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Preface

This Edited Volume is a collection of reviewed and relevant research chapters 
concerning the recent developments in Alzheimer’s disease. The book includes 
scholarly contributions by various authors and edited by an expert in the field, 
working on Alzheimer’s disease and dementia with cutting-edge technology. Each 
contribution comes as a separate chapter complete in itself but directly related to 
the book’s topics and objectives.

The book is divided in 5 chapters. The target audience comprises scholars and 
specialists in the field.

Montasir Elahi
University of Maryland,

Baltimore, United States of America
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Chapter 1

Perspective Chapter:  
Alzheimer - A Complex Genetic 
Background
Marco Calabrò and Concetta Crisafulli

Abstract

Alzheimer is a complex, multifactorial disease with an ever increasing impact 
in modern medicine. Research in this area has revealed a lot about the biological 
and environmental underpinnings of this disease, especially its correlation with 
Β-Amyloid and Tau related mechanics; however, the precise biological pathways 
behind the disease are yet to be discovered. Recent studies evidenced how several 
mechanisms, including neuroinflammation, oxidative stress, autophagy failure and 
energy production impairments in the brain, −--- have been proposed to contribute 
to this pathology. In this section we will focus on the role of these molecular path-
ways and their potential link with Alzheimer Disease.

Keywords: molecular pathways, genetics, Alzheimer

1. Introduction

Alzheimer’s disease (AD, MIM: 104300) is the most common neurodegenerative 
disorder worldwide, accounting for 60% up to 80% of Dementia causes [1]. This 
disease is one of the fastest rising diseases among the 50 leading causes affecting of 
life expectancy [2]; according to this trend, the number of AD subjects is destined 
to rise over 150 million by 2050 [3, 4].

AD worsen with time and as it progresses, patients usually develop short-term to 
long-term memory loss, accompanied by confusion, irritability and aggression, [5], 
followed by language impairments and mood swings [6].

Despite its prominence in modern society and the thriving research around it, 
a lot of its intricate pathophysiology is yet to be discovered. Furthermore, grade 
and type of symptoms may vary greatly from person to person [7], adding to the 
complexity of AD. Nevertheless, post mortem observations on AD subjects’ Central 
Nervous System (CNS) evidenced some central histopathological features, mainly 
focused on amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) [8–11].

Aβ plaques are the extracellular deposit of Aβ, which are produced by the cleav-
age of amyloid precursor protein (APP) [12], while the NFTs consist of abnormal 
filaments of hyper-phosphorylated Tau by GSK-3β [13]. They are thought to have a 
significant impact in memory and cognitive function, by triggering synaptic loss or 
dysfunction and neuronal death [14].

Interestingly, although not all of the causes have been located, AD cases seem-
ingly converge to these hallmarks, providing a steady starting point for trying to 
understand the biological processes behind this disease.
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1.1 Genetics

Indeed, among the cases of AD genetic studies individuated a form, known 
as Familial AD (FAD), that runs in families and is transmitted with an autosomic 
dominant model [15]. FAD is the best described type of AD: it is associated with 
mutations in three major genes: APP (chromosome 21), PSEN1 (chromosome 14) 
and PSEN2 (chromosome 1) [16]. Alterations within these genes affect amyloid 

Familial AD (FAD) OMIM ID

An Alzheimer’s disease that has_material_basis_in mutation in the gene 
encoding the amyloid precursor protein on chromosome 21q.

OMIM:104300

An Alzheimer’s disease that has_material_basis_in mutation in the 
presenilin-1 gene (PSEN1) on chromosome 14q24.

OMIM:607822

An Alzheimer’s disease that has_material_basis_in a mutation in the 
presenilin-2 gene (PSEN2) on chromosome 1q42.

OMIM:606889

Sporadic AD (SAD)

An Alzheimer’s disease that is characterized by an association of the 
apolipoprotein E E4 allele.

OMIM:104310

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 12p11.23-q13.12.

OMIM:602096

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 10q24.

OMIM:605526

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 10p13.

OMIM:606187

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 20p12.2-q11.21.

OMIM:607116

An Alzheimer’s disease that has_material_basis_in heterozygous mutation in 
ABCA7 on chromosome 19p13.3.

OMIM:608907

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 7q36.

OMIM:609636

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 9p22.1.

OMIM:609790

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 8p12-q22.

OMIM:611073

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 1q21.

OMIM:611152

An Alzheimer’s disease that is characterized by an associated with variation in 
the region 1q25.

OMIM:611154

An Alzheimer’s disease that is characterized by an associated with variations 
in the region 3q22-q24.

OMIM:604154

An Alzheimer’s disease that is characterized by an associated with a risk allele 
in in the PCDH11X gene on chromosome Xq21.3.

OMIM:300756

An Alzheimer’s disease that is characterized by an associated with mutations 
in the gene TREM2.

OMIM:615080

An Alzheimer’s disease that has_material_basis_in a mutation in the ADAM10 
gene on chromosome 15q21.

OMIM:615590

An Alzheimer’s disease that is characterized by associated variants of the gene 
PLD3.

OMIM:615711

Table 1. 
Alzheimer sub-types according to genetics [30407550].
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cleavage, directly promoting plaques formation. Several studies demonstrated that 
alterations in APP or PSEN1 genes are guaranteed to cause AD, while PSEN2 muta-
tions have a 95 percent chance of causing the disease [17]. Unfortunately, only up to 
5% of all AD cases are of this type [18].

Other cases usually go under the name of sporadic AD (SAD) which encloses the 
largest part of AD cases. SAD cases have a more cryptic and heterogenic genetic back-
ground [18]: More than 500 candidate genes were correlated with SAD [15, 19, 20]. 
Of them, inherited polymorphic APOe (chromosome 19) E4 allele is the major risk 
factor. APOe is the gene encoding for the Apolipoprotein E, whose function is to bind 
lipids and sterols and transport them through the lymphatic and circulatory systems. 
APOe4 is thought to produce a more instable form and is related to the formation of 
neurofibrillary tangles [21, 22] and amyloid clearance processes [23, 24], through a 
still not well understood mechanism.

1.1.1 Apolipoprotein E (APOe)

APOe is in charge of cholesterol transport in the brain [25, 26]. As said before, 
the e4 isoform of this protein is associated to increased AD-risk [27–30]. The 
fine molecular mechanisms behind the risk increase operated by APOe4 are not 
completely characterized, however data obtained from cell cultures evidenced how 
APOe4 promotes oxidative stress and the generation of neurotoxic fragments which 
impairs mitochondrial activity [31–33]. In particular, APOe4 isoform seems corre-
lated to an increased α-synuclein (αSyn) accumulation accompanied with synaptic 
loss, lipid droplet accumulation and dysregulation of intracellular organelles [34]. 
αSyn is a presynaptic membrane-bound protein abundantly expressed in the brain 
and is involved in synaptic signaling and membrane trafficking [34]. Further, over 
other 50 loci/genes have been implicated in SAD [15, 35, 36], underlining AD’s 
complexity and the possibility of it being triggered by different alterations. Indeed, 
up to date, literature (OMIM and GO) reports 19 different AD subtypes based on 
different associated loci. Table 1 reports a summary of such subtypes.

2. The pathways of Alzheimer disease

The number of genetic factors described is important contributors to AD. 
However, neither APOE4 nor the other correlated genes are entirely sufficient to 
explain (and promote) the totality of AD cases [37].

In such a complex environment represented by multicellular organisms a gene 
and its product/s is not a stand-alone entity. Each protein interacts with and influ-
ences many other elements in a synergic orchestra that regulates an organism.

As such, a single alteration propagates (indirectly) its effects to its interactors 
following pathways and molecular cascades.

Indeed, rather than single genes, a better approach would be investigating AD 
as an event related to alterations affecting entire biological pathways. Within this 
chapter, we will focus on molecular cascades potentially involved in AD. A plethora 
of mechanisms, including neuroinflammation [38], oxidative stress [39, 40], 
defects in mitochondrial dynamics and function [41], synaptic and cholinergic 
malfunctions [42], cholesterol and fatty acid metabolism as well as glucose ener-
getic pathways impairments in the brain [43, 44], autophagy failure [45], apoptosis 
with multiple cell signaling cascades [42, 46] and other less studied mechanisms 
have been proposed to contribute to AD. It should be stressed that while they are 
discussed separately, these pathways are all interlinked and changes in one may very 
well result in changes in the others.
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2.1 Hallmarks of AD: Aβ and tau related pathways

Aβ is 4 kDa fragment derived by two subsequent proteolytic cleavages of 
amyloid precursor protein (APP) by β and γ secretases [47]. As evidenced in studies 
focused on FAD, genetic alterations of APP, PSEN1 and PSEN2 may negatively 
influence cleavage promoting Aβ production. Interestingly, contrary to what was 
once believed, low concentrations of Aβ are seemingly needed to short and long 
term memory processes [48, 49], and Aβ homeostasis is a lot finer regulated process 
than once expected, consisting of highly conserved feedback loops and interactions 
between multiple processes [50].

Potentially risk genes may be found among the ones regulating the biological 
networks involved in Aβ expression and APP cleavage (including APP, PSEN1, 
PSEN2, ADAM10, BACE1), its localization and transport (like APOE, CLU, SORL1) 
and its degradation and clearance (including ABCA7, BIN1, CD2AP, CD33, PICALM, 
PTK2B and RIN3) [50, 51]. Interestingly, the same elements are interlinked with 
other important pathways (see later in the text). Aβ accumulation also impairs the 
structure and function of microglia, astrocytes, and vascular endothelial cells of the 
brain [52, 53].

The neurotoxic function of Aβ is linked to Tau, a microtubule-associated protein 
that provides structural assembly and stability of cytoskeletons [54, 55]. The 
expression of tau is critical during Aβ-mediated synaptotoxic processes where Aβ 
peptides target phosphorylation-based pathways [55] which hyper-phosphorylate 
Tau protein through glycogen synthase kinase 3 beta (GSK-3β) and other kinases 
activated by Aβ peptides [56], and promote their release from microtubules. The 
removal of Tau from microtubules favors the formation of NFTs composed by aber-
rantly folded form of hyper-phosphorylated tau and alter the structure of neuritis, 
giving rise to synaptic malfunction and neuronal death [52].

2.2 Oxidative stress

Oxidative stress (OS) has been widely recognized as a prodromal factor associ-
ated to AD [57]. According to the current knowledge, increased OS is a sign often 
observed in the brain of early-stage AD subjects [58]. In particular, OS may act 
as indicator of changes within the brain. Regarding its correlation with Aβ accu-
mulation, it is known that Aβ is both a cause and the result of OS, as Aβ structure 
facilitates OS induction [59] and represents a source of radical oxygen and nitrogen 
species (ROS, RNS) [57]. Through proteic mediators, including NOX, TGF-β, 
NF-κB and NRF2 genes ‘products [60], Aβ increases OS levels and triggers several 
molecular events that are strictly linked with AD development [61]: OS promotes 
Tau phosphorylation [62] and also exerts its effect on the choline recycling from 
the synapse processes, leading to ACh deficiency [63]. It also causes deficit in the 
energy metabolism (through impairment of mitochondria function and Blood Brain 
Barrier (BBB) permeability) and leads to apoptosis and then neurodegeneration 
[64–66]. Of particular relevance, excessive ROS inevitably lead to lipid peroxida-
tion [67], which has been proposed as early biomarker of AD [68]. OS cause dam-
age to all biomolecules. In particular, unsaturated lipids are very sensitive to their 
action. It should be noted that the brain gray matter and white matter are both very 
rich in polyunsaturated fatty acids (e.g. docosahexanoic acid, adreinic acid which 
are brain tissue specific) [69], making the nervous system very sensible to lipid per-
oxidation [69]. The action of OS in AD through lipid peroxidation is supported by 
histological evidences showing the co-localization of lipid peroxidation metabolites 
and Aβ plaques in the brain [70]. Further, it was demonstrated (in culture studies) 
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that the lipids usually found in AD brain lesions produce neurotoxic effects in 
presence of increased OS levels [71]. Indeed, the chemical reactions following lipid 
peroxidation often results in the production of isoprostanes and malondialdehyde, 
which causes DNA damage and toxic stress in cells [72]. Interestingly, the products 
of lipids peroxidation can be found in bio-fluids such as blood and urines, support-
ing their potential for diagnosis of AD. As AD potential biomarkers, some of these 
metabolites were investigated in literature [73]. However, their effective use in clinic 
is still debated as they showed some promising but contradictory results [68].

2.3 Inflammation

Inflammation is a physiological acute event, which is essential to defend the 
body against toxins and pathogens and for tissue repair. However, if inflammation 
becomes chronic, it causes detrimental effects with severe consequences. Among 
the processes involved with AD, the persistent over-activation of the inflamma-
tory cascade represents one of the main biological mechanisms through which AD 
progresses: indeed, neuroinflammation is not typically associated to AD onset, but 
it plays a key role in increasing the severity of the disease by exacerbating Aβ and 
Tau nefarious effects [74–76].

The main players behind cytokines production are the non-neuronal cells that 
populate the brain, such as microglia, astrocytes, and oligodendrocytes [77–79].

Literature data evidenced that Aβ up-regulates cytokines production by these 
cells. Further, the presence of Aβ stimulate microglia toward the chronicization 
of pro-inflammatory state by activating the NF-κB cascade [80–82] or promoting 
Aβ interaction with FPR2 [83]. Under such conditions, microglia generates a wide 
range of cytotoxic factors, including interleukins, TNF-α, superoxide, nitric oxide, 
ROS, prostaglandins and Cathepsin B, which damage extracellular matrix and cause 
neuronal dysfunction [75, 84]. The increase of cytokines triggers several poten-
tially harmful effects: it induces mitochondrial stress in neurons, either directly or 
indirectly, including via Aβ signaling. It also increases OS [85, 86] and Blood–Brain 
Barrier (BBB) permeability which likely influence AD progression [87].

Similar to microglia, astrocytes also produce and/or release an array of inflam-
matory mediators. Activated or “reactive” astrocytes can be roughly classified in 
two groups: the “A1” neurotoxic phenotype and the “A2” neuroprotective phenotype 
based on distinct transcriptional profiles [88]. The A1 group is likely involved with 
AD through mechanisms similar to microglia.

From a molecular point of view, cytokines like IL-1 and TNF-α promote Aβ 
production by up-regulating APP and the amyloidogenic secretases [81, 89], while 
IL-6 and IL-18 promote Tau hyper-phosphorylation [90, 91].

Ultimately, a cycle is established in which inflammation increases Aβ produc-
tion (and triggers other negative processes increasing protein accumulation and 
OS), which in turn stimulate microglia to maintain its pro-inflammatory state. The 
uncontrolled cytokines production then causes neuronal death [38] as it damages 
synapses (please refer to Section 2.4), myelin sheaths and axons, promote comple-
ment-mediated damage and/or triggers apoptotic or necroptotic mechanisms [92]. 
This link between AD and microglia is also supported by Genome wide association 
studies, which evidenced how several genes (TREM2, CLU, CR1, EPHA1, ABCA7, 
MS4A4A/MS4A6E, CD33, CD2AP) related with an increased AD risk regulate glial 
inflammatory reaction [75]. Additionally, it has been observed that astrocyte-based 
inflammatory cascade could recruit peripheral macrophages, white blood cells, and 
lymphocytes that infiltrate brain parenchyma thanks to BBB increased permeability 
and vascular alterations [93].
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2.4 Neurodevelopment and neurotransmission associated processes

Neurodevelopmental/Neuroplasticity and Neurotransmission related pathways 
are likely associated with AD development and in particular with its cognitive 
symptoms [94]. Physiologically, these processes consist in the proliferation, dif-
ferentiation and maturation of neural stem cells (NSC) and the modulation of their 
interactions through synapse- and neurotransmission- related processes.

Regarding neurodevelopment processes, it has been observed that the synaptic 
pruning pathway becomes aberrantly up regulated in the first stages of AD. This 
aberrant activation, which leads to synaptic loss [95], seems to be triggered by Aβ, 
through PANX1, ryanodine receptor (RyR) function [96, 97] other than several 
inflammatory signals [98].

PANX1 is a protein involved in the modulation of neurotransmission, neurogen-
esis and synaptic plasticity [99]. An increase of this protein under inflammatory 
conditions contributes to neuronal death [100].

RyR is Ca2+ channel which modulates different processes including neuronal 
development and plasticity [101].

The anomalous RyR channel function is triggered by Aβ and OS through Ca2+ 
increased concentrations [96] and are interlinked to mitochondrial and NOX2-
mediated ROS generation [102] and glial activation [103].

Regarding the inflammatory elements, it has been observed that many cytokines 
directly interact with receptors located on neuronal membranes. Here they activate 
or modulate pathways involved in synaptic function and plasticity (e.g. p38 MAPK 
and NFκB pathways). Further, synapse function and stability are also heavily regu-
lated by microglia and astrocytes. In particular, the former is seemingly implicated 
in pruning mechanics [95], while the latter appear to have an heavy involvement 
in regulating synapse formation, stability, and turnover [104]. Astrocytes physi-
cally wrap synapses. The synapse/astrocyte interface is fairly active as astrocytes 
release numerous proteins capable of modulating synaptic function, sprouting and 
remodeling.

Regarding neurotransmission, several reports have indicated a significant 
reduction of Serotonin (5-HT) [105], Dopamine (DA) [106] and Norepinephrine 
(NE) [107] levels as well as their receptors in AD brain. In AD, loss of 5-HT results 
in depression, anxiety and agitation [108], dysregulation of DA release leads to 
reward-mediated memory formation deficits [109] and low level of NE impairs 
spatial memory function [110]. Glutamatergic and cholinergic abnormalities in par-
ticular, were pointed as one of the principal causes of cognitive deterioration in AD.

2.4.1 Cholinergic neurotransmission

The cholinergic system regulates attention processing [111], cognition [111], 
memory function and behavior via the release of the neurotransmitter acetylcholine 
(ACh) [112].

Several studies evidenced how ACh production and reuptake are impaired in 
AD brains [113]. Further, accumulation of intraneuronal Aβ degenerates basal 
forebrain cholinergic neurons and reduces ACh levels [114], which in turn leads 
to memory deficits [115]. A potential candidate through which Aβ exerts its 
effect is α7nAChRs. Studies on α7nAChRs KO models evidenced how the lack of 
this receptor could induce AD-like pathology, including Aβ increase. In addition, 
its depletion is linked to an increased age-dependent expression of phosphory-
lated Tau [116, 117].

About the mechanisms underlying α7nAChR regulation of Aβ production, it 
seems that physiologically this receptor activations shifts APP processing toward 
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the non-amyloidogenic pathway [118], enhancing the production of the neuro-
protective APPα (soluble form) which is able to counteract Aβ neurotoxicity [119]. 
Interestingly, α7nAChRs mediate the intake of pre-synaptic Ca2+ levels during 
neuronal activity, indirectly modulating all biological processes dependent on this 
ion, glutamate release, synaptic transmission, and cognitive function [120]. When 
α7nAChRs is reduced, a negative feedback mechanism is triggered which increase 
Aβ production with the aim of maintaining Ca2+ influx in the cells [121]. Aβ in 
turn, further decrease its expression. This reduction ultimately exerts its effect on 
the N-methyl-D-aspartate receptor (NMDAR), which is removed from membrane, 
and on nicotinic and MAPK signaling, resulting in the development of cognitive 
deficits [122].

2.4.2 Glutamatergic neurotransmission

The most common excitatory neurotransmitter, glutamate, and its receptors 
are required for neuronal cell differentiation, migration, survival, and synaptic 
plasticity. There are two types of glutamate receptors: ionotropic glutamate recep-
tors (iGluRs), such as N-methyl-D-aspartate (NMDA), α-Ammino-3-idrossi-5-
Metil-4-isossazol-Propionic Acid (AMPA) and Kainate receptors; and metabotropic 
glutamate receptors (mGluRs).

Over-activation of these receptors causes neuronal excitotoxicity as well as 
neuronal death, and this is thought to be one of the mechanism causing neu-
rodegeneration in AD [123]. Indeed, in patients with AD, available evidence 
points to a disruption in the glutamatergic neurotransmission cycle at the 
point of glial cell reuptake of free glutamate from the synapse: Aβ can interfere 
with glutamate receptors and transporters [96]. The binding of such receptors 
triggers neuronal susceptibility to glutamate excitotoxicity, dyshomeostasis and 
defective plasticity [124]. The biological mechanism is still not well understood, 
but likely needs the function of a tyrosine-protein kinase, Fyn, which alter 
NMDARs function through phosphorylation [125]. Interestingly, Astrocytes 
may also play a role in the impaired glutamate clearance from the synaptic cleft. 
As said before, astrocytes wrap synapses. In the synaptic interface, these cells 
present a high concentration of excitatory amino acid transporters (EAATs), 
including EAAT1 and EAAT2. Physiologically, over 80% of extracellular gluta-
mate is taken by astrocytes through these transportes [126]. It has been observed 
that Aβ peptides and pro-inflammatory elements down regulate the expression 
of EAATs, impairing glutamate clearance [127]. As such, free glutamate accu-
mulates out of synapses while the vesicular glutamate uptake is reduced. The 
consequence of this condition is a chronic low-level activation of glutamatergic 
receptors on postsynaptic neurons and reduced sensibility to glutamate during 
neuronal firing (due to the low concentration of the neurotransmitter within 
vesicles) [128], leading to suboptimal neurotransmission and impairment of 
long-term potentiation (LTP) [128].

2.5 Energy metabolism

Energy is of high importance to maintain the physiological function of the 
brain. Processes related to energy production (Glucose intake, ATP production) 
are disrupted in AD brains [129]: Indeed, several brain areas in AD patients show a 
significant decrease of glucose metabolism [130]. Additionally, the first AD-related 
intracellular lesions usually develop in neurons with a higher energy consumption 
[131] and often involve enzymes related to tricarboxylic acid cycle, which lead 
neurons to a hypo-metabolic state [63].
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Interestingly, an excess of an important energy substrate, glucose, may also lead 
to the exacerbation of AD symptomatology. A high glucose concentration is also the 
main characteristic of diabetes. Other than being a risk factor for the development 
of diabetic complications, it seems to play a role in the development of AD cognitive 
symptoms [132].

