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Preface

This book presents the most recent environmental studies on remote sensing 
applications. Different sensors that start in both active and passive sensors are used 
in remote sensing applications. While passive remote sensing simply measures the 
electromagnetic radiation reflected from the target, active remote sensing transmits 
and measures electromagnetic radiation that is both emitted and reflected. Wide 
sensor coverage starts with satellite platforms and extends to unmanned aircraft 
vehicles (UAVs). What distinguishes a drone from a UAV? An unmanned aircraft or 
vessel that is piloted remotely or automatically is referred to as a drone. A UAV is a 
flying object without a pilot.

Remote sensing is a tool used for gathering target information without any 
physical/direct contact with the Earth’s surface. It is a widely used science for the 
identification and mapping of the various objects/materials present on the Earth’s 
crust. The electromagnetic wavelength ranges from 0.38 µm to 100 cm, which is 
visible to the microwave region and is utilized for capturing the information from 
the Earth’s surface along with different sensors to capture the electromagnetic 
spectrum’s energy. This technique is useful for monitoring, protecting, and  
managing diverse natural resources and land cover.

This book covers a variety of applications, including crop monitoring, ice automatic 
mapping, carbon offset forests, and image processing.

Chapter 1 is an introductory chapter that presents the novel Marghany-Based Genetic 
Algorithm (MBGA) for automatically detecting ice covers in Synthetic Aperture 
Radar (SAR) data. The MBGA is designed as discrete steps in a modified genetic 
algorithm (GA).

Chapter 2 highlights recent advances in SAR systems and their applications in crop 
growth monitoring. It provides an overview of recent advancements in SAR systems, 
a summary of SAR information sources, the applications in crop monitoring including 
crop classification, crop parameter estimation, and change detection, and perspectives 
for future application development.

Chapter 3 demonstrates a series of optical satellite data, specifically LANDSAT 8, 
in tracking the carbon offset identification in Malaysian forests. It demonstrates an 
excellent method for tracking and monitoring deforestation in Malaysia.

Chapter 4 provides an overview of the principles and applications of optical remote 
sensing in planetary science. It briefly introduces the planetary space environment 
before discussing the principles of optical remote sensing and planetary optical 
radiations. The chapter ends with a discussion of current and future optical remote 
sensing plans in China.

Chapter 5 scrutinizes a significant image enhancement tutorial. It considers both 
histogram modification and transform domain methods as well as hybrid  methods. 



IV

Furthermore, it proposes a new hybrid algorithm for remote sensing image 
enhancement. Quality metrics such as Contrast Gain, Enhancement Measurement, 
Discrete Entropy, and Average Mean Brightness Error are also shown for objective 
comparison.

Chapter 6 serves as an excellent tool for identifying geological features. It shows 
how to distinguish between various minerals and lithologies using ASTER satellite 
data’s short-wave infrared (SWIR) and thermal infrared (TIR) spectral bands. It also 
goes into detail about the value of integrated datasets from SWIR- and TIR-derived 
results and how to use them to demarcate different litho-units.

Chapter 7 presents transproc, a reconfigurable generic processor that can execute 
operations related to linear transformations like Fast Fourier Transform (FFT) 
and Forward Discrete Cosine Transform. (FDCT), or Forward Discrete Wavelet 
Transform  (FDWT). A graph-theoretic lemma is used to find the applicability of 
such a processor to calculate the flow graph-related parallel operations found in 
these linear transformations. The architecture level design and processing element 
level design are also demonstrated in this chapter.

Chapter 8 introduces a technique based on a UAV. In this chapter, the multispectral 
images acquired by the UAV are exploited to establish a method to identify which 
banana regions were infected or uninfected with Fusarium wilt disease. The results 
suggest that UAV-based multispectral imagery with a red-edge band is effective to 
identify banana Fusarium wilt disease and that the CIRE had the best performance.

Finally, Chapter 9 considers various aspects of the optical and radiolocation sensing 
and imaging of the Earth’s surface from space. These sensors (the payload), being 
placed on the satellite bus (platform), cannot be used for the satellite mission 
without its other subsystems. The mission itself, as well as the payload’s successful 
operation and image-providing capability, essentially depends on Satellite Control 
System SCS and its performance.

I wish to convey my appreciation to the staff at IntechOpen, especially Editorial 
Project Manager Ms. Karmen Đaleta. Without their commitment and support, this 
book would not have been possible.

Dr. Maged Marghany
Professor,
Director,

Global Geoinformation, Sdn. Bhd.,
Kuala Lumpur, Malaysia
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Chapter 1

Introductory Chapter: Automatic
Detection of Ice Covers in
Airborne Radar Data Using
Genetic Algorithm
Maged Marghany

1. Introduction

In the polar regions, where extreme weather poses significant challenges to field
study, remote sensing from space is one of the most promising technologies being
used to observe the environment. The climate, oceans, and terrestrial maritime
ecology are all significantly impacted by sea ice, which is one of the most significant
markers of changing climate in polar regions. As a consequence, several efforts have
been made to keep track of the arctic sea ice.

The dual-core techniques, therefore, for tracking sea ice in the polar areas are
the spaceborne radiometer (passive sensor) and scatterometer (active sensor). Ice
cover volume, composition, and mobility were each determined using monitoring
for the mission. The spaceborne microwave radiometer in particular provides the
broadest time series of sea ice cover in the polar regions since 1979, demonstrating a
reduction in the average sea ice cover of 0.53 � 106 km2 per decade. In this sense,
spaceborne synthetic aperture radar (SAR) is a superior option for tracking ice
cover from a more comprehensive standpoint because of the major advantages of
the high spatial and temporal resolution, polarimetric sensitivity, and configurable
imagery modes. While spaceborne SAR can deliver sea ice cover measurements
with good resolution at the dimension of 1 km and up to dozens of meters, the
radiometer and scatterometer can deliver sea ice accumulation measurements over
vast areas with a high resolution of 6.25 km to 12.5 km. In this understanding,
Seasat, ERS-1/2, ENVISAT/ASAR, RADARSAT-1/2, TerraSAR-X/TanDEMX, and
Sentinel-1 are some of the instances of spaceborne SARs that have proven to be
efficient at tracking sea ice details, ice cover and amount, ice classification (such as
ice floes, leads, and polynyas), ice movements and meander, icebergs, and ice-wave
interactions. Despite techniques for charting sea ice cover and differentiating
between ice cover and deep ocean from spaceborne SAR data having already his-
torically been discussed, conventional both Antarctic and Arctic sea ice surveillance
has not exploited these kinds of datasets [1–3].

Instinctually, the radar backscatter strength can indeed be used as the basis for
the ice-water identification by spaceborne SAR data, because as backscatter of sea
ice is usually higher than that of the deeper ocean. This is certainly relevant in the
cross-polarization band, which is delicate to quantity scattering whereas the sea
surface roughness commonly exhibits surface scattering. On the contrary, once
incidence angles fluctuate, the radar backscatter of copolarization (vertical-vertical,
VV, or horizontal-horizontal, HH) also varies significantly.
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SAR cross-polarization signals, therefore, are demonstrated to be significantly
extremely efficacious for identifying glaciers than copolarization SAR images, since
the radar backscatter of the sea surface in cross-polarization is only marginally
reliant on incidence angles and sea surface wind speed. The dual-polarization (HH
and HV) SAR data of RADARSAT-2, Sentinel-1, and Gaofen-3 constitute the basis
for certain newly proposed glacier classifier algorithms [1, 4].

In this view, a cornerstone of both Antarctic and Arctic zonal deviations is the
volume of sea ice prevalent. Sea ice exhibits reasonably notable spatiotemporal
variability in the marginal ice zone (MIZ), which suggests that satellite measure-
ments of ice cover at a fine spatial resolution than operational radiometer and
scatterometer merchandise are crucial due to the speeding up declining trend of ice
covers and diminished ice thickness in both Antarctic and Arctic zones [1–3, 5–7].

The question is now: what are the main algorithms exploited in retrieving ice
covers in the SAR data? Despite the similarities between ice cover and the open
ocean’s SAR radar backscatter in certain circumstances, their textural elements that
are dependent on brightness might fluctuate. To distinguish ice cover and deep
ocean, descriptors are employed as well in conjunction with radar backscatter
strength. The gray-level cooccurrence matrix (GLCM) texture characteristics can
accurately capture distinctive backscatter (or brightness) features that are distinct
across varying forms of the glacier and open sea, according to numerous research on
texture examinations of SAR imagery [8, 9]. The textural characteristics of energy,
contrast, correlation, homogeneity, entropy, and moment may be useful for classi-
fying ice, according to earlier research [8–10].

Recent algorithms are exploited in glacier classifications based on the deep
learning machine. Particularly, the support vector machine (SVM), a well-liked
binary classification deep learning technique, has been focused on the identification
of ocean glacier water (hence shortened to ice water) from spaceborne SAR data
[1, 9, 11]. For numerous spaceborne SAR data, pixel-based and region-based glacier
categorization methods have been invented [1, 4, 10, 12].

The critical question is: what are the disadvantages of using SVM in ice classifica-
tions in SAR data? Since the SVM employs a machine learning approach, acquiring a
well-labeled training set that can distinguish between ice extent and deep ocean in
Image data is probably the hardest process. Various glacier sorts, like multiyear
glaciers, extent and distorted first-year ice, young ice, and numerous more, as well as
various open ocean varieties, such as calm and rough sea surfaces, ought to be
included in the training set. It takes a considerable amount of time and effort to
acquire training datasets, which are often chosen extensively by professionals.

The novelty of this chapter is to form a novel algorithm based on the genetic
algorithm (GA) for the automatic detection of ice covers in the Convair-580 air-
craft. In actuality, the Convair-580 research aircraft serves as a multifunctional
flying laboratory that supports a wide variety of studies. The normalized radar
cross-section (NRC) Convair-580 is outfitted with cutting-edge technology for
detecting aircraft physical parameters and atmospheric state (temperature,
pressure, humidity, and three-dimensional wind).

2. Convair-580 data acquisition

Spectral ranges of 1000 nm to 2450 nm are covered by the 160-channel Short
Wave Infrared (SWIR) hyperspectral imaging system. These data include a
completely polarimetric dual-frequency (W and X-band) Doppler radar system. The
Convair (Figure 1) will incorporate this NRC Airborne W and X-band radar system
(NAWX) by January 2006. The thermal microwave emission from the surface and
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atmosphere is measured by the Airborne Multichannel Microwave Radiometer
(AMMR) and is expressed in degrees Kelvin of brightness temperature. In the 1970s,
the uplooking radiometer at 21 and 37 GHz, a part of AMMR, was created to monitor
precipitation from an aircraft. The entire AMMR assembly operates between 10 and
92 GHz. Over the past three decades, a variety of aircraft has used the 21/37 GHz unit.

3. Marghany-based genetic algorithm (MBGA) for automatic detection
of ice covers in Airborne SAR data

This section introduces a developed genetic algorithm for ice cover automatic
detection in any SAR data products. This algorithm is named as Marghany-Based
Genetic Algorithm (MBGA) (Figure 2), which was adapted from the previous work
of Marghany [15].

Figure 1.
Convair-580 research aircraft is used in this study.

Figure 2.
Pseudo-code depicting MBGA algorithm.
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Let K be the total backscattered energy in the Convair-580 Aircraft data, and
β1ð Þ, β2ð Þ, … , βnð Þ½ � be the sum of all backscattered bright pixels. Since genetic

algorithms begin with the population initializing phase, K is composed of genes that
represent the backscatter of bright pixels and their surroundings [13]. In this view,
GA might be considered as having followed Sivanandam and Deepa [14] as:

Minimize

f βð Þ ¼ f 1 βð Þ, f 2 βð Þ, … , f k βð Þ� �T (1)

Formula (1) demonstrates that f i βð Þ presents the i-th pixel backscatter β dis-
crepancies in Convair-580 data, which signifies the i-th and j-th restraints backscat-
ter energy in raw direction and column direction, respectively. Consequently, a
fitness function is nominated to regulate the resemblance of separately backscatter
energy associated with ice covers in the Convair-580 image. In this view, the
backscatter of ice covers is signified by where i = 1,2,3, … , K and the initial
population where j = 1,2,3, … , N and i = 1,2,3… , K. Consequently, the fitness value
of every separated population of the radar backscatter energy mathematical
expressed as:

f Pj� � ¼
XN
i¼1

βi
N

XK
i¼1

Pj
i � βi

���
���

" #�1
j ¼ 1,… ,N: (2)

In this perspective, N and K represent the number of the population involved in
the fitness mechanism. In most scenarios, Convair-580 aircraft data exploits Eq. (2)
to assess the level of similarity of phase corresponds associated with ice covers.
Population sizes have been generated before this computation. Consequently, let us
assume that Pj

i is a gene which corresponds to backscatter energy fluctuation

through SAR data. Accordingly, Pj
i are chosen at random to illustrate the backscatter

changes of the ice cover pixels as well as their surroundings. Additionally, i diverges
from 1 to K and j fluctuates from 1 to N where N is the population dimensions.

In this understanding, let us consider the best fitness selection of individuals’
backscatter energy f Pj� �

from the population Pj
i. Therefore, the maximum values of

fitness of the population Max f Pj� �
and the minimum values of fitness of the popu-

lationMin f Pj� �
are exploited to compute the threshold value τ, which is casted as:

τ ¼ 0:5 Max f Pj� �þMin f Pj� �� �
(3)

The empirical formula (3) is employed as a phase in the selection process to
establish the population’s maximum and lowest fitness levels, respectively. In GA
algorithms, this is regarded as the population generation phase for brightness
patches in SAR data [15, 16].

The reproduction stage of a genetic algorithm, which incorporates crossover and
mutation processes on the backscatter population Pj

i in Convair-580 data, is pri-

marily responsible for its operation. The crossover operator shapes the Pj
i to con-

verge around solutions with high fitness. Therefore, the convergence occurs more
rapidly the closer the crossover probability is to 1. The chromosomes exchange
genes during the crossover process. Depending on the local fitness value, each gene
can be formed by:

f Pj
i

� �
¼ βi � Pj

i

���
��� (4)
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In that circumstance, the crossover between two individuals process converts all
individual populations of the first parent that have a local fitness f Pj

av

� �
that is

higher than the average local fitness and replaces the remaining genes with the
matching ones from the second parent. Thus, the inclusion conditions characterize
the average local fitness:

f Pj
av

� � ¼ 1
K

XK
i¼1

βi � Pj
i

���
��� (5)

The phenomenon of remarkable probability in the evolution process is thus
denoted by the mutation operator. There is a potential that certain crucial genetic
data about the chosen population will indeed be lost throughout the reproduction
process. Hence, the mutation operator brings additional genetic sequences to the
genetic diversity.

4. Results and discussion

Figure 3a exhibitions a Convair-580 image with brightness patches designating
the glacier zone. In contrast to the surroundings, Figure 3b reveals that the glacier
patches seemed to have the maximum backscatter (�8 dB). The smallest backscat-
ter, measuring �55 dB, is scattered among dark pixels that may represent calm
water or a low wind zone.

The crossover process for the Convair-580 image is shown in Figure 4 and
involved 10 individuals. Positive bright spots in these 10 individuals represent the
pixels that make up the ice cover, while negative dark patches represent the
pixels that make up the surroundings, particularly still water or melting ice. Every
cell is then compared to its counterpart in the other cells to determine if it is
positive or negative. This study supports the work of Marghany [13] and Ninnis
et al., [17].

Figure 3.
Data from a Convair-580 aircraft, shown as (a) composite bands of VV, HH, and HV and (b) backscatter
variation.
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Figure 5, consequently, demonstrates how the genetic algorithm can effectively
isolate ice pixels from their surroundings. In other words, heavy ice covers, ice
boundaries, and edges are all colored white, whereas calm water and melting ice
pixels are all colored black (Figure 2a). This research is similar to Marghany’s [13]
previous work on using GA for object detection.

The significant question that arises is: what is the appropriate radar polarimetry
for ice cover imaging? In this sense, Figure 6 demonstrates that the HH band has
lower standard errors of 17% than other bands VV and HV; respectively. On the
contrary, HV has the highest standard error of 79%.

Consequently, the Marghany-Based Genetic Algorithm (MBGA) can also dis-
criminate between different sorts of ice covers such as leads, young ice, and floes
(Figure 7) in the HH band owing to its long tilt modulation as compared to VV and
HV bands, respectively. In this sense, the receiver operating characteristic (ROC)

Figure 4.
First individual in the crossover phase.

Figure 5.
Automatic detection of ice covers in SAR data using MBGA.

6

Recent Remote Sensing Sensor Applications - Satellites and Unmanned Aerial Vehicles (UAVs)



curve in Figure 8 shows a significant difference in discrimination power between
pixels representing leads, first-year ice, and floes with a probability p < 0.05.

The crossover procedure is what grants the MBGA its power. Each crossover
process creates a new population. As a result, the fitness function scrutinizes mul-
tiple individual populations and incorporates them into subsequent populations. As
a consequence, new populations are constantly generated based on the differences
between two successive fitness values. Furthermore, the crossover procedure pro-
duces a more refined ice cover pattern by despeckling and preserving the morphol-
ogy of the features of the ice cover groups through the fitness function used to
implement the ice covers in different pixel classes. Indeed, the fitness function
chooses a morphological pattern for the ice covers that is similar to the ice cover
sorts that are recommended.

Figure 6.
Standard errors among different polarized bands.

Figure 7.
Automatic detection of different sorts of ice covers using MBGA.
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5. Conclusion

This chapter introduces the Marghany-Based Genetic Algorithm (MBGA), a
novel algorithm for automatically detecting ice covers in SAR data. MBGA is thus
designed as discrete steps of a modified genetic algorithm (GA). Individual back-
scatter fluctuation in SAR data is used as the primary source, which is generated by
sequences of genetic algorithm procedures. In this scenario, MBGA outperforms
other bands in terms of automatic detection of ice covers within the HH band, with
the lowest standard errors of 17%. As a consequence, MBGA can automatically
distinguish between different types of ice covers, such as leads, floes, and young ice.
This is demonstrated using ROC, which indicates excellent discrimination of ice
cover of different kinds with p < 0.05.
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Figure 8.
ROC for ice sort discriminations using genetic algorithm (GA).
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Aperture Radar (SAR) Systems 
and Their Applications to Crop 
Growth Monitoring
Jiali Shang, Jiangui Liu, Zhongxin Chen, 
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Abstract

Synthetic aperture radars (SARs) propagate and measure the scattering of 
energy at microwave frequencies. These wavelengths are sensitive to the dielec-
tric properties and structural characteristics of targets, and less affected by 
weather conditions than sensors that operate in optical wavelengths. Given these 
advantages, SARs are appealing for use in operational crop growth monitoring. 
Engineering advancements in SAR technologies, new processing algorithms, and 
the availability of open-access SAR data, have led to the recent acceleration in the 
uptake of this technology to map and monitor Earth systems. The exploitation of 
SAR is now demonstrated in a wide range of operational land applications, includ-
ing the mapping and monitoring of agricultural ecosystems. This chapter provides 
an overview of—(1) recent advancements in SAR systems; (2) a summary of SAR 
information sources, followed by the applications in crop monitoring including crop 
classification, crop parameter estimation, and change detection; and (3) summary 
and perspectives for future application development.

Keywords: synthetic aperture radar (SAR), crop growth monitoring, crop parameter 
estimation, change detection, classification

1. Introduction

Agricultural ecosystems are highly dynamic and usually display apparent 
seasonal phenological patterns that are strongly dependent on local management 
practices. The timely and frequent determination of indicators of crop development 
and productivity, including phenological stage and biophysical parameters such as 
leaf (or plant) area index and above-ground biomass, is critical for supporting land 
management decision making in near-real-time. Synthetic aperture radars (SARs) 
are active systems that provide their own source of energy to illuminate ground tar-
gets in the microwave domain. Because the Earth’s atmosphere is largely transparent 
to microwaves, SAR sensors can be operated day or night and under almost at all 
weather conditions to acquire high-resolution earth observation data. Given that 
many regions of the world experience frequent cloud cover, SAR has become 
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an essential remote sensing tool for the operational monitoring of  agricultural 
 production systems around the world.

