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Preface

Cardiovascular disease (CVD) is currently known to be one of the leading causes of 
death in the world. The World Health Organization (WHO) reported that CVD is 
responsible for one-third of all deaths globally. The annual cost of CVD to the world 
economy is estimated to be more than a trillion US dollars. The prevalence of CVD 
raises an urgent need to improve patient outcomes. 

A significant proportion of CVD is associated with heart rhythm problems, which 
means that the rhythm responds poorly or not at all to the physiological needs of 
the body. There is both an excessively slow rhythm (bradycardia) and an excessively 
high rhythm (tachycardia) or an unstable rhythm (arrhythmia, rhythm distur-
bances). Fortunately, many methods, techniques, and tools have been developed 
and successfully applied today to stabilize and control heart rate. These measures 
benefit many millions of people every year. 

Not only electrical pacing but also ablation is an effective minimally invasive surgi-
cal method and technique to reduce and block arrhythmias, both as an independent 
treatment method or in conjunction with pacing therapy. Radiofrequency ablation 
(RFA) has revolutionized the treatment of both supraventricular and ventricular 
arrhythmias. The development of novel mapping systems has led to the ablation of 
more complex arrhythmias such as atrial tachycardia, atrial fibrillation (AF), and 
ventricular tachycardia (VT).  

This book reviews modern cardiac rhythm management methods and devices 
together with some important medical aspects of their use. Written by the 
editors, Chapter 1 provides a developmental insight into modern methods and 
devices for cardiac rhythm management, both for electrical pacing and radio fre-
quency ablation. Chapter 2 addresses the implantation problems of different pac-
ing devices, focusing on both the surgical side and postoperative care. Chapter 
3 discusses the possibilities of using pacemakers in under-water conditions. 
Chapter 4 examines the nature of pain after the insertion of implantable devices 
and how to reduce it. Chapter 5 looks at the past, present, and future directions 
in the development of cardiac resynchronization therapy (CRT). Chapters 6 
and 7 discuss the problems of ablation, highlighting the short but strong pulse 
method and RFA of the epicardium.



The editors believe that the dedicated work of authors will provide readers with 
theoretical knowledge and practical guidance as well as the tools and skills to 
overcome the problems of heart rate management in their professional activities.

Mart Min
Tallinn University of Technology,

Tallinn, Estonia

Gabriel Cismaru
Iuliu Hațieganu University of Medicine and Pharmacy,

Cluj-Napoca, Romania
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Chapter 1

Introductory Chapter: Modern 
Methods and Devices for Cardiac 
Rhythm Management
Mart Min and Gabriel Cismaru

1. Introduction

Cardiovascular disease (CVD), which refers to interdependently related heart 
and blood vessel problems, is currently known to be one of the leading causes of 
death in the world. The World Health Organization (WHO) reported that CVD 
is responsible for one-third of all deaths globally. The annual cost of CVD to the 
economy is estimated about £25 billion in the UK and over $500 billion in the 
USA. The prevalence and cost of CVD raise an urgent need for solutions to elevate 
standards of care and improve patient outcomes.

A significant proportion of CVD is associated with heart rhythm problems, 
which means that the rhythm responds poorly or not at all to the physiological 
needs of the body. There are both an excessively slow rhythm (bradycardia) and 
an excessively high rhythm (tachycardia) or an unstable rhythm (arrhythmia, 
rhythm disturbances). All these incorrect rhythm phenomena are life-threatening. 
Fortunately, many methods, techniques, and tools have been developed and 
successfully applied today to stabilize and control the heart rate (HR). Modern 
implantable devices and treatment methods, including minimally invasive surgery, 
have been developed for cardiac rhythm management and avoiding heart failure. 
These measures benefit many millions of people every year [1].

Not only electrical pacing [1–3], but also ablation is an effective minimally 
invasive surgical method for reducing and blocking arrhythmic phenomena [4, 5], 
both as an independent treatment method and in conjunction with pacing therapy. 
In the following, we will look at modern cardiac rhythm management methods and 
devices in more detail together with some important medical aspects of their use.

2. Making the devices smarter

2.1 Historical glimpse

The implementation of artificial pacing goes back more than 70 years [6]. The 
first electrical devices connected to a patient to provide electrical impulses to stimu-
late the heartbeat in bradycardia cases have been known since the 1950s. Thanks to 
the invention of silicon transistor in 1956, the 1958 was a remarkable milestone. In 
winter 1958, engineer Earl Bakken of Minneapolis, USA, co-founder of Medtronic 
company, produced the first wearable external pacemaker for a patient of C. Walton 
Lillehei. On October 8, 1958, the first electronic pacemaker was implanted by 
Senning and Elmqvist in Solna, Sweden. In 1958, Dr. William Chardack teamed up 
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with engineer Wilson Greatbatch and Dr. Andrew Gage to implant an electrode in a 
dog attached to a pulse generator. They worked for the next two years to refine their 
design of a unit. They implanted the pacemaker into a man and commercialized the 
product in 1960.

All the early pacemakers maintain the same constant pulse rhythm for long peri-
ods of time. A pacemaker in demand also appeared in the 1960s, which only paced 
when stimulation was required (when natural pacing ceased). In addition, the dual-
chamber pacemaker with synchronized pacing of both atrium and ventricle (known 
as physiological pacing) was first designed in 1960s [6]. In the end of this period are 
included also first attempts to use the variable pacing rhythm to adapt it to a physi-
ological need, i.e., the metabolic requirement corresponding to body’s work known 
as rate-responsive pacing [7]. The medical use of rate-responsive pacing began in 
early 1980s [8].

2.2 Sensing and sensors for the adaptive and closed-loop control of pacing rate

The problem is: how to get information for the adjusting of pacing rate? 
Obviously, it is almost impossible to use the body’s natural sensing nodes for this 
purpose; the help of artificial means or sensors is required [7, 8]. Some of the 
proposed information sources for regulating the pacing rate are oxygen saturation 
level, venous pH, QT interval, activity of body motions, respiratory rate, minute 
volume (MV), stroke volume (SV), central venous temperature, peak endocardial 
acceleration, and electrical impedance changes of the right ventricle (reflects 
a stroke volume) during the whole cardiac cycle. QT interval (reflecting both 
physiological and mental status) and minute volume (MV) sensors based on the 
electrical bioimpedance measurement of a tidal volume (TV) of lungs and stroke 
volume (SV) and cardiac output (CO) sensors based on the measurement of the 
internal bioimpedance of the left ventricle have been lifted onto the shield. There 
is no single sensor giving adequate information for regulating the pacing rate. The 
carefully weighted resultant from multiple sensors can provide reliable information 
for setting the pacing rate. Artificial intelligence methods, the results of which are 
under strict supervisory inspection to avoid the possibility of fatal error, can be the 
direction for future developments [9–11].

2.3 Principles of bioimpedance sensing

For bioimpedance sensing, a low-level microamp (μA) range alternating cur-
rent (AC) excitation of kilohertz range (kHz) is delivered from one electrode to 
another, and the caused voltage drop is measured. For example, these electrodes 
can be the pacing electrodes inside the right ventricle (in apex) and the case of 
implanted pacemaker [9]. Between these electrodes are situating both breathing 
lungs and contracting/relaxing myocardium of the beating heart [9–13]. As a 
result, we can measure the dynamic impedance of breathing lungs ZL(t) and of 
working myocardium ZM(t). The impedance ZL(t) gives the bases for calculating 
the tidal volume (TV), respiration rate (RR), and minute volume MV = TV × RR 
in liters. It is well known how the minute volume (MV) of breathing correlates 
with the physical work W of patient’s organism, which, in turn, determines the 
need for a fresh oxygen-rich blood expressed through a stroke volume (SV) and 
cardiac output CO = SV × HR in liters. Heart rate (HR) is equal to pacing rate 
(PR) for pacemaker patients. Therefore, the pacing rate (PR) determines the 
amount of oxygen-rich blood (CO) directly. The described mechanism forms 
the pacing rate (PR) management principle in modern cardiac rhythm devices. 
However, because we do not know exactly the functional relationship between the 
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required blood volume (CO) and PR, it becomes necessary to measure the effec-
tive CO and compare it with the desired comparison and negative feedback. With 
this, we achieve the automatic PR adjustment based on the feedback principle of 
closed-loop control [8, 14]. The feedback mechanism is provided determining the 
resulting stroke volume (SV) and cardiac output (CO) via measuring the electri-
cal bioimpedance ZV of the right ventricle, which is inversely proportional to 
stroke volume [13].

2.4 Supervisory control of pacing rate limits

For the benefit of the patient, it is reasonable not to rigidly fix the upper and 
lower pacing rate limits, but to leave them sliding within certain limits depend-
ing on the patient’s current medical condition. At the same time, however, both 
underpacing and overpacing must be strictly avoided. Both are dangerous for 
life, especially overpacing that can cause myocardial infarction, and must be 
strictly avoided [13, 14]. The principle is that the body demand for oxygen-rich 
blood must not exceed the ability of patient’s injured heart. Energy balance 
between the energy supply and energy consumption of myocardium must be 
fulfilled in every moment of heart work. The balance conditions and overpac-
ing risk were derived from the measurement of myocardial impedance ZM 
[12]. Underpacing risk was derived from the bioimpedance ZV measurement 
of ventricular volume—too large volumes indicate underpacing danger for the 
myocardium [12, 13].

2.5 Traditional and novel methods for delivering the pacing pulses

2.5.1 Traditional single-chamber pacing

The most known location of the pacing electrode is the tip (apex cavity) of the 
right ventricle. This solution has been working well for many decades in cardiac 
pacemakers to prevent bradycardia since the invention of the portable/wearable 
pacemaker in the 1950s and the widespread use of the implantable device in the 
1960s [6]. In addition, the most modern leadless pacemakers [15] use only the 
ventricular pacing. Many implantable cardioverter defibrillators (ICDs) use only 
the ventricular pacing to restore unstable or failed heart rate to its normal beating 
through timed electrical shock delivery.

2.5.2 Dual-chamber pacing

Later, in the mid-1970s, a dual-chamber pacing—one pacing electrode in the 
ventricular apex and another in the atrium of heart’s right side—has been intro-
duced in medical practice [6]. The dual-chamber pacing most closely resembles 
the normal physiology of cardiac initiation, compared to other pacemaker modes. 
Therefore, this device is also called as a physiological pacemaker, which ensures 
atrium-ventricle timing (synchronization) and suppresses atrial fibrillation (AF), 
that is, reduces the risk of pacemaker syndrome, which represents the clinical 
consequences of atrioventricular dyssynchrony after pacemaker implantation. 
Dual-chamber implantable cardioverter defibrillators (ICDs) provide dual-chamber 
pacing to prevent both atrial fibrillation and supraventricular tachycardia not avail-
able in single-chamber ICDs [16]. Nowadays, most of the currently implanted ICD 
devices provide overdrive pacing to convert ventricular tachycardia (VT) or deliver 
electrical shocks to restore normal rhythm in the case of sustained ventricular 
tachycardia or ventricular fibrillation.
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2.5.3 Biventricular pacing

Biventricular pacing, also called as cardiac resynchronization therapy (CRT), 
is for people with heart failure due to abnormal work of electrical systems in 
the heart. The CRT system consists of two components—the pulse generator, or 
device, and thin, insulated wires called leads. A CRT device delivers tiny amounts 
of electrical energy to the heart through these leads to restore the normal timing 
of heartbeats, causing both the ventricles to pump more efficiently. There are 
two types of CRT devices. One is a special kind of pacemaker called as a cardiac 
resynchronization therapy pacemaker (CRT-P) or “biventricular pacemaker” [17]. 
The other is one includes additionally a built-in implantable cardioverter defibril-
lator (ICD). This device is called a cardiac resynchronization therapy defibrillator 
(CRT-D), which is used to treat ventricular tachycardia and ventricular fibrillation 
and avoid sudden cardiac arrest.

The CRT-P device functions like a normal pacemaker to treat slow heart 
rhythms, as well as delivers small electrical impulses indirectly, however, to the left 
ventricle to help the both the ventricles contract at the same time.

The CRT-D device combines a dual-chamber pacemaker and a defibrillator. It 
has the same three leads as a CRT-P, but it can also deliver a high-energy shock to 
treat fast ventricular arrhythmias (VAs) such as ventricular tachycardia or ventricu-
lar fibrillation, which can cause sudden cardiac arrest.

2.5.4 Alternative pacing sites (septum pacing)

It expected that the right ventricular septal pacing is a valid alternative to 
apical pacing, which most mimics normal physiology. Whether the pacing of right 
ventricular outflow tract septum (RVOTS) is superior to right ventricular apex 
(RVA) pacing with respect to cardiac function is still not fully clear. Placing the 
pacing electrode on the mid-septum may be more challenging than the RVOTS 
case. Anyway, the septal pacing is of great interest [18]. There is no need to pass the 
tricuspid valve, but the outcome is similar to right ventricle pacing.

His bundle pacing in humans was first reported in 2000 [19]. Permanent His 
bundle pacing is an emerging technique to deliver a more physiological pattern of 
ventricular pacing and has the potential to mitigate the adverse consequences of 
chronic right ventricular pacing and promote atrioventricular and intraventricular 
synchrony. His bundle pacing is a technique that uses the native His-Purkinje system 
to maintain a physiological pattern of ventricular activation. It is a good alternative 
to RV and biventricular pacing. However, it is currently undergoing clinical trials to 
verify whether it has any clinical advantages over RVP or biventricular pacing.

3. Radiofrequency ablation to avoid arrhythmias

3.1 The role of ablation in suppressing arrhythmias

Though the electrical pacing enables the suppressing of suddenly appearing 
arrhythmic phenomena, the most effective outcome can be achieved by using abla-
tion techniques and, sometimes, both ablation and pacing methods together.

Radiofrequency ablation (RFA) has revolutionized the treatment of both supra-
ventricular and ventricular arrhythmias. However, conventional, X-ray-guided 
mapping techniques have a limited utility in the ablation of more complex arrhyth-
mias, such as in atrial tachycardia, atrial fibrillation (AF), and ventricular tachycar-
dia (VT). By using 3D technologies and catheters permitting faster acquisitions, in 
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association with high-performance imaging techniques, the development of novel 
mapping systems has led to the overcoming of these limitations [4].

3.2 Atrial fibrillation

In terms of atrial fibrillation, the development of pulmonary vein (PV) electri-
cal isolation has contributed to a significant reduction in the recurrence of AF, 
particularly in patients with paroxysmal AF. It has previously been shown that the 
empirical isolation of all four PVs produces better results than the focal ablation of 
triggers at the PV level or isolation of fewer PVs [4, 5]. Furthermore, in terms of PV 
isolation, high-power short-duration (HPSD) applications have been shown to be 
superior to low-power long-duration ablation [20]. In patients with persistent AF 
and significant remodeling of the left atrium, the use of substrate-based techniques 
in addition to PV isolation has shown better results [21]. Non-PV electrical activity 
originating at the level of the Marshall vein, the coronary sinus, and the superior 
vena cava is another source of AF in some patients; thus, both focal ablation and 
electrical isolation of these veins have been studied in selected patients [22].

Although previous research has shown an improvement in these patients’ abla-
tion results, the long-term impact on outcomes is still unknown, and more research 
is needed to prove the efficacy of these techniques.

3.3 Ventricular arrhythmias

Ventricular arrhythmias (VAs) can occur on both the normal and abnormal 
structural hearts. Structural heart diseases are most frequent, and it is well known 
that cardiomyopathies lead to cardiac injury, which is clinically expressed by VAs. 
In contrast to ischemic dilated cardiomyopathies (DCMs), the substrate for VAs in 
nonischemic DCM is not well defined, and patients may present with any type of 
VAs, including premature ventricular complexes, monomorphic or polymorphic 
ventricular tachycardia (VT), and ventricular fibrillation [4, 23, 24].

The two main strategies in the ablation of VTs are represented by the detection 
of the critical isthmus of the VT circuit and the modification of the arrhythmogenic 
substrate. However, considering the distribution of the scar in patients with DCM, 
endocardial mapping alone is often insufficient. Previous research demonstrated 
that combined endocardial and epicardial ablation improved the procedures results, 
and the mid-term outcomes in patients with previously failed endocardial only 
ablation and also as a first-line strategy [25, 26].

3.4 Epicardial ablation and high-power short-duration ablations

Two new techniques used for the catheter ablation of cardiac arrhythmias 
are epicardial ablation and high-power short-duration ablation. The approach in 
epicardial ablations is similar to that in endocardial ablations, including activation 
mapping, entrainment mapping, pace mapping, and substrate mapping. However, 
the optimal access technique and the better prevention of complications remain a 
subject of future research.

Electrophysiologists should be well-versed in the indications and contraindi-
cations of the epicardial approach, as well as different puncture techniques and 
periprocedural complications. From the posterior approach, anterior approach, 
needle-in-needle approach, fluoroscopic method, and wire-guided puncture 
technique, interventionists can select the most appropriate strategy. The surgical 
method should be considered in the event of pericardial adhesions. Contrast-
enhanced computed tomography may have additional benefits, primarily in terms 
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of detecting abnormal anatomical, dynamic, and perfusion characteristics, but also 
in terms of distinguishing between epicardial fat and scar tissue.

High-power short-duration RFA is defined in a variety of ways, with power 
ranging from 40 to 90 W and lasting less than 15 seconds per lesion. PV isolation 
has been a standard strategy for the catheter ablation of AF since the pioneering 
work of Hassaguerre et al. in 1994 [27]. However, the long procedure times and 
high rates of PV reconnection that result have sparked interest in using high-power 
short-duration ablation. To determine the efficacy and safety profile of this novel 
technique, researchers looked at the particular biophysical ablation characteristics 
of HPSD ablation.

3.5 Conclusions on radiofrequency ablation

In conclusion, while RFA has demonstrated significant benefits in the treatment 
of arrhythmias, some issues remain debatable and long-term results are still needed.

4. Summary

Heart rate management and control continues to be a serious problem in medi-
cine, requiring a variety of measures, including the development of implantable 
cardiac devices and, in particular, the methods and medical indications for their 
use in the interests of an ever-widening cohort of patients in their various life and 
health conditions.

Such situations as pacing after syncope, pacing following transcatheter aortic 
valve implantation, and cardiac resynchronization therapy for both heart failure 
and the prevention of pacing-induced cardiomyopathy have been of ongoing 
interest. Automatic pacing rate control responding to the metabolic demand of the 
organism and pacing in various diseases of the heart, including new diagnostic tools 
for semiautomatic decision-making on pacing, as well as pacing the His bundle and 
the left bundle branch, are of intensive recent research.

New techniques are introduced for the catheter ablation of cardiac arrhyth-
mias: epicardial ablation and high-power short-duration radiofrequency ablation. 
Although both the methods have demonstrated significant benefits in the treatment 
of arrhythmias, some issues remain debatable and long-term results are still needed. 
The same goes for the application of both the methods of ablation and pacing, 
together, although it has been used in medical practice. The combined application 
of both the methods of ablation and pacing has been used in medical practice, and 
the effectiveness of the results requires continued research. The optimal access 
technique and the better prevention of complications remain a subject of future 
research [28–32].

Finally, the experienced authors of the chapters in the present book will cer-
tainly make a significant contribution to the progress of cardiac rhythm manage-
ment. Moreover, IntechOpen has made substantial contributions to the publishing 
of scientific and practical results in the field, and a number of books have been 
issued during the last decade [33–36].
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Abstract

Since the introduction of pacemakers and defibrillators in the 1960s, many 
lives have been saved. The technologies used in the development and implantation 
of such devices are constantly improving, making the procedures increasingly 
effective and safe. However, the complexity of such implantations makes it one of 
the most important procedures that need high levels of expertise, knowledge, and 
experience on the part of the entire surgery team. There is a wide range of devices 
used for different purposes with various features and characteristics to suit differ-
ent patients. They range from single-chamber and dual-chamber pacemakers to 
pulse generators and biventricular pacemakers. The present review chapter seeks to 
elaborate on the steps of pacemakers and defibrillators implantation, starting from 
patient selection to post-surgery care and patient education. It outlines all necessary 
measures in the preoperative, intraoperative, and postoperative stages to ensure the 
utmost safety, prevent infection, and avoid and treat further complications. The 
procedures used by our team have demonstrated satisfactory results for patients 
with a wide variety of conditions.

