer the freedom of movement with least 
resistance due to their stretchability and elasticity [1, 2]. Regular physical activity 
is important to maintain consistency in human health. To achieve comfort and 
functional support during various activities such as walking, stretching, jogging, 
athletes and sports persons use sports clothing [3, 4]. Stretch properties represent a 
significant mechanical property of clothing material that influences clothing pres-
sure. Stretch properties are measured as the percentage of fabric stretch and fabric 
growth, and recovery [5–7].

Basically, two types of category are normally available in sportswear stretch 
cloths: First is comfort stretch range of about 20–30% and other power stretch cloth 
range approximately 30–50%. The basic designs are used for high-active sportswear 
garments in elasticity and compression cloths.

The power stretch cloths need to have more extensibility and quicker recovery 
performance [8–12].

The high-compression clothes are more utilized medical compression gar-
ments and sportswear cloths sectors. Study on the evaluation of elastic recovery 
of cotton-knitted fabrics was conducted [13–16]. It is found that length of these 
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cloths is different to a more extent value. As per information, fabric elongation is 
different from single-structure knit fabric in lengthwise ranging 3–6%, with double 
cloth knit having lengthwise 3–50%. Elongation in single-structure knit fabric is of 
widthwise 3–180% and double cloth knit elongation in widthwise of 6–155%. It is 
elastic recovery different from single-structure knit lengthwise to other structures. 
According to author, single-knit lengthwise elastic recovery is of range 100–56%, 
double cloth knit lengthwise elastic recovery is of range 100–57%, and single-struc-
ture knit elastic recovery widthwise is found 100–56%, double cloth knit widthwise 
elasticity recovery is of range 100–30% that is basically found in knit cloths [13–17].

Plain knit had more elongation and growth as compared with double knit. 
The growth after 30 seconds or relaxation was observed to be 36% and plain 
knit stretched more under load and after the load was released that exhibited 
more growth than the double knit. The stretch of knit fabrics is affected more 
by the cover factor than by the yarn diameter, loop length, loop density or the 
shape of the loop [18]. Spandex is widely used in sportswear for its superior 
stretch and recovery properties. Dynamic elastic repossession can assess the 
immediate apparel response due to body movement; the elastic bare-plaited 
fabric is found to have higher dynamic elastic recovery than cloth knitted from 
lycra core spun. The basic phenomena are essential use in stretch and recovery of 
the cloth to pressure generated by compression apparel. It is found that knitted 
fabric in normal stretch and recovery performance as compared to compression 
sportswear garment. Therefore, Lycra is used in knit cloths in blend with other 
fibres for proper utilization of stretchability and elasticity recovery properties in 
sportswear garments [19, 20].

The objective of this study was to investigate the effect of the stretch, growth 
fabric and recovery properties of polyester-spandex-blended, micro-polyester and 
100% polyester-knitted fabric. These works could facilitate the design and develop-
ment of sportswear with the required stretch and recovery properties.

2. Materials and methods

2.1 Materials used

In this study, three different filament yarns—polyester, micro-polyester, blend 
of polyester-spandex and non-circular cross section were used to prepare samples. 
The knitted structures—single jersey, interlock and rib fabrics were produced on 
weft-circular knitting machine (Table 1).

2.2 Testing methods

The knitted fabric was conditioned in standard atmospheric condition of 
65+/−2% RH and 27+/−2°C temperature and the samples are in condition for 
24 hours before testing. The stretch and recovery property tester was using the 
ASTM D 2594-2004 (2008) standard.

2.2.1 Statistical analysis

One-way ANOVA (Minitab 17 statistics software) tests were used to determine 
the significant difference between the stretch and elastic recovery properties of 
fabrics. In order to infer whether the parameters were significant or not, p values 
were examined. If the ‘p’ value of a parameter is greater than 0.05 (p > 0.05), the 
parameter was not significant and should not be investigated.
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2.2.2 Fabric particulars

The fabric details measured were as follows: wales per inch (wpi), course per 
inch (cpi), linear density of yarn (denier), fabric mass per unit area (g/m2) and 
fabric thickness (mm). The wpi and cpi were measured according to the ASTM 
D-3887 Standard. Yarn linear density and fabric mass per unit area were measured 
according to ASTM D 1059-01 and ASTM D 3776 M-09a standard respectively by 
using an electronic weighing balance. Thickness testing was carried out as per BS 
EN ISO 9073-2 using the electronic thickness tester at 0.25-KPa pressure. For each 
sample, 30 readings were taken to get the result at 95% confidence level.

2.2.3 Stretch and recovery property tester

ASTM D 2594-2004 (2008) standard test method for stretch properties of knit-
ted fabric was applied under the form-fitting standards as sample size 18.3 cm in 
wale direction and 21.5 cm in course direction positions and 4.54 kgf weight apply 
in the Fabric specimen of the lower bench marks were calculated after 60 s and 1 h. 
Stretch percentage points to test the stretch and elastic recovery of the experimental 
samples are as shown in Figures 1 and 2.

Stretch, growth and recovery percentages were calculated by Eqs. (1)–(3) 
given below:

 BFabric stretch% 100
A
AX−

=   (1)

 CFabric growth% 100
A
AX−

=   (2)

 BFabric recovery% 100
B A

C X−
=

−
  (3)

where A: the distance marked between the upper and bottom parts of the fabric; 
B: the distance between the marked points after holding the sample for 5 min with 
4.54 Kgf load; C: the distance between the marked points after 5-min relaxation.

Sample Fabric 
structure

Wpcm Cpcm Stitch 
density 

(loop/cm2)

Areal 
density 
(g/m2)

Thickness 
(mm)

Loop length 
(cm)

Tightness 
factor 

(Tex1/2/cm)

PET/spandex Plain 14.17 20.83 295.16 115 0.57 0.39 8.53

Rib 16.12 24.13 388.97 155 0.65 0.32 10.74

Interlock 19.31 26.18 527.54 178 0.81 0.26 12.80

Micro-PET Plain 17.28 15.43 266.63 105 0.50 0.39 8.53

Rib 16.12 20.14 324.65 144 0.58 0.31 10.74

Interlock 22.67 17.12 388.11 161 0.68 0.26 12.80

100% PET Plain 17.12 13.21 226.15 98 0.41 0.39 8.53

Rib 15.32 20.82 318.91 136 0.52 0.32 10.74

Interlock 22.15 16.83 372.78 155 0.62 0.26 12.80

*Wpcm—wale per centimetre, Cpcm—course per centimetre, * PET—polyester, * all three fabrics are made from 
100 deniers polyester tex 11.11.

Table 1. 
Geometrical properties of knitted fabrics.
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3. Results and discussion

Figures 3 and 4 and show knit specimen changes in weight and thickness. The 
heavier weight of knit specimen was, the thicker its thickness was in descending order 
‘interlock structure polyester-spandex, micro-polyester and 100% polyester-knitted 
fabric’, ‘rib structure polyester-spandex, micro-polyester and 100% polyester-knitted 
fabric’, ‘plain structure polyester-spandex, micro-polyester and 100% polyester-
knitted fabric’. Thickness and weight of specimen were influenced by density change 
caused by reducing and increasing fabric size. Thus, high density caused by floating 
in course-wise causes more knitted fabric weight gain than by loop overlapping.

Figure 1. 
Stretch and recovery setup assembly.

Figure 2. 
Fabric stretch equipment.
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3.1 Stretch properties

Figure 5 and Tables 2 and 3 indicate that the stretch value decreased in rib and 
interlock structure-knitted fabrics and direction except for wale-wise and course-
wise as compared with plain structure fabrics. The plain structure fabrics have 
higher-stretch (%) polyester-spandex blend because lycra filament yarn have more 
stretch properties compared with other polyester and micro-polyester yarn [1].

The interlock structure three-knitted fabric showed a sharp decrease, while rib 
interlock structure three-knitted fabric had relatively small decrease. It seems that 
the material effect by stretch properties added to the reducing cause by yarn float-
ing in the fabric structure, which held the loops reduced the stretch value of the 
fabric. The stretch value in course-wise is influenced by yarn floating rather than 
loop overlapping, while stretch value in wale-wise is caused by loop overlapping 
versus yarn floating [10].

Figure 3. 
Fabric weight comparison on knit structure.

Figure 4. 
Fabric thickness comparison on knit structure.
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Stretch 
properties

Degree of 
freedom df

Sum of square 
value SS

Mean square value 
MS

Factual Fcritical P value

A 9 5019.4 557.7 5.413 2.261 0.000

B 9 5728.4 636.4 3.167 2.261 0.006

C 9 6006.0 667.3 2.910 2.261 0.010

D 9 1284.1 385.5 2.813 2.261 0.013

E 9 1082.1 140.33 2.442 2.261 0.040

F 9 2205.2 245.03 5.536 2.261 0.023

Note: A—Course-wise stretch percentage, B—course-wise recovery after 60 sec %, C—course-wise recovery after 
1 hr. %, D—wale-wise stretch percentage, E—wale-wise recovery after 60 sec %, F—wale-wise recovery after  
1 hr. %.

Table 3. 
One-way ANOVA of stretch and recovery properties of sportswear-knitted fabric structures.

Figure 5. 
Stretch comparison on knit structure.

Type of fabric Structure Fabric stretch and recovery properties

A B C D E F

Polyester-spandex blende knitted Plain 90.28 55.71 64.78 42.71 28.14 34.87

Polyester-spandex blende knitted Interlock 70.14 29.07 35.85 33.25 19.85 20.11

Polyester-spandex blende knitted Rib 80.21 38.57 51.21 39.51 22.42 27.31

Micro-polyester knitted Plain 78.85 45.21 47.85 30.12 16.42 17.91

Micro-polyester knitted Interlock 56.21 20.22 25.56 22.14 12.34 12.87

Micro-polyester knitted Rib 64.85 33.28 35.61 30.81 14.78 16.83

100% Polyester knitted Plain 82.12 52.27 55.22 35.14 20.15 25.12

100% Polyester knitted Interlock 59.85 25.12 31.09 27.37 13.57 14.85

100% Polyester knitted Rib 68.24 35.41 39.17 28.15 18.89 22.01

Note: A —Course-wise stretch percentage, B —course-wise recovery after 60 sec %, C—course-wise recovery after 
1 hr. %, D—Wale-wise stretch percentage, E—wale-wise recovery after 60 sec %, F—wale-wise recovery after  
1 hr. %.

Table 2. 
Mean value of stretch and recovery test results.
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Table 3 shows the ANOVA statistical analysis results at 5% significance level. 
Stretch and elastic recovery properties of the sportswear-knitted fabrics show signifi-
cant difference between them (course-wise stretch (%): Factual = 5.432 and wale-wise 
stretch (%): Factual = 2.813 in comparison with Fcritical = 2.26) at degree of freedom 9.

3.2 Elastic recovery properties

There was significant value change on knit structure and direction in elastic recov-
ery as shown in Figures 6 and 7. The recovery value gap among knitted specimen was 
lower at 1 h than at 60 sec. The stretch loops bent and restricted by the external force 
loop of stretch take on a form of stability and shape retention in cover time [11–13].

Figure 6. 
Elastic recovery 60 sec on knit structure fabric.

Figure 7. 
Elastic recovery 1 h on knit structure fabric.
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The ANOVA results show in Table 3 that with respect to stretch properties 
after 60 sec %, there is a significant difference between the knitted fabric course-
wise recovery after 60 sec %, degree of freedom 9. [Factual = 3.16 > Fcritical = 2.26 
(p < 0.05)]. And for wale-wise recovery after 60 sec %, there is a significant differ-
ence between the structures [Factual = 2.44 > Fcritical = 2.26 (p < 0.05)].

It was found from Table 3, ANOVA results show that there is a significant 
difference between the course-wise recovery after 1 h %, value of knitted 
fabrics [Factual = 2.91 > Fcritical = 2.26 (p < 0.05)]. Also, it is noticed that there is 
a significant difference in wale-wise recovery after 1 h %, between the knitted 
fabrics [Factual = 5.53 > Fcritical = 2.26 (p < 0.05)].

4. Conclusion

The followings conclusions are derived from the above experimental work and 
given below:

• The elastic and recovery sportswear apparels are basically connected to the 
fabric material interface with the body, and these basically depend on how 
material stretch and recovery performance apparel structure perform. In 
this research study, basically focus should be on for the apparel size, stretch, 
elasticity of material properties. Apparel cloths have compression-knitted 
properties with different structures such as plain, interlock and rib and have 
analysed the correlation with type of materials.

• It is concluded that the plain structure polyester-spandex blend fabric is pref-
erable than micro-polyester and 100% polyester fabric with respect to stretch 
and elastic recovery characteristics due to its quick recovery, which enhances 
the power of the performance.

• This chapter proposed an appropriate knit structure and arrangement 
approach in consideration of fabric size and stretch properties of high-stretch 
knitted fabric and correlation with type of fibre.

• This chapter provides meaningful market data for the effective development of 
more diverse garment-related product along with the localization of manufac-
turing for functional and sports garment.
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Chapter 9

Characterizing Stress-Strain
Behavior of Materials through
Nanoindentation
Indrani Sen and S. Sujith Kumar

Abstract

Nanoindentation is a widely used state of the art facility to precisely and conve-
niently evaluate the mechanical properties of a wide group of materials. Along with
the determination of elastic modulus and hardness of materials, this chapter partic-
ularly aims to explore the possibilities to assess the corresponding stress–strain
characteristics of elastic–plastic materials and most importantly unique
pseudoelastic materials. The suitability of continuous stiffness measurement (CSM)
based nanoindenter systems along with the adaptability of the instrument without
CSM for precisely evaluating the deformation behavior of specialized materials is
discussed in details. In this regard, the roll of indenter tip geometry and size is
greatly emphasized. The recent research in the field is reviewed thoroughly and the
updated protocol generated is illustrated.

Keywords: nanoindentation, stress-strain curve, small-scale, plasticity, NiTi

1. Introduction

Since the early 19th century, indentation technique has been extensively used
for characterizing the mechanical properties of vast range of materials. In general,
the indentation test is known to measure the hardness of materials. In conventional
techniques, the mean contact pressure (MCP) upon indenting a specimen surface is
evaluated. This is done on the basis of the residual area measured from the image of
the indent impression and the known value of the applied load. The quantitative
parameter, thus evaluated, represents the material’s response against deformation.
In fact, MCPmeasured at the fully developed plastic zone is known as hardness [1].
With the progress in the technology and its incorporation in the experimental setup,
instrumented indentation technique, particularly ‘nanoindentation’ has been
evolved to assess various mechanical as well as metallurgical properties of a range of
materials [2–4]. This includes characterizing elastic moduli, residual stress, creep
properties, dislocation density, strain rate sensitivity etc. [5–12]. Among all these
developments, the potential of the nanoindentation technique in generating the
indention stress (σind) – indentation strain (εind) curve is the most recent one and it
is explained in detail in this present chapter [2, 3].

In nanoindentation, the associated high-resolution depth sensing technique aids
to estimate the depth or size of the deformation zone. The process records the
continuous response of indentation load (P) in the range of μN vs. indentation
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depth (h) in the magnitude of nm. The P-h curve obtained therein helps to assess
the various properties of the studied materials. Unlike the conventional technique,
in instrumented nanoindentation, hardness is estimated by using indirect measure-
ment of projected contact area from P-h curve and the known geometry of the
indenter tip. Similarly, elastic modulus of the material is estimated using the slope
of the unloading segment in the P-h response of materials [13]. This method of
analysis has been used for various scientific studies to characterize the localized
mechanical properties of the samples in sub-micron scale. In fact, this revolutionary
modification in the assessment methodology through nanoindentation has opened
up a wide range of studies to extract the different relevant mechanical properties of
materials on a small-scale.

One of the breakthroughs is the capability of this technique in generating the
σind - εind response of a material of interest [3, 14–16]. This novel and recent
development plays a significant role in understanding the localized deformation
capability of materials system. This is particularly because stress – strain character-
istics can provide an insight into the elastic – plastic mechanisms of the materials, as
per the conventional notion. In fact, estimation of localized stress – strain charac-
teristics of a material through nanoindentation can even be a substitute for typically
used small-scale characterization techniques for instance, micro-pillar compression
[17, 18]. Nevertheless, nanoindentation is further beneficial owing to its easier
sample preparation, simplicity in experimental execution, and non-destructive
nature. This technique therefore has enormous potential for evaluation of small-
scale mechanical properties of materials with minimal effort.

Considering this, the present chapter is dedicated to provide a reasonable
understanding for generating σind - εind data from the P-h curve of nanoindentation.
To develop a more conceptual idea for a new reader, the importance of indenter tip
geometry in activating different deformation modes within the indented volume
are discussed at the first hand. Subsequently, the basic relationships for the inden-
tation, the method of analysis and generation of protocol for obtaining the σind - εind
curve will be discussed.

2. Role of indenter configuration

It is noteworthy that both the uni-axial tensile/compression test as well as the
indentation technique are capable to assess the stress–strain characteristics of a
material, however, with usually different size-scale of samples along with varying
stress-states. The former provides an understanding for the degree of bond
stretching induced elastic deformation and dislocation mediated plastic/permanent
deformation in the material. To obtain such desired information, the strain-induced
into the material should be controlled in such a way that, the material’s response
reflects the gradual activation and transition from the elastic to the plastic defor-
mation. This is realized in uni-axial deformation without any strain gradient in the
specimen, at least macroscopically.