Radar backscattering is highly sensitive to the structural (roughness, ori-
entation, and spatial distribution of scattering components) and the dielectric 
properties of targets. The backscattering intensity is also strongly related to the 
transmitted microwave frequency, incident angle and the transmitted and received 
polarizations. Several microwave scattering models have been developed to relate 
backscattering to target properties and radar acquisition parameters. Examples of 
theoretical microwave models include the Integral Equation Model (IEM) and the 
MIMICS (Michigan Microwave Canopy Scattering) model [1–3]. Semi-empirical 
models maintain some theoretical basis but use empirical data to simplify the 
mathematical relationships between scattering and target properties as well as 
sensor parameters. Examples of this approach to modeling include the Water Cloud 
Model (WCM) used to characterize SAR response from vegetation and soil [4], as 
well as the Oh [5] and Dubois [6] models that relate soil properties to radar back-
scattering. Two simplified scenarios, based on which radar backscattering models 
have been developed, are shown in Figure 1. The first simplifies vegetation canopy 
as a layer of scattering elements uniformly distributed above the soil surface, and 
radar backscattering from the soil is modeled by a two-way attenuation through the 
canopy (left). The second takes into consideration of canopy geometric structure, 
and models three backscattering components, surface scattering from plant or 
soil, double-bounce scattering from plant and soil (plant-soil and soil-plant), and 
multiple scattering by the plant-soil mix (volume scattering) (right).

Radar backscattering models have been used for estimation of crop parameters 
such as Leaf Area Index (LAI), canopy water content, and biomass [7–10], and 
soil parameters such as soil moisture and surface roughness [11, 12], using SAR 
data acquired at different incident angles, frequencies, and/or polarizations. Fully 
polarimetric (or quad-pol) SAR systems measure the complete complex scattering 
from a target. Microwaves are transmitted and received in two orthogonal polariza-
tions and the phase is preserved during processing. With the complete scattering 
matrix, quad-pol data can be analyzed to provide polarimetric features and the 
signal can be decomposed using coherent (e.g., Pauli and Cameron) or incoherent 
(e.g., Freeman-Durden and Cloude-Pottier) techniques [13, 14]. Variables derived 
through polarimetric decomposition can be used both in classification [15, 16] and 
parameter estimation, such as crop phenology or soil moisture [17, 18]. Time-series 
SAR data have also been used for the detection of crop seeding and harvest using 
change detection approaches [19–21].

A few satellite SAR constellations have been launched during the past few years, 
and more small satellite SAR constellations will be continuously developed in near 
future. The increasing availability of a large amount of SAR data, in companion 

Figure 1. 
Simplified scenarios for modeling radar backscattering from vegetation canopy. Left: vegetation as a water 
cloud, and backscattering is modeled by a two-way attenuation through a canopy with a path length H/cos(ϴ). 
Right: vegetation as a 3-D scattering medium inducing three scattering mechanisms, surface scattering, double-
bounce, and volume scattering.
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with big data analytics, provides an unprecedented opportunity for effective and 
operational monitoring of agricultural ecosystems. However, the effective use of 
SAR data requires a full understanding of how the information it provides relates 
to agricultural targets. The objectives of this article are to summarize the path of 
SAR system development and to review the information sources of SAR data, the 
applications in agricultural ecosystem monitoring with a focus on crop classifica-
tion, crop parameter estimation, and change detection using dense time-series data.

2. Advances in synthetic aperture radar (SAR)

Early studies in radar remote sensing applications in agriculture relied exten-
sively on ground-based microwave scatterometers [22–27]. The portability of 
scatterometers allows them to be rapidly deployed to agricultural test sites to collect 
temporally dense data at different frequencies, polarizations, and incidence angles. 
Experiments using scatterometers have been critical for developing an understand-
ing of how microwaves interact with soils and crops, and the development and 
testing of microwave models [28]. However, despite the important contributions of 
such research, scatterometer data are geographically limited to smaller test plots.

The deployment of SAR on aircraft and satellite platforms provides data at 
field and sub-field scales over much broader geographic extents. Airborne SAR 
campaigns, such as the NASA/JPL AIRSAR and UAVSAR, Canadian Convair-580 
C/X SAR, and German DLR E-SAR/F-SAR, have served as theoretical testbeds to 
develop applications pre-launch of space-based SARs. Space-based SAR observa-
tions from the Shuttle Imaging Radar (SIR) missions, in particular the SIR-C/X 
SAR missions in 1994, provided imaging opportunities from a space platform and 
delivered data in different frequencies and polarizations.

Systematic acquisitions from SAR satellites began with the launch of ESA’s ERS-1 
satellite in 1991. Several other space agencies followed, launching SAR satellites 
operating at different frequencies, and with different capacities to select imaging 
modes at a variety of spatial resolutions, swath widths, polarization, and incident 
angles (Table 1). RADARSAT-2, for example, supports the acquisition of data at 
single, dual, or quad polarization, at different spatial resolutions, and various 
incident angles. However, while the capability of each of these space-based systems 
was extensive, they demanded large and heavy payloads. For example, the mass 
of the Canadian C-band RADARSAT-1 and -2 satellites, and the ESA Sentinel-1A 
and 1B satellites each exceeded two tons at launch. More recently, technological 
developments that include standard electronic components and semiconductor 
materials (GaN) [29, 30] make it possible to produce compact SAR sensors in a 
shorter amount of time, and at a relatively low cost. These advancements have led 
to commercial investments in microsatellite constellations of space-borne SARs. For 
instance, PredaSAR plans to launch a constellation of 48 satellites equipped with a 
large swath C-band or a high-power X-band sensor. The Japanese QPS Institute is 
developing an X-band constellation that will eventually comprise 36 micro-satel-
lites. These SAR sensors are typically small (<500 kg), but are more limited in the 
diversity of imaging modes, typically operating in only single or dual polarizations.

For reference, a non-exclusive list of SAR systems that are of interest to agricul-
tural applications is given in Table 1. Over the past 15 years or so, the general trend of 
governments and space agencies has been to focus on larger wide-swath SARs whose 
data are free and open (or partially open) to the public. In comparison, the com-
mercial SAR satellite ecosystems have focused on constellations of smaller satellites 
providing, for a fee, access to data at finer spatial and temporal resolutions. Data from 
such constellations may provide the near-continuous monitoring of land surfaces.
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Platform Country/
organization

SAR system Frequency Mode Active 
years

Note

Airborne Canada Convair-580 X, C Polarimetric 1986–present

USA/NASA AirSAR C, L, P Polarimetric 1988–2004

USA/NASA UAVSAR Ka, L, P Polarimetric 2007–present

German/
DLR

E-SAR/F-SAR X, C, S, L, P Polarimetric 1988–present

USA.JPL SIR-C/X C, X Polarimetric 1994

Large 
satellites

ESA ERS-1/2 C VV 1991–2011

ESA ASAR C Various 2002–2012

Japan/
NASDA

JERS-1/2 L HH 1992–1998

Canada RADARSAT-1 C HH 1995–2013

Canada RADARSAT-2 C Various 2007–present

Canada RCM C Various 2019–present 3 satellites

German TerraSAR-X X Single or 
dual

2007

Argentina SAOCOM L Polarimetric 2018–present 2 satellites

ESA Sentinel-1 X Single or 
dual

2014–present 4

Italy COSMO-
SkyMed

X Various 2007–2010 COSMO: 4

2019–present CSG: 2

Japan/JAXA ALOS-
PALSAR

L Various 2006–
present

4

USA/India NISAR L, S Polarimetric 2023–present

Micro-
satellites

Finland ICEYE-X X VV 2018–present 18

Japan/
Synspective

StriX X VV 2020–
present

30

Japan/QPS QPS-SAR X Circular 2019–present 36

USA Capella X HH 2018–present 36

USA PredarSAR C, X — 48

USA Umbra-SAR X — 2021–present 12

Abbreviations/websites: DLR: German Aerospace Center, ESA: European Space Agency, JAXA: Japan Aerospace 
Exploration Agency, JPL: Jet Propulsion Laboratory, NASA: National Aeronautics and Space Administration 
(USA), NASDA: National Space Development Agency of Japan, PredSAR: www.predasar.com, QPS: Institute for 
Q-shu Pioneers of Space, Inc.; https://i-qps.net/, Synspective: https://synspective.com/, AIRSAR: Airborne Synthetic 
Aperture Radar, ALOS-PALSAR: Phased Array type L-band Synthetic Aperture Radar; https://www.eorc.jaxa.jp/
ALOS/en/about/palsar.htm, ASAR: Advanced Synthetic Aperture Radar, Capella: https://www.capellaspace.com/, 
Convair-580: https://open.canada.ca/data/en/dataset/838aa171-efa0-4951-9fad-37f9d99346ec?=undefined&w
bdisable=true, COSMO-SkyMed: Constellation of Small Satellites for Mediterranean basin Observation; https://
earth.esa.int/web/eoportal/satellite-missions/c-missions/cosmo-skymed, ERS-1/2: European Remote-Sensing Satellite, 
E-SAR/F-SAR: https://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776_read-5691, ICEYE: https://www.
iceye.com, JERS-1/2: Japanese Earth Resources Satellite, NISAR: NASA-ISRO Synthetic Aperture Radar; https://
nisar.jpl.nasa.gov, PredarSAR: https://www.predasar.com/, RCM: Radarsat Constellation Mission, SAOCOM: 
https://saocom.veng.com.ar/en/, Sentinel-1: https://sentinel.esa.int/web/sentinel/missions/sentinel-1, SIR-C/X: 
Shuttle Imaging Radar, StriX: https://synspective.com/satellite/satellite-strix/, TerraSAR: https://www.dlr.de/
content/en/articles/missions-projects/terrasar-x/terrasar-x-earth-observation-satellite.html, UAVSAR: Uninhabited 
Aerial Vehicle Synthetic Aperture Radar; https://uavsar.jpl.nasa.gov, Umbra-SAR: https://umbra.space/.

Table 1. 
List of SAR systems.
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3. SAR applications to crop growth monitoring

3.1 Sources of information

3.1.1 Multi-temporal acquisitions

Crop growth dynamics are characterized by structural or moisture changes, 
which can be captured by time-series SAR data for the detection and mapping of 
phenological development stages [17, 31–34]. Because different crops have different 
growth dynamics, time-series SAR is also useful for crop classification [35–38]. 
Time-series optical and SAR data have been used to derive phenological metrics for 
phenology-based crop classification [35, 39, 40]. Using a dense stack of Sentinel-1 
SAR data, Bargiel [35] proposed a crop classification scheme using phenologi-
cal sequence patterns (PSP), which outperformed the Random Forest and the 
Maximum Likelihood classifiers for cereal crops. Phenology-based classifiers can be 
more generic than conventional classifiers, and may be more resilient to differences 
in management practices and growth conditions because they take crop-specific 
growth dynamics into consideration [35, 39].

3.1.2 Polarizations and polarimetric decomposition

Important target information is also revealed by different SAR polarizations. 
Polarizations that interact more strongly with plant volume will likely be more 
useful for crop parameter estimation and for discriminating different crops. For 
example, VV performs well in characterizing vertical vegetation structure, and VH 
is sensitive to multiple scattering events in the canopy [41], and thus their use in 
combination provides better classification capabilities in most cases. HH polariza-
tion is found to be inferior in many cases for these specific applications [28, 42]; 
however, it is more sensitive to the structural variation of rice, and thus useful for 
mapping this crop [43].

SAR backscatter intensity and other polarimetric parameters can be derived 
from fully polarimetric SAR using coherent or incoherent target decomposition 
methods, as summarized in Cloude and Pottier [13], Touzi et al. [14], and Lee and 
Pottier [44]. Simple or canonical targets—such as dipoles, diplanes, or cylinders—
show higher coherence than distributed targets—such as rough soil surfaces or 
vegetation—where random scattering occurs. Criteria to determine coherent and 
incoherent targets are provided by Touzi and Charbonneau [45], using the maxi-
mum symmetric component derived from the Cameron decomposition. Coherent 
target decomposition is applied to express the complex scattering matrix as linear 
combinations of a set of simpler and independent bases, each representing certain 
physical scattering mechanisms. Examples include the Pauli decomposition, the 
Krogager decomposition, and the Cameron decomposition. Incoherent decomposi-
tion methods are used when a pixel contains distributed targets, and express the 
second-order statistics of coherency or covariance matrices with a combination of 
simpler components. Examples include the Freeman-Durden, Huynen, and Cloude-
Pottier decompositions. For satellite SAR sensors, the power and pulse repetition 
required to operate a fully polarimetric system limits swath widths, and thus hybrid 
architectures, such as compact polarimetric systems, have been proposed [46]. 
Compact polarimetry offers a partial solution by transmitting a single circularly 
polarized wave and receiving two orthogonal waves coherently [46–48]. Methods 
for compact polarimetric data decomposition have also been developed and sum-
marized in Charbonneau et al. [47], Cloude et al. [49], and Ponnurangam and 
Rao [50].
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3.1.3 Frequencies

The distribution and orientation of plant components and their sizes relative to 
SAR wavelengths vary over the growing season and from crop to crop. Microwave 
scattering occurs when the SAR wavelength is similar to or smaller than the size 
of canopy components. SAR frequency also influences the penetration depth 
of microwave radiation into crop canopies. Lower frequencies (e.g., L-band) 
penetrate deeper into the canopy than higher frequencies (e.g., C-/X-band). The 
optimal depth of penetration, and the matching of wavelength to the size of plant 
components, vary from crop to crop and throughout the crop development cycle. 
As a result, the selection of a single best frequency for SAR is challenging. Higher 
frequency SAR is better for classifying low biomass canopies, while lower frequency 
SAR is more useful for identifying high biomass vegetation [42]. The integration of 
data at different frequencies brings enriched information for crop classification and 
has thus been widely recommended [42, 51–57]. However, implementing a multi-
frequency approach is challenging due to limitations in the availability of data from 
sensors at different frequencies, especially for operational applications. Temporal 
signatures created by different frequencies have also been exploited for crop area 
mapping using dense time series of SAR data. Kraatz et al. [58] used the temporal 
coefficient of variation of the VH polarization from both Sentinel-1 C-Band and 
PALSAR L-band data, and an optimal threshold, to discriminate crops from non-
crops in western Canada. A higher mapping accuracy was achieved using C-band 
data (84%) than L-band data (74%), though performance varied among differ-
ent cover types. Here, L-band performed poorly for soybean and some non-crop 
types (urban, grassland, and pasture), while C-band was relatively poor for corn, 
urban, and pasture. A time series of data from both frequencies would likely have 
improved these accuracies.

3.1.4 Incident angles

The variation of radar backscattering with incident angle is another important 
consideration for mapping agricultural landscapes with SAR. This is reflected 
in vegetation backscattering models, such as the MIMICS model [3] and the 
Karam-Fung model [59]. These models, developed for forest and adapted for crops 
[43, 60], require incident angle as an explicit parameter. For example, Prevot 
et al. [61] showed that using a simple parametrization of the angular effect of 
soil roughness in the Water Cloud Model [4], the vegetation water content can be 
estimated satisfactorily from C- and X-band SAR data acquired at two different 
incident angles, for example, 20° and 40°. Various studies have demonstrated the 
impacts of incident angle on land cover classification. Poirier et al. [62] studied 
the impacts of incident angle on classification performance by acquiring C-band 
data near-coincident at two different angles (30° and 53°) with the Convair-580 
airborne system. Results showed that SAR data collected at the larger incident 
angle interacted more with the upper canopy, delivering an improved classifica-
tion. Kothapalli Venkata et al. [63] conducted a study to assess the separation of 
corn from other land cover types (wheat, fallow, water, and urban) using multi-
incident angles (28°, 42°, and 52°) C-band hybrid polarimetric data acquired over 
3 days by RISAT. The study showed that corn can be discriminated from other crop 
types using volume and double-bounce scattering at both 28° and 42°, and using 
odd bounce and volume scattering combinations at 52°. Xu et al. [64] acquired 
RADARSAT-2 data at three different incident angles and showed that multi-angle 
SAR improved the classification accuracy of some land cover types (though it 
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should be noted that the images were acquired at different times during 1 month, 
confounding the effects of the time of acquisition and change in incident angle). 
In summary, SAR data acquired at different incident angles contribute to target 
information extraction.

3.2 Crop type classifications

The classification of land covers and crop types is one of the earliest applications 
of SAR in agriculture. In the broadest sense, crop classification from SAR involves 
the implementation of automated techniques to sort image data into one of a finite 
number of crop classes based on their backscatter characteristics. Crop classifica-
tion is an important agricultural application because it can be used to derive the 
area seeded to individual crops, and to predict or forecast food production if crop 
growth conditions are incorporated. Obtaining this information requires detailed, 
routine, and frequent mapping of croplands with sufficiently high accuracy. SAR 
has been shown to be particularly useful for the operational monitoring of crop 
dynamics in agricultural ecosystems.

3.2.1 Classification algorithms

A broad array of approaches for classifying satellite images have been developed 
in the past few decades. Until recently, the Maximum Likelihood (ML) classi-
fier was the most widely used method for the supervised classification of remote 
sensing data [65–67], mostly due to its simplicity in implementation. While this 
approach has been widely applied in different studies for satellite image classifica-
tion of agricultural regions [68–71], limitations associated with the ML approach 
mean that alternative supervised classification techniques are more preferable. 
Of these new methods, artificial neural networks (ANN) [72–75], support vector 
machines (SVM) [76–79], Decision Trees (DT) and ensembles of classification trees 
such as Random Forest (RF) [80–84] have all shown great promise.

A detailed comparison of classification methods is beyond the scope of this 
article, and indeed, would only provide limited insight into the best classification 
approaches for SAR-based crop type mapping. This is because the success of crop 
classification procedures is as much—if not more—dependent on the quality of the 
ground (in situ) observations used for training and validating the classification, 
than the actual algorithm chosen to do the classification. Instead, we direct readers 
to a comprehensive synthesis of this body of work provided by Khatami et al. [85], 
who conducted a statistical meta-analysis of research on land-cover classification. 
This study was conducted to provide coherent guidance on the relative perfor-
mance of different classification processes for generating land cover products and 
showed that the highest mapping accuracies were provided by implementations 
of SVMs, ANNs, and RF. While it is important to note that these results are not 
necessarily predictive of the relative performance of any specific classifier in any 
specific application (due to the unique features of that application), they do pro-
vide an insight into how each classification algorithm may perform under various 
 circumstances [85].

In addition to the general classifiers presented above, two other classification 
schemes have been developed specifically for SAR data. These are classifications 
based on the Cloude-Pottier decomposition and classification based on the com-
plex Wishart distribution. The Cloude-Pottier decomposition [15] produces three 
parameters—entropy (H), anisotropy (A), and the alpha angle (α). Entropy is 
a metric of the degree of randomness of scattering from within the resolution 
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cell, anisotropy is an indicator of the presence of secondary or tertiary scattering 
mechanisms, and the alpha angle represents the dominant scattering mechanism. 
A classification scheme was developed to divide the H-α space into eight possible 
scattering zones, from which land cover classifications can be performed. The 
advantage of this classification scheme is the improved understanding of SAR signal 
scattering mechanisms where there is less a priori knowledge about the scene. This 
approach has been used in supervised and unsupervised classification algorithms 
for land cover classification [86–90].

SAR data are typically multi-look processed for speckle noise reduction. The 
covariance matrix of the multi-look processed SAR data follows a multivariate com-
plex Wishart distribution. With this condition, Lee et al. [91] proposed a classifica-
tion scheme using Bayes maximum likelihood or minimum distance (MD) classifier. 
In practice, each class is characterized by an elementary covariance matrix derived 
from training samples, and each pixel is classified according to the Bayes likelihood 
with the elementary covariance matrices under a given a priori probability and the 
complex Wishart distribution. The algorithm can be generalized to classify multi-
frequency polarimetric SAR data or SAR data with only polarization intensity, and 
can therefore be applied to a wider range of situations [87, 88].