Indeed, high levels of glucose are harmful for the brain, as they lead to Aβ accu-
mulation on brain lesions. It also exacerbates OS and promotes neuroinflammation 
[133, 134], with the consequences already described in the previous sections.

Glucose levels are affected by numerous elements, such as pro-inflammatory 
cytokines [135, 136]. However, the main control is exerted by the antagonistic func-
tion of insulin and glucagon.

Insulin signaling has been the focus of multiple AD studies [137–139] were it was 
shown that both Aβ deposition and tau hyperphosphorylation are correlated with 
the impairment of Insulin signaling cascade [140, 141], and insulin resistance in 
particular.

According to these observations, insulin resistance is a feature of both type 2 
diabetes mellitus (T2DM) and AD, supporting a biological overlapping between the 
two pathologies. As said before, the high glucose condition increases Aβ production. 
On a molecular level this increase is linked to the inhibition of APP degradation 
pathways [142].

Chronic hyperinsulinemia in brain also leads to cognitive dysfunctions [143], 
Insulin receptor is present in hippocampus [144], the main area responsible for 
memory. A chronic exposition to insulin favors a resistance mechanism, making 
neurons less responsive to this hormone. Further, Aβ can interact with insulin 
receptors causing their internalization and thus inhibiting their function [145]. 
Additionally, Aβ seizing insulin receptor, increases insulin levels in the brain micro-
environment, which in turn promote inflammation increasing TNFα, interleukin 1β 
and 6 (IL1β and IL6) [146].

Through a still not completely understood mechanic, the alteration of insulin 
signaling (or an increased resistance to insulin) ultimately triggers neuroinflam-
mation and neurodegeneration, increasing Aβ concentrations and Tau hyper-
phosphorylation [145, 147].

2.6 Autophagy impairments

Autophagy is an intracellular process mediated by vesicles and lysosomes that 
consists of several sequential steps which ultimately lead to the degradation of dam-
aged/misfolded proteins and dysfunctional organelles, thereby sustaining cellular 
homeostasis [148].

Physiologically, this process is especially important for neuronal and glial cells 
health [149, 150]. Although it is still not clear whether dysfunction of autophagy 
is the cause or result of AD [151], it has been observed that the dysregulation of 
autophagy may occur in early stage of the disease. In particular, this process is 
believed to be a major pathway for Aβ clearance/accumulation [152] and is also 
involved in the pathological mechanisms of neurodegeneration [149, 150]. Studies 
on animal models also reported that restoring the physiological autophagosomes 
clearance ameliorate/prevents AD cognitive symptoms [153].

Studies on AD brains revealed a significantly higher presence of autophagosomal 
and pre-lysosomal vacuoles in neuronal dendrites and axons [154–156]. These 
vacuoles were shown to be enriched in APP, γ-secretase components, PSEN1 and 
nicastrin, which are required to generate Aβ [157, 158]. According to the autophagic 
hypothesis, the block of autophagy and the consequent accumulation of autophago-
somes trigger neuronal degeneration [156] and leads to the release of these vesicles 
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in the extracellular space where they form the characteristic AD plaques [159, 160]. 
Autophagy is also essential for Tau clearance [161]. Usually, Tau is transported in 
vacuole for degradation, however certain mutations of Tau, cause the block of this 
protein in the membrane of lysosome. The accumulation in the membrane impairs 
and disrupts lysosomes function and structure, which ultimately lead to the release 
of lysosomal enzymes in the cytoplasm [161].

Recent studies have proven that autophagy could be influenced by diverse 
factors, such as Aβ [162] and OS [163]. In addition, ApoE4 and Aβ influence of 
lysosomal membranes stability [164].

From a biological point of view, autophagy is mainly regulated according to the 
physiological condition of cells through several elements:

ATG7 is a key gene regulating autophagy process [150]. It is involved in degrada-
tion of tau [165] and mediates the transport of Aβ peptides [166]. Alterations of its 
function have been correlated with AD [167].

Beclin 1 (BECN1/ATG6) protein mediates the initiation of autophagy [150]. 
BECN1 is involved in the pathophysiology of AD. The expression of BECN1 is 
decreased in brains of AD patients when compared with healthy individuals [168]. 
Decreasing of Becn1 expression leads to increased levels of Aβ [168] and also 
increases microglia inflammatory response [169].

The down-regulation of this protein is believed to be caused by caspase-3 up-
regulation [170]. Further, BCL2 Apoptosis Regulator (BCL2) is an anti-apoptotic 
factor that regulate autophagy through BECN1 [171]. The overexpression of Bcl2 has 
protective effects against Aβ-driven neuronal death [170]. The overexpression of 
Bcl2 affects also tau processing, reducing the number of NFTs [170].

Cyclin Dependent Kinase 5 (CDK5) is an autophagy-regulating kinase [150], 
which influences the metabolism and effects of Aβ. CDK5 likely act through regula-
tion of β-secretase, which is a crucial enzyme involved in APP metabolism [172]. 
This kinase also mediates Aβ peptide-induced dendritic spine loss [173], providing 
a pathway linking Aβ with cognitive dysfunction. Similarly, CDK5 is similarly 
involved in tau phosphorylation [174], although it seems to not be sufficient to trig-
ger NFT formation [174].

Clusterin (CLU/APOJ) is a chaperone protein implicated in autophagosomes 
biogenesis via interaction with ATG8E (MAP1LC3A) [150]. According to meta-
analyses data on AD subjects, this protein is one of the top AD candidate genes 
[37, 175, 176]. Its alterations have been suggested to affect neuron connectivity in 
several brain regions [177, 178]. Physiologically, CLU interacts with Aβ, preventing 
its aggregation [179, 180].

Cathepsin D (CTSD) is a lysosomal protease [150] involved in APP and Aβ 
degradation [181]. Its role and correlation in AD is still under debate as literature 
produced controversial results [182–185].

Alpha-Synuclein (SNCA/PARK1/NACP) is another protein found to be associ-
ated with AD risk [150]. SNCA is an important component of Aβ plaques [186] and 
can influence the expression of/be regulated by Aβ peptides [187, 188]. Similarly, to 
interaction of SNCA with Aβ peptides, SNCA and tau also induce each other fibril-
lization [189]. SNCA binds, phosphorylates, and inhibits microtubule assembly 
activity of tau [190].

PINK1 and PRKN genes products are important elements behind autophago-
some-mediated mitochondrial degradation [191]. In AD, high levels of Aβ inhibit 
the expression of those proteins, leading to increased dysfunctional lysosomes and 
neurodegeneration [192, 193].

Ubiquilin 1 (UBQLN1) is involved in autophagosome–lysosome fusion 
[150], likely through ATG8E (MAP1LC3A) [194]. Meta-analyses studies correlate 
UBQLN1 with an increased risk for AD [195, 196]. It has been observed that the 
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expression of UBQLN1 is reduced in AD patients [197, 198]. This decrease, in 
turn, up-regulates APP processing [198].

Ubiquitin C-Terminal Hydrolase L1 (UCHL1) influences autophagy by interac-
tion with LAMP2 which modulates autophagosome-lysosome fusion [150]. Uchl1 
interacts with App [199]. Its over expression decreases Aβ and NFT production 
[199] and lower levels of UCHL1 have been found in AD patients [200]. Regarding 
its autophagic role, it has been observed that UCHL1 is involved in lysosomal 
degradation of BACE1 [200].

Of all the described autophagic regulators potentially linked with AD, the 
mammalian target of rapamycin (mTOR) has been studied most investigated and 
is considered to play a key role in autophagy biogenesis. The mTOR protein acts as 
inhibitor in autophagy regulation through different pathways, including AMPK 
and PI3-Akt [201, 202]. In neurons and glial cells, mTOR is highly expressed an 
play an important role for synaptic plasticity and memory [202]. In neurons and 
glial cells, mTOR proteins are highly expressed, and their modulatory activities 
are fundamental in brain development. In the adult brain, mTOR signaling plays a 
crucial role in the translational initiation of protein synthesis required for synaptic 
plasticity and memory formation. However, uncontrolled mTOR activity leads to 
impairment of such processes. Numerous studies on AD brains and AD mice models 
revealed mTOR hyper-activation in AD brain [203]: Aβ accumulation seems to pro-
mote the activation mTOR pathway through phosphorylation of the mTOR inhibi-
tor PRAS40 [204]. Further, hypo-energetic states may also activate mTOR [146].

Interestingly, a defective autophagy in other cells, including Astrocytes, microg-
lia, and oligodendrocytes has also been linked to AD. In particular, disturbing 
basal autophagy processes in glia trigger neuroinflammation, which, as previously 
described, is an important pathway leading to the progression of AD [205].

2.7 Cerebrovascular abnormalities

In patients with AD, cerebrovascular abnormalities are a common comorbidity 
[206, 207]. These may contribute to the onset of cognitive impairment and demen-
tia. Altered cerebral blood flow and pressure at the level of the brain are induced 
vascular dysfunction [208]. These events are injurious to normal brain function that 
would result in disturbed homeostasis, but also in blood–brain barrier (BBB) dam-
age and micro-fractures in cerebral vases [209]. It has also been observed that the 
permeability of BBB to immune cells and molecules increases with aging. As said 
in the previous sections, the infiltration of immune cells in the brain parenchyma 
favors neuroinflammation [210] and ROS production [206], thus increasing the risk 
of AD [81].

These events are linked to the formation of Aβ plaques [211]. In particular, ROS 
production is related to the increase of the Advanced Glycation Endproducts (AGE) 
proteins and their receptors (RAGE) in the vascular system [212, 213]. A chronic 
hypo-perfusion state favors the formation of Aβ through the activation of the adap-
tive response to hypoxia and reduced clearance via perivascular draining [214, 215]. 
Furthermore, Aβ accumulation seems to be mainly localized in brain areas with 
reduced cerebral blood flow [216]. Finally, as said before, AD brains are in a pro-
inflammatory state; in these conditions Notch signaling is up regulated [217]. Notch 
signaling has an essential role in vascular development and angiogenesis in brain 
through the modulation of VEGFR2 [218]. It has been observed that chronic activa-
tion of Notch1 negatively affect the brain microenvironment, in particular the delicate 
connection of the brain with cardiovascular system. Indeed, Notch signaling, in 
association with VEGF, has been demonstrated to cause impaired blood flow, further 
reducing the nutrients intake by neurons (worsening the already weak energetic 
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state). Notch also induces BBB leakages, which has severe impact on the brain and 
may accelerate Aβ accumulation [217]. BBB homeostasis also depends on the role 
of astrocytes as the act as bridge between the vascular and neuronal compartment. 
Several studies have observed that astrocytes go through morphological changes in 
proximity of vascular Aβ deposits [219]. These alterations likely occur during early 
stages of the disease and evidence a neurovascular uncoupling, which ultimately lead 
to a dysfunction of BBB barrier. It has been observed that the alteration of astrocytes 
induces an age-dependent accumulation of amyloid [220].

2.8 Signal transduction

2.8.1 Alteration in PKC signaling

Protein kinase C (PKC) family in mammalian is divided in three subfamily: a) 
calcium-dependent PKC (cPKC), necessity of DAG and Ca2+ presence for trigger-
ing; b) calcium-independent isoforms (nPKC), that requires DAG presence; c) an 
atypical isoform of PKC (aPKC) [221]. PKC isoforms are involved in several neural 
processes, including the ones related to cognitive function. The cPKC and nPKC 
isoforms could have impact on synaptic formation and plasticity, spatial memory 
organization or dendritic loss [221], while aPKC isoform is involved in long-term 
memory [222]. A deficiency in PKC isoforms signaling is thought to be involved in 
AD [223]. Indeed, deficiency of bPKC is correlated with Tau hyper-phosphorylation 
(through GSK-3b) while lack cPKC and nPKC activation down-regulates α-secretase 
activity [222, 224]. Furthermore, Aβ contributes to inhibit PKC isozymes [223, 224].

2.8.2 Wnt signaling pathway

The Wnt signaling pathways play a crucial role in the central nervous system 
during all phases of neuronal growth and development and remain significant in 
the adult nervous system [225]. In adults, this process is particularly important 
since it manages memory creation, maintenance, and behavior. Alteration of 
this process is strongly linked to neurodegeneration [225]. Altered function of 
Wnt signaling components was detected in AD brain, including down regulation 
of b-catenin translocation into the nucleus [226]. The reduction of b-catenin in 
neurons nuclei triggers the overexpression of the Wnt antagonist GSK-3b and Dkk-1 
[225, 227]. GSK-3b, as discussed before, is the main enzyme in charge of tau hyper-
phosphorylation. Furthermore, it participates in OS generation, which ultimately 
disrupts neuronal function [227].

2.8.3 Calcium role

Cellular Ca2+ is a key ion involved in the regulation several processes in neurons 
[228, 229]. Its dyshomeostasis may play a key role in the pathogenesis of AD [230] 
and may even precede the formation of Aβ plaques and NFTs [228].

Intracellular Ca2+ is usually stored in the Endoplasmatic Reticulum. Its release in 
the cytosol is finely controlled by multiple pathways, including RyRs and inositol 
1,4,5-trisphosphate receptors (InsP3R) -related ones [231]. Even its intake from the 
extracellular environment is tightly regulated by multiple processes, such as the 
store-operated Ca2+ entry (SOCE) pathway and the voltage-gated Ca2+ channels 
(VGCC) [232].

As discussed before in the neurotransmission section, the physiological Ca2+ 
influx stimulates the processing of APP by α-secretase [230], thus protecting from 
Aβ accumulation. Imbalanced cellular Ca2+ contributes to pathophysiological 
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conditions such as accumulation of Aβ plaques and neurofibrillary tangles, protein 
misfolding, necrosis, apoptosis, autophagy deficits, and degeneration [230, 233].

Finally, excess cytosolic Ca2+ concur in mitochondria dysfunction and dysregu-
lates KIF5-Miro-Trak-mediated mitochondrial transport to synapses [63].

High OS states and the presence of Aβ can interfere with Ca2+ homeostasis, 
releasing it from ER stores through the InsP3R and RyR [230, 234]. In addition, the 
increased intracellular Ca2+ levels in the cells interfere with the physiological func-
tion of VGCCs, thus impairing neurotransmission [230, 233].

2.9 Balance of phosphorylation: Kinases and phosphatases

Protein phosphorylation and dephosphorylation are two essential cellular 
mechanisms through which a wide-range of receptors and trasduction cascades are 
regulated. Numerous kinases and phosphatases are encoded in our genome; these 
two class of enzymes works balancing each other, maintaining an equilibrium phos-
phorylation and dephosphorylation. Impairment of such finely regulated process 
has been correlated with AD. As said before in this chapter, one of the trademarks 
of AD is the hyperphosphorylation of Tau protein, which triggers in a prion-like 
manner the formation of NFTs. It has been observed that Tau protein has over 85 
potential phosphorylation sites [235].

There are several protein kinases that could phosphorylate Tau [236], some of 
them involved in the pathways discussed so far, including gsk-3β, cdk5, microtubule 
affinity regulated kinases (mark), tau-tubulin kinases (ttbk), Tyrosine-protein 
kinase Fyn (Fyn) or Tyrosine-protein kinase Abl1 (Abl1), protein kinase A (pka), 
Calcium/calmodulin-dependent protein kinase (CaMKII) [236, 237]. All of these 
kinases have been correlated with an increased risk of AD and are capable of phos-
phorylate tau at multiple sites [237]. In particular, it appears that phosphorylation 
of Thr231 and Ser262 residues are critical for NFTs formation.

Hyperphosphorylation of Tau can also be reached and maintained through 
inhibition of phosphatases. Protein phosphatase 2A (PP2A) is the major enzyme 
that accounts for ~ 71% of the total tau dephosphorylation activity [238]. This 
enzyme co-localizes with tau and microtubules in the brain [239]. In AD, the 
activity of PP2A is decreased [240]. Interestingly, its down-regulation not only 
decrease the dephosphorylating activity but also activates CaM-KII and PKA 
pathways, favoring hyperphosphorylation, as it has been observed in some in vitro 
and in vivo studies [241, 242].

Other phosphatases have also a role in AD, including Striatal-Enriched protein 
tyrosine Phosphatase is an intracellular phosphatase (STEP), protein phosphatase 
1 (PP1), protein phosphatase 5 (PP5), Calcineurin (PP2B), PP2C [243], through 
complex feedback mechanisms.

In particular, recent evidences pointed to STEP as one of the targets via which 
Aβ exerts its deleterious effects in AD. Elevated levels of Aβ seems to be involved in 
the activation of Step through the activation of α7nAChRs [244, 245] and the sub-
sequent increase of calcium influx [245]. This triggers a cascade of molecular events 
(in which PP2B and PP1 are also involved) that ultimately activate STEP. STEP 
mediates the Aβ-induced cognitive impairment by dephosphorylation of important 
elements involved in synaptic plasticity and dendritic density (such as SPIN90, 
PSD-95 and Shank), eventually causing the collapse of synapses [246, 247].

Interestingly, the regulation of kinases and phosphatases is strictly linked to 
glucose metabolism, through the protein kinase AMPK (Ampk). Moreover, Aβ tran-
siently inhibit AMPK potentially providing a link between Aβ and metabolic defects 
in the AD brain [248]. The activation of AMPK is correlated with glucose metabo-
lism and is related to gluconeogenesis, IR and insulin deficiency. AMPK mediates 
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phosphorylation and signal transduction through GSK-3β [249], PP2A [250], 
beta-secretase 1 (BACE1) and sirtuin1 (SIRT1). In addition, through SIRT1, AMPK 
promotes autophagy. Physiologically AMPK cascade inhibits hyperphosphorylation 
of tau and can reduce Aβ production. Impairments of this cascade potentially lead 
to AD progression.

3. Conclusions

AD is one of the main causes of disability and decreased quality of life world-
wide. Despite the ever-increasing number of studies, many fundamental questions 
remain regarding the molecular background of this disease.

The evidences derived from the recent data on AD stress its “multifactorial 
nature” and clearly indicate the necessity to consider wider approaches while trying 
to understand its biological mechanics. This chapter wanted to contribute toward 
and stress this new ‘pathway-like’ perspective on AD. A much deeper discussion 
would be needed to explore the cascades potentially linked with the disease and 
surely, a lot is still to be discovered. Research activity in this area is very fervid a new 
data is accumulating daily in the scientific community. As a final but very important 
note, our genes and pathways (altered or not) do respond, interacts and adapt 
‘continuously’ to external stimuli. Although they were not discussed here, these 
environmental factors should always be considered as they can greatly influence 
the biological mechanisms behind multifactorial pathologies such as AD [1, 251]. 
Further, Epigenetic dysregulation also seems to be involved in AD as methylation 
mechanics [252, 253] and miRNAs signaling [254] have been found to be altered in 
AD brain. The key to further deepen the studies of AD would be to understand how 
all these processes interact and influence with each other and act in concert toward 
this disease progression.
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Nomenclature

5-HT Serotonin
ABCA7 ATP Binding Cassette Subfamily A Member 7
ACh Acetylcholine
AD Alzheimer’s disease
ADAM10 ADAM Metallopeptidase Domain 10
AGE Advanced Glycation Endproducts
AMPA α-Ammino-3-idrossi-5-Metil-4-isossazol-Propionic Acid
AMPK 5′ adenosine monophosphate-activated protein kinase
aPKC atypical isoform of PKC
APOe Apolipoprotein E gene
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APP Amyloid precursor protein
Aβ Amyloid beta
BACE1 Beta-Secretase 1
BBB Blood Brain Barrier
BIN1 Bridging Integrator 1
CD2AP CD2 Associated Protein
CD33 CD33 Molecule
CLU Clusterin
CNS Central Nervous System
cPKC calcium-dipendent PKC
DA Dopamine
DAG diacylglycerol
DKK1 Dickkopf-1
ER Endoplasmatic Reticulum
FAD Familiar AD
FPR2 formyl peptide receptor type 2
GBA
GSK-3b glycogen synthase kinase 3 beta
iGluRs Ionotropic glutamate receptors
IL-1 Interleukin-1
IL-18 Interleukin-18
IL1β interleukin 1β
IL-6 Interleukin-6
InsP3R inositol 1,4,5-trisphosphate receptors
KIF5a kinesin family member 5a
LTP long-term potentiation
MAPK mitogen-activated protein kinase
mGluRs metabotropic glutamate receptors
Miro mitochondrial Rho GTPases
mTOR Mammalian target of rapamycin
NE Norepinephrine
NFTs neurofibrillary tangles
NF-κB nuclear factor kappa light chain enhancer of activated B cells
NMDA N-methyl-D-aspartate
NMDAR N-methyl-D-aspartate receptor
NOX NADPH oxidase
NOX2 NADPH oxidase-2
nPKC calcium-indipendent PKC
Nrf2 nuclear factor erythroid 2–related factor 2
NSC neural stem cells
OS Oxidative Stress
PANX1 Pannexin 1
PI3-Akt phosphoinositide-3-kinase - protein kinase B
PICALM Phosphatidylinositol Binding Clathrin Assembly Protein
PINK1 PTEN-induced kinase 1
PKC Protein kinase C
PRAS40 AKT1 Substrate 1
PSEN1 presenilin-1
PSEN2 presenilin-2
PTK2B Protein Tyrosine Kinase 2 Beta
RAGE Advanced Glycation Endproducts Receptors
RIN3 Ras And Rab Interactor 3
RNS Radical nitrogen species
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SAD sporadic AD
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Chapter 2

An Innovative Framework for 
Integrative Rehabilitation in 
Dementia
Valentin Bragin and Ilya Bragin

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with 
multiple pathophysiological mechanisms affecting every organ and system in the 
body. Cerebral hypoperfusion, hypoxia, mitochondrial failure, abnormal protein 
deposition, multiple neurotransmitters and synaptic failures, white matter lesions, 
and inflammation, along with sensory-motor system dysfunctions, hypodynamia, 
sarcopenia, muscle spasticity, muscle hypoxia, digestive problems, weight loss, and 
immune system alterations. Rehabilitation of AD patients is an emerging concept 
aimed at achieving optimum levels of physical and psychological functioning in the 
presence of aging, neurodegenerative processes, and progression of chronic medi-
cal illnesses. We hypothesize that the simultaneous implementation of multiple 
rehabilitation modalities can delay the progression of mild into moderate dementia. 
This chapter highlights recent research related to a novel treatment model aimed at 
modifying the natural course of AD and delaying cognitive decline for medically 
ill community-dwelling patients with dementia. For practical implementation of 
rehabilitation in AD, the standardized treatment protocols are warranted.