In contrary to that, upon indentation, presence multi-axial state of stress exists
beneath the indenter tip. Moreover, the constraint nature of deformation induces
strain gradient within the deformation volume. Hence, for assessing the elastic–
plastic activity within the deformation zone, the indentation tests need to be spe-
cially designed to produce a smooth strain distribution (or gradient) along with its
gradual increment. To maintain that, indenter tip geometry needs to be carefully
chosen to reflect the σind - εind characteristics from the localized region. In this
regard, the most suitable indenter configuration is spherical tip (or sphero-conical
indenter).
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Before getting into the details about the configuration of the spherical indenter
tip and its importance for σind - εind generation, the reader needs to develop a
comprehensive idea about the different type of indenter tips that are used in
general. For the same, the geometrical aspect of indenter configuration is briefed
here. From a geometrical point of view, indenters are classified into two: (i)
geometrically similar indenters (GSI) and (ii) non-geometrically similar indenter
(N-GSI) [4].

The most commonly used sharp pyramidal indenter such as four-sided Vickers
(for micro-and macro-indentation) and three-sided Berkovich indenters (for
nanoindentation) comes under the category of GSI. On the other hand, the spherical
indenter falls under the category of N-GSI. The major difference in deformation
characteristics experienced by a specimen surface, by indenting with any of these
two categories of indenter tips can better be appreciated from Figure 1. Schematic
representations in Figure 1(a-c) show the deformation modes activated in tradi-
tional elastic–plastic material while increasing the indentation load/depth, using
GSI. The mathematical relation for geometrical similarity originates from the ratio
of the contact radius (ac) to the maximum depth of indentation (hmax). For GSI,
ac-i/hmax-i = ac-j/hmax-j = ac-k/hmax-k = constant. The subscript, i, j, k signify increasing
level of h. Nevertheless, this constant ratio of ac/hmax ensures that the size of the
deformation zone of indentation varies uniformly irrespective of the depth of
penetration. This helps to estimate the property of the subjected material indepen-
dent of the applied indentation load/depth. Nevertheless, owing to the sharp nature
of the Vickers and Berkovich indenter, the strain-induced within the indentation
volume is large enough to generate significant plastic deformation [1]. In that case,
dislocation activity is always the dominant mechanism within the deformation
volume beneath the indenter tip, irrespective of the change in depth of indentation,
as apparent from Figure 1. This assists to precisely measure the hardness of a
material independent of the indentation load, in the theoretical sense. However, it is
realized that GSI is not adequate to assess the elastic deformation response of the
indented material. In fact, while using conventional Vickers and Berkovich

Figure 1.
Schematic illustration of the indentation behavior associated with traditional elastic-plastic metallic using
(a-c) sharp geometrically similar indenter and (d-e) spherical non-geometrically similar indenter at various
indentation depths.
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indenters, occurrence of prominent dislocation activity within the deformation
volume negates any influence of elastic activity therein. This acts as the limitation of
the most commonly using Vickers and Berkovich indenter for generating the
stress–strain curve.

On the other hand, a completely different deformation response is being expe-
rienced, while the specimen surface is indented using N-GSI (spherical tip) with
increasing indentation load/depth. Figure 1(d-f), illustrate the deformation sce-
nario within the indentation volume, in such case. It is evident from the figure that,
nature of deformation is entirely different in comparison to that for GSI. This
difference originates from the non-geometrical similarity of the indenter. In case,
the specimen surface is indented with a N-GSI, ac-i/hmax-i < ac-j/hmax-j < ac-k/hmax-k.
This essentially means with the progress of the indentation, increment in the con-
tact radius becomes more pronounced with respect to the depth of penetration.
Such movement of indenter within the material surface gradually increases the
induced strain/stress into the material. Also, the blunt nature of the indenter assists
in generating a smooth stress field within the indentation volume, specifically as
compared to GSI. As a net effect, spherical indenter facilitates a gradual activation
of elastic to the plastic deformation mechanism. This potential for gradual instiga-
tion of the deformation mechanism similar to that observed in case of uni-axial test,
is exploited for σind - εind generation from nanoindentation.

Nevertheless, the most crucial part in this regard is the data analysis procedure
that is necessary to convert the indentation P-h response into a reliable σind - εind
curve. There have been numerous attempts to obtain a stress–strain curve from
traditional indentation as well as instrumented one. In the process, the protocol for
generation of indentation stress–strain curve has undergone various alterations, to
precisely correlate the materials’ property. In the next section, we have briefed the
different approaches adopted to appreciate the σind - εind behavior of a material. This
will help to understand the scientific developments that has been materialized on
this particular topic, so far.

3. Evolution of σind - εind generation protocols

The concept for the generation of σind - εind curve from indentation is introduced
by Tabor in the 1950s. Tabor has measured theMCP on the specimen indented with
a spherical tip to estimate the stress that is induced in the process [1]. The most
crucial part, however, is the estimation of εind. Tabor defined εind by the relation
(d/D), where d is the diameter of the residual impression and D is the diameter of
the indenter tip. Here d is measured using the traditional approach, i.e., by imaging
of residual impression after unloading. The general trend of σind - εind characteristics
of materials, generated following Tabor’s protocol, resembles well with that evalu-
ated through traditional uniaxial compression test [1]. However, this method of
analysis accounts for only single σind - εind data from an indentation. So, it means
that several indentation tests with different indentation parameters are necessary to
be pursued, to obtain a continuous σind - εind curve for a material, making the
process cumbersome.

Nevertheless, Tabor’s approach revealed the potential of the indentation
technique and instigated more studies to develop a state-of-the-art protocol for
generating σind - εind curve of a material. In this regard, automation through the
instrumented indentation has opened up enormous possibilities to generate the
σind - εind curve using a single indentation. In turn, the localized deformation
behavior of a material can be precisely obtained. First among all is the Field and
Swan approach [19]. They have proposed to incorporate multiple partial unload
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segments during each indentation. Here, the P-h responses obtained for each par-
ticular segments are used to measure the corresponding σind and εind values. The
strain, on the other hand, is estimated using the relation a/Ri, where Ri represents
the radius of the indenter tip. As per Field and Swan approach, the deformation
associated in each unloading segment is assumed to be purely elastic. Correspond-
ingly, the classical Hertzian elastic relationship (explained in the next section by
Eq. (1)) is applied on those P-h responses to assess the contact radius, a. From the
measured a value, contact area (Ac) is estimated instead of residual impression-
based analysis in Tabor’s protocol.

The Field and Swan approach has much significance in the present scenario,
owing to its implementation of the Hertzian contact mechanics theory. Neverthe-
less, interpretation of indentation strain as per both Tabor’s as well as Field and
Swan approaches has been questioned for its integrity with the fundamental con-
cept of strain. In general, strain is defined as the ratio of change in length to the
initial length in a region of deformation considered. However, this fundamental
relationship is not met in both these above-mentioned approaches.

In order to overcome this fundamental lacking, various studies have been
conducted to formulate an adequate relationship for the εind. Among those attempts,
the protocol developed by Kalidindi and Pathak has succeeded in defining εind as per
the most basic concept of strain [16]. The present chapter is extensively covering the
formulation and implementation of Kalidindi and Pathak protocol for the generation
of σind - εind curve for a material subjected to nanoindentation. This protocol is
essentially formulated based on classical Hertzian theory, which is explained below.

4. Contact mechanics for spherical tip-based indentation

Contact mechanics theory introduced by Hertz has provided a fundamental basis
for the indentation technique [20]. Classical Hertzian theory predicts the elastic
responses of frictionless contact between two different bodies of dissimilar geometries
(with varying properties) in contact. This theory is formulated based on the assump-
tion that material is homogenous and isotropic. In the present scenario of indentation
using spherical indenter, the Hertzian theory for elastic contact between the sphere
(indenter) and elastic half-space (specimen surface) is used for the formulation of
σind - εind generation. In the indentation aspect, the material of interest is considered as
an elastic half-space by following the criteria that indenter tip radius (Ri) should be at
least ten times smaller than the horizontal dimensions of the sample [21].

As explained in previous Section 2 (see Figure 1(d-f)), indentation using spherical
indenter tip facilitates the gradual activation of elastic to plastic mechanisms in the
material. Therefore, for the sake of understanding, the overall deformation scenario
can be categorized into (i) fully elastic and (ii) plastic following the initial elastic
section. The schematic representation of these two modes of deformation and their
corresponding P-h response is showed in Figure 2. In the first case, material recovers
all the depth it penetrated upon the indentation (see Figure 2(a) and (c)). In the
second case, some amount of permanent deformation is existing within the indenta-
tion volume (see Figure 2(b) and (d)). Hertz has provided the basis for the elastic
deformation associated in two former cases using the relation below,

P ¼ 4
3
Eeff R

1=2
eff h

3=2
r (1)

1
Eeff

¼ 1� ν2s
Es

þ 1� ν2i
Ei

,
1

Reff
¼ 1

Ri
� 1
Rs

(2)
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Here P is the applied load, hr is the recoverable depth, Reff is the effective tip
radius and Eeff is the effective elastic moduli. All the characteristic terms mentioned
here can be appreciated from Figure 2(b). The terms hmax and hp in Figure 2
represent the maximum depth of indentation at Pmax and recurring plastic depth of
indentation post-unloading (P is zero), respectively. In the Hertzian relation, the
role of elastic deformation on the two mating parts is assessed using Eeff. The value
of Eeff accommodates the elastic deformation associated with the hard indenter and
soft sample. Eeff during the indentation is estimated using the relation (2). Similarly,
Reff takes into account the influence of plastic activity on the overall deformation. It
is related to the indenter tip radius (Ri) and the radius of curvature of the sample
(Rs) upon the indentation. Reff of the sample is estimated using the relation (2).

All these relations derived by Hertz has laid the foundation for the formulation
of σind - εind data from the nanoindentation P-h response. This is explained in details
in the following section.

5. Defining the indentation stress and indentation strain

It is well understood from Section 3 that Tabor’s and Field and Swan’s protocols
do not suffice to define the εind precisely. Nevertheless, Kalidindi and Pathak have
defined the σind and εind by considering the size of the deformation zone formed
beneath the indenter and correlated it with the fundamental Hertzian relationship
[16]. This protocol has succeeded in producing comprehensive σind - εind data from
the nanoindentation experiments (explained in Section 6).

As per this novel approach, eq. (1) is rearranged by incorporating the following
relations:

σind ¼ P
π a2

; σind ¼ Eeff εind; εind ¼ 4
3π

hr
a

≈
hr

2:4 a
(3)

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Reff hr

q
(4)

Figure 2.
Schematic representation of indentation of behavior of material in (a) fully elastic condition and in the pressure
of (b) plastic deformation. Corresponding indentation load vs. indentation depth responses of materials are
shown in (c) and (d).

146

Elasticity of Materials



The indentation strain defined using the above relationship satisfies the general
definition of strain. This can be better appreciated from Figure 3(a). In the figure,
the dashed spherical shaped region beneath the indenter tip schematically shows the
actual size of the deformation zone upon indentation. Based on the εind defined
from Hertzian relation, the length of the deformation zone beneath the indenter tip
at Pmax is noted to be �2.4a. Interestingly, a simulative study on the prediction of
indentation behavior strongly agrees with this relation for tungsten and aluminium
[16]. This has validated the new definition of εind, which is derived without any
alteration of the fundamental Hertzian relation. This novel protocol is remarkably
different yet comprehensive with respect to the other discussed approaches. This is
primarily because it basically takes into account the actual size of the deformation
zone during the indentation, rather than simply estimating the εind data using the
concept of variation in indent impression.

Furthermore, this novel protocol has provided a reasonable basis for the
analogical comparison of indentation behavior using spherical indenter and
uniaxial compression test. The overall nature of the material response upon
nanoindentation can be considered as the replication of compressing up to a depth
of hmax on a cylindrical sample of height 2.4a and radius a. To visualize it clearly,
the idealized deformation zone of indentation and actual deformation of indenta-
tion is schematically shown in Figure 3(a). The shape of the actual deformation
zone formed is schematically showed as spherical. The reader should be aware that,
in reality, owing to the anisotropy in material’s properties, the actual shape of the
deformation zone of indentation can be slightly different from this schematic
representation. It is also noteworthy that with slight alternation in relation (4), hmax

can be used instead of hr in the numerator to accommodate the plastic activity [15].
This whole theoretical concept has paved the way for generating σind - εind curve
from the P-h signal in nanoindentation. To realize it in a practical scenario, the
reader has to understand the necessary steps to follow for obtaining a reliable
output.

6. Theoretical conceptualization to experimental execution

As mentioned in Section 1, nanoindentation typically generates a P-h response
and its characteristics define the mechanical property of the material indented.
Compared to any other characterization technique, particularly, the most
commonly used uni-axial tests, the size of the active deformation region for

Figure 3.
(a) Schematic representation of the deformation behaviour associated with indentation. Figure highlights the
actual deformation zone of indentation and the idealized deformation zone of indentation. (b) Schematic
representation of surface irregularities on a sample.
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nanoindentation is extremely small. Therefore, proper measures are necessary at
every steps right from the precise sample preparation to the careful data analysis to
obtain reliable data.

6.1 Sample preparation

The existence of an artefacts such as scratches or the presence of foreign
particles on the surface can influence the P-h signal and thereby the generated
σind - εind data. The poorly polished samples create a scratch on the surface, the
depth of which can be in hundreds of nanometres. Data recorded from such a region
will certainly influence the overall σind - εind characteristics and consequently alter
the assessment of the true properties of the material. This can be visualized and
understood from the schematic representation in Figure 3(b). In the figure, red
coloured triangular shape and yellow coloured circular shape reveal the presence of
sample surface roughness and foreign particles respectively. As per the indentation
sequence, the indenter will first acquire the data from those artefacts and move to
the bulk of the sample. So, actual material which is supposed to show the pure
elastic response initially, is now influenced by the presence of sample surface
artefacts. As a net effect, the P-h response from the bulk sample is influenced by the
surface roughness/foreign particle. Hence, the assessed properties are certainly
different from the true ones [1]. In case of conventional uniaxial tests, such misin-
terpretation of results can be obtained in case a specimen slips upon loading, or
even when elastic properties are estimated from a tensile experiment, without
attaching an extensometer to the test specimen.

To avoid such issues, well-polished, smooth, flat and plane-parallel specimen
should be subjected to nanoindentation. The necessary steps to achieve such arte-
fact free surface vary with the material of interest. However, colloidal silica polish
for few hours (minimum 3 h) after the conventional polish using silicon carbide
paper with decreasing mesh size and diamond polish is prescribed for metallic
specimens, to attain a reasonably good surface condition for the σind - εind genera-
tion. Depending on the surface characteristics of the material, electropolishing may
also appear to be a better option to minimize the artefacts on the sample surface.

6.2 Conversion of experimental P-h data to effective P-h data

It is noted that theoretical predictions and the experimental outcome may result
to some disparities in case of the nanoindentation test. In this regard, it is notewor-
thy that proper data analysis plays a key role in the generation of σind - εind curve.
It is highlighted in the previous section (Section 6.1) that nanoindentation experi-
ments mandate extremely good quality surface finish. Nevertheless, obtaining the
required surface finish is difficult in practice. A proper data correction route on the
experimentally obtained P-h curve, on the other hand, can negate the role of
artefacts on the σind - εind analysis. This step is crucial to compute a reliable stress–
strain curve. For the same, effective initial contact point between the indenter tip
and the specimen surface is estimated following the “zero-point correction” (ZPC).
In fact, ZPC deals with discarding the data points which are influenced by
unavoidable surface irregularities. In turn, the effective contact point is determined
on the basis of Hertzian theory which reciprocates the material behavior. According
to the type of nanoindentation instrument used, Kalidindi and Pathak have pro-
posed two different approaches for the data correction using ZPC. One is for
nanoindenter with (a) Contact Stiffness Mode, CSM (or Dynamic Mechanical
Analysis, DMA) and another for (b) Non-Contact Stiffness Mode, N-CSM [22].
These two modes are slightly different in the method of experimentation.
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6.2.1 CSM mode or DMA mode

In CSM or DMA mode, harmonic force is imposed in the loading and unloading
segment during the indentation. This is highlighted at the inset (a) of Figure 4. It
can be hypothetically viewed as if the specimen undergoes multiple indentations
with minimal depth scale (2 to 4 nm) while conducting a single indentation. Dis-
placement responses corresponding to these harmonic forces are recorded through-
out the indentation. These assist in assessing the variation in contact stiffness, S
(or dP

dh) upon the indentation. Precise determination of S from each steps of CSM
leads to estimate the continuous variation in the related properties of materials with
increasing h, for example, hardness and elastic modulus changes [22].

In the present scenario, the continuously varying S, hr, and P are obtained from
the CSM mode of the nanoindenter and these signals are used for ZPC. For the
same, the Hertzian relation (Eq. (1)) for elastic contact is rearranged into the
following relationship,

P� 2
3
hrS ¼ � 2

3
h ∗ Sþ P ∗ (5)

Here P* and h* denote the effective indentation load and depth respectively. A
linear regression analysis on relation (5) helps to trace the P* and h* values through
the slope (�2

3 h
∗ ) and y-intercept (P*). Once the P* and h* are established, the

experimentally generated P-h signal has to be corrected for obtaining an ‘effective
P-h curve’, which is devoid of any influence from the surface artefacts [16].

6.2.2 Non-CSM mode

In N-CSM mode, indentation is performed without harmonic force. This is also
highlighted in inset (b) of Figure 4. In this particular case, ZPC is performed by
recasting the Hertzian equation as per the relation below (derived from Eq. (1),

hr � h ∗ð Þ ¼ k P� P ∗ð Þ, k ¼ 3
4

1
Eeff

1

√Reff
(6)

Figure 4.
Indentation load vs. indentation depth response generated using nanoindentation. Insets in the figure highlight
the method of indentation in CSM mode and N-CSM mode.
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In the above relationship, the k value is constant in the elastic segment [15]. It is
worth reiterating here that within the elastic segment, continuously varying h
equates with hr whereas Reff to Ri (explained in the subsequent Section 6.3). Also,
prior understanding of elastic moduli of the material makes the calculation much
easier. Essentially, regression analysis on the initial elastic segment of experimen-
tally obtained data helps to calculate the values of P* and h* and thereby the
effective P-h data is estimated.