3.2.2 Integration of optical and SAR data

The coordination of Earth Observations (EO) data for agricultural monitor-
ing necessitates the articulation of spatially explicit EO data requirements, 
including where [92], when [93], how frequently [94], over which spectral 
range, and at what spatial resolution these data are needed [95]. Because crop-
ping systems are often diverse and complex, and the types of crops grown and 
the timing of their growth vary from region to region, the best choice of sensors 
to be used, the optimal number of images required, and the timing of image 
acquisitions are usually geographically specific. Where SAR has been used in 
operational national-scale crop mapping programs, it has usually been inte-
grated with optical remote sensing data. Both optical and SAR provide unique 
and valuable information relating to plant growth and type, primarily due to 
their different wavelengths. Optical imagery acquired in the near-infrared and 
shortwave-infrared is sensitive to canopy biochemistry such as composition and 
concentration of pigments, water content, biomass, and leaf internal structure, 
while SAR imagery is sensitive to plant structure. SAR observations are also 
critical for filling gaps in the optical image record brought about by the presence 
of clouds during key growth stages.

The integration of optical and SAR data can be as simple as combining data from 
different sources into raster stacks for classification, sometimes applying mathe-
matical transformations to fuse and enhance features or reduce data dimensionality 
[96–99]. In some cases, SAR data are not used directly in the classification process 
but are first transformed into higher-level data products. This has included the 
derivation of phenological metrics from SAR time series (e.g., Torbick et al. [100] 
and the use of SAR-based texture [101].

One of the most well-known applications of SAR in national-scale crop mapping 
comes from Canada. Since 2010, Agriculture and Agri-Food Canada—Canada’s 
Ministry of Agriculture—has integrated C-band SAR (RADARSAT, Sentinel-1) 
with optical data streams (Landsat-5, -7 and -8, SPOT, DMC, RapidEye, and 
Resourcesat-1) to generate its Annual Space-Based Crop Inventory for Canada 
[102]. Figure 2 shows the mapping result for 2020, which covers the agricultural 
land and includes all crops and a few other land cover types.
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Results from research and operations suggest that optical and SAR satellite data 
are both required to best characterize the key crop growing (phenological) stages 
required for high-accuracy crop mapping at a national scale [39, 56, 80, 103–106]. 
The addition of dual-pol SAR has been shown to increase accuracies over the use 
of optical data alone by as much as 16% [42, 104]. Nonetheless, the decision to 
use optical and/or SAR is usually determined by the trade-off among a number 
of factors, including—(a) the heterogeneous and dynamic intrinsic nature of the 
agro-ecosystem being studied; (b) the geographical extent to be mapped; (c) the 
minimum mapping unit required to resolve individual fields and other meaning-
ful ecological units (e.g., wetlands, woodlots, etc.); (d) differences in crop cycles; 
(e) differences in cropping practices and calendars within the same class; (f) the 
spectral similarity with other land cover classes; (g) the engineering constraints of 
the remote sensing systems (i.e., swath size; spatial, temporal, spectral and radio-
metric resolutions; cloud coverage for optical systems), and (h) data availability 
(i.e., open, fee-based).

3.3 Crop parameter estimation and growth condition monitoring

Microwave scattering, represented by both intensity and phase characteristics, 
changes with variations in the structure of crop canopies and canopy water content. 
Canopy structure and water content vary as crops develop and are thus indicative 
of crop development and productivity. Figure 3 shows seasonal variation of radar 
backscattering intensity of annual crops over a growing season in an agricultural 
region in northern Ontario, Canada, using dual-polarization C-band SAR data 
acquired by Sentinel-1 in 2019. Both VV and VH polarizations of annual crops 
show obvious seasonal variation patterns characteristic to crop development cycle, 
whereas that of forest targets (the two dotted lines) remain at a relatively stable 
and higher level throughout the season. This clearly shows a positive correlation 
between radar backscattering intensity and crop live biomass, based on which dif-
ferent crop parameters can be estimated from SAR data.

The potential of SAR for supporting crop growth monitoring through the 
quantitative estimation of crop parameters—such as Leaf (or Plant) Area Index 

Figure 2. 
National scale crop type mapping in Canada, 2020. The map is produced by Agriculture, Geomatics and Earth 
Observation Division, Science & Technology Branch, Agriculture, and Agri-Food Canada.
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(LAI or PAI), plant height and density, fresh and dry biomass, and plant water con-
tent—depends on SAR sensor characteristics (frequency, polarization, and incident 
angle), crop type, and growth stage [107, 108].

The characteristics of a SAR determine the depth to which a pulse of micro-
wave energy can penetrate a plant canopy and, in turn, influence the ability to 
determine canopy conditions from SAR observations. Because of this, the optimal 
choice of SAR frequency will vary over time, depending on canopy type and 
growth stage, and thus the use of multiple SAR frequencies for crop mapping, 
where available, is recommended. SAR scattering is also polarization-dependent 
[44, 109, 110]. Overall, the best polarization for crop characterization has been 
the linear cross polarization (either HV or VH) [110, 111]. This is mainly due 
to re-polarization that occurs during multiple scattering within targets with 
complex structures, such as crop canopies consisting of randomly oriented and 
distributed stems and leaves [112]. Using RADARSAT-2 SAR data, Liao et al. [113] 
studied the sensitivity of C-band SAR polarimetric parameters for the estimation 
of crop height and fractional vegetation cover. They found that cross polariza-
tion or combinations of dual polarizations (HH-VV or HV-VV) were strongly 
correlated with crop height and fractional cover of broadleaf crops, such as corn, 
with degraded performance toward the later growing stages. For narrow-leaf 
crops, such as wheat, the sensitivity of SAR parameters to crop height and cover 
fraction was relatively low or inconsistent. Wali et al. [114] assessed Sentinel-1 
C-band SAR VV and VH backscatter for estimating biophysical parameters of 
rice, including plant height, green vegetation cover, LAI, and total dry biomass. 
The results of this study showed that both VH and VV were strongly and linearly 
correlated with biophysical parameters until backscatter saturated during the 
mid-reproductive stage (60 days after transplanting), and the beginning of the 
reproductive stage for VV (though VH showed stronger correlations in most 
cases). Chauhan et al. [115] were able to obtain better estimates of vegetation 
parameters by accounting for soil backscatter effects. Other studies include those 
by Xie et al. [110], who demonstrated the capability of RADARSAT-2 polarimetric 
SAR variables for crop height estimation, and Hosseini et al. [116], who used 
WCM and SVM to estimate LAI using RADARSAT-2 SAR intensity collected 
over multiple international sites (Argentina, Canada, Germany, India, Poland, 
Ukraine, and the U.S).

Polarimetric SAR allows the complete scattering characteristics of crop 
canopies to be determined, and parameters derived from these complex data 
can improve estimates of crop conditions. Many recent examples of this come 

Figure 3. 
Seasonal profiles of radar backscattering intensity for annual crops in northern Ontario, Canada, using 
C-band SAR data acquired by Sentinel-1 in 2019. The two dotted lines represent two forest patches.
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from studies over agricultural regions in Canada. Using C-band RADARSAT-2 
polarimetric data, Wiseman et al. [117] extracted and evaluated 21 polarimetric 
parameters to estimate dry biomass for canola, corn, soybean, and spring wheat 
crops. This study found that most SAR parameters were significantly correlated 
with dry biomass accumulation, while several proved to be good indicators 
of changes in crop structure and phenology. For instance, four SAR responses 
(linear HV and circular LR backscatter, volume scattering, and pedestal height) 
increased during canola ripening. However, as canola flowered, the importance 
of these parameters declined. Homayouni et al. [118] used the ratio of volume-
to-surface scattering derived from C-band RADARSAT-2 polarimetric data to 
monitor the growth of canola, corn, spring wheat, and soybeans fields in western 
Canada. They found that this ratio was strongly correlated with optical vegeta-
tion indices (e.g., the normalized difference vegetation index NDVI, and the Soil 
Adjusted Vegetation Index SAVI). Using time-series RADARSAT-2 polarimetric 
data, and RapidEye optical imagery, Jiao et al. [119] applied a semi-empirical 
Canopy Structure Dynamics Model, Growing Degree Days, and SAR parameters 
calibrated to optical NDVI to derive daily estimates of canola crop condition over 
an entire growing season. Correlations (R values) of 0.63–0.84 were reported 
when SAR parameters were related to optical NDVI, with results varying among 
three  growing seasons.

A growing literature focusing on SAR-based vegetation indices demonstrates 
the potential of such techniques. Kim and van Zyl [120] proposed a radar vegeta-
tion index (RVI) based on the SAR backscatter intensities at VV, HH, and VH 
polarizations, which has since been simplified to accommodate data obtained from 
dual-polarized systems [121, 122]. Using Sentinel-1 observations, Periasamy [123] 
proposed a Dual Polarization SAR Vegetation index (DPSVI) by exploiting the 
data distribution of VV and VH backscatter coefficients in two-dimensional space. 
Such radar indices show strong potential for the better discrimination of bare soil 
from vegetation, as well as for crop structural parameter estimation. Other SAR-
based vegetation indices include the SAR simple difference (SSD) index, applied to 
estimate rice yield in China, and based on the difference in Sentinel-1 VH backscat-
ter between the end of the rice tillering stage and the end of grain filling stage [124]. 
Results of the study showed a strong exponential relationship between the SSDVH 
and rice yield.

Other applications of SAR for crop parameter estimation and growth condition 
monitoring include its use in radiative models. Attema and Ulaby [4] developed 
a Water Cloud Model (WCM) to simulate SAR backscatter from the crop-soil 
system as an incoherent sum of contributions from plants and background soil 
after a two-way attenuation by canopies. Through time, the model has been 
modified to reflect different approaches to the interaction and parameterization 
of soil and vegetation contributions. For example, various studies have used LAI, 
canopy water content, and biomass to characterize the vegetation component in 
the WCM [7, 8, 10, 116].

3.4 Change detection

In the context of this article, the objective of change detection using remote 
sensing data is to identify and characterize changes in agricultural land cover and/
or use (e.g., conversions from one crop class to another) or changes in condition 
within a land cover and/or use (e.g., modifications within a crop class) over a speci-
fied period of time. These changes can be described as—(a) binary change/non-
change (e.g., harvest); (b) from-to trajectories (e.g., forest to cropland conversion); 
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(c) causes of change (e.g., fire, flooding); and (d) continuous variable change (e.g., 
reduced productivity within a class due to insect infestation or drought) [125]. 
Understanding the types of change sought is critical for selecting suitable remote 
sensing data sources, determining processing methods, and developing and imple-
menting robust and effective change detection algorithms.

For agricultural resource management, it is important to detect intra-annual 
landscape changes, such as changes in crop phenology [17, 20, 33], field operations 
[19, 21], and field conditions [126, 127]. This type of monitoring requires dense 
remote sensing time series that usually cannot be fulfilled using optical data alone 
due to the presence of the cloud. As a result, spatially and temporally compre-
hensive and consistent coverages from operational wide-swath SAR satellites will 
continue to be a critical source of free and open SAR data for national-scale change 
detection. As new SAR missions are launched and existing missions expand, 
multi-frequency SAR is expected to play an increasingly important role in moni-
toring and measuring change on agricultural landscapes. The application of SAR 
for within-season change detection will require well-calibrated data from multiple 
satellites within a constellation, if satellites from different constellations are used 
together.

Change detection using SAR backscatter—as opposed to its indirect detec-
tion from SAR-derived value-added products such as crop type maps or modeled 
biophysical parameters—belong to one of two broad types. These are Incoherent 
Change Detection (ICD) and Coherent Change Detection (CCD) [128]. ICD 
methods identify changes in mean backscatter intensity without considering SAR 
phase information. Here, the difference can be calculated as a ratio, a log ratio 
(LR), a mean ratio (MR), the normalized compression distance [129], or using 
pointwise approaches based on graph theory [130], convolutional neural networks 
[131], or the generalized likelihood ratio test (GLRT) [132]. In comparison, CCD 
methods identify change based on the complex conjugate correlation coefficient 
of the two images, thus taking into consideration of both backscatter intensity 
and phase. If dense stacks of time-series SAR images are available, changes can be 
inferred from these methods. For example, Shang et al. [21] used CCD to detect 
crop seeding and harvest using time-series Sentinel-1 SAR. The study integrated 
time-series coherence and VH backscatter intensity to detect changes at the begin-
ning and at the end of a growing season, with the assumption that coherence is 
comparatively higher before crops emerge and after crop harvest. Figure 4 shows 
the example for mapping crop seeding dates, and details of the approach are given 
in Shang et al. [21].

Figure 4. 
Estimation of crop seeding dates through change detection using C-band SAR data acquired by Sentinel-1. Left: 
detection of annual crop fields using a simple threshold of seasonal variation amplitude of VH; right: mapping 
of crop seeding dates.
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4. Summary and perspective

Timely and continuous observations from satellite systems are critical for 
providing the data and information required by decision-makers to manage agricul-
tural lands. High-quality satellite observations can be obtained from SAR sensors; 
however, they must be collected at a spatial resolution that allows sufficient detail 
to be resolved, and at times, during the growing season, that coincides with the key 
growth stages of crops being assessed. The most accurate detailed national crop 
mapping generally occurs when moderate-resolution spectrally rich time series are 
acquired that contain no gaps.

Because of its near all-weather capacity, SAR technology has been shown to 
be particularly useful in agricultural monitoring, especially in regions with fre-
quent cloud cover. The agricultural applications summarized in this article cover 
examples of information extraction for crops. Despite the gains made over the 
past 15 years in methods for crop monitoring from SAR, some challenges remain. 
A major challenge is the separation of backscattering signals from soils and 
crops, where it is difficult to differentiate the geometrical and dielectric proper-
ties of these two targets. While theoretical and semi-empirical models have been 
developed to simulate backscattering signals, model inversion for solving surface 
parameters with high accuracy remains a challenge. Much attention has been 
focused on the integration of SAR and optical remote sensing for improving target 
parameter retrieval accuracies. With temporally dense imaging capabilities of cur-
rent and future satellite SAR systems, changes in agricultural land should be more 
accurately detected. Methods for change detection based on SAR and optical time 
series show large future potential.

Future opportunities for the use of SAR in agricultural monitoring will come 
from the adoption of new and improved satellite missions that, in combination or 
isolation, will allow a better characterization of crop-specific growth cycles at the 
field level. Of particular interest is the integration of SAR imagery acquired at mul-
tiple frequencies, especially if these multi-frequency data sets are collected in wide 
swaths, with consistent coverages, and under open data policies. However, this will 
not be without a challenge. The ability of national mapping agencies to incorporate 
this information in a timely and efficient manner will require significant investment 
in information technology infrastructure to facilitate the processing of significantly 
greater volumes of data.
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Abstract

Rapid growth of Malaysia’s economy recently is often associated with various
environmental disturbances, which have been contributing to depletion of forest
resources and thus climate change. The need for more spaces for numerous land
developments has made the existing forests suffer from deforestation. This chapter
presents an overview and demonstrates how remote sensing data is used to map and
quantify changes of tropical forests in Malaysia. The analysis dealt with image
processing that produce seamless mosaics of optical satellite data over Malaysia,
within 15 years period, with 5-year intervals. The challenges were about the pro-
duction of cloud-free images over a tropical country that always covered by clouds.
These datasets were used to identify eligible areas for carbon offset in land use, land
use change and forestry (LULUCF) sector in Malaysia. Altogether 580 scenes of
Landsat imagery were processed to complete the observation period and came out
with a seamless, wall to wall images over Malaysia from year 2005 to 2020. Forests
have been identified from the image classification and then classified into three
major types, which are dry-inland forest, peat swamp and mangroves. Post-
classification change detection technique was used to determine areas that have
been undergoing conversions from forests to other land uses. Forest areas were
found to have declined from about 19.3 Mil. ha (in 2005) to 18.2 Mil. ha in year
2020. Causes of deforestation have been identified and the amount of carbon
dioxide (CO2) that has been emitted due to the deforestation activity has been
determined in this study. The total deforested area between years 2005 and 2020
was at 1,087,030 ha with rate of deforestation of about 72,469 ha yr.�1 (or 0.37% yr.�1).
This has contributed to the total CO2 emission of 689.26 Mil. Mg CO2, with an
annual rate of 45.95 Mil. Mg CO2 yr.

�1. The study found that the use of a series
satellite images from optical sensors are the most appropriate sensors to be used for
monitoring of deforestation over the Malaysia region, although cloud covers are the
major issue for optical imagery datasets.

Keywords: Landsat images, tropical forests, deforestation, carbon offset,
climate change
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1. Introduction

Tropical forests are crucial for mitigating climate change, but many forests
continue to be driven from carbon sinks to sources through human activities. To
support more sustainable forest uses, therefore forests carbon needs to be measured
and monitored at high spatial and temporal resolution. Tropical forest is one of the
key ecosystems in addressing issues relating to climate change as it known to store
large amount of carbon [1]. Retrieving tropical forest carbon over large areas has
been challenging since decades due to the limited data resource, accessibility, and
numerous technical issues. Remote sensing has been used actively for forest carbon
estimation since the last three decades and it is proven to be effective [2, 3].
Although there are issues and arguments raised in the estimation accuracy, research
is continuously being carried out. Optical or synthetic aperture radar (SAR) system
has its own potential in retrieving biomass, but several issues remain unaddressed.
While optical remote sensing is usually hindered by cloud, SAR systems are always
limited by signal saturation at high biomass levels [4]. However, optical sensors
offer better solutions for biomass assessment. Various spectral signatures and sev-
eral vegetation indices can be derived from multispectral images can make the
interpretation of biophysical properties of forests can be carried out conveniently.
These are the most significant difference between optical and SAR systems that has
made optical satellite data preferable in vegetation studies.

While the world has growing demand energy sector, it is crucial that nations put
a collective effort to reduce anthropogenic greenhouse (GHG) emission and limit
the global warming below 2οC above pre-industrial times, thus prevent catastrophic
effects of global climate change. Mitigating the consequences of global climate
change may be a critical societal objective now and within the forthcoming decades.
Tropical countries contribute to carbon emissions mainly through deforestation and
forest degradation, which accounts for approximately 10% of the world’s annual
total carbon emissions [5]. National and international initiatives such as reducing
emission from deforestation and forest degradation, and forest conservation (REDD+)
and carbon offset are dedicated to mitigating the impacts of global warming. To
achieve this objective, each nation’s carbon emissions resulting from deforestation and
forest degradation need to be quantified and tracked over time. At such large geo-
graphic scales, a precise, cost-effective, and high-resolution means to monitor changes
in aboveground carbon stocks is needed. This chapter is focusing on the roles of space
borne remote sensing, especially free-access satellite data in assessing biomass of
forest in various ecosystems in Malaysia, i.e., inland dipterocarp forests, mangrove
forest, and peat swamp forest.

1.1 Forests in Malaysia

Major forest types in Malaysia are lowland dipterocarp forest, hill dipterocarp
forest, upper hill dipterocarp forest, oak-laurel forest, montane ericaceous forest,
peat swamp forest and mangrove forest. In addition, there also smaller areas of
freshwater swamp forest, melaleuca forest, heath forest, forest on limestone and
forest on quartz ridges. Considering the composition of these forests in Malaysia,
the types can be generalized into three types, which are inland, peat swamp and
mangroves.

The forests in Malaysia are mostly dominated by trees from the
Dipterocarpaceae family, hence the term ‘dipterocarp’ forests. The dipterocarp
forest occurs on dry land just above sea level to an altitude of about 900 meters. The
term also refers to the fact that most of the largest trees in this forest belong to
Dipterocarpaceae family. This type of forest can be classified according to altitude
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into lowland dipterocarp forest, up to 300 m above sea level, and hill dipterocarp
forest found in elevation of between 300 m and 750 m above sea level, and the
upper dipterocarp forests, from 750 m to 1,200 m above sea level. However, in
Sarawak and Sabah both the lowland and hill dipterocarp forests are known as
mixed-dipterocarp forest.