Keywords: dementia, Alzheimer’s disease, vascular dementia, cerebrovascular disease, 
rehabilitation, physical exercises, nutrition, cognitive training, integrative treatment, 
pharmacological and non-pharmacological interventions

1. Introduction

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative 
disorder, with multiple pathophysiological mechanisms. It currently affects more 
than 5 million individuals in the United States, and this number is growing daily. It 
is a whole-body disease, manifested by brain and body function changes during its 
progression. Clinically, people progressing through dementia demonstrate different 
manifestations of brain and body functions, including psychiatric manifestations, 
sensory-motor system disabilities, digestion insufficiency, and multiple bodily 
system involvement. A diverse combination of symptoms reflects the complexity 
of vascular, biochemical, physiological, and morphological changes in the brain 
and body during the development and progression of dementia. The amyloid 
cascade hypothesis has dominated the field of AD for many years. The intensive 
research concerning amelioration of the protein abnormalities in AD, based on the 
amyloid hypothesis, does not have practical value yet despite a very controversial, 
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accelerated FDA approval of Aducanumab, an amyloid monoclonal antibody [1]. 
Conventional therapies—monotherapy or combinations of multiple medications—
are not able to stop the progression of the disease and have very limited modifying 
effects. Our present understanding of the pathogenesis of AD goes far beyond brain 
dysfunction and pathology. Clinical and epidemiological studies have helped to 
identify modifiable factors in the onset and treatment of AD. Among these, hemo-
dynamics, muscle health, and nutritional factors have been researched in animal 
and clinical studies for many years. The hemodynamic factor is related to vascula-
ture, cerebral blood flow (CBF), and structural changes in the brain. A decrease in 
CBF is well documented during the progression of dementia. Sensory muscle status, 
changes in gait, balance, and fine dexterous motor skills are all strongly connected 
to the initiation and progression of dementia [2].

Nutritional deficiencies begin in the early stages of AD with a loss of taste and 
smell, which interferes with normal digestive processes. This disruption pro-
gresses to digestive disorders, malnutrition, and weight loss in advanced stages of 
dementia [3].

Rehabilitation is an important part of any treatment and has gained attention 
from the World Health Organization (WHO). In February 2017, there was a meeting 
hosted by the WHO, “Rehabilitation 2030: A Call for Action.” At the event, WHO 
issued a call for action towards “concerted and coordinated global action to scale 
up rehabilitation.” Rehabilitation is very important for people living on the wide 
spectrum of our world’s economies and should thus be available for all medical 
conditions that require it, including dementia [4].

The rehabilitation of patients with dementia is an emerging concept aimed 
at achieving the optimum level of physical and psychological functioning in the 
progression of aging, neurodegenerative processes, and chronic medical illnesses. 
The general hypothesis for this combined therapy is based on the suggestion that 
every modality has a unique influence on brain functions in AD, and a combination 
of these modalities could have a synergistic effect, significantly slowing the rate 
of cognitive decline, improving quality of life, and delaying institutionalization. 
Nutrition and other non-pharmacological interventions, especially physical and 
cognitive activities, have shown promising results in delaying the onset of dementia 
and could potentially improve the outcome of dementia treatment. Research related 
to simultaneous implementation of medication and multiple non-pharmacological 
interventions is very limited [5, 6].

Studies relating to cognitive rehabilitation, physical exercises, and nutrition 
alone have shown a positive effect on cognition in animals and humans in time 
frames ranging from several months to several years [7–10].

Since 2000, we have developed a working rehabilitation model, utilizing all 
available resources, most of which are accessible to the average individual in the 
hopes of delaying the progression of dementia and possibly improving function in 
certain cognitive and physical domains. The objectives of this rehabilitation model 
are the activation of brain functions through the alteration of neurotransmitter 
activities and the increase of muscle activity, sensory input to the brain, CBF, and 
nutrients and oxygen supply.

To the best of our knowledge, there is no rehabilitation model related to the 
simultaneous implementation of multiple available modalities (medications, 
physical and cognitive exercises, nutrition, and sensory stimulations) for AD 
patients living at home. We hypothesize that the simultaneous implementation 
of all possible rehabilitation modalities could delay the progression of dementia 
significantly, when compared to the utilization of a single modality. Here, we 
present the key elements of this working rehabilitation model for patients living 
at home.
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2. Pathophysiology of dementia in context of rehabilitation

2.1 Several factors in the pathogenesis of dementia

Our understanding of pathophysiology in dementia has shifted in focus from 
amyloid accumulation to hemodynamic and energetic metabolism changes in the 
brain. It is a chronic, progressive disorder that affects the entire body [11]. Amyloid 
accumulation in the brain is a dynamic process in response to different etiological 
factors: stress, hypoxia, loss of subcortical nuclei (the nucleus basalis of Meynert, 
the locus coeruleus, and the raphe nucleous) [12–14].

The hemodynamic factor is related to the development of hypoxia- and hypoxia-
related metabolic and structural changes in the brain. Hypoperfusion affects white 
matter, subcortical nuclei, and the cortex of the brain in people with dementia. 
Chronic hypoxia decreases energy production in the brain, affecting protein 
synthesis pathways, which cause the development of reversible and irreversible 
morphological changes in the brain structure. During dementia progression, there 
are cerebral cortex and cortical corpus callosum atrophy, white matter damage, and 
dysfunction of subcortical nuclei. Alzheimer’s dementia often begins as a disease 
of small blood vessels that are damaged by oxidation-induced inflammation and 
dysregulated amyloid metabolism, which may be seen as implications for early 
detection and therapy [15]. Today, there is an overlap between Alzheimer’s disease 
and cerebral vascular dementia. Vast evidence from epidemiological, neural, 
physiological, clinical, and pharmacological studies suggests common pathogenic 
pathways between these two types of dementia and highlights the vital roles of vas-
cular pathways in dementia development and pathology. The deficiency of cerebral 
blood flow could be a reason for neuronal dysfunction, white matter damage, and 
death of brain cells in both types of dementia.

The course of dementia is associated with progressive changes in cardiovascular 
pathology in the brain, increased numbers of micro and lacunar infarcts, cerebral 
atrophy, white matter changes, and signs of demyelination [16, 17]. CBF changes 
have been well documented in normal aging, MCI, and dementia by using differ-
ent imaging techniques, such as single-photon emission computed tomography 
(SPECT), functional magnetic resonance imaging (fMRI), positron emission 
tomography (PET), among others. On an rCBF—SPECT test, people with mild AD 
showed a significant reduction in rCBF in the left parietal cortex during an episodic 
memory task [18]. The conversion from MCI to AD, as well as the progression of 
AD, is associated with CBF changes. The lower the patient’s CBF, the faster and 
more drastic is their decline of Mini-Mental Status Exam (MMSE) scores [19].

The first notable changes in CBF start in the entorhinal and hippocampal 
areas of the brain, eventually expanding into the temporal and parietal lobes until 
finally reaching the frontal lobes [20]. In some places of the brain such as the 
sensory-motor strip areas and the cerebellum, CBF is relatively well-preserved in 
dementia [21]. This fact helps our understanding and explanation of the preserva-
tion of procedural memory in dementia, which is initiated in sensory-motor areas 
of the brain [22].

Moreover, judging from the same studies, it is quite possible to suggest that regu-
lation of CBF is preserved as well, at least in the sensory-motor strip and cerebellum 
in moderate stages of the disease. Another example of preserved CBF in dementia is 
the report concerning increased CBF in frontal-occipital cortex in mild–moderate 
AD patients (7 affected people), compared to the control group (8 healthy individu-
als) during a visual face-matching task [23].

Energetic crises include mitochondrial failure and a decrease in the flow of 
substrate in brain neurons. A decrease in energy production in the central nervous 
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system is one of the key factors in pathogenesis of dementia, which profoundly 
changes neuron function.

On the peripheral level, there are well-documented changes in sensory-motor 
system; decrease in feelings of taste, smell, and number of proprioceptive recep-
tors; changes in mobility of joints and spine; increase in muscle spasticity; and 
decrease in muscles blood flow. Chronic muscles hypoxia is associated with muscle 
atrophy and sarcopenia. The decreased number of receptors and their functions 
result in diminished sensory input to the brain, and compromised CBF and neu-
rotransmitters activities.

2.2 The 3M’s dementia assessment model™ for dementia

Dementia has a progressive course of cognitive decline and physical disability, 
negatively affecting the quality of life, the capacity to socialize, and the ability to 
perform everyday activities. From a practical point of view, we developed the 3M’s 
dementia assessment model™ for dementia evaluation, which includes assessing 
memory, mood, and movements. It is displayed in Figure 1.

Dementia can start from any of them, alone or in combination with each other. 
All factors could be affected at different speeds, and all of them have to be taken 
into consideration during dementia evaluation [24, 25]. Movements, general 
slowness, and fine motor skills could start before the development of the cognitive 
problems in dementia [26].

3. Modifiable factors in context of rehabilitation

Each of these modifiable factors could affect disease progression and treatment.

3.1 Stress

Acute and chronic stresses can affect brain and bodily functions by mobilization 
of sympathetic nervous system and activation of hypothalamic–pituitary–adrenal 
(HPA) axis on different stages of stress. Since Hans Selye’s discovery of the general 

Figure 1. 
3M’s dementia assessment model™ for dementia.
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adaptation syndrome, countless publications demonstrate relationships between 
stressors, stress response, and diseases in animal and clinical studies [27]. Stress 
affects physiological and biochemical processes in every organ in the body during 
dementia initiation and progression [28]. Sensitivity to stress events increases with 
aging and may accelerate cognitive and physical decline in dementia [29]. Acute 
stress affects attention and memory [30]. Chronic stress could play a role in develop-
ment and progression of dementia by persistent activation of fundamental surviving 
pathophysiological, mechanisms [31, 32]. There are links between chronic stress and 
level of memory loss in MCI and dementia [33]. Stress-related hormones mobiliza-
tion is manifested in failures of homeostasis, thus leading to various diseases, includ-
ing dementia [34]. Stress affects physiological and biochemical processes in every 
organ and system in the body during dementia initiation and progression [28].

They may be bidirectional relationships between stress and dementia. Stress is 
associated with CBF redistribution, mitochondrial and multiple neural pathways 
changes, and decreased attention and memory [35]. However, during dementia pro-
gression, loss of memory, behavior, and social communications could be stressors 
and evoke stress response by themselves.

There is related data utilization of different interventions aimed at modula-
tion of stress response; the practical recommendations are in the early stages of 
research [36]. Effective stress management activities could be helpful for patients 
with dementia and their caregivers and need to be included in dementia treatment 
strategy [36, 37].

3.2 Depression and other emotional problems

Depression like dementia is a whole-body disease, affecting brain metabolism, 
sensory systems, muscle health, and nutrition. Depression could share common 
pathophysiological mechanisms with dementia, such as hypoperfusion, hypoxia, 
oxidative stress, and energetic and neurotransmitters failure and stress. Depression 
is one of the risk factors for developing dementia [24].

Depression could precede dementia and accompany dementia progression. The 
“vascular depression” hypothesis has been proposed, based on clinical, physiologi-
cal, and morphological changes in seniors, suffering from persistent depression 
[38]. Clinical and radiology data and epidemiological studies demonstrate the 
changes in brain structure in dementia in old-old patients [39]. Treatment of late-
life depression with vascular pathology is a challenging task for clinicians.

Apathy and anxiety may be seen in depression and dementia affecting the 
course of these diseases and associated with detrimental effects on activities of 
daily living [40–43].

3.3 CBF and vascular pathology

The fact that cardiovascular pathology occurs in multiple neurodegenerative 
processes in dementia is well documented. However, it remains necessary to investi-
gate the interconnections and order of occurrence of these two factors [44, 45]. The 
course of dementia is associated with progressive changes in cardiovascular pathol-
ogy, increased numbers of microbleeds and lacunar infarcts, cerebral atrophy, white 
matter changes, and signs of demyelination [17].

Vascular pathology and decrease of CBF contribute to progression of clinical 
manifestations, improving cognitive and physical functions, and developing mor-
phological changes in dementia. Changes in CBF, cerebral ischemia, and hypoxia 
negatively affect substrate delivery, necessary for energy production and protein 
synthesis and essential neuronal activities [46].
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3.4 Digestive system

In epidemiological studies, nutrition has been under investigation for many 
years as an important factor contributing to healthy aging and prevention of 
dementia and multiple chronic diseases.

For the purposes of this discussion, the nutritional aspect in the treatment of 
dementia can be separated into four components.

The first component is related to the diet. There is currently no consensus 
regarding a diet geared towards at least partially normalizing brain metabolism 
in dementia. Along with the well-known Mediterranean diet, calorie-restrictive 
diets, as well as ketogenic diets, may have a beneficial neuroprotective effect in 
aging and multiple neurodegenerative diseases [47]. The diet close to that used 
for cardiovascular pathology and diabetes with some modification geared towards 
very low carbohydrate products is probably the most suitable diet to be offered for 
dementia patients.

The second component is a number of vitamins and nutriceuticals, which have 
been known to affect critical biochemical pathways involved in the pathophysiology 
of dementia. Among them are vitamins and nutrients that are a part of the normal 
metabolic processes and become deficient during stress, lack of exercises, hypoxia, 
and many other clinical conditions. In a controlled study on institutionalized, 
moderate-to-severe dementia patients taking a vitamin/nutriceutical combination 
for 9 months demonstrated a significant delay in decline on the Dementia Rating 
Scale and clock-drawing test, compared to those receiving placebo. The vitamin-
nutriceutical combination in this study was designed to support antioxidant activi-
ties, energy production, and protein synthesis. This small study supports the notion 
that even in severe dementia, there is still room for stabilization of disease progres-
sion [48]. The specific research data related to different nutritional substances and 
vitamins is out of scope of this chapter.

General recommendations include products that are rich in antioxidants and 
include dietary precursors for mitochondria function, protein metabolism, and 
membrane phosphatide synthesis [6, 49].

The third component is associated with changes in gastrointestinal functions in 
every part of the GI system. These begin in the early stages of dementia and worsen 
with disease progression, frequently manifested as nutritional disorders such 
as anorexia, poor digestion, malnutrition, and weight loss. The loss of taste and 
smell develops in the early stages of dementia, results in the loss of appetite, and 
negatively impacts all stages of digestion. Even in the early stages of AD, commu-
nity-dwelling patients display poor nutritional consumption [50]. Patients with 
dementia often forget to eat or drink on time. In the advanced stages of dementia, 
progressive GI malfunctions occur simultaneously with chewing and swallowing 
problems, dysphagia, and a decreased feeling of thirst, all of which are connected 
to poor food digestion and absorption, vitamin deficiencies, decreased immunity, 
loss of muscle mass, increased frequency of infection, poor balance, and falls [3]. 
Weight loss is associated with severity and mortality in AD and is an indicator of 
protein, energy, vitamin, and nutrient deficiency [51]. According to these authors, 
in the middle stage of AD (MMSE—16.6 ± 4.9), significant weight loss is observed 
in more than 40% of patients living at home.

The presence of malnutrition in dementia could be a result of GI system dysreg-
ulation: changes in appetite, weight, and GI motility, and the probable development 
of exocrine pancreatic insufficiency.

An indicator of pancreatic exocrine insufficiency is the level of fecal elastase-1 
in stool, the concentration of which decreases progressively with age. Pancreatic 
exocrine insufficiency was seen in 21.7% of people over 65 years without 
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gastrointestinal disorders, surgery, or diabetes [52]. Pancreatic exocrine insuffi-
ciency is more prominent in patients with insulin-dependent diabetes [53].

The existence of pancreatic insufficiency during the aging process and in 
diabetes, as well as changes in glucose metabolism in dementia, makes it quite pos-
sible that exocrine pancreatic insufficiency plays an important role in the digestive 
malfunctions in dementia.

The fourth component is the microbiome. Imbalance in gut flora can negatively 
affect general health. The first connection between intestinal microbiome and 
longevity was described over a century ago by Elie Metchnikoff [54]. Research 
about the gut-brain axis demonstrates the strong bidirectional connections between 
gut–body health. Gut flora participates in production of serotonin, dopamine, and 
GABA—neurotransmitters, actively affected in many neurodegenerative illnesses 
and medical diseases as well. Stress, depression, and dementia negatively influence 
the health of the gut. A practical recommendation about using probiotics, prebiot-
ics, and postbiotics for depression and dementia is on the horizon [55–57].

3.5 Medical illnesses

Medical illnesses (cardiac problems, diabetes, etc.) are risk factors for dementia 
development and progression. In recent years, accumulating evidence of research has 
suggested that cardiovascular pathology, especially irregular pulse, could be associated 
with dementia progression. In diabetes mellitus (type 2), there are metabolic changes, 
which affect vasculature and cell functions in every organ in the body. The cognitive 
and physical decline in dementia became worse with progression of diabetes.

The treatment and stabilization of these medical illnesses and disorders have 
a positive effect on people with dementia. The same approach could be applied 
to diseases related to the transport of oxygen to the organs (anemia, pulmonary 
pathology, and renal problems).

3.6 Cognitive activities

Mental activities have a positive effect on CBF in healthy individuals and have 
been shown to delay the onset of dementia [58]. Research related to improving CBF 
in AD patients through the use of cognitive activities is slowly growing. Recently 
a program of mental exercises for nursing home residents with mild AD showed 
an improvement in cognitive function after being implemented for 6 months. This 
program was based on extensive previous research done by the same research team 
relating to increased CBF during various mental tasks [59].

3.7 Physical activities

The connections between physical activities and rCBF are well established and 
done on healthy seniors, patients with MCI, and animal dementia models [60]. 
Physical exercise is considered a preventative or disease-modifying intervention, as 
it has shown a neuroprotective effect in brain aging [61]. Physical activities increase 
level of BDNF, which is responsible for brain health [62].

The effects of resistance training and aerobic exercises are connected to 
increased activity of the entire cardiovascular system and CBF simultaneously. 
These physical activities increase level of BDNF, which actively participate in learn-
ing, memory, and mood [63].

Hand exercises are more suitable and safer for fragile medically ill patients with 
all stages of AD because they can be done in a seated or laying position and appear 
to be a practical model for a home-based exercise regimen [11].
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Simple hand movements have been shown to increase CBF in contralateral 
hemisphere of healthy subjects [64]. An increase in CBF during meditation, with 
simultaneous chanting and finger movements (dual tasks), has been observed by 
SPECT in healthy volunteers [65].

Physical activities have positive effect on neuropsychiatric symptoms in 
dementia [37].

Physical and mental exercises alone, as well as a combination of the both, could 
modify CBF and improve cerebral metabolism, decrease hypoxia, increase avail-
ability of oxygen and nutrients to brain cells and structures, increase brain vitality 
and prolong an active life for patients with dementia.

4. Rehabilitation model for dementia

Rehabilitation of AD patients is an emerging concept aimed at achieving opti-
mum levels of physical cognitive and psychological functioning in the presence of 
neurodegenerative processes, aging, and progression of chronic medical illnesses.

Given the complexity regarding the pathogenesis of AD, we hypothesize that the 
simultaneous implementation of multiple rehabilitation modalities could delay the 
progression of dementia. To the best of our knowledge, there is no rehabilitation 
model designed for the treatment at home for many years. This program starts in 
the doctor’s office and continues in the home indefinitely.

4.1 4M’s dementia rehabilitation model™ for dementia

From a practical point of view, we approach dementia rehabilitation with the 
4M’s dementia rehabilitation model™, which includes treating memory, mood, 
movements, and mitochondria to increase the vitality of neurons and their connec-
tions by increasing CBF, as shown in Figure 2.

Figure 2. 
4M’s dementia rehabilitation model™.
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4.2 Office and home parts of the program

The in-office part of the model includes (a) an assessment of cognitive functions 
and movements, with special attention paid to preserved areas in cognition and 
motor system; (b) education about AD, modifiable factors, which needs to be used; 
(c) teaching patients and caregivers stress reduction techniques, as well as appro-
priate physical and cognitive exercises, based on patient’s level of dementia; (d) 
physical and cognitive training during office visits; and (e) monitoring of treatment 
progress during subsequent office visits.

The home part of the model includes (a) physical exercises, cognitive train-
ing, and stress management techniques practiced as per the workbook and videos 
(which are given to each patient); (b) sensory activation (light, sound, relaxation 
videos with tranquil nature scenery; and (c) nutrition.

The physical and cognitive aspects of the rehabilitation program have been devel-
oped based on the physiological, real-life interplay between physical activity, attention, 
and procedural memory. Physical activities require attention and help with procedural 
memory. All of them have a direct effect on CBF [64–66]. During the progression of 
AD, all three components deteriorate at different rates over time. However, they are 
relatively preserved, compared to other cognitive functions until the late stages of AD.

Over the years, preservation of cognitive function has been demonstrated up to 
72 months of treatment. Remaining at the same level of cognitive function at the 
initial visit is a significant treatment achievement [67, 68].

Even though the progression of dementia is going along with development of 
chronic hypoxia, there is still room for developing neuroplastic changes in response 
to sensory-motor stimulation [69]. In recent review, ischemic damages evoke an 
initiation of network reorganization in spared areas of the brain [70].