6.2.3 Selection of data segment

The above-mentioned data correction procedures for nanoindenter with CSM or
N-CSM mode, ideally has to be performed on the initial elastic segment of the P-h
segment. Such elastic segment dwells within few nanometers, in reality. The exact
value of this elastic segment however varies with the sharpness (or bluntness) of the
indenter tip and the associated variation in strain gradient [2]. The question here is
how to precisely choose a segment in the P-h curve which can be used for the data
correction using Eqs. (5) and (6). This can be realized through the iteration process
on the initial segment with a different depth limit. For instance, for
nanoindentation with hmax of 250 nm, regression analysis has to be performed in
initial segments with indentation depth of 10 nm (or any other limit) to higher. By
doing so, the accurate point of transition from elastic to plastic (data limit) can be
approximately finalized based on the continuity nature observed in the effective P-h
curve as well as the corresponding σind - εind curve (explained in next Section 6.3).

6.3 Conversion of effective P-h curve to σind - εind curve

As explained in Section 5, the Hertzian relation has provided a basis to obtain
σind - εind curve from the P-h response. Once the effective P-h response is computed
using the steps mentioned in Section 6.2, Eqs. (3) and (4) are used for obtaining the
corresponding σind - εind values. In this conversion process, estimating the continu-
ously varying a is important for calculating the continuous evolution in the σind and
εind values. It is particularly evident from Eq. (4) that, a is the main characterizing
parameter to obtain the σind and εind values.

Prior to going through further details, the physical significance of a and the
mechanisms behind its alteration during indentation are explained through
Figure 5. The figure schematically shows the indentation behavior of different
materials with different extents of elastic–plastic activities. Sample-1 with green
color indicates the material with full elastic recovery. Sample-2 (orange) and
sample-3 (blue) exhibit the indentation behavior of two materials with different
degrees of plastic activities along with elastic deformation. In a fully elastic material
(sample-1), the indented surface recovers the whole depth upon the complete
removal of load. Thereby Rs attains infinity in this case (see Figure 5). So, Reff = Ri

for material with full depth recovery (see equation (2)). Similarly, owing to the full
recovery, continuously recording h signal can equate with the depth recovery (hr).
In short, Reff = Ri and h = hr within the elastic regime of material upon indentation.

But, once the dislocation mediated plastic activity is instigated, Rs attains a finite
value. The orange and light blue colors in Figure 5 reveal the formation of finite
values of Rs in the materials due to the occurrence of plastic deformation. In these
two cases, Reff is no longer equal to Ri. It is reported that Reff is significantly
larger than Ri once plastic deformation initiates in the material. Almost a 100-fold
increment in the Reff is reported with presence of plastic activity in aluminum
sample [3].
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All these physical changes are also related to hr after the unloading. While
comparing sample-2 and sample-3, depth recovery is noted to be higher for the
former. Correspondingly, Rs in the material also changes. It is apparent from the
Figure 5 that Rs-1 > Rs-2 and hr-1 > hr-2. As a net effect of change in Reff and hr,
contact between the indenter and sample deflects. This is reciprocated in the
changes in a (a1 > a2). In conclusion, all three parameters are correlated which are
primarily controlled by the share of elastic–plastic activities within the material of
interest. Eq. (4) derived by Hertz relates all these physical phenomena and in the
present scenario, it is utilized to estimate σind-εind curve using relation (3).

6.3.1 σind-εind from CSM nanoindenter

Estimation of a from nanoindentation using CSM mode is straight forward. The
interrelation between S and a are derived from Eqs. (1) and (4) according to the
Hertzian theory, as shown below:

dP
dh

¼ 2 Eeff R
1=2
eff h

1=2
e ¼ 2 Eeff a

a ¼ S
2 Eeff

(7)

The analytical significance of this mathematical derivation lies in the fact
that unlike Tabor’s approach, this expression (eq. (7)) enables to assess the nature
of deformation inside the material without a visual inspection of residual
impression.

In the data analysis, once the evolving values of a are established using eq. (7),
the final σind - εind curve is generated from Eq. (3). Figure 6(a) shows σind - εind
curves obtained before and after ZPC on experimental P-h data. Interestingly, in
this novel protocol, elastic moduli measured from the loading and unloading seg-
ments of the σind - εind curve are noted to resemble each other [16]. This observation
has validated the new definition for εind as well as the novel protocol for reliably
assessing the mechanical property via σind - εind curve.

Figure 5.
Schematic representation of the nature of deformation volume beneath the indenter tip for materials with three
different degree of elastic-plastic property. Green line shows the sample with full depth recovery. The orange and
light blue colors reveal the indentation behaviour of samples with different shares of elastic and plastic activities.
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6.3.2 σind-εind from non-CSM nanoindenter

As compared to the CSM mode, experimentation and method of analysis is dif-
ferent in case of N-CSM mode of nanoindentation. In N-CSMmode, multiple
unloading segments are introduced into the indentation test for measuring the evo-
lution in a and thereby the continuous variation in σind and εind values. This is similar
to Field and Swan approach in terms of experimentation. Figure 6(b) schematically
shows the P-h curve obtained after the multiple unloading. Once the effective P-h
curve is generated by employing ZPC, following Section 6.2, the evolving values of a
are estimated from each segment. For the same, Reff value is estimated by fitting the
unloading response using the modified Hertz relation as mentioned below,

hr ¼ hmax � hp ¼ k P2=3 (8)

here k is a function of Reff and Eeff (see relation (6)). Eeff can be traced from the prior
understanding of elastic moduli of sample or from the initial elastic segment in the P-h
curve [15]. So, from the understanding of k value of the respective alloys and the
recorded value of hpwith reduction in indentation load in the unloading segments, Reff

is estimated by fitting using the relation (8). Once Reff is established, a can be deter-
mined from relation (4) and in turn σind - εind curve can be generated using Eq. (3). It is
also important to note here that, number of data points in the resultant σind - εind curve
depends on the number of unloading segments provided in the experiment.

7. Protocol for σind - εind generation in pseudoelastic shape memory
alloys

Previous sections have elaborated the potential of the nanoindentation tech-
nique in appreciating the σind - εind characteristics of traditional elastic–plastic
metallic systems. In a further extension, Sujith and Sen have revealed the capability
of nanoindentation in assessing the unique pseudoelastic (or superelastic) proper-
ties of shape memory alloys (SMA) via σind - εind curve [2, 6]. This recent develop-
ment has succeeded in the producing the specialized stress - strain characteristics of
the pseudoelastic NiTi system using most commonly used N-CSM nanoindenter.

It is noteworthy at this point that as compared to the traditional elastic–plastic
metallic alloys, pseudoelastic system is different owing to the occurrence of revers-
ible stress-induced martensitic transformation (SIMT). In pseudoelastic alloys

Figure 6.
(a) σind � εind curve obtained before and after the zero-point correction. (b) Schematic representation of the
P-h responses with multiple unloading segments for generating σind � εind curve in N-CSM measurement
nanoindenter.
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(some examples of metallic systems are NiTi, Cu-Al-Zn, Cu-Al-Ni, Ni-Ti-Fe, Fe-
Mn-Si, Fe-Mn-Si-Co-Ni), parent austenitic phase transforms to product martensitic
phase upon the application of stress and it reverts to the previous austenite with the
release of stress. Owing to this reversible SIMT along with usual elastic deformation
in the parent and product phase, the NiTi system in pseudoelastic state shows (8–
10) % of recoverable strain. This is also reflected as a unique characteristic in the
conventional uni-axial stress - strain curve. Hence, evaluating such unique property
using nanoindentation requires special attention in terms of (a) optimizing inden-
tation parameters as well as (b) tailored σind - εind generation protocol. This investi-
gation by Sujith and Sen is the first of its kind to consider spherical indenter tips
with varying Ri as well as Pmax levels with the aim to identify the optimum combi-
nation to precisely evaluate localized pseudoelasticity in SMA through
nanoindentation. Following steps are briefed:

7.1 Optimizing indentation parameters

For optimizing the indentation parameters, a detailed analysis is performed on
the P-h curve obtained from various indenter configuration (Ri of 10 μm, 20 μm and
50 μm) as well as Pmax (1 mN to 7 mN). Details of the experiments and analysis
procedures are reported elsewhere [2]. However, the key observations in this
method of analysis are mentioned here.

Optimization of indentation parameters is performed based on the close scrutiny
of the experimentally generated P-h curve using Hertzian theoretical prediction and
the understanding of the pseudoelastic behavior in the alloy system. Figure 7(a)
shows the method of analysis performed on the P-h curve. The black solid and the red
dashed curves in Figure 7(a) show the experimental results and Hertzian theoretical
predication of indentation response, respectively. Using this comparison, overall
deformation mode in the indentation is parted into different sections. Correspond-
ingly, the depth of indentation, specifically influenced by pseudoelasticity is assessed.
This can be even better appreciated from Figure 7(b). Physical variation associated
with indentation volume of NiTi sample using Ri of 10 μm and 20 μm are schemati-
cally (in two halves) shown in Figure 7(b). The region influenced by reversible SIMT
is highlighted as green color in the schematics. This novel method of analysis is
performed using a range of combination of indentation parameter. The most ade-
quate combination to assess the pseudoelasticity is identified based on the share of
reversible SIMT activity and the overall depth recoverability (minimum 90% depth
recovery). Based on this systematic analysis, spherical indenter with Ri of 20 μm and
Pmax of 5 mN is noted to be most suitable combination for appreciating
pseudoelasticity devoid of the influence of dominant plasticity, in NiTi system.

7.2 σind - εind protocol

Considering the extremely high depth recoverability (≥ 90%) of pseudoelastic
NiTi system, following assumption is used while generating the corresponding
σind - εind curves,

Reff ¼ Ri and hr ¼ h (9)

Section 6.3 has already mentioned about the validity of this assumption when
material shows full depth recovery. In the present scenario, same assumption is
used with depth recovery limit of 90% of the hmax. This assists in converting the P-h
response into σind - εind curve using Eq. (3), while employing relations (9) in it.
Essentially, this new protocol defined the εind and a using following relation,
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εind ≈
h

2:4 a
a ¼

ffiffiffiffiffiffiffiffi
Ri h

p
(10)

Prior to conversation of P-h results into σind - εind curve, ZPC is performed
following Section 6.2.2. Figure 7(c) shows the σind - εind curve that is generated from
the P-h response of NiTi system. Interestingly the curve has shown the signature
trends of pseudoelastic system like sudden changes in the transformation strength,
plateau strain, significant recovery etc. The transformation strength (σtr) of the NiTi
system estimated from the nanoindentation resembles reasonably well with that
derived from uni-axial compression test [2]. This has validated the present protocol
for future analysis on smart characteristics of NiTi based shape memory alloys.

8. Closure

The present chapter elucidates the vast potential of nanoindentation technique
to develop insights about the localized stress–strain characteristics of materials.
Nevertheless, to achieve the σind - εind curve, experiments need to be carefully
designed. Also, post indention analysis should be meticulously performed to obtain

Figure 7.
(a) The P-h response of pseudoelastic NiTi system at its optimized nanoindentation parameter condition
(Ri ¼ 20 μm and Pmax ¼ 5 mN). Red dotted curve shows the theoretical prediction of P-h response and the
green dotted region infers the region that is dominantly influenced by reversible SIMT in the NiTi alloy. Ptr in
the graph highlights the indentation load at which SIMT initiates in the material. (b) Schematic representation
of share of different deformation mechanisms within the nanoindentation volume for pseudoelastic NiTi system
indented using Ri of 10 μm and 20 μm. (c) σind � εind curve corresponding to the P-h response (Figure 7(a)).
Here, σtr is the transformation stress to initiate SIMT [2].
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the reliable data. Blunt spherical indenter tip is primarily necessary to activate
elastic and plastic mechanisms sequentially in the material and thereby to estimate
the σind - εind curve. On the other hand, different post-indentation analysis has to be
adopted based on the mode of nanoindenter and the material of interest to compute
the indentation stress–strain data. Validation of the protocols are also discussed for
pseudoelastic material systems. The detailed explanation provided in the present
chapter based on the physical mechanism associated with different alloy system
upon indentation and further data analysis can pave the way for future usage of this
method of analysis in various studies.
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Chapter 10

Toward an Instrumented Strength
Microprobe – Origins of the
Oliver-Pharr Method and
Continued Advancements in
Nanoindentation: Part 1
Bryer C. Sousa, Jennifer Hay and Danielle L. Cote

Abstract

Sub-micron instrumented indentation testing and standardized nanoindentation
testing systems have become commonplace within the materials engineering com-
munity. Though commonly utilized for mechanical characterization, general
appreciation and understanding of the governing theory, formulations and best
practices underpinning modern nanoindentation systems appears to remain rela-
tively elusive to the general materials science and engineering community as well as
nanoindentation practitioners using such systems for mechanical assessment.
Accordingly, the present chapter details how nanoindentation methods emerged
and how the Oliver-Pharr method of nanoindentation testing and analysis was
constructed and refined to yield theoretically consistent and readily implementable
attributes for probing small-scale mechanical properties via microscopy free inden-
tation testing.

Keywords: nanoindentation, depth-sensing indentation testing, instrumented
indentation testing, Oliver-Pharr method, hardness, modulus, load-displacement

1. Introduction

Motivated by the need for a consistent and implementable method for
performing sub-micron instrumented indentation tests (IIT) on materials, as well as
for analyzing IIT data at the micro- and nanometer scales, Oliver and Pharr (O&P)
improved upon the work of Doerner and Nix (D&N) and others in Ref. [1]. They
focused on the work of D&N [2] because they found that D&N’s assumption of
linearity in the upper one-third of the indentation load-displacement curve was
inconsistent with O&P’s observations across various materials subject to small-scale
IIT. Prior to the publication of O&P’s findings in 1992, the Doerner-Nix (DN)
method was considered the most comprehensive approach for determining hard-
ness (H) and elastic modulus (E), but it was replaced by the Oliver-Pharr (OP)
method after publication.
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Motivated by the need for a theoretically consistent and practically
implementable modality of performing sub-micron or small volume
instrumented indentation testing (IIT) of materials, as well as the need for a
method of analyzing IIT test data at the micrometer and nanometer length scales,
Oliver and Pharr (O&P) refined and considered the foundational work of Doerner
and Nix (D&N), among others, in Ref. [1]. O&P gave particular attention to the
work of D&N [2] due to O&P’s discovery that D&N’s assumed linearity of the
upper one-third of a given indentation load-displacement unloading curve was at
odds with O&P’s regular experimental observations across numerable material
types. Until O&P published their findings in 1992, the Doerner-Nix (DN) method
for determining both hardness (H) and modulus of elasticity (E), or Young’s
modulus, was thought to be the most thorough load-displacement data analysis
approach prior to the introduction of the Oliver-Pharr (OP) method of testing and
analysis.

With such significance and implications in mind, O&P set out to address
standing issues, problems, and inadequacies associated with the DN method of
sub-micron indentation testing and data analysis. Beyond simply demonstrating
that unloading curves are rarely, if at all, linear, O&P went on to substantiate
their hypothesis that unloading curves ought to be thought of as nonlinear and
power-law-based. O&P presented load-displacement data for an array of
materials (ranging from crystalline ceramics to amorphous glasses as well as
both soft and hard cubic-centered metals) to demonstrate said non-linearity of
unloading data [1].

In addition to the presentation of such substantiating nanoindentation load (P)
vs. displacement or depth (h) data, data analysis, and resultant findings, the OP
method was carefully documented such that physically justifiable indentation depth
determination was reliably and repeatably procurable. Furthermore, the resultant
abilities brought about by the OP method were further detailed for subsequent use
in establishing peak applied load contact areas and contact area functions for vari-
ous indenter tips and tip geometries. The OP method also provided beneficiaries of
nanoindentation testing with a measurement and analysis heuristic for depth deter-
mination with load-controlled nanoindentation testing and load-controlled
nanoindentation-derived data analysis. Remarkably, O&P had done so while
avoiding the use of (or need for) post-indentation microscopy, which not only
remains both time-consuming and costly for nanometric resolutions but was also
generally out of the reach for many researchers and engineers during the early
1990s.

Upon rendering such findings, H and E values were then deduced via load-
displacement data, as analyzed according to said OP methodology, and then com-
pared with values derived from alternative and independent means to demonstrate
the accuracy of the OP method [1]. A discussion was also presented in 1992, which
pragmatically coupled theory and practice together, such that load frame compli-
ance and indenter shape functions could be integrated into nanoindentation load-
displacement data analysis platforms and experimental nanoindentation frame-
works generally.

2. Consideration of the Oliver-Pharr approach

In analytical terms, h represents the total nanoindenter displacement, defined
mathematically in Eq. (1), such that
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h ¼ hc þ hs (1)

wherein hc is the contact depth, or the distance under which indenter tip contact
is made normal to the sample surface, and hs represents the surface displacement
(which is now classified in the literature as pile-up, sink-in, or both, depending
upon the material deformation mechanics, among other factors) about the contact
perimeter. In addition to h, hc, and hs, Pmax captures the load applied during
nanoindentation testing at hmax, or the maximal IIT displacement achieved during a
given test. At the same time, O&P concurrently considered S, a, and hf too, such
that Smax was defined as the experimentally measured stiffness (S) obtained via the
slope of the tangent line procured from the initial unloading point along the curve,
which occurs upon reaching Pmax at hmax.