Currently, lowland dipterocarp forest is very few left outside of protected areas
such as parks and wildlife reserves. While most of the country was covered with
lowland forest in the past, today the majority has been cleared for other land
uses. The few remaining pockets are under the gazetted land as Forest Reserves.
Moreover, forest in this regime is also being central attraction for timber
extractions. There is a real need to put more effort in saving and protecting this
precious habitat type. Fortunately, some State (i.e., Provincial) Governments
have halted land clearing for agriculture. It is vital that all remaining forest areas
are protected. In this way, this valuable natural habitat can be managed on a
sustainable basis.

1.2 Reducing emission from deforestation and forest degradation, and forest
conservation (REDD+) in Malaysia

The REDD+ mechanism was agreed at the 15th Session of the Conference of
Parties (COP 15) United Nations Framework Convention on Climate Change
(UNFCCC), 2009 in Copenhagen. The REDD+ mechanism includes reducing emis-
sions from deforestation, forest degradation, conservation, sustainable management
of forest and carbon stock enhancement. It was also agreed that parties
implementing REDD+ would need an effective national strategy or action plan and
a transparent national forest monitoring and governance system. Ultimately, this
mechanism was created to provide an incentive for developing countries to protect,
better manage, and wisely use their forest resources, thereby contributing to the
global fight against climate change.

Following COP 15, the progress in the REDD+ negotiations have been relatively
rapid, with the most significant developments occurring in the last couple of years.
Seven important decisions were adopted in 2014 for REDD+ governing methodo-
logical issues on safeguards, measurement, reporting and verification (MRV),
development of national forest monitoring systems, addressing drivers of defores-
tation, and technical assessment of reference levels. In addition, the modalities for
institutional arrangements at the national level for REDD+ implementation and
results-based payments were also agreed.

Consensus on REDD+ was reached at the UNFCCC’s COP 15, which agreed on
the need to provide positive incentives. This is followed by the Warsaw Framework
for REDD+ providing guidance on all the requirements to obtain Results Based
Payments (RBP). The agreed REDD+ to capture activities are (i) reduction of
emissions from deforestation, (ii) reduction of emissions from forest degradation,
(iii) conservation of forest carbon stocks, (iv) pursuance of sustainable manage-
ment of forests, and (v) enhancement of forest carbon stock.

Malaysia’s forests can be categorized according to the degree of protection and
land use classification. Management of forest land falls under three broad catego-
ries, which are: (i) Protected Areas/Totally Protected Area which consist of,
national and state parks, wildlife sanctuaries, and nature reserves, (ii) Permanent
Reserved Forests (PRFs) /Permanent Forest Estate (PFEs)/Permanent Forest
Reserves (PFR), which are primarily natural forests to be maintained and managed
sustainably for production and protection, and (iii) Stateland forest which are forest
land reserved for future development purposes.
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REDD+ is more than just a means of assigning monetary value to forest carbon
stocks. It is also about ensuring the livelihoods of those whose culture, survival and
heritage depend on the forests themselves.

1.3 The Paris agreement

The Paris Agreement builds on the Convention by bringing all nations together
for the first time to commit to ambitious efforts to prevent climate change and
adapt to its effects, with increased support for developing countries. As a result, it
sets a new direction for the global climate effort.

The main goal of Paris Agreement is to enhance the global response to the issue
of climate change by keeping a global temperature rise this century not more than
2°C above pre-industrial levels and to pursue efforts to limit the temperature
increase even further to 1.5°C [6]. In addition, the agreement intends to improve
countries’ ability to deal with the effects of climate change. Appropriate financial
flows, a new technology framework, and expanded capacity building frameworks
will be put in place to achieve these lofty goals, allowing developing countries and
the most vulnerable countries to pursue their own national ambitions. Through a
more rigorous transparency structure, the Agreement also provides for increased
action and support transparency.

1.4 Nationally determined contribution (NCD)

Nationally determined contributions (NDCs) are at the core of the Paris Agree-
ment and the achievement of these long-term goals. Malaysia intends to reduce the
emission intensity of the greenhouse gas by 45% by 2030; in which corresponding
to GDP [7]. In this circumstance, developed countries should involve 35% on an
unconditional basis and a further 10% is condition upon receipt of climate finance
for advanced technology transformation in construction capacity enhancement. In
fact, this can assist in monitoring GHG.

Since the Paris Climate Agreement was signed in late 2016, governments all over
the world have been submitting plans for reducing CO2 emissions through their
NDCs. The NDCs was previously known as “Intended Nationally Determined
Contributions” (INDC) and it is submitted to the United Nations Framework
Convention on Climate Change (UNFCCC) once the countries ratified to the Paris
Agreement. Currently, 197 parties to the Convention had submitted their INDCs
and 150 had ratified it including Malaysia.

There has been no baseline prediction or quantified analysis of baseline mea-
sures provided, but Malaysia’s NDC indicated a 2005 as base-year emission level of
288 Mil Mg CO2e, which includes emissions of 25 Mil Mg CO2 from the LULUCF
sector.

In 2014, Malaysia produced an Emissions Intensity Reduction Roadmap.
According to the report, the country has chances across many sectors to fulfill the
reduction target of a 40% decrease in GDP emissions intensity [8]. However, even
if these opportunities exist, significant work would be necessary to achieve these
emissions reductions, given the challenges of a 4.8 percent yearly rate for the per
capita emissions between years 2000 and 2030 [9]. Energy for transportation is
expected to rise at a pace of 5.3 percent per year over the next 25 years, making it
the fastest-growing sector. Malaysia’s ultimate energy needs are predicted to treble
by 2030, compared to present levels of consumption.

While the “ambitious scenario” indicates that Malaysia would be able to meet its
Paris agreement NDC reduction target, substantial assistance from international
funders is required. When both LULUCF emissions and removals are included, the
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GHG emission intensity per GDP in 2030 increases when compared to 2005 levels.
This is since increase in removals by the LULUCF sector is much lower than the
increase in emissions from the other sectors.

To achieve this target, a carbon offset project must be developed. Forest conser-
vation is one of the options that can be explored since the forests are able to
sequester CO2 at considerable amount. Several options have been recognized by the
Verified Carbon Standards (VCS) that there are 7 types of projects related to forest
conservation that can be intervened as carbon offset project (Table 1) [10].

1.5 Carbon offset initiative

Carbon offsetting is the process of compensating for CO2 pollution (carbon
footprint) by avoiding similar pollution from occurring elsewhere. One carbon
offset entail compensating for the emission of 1 Mg of CO2 into the atmosphere by
preventing the emission of 1 Mg of CO2 somewhere on Earth. The underlying
concept is that developed countries pay poor countries (or assist them in other
ways) to reduce global emissions on their behalf. In theory, carbon offsetting can
assist the world to combat global warming if offsets are used to fund good, long-
term environmental projects that would not have occurred otherwise.

There are dozens of different techniques to reduce carbon dioxide emissions,
ranging from energy efficiency and renewable energy to forest planting. The most
popular projects are those involving renewable energy; the most contentious are
those involving forestry [11].

Malaysia has a lengthy history of forest management. However, some forest
areas have been damaged as a result of prior management practices. The cost of

No. Project type Definitions

1 Avoided planned deforestation Avoided or stopping any logging/ plantation concession that
involves deforestation. Carbon stock refers to the carbon
stored in trees, whereas abatement refers to the net reduction
in greenhouse gas emissions as a result of a project.

2 Wetland restoration and
conservation

Increasing GHG removals by restoring wetland ecosystem by
rewetting or avoiding the degradation of wetlands.

3 From low to high productivity
forest

Convert low-productivity forests to high-productivity forests
to increase carbon sequestration. Improved stocking density in
low-productivity forests can help to boost carbon stores.

4 Conversion of logged forests to
protected forests

Converting logged forests by eliminating harvesting of timber,
biomass carbon stocks are protected, and can increase as the
forest grows and/or continues to grow.

5 Reduced impact logging Switching from conventional logging to RIL during timber
harvesting. Carbon stocks can be increases by reducing
damage to other trees, improve selection of trees, improve
logging plan, etc.

6 Afforestation / Reforestation Increase carbon sequestration via planting or human-assisted
natural vegetation to develop, increase, or restore vegetative
cover (forest or non-forest).

7 Extending the rotation age of
evenly aged managed forests

Extending the forest rotation age or cutting cycle and increase
carbon stocks. No fixed period of years to be extended, but
generally the longer the period, the more average carbon stock
increases.

Table 1.
Types of potential carbon offset project in Malaysia.
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restoring and rehabilitating these forests is high, as is the cost of caring for them.
Each project type will have different implications on the cost, carbon benefits,
biodiversity benefits, social benefits, and risk of failures. Figure 1 illustrates
how these implications could occur when a project type is chosen as carbon
offset project [12].

2. Methodological framework

This study includes estimation of the national greenhouse gas emission trends
from 2005 through 2020. This is to ensure that the LULUCF sector is the right area
to venture for the carbon offset project. This is because the LULUCF sector also
does emit CO2 in various manners. Therefore, instead of CO2 sink, it can be a source
of CO2 emission as well at some extend. To ensure that the GHGs reported in this
study is comparable to UNFCCC, the estimates presented here were calculated by
using methodologies consistent with those recommended in the 2006 Intergovern-
mental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas
Inventories. This study will not be used as regard to the carbon offset under the
Paris Agreement and other international obligations but can be considered as an
index that shows the extent of Malaysia mitigation measures implemented to
combat the global warming.

2.1 Activity data

Remotely sensed data was used in this study for the years between 2005 and
2020 to estimate greenhouse gas emissions/removals, with 5-year interval. The
reason for using these data due to its availability as independent data, it has a
consistent time series and compatible with alternative data sources. In addition, the
activity data obtained from Landsat satellite images are not found in any
publication. Since the optical images over Malaysia are always hindered by cloud
covers, a considerable number of datasets were required to produce a seamless
mosaic of the images (without clouds). The Landsat images, covering the entire
Malaysia that were used in this study are summarized in Tables 2 and 3 and
Figure 2.

Figure 1.
Different restoration strategies can be used for different purposes and have different trade-offs.
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2.2 Production of seamless mosaic, time series Landsat images

According to Table 2, only 29 scenes of Landsat images are required to produce
a mosaic that cover the entire Malaysia. However, being in the tropical regions,
Malaysia is always covered by clouds that is almost impossible to be removed
completely. Therefore, several images acquired at different dates over the same
scenes are required to produce a cloudless image. The study has set a limit of five
best images of the same scenes acquired circa three years of the targeted year to be
used for further processes. These images must have <30% cloud cover and acquired
within the specific periods (Table 3). Even though Landsat has 16-day repeat cycle,
which are producing about 22 images over the same scene in a year, it is still
difficult to find the best five images within 3 years. This is due to the heavy cloud
covers in the atmosphere of Malaysia, especially at the mountainous areas and
during the monsoon season (October – February). Cloud covers in most of the
scenes are ranging from 10 to 90% and therefore, the chance to obtain <30% cloud
cover is very small.

However, this issue has been solved by having several good quality scenes. The
clouds on these images were detected and masked by using F_Mask algorithm [13].
Figure 3 shows the example of cloud masking a process was carried out to produce a
cloudless mosaic of the scene 126/058 (Figure 4) that were acquired from various
dates. This process is repeated for the other scenes and throughout the intervals
(2005, 2010, 2015 and 2020). Altogether 580 scenes were processed to produce a
seamless mosaic image for each time series. The final product is shown in Figure 5.
Although the image looks clean, there is about �1% of hollow pixels still appear on

Satellite Sensor Date of acquisition Time series (year)

Landsat-5 Thematic Mapper (TM) January 2004–December 2006 2005

January 2009–December 2011 2010

Landsat-8 Operational Land Imager (OLI) January 2014–December 2016 2015

January 2018 – March 2020 2020

Table 2.
Satellite images that were used as activity data.

Landsat Scene

Region West Malaysia East Malaysia

State Peninsular Malaysia Sarawak Sabah

Scene ID (Path/Row) 128/055–057
127/056–058
126/056–059
125/058–059

121/058–059
120/058–059
119/057–059
118/058–059

118/055–057
117/055–057
116/056–057

Scenes required to cover Malaysia 12 9 8

Scenes acquired to produce cloud-free data 60 45 40

Scenes acquired to produce time series data
(4 series)

240 180 160

Total scenes acquired 580

Table 3.
Summary of Landsat scenes datasets required to produce seamless mosaics over the entire Malaysia.
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Figure 2.
Landsat scenes coverages over the entire Malaysia.

Figure 3.
Cloud masking process of Landsat scene 126/058.

Figure 4.
Cloudless image of Landsat scene 126/058.
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the images, especially at the highlands and top of mountains areas. This is due to the
clouds that always there all the time regardless weather conditions and seasons.

2.3 Image classification

Forest includes all land with woody vegetation consistent with threshold (mini-
mum mapping unit (MMU) is 0.5 ha, minimum crown cover is 30% or minimum
height at maturity is 5 m) used to define forest land in the national statistic. It also
includes system with vegetation structure that currently falls below threshold, but
in situ could potentially reach the threshold value is expected to exceed (the
threshold of forest land category is sub-divided at the national level into managed
and unmanaged and by ecosystem type as specified in the IPCC Guidelines) [14]. In
this study, forests are divided into three major ecosystem types, which are inland
forest, peat swamp forest and mangrove forest. These areas were further divided
into Permanent Reserved Forests (PRFs)/Permanent Forest Estate (PFEs)/Perma-
nent Forest Reserves (PFR) as managed category and the remaining areas outside
the managed areas as stateland forest [15]. Figure 6 illustrates how the forests is
defined and various conditions (due to management practices and natural
disturbances) that possibly occur in the forests in Malaysia.

Understanding these conditions and management practices in forestry sector in
Malaysia are crucial before these forests are interpreted and classified on the satel-
lite images. Having several secondary data before hands are desirable and can
facilitated the classification processes. Spatial information such as boundary of the
PRFs, the management regimes, types and locations of varying ecosystems are
required to ensure that the classification is performed accurately. In this case, the
classification was performed to delineate forests from other land features. This
process was performed by using traditional supervised classification method. Sev-
eral training sets were selected on the images. Unchanged forest areas, which were
determined from secondary spatial data were used as forest training sets, and the

Figure 5.
Cloudless image of Landsat images over Malaysia.
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other land cover classes were determined from the image interpretation. The same
training set was used for forest class for all time series.

The biggest challenge in the image classification was about to deal with huge
data size and to produce classification results with minimal uncertainties. Manual
editing of the classification results was typical and need to be done repeatedly,
which is a tedious process and time consuming. However, the results are satisfying,
and the example of the classification results are depicted in Figure 7 for the year
2020. The classification results in pixels form were converted to vector format

Figure 6.
Common structure of forests in Malaysia.

Figure 7.
Forests in Malaysia classified from the images.
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(.shp) for further analysis and post-classification detection process. From the vector
data, the areas for each forest type classified from the images were determined.
Example forest area statistics derived from the vector data is summarized in
Table 4 for the year 2020.

2.4 CO2 emissions calculation

Carbon dioxide (CO2) is the main greenhouse gas that plays critical roles in
regulating the earth’s climate. According to IPCC, there are two basic approach to
estimate CO2 emissions/removals, which is Gain-Loss Method (GLM) and Stock-
Difference Method (SDM). Calculation methods for this study are determined by
SDM at Tier-2 level by using CO2 based on [16]. The result is then multiplied by 44/
12 or equal to 3.67 unit of carbon (C). Since the emission from the forestry activities
are considered, the CO2 in this study is attributed only from the forest carbon stock,
and it is not equivalent to emission from other gases. Therefore, the reported
emission is in carbon dioxide (CO2) and not carbon dioxide equivalent (CO2e).

2006 IPCC Guidelines offer a default methodology that includes default emis-
sion factors for Tier-1 [14]. Tier-1 level is designed to be the simplest to use, for
which equations and default parameter values (e.g., emission and stock change
factors) are provided by 2006 IPCC Guidelines. The emission factor is derived from
readily available statistical information, which often globally available sources of
activity data estimates (e.g., deforestation rates, global forest cover maps, etc.)
although these data are usually spatially coarse.

Meanwhile, Tier-2 level use the same or similar activity data to Tier-1 level but
applies emission and stock change factors that are based on country- or region-
specific data. Country-defined emission factors are more appropriate for the local
climatic regions and land use system. In many cases the Tier-2 could also be applied
at a higher level of temporal and spatial resolution and more disaggregated activity
data, where the activity statistics are further split into sub-categories.

Higher-order approaches are utilized at the Tier-3 level, such as models and
inventory measurement systems suited to national circumstances, repeated over
time, and driven by high-resolution activity data disaggregated at the subnational
level. Higher-order approaches produce more accurate estimations than lower-tier
approaches.

Estimated carbon stock (Mg C) in the stock change method is obtained by
multiplying the forest area (ha) by the carbon stock per unit area (Mg C ha�1). The

Region Forest Cover (ha) Total Forest Cover
(ha)

(d) = (a) + (b) + (c)

Land
Area*

(ha) (e)

Percentage
(%) (f) = (d)/

(e)*100Inland
Forest (a)

Peat
Swamp

Forest (b)

Mangrove
Forest (c)

Peninsular
Malaysia

5,338,082 243,504 110,953 5,692,539 13,100,367 43.5

Sarawak 7,328,029 320,207 139,890 7,788,126 12,444,951 62.6

Sabah 4,273,536 97,276 378,195 4,749,007 7,390,224 64.3

Total 16,939,647 660,987 629,038 18,229,673 32,935,542 55.3

*Sources: Department of Survey and Mapping Malaysia, Lands and Surveys Department, Sabah and Department of
Land and Survey, Sarawak.

Table 4.
Composition of forest cover in Malaysia (2020).
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carbon stocks of the entire project area at a given time are obtained by
calculating the products of the carbon stocks per unit area for each forest type
and the area occupied by that type and then summing the results over all
forest types.

Ct ¼
Xn
i¼1

Ai � Cið Þ (1)

Where:
Ct = total carbon stock at a certain time t (Mg C)
Ai = area occupied by forest type i (ha)
Ci = carbon stock per unit area of type i (Mg C ha�1)
The emission is calculated as the difference of carbon stocks for a given forest

area at two points of time, which is expressed as

ΔC ¼ Ct1 � Ct2ð Þ= t2 � t1ð Þ (2)

Where:
ΔC = annual carbon stock change in biomass (Mg C yr.�1)
Ct1 = carbon stock at time 1 (Mg C)
Ct2 = carbon stock at time 2 (Mg C)

3. Results and discussion

3.1 Changes of forest cover

Deforestation is defined as human induced permanent conversion of forest land
to non-forest, i.e., all the forest stands are cut, and the land is cleared and used for
another purpose. Temporary change in land use, like one rotation tree crop (up to
25 years) within forest reserves are not considered as deforestation [17]. In a
broader term, deforestation converts forest land to alternative, permanent, non-
forested land to be used in agriculture, grazing or urban development or clearing of
any area of its natural vegetation cover, which normally leads to a decrease in plant
population, resulting in a loss of plant biodiversity [18]. Deforestation is caused by
multiple drivers and pressures, including conversion for agricultural uses, infra-
structure development, wood extraction, agricultural product prices, and a complex
set of additional instructional and location-specific factors [7], which can be
extremely important in certain localities.

A crude estimate showed that the total forest loss in Malaysia during years
2000–2012 amounted to 14.4% of its year 2000 forest cover [19]. Oil palm expan-
sion was the major reason that contributed to the figure. The oil palm plantation
area in Malaysia increased from 5.59 to 11.56 Mil. ha from 2000 to 2018, an increase
of 5.98 Mil ha with a growth rate of 106.96%. The area of oil palm plantations in
West Malaysia increased by 2.53 Mil ha, with a growth rate of 82.77%; in East
Malaysia, the area increased by 3.45 Mil ha, with a growth rate of 136.14% [20]. The
growth of oil palm accelerated between years 2000–2010 and become decelerated
starting from 2010 onwards. In addition to that, the deforestation was caused by
rubber plantation, construction of hydro-electric dam reservoirs, mining activities,
forest fire, illegal logging, shifting cultivation, and natural disasters such as tsunami
and erosion.