Keywords: pacemaker, defibrillator, PPM implantation, ICD implantation, 
anesthesia care

1. Introduction

Cardiac pacemakers (PPM) and implantable cardioverter defibrillators (ICD) are 
electrophysiological devices that affect different aspects of patients’ lives. Research 
and implantation of PPM and ICD began in the early 1960s. Nowadays, their role in 
the medical world is widely accepted because of advancements in new technologies 
and their widespread use, in addition to the improved life expectancy and quality of 
life in cardiac patients. Few companies produce and supply PPMs and ICDs.

They are a common treatment for irreversible bradycardia and tachyarrhythmias 
with specific indications. Cardiac pacemakers are made of a pulse generator that 
produces the electrical current required for the stimulation of the myocardium. One 
or two electrodes (leads) transmit the electrical activity from the pulse generator to 
the atrium and ventricle muscle.

As with other surgical procedures, patients require a precise evaluation and spe-
cial care in preoperative, intraoperative, and postoperative periods. Implantation 
must be performed under anesthesia care. Anesthesia management plays a vital role 
as it involves general and local anesthesia.
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Undoubtedly, despite the numerous benefits of using PPMs and ICDs, various 
local and cardiovascular complications may occur. Local complications include 
pain, swelling, wound hematoma, wound infection, and ipsilateral hemopneumo-
thorax. Cardiovascular complications include lead displacement, lack of sensation 
and pacing, atrial and ventricular perforation, myocardial hematoma, diaphrag-
matic pacing, and cardiac tamponade.

Postoperative care should be short-term and long-term, which include wound 
care, patient education, taking medications, and periodic follow-up. The improve-
ments in the patients’ quality of life are very impressive after implantation and 
could be affected by programming compatibility and psychological, social, and 
economic behaviors.

2. Patient selection

Patients are nominated for pacemaker (PPM) and implantable cardiac defibril-
lator (ICD) implantation according to the patient’s history, symptoms and signs, 
physical examinations and other documents, cardiac imaging (echocardiography) 
in case of bradycardia/tachycardia, and based on the 2021 European Society of 
Cardiology (ESC) guidelines on cardiac pacing and cardiac resynchronization 
therapy, which was developed by the Task Force on cardiac pacing and cardiac 
resynchronization therapy [1].

A majority of all pacemaker implantations are indicated to patients above 
60 years old. After admitting the patient and obtaining informed consent, the 
necessary blood tests, chest X-ray, and electrocardiography are taken, and then the 
patient is prepared for the procedure. The patient is transferred to the electrophysi-
ology laboratory, where it is essential to have properly functioning equipment. In 
addition, standard air conditioning is crucial in controlling air infections. In the era 
of the Covid-19 pandemic, we need to consider health protocols and guidelines for 
the personal protection of staff and patients. If there is no emergency condition, 
pacemaker and ICD implantation should be delayed; otherwise, we must follow all 
the instructions and protocols related to the prevention of the disease.

3. Types of devices

• Single-chamber pacemaker, which has one lead that connects the pulse genera-
tor to the right ventricle or atrium.

• Dual-chamber pacemaker, which has two leads that connect the pulse genera-
tor to the right atrium and ventricle, modifying the rhythm of the heart.

• Biventricular pacemaker, which is also known as a cardiac resynchronization 
therapy (CRT) device and has three leads connecting the pulse generator to the 
right atrium and both ventricles, which is indicated in advanced heart failure.

• Implantable cardioverter defibrillators (ICD), which include single-chamber 
and dual-chamber.

• Pulse generators, which are implanted subcutaneously and their leads are 
divided into three categories: endocardial, epicardial, and subcutaneous. We 
generally apply endocardial leads with extensive experience in this field of 
medicine.
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• A new generation of PPM was introduced by Medtronic Company in 2016, 
offering leadless transcatheter pacing systems for bradyarrhythmia manage-
ment. It is applied percutaneously via a minimally invasive approach, directly 
into the right ventricle, and does not require leads.

4. Surgical instruments and equipment

In the setting of device implantation by a cardiac surgeon, the required instru-
ments for better management of the procedure are as illustrated in Figure 1. We 
have achieved desirable results using standard surgical techniques for gentle and 
homeostatic manipulation of tissue.

5.  Anesthesia considerations in patients undergoing PPM and ICD 
implantation

5.1 Pre-anesthesia care

The electrophysiology laboratory (EP lab) should be equipped with the follow-
ing: anesthesia machine, air mask bag unit (patient-ventilator), electrocardiogram 
(ECG or EKG), pulse oximetry, defibrillators, emergency trolley, suction machine, 
external pacing equipment, capnography, airway management equipment. 
Moreover, emergency medications, including dantrolene for malignant hyperther-
mia, intralipid for toxicity due to local anesthetics, and antidotes drugs (naloxone, 
neostigmine, sugammadex, flumazenil), resuscitation drugs (epinephrine, 
atropine), anesthetics (propofol, etomidate), sedatives (midazolam), analgesics 
(fentanyl), antiarrhythmic drugs, and inotropes should be available. In addition to 
inspecting and preparing the equipment, an experienced and trained staff (includ-
ing an anesthetic team who are sufficiently skilled in resuscitation) should be 
present. All patients seeking pacemaker and ICD implantation require preoperative 
evaluations, including (ECG), chest radiograph, blood tests (complete blood count 
and differentiation, BUN, CR, PT, PTT, INR), and electrolyte levels (K, Na, Ca) 
(Figure 2).

Figure 1. 
Surgical instruments required for surgical pacemaker and ICD implantation.
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5.2 Preoperative evaluation

1. Medical history and medications: The patient’s past medical history (type 
of arrhythmia, history of myocardial infarction (MI), stroke, heart failure, 
valvular heart disease, previous cardiac revascularization, obstructive sleep 
apnea (OSA), COPD (chronic obstructive pulmonary disease), difficult 
intubation), ECG, current medications (anticoagulants, antithrombotic drugs, 
antihypertensive drugs, antiarrhythmic agents, diuretics), and any medication 
associated with the prolongation of VT (ventricular tachycardia) should be 
carefully evaluated.

2. Physical examination: The patient must be examined for devices such as IABP 
(intra-aortic balloon pump), VAD (ventricular assist device), other implant-
able heart devices; surgical scar; symptoms of compensated heart failure, vital 
signs, electrolytes, kidney function, and TTE (transthoracic echocardiogram) 
to rule out heart thrombosis and assess ventricular function and valvular heart 
disease.

3. The procedure should be explained to the patient to reduce her/his anxiety 
before getting informed consent.

4. The American Board of Anesthesiology recommends that patients should not 
eat solid food for at least 8 hours before a procedure and should not drink even 
clear liquids for at least 2 hours prior.

5.3 Anesthesia care

The anesthesia team’s performance is vital for the management of patients with 
multiple risk factors and older ages. The medical team must be prepared for poten-
tially catastrophic events such as cardiac arrest, cardiac tamponade, and unstable 
arrhythmias. Therefore, make sure that surgical instruments and anesthesia sup-
port measures are ready for emergency sternotomy.

In these patients, the relationship between the EP physician and the anesthe-
siologist is crucial. The type of anesthesia is determined based on the patient’s 
medical history and condition and might involve monitored anesthesia care (MAC), 

Figure 2. 
Instrument setup for lead implantation based on Seldinger technique.
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sedation, regional anesthesia, or general anesthesia. The patient’s position is usually 
supine so that the right or left shoulder (according to the surgeon’s decision) is 
elevated by a pad. Also, the positions of the head and neck are very important and 
should be in a way that the patient feels comfortable. The patient’s head is rotated 
to the opposite side of the surgical site for easier access to the subclavian vein. The 
airway should be easily accessible because of intravenous sedation. Most patients 
undergo local anesthesia with intravenous sedation by applying oxygen through a 
non-rebreather mask. The hands should be neutrally placed on either side. Standard 
vital signs monitoring is performed with ECG, pulse oximetry, non-invasive blood 
pressure monitoring (NIBP), and capnography.

The patient should be constantly monitored for airway obstruction and respira-
tory failure regardless of the anesthetic technique. In case of airway obstruction, the 
chin-lift and jaw-thrust maneuvers are immediately performed. Excessive restless-
ness, anxiety, and pain intolerance due to electric shock are the reasons for choosing 
general anesthesia with intravenous sedation. The arterial line should be established 
for patients with severe conditions.

5.4 Post-anesthesia care

Postoperative care and monitoring are mandatory due to the probability of 
surgical and anesthesia complications caused by an underlying disease.

6. Implantation procedure

6.1 Antibiotic prophylaxis

According to the European Society of Cardiology (ESC) guidelines on cardiac 
pacing and cardiac resynchronization therapy, antibiotic prophylaxis is recom-
mended in PPM and ICD implantation procedures to prevent Staphylococcus aureus 
species. The risk of infection is significantly reduced with a single dose of pro-
phylactic antibiotic (cefazolin 1–2 g I.V. or flucloxacillin 1–2 g I.V.) applied within 
30–60 minutes before the procedure [2].

6.2 Surgical incision

To get better anatomical access to the central vessels of the heart, we use local 
anesthesia with the administration of 4.5 mg/kg of 2% lidocaine for the sake of the 
patient’s comfort. Then, an incision is made (2.5 inches for PPM and 3.5–4 inches 
for ICD) with a number 15 blade in the distal third of the right infraclavicular 
region of the anterior chest wall (Figure 3). The subcutaneous tissue is opened and 
dissected in a layer under the pectoralis major fascia with accurate homeostasis 
using electrocautery (Figure 4). The development of a subpectoral pocket may be 
advisable in patients with a low body-mass index and for esthetic reasons.

6.3 Central venous access

Tran’s venous lead implantation is commonly performed through venous 
access via the right or left cephalic, subclavian or axillary vein. In case clinical 
signs of a venous occlusion of deep veins of the upper extremity are observed, 
preoperative assessment (colored Doppler sonogram, venography, or chest CT 
scan) may be useful to determine optimal venous access or find an alternative 
access way.
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By applying the Seldinger technique, we first enter the right subclavian vein 
using a needle and syringe. Then, we insert a guide wire through the subclavian 
vein, superior vena cava, and the right atrium, determining the proper location 
using fluoroscopy. The lead introducer (7 French or 9 French) is sent through 
a guide wire and then the right ventricular (RV) lead (58 cm length) is passed 
through the introducer to the RV apex or interventricular septum, latter for 
patients who need more RV and LV contractile synchronization (Figure 5). The 
second guide wire is passed through the subclavian vein to the right atrium, 
and the 52 cm length lead is placed inside the right atrial appendage in the same 
manner and analyzed by a pacemaker programmer. An alternative technique is 
cephalic vein cut-down, which is occasionally performed by surgeons to reduce 
side effects. Subclavian vein access is associated with a 7.8-fold increased risk of 
pneumothorax [1]. In case subclavian venous access is not feasible, transfemoral 
lead implantation is alternatively performed, or leadless PPM or epicardial lead 
should be considered.

Figure 3. 
Right infraclavicular incision region and marker.

Figure 4. 
Right pectoralis major fascia.
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7. Analysis

7.1 Initial analysis

Pre-activation lead analyses have revealed the proper lead location and features 
as follows:

• Right ventricular (R) wave sensing: 5–20 Millivolts

• Right atrial (P) wave sensing: 1–5 Millivolts

• Lead impedance (resistance): 200–2000 Ohms

• Pacing threshold: <1 Millivolts

After initial analysis and making sure about proper leads position, the ventricular 
and atrial leads are screwed (activated), fixed, and re-analyzed. The same steps are 
carried out for RV lead-coiled (58 or 65 cm length) and should be more cautious 
of which can cause more endocardial trauma to the heart structures because of 
more stiffness. The ST-segment elevation (STE) diagram is checked in pace maker 
programmer. After screwing, the suture sleeve of the lead should be tied with a 3-0 
black silk suture to pectoralis major fascia. Thus, each lead is fixed in two areas, the 
endocardium (screwed) and on the pectoralis major muscle. In the next step, after 
changing the surgical gloves and irrigating the subcutaneous pocket with a normal 
saline solution ensuring strict observance of sterility, the outer end of the RV and RA 
leads is connected to the pulse generator and securely screwed. The pulse generator is 
then placed in the subcutaneous pocket, so that the outer end of the leads is rounded 
beneath the generator with no bending and kinking. The PPM and the ICD function 
should be programmed using a sterile head or wireless programmer. The wound is 

Figure 5. 
Proper position of activated leads in right atrial appendage and right ventricular apex with noticeable tip 
position.
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repaired in three layers following irrigation and homeostasis. The patient is then 
transferred to the recovery room for further vital signs monitoring. A sandbag weigh-
ing 1–3 kg can be placed on the wound site to prevent hematoma, and finally admit-
ted to the OHICU. On the same day, chest X-ray and ECG tests are performed. Prior 
to discharge, we should make sure about wound healing and proper functioning of 
device (final analysis) and patient’s general conditions to be satisfactory and provide 
the patient with all required information about new lifestyle and device dependency, 
accordingly those patients with ICD should be trained and aware of the painfulness 
of related shock. Scheduling for further visits and analyses is recommended.

7.2 Final analysis

Final analyses consist of the following items to achieve optimum results:

• Mood determination as recommended by the North American Society of 
Pacing and Electrophysiology/British Pacing and Electrophysiology Group 
(NASPE/BPEG)

• Lower rate limit

• Pacing amplitude

• Pulse width

• Sensitivity

• Upper rate limit for atrial track

• For ICD: determination of the VT and VF zone

• Configuration of leads (bipolar and unipolar)

8. Complications

Implantation can be associated with as many complications as other cardiovas-
cular surgeries in the preoperative phase. In addition, the presence of the device 
inside the vessel and the heart itself is associated with early and late complications. 
The majority of complications occur in the hospital or within a few months after the 
surgery. Therefore, the cardiac surgeon should be trained about the proper manage-
ment of complications and treating life-threatening conditions, and obviously, the 
more experienced the surgeon, the fewer the complications. The complexity of 
the device generally increases the potential risks. Nowadays, the device pocket is 
considered a source of major complications. Therefore, preventing pocket hema-
toma and infection has become a standard care measure. Complications are now 
described as early and late.

8.1 Early complications

Early complications include the following:

• Pain (surgical site or device-related)

• Wound bleeding: 0.5–3% [3]



19

Pacemakers and Defibrillators Implantation
DOI: http://dx.doi.org/10.5772/intechopen.101518

• Pocket hematoma: accounting for over 3% of complications [4]

• Pericardial effusion or tamponade

• Pneumothorax: 0.5–2.2%

• Coronary sinus dissection or perforation: 0.7–2.1%

• Hemothorax: 0.1%

• Subclavian artery puncture

• Lead perforation: 0.8% [5]

8.2 Late complications

Late complications include the following:

• Superficial infection: 1.2%

• Pocket infection: 1.3% [4]

• Diaphragmatic pacing requiring reintervention: 0.55%

• Deep venous thrombosis

• Upper extremity edema

• Endocarditis

• Programming failure (vertigo, headache, palpitation, and blurred vision)

• Wound dehiscence

• Lead fracture

• Inappropriate shocks

• Skin erosion

• Pericarditis

• Lead dislodgment (Figure 6)

• Mortality (<30 days): 0.8–1.4%

• Systemic infection: 0.5–1.2%

• Tricuspid regurgitation: 16% [6]

• Pacemaker syndrome: 5–80% [7]

• Psychological problems: up to 35% of people develop anxiety disorder follow-
ing ICD placement, although disabling problems necessitating admission are 
fairly uncommon [8]



Cardiac Rhythm Management - Pacing, Ablation, Devices

20

• Economic problems

• Replacement of pulse generator (4%) and with one or more additional lead 
insertions: 15.3% [1]

• Phlebitis or thrombophlebitis: 30–50% [9]

9. Post-discharge care and education points

The following points should be reminded and taught to patients for the 
 post-discharge period.

• Keep the wound clean and dry. If you notice a swollen wound, seek 
 medical help.

• You can take a shower 48 hours after the operation.

• Do not move your pacemaker under the skin and manipulate it.

• Do not move the arm on the same side of pacemaker implantation for up to 
24 hours.

• You should not lift the arm above the shoulder for up to 4 weeks.

• The patient is instructed to seek medical support in case of fever and any 
discharge from the wound.

• Consume the medications according to the physician’s instructions.

• The patient should not lift more than 4–7 kg.

Figure 6. 
Right ventricular lead-coiled dislodgment as late complication.
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• Avoid hitting, pressing, and sleeping on the operated site.

• Before going to spaces with strong magnetic fields and electrical circuits, 
consult with the treating physician and be analyzed if necessary.

• For periodic analyses, plan for 1 week, 1 month, 3 months, and 6 months later.

• Always carry your pacemaker profile card with you.

10. Conclusion

This review chapter provided a detailed outline of all the required steps involved 
in the implantation of pacemakers and defibrillators. The sensitive nature of the 
procedure requires an in-depth and careful analysis of the patient’s medical history 
and present conditions to minimize the risk of future complications.

Extensive care and caution should be practiced in preoperative, intra-operative, 
and postoperative courses to ensure the risk of early complications, especially 
infection, are reduced. Patients need detailed instructions to learn how to live with 
their implanted devices. Patient-physician interaction would earn suitable long-life 
results.
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Chapter 3

Operation of Implantable Cardiac 
Devices in Hyperbaric Conditions
Jacek Kot

Abstract

Implantable devices, including Implantable Cardiac Defibrillators (ICD)  
and Pacemakers (PM), are being seen with increasing frequency in patients want-
ing to conduct recreational diving or referred for Hyperbaric Oxygen Therapy 
(HBOT). Under hyperbaric conditions, these devices are at risk of malfunction, 
mostly by changes of ambient pressure. In some cases, manufacturers publish 
information on how their devices operate under increased pressure. Unfortunately, 
this is not always the case, and for other devices, someone must perform an indi-
vidual risk-benefit analysis specific for single patient and his/her implanted device. 
In case of medical treatment, such analysis must take into account the patient’s 
clinical condition, the indication for HBOT, and the capability of the HBOT facility 
for monitoring and intervention in the chamber.

Keywords: diving, hyperbaric medicine, oxygen, defibrillator

1. Introduction

The hyperbaric chamber is an active medical device, which is potentially 
hazardous taking into accounts its application and exposure of people inside to 
increased ambient pressure and increased partial pressure of oxygen. Typically, in 
most clinical indications, the internal pressure of 2.5 absolute atmosphere (ATA) 
(equivalent to 15 m of sea water [msw]) is used, with the range from 1.5 to 6.0 
ATA (equivalent to 5–50 msw), for a period of 60 min, with the range from 30 to 
120 min, as depending on the specific hyperbaric center [1]. Regardless of using 
the monoplace chamber, where patient is left alone within the pressure vessel, or in 
multiplace chamber, where patient is staying in the larger internal space together 
with medical attendant, as with other patients, if so organized, in all cases, any 
medical device, either external to the patients or implanted, including Implantable 
Cardiac Defibrillators (ICD) and Pacemakers (PM), is exposed to increased  
ambient pressure.

Use of other medical devices for therapeutic purpose in the hyperbaric chamber 
is also related with additional hazards due to increased pressure, oxygen-enriched 
atmosphere, electricity, and confined space. Therefore, every medical device 
introduced into the hyperbaric chamber should be designed in that way that its use 
in the hyperbaric chamber does not create significant risk of malfunction, dam-
age, or ignition of fire in the hyperbaric environment; this should be certified by 
the manufacturer for specific conditions (working pressure, maximum allowable 
content of oxygen, temperature, and humidity). Unfortunately, until now only 
few medical devices are specifically designed for usage in hyperbaric chambers. 
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Therefore, medical providers often need to conduct themselves appropriate assess-
ment of the medical equipment needed for continuation of intensive or general care 
during hyperbaric treatment.

2. Risk management process

In Europe, as well as in the rest of the world, the general risk management 
process applicable for all medical devices is described in the ISO EN 14971 [2]. This 
concerns also ICDs and PMs. Detailed recommendations for medical devices used 
specifically in hyperbaric chamber systems are presented in the Annex B of the 
European Norm CEN EN14931 [3]. This Annex includes a description of all poten-
tial hazards that can be created by the use of specific medical devices, as well as the 
risks induced by them inside medical hyperbaric chambers. Moreover, in order to 
ensure the highest possible level of safety of the patient treated with the Hyperbaric 
Oxygen Therapy (HBOT) and the attendants, recommendations are given to both 
manufacturers of such devices and medical users of hyperbaric installations [3].