4.3 Rehabilitation in chronic versus acute brain diseases

There are different goals for rehabilitation for chronic and acute brain diseases; 
even all available rehabilitation modalities are implemented simultaneously in both 
types of rehabilitation. The goal of rehabilitation in dementia is to prevent cogni-
tive and physical decline and to preserve the level of functioning and the quality of 
life for as long as possible. Rehabilitation activities for people living at home have 
to continue without time limits, for many years. Home program refers to activities 
designed for joint patient and caregivers, which increase patient–caregiver con-
nections. The office staff get training, related to interaction with patients and their 
caregivers. Much attention is placed on education and support of caregivers as well. 
Elements of physical, occupational, and speech therapy in outpatient clinics could 
be provided by office staff in the office and by caregivers at home. Cognitive and 
physical stabilization is expected, as demonstrated in Figure 3.

In stroke and head trauma (acute brain catastrophes), the goal of rehabilitation 
is to return to the premorbid level as close as possible. Rehabilitation in this case is 

Figure 3. 
Rehabilitation in chronic brain disease.
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a time-limited process, lasting from several months to several years. Cognitive and 
physical improvement is expected, as shown in Figure 4.

4.4 Six pillars of rehabilitation

The six pillars of the program consist of pharmacological interventions, mild 
physical exercises, multisensory stimulation, cognitive training, nutrition, and 
emotional support. Each pillar has direct and indirect effects on the elements of the 
4M’s Dementia Rehabilitation Model™.

Medications and supplements comprise the first pillar in this model. 
Cholinesterase inhibitors, NMDA receptor antagonists, antidepressants, neurolep-
tics, and mood stabilizers, along with medication for sleep and pain, are used when 
clinically appropriate. Supplements include vitamin D3, B-complex, fish oil, folic 
acid, alpha-lipolic acid, acetyl-l-carnitine, inositol, Ribose, and other vitamins.

Mild physical exercises are the second pillar in this rehabilitation. Muscle 
activities couple with increasing brain blood flow and simultaneously attention 
and procedural memory training. Exercises are designed for people with extremely 
limited physical capacities and problems with gait and ambulation. The physical 
exercises are safe and done in sitting positions and can be performed in the doctor’s 
office or at home.

Physical exercises mainly consist of simple, coordinated hand and leg exercises 
performed both with and without the use of simple objects, such as a tennis ball. 
Dual-task exercises consist of hand movements, coupled with counting and breath-
ing. Special exercises have been developed for balance training and include eye 
movements for decreasing visual fields and working with neck movements.

Multisensory stimulations include pleasurable activities related to auditory, 
visual, and tactile and other sensory channels. For example, patients work on 
pegboards to increase finger mobility and right–left coordination, or patients read 
tongue twisters loudly, sing songs, or watch comedians.

Attention and memory training consist of computerized attention (“go, no-go”) 
and working memory exercises (“N-back” paradigm), tasks that are performed in 
the doctor’s office with different objects (words, numbers, shapes, pictures, tex-
tures) plus pen and paper cognitive exercises, performed at home.

Nutrition includes diet and digestive support for microbiome and pancreatic 
enzymes, if clinically indicated (loss of weight).

Emotional support consists of implementation of stress management tools, brief 
educational sessions, related to family relationships, psychotherapy for patient’s 
emotional reactions in response to decline of cognitive and physical functions. 
For caregivers, there are psychotherapy sessions for developing coping strategies 
to manage behavior problems in dementia and to recognize symptoms of burnout 
syndrome. The family understanding and support help dementia victims stay at 
home for a long period of time.

Figure 4. 
Rehabilitation in acute brain trauma/stroke.
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5. Clinical cases

Here, we present two cases with mild dementia stabilized over years with an 
integrative treatment approach.

5.1 Case 1

Patient was an 87-year-old, retired engineer, who first came to our office at age 
68. Her diagnosis was mild dementia with episodes of depression, anxiety, insomnia, 
HTN, diabetes, neuropathy, arthritis, dizziness, and gait problems. Her current psy-
chiatric medications are memantine, gabapentin, clonazepam, zolpidem, buproprion 
SR, donepezil, vitamin D, lovaza, magnesium oxide, B-complex, and folic acid.

This patient has been treated for 19 years (2001–2020). Cognitive assessments 
include the MMSE, clock-drawing task, verbal fluency animals, and verbal fluency 
letters tests. She was doing full rehabilitation protocol with any new modifications, 
which had been developed during this time interval in our office.

As you can see in Figures 5–8, this patient has been stable for the whole period 
of treatment based on the results of these 4 tests.

Figure 6. 
Clock-drawing task stabilization.

Figure 7. 
Verbal fluency animals.

Figure 5. 
MMSE stabilization.
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5.2 Case 2

This patient was a 92-year-old female, retired clerk, who came for treatment 
at age 74. Her diagnosis was mild dementia with episodes of depression, anxiety, 
insomnia, HTN, CAD, diabetes, arthritis, dizziness, and gait problems. She had a 
mini-stroke in 2015. Current medications are Namenda, Trintellix, B-complex, folic 
acid, and magnesium oxide.

Figure 10. 
Clock-drawing task stabilization.

Figure 11. 
Verbal fluency animals.

Figure 8. 
Verbal fluency letters.

Figure 9 
MMSE stabilization.
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This patient has been treated for 16 years (2002–2020). Cognitive assessments 
include Mini-Mental Status Examination (MMSE), clock-drawing task, verbal 
fluency animals, and verbal fluency letters tests. She was doing full rehabilitation 
protocol with any new modifications as in the previous case 1.

After mini-stroke (2014–2015), her MMSE dropped to 22 and then 
returned to 25.

As you see in Figures 9–12, this patient has been stable for the whole period of 
treatment.

6. Discussion

The theoretical basis of this rehabilitation model is rooted in emerging research 
related to neuroplasticity data. Other well-known facts regarding AD pathogene-
sis—including chronic hypoperfusion and hypoxia, oxidative stress, and mitochon-
drial and bioenergetics failure—also provide a solid theoretical foundation upon 
which to effectively design and test different treatment modalities available for 
rehabilitation in AD [69–71]. Additionally, modifiable risk factors for AD develop-
ment and progression continue to be identified [72].

In a broader sense, rehabilitation in AD could include medications that are 
available today (and those that will become available in the future), in addition to 
all possible non-pharmacological modalities that are aimed at stabilizing brain and 
body functions, with special attention to physical and cognitive exercises, sensory 
stimulations, and dietary modifications.

The rehabilitation of AD has to be seen as an ongoing treatment approach not 
limited by time constraints. It can be adapted to the different stages of this illness, 
including even the preclinical stage.

Not all motor and cognitive functions are equally affected in AD. At various 
levels of dementia and in each cognitive domain, there is a time-related evolution of 
brain disability. Meanwhile, there is a growing body of data related to the preserva-
tion of some of the brain functions in AD, including certain learning and proce-
dural memory capacities, emotional and movement controls, and the ability to use 
external memory aids [72–76].

The multifaceted rehabilitation model for home usage presented here demon-
strates strategies that go beyond the prescribing of medications to alleviate AD 
progression alone. It is a dynamic framework that is open to the addition of any 
newfound medications or innovations in nonpharmacological interventions. This 
model is based on a proactive, 24/7 approach to battling AD—starting with doctor’s 
office visits and continuing into the patient’s home for an indefinite period of time.

These rehabilitation strategies become meaningful only with ongoing support 
from caregivers who help the patients at home with nutrition and everyday physical 
and cognitive activities. This model is flexible, and the key to it is to use all the five 

Figure 12. 
Verbal fluency letters.
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elements of the program simultaneously. This kind of simultaneous approach is 
already commonly used in the treatment of many other progressive chronic ail-
ments, such as cardiac problems, dyslipidemia, hypertension, and diabetes.

The cost for implementation of this home-based rehabilitation model is minimal 
(workbook, videos, and tennis ball). In addition, this model may ease the financial 
burden of this deadly disease on the health care system as a whole by reducing 
secondary medical problems from progressive dementia and delaying nursing home 
placement.

7. Conclusion

A multifaceted rehabilitation model for dementia at home offers a promising 
strategy for postponing cognitive and physical decline in dementia. Modifiable 
factors in dementia could be implemented at low cost.

The development of comprehensive therapy models for rehabilitation in demen-
tia is a matter of time. There is an urgent need for the designing of long-term stud-
ies, in which all available modalities will be simultaneously implemented and for 
as long as possible. Further research is needed to assess the efficacy and economic 
impact of this multifaceted rehabilitation model.

8. Summary points

• Epidemiological studies have identified a number of modifiable factors in the 
onset and progression of dementia.

• A new understanding of the pathogenesis of dementia has revealed that 
protein changes in the brain develop simultaneously with cerebrovascular 
pathology.

• Progression of clinical dementia depends on the stress, emotional reactions, 
CBF, digestive system, medical illnesses profile, cognitive activities, and 
muscle health.

• Physical and mental activities may contribute to the delay of the onset of 
dementia and slow down the disease progression.

• A novel treatment model for dementia patients is the simultaneous use of 
nonpharmacological modifiable factors and pharmacological interventions for 
many years.
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Abstract

Alzheimer’s disease (AD) is a disorder of brain which progressively weakens the 
cognitive function. It is occur due to formation of β-amyloid plaques, neurofibril-
lary tangles, and degeneration of cholinergic neurotransmitter. There is no effective 
treatment capable of slowing down disease progression, current pharmacotherapy 
for AD only provides symptomatic relief and limited improvement in cognitive 
functions. Many molecules have been explored that show promising outcomes in 
AD therapy and can regulate cellular survival through different pathways. Present 
study involves current directions in the search for novel, potentially effective 
agents for the treatment of AD, as well as selected promising treatment strategies. 
These include agents acting upon the β-amyloid, such as vaccines, antibodies and 
inhibitors or modulators of γ- and β-secretase; agents directed against the tau 
protein. Current clinical trials with Aβ antibodies (solanezumab, bapineuzumab, 
and crenezumab) seem to be promising, while vaccines against the tau protein 
(AADvac1) are now in primary-stage trials. Most phase II clinical trials ending with 
a positive result do not succeed in phase III, often due to serious side effects or lack 
of therapeutic efficacy but Abucanumab (marketed as Aduhelm) now approved by 
USFDA in 2021 for the treatment of AD.

Keywords: neurodegeneration, novel strategies, clinical trials, medicinal plants

1. Introduction

Alzheimer’s disease (AD) is a brain disorder described in 1906 by Aloes 
Alzheimer, a German physician [1]. It is a progressive and neurodegenerative 
disorder which mainly occur in old aged people of over 65 years of age [1–3]. For 
progression and development of disease various pathways are involved such as for-
mation of plaque, inflammatory cascade, cholinergic deficit, oxidative stress, and 
many more. Senile plaques formation and neurofibrillary tangles persist significant 
neuro-pathological symbols of this disease. Senile plaques are the main component 
of amyloid beta (Aβ) peptide that are covered by dystrophic neurites and activated 
microglia. Accumulation of Aβ results changed process of proteolytic amyloid pre-
cursor protein (APP) through beta and gamma secretase. The β-amyloid peptide, 
with 39–42 amino acid residues (BAP), perform vital role in development of AD. 
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There are mainly two types of AD, familial AD which affects the people who have 
age less than 65. The other type of AD is sporadic AD which affect the people older 
than 65. At present there is no cure for Alzheimer’s disease but it could me managed 
to some level by using available medications (Table 1) [6, 7].

1.1 Epidemiology

In 2020 approx. 50 million individual dealing with dementia worldwide. In India 
more than four million of people suffering from AD and dementia while in USA 
approx. 5.8 million living with dementia and AD. It is estimated that it is the fifth main 
source of death in USA and the number of death increased 146% between 2000 and 
2018. It is predicted the causality will increase to 13.8 million which number of patient 
increases to 13.5 million by 2050. Elderly persons are more prone to younger one [8].

1.2 Etiology

In maximum case genetic lifestyle choices aging stress and environmental 
 factors induces AD [9].

1.2.1 Age

Researchers have claimed that older adults have more risk of having AD. 
Scientists are still learning, how age-related changes in the brain may harm neurons 
and contribute to Alzheimer’s [10].

1.2.2 Genetic factors

1.2.2.1 Early onset

It occur due to mutation in chromosome 1, 14, and 21. The changes on chromo-
some 1 produces PRESENILIN-2 (PSEN2) named protein while chromosome 14 
produces PRESENILIN-1 (PSEN1). These PSEN 1 and PSEN 2 directly and indirectly 
both trigger/encode for membrane protein convoluted for amyloid precursor protein. 
These mutations reduce the effectiveness of γ-secretase, an enzyme which is respon-
sible for formation of beta amyloid peptide (βAP) [11]. Amyloid precursor protein is 

Factors Dementia Alzheimer’s disease Normal aging

Definition CNS disorder due to 
disease or any other 
pathological condition.

Common form of 
dementia.

Condition occur due to 
programmed cell death with 
time (gene therapy) and causes 
various disability.

Cause AD, stroke, thyroid 
issues, vitamin 
deficiency, etc.

Deposition of beta 
amyloid protein in 
brain.

May cause biological systems 
to fail (DNA oxidation, DNA 
methylation, and apoptosis).

Duration 
and age

Permanent damage and 
65 years and olders.

Average 8–20 years and 
65 year but can occur as 
early as 30s.

Gradual and progressive 
condition until death.

Symptoms Issues with memory, 
poor judgment, less 
focus and attention.

Difficulty to 
remembering newly 
learned information.

Bone break more easily, decrease 
overall energy, greater risk of 
heart stroke or hypothermia.

Table 1. 
Alzheimer’s disease versus dementia and normal aging [4, 5].



59

Alzheimer’s Disease: An Insightful Review on the Future Trends of the Effective Therapeutics
DOI: http://dx.doi.org/10.5772/intechopen.102762

coded on chromosome 21 and this mutation results in overproduction of beta amyloid 
peptide. Mutation on chromosome 1, 14, and 21 results in early onset AD [12].

1.2.2.2 Late onset

Apo-lipoprotein E (APOE) gene is responsible for late onset AD. APOE gene 
is lipid metabolism regulator which have an affinity for beta amyloid protein and 
increases the risk of AD. Chromosome 19 produces APOE gene. The inheritance of 
APOEe4 allele own genetic risk in sporadic AD. APOEe4 allele, age elevate the risk 
for development of late AD by two to three folds and two copies of five folds [13].

Variations in gene for receptor sortilin, SORT1, that is important for transferring 
APP from surface of cell to Golgi-endoplasmic reticulum complex, have been found 
in familial and sporadic types of AD [14].

1.2.2.3 Environmental factors

Conditions such as heart disease, stroke, high blood pressure, diabetes, and 
obesity are also linked as risk factors for AD [15].

2. Pathogenesis and clinical findings

The real origin of this disease is not well known but problems are linked with 
brain protein that work abnormally and cause malfunction. As a result neurons 
were damaged then fail to connect other neuron as a result they die. Initially the 
degradation starts within the region of brain which control memory ultimately 
dementia occur (Figure 1) [17].

Figure 1. 
Clinical findings in Alzheimer’s disease [16].
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2.1 Beta-amyloid protein aggregation and deposition

In the initial stage of AD amyloid proteins works abnormally and cause 
overproduction of beta amyloid secretase named enzyme split amyloid proces-
sor protein and due to deviation from this process, especially sudden change in 
gamma and beta secretases leads to unnatural production of amyloid beta [18].

2.2 Neurofibrillary hypothesis

Tau protein is known for its stabilizing property. It is useful in the transporta-
tion of nutrients and others essential matter within the neurons while in AD. Tau 
protein cause mutation and changes its structure which is known as neurofibrillary 
tangles [18, 19].

2.3 Cholinergic hypothesis

It is observed in the patient of AD there is deficiency of ACh due to abnormal 
functioning of choline acetyl transferase. This will treat as a clinical hallmark 
to support cholinergic hypothesis there is also a possible treatment of AD by 
increasing the level of ACh by reducing the activity of AChE cholinergic depletion 
observed after neurodegenerative cascade various cholinesterase inhibitors cur-
rently used in the treatment of AD [20].

2.4 Excitotoxicity

It is defined as the excess interaction of neurotransmitter glutamate and 
other excitatory neurotransmitter which may act as a potent neurotoxins for 
Alzheimer [21].

2.5 Vascular diseases and high cholesterol

Apo-lipoprotein E play important role in the cholesterol transportation and 
catabolism of triglyceride lipoprotein. Cholesterol also alter the clearance of amy-
loid beta and generation of NFT in neuronal membrane APOE4 also enhance the 
deposition of beta amyloid protein. High level of cholesterol in brain there by alter 
the member functioning this leads to plaque formation resulting AD [22].

2.6 Oxidative stress

Oxidative stress is generated due to imbalance of ROS generation and its 
quenching. Brain is more prone for oxidative stress due to high consumption of O2. 
High level of polyunsaturated fatty acid. Low level of antioxidants and high level 
of redox transition metal ions. These all factors facilitate the production of reac-
tive oxygen species like superoxide, hydrogen peroxide, etc. These ROS interact 
with surroundings proteins nucleic acids, etc. and cause cellular dysfunction [23]. 
There is also a close relationship between amyloid beta and oxidative stress because 
amyloid beta elevate the formation of ROS and initiate mitochondrial damage. 
This will also cause oxidative damage. These effects can also be observed in brain 
of triple transgenic mouse model of AD where tocopherol and GSH level decrease 
while lipid peroxidation is increased [24]. However this was observed before any 
plaque formation. While in another model dual mutant APP was expressed, oxida-
tive stress and inflammation was induced by thiamine deficiency provoke plaque 
formation and enhance the level of amyloid [25].
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2.7 Mitochondrial dysfunction

It is observed in the marphotric analysis of AD patients brain showed significant 
deficiency of mitochondria while its DNA and protein concentration elevate in 
cytoplasm and in the vacuoles associated with lipofuscin [26]. These mitochondria 
may be damaged due to autophagy and oxidative stress. Mitochondrial cytochrome 
oxidase activity also reduced in cortical region of AD brain. Due to this deficiency 
mitochondrial dysfunction occur and ROS generated and energy stores were 
decreased and ultimately neurodegeneration occur [27].

2.8 Inflammatory mediators

Amyloid deposition in brain also associated with local inflammation and immu-
nologic alleviations [28]. This association induces the release of NO3, cytokines 
which cause neural damage and cause inflammation [29, 30].

3. Role of sex hormone in Alzheimer’s

Evidence from animal and human studies support functional roles of sex 
hormones like estrogens, progesterone, and androgens in behavior and cogni-
tion. With several neuroprotective activity involved, age reduces level of sex 
hormones were connected with greater possibilities of cognitive degenera-
tion and AD. For example, in females development of AD is associated with 
decreased exposure to estrogens across the lifetime, while in males age related 
degeneration in both levels of peripheral and brain testosterone is linked with 
greater susceptibilities of AD development. Also, alterations in receptors of sex 
hormone and downstream signaling pathways during aging have been stated. 
For example, the nonfunctional splicing estrogen variants receptor alpha in the 
hippocampus was enhanced throughout aging and AD, with advanced levels in 
female old age subjects in comparison to males. Moreover, studies recognized 
polymorphisms of estrogen receptors related with intellectual decay and AD 
development in females, especially in APOE ε4 (APOE4) transporters. These 
information recommended diminished responsiveness of brain to sex hormones 
during aging and disease development. However, clinical trial outcomes of sex 
hormone therapy in AD are rather contentious. Despite prior studies associating 
protective activity of estrogen replacement against AD in females, huge clinical 
studies failed to exhibit any useful possessions. It was suggested that replacement 
of hormone initiation in the serious window of perimenopause may diminish the 
risks of dementia, while it might raise the risks if started a very long time after 
menopause. Moreover treatment timing, reduced responsiveness at receptors 
of brain and downstream signaling pathways might add to the uselessness of 
hormonal therapy. Together, these investigations recommend the complication of 
sex hormones association in AD [31].

4. Strategies used in the treatment of Alzheimer’s disease: A clinical data

4.1 Conventional approaches

Currently there is no cure for this disease, the objective of several medicine is 
used to reduce symptoms linked with disease and to reduce disease progression 
(Table 2) [32–36].
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4.2 Current scenario

4.2.1  Antiamyloidogenic pathway and amyloidogenic route as approaches for 
development of therapeutic treatments adjusting the course of Alzheimer’s 
disease

From the previous eras, the pharmaceutical industry has decided to chiefly 
focused on the amyloidocentric method, dedicating significant possessions to form 
useful AD drugs. Nevertheless, numerous failures of drug candidates in clinical tri-
als have led investigators to question the viability of this approach [10–12]. Possible 
cause for failure is a absence of biomarkers that could consistently recognize AD 
in comparatively initial phases. It is totally promising that the patients presently 
enrolled for phase III trials are in such advanced phases of AD that any attempted 
interference is possibly inadequate. In the meantime, there is still a number of new 
management under development, that focused the amyloidogenic route. In order 
to decrease generation of Aβ from the APP, inhibition of γ- and β-secretase and the 
potentiation of activity of α-secretase have been deliberated.