In contrast, the study found that the deforestation from 2005 to 2020 was
amounted to the loss only of 1,087,030 ha (5.6%) of its year 2005 forest cover, with
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the annual rate of deforestation at 0.37% yr.�1. Hence the study proved that the
reported rate by [19] was not right. The forest cover has reduced from 19,316,702 ha
in 2005 to 18,229,672 ha in year 2020 (Table 5). This was attributed to reduction in
about 3.4% of total forest extents in Malaysia due to the conversion of forest to
agricultural lands and settlement, which were mainly under the stateland forest that
are designated for development purposes.

3.2 Carbon stock of forests in Malaysia

Aboveground biomass (AGB) comprises all living aboveground vegetation
including stems, branches, twigs, and leaves. It is the most important pool of carbon
forest types. In this study, a published allometric equation was used to calculate
AGB for inland forests [21]. This equation was calibrated based on trees sampled in
lowland and hill forests in west Peninsular Malaysia. Wood densities were obtained
from the Global Wood Density Database [22]. A biomass expansion factor of 0.47
was used to convert the biomass into carbon stock. Previous study indicated that the
average values for carbon stock from all carbon pools in major types of forest in
Malaysia as summarized in Table 6 [16]. A comprehensive review of carbon stock
in various forest types and conditions in Malaysia was also made by [23, 24].
However, only the aboveground component of carbon stock is used for the emission
calculation in this study.

The most important parameters that play roles that produce variations in carbon
stock estimations are (i) the use of different allometric equations in the estimations,
(ii) application of different sampling design/protocols, (iii) levels of disturbances in
the forest, (iv) harvesting/ logging practices in production forest, and (iv) the
selection of study sites. These influence the process of selecting project sites for
carbon offset project.

Year Forest cover (ha) Percentage cover (%)

Inland forest Peat swamp forest Mangrove forest Total

2005 17,949,753 700,401 666,547 19,316,702 58.7

2010 17,329,165 676,186 643,502 18,648,853 56.6

2015 17,088,338 666,789 634,559 18,389,686 55.8

2020 16,939,647 660,987 629,038 18,229,672 55.3

*Given the landmass of Malaysia was at 32,935,542 ha.
Source: https://www.data.gov.my/data/ms_MY/dataset/keluasan-malaysia.

Table 5.
Forest cover in Malaysia (ha).

Forest type Carbon stock (Mg C ha�1)

Above-ground Below-ground Dead-wood Litter Soil Total

Inland forest 174.49 35.22 4.92 1.29 48.40 264.32

Peat swamp forest 168.63 35.95 21.40 2.19 188.10 416.27

Mangrove forest 135.45 48.57 22.12 3.88 54.87 264.89

Table 6.
Carbon stock in all carbon pools in major types of forests in Malaysia (Mg C ha�1).
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3.3 CO2 emission from deforestation

Assuming the CO2 emission occurred was a result from the changes of forest
cover, the emission from year 2005 to 2020 was about 689.26 Mil. Mg CO2, with an
annual rate of emission at 45.95 Mil. Mg CO2 yr.

�1. This was equal to carbon loss of
about 12.53 Mil. Mg C. Table 7 summarizes the trend of CO2 emission that occurred
between years 2005 and 2020. The trend indicates that the deforestation accelerated
between years 2005 and 2010 and slowed down between year 2010 and 2020. This
was mainly due to awareness and mitigation action among government towards
REDD+ interventions and enhancement of management practices towards various
conservation efforts.

Although there are a few assumptions and generalizations were included in the
estimations, the reported figures can present an overall scenario of CO2 emission
resulted from deforestation activities in Malaysia.

3.4 CO2 emission in forest land remaining forest land

Although deforestation attributed much to the CO2 emission in LULUCF sector,
the remaining forests are still playing roles in CO2 sequestration while they regrow.
However, the rate of CO2 sequestration is very slow and is greatly depending on the
overall management practices applied within the forests. This is also typically
occurred within the PRFs where some areas are designated for production purpose
with sustainable forest management (SFM) practices. The average rate of seques-
tration for the major types of forests in Malaysia is summarized in Table 8.

Analysis of CO2 emission and removals from LULUCF sector in Malaysia
evidenced that the activity data used are very important to determine the emission
and removals within the forest land remaining forest land category. In this case,
data such as logging history records, net production (timber volume), and annual
allowable coupe (AAC) acquired from the respective forestry departments were
used estimate emission from upstream forest operations. Peninsular has contributed
net removal from the category was about �0.14 Mil. Mg CO2 within 5 years from
2005 to 2010. Then, it was followed by net emissions at 14.31 Mil. Mg CO2 which
occurred between year 2010 to 2015 as compared to year 2015 to 2020, which

Time Series CO2 emission (Mil. Mg CO2) Total

Inland forest Peat swamp forest Mangrove forest

2005–2010 397.05 14.97 11.45 423.47

2010–2015 154.08 5.81 4.44 164.33

2015–2020 95.13 3.59 2.74 101.46

Table 7.
CO2 emission resulted from deforestation Malaysia (2005–2020).

Forest type Growth rate AGB (Mg ha�1 yr.�1) Carbon sequestration* (Mg C ha�1 yr.�1)

Inland 9.3 4.37

Peat swamp 9.2 4.23

Mangrove 11 5.17

*Carbon conversion factor: 0.47.

Table 8.
Rate of carbon sequestration in major forest types in Malaysia [17].
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accounted net emissions for 23.53 Mil. Mg CO2. Meanwhile, Sabah has contributed
net removal from forest land remaining forest land about �16.22 Mil. Mg CO2

within 5 years from 2005 to 2010. Then, it continued to remove emission at �0.49
Mil. Mg CO2 between years 2010 and 2015, and even much greater between years
2015 and 2020, with the accounted net removal of �72.62 Mil. Mg CO2. Sarawak has
contributed net removal of about �11.83 Mil. Mg CO2 in 5 years between 2005 and
2010 and continued to the years between 2010 and 2015 with a net removal at
�90.44 Mil. Mg CO2. However, it emitted back within the years 2015–2020 with the
net emission of 48.87 Mil. Mg CO2. Table 9 and Figure 8 summarize the fluctua-
tions in the net emission and removal that have occurred within years 2005 to 2020.

Principally there is not fix trend in the net emission and removal within the
category of forest land remaining forest land in each region in Malaysia. This
indicates that the activities within the forests are dynamic and unpredictable. Some
areas could produce emission, but some other areas sequester carbon and thus
resulting in removals. However, taking Malaysia as a whole, there is a trend of
continuous removals from year 2005 to 2020 that has been produced by the
remaining forests in Malaysia (Figure 9).

4. Requirements to offset the emission

It is concluded that the rapid logging operations within the forest can be very
dynamic, thus the forests in Malaysia not only remove CO2 but also produce

Year Net (Mil. Mg CO2)

Peninsular Malaysia Sabah Sarawak Total (entire Malaysia)

2005–2010 �0.14 �16.22 �11.83 �28.19
2010–2015 14.31 �0.49 �90.44 �76.62
2015–2020 23.53 �72.62 48.87 �0.22

Note: -ve sign is net removal and + ve sign is net emission.

Table 9.
Summary of CO2 emission for forest land remaining forest land.

Figure 8.
Net CO2 emission/removal in Malaysia.
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emissions. These indicated that the forest areas that have been serving for timber
production and logging are continuously fluctuating in terms of emission and
removals. This area is worth for a carbon offset program because the intervention
can stand on all pillars of SFM; ecological, economic, and socio-cultural. The forests’
ability to attract investment and support commercially sustainable forest uses is
unaffected in the present and future.

Analysis indicated that the LULUCF sector in Malaysia is still producing the net
emission at 101.24 Mil. Mg CO2 at the end series of year 2020 (Table 10). Based on
this figure, Malaysia needs to stop completely deforestation activities and restore
about 27.6 Mil. Mg C, which is equal to 158,240 ha of natural forest to offset the
emission from LULUCF sector in the country. Otherwise, Malaysia must limit
logging activities and retain about 631,838 ha of the logging areas to regrow natu-
rally for at least 10 years. This is almost impossible since Malaysia is a developing
country and still depending much on the forests for timber productions [25]. While
the remaining stateland forests can be demolished at any time for development
purposes. Therefore, the finding of this study suggesting that the project types that
have potentially suitable for carbon offset program are (i) avoided planned defor-
estation, (ii) conversion of logged forests to protected forests, (iii) extending the
rotation age of evenly aged managed forests, and (iv) avoided deforestation on
wetlands (conservation).

The continuing removals indicated that the forest sector contributed greatly to
the sinks through forest land remaining forest land. In this case, there are activities

Figure 9.
Net CO2 removal in Malaysia.

Time
Series

Net CO2 emission/removal (Mil. Mg CO2)

Net CO2 emission from
deforestation

Net CO2 removal in forest land
remaining forest land

Net CO2

emission

2005–2010 423.47 �28.19 395.28

2010–2015 164.33 �76.62 87.71

2015–2020 101.46 �0.22 101.24

Table 10.
Summary of CO2 emission for forest land remaining forest land.
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occurred within the forestland that attributed to the CO2 removals, which could be
driven by the good of management practices, such as Forest Stewardship Council
(FSC) Certification Scheme. The FSC will conduct an independent review of forest
management methods in order to ensure sustainable management practises,
sustainable management of Malaysia’s natural forest, and to meet demand for
certified timber products.

Forest enrichment activities are being made by the forest industry between 2016
and 2020 to rehabilitate degraded forests. Ongoing projects such as the Central
Forest Spine (CFS) in Peninsular Malaysia and the Heart of Borneo (HoB) in Sabah
and Sarawak serve as facilitators for improving forest connectivity, reducing frag-
mentation, and improving natural resource management. The forestry sector
implemented a REDD+ strategy in 2017 to ensure that at least 50% of Malaysia’s
land mass is forested, which was accomplished by improving sustainable forest
management, conservation activities, and seeking synergies with activities under
the National Policy on Biological Diversity 2016–2025 [17].

Nonetheless, the current net removals are still not sufficient to offset the emis-
sion that has been produced by the deforestation activities in Malaysia. While the
LULUCF sector is producing emission, the other sectors such as energy, transpor-
tation, agriculture, solid waste, and others are also emitting CO2 to the atmosphere
at even greater amount. Therefore, carbon offset can not only depend on forests.
Appropriate mitigation actions need to put in proper place within the individual
sector so that the climate change mitigation can be achieved, and the targeted
reduction of global temperature is materialized.

5. Conclusion

The study demonstrated that the use of remote sensing data, coupled with the
other supporting data are viable for assessing forest carbon and emissions in for-
estry sector in Malaysia. Although there were technical issues regarding the data,
with appropriate image processing methods, the issues have been well addressed.
Landsat satellite images that have been acquired between years 2005 and 2020 with
5-year intervals were processed to produce seamless, wall to wall images over
Malaysia. Forests have been identified from the image classification and then clas-
sified into three major types, which are dry-inland forest, peat swamp and man-
groves. Post-classification change detection technique was used to determine areas
that have been undergoing conversions from forests to other land uses.

Forest areas were found to have declined from about 19.3 Mil. ha (in 2005) to
18.2 Mil. ha in year 2020. The study found that the deforestation from 2005 to 2020
was amounted to the loss of 1,087,030 ha (5.6%) of its year 2005 forest cover, with
the annual rate of deforestation at 0.37% yr.�1. This has contributed to the total CO2

emission of 101.46 Mil. Mg CO2. The study also estimated the total CO2 emission
and removals within the forest land remaining forest land. It was revealed that the
forests also produced emission in terms of timber production activities. However,
the overall estimates showed that this category is still able to sequester carbon and
provide removals at a sum of 105.03 Mil. Mg CO2 for the period of 15 years
(2005–2020).

The study exposed suggested that Malaysia must stop completely deforestation
activities and restore about 27.6 Mil. Mg C to achieve the net-zero emission. This is
equal to 158,240 ha of natural forest or 631,838 ha of the logging areas to need to be
left regrown naturally for at least 10 years. The study also suggested that the project
types that have potentially suitable for carbon offset program in Malaysia are (i)
avoided planned deforestation, (ii) conversion of logged forests to protected
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forests, (iii) extending the rotation age of evenly aged managed forests, and (iv)
avoided deforestation on wetlands (conservation).

The study proved that the use of a series satellite images from optical sensors are
the most appropriate sensors to be used for monitoring deforestation in Malaysia.
Although cloud covers are the major issue for optical imagery datasets, current
development in remote sensing, computer technologies and processing algorithms
for images analysis can provide solutions for the issues.
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Chapter 4

Optical Remote Sensing of 
Planetary Space Environment
Fei He, Zhonghua Yao and Yong Wei

Abstract

Planetary science is the scientific investigations of the basic characteristics and 
the formation and evolution processes of the planets, moons, comets, asteroids and 
other minor bodies of the solar system, the exoplanets, and the planetary systems. 
Planetary scientific research mainly depends on deep space exploration, and it is 
highly interdisplinary and is built from Earth science, space science, astronomy 
and other relevant disciplines. Planetary space, a critical region of mass and energy 
exchange between the planet and the interplanetary space, is an integral part of 
the planetary multi-layer coupling system. Atmospheres of different compositions 
and plasmas of different densities and energies exist in planetary space, where 
mass transportation at different temporal and spatial scales and various energy 
deposition and dissipation processes occur. Optical remote sensing overcomes the 
difficulties of capturing global views and distinguishing spatiotemporal variations 
in in-situ particle and field detections. This chapter introduces the principles and 
applications of optical remote sensing in planetary science. The first ground-based 
planetary observatory in China, the Lenghu Observation Center for Planetary 
Sciences, will be introduced in detail. Future development of optical remote sensing 
platforms in Chinese planetary exploration program will also be introduced.

Keywords: Planets, Space Environment, Optical Remote Sensing, Atmosphere,  
Space Plasma, Radiation Mechanisms

1. Introduction

How a planet is formed? What initial conditions and combinations of subse-
quent geological, chemical, and biological processes lead to at least one planet 
that is the home of innumerable life forms? What determines the fate of lives on a 
planet? These scientific questions can be summarized to three fundamental ques-
tions that human beings are always thinking about: where we come from, how we 
develop to current state, and where we will go? These questions are closely related to 
science, religion, philosophy, humanity, and other fields.

Thousands of years ago, or in the much more distant past, the human beings 
have already started looking at the stary sky to try to understand how everything 
works and which corner our planet is at in the Universe. However, limitations of the 
eyes also confined the thoughts of human beings, until the 1910s, G. Galilei devel-
oped the first astronomical telescope and use it to observe the Universe. With the 
help of optical telescope, our field of vision is greatly extended to the deep Universe. 
Discoveries by G. Galilei, such as the four Galilean moons circling Jupiter, the 
variation of Venus phase, and the sunspot, opened a new era of planetary science 
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and astronomy. Observation and exploration of planets transformed human’s 
philosophical thinking to scientific activations, deeply changed the human’s path to 
the answer.

In 1668, I. Newton developed the first reflective optical telescope, also called 
Newton telescope, and a window was opened for large aperture telescopes, based on 
which, we could see the Universe further and clearer. In 1789, the British scientist 
F. W. Herschel developed the first reflective optical telescope with aperture larger 
than one meter. Using this large telescope, he discovered Uranus and its two moons. 
As the increase of our requirements on observing further and weaker targets, the 
aperture and optical performance of the telescope become the main limitations of 
the applications of optical remote sensing in planetary science. Until the middle 
of the 20th century, benefited from the breakthroughs in optical techniques, such 
as the fabrication of high-accuracy large aperture mirrors, the maturity of optical 
aberration correction technology, the development of opto-electronic detectors, 
and the applications of active optics and adaptive optics, the ground-based large 
aperture optical telescopes have greatly advanced, and many new results were 
obtained. For example, the discovery of Na and K in Mercury atmosphere, the 
discovery of large amount of CO2 in the Venusian atmosphere, the discoveries of 
CO2, H2O, and CH4 in Martian atmosphere, the discovery of neutral nebula and Io 
plasma torus around Jupiter.

Nowadays, even the aperture of the ground-based optical telescope has achieved 
tens of meters (e.g., the Extremely Large Telescope currently under construction 
by European Southern Observatory), our vision is still limited by the atmospheric 
envelope. First, due to the absorption and attenuation of the atmospheric gases, 
observations at many wavelengths are unavailable, such as wavelengths shorter than 
ultraviolet (UV) and specific absorption bands in infrared (such as H2O, O3, CO2, 
CH4). Second, atmospheric turbulence greatly limited the resolution of the tele-
scopes and diffraction-limited imaging is difficult to be achieved even with adaptive 
optics. Third, the atmospheric background emissions limited the observable time 
and the detectable weakest emission. The best way to escape from the constraints 
of the atmosphere is to go above the atmosphere, e.g., in the stratosphere or in 
the space.

In the 1960s, the stratospheric balloons have been used to observe planetary 
atmospheres. When a balloon floats above 35 km from the surface, it rises above 
99.5% of the atmosphere, all of the telluric water vapor, and almost all of the CO2 
and CH4, the radiations at the wavelengths from near-UV (200–400 nm) to far 
infrared (tens of micrometers) become detectable, and the conditions are like space 
in some regards. Moreover, influence of atmospheric turbulence becomes negligi-
ble, diffraction-limited imaging can be utilized for telescopes of several meter aper-
ture, allowing for a marked improvement in the observation resolution. Although 
the daytime sky brightness is much brighter in the stratosphere but may still allow 
daytime observations, particularly at long wavelengths and at angles away from 
the Sun. In 1964, Bottema et al. determined the amount of water vapor presented 
above the reflective cloud layer on the Venus using an automatic daytime telescope 
of 30-cm aperture carried by balloon to 26.5 km. Currently, more and more atten-
tions have been paid to balloon-borne planetary explorations, for example, the 
Scientific Experimental system in Near SpacE (SENSE) program in China, the 
European Stratospheric Balloon Observatory (ESBO) program in Europe, the Fujin 
program in Japan, the Balloon Rapid Response for ISON (BRRISON) mission in the 
United States.

The development of space technologies since the 1950s completely set the optical 
remote sensing free in space and the scientists and engineers have taken the remote 
sensing play the most incisive. Theoretically, all the wavelengths can be detected, 
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and high-resolution diffraction-limited imaging can be realized. Compared with 
traditional in-situ particle and field detections, optical remote sensing is sensitive 
in characterizing matter compositions and overcomes the difficulties of captur-
ing global views and distinguishing spatiotemporal variations. Therefore, optical 
payloads including photometer, spectrometer, spectrograph, and imager have 
been widely carried on almost all the planetary spacecraft. These different types of 
instruments greatly helped us uncover the secrets of planets that are shaded by the 
terrestrial atmosphere.

Benefited from the first upsurge of the international deep space exploration 
in the 1960s–1970s, a new and interdisciplinary discipline, the planetary science, 
is established developed in western countries. Planetary science is the scientific 
investigations of the basic characteristics and the formation and evolution processes 
of the planets, moons, comets, asteroids and other minor bodies of the solar system, 
the exoplanets, and the planetary systems [1]. A planet is a multilayer coupling 
system that contains (not completely and not limited) interior, surface, atmosphere 
and space. The Earth is the planet with the most complete spheric layers and is 
the only planet with life in the solar system. The interior and geological processes 
generate the atmosphere above the planetary surface and extends to space.

In this chapter, logical understanding of principles and applications of optical 
remote sensing in planetary science is delivered. The planetary space environment 
will be briefly introduced in Section 2. Then, the principles of optical remote sens-
ing and the planetary optical radiations will be introduced in detail in Section 3, 
followed by current and future optical remote sensing plans in China in Section 4. 
Finally, a summary and outlook will be present in Section 5.