Generally speaking, there are three hazards related to the use of medical devices 
in the hyperbaric chamber:

1. An increased ambient pressure and changes of pressure during compression 
and decompression can significantly affect mechanical parts of the item, lead-
ing to distortion of its structure or even damaged and/or performance deterio-
ration of the medical devices, which have been designed and manufactured for 
use at normobaric pressure.

2. An increased fractional amount of oxygen, either locally, as so-called “oxygen 
clouds,” or generally in mixed chamber atmosphere, creates risk for fire, espe-
cially if combined with a source of ignition, e.g., local overheating or sparks 
and combustible products (e.g., oil, grease)—see below.

3. The electricity used for medical devices in the hyperbaric environment creates 
a risk for fire as a potential source of ignition when sparking or overheating.

The preferred method of using medical devices inside hyperbaric chambers is 
having manufacturer’s clearance for specific ambient conditions, confirmed by the 
appropriate certificated, e.g., “CE certificate” in European Union. However, there 
are some cases when the medical devices need to be introduced into the hyperbaric 
environment, but the manufacturer does not certify them for use in such condi-
tions. In those cases, the user of the device (staff of hyperbaric centers) must con-
duct the safety evaluation before introducing it to the hyperbaric environment. This 
process includes at least checking the structure of the device, taking into account:

1. Increased ambient pressure and its changes to make sure that it is pressure-
resistant or at least it does not have any sealed compartments, which could be 
mechanically damaged;

2. Increased oxygen fraction in the ambient atmosphere to ensure that it does 
not contain any material that is either non-compatible with oxygen or easily 
combustible;

3. Electrical power supply to ensure that it does not use high energy (both with 
voltage and current) inside the hyperbaric chamber.
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In case of any doubt, the use of this medical device in hyperbaric chamber 
should be abandoned.

3. The practice

The number of patients with implanted pacemakers (PM) and automatic 
implanted cardiac defibrillators (AICD) treated inside hyperbaric chambers for 
other medical reasons is growing.

Internal cardiac pacemaker cans are semi-rigid pieces of equipment, provid-
ing to some degree both water tightness to the internal circuits and protection 
against external pressure. It seems logical that due to different compressibility, use 
of a resin-filled ICD/PM should be safer than a gas-filled model [4]. According 
to general opinion, internal cardiac pacemakers are unaffected by the hyperbaric 
environment [5]. However—obviously—the pressure resistance can be true only for 
limited range of pressures. During the ISO-compatible ETO-standard sterilization 
process, the pressure is from 1.7 up to 2.5 ATA (7–15 msw); therefore, all the devices 
sterilized by this method are unintentionally tested for at least such overpressure 
[6]. Some implanted devices were used to at least 2.4 ATA (14 msw) [7, 8]. There are 
also reports that all pacemakers tested by the authors were adequate to treatment 
pressure below 3 ATA (20 msw), and some even to 7 ATA (60 msw) [9].

One of the ICD/PM manufacturers officially reported that their devices “should 
operate normally up to 49.5 feet of seawater (2.5 ATA, 15 msw) and will begin 
to significantly deform at pressures near 132 feet of seawater (5 ATA, 40 msw)” 
and that “No loss or degradation of output operation was observed in any of the 
devices tested; however, rate responsive pacing began to diminish at pressures in 
excess of 66 feet of seawater (3 ATA, 20 msw), which caused the devices to pace at 
the programmed lower rate. The loss of rate responsive pacing was observed to be 
temporary; activity pacing returned at lesser pressures” [10].

There was a suspicion that if ICD leads are damaged, ignition could occur if 
the ICD discharges, so some experts advised that defibrillation mode of the ICDs 
should be deactivated before HBOT [11].

Indeed, the question whether dangerous electrical arcing harmful for either 
patient or any medical attendant touching him/her can occur in case of implanted 
device malfunction during resuscitation in the hyperbaric chamber is a vital one.

In the literature, there are some reported events concerning skin burns due to 
faulty automatic ICDs at normobaric conditions [12]. There are also some reports 
of electric shocks passed to the rescuer doing chest compressions while performing 
cardiopulmonary resuscitation (CPR) out of the hyperbaric chamber [13–15]. In 
the statement from the one ICD manufacturer, there is a note that “Although we 
are not aware of any reported incidences of ICD shock triggered ignition, and do 
not believe this to be of significant risk, it may be advisable to disable defibrillation 
therapies, pending further study to the contrary, while patients are undergoing 
hyperbaric treatments” [10].

Based on results of experiments performed on dogs using energy of 30 joules 
by the internal defibrillator [16] as well as the analysis of the worst-case scenario 
(Dr. Jake Freiberger, Duke University, USA, personal communication), the energy 
released from the malfunctioned ICD should not exceed 0.374 W, which is well 
below NFPA equipment guideline limit of 0.5 W for any medical devices entering 
the hyperbaric chamber [17]. In summary, the risk of fire caused by the electric arc 
initiated by the malfunction ICD/PM can be made negligible, even if the defibril-
lation option is left ON during hyperbaric session. But, in fact, ICD defibrillation 
during HBOT has not been reported, nor tested.
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In the largest study concerning independent testing of commercially available 
cardiac pacemakers [18], 40 separate pacemakers supplied by four different manu-
facturers were exposed to liquid pressurization in a small hyperbaric chamber up 
to 4 ATA (30 msw) and 7 ATA (60 msw). Throughout the testing, no recording of 
arrhythmia, reprogramming, or any other electronic dysfunction was noted. During 
the pressurization period, a transient (<90 s duration) increase of the pacing rate 
of some rate-responsive pacemakers was noted. This pacing rate increase, which 
was sometimes large (up to +40 beats per minute), slowed down spontaneously. 
The mechanical results related to the can’s deformation showed that all casings were 
reversibly distorted during pressurizations. No permanent deformation was observed 
at pressures up to 4 ATA (30 msw). However, after the 7 ATA test (60 msw), 65% of 
the devices tested were significantly deformed in the electronic part of the device 
(Figure 1), whereas the battery part was not significantly altered. No connector 
deformation or damage was noted.

The authors concluded that there was good electronic tolerance for all devices both 
during and after hyperbaric tests. Also, there was a good tolerance of all the devices 
studied to a liquid environment with a good water tightness up to 7 ATA (60 msw). 
So, the risk of dysfunction of a device related to penetration of liquids into the can 
appears to be very low. And this was in accordance with the data published also on 
other implantable devices [19].

In the literature, one can find also summary list of ICD/PM, which have been 
used under different pressures showing no obvious malfunction [20], as well as 
lists of devices from different manufacturers, which were permitted by the manu-
facturer to be exposed in real HBOT sessions based on individual requests from 
referring physicians [21]. These cover different pressures from 1 ATA to 7 ATA 
(from 0 msw to 60 msw) in most cases.

The list of implanted devices, which have been already exposed to some degree 
for the hyperbaric conditions, will never be exhaustive, as every year some new 
devices are showing on the market, and some patients with new devices are 
referred to the hyperbaric facilities. Moreover, the fact that in some patients, 
implanted devices works fine, does not mean that it concerns all the items from 
the series.

Figure 1. 
X-ray picture of a pacemaker. Note maximal deformation, which is located at the tip of the needle (from [18], 
with copyrights).
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There are several options on how to manage those implanted devices, which are 
not yet officially approved for hyperbaric conditions [22]. First option is to request 
manufacturer to support the hyperbaric facility staff with the written opinion 
about the compatibility of the ICD with the specific hyperbaric conditions (absolute 
pressure, time of exposure, and number of planned hyperbaric sessions). This can 
be applicable, if the clinical indication is not acute one, but chronic, when the start 
of HBOT can be safely delayed. For such approach, it is necessary to have direct 
contact with the ICD manufacturer’s representative in the country, as for interna-
tional use, there is no communication channel available.

The other option, used also in our hyperbaric center, is to perform the risk 
assessment by the hyperbaric medicine specialist, which will consider the fact 
that most modern compact ICD are internally pressure resistant, at least due to 
the sterilization process (see above). So, the residual risk for ICD failure is low 
and should be accepted by most patients having obvious clinical indications for 
using HBOT [23]. Such approach seems valid at least until the pressure of 4 ATA 
(30 msw of depth). In most reports, the extension of the limit to 7 ATA (60 msw) 
results in mechanical reversible distortion of the device can with functional 
disturbances, but without any reported permanent failures in most of modern 
devices.

Nevertheless, it is highly advisable to constantly monitor ECG of patients with 
implanted pacemakers and cardiac defibrillators during every HBO session [22]. 
Every hyperbaric facility should have implemented the protocol for clinical man-
agement in case of ICD failure during the hyperbaric treatment. This should cover 
either switching off the internal device not working properly or external pacing if 
necessary for life threating situations.

4. Conclusions

Implantable devices, including Implantable Cardiac Defibrillators (ICD) and 
Pacemakers (PM), are being seen with increasing frequency in patients wanting to 
conduct recreational diving or referred for Hyperbaric Oxygen Therapy (HBOT). 
Considering the intrinsic properties of the modern implantable devices, it seems 
that the residual risk for malfunction while being exposed to maximum pressure of 
4 ATA, equivalent to the depth of 30 msw, is extremely low. Greater pressures up to 
7 ATA (equivalent to the depth of 60 msw) increase the risk of temporarily deterio-
ration with degradation of the performance. Higher pressures, unlikely to be used 
either in modern HBOT or in recreational conservative diving, can cause permanent 
damage of the device; unless specifically tested and confirmed by the manufacturer, 
such exposures should be avoided.
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Chapter 4

Postoperative Pain Control 
Following Cardiac Implantable 
Electronic Device Implantation
Peter Magnusson, Jo Ann LeQuang and Joseph V. Pergolizzi

Abstract

Postoperative pain following cardiac implantable electronic device (CIED) 
surgery may not always be adequately treated. The postoperative pain trajectory 
occurs over several days following the procedure with tenderness and limited arm 
range of motion lasting for weeks after surgery. Pain control typically commences 
in the perioperative period while the patient is in the hospital and may continue 
after discharge; outpatients may be given a prescription and advice for their anal-
gesic regimen. It is not unusual for CIED patients to be discharged a few hours after 
implantation. While opioids are known as an effective analgesic to manage acute 
postoperative pain, growing scrutiny on opioid use as well as their side effects and 
potential risks have limited their use. Opioids may be considered for appropri-
ate patients for a short course of treatment of acute postoperative pain, but other 
analgesics may likewise be considered.

Keywords: CIED implant, device surgery, ICD implant, ICD implant, implant pain 
control, implantable cardioverter defibrillator, pacemaker

1. Introduction

Postoperative pain of all types is often under-treated and may lead to chronic 
postsurgical pain, a centralized painful condition that can be challenging to treat 
[1]. Reports of postimplant pain can vary. In a survey of pacemaker patients, most 
patients were satisfied overall with their device and not affected by pain, soreness, 
or discomfort [2]. Yet in another study, over 40% of surgical patients from a single-
center Italian study (n = 235) reported still having mild postsurgical pain at six 
months [3]. Despite the frequency of device implants for cardiac conditions, there 
is little study on the incidence, intensity, or duration of pain associated with cardiac 
implantable electronic device (CIED) implantation.

There is a paucity of literature to inform clinicians about pain management for 
those undergoing an implantable cardioverter-defibrillator (ICD) or pacemaker 
implantation. A single-center study from Europe (n = 372) analyzed pain control 
retrospectively over the course of device implant [4]. The study found about a 
quarter of patients received analgesia or sedation in advance of surgery. During 
surgery, all patients received local lidocaine anesthesia. Upon completion of the 
surgery, less than one-third (31%) were given pain medication or sedated. Using a 
0 to 10 numeric rating scale, the highest pain rating during the implantation was 8. 
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Pain above 5 was reported one, three, six, eight, and 24 hours after surgery, with the 
most frequently reported pain sites being the surgical incision, shoulder area, and 
chest region [4].

2. Postoperative pain control

There has been a little systematic study of pain associated with CIED implanta-
tion even though, such procedures are increasingly prevalent. Further complicating 
the subject of postoperative pain control are differences between subcutaneous and 
transvenous devices and the fact that some implantation procedures are done on an 
outpatient basis.

2.1 Risk factors for postoperative pain

The BRUISE-CONTROL studies 1 and 2 used a visual analog scale to assess 
pain in 1308 patients who had a CIED implanted. Using multivariable regression 
analysis, the following were associated with clinically important postsurgical pain: 
clinically significant hematoma (odds ratio [OR] 3.8), de novo CIED implantation 
(OR 1.9), female sex (OR 1.6), age < 65 years (OR 1.5), and body mass index <20 
(OR 2.1) [5].

In a study of 21 consecutive adult CIED patients (mean age 61 ± 11 years), 
patients were asked to rate their pain on a 0 to 100 visual analog scale, where 0 was 
no pain at all and 100 was the worst possible pain imaginable. Patients rate their 
pain 24 hours after surgery and again at one month postoperatively. At 24 hours 
postimplant, the mean VAS score was 34 ± 20. Only one patient in the study expe-
rienced severe pain, with the rest rating pain as moderate (48%) or mild (48%). 
Using regression analysis, it was found that the use of intraoperative fentanyl and 
a longer time spent in the procedure were significant predictors of more intense 
postoperative pain. The mean VAS score for pain at one month was 19 ± 18 and 17 
out of 21 patients rated this pain as “mild” [6].

2.2 Inpatient versus outpatient pain control

Device implantation may be done on an inpatient or outpatient basis, depending 
on a variety of factors, including patient characteristics, comorbidities, physician 
preference, geography, patient frailty, and other factors. A retrospective chart 
review of 415 consecutive primary-prevention ICD patients found that same-day 
discharge was safe and feasible [7]. However, in real-world clinical practice, many 
such procedures are performed on inpatients. In a prospective study of 327 de novo 
ICD patients, 40.3% were implanted during acute hospitalization [8]. Of these 
inpatients, 57.6% were secondary-prevention patients [8]. Predictors of hospitaliza-
tion include, a more complex device (non-single-chamber device), New York Heart 
Association (NYHA) class IV symptoms, low diastolic blood pressure, higher blood 
urea nitrogen levels, and lower hemoglobin [8].

2.3 Subcutaneous ICDs

Subcutaneous ICDs are often implanted under general anesthesia and postopera-
tive pain may be managed with opioid analgesia. However, there is a trend toward 
moving away from general anesthesia and postoperative opioids to a different type of 
pain control [9]. Monitored anesthesia care (MAC) has been reported in the literature 
to be a safe and effective method for subcutaneous ICD implantation [10, 11]. The 
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truncal plane block along with perioperative nonopioid analgesics is being considered 
and appears feasible and effective [12]. A study of 91 consecutive patients undergo-
ing subcutaneous ICD implantation at 10 centers found ultrasound-guided serratus 
anterior plane block was effective for anesthesia during the procedure and postopera-
tive analgesia [13].

The Subcutaneous Defibrillator and Send Home (DASH) study investigated 
the feasibility and safety of subcutaneous ICD implant in patients (mean 
age 47 ± 14 years) discharged on the same day [14]. In total, 49 patients were 
enrolled and all were discharged following the surgery without staying overnight 
at the hospital. The protocol called for preoperative acetaminophen 975 mg and 
oxycodone 10 mg, local bupivacaine during the surgery, and limited fixed-dose 
combination oral analgesic of oxycodone plus acetaminophen (5/325 mg) after 
surgery, every 6 hours as needed. Using a 0 to 10 numerical pain rating scale, 
severe pain (defined as a score ≥ 8) occurred in 14.3% of patients on the day of 
surgery, 14.3% on postoperative day 1, and 8.2% of patients on a postoperative 
day 3 [14].

In a study of 104 adult patients undergoing subcutaneous ICD implantation, 
69% were administered intraprocedural liposomal bupivacaine but there were 
no statistically significant differences between those who received bupivacaine 
and those who did not in terms of inpatient opioid consumption, outpatient 
opioid prescriptions, or overall opioid consumption in the postoperative period 
[15]. Similar findings were observed in a study of liposomal bupivacaine in knee 
arthroplasty [16].

In a study of opioid use following CIED implantations, patients who underwent 
subcutaneous ICD implantation were more likely to be prescribed opioids than 
those implanted with transvenous devices (25% vs. 20%) [17]. In a retrospec-
tive single-center study of structured interviews with female patients who were 
implanted with a subcutaneous ICD (mean time since implant 4.6 ± 3.1 years) 54% 
said their postsurgical pain was worse than they expected [18]. About half (44%) 
said that they experienced daily discomfort with their bra and the implanted 
device [18]. Thus, while postoperative pain can be managed following subcu-
taneous ICD implant, there are important gaps to be recognized in how pain is 
treated. In particular, patients should be advised about the nature, duration, and 
intensity of pain anticipated and provided with an analgesic regimen with specific 
instructions.

2.4 Device revision

ICDs and other CIEDs require replacement upon battery depletion, and the 
incidence of any type of complication within 45 days of device revision is 4.3% 
[19]. Device infections are more common for ICD and CRT-D system revisions than 
initial implants (2.9% and 3.9% for revisions, respectively, and 1.6% for both ICD 
and CRT-D de novo systems) [20]. It should be noted in this context that a CRT-D 
system is a more complicated device than a transvenous ICD, even a dual-chamber 
ICD, and requires a left-ventricular lead. This risk for infection may be cumulative 
with subsequent device revisions; in fact, each intervention at the same implant site 
appears to double the risk for infection [21]. There are no studies, comparing post-
operative pain intensity or characteristics of initial and revised procedures. Since 
up to 40% of ICD procedures involve a generator replacement [22], this represents a 
significant knowledge gap.

In an analysis of opioid prescribing for CIED implantation, patients undergoing 
device upgrades and generator change-outs were less likely to receive opioids than 
those getting a de novo implant (18.3%, 11.6%, and 20%, respectively) [17].
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2.5 Special populations

2.5.1 Pediatric

The number of pediatric device patients is a relatively small subset of the device 
population, but babies, as well as children and adolescents, may be recipients of 
CIEDs. Nerve blocks have been effectively used in pediatric patients undergoing 
implantation of a subcutaneous ICD [23]. In this case series of 10 patients, the 
combination of bilateral parasternal blocks with a left erector spinae plane block 
provided good pain control. Pectoral nerve blocks have been shown to reduce 
perioperative anesthetic requirements and postoperative pain in children undergo-
ing transvenous ICD implantation [24].

2.5.2 Women

A study of 180 men and 60 women, who had a de novo ICD implantation, 
found that women were statistically significantly more likely to be younger and 
less likely to be married or have a history of coronary artery disease than men 
[25]. However, women had lower functional status, reported more intense pain, 
and had more sleep problems than men. Men and women were similar in terms of 
symptoms of anxiety and depression [25]. A study of 179 consecutive ICD out-
patients (mean age 60.5 ± 15.9 years) found women reported significantly more 
intense pain than men [26].

Women have been historically under-represented in ICD clinical trials and 
historically were sometimes overlooked in consideration for ICD implantation. In 
a retrospective study of 5156 outpatients with an ejection fraction ≤35%, 25.0% of 
women had received an ICD compared to 36.3% men (p < 0.01) [27]. In an obser-
vational study based on Get with the Guidelines-Heart Failure Program, 21,059 
patients with an ejection fraction ≤35%, were evaluated in the time frame from 
2011 to 2014. During this time, women were less likely to be counseled about ICD 
therapy than men (19.3% vs. 24.6%, p < 0.001) [28]. It may be that women who 
receive ICDs are not adequately counseled about what to expect from surgery or 
treated for pain.

2.5.3 Overweight

Studies suggest that obese patients, defined as a body mass index >30 kg/m2, are 
at an elevated risk for inappropriate shock and failed defibrillation testing when 
a subcutaneous device is implanted [29, 30]. Electrocardiographic testing before 
implant and appropriate patient selection may reduce such risks [10]. It is unknown 
whether obese patients experience more pain or more intense pain than normal-
weight patients.