Drug name Indication Mode of action Adverse effect

Donepezil Minor to 
chronic

It stops the breakdown 
of ACh by preventing 
the function of acetyl 
cholinesterase

Fatigue, abnormal 
dreams, hallucinations, 
confusion, 
hypertension, 
abdominal painTreats intellectual 

indication of AD

Galantamine Minor to 
medium

Stops the breakdown 
of Ach and stimulates 
receptors to discharge 
extra ACh

Somnolence, 
bradycardia, insomnia, 
urinary tract infection, 
anorexia, syncope

Treats intellectual 
indication of AD

Rivastigmine Minor to 
medium

Stops the breakdown of 
Ach by preventing the 
enzymes that abolish 
ACh

Dizziness, diarrhea, 
anxiety, vertigo, 
asthenia, tachycardia

Also used 
to treat 
dementia from 
Parkinson’s 
disease

Treats intellectual 
indication of AD

Memantine Medium to 
severe

Blocks glutamatergic 
(NMDA) receptors and 
controls the action of 
glutamate

Headache, constipation, 
vomiting, backache

Treats intellectual 
indication of AD

Donepezil/memantine Medium to 
severe

it binds to NMDA 
receptor-operated 
caption channels, and 
gives therapeutic effects 
by preventing persistent 
stimulation in CNS

Hallucination, 
headache, cough, 
fatigue, cramping, 
syncope, increased 
frequency of bowel 
movements

Table 2. 
Currently used drug for the treatment of Alzheimer’s disease.
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4.2.2 Inhibitors and modulators of β-secretase

β-secretase enzyme complex contributes in the primary phases of the amy-
loidogenic APP-processing pathway. The inhibitors of β-secretase development is a 
task because, besides the APP, this complex has several substrates. To give just one 
example, neuregulin-1, that included in the CNS axons myelination and synaptic 
elasticity, is a target β-secretase. Substrates wide range results to substantial adverse 
effects, even if the precise enzyme inhibition is reached. But, E2609 (clinical trial 
ID# NCT01600859), MK-8931 (NCT01739348), and LY2886721 (NCT01807026 
and NCT01561430) have all exposed efficiency in decreasing the production of Aβ 
by up to 80–90% in the cerebrospinal fluid (CSF) in humans. None of inhibitors of 
β-secretase have touched the market so far [37–40].

4.2.3 Inhibitors and modulators of γ-secretase

In the final stage of amyloidogenesis, γ-secretase complex is responsible for the 
production of Aβ(1–40) and Aβ(1–42). Inhibition of γ-secretase was firstly pro-
posed strategy for the management of Alzheimer’s disease but the substrate pro-
miscuity shows equal issues facing γ-secretase inhibitors. γ-secretase proposed to 
target the Notch protein which is responsible for the regulation of cell proliferation, 
development, differentiation and cellular communication but off target secondary 
effects are major concern [41–43].

Semagacestat (LY450139) named γ-secretase inhibitor reduces the Aβ level 
in the blood and in cerebrospinal fluid [44]. The results obtained from the 
clinical study conducted on 3000 patients shows the major adverse effects like 
decrease cognition abilities and difficulty in the carry out daily living activities 
and elevated skin cancer incidence and increased risk of infection and weight 
loss. Another γ-secretase named avagacestat discontinued in the development 
stage due to lack of efficacy (NCT00810147, NCT00890890, NCT00810147, 
NCT01079819, [45–47]).

Several nonsteroidal anti-inflammatory drugs like indomethacin, ibuprofen, 
flurbiprofen, sulindac also decreases the Aβ(1–42) peptide levels in in-vivo and 
in in-vitro studies. Ibuprofen is a cyclooxigenase inhibitor while R-flurbiprofen 
(tarenflurbil) is not, so the reduction of Aβ(1–42) peptide levels is not associated 
with the COX inhibition. Unfortunately, in clinical trials tarenflurbil and ibuprofen 
does not shows efficacy for the treatment of Alzheimer’s disease. The idea of long 
term use of NSAID’s for the treatments of Alzheimer’s disease as NSAIDS reduces 
the Aβ peptide level in blood but negative results reported in the clinical studies 
that’s why this hypothesis requires further investigations [48, 49].

Clinical studies with 8-hydroxiquinolines compounds like clioquinol and PBT2 
also conducted for the treatment of Alzheimer’s disease. The mechanism of action 
is yet established, but the expected MOA suggested that the increased levels of 
oxidative stress is due to the copper ions binding to Aβ, leading to metal-mediated 
generation of ROS (reactive oxygen species). It is proposed that the 8-hydroxiquin-
olines may prevent Aβ aggregation and restoring homeostasis in the cellular levels 
of copper and zinc ions. But after in clinical development these compounds failed 
due to lack of efficacy [50–52].

4.2.4 Agents that stimulate the removal of amyloid deposits and aggregates

Another possible treatment choice that is involved on the amyloidogenic path-
way is to stimulate the existing amyloid aggregates clearance. To achieve this, three 
different approaches have been assessed.
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4.2.5 Activation of enzymes that destroy amyloid plaques

Amyloid plaques are destroyed by various proteases comprising neprilysin, 
IDE, plasmin, angiotensin converting enzyme, endothelin converting enzyme, and 
metalloproteinases. Levels of protein these enzymes reduces in AD, that promotes 
accumulation and formation of Aβ. Despite being an attractive approach for form-
ing disease-modifying medicine, no compounds with this MOA have ever entered 
advanced clinical development because of lack of specificity.

4.2.6  Modulation of β-amyloid transport between the brain and the peripheral 
circulation

Transport of Aβ between the circulation of CNS and peripheral is controlled 
by: (i) apolipoproteins (e.g., Aβ might be transported from the blood to the brain 
when it is bound to APOE); (ii) low-density lipoprotein receptor-related protein 
(LRP-1), that enhances Aβ discharge from the brain to the blood; (iii) receptor for 
progressive glycation end products (RAGE), that enables the Aβ transport across 
the blood-brain barrier (BBB) [53, 54].

Any treatment goal, that is determined on this mechanism, is to decrease the 
load of cerebral amyloid by trying to control Aβ to the peripheral circulation. To 
this end, a different number of approaches have been suggested, particularly the 
administration of LRP-1 peripherally. Though, the only drug candidates that have 
entered the clinical phase are the RAGE inhibitors.

4.2.7 Antiamyloid immunotherapy

4.2.7.1 Active immunotherapy

Immunotherapy approach designed to stimulate clearance of Aβ with the aimed 
of decreasing load of amyloid load in AD. Active immunization (vaccination) with 
either Aβ(1–42) (main form found in senile plaques) or other synthetic fragments 
has been positively assessed in transgenic mouse models of AD. Human tests were 
primarily hopeful; though first-generation vaccine (AN1792) treatment has shown 
major adverse events which results to the phase II trials cessation. AN1792 contained 
of a synthetic full-length Aβ(1–42) peptide with a QS-21 adjuvant. Because of a T 
cell-mediated autoimmune response, 6% of patients have established inflammation 
in brain that ended up being aseptic meningoencephalitis [55].

Second-generation vaccines were planned utilizing a limited portion of Aβ(1–6) 
peptide in an try to inhibit nonspecific immune response seen with the full-length 
vaccine. Novartis designed CAD 106, was the first second-generation vaccine 
which moved to development phase. Newly finished phase II trial have exposed a 
Aβ-specific antibody response in 75% of treated patients, without producing any 
side effect. Janssen developed ACC-001, has freshly finished two-phase II trials 
(NCT01284387 and NCT00479557) with an additional phase II trial still continu-
ing (NCT01227564). Though, the pharmaceutical industry has canceled the ideas 
for this vaccine development. Further vaccines, comprising tetra-palmitoylated 
Aβ(1–15) re-formed in a liposome (ACI-24), MER5101 and AF205 are now in differ-
ent phases of preclinical progression [56–58].

4.2.7.2 Passive immunization

It is the monoclonal or polyclonal antibodies administration directed against Aβ. 
This treatment contains intravenous administration of anti-Aβ antibodies to the 
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patient. The advantage of this approach is to match to active immunization is which 
the proinflammatory T cell-mediated immune response should not arise. Reports 
have shown that in transgenic animals passive immunization decreases the load of 
cerebral amyloid and recovers cognition, even when the amyloid plaque numbers 
are not suggestively decreased. This could be recognized to the soluble amyloid 
oligomers neutralization, that progressively identified to play an important role in 
the pathophysiology of AD.

Bapineuzumab and solanezumab are two monoclonal antibodies which are 
reach now present in advanced phase of development. Though, two phase III trials 
had failed in 2012 due to low effectiveness in patients with mild-to-moderate AD 
[59]. Both are humanized monoclonal antibodies against Aβ(1–6) and Aβ(12–28), 
respectively. In bapineuzumab, noteworthy decrease in brain amyloid plaques 
and phosphorylated Tau in cerebrospinal fluid was stated. Though, the treatment 
unsuccessful to give noteworthy developments of brain function. In a solanezumab 
trial, infusions of 400 mg of solanezumab or placebo were given for 80 weeks once 
a month in patients with mild-to-moderate AD. The outcomes recommended that 
solanezumab might recover cognition in mild AD; but statistical significance was 
not attained in study. Presently solanezumab present in phase III trials in patients 
with AD (NCT01127633 and NCT01900665) and in older persons who have com-
mon thinking and memory function but who might be at danger of AD developing 
in the future (NCT02008357, [60, 61]).

Crenezumab (MABT5102A) is a humanized monoclonal antibody that uses IgG4 
backbone. In April 2014 a stage II trial to measure the safety and effectiveness in 
patients with mild-to-moderate AD (NCT01343966) was accomplished, while the 
outcomes are not yet openly accessible. The supreme stage II trial pointing to assess 
the safety and effectiveness of crenezumab in asymptomatic transporters of E280A 
autosomal-dominant mutation of PSEN1 initiated in November 2013 (NCT01998841).

Other monoclonal antibodies against Aβ established so far contain PF-04360365 
(ponezumab) that targets the free carboxy terminal amino acids 33–40 of the Aβ 
peptide; MABT5102A, that binds to Aβ monomers, oligomers, and fibrils with simi-
larly great affinity; GSK933776A, that is likewise to bapineuzumab in which it binds 
to the N-terminal Aβ(1–5). Additional, other passive immunotherapies typically in 
stage I clinical trial involve NI-101, SAR-228810, and BAN-2401 [58, 62].

4.2.8 Approaches focused on Tau proteins

In neurons Tau proteins are extremely soluble and abundant where they play 
a important role in stabilization of microtubule, mainly in axons [63]. Tau hyper-
phosphorylation resulting the insoluble paired helical filaments (PHF) develop-
ment that form neurofibrillary tangles. The microtubule-binding capacity damage 
initiate destabilization of cytoskeleton, that ultimately develops neurodegeneration 
and neuronal death [64]. As a substitute to amyloidocentric strategies, this treat-
ments goal to prevent the phosphorylation of Tau protein. Additional, microtubule-
stabilizing drugs can be utilized as a disease-modifying approach in AD. In current 
years, immunomodulation was recommended as a feasible choice for stimulating 
operative Tau aggregates clearance [65].

4.2.9 Hyperphosphorylation of Tau inhibitors

All Tau proteins are a result of different splicing of a microtubule-associated 
protein Tau (MAPT) gene. Primary mechanism that controls Tau binding to 
microtubules is phosphorylation. The protein remains soluble under physiological 
circumstances; though, in this disease, pathological hyperphosphorylation of Tau 



Alzheimer’s Disease

66

compromises its regular functions [66, 67]. Imbalance between the catalytic activ-
ity of kinases and phosphatases occurs hyperphosphorylation. Enhanced expression 
of active forms of several kinases in the areas proximal to neurofibrillary tangles has 
been labeled in AD, comprising CDK5, GSK3β, Fyn, stress-activated protein kinases 
JNK and p38, and mitogen-activated protein kinases ERK1 and ERK2 [68]. Certain 
kinases promote continuation of tau phosphorylation in neurofibrillary tangles. 
Resulting, noteworthy research determinations have been dedicated to the kinase 
inhibitors development as a probable treatment approach for AD. For example, 
SP600125, a extensively utilized pan-JNK inhibitor, employs valuable effects on 
cognition and decreases neurodegeneration in an APP/PS1 transgenic mouse model 
of AD. It has been planned which precise inhibition of JNK3 can be adequate to 
carry comparable benefits as seen with SP600125 in rodent models. Human data in 
AD patients designate a positive correlation between the JNK3 and Aβ(1–42) levels 
in the brain. Moreover, JNK3 upregulation was distinguished in the CSF and was 
related with loss of memory. Consequently, inhibition of JNK3 remains a capable 
goal for future treatments [69–71].

4.2.10 Tau aggregation inhibitors

Tau hyperphosphorylation contribute to neurotoxicity detected in AD brain. 
Methylene blue dye derivatives have revealed certain potential Tau aggregates forma-
tion inhibition. Methylene blue disturbs the Tau aggregation, has the capability to 
prevent amyloid aggregation, recovers the effectiveness of mitochondrial electron 
transport chain, decreases oxidative stress, stops mitochondrial impairment, and is 
also an autophagy modulator. The first-generation molecule resulting from methylene 
blue (Rember) seemed to stabilize AD development in a clinical trial that continued 
50 weeks. These outcomes encouraged investigators to form a next-generation form of 
methylene blue, TRx 0237. This agents is a purified derivative of methylene blue that 
not only prevents aggregation of Tau protein but also liquefies brain tau aggregates. 
Various trials are presently ongoing (NCT01626391, NCT01689233, NCT01689246, 
NCT01626378) to assess the possible effectiveness of this agent in AD [72, 73].

4.2.11 Stabilizers of microtubule

Stabilization of microtubule might possibly attain a comparable end-result as 
which seen with the Tau hyperphosphorylation inhibitors. Paclitaxel is a microtu-
bule-stabilizing agents presently in utilize in the oncology arena. Inappropriately, 
this agents is unable of BBB crossing and its utilize is related with major adverse 
events, that limits its efficacy in AD. In addition to paclitaxel, other microtubule-
stabilizing agents like TPI 287 have been measured as a probable AD remedy. TPI 
287 is a derivative of taxane, also utilize in the treatment of cancer. TPI 287 allevi-
ates the microtubules by binding to tubulin. NCT01966666 trial will estimate TPI-
287 safety, pharmacokinetic possessions, and tolerability by intravenous infusion in 
mild-to-moderate AD.

Epothilone D is a microtubule-stabilizing agent that enhanced axonal  
transport, decrease axonal dystrophy, reduced Tau neuropathology, and decreased 
hippocampal loss of neuron; though, in 2013 drug development for AD was dis-
continued after an unsuccessful clinical trial. With respect to Tau, more research 
are essential in order to better understand the exact molecular mechanisms 
elaborate in neurotoxicity of Tau. Current research associating the neurotoxic 
profiles of different forms of Tau recommend which is a soluble form is probable 
the greatest toxic. Thus, future therapeutic approaches should be focused on aim-
ing Tau soluble forms [74].
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4.2.12 Anti-Tau immunotherapy

Just as with the immunotherapies aiming Aβ, both passive and active immuniza-
tion approaches against Tau have been measured. It was established that decrease 
in formation of Tau aggregate and enhanced Tau oligomers clearance and insoluble 
aggregates could all be reached with either active or passive immunotherapies. In 
rodents, treatment with monoclonal antibodies directed against hyperphosphory-
lated Tau has results to improvements in cognition and was not connected with 
noteworthy side effects.

Axon neuroscience began a stage I trial in 2013 to estimate the safety and 
tolerability of AADvac-1, an active immunotherapy that contains synthetic pep-
tide derived from the Tau sequence coupled to keyhole limpet hemocyanin; the 
precise molecular nature of the antigen has not been disclosed (NCT01850238 and 
NCT02031198). AADvac-1 uses aluminum hydroxide as an adjuvant. At the 2014 
Alzheimer’s Association International Conference (AAIC) in Copenhagen, good 
preclinical safety profile was reported for the treatment period of up to 6 months in 
rats, rabbits, and dogs. These initial outcomes are hopeful and it remains to be seen 
whether AADvac-1 will prove satisfactory safety and efficiency in patients [75, 76].

4.2.13 The cholinergic hypothesis

The hippocampus, the chief region of brain elaborate in memory processing, is 
influenced by modulation of cholinergic neurotransmitter. One of the well categorized 
irregularities linked with neurotransmitter deviations is the cholinergic neurons 
degeneration in the nucleus basalis of Meynert and the cholinergic inputs loss to the 
neocortex and hippocampus. Various studies reported reduced in choline acetyltrans-
ferase (ChAT), acetylcholine (ACh) release, as well as decreases in nicotinic and mus-
carinic receptors in the cerebral cortex and hippocampus of postmortem AD brains. 
Acetylcholinesterase inhibitors (AChEI), one of the only two classes of compounds 
that presently accepted for AD treatment, act by stimulating ACh bioavailability at 
the synapse. Inappropriately, none of these agents are proficient of withdrawing the 
course of AD nor of even noticeably reducing down the degree of disease develop-
ment. Their clinical effect is basically palliative; though, their possible utilize in combi-
nation therapy with other disease-modifying agents should not be omitted [77, 78].

4.2.14 Altering the perception: AD as a metabolic disorder

As revealed by clinical study data and research articles that diabetes is a one of 
the key factor that leads to AD pathology and unfolds the close connection between 
insulin-deficient diabetes and cerebral amyloidosis. These data also suggests about 
insulin signaling impairments (both peripheral and central) is possibly be existing 
in both diseases. Hence, considering insulin hormone at the core, “type 3 diabetes” 
hypothesis of AD was developed, observing metabolic phenotypes into a coherent 
framework [79].

The most anticipated mechanisms for the development of AD due to diabetes 
could be: glucose toxicity, insulin resistance, oxidative stress, elevated levels of 
advanced glycation end products, and cytokine-mediated neuroinflammation. 
Recently, Clarke and colleagues demonstrated that neuroinflammatory cascades 
can be initiated by the administration of soluble hypothalamic Aβ oligomers that 
ultimately causes disturbances in peripheral glucose homeostasis. Tumor necrosis 
factor α (TNFα) may have a significant role during this process [80].

Rosiglitazone and pioglitazone are used as antidiabetic drugs, which regulate 
glucose homeostasis by increasing insulin sensitivity, reducing blood glucose levels, 
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and improving lipid metabolism. Both compounds have also been studied as poten-
tial therapeutics for AD treatment, with reported improvements in mitochondrial 
oxidative metabolism [81]. In animal models, pioglitazone modified various indices 
of brain aging but did not slow down the cognitive decline. Rosiglitazone and pio-
glitazone also induce the expression of peroxisome proliferator-activated receptor-γ 
co-activator 1 alpha (PGC-1α), a molecule that plays multiple roles in mitochon-
drial biogenesis, energy metabolism, and mitochondrial antioxidants expression. 
Previous studies have demonstrated that, in the human brain tissues, the expression 
of PGC-1α decreases with progression of AD dementia. Thus, PGC-1α upregulation 
may improve the mitochondrial energy metabolism and AD pathology [82–86].

In a small scale clinical trial on mild-to-moderate AD patients, it was found 
that pioglitazone enhances memory and cognition. On the other hand clinical trial 
(phase II) with larger group of patients (who did not possess an ApoE4 allele) were 
on treatment with rosiglitazone (6 months) shows improvement in memory reten-
tion and attention. However, similar study (phase III trial) using rosiglitazone failed 
to show efficacy in AD (NCT00550420). It is important to note that rosiglitazone 
was administered at much lower dosage than required to exert efficacious effects on 
AD pathophysiology in these trials, in rodent models of the disease. NCT00348140 
recently completed clinical trial in which rosiglitazone was administrated in 
combination with AChEIs in patients with AD (mild-to-moderate) and until now 
no further outcome yet reported.

As a treatment possibility for AD, intranasal insulin have also been considered 
as it bypasses the BBB easily; adding the advantage of possibly minimum adverse 
events in peripheral tissues. Theoretically it is well established that direct delivery of 
insulin to the brain will activate cerebral insulin signaling leading to enhancements 
in memory processing resulting into neuroprotection. A recent ongoing clinical 
trial (with NCT017679090 is assessing long-term (12 months) efficacy of intranasal 
insulin (Humulin R U-100) among mild AD patients [87].

Also, it has been found that reduced plasma amylin concentrations may contrib-
ute in the progression of AD. As revealed by transgenic animal models of AD, amylin 
and pramlintide (amylin analog) reduced the brain Aβ levels and advances cognition. 
Interestingly, amylin inhibits β-secretase, whereas pramlintide did not [88].

5. Medicinal plants for the treatment of Alzheimer’s disease

Here is the number of herbal plants reported to might have anti-Alzheimer 
activity (Table 3).

6. Recent advances in the treatment of Alzheimer’s disease

In 2021 USFDA approved Aducanumab (marketed as Aduhelm) for the treat-
ment of Alzheimer’s disease. It is an amyloid beta-directed antibody approved 
under the accelerated approval pathway based on reductioning amyloid β plaques 
observed in patients treated with this drug.

It was approved for medical use in the United States. Aducanumab has since 
been approved by the Ministry of Health and Prevention in the United Arab 
Emirates as of October 3, 2021, making it the second country in the world to 
approve the treatment.

Pharmacology-Mechanism of Action: Immunoglobulin gamma 1 (IgG1) 
monoclonal antibody directed against aggregated soluble and insoluble forms of 
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Sr. No. Work done Plant used Common name Author Year Ref.

1. Effects of the 
hydroethanolic extract 

of Lycopodium selago 
L. on scopolamine-
induced memory 

deficits in zebrafish

L. selago Fir clubmoss Valu et al. 2021 [89]

2. Evaluation of 
traditional herb 
extract Salvia 

officinalis in treatment 
of Alzheimer’s disease

S. officinalis Sage Datta et al. 2020 [90]

3. Protective effects of 
tenuifolin isolated 

from Polygala tenuifolia 
Willd roots on 

neuronal apoptosis 
and learning and 

memory deficits in 
mice with Alzheimer’s 

disease

P. tenuifolia Yuan zhi Wang et al. 2019 [91]

4. Convolvulus pluricaulis 
(Shankhapushpi) 

ameliorates human 
microtubule-

associated protein tau 
(hMAPτ) induced 

neurotoxicity in 
Alzheimer’s disease 
Drosophila model

C. pluricaulis Shankhapushpi Kizhakke et al. 2019 [92]

5. Malva parviflora 
extract ameliorates 

the deleterious effects 
of a high fat diet on 
the cognitive deficit 
in a mouse model of 

Alzheimer’s disease by 
restoring microglial 

function via a PPAR-γ-
dependent mechanism

M. parviflora Cheeseweed Jiménez et al. 2019 [93]

6. Antioxidant, 
anti-Alzheimer and 

anti-parkinson activity 
of Artemisia nilagirica 
leaves with flowering 

tops

A. nilagirica Indian 
wormwood

Pal and Pradeep 2018 [94]

7. Antioxidant and anti-
acetylcholinesterase 
activities of essential 

oils from garlic 
(Allium sativum) Bulbs

A. sativum Garlic Akinyemi et al. 2018 [95]

8. Nootropic activity of 
ethanolic extract of 

Alangium salvifolium 
leaves on scopolamine 

mouse model of 
Alzheimer’s disease

A. salvifolium Ankol Parameshwari 
et al.

2018 [96]
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Sr. No. Work done Plant used Common name Author Year Ref.