2. What is planetary space environment?

The space surrounding the Earth and other planets, the space between planets, 
and the space between stars and planets are far different from the environment 
we regularly experience on Earth. It is not empty and far from calm. It’s a complex 
electromagnetic system in which variational magnetic fields generate electric cur-
rents and vice versa, while neutral or charged particles of different energy experi-
ence complex dynamics in the electromagnetic field. Particle and electromagnetic 
radiations continuously blowing from the sun (or a star), cosmic rays outside the 
solar system (or an extrasolar planetary system), and the planets themselves (e.g., 
planetary magnetic fields and even planetary weather) can cause changes in the sys-
tem. Understanding the forces that drive the changes in space environment of our 
planet Earth and other planets not only help us protect technology and astronauts 
from radiation hazards, but also help us understand what makes a planet habitable. 
Incubation of lives on a planet takes more than just the right distance from a star. 
The star’s interaction with the planet’s atmosphere and electromagnetic system can 
make all the difference between a planet that’s too dry, too hot, or too radiation-
filled versus one where life could take root.

Generally, the space above the surface of a planet can be regarded as planetary 
space environment. The broad topic of physics of planetary space environment, 
designated planetary space physics, a subdiscipline in planetary science, focuses 
on the particles and fields within the space regions of the solar system and its 
immediate vicinity. For planets and moons, the space regions specifically refer to 
the neutral upper atmosphere, the ionosphere, the magnetosphere and the inter-
planetary space. Usually, planetary space research does not extend downward into 
the thick lower atmosphere of planets and moons, which is traditionally relegated 
to the realm of meteorology. Nevertheless, the planet is an integrated system, in 
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which its multi-spheres are coupled, from the space to the inner core. Therefore, 
in the perspective of planets’ evolution, we should treat the planets and their space 
environment as a whole system. Optical remote sensing can be applied to every 
aspect of this system, e.g., planetary geological activities, atmospheric activities and 
space plasma activities.

In the solar system, the planets can be divided into different categories accord-
ing to variety criteria, for example, the terrestrial planets (Mercury, Venus, Earth 
and Mars) which are also called rocky planets, and Jovian planets (Jupiter, Saturn, 
Uranus, Neptune) which are also called gas giants. The planets can also be divided 
into two categories, one for magnetized planets with intrinsic dipolar magnetic field 
(Mercury, Earth, Jupiter, Saturn, Uranus, Neptune, and the largest moon of Jupiter, 
the Ganymede), the other for unmagnetized planets without intrinsic dipolar 
magnetic field (Venus and Mars). The space environments of magnetized planets, 
unmagnetized planets, asteroids and comets exhibit significant differences [2].

For the space environment of magnetized planets, the Earth has representative-
ness most. A schematic illustration of the terrestrial magnetosphere is shown in 
Figure 1. The magnetospheres of other planets with intrinsic magnetic field are 
similar but with different spatial scales decided by the magnetic field strength 
(Table 1, summarized from reference [2]). The magnetosphere, the region domi-
nated by the planet’s magnetic field, is a part of dynamic, interconnected system 
that responds to solar, planetary, and interstellar conditions. On the sun-facing 
side, or dayside, constant bombardment by the solar wind compresses the magnetic 
field and forms a magnetopause at a distance of about six to 10 times the radius of 
the Earth, depending on the activity of solar wind. On the nightside, the magneto-
sphere stretches out into an immense magnetotail, which can measure hundreds of 
Earth radii.

Figure 1. 
Illustration of the Earth’s space environment.
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The dipolar configuration of the Earth’s magnetic field acts like a huge mag-
netic bottle, within which many charged particles are confined [2]. The motion 
of charged particles in the geomagnetic field is complicated, but can generally be 
divided into three types, namely gyration around a field line, bouncing between 
mirror points on the opposite side of the magnetic equator, and drifting around 
the Earth – westward for ions and eastward for electrons – due to the longitudinal 
gradient of the field lines. According to the energy and origin of the particles, the 
magnetosphere can be divided into several typical regions, namely, from inner to 
outer, the plasmasphere, radiation belt, ring current, plasma sheet, plasma tail in 
the case of Earth (Figure 1).

3. Optical remote sensing

3.1 Principle of optical remote sensing

Optical remote sensing is a remote detection method that studies an object 
through its optical emissions without coming into direct contact with it. Generally, 
optical remote sensing can generally be categorized into three types, i.e., imaging, 
spectrometry, and spectrographic imaging, as illustrated in Figure 2. The imaging, just 
likes we see the world through our eyes, directly project the radiations in the three-
dimensional (3D) space to a two-dimensional (2D) detector. A filter with narrow 
band or wide band is used to select the wavelengths that can be recorded by the 
detector. The advantage of imaging is to separate the spatial and temporal variations 
in a certain time scale, and the spatial distribution of a specific composition that emit 
radiations at specific wavelength can be captured in a large scope of space. Therefore, 
imaging is the preferred method to investigate global spatiotemporal evolutions. The 
spectrometry, which split the incident radiations into single wavelengths through 
a dispersion element (e.g., prism) or an interferometer to measure the wavelength 
dependence of the incident radiations. Generally, such observation does not have 
spatial resolution and only single ‘point’ (Here, ‘point’ means a spatial region covered 
by the field of view of the spectrometer but not a geometrical point.) measurement 
can be realized, but the advantage is to identify different compositions or different 

Figure 2. 
Three typical methods of optical remote sensing (adapted from He, 2020). (a) Imaging. (b) Spectrometry.  
(c) Spectrographic imaging.
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states (such as temperature and velocity) of a specific composition. Therefore, 
spectrometry is the primary measure to detect chemical composition and property 
in space. The spectrographic imaging, which integrated the advantages of imaging 
and spectrometry, can capture both spatial information (usually a line of view) and 
spectral information. Equipped with scanning mechanism, spatial coverage can be 
realized. In a global view, although the temporal resolution is reduced, the quasi-
simultaneously captured spatial and spectral information is critical in global large-
scale investigations.

The optical remote sensor is usually composed of an optical system that collect 
radiations and a detector that record the radiation through a photoelectric conver-
sion, so we can analyze the digitalized signals to retrieve the physical information of 
the targets. The main performance indicators for an optical remote sensor include 
(not limited to the following indicators depending on different applications):

Field of View (FOV): the object space covered by the sensor. The larger the field 
of view, the larger spatial coverage. The spatial coverage can be calculated once the 
field of view and the distance to object are known.

Focal Length (f): the distance between the image point of infinity object and the 
principal plane of the optical system.

Operation Wavelength (𝜆𝜆): the wavelength range that the sensor can response. 
It is usually determined by a combination of the reflectivity of the mirrors, the 
transmission of the filters, and quantum efficiency of the detector. For spectro-
metric instrument, it depends also on the property of the dispersion elements (e.g., 
grating and prism).

Angular Resolution (𝛥𝛥𝛥𝛥): the ability of the optical system to distinguish the image 
speckles of two objects. The diffraction-limited angular resolution 𝛥𝛥𝛥𝛥 is determined 
by the Rayleigh Criterion, 𝛥𝛥𝛥𝛥=1.22𝜆𝜆/D, where D is the aperture of entrance pupil.

Pixel Resolution (𝛥𝛥p): the angle corresponding to a pixel of the detector, 
𝛥𝛥p = 2tan(d/2f), where d is the size of the pixel and f is the focal length of the opti-
cal system. The angular resolution refers to the spatial resolving power of  
the optical system, while the pixel resolution is based on the physical pixel size of 
the detector. In actually optical design, the angular resolution and pixel resolution 
should be matched according to the radiation intensity and the requirement of 
signal-to-noise ratio (SNR). According to the Nyquist Criterion, two physical pixels 
are usually needed to resolve an optical resolution unit.

Area of Entrance Pupil (A): the area of the image of the aperture stop to the 
preceding optical system. The entrance pupil determines the size of the aperture of 
incident beam and thus determines the radiation energy that enter the optical system.

Spectral Resolution (𝛥𝛥𝛥𝛥): the ability to resolve radiations at different 
wavelengths.

Illumination Uniformity: the uniformity of the response of optical system 
(including the detector) to uniform incident radiations. Due to the aberration 
of optical system and manufacturing error of the optical elements, the detector 
response is nonuniform though out the image plane, and such nonuniformity 
should be measured during calibration process of the sensor. The calibrated matrix 
can be used to correct the scientific data.

Pixel Sensitivity (S): the ability of the response of the sensor to radiation 
intensity change. Commonly, the definition of S (in unit of count s−1 Rayleigh−1 
pixel−1) in space environment remote sensing is that, for an incident beam 
that fulfill entrance pupil with unit intensity (in Rayleigh, 1 Rayleigh = 106/4𝜋𝜋 
photon cm−2 s−1 sr−1), the count number or signal strength on the detector is 
S(𝜆𝜆) = 106A𝛺𝛺𝛺𝛺(𝜆𝜆)/4π, where A is the area of entrance pupil in cm2, is the solid angle 
corresponding to a pixel in sr, and 𝜂𝜂(𝜆𝜆) is the transmission efficiency of the system.

Exposure Time (𝛥𝛥T): the integration time to acquire image with sufficient SNR.
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Calibration Accuracy: the calibration of an optical sensor includes geometric 
calibration and radiometric calibration. The geometric error of an optical sensor 
originates from both the distortion of the optical system and the alignment error. 
The objective of geometric calibration is to accurately determine the projection 
relationship between pixel and geometric space. Usually, this can be achieved by 
imaging standard grid in laboratory. Radiometric calibration includes relative radio-
metric calibration and absolute radiometric calibration. The relative calibration is to 
measure the illumination uniformity of the sensor and the absolute calibration is to 
measure the pixel sensitivity of the sensor. Both are critical to retrieve the emission 
intensity of target from the optical images.

The above-mentioned indicators are common in general planetary optical 
remote sensing missions, some specific environmental adaptation indicators must 
be considered in specific application scenario, for example, the level of stray light, 
the ability of energetic particle shielding, and temperature dependence.

3.2 Optical radiation mechanisms

Optical emissions in space environment are the basis of remote sensing. Variations 
of the emissions reflect the physical property of the radiator. Understanding of the 
physical process of optical emission is developed after the establishment of quantum 
mechanics. The typical emission mechanisms for atoms, molecules, and ions are 
illustrated in Figure 3. The trigger of the emission is external energy, including optical 
radiation, particle collision, vibration and rotation (molecules and molecular ions), 
that excite the electron from ground state to higher energy state, the subsequent 
transition of electron to ground state emit a photon with the wavelength determined 
by the energy difference between the two states. The transition rate, intensity of 
spectral line, shifting of spectral line and broaden of spectral line can be determined 
by the density, temperature, and velocity of the radiator. It is noted that the mecha-
nisms illustrated in Figure 3a-h mainly occur in the sunlit region. In the dark region, 
the emissions are primarily due to chemical reactions between different compositions. 
The collision charge-exchange process usually occurs in planetary magnetosheath 
region, between the energetic ions and low energy neutral atoms. For example, the 
collision between the hot solar wind charges particles (e.g., He2+, O6+) and the geocor-
onal neutral hydrogen generated EUV and soft X-ray emissions in the terrestrial mag-
netosheath and cusp regions [5], and in the dayside Martian ionosphere [6]. Besides, 
there is a special emission mechanism in the cusp region of the Earth’s magnetosphere, 
the bremsstrahlung, also called the braking radiation, which happens when energetic 
electrons brake in an increasing magnetic field. Specific radiation properties in 
planetary space environment will be introduced in the following sections.

3.3 Radiations of planetary atmosphere

Planetary atmosphere, which originates from the planet, is controlled in dif-
ferent degrees by external sources (e.g., solar activity) and internal sources (e.g., 
surface and interior) and exhibits diverse complicated variations. Planetary 
atmosphere is composed of different gases of atomic, molecular, and ionic states, 
some are active under the effect of sun light and thermal radiation, some are noble 
compounds (e.g., noble gas), some are chemical active (react with other chemical 
compositions), and some are compressible gases. The spatiotemporal variations of 
the atmospheric composition depend on a variety of factors, and this determines 
the distribution of energy sources within the atmosphere, for example, deposition 
of solar radiations induce vertical heating, infrared thermal radiations induce cool-
ing, albedo difference due to land or sea results in horizontal distribution.
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Based on ground-based telescopes, circling or flyby spacecraft, using spec-
trometric and occultation technologies (solar occultation, star occultation or 
spacecraft occultation), the atmospheric composition can be determined. In 
combination of in-situ mass spectrometer, the composition of planetary atmosphere 
can be accurately determined (even the isotopic level). When sufficient observation 
samples are obtained, the spatiotemporal distribution of the active compounds in 
the atmosphere can be determined. Using more advanced spectrographic imaging 

Figure 3. 
Typical emission mechanisms in space environment. 𝜆𝜆, 𝜆𝜆1, and 𝜆𝜆2 are the wavelength of the incident or 
emitted photons. X and Y are atoms; XY is a molecule; X+, Yn+, or Y(n−1)+ is an positive ion; and e- and e* are 
electrons and photon electrons, respectively. X*, Y*, XY*, X+*, and Y(n−1)+* is an atom/molecule/ion in an 
excited state. Modified from reference [4]. From a to i, shown are emission mechanisms of resonant scattering, 
fluorescent scattering, photo-electron impact excitation, photodissociative excitation, photo-electron impact 
dissociative excitation, photo-ionization excitation, photo-electron impact ionization excitation, dissociative 
recombination, and collision charge-exchange excitation, respectively.
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technology, the atmospheric compositions and their spatiotemporal variations can 
be obtained simultaneously to investigate the atmospheric dynamics. The basis for 
optical remote sensing is the continuous spectrum and discrete spectrum of the 
planetary atmosphere.

The continuum spectrum of a planet, from X-rays to radio wavelength, origi-
nates from a combination of its surface, atmosphere, and space plasma. The con-
tinuum spectrum is composed of two parts. The first part is the reflected spectrum 
of the sunlight radiation (or from star for exoplanets) by the gases and particles 
in the atmosphere and by the surface with typical wavelengths ranging from UV 
to near infrared (0.4–10.0 μm), where the Sun and stars have their emission peak 
according to the Wien’s Displacement Law. The second part is the thermal radia-
tion spectrum originated from the radiative flux emitted by the planet with typical 
wavelengths ranging from infrared to microwave (>1–10 μm), depending on the 
body temperature. The continuum spectrum can be obtained by the summation of 
a diffuse blackbody mirror of the star spectrum and the blackbody of the thermal 
spectrum. Typical spectrum of a planet is shown in Figure 4. The spectrum for 
various planets are significantly different due to the factors such as the distant to 
the star, the atmospheric composition, and the temperature of the planet. At short 
wavelengths (mainly UV and visible), excitations of atoms, molecules, or ions in 
the atmosphere by the absorption of solar photons or the precipitation of particles 
generate emission spectrum (e.g., fluorescent emission and aurora phenomena). 
At radiofrequencies, the planetary emission is dominated by nonthermal processes 
occurring in planetary magnetic field, mainly by electrons gyrating in spirals along 
magnetic field lines, for example, the synchrotron emission in the case of Jupiter.

The discrete spectrum also contains two parts. On the one hand, emission lines 
are produced by atoms, molecules, and ions excited by a variety of physical and 
chemical processes. On the other hand, the absorption lines and bands are produced 
by atoms and molecules. The emission lines and absorption lines and bands are the 
‘fingerprint’ of atmosphere. Specific lines may indicate the existence of correspond-
ing chemical compounds or certain states of atoms and molecules. Therefore, such 
‘fingerprint’ is usually used to discovery and identify the specific composition 

Figure 4. 
Typical spectrum of a planet with atmosphere [7].
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and its amount in an atmosphere. For example, the discovery of H2O and CH4 in 
Martian atmosphere.

Specifically, the spatiotemporal distribution of certain tracer composition can be 
obtained through imaging at corresponding narrow band emission lines to investi-
gate planetary atmospheric dynamics. For example, the airglow emissions of atomic 
oxygen at 557.7 nm and 630.0 nm are widely used to investigate the dynamics of 
thermosphere and ionosphere and the auroral physics.

3.4 Radiations of planetary space plasmas

The X-ray and UV radiations from the Sun or the stars ionize the upper atmo-
sphere of a planet, the ions and electrons form a quasi-stable plasma distribution in 
planetary space (e.g., ionosphere, plasmasphere, radiation belt, and plasma sheet 
in the case of Earth) under the combined effects of solar wind, planetary rotation, 
intrinsic magnetic field, and other factors. Due to the different physical properties 
of planets, especially the different configurations of intrinsic magnetic field and 
the different distances to the Sun or the stars, the plasma composition, energy, 
distribution, and activity exhibit large distinction (Table 1). The most significant 
manifestation of such distinction is that, under the drives of solar wind distur-
bances and/or internal sources of planetary system, the plasmas exhibit global 
or local flow, acceleration, and loss, and thus resulting in mass transportation, 
energy deposition/dissipation processes with different temporal/spatial scales. The 
strong interaction between the plasmas trapped by planetary magnetic field and 
the atmosphere leads to the heating of upper atmosphere, generation of neutral 
wind, ionization of neutral gasses. Energetic ions and electrons that precipitate 
into the atmosphere remarkably modify the atmospheric chemistry. During the 
evolution process of a planet, interaction between plasma and neutral atmosphere 
significantly contributes to the isotopic fractionation. Bombardment of energetic 
particles on the surface of planet and its moons will obviously modify the surface 
property and change the albedo and spectrum characteristics. Traditional in-situ 
field and particle detections are difficult to capture the global view of the mass 
and energy transportation and are also hard to separate the temporal and spatial 
variations of the space plasmas, thus limited our understanding of the global 
coupling dynamics. Optical remote sensing is an important method to overcome 
these difficulties.

In geospace, in most of the magnetospheric region from the ionosphere to the 
magnetosheath, plasmas of different property have their characteristic optical 
radiation. Optical imaging at different wavelengths can be used to answer different 
scientific questions. For example:

1. EUV and soft X-ray emissions in the terrestrial magnetosheath and cusp 
regions. Collision charge exchange between the solar wind He2+ and 
geocoronal atomic hydrogen emits photons at 30.4 nm, and when the same 
process happens between the highly charged heavy solar wind ions (e.g., O7+ 
and C6+) and geocoronal atomic hydrogen photons in X-ray are emitted [5]. 
Global imaging of the magnetosheath at 30.4 nm and X-ray can visualize 
the three-dimensional structure of the bow shock and magnetopause, reveal 
the dynamical process of the entry of solar wind mass and energy into the 
magnetosphere through the solar wind-magnetosphere interaction, and 
provide accurate input for the prediction of near-Earth space weather.

2. EUV emissions in the magnetosphere. The plasmaspheric He+ and the 
 magnetospheric O+ resonantly scatter the sunlight at 30.4 nm 83.4 nm, 
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 respectively [3, 5, 8]. Global imaging of the plasmasphere and the magneto-
sphere at 30.4 nm and 83.4 nm can visualize the large-scale convection in the 
magnetosphere and reveal the dynamic variation terrestrial matter.

3. Auroral emissions in polar region. The auroral oval is a projection of solar 
wind/magnetosphere energetic particles along the geomagnetic field lines. The 
precipitated energetic particles collide with atoms, molecules and ions in the 
upper atmosphere and generate auroral emissions in wavelengths from X-ray 
to near infrared (the X-ray is generated by energetic electrons through brems-
strahlung) [8]. Multi-wavelength global imaging of the aurora oval can be used 
to establish the relationship between auroral activity and space mass/energy 
transportation, break through the limitations of in-situ measurements.

In the space environment of other planets, optical remote sensing can also be 
used to obtain the global image. For example:

1. The solar wind particles bombard the Mercury surface to sputter out sodium 
atoms. The following interaction with the solar wind generates a sodium 
exosphere and a sodium tail downstream of Mercury as long as 1,400 Mercury 
radii. Global images at the sodium doublet (589.0 nm and 589.6 nm) [9] can be 
used to investigate the solar wind sputtering process and the global dynamics 
sodium exosphere and tail.

2. Under the effects of solar radiations and energetic particles, photochemical, 
collision, and other processes excite EUV-UV–Visible emissions in Venusian at-
mosphere and ionosphere [10], which can be used to investigate the evolution 
characteristics of Venusian space environment and the interaction between 
solar wind and planet without intrinsic magnetic field but dense atmosphere.