2.5.4 Racial/ethnic groups

In a retrospective analysis of 5156 outpatients with an ejection fraction ≤35%, 
28.0% of Black compared to 33.2% of White patients had an ICD, p = 0.02 [27]. 
Although this difference was statistically significant, it was less pronounced than 
sex-based differences in ICD implantation, where men were more likely to receive 
an ICD than women [27]. Since Blacks Americans are less likely to have health 
insurance than Whites, it might be speculated that part of this difference can be 
traced back to differences in health coverage. However, a study from the United 
Kingdom found that despite free, universal healthcare, there were racial disparities 
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in ICD implantations; ICDs in the United Kingdom were significantly more likely to 
be implanted in White than South Indian residents [31]. Although the population of 
Caucasians in the area of Leicestershire was 77.7% and South Asians made up 15.9% 
of the population, 91.9% of all ICDs in that areas were implanted in Caucasians 
compared to 8.1% South Asians. These differences persisted for primary- and 
secondary-prevention patients although the gap between Caucasians and South 
Asians was even wider for secondary-prevention treatment [31]. It is unclear, why 
this marked difference occurs. The lower rate of Black patients for ICD therapy is 
particularly concerning because Blacks are at greater risk than Whites for sudden 
cardiac death [32]. However, in the United States, Blacks also had a higher ICD 
refusal rate than other groups when ICD therapy was presented to them as a consid-
eration [32]. Among patients who are at higher risk of sudden cardiac death, Blacks 
had significantly less probability of getting an ICD [33].

2.5.5 Geriatric

Advanced age and frailty have been associated with less-frequent use of ICD 
systems and indications require the patient have a reasonable expectation to live 
at least one more year after device implant [34]. This life expectancy requirement 
is not always taken into account. In a survey of 386 physicians who refer selected 
patients for possible ICD implantation, 23% said that they do not consider life 
expectancy and 13% have knowingly referred patients with a life expectancy of 
under one year [35]. However, there is no specific age cutoff for ICD indications. 
More than 40% of all first implants of ICD systems occur in patients over the age of 
70, and de novo patients over age 80 are not uncommon [36]. Biological age may be 
more important than chronological age in this regard [37].

Postsurgical pain in geriatric device patients is not well studied; indeed, elderly 
patients are often under-represented in clinical trials, if they are included at all. 
In a study of 150,264 primary-prevention patients, there were significantly more 
adverse events in the oldest patients (4.5% in those ≥80 years) compared to the 
youngest group (2.8% in those <65 years) [38]. This rate of adverse events plateaued 
at about 4.5% at age 80 and beyond. Comorbid conditions were stronger predictors 
for complications than age [38]. However, the proportions of older and younger 
patients who specifically experienced pain were not reported.

The control of postsurgical pain in geriatric patients can be challenging due to 
comorbid conditions, concurrent drug therapies (polypharmacy), and age-related 
pharmacokinetic and pharmacodynamic alterations [39]. Pain assessment maybe 
even more challenging in elderly patients with impaired communication skills or cog-
nitive deficits. Because elderly patients may get benefit from ICD therapy and may 
have special limitations with respect to pain therapy, further study is much needed.

2.6 Opioid considerations

Opioids have come under increasing scrutiny as routine analgesics since the 
Centers for Disease Control and Prevention (CDC) published guidance to limit 
their use because of growing concerns for their risks, opioid-associated side effects, 
and opioid use disorder (OUD). In addition, opioids may increase the risk of atrial 
fibrillation or other arrhythmias [40]. Nevertheless, opioids are effective analgesic 
agents and are often used for appropriate patients under clinical supervision to 
manage the acute pain associated with surgery.

In a retrospective analysis of all CIED procedures done at the three Mayo 
Clinics in Minnesota, Arizona, and Florida, from 2010 to early 2018, opioids were 
prescribed to 20.2% of the 16,517 patients (mean age 70 ± 15 years) after device 
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implantation. Of this group, 80% were opioid naïve. Of the opioid-naïve patients, 
9.4% refilled their opioid prescription at least once and 38.8% of patients received 
>200 oral morphine equivalents (ME) [17]. The mean amount of ME prescribed 
was 243 ± 346 overall. Opioid-experienced patients were prescribed significantly 
more opioids than opioid-naïve patients with 335 ME compared to 219 ME for the 
opioid-naïve patients (p < 0.001) [17].

Opioids are associated with many well-known side effects, including nausea, 
somnolence, mental fogginess, pruritus, and constipation [41]. In most cases, these 
side effects are mild to moderate although they can in some instances be severe and 
even treatment-limiting. A short course of postsurgical opioids typically does not 
result in treatment-limiting side effects, although some patients find opioid analge-
sics unpleasant. In a study of 250 surgical inpatients, who had a variety of different 
types of surgery, 25% of those who had received some form of analgesic reported 
having side effects, although 90% said that they were satisfied with the pain control 
medications they were administered [42].

2.7 Clinical strategies: Preoperative, perioperative, postoperative

Although this chapter deals with postoperative pain control following device 
implant, it is difficult to discuss pain management isolated to the specific postop-
erative period without describing preoperative and perioperative techniques, which 
can affect the pain experienced by the patient when the procedure has ended and 
the patient enters recovery.

2.7.1 Preoperative

The implant of an ICD or any CIED can be associated with severe acute pain. 
The pain is most intense immediately after the implant procedure and diminished 
gradually over the next few days as the implant site heals. Postoperative pain should 
be managed with preoperative, perioperative, and postoperative strategies. In 
discussing the device implant with the patient, the clinical team should educate the 
patient on pain control goals and available options with their risks and benefits. It 
is important to manage the patient’s expectations because complete pain eradica-
tion is likely not possible. It has been found that oral gabapentin (600–1200 mg) or 
pregabalin (150–300 mg) administered an hour or two before surgery can reduce 
postsurgical opioid consumption [43, 44]. Likewise, oral celecoxib (200–400 mg) 
30 minutes to 1 hour before surgery can likewise diminish the need for postopera-
tive opioids [43, 45]. Note that the individual patient must be considered in any 
analgesic regimen; nonsteroidal anti-inflammatory drugs such as celecoxib may be 
contraindicated in certain cardiology patients.

A structured plan to help to reduce the pain associated with CIED implantation 
and other related procedures, such as catheter ablation, could significantly reduce 
pain up to 8–24 hours after the procedure [46]. The elements of such programs 
include patient education, regular pain assessments, analgesic protocols, and prompt 
referrals to pain specialists if the pain becomes severe or cannot be managed.

It is concerning that many device patients do not receive any preoperative anal-
gesics. In a study from Croatia, it was found that 75% of patients undergoing CIED 
implantation received no preoperative pain medications at all [4].

2.7.2 Perioperative

Perioperative pain control is typically managed by local medications and/or 
regional anesthesia [4]. Proper device placement in the fascia and good hemostasis 
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during the procedure may reduce pain following the operation. Liposomal bupi-
vacaine extended-release formulation may provide good anesthetic infiltration 
with an effect that can last up to 72 hours [47]. In some cases, general anesthesia 
is used but truncal plane blocks may also provide adequate anesthesia for difficult 
procedures or those involving a subcutaneous device [12]. For conventional ICDs 
and devices with transvenous lead systems, local anesthetic infiltration is probably 
adequate, but sometimes cervical or pectoral nerve block may be employed [48, 49]. 
Intravenous ketamine is not recommended because of the potential for myoclonus, 
which can interfere with device function and cause double-counting [17].

2.7.3 Postoperative

Following surgery, the patient may get benefit from oral analgesics to manage 
acute pain. Opioid analgesics may be considered for a short course in appropriate 
patients. A great concern about the use of opioids in any patient is the potential for 
OUD. Risk stratification tools exist that can help to determine which patients may 
be at elevated risk for opioid misuse and abuse [50] (see Table 1). Opioid overdose 
may result in potentially life-threatening respiratory depression; naloxone is a 
rapid-acting rescue drug. Patients taking opioids following CIED implantation may 
benefit from a prescription for naloxone and the family or caregivers should be 
trained in how to administer it in an emergency.

In a single-center retrospective study from Croatia (n = 372), 31% of patients 
being implanted with an ICD received pain medication following surgery; the 
highest intensity pain recorded in this study was 8 on a 0 to 10 scale [4]. The 
most frequently prescribed medications in this study were fixed-dose combi-
nation oral tramadol and acetaminophen 37.5/325 mg (29%), diazepam 5 mg 
(17%), tramadol 5 mg monotherapy (16%), and acetaminophen monotherapy 

Instruments Description Optimal use Comments

4-A Observations
Analgesia, activities of daily 
living, adverse events, aberrant 
drug-taking behaviors

Suitable for 
ongoing opioid 
therapy

Not validated

Diagnosis, Intractability, 
Risk, and Efficacy 
Inventory (DIRE)

Scoring system More suitable 
for long-term 
therapy or 
ongoing therapy

Clinician does 
assessment

Opioid Risk Tool Clinician-guided questionnaire-
based interview; stratifies low, 
medium, and high risk for 
aberrant drug-taking behaviors

May be used 
before start of 
opioid therapy

High degree of 
sensitivity and 
specificity

Pain Medication 
Questionnaire (PMQ )

Questionnaire Designed for 
chronic pain 
patients

Validated 
translated 
versions available

Screener and Opioid 
Assessment for Patients 
with Pain-Revised 
(SOAPP-R)

Questionnaire To identify 
those at low risk 
of OUD

Validated 
translated 
versions available

Table 1. 
While there is no consensus as to the best opioid-screening tool, a variety of validated instruments exist [51–53]. 
In place of an assessment tool, a clinical interview with the patient may be conducted to assess past drug 
experiences, familial history of substance use disorders, and attitudes about pain control. Note that these tools 
are often used in the setting of long-term opioid therapy, rather than short-term postoperative use.
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500 mg (12%) [4]. It should be noted that in this study 69% of patients received 
no postoperative analgesic medications at all [4]. This strongly suggests that 
many CIED patients have poorly controlled pain after surgery. Of course, 
postoperative pain control may be inadequate for many types of surgery. In 
USA survey of surgical inpatients, who had a variety of procedures, about 80% 
reported they suffered pain following surgery with 86% of them ranking this 
pain as “moderate” to “severe” [42]. Perhaps most important is that pain was 
reported to occur more frequently after discharge than before [42]. Patients may 
not always know what to expect and some may accept moderate to severe postop-
erative pain following surgery, not knowing that postoperative pain can often be 
safely and effectively managed.

An important analgesic strategy involves a combination of multimodal anal-
gesia. Multimodal analgesia is based on the use of two or more analgesics with 
different mechanisms of action to offer a synergistic benefit to patients. Some 
fixed-dose combination products offer oral acetaminophen plus, a small amount 
of opioid, such as oxycodone, in a single oral dose. Adjuvant agents may also be 
helpful such as gabapentin or pregabalin to help with a neuropathic component to 
postsurgical pain.

A challenge in pain management following implant is the fact that most device 
patients do not spend prolonged periods of time in the hospital. Most CIED patients 
are discharged home shortly after surgery, whether they are outpatients or spend 
the night in the hospital. Thus, most device patients must manage the longest dura-
tion of their postsurgical pain at home. For this reason, patients and their families 
or caregivers must be educated about the pain medications they are to take, the 
appropriate doses and timing, and the risks as well as the benefits of these medica-
tions. Following transvenous device implant, patients should be educated about 
arm movements to prevent capsulitis (“frozen shoulder”) [54].

3. Conclusions

With millions of device patients around the world, it is important to develop 
good guidance in terms of how to manage postoperative pain in these patients. Most 
postoperative pain is moderate to severe but has a predictable trajectory in which 
the pain is most intense immediately after surgery and diminished day over day 
over the course of several days. A good strategy for pain control for CIED patients is 
to consider managing pain perioperatively and then offer the patient postoperative 
counseling for pain management at home along with appropriate analgesics. For 
appropriate patients, a short course of opioid analgesics may be appropriate but 
other nonopioid agents may be considered as well. Subcutaneous ICD implantation 
is likely associated with more severe or longer-duration postoperative pain although 
there are no specific head-to-head comparative pain studies. Barring complications, 
device patients recover over the course of days and weeks and should need analgesia 
only for a short duration of time.
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Chapter 5

CRT Past, Present, and Future 
Directions: Toward Intelligent 
Responders Selection and 
Optimizing Pacing Modalities
Abdullah Alabdulgader

Abstract

Congestive heart failure (CHF) is a serious health problem affecting all nations 
of world. Its impact is increasing with increasing individual age. Ventricular 
dyssynchrony is well known to contribute to pathophysiological deterioration in 
more than one-third of CHF subjects. The therapeutic choices of CHF witnessed 
long decades of stagnant periods and a relative paucity of effective treatment. The 
discovery of the electrical therapy that is capable of reversing ventricular dyssyn-
chrony, in the form of cardiac resynchronization therapy (CRT), is a true revolution 
in the timeline of CHF management. Despite the early enthusiasm associated with 
CRT implantations started in 2001, we know from the last two decades’ experience 
that non-responders constitute to nearly 40% of all CRT patients. This chapter is 
devoted to reviewing the past, present and future of CRT with special attention 
on better intelligent detection of the electrical substrate responsive to CRT as well 
as optimizing the choice of CRT subjects using the latest knowledge in electrocar-
diographic and state-of-art imagining technologies. Novel future directions are 
discussed with new scientific philosophies capable of optimizing CRT. Promising 
new implants techniques such as endocardial pacing of the left ventricle, His bundle 
pacing as well as His-optimized cardiac resynchronization therapy are discussed.

Keywords: cardiac resynchronization therapy (CRT), congestive heart failure (CHF), 
electrical cardiac devices, left bundle branch block (LBBB), right bundle branch block 
(RBBB), future directions

1. Introduction

Congestive heart failure (CHF) is one of the most important epidemics in the 
current human species era affecting 1–2% of adults and around 10% of >70 years 
old in developed countries. The lifetime risk of developing heart failure is one in 
five after 40 years of age. In the United States, it costs around $39.2 billion in 2010. 
Sub group of CHF subjects with reduced ejection fraction and electrical dyssyn-
chrony constitutes a true therapeutic challenge. Therapeutic strategies of this CHF 
sub group witnessed stagnant periods until electrical therapies were introduced to 
the world communities where cardiac resynchronization therapy (CRT) became 
available for clinical use first in 2001. Candidates for CRT are CHF subjects with 
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reduced left ventricular systolic function, QRS duration of >120 ms with left bundle 
branch (LBB) morphology, and functional classification with NYHA class III–IV. 
Accumulative knowledge in the last two decades has shown that more than one-
third of patients are not responding with lack of echocardiographic reverse remod-
eling or no improvement in quality of life (QOL). Intelligent CRT subjects selection 
with multidisciplinary expertise and improved procedural skills and strategies, as 
well as optimizing post-implant care are the main targets to achieve the improved 
outcomes for the non-responders. Nowadays, a new CRT imaging techniques and 
innovative pacing strategies are top priorities for us in CHF electrical therapies 
arena. This chapter is a journey in the CRT timeline reviewing the past, discussing 
the current situation, and elaborating in future directions for better psychophysi-
ological well-being of CRT subjects.

2. Applying electrical therapy as medicine to treat human disease

Utilizing electric current to treat human disease is an idea that fascinated 
humans since antiquity. The electrical discharges produced by torpedo fish were 
utilized as an efficient natural source for electric shock generation by Hippocrates 
(460–370 BC), Scribonius Largus, and Galen (129–210 AC). It was prescribed 
for neurological diseases like headache, arthritis gout pain, and prolapsed anus. 
In 46 AD Scribonius Largus in his compendium of medical treatments known 
as Compositiones described a novel treatment for headache, where, a living black 
torpedo is put on the place which is in pain, and results were very encouraging. 
The electric organ of the electric fish can produce amplitudes ranging from 10 to 
860 V with a current of up to 1 A. In cardiac science, electrical stimulation was an 
attractive choice for incapacitating angina pain. An induction coil with sponge-
tipped electrodes was used in 1853 to successfully treat abnormal heart rhythms 
and angina. Relief of angina pectoris by electrical stimulation of the carotid-sinus 
nerves was achieved repeatedly [1]. The introduction of coronary artery bypass 
shortly after this convert the electrical stimulation procedure to obsolete. The 
most fascinating and valuable incorporation of electric therapy in medicine was 
in the arena of treating rhythm disturbances, either in bradycardia or tachycardia 
management The first pacemaker was implanted in a person in 1958 and the first 
lithium battery was introduced in 1969. The deleterious hemodynamic effects of 
the left bundle branch block (LBBB) had been appreciated by many intelligent 
observers in the cardiac communities. About 30% of heart failure subjects with 
reduced ejection fraction with wide QRS interval in the electrocardiogram, tend 
to have worse clinical outcome [2, 3]. In addition, intraventricular conduction 
delay (IVCD) was observed as a pathological finding with multiple hemodynamic 
derangements, including reduced pulse pressure, impaired diastolic function, 
and mitral regurgitation of functional origin [4]. Early attempts to address this 
pathology which demonstrated favorable acute hemodynamics and medium-
term functional improvements were observed using biventricular pacing [5, 6]. 
Multisite Stimulation in Cardiomyopathy (MUSTIC) Trial, published in 2001 was 
the first large trial demonstrating CRT benefits clinically, where three champers 
are paced, right atrium, right ventricle, and left ventricle. The first CRT device 
was implanted in the same year. In an attempt to improve the clinical outcome, 
10 other prestigious trials were performed. Those 11 clinical trials constitute 
the determinants and guidelines dictator for CRT practice nowadays. Table 1 
illustrate the details of the inclusion criteria, comparison, and the significant 
findings of the most influential CRT trials [14]. Nowadays, the cardiac electrical 
devices communities are investigating methodologies and techniques to improve 
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CRT outcomes mainly in the non-responders group. The non-LBBB population 
is classically thought to be out of the selection criteria for CRT. In spite of that, 
we believe nowadays that 30–50% of these population will benefit from CRT. 
With this new knowledge, we should convert the necessity of LBBB criteria as 
lone evidence for ventricular dyssynchrony, an obsolete. In this chapter we are 
discussing with detail, an innovative diagnostic modalities to hunt the potential 
responders for CRT. Visionary insight for future speculations will conclude this 
CRT scientific journey.