9. Moringa oleifera 
alleviates 

homocysteine-induced 
Alzheimer’s disease-
like pathology and 

cognitive impairment

M. oleifera Drumstick tree Mahaman et al. 2018 [97]

10. Ameliorative effect of 
Cleome gynandra L. 
against scopolamine 
induced amnesia in 

mice

C. gynandra Shonna cabbage Manasa et al. 2017 [98]

11. Evaluation of 
nootropic activity of 
green peas in mice

Pisum 
sativum

Green peas Kaura et al. 2017 [99]

12. Ameliorative effect 
of Apium graveolens 

Linn on scopolamine-
induced amnesia mice

A. graveolens Celery Phetcharat et al. 2017 [100]

13. Evaluation of effect 
of alcoholic extract of 
Tinospora cordifolia on 
learning and memory 
in alprazolam induced 
amnesia in albino mice

T. cordifolia Guduchi Jyothi et al. 2016 [101]

14 Effect of Camellia 
sinensis on spatial 

memory in a rat model 
of Alzheimer’s disease

C. sinensis Green tea Mahmoodzadeh 
et al.

2016 [102]

15. Evaluation of 
nootropic activity of 
Curcuma longa leaves 

in diazepam and 
scopolamine-induced 
amnesic mice and rats

C. longa Turmeric Reddy et al. 2015 [103]

16. Effect of ethanolic 
seed extract of 

Bauhinia purpurea 
linn on cognition in 

scopolamine induced 
Alzheimer’s disease 

rat’s model

B. purpurea Orchid tree Nemalapalli 
et al.

2015 [104]

17. Mori fructus improves 
cognitive and neuronal 

dysfunction induced 
by beta-amyloid 

toxicity through the 
GSK-3β pathway in 

vitro and in vivo

M. fructus Mora Kim et al. 2015 [105]

18. Anticholinesterase and 
antioxidant properties 
of aqueous extract of 
Cola acuminate seed 

in vitro

C. acuminate Cola nut Oboh et al. 2014 [106]



71

Alzheimer’s Disease: An Insightful Review on the Future Trends of the Effective Therapeutics
DOI: http://dx.doi.org/10.5772/intechopen.102762

Sr. No. Work done Plant used Common name Author Year Ref.

19. Antiamnesic effect of 
piracetam potentiated 
with Emblica officinalis 

and C. longa in 
aluminum induced 

neurotoxicity of 
Alzheimer’s disease

E. officinalis Aamla Ramachandran 
et al.

2013 [107]

20 Antiamnesic activity 
of Syzygium cumini 

against scopolamine 
induced spatial 

memory impairments 
in rats

S. cumini Jamun Alikatte et al. 2012 [108]

21 Acetylcholine and 
memory-enhancing 

activity of Ficus 
racemosa bark

F. racemosa Cluster fig Faiyaz et al. 2011 [109]

22 Protective effect of 
Morinda citrifolia 

fruits on beta-
amyloid (25–35) 

induced cognitive 
dysfunction in mice: 
an experimental and 

biochemical study

M. citrifolia Noni Muralidharan 
et al.

2010 [110]

Table 3. 
Plants studied in Alzheimer’s disease.

Figure 2. 
Drugs in clinical trials for treatment of Alzheimer’s disease in 2021. In which the shape of icons shows the 
population involve in trials; the outer ring shows drugs in Phase I; the middle rings shows drugs in Phase II; the 
inner most ring shows drugs in Phase III trials [16].
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amyloid beta. The buildup of beta amyloid plaques in brain is crucial pathophysi-
ological hallmark of Alzheimer’s disease.

Dosage Form and Strength: Aduhelm is a clear to opalescent and colorless to 
yellow solution, accessible as: Injection: 170 mg/1.7 mL (100 mg/mL) in a single-
dose vial and 300 mg/3 mL (100 mg/mL) in a single-dose vial [111].

Who should take this drug?
It is suggested for mild cognitive impairment (MCI) or mild dementia stage of 

Alzheimer’s disease [112, 113].

6.1 Novel compound under investigation

Here is the figure that shows the agents which is in developing stage involve in 
the trials for the management of Alzheimer’s disease. Most of agents in the trial 
target disease modification [114] (Figure 2).

In which the shape of icons shows the population involve in trials; the outer ring 
shows drugs in phase I; the middle rings shows drugs in phase II; the inner most 
ring shows drugs in phase III trials [115].

7. Conclusion

Alzheimer’s disease is serious brain disorder, at present there is no cure for this 
disease but currently it can be controlled by using a drugs which symptomatically 
treat AD. AChE inhibitors are the first approved anti-AD drugs by the FDA, and 
they are also the first and the most useful drug used in the clinical treatment of AD. 
But now few of drugs also approved by USFDA in 2021 for the treatment of AD 
and few also in the trial phase. Results from clinical studies have shown different 
new drugs in pipeline and various novel approaches may also beneficial for treat-
ing AD. Interests in the utilization of different herbal products also increase day by 
day. This study provides the details about recent advancement the medicinal plants 
against the Alzheimer’s disease. Availability of these new medicinal plants for AD 
will further increase the treatment options and thus provide a significant benefit to 
patients who remain uncontrollable to existing therapy.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder and is considered to be 
the most common form of dementia. This disorder is characterized by the forma-
tion of amyloid β (Aβ) plaques, neurofibrillary tangles, and alterations in synaptic 
function, all of which cause memory loss and behavioral disturbances. Despite the 
high prevalence of AD, effective therapeutic and diagnostic tools remain unavail-
able. MicroRNAs (miRNAs, miRs) are regulatory non-coding RNAs that target 
mRNAs. MiRNAs are involved in the regulation of the expressions of APP and 
BACE1, Aβ clearance, and the formation of neuro-fibrillary tangles. Furthermore, 
there are evidences that show alteration in the expression of several miRs in AD. 
MicroRNA is emerging as a biomarker because they have high specificity and, 
efficiency, and can be detected in biological fluids such as cerebrospinal fluid, tear, 
urine, blood. Moreover, miRNAs may be acquired and measured easily by utilizing 
real-time PCR, next-generation sequencing, or microarray. These techniques are 
cost-effective in comparison with imaging techniques such as magnetic resonance 
imaging, positron emission tomography. These features make miRNAs viable 
therapeutic as well as diagnostic tools in the treatment of AD. This review covers the 
regulatory function of miRNAs in AD, as well as their prospective applications as 
diagnostic biomarkers.

Keywords: Alzheimer’s disease, dementia, pathogenesis, microRNAs, diagnosis, 
biomarker

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder and is considered to be 
the most common form of dementia that majorly occurs in aged persons although 
a familial form of AD can occur in the younger population. Familial (early-onset) 
AD occurs due to mutations in the amyloid precursor protein (APP), presenilin 1, 
and presenilin 2 genes [1]. However, further identification of tau gene mutations 
in familial frontotemporal dementia (FTD) with chromosome 17 has shown a clear 
relationship between tau malfunction and dementia [2]. These findings show that 
AD and FTD are related in a hereditary spectrum of degenerative brain illnesses 
in which tau appears to play a key role [3]. Clinical manifestations of AD include a 
slow and persistent deterioration in memory, executive functions, and the capacity 
to carry out daily activities [4, 5]. Dementia affects around 36.5 million individu-
als worldwide in 2010. Every 20 years, the number of dementia cases is expected 
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to roughly quadruple, reaching 65.7 million in 2030 and 115.4 million in 2050. AD 
is accounting for the preponderance of these dementia instances, accounting for 
60–80% of all dementia cases [6]. Every year, an estimated 5–7 million new instances 
of AD are diagnosed in the elderly population [7]. In 2020, overall healthcare expen-
ditures for AD treatment are predicted to be $305 billion, with expenditure expected 
to rise to more than $1 trillion as the population ages [8]. Even moderate develop-
ments in preventative and therapeutic techniques that postpone the initiation and 
advancement of AD can considerably lower the illness’s worldwide impact [9].

2. Pathophysiology involved in AD

The scientific field dedicated for understanding the mechanisms involved in the 
progression of AD and developing relevant therapeutics is vast. Pathologically hall-
marks of AD include the extra-neuronal clustering of Aβ plaques and the formation of 
intraneuronal neurofibrillary tangles (NFTs) which result in neuronal synaptic dys-
function [10, 11]. Aβ plaques formation is found in basal ganglia, amygdala, diencepha-
lon, hippocampus, temporal and later it is found in the brain stem, cerebellar cortex 
and mesencephalon. The high levels of Aβ plaques are responsible for tau formation in 
the entorhinal, transentorhinal as well as locus coeruleus areas of the brain. It spreads 
to the hippocampus and neocortex in the critical stage [12].

Aβ plaque is formed from proteolysis of APP followed by two pathways (1) 
non-amyloidogenic pathway (physiological pathway), (2) amyloidogenic pathway 
(Figure 1). APP is a transmembrane glycoprotein whose a large portion toward 
the cytoplasm and a short portion inside the lumen. The non-amyloidogenic path-
way prevents to the formation of toxic Aβ as APP is first cleaved by α-secretase 
and generates soluble fragments sAPPα and C83. These further cleaved by 
γ-secretase and produced non-toxic p3 and APP Intracellular Domain (AICD). 
On the other hand, the amyloidogenic pathway, neurotoxic Aβ formed through 
cleavage of APP by β-secretase (BACE1) followed by γ-secretase and formed 
sAPPβ, C99, Aβ, and AICD. These fragments are functionally active and influence 
or modulate signaling proteins [13]. Aβ oligomerization led to the formation of 
senile plaques and blockage the nerve transmission. There are mainly two types 
of Aβ isoforms soluble Aβ40 and insoluble Aβ42. The latter Aβ is more prone to 
aggregate and high concentration found in AD patients [14, 15]. The Aβ polymers 
aggregation results in blockage of ion channel, decreased energy metabolism, 
alteration in calcium homeostasis, diminish glucose regulation, and increases 
mitochondrial stress level, which further plays role in abnormality in neuronal 
health and causes neuronal death [12, 16]. Moreover, the AICD acts differently 
according to its generating pathways. The AICD from non-amyloidogenic path-
ways is degrading rapidly, but in the case of the amyloidogenic pathway, AICD 
behaves as a regulator for other genes [17].

Intra-neuronal deposition of NFTs are another pathophysiological hallmark 
of AD. NFTs were predominantly consisted of hyper-phosphorylated tau due to 
imbalance between phosphorylation and de-phosphorylation of tau [18]. Kinases are 
involved in the phosphorylation of tau protein, while phosphatases remove the phos-
phate residues. Tau proteins are microtubule-associated proteins that help vesicle 
transportation by stabilizing the microtubule. Microtubules are essential for axonal 
transport, neuronal structure, and neural plasticity [19]. Heavily phosphorylated 
tau may lose its capacity to stabilize itself and begin to self-form NFTs. Neurons 
cannot operate correctly without a full system of microtubules, and they eventually 
die. Tauopathies are considered to be an indicator of the severity of AD [20].
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3. MicroRNA

MicroRNA (miRNA/miR) is a kind of non-coding RNA that has 22–23 
nucleotides. They regulate gene expression by interacting with the 3′-untrans-
lated region (3′UTR) of mRNA. Thus, miRNA inhibits translation or destroys 
the targeted mRNA as a result of this event [21, 22]. Biogenesis of miRNA occurs 
with both canonical pathways as well as non-canonical pathways. However, 
miRNAs are processed dominantly by the canonical biogenesis pathway [23]. 
The detailed process of miRNA biogenesis by canonical pathway is illustrated 
in Figure 2. RNA polymerase II in the nucleus transcribed miRNAs gene to 
primary miRNAs (pri-miRNAs). In collaboration with Pasha/DGCR8, the 
RNase III enzyme, Drosha converts these pri-miRNAs into precursor miRNAs 
(pre-miRNAs) and then these pre-miRNAs are transported to the cytoplasm by 
Exportin 5 [24, 25]. These pre-miRNAs are of approximately 70 nucleotides in 
a hairpin structure. Pre-miRNAs features a hairpin loop structure that is identi-
fied by dicer present in the cytoplasm for cleavage, resulting in the formation of 
mature miRNAs which is a double-stranded miRNA duplex [25]. The miRNA-
induced silencing complex (miRISC) is formed when one of these strands of 
the mature duplex is loaded onto a member of the Argonaute (Ago) family of 
proteins, whereas the other strand of the mature duplex is normally destroyed. 
RISCs mediate gene silencing by recognizing the 3′ untranslated region (3′ UTR) 
of target mRNA [24, 25].

Figure 1. 
Amyloidogenic and non-amyloidogenic pathways. APP = amyloid precursor protein; ACID = APP intracellular 
domain; NFTs = neurofibrillary tangles.
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4. Association of microRNAs and Alzheimer’s disease

Pathologically, AD is generated by impaired metabolism of Aβ and the imbal-
ance between the hyper-phosphorylated and de-phosphorylated forms of tau. 
Although these clinical-pathological features of AD are extensively established, 
therapies aiming at lowering synthesis or eliminating misfolded proteins are 
very limited [21]. Only four medicines, including three cholinesterase inhibi-
tors (donepezil, rivastigmine, and galanthamine) and the glutamate regulator 
memantine, were licensed by the US Food and Drug Administration (FDA) for 
the treatment of cognitive impairment and dysfunction in symptomatic AD 
until June 2021. These symptomatic therapies can only delay rather than stop 
disease development [26, 27]. On June 7, 2021, Aducanumab, the first targeted 
Alzheimer’s therapy was approved by the FDA to treat patients with AD [27]. 
Thus, a different approach has centred on genetics, with several genes encoding 
proteins in central nervous system (CNS ) offered as candidates to explain AD 
etiology [21]. Earlier studies showed miRNA play role in the elaborating different 
types of pathogenic diseases including cardiovascular, cancer, and neurologi-
cal disorders [28, 29]. Numbers of studies show the involvement of miRNAs in 
the pathogenesis and their therapeutic potential in various neurodegenerative 
diseases including AD, Huntington’s disease, Parkinson’s disease, amyotrophic 
lateral sclerosis, and Prion diseases [30, 31]. AD study indicates that miRNA may 
be helpful for the regulation of genes, expressions of proteins, and changes in 
phenotype in human diseases. Some research studies show the abnormal regula-
tion of miRNA-dependent genes which are responsible for the formation and 
deposition of Aβ plaques as well as NFTs and consequently neuronal-degenera-
tion [32–35]. The focus of this review is the implication of the miRNAs in the two 
most well-recognized theories of AD pathogenesis: the Aβ hypothesis (Figure 3) 
and the tau hypothesis (Figure 4).

Figure 2. 
Schematic diagram of miRNA synthesis; ago: argonaute protein; miRisc: RNA-induced silencing complex.
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Figure 3. 
A schematic diagram of the Aβ hypothesis in AD pathogenesis and involvement of miRNA in each stage. The 
amyloid beta is produced as a result of processing the APP (amyloid precursor protein) by a sequential enzyme 
digescted by BACE1 and γ-secretase generate imbalance between the clearance and production of Aβ which is 
the key factor of AD.

Figure 4. 
The imbalance between the hyper-phosphorylated and de-phosphorylated processes of Tau could lead to the 
formation of NFTs. The miRNAs involved in the phosphorylated and de-phosphorylated processes play a role in 
AD pathogenesis.
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4.1 MicroRNAs involved in the regulation of APP expression

Although APP regulation is challenging, the research of regulatory processes 
indicate the prognosis of Alzheimer’s patients (Figure 3). Some scientific evidence 
shows that miR-106b regulates APP expression by binding on the 3′UTR region of 
APP [33]. The miR-101 [36], miR-16 [37], and miR-153 [38] are found APP negative 
regulators in in-vitro studies as well as in-vivo studies.

4.2 MicroRNAs involved in the regulation of BACE1 expression

It has been found that BACE-1 expression and activity are regulated by some 
miRNAs like the miR-29 family. BACE-1 expression level is increased with 
decreased expression of miR29a/b1 in sporadic AD brain. Moreover, it was also 
validated that low-level expression of miR29a/b1 is responsible for the pathogenesis 
of AD by promoting the production of Aβ plaques [39]. Another study found that 
downregulation of BACE1 is found in a cell line (SH-SY5Y) with overexpression of 
miR-29c via binding of BACE-13′ UTR [40]. Another study revealed that miR-107 
regulates the expression of BACE1 in cell culture by binding the 3′UTR of BACE1 
[41]. It was demonstrated that the BACE1 mRNA level was negatively affected by 
miR-107. Therefore, miR-107 could be a potential drug target [42] as it prevents 
the Aβ induced neurotoxicity and blood barrier dysfunction [43]. Certain miRNAs 
which are negative regulators of BACE1 expression by binding with 3′ UTR of 
BACE1 include miR-298/328 [44], miR-135a [45], miR135b [46], miR-186 [47], 
miR-195 [48], miR-200b [45], and miR-339-5P (Figure 3) [49].

4.3 Role of MicroRNAs in Aβ clearance

The deposition of Aβ occurred due to an imbalance between production and 
clearance of Aβ. Several studies show that certain microRNAs are involved in 
the clearance of Aβ. The upregulation of miR-128 can alter the Aβ clearance by 
targeting the lysosomal enzyme system in monocytes of AD sporadic patients. The 
breakdown of Aβ plaque in Alzheimer’s patients improves when miR-128 is blocked 
in monocytes [50]. In addition, miR-34a was also involved in digesting the Aβ, 
thus improving the clearance of overexpressed Aβ [51]. miR-155, 154, 200b, 27b, 
128 immune-related microRNA allegedly contribute to the process of Aβ clearance 
mediated by blood-derived monocytes (BDMs) when expressed variably in the 
CCL2/CCR2 (chemokine/chemokine receptor) axis [52]. miR-302 may attenuate 
Aβ induced neuronal toxicity in the brain of Alzheimer’s patients via PTEN/ AKT/
Nrf2/Ho-1 pathway. miR-137 may reduced Aβ induced toxicity of neurons with the 
help of NF-kβ by TNFAIP1 expression repressing in N2a cells [53].

4.4 MicroRNAs targeting neurofibrillary tangles

The expression levels of miR 26b [54], miR-125b [55, 56], miR-138 [57], and miR-
146a [58] have been shown to be considerably up-regulated while miR-132/212 down-
regulated [59] in Alzheimer’s patients. Overexpression of miR-125b inhibited the two 
phosphatases i.e., PPP1CA and DUSP6 which further causes tau hyperphosphorylation 
while kinase expression/activity and tau phosphorylation were reduced when miR-
125b was inhibited [55]. miR-146a was discovered to specifically target the coiled-coil 
containing protein kinase1 (ROCK1) in brain cells, and inhibiting ROCK1 might cause 
aberrant tau phosphorylation [58]. Reports showed that miR-138 was found to promote 
tau phosphorylation via directly targeting the retinoic acid receptor alpha (RARA)/
glycogen synthase kinase-3b (GSK-3b) pathway in HEK293/tau and N2a/APP cells [57]. 
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The increased levels of miR-26b in post-mitotic neurons led to the pathophysiology of 
AD via cell cycle entrance, tau hyper-phosphorylation, and death [54] (Figure 4).

5. MicroRNAs as possible treatment tools in Alzheimer’s disease

The usage of miRNA in the treatment of the disorder is developing fast. In 
2018, the FDA accepted the primary miRNA-founded therapy for the cure of the 
infrequent progressive polyneuropathy produced by hereditary transthyretin-
mediated amyloidosis (hATTR) known as amyloid polyneuropathy [60]. The 
fact that miRNAs alter (or control) the expression of potential genes in AD has 
prompted researchers to pursue miRNA-based therapeutic options. The treatment 
modifications of miRNA are carried out in two different ways: first, the function-
ing of miRNAs is suppressed by oligonucleotides that target miRNAs are known 
as antagomirs while in a second way, synthetic oligonucleotides are used which 
plays the same role as endogenous miRNA (act as miRNA mimics) [61, 62]. Thus, 
a miRNA mimetic or antagonist could be evaluated as a treatment tool. It was also 
observed that increased miRNA expression can counter the accumulation of Aβ 
and tau in cell and animal models of AD. In transgenic mice model, the family of 
miR-200 (miR-200b and miR-200c) were recognized as Aβ secretion regulators by 
modulating mTOR in primary type of neurons [63–65]. The same effect of down-
regulation in Aβ production was seen after miR-330 upregulation in mice model of 
AD by activating the MAPK pathway [66]. In in-vitro AD model, inhibition of Aβ 
accumulation was observed by miR-15b by targeting enzyme BACE1 and NF-κB 
signaling [67]. Similarly, in-vitro studies suggested that miR-124 works as a basic 
regulating factor in process of AD by targeting BACE1 and controlling BACE1 gene 
expression [68]. To understand the contribution of miR-124 in the pathogenesis of 
AD, the brain tissues of 35 cases of sporadic AD and control subjects were analyzed 
for miR-124 expression by the qRT-PCR technique. The reduction in the level of 
miR-124 expression was seen in AD brain tissues with comparison to the control 
group. In addition, inhibition of miR-124 significantly increased BACE1 levels in 
human neuroblastoma cells (SH-SY5Y), while miR-124 overexpression significantly 
suppressed BACE1 [69]. MiR-219 was shown to be downregulated in severe primary 
age-related tau pathology as evaluated by the RT-qPCR study. In addition, it was 
shown in the Drosophila model (which produces human tau) that the reduction 
of miR-219 increases tau toxicity, while the overexpression of miR-219 partially 
reverses this effect [70]. In in-vivo studies for cognitive capacity in SAMP8 mice, it 
was found that the miR-214-3p suppresses the autophagy and apoptosis of hippo-
campus neurons in sporadic Alzheimer’s disease (SAD) [71]. It was also found that 
miR-let-7f-5p had anti-apoptotic and protective effect in Aβ induced neurotoxicity 
on grafted mesenchymal stem cells by targeting caspase-3 in AD model [72]. These 
findings suggested that miR-214-3p and let-7f-5p are having anti-apoptotic activity 
and increase the cell viability of neurons, therefore, it can be therapeutically impor-
tant [71, 72]. One literature reported that NF-kB was inactivated by upregulation of 
PPAR-γ in mouse cortical neurons and Neuro2a cells. MiR-128 targeted the PPAR-γ 
and by targeting PPAR-gamma reduced the Aβ mediated cytotoxicity in the studies 
[73]. It was observed that overexpression of both miR-125b [55] and miR-146a [58] 
stimulates the apoptosis of neuron and tau phosphorylation in cellular and molecu-
lar AD models. In recent years many chemicals are studied that can affect miRNAs 
pharmacologically. Anti-inflammatory medications may be effective in preventing 
the course of AD through modulating miRNAs. Additionally, naturally obtained 
compounds are recognized for their possible effect as neuroprotective agents in AD, 
like resveratrol [74] and osthole [75], which appear to be effective by modulating a 
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specific type of miRNA and activate processes like autophagy and neuronal regen-
eration. Exosomes, tiny vesicles generated by neurons and glial cells, may also be 
used as therapies to give miRNAs and/or short interfering RNA (siRNA) to patients, 
according to new research. Multitargeted treatment methods, such as the use of 
acetylcholinesterase (AChE) inhibitors in conjunction with the manipulation of 
certain miRNAs, are also being investigated. Approaching miRNAs as therapeutic 
targets has two major drawbacks: (1) their ability to control several transcripts (up 
to hundreds) at once, and (2) the difficulty of achieving effective miRNA delivery.