That said, hf was defined as the depth of the residual IIT or nanoindentation
impression upon both complete unloading and total indenter removal from the
specimen, whereas a was presented as a surrogate geometrical contact radius. Con-
sidering the discussion presented thus far, Figure 1(a) presents load-displacement
data at various points along loading and unloading curves. In addition, Figure 1(a)
also captures their relation to the inelastic work and the work of elastic deformation
associated with a given indentation test. Finally, Figure 1(b) also presents a cross-
sectional view of indentation phenomena.

In addition to Eq. (1), the OP method determines E as expressed in Eq. (2), such
that

1
Er

¼ 1� v2

E
þ 1� v2

Ei
(2)

wherein Er is the reduced modulus, ν is the Poisson’s ratio of the specimen, νi is
the Poisson’s ratio of the indenter tip, and Ei is the modulus of elasticity associated
with the indenter tip material too. Since vi and Ei are known apriori (let us assume
diamond as Eq. (2) is recast for simplicity and consistency with the conventional
material utilized as nanoindenter tips), Er can be solved via another relation and
after that substituted back into Eq. (2) such that E can be obtained through

Figure 1.
In (a), A is the initial contact of the indenter tip with the tested material; point B is the point at which the Pmax
is reached; C is the point at which unloading from Pmax begins after Pmax is held for a predefined time to account
for the influence of creep; D captures hf , which is reached upon complete unloading; Wine

I is the inelastic work of
indentation; We

I is the elastic work of indentation; hl represents the depth associated with B (hl ¼ hmax when
creep is not accounted for); S is the experimentally measured stiffness obtained via the slope of the tangent line
procured from the load-displacement nanoindentation curve. (b) Presents a cross-sectional view of indentation
testing related phenomena (loading and unloading, etc.). Both (a) and (b) were sourced from Ref. [3].

161

Toward an Instrumented Strength Microprobe – Origins of the Oliver-Pharr Method…
DOI: http://dx.doi.org/10.5772/intechopen.109276



algebraic manipulation and arithmetic. For commonly used diamond indenter tips,
we may re-render Eq. (2) to yield Eq. (3):

1
Er

¼ 1� v2

E
þ 1� v2

Ei

¼) 1� v2

E
¼ 1

Er
� 1� v2i

Ei

∴E ¼ 1� v2
� � 1

Er
� 1� v2i

Ei

� ��1

∴E ¼ 1� v2
� � 1

Er
� 1� 0:07ð Þ2

1140 GPa

 !�1

∴E ¼ 1� v2
� � 1

Er
� 1� 0:9951

1140 GPa

� ��1

(3)

Thus, with knowledge of the test specimen’s v and an empirical means of iden-
tifying the Er from load-depth data collection and analysis, E may be readily
attained for a given material. That said, Bulychev et al. [4], and others, according to
Poon et al. [5], recognized the following relationship between P, h, S, Er and the
projected area of elastic contact (which had been refined and eventually referenced
as the contact area per the OP method), expressed as A in Eq. (4), such that

S ¼ dP
dh

¼ 2Er
ffiffiffiffi
A

p
ffiffiffi
π

p (4)

Consequently, solving for Er yields Eq. (5), wherein

Er ¼ S
ffiffiffi
π

p

2
ffiffiffiffi
A

p (5)

and Eq. (5) may therefore be substituted into the previously documented
expression for E, which was given in Eq. (2), such that Eq. (6) yields

E ¼ 1� v2

S
ffiffi
π

p
2
ffiffiffi
A

p
� ��1

� 1�v2i
Ei

(6)

The mathematical manipulation of said equivalence relations serve as a means of
enabling O&P’s pedogeological improvements, methodology, and approach to be
more explicitly considered. Returning to the matter of fitting loading or unloading
segments of load-displacement or load-depth curves via raw nanoindentation data,
note that O&P extensively relied upon, as well as critically considered, Sneddon’s
relation between load and depth for basic punch geometries [6], as presented herein
through Eq. (7), wherein

P ¼ αhm (7)

In Eq. (7), α, as well as m, are both constants whose values depend on tip
geometry. In the case of a flat cylindrical punch geometry,m ¼ 1:0. However, in the
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case of a conical punch geometry,m ¼ 2:0. Additionally,m ¼ 1:5 for both spheres at
shallow indentation depths and paraboloids of revolution too. One ought to note
that Eq. (7) is explicitly related to the loading portion of the complete loading and
unloading nanoindentation cycle. Beyond simply revisiting the matter of loading
curves, one may also note that the mathematical expression H, which was passively
noted above as a discernible mechanical performance indicator (rather than an
actual material property [7]) for a given material, may be rendered as Eq. (8),
wherein

H ¼ Phx

A
(8)

Importantly, O&P also assumed that a given indenter tip geometry might be
expressed in terms of an area function, F hð Þ, that relates h with the cross-sectional
area of a respective tip. O&P continued their presentation of F hð Þ through the lens
of hc, given the practical importance of hc in nanoindentation testing and data
analysis, rather than area relations associated with the distance away from the apex
of a probe, or h, such that Eq. (9) may be formulated as

A ¼ F hcð Þ (9)

It is also important to note that O&P regularly reiterated the mathematically
expressed rendition of F hcð Þ, given in Eq. (9), must be determined using the contact
area function calibration approach detailed in Ref. [1] before pursuing the applica-
tion (or use) of the OP data analysis method. Thus, recall that in Eq. (9), F hcð Þ
functionally relied upon hc as a means of assessing A. Hence, one ought to observe
the fact that hc can be expressed as a function of hmax and hs, such that Eq. (10) can
be presented as

hc ¼ hmax � hs (10)

and thus, pairs well with Eq. (1) too. Nevertheless, the means of ascertaining hs
was noted as being remarkably dependent upon the exact nanoindenter tip geome-
try utilized. Assuming conical geometries, O&P invoked another expression
presented by Sneddon in the 1960s, such that Eq. (11) yields

hs ¼ π � 2
π

h� hf
� �

(11)

By way of once again considering one of O&P’s intellectual precursors, Ian N.
Sneddon of the Department of Mathematics of the University of Glasgow in Scot-
land, O&P remedied the use of the quantity h� hf

� �
in Eq. (11) by way of also

invoking Sneddon’s load-depth equivalence relation for conical tip geometries,
which may be given as Eq. (12), wherein

h� hf
� � ¼ 2P

S
(12)

While it may not seem readily evident as to why Eq. (11) must have been
presented in terms of the quantity h� hf

� �
, rather than h alone, recall the fact that

Sneddon’s solutions only hold for elastic indentation displacement, rather than the
total (i.e., both plastic and elastic portions of indentation deformation phenomena)
displacement, which are of course convoluted with one another in unprocessed and
experimentally recorded displacement data from a nanoindenter. Thus, the clever
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use of Eq. (12) enabled substitutional elimination of the respective h� hf
� �

quantity
altogether. As a result of the substitution of Eq. (12) into Eq. (11), Eq. (13) can be
expressed as follows

hs ¼ π� 2
π

h� hfð Þ

¼ π� 2
π

2P
S

� �

¼ ϵP
S

(13)

Therefore, when evaluated at Pmax, Eq. (13) may be rewritten as Eq. (14), where

hsjP¼Pmax
¼ ϵ

Pmax

S
(14)

Though ϵ was substituted into Eq. (13) above in place of 2π�1 π � 2ð Þ, ϵ is
variable across tip geometries in a comparable manner to that of m in the case of
Eq. (7). Thus, one ought to note that in the case of a flat cylindrical punch geome-
try, ϵ ¼ 1. However, in the case of a conical punch geometry, ϵ ¼ 0:72. Additionally,
ϵ ¼ 0:75 for both spheres at shallow indentation depths and paraboloids of revolu-
tion. Also noted earlier was the fact that O&P harped upon the misappropriated
assumption of initial unloading load-depth curve linearity by D&N. Alongside such
remarks concerned with said critical commentary by O&P, the pair of researchers
put forth their simple power-law unloading relation in 1992, as shown in Eq. (15)
herein, such that

P ¼ Q h� hf
� �k (15)

wherein all but P and h are determined via applying a least-squares fitting
procedure. For comparison with the linear fitting procedure associated with the
precursory D&N method of S quantification from sub-micron IIT, O&P presented
an underappreciated graphical figure plotted within [1], wherein O&P presented
the unloading stiffness obtained for a tungsten specimen as a function of the frac-
tion of the unloading curve considered during data analysis and as a function of
using either the DN or OP stiffness determination method applied. Said graphical
rendering of peak load stiffness values determined using linear fitting approaches
compared to O&P’s power law fitting method, coupled with O&P’s presentation of
the constant stiffness values as a function of the unloading curve considered during
data fitting attests to the methodological enhancements and integrity underpinning
data interpretation by O&P [1].

In any case, a load frame compliance determination procedure is the next aspect
of the OP method to be contextualized and considered herein. For those unfamiliar
with the peculiarities of nanoindentation (and load-controlled nanoindenter sys-
tems as well as their assembly as a class of scientific instrumentation), the load
frame compliance, let alone the importance of such a value, stems from the
instrumented method, or modality, incorporated for displacement sensing capabil-
ities via load-controlled systems. More to the point, when an automated and OP
compatible IIT characterization suite or nanoindenter is utilized, the raw displace-
ment information recorded by the system must be considered and corrected for
both the load frame and the specimen being tested. In turn, precise knowledge of
the load frame compliance term enables the unprocessed displacement data
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recorded by the system controller to be deconvoluted, algebraically speaking
(rather than statistically speaking), such that the displacement contribution from
specimen deformation via indentation loading and the displacement contribution
from the load frame can be isolated from one another. Consequently, specimen
displacements eventually yield indentation depths associated with their respectively
applied loads.

However, the mathematics underpinning said displacement deconvolution and
analysis, or displacement contribution decoupling, begins with two basic assump-
tions. The first assumption is that E values are depth-independent, whereas the
second assumption is that one may treat said dual compliance terms as a pair of
springs in a series, such that Eq. (16) yields

C ¼ Cs þ Cf (16)

wherein C is the measured compliance, Cs is the specimen compliance and Cf is
the load frame compliance term. Within the realm of contact mechanics and a given
materials’ elastic and plastic deformation mechanisms, contact stiffness may be
expressed as the inverse of compliance, and compliance may therefore be expressed
as the inverse of stiffness. By way of such definitions, in conjunction with Eq. (4)
and the spring series-inspired and assumed relation, the substitution of S�1 in place
of Cs yields Eq. (17), wherein

S ¼ 2Er
ffiffiffiffi
A

p
ffiffiffi
π

p

! Cs ¼ S�1

S�1 ¼ 1
S

¼
ffiffiffi
π

p

2Er
ffiffiffiffi
A

p

∴C ¼ Cs þ Cf

C ¼
ffiffiffi
π

p

2Er
ffiffiffiffi
A

p þ Cf (17)

By invoking the additional assumption explicitly stated earlier surrounding E’s
insensitivity to depth, one may proportionally reformulate Eq. (17) as follows
Eq. (18):

C ¼ Cs þ Cf

¼
ffiffiffi
π

p

2Er
ffiffiffiffi
A

p þ Cf

∴C ¼
ffiffiffi
π

p

2Er
ffiffiffiffi
A

p þ Cf

C ¼
ffiffiffi
π

p
2Er

1ffiffiffiffi
A

p þ Cf

¼ x
1ffiffiffiffi
A

p þ Cf

¼ xffiffiffiffi
A

p þ Cf
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C∝
ffiffiffiffi
A

p� ��1
þ Cf

∴C∝
1ffiffiffiffi
A

p þ Cf (18)

As a result, empirically fitting C as a function of A�0:5 to a linear expression
yields an intercept equal to the load frame compliance contribution. After that,
proportional relations may once again be revisited, alongside aforementioned
equivalence relations, such that Eq. (18) yields Eq. (19), such that

C∝
1ffiffiffiffi
A

p þ Cf

∝
1ffiffiffiffi
A

p

∝
1ffiffiffiffiffiffiffiffiffiffiffi
F hcð Þp

∝
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

24:5h2c
q (19)

As such, Eq. (19) captures an idealized Berkovich indenter tip geometry (that is,
the widely used, three-sided pyramidal tip geometry) such that the curve-fitting
procedure associated with C as a function of A�0:5 may be pursued for estimating Cf

and Er given the assumption and use of an idealized and perfect Berkovich indenter
tip’s contact area function. Since Cf and Er were assumed to be constant as a
function of Cs, n-number of indentation size-specific and geometrically ideal con-
tact area values were calculated by the O&P procedure and are easily calculated by
modern systems today, via rearrangement of the already presented equations, as
shown below via Eq. (20):

C ¼ Cs þ Cf

¼
ffiffiffi
π

p

2Er
ffiffiffiffi
A

p þ Cf

! C� Cfð Þ ¼
ffiffiffi
π

p

2Er
ffiffiffiffi
A

p

!
ffiffiffiffi
A

p
C� Cfð Þ ¼

ffiffiffi
π

p
2Er

∴
ffiffiffiffi
A

p
¼

ffiffiffi
π

p
2Er

C� Cfð Þ�1

!
ffiffiffiffi
A

p
¼

ffiffiffi
π

p
2Er C� Cfð Þ

∴
ffiffiffiffi
A

p
¼

ffiffiffi
π

p
2Er C� Cfð Þ

� �2

! A ¼ π
4E2

r C� Cfð Þ2
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∴C∝
1ffiffiffiffi
A

p þ Cf

) A ¼ F hcð Þ
¼ x2 C� Cfð Þ�2

! F hcð Þ ¼ x2
1

Cs hcð Þð Þ2

¼ π

4E2
r Cs hcð Þð Þ2 (20)

Accordingly, when the proportionality just presented between the total compli-
ance, as a function of indentation contact depth, and the contact area function as a
function of indentation contact, is coupled with surrogate specimen data as well as
analytical fitting procedures for the estimation of a calibrated contact area function,
machine, tip, and reference specimen dependent calibrations may be pursued on an
as-needed basis by a given researcher. In any case, the contact area function ana-
lytical fitting procedure may be conceptualized as an up to eight-parameter har-
monic average of polynomials, which is expressed as Eq. (21), such that

F hcð Þ ¼ 24:5ð Þh2c þ C1hc þ C2h
1
2
c þ C3h

1
4
c þ⋯þ C8h

1
128
c (21)

More to the point, the eight-parameter harmonic average of polynomials given
and expressed above takes the mathematical form of a series expression that can be
given as Eq. (22) as follows:

F hcð Þ ¼
X8
n¼0

Cn hcð Þ2�n (22)

The mathematical formulations pursued herein comprise the various aspects of
the 1992 method presented by O&P, since A ¼ F hcð Þ enables mechanical properties
of materials, i.e., E and H, to be assessed at nanomechanical and micromechanical
length scales without the need for microscopy-based evaluation of contact areas on
a per measurement basis.

Also, worth consideration herein is the appendix to O&P’s 1992 manuscript, which
was titled Continuous Measurement of Contact Stiffness by a Dynamic Technique.
Though dynamic/CSM nanoindentation has emerged as a valuable tool throughout
the modern instrumented indentation and nanoindentation community [8], the lim-
ited realization of O&P’s CSM technique, relative to the time of original publication,
reveals scattered attempts by contemporaries in the mid-to-late 1990s to wrestle with
not only the OP method and associated manuscript but also the intellectual novelty
underpinning the appended framework, as well as the mechanical properties that
were eventually found to be measurable via the incorporation of the details presented
in the 1992 appendix on dynamic nanoindentation too. That said, forthcoming areas
of the present chapter provide details surrounding the wide range of mechanical
properties that became experimentally probable due to CSM-based nanoindentation
methods. In the meantime, the needs addressed by O&P’s peer-reviewed research
deliverables detailed in their 1992 manuscript were considered next.

3. Needs addressed by the Oliver-Pharr method

As noted by O&P in 1992, the emergence of thin-film technologies as well as
technological advancements, which directly followed from functional thin-film
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material development and advancements too, ultimately inspired recognition of the
fact that sensing load-displacement behavior via indentation enabled thin film
mechanical properties and layered material property extraction [1]. Since such a
statement from O&P was concerned with need-based sources of inspiration associ-
ated with the early 1980s, i.e., a decade or so before the publication of concern,
work undertaken before the present 1992 article attempted to address such needs as
effectively as possible.

Needs remained through 1992 and were therefore accordingly addressed, in
part, by O&P. However, said needs were separable (categorically speaking) into
industrial or materials characterization-based needs and pedagogical or methodo-
logical needs. Stated otherwise, needs were classifiable by either the application of
nanoindentation, such as micron-scale IIT, or the development and research into
nanoindentation as a sub-field of explicit study. Of course, it stands to reason that
those advancements in our understanding of nanoindentation, without an under-
pinning industrial driving force, would nevertheless enable further materials devel-
opment and research to thrive too. However, without industrial interest and
backing, it may very well have taken much more time to reach its’ industrially
minded status and capabilities when viewed through the lens of technology readi-
ness levels.

Still, the work of O&P was further motivated by materials engineering and
science needs within the broader governmental, industrial, academic, collaborative,
and technological ecosystem. That being said, one point that ought to be empha-
sized before further consideration of the emergence of OP mode of nanoindentation
testing and analysis is the fact that regardless of the applied materials characteriza-
tion needs (that is, thin films versus nuclear materials, for example),
nanoindentation remains sought after to date, since IIT analysis at nanometric
length scales enables small-scale mechanical properties to be explored in a system-
atic and reproducible manner (so long as the OP method is adhered to).