Name Population (n) Inclusion Endpoint Results

MUSTIC SR 58 III, EF < 
35%, QRS 

≥ 150

6MWT, QoL, pVO2, 
hospitalization

CRT-P improved : 
6MWT, QOL, pVO2; 

reduced hospitalization

MIRACLE [7] 228-CRT 
25-control

III-IV, EF 
<35%, 

QRS ≥130

NYHA class, QoL, pVO2 CRT-P improved: 
NYHA, pVO2, 6MWT

MIRACLE-ICD 186 II, EF < 
35%, QRS 

≥ 130

6MWT,QoL, 
hospitalization

CRT-D improved all 
from baseline (not ICD)

COMPANION [8] ICM NICM 
1,520

III-IV, EF 
< 35%, 

QRS > 120

All-cause mortality or 
hospitalization

CRT-P/CRT-D; reduced 
endpoints HR 0.80 (CRT 

vs medical)

CARE-HR [9] ICM NICM 813 III-IV, EF 
< 35%, 

QRS > 120

All-cause mortality or 
hospitalization

CRT-P/CRT-D; reduced 
endpoints HR 0.63

MUSTIC AF 59 III, EF 
< 35%, 

QRS ≥200 
(paced 
QRS)

6MWT, QoL, pVO2, 
hospitalization

CRT-P improved : 
6MWT, QOL, pVO2, 

hospitalization

CONTAK-CD All-cause death + HF 
hospitalization, pVO2, 
6MWT, NYHA class, 
QoL, LVEDD, LVEF

CRT-D improved: pVO2, 
6MWT; reduced LVEDD 

and increased LVEF

RAFT [10] 1798 II, III, EF 
<30%, 

QRS ≥120

Death from any cause or 
hospitalization for HF

The addition of CRT 
to an ICD reduced 
rates of death and 

hospitalization for HT

REVERSE [11] 610 I-II, EF 
<40%, 
QRS ≥ 

120

(i) % worsened by 
clinical composite 

endpoint, (ii) LVESVi, 
(iii) HF hospitalization, 

(iv) all-cause death

Primary endpoint 
NS; CRT-P/CRT-D 

reduced (ii) and (iii) 
hospitalization but not 

(iv)

MADIT-CRT [12] ICM NICM 
1820

I-II, EF 
<30%, 
QRS ≥ 

130

(i) HF event or death, 
(ii) All-cause death, (iii) 

LVESV

CRT-D reduced (i) and 
(iii) but not (ii)

MIRACLE-ICD 
II [13]

186 II, EF 
<35%, 
QRS ≥ 

130

VE/CO2, pVO2, NYHA, 
QOL, 6MWT, LV 
volumes, LVEF

CRT-D improved: 
NYHA, VE/CO2; 
volumes, LVEF

Table 1. 
Major clinical trials.
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3.  The dilemma of intelligent resynchronization therapy subjects 
selection

The philosophy of resynchronizing the electrical stimulation of both ventricles 
developed into more mature practice, nowadays. The current CRT guidelines are the 
product of knowledge of the aforementioned clinical trials (Table 1) in addition to 
the accumulation of personal and institutional expert opinions. The most important 
organizations contributing most importantly to today’s guidelines are: American 
Heart Association, the American College of Cardiology, Heart Rhythm Society, 
the Heart Failure Society of America, and the European Society of Cardiology. 
American criteria to define LBBB as defined by AHA/ACC/HRS are as follows:

• QRS >_120

• Notch-, slurred R in I, aVL, V5, and V6

• Occasional RS pattern in V5–V6

• Absent q in I, V5–V6, and aVL

• R peak time >60 ms in V5 and V6

• Normal R-peak time in V1–V3

• No negative concordance

• Usually discordant ST-T segments

The vast majority of recommendations of those organizations are concordant to 
each other making class I indications clear for CRT specialists to implement. Class I 
indications are restricted to the symptomatic patients with LVEF ≤35%, NYHA II-IV, 
with a QRS duration ≥130 ms despite guideline-directed medical treatment (GDMT) 
[15]. The most recent guidelines are account for the observations that the greatest 
benefits are consistently seen in those with a QRS duration >150 ms and LBBB pattern 
[16–18]. On the other hand, echocardiographic evaluation looking for mechani-
cal dyssynchrony results of the Predictors of Response to CRT (PROSPECT) Trial 
published in 2008 did not show superiority for CRT outcome for any of the predictors 
[19]. Accumulation of data in the last two decades demonstrated clearly that the CRT 
success in electrical resynchrony, mechanical remodeling, and quality of life improve-
ment is not always directly linked to the current selection criteria. Response to CRT 
seems to be more complex than we thought earlier. Currently, 30–40% of our subjects 
are non-responders. We recommend extension criteria for CRT subjects selection 
considering the old criteria of QRS duration >130 ms, LV dysfunction (<35%), and 
NYHA class II-IV as a guideline with more extensive clinical, pathological, imaging 
and programming variables to be considered. Critical variables such as global scar 
burden, scar location, lead position, programmed AV and VV interval, mitral regur-
gitation, and irreversibly advanced heart failure cases are imperative considerations 
to improve the outcome [20] Despite the traditional dogma that normal QRS duration 
is a contraindication for CRT, recent challenging groups suggest that QRS complex 
<130 ms might benefit from CRT. This response as they describe it, is personalized 
but having QRS complex <130 ms should not be a reason to withhold the option of 
CRT in systolic heart failure if no other effective treatment is available [21]. Despite 
the claim that CRT is under-utilized worldwide, we suggest more wise selections 
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with the advanced criteria for more intelligent selection. Our top priority should 
be the perfection of patients' choices to optimize benefits from CRT. Adjunction of 
defibrillator therapy with CRT as primary prevention of SCD is indicated in most 
CRT patients. For this reason, current guidelines advocate an implant of a CRT-D in 
eligible patients [9, 12]. Most of the systems we are implanting nowadays are CRT-D. 
This addition of defibrillator stress more for the need of more intelligent and com-
prehensive criteria for subjects selection. It is imperative to treat any primary disease 
before thinking of introducing the choice of CRT. Reversible heart diseases such as 
myocardial ischemia, arrhythmia (tachycardia-induced cardiomyopathy), or primary 
valvular heart disease must be treated. When AF is a risk factor, catheter ablation 
of AF is superior to AV node ablation combined with biventricular pacing. This 
superiority is increasing with the dramatic improvement in our skills and technology, 
especially with pulmonary veins cryoablation technique. In the subgroup of patients 
who received prior pacemaker or ICD with worsening heart functions, an upgrade 
plan for CRT-D seems appropriate. The majority of patients we are implanting, died 
without experiencing an appropriate ICD shock. A selection system that is capable of 
predicting survival in patients who received a CRT-D as primary prevention of SCD, 
identify a subgroup with a significantly poor prognosis despite a CRT-D, as well as 
being able to discriminate between patients with a low or high risk for mortality, is 
highly needed. The predictive HF meta-score is constructed of independent mortality 
predictors identified in a meta-analysis. Three continuous variables constitute this 
comprehensive evaluation score. In addition to age, LVEF and eGFR, New York Heart 
Association (NYHA) functional class; 11 dichotomous variables which give the score 
true discriminative strength including: male gender, African-American race, diabetes, 
chronic obstructive pulmonary disease, peripheral vascular disease, ischemic car-
diomyopathy, HF admission within 1 year before implantation, past or present atrial 
fibrillation, wide QRS (≥120 ms), secondary prevention indication, and history of 
ICD shocks (appropriate and inappropriate) [22]. The authors of this meta-analysis 
found the HF meta-score, a good predictor for survival and useful to detect a sub-
group with a significantly poor prognosis despite a CRT-D. In addition, accumulated 
medical literature in the last few years pin point other conduction system disorders in 
addition to the major well-known indication of the LBBB as potential indications for 
CRT. Those indications were based on evidence derived from sub-analyses from the 
landmark trials and will be discussed in the next section.

4.  Understanding the pathophysiological mechanism for becoming a 
CRT responder

The presence of intrinsic LV electrical dyssynchrony is considered to be the tradi-
tional electrical substrate of CRT. Mechanical inefficiency is the result of inefficient 
electrical-mechanical coupling ending up with triggering two main important 
outcomes: first is a hemodynamic disturbance in the form of reduced stroke volume 
and second structural deformation in the form of a cardiac remodeling process. 
Biventricular pacing, delivered by a CRT device, by correcting the dyssynchrony can 
improve both hemodynamic and structural derangements [23]. Studying ventricular 
activation time (known also as intrinsicoid deflection) and variability in activation 
sequence and passive conduction properties of normal hearts must be perceived 
very well for accurate comparison and assessment of ventricular dyssynchrony or 
other activation disorders [24]. Building on this important consideration, we in 
pacing communities must remind ourselves always of the fact that biventricular pac-
ing is never physiological. Biventricular pacing induces a stage of dyssynchronous 
electrical activation, remarkably observed at the level of the LV [25].  
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But with significant baseline electrical dyssynchrony, biventricular activation can 
be of benefit. Worsening of ventricular synchrony is expected in cases of little or no 
electrical dyssynchrony resulting in iatrogenic electrical dyssynchrony [25]. Being 
able to distinguish between patients that may or may not benefit from CRT, is based 
on a proper understanding of the true deviation from the normal activation pattern 
of ventricles and proper establishment of the presence of sufficient baseline electri-
cal dyssynchrony.

Research projects supporting this important understanding in biventricular 
pacing science are multicenter randomized LESSER-EARTH (cardiac resynchro-
nization therapy in patients with heart failure and a QRS complex <120 ms: the 
evaluation of resynchronization therapy for heart failure) in addition to ECHO-
CRT (echocardiography in cardiac resynchronization therapy) trials. Premature 
termination of patients with narrow QRS duration was elected due to safety 
concerns [26, 27].

4.1 LBBB is deficient criteria to diagnose CRT responders

Incorporating LBBB as ECG criteria to anticipate responders to CRT is proved 
to be deficient criteria in at least one-third of patients [28]. In the current CRT 
literature, there are multiple ‘criteria to define LBBB. Present examples are the 
American Heart Association/American College of Cardiology/Heart Rhythm 
Society (AHA/ACC/HRS), the European Society of Cardiology (ESC), and 
Strauss. Clinical outcomes in terms of remodeling reversal, hospitalization for 
heart failure, survival rates differ between those classifications, as well as clinical 
outcomes after CRT. In addition, interpretation of slurring and notching differs 
according to the format and filtering of the ECG. Positioning of the lateral leads 
is also an important contributing factor. In addition, interpersonal differences in 
reading ECG impact the LBBB diagnosis [29]. Significant interobserver, and to a 
lesser extent, intraobserver variability in the classification of LBBB by the use of 
the various definitions have been documented. Despite applying specific LBBB 
criteria, 1 in every 5 or 6 ECG will be classified differently by a different observer. 
If the same observer is tested, 1 in 10 ECG will be classified differently [30]. This 
conceivably means that a significant proportion of the scientific publications on 
CRT is niether mentioned nor nonspecific. It is astonishing to know that QRS 
morphology was not associated with response to CRT with regard to morbidity 
and mortality in five randomized key CRT trials constituting meta-analysis of 
data from 3782 patients (CAREHF [Cardiac Resynchronization in Heart Failure], 
RAFT [Resynchronization/Defibrillation for Ambulatory Heart Failure Trial], 
MIRACLE [Multicenter InSync Randomized Clinical Evaluation], MIRACLEICD 
[Multicenter InSync Randomized Clinical Evaluation—Implantable Cardioverter-
Defibrillator], REVERSE [Resynchronization Reverses Remodeling in Systolic 
Left Ventricular Dysfunction]) [31, 32]. It is clear at this point that what we are 
looking to treat with CRT is the dominance of leftward electrical delay, not LBBB. 
Subjects classified as having LBBB or non-LBBB may or may not have leftward 
electrical delay [25].

4.2 How to detect dominant left ward electrical delay (LED)

One of the best diagnostic modalities to diagnose electrical-mechanical coupling 
mismatch is endocardial electrical activation mapping where 3-dimensional elec-
troanatomical reconstruction contact or noncontact mapping can be evaluated with 
extreme accuracy. Utilizing this unique diagnostic tool declare that in most patients 
with LBBB there is a dominant leftward electrical delay [33–35]. The ECG imaging 
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or body surface mapping can display electrical activation sequences noninvasively. 
This predominant leftward electrical conduction delay is a critical component of 
the electrical substrate, which is amenable for CRT with expected electrical and 
mechanical derangements recovery.

4.3 The electrical substrate in Intraventricular conduction delay and CRT

A heterogenous and complex ventricular activation pattern, different from 
bundle branch pattern, is associated with IVCD. This is thought to be due to electri-
cal disease in combination with the myocardial disease [35, 36]. Subjects with IVCD 
are known to have LV activation time shorter than LBBB subjects. In addition the 
latest activation time in IVCD is variable. In IVCD subjects electrical delay is not 
as advanced but there is evidence of underlying myocardial disease. This results in 
a less favorable response of CRT in IVCD subjects [33, 35, 37]. Ventricular activa-
tion studies displayed electrical conduction disturbance in IVCD similar to LBBB 
in 20–52% of IVCD subjects [33, 35, 37]. This group of patients has the potential 
of gaining the best advantage from CRT [3]. In patients with typical LBBB, change 
to atypical LBBB might be indicative of scar formation after myocardial infarction 
that may benefit from CRT. National Cardiovascular Data Registry Implantable 
Cardioverter-Defibrillator (NCDR ICD) registry studied 11,505 CRT patients with 
non-LBBB, demonstrated that CRT implantation appeared to be associated with 
better outcomes than did implantable cardioverter-defibrillator (ICD) therapy 
alone in IVCD patients with a QRS duration of > or =150 ms, but not in patients 
with QRS duration < 150 ms or RBBB [38].

4.4 The electrical substrate responsive to CRT in RBBB

In right bundle branch block (RBBB) subjects the RV is activated slowly after 
LV activation. This fact explains convincingly the failure of CRT in RBBB subjects. 
As a matter of fact conventional CRT induces, rather than resolves, electrical 
dyssynchrony in RBBB subjects. Preclinical research and computer simulations 
evaluating the hemodynamic consequences of RBBB failing heart document this 
state of dyssynchrony in this subset of patients [39, 40]. There was no significant 
difference in total and regional LV endocardial activation times between RBBB 
and LBBB patients [34]. This fact is not a contradiction to the fact of dyssyn-
chrony induced by CRT in RBBB. The conclusive statement here is that: RBBB 
subjects who have concomitantly sufficiently significant coexisting LV conduction 
delay, CRT will result in hemodynamic improvement [39]. This is a new era of 
biventricular pacing where RBBB in the ECG may constitute an indication for CRT. 
In the 1960s Rosenbaum et al. intelligently mentioned a new RBBB pattern that he 
called “RBBB masking LBBB,” characterized by a broad slurred R wave in leads I 
and aVL, together with a left axis deviation [41]. In addition, Tzogias et al. in 2014 
found that atypical RBBB(RBBB pattern in lead V1 and absent significant S-wave 
in the lateral leads I and aVL) might be explained as coexisting left bundle branch 
delay (bilateral bundle-branch delay) and might suggest possible CRT respond-
ers within a group of patients with RBBB [42]. Left hemiblock in the presence of 
RBBB is another indicator alarming for leftward conduction delay and support-
ing the decision for biventricular pacing with CRT in RBBB subjects, although 
heterogeneity of trials data are evident. The heterogeneity of positive outcomes in 
this group of patients can be explained by the fact that left hemiblock might be a 
primary conduction system disease with associated dyssynchrony, or by infarction 
of the proximal left anterior descending coronary artery, where dyssynchrony is 
absent [43].
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4.5 Contribution of CRT to atrioventricular dyssynchrony

Ventricular resynchronization was thought to be the sole target of CRT. 
Atrioventricular conduction delay represented by prolonged PR interval in the 
ECG was found to be a potential target for CRT [44]. Consequences of inefficient 
atrioventricular coupling are elevated LV end-diastolic pressure, diastolic mitral 
regurgitation, and reduced stroke work. Atrioventricular conduction disturbances 
are frequent findings in the heart failure population with an increased rate of hos-
pitalization, atrial fibrillation, and mortalities [45]. CRT was found to be associated 
with worsened outcomes in prolonged PR intervals compared to normal patients 
in several nonrandomized trials [46, 47]. In contrast, subanalyses in two of the 
MADIT-CRT trial, investigating CRT effects on patients with non-LBBB and long 
PR interval, document reduction in the risk of all-cause mortality as well as heart 
failure hospitalization [48–50]. In conclusion, our directions now considering differ-
ences in methodology, design, and outcome measures in different studies, obviate draw-
ing solid conclusion to decide for atrioventricular dyssynchrony as electrical substrate 
responsive to CRT.

5.  Response prediction of new echocardiographic mechanical 
dyssynchrony markers

5.1 Eye balling and time-based mechanical dyssynchrony markers

Accumulation of resynchronization trials knowledge demonstrated clearly that 
an important proportion of the CRT population is not responding. All-cause mor-
tality combined including heart failure hospitalization, NYHA class, and patient 
global assessment were used in a heart failure clinical composite score (CCS) in 
Multicenter InSync Randomized Clinical Evaluation (MIRACLE) and was not able 
to show improvement in 34% of patients [7, 51]. A special new concern group in 
today's trials are the non-LBBB subjects. The use of echocardiographic markers 
before 2008 for this important group was not able to show additive benefit of the 
use of echocardiographic markers to predict CRT in important landmark trials 
like PROSPECT (Predictors of Response to Cardiac Resynchronization Therapy), 
ECHO-CRT, and others [26]. Iatrogenic electropathy has been reported as a possible 
deleterious effect of biventricular pacing [52]. New echocardiographic parameters to 
evaluate ventricular dyssynchrony were made available to provide proper measurement 
tool for resynchronization therapy [53, 54]. Two parameters are in clinical use nowa-
days: first is simple eyeballing to assess the degree of dyssynchrony. The second 
is more technical demanding based on strain study called strain-based speckle 
tracking echocardiography (STE). Mechanical dyssynchrony is present when an 
interventricular mechanical delay of > or = 40 ms and a septal-to-posterior radial 
peak strain delay of > or = 130 ms assessed with STE-strain curves.

Incorporation of echocardiographic mechanical parameters to evaluate ventricu-
lar dyssynchrony contribute significantly to the improvement of the prognostic 
value of guideline-based patient selection for CRT [54, 55]. Reduction of all-cause 
mortality was associated with incorporation of the apical rocking and/or septal 
flash at baseline evaluation for CRT [56, 57]. Incorporation of mechanical dyssyn-
chrony parameters as a selection criterion for CRT was associated with a significant 
reduction in LV end-systolic pressure in comparison to the old criteria based on 
QRS duration and morphology alone [55]. Despite those early promising outcome 
studies, not all non-LBBB with mechanical dyssynchrony have improved outcomes. 
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Here it is wise to remember that absence of response, especially in the time 
dyssynchrony-based studies, might be related to a non-electrical disease that is not 
responding to CRT like myocardial hypocontractility and scaring, which are very 
frequent pathologies in the heart failure population. Future randomized control 
trials must consider those important discriminative factors.

5.2  Septal rebound stretch analysis for the prediction of volumetric response to 
cardiac resynchronization therapy

Utilizing detection of specific wall motion patterns to serve as markers for CRT 
response is the most recent advance in the investigation toward optimal response 
prediction for CRT [54, 58–60]. It is promising as a superior ventricular dyssyn-
chrony measure tool compared to timing-based measures. Early septal contraction 
and delayed lateral wall activation give rise to myocardial stretching of the opposing 
wall during systole [54, 59, 61, 62]. This stretching is paradoxical systolic LV motion 
that is not contributing to LV ejection and, will result in waste of energy. This 
myocardial stretch and the resulting waste of energy can be converted to myocar-
dial shortening when we perform biventricular pacing [58, 63, 64]. Systolic rebound 
stretch of the septum (SRSsept) refers to the amount of systolic stretching of the 
septum after initial systolic shortening (Figure 1). It is considered as a good indica-
tor to reflect the potential for recovery of LV function with CRT and might be one 
of the best response indicators for resynchronization therapy [53, 58, 66]. Salden 
et al. and after their pioneering publication in the strategies to improve the selec-
tion of patients without typical LBBB for cardiac resynchronization therapy [67] 
and in a recent publication, published the first results from the multicenter study 
that investigated the association of baseline echocardiographic SRSsept with the 
volumetric response after CRT. They found that SRSsept is independently associ-
ated with favorable changes in LVESV post CRT. In addition, they found that for the 
prediction of volumetric response, assessment of SRSsept implies additional predic-
tive information compared to visual assessment of apical rock alone. For assessment 
of subjects without strict LBBB criteria, SRSsept is an excellent echocardiographic 
discriminator to predict response to CRT [65]. We and others recommend incorpo-
ration of echocardiographic SRSspet for future prospective validation  studies for 
CRT subjects evaluation.

Figure 1. 
Septal single wall image acquisition of systolic rebound stretch of the septum (SRSsept)-in red-defined as septal 
stretching after initial shortening. Speckle tracking echocardiography software was used to deduce strain curves 
of the focused LV septal wall image. MVC, mitral valve closing; AVC, aortic valve closing [65].



Cardiac Rhythm Management - Pacing, Ablation, Devices

54

6.  Cardiac resynchronization therapy guided by cardiovascular 
magnetic resonance

Cardiovascular magnetic resonance (CMR) is well known for its unprecedented 
image quality for cardiac structures as well as for functional assessment of cardiac 
functions. In addition, it has been introduced to CRT communities as a unique diag-
nostic tool in differentiating between the various causes of LV dysfunction. CMR 
is well known to be an excellent evaluating tool for critical factors in the potential 
response to CRT like a myocardial scar, the total amount of scar (scar burden), 
and scar location and its relationship to the pacing stimulus. The intricate arrange-
ments of human heart myocardial fibers are a complex anisotropic fiber structure 
showing longitudinal, circumferential, and oblique layers that form a mechanical 
link between remote areas of the myocardium [68–71]. Electrically heterogeneous 
conduction from endocardium to mid-myocardium and epicardium is also a feature 
of the human heart [72]. Conduction disturbances, superimposing in this inherent 
anatomical, functional, and electrical heterogeneity of the myocardium is expected 
to yield multiple areas of dyssynchrony [72, 73]. This finding raises the possibil-
ity that deploying an LV lead over a single site of late wall motion may not correct 
global cardiac dyssynchrony. By the same token, multiple LV leads may be prefer-
able to one LV lead in some patients (Figure 2) [74].