6. MicroRNAs as possible diagnostic biomarkers in Alzheimer’s disease

AD is categorized, according to biochemical and clinical changes, into three 
different stages: pre-clinical i.e., early asymptomatic, mild cognitive impairment 
(MCI), and eventual dementia [76]. The majority of currently known biomarkers 
and approaches are focused on the late stages of the illness and may be categorized 
as follows: (1) neuropsychological tests, (2) neuroimaging techniques, and (3) 
protein biomarkers in the cerebrospinal fluid (CSF) [25]. Neuropsychological 
tests include cognitive assessments such as the Mini-Mental State Examination 
(MMSE) for early diagnosis to track cognitive changes over time and quantify the 
severity of cognitive impairment; however, this method is limited by factors such 
as the patient’s familiarity with the test and their educational attainment, which 
limits its sensitivity and specificity [77]. Neuroimaging examinations include 
fluorodeoxyglucose (FDG)-positron emission tomography (PET) and magnetic 
resonance imaging (MRI) for monitoring functional abnormalities as well as 
pathophysiological alterations such as medial temporal lobe atrophy and metabolic 
problems that can develop without evident cognitive impairment. Though this 
approach is viable, it has significant time and expense constraints. There are just 
a few laboratories that provide neuroimaging examinations. As a result, only a 
limited proportion of patients have access to neuroimaging [78]. Currently, protein 
biomarkers are the best biomarkers for monitoring AD and clinical research. They 
include Aβ1–40, Aβ1–4, phosphorylated tau (ptau), and total tau (t-tau) proteins 
in the CSF. However, a lumbar puncture is required to get CSF, which is invasive 
and not well tolerated by patients [78]. The identification of disease-causing 
genes is also a viable option. Simple, efficient, and inexpensive biomarkers for AD 
diagnosis are still lacking, especially in the early stages of the illness [25]. Several 
pieces of literature have found that particular miRNA species found in the biofluid 
of Alzheimer’s patients correlate with clinical alterations [22, 79–81]. Thus, miRNA 
emerges as a potential biomarker for initial diagnosis of AD as they are present 
in circulatory fluids which include CSF, seminal fluid, peritoneal fluid, amniotic 
fluid, pleural fluid, bronchial secretions seminal fluid, serum, plasma, and vari-
ous other biological fluids [82, 83]. Circulatory miRNAs are a possible diagnostic 
biomarker for the illness because of their consistency and large quantity. miRNAs 
are when enwrapped in liposomes or attached to lipoproteins in the CSF, serum, 
or plasma, they are more stable and may endure harsh environmental conditions 
[84]. Furthermore, miRNAs may be acquired and measured with ease utilizing 
real-time PCR, next-generation sequencing (NGS), or microarray. Bio-molecules 
found in biological fluids such as CSF, tear, urine, and blood are being studied 
for their possible role in detecting disease progression in Alzheimer’s patients. 
According to previous research, miRNA is a modulator of the pathogenic state 
exhibited in AD [85]. Several miRNAs like miR-26b [54], miR-34a/c, miR125b, 
miR-210, and miR-146b are shown to change in blood and brain in Alzheimer’s 
patients, although the direction of changes is not always consistent between both 
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miRNA sources [22, 86]. Furthermore, miRNA isolated from Alzheimer’s patients’ 
blood plasma and serum including miR-545-3p, miR-107, miR-15b-5p, miR-191-5p 
has been expected as potential AD biomarkers [22]. MiR-455-3p has emerged as 
a possible AD biomarker since growing levels in serum are commensurate with 
levels in AD brains, fibroblasts, lymphocytes, and even AD transgenic models 
[87]. This emerges the need to further explore the potential of a single miRNA to 
identify prodromal AD. A panel of miRNAs implicated in pathological processes 
underlying AD, such as neuroinflammation, has emerged as a diagnostic tool for 
AD prediction. While much work is being done on miRNA-based biomarkers for 
AD, few studies in the area have looked at the link between AD biomarkers and 
synaptic function modulation. Table 1 summarizes the most important findings 
in synaptic-related miRNAs obtained from circulating biofluids of AD patients 
and their potential value as biomarkers. The majority of studies have been done in 
blood samples, including serum and plasma, indicating a desire to investigate less 
invasive biomarkers. Certain studies reported earlier demonstrated that reproduc-
ibility between studies might be challenging even when miRNAs are obtained from 
the same sample source. As an example, the drop in miR-132 in serum from mild 
cognitive impairment (MCI) and AD patients [102, 107], has been replicated in 
plasma sample [131], although Sheinerman and team found an increase in MCI 
individuals [105], MiR-132, along with miR-206, which is similarly downregulated 
in MCI serum, has been proposed as part of a serum-based signature for MCI iden-
tification [102]. The adoption of miRNA-based signatures, which take into account 
the simultaneous modification of many miRNAs, can result in greater accuracy, 
sensitivity, and specificity values, which could be beneficial for future diagnostic 
tools. Another signature based on serum-miRNA levels, including synaptic-related 
miR-23a, miR-29a, and miR-125b has shown promising results in distinguishing 
Alzheimer’s patients from healthy cognitive controls (HCC) [92]. Although results 
are inconsistent between researches, the diagnostic usefulness of the miR-29a/b 
family has been examined in serum and CSF [39, 92, 96, 100, 132]. The modifica-
tion of these miRNAs in biological fluids during AD pathology appears to be 
obvious. MiR-125b and miR-23a, on the other hand, have continuously increased 
in serum, demonstrating a strong ability to differentiate between AD and control 
participants [92, 115]. MiR-125b’s potential has also been investigated in CSF, 
where it has subsequently been offered as a specialized tool [116]. As previously 
reported, an increase in associated miR-125a levels has been seen in CSF from 
AD patients, suggesting that it might be used as a biomarker [100, 107]. Limited 
literature has looked at miRNA levels over time to see whether they might predict 
the development of MCI into AD. Beneficial diagnostic tool for classify MCI from 
AD include miR-206 [103], miR-146a, and miR-181a [113], miR-181c [88, 92], 
miR-181a and miR-181c [105], miR-92a-3p, and miR-210-3p [86], miR-107 [133].

The potential utility and benefits of miRNAs as early biomarkers for AD underscore 
the urgent need for protocol standardization as a critical tool for accelerating develop-
ment in generating more accurate findings and bringing breakthroughs to the clinics. 
Molecular diagnostics companies like DiamiR are already developing and commercial-
izing miRNA-based technologies, demonstrating the progress made in the field and the 
real possibilities of using miRNAs as biomarkers for AD not only in screening and diag-
nosis but also as a useful tool for bettering the condition of clinical trial participants.

7. Conclusion

MiRNAs play an important role in the progression of AD. Alzheimer’s inves-
tigation indicates that miRNA may assist to gene regulation, protein-protein 
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expressions, and phenotypic changes in diseases condition and some indication 
shows that aberrant regulation of miRNA-dependent genes are related to some 
cellular and molecular events which are liable for Aβ production, neurodegenera-
tion, and NFTs formation. This review highlights the involvement of miRNAs in the 
regulation of APP expression, BACE1 expression and Aβ clearance. Thus, miRNA 
is possibly used as a treatment tool for AD. In addition to the therapeutic tool, 
microRNAs are also emerging as diagnostic tools because of their high sensitivity, 
efficiency, and specificity. It is found in biological fluids like CSF, extracellular 
fluid, pleural fluid, seminal fluid, bronchial secretions, breastmilk, serum, blood, 
plasma, etc. Thus, given the intricacy of AD development, illness history, and 
diagnosis, future treatment methods such as miRNA and anti-miRNA (antimiR, 
antagomir) techniques are needed:

i. It will be coupled with improvements in the development of sensitive and 
precise neuroimaging and biofluid-based diagnostic tools for miRNA and 
other AD-relevant biomarkers,

ii. It will need to be simultaneous and multimodal, addressing numerous dis-
ease pathways, and neurological symptoms to block basic illness progression 
while minimizing ancillary off-target consequences,

iii. It will be used for screening in conjunction with basic medical care and as a 
second level diagnostic work-up for expert diagnosis and clinical treatment,

iv. It may entail correct medication therapy and distinct therapeutic develop-
ment within the neurophysiological perspectives and the systems biology.
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Abbreviations

3’UTR 3′-untranslated region
AChE acetylcholinesterase
ACID APP intracellular domain
AD Alzheimer’s disease
ADAM10 a disintegrin and metalloproteinase 10
Ago argonaute protein
AKT protein kinase B
APP amyloid precursor protein
Aβ amyloid beta
BACE1 β-site amyloid precursor protein cleaving enzyme 1
BDMs blood-derived monocytes
C83 proteolytic products of APP
CCL2/CCR2 chemokine (c-c motif) ligand 2/chemokine (c-c) receptor type 2
CREB1 CAMP responsive element binding protein 1
CSF cerebrospinal fluid
DGCR8 DiGeorge syndrome critical region 8
DLG4 discs large homolog 4
DPYSL2 dihydropyrimidinase-related protein 2
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Drosha ribonuclease III enzyme
DUSP6 dual specificity phosphatase 6
EFNA3 ephrin A3
Evs extracellular vesicles
FDG fluorodeoxyglucose
FTD frontotemporal disorder
GRIA1 glutamate receptor 1
GRIN2B glutamate receptor ionotropic, NMDA 2B
GSK-3b glycogen synthase kinase-3β
hATTR hereditary transthyretin-mediated amyloidosis
HCC healthy cognitive controls
HEK293 human embryonic kidney cell-line
Ho-1 heme oxygenase 1
IGF1 insulin-like growth factor 1
MAPK mitogen-activated protein kinases
MCI mild cognition impairment
MEF2D myocyte-specific enhancer factor 2D
MME (NEP) membrane metalloendopeptidase (neutral endopeptidase)
MMSE mini-mental state examination
MRI magnetic resonance imaging
mTOR mammalian target of rapamycin
N2a neuro-2-a cell
NF-kβ nuclear factor kappa beta
NFTs neurofibrillary tangles
NGS next-generation sequencing
Nrf2 nuclear factor erythroid 2-related factor 2
PET positron emission tomography
PPAR peroxisome proliferator- activated receptor gamma
PPP1CA PP1-alpha catalytic subunit gene
pri-miRNAs primary miRNAs
PTEN phosphatase and tensin homolog
RARA retinoic acid receptor alpha
RISC RNA-induced silencing complex
ROCK1 Rho-associated, coiled-coil-containing protein kinase 1
SAD sporadic Alzheimer’s disease
SAMP8 senescence-accelerated mouse prone
sAPP soluble amyloid precursor protein
SH-SY5Y human derived neuroblastoma cell line
siRNA small interfering RNAs
SIRT1 silent mating type information regulation 2 homolog
STIM2 stromal interaction molecule 2
SYN2 synapsin II
SYT1 synaptotagmin-1
TMOD2 tropomodulin 2
TNFAIP1 TNF alpha induce protein 1
VAMP2 vesicle-associated membrane protein 2
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Perspective Chapter:  
Exercise-Eating Pattern and Social 
Inclusion (EES) is an Effective 
Modulator of Pathophysiological 
Hallmarks of Alzheimer’s Disease
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Abstract

Alzheimer’s Disease (AD), a common type of dementia, characterized by 
the presence of aggregated extracellular amyloid-beta (Aβ), intracellular hyper 
phosphorylation of tau protein and neurodegenerative with cognitive decline. It is 
projected that 141 million people will be suffering with AD by 2050 but no effec-
tive drug treatment is discovered without side effects. There is an urgent need 
for the application of alternative and non-pharmacological interventions for AD. 
Sporadically found that exercise or diet therapy or social activity may positively 
influence the AD. In this review we discussed the process of how Exercise-Eating 
pattern and Social inclusion (EES) has been shown to have fewer side effects and 
better adherence with AD. In this mechanism the EES can modulate the brain 
metabolic factors, brain-derived neurotrophic, ketone bodies, lactate, cathepsin-B, 
irisin, hormonal balance in AD. This review also described the potential biological 
mechanisms underlying exercise (modulation of biomolecule turnover, antioxidant 
and anti inflammation), eating pattern (bioactive compounds) and social inclusion 
that is very important to ameliorate the pathophysiological hallmarks of Alzheimer’s 
disease. Thus, this EES can be an effective approach to manage the neurodegenera-
tive disorder as well as Alzheimer’s disease.

Keywords: Exercise-eating pattern and social inclusion (EES), neuromodulators, 
metabolic factors, pathophysiological-hallmarks, new approach to AD

1. Introduction

Alzheimer’s disease (AD) is a form of dementia, currently affecting over 55 million 
people worldwide. This alarming situation is projected to the elevation of 88 million 
people by 2050 [1, 2]. It is a complex mechanism of neurodegenerative disorder clini-
cally categorized by advanced and continuing deterioration in intellectual capability 
of the brain and biochemical change due to the presence of neurotic threads, specific 
areas of the brain function damage subsequently synaptic signal loss. This consequence 
occurs due to the accumulation of specific protein amyloid-β to the external neurons 
and modification of the specific tau protein by hyper phosphorylation and ultimately 
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neurofibrillary twists (NFTs) are formed in the neuron cell of the brain. This mecha-
nism is responsible to intellectual deficit, remembrance loss, and then neuron expiry 
[3, 4]. AD is one of the pathetic disease eases due to the presence of disability in the 
oldest people and it was found that the prevalence of AD is less than 1% in the people 
who are underneath 60 years of age, but this prevalence is increasing to 40% among 
people who are older than 85 [5]. The most important thing is that, there is no specific 
drug for the treatment of AD to date [4]. The alarming disease burden is concerned 
in the world, because the projected global population of older adults (defined as those 
aged >60 year) in the year of 2050 will be 2 billion (approximately 21% of the world’s 
population) out of them 392 million will be over 80 years of old [6]. Presently preven-
tive measures are getting more attention than pharmacological interventions after 
unsuccessful clinical trials of some promising drugs designed for targeting Aβ and 
tau proteins. Though, there is no specific treatment of the AD but world scientists are 
trying to control the gradual growth of AD by multidomain non pharmaceutical inter-
vention such as exercise or diet, and intellectual or physical activity that can prevent 
cognitive decline at-risk of the oldest population [7]. There is no available information 
about together-intervention of exercise with diet pattern and social inclusion to ame-
liorate the prevalence of AD. This is a very important and socially demanding strategy 
of mass elder people rather than pharmacological intervention.

2. Pathological hallmarks of AD

Two most important determinants in or out of the neuron cells in the brain 
that are involved in the mechanism of dementia progression, i.e., the β-amyloid 
peptide and tau proteins. The pathophysiological change of AD is normally carried 
out by measuring the deposition of β-amyloid peptide, a 39–43 amino acid chain 
that is produced in the brain and organized a flame-shaped neurofibrillary tangles 
of tau protein in the affected region of the brain [3]. In patient of AD, one of the 
determinant (β-amyloid peptide) in the brain is found abnormal due to the genetic 
mutations in the gene of precursor protein of β-amyloid peptide and Presenilins (PS1 
and PS2) which lead to anomalous Aβ accumulation outside the neuron in the brain 
[4]. Another important determinant tau protein treats the microtubule gathering 
and maintenance due to the hyperphosphorylation of tau protein and is the cause 
of AD pathology, The actually mechanism of abnormal microtubule gathering is 
hyper phosphorylation of tau protein because the modified tau protein can acceler-
ate the formation of neurofibrillary tangles (NFTs), that is associated with loss of 
remembrance and wisdom hearts [8]. The microtubule disassembly (neurofibrillary 
tangles; NFTs) may likewise found in other distinctive neurodegenerative diseases, 
have some distinguishing morphological change rather than AD and this is due to a 
distinctive conformation of tau isoforms that could easily differentiate from AD [9]. 
On the other hand, the degree of dementia was observed to be weakly correlated with 
the amounts and distribution of Aβ deposition within the brain [10]. In particular, 
the increased deposition of Aβ peptide outside the neuron cell can cause abnormal 
synaptic signal transduction, intellectual linkage, mitochondrial energy transduction, 
apoptosis of neuronal cell and, ultimately remembrance forfeiture, the hallmark of 
AD [11, 12]. Even though some neurotoxicity occurs in the neuronal cell, the mecha-
nism of neurotoxicity caused by Aβ is not fully discovered. Although some studies 
showed that the abnormal accumulation of Aβ peptide in the brain causes induction 
of oxidative stress and neuroinflammation, the most important cause of neurotoxic-
ity [13]. Early detection of the determinants is one the most important parameters for 
the management of AD. But the aforementioned two determinants are very difficult 
to early determination. Thus defective metabolism of glucose in the brain may be 



107

Perspective Chapter: Exercise-Eating Pattern and Social Inclusion (EES) is an Effective...
DOI: http://dx.doi.org/10.5772/intechopen.101611

one of the earliest hallmarks of AD. The detection of brain glucose hypometabolism 
is measured by the determination of fluoro-2-deoxy-D-glucose positron emission 
tomography imaging system. This technique has been suggested as an effective early 
diagnostic tool for AD. Several studies showed the sensitivity and effectiveness of the 
brain glucose hypometabolism technique (about 90%) for the early diagnosis of AD 
[14]. Moreover, amino acids may be another hallmark of AD. For instance, abnormal 
elevation of homocysteine (Hcy) in the AD population. Studies showed that hyper-
homocysteinemia is accompanied with amplified intellectual deterioration in healthy 
older adults with a higher risk of perceptive deficiency [15]. Another study found that 
abnormal plasma homocysteine and distressed homocysteine amino acid metabolism 
are risk factors for intellectual concept [5]. Several potential mechanisms have been 
studied on the harmful effects of homocysteine amino acid in the brain including 
oxidative deterioration [16], cerebrovascular impairment [17], DNA destruction [18], 
and activation of N-methyl-D-aspartate receptors [19]. In the Figure 1, we summa-
rized the various modifiable risk determinants that are responsible for AD pathology.

3. Mechanisms involved for the development of AD

The Aβ peptide (approximate size ~4 kDa) is resulting by cleavage of the larger 
β-amyloid precursor protein (AβPP). β- and γ-secretase are the two membrane-
bound endoprotease activities sequentially cleaved the AβPP to produce (Figure 2) 
the most abundant fragment Aβ40 (~80 to 90%) and Aβ42 (~5 to 10%). The some-
what extensive forms of Aβ, predominantly Aβ42, is the principal culprit for the 
deposition in the brain [20]. The enzyme, β-Secretase is a protease which have two 
major homologous (>65%) forms, one is β-site Amyloid Precursor Protein Cleaving 
Enzyme (BACE1) and the other is BACE2. The most important Enzyme BACE1 

Figure 1. 
Various modifiable risk determinants in AD pathology [4].
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is mainly accountable for β-amyloid peptide production higher in the brain than 
BACE2 which is mostly present in the peripheral tissues. Animal studies stated that 
the protease BACE1 is the foremost β-secretase action in the brain, however, some 
residual motion might be attributable by the BACE2. Besides the brain, The BACE1 
are also found in another cell type such as pancreatic β-cells where they are highly 
expressed in mRNA levels, however, this pancreatic isoform of BACE1 is distinctive 
from the brain and may not cleave AβPP. It was found that BACE1 action upsurges 
with oldness and is highly found (two to five-fold) in irregular AD [21, 22]. It is 
important that the lack of protease activity of BACE1 is related to prevent β-amyloid 
peptide synthesis [23]. Recent studies also observed that in a suitable situation 
cathepsin B or cathepsin D may help to serve such kind of enzyme like β-secretase 
enzymes. The two enzymes, β- and γ-secretase were considered to be the leading 
goals for the advance of anti-AD medications [24]. For example, alterations in 
γ-secretase activity by the change of allosteric γ-secretase controlling representatives 
may prevent the production of β-amyloid peptide [25]. Study showed a reduction 
in BACE1 expression that is related to glucose metabolism via regulation of insulin 
mRNA expression. In vivo experiments stated that reduction of BACE1 expression 
may lower plasma insulin concentrations and body weight through the controlling 
of regular glucose acceptance and insulin sensitivity [26].