Consequently, one may reason that, as defined in O&P’s original research article,
nanoindentation was formalized and developed in commercial forms to serve as a
foundational linkage between small-scale properties and mesoscale material behav-
ior. Stated another way, nanoindentation and the OP method of load-displacement
data analysis served to, at least in part, address the standing need for probing
nanomechanical and micromechanical material strength and mechanical
properties alike, regardless of a particular material’s industrial intricacies. Of course,
industrial sectors beyond applied monolithic materials-based component processing
and production would ultimately be influenced by nanoindentation testing too.
Such influences were found to be true given nanoindentation’s widespread and
successful adoption by the polymeric [9], biological [10], and composite material
sectors, too [11].

In keeping with the passage above, recall once more that O&P attempted to
address the need for a small-scale mechanical property evaluation method and an
experimental system to do so, which became known as a nanoindenter. As stated by
O&P, such an instrument could be classified as a mechanical property’s microprobe
[1]. Indeed, small-scale capabilities were reportedly achieved by O&P in 1992,
wherein the Nano Instruments, Inc., Nanoindenter, which was housed at Oak Ridge
National Laboratory (Oak Ridge, TN, USA), achieved a load resolution of 0.3 μN
and a displacement resolution of 0.16 nm; in turn, maintaining sub-micrometer and
therefore small-scale resolution.

Having presented the mathematical analysis and manipulation underlying
O&P’s 1992 approach to nanoindentation data analysis, in addition to Figure 1(b)‘s
rendering of a cross-section of an indenter tip loaded upon a hypothetical target
material or specimen, note that additional visualizations or schematics are provided
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in Ref. [1] too. O&P presented a schematic graphical representation of a load vs.
depth nanoindentation curve for further context; a schematic detailing how the
Nano Instruments, Inc., Nanoindenter was assembled; and an SEM image or
micrograph of nanoindented fused Si specimen after reaching a maximal applied
load of 40 mN [1], for instance.

O&P also stated that practical reasons, such as cost and difficulty of resolving
micrographs of shallow indents at the time, underpinned the need for calculating
the geometry of indentation-induced residual impressions such that contact areas
could be determined [1]. Such a statement attests to another need-based thought
process by O&P, wherein they document how effectively microscopy-free
nanoindentation was able to be procured by O&P in 1992. Reflecting on such a need
in 2004, O&P also noted the fact that their 1992 methodology for hardness and
modulus determination from load-depth data via ITT inspired techniques had been
widely adopted for small-scale mechanical characterization of materials, suggesting
that said widespread adoption was largely due to the microscopy-free nature of the
OP method [12].

Returning to materialistic needs addressed by O&P, Chen et al. noted that
mechanical property determination of thin films was mainly driven by the needs
and desires expressed semiconductor and magnetic storage materials engineers
[13]. Prior to the work of Chen et al., Menčík et al. noted that a significant mechan-
ical property of interest to the thin film community was the hardness of the thin
film and the thin film elastic modulus [14]. The determination of the modulus of
elasticity associated with a functional thin film was critical to the evaluation of
residual stresses via X-ray based analysis; the deduction of deformation-driven
thermomechanical stress accumulation within the thin film as the film-substrate
component is subject to an externally applied load; and even the determination of
delamination mechanics [14].

Thus, one need not be surprised that even though O&P only made mention of
thin-film mechanics in 1992, to identify motivations for nanoindentation research
and development, the OP method of analysis emerged as a standard
nanoindentation load-displacement data analysis framework that became [15], and
remains [16], commonly applied to thin films. Nevertheless, as noted by Saha and
Nix a decade after O&P’s 1992 article, O&P formulated the OP method using
monolithic materials, i.e., non-composite-like components [17]. Regardless, one
may still reason that O&P indirectly, although intentionally, laid the experimental
groundwork for thin-film mechanical property evaluation via IIT modes of analysis,
which has since been refined further following 1992 innumerable works, such as
those associated with [18]. Additionally, one may also note the fact that the need for
sub-micrometric mechanical characterization also followed from the limitations of
the otherwise employed micro-beam bending and film deflection testing methods
for thin-film elastic modulus assessment [19], among other approaches, which were
identified in 1990 by Alexopoulos et al. [20].

4. State of the art prior to Oliver-Pharr methodology

Before the publication of O&P’s 1992 research article, which has since matured
into one of the most highly cited and influential manuscripts in the field of materials
science and engineering to date, nanoindentation as a commercialized technological
advent was developed by John Pethica, Ron Hutchings, and Warren Oliver in 1983
while Pethica, Hutchings and Oliver were working together at Brown Boveri in
Switzerland [21]. Accordingly, such a timeline provides a relatively lower bound for
prior work considerations in the decade preceding the 1992 publication alongside
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the understanding of nanoindentation garnered after Pethica et al. initiated their
collaboration in the 1980s [22]. Hence, the present chapter refocuses upon the state
of the art between the innovative development of a nanoindenter/IIT in the early
1980s and O&P’s 1992 article. The remaining portion of the present section is
dedicated to nanoindentation or IIT developments between 1982 and 1992.

In so far as work related to the state-of-the-art surrounding indentation analysis
before OP methodological formalization, prior work may be initiated herein via
considering the work of Newey et al., which was published in 1982 [23]. Specifi-
cally, Newey et al. documented an ultra-low-load penetration hardness tester and
testing approach that also employed a non-optical method of residual indent geom-
etry deduction while continuously recording indenter tip penetration depths well as
applied loads too. Remarkably, Newey et al.’s ultramicrohardness tester achieved a
load resolution of 10 μN, a depth resolution of approximately 5 nm, and a maximal
load of 3 mN. Moreover, unlike Newey et al.’s counterparts, such as Nishibori et al.
in Refs. [24–26], or Frohlich et al. [27], Newey et al.’s approach resulted in indenter
probe penetration depth recording as a function of the load applied and the time
required to reach said load, therefore enabling time- and load-dependent
indentation-induced mechanisms to be observed.

At the same time, Newey et al.’s ultra-low-load penetration hardness tester was
able to capture an indicator of material elasticity and even adhesion properties via
testing too. Thus, like O&P’s objectives surrounding the development of an under-
standing as to how to formulate more wear-resistant metallic surfaces via ion
implantation for tribological enhancement [21], Newey et al.’s advancements were
to investigate hardness as a function of ion-based implantation processing of mate-
rials.

Newey et al.’s approach agreed with the precedent established by E. S. Berkovich
surrounding the suitability of three-sided pyramidal tip geometries over that of
Knoop and Vickers tip geometries because of the inherent fact that Berkovich tips
(i.e., a particular form of three-sided pyramidal tips) meet at only one apex point.
Moreover, Newey et al. invoked the proportionality shared between pyramidal
indentation depth and applied load when an (assumed) ideal plastic material was
undergoing indentation testing, such that the following theoretical relation
(Eq. (23)) between hardness (Hv), force (F), and depth (δ), in base units, was
turned to, such that

Hv ¼ 0:0378 Fð Þ
δ2

(23)

Later, Eq. (23) was amended to include on-load and off-load hardness analysis
by way of including elastic and plastic indentation contributions via the use of δT �
δe in place of δ; thus, overcoming the assumption of an idealized, fully plastic
material, which had been reflected in Eq. (23). In all, Newey et al. noted that the
off-load depth of δT � δe maintained a 5–10% difference with an independently
assessed depth, denoted as δA, and obtained via ex-situ microscopy analysis post-
indentation. However, one must note that the work of Newey et al. was limited to
indium (primarily) and electropolished AISI 52100 steel and rock salt, thus
prohibiting the 5–10% difference acquired be fully generalize-able across metallic,
ceramic, composite materials too.

Moreover, the 5–10% difference between δT � δe in contrast with δA, when
substituted into Eq. (23) in place of δ, resulted in an overestimation of the hardness
by 10–20% when their non-microscopy or microscopy-free depth determination
method was invoked. Still, Newey et al. quickly addressed such a discrepancy
between their microscopy-free depth determination and microscopy-based
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counterbalance through the lens of pile-up effects; therefore, suggesting that the
10–20% difference in Hv (i.e., the Vickers hardness number or value) as a function
of δwas an artifact of overestimated microscopy-based depths. Finally, Newey et al.
correctly pointed out that a phenomenon concerning the non-transferable nature of
hardness values obtained using their ultra-microhardness tester, in contrast with a
Vickers or Knoop indenter, could be explained through the lens of mean contact
pressure or indentation hardness value depth dependence. In doing so, Newey et al.
stumbled upon what would later be articulated as an indentation size effect (ISE)
that came to be described through the lens of strain gradient plasticity and ulti-
mately unveiled subsequent work by Nix and Gao [28].

Shortly after Newey et al.’s 1982 article, Pethicai et al. highlighted an indentation
advancement in a 1983 article focused upon the realm of hardness testing at depths
as low as 20 nm [22]. In doing so, Pethicai et al. utilized Ni, Au, and Si to demon-
strate that indentation contact areas determined via post-indentation electron
microscopy were quantifiable when coupled with the 1908-rooted mathematical
formulation of Meyer’s hardness. Interestingly, just as Newey et al. noted an ISE
prior to Nix and Gao’s strain gradient plasticity framework, Pethicai et al. also noted
an increase of IIT hardness as a function of smaller indentation size at the submi-
cron length scale [22]. In addition, Pethicai et al. observed relatively increased
hardness values at shallow indentation depths and relatively decreased hardness
values at greater indentation depths. Finally, like the ultramicrohardness tester
developed by Newey et al., indentation load-depth relations were also continuously
recorded by Pethicai et al. via loading and unloading cycles such that a quantitative
understanding of elastic relaxation could be formulated.

Building upon Pethicai et al.’s novel advancement of indentation abilities into the
nm depth regime, Oliver published a subsequent article in 1986, which noted that
the technological groundwork, hardware, and understanding of the indentation
process had been under development [29]. Said statement by Oliver highlights the
pre-1992 state of the art surrounding small volume mechanical property inspection
by the mid-1980s. The limited degree of understanding within the respective
research community highlights the significant gap addressed by O&P in their 1992
manuscript. Oliver noted that indent geometry determination was not only partic-
ularly difficult through microscopy but was also connected to the most critical
parameter in relation to contact area determination relative to the specimen and
indenter tip. Oliver went so far as to state that a mechanical properties microprobe
was not only conceptually exciting but was also being complemented by concomi-
tant advancements in understanding and hardware needed to actualize a sub-
micron resolution system for recording mechanical response and behavior during
indentation. Such an assertion readily situates the implications of Oliver’s ongoing
efforts at the time.

In keeping with the trend of developing practical submicron indentation testing,
Doerner et al. considered thin-film plasticity properties compared to substrate
curvature techniques [30]. Around the time that Doerner et al. published their
submicron indentation testing of thin films and respective findings, Doerner et al.
also proposed a nanoindentation data analysis and interpretation framework that
was purportedly based upon the use of the commercial nanoindentation system
from Nano Instruments, Inc. [2]. Continuation along similar lines to the work
detailed in Ref. [30] was also pursued by Oliver et al. in 1987 [31]. During that very
same year, the interactive forces associated with a microprobe or nanoprobe
indenter tip and a target specimen with a flat surface, as well as the tip-specimen
surface responses, were documented in Ref. [32]. Consequently, Pethica and Oliver
demonstrated that a true contact area was discernible when local surface stiffness
values were measured via the application of an alternating current force to the
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indenter tip. Said findings were explored beyond nanoindentation and the concur-
rent emergence of atomic force microscopes and scanning tunneling microscopy
enclosed tips.

Consideration of state of the art, pre-1992, must also include the eventual
patent and patent-related documentation associated with the commercialization
of the Nanoindenter by Pethica and Oliver as of 1989, which was entitled as
follows in Ref. [33]: A Method for Continuous Determination of the Elastic Stiffness
of Contact Between two Bodies. Beyond the description afforded from the title
provided, Pethica and Oliver stated that an ultra-low load IIT/nanoindentation
system known as the Nanoindenter and commercially available through
Microsciences, Inc. (Norwell, MA, USA) was substantially modified as part of the
invention detailed as part of the patent. Said modification to the Nanoindenter
allowed the force to be linearly modulated (increased or decreased) via
electromotive means throughout various loading rates. The further modification
enabled a capacitive displacement gage to be used to determine the indentation area
as a function of indenter displacement following initial contact between a target
specimen surface and an indenter probe. With said modifications in mind and
others detailed directly within the patent under consideration, Pethica and Oliver
ultimately devised a means of continuously determining the elastic contact stiffness
between two bodies.

Around the point in time that the patent was assigned to the inventors and the
U.S. Department of Energy, the materials science and engineering research com-
munity poised to benefit from nanoindentation centered characterization capabili-
ties began applying initial approaches to load-displacement data analysis, which
concomitantly started to emerge alongside the protocols laid out by O&P in the
early 1990s. Furthermore, said research community started coupling the utilization
of preliminary, or initialized, approaches to load-displacement data analysis with
early versions of the commercially available Nanoindenter and low-load indenters
generally; ultimately, applying them to various material systems. For example,
Stone et al. published findings surrounding their application of such a mechanical
properties microprobe as detailed in Ref. [34]. Specifically, Stone et al. applied
continuous indentation testing to sputter-deposited Al thin films adhered to Si
substrates.

In addition to the work of Stone et al., Loubet et al. built their micro-indenter-
that could record load-depth curves, including both loading and unloading
load-displacement curves, to explore the complex phenomena underlying MgO
Vickers indentation data in Ref. [35]. Another example was detailed in Ref. [36],
wherein Pharr and Oliver applied the state-of-the-art understanding and their
own methodological improvements to IIT data analysis and testing pre-1992 to
directly link hardness as a function of depth with dislocation structures in a
single crystal Ag specimen. Such exploration was performed to contextualize
better deformation mechanisms, elasto-plasticity, and plasticity in a pure metal
specimen.

Ultimately, during the final years preceding the publication of O&P’s paper in
1992, state of the art surrounding small-scale IIT was primarily found to be
concerned with refining and proposing physical, computational, foundational,
empirical, numerical, and/or theoretical relationships to yield a mechanistic
abstraction for experimentally consistent models, which could be used in IIT data
analysis. Nevertheless, the clear need for the OP nanoindentation testing method-
ology and load-depth data analysis protocol can be adequately appreciated through
the simple fact that their novel approach avoided any superfluous explanations and
instead focused on analytical patterns that could be discerned and replicated by
others time and again, as will be discussed in Part 2.
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5. Developments immediately following Oliver-Pharr’s method

Between 1992 and 2002, there were numerable application-specific and
application-inspired uses of nanoindentation and OP-based method and analysis
use cases that could have been widely considered herein [37]. However, in so far as
the post-OP publication state-of-the-art may be considered, one ought to note that
enumerable investigations went on to critically examine the 1992 article by O&P
and the OP testing and analysis method or framework. In conjunction with others
during the respective period, some critical examinations formulated novel physical
and mechanical relationships to extend the range of possibilities associated with
sub-micron indentation deformation.

Therefore, one may begin the consideration of the respective decade
following O&P’s 1992 article by invoking the 1993 article, entitled Mechanical
Characterization Using Indentation Experiments, by Oliver et al. [38].
Remarkably, by 1993, Oliver et al. noted that nanoindentation-based methods for
assessing the creep stress exponent were formulated; therefore, clearly
highlighting a successful extension of small volume indentation testing and
analysis for mechanical properties assessment purposes that went beyond
hardness and modulus alone just one year after the 1992 paper was published.
Moreover, Oliver et al. also noted that additional improvements were also
presented and went beyond the improved techniques prescribed by O&P just
one year prior.

As time and attention progressed and evolved within the indentation-based
research and development community, critical takes concerned with the OP data
analysis and testing technique emerged as early as 1996 (if not earlier). Stated
otherwise, a subset of the mechanical-properties-minded materials science and
engineering world began to present alternative load-depth analysis procedures that
were free of assumptions surrounding elastic material compatibility with depth-
sensing indentation and even the OP approach in general. Other alternatives also
noted concerns surrounding the reliance of OP upon a mean contact pressure
definition of hardness, rather than that of energy-related principles (like that of the
work of indentation), and even alongside a Meyers hardness perspective.

One of the early papers presenting such an alternative IIT load-displacement
data analysis approach was rooted in the mechanical work of indentation, which
may be thought of as a physical rendering of force and displacement at its’ core and
published in the mid-1990s by Gubicza et al. [39]. Beyond consideration of theory
alone, Gubicza et al. also indirectly suggested that O&P’s approach still performed
just as well in achieving mechanical property evaluation compared with Gubicza
et al.’s novel and semi-empirical depth-sensing indentation data analysis approach.
Furthermore, Gubicza et al. stated that the hardness deduced agreed well with the
OP method for many materials [39].

Still, Gubicza et al.’s critical take on the work of O&P was well-substantiated in
so far as, ideally, elastic materials were of interest, for instance. However, in so far
as the veracity of the work of Gubicza et al. is concerned, one ought to note that
Gubicza et al.’s measurements and criticisms were levied using applied indentation
pressures as high as 100 N, which resides within the macro-hardness regime rather
than the micro-hardness and nano-hardness regimes initially affiliated with the OP
technique as of 1992. Furthermore, the criticisms and critical takes levied by
Gubicza et al., in so far as their findings were related and comparable to the findings
of O&P, must be met with additional skepticism since they used a computer-
controlled, Vickers indenter equipped, and hydraulic, mechanical testing device to
perform depth-sensing indentation for hardness evaluation. Gubicza et al.’s elected
use of such an IIT or indentation set-up and system controlled hydraulically rather
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than electromagnetically (in the case of the OP framework) prohibits genuine
comparative analysis when considering the varied tip geometry, loading and depth
recording sensitivities, and the like.