3. In the case of Mars, the charge exchange collision between solar wind ener-
getic protons and neutral hydrogens emits photons at 121.6 nm, other emission 
mechanisms illustrated in Figure 3 can generate O+ 135.6 nm line, CO+ 2 UV 
emission bands, O 557.7 nm line, and other bands [6, 11], which can be used 
to investigate the interaction between solar wind and planet with local crustal 
magnetic field and thin atmosphere and the global view of Martian atmo-
spheric escape.

4. The mass released from the volcanic activity of Io, the first moon of Jupiter, 
forms a plasma torus at ~7 RJ (Jupiter radii) in Jovian magnetosphere. The Io 
plasma torus controls the dynamics of Jupiter’s magnetosphere and only opti-
cal imaging can capture its global evolution picture. Coordinated with X-ray 
and far UV imaging of Jupiter aurora, we can investigate how Io’s volcanic 
activity affects the magnetospheric plasma source, as well as the subsequent 
evolutions. The operational wavelengths include 673.1 nm (S+), 68.5 nm and 
953.1 nm (S2+) in Io plasma torus, sodium doublet in Jupiter’s neutral nebula, 
and the X-ray to far UV auroral emissions [12–15].

5. Like the Jupiter system, the space environment of Saturn system is also affect-
ed by geological activities of its moons. The rings and the water erupted from 
Enceladus are the main plasma sources in Saturn’s magnetosphere. Optical 
imaging of the O+, H2O+, and other water-based ions at EUV-UV wavelengths 
can be used to investigate how Enceladus’s geological activity affects the 
 magnetospheric plasma source, as well as the subsequent evolutions.
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3.5 Radiations of planetary geological activities

Geological activity of planet and its moons plays a key role in the evolution of 
the planetary system. Planetary geology research helps to understand the forma-
tion and evolution of celestial bodies in the solar system, deeply understand the 
evolution of the Earth, and reveal the origin and evolution of life on the Earth 
[16]. Compared with traditional geological techniques, such as sample analysis, 
analogy study, and simulation, remote sensing is of great importance to the 
acquisition of matter composition, structural characteristics, geological history 
and so on.

Measurements of the planetary thermal radiation intensity in infrared can be 
used to obtain the temperature and composition of planetary atmosphere and sur-
face, the thermal moment, and the property and evolution of planetary surface. The 
reflected spectrum in visible to infrared range can be used to obtain the chemistry, 
mineralogy (silicate) and regolith maturity of surface, the surface geology, and the 
degree of planetary differentiation. Imaging and spectrographic imaging at UV, 
visible and infrared can be used to obtain surface properties, relative age, surface 
action, and history of the planet. With a laser altimeter or a synthetic aperture 
radar, the surface relief can be acquired. In combination with gravitation data, the 
isostatic action can be inferred. With a UV–visible photometer, the matter property 
of planetary surface can be obtained, and the surface composition and differentia-
tion can be induced. The X-ray and gamma ray spectra can be used to measure the 
abundance of K, U, Th, and other elements that are bombarded by cosmic rays to 
induce the surface composition, property, thermal history, and differentiation of a 
planet. Finally, the combination of spectrum and imaging of different wavebands 
can provide a more detailed study of the geology, origin, and evolution history of 
planets.

3.6 Optical signals of life

As an important research field in planetary science, the astrobiology mainly 
focuses on the origin and evolution of life on Earth and other solar system bodies 
and the exploration of potential distribution and future trend of life in the universe. 
This field involves astronomy, geology, life science, and other disciplines, and the 
subjects include the origin and early evolution of life on Earth, search and study 
of habitable planets (environment) and potential life forms, co-evolution of life 
and environment, and artificial construction of habitable environment [16–18]. 
Search for signs of life on planet always lies in the core of planetary science. The 
most direct way, of course, is collection of life samples. However, no life sample was 
found on the extraterrestrial celestial bodies that human spacecraft have visited. 
Discoveries of water and methane on Mars have greatly stimulated the desire 
of search for life on Mars in the past decades. The paleolakes or paleo-oceans on 
the Mars and liquid oceans on Europa and Enceladus have pushed the search for 
extraterrestrial life to the core of planetary exploration.

Beyond the solar system, in places where human spacecraft cannot currently 
reach, such as exoplanets, the only reliable way to search for signs of life is remote 
sensing. For thousands of years, human beings have been trying to figure out 
whether they are the only intelligent beings alone in the universe. The 2019 Nobel 
Prize in physics awarded M. Mayor and D. Queloz who discovered a planet out-
side our solar system, known as an exoplanet, around a sun-like star in October 
1995. This discovery is a firm step for the exploration of life on exoplanets, and 
it opens the door to the detection of life on exoplanets. By the end of 2020, 4,374 
exoplanets have been discovered from 3,234 planetary systems. Exoplanet life 
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can only be detected by searching for signs of life, such as organic molecules or 
other indicators of the presence and activity of lives, on the planet’s surface or in 
the atmosphere. The detection of exoplanet atmosphere mainly relies on optical, 
UV and near-infrared bands, among which molecules related to life activities and 
relatively easy to be detected include O2, O3, H2O, CO2, CH4, NO2 and so on. Of 
course, even these signals are detected, other information such as the nature of 
the planet itself, the nature of the star, and the properties of planetary systems are 
needed to make a comprehensive decision. Currently, acquisition of these informa-
tion mainly relies on optical methods, such as radial velocity, microlensing, transit, 
and imaging [19].

The radial velocity method measures the change of the radial velocity of the 
host star caused by the gravitational force of the planet (a Doppler effect of light) 
to estimate the mass of the planet. Until the Kepler space telescope was launched, it 
was the most effective way to identify exoplanets, including Pegasus 51b, the first 
exoplanet orbiting a sun-like star.

The microlensing method measures the bending and amplification of light in 
gravitational fields to detect objects, including exoplanets. Gravitational lensing 
is an optical effect predicted by Einstein’s general theory of relativity. Since the fore-
ground object passing through the background star is accidental, the application of 
microlensing method is also accidental and unrepeatable, which has a great impact 
on the accuracy of exoplanet detection. This method is particularly sensitive to the 
detection of cold planets (i.e., large orbital radii).

The transit method detects exoplanets and determines their size by measur-
ing the periodically dimming brightness of a star due to the obscuration of the 
exoplanet in line of sight. By measuring the tiny changes in the brightness of the 
target star, we can detect telltale signs of an exoplanet in the light curve. The first 
exoplanet discovered by this method is HD 209458b, a hot Jupiter discovered in 
1999. With the launch of the Kepler space telescope, transit method has become 
the most prolix method of finding exoplanets. By the end of 2020, more than 3,100 
exoplanets have been discovered through transit method.

Direct Imaging, as the name suggests, is the direct optical imaging of exoplanets. 
For general main-sequence stars, the thermal radiation is mainly concentrated in 
the UV to near-infrared band and the peak value is between visible and UV band 
according to Stepan-Boltzmann’s Law and Wien’s Displacement Law. Exoplanets, 
however, do not have sufficient and stable energy sources, generally have low 
temperatures, and their thermal radiation is mainly concentrated in the infrared 
band. So, in the case of exoplanet with large radiation fluxes, we can distinguish two 
exoplanets by looking at infrared wavelength. On the other hand, the observation 
requires high performance instrument, a coronograph to block the light from the 
stars, and the observation system needs to be maintained at a very low temperature 
to reduce the infrared radiation from the instrument. In general, the direct imag-
ing method is used to search for young Jovian planets with temperatures between 
600 and 2000 K, and the peak wavelength of thermal radiation is between 1.4 and 
4.8 μm. Such planets are usually far enough from their parent star with large enough 
surface areas and radiation fluxes and can be observed in the near-infrared to mid-
infrared wavelengths.

The first exoplanet was discovered using the radial velocity method, but the 
method that discovered the largest number of exoplanets is transit. It is expected 
that transit will continue to be the most effective observation method in the next 
15 years. In order to further study the nature of the atmospheres of exoplanets, 
especially terrestrial exoplanets, both transit and direct imaging are necessary, and 
the latter will be the most promising observation method in the future.
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4. Strategy and plan in China

From the development of planetary science and planetary exploration for more 
than 400 years, no matter it is space-based or ground-based, optical remote sens-
ing has always occupied an important position. With the development of optical, 
mechanical and electronic technologies, the aperture of ground-based optical 
remote sensing equipment has developed from a few centimeters to tens of meters, 
and its resolution and sensitivity have been improved by orders of magnitude. 
Advanced remote sensing and in-situ detectors carried by various satellites have 
made our understanding of the planetary environment reach an unprecedented 
height. However, it is not hard to see that in this development process, especially in 
the six decades since the Space Age, there has been little presence or voice of China. 
With the deep space exploration becoming a national strategy, planetary explora-
tion and planetary science will become the hot spot of scientific and technological 
development in the future.

On January 6, 2019, the Degree Evaluation Committee of University of Chinese 
Academy of Sciences (UCAS) approved the plan to set up the planetary science as 
a first-level discipline, as proposed by the Institute of Geology and Geophysics, 
Chinese Academy of Sciences (IGGCAS). This plan has also been submitted to 
the State Council Academic Degrees Committee, who will finally approve the 
establishment of the new first-level discipline in China. This marks a new period of 
historical opportunity for the development of planetary science in China. On July 2, 
2019, sponsored by the College of Earth and Planetary Science, UCAS, colleges of 
27 universities established a China University Planetary Science Alliance in Beijing, 
targeted at establishing and improving the layout of planetary science discipline 
in China, perfecting the talent training and scientific research system of planetary 
science, promoting the coordinated development of planetary science and explora-
tion technology. Taking this as an opportunity and relying on China’s intensive deep 
space exploration missions to carry out ground-based, aero-based and space-based 
optical remote sensing of planetary space environment, it will greatly promote 
the integrated development of science and education in planetary science in 
China [20–23].

4.1 Lenghu observatory for planetary science

In order to support the science and education integration strategy of planetary 
science in China, it is urgent to build planetary observation facilities. Under the 
current situation, it is of practical significance to develop ground-based optical 
remote sensing for planetary science to quickly gather planetary research teams 
and train planetary exploration and scientific research personnel. At present, 
almost all optical telescopes in the world are built by astronomers, and there is no 
ground-based telescope dedicated to planetary science. It is imperative to build 
dedicated planetary telescopes in China. In China’s planetary exploration roadmap, 
ground-based optical observation is also clearly taken as the first step [20]. To sup-
port the development of planetary science exploration and research, the IGGCAS 
established the Lenghu Observatory for Planetary Science (IGGCAS-LOPS) in the 
Lenghu Astronomical Observation Base (LAOB) in 2020. Based on the high-quality 
site conditions of LAOB on Saishiteng Mountain, Lenghu Town, Qinghai Province 
[24], the IGGCAS-LOPS will build planetary optical telescopes to carry out ground-
based observation. The IGGCAS-LOPS currently has two meter-sized telescopes, 
the 0.8 m Planetary Atmosphere Spectroscopic Telescope (PAST) and the 1.8 m Io 
geological activity observatory (TINTIN).
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The IGGCAS-LOPS is located on the 4,200 m altitude platform of Saishiteng 
Mountain, about 80 km east of Lenghu Town (as shown in Figure 5). The envi-
ronmental monitoring data since 2018 show that the platform has excellent atmo-
spheric visibility and very good nighttime seeing [24], and it is one of the few sites 
in the world that can be used for optical imaging of planetary space environment. 
The site is also an astronomical observation base built by Qinghai Province with 
great efforts. Astronomy and planetary science will become the two core business 
cards of the base.

4.2 Telescopes at IGGCAS-LOPS

The two telescopes currently planned for the IGGCAS-LOPS are PAST and 
TINTIN. The PAST (shown in Figure 6) was a 0.8 m UV–visible telescope built with 
the support of the strategic priority research program of CAS, the near space sci-
ence experiment system, and was developed by the Changchun Institute of Optics, 
Fine Mechanics and Physics, Chinese Academy of Sciences. The main scientific 
objectives of the telescope are the orbital motion characteristics, atmospheric 
and plasma distribution characteristics, and spectral radiation characteristics of 
the celestial bodies within the orbit of Jupiter in the solar system. The telescope 
is planned to operate on both a balloon platform and a ground station. Through 

Figure 5. 
Basic geographic information for the IGGCAS-LOPS in the LOAB (modified from reference [24]).
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comprehensive consideration, the key parameters of the system are determined. 
The aperture of the telescope is 0.8 m, the operating waveband is 280–680 nm 
(multiple narrowband filters), the field of view is 15′, the angular resolution is 0.5″. 
The telescope was also equipped with a Jupiter coronagraph, which will be able 
to greatly attenuate the intense radiation from Jupiter itself and observe the faint 
atmosphere and plasma radiation around the planet. The PAST is scheduled to be 
installed at the station in June 2021. Upon installation, observations of the Jupiter 
system will begin immediately. At the same time, it can also carry out observations 
of comets and small celestial bodies.

Another telescope, TINTIN, will be purchased from Germany company Astelco. 
The aperture of TINTIN is 1.8 m, with a spectral range of 392–1100 nm (as shown in 
Figure 7). The telescope is equipped with a scientific camera, a Jupiter coronagraph, 
and an echelle spectrograph. The telescope’s core goals are to monitor Io’s atmospheric 
escape from volcanic activity and the evolution of Io’s plasma torus. The telescope will 
also be equipped with a coronagraph with a pixel resolution of 0.25″ and a FOV of 5′. 
The multi-scale monitoring of the evolution of mass and energy from Io’s geological 
activity to plasma torus in Jupiter’s space will be performed for the first time. The 
observations can be used to investigate how a moon’s geological activity couples with 
the planetary space environment, in combination with current/future international/
China’s Jupiter exploration programs. The construction of the observation tower and 
dome will begin in summer of 2021. The overall construction of TINTIN project will 
be completed by the end of 2022, when scheduled observations will also begin.

The routine observations of the two telescopes will mainly be realized by remote 
control, which is locate at IGGCAS, Beijing. At the same time, we will also set 
offices in the Lenghu Town with the help of local government to support the regular 
and irregular operation and maintenance of the telescopes. In response to the 
large amount of data flow of the telescopes, two data centers will be established at 
IGGCAS and Lenghu Town, respectively. Both data centers will be connected to the 
server of the telescopes via high-speed networks to ensure that the observations can 
be timely delivered to the scientific teams to achieve timely scientific impact.

Figure 6. 
Illustration of PAST.
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5. Optical remote sensing images of planetary space

In this section, optical remote sensing images of planetary space environment 
will be briefly introduced to demonstrate different applications on different planets. 
Not all the planets in the solar system will be introduced here, only the Earth and 
Jupiter are taken as examples. For other planets, one can refer to Section 3 for 
detailed information.

Imaging of the Earth’s ionosphere, aurora, and plasmasphere have been devel-
oped for decades. Figure 8a-d shows examples of the most recent ionospheric image 
from the Global-scale Observations of the Limb and Disk UV spectrograph (GOLD 
UVS), the auroral image in far UV from the wide-angle auroral imager onboard the 
Chinese Fengyun-3D satellite (Fengyun-3D WAI), and the plasmaspheric images at 
30.4 nm from the Extreme Ultraviolet Imager onboard the Inner Magnetosphere-
Aurora Global Explore (IMAGE EUVI) and the Moon-based Extreme UV Camera 
onboard the Chinese Chang’e-3 lunar lander (Chang’e-3 EUVC), respectively. 
Principles of these optical emissions have been introduced in Section 3.4. The 
nighttime ionospheric disk image can be used to investigate the structure and 

Figure 7. 
Illustration of TINTIN.
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evolution of equatorial ionization anomaly [25]. The auroral image can be used to 
manifest the thermal plasma transportation in the Earth’s magnetosphere and to 
denote the substorm activity in Earth’s space [26]. The plasmaspheric images can 
be used to characterize the large-scale convections in the Earth’s magnetosphere 
[27, 28]. When the Chinese Academy of Science (CAS) and European Space Agency 
(ESA) collaborative science mission – Solar wind Magnetosphere Ionosphere 
Link Explorer (SMILE) – is launched in the following years, X-ray imaging of the 
magnetosheath and polar cusp region will be realized. Until then, comprehensive 
investigations with all the optical remote sensing images will significantly enhance 
our understandings on the global dynamics of the Earth’s magnetosphere.

Figure 9 shows examples of optical remote sensing images in Jovian magneto-
sphere. The major plasma source in the Jovian magnetosphere is the Io plasma torus, 
while the major driver for fundamental plasma processes is planetary rotation, very 
different from the case in terrestrial magnetosphere. Neutral gases released during 
the volcanic eruptions on Io escape into Jupiter’s space. These gases are then ionized 
by solar radiations. Finally, the ions are trapped by the strong magnetic field of Jupiter 
and form a plasma torus due to the fast planetary rotation, as shown at the bottom of 

Figure 8. 
Optical remote sensing images of Earth’s space environment. Shown are (a) nighttime ionospheric disk image 
at OI 135.6 nm obtained by GOLD UVS (adapted from reference [25]), (b) auroral disk image at N2 LBH 
band obtained by Fengyun-3D WAI, and plasmaspheric images at 30.4 nm obtained by (c) the IMAGE EUVI 
and (d) the Chang’e-3 EUVC.



Recent Remote Sensing Sensor Applications - Satellites and Unmanned Aerial Vehicles (UAVs)

74

Figure 9, in which the Io plasma torus is imaged at 673.1 nm emitted by singly ionized 
sulfur. The planetary rotation-driven plasma processes then transport the plasmas 
into the polar region along dipolar magnetic field lines to form the most powerful 
aurorae in the solar system, as shown at the top of Figure 9, in which the UV aurora 
is observed by the Hubble Space Telescope (HST) [29]. Coordinated observations of 
the Io plasma torus (e.g., the two telescopes at LOPS) and the Jovian aurorae (e.g., the 
HST or the Juno spacecraft) in different temporal and spatial scales will help reveal 
the mass and energy transportation patterns in Jovian space environment.

6. Summary and outlook

As we all know, forward-looking and feasible scientific objectives are the 
core factors to ensure that a research project can achieve high scientific output. 
Currently, the IGGCAS-LOPS is preparing a scientific team to set scientific objec-
tives for future observations. In order to ensure that the scientific team is cutting-
edge and experienced, the team will be composed of well-known domestic and 
international planetary scientists, whose research fields cover planetary space 
physics, planetary geology, astronomical observation and optical remote sensing 

Figure 9. 
Optical remote sensing images of Jupiter space environment. The top panel shows UV auroral images captured by 
the Hubble space telescope (modified from reference [29]). (left) the view from earth orbit and (right) a projection 
to the northern polar region. The middle and bottom panels show images of the global structure of the Io plasma 
torus at S+ 673.1 nm and Na 589.0 nm (credit: University of Colorado/Catalina Observatory/N. Schneider).
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technology. Through regular scientific team meetings, the telescope’s observation 
schedules are adjusted in time, with particular attention paid to observation objects 
with scientific timeliness and social impact. In addition, the international team will 
organize special sessions at major international conferences, such as the annual 
meetings of the American Geophysical Union and the European Geosciences Union, 
to expand the international influence of the IGGCAS-LOPS.

The PAST is expected to begin regular observations in June 2021, and the 
TINTIN will begin regular observations in 2023. The long-term coordinated obser-
vations with PAST and TINTIN will ensure the investigation of the evolution of Io 
plasma torus in Jupiter’s magnetosphere at different temporal and spatial scales. 
Apart from the primary object of Jupiter system, the secondary object is Mars. The 
airglow of Martian atmosphere/ionosphere in near UV and visible will be imaged 
according to Mars phase. Both telescopes can also be used to monitor comets, 
asteroids, and other celestial bodies in the solar system.

In the future, we will further upgrade the performance of the telescopes and add 
new instruments to expand the observable targets of the telescope. Compared with 
other astronomical survey telescopes at Lenghu, the PAST and TINTIN can be consid-
ered as precision photometric telescopes, which can cooperate with other astronomical 
survey telescopes at Lenghu to track and observe their survey targets. The diameter of 
the two telescopes is also large enough to observe exoplanets, and the radial velocity and 
transit methods can be used to carry out the search and identification of exoplanets.