Another relationship of AD has also been exposed to be concomitant with 
inflammation, glucose metabolism and hormonal balance. For instance, the 
inflammatory markers have been isolated in the cerebrospinal fluid (CSF) and 
abnormal amyloid formation found in the brain of AD that is much related to 
high expression of inflammatory molecules interleukin-6 (IL-6). This relation-
ship is not only found in the brain but also in the other fluid such as the lumbar 
and ventricular region in patients with AD. Another relationship was found that 
circulating IL-6 is highly expressed before symptomatic sign of dementia and this 
increased IL-6 is related with low male hormone like testosterone in older men 
with type-II diabetes Mellitus (T2DM) and AD [27–29]. It was found that male 
hormone secretion is hampered by inflammatory molecules IL-6 and this is much 

Figure 2. 
Amyloidogenic pathway involved for development of AD [32–35].
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related to inflammation and oxidative stress, hormonal imbalance and T2DM with 
AD pathology [30–31]. Figure 2 summarized the amyloidogenic pathway involved 
for development of AD [32–35].

4. Mechanisms involved for the prevention of AD

The prevention of AD means the degradation of β-amyloid peptides by enzymes 
such as Aβ degrading enzyme Neprilysin (NEP) and insulin degrading enzyme (IDE). 
There are many enzymes, the aforementioned two important enzymes are metallo-
protease which are responsible for most of the Aβ degradation [36, 37]. The membrane 
bound Neprilysin is actually type II metalloprotease which degrades the extracellular 
variety of peptides but the IDE enzyme can degrade both intra- and extracellular [38]. 
Though the affinity of IDE enzyme to the insulin is (twenty times higher) higher than 
Aβ but it hydrolyzes slowly. It is important that the insulin may be responsible for 
cleavage of β-amyloid peptides, this is the basic mechanism among type II diabetes, 
hyperinsulinemia, and AD [39, 40]. Most of the Aβ degradation occurs by the influ-
ence of NEP, like lysosomal degradation of cathepsin B [41]. Another study stated 
that other enzymes such as Endothelin Converting Enzyme (ECE), Angiotensin-
Converting Enzyme (ACE), and Matrix Metalloproteinase-9 (MMP-9) may also 
have Aβ degrading properties [42]. Though the substantial degradation of β-amyloid 
peptides occurs in the brain, their undegraded portion is transported through the 
blood brain barrier (BBB) into the circulation by specific mechanisms. The soluble part 
of β-amyloid peptide is switched through the BBB into the abluminal site of the brain 
by the low-density lipoprotein receptor-related protein (LRP) and into the luminal side 
of the blood by the receptor for advanced glycation end products (RAGE) [43, 44].  
Disturbing this mechanism may cause an increase of Aβ level which may be attached 
with other widespread co-morbid vascular irregularities in the brain function of AD. 
This change may exaggerate the development of amyloid pathology [45]. Figure 3 
summarized the detailed preventive mechanism of AD by Aβ degradation pathway. 
The frequency of AD is found meaningfully higher in women than to men (almost 
two-thirds) indicating a strong association of sex hormones with the AD [46]. Study 
observed that testosterone levels are inversely associated with the plasma levels of 
β-amyloid peptides in elderly men population [47]. Testosterone may provide different 
neuroprotective effects including enlightening intellectual presentation and synaptic 
signal transduction by increasing relaxation, modulation synapse density level on 
the brain hippocampal dendritic spines [48, 49]. This hormone is also important for 
maintaining hippocampal function in elderly population [50], increasing blood supply 
to the cerebral and increasing glucose metabolism in the responsive brain regions as 
well as reduced the aggregation of β-amyloid peptides and neurotoxicity. Testosterone 
may reducing the tau protein hyperphosphorylation and in vivo experiment showed 
that the reduction of testosterone is directly associated with reduce intellectual 
performance, and it could be revised by testosterone supplementation [51, 52]. Women 
are more prone to AD than men because testosterone is basically a male hormone and 
most abundant testosterone is converted into estrogen and other adrenal hormones in 
women. The study showed that women are more prone to AD symptoms due to lack 
of testosterone [53]. Previous animal study indicated that testosterone (in male) and 
estrogen (in female) could modulate the invention of β-amyloid peptides by the dis-
turbing of BACE1 action [54, 55]. The hormone like testosterone is an effective modu-
lator of endogenous β-amyloid peptides degrading enzymes such as NEP. Animal study 
observed that neuronal expression of NEP is enhanced by the action of testosterone 
which in turn reduces the β-amyloid peptide level and ultimately reduces the symp-
toms of AD [56]. The increase of β-amyloid peptides degrading enzymes positively 
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influence on the level of toxicity or fibrillization of amylin [57, 58]. Testosterone may 
regulate the enzymes NEP and IDE and improve the AD conditions [53]. Another 
protein, the APOE ε4 allele is very related to the AD, promoting β-amyloid peptides 
clearance, and it was found that the isoform ApoE ε2 and ApoE ε3 are very efficient 
than the ApoE ε4 protein. The modification among the isoform may influence the abil-
ity of ApoE to promote β-amyloid peptides degradation, and the modification of ApoE 
is subjected by its lipid carrier molecule ABCA1, whereby higher modification may 
increases the clearance of β-amyloid peptides [59, 60]. The insulin impairment and 
the brain function are associated with AD [53]. Brain insulin is very special and mostly 
originated from endogenous production which is not influenced by the plasma insulin 
[61]. The mechanism of insulin action in the brain describes the signal transduction via 
signal cascade pathway. In which first insulin binds to the insulin receptors and then 
phosphorylation occurs on multiple substrates such as insulin receptor substrate-1 and 
insulin receptor substrate-II. This phosphorylated substrate activates the downstream 
signaling pathways and activates the phosphatidylinositol 3-kinase, which is an impor-
tant modulator for synaptic malleability, education, and remembrance. The activation 
of phosphatidylinositol 3-kinase subsequently activates Akt which phosphorylates 
enzymes related to glucose metabolism such as glycogen synthase kinase (GSK) 3β. 
Then GSK3β regulates tau protein phosphorylation in AD, and thereby leading to 
neurofibrillary tangle formation [62, 63]. In vitro and in vivo studies demonstrated that 
impairment of insulin signaling pathway is associated with the AD pathology [64–66]. 
There is a strong linkage among the hormone testosterone, insulin and glucose 
metabolism through glucose transporter and insulin receptor protein [67]. Studies have 
shown that testosterone influence the glucose uptake and transporter via activation 
of liver kinase B1/AMP-activated protein kinase signaling pathway in fat cell, where 
AMPK plays an important role for decreasing mTOR signaling activity and promotes 
lysosomal degradation of β-amyloid peptides in AD. However, this mechanism can also 
lead to β-amyloid peptides generation and tau phosphorylation [68, 69]. Several studies 
have shown that both precursor protein (APP) and β-amyloid peptides co-localize 

Figure 3. 
Preventive mechanism of AD by Aβ degradation pathway.
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in mitochondria, suggesting the possibility of mitochondrial function is associated 
with APP biology [70]. Ketone bodies may block the mitochondrial amyloid entry 
and improve understanding capability [71]. This ability would predictably ameliorate 
Aβ-mediated suppression of respiratory chain function and perhaps could rescue 
the bioenergetics hypo metabolism that is observed in AD brains [72]. Alternatively, 
improving mitochondrial performance outright could reduce the production of Aβ and 
increase the production of soluble APPα [73].

5.  Dietary pattern for the prevention and treatment of Alzheimer disease

Dietary patterns which are rich in antioxidant and anti-inflammatory proper-
ties, may involve the establishment of auspicious attitudes in the treatment of 
intellectual deterioration or suspending the development of dementia in the brain 
[74]. The bio ingredient of diet can change the epigenetic by regulating deoxyribo-
nucleic acid (DNA) modification such as methylation, acetylation, histone protein 
modifications, and changes of gene expression in the ribonucleic acid (RNA) level. 
The epigenetic modification may influence the expression of particular genes and 
subsequently particular marker molecules that are responsible for epigenetic altera-
tions [75]. Lipidation of several molecules are important for brain function, one of 
them are polyunsaturated fatty acids (PUFAs) [76]. The PUFA are the important 
component of neuronal cell membranes, which is responsible for membrane fluid-
ity. The crossing of molecules through the membrane allows them for cell signaling 
and neuronal protection [77]. The essential PUFAs play not only neuroprotection 
but also involve development and brain functions. They also have antioxidant, anti-
excitotoxic, and anti-inflammatory activities in the brain. Imbalance of PUFA has 
been found in neuropsychiatric health including dementia. The beneficial effects 
of long-chain omega-3 PUFAs have been observed in populations where long-
chain omega-3 PUFAs effectively reduce the risk of cerebral damage in individuals 
without dementia. This is supported by other studies in such a way that omega-3 
fatty acid may effectively reduce the initial stages of intellectual deterioration 
[78]. Another dietary bioactive compound, curcumin (turmeric powder), plays an 
important role against β-amyloid peptides deposition in the AD because they have 
potent antioxidant, anti-inflammatory, and neuroprotective function [79]. The 
bioactive compound, curcumin, regulates the genetic control by down regulation 
of several gene expression such as class I HDACs (HDAC1, HDAC3, and HDAC8) 
and enhances the acetylation of histone H4 levels. The curcumin regulates not only 
gene expression but also can inhibit certain epigenetic enzymes [80]. Other dietary 
bioactive compounds, flavonoids have potent antioxidant properties, can modulate 
epigenetic control by the down regulation of pro-inflammatory and inflammatory 
cytokines and prevent neural impairment in AD [81, 82]. Thus, flavonoids could 
be a promising therapeutic intervention against neurodegenerative disease. In vivo 
and in vitro studies showed that the bioactive compound quercetin may regulates 
cytokines via activation of several downstream molecules such as nuclear factor 
(Nrf2), Paraoxonase-2, c-Jun N-terminal kinase (c-JNK), Protein kinase C (PKC), 
Mitogen-activated protein kinase (MAPK) signaling cascades, and PI3K/Akt path-
ways [83]. Dietary source of component such as cocoa and seed coat of the black 
soybean, rich source of plant flavonoids and anthocyanin respectively, have been 
shown neuroprotective action against intellectual deterioration, oxidative stress, 
neurodegeneration, and memory impairment in a mouse model of AD via the 
PI3K/Akt/Nrf2/HO-1 pathways [84, 85]. The dietary patterns of coffee and tea that 
contain bioactive caffeine have been shown to reverse intellectual impairment and 
reduce the β-amyloid peptides aggregation in the brain in mice model of AD. This 
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reduction occurs due to the stimulation of protein kinase A activity by the caffeine 
and increases the phospho-CREB levels, subsequently reducing the phospho-JNK 
and phosphor-ERK expression in the brain. Thus, the high level of blood caffeine 
may inhibit the progression to dementia [86, 87]. Dietary pattern of grapes and red 
wine that contains resveratrol, a polyphenol of potent antioxidant and anti-inflam-
matory actions [88]. The reactive oxygen species (ROS) induced oxidative stress is 
protected by the resveratrol by the activation of sirtuin 1 (SIRT1) [89]. Resveratrol 
also activates a transcriptional coactivator of energy metabolism and several studies 
have shown that resveratrol supplementation with vitamin D could prevent intel-
lectual impairment in vivo through Amyloidogenic pathways [90, 91]. Another 
study stated that resveratrol may ameliorate the hippocampal neurodegeneration 
and memory performance [92]. Insufficient dietary minerals may adversely affect 
the critical cellular processes associated with intellectual impairment and dementia. 
Thus, dietary patterns of sufficient minerals may have a protective role against 
many metabolic diseases including intellectual deterioration [93, 94]. Compelling 
evidence shows that magnesium deficiency may impair memory and contributes 
to AD pathology [95]. Magnesium sufficient dietary patterns may modify AβPP 
processing and stimulate the α-secretase cleavage pathway, thereby protecting the 
cognitive dysfunction [96].

Dietary patterns of vitamin rich food might be useful in maintaining intellectual 
function and delaying the progression of AD. Studies have stated that vitamin 
rich dietary patterns such as folic acid and vitamin B12 can significantly improve 
intellectual functions [97]. In AD, oxidative stress and mitochondrial dysfunction 
can be prevented by vitamins, because vitamin can modulate the oxidative stress 

Figure 4. 
Mechanism of how dietary patterns are involved for the treatment of AD.
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markers and misfolded proteins [98, 99]. Clinical studies suggested that ketogenic 
therapies may be beneficial for AD patients. It was found that plasma ketone levels 
were increased by the medium chain triglyceride and ketone ester supplementa-
tions and improved the intellectual function in AD patients [100]. Another source 
of fuel for the brain is ketone bodies (KB), which may provide energy for the brain 
and also increase mitochondrial efficiency and cognitive function. The two forms 
of KB are very important for these mechanisms in the brain; beta-hydroxybutyrate 
(b-HB) and acetoacetate. Evidence suggests that brain ketone body utilization is 
not problematic in AD like glucose, making it an alternative energy source of brain 
function [101]. Figure 4 summarized the dietary management of AD.

6.  The mechanism of how exercise-eating patterns can modulate the 
brain function of AD

In the brain of an AD patient, there are several mechanisms for the changes 
of β-amyloid peptides synthesis and degradation and tau protein modification. 
Physical activity may change many signaling molecules both at the mRNA and 
protein level that may induce the anatomical changes of the brain, chemical and 
electrophysiological change of the nerve, subsequently enhance the plasticity of 
neurons of the brain and improve the brain function. Multiple paths of physical 
exercise and dietary pattern are likely enabled to adjust the level of β-amyloid 
peptides and tau protein directly or indirectly. Both physical activity and habitu-
ated dietary healthy food are effective interventions in such a way that can limit the 
prevalence of neurodegenerative diseases through the minimization of mitochon-
drial dysfunction in bioenergetics processes [102, 103]. Physical exercise play an 
important role on neuroplasticity of the brain and cellular energy homeostasis well 
as improve the cognitive functions by controlling the activation of several signaling 
molecules such as PGC-1α and a nicotinamide adenosine dinucleotide (NAD)-
dependent deacetylase, SIRT1 [104, 105]. There is a loss of muscle mass and muscle 
activity with elderly people. Thus, regular exercise and a healthy dietary pattern 
reduces the development of aging-related muscle deterioration and promotes 
muscle activity with the older people [106]. Few have shown the that efficacy of 
exercise with men and women in AD people, even though differences were found in 
men and women cognitive improvement with exercise. Study showed that exercise 
can modulate insulin action and as well as blood glucose [107]. In vivo and clinical 
study have shown the benefit of exercise and dietary pattern as a non-pharmlogical 
option in reducing the β-amyloid peptides aggregation and tau protein phosphory-
lation in the aging brain. This mechanism happens less in women rather than men 
due to the change of hormone level [108]. In vivo study stated that exercise and 
healthy dietary patterns can reduce cortical BACE1 expression and activity by 
modulating the MAPK signaling in the cortex in AD patients [109].

Interestingly, animal and human studies have shown that exercise and specific 
dietary patterns may increase testosterone production but it is depending on the 
intensity of exercise and exercise-induced testosterone sustained for a long time in 
the body. It was found that high intensity of exercise can increase testosterone levels 
in T2DM patients, which is important for the reduction of risk factors of AD [110].

The most important neurotrophins, BDNF (brain-derived neurotrophic factor) 
is responsible for neurogenesis and synaptogenesis. Not only can the central nervous 
system (CNS) produce the BDNF but also skeletal muscle through the exercise. The 
underlying molecular mechanisms of exercise to produce testosterone may be medi-
ated by BDNF production in the brain. Physical exercise may increase testosterone. 
Thus, exercise and dietary patterns may increase BDNF levels as a stimulus for the 
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induction of neurogenesis to improve synaptic plasticity [111, 112]. Together physi-
cal exercise and dietary patterns not only increase the BDNF but also increase the 
insulin like growth factor-I (IGF-I). The mechanism of exercise and dietary pattern 
have been shown to enhance IGF-1 expression in the brain [113]. Moreover, exercise 
may release several factors like BDNF and IGF-1 into the circulation by testosterone 
activation. Neurocognitive damage is lifelong incidence with cellular dysfunction. 
For instance, impairment of BDNF production may influence the synaptic plasticity 
and neurogenesis in the aging adult brain [114, 115]. Exercise as well as dietary pat-
terns such as low-calorie intake is another important intervention for enlightening 
metabolic health. The molecular mechanism of low-calorie intake (LCI) is effec-
tive against ROS induced-oxidative stress, in which the LCI can reduce β-amyloid 
peptides aggregation and γ-secretase and plays a preventive role in AD pathology 
[116, 117]. It was found that the mechanism of low-calorie intake exerts its action 
by inhibiting nutrient-sensing and inflammatory pathways, thus physical activity 
and dietary pattern may also be effective methods for the preventive measures of 
AD [118]. The cellular energy homeostasis is mediated by AMPK in mitochondria, 
adipose tissue, skeletal muscle, and liver. This mechanism is activated by LKB1 and 
in response to metabolic stresses, exercise, sex hormones, and insulin sensitizing 
agents such as Metformin. Thus, the physical exercise and healthy dietary pattern 
plays a key role in AD patients [119–121]. Oxidative stress and inflammation are the 
hallmarks of dementia. Individuals’ cognitive abilities are related to both non-mod-
ifiable factors and modifiable risk factors such as exercise and dietary status. Low 
calorie diet may be effective against cognitive decline and the high calorie is vice 
versa [122]. Additionally, some dietary patterns that contain bioactive compounds 

Figure 5. 
Mechanism of exercise mediated management of AD.
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may increase signaling molecules and neuronal hormones that are responsible for 
cognitive improvement. Diet therapy such as vitamin rich food may affect the bod-
ies’ central metabolism as well as brain function, and the production of neurotrans-
mitters for modulation of mood in AD [123, 124]. Conversely, it was found that lack 
of basic B complex (folic acid, B6, and B12) in the dietary pattern is also proposed 
to impact on the rate of brain atrophy associated with mild cognitive impairment 
(MCI) [125]. Strength exercise and other dietary patterns such as intake of seafood 
and other sources of long-chain omega-3 polyunsaturated fats (LC-n3-FA) may 
have long-term beneficial effects on cognitive function [126, 127]. Thus, exercise 
and dietary patterns may balance several factors such as LC-n3-FA act via BDNF, 
and insulin-like growth factor-1 (IGF-1) can alter the expression of a number of 
protein pathways in neuronal function, plasticity, and neurogenesis [128]. Figure 5 
 summarized the exercise and dietary management of AD.

7. Social inclusion for the treatment of AD

Social inclusion is multidimensional including social and cultural connection 
with family, friends, work, personal interests and local community, deal with 
personal crisis etc., and operates at various social levels. In AD, the deterioration of 
brain activity begins in the hippocampus areas primarily associated with memory 
and emotion. The deterioration then spreads to other regions, resulting in reduced 
neuronal processing, eventually associated with episodic memory, emotion and 
mood, sensation, self-awareness, attention, memory retrieval and theory of mind 
which is adversely affected in the early stages of AD. Thus, it could be suggested 
that the brain regions affected by AD may share something in common, including 
their role of regulating emotion, memory and awareness and social inclusion can 
significantly affect in a broad range of measures, including a reduction of cognitive 
decline, reduction in perceived stress, increase in quality of life, as well as increases 
in functional connectivity, percent volume brain change and cerebral blood flow 
in areas of the cortex [129–131]. For the treatment of AD, Social inclusion is poten-
tially beneficial in improving the cognitive function of older adults with mild to 
moderate dementia and improving their quality of life. Thus, it is recognized as a 
priority field of AD research, as pharmacologic treatments have not demonstrated 
effective outcomes [132]. Social inclusion may promote communication and 
enhance social interaction skills that are important for potentially beneficial cogni-
tive functions and domains of memory and recall of older adults with dementia. 
These non-pharmacological interventions aim to reduce the behavioral symptoms 
of the AD. For instance, music therapy involves listening to music and singing 
songs, can modulate the factors involved in cognition and conduct, divert the 
attention of older adults to provoke emotional responses and modulate them, draw 
on different cognitive functions, and evoke movement patterns. Another study has 
indicated that singing traditional songs, which emerged from the life experiences 
of people living with dementia, activates their implicit memory with a priming 
effect [133]. Traditional opera can potentially be an effective therapy for improving 
the cognitive function of older adults with dementia, reducing their behavioral 
and psychiatric symptoms and enhancing their quality of life [134]. Moreover, it 
helps improve their memory as well as the coherence and expressiveness of their 
speech [135]. About ninety percent people with dementia showed behavioral and 
psychological symptoms and can cause serious complications but reduction of this 
complication by use of single antipsychotic medications is very difficult. Several 
studies showed that consideration of both the physical and the social inclusion can 
promote self-determination and opportunities for meaning and purpose of persons 
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with dementia [136]. Recent studies concluded that the level of evidence is consid-
ered insufficient to support the use of single non pharmacological interventions in 
prevention efforts of AD; however, mega study reported that around one third of 
ADs cases worldwide might be attributable to potentially modifiable risk factors 
such as smoking, physical inactivity, and midlife obesity [137].

8. Conclusion

Single nonpharmacological interventions for the treatment of pathophysiologi-
cal hallmarks of AD was not sufficient. It should include a new approach of three 
effector modulations such as exercise–eating pattern and social (EES) activities for 
the treatment of AD. However, when considering the single modulator exercise, 
adapting the physical environment is necessary but not sufficient. To effectively 
address AD, the exercise and eating pattern must also be incorporated into the 
intervention. Also, when considering social inclusion related to initiatives aimed at 
decreasing AD, providing initial training is necessary, ongoing training and support 
to mindfulness, meditation in the form of effective enabling and reinforcing factors 
must also be included. Finally, development of individualized approaches that 
promote self-control exercise, eating patterns and social inclusion of persons with 
dementia. This new approach EES should also be included with other interventions 
aimed at decreasing AD. Though it is very important that the combination of EES 
and other interventions would be supportive by the success of interventions. It is 
our hope that this new approach EES also provides direction for future research 
and initiatives aimed at successful and sustainable nonpharmacological manage-
ment of AD.
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