Beyond the initial considerations just detailed and discussed, a genuine pillar of
the post-1992 OP-influenced era follows from the work of Field and Swain that was
published in 1995. Indeed, Field and Swain’s work has continued to garner traction
through the present day because of Field and Swain’s suspicion that sub-micrometer
spherical and cyclic (i.e., partial loading-and-unloading cycles during a global
loading-and-unloading process) nanoindentation testing could be used and
extended into the realm of capturing mechanical flow curves and stress vs. strain
plasticity phenomena. Such a window into mechanical flow behavior via Field and
Swain’s approach, or any other respectively similar approach concerned with
indentation as the means of flow curve calculation, becomes particularly important
when volumes of material in need of mechanical characterization cannot be char-
acterized via traditional uniaxial tension or compression methods due to inherent
size limitations. Accordingly, Field and Swain stated that spherical tip-based sub-
micron indentation testing potentially housed the key to determining hardness,
elastic modulus, representative stress vs. strain or mechanical flow curves, and
strain hardening behaviors for size-limited material volumes [40].

As such, Field and Swain’s representative spherical indentation stress vs. strain
plot for a steel specimen, the physical condition of cono-spherical tips employed,
and the degree of pile-up observed in one of the materials Field and Swain consid-
ered in their work. Advents since the time of Field and Swain rendered concerns
surrounding the integrity of their approach since the size of the indents considered
by Field and Swain suggests that Field and Swain surpassed the transitional limit of
the spherical apex of their tips, which indicates that they unknowingly reported
conical, rather than spherical, representative stress vs. strain curves at quite large
indentation strains. In modern times, authors such as Sousa et al. in Refs. [41–43]
and Leitner et al. in Refs. [44, 45] have consistently warned of the consequences
surrounding the use of cono-spherical tips beyond their sphere-to-cone transition
point, which results in a violation of Hertzian contact mechanics and geometrically
defined stress-strain evolution.

Apart from the work of Field and Swain, the present section will also entertain
further progress reportedly made pre-2002. In turn, attention is refocused upon
another matter of depth-sensing indentation measurement that influences recorded
load-displacement data and subsequently derived mechanical properties. Of partic-
ular focus at the respective point in time continued to consider the influences of
pile-up and sink-in came into focus as findings suggested that improper accounting
of pile-up can lead to the overestimation of hardness (since the area term associated
with the denominator of Eq. (9) would be smaller than that corrected for pile-up,
for example). Hence, Bolshakov and Pharr explored such matters in Ref. [46].

During the work by Bolshakov and Pharr, finite element analysis (FEA) of
conical indentation of a variety of elastic-plastic materials were analyzed in-silico,
enabling Bolshakov and Pharr to discover that underestimation of load-
displacement curve derived contact areas could reach up to 60% when indentation-
induced pile-up is large relative to indentation depth. Ultimately, Bolshakov and
Pharr identified the ratio between hf : and hmax measured parameters associated
with recorded load-displacement data. One may take note of specimens wherein
pile-up deserves more significant consideration than that of a correction factor, for
example. Such a parameter was expressed as hf=hmax, wherein a ratio less than or
equal to 0.7 indicates that a material is not likely to be significantly affected by pile-
up such that reasonable results are procurable via OP data analysis. Of course, the
opposite was true when hf=hmax >0:7
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6. Conclusion

The present chapter described the emergence of nanoindentation testing and
analysis within the materials science and engineering literature. Emphasis was
placed upon the origins of the dominant mode of submicron instrumented indenta-
tion testing and analysis (known as the Oliver-Pharr method). Specifically, detailed
reconsideration and formulation of the Oliver-Pharr method was provided,
followed by the industrial, engineering, manufacturing, and materials engineering
R&D needs that were able to be addressed through the application of the Oliver-
Pharr method. In detailing the emergence of Oliver and Pharr’s approach to
nanoindentation data analysis, the state of the art between the development of a
nanoindenter in the early 1980s and formal publication of the Oliver-Pharr method
in 1992 was presented. Next, several noteworthy and documented nanoindentation
developments post-1992 were considered and contextualized. Continued consider-
ation of the subsequent advancements, discoveries, innovations and attempts to
realize nanoindentation’s potential as an instrumented strength microprobe are
described next in Part 2.

Author details

Bryer C. Sousa1*, Jennifer Hay2 and Danielle L. Cote1

1 Department of Mechanical and Materials Engineering, Worcester Polytechnic
Institute, Worcester, MA, USA

2 KLA Instruments (Oak Ridge, TN), KLA, Milpitas, CA, USA

*Address all correspondence to: bcsousa@wpi.edu

©2023TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

175

Toward an Instrumented Strength Microprobe – Origins of the Oliver-Pharr Method…
DOI: http://dx.doi.org/10.5772/intechopen.109276



References

[1] Oliver WC, Pharr GM. An improved
technique for determining hardness and
elastic modulus using load and
displacement sensing indentation
experiments. Journal of Materials
Research. 1992;7(6):1564-1583

[2] Doerner MF, Nix WD. A method for
interpreting the data from depth-
sensing indentation instruments.
Journal of Materials Research. 1986;
1(4):601-609

[3] Alisafaei F, Han CS. Indentation
depth dependent mechanical behavior
in polymers. Moshchalkov VV, editor.
Adv Condens Matter Phys. 2015;2015:
391579

[4] Bulychev SI, Alekhin VP,
Shorshorov MK, Ternovskij AP,
Shnyrev GD. Determination of Young
modulus by the hardness indentation
diagram. Zavodskaya Laboratoria. 1975;
41(9):1137-1140

[5] Poon B, Rittel D, Ravichandran G. An
analysis of nanoindentation in linearly
elastic solids. International Journal of
Solids and Structures. 2008;45(24):
6018-6033

[6] Sneddon IN. The relation between
load and penetration in the
axisymmetric boussinesq problem for a
punch of arbitrary profile. International
Journal of Engineering Science. 1965;
3(1):47-57

[7] Chandler H. Hardness Testing. 2nd
ed. Materials Park, OH: ASM
International; 1999. p. 210

[8] Fischer-Cripps AC. Multiple-
frequency dynamic nanoindentation
testing. Journal of Materials Research.
2004;19(10):2981-2988

[9] Tranchida D, Piccarolo S, Loos J,
Alexeev A. Mechanical characterization
of polymers on a nanometer scale

through nanoindentation. A study on
pile-up and viscoelasticity.
Macromolecules. 2007;40(4):1259-1267

[10] Ebenstein DM, Pruitt LA.
Nanoindentation of biological materials.
Nano Today. 2006;1(3):26-33

[11] Hu C, Li Z. A review on the
mechanical properties of cement-based
materials measured by nanoindentation.
Construction and Building Materials.
2015;90:80-90

[12] Oliver WC, Pharr GM.
Measurement of hardness and elastic
modulus by instrumented indentation:
Advances in understanding and
refinements to methodology. Journal of
Materials Research. 2004;19(1):3

[13] Chen S, Liu L, Wang T.
Investigation of the mechanical
properties of thin films by
nanoindentation, considering the effects
of thickness and different coating–
substrate combinations. Surface and
Coating Technology. 2005;191(1):25-32

[14] Menčík J, Munz D, Quandt E,
Weppelmann ER, Swain MV.
Determination of elastic modulus of thin
layers using nanoindentation. Journal of
Materials Research. 1997;12(9):
2475-2484

[15] Hay J, Crawford B. Measuring
substrate-independent modulus of thin
films. Journal of Materials Research.
2011;26(6):727-738

[16] Li H, Chen J, Chen Q, Liu M.
Determining the constitutive behavior of
nonlinear visco-elastic-plastic PMMA thin
films using nanoindentation and finite
element simulation. Materials and Design.
2021;197:109239. ISSN: 0264-1275

[17] Saha R, Nix WD. Effects of the
substrate on the determination of thin

176

Elasticity of Materials



film mechanical properties by
nanoindentation. Acta Materialia. 2002;
50(1):23-38

[18] Alaboodi AS, Hussain Z. Finite
element modeling of nano-indentation
technique to characterize thin film
coatings. J King Saud Univ - Eng Sci.
2019;31(1):61-69

[19] Nix WD. Mechanical properties of
thin films. Metallurgical Transactions A.
1989;20(11):2217

[20] Alexopoulos PS, O’Sullivan TC.
Mechanical properties of thin films.
Annual Review of Materials Science.
1990;20(1):391-420

[21] Oliver WC, Pharr GM.
Nanoindentation in materials research:
Past, present, and future. MRS Bulletin.
2010;35(11):897-907

[22] Pethicai JB, Hutchings R,
Oliver WC. Hardness measurement at
penetration depths as small as 20 nm.
Philosophical Magazine A. 1983;48(4):
593-606

[23] Newey D, Wilkins MA, Pollock HM.
An ultra-low-load penetration hardness
tester. J Phys [E]. 1982;15(1):119-122

[24] Nishibori M, Kinosita K. Ultra-
microhardness of vacuum-deposited
films I: Ultra-microhardness tester. Thin
Solid Films. 1978;48(3):325-331

[25] Tazaki M, Nishibori M, Kinosita K.
Ultra-microhardness of vacuum-
deposited films II: Results for silver,
gold, copper, MgF2. LiF and ZnS. Thin
Solid Films. 1978;51(1):13-21

[26] Nishibori M, Kinosita K.
Ultra-microhardness of some
vacuum-deposited films. Japanese
Journal of Applied Physics. 1974;13(S1):
A862B

[27] Fröhlich F, Grau P, Grellmann W.
Performance and analysis of recording
microhardness tests. Physica Status

Solidi A: Applications and Materials
Science. 1977;42(1):79-89

[28] Nix WD, Gao H. Indentation size
effects in crystalline materials: A law for
strain gradient plasticity. Journal of the
Mechanics and Physics of Solids. 1998;
46(3):411-425

[29] Oliver WC. Progress in the develop-
ment of a mechanical properties
microprobe*. MRS Bulletin. 1986;11(5):
15-21

[30] Doerner MF, Gardner DS, Nix WD.
Plastic properties of thin films on
substrates as measured by submicron
indentation hardness and substrate
curvature techniques. Journal of
Materials Research. 1986;1(6):845-851

[31] Oliver WC, McHargue CJ, Zinkle SJ.
Thin Film Characterization Using a
Mechanical Properties Microprobe
[Internet]. TN, USA: Oak Ridge National
Lab.; 1987. Report No.: CONF-870388-5.
Available from: https://www.osti.gov/bib
lio/6643878-thin-film-characterization-
using-mechanical-properties-microprobe
[Cited: 23 November 2021]

[32] Pethica JB, Oliver WC. Tip surface
interactions in STM and AFM. Physica
Scripta. 1987;T19A:61-66

[33] Oliver WC, Pethica JB. Method for
continuous determination of the elastic
stiffness of contact between two bodies
[Internet]. US4848141A; 1989.
Available from: https://patents.google.c
om/patent/US4848141A/en [Cited: 23
November 2021]

[34] Stone D, LaFontaine W,
Alexopoulos P, Wu T, Li C. An
investigation of hardness and adhesion
of sputter-deposited aluminum on
silicon by utilizing a continuous
indentation test. Journal of Materials
Research. 1988;3:141-147

[35] Loubet J, Georges J, Marchesini O,
Meille G. Vickers indentation curves of

177

Toward an Instrumented Strength Microprobe – Origins of the Oliver-Pharr Method…
DOI: http://dx.doi.org/10.5772/intechopen.109276



magnesium oxide (MgO). J Tribol-Trans
Asme. 1984;106:43-48

[36] Pharr G, Oliver W.
Nanoindentation of silver-relations
between hardness and dislocation
structure. Journal of Materials Research.
1989;4:94-101

[37] Pharr GM, Oliver WC.
Measurement of thin film mechanical
properties using nanoindentation. MRS
Bulletin. 1992;17(7):28-33

[38] Oliver WC, Lucas BN, Pharr GM.
Mechanical characterization using
indentation experiments. In: Nastasi M,
Parkin DM, Gleiter H, editors.
Mechanical Properties and Deformation
Behavior of Materials Having Ultra-Fine
Microstructures. Dordrecht: Springer
Netherlands; 1993. pp. 417-428

[39] Gubicza J, Juhász A, Lendvai J. A
new method for hardness determination
from depth sensing indentation tests.
Journal of Materials Research. 1996;
11(12):2964-2967

[40] Field JS, Swain MV. Determining
the mechanical properties of small
volumes of material from
submicrometer spherical indentations.
Journal of Materials Research. 1995;
10(1):101-112

[41] Sousa BC, Sundberg KL,
Gleason MA, Cote DL.
Understanding the antipathogenic
performance of nanostructured
and conventional copper cold
spray material consolidations and
coated surfaces. Crystals. 2020;10(6):
504

[42] Sousa BC, Gleason MA, Haddad B,
Champagne VK, Nardi AT, Cote DL.
Nanomechanical characterization for
cold spray: From feedstock to
consolidated material properties.
Metals. 2020;10(9). Available from:
https://www.mdpi.com/2075-4701/10/
9/1195

[43] Sundberg K, Sousa BC, Schreiber J,
Walde CE, Eden TJ, Sisson RD, et al.
Finite element modeling of single-
particle impacts for the optimization of
antimicrobial copper cold spray
coatings. Journal of Thermal Spray
Technology. 2020;29(8):1847-1862

[44] Leitner A. Advanced
Nanoindentation Techniques for the
Extraction of Material Flow Curves.
University of Leoben. 2018

[45] Leitner A, Maier-Kiener V,
Kiener D. Essential refinements of
spherical nanoindentation protocols for
the reliable determination of mechanical
flow curves. Materials and Design. 2018;
146:69-80

[46] Bolshakov A, Pharr GM. Influences
of pileup on the measurement of
mechanical properties by load and depth
sensing indentation techniques. Journal
of Materials Research. 1998;13(4):
1049-1058

178

Elasticity of Materials



Chapter 11

Toward an Instrumented Strength
Microprobe – Origins of the
Oliver-Pharr Method and
Continued Advancements in
Nanoindentation: Part 2
Bryer C. Sousa, Jennifer Hay and Danielle L. Cote

Abstract

Numerable advancements have afforded many benefits to nanoindenter system
operators since the late 20th century, such as automation of measurements,
enhanced load and displacement resolutions, and indentation with in-situ capabili-
ties. Accordingly, the present chapter details how the Oliver-Pharr method of
nanoindentation testing and analysis was adopted and relied upon as a framework
that brought about widespread advancements in instrumented indentation testing.
The present chapter introduces an emergent and theoretically consistent approach
to assessing true stress–strain curves at a micromechanical scale using a flat-punch
nanoindenter tip geometry and reliance upon Hollomon power-law plasticity and
constitutive parameter fitting. Finally, a novel flat-punch nanoindentation testing
method and approach to plasticity parameter analysis for metallic materials using
nanoindentation systems can be implemented, bringing about an instrumented
strength microprobe – a long sought-after tool.

Keywords: nanoindentation, instrumented indentation testing, elastic and plastic
deformation, plasticity and strength, metallic materials, Hollomon plasticity,
Oliver-Pharr method

1. Introduction

Similar to the work rendered and published by Bolshakov and Pharr in 1998, as
discussed in Part 1, both Bolshakov and Pharr collaborated with Hay and Oliver in
[1] to reformulate the Bolshakov-Pharr pile-up prediction ratio relation in terms of
load–displacement curve slope-to-elastic contact stiffness ratio. Ultimately, Hay
et al. found that Sl=Smaintains a one-to-one ratio with hf=hmax and E=σy, too, while
also maintaining the capacity for direct measurement during testing, regardless of
hf or hmax inspection capabilities at a given facility. Indeed, Figure 1 captures a few
plots presented by Hay et al. when they formulated a pile-up constraint factor as a
function of Sl=S as part of their 1998 research effort detailed in [1].

Nevertheless, post-OP article publication developments and research indeed
focused upon relations beyond predicting and correcting for pile-up and relating
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the tendency of a material to pile up during nanoindentation to specimen proper-
ties, such as modulus, yield strength, work-hardening rate, and the like. Conse-
quently, consider additional sources of influence and other externality-driven
considerations of importance when performing and recording load–displacement
testing and analysis. The work of Feng and Ngan highlighted how creep and thermal
drift were both likely to influence modulus values recorded via instrumented
indentation testing (IIT) or depth-sensing indentation since the OP method
assumes that materials experience purely elastic recovery – an assumption that
diverges from the physical reality underpinning the influencing factors upon
recording and analyzing unloading segments of relevant nanoindentation data.
More to the point, Feng and Ngan carefully constructed a simple scheme of creep
effect corrections while measuring the modulus of elasticity. Furthermore, Feng
and Ngan concurrently derived a way to nullify the thermal drift effects when
measuring the modulus of elasticity [2]. Feng and Ngan achieved said derivations
through the consideration of Al, Cu (111), and Ni3Al (111) in [2].

In summation, Feng and Ngan showed that creep-based influences upon the
compliance associated with the contact of an indenter tip with a given specimen
during depth-sensing indentation and contact at the load–displacement point of
initial unloading could be mathematically resolved and experimentally addressed
via careful consideration of the unloading rate and max load hold times too. With
the aforementioned in mind, one ought to recall that Feng and Ngan were mainly
focused on the modulus of elasticity value modification or evolution when thermal
drift and creep were not adequately understood and accounted for during
nanomechanical, micromechanical, or both forms of indentation testing. However,
unlike accounting for creep, which maintained significant improvements in

Figure 1.
(a) relation betweenSl=S and hf =hmax. (b) Sl=S vs. depth data obtained from testing fused silica [1]. (c) used
the normalized contact area vs. Sl=S data to highlight that Sl=S ratios obtained at finite depths resulted in
Anano’s underestimation of actual contact area, which caused an overestimation of hardness as well as
modulus. (d) dependency of the constraint factor as a function of Sl=S, wherein the constraint factor was found
to be virtually independent of work-hardening when evaluated at large depths. Reproduced from [1].
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measurement accuracy, a simple nullification protocol presented by Feng and Ngan
ensured that thermal drift effects could be readily overcome and accounted for.