Figure 2. 
CMR radial wall mapping illustrating inward wall motion with colors ranging from blue to green and to 
red. Bull’s eye with a homogenous red color throughout denotes complete synchrony, where the bull eye with 
homogenous blue color denotes complete synchrony. Heterogenous color coding denotes dyssynchrony of radial 
motion where blue is representing early (global systolic phase) activation and red representing late (global 
diastolic phase) inward radial wall motion (from Foley et al. [74, 75]).



55

CRT Past, Present, and Future Directions: Toward Intelligent Responders Selection…
DOI: http://dx.doi.org/10.5772/intechopen.101608

With its unique discriminative and diagnostic accuracy, CMR has become the 
gold standard for the in vivo assessment of myocardial scarring. The cutoff point 
for scar burden, where more is associated with poor response to CRT, is different 
between different investigators but in general, we consider scar burden less than 
15–33% is a potentially good indicator for better response to CRT [76, 77]. Another 
delicate feature of CMR contribution to CRT management is that CMR can be a fine 
assessment tool for diagnosing the substrate of heart failure. It is well known that 
myocardial infarctions can be silent in about one-third of patients and coronary 
angiography study can be normal after myocardial infarction. In addition, wall 
motion abnormalities are not equivalent to myocardial ischemia. Unparalleled 
anatomical imaging, combined with late gadolinium enhancement (LGE)-CMR 
findings, makes CMR an ideal radiation-free diagnostic tool for the actual heart 
failure substrate. Scarring in the subendocardial or transmural distribution along 
arterial territories is typical for infarcted myocardium. Lack of localized myocardial 
scarring is characteristic of non-ischemic cardiomyopathy or less often, by mid-wall 
LGE, characterized fibrosis. Myocarditis, sarcoidosis, and arrhythmogenic right 
ventricular cardiomyopathy are characterized by the patchy distribution of LGE. 
Amyloidosis and Anderson-Fabry diseases are characterized by diffuse LGE.

7. Cardiac resynchronization therapy guided by computed tomography

Although CMR is an excellent diagnostic tool for evaluating CRT response 
evaluation, the frequent presence of pacemakers in this group of patients renders 
its use limited especially in countries where MRI-compatible devices are not avail-
able. Non-response to CRT might be caused by factors other than dyssynchrony 
of electrical activation. Important hidden factors that must gain attention for 
non-responders are myocardial scar, myocardia hypocontractility, and suboptimal 
left ventricular (LV) lead location. All of these factors can be investigated with 
computed tomography (CT). Late iodine enhancement computed tomography 
(LIE-CT) was found to be an important elegant diagnostic modality in this regard. 
Théo Pezel et al. investigated CT dyssynchrony measurements for which the LV 
short-axis images from the multiphase reformatted reconstructions were used [78]. 
CT dyssynchrony indices used in their investigation were: global and segmental 
time to maximal wall thickness, global and segmental time to maximal inward wall 
motion, and time to minimum systolic volume. The dyssynchrony they measured 
were not the baseline dyssynchrony but the persistent dyssynchrony despite 
biventricular stimulation. LV lead malpositioning is a serious potentially avoid-
able reason for non-responders group. Pre-determination of LV lead positioning 
might be approached by invasive angiogram during implantation and CT coronary 
angiography. Short axis of the heart is used to determine LV lead final position as 
anterior, anterolateral, lateral, inferolateral, or inferior. In the long axis of the heart 
searched positions are basal, mid, or apical. Théo Pezel et al. evaluated concor-
dance of the lead location to regional LV mechanical contraction, where they 
calculated the mean times to maximal wall thickness and maximal wall motion 
of each segment using an 8-segment model. Identification of the segment of the 
myocardium with the latest mean times to either maximal wall thickness or wall 
motion was determined. Greater global dyssynchrony, as measured by the time to 
maximal wall thickness, time to peak inward wall motion, and time-to-minimum 
systolic volume was found between non-responders. Greater segmental dyssyn-
chrony between the anterior and inferior segments, between the inferoseptal and 
anterolateral segments, and between the anteroseptal and inferolateral segments 
was found between non-responders. In addition, in the non-responders, the LV 



Cardiac Rhythm Management - Pacing, Ablation, Devices

56

lead location was less often concordant with the region of maximal wall thickness 
(9% vs. 72%, p = .001) [78].

In addition, CT was found to be an appropriate diagnostic tool to follow up the 
association of LV wall thickness and the ability to reverse LV remodeling and mitral 
regurgitation improvement after CRT [79].

8. Future directions to optimize cardiac resynchronization therapy

CRT is well known since its inception to be a promising electrical therapeutic 
device to treat CHF. After more than two decades in clinical use, we know 
that around 30–40% of CRT subjects do not exhibit any detectable clinical or 
echocardiographic benefit. As a matter of fact, some of them are deteriorating 
after resynchronization. For this reason, most of the discussion in this chapter 
and selected recent literature is devoted to non-responders toward optimizing 
resynchronization therapy [80, 81]. The special diagnostic tools mentioned 
earlier in this chapter are to refine our CRT subjects selection especially the 
subgroup without conspicuous LBBB criteria. Those special diagnostic tools can 
be still considered as future direction that has been started and in the way for 
mature applicable understandings in the field of CRT science. Promising new 
directions can be classified as new diagnostic tools and new basic knowledge with 
deeper investigation in the biomechanics of cardiac electromechanical coupling and 
spatial orientation of the ventricular muscles, as well as ,new advances in implant 
and resynchronization site.

8.1 Vectorcardiography guided cardiac resynchronization therapy

Vectorcardiography (VCG) was developed by E. Frank in the mid-1950s. The 
magnitude and direction of the electrical forces that are generated by the heart are 
recorded in 3-dimensional information format by means of a continuous series 
of vectors that form curving lines around a central point. The area under the 
3-dimensional QRS complex (QRS area) is reflecting the electrical forces during 
depolarization and the area under the 3-dimensional T-wave (T area) is reflect-
ing the electrical forces during repolarization. Volumetric response and survival 
after CRT were thought to be predicted strongly by the QRS area, but also T area 
and the sum of QRS and T areas (QRST area) [82, 83]. QRS area was also found 
repeatedly to be superior to QRS duration and morphology as a predictor of CRT 
response [28, 82, 84, 85]. One retrospective multicenter study displayed that this 
was true for a cohort of patients that received CRT and also for patients without 
a Class I indication for CRT according to American guideline recommendations 
[56] (QRS duration 120–149 ms or non-LBBB) [28]. Only the QRS area in these 
patients, was significantly associated with all-cause mortality. Reviewing volu-
metric CRT response, demonstrated that both QRS area and LBBB morphology 
were associated with an LV end-systolic volume reduction of = or >15 [28]. The 
advantage of the QRS area is that it is an objective measure and observer-inde-
pendent parameter, whereas the definition for LBBB is subjective measure and 
operator-dependent. Variability in the QRS area is less than QRS duration as it is 
determined by QRS complex amplitude, not the beginning and end of the QRS 
complex [28]. VCG is not yet commercially available in clinical practice, but the 
QRS area is a promising non-invasive diagnostic evaluation tool for identifying 
possible CRT responders.
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8.2  Improving our understanding of the biomechanics of cardiac 
electromechanical coupling and the contribution of spatial orientation of 
the ventricular muscle band to cardiac pumping functions

Perceiving heart pumping functions as a simple contraction of the bullet-
shaped left ventricle is thought nowadays as a misunderstanding which con-
tributes significantly to delaying the successful progress of electrical device 
treatment for heart failure. The process of contraction and myocardial stretch 
need more investigation at the cellular, as well as, at gross myocardial fibers 
orientation level. At the cellular level, electrical activation will trigger mechani-
cal contraction via an intracellular calcium-dependent process known as 
excitation-contraction coupling. Disturbance of the process of cardiac myocyte 
intracellular calcium handling is a common feature of heart failure. At the organ 
scale, pump dysfunction is the end result of mechanical alterations secondary 
to electrical dyssynchrony in heart failure subjects. A reverse coupling between 
cardiac mechanics and electrophysiology is also well established. It is commonly 
referred to as cardiac mechanoelectric feedback and is thought to be an important 
contributor to the increased risk of arrhythmia during pathological conditions 
that alter regional cardiac wall mechanics, including heart failure. The roles 
of stretch-activated ion channels and mechanisms that are independent of 
ionic currents need more investigation. We in the CRT community, are in high 
demand for new multicellular tissue-scale model systems and experiments to 
obtain a better understanding of how interactions between electrophysiological 
and mechanical processes at the cell scale affect ventricular electromechanical 
interactions at the organ scale in the normal and diseased heart [86]. At a gross 
level, many observations demand serious investigations considering proper 
understanding of the mechanics of heart pumping and the true contribution 
of the spatial orientation of the ventricular muscle band to cardiac pumping 
functions. Without this knowledge, our understanding and interpretation of 
ventricular activation and dyssynchrony will be deficient. The existence of right 
and left ventricles as a continuous muscle band has been proposed [87–90]. The 
muscle band is organized in special spatial orientation as a helix formed by basal 
and apical loops. Both ventricular contraction and relaxation controlling the 
ejection and the filling of ventricles are thought to be affected by this unique 
arrangement [91, 92]. A deeper investigation of this spatial fibers orientation 
and the contribution of its activation sequence to cardiac pumping functions 
in health and disease will improve our therapeutic measures for proper resyn-
chronization of dyssynchronized ventricles. Sengupta PP et al, elaborated 
in this direction and describe LV as a complex structure in which myofibers 
are arranged in the form of a left-handed helix in the subepicardium and of a 
right-handed helix in the subendocardium, while the mid-wall is consisting of 
circumferential fibers. This type of fibers arrangement allows for myocardial 
deformation in multiple planes and explains the complexity of the ventricular 
dyssynchrony process (Figure 3) [94]. During LV systole, there is apical coun-
terclockwise rotation and basal clockwise rotation around the LV long axis. 
During LV diastole, there is Untwisting of the subendocardial layers that occurs 
during diastole and contribute to diastolic suctioning. Simultaneously, the LV 
shortens in systole and lengthens in diastole. At this level of understanding, we 
are confident that the extent of LV mechanical dysfunction is never a matter of 
one direction of motion or deformation. Future research for resynchronization 
therapy must consider this basic understanding.
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8.3 Endocardial left ventricular pacing

Challenges of transvenous LV lead implantation including limitations of coro-
nary sinus (CS) anatomy, high LV pacing threshold, and/or phrenic nerve capture, 
have led to serious efforts to look for better alternatives [94]. As compared to 
standard epicardial LV pacing, pacing the LV endocardium reflects a more rapid 
and physiological activation of the left ventricle. Shetty AK et al have identified 
greater acute hemodynamic improvements with endocardial versus conventional 
LV pacing [95]. Subjects who demonstrated CRT non-response or known to have 
LV lead technical difficulties were evaluated in the alternate site cardiac resynchro-
nization study. Endocardial LV lead placement was found to be safe and reported 
clinical and echocardiographic improvement in two-third of subjects [96]. An 
important drawback of this new trend of an implant is the need for anticoagulation 
and the reported few cases of thromboembolic events despite anticoagulation. The 
endocardial wireless stimulation for CRT (EBR Systems, Sunnyvale, CA, USA) 
incorporates a pacing system using a small ultrasound-responsive leadless electrode 
placed onto the LV endocardial surface [97]. The safety and performance of elec-
trodes implanted in the left ventricle study is coming up with encouraging results. A 
total of 35 patients who had failed conventional CRT implant, underwent successful 

Figure 3. 
Twist mechanics of the left ventricle. A period of left ventricular isovolumic contraction (IVC) follows electrical 
and mechanical activation in the apical subendocardial region, during which (A), the subendocardial myofibers 
(right-handed helix) shorten with stretching of the subepicardial myofibres (left-handed helix) resulting 
in clockwise rotation of the apex and counterclockwise rotation of the base. Simultaneous shortening of the 
subendocardial and subepicardial layers is occurring during ejection (B). The larger arm of the moment of  
the subepicardial fibers dominates the direction of twist, causing counterclockwise and clockwise rotation of the 
apex and base, respectively. During isovolumic relaxation (IVR) (C). Subepicardial fibers lengthen from base 
to apex and subendocardial fibers lengthen from apex to base. In diastole, there is relaxation in both layers, with 
minimum untwisting (D). Illustration is from Sengupta PP [93].
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implant in 97% of the sample [93]. At 6 months, approximately two-thirds of 
patients demonstrated LV reverse remodeling with improved LVEF ≥5%. LV 
endocardial pacing seems to be a revolution creator in CRT practice in the present 
and future.

8.4  His bundle pacing and His-optimized cardiac resynchronization therapy for 
electrical resynchronization in heart failure

In 1977, Narula et al. reported that the QRS complex may be normalized by 
pacing the distal His bundle in patients with LBBB [98]. Permanent pacing of the 
His bundle region to achieve ventricular resynchronizing has been described, with 
clear clinical advantages over traditional RV apical pacing [99–102]. Medtronic 
has announced US Food and Drug Administration (FDA) clearance and com-
mercial launch for the SelectSite C304-HIS deflectable catheter system for use 
in procedures involving His bundle pacing (HBP). The physiologic benefit of 
permanent His bundle pacing (HBP) is theresult of synchronous electrical and 
mechanical activation with stimulation of both ventricles through the intrinsic 
His-Purkinje system. The anatomic site of the conduction disorder seen with 
BBB is frequently located proximally within the bundle of His, with longitudinal 
dissociation of the conducting fibers [103, 104]. Overall, it has been reported that 
approximately three quarters of BBB patients were found to respond with QRS 
narrowing using HB pacing [103]. Using epicardial electrocardiography (ECG), 
imaging Arnold et al, demonstrated that HB pacing was superior to biventricular 
pacing for restoring LV synchrony in selected patients with LBBB [105]. In the 
presence of distal BBB or the co-existence of IVCD, QRS may not normalize. In 
patients without complete LBBB correction, Vijayaramanet P et al demonstrated 
that His-optimized CRT (HOT-CRT) with synchronized LV pacing resulted in 
significant QRS duration narrowing [106, 107]. In patients with atrioventricular 
(AV) block in whom fusion with intrinsic His-Purkinje conduction cannot be 
achieved, HOT-CRT may provide the new therapeutic option. However, it is wise 
to remember that QRS duration reflects total ventricular activation time which is 
not always equivalent to a perfect marker of LV synchrony. HOT-CRT was found 
to be a novel approach to further optimize electrical resynchronization by com-
bining the concept of fused adaptive LV pacing with HBP.

9. Conclusion

CHF is one of the most important epidemics in the current human species era 
affecting 1–2% of adults and around 10% of >70 years old in developed countries. 
In addition to its psychophysiological and social burden, the economic impact of 
CHF on the world nations is Gargantum. Treatment options for CHF witnessed 
relative stagnation until 2001, where the first electrical device in the form of 
biventricular pacing to resynchronize the failing desynchronized ventricles, was 
implanted in 2001. In spite of the early excitement for this type of therapy most 
international landmark trials reported 30–40% of non-responders. Factors con-
tributing to this large proportion of non-responders are related to scar burden and 
scar localization to the vicinity of the LV pacing stimulus, hypocontractility, and the 
degree of pre-implant mechanical dyssynchrony. It was surprising to medical com-
munities to discover that a significant proportion of CHF without LBBB responds 
to CRT. This chapter is a scientific journey to understand the pathophysiological 
mechanism to optimize the selection of CRT responders. We confirm that LBBB 
is deficient criteria for selecting CHF patients for CRT. A spectrum of ventricular 
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conduction disorders that might benefit from CRT, as derived from landmark trials 
were discussed including IVCD and RBBB. New techniques to detect dominant 
left ward electrical delay (LED) including endocardial 3-dimensional electroana-
tomical mapping and ECG imaging or body surface mapping to display electrical 
activation sequences as well as the elaboration of the best electrical substrate to 
optimize response to CRT in IVCD, RBBB, and atrioventricular delay are discussed. 
Determination of pre-implant degree of dyssynchrony is critical as pacing is known 
to induce more dyssynchrony for mild cases at the baseline with clinical and hemo-
dynamic compromise. For this reason, special attention in this chapter was devoted 
to new echocardiographic mechanical dyssynchrony markers like eyeballing, septal 
flash, and time-based mechanical dyssynchrony markers. Systolic septal rebound 
stretch (SRSsept) was found to be an excellent echocardiographic discriminator to 
predict response to CRT. Cardiovascular Magnetic Resonance (CMR) was found to 
be an ideal radiation-free diagnostic tool for the diagnosis of the actual heart failure 
substrate and accordingly to optimize CRT responders selection. CRM is known to 
be the gold standard for scar diagnosis but is also considered to be an excellent diag-
nostic tool for fibrosis, myocarditis, sarcoidosis, arrhythmogenic right ventricular 
cardiomyopathy, amyloidosis, and Anderson-Fabry disease. Computed tomography 
is also an excellent tool to diagnose myocardial scar as well as for coronary venous 
system reconstruction images for optimal LV lead positioning. An innovative future 
direction for the best outcome of CRT is discussed. The non-invasive nature of 
vectorcardiography (VCG) with its strong prediction capabilities for volumetric as 
well as survival indicators after CRT, makes VCG an attractive adjunct diagnostic 
tool to optimize CRT responders selection. Improving our understanding of the bio-
mechanics of cardiac electromechanical coupling and the contribution of the spatial 
orientation of the ventricular muscle band to cardiac pumping functions is creat-
ing a new visionary approach toward understanding the extent of LV mechanical 
dysfunction and perfective lead positioning in CRT subjects. New LV lead positions 
like pacing the LV endocardium reflect a more rapid and physiological activation of 
the left ventricle with excellent early results. Permanent pacing of the His bundle 
region to achieve ventricular resynchronizing has been described, with clear clinical 
advantages over biventricular pacing. Progressive narrowing in QRS duration was 
documented with HB pacing compared to conventional CRT with the best narrow-
ing was gained with His-optimized cardiac resynchronization therapy (HOT-CRT). 
This multi-disciplinary approach to optimize CRT response is promising for a better 
future of resynchronization therapy aiming toward the best possible quality of life 
for this important group of CHF subjects in the next decades.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 6

High-Power, Short-Duration 
Ablation in the Treatment of Atrial 
Fibrillation Patients
Nándor Szegedi and László Gellér

Abstract

Catheter ablation is the cornerstone of the rhythm control treatment of atrial 
fibrillation (AF). During this procedure, creating a contiguous and durable lesion 
set is essential to achieve good long-term results. Radiofrequency lesions are created 
in two phases: resistive and conductive heating. The ablation catheters and the gen-
erators have undergone impressive technical developments to enable homogenous 
and good-quality lesion creation. Despite recent years’ achievements, the durable 
isolation of the pulmonary veins remains a challenge. These days, intensive research 
aims to evaluate the role of high-power radiofrequency applications in the treat-
ment of patients with cardiac arrhythmias. The use of high-power, short-duration 
applications might result in a uniform, transmural lesion set. It is associated with 
shorter procedure time, shorter left atrial, and fluoroscopy time than low-power 
ablation. This technique was also associated with a better clinical outcome, possibly 
due to the better durability of lesions. Multiple clinical studies have proven the 
safety and efficacy of high-power, short-duration PVI.

Keywords: catheter ablation, high power, short duration, lesion formation, atrial 
fibrillation

1. Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. AF is 
associated with a higher risk of mortality, and it is one of the major causes of stroke, 
heart failure, sudden death, and cardiovascular morbidity worldwide [1, 2]. Thus, 
appropriate management of this arrhythmia and underlying diseases is essential.