Around the same period, influences and relationships between those above-
discussed phenomena and the ascertained mechanical properties gained traction
through other researchers’ perspectives. Indeed, in 1998, relations between the
work of indentation, modulus of elasticity, and indentation hardness were consid-
ered by Cheng et al. [3]. Intriguingly, Cheng et al. resolved a proximal relation
between the hardness-to-modulus proportionality and the proportionality between
irreversible work of indentation and total work of indentation. As a result, Cheng
et al. provided the nanomechanical research community with an alternative
approach to estimating hardness and modulus via ITT systems equipped with con-
ical or pyramidal indenter probes, as illustrated in part by Figure 2 [3].

Still, fundamental explorations and evaluations of said relations need not stop
with the work of Cheng et al.; rather, Hay et al. and others also maintained an early
critical eye when inspecting underlying relations between properties and measured
nanoindentation responses in [4–7].

Just as small-scale indentation-based and/or nanoindentation mechanical stress–
strain curve evaluation captured the imagination of a subset of researchers cited in
the previous subsection of the present manuscript, the period between 2003 and
2012 was also concerned with stress–strain behavioral insights via the use of
nanoindentation systems. By 2003, Rodriguez and Gutierrez coupled an investiga-
tion of the ISE with a correlative analysis between tensile properties and
nanoindentation-based behavior [8]. Rodriguez and Gutierrez invoked the use of
the OP method of data analysis for performing sub-micron pyramidal

Figure 2.
Relationship between the proportional mechanical properties, including specimen hardness, measurable elastic
modulus values, and various forms of indentation work, i.e., total, irreversible, etc. (a,b) Present the
relationship between hardness/reduced modulus vs. the ratio of irreversible work-to-total work of indentation
loading and unloading using computational finite element analysis and experimental data for various
materials. (c) Presents the ratio of irreversible work-to-total work of indentation loading and unloading vs. the
initial yield stress/modulus of elasticity, while (d) presents the hardness/reduced modulus vs. the initial yield
stress/modulus of elasticity. Reproduced from [3].

181

Toward an Instrumented Strength Microprobe – Origins of the Oliver-Pharr Method…
DOI: http://dx.doi.org/10.5772/intechopen.110345



nanoindentation while also invoking the strain gradient plasticity framework pro-
posed by Nix and Gao for understanding the ISE affiliated with materials of various
mesoscale mechanical tendencies such that the material flow stress could be com-
pared with the bulk tensile properties of the very same specimens.

Therefore, when mathematically speaking, it stands to reason that plastic shear
strain gradient-induced dislocations, or geometrically necessary dislocations, ρG,
yields Eq. (1).

ρG≈δγ
1
bλ

(1)

wherein δ is a constant, γ is the plastic shear strain, b is the Burgers vector,
and λ is the localized deformation field length scale relative to indentation size.
At the same time, ρG and ρS, or the statistically stored dislocations, are
cumulatively related to one another concerning the total dislocation density ρT via
Eq. (2), such that.

ρT ¼ ρG þ ρS (2)

Rodriguez and Gutierrez also invoked Taylor’s relation, which expresses the
mechanical flow stress σ of a material with the total dislocation density, such that
Eq. (3) yields.

σ ¼ αMμb
ffiffiffiffiffi
ρT

p
¼ αMμb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρG þ ρS

p
(3)

whereinα is a constant,M is the Taylor factor, and μ is the elastic shear modulus.
Regrettably, Rodriguez and Gutierrez simply accepted the observation that the

nanoindentation modulus of elasticity associated with the specimens studied, espe-
cially the steel-based subset of specimens, deviated from the macroscopic material’s
modulus. Rodriguez and Gutierrez did so by viewing the matter of deviating elastic
modulus values through the lens of indentation-induced pile-up or sink-in influ-
ences. Ideally, a study claiming to be exploring a linkage between tensile stress–
strain behavior and ISE-informed indentation data would have anticipated the
effects introduced by pile-up and/or sink-in, which could have been experimentally
addressed in part via confocal microscopy-corrected contact area values (given
confocal microscopy’s commercialization more than 20 years before the work of
Rodriguez and Gutierrez). Rodriguez and Gutierrez also situated the then-debated
direct relation between pile-up and material work-hardening.

Still, Rodriguez and Gutierrez correctly noted that grain-scale texture, surface
roughness, and pile-up all influence nanoindentation data analysis, even going so
far as to note that O&P, in 1992, did not correct for pile-up or sink-in effects. Of
course, the lack of a method to account for pile-up or sink-in may limit O&P’s
approach as of 1992. However, one ought to note that O&P went on to incorporate
such a correction factor during post-1992 refinements to the originally formulated
and presented OP method.

Having just remarked that O&P made refinements to their original approach to
analyzing nanoindentation derived data, one may consider one of the most note-
worthy articles concerned with such refinements, which O&P has unsurprisingly
presented since 1992. Said article by O&P is cited herein as [9]. As such, in their
2004 article, which was also published in the Journal of Materials Research (that is,
the same journal that initially published their 1992 manuscript), O&P noted that
improved surface contact identification was achievable via dynamic
nanoindentation in comparison with static nanoindentation, which was first
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described in their appendix to the original 1992 article. O&P also noted the promis-
ing capacity of dynamic or CSM-based nanomechanical and nanoindentation-based
micromechanical characterization to unveil mechanical properties as a function of
depth throughout the entire loading and unloading process. Thirdly, O&P detailed
how improvements could be integrated into nanomechanical testing systems to
ensure more accurate area function calibration and load frame compliance assess-
ment [9]. Each of the three improvements and refinements may be considered
noteworthy when presented one by one, let alone all together in one document.

In any case, O&P continued their 2004 review of the progress made since their
1992 article by recognizing the fact that their method of nanoindentation testing
and data analysis could be generalized to a greater degree and across more indenter
geometries than previously thought. Importantly, O&P note that careful consider-
ation must also be given to nanoindentation testing analysis of materials with
reversible plasticity upon unloading since they assumed that only elastic displace-
ments would be recoverable; yet, for those cases wherein materials partially unload
plastically, O&P noted that FEM analysis had shown the effect to be virtually
negligible for most monolithic materials. Of course, this remedied the previously
noted concerns echoed by others in the field. Furthermore, in their original peda-
gogical formulation, O&P assumed that their expression for stiffness was sufficient;
however, one significant improvement made by O&P by 2004 was the inclusion of
a multiplicative β term as a function of the physical processes that may affect the
value of the term such that Eq. (4) yields.

S ¼ dP
dh

¼ β2Erffiffiffi
π

p
ffiffiffiffi
A

p
(4)

In so far as non-Berkovich, spherical nanoindentation load vs. displacement
relations were concerned, O&P also demonstrated that at shallow indentation
depths relative to the radius of a spherical tip, the load vs. depth relation may be
expressed, in the elastic deformation regime, as Eq. (5), wherein.

P ¼ 4=3

ffiffiffi
R

p
Er h� hf
� �1:5 (5)

such that differentiation of P relative to h, in conjunction with Eq. (5), yields
Eq. (6), wherein.

S ¼ dP
dh

¼ 2
ffiffiffi
R

p
Er h� hf
� �0:5 (6)

and Eq. (7) follows such that.

hc ¼
hmax þ hf

2
(7)

When proper substitution and algebraic manipulation are rendered, R is
expressed as Eq. (8),

R ¼ 1
R1

þ 1
R2

� ��1

(8)

while R1 is the radius of the spherical indenter probe, and R2 is the spherical
hardness impression remaining after loading.

Interestingly, O&P also noted that the hardness obtained via spherical indenter
tips was not necessarily equivalent to the hardness obtained using a Berkovich tip
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alongside their spherical nanoindentation contact mechanics analysis [9]. Work by
Sousa et al. (see [10]) concurs with said hardness variability when a cono-spherical
diamond indenter tip is dynamically applied to a material that is also tested via
dynamic Berkovich nanoindentation according to OP methods in [10].

During the following year, Bei et al. examined the influence of using the contact
area function, as determined via the OP calibration procedure, upon the
nanomechanical phenomena known as pop-in events. The theoretical strengths are
quantifiable from the analysis of said pop-in events [11]. Unlike sink-in or pile-up,
which are related to either more or less material in contact with a given indenter tip
during load vs. displacement cycling as part of indentation testing, pop-in events
can be identified by abrupt bursts in depth at a given indentation load(s), which
yield disjointed behavior within otherwise continuous load-depth data according to
Bei et al.’s analysis. When Bei et al. presented their research, analysis, and findings,
pop-in events were believed to signify the point of purely elastic to elastoplastic
deformation during nanoindentation testing for both crystalline and amorphous
material systems. Furthermore, pop-in events were believed to be connected with
dislocation nucleation, although such associations have since been widely debated.
Nevertheless, Bei et al. went on to detail the approach taken during their analysis,
wherein finite element analysis was coupled with experimental load vs. displace-
ment analysis to compare the effect of assuming a rounded spherical Berkovich tips’
apex and the apex geometry gleaned from calibration procedures that had been
documented in the past by O&P.

More specifically, the Virtual Indenter FEA simulation package from MTS Cor-
poration (Knoxville, TN, USA), at the time, was utilized alongside MTS’s
nanoindentation testing system such that a diamond Berkovich indenter tip could
be utilized in conjunction with a Cr3Si single-crystal material system for their
respective study. Interestingly, Bei et al. observed that the magnitude of the load at
which a pop-in event occurred varied across crystallographic orientations and, after
that, was rationalized through the lens of different resolved shear stress states and
slip systems present in the material. Moreover, the findings by Bei et al. were
consistent with their hypothesis that assuming a spherical apex, rather than a
conical-spherical apex of a sharp pyramidal tip at sub 100 nm depths or so, could
not provide an adequate geometrical description of the tip.

The influence of elastic anisotropy was not considered by Bei et al. as a potential
influence upon indentation stress fields nor was the fact that sharp edges on
Berkovich indenter tips were observable in residual deformation impressions con-
sidered. Such lack of consideration suggests that future work must address or
overcome such problems, given that edge effects would undoubtedly change the
stress field or stress state compared with a purely spherical geometry. Furthermore,
because of the work of Bei et al. in 2005, the nanoindentation and nanomechanical
characterization communities were made aware that simply assuming a spherical
apex resulted in a maximum resolved shear stress that was overestimated by more
than 41%. Lastly, Bei et al.’s experimental data correlated with the onset of the first
pop-in event and dislocation nucleation once a material’s theoretical shear strength
was surpassed.

Pedagogical consideration of nanoindentation testing and load vs. displacement
data analysis methods, especially those defined by O&P and widely accepted by the
general nanomechanical and material characterization communities, continued into
the mid-2000s. Another staple of the early sub-micron mechanical property inves-
tigation community, A. C. Fischer-Cripps was well aware of the general issues that
users encountered through 2006 while attempting to perform nanoindentation
testing, thus leading Fischer-Cripps to document common sources of error associ-
ated with performing nanoindentation testing such that ITT users who wished to
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utilize nanoindentation techniques could more readily and confidently do so in Ref.
to [12].

Around the same time that Fischer-Cripps, O&P, and Bei et al. published their
mid-2000s research, Troyon and Huang laid the additional groundwork for a cor-
rection factor, which was expressed by the β term presented in Eq. (4) by O&P in
2004; concurrent effects were appropriately accounted for during nanoindentation
data analysis [13]. In doing so, Troyon and Huang detailed how radially inward and
elastic displacements as well as indenter shapes deviations from a perfect cone
geometry can concurrently be linked with one another in place of β, in the case of
O&P in [6], or γ, in the case of work performed by Hay et al. in [4], alone. Soon
after that, Troyon and Huang continued their research into the matter of a com-
prehensive multiplicative correction factor for mathematically detailing relations
between contact area, modulus of elasticity, and unloading contact stiffness in
another article too (see [14]). Moreover, [14] suggests that the Troyon and Huang
methods should undergo continued analysis and extended applications; however,
there exists no generalized advantage of their method with that of the OP method.

Like decades prior, the advancements made between 2013 and the present point
centered upon pedagogical matters, the continued applicability of nanoindentation-
based analysis, the development of a deeper understanding of plasticity and the
mechanisms of materials, and more. Accordingly, we may first consider the work of
Siu and Ngan, which was published in 2013 and suggested that the dynamic/CSM-
based measurement method artificially induced sample strength modifications dur-
ing oscillatory nanoindentation testing [15]. If true, such findings would generally
question the integrity of CSM-based nanoindentation testing and the CSM-
dependent advancements made within materials characterization as a field of study.
Siu and Ngan made their case by coupling nanoindentation with microscopy (EBSD
and TEM), ex-situ, while a Berkovich indenter tip geometry was utilized, CSM
frequencies were varied, and a ductile, commercially pure, Al test specimen was
used. Tentatively ignoring the veracity of the approach taken by Siu and Ngan for
the time being and the correctness of their philosophical claims, the authors showed
that CSM-induced errors could be decoupled from sample strain rate sensitivities.
Interestingly, the work by Siu and Ngan resulted in the procurement of methodo-
logical findings and material deformation mechanism-based findings.

Stated otherwise, Siu and Ngan went beyond the realm of demonstration in 2013
and into the arena of physical mechanisms surrounding material plasticity. Siu and
Ngan suggested that their unexpected observation of material softening could be
interpreted through the lens of variable pressure during oscillatory cycling,
enabling stress relief due to elastic recovery during the unloading half cycle,
wherein the material was in an elastoplastic state. Moreover, Siu and Ngan argued
that those mentioned above, in turn, induced dislocation motion reversals, which
resulted in dipole dislocation annihilation, decreased dislocation density, and dislo-
cation motion-induced subgrain formation. Finally, although Siu and Ngan noted
that the OP method of hardness determination appeared to be flawed when CSM
capability was enabled, Siu and Ngan also conceded that the influence of
nanometric oscillations upon nanometer length scale deformation of metals was
unknown at the time [15].

Nevertheless, Al was not the only material or work concerned with related or
similar matters of relevance following their Al-based 2013 article. In fact, during the
same year, Siu and Ngan extended such oscillation-induced strength modification
effects to Cu and Mo, too [16]. Furthermore, motivated by their original findings
detailed in [15], Siu and Ngan stated that oscillation-induced softening of Al was
intrinsically intertwined with enhanced annihilation of dislocations and formation
of sub-grains due to the simultaneous imposition of oscillatory stresses [16].
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Accordingly, such an interpretation and distillation of their earlier findings were
consistent with their respective motivation underlying the use of Cu and Mo to go
beyond proof-of-concept demonstration and toward the realm of generalized phe-
nomena for a particular class of metallic materials.

While Siu and Ngan continued to build upon their 2013 research elsewhere
[17, 18], other researchers garnered a maintained interest in the topic [19–21].
Additional oscillatory-induced and CSM measurement methods incurred errors
studied by varying nanoindentation research and development community mem-
bers. Inspired by the 2006 publication by Durst et al. [22], as well as the work of
Cordill et al. in 2009 [23], alongside Pharr et al.’s more recent account of Durst
et al.’s findings in [24] via modulus-to-hardness material ratios in addition to
unloading curve assumptions and their effect on evaluated stiffness values, and
Vachhani et al.’s reported outcome departures during dynamic nanoindentation
testing as a function of harmonic frequency in [25], Merle et al. set out to advance a
generalized understanding surrounding Vachhani et al.’s findings in [26].

Consequently, Merle et al. found that caution must be exercised appropriately
when evaluating materials with high modulus-to-hardness ratios because selected
harmonic parameters cause notable contact stiffness underestimation, which
directly influences the resultant modulus of elasticity recorded when high loading
rates are employed [26]. In doing so, Merle et al. were able to identify the culprit
responsible for such oscillation-induced behavior in terms of a biased phenomenon
associated with lock-in amplifier signal processing. Furthermore, Merle et al. illus-
trated how phase angle signal data could indicate the occurrence of said oscillatory
artifacts during dynamic nanoindentation testing.

Turning our attention to advancements made in so far as the utility of the work
of indentation is concerned, per modernized understanding of nanoindentation as a
field of study, the 2013 publication by Jha et al. is considered next [27]. Jha et al.
executed extensive nanoindentation modeling via finite element analysis methods
to probe elasticity and elastoplastic behavior to garner insights into the total work of
indentation and the elastic work of indentation from load–displacement data. Jha
et al. found that the aforementioned work parameters could characterize the
mechanical response of materials under indentation [27]. Based on the work of Jha
et al., one may consider the effort as a means of better appreciating the concept of
the work of indentation (which was already discussed in the previous subsections)
and the agreement shared between the contact depths obtained for Berkovich and
spherical indenter tips coupled with the OP method and that obtained via elastic
energy constant-based contact depth determination methods in [27].

In much the same way the nanoindentation research and development
concerned with the notion and concept of the work of indentation extended into the
current decades’ advancements, nanoindentation stress–strain curve evaluation was
undoubtedly a focal point of research activity to date too. Such sentiment holds in
so far as the influence of CSM measurement parameters is considered to a greater
extent at the same time too. However, by keeping with the notable research
published in 2013 concerning said matters of inquiry, we may first consider the
work of Bobzin et al. [28]. In 2013, Bobzin et al. attempted to address the standing
need for prospective nanoindentation-based mechanical flow curve derivation
methods via iterative comparative analysis of FEA computations. They experimen-
tally obtained load vs. displacement curves coupled with adaptive plastic behavior
model parameter identification. Interestingly, Bobzin et al. echoes less-utilized
stress–strain nanoindentation analysis by Juliano et al. [29], such that reference
stress and reference strain values are measurable from load-depth data and curves
via Eq. (9) and Eq. (10), respectively. Thus, the following mathematical relation for
reference stress was invoked by Bobzin et al., such that.
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σ ¼ 0:9P
πa2

ht
hc

� 1
� �

(9)

while the following mathematical relation for reference strain was also provided
by Bobzin et al., such that.
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and linked together via the Johnson-Cook model, as given in the following
expression, depicted herein as Eq. (11), such that.

σ ¼ Aþ Bεn (11)

Just a few years after the work of Jha et al., Bobzin et al., Siu and Ngan, and
Merle et al., which are detailed above, nanoindentation stress vs. strain evaluation
methods, other than Bobzin et al.’s FEA-supported protocol, were applied to the
mechanical characterization and property evaluation tasks surrounding alloyed
Ti64 materials in [30]. Though the spherical nanoindentation-derived effective
stress vs. strain-curve methodologies and protocols were established before the
work of Weaver and Kalidindi, which is currently under consideration, Weaver and
Kalidindi clearly and concisely noted their intended objectives and motivation
behind their 2016 manuscript in its’ introductory section. Weaver and Kalidindi
provided the materials development and design research and engineering commu-
nities with a referable case study that ideally captured the high-throughput nature
and feasibility of such material characterization in so far as metal systems were
concerned, including Ti64, which maintains microstructural complexity concerning
site-specific, microstructural, and local length-scale dependencies of measured
material response too [30].

Moreover, the protocols above of relevance, which include Kalidindi and
Pathak’s approach, as detailed in the previous section of the present literature
review, were relied upon throughout most of the analysis and mechanical charac-
terization performed in Weaver and Kalidindi’s 2016 study. Building upon the
research presented in 2016, as well as the advancements and protocol developments
by Kalidindi and close colleagues across Drexel University of the Georgia Institute
of Technology, as well as others, Weaver, and others from the same network
relating Kalidindi, Pathak, and Weaver with one another, continued to extend the
range of spherical nanoindentation stress vs. strain exploration and data analysis.
Intriguingly, Weaver et al. invoked CSM spherical nanoindentation stress–strain
analysis to probe and measure the evolution of mechanical properties of He, W, and
(He+W) ion-irradiated tungsten at a granular level in [31].

Nevertheless, an unexpected observation of significance for those utilizing OP
analysis modalities was the secondary finding by Weaver et al. that ion-irradiated
hardness values obtained via OP and Berkovich indentation and Weaver et al.’s
spherical dynamic nanoindentation approach can be directly compared with one
another. Still, Weaver et al. are not the only modern researchers concerned with
spherical indentation and indentation-based stress–strain characterization and data
analysis. Instead, Xiao et al. in 2019 unveiled a mechanistic model for spherical
nanoindentation stress vs. strain relations, which intertwined three principal defor-
mation mechanisms of relevance [32]. More to the point, said principal deformation
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mechanisms invoked by Xiao et al. included the indentation size effect and, there-
fore, the matter of geometrically necessary dislocations, followed by irradiation
hardening and were concluded in terms of strain-softening affected by the removal
of defects. The performance of Xiao et al.’s model for non-irradiated reference
materials is compared to experimentally measured values and the model’s predic-
tions of indentation stress versus indentation strain. Additionally, this performance
is compared to an alternative model previously reported in the literature before
Xiao et al.’s publication.

Beyond the work of Xiao et al. cited above, additional developments of relevance
include that detailed in 2018 by Jin et al., wherein Jin et al. claimed to have formu-
lated a model for the quantifiable linkage of incipient irradiation damage via
nanoindentation pop-in phenomena analysis in [33]. After that, in 2019, the near-
surface nanoindentation response of ion-irradiated FCC metals was studied by way
of strain gradient plasticity mechanisms, which were modified to account for irra-
diation effects [34]. At the same time, Xiao et al. extended their 2019 single-crystal
irradiation studies into the realm of polycrystalline steel specimens [35].

On the other hand, just a couple of years prior to the work of Xiao et al. in 2019,
Kumar et al. attempted to develop a nanoindentation-based means of evaluating
argon-ion irradiation-induced hardening of a ferritic and martensitic dual-phase
steel in [36]. As a result, Kumar et al. found changes in nanoindentation hardness of
dual-phase steel because irradiation follows a power-law relation dependent upon
irradiation dosage [36].

Returning to the realm of spherical nanoindentation stress vs. strain curve analy-
sis through Weaver, Pathak, and Kalidindi, one may note [37], wherein Khosravani
et al. focused on spherical nanoindentation as a means of characterizing two hierar-
chical and martensitic FeNiC steel systems. Interestingly, Khosravani et al. found
that pop-in phenomena could be linked to dislocation and lath boundary interaction,
followed by dislocation transmission through the boundary during nanoindentation
loading. Beyond the critical examination that Khosravani et al. provided regarding
how the measured properties may be related to uniaxial tensile test counterparts,
Khosravani et al. also quantified the mechanical behavior of lath martensite phases
across length scales and various indenter tip radii. Khosravani et al. reportedly
observed minor indentation size effects across variable tip radii and nanometric
length-scale plasticity and strength domination by nanostructured defects.

Unsurprisingly, steel continues to capture the attention of nanoindentation
researchers and material science and engineering community members to date. For
example, in 2020, Massar et al. applied dynamic Berkovich nanoindentation hard-
ness and modulus of elasticity measurements, according to the OP method, for
recycled battlefield scrap steel powders and cold spray-processed material consoli-
dations in [38]. In addition to Massar et al., continued consideration of the use of
nanoindentation to characterize steels in the 2010s unveils the work of Pham and
Kim, which was published in 2015, wherein the authors identified the modulus of
elasticity and nanoindentation hardness values associated with an SM490 steel weld
zone via statistical data analysis [39]. Furthermore, Yang et al. also utilized statisti-
cal data analysis to quantify the transformation kinetics of bainite phase formation
within an austempered steel [40]. Still, nanoindentation for such steel specimen
characterization is also discussed elsewhere, including the following references of
note: [41–45], to name a few.

One ought to also consider the recent work of Ruiz-Moreno et al., published in
2020, as another notable nanoindentation-related research article [46]. Ruiz-
Moreno et al. performed nanomechanical characterization over a range of temper-
atures. Ruiz-Moreno et al. demonstrated how indentation hardness of a P91 system
could be measured under ambient conditions and at elevated temperatures (873.15°
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K) for transient property inspection via quasi-static and dynamic nanoindentation
testing, as shown in Figure 3. In addition to the range of transient properties
explored at elevated temperatures and ambient temperature, Ruiz-Moreno et al.
ventured into pedagogical consideration surrounding assessing spherical

Figure 3.
Cyclic or quasi-static nanoindentation load-depth curves are presented in (a), while a dynamic
nanoindentation load vs. depth curve is presented via (b). Indentation stress–strain curves as a function of
testing temperature are presented in (e,f). Additional details shown in (c,d,g,h) can be understood through
consulting [46], which is the reference the present figure is adopted and reproduced from.
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nanoindentation stress vs. strain curves. Conditions, Ruiz-Moreno et al. noted that
consequences existed when adhering to the school of thought surrounding and
underpinning the work of Weaver, Pathak, Kalidindi, and the like [46].

2. Actualization of a frustrum instrumented strength microprobe

As was discussed above, many have endeavored to use a spherical nanoindenter
tip probe to measure small-scale stress–strain curves with limited or variable
degrees of success [47]. However, spherical nanoindentation includes several
practical difficulties because the uncertainty in the contact area is generally more
significant for spheres than for other indenter shapes (see the variation in an as-
manufactured cono-spherical tip geometry obtained from a leading tip supplier for
more nuanced appreciation, as shown in Figures 4–7, which are adopted from [10].

Furthermore, as the contact area grows during spherical nanoindentation
testing, the volume of tested material also grows, gradually and continuously incor-
porating virgin material into the test. Thus, both the material and strain change
concurrently. However, with a flat punch, the contact area is well known and fixed
as the area of the punch face. Because the contact area is fixed, the volume of the
tested material is roughly constant throughout the entirety of the test. Thus, the
present section demonstrates how such fixed flat-punch indentation testing condi-
tions or parameters enable microscopic true stress–strain relationships of a wide
range of metallurgical materials to be probed using Hay et al.’s emergent protocol
(a protocol that has ultimately brought the nanoindentation community one step
closer to realizing the long sought-after Instrumented Strength Microprobe).

Figure 4.
Renderings of the imperfect tip geometry obtained when a cono-spherical tip was purchased from Micro-star
technologies: (a–c) have been normalized in the x, y, and z directions. (a) Degree of deviation of the actual tip
geometry from an ideally spherical tip at the apex of the indenter probe. Notice the scale bar in microns to the
right of (a), which topographically signifies the distance from the point of Cartesian coordinate origin parallel
to an x-y plane that is orthogonal to the z-axis. Reproduced from [10].
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The microscopic stress–strain relationships were measured by nanoindentation
using a new method [48]. This method required Young’s modulus as input, and it
returned the yield point, true stress–strain ordered pairs beyond the point of com-
plete contact, and coefficients K and n of the best power-law fit to the post-yield
behavior Eq. (12):

Figure 5.
(a) location of the extracted tip profile, obtained through the very tip of the probe’s apex. (b) a circle
with a nominal radius of 2.71 μm fit to the presented profile. The circle in (b) is positioned such that it
is coincident with the tip of the apex and parallel to the z-axis. Notice the deviation from the imposed
circle in (b) by the profile between approximately 1.5 and 3.5 μm on the horizontal axis. (c-d) deviation
of the true surface from an ideal sphere of a 2.71 μm radius. (c-d) is normalized in the x- and y-directions
with vertical distortion in the z-direction to capture the deviation via colored contour plotting. Reproduced
from [10].

Figure 6.
Residual indentation imprint on a single crystal of commercially pure Al was obtained using 3D confocal
microscopy-based analysis. The upper graphical rendering illustrates the true surface profile at the spherical
region in the blue line versus the ideal surface profile for a spherical tip with a 2.71 μm radius in the black line.
The plot at the bottom of this figure captures the surface profile deviation from a 2.71 μm nominal radius circle.
Reproduced from [10].
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σ ¼ Kεn (12)

With a KLA iMicro nanoindenter, a 90-degree frustum, having a flat circular
end with a diameter of around 10 μm, can be pressed into a given target material at
a prescribed strain rate and to a depth of 2 μm while continuously measuring load,
P; penetration depth, h; and elastic contact stiffness, S, with the latter being mea-
sured by a small, superimposed oscillation [49, 50]. The strain is calculated as
Eq. (13) for each point acquired during loading beyond the point of complete
contact:

ε ¼ 2
π

� �
h
a

(13)

wherein a is the contact radius, calculated as the radius of the indenter tip at a
distance h from the frustum face along the indenter axis, or the following relation,
shown in Eq. (14):

a ¼ aþ htanψ (14)

with ψ representing the half-included angle of the cone. For each point acquired
during loading beyond the point of complete contact, the stress σ was calculated in
proportion to the mean pressure of the contact pm, as Eq. (15) below:

σ ¼ ξpm (15)

with the constant proportionality ξ calculated as a linear function of the para-
meter S ∗ according to Eq. (16) as follows,

Figure 7.
Even though the maximum indentation depth associated with a nanoindenter tip of 2.71 μm is 794 nm, the
max cut-off depth before the transition from spherical shape to a conical geometry was set at 542 nm to
showcase the spherical geometric profiles readily. Therefore, at 542 nm away from the apex of the perfectly
spherical tip, the ideal spherical geometry is presented in (a). (b) Unveils the true surface profile associated with
the tip from Micro-star technologies up to 794 nm from the apex. For comparison with (a), (c) captures the
actual surface cropped to the same vertical dimension as the ideal surface, highlighting the deviation. Renderings
are normalized in the x, y, and z directions. Reproduced from [10].

192

Elasticity of Materials



ξ ¼ 0:3969 S ∗ð Þ þ 0:3218 (16)

where S ∗ is calculated as SL=S or the local slope of the unloading curve dP=dh
divided by the elastic contact stiffness at the same point. Finally, the expression for
strain rate is given as Eq. (17):

ε0 � 2
π

� �
h0

a
(17)

Logically, the target strain rate ε0 is prescribed by a given user, and the system
calculates and imposes the necessary penetration rate h0 to achieve the target strain
rate. In any case, the point of complete contact between the punch face and test
surface was determined as the point where measured contact stiffness first
exceeded the expected value based on the known reduced modulus for the material
Er [51, 52], which is given in Eq. (18):

S> 2Era (18)

To determine the yield point, the stress–strain ordered pairs acquired beyond
the point of complete contact fit the power-law form of Eq. (12); the yield point for
each test was determined as the point of intersection between this power-law fit and
the linear part of the stress–strain curve (as determined by the input Young’s
modulus). Thus, by the end of each test, the whole true stress–strain curve was
available by automatically patching together these three segments into a whole: (i)
from the origin to the yield point: the linear part (generated by the input Young’s
modulus); (ii) from the yield point to the point of complete contact: an extrapola-
tion of the power-law fit to data from segment (iii); and (iii) from the point of
complete contact to the end of loading: measured stress–strain as calculated by
Eq. (13) and Eq. (14), respectively.

That said, the relationship for strain that is defined in Eq. (13) was derived by
considering elastic contact between a frustum and a test surface, with the load and
depth related through the reduced modulus Er, as Eq. (19) [51].

P � 2Erah (19)

Dividing both sides of Eq. (19) by the contact area gives an expression for mean
pressure, Eq. (20):

P
πa2

¼ pm ¼ 2=πð ÞEr h=að Þ (20)

If we define the strain as in Eq. (13), then Eq. (20) becomes Eq. (21),
such that.

pm ¼ Erεi (21)

which is analogous in form to the stress–strain relation used to comprehend the
elastic part of a uniaxial tension or compression test. Because one definition of
strain should befit both elastic and plastic phases of the test, we used the definition
of strain expressed by Eq. (13) for all testing, and by extension, the definition of
strain rate expressed by Eq. (17).

193

Toward an Instrumented Strength Microprobe – Origins of the Oliver-Pharr Method…
DOI: http://dx.doi.org/10.5772/intechopen.110345



The linear function for inferring the constant of proportionality ξ from S ∗

Eq. (16) was determined using extensive (90+) FEM simulations of flat-punch
indentations into materials with systematically varied degrees of plasticity. The
extent of plasticity for each finite-element simulation was captured by a single value
of the parameter S ∗ � SL=S [1, 53]. For each simulation, SL was determined as the
slope of the loading curve prior to peak penetration; the contact stiffness S was
determined as the slope of the simulated load-depth relation at the onset of
unloading. (Experimentally, SL and S are available throughout loading, but S is only
available at the onset of unloading.) For fully elastic simulations, S ∗ had a value of
unity because the loading and unloading curves coincided. For the most plastic
simulations, S ∗ approached zero as the unloading curve was nearly vertical. Thus,
the domain for S ∗ is zero (fully plastic) to unity (fully elastic).

To determine the precise functional form of ξ ¼ f S ∗ð Þ, each finite-element
simulation was analyzed as follows: (i) the parameter’s value S ∗ was calculated; (ii)
strain was calculated according to Eq. (13); (iii) the true stress value σ was calcu-
lated from the input stress–strain relation as the stress at the strain calculated in step
(ii); and (iv) the value of ξwas calculated by dividing the true stress (step iii) by the
mean indentation pressure pm. Finally, using the results of all simulations, it was
found that ξ depended linearly on S ∗ , so long as S ∗ <0:8; Eq. (16) is the best fit for
this linear relation. We note here that the intercept of Eq. (16), which indicates the
value of ξ for the case of full plasticity (S ∗ ! 0), is very close to the scaling factor of
1/3 determined by David Tabor [54] and further verified by many others through
finite-element analysis [55] and experiments [56].

Figure 8 presents the true stress–strain curves obtained for multiple flat-punch
indents via the method described herein and applied to commercially pure Ti. The
average yield stress obtained was 270 � 50 MPa, and individual test data from
twelve measurements using this method agreed with 240 MPa as measured via
tensile testing while also being well within the upper and lower bounds of yield
strength for Ti reported within the relevant literature. While the scatter within the
data was high, the microstructure of the pure Ti system resulted in relatively large
grains, which would allow for a single test location to be constrained to single as
well as randomly oriented grains; further information about Hay’s original work and
the KLA-patented flat-punch stress vs. strain analysis technique can be found in
[57], while the present authors have detailed recent applications and extensions of
the method in [58].

Figure 8.
True stress–strain for a Ti metal system characterized using the method formulated further herein and Hay’s
patented and emergent flat-punch nanoindentation technique. Reproduced from [57].
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3. Conclusions

Building off the discussion provided in Part 1, the present chapter continues the
consideration of advancements within the theory and practice of small-volume
instrumented indentation testing and nanoindentation testing and analysis enabled
via the advent of the Oliver-Pharr method. Advancements presented within the
literature following Oliver and Pharr’s 1992 research article (and discussed herein)
focused upon contact area estimation, pile-up phenomena, stiffness, creep-
correction, thermal drift, relations between measured properties and work of
indentation terms, load–displacement curve, pop-in phenomena, the application of
strain gradient plasticity, and more. Thereafter, consideration of prior work
presenting spherical nanoindentation testing as a means of assessing indentation
stress–strain curves of metallic materials (in particular) was discussed, followed by
transient material property assessment with high-temperature nanoindenter sys-
tems and the effects of continuous stiffness measurement testing procedures and
their influence upon recorded results. In conclusion, the present chapter is finalized
through the introduction of an emergent and theoretically consistent approach to
assessing true stress–strain curves at a micromechanical scale using a flat-punch
nanoindenter tip geometry and reliance upon Hollomon power-law plasticity and
constitutive parameter fitting, therefore detailing the long sought-after ability to
utilize nanoindentation testing as an instrumented strength microprobe.
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