Catheter ablation is the cornerstone of the rhythm control treatment of AF by 
isolating the pulmonary veins from the left atrium (pulmonary vein isolation; PVI). 
During this procedure, creating a contiguous and durable lesion set is essential to 
achieve good long-term results [3, 4]. When applying radiofrequency (RF) abla-
tions, the lesions are created in two phases: resistive and conductive heating of the 
myocardial tissue [5]. Both the ablation catheters and the generators have undergone 
impressive technical developments to reach homogenous and good-quality lesion 
creation. Despite recent years’ technological developments, the durable isolation of 
the pulmonary veins remains a challenge. Moreover, procedural complications also 
remained a significant issue [6–8].

Nowadays, the use of high-power (HP) radiofrequency applications is in the 
center of scientific research. High-power, short-duration (HPSD) ablation might 
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result in a more uniform, transmural lesion set [9]. Thus, it can reduce procedure 
time and seems to be non-inferior compared to low-power (LP) ablation. This 
technique was associated with a better clinical outcome, possibly due to the better 
durability of PVI [10]. Multiple clinical studies have proven the safety and efficacy 
of high-power, short-duration PVI for AF ablation.

In this chapter, we will introduce the theoretical background of HPSD ablation, 
and we also aim to discuss the main differences with low-power ablations, also 
mentioning some relevant clinical trials.

2. Theoretical background of radiofrequency lesion formation

Radiofrequency catheter ablation is the first-line treatment choice for most 
symptomatic arrhythmias. The tissue injury caused by this energy source is ther-
mally mediated, resulting in discrete and homogeneous lesions.

2.1 Radiofrequency energy delivery and tissue heating

The standard RF generator used for catheter ablation produces a sine wave alter-
nating current at 350–500 kHz. The RF energy delivery is usually unipolar between 
the ablation catheter’s tip electrode and a large surface indifferent electrode applied 
to the patient’s skin. During RF energy delivery, the alternating electrical current 
traverses from the ablation catheter’s tip electrode through the intervening tissue 
to the indifferent electrode. The passage of the electric current through the tis-
sue results in electromagnetic heating, termed resistive heating. Resistive heating 
is proportional to the square of the current density; current density is inversely 
proportional to the square of the distance from the ablation electrode. Therefore, 
power dissipation per unit volume decreases dramatically with the distance, and 
resistive heating decreases with the distance from the ablation electrode to the 
fourth power. Since the region of the highest current density is at the tissue below 
the ablation electrode, resistive heating of the tissue only occurs in a thin layer 
within a very close vicinity to the ablation electrode. Deeper tissue heating occurs as 
a result of passive heat conduction from this narrow resistive heating zone, termed 
conductive heating (Figure 1). Temperatures above 50°C are required for irrevers-
ible myocardial injury. Of note, a non-negligible part of the delivered energy will 
be lost as a consequence of convective heat loss to the blood pool surrounding the 
ablation electrode [5].

2.2 Factors influencing radiofrequency lesion creation

Lesion formation is dependent on optimal electrode-tissue contact force (CF), 
RF power, size of ablation catheter tip electrode, and the duration of RF delivery.

The role of the ablation catheter tip size will not be discussed in this chapter, 
as the vast majority of the electrophysiology laboratories only use 3.5–4-mm tip 
electrodes in everyday practice, and large-tip electrodes are utilized less commonly.

Lesion size is directly proportional to the electrode-tissue contact temperature. 
Therefore, those factors that increase the temperature at the electrode-tissue inter-
face (e.g., RF power and contact force) will also increase the lesion size.

It is known that the lesion size is proportional to RF power, as a higher RF power 
results in a larger current density at the ablation electrode leading to greater tissue 
heating. However, the deliverable power (and time) might be limited by an imped-
ance rise that occurs when the temperature at the electrode-tissue interface reaches 
100°C. This impedance rise can be prevented by maintaining the electrode-tissue 
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interface temperature below 100°C by cooling the tip of the ablation catheter. A 
landmark in vivo study was presented by Nakagawa et al. [11]. They evaluated the 
role of presence or absence of catheter tip irrigation in eleven anesthetized dogs’ 
tight muscles. They executed temperature measurements on the catheter-tissue 
surface and tissue temperatures in 3.5 mm and 7 mm depth. The main findings were 
that in the case of applications with irrigation of the catheter tip, electrode and 
electrode-tissue interface temperatures were consistently lower than the tissue tem-
perature at 3.5 mm depth. Moreover, lesion sizes were larger in the case of irrigated 
ablations, most likely because they could deliver higher-power applications in this 
group [11, 12].

Later, studies concluded that irrigation minimally affects lesion size by cooling 
the tissue surface (when the applied power is the same). Larger lesions may only 
be created with the use of irrigation by making the delivery of higher-power levels 
possible. This is especially important in case of low blood flow areas where high 
temperatures are reached at relatively low-power levels, resulting in insufficient 
lesion formation. In such areas, irrigation decreases temperature during ablation 
and therefore makes the delivery of a higher power possible [13].

When tissue contact is poor, a larger surface area of the ablation electrode is 
exposed to the circulating blood pool, which results in less-efficient tissue heating. 
Conversely, good tissue contact results in a larger area where catheter touches the 
tissue and less amount of current will be lost to the blood pool. In case of low CF, a 
higher power might be necessary to reach an optimal degree of tissue heating. On 
the other hand, similarly, good lesion formation can be produced even with smaller 
CF in case of high-power applications [5]. A few years ago, contact force-sensing 
ablation catheters were introduced and nowadays, their use is a part of everyday 
practice. They allow to reach better durability of lesions and thus facilitate the 
procedure in terms of achieving better safety and efficacy [3, 14–16].

Finally, an essential determinant of lesion size is the duration of RF applica-
tion. The rate of tissue heating at the electrode-tissue contact point is rapid, and 
steady-state temperatures are reached within a few seconds in the resistive heating 
zone. Conversely, deeper tissue sites have a much slower rate of temperature rise 
due to the time required for conductive heating. Thus, the lesion growth is rapid in 
the first few seconds but much slower thereafter. Studies have demonstrated that 
the half-time of lesion growth is approximately 7–10 s, and maximum lesion size is 
achieved after 30–40 s of RF energy delivery [5].

Figure 1. 
Phases of lesion formation during radiofrequency ablation. The first phase is the resistive heating occurring in 
a thin layer of the tissue contacting the ablation electrode. The second phase is the heat conduction from the 
resistively heated zone to the more distant tissue layers (conductive heating).
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3. Experimental studies on HPSD ablation

In case of conventional, low-power RF applications, most of the thermal injury 
is a result of heat conduction from the resistively heated thin surface layer. On the 
other hand, lesion size could be increased by producing direct resistive heating 
deeper in the tissue by applying higher RF power. The use of a high-power level is 
allowed by irrigation of the ablation electrode with saline. Saline irrigation main-
tains a low electrode-tissue interface temperature during radiofrequency applica-
tion at high power, which prevents a rapid temperature and impedance rise.

Nakagawa et al. found that by applying higher power with an irrigated catheter, 
a higher temperature can be measured at 3.5 mm tissue depth than at the electrode-
tissue interface, which indicates that direct resistive heating occurred deeper in the 
tissue (rather than by conduction of heat from the surface) [11]. Other early studies 
also found that high-power ablations are effective; however, there was a concern 
regarding the safety of the procedures based on the animal study results [17]. This 
seems justified since high-power ablations necessitate reliable real-time feedback 
on lesion formation to avoid serious complications. Lesion-predicting parameters 
were not available before the contact force era; therefore, research interest regard-
ing high-power RF ablation decreased transiently. However, after introducing 
CF-sensing catheters and lesion-predicting parameters, the topic became interest-
ing again. If high power is applied for a long duration, it leads to a big resistive heat-
ing zone to which a large conductive heating zone is added, resulting in the creation 
of extensive lesions. Therefore, high-power ablations should only be applied for a 
short time to avoid the injury of extracardiac structures.

Nowadays, intensive research is going on examining high-power, short-duration 
RF ablation technology. Bourier et al. [9] showed that HPSD ablation results in a 
different lesion geometry (e.g., larger diameters but smaller depth) compared to 
conventional lower-power ablation. Still, the depth of the high-power applications 
seems sufficient to reach transmural lesions in the atria (Figure 2). Moreover, the 
larger diameters might improve the chance of creating a contiguous lesion set [9].

Two other preclinical studies evaluated the efficacy and safety of very high-power, 
short-duration RF ablation (90-W power applied for 4 s) compared to low-power, 
long-duration ablation in swine models. Both studies showed that HPSD ablation 
results in improved lesion continuity, lesion transmurality, and shorter ablation time, 
while the safety profile is comparable to conventional low-power ablation [10, 18].

Figure 2. 
Properties of lesions created by high-power, short-duration and low-power, long-duration radiofrequency 
ablation. The high-power, short-duration ablation (panel A) results in a different lesion geometry (e.g., larger 
diameters but smaller depth) compared to conventional lower-power ablation (panel B). Still, the depth of the 
high-power application’s lesion seems sufficient to reach transmurality in the atria.
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4. Clinical trials evaluating HPSD PVI

4.1 Ablation index-guided PVI with HPSD applications

According to previous studies, ablation index (AI) is a valuable marker of lesion 
creation during PVI procedure, minimizing the risk of AF recurrence after ablation 
[14, 19]. AI is calculated by a weighted formula including CF, RF time, and power 
so that a higher-power application can reach target AI with a shorter duration and 
even with high energy, RF applications’ lesion creation can be monitored in real 
time properly. Of note, the AI is validated up to 45 W; thus, lesion creation can be 
reliably monitored with AI at a maximal power of 45 W. The decrease of RF time 
per application theoretically makes the maintenance of a stable catheter position at 
the given site easier, resulting in a better lesion quality. It is well known that HPSD 
ablation results in a different lesion geometry (e.g., larger diameters but smaller 
depth) compared to conventional lower-power ablation. Still, the depth of the HP 
applications is sufficient to reach transmural lesions in the atria. The power used for 
ablation can be varied based on the operating physician’s decision. As we will show 
in this subchapter, 45–50 W was used in the majority of trials.

The use of high-power (HP) RF applications can reduce procedural time and 
seemed to be non-inferior to low-power (LP) ablation in a multicenter study [20]. 
Vassallo et al. investigated patients who underwent AF ablation with HP (50 W on 
the anterior wall and 45 W elsewhere in the left atrium) or LP (30 W) RF ablation 
power settings. HPSD was safe and efficient compared with LP ablation and was 
associated with a reduced procedural time and total RF time. They also concluded 
that HPSD might reduce the chance of esophageal injury and it may also reduce 
the recurrence of atrial tachyarrythmias [21]. The PVI procedure time was also 
decreased significantly with HP (50 W) ablation compared to conventional LP 
(30 W) ablation settings in a study published by Bunch et al. [22].

We would like to highlight a prospective randomized trial conducted by 
Wielandts et al. [23]. They randomized 96 AF patients to HPSD (45 W) or LPLD 
(35 W), CLOSE protocol-guided PVI and found that fluoroscopy dose and RF time 
are lower in case of HPSD ablation. There was no difference in terms of six-month 
AF-free survival between the two groups. On the other hand, postprocedural 
endoscopic evaluation of esophageal lesions drew attention to a narrower safety 
margin at the posterior wall using high power, especially when applying higher CF 
and reaching higher AI values [23].

Finally, we would like to mention a recent meta-analysis of 15 studies evaluating 
PVI with HPSD versus LP ablation technique. Overall, data of 3718 patients were 
included in the analysis. The main result is that freedom from atrial arrhythmias 
was higher in case of HPSD RF ablation when compared with conventional LP 
RF ablation. Acute PV reconnection was lower and first-pass isolation was higher 
with HPSD. There was no statistically significant difference in total complications 
between the two groups. Total procedure duration, fluoroscopy duration, and RF 
ablation time were all significantly lower in HPSD ablation [24].

4.2 HPSD safety endpoints: esophageal lesions

Esophageal lesions are not rare after RF point-by-point PVI, even with the 
use of CF sensing catheters [25, 26]. A rare but potentially lethal complication of 
pulmonary vein isolation is atrio-esophageal fistula [6]. Thus, besides improving 
efficacy, reducing the possibility of causing esophageal lesions should be the main 
goal of technological developments. High-power RF applications have a larger resis-
tive heating zone, but conductive heating does not significantly affect the lesion 
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creation if the application is kept short. On the other hand, one has to keep in mind 
that applying high power for a longer duration can cause extensive tissue injury 
damaging peri-cardiac structures such as the lung or the esophagus.

A study involving 85 patients who underwent PVI with 35-W power using 
CF-sensing catheters and AI guidance showed that the occurrence of esophageal 
injury after PVI is markedly low (1.2%), even in those cases where an intraesopha-
geal temperature rise was detected during the procedure. They concluded that 
their strategy of delivering contiguous, relatively high-power, and short-duration 
radiofrequency applications is safe even at the posterior wall [27]. Two other larger 
trials involving 355 and 271 patients who underwent AI-guided PVI with 45–50-W 
power also concluded that HPSD technique is relatively safe. Esophageal lesions 
had a similar incidence in HPSD group as in the low-power group, and there was 
a low incidence of esophageal temperature elevation in the HPSD group [28]. 
They concluded that HPSD might even have a protective effect avoiding incidental 
esophageal injury due to the smaller lesion depth [29]. Of note, this is only true 
if high-power applications are kept very short on the posterior wall, but longer-
duration ablations might lead to severe complications.

5. Very high-power, short-duration ablation of AF

The impressive safety and efficacy profile of high-power, short-duration 
PVI procedures performed with 45–50 W formed a claim to even higher-power 
ablations with the potential promise of making procedures even shorter while 
maintaining safety and efficacy. For sure, ablations with very high power should be 
carried out with caution to avoid the use of high CF values. Appropriate irrigation 
is also essential to use this technology, which is solved at the recent version of the 
CoolFlow (Biosense Webster) pump used for 90-W ablations with the QDOT Micro 
(Biosense Webster) catheter. Because of the very short time of the applications, 
lesion-predicting parameters such as AI do not work for this type of ablation. Visual 
tags of the ablated area are located at the spot where the application was started 
(Figure 3).

Long-term results of such clinical trials are likely to be published in the near 
future. Here, we would like to mention two studies dealing with very high-power, 
short-duration PVI.

Figure 3. 
Electroanatomical map of a successful pulmonary vein isolation performed with very high-power, short-
duration ablation technique. All ablation tags represent single applications with 90-W power for 4 s.
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Kottmaier et al. [30] compared PVI procedures performed with 70 W versus 
30–40 W. Very high-power applications were terminated at 5 and 7 s on the pos-
terior and anterior walls, respectively. HPSD ablation demonstrated a comparable 
safety profile to conventional ablation. Moreover, HPSD ablation led to significantly 
fewer arrhythmia recurrences after the one-year, follow-up period. Of course, 
RF time and procedural time were also significantly shortened by the use of 
HPSD [30].

A prospective, multicenter, single-arm study was published by Reddy et al. [31], 
aiming to evaluate the safety and efficacy of very HPSD pulmonary vein isolation 
with 90 W. All applications were terminated after 4 s. They demonstrated the clini-
cal feasibility and safety of very high-power, short-duration ablation, with very low 
procedure and fluoroscopy times [31].

6. Conclusions

Pulmonary vein isolation is the cornerstone of rhythm-control therapy for 
atrial fibrillation. A few years ago, new technologies such as contact force-sensing 
ablation catheters were introduced and became a part of everyday practice. The 
routine use of CF-sensing ablation catheters improved the arrhythmia-free survival 
after PVI. However, the recurrence rate of atrial tachyarrhythmias remained a 
substantial issue. The durability of PVI depends on the accurate lesion creation 
and contiguity of lesions. The use of high-power, short-duration radiofrequency 
applications might enable the operators to create a more uniform, more contiguous 
lesion set; therefore, a more durable PVI can be achieved. This high rate of durable 
PV isolation is expected to be associated with improved clinical outcomes for atrial 
fibrillation ablation. Clinical studies uniformly showed that PVI with high-power, 
short-duration technique is safe and effective and is associated with shorter proce-
dure and ablation times when compared with conventional low-power RF ablation. 
The long-term efficacy of very HPSD ablation is not available at the moment and 
needs to be confirmed by further trials.
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Chapter 7

Epicardial Radiofrequency 
Ablation: Who, When, and How?
Chin-Yu Lin

Abstract

In the past decades, it has been known that reentry circuits for ventricular 
 tachycardia or focal triggers of premature ventricular complexes are not limited to 
the subendocardial myocardium. Rather, intramural or subepicardial substrates 
may also give rise to ventricular tachycardia, particularly in those with non-ischemic 
cardiomyopathy. Besides, some of the idiopathic ventricular tachycardia might be 
originated from epicardial foci. Percutaneous epicardial mapping and ablation have 
been successfully introduced to treat this sub-epicardiac ventricular tachycardia. 
Herein, this chapter reviews the indications for epicardial ablation and the identi-
fication of epicardial ventricular tachycardia by disease entity, electrocardiography 
and imaging modalities. This chapter also described the optimal technique for 
epicardial access and the potential complication.

Keywords: epicardial, ventricular tachycardia, ablation, non-ischemic cardiomyopathy, 
idiopathic

1. Introduction

The pericardium is a two-layer membrane surrounding the heart and vital 
vessels. The two-layer structure included a serous visceral membrane inside and 
a fibrous membrane (parietal pericardium) outside. The fibrous membrane is 
adhered to the diaphragm, posterior part of sternum by the tissue and ligament 
to fix the heart. The pericardium encloses the heart and pericardial fluid, which 
provides lubrication for the myocardium [1]. Pericardial puncture is a standard 
and useful therapeutic procedure for the treatment of diagnosis of tamponade or 
symptomatic pericardial effusion [1]. In 1996, Sosa et al. first described the use of 
pericardial puncture in an electrophysiological laboratory for epicardial ablation 
in ventricular arrhythmia, [2] the use of pericardial puncture to map and ablate 
ventricular arrhythmia started to expand in other diseases [3].

Before to the era of catheter ablation with epicardial approach, patients with 
ventricular tachycardia (VT) refractory to catheter ablation from the endocardium 
often required surgical approach. The technique became well-developed and skilled 
in high-volume center recently. Many centers reported the successful application of 
the epicedial ablation in a diverse range of cardiac arrhythmia. Therefore, the indi-
cation for the epicardial approach has extended. The potential indication included 
substrate/ idiopathic VTs, accessory pathways, and miscellaneous supraventricular 
tachycardias [4]. Since Sosa et al. first introduced the application of epicardial 
ablation for the ventricular arrhythmias (VAs) in Chagas disease, [2] the use of this 
technique through a percutaneous method has been applied to other diseases [3].
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In the patients with ischemic cardiomyopathy due to prior myocardial infarc-
tion (MI) and VT, the involved circuit mostly involved the inner part of the heart 
[5]. In the previous report, part of the ischemic VT circuit may involve areas 
within the subepicardial area [6]. The advantage of the epicardial approach was 
demonstrated by clinical study. An approach with combined endo-epicardial 
mapping/ablation has been reported to show a better outcome selected 
patients with non-ischemic cardiomyopathy (NICM) VT ischemic VT [7–10]. 
Furthermore, the percutaneous technique for epicardial access have been proven 
to improve outcomes with an acceptable risk of peri-operative adverse event in 
experienced operator or high-volume centers [11]. However, there were many 
surrounding epicardial vascular structures or nerves in the tract of epicardial 
puncture. The unskilled operators may encounter serious and detrimental com-
plications. Prior studies have reported the incidence rate of major complications 
around 4.1-8.8%, including adverse event of a hemopericardium, intra-abdominal 
bleeding, and arterial/venous/nerve injuries [11–14]. This chapter was aimed to 
discuss the clinical implication, patient selection, and detailed procedure for the 
epicardial ablation in the patients with VA.

2. Who should be considered to perform the epicardial approach?

2.1 Contraindication for endocardial approach

Generally, the endocardial approach was contraindicated in the following 
condition

1. Endocardial mural thrombus was presented.

2. Coexisted mechanical valves were presented in the mitral and aortic valve

In the patient with the presence of newly-identified mural thrombus, the 
strategy of endocardial ablation should be postponed. Previous report described 
the results of endocardial VT ablation in 8 patients with identified old thrombus 
[15]. Intracardiac echocardiography (ICE) seems to be more sensitive for the 
detection of LV thrombi compared to transthoracic echocardiography (TTE) 
and is helpful in real-time navigation of the mapping / ablation catheter. No 
procedural or periprocedural complications were observed in this retrospective 
study [15].

Mechanical prosthetic aortic and mitral valves preclude either a retrograde 
aortic or transseptal approach to the left ventricle (LV) endocardium. Several 
operators have reported previously on the use of unconventional techniques during 
VT ablation such as transventricular septal puncture, [16, 17] epicardial approach, 
[18] transmechanical valve approach, [19] transcoronary venous approach, [20] or 
transapical approach [21].

2.2 Contraindication for percutaneous epicardial approach

Intrapericardial access is usually obtained through a subxiphoidal pericardial 
puncture. This approach might not be possible in patients with pericardial adhe-
sions caused by prior cardiac surgery, pericarditis, or prior epicardial ablation. 
(Figures 1 and 2) In such cases, a hybrid procedure involving surgical access to 
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a subxiphoid pericardial window or lateral thoracotomy might be a feasible and 
safe method of performing epicardial catheter ablation in the electrophysiology 
 laboratory [4].

Figure 1. 
Epicardial puncture in a patient with prior epicardial ablation. The figure showed the anterior–posterior 
view during epicardial puncture. The fluoroscopic view demonstrated the contrast stasis in the bottom of the 
epicardium due to prior ablation and severe adhesion. The wire could not advance further in the localized 
epicardial space.

Figure 2. 
Epicardial puncture in a patient with prior coronary artery bypass grafting. The figure showed the anterior–
posterior view during after an initial puncture. The fluoroscopic view demonstrated the contrast stasis in the 
bottom of the epicardium due to prior cardiac surgery severe adhesion. The wire could not advance further 
in the localized epicardial space (panel A). After several attempts, the ablation catheter was advanced to the 
limited epicardial space. Coronary angiography was done before the ablation to avoid coronary injury through 
the graft (panel B).
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2.3 Endocardial approaches were more favorable than epicardial approach

2.3.1 Myocardial infarction related VT

The previous study showed a good response with subendocardial resection to 
treat the subendocardial location of the VT substrate from surgical experience, 
which indicated the endocardial VT circuits [22]. Furthermore, the endocardial 
catheter ablation with mappable VT demonstrated good acute procedural suc-
cess rate. However, the long-term outcome was unsatisfied [23]. A prior study 
examined all ischemic cardiomyopathy (ICM) VT cases with endocardial and/or 
epicardial mapping/ablation. Epicardial approach was applied in 14% of patients, 
and application of ablation in the epicardium was done in 8.5% patients. Part of 
the patient (0.5%) did not undergo epicardial ablation because of proximity to 
an epicardial coronary artery to the of identifying epicardial substrate [24]. In 
an Asian study from Taiwan, the epicardial approach for the ICM-related VT was 
rarely reported [14]. This may be related to the highest quality and convenience of 
Taiwan’s public health system. A recent non-randomized study provided evidence 
of epicardial-endocardial approach in these patients [25]. Generally, the region of 
myocardial infarction does not appear to be predictive of epicardial involvement. 
On the other hand, imaging, such as cardiac magnetic resonance imaging (MRI), 
cardiac computed tomography, or nuclear scintigraphy suggesting transmural 
infarction may identify patients more likely to have epicardial substrate [26].

2.3.2 Idiopathic ventricular arrhythmia

The recent review article summarized most common idiopathic VT arising 
from the right and left ventricle: (1) outflow tract VT, (2) fascicular VT, (3) intra-
cavitary VT, (4) perivalvular VT, and (5) epicardial VT [27]. Around 1. 8–9. 2% 
of idiopathic VT were raised from the epicardium. In the prior study, the electro-
cardiography is a useful parameter for predicting the successful ablation sites of 
VT originating from the continuum between the aortic sinus of Valsalva (ASV) 
and the left ventricle (LV) summit [28]. In the results, aVL/aVR Q-wave ratio is 
useful in the prediction of successful ablation sites. A coronary venous approach / 
pericardial access might be required with a cutoff value of 1.536-1.740 and > 1.740 
respectively.

2.4 Epicardial approaches were more favorable than endocardial approach

2.4.1 Brugada syndrome catheter ablation

Brugada syndrome (BrS) is one of the main causes of sudden cardiac arrest in 
young population [29]. The efficacy and adverse effects of anti-arrhythmic drugs on 
BrS was disappointing. Catheter ablation emerged and offers an alternative thera-
peutic strategy for these patients with repeat recurrent implantable cardioverter 
defibrillator (ICD) shock after the ICD implantation. Nademanee et al. first dem-
onstrated the effectiveness and safety of ablating the arrhythmogenic electrogram 
at the epicardium of right ventricular outflow tract (RVOT) to decrease the VT/
VF burden [30]. Further study on the post-mortem heart demonstrated interstitial 
fibrosis and reduced gap junction expression in the epicardium of RVOT in BrS 
patients. The abnormal fibrosis resulted in arrhythmogenic potentials. Eliminating 
the arrhythmogenic potentials by using ablation could abolish the BrS ECG pat-
tern and reduce VT/VF burden. In the clinical practice, the operator may perform 
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epicardial mapping and identified the slow conduction zone and abnormal elec-
trogram in the RV epicardially. (Figure 3) The electrophysiological group in Taipei 
Veterans General Hospital first introduced the warm water instillation, which would 
enhance the phenotype and functional substrate in the patient with BrS. Ablation 
by targeting the triggers and abnormal epicardial substrates provided an effective 
strategy for preventing ventricular tachyarrhythmia recurrences in BrS [31].

2.4.2 Arrhythmogenic right ventricular cardiomyopathy

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable desmo-
some disorder. The clinical manifestations vary from asymptomatic concealed stage, 
electrical abnormality with ventricular arrhythmias (VAs), to progressive heart 
failure [32, 33]. Catheter ablation is emerging as an alternative therapy for drug-
refractory VAs in patients with ARVC. Although the catheter ablation could result 
in acute procedural success with VT termination, the high incidence of recurrence 
limited the role of ablation in ARVC initially [34, 35]. The application of epicardial 
and endocardial ablation of VT in the patients with ARVC had been proposed with 
good effects acute and long-term outcome and VAs-freedom [36, 37]. Recent studies 
also demonstrated that 45 ~ 84. 6% patients were free from VA recurrences or ICD 
therapy through the combination of endocardial and epicardial ablation [38, 39]. 
Epicardial approach is required in more than one third ARVC patients for achieving 
non-inducibility in the prior reports [40]. The number of fulfilled SAECG criteria 
was correlated to the extent of diseased epicardial substrate and could be a potential 
surrogate marker to predict the requirement of epicardial ablation in ARVC with 
drug-refractory VA [40].

Figure 3. 
Local fractioned potential in the epicardial right ventricular outflow tract of a patient with Brugada 
syndrome. The left panel demonstrated local abnormal signal and delayed electrogram, which was localized in 
the epicardial right ventricular outflow tract. (red arrow, right panel) this patient was diagnosed as Brugada 
syndrome and survived from an episode of sudden cardiac death due to ventricular fibrillation.
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2.4.3 Non-ischemic cardiomyopathy

In contrast to ischemic cardiomyopathy, non-ischemic cardiomyopathy (NICM) 
consists of a heterogeneous group of diseases [41] affecting the myocardium. 
Despite the progress and improvement in the pharmacological medication of heart 
failure in recent decades have significantly decreased the disease progression and 
mortality in NICM patients, anti-arrhythmic medications and ICD implantations 
remain the most important treatment for patients carrying a high risk of VT/VF or 
who have experienced aborted SCD due to fatal VT/VF [42]. Owing to the improve-
ment in electro-anatomic mapping and ablation catheter, catheter ablation of VT in 
NICM patients has been recognized as an upcoming issue [43]. A prior study proven 
the promising results that a successful catheter ablation could reduce VT recur-
rences and improve the survival in NICM patients regardless of the functional class 
status or left ventricular function [44]. NICM VTs in different disease entities could 
result from non-uniform arrhythmogenic substrates, which can lead to different 
ablation outcomes.

With the exception of ARVC and BrS, the arrhythmogenic substrates in NICM 
that could be identified by electroanatomic mapping, are mostly located in the 
base or perivalvular region of the LV, which is distinct from the substrate ICM 
[45]. The arrhythmogenic potentials could be identified from the endocardial/epi-
cardial aspect in the patients with NICM [46]. These arrhythmogenic substrates 
frequently associate fibrosis tissue that leads to conduction disturbance and frac-
tionated electrograms [47]. Aside from the electroanatomic substrate mapping 
with bipolar/unipolar voltage, cardiac MR can provide additional information 
to unmask the scar distribution as a non-invasive manner [48–50]. Additionally, 
patients with scar involving the inferolateral aspect of the LV, which frequently 
requires an epicardial approach, usually have a better prognosis than those with 
anteroseptal scar [51].

A comprehensive investigation of patients with NICM and VT includes cardiac 
imaging and genetic testing. These information might enable recognition of undiag-
nosed diseases, such as isolated and active cardiac sarcoidosis or inherited cardio-
myopathies. An accurate diagnosis could improve patient selection for ablation and 
early consideration of individualized treatments [52].

3. When should be considered to perform the epicardial approach?

An epicardial approach could performed for patients with refractory ablation 
from an endocardial approach. The clinical documentation of surface ECG could 
provide specific electrocardiographies evidence supporting an epicardial origin 
[28, 53, 54]. In cases with a disease entity favoring an epicardial substrate, or those 
with electroanatomic mapping supporting the existence of a diseased epicardial 
substrate, an epicardial approach could be considered [30, 55, 56].

Before preparing for epicardial approach, the first step is to localize the VT origin 
and identify the potential regions of arrhythmogenic substrates. The surface ECG 
morphologies provide the information about the origin and the potential need for 
an epicardial approach [53]. Standardized echocardiography or intracardiac could 
delineate the valvular structure, area of hypokinesia or akinesia, and excluding any 
intracardiac thrombus [57]. Computed tomography (CT) and cardiac MRI with a 
late gadolinium enhancement, could localize the regions of abnormal tissue in spe-
cific protocol [48–50]. The distribution and extent of the scar is useful for deciding 
the ablation strategy, such as an epicardial approach, transcoronary venous ablation, 
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alcohol ablation, or simultaneous bipolar ablation. The integration of the recon-
structed images obtained from CT and MRI and 3-D navigation, mapping systems 
(Figure 4) can aid in the illustration of the structural complexity and avoidance of 
damage to the critical regions, in terms of vascular or nervous structures.

4. How to perform the epicardial approach?

4.1 Traditional method (posterior approach)

After obtaining informed consent, the procedure would be performed with 
the patients in a fasting state under general anesthesia. Pre-procedure subxiphoid 
echocardiography was recommended to perform routinely. In some cases, the echo-
cardiography could help the operator avoid liver or gastric injuries. A subxiphoid 
puncture was performed to penetrate the pericardium in the inferior aspect of 
the hear according to the technique described by Sosa et al [2]. Access to the peri-
cardium was achieved by using an 18 G Tuohy Needle (Arrow International, Inc., 
Reading, PA, USA) in the laboratory of Taipei Veterans General Hospital through 
the subxiphoid process. The anteroposterior projection was usually used to direct 
the access in the anterior/posterior plane, while the left anterior oblique (LAO) 60° 
projection was used to guide the needle leftward tangentially to the cardiac border. 
Figure 5 demonstrated the adjacent structure with these two views by reconstruc-
tion of the CT. After passing through the diaphragm, 1-2 cm3 of contrast could be 
injected between the diaphragm and pericardium to observe tenting of the pericar-
dium. After entering the posterior side of pericardium, a 0.032 guidewire would 
be advanced to the left heart border in the LAO projection, and 10 cm3 of contrast 
could be injected into the pericardial space through a 5F dilator or the side hole of 
a 5Fr sheath to allow for visualization of any adhesions. (Figure 6) An 8-Fr Sheath 
or flexible long Sheath would be exchanged by using the guide wire. The ablation/
mapping catheter would be inserted through the sheath after obtain the access to 
avoid injury by the edge of the sheath. Angiography would be performed while 
locating the catheter in the interested area to avoid coronary injury. (Figure 7) After 
the procedure, the epicardial sheath was exchanged for a pigtail. Pericardial injec-
tions of hydrocortisone 100 mg and ketorolac tromethamine 30 mg were routinely 
given immediately and 24 hours after the epicardial procedure to prevent any future 
epicardial adhesions or pericarditis.

Figure 4. 
Cardiac magnetic resonance imaging (CMRI) and three-dimensional reconstruction in a patient with non-
ischemic myocardial infarction. The CMRI demonstrated a late gadolinium enhancement (LGE) in the mid 
posterior wall. The three-dimensional reconstruction was performed to guide the catheter ablation.
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4.2 Needle-in-needle method

A ‘needle-in-needle’ technique for epicardial access has been described by 
Kumar et al [58]. In this approach, a 7-cm 18-gauge needle is inserted beneath the 
sternum. The purpose of this short needle is to provide stability and tactile feedback 
for a long (15- or 20-cm) micropuncture 21-gauge needle, which is inserted through 
the 18-gauge needle. Once the 21-gauge needle is inserted into the pericardial space, 
along 0.018-inch guidewire with a floppy tip is advanced into the pericardial space. 
Upon fluoroscopic confirmation that the guide wire has been inserted into the 
pericardium both needles are then removed. Micropuncture dilators are then used 
to upsize the guide wire to a 0.35-inch wire and ultimately, an 8-Fr sheath is intro-
duced into the pericardial space. The ‘needle-in-needle’ approach was compared to 
the traditional methods. Successful epicardial access was achieved in 100% of the 
‘needle-in-needle’ cases, as compared to 94% with the Sosa technique. Failure of 
epicardial access in the traditional method were due to prior cardiac surgery [13] or 

Figure 6. 
Epicardial puncture in a patient with arrhythmogenic right ventricular cardiomyopathy. The anterior–
posterior view (left panel) and LAO view (right panel) showed the wire in the epicardial space surrounding 
the whole heart and the contrast in the epicardial space without adhesion.

Figure 5. 
The anatomy with anterior–posterior view (left panel) and LAO view (right panel). The green arrow 
indicated the anterior approach and the red arrow indicated the posterior approach.
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adhesions from prior epicardial mapping/ablation or episodes of pericarditis [7]. 
Major pericardial bleeding was similar between both techniques [58].

4.3 Anterior approach vs. posterior approach

In anatomic, there is a potential space below the sternum and xyphoid process. 
While puncturing below the xyphoid process, the needle might directly pass 
through the fibrous pericardium avoiding the puncture through the diaphragm 
[59]. The term of “anterior approach” was used for the epicardial approach via this 
potential space (Figure 8). This approach was based on the previous finding that 
an increased fluid in the anterior part of the heart during supine position [60, 61]. 
Theoretically, the density of myocardium is heavier than and pericardial fluid. 
During supine position, the heart might force the pericardial fluid to the anterior 
part within the pericardium. Keramati et al. reported the anterior approach was 
successfully performed in 100% of patients in their study cohort [62]. The success 
rate was similar between the anterior approach and the needle in needle approach. 
On the other hand, the success rate of the anterior approach was higher than the 
traditional approach. In the report, there were no major pericardial hemorrhage 
and even the PV puncture. Figure 9 demonstrated the illustration of the anterior 
approach and posterior approach.

4.4 Fluoroscopic approach with carbon dioxide insufflation

The technique of carbon dioxide insufflation was first reported with right atrial 
exit in human study by Greenbaum et al [63]. A modified approach with exit from 
the coronary sinus was reported by Silberbauer et al [64]. The pericardial space was 
insufflated with carbon dioxide after creating the exit, which allowing visualiza-
tion of the pericardial membrane and separated membrane to the myocardium. 
The epicardial space with carbon dioxide allowed safe epicardial puncture and 
minimized the risk of RV perforation. A multi-center registry was conducted with 

Figure 7. 
Angiography before epicardial ablation. After a successful epicardial puncture through posterior approach, the 
angiography was performed before the ablation to avoid coronary injury.
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this modified approach. There was no patient complicated with the RV puncture of 
coronary artery injury [65]. However, the operator needs to take care of the poten-
tial risk of bleeding from the exit site.

4.5 Wire-guided puncture

This approach was first described by Long et al [64] in 2019. This approach was 
different from traditional approach using the contrast-filled syringe to the needle. 

Figure 8. 
An illustration of anterior and posterior approach. The figure showed the X-ray from the lateral view. 
The green arrow indicated the anterior approach and the red arrow indicated the posterior approach. The 
horizontal cut of the hears from lower caudal part of the cranial part. The white arrow indicates the sequence 
from the lower part of the higher part. Each cut was corresponding to the horizontal while line in the X-ray.

Figure 9. 
Example of anterior approach. Anterior approach was performed successfully. The guide wire was exchanged 
with an 8 Fr sheath after confirming the location.
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In the wire-guided approach, a J-tipped guide wire is within the needle during 
puncture. After advancing the needle the adjacent area of the pericardium, the wire 
was advanced. The wire would curve back if it reached the parietal pericardium, 
and the operator could feel the heart pulsations. The wire was dragged back to the 
needle’s tip at this point. The wire and needle were both pressed again at the same 
time. While the needle was traveling through the epicardium, the wire would fall 
into the pericardial region. The study found that this method was safe and that the 
success rate was comparable to that of the traditional method.

4.6 Surgical access

Pericardial window provides clear visualization of the epicardial myocardium 
and manipulation of the mapping catheter and Realtime feedback for the location 
of the mapping catheter cooperating with the 3-D anatomic mapping system. The 
operator might not able to perform percutaneous subxiphoid access in patients with 
pericardial adhesions. In these patients, a surgical window may be required to gain 
access to the pericardium. This technique involves a subxiphoid incision, followed 
by manual lysis of adhesions to visualize the epicardial surface. A sheath was then 
placed into the pericardial space after opening a small window in the pericardium 
[66]. This technique should be considered in patients with a prior history of cardiac 
surgery with dense pericardial adhesions [67].

5. Periprocedural complications of an epicardial approach

In the prior report, the incidence of major complications was 10.0%, and that 
for minor complications was 17.5% [14]. Prior single and multicenter studies also 
reported similar findings [11, 12]. However, it is important to keep in mind that 
these complication rates were obtained from arrhythmia centers with an experi-
ence of epicardial approach. The surgical backup was required for potential major 
complications. Major complications of intra-abdominal bleeding due to vessel 
damage and MI owing to ablation in the adjacent area were reported [68]. Another 
possible cause of intra-abdominal bleeding is the liver puncture or perforation. The 
operator should also take care for the location of the coronary sinus. Coronary sinus 
puncture might occur if the puncture site is close to the base of the heart. Thus, 
detailed preoperative evaluations by ECG, echocardiography, and peri-operative 
image, especially for patients with hepatomegaly or a congested liver, may prevent 
the occurrence of any life-threatening complications.

RV puncture was not uncommon and it has been reported to be a minor com-
plication with an incidence of 4. 5 ~ 7. 5% [13, 14, 68]. The RV puncture could 
be reduced after a learning curve. Post-procedural pericarditis was common. 
Prolonged and intolerable chest pain due to pericarditis might be improved by the 
administration of intrapericardial steroids and non-steroidal anti-inflammatory 
drugs. Phrenic nerve injuries and coronary artery damage could be avoided by 
phrenic nerve pacing and pre-ablation angiography [69, 70].

5.1 Patients with anticoagulant

In the patient with anticoagulant, the epicardial access could be performed 
according to the guideline. After excluding the potential risk of adhesion, history 
of epicardial surgery, and complex anatomy, the procedure might be classified as 
a minor risk procedure in an experienced operator [71]. Therefore, the procedure 
could be performed at NOAC through level (12 or 24 hours after the first intake) 
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and resume after the procedure or latest next day without active bleeding. Beside, 
the procedure should be better performed by experienced operator and avoid 
repeated RV puncture. Antidote or blood transfusion should be available in the 
hospital.

6. Conclusion

The need for an epicardial approach for VA ablation displayed a gradually 
increasing trend. The disease entity, prior surgery or ablation, electrocardiography, 
image study, and other diagnostic test should be carefully reviewed before the deci-
sion making. The prior studies demonstrate the effectiveness of epicardial catheter 
ablation with acceptable safety in experienced referral center.
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