In addition to providing first-hand data from autonomic planetary observations 
for related scientific research, the IGGCAS-LOPS is also an important scientific and 
educational practice base. Considering that the Qaidam Basin near Lenghu is the 
largest Mars-like geomorphologic environment in the world, the IGGCAS-LOPS and 
its surrounding geographical environment will become a comprehensive practice site 
for planetary geology and planetary space science. In July 2020, the College of Earth 
and Planetary Sciences, UCAS and the government of Haixi Mongolia and Tibetan 
Autonomous Region of Qinghai Province have signed an agreement on a planetary 
science practice base. Upon the completion of the telescopes, the IGGCAS-LOPS will 
provide important scientific practice support. In addition, the IGGCAS-LOPS is also 
considering building planetary practice bases with other universities.

In the long run, there is still a lack of comprehensive earth and planetary space 
environment observation station in the vast western region of China. Based on the 
IGGCAS-LOPS, further deployment of atmospheric, ionospheric, geomagnetic, 
seismic, and other observation equipment is planned. The excellent atmospheric 
optical conditions and extremely low light pollution at LAOB are very suitable for 
the monitoring of upper atmospheric glow in the mid-latitude region and the study 
of the dynamics of the middle and upper atmosphere. At the same time, together 
with ionospheric vertical detection (altimeter, radar, etc.) and geomagnetic field 
detectors, we can comprehensively study the dynamics of atmospheric and iono-
spheric vertical coupling and cooperate with a series of stations in eastern China to 
form a more complete coverage of China’s space environment.
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Chapter 5

Image Enhancement Methods for
Remote Sensing: A Survey
Nur Huseyin Kaplan, Isin Erer and Deniz Kumlu

Abstract

The quality of the images obtained from remote sensing devices is very impor-
tant for many image processing applications. Most of the enhancement methods are
based on histogram modification and transform based methods. Histogram modifi-
cation based methods aim to modify the histogram of the input image to obtain a
more uniform distribution. Transform based methods apply a certain transform to
the input image and enhance the image in transform domain followed by the
inverse transform. In this work, both histogram modification and transform domain
methods have been considered, as well as hybrid methods. Moreover, a new hybrid
algorithm is proposed for remote sensing image enhancement. Visual comparisons
as well as quantitative comparisons have been carried out for different enhance-
ment methods. For objective comparison quality metrics, namely Contrast Gain,
Enhancement Measurement, Discrete Entropy and Average Mean Brightness Error
have been used. The comparisons show that, the histogram modification methods
have a better contrast improvement, while transform domain methods have a better
performance in edge enhancement and color preservation. Moreover, hybrid
methods which combine the two former approaches have higher potential.

Keywords: Remote Sensing, Image Enhancement, Histogram Modification,
Transform Domain Methods, Image Decomposition

1. Introduction

Widely used remote sensing applications, such as mapping, classification, soil
moisture detection, target detection and tracking, etc. require high quality images.
To meet the increasing need for higher quality images, image enhancement
methods which improve the contrast and edge information of the input image are
applied to the raw input images.

Images provided by remote sensing devices have to be enhanced by special
methods instead of standard enhancement methods. Since applications like classifi-
cation, target detection and target tracking are automated applications, the original
reflectance values of the input image should be preserved as much as possible,
which makes enhancing the remotely sensed image a challenging problem [1, 2].
Remote sensing image enhancement techniques should improve the visibility, con-
trast and edge information of the image while preserving the original reflectance
values.

In recent years, many remote sensing image enhancement methods have been
developed to increase the quality of these images. Image enhancement methods can
be divided into two main groups as direct and indirect methods [3–5]. Direct
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methods aim to enhance the images by using a defined contrast measure [6–9],
while the indirect methods try to improve the dynamic range of the images without
a contrast measurement [10–15].

In direct methods, contrast measurements can be global or local. In general, local
measurements have better results [9]. Dhnawan et al. [6] proposed a local contrast
function based on the relative difference between a central region and a neighbor-
ing region for a given pixel. Beghdad and Negrate [7] introduced an improvement
of [6] by defining the contrast with the consideration of edge information.
Laxmikant Dash and Chatterji [8] proposed an adaptive contrast enhancement
method where contrast amplification is based on the brightness estimated by local
image statistics. Cheng and Xu [9] proposes a another adaptive enhancement
method based on the fuzzy entropy principle and fuzzy set theory.

The direct methods have a low computational cost but accordingly show a poor
image enhancement performance. The state of art methods are generally indirect
methods which provide better enhancement performances compared to the direct
methods. The indirect methods can be divided into two sub categories as
histogram modification based methods [3, 4, 16–22] and transform domain
methods [1, 2, 21, 23–25].

The simplest histogram modification method is Histogram Equalization (HE)
[16]. In this method, the histogram distribution of the input image is aimed to have
uniform distribution. This method is able to improve the contrast. However, the HE
based enhanced images generally suffer from undersaturation or oversaturation,
which results in poor quality images. To fix this problem, more efficient histogram
modification methods have been proposed in recent years such as Bi-Histogram
equalization (BHE) [17] based and Recursive Mean-Separate histogram equalization
(RMSHE) [18]. In both methods, the original histogram of the input image is
divided into sub-histograms. After obtaining the sub-histograms, separate histo-
gram equalizations are applied to these sub-histograms. Finally, the divided histo-
grams are merged to obtain the enhanced image [17, 18]. The images obtained by
these methods have higher quality compared to the classical HE method, however
the undersaturation and oversaturation problems are not resolved. 2-D histogram
based methods have also been proposed for image enhancement [19, 20]. These
methods provide better results than the methods aforementioned, however the
computational cost of 2-D histogram creation is too high, which makes these
methods not suitable for automated applications. Moreover, there are faster
methods with higher enhancement performances. Another method proposed in this
sub-category is Adaptive Gamma Correction with Weighting Distribution
(AGCWD) method [4]. In this method, a weighted distribution of the original
histogram of the input image is obtained followed by Gamma correction. The most
important benefit of this method is its ability to preserve the original reflectance
values which are needed for remotely sensed image enhancement, however this
method too suffers from saturation artifacts. Moreover, the edge information is lost
especially in the brighter regions [2, 21]. Histogram modification methods have a
good performance if the histogram of the input image is smoother. Moreover,
these group eliminate the lower-scale details [22]. The histogram modification
methods have a higher performance for low resolution images and images
containing larger-scale details.

Transform domain based image enhancement methods use certain transforma-
tions to decompose the image into subbands and improve the contrast by modifying
specific components [1, 2, 23–25]. The first method in this category uses a combi-
nation of discrete wavelet transform and singular value decomposition (DWT-
SVD) [23]. In DWT-SVD method, first discrete wavelet transform (DWT) is
applied to both the input image and to the equalized input image by a general
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histogram equalization method. Since the details and edge information are kept in
high pass sub bands, the method concentrates on the approximation sub bands.
After obtaining both approximation sub bands, a Singular Value Decomposition
(SVD) is applied to the approximation sub bands of the input and the equalized
images. The singular value calculated from the input image is weighted by the
singular value of the equalized image to obtain an enhanced singular value. Finally,
inverse SVD followed by inverse DWT are applied to obtain the enhanced image. A
more recent transform domain method uses the Bilateral Filtering (BF) for image
enhancement [1]. The input image is decomposed into its approximation and detail
layers by a multiscale BF. Finally, the obtained detail layers are added to the original
image with a weighted manner to obtain edge enhanced image. Another method is
the Remote Sensing Image Enhancement based on the hazy image model [2]. In this
method, the commonly used hazy image model [26] is adapted for image enhance-
ment applications. Here, the two unknown parameters of the hazy image model,
namely airlight and transmission, are estimated with simple statistical properties of
the input image to obtain the enhanced image. A more recent work is based on
Robust Guided Filtering [24]. In this method, a robust guided filter described in
[27] is applied to the input image and the difference between the original image and
filtered image is considered as a detail sub-band as in DWT. The detail sub-bands
are amplified and added to the original image to obtain the final enhanced image.
Although they show a better performance, the methods in this group suffer from
blocking artifacts or, in some cases, they are unable to enhance the image globally
[22]. The overall performance of transform domain methods is better than the
histogram modification methods. Moreover, the performance of this group of
methods is significantly better for high resolution images and images containing
both low and high scale details. There are hybrid methods combining histogram and
transform methods. One hybrid method is based on a Regularized Histogram
Equalization and Discrete Cosine Transform (RHE-DCT) [25]. In this technique,
first a global enhancement is applied to the input image by a Regularized Histogram
Equalization (RHE). Here, the equalization is made by using the sigmoid function.
After obtaining the equalized image, Discrete Cosine Transform (DCT) is applied to
the equalized image to obtain DCT coefficients. After this, the coefficients are
modified to locally improve the contrast of the image. Finally, inverse DCT is
applied to obtain the enhanced image.

In addition to all these methods, a hybrid algorithm combining [1] and HIM [2]
methods has been proposed. In this proposed hybrid algorithm, the BF method
described above is applied to the image to obtain a global enhanced image. Then,
the HIM method is applied block by block to this globally enhanced image to obtain
a local enhancement.

2. Remote sensing image enhancement methods

The quality of remote sensing images depends upon numerous factors such as
noise, illumination or equipment conditions during the acquisition procedure [28].
The data obtained by optic sensors (multispectral, hyperspectral, panchromatic
sensors) are degraded by atmospheric effects and instrumental noises, namely
thermal (Johnson) noise, quantization noise and shot (photon) noise which cause
corruption in the spectral bands by varying degrees [29]. On the other hand, SAR
images (radar sensors), which offer many benefits such as working 7/24 and in all
weather conditions, suffer from multiplicative speckle noise [28].

These degradations reduce the contrast in the resulting images and can highly
affect human perception or the accuracy of computer assisted applications [25].
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Thus, contrast enhancement, besides noise removal, constitutes a primary step for
various applications of remote sensing image processing for better information
representation and visual perception.

2.1 Adaptive gamma correction with weighting distribution (AGCWD)

In this method, a weighting distribution of the original histogram of the input
image is obtained followed by Gamma correction.

First an Adaptive Gamma correction is made to the input image as:

T lð Þ ¼ lmax
l

lmax

� �γ

¼ lmax
l

lmax

� �1�F lð Þ
(1)

Here, l is the intensity value of the current pixel and lmax is the maximum
intensity value of the input image. γ is a varying adaptive parameter which is equal
to 1� F lð Þ, and F lð Þ is the cumulative distribution function. The reason to use
cumulative distribution function for adaptive Gamma correction is to guarantee the
Gamma parameter to follow the changes between the pixels of the image.

In order to avoid the adverse effects, a weighting distribution function is used so
as to slightly modify the histogram as follows:

f lð Þ ¼ f max
f lð Þ � f min

f max � f min

� �α

(2)

Here, α is the adjustment parameter, f is the probability density function and
f max and f min are the maximum and minimum of the f . Using (2), the modified
cumulative distribution function F is evaluated by:

Fω kð Þ ¼
Pk

l¼0 fω lð ÞP
fω

(3)

where

X
fω ¼

Xlmax

l¼0
fω lð Þ (4)

Finally, the Gamma parameter of (1) is modified as:

γ ¼ 1� Fω lð Þ (5)

The modified Gamma parameter and Eq. (1) is used to obtain the enhanced
image.

2.2 Discrete wavelet transform and singular value decomposition based
method (DWT-SVD)

In this method, a combination of discrete wavelet transform (DWT) and singu-
lar value decomposition (SVD) are used for enhancement purposes. In the classical
one-dimensional (1D) DWT, the input signal is decomposed into its low (L) and
high (H) frequency components. In order to perform a two-dimensional (2D)
transform, the 1D DWT is applied to the row of the images followed by the columns
of the image, or vice versa. After applying the 2D DWT, four different subbands are
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obtained, namely LL, LH, HL, and HH. The approximation subband LL contains
low frequency components, while the diagonal subband HH contains high fre-
quency components for both rows and columns of the image. The horizontal and
vertical subbands LH and HL contains low frequency component for the rows and
high frequency components for the columns and vice versa, respectively.

SVD is used to decompose a matrix into two orthogonal square matrices (U and
V) and a diagonal matrix containing the singular values Σð Þ as shown:

I ¼ UIΣIVT
I (6)

The enhancement method firstly applies a general histogram equalization to the
input image I to obtain equalized image ~I. Then discrete wavelet transform is
applied to both the input and equalized images so as to obtain the subbands LLI,
LHI, HLI, HHI and LL~I, LH~I, HL~I, HH~I, respectively.

Since the rough information about the images are present in the LL subbands,
SVD is applied to these subbands to obtain the singular values. As aforementioned,
the singular values contain the intensity of the image. Therefore, equalization is
made for the singular values. Here, the Σ components of the LLI and LL~I is weighted
as to obtain a correction coefficient (ξ).

ξ ¼ max ΣLL~I

� �

max ΣLLIð Þ (7)

where ΣLL~I is the singular value matrix of the equalized image derived from its
LL~I subband and ΣLLI is the singular value matrix of the input image obtained from
its LLI subband. After determining the correction coefficient, the corrected singular
value matrix Σ is obtained as:

Σ ¼ ξΣLLI (8)

Here, Σ is the corrected singular value matrix. The new LL subband is
constructed as:

LL ¼ ULLIΣV
T
LLI

(9)

After constructing the new LL subband, the enhanced image is obtain by
performing the inverse DWT to this new LL subband and detail subbands of the
original image.

2.3 Regularized histogram equalization and discrete cosine transform based
method (RHE-DCT)

This method basically consists of two steps: Regularized Histogram Equalization
(RHE) followed by Discrete Cosine Transform (DCT). The first one performs a
global contrast enhancement and the second one enhances the local contrast.

RHE aims to perform a histogram equalization to the input image by a
regularized manner as:

f kð Þ ¼ s kð Þ 1þ h kð Þð Þ (10)

Here f kð Þ is the probability density function of the equalized histogram, h kð Þ
is the normalized histogram of the input image, s kð Þ is the sigmoid function
defined as:
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s kð Þ ¼ 1
1þ e� k�1ð Þ �

1
2

(11)

By this modification, the minimum value of the equalized image is assured to be
equal to 0. The f kð Þ obtained is normalized as:

f kð Þ  f kð ÞPK
t¼1f tð Þ (12)

Here K is the number of the gray levels. The cumulative distribution function
F kð Þ is obtained as:

F kð Þ ¼
XK
t¼1

f tð Þ (13)

and new gray levels are evaluated as:

y kð Þ ¼ F kð Þ ymax � ymin

� �þ ymin

� �
(14)

Finally the equalized image is obtained by using a standard lookup table based
HE procedure to obtain Yeq.

In order to perform a local enhancement, the DCT coefficients of the globally
equalized image is used. For this purpose, first the DCT is applied to the equalized
image as:

C u, vð Þ ¼ chcω
XM�1

k¼0

XN�1

l¼0
Yeq k, lð Þ cos 2kþ 1ð Þhπ

2M

� �
cos

2lþ 1ð Þωπ
2N

� �
(15)

ch and cω are computed by:

ch ¼

ffiffiffiffiffi
1
M

r
, h ¼ 0

ffiffiffiffiffi
2
M

r
, 1≤ h≤M� 1

8>>>><
>>>>:

(16)

cω ¼

ffiffiffiffi
1
N

r
, ω ¼ 0

ffiffiffiffi
2
N

r
, 1≤ω≤N � 1

8>>>><
>>>>:

(17)

The lower absolute values of C should be adjusted to perform local enhancement
while higher values should be maintained to avoid drastic changes. By this way new
DCT coefficients are obtained as:

D0 h,wð Þ ¼ D h,wð Þ, D h,wð Þ>0:01D 0, 0ð Þ
αD h,wð Þ, D h,wð Þ≤0:01D 0, 0ð Þ

�
(18)

Here α is the adjustment parameter and is automatically determined as:

α ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
std Yglobal
� �� �� std Xð Þ= 2B � 1

� �q
(19)
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After obtaining the new DCT coefficients, inverse DCT is applied to obtain the
final enhanced image.

2.4 Bilateral filtering based method (BF)

This method is basically based on multiscale bilateral filtering. In classical
bilateral filtering, the filter output can be determined as:

BF I½ � ¼ 1
W

� �X
q∈ s

Gσs p� qk kð ÞGσr Ip � Iq
�� ��� �

Iq (20)

where

W ¼
X
q∈ s

Gσs p� qk kð ÞGσr Ip � Iq
�� ��� �

(21)

Here σs and σr are the Gaussian kernels controlling the spatial and range of the
input image. Ip is the intensity value of the pixel at location p, Iq is the intensity
value of the neighboring pixels within the window S at location q. The difference
between the input image and the filter output gives the detail layer of the image.

D1 ¼ I � BF I½ � (22)

Here, D1 is the first detail layer of the image. In order to carry on the decompo-
sition, bilateral filtering is applied again to the filter output. Here, to guarantee the
shift invariance, σs is doubled and σr is halved. In order to obtain level detail layer,
two adjacent filter outputs are subtracted as:

D j ¼ BF j I½ � � BF j�1 I½ � (23)

Here, j corresponds to the decomposition level.
In order to reconstruct the input image from an L levels of decomposition, one

can simply add all detail layers to the final filtering output as:

I ¼
XL
j¼1

D j I½ � þ BFL I½ � (24)

Bilateral filtering based method firstly decomposes the input image by (24).
After obtaining the detail layers for L levels. The details are amplified and added

directly to the original image as:

IE ¼ BFL I½ � þ
XL
j¼1

ω jD j I½ � (25)

Here, IE is the enhanced image and ω j are the weighting factors for the
corresponding detail subbands D j I½ �.

The parameter determination is very important in order to achieve a good
enhancement result. Therefore, σr, σs, and S parameters of the bilateral filter, as well
as the decomposition level and weights have to be determined. To achieve this, a
comparison between the enhancement results obtained by differing parameter are
made. As a result of this comparison, σr is chosen as 0.6, σs is chosen as 1.8, S is
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chosen as a window sized 5� 5, the decomposition level is chosen as 4, and the
weights (ω1, ω2, ω3, ω4) are chosen as 2 [1].

2.5 Adaptive cuckoo search based enhancement algorithm (ACSEA)

In this method, the image enhancement is performed by optimizing a predefined
enhancement kernel [30]. The enhancement process of ACSEA is given below:

IE i,jð Þ ¼ μLi,jð Þ
� �α

þ Fe
i,jð Þ Ii,j � cLμ i,jð Þ

� �
(26)

where

Fe
i,jð Þ ¼ k

μG

σLi,jð Þ þ b
(27)

Here, F i, jð Þð Þe is calculated by the mean value and standard deviation of the image
and called as the image enhancement function. i, jð Þ is the location of the current
pixel. σ i, jð Þð ÞL is the local standard deviation and μ i, jð Þð ÞL is the local mean value
calculated in a window sized N �N centered at i, jð Þ, while μG is the global mean
value. The method focuses on optimizing the parameters a, b, c, kð Þ, where
0≤ a≤ 1:5, 0≤ b≤0:5, 0≤ c≤ 1, and 0:5≤ k≤ 1:5.

In order to optimize the enhancement formula given in (26), a chaotic initiali-
zation is made and an objective fitness function is used as given below:

F IEð Þ ¼ log log E I8E
� �� �þ e

� �Ne I8E
� �

MN
eH 0ð Þ (28)

where

I8E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇xIEð Þ2 þ ∇yIE

� �2q
(29)

In (28), E :ð Þ is the expected value operator and H :ð Þ is the entropy operator. In
(29), ∇x and ∇y are the gradients. I8E is the Sobel edge detected image.

In order to optimize the enhanced image IEð Þ, the objective function given in (29)
is optimized with a chaotic initialization so as to obtain the best enhancement result.

2.6 Hazy image model based enhancement (HIM)

This method is based on the commonly used hazy image model [26, 31].

I ¼ Jtþ A 1� tð Þ (30)

where I is the input image, A is the airlight coefficient, t is the transmission map
and J is the haze free image. In order to obtain haze free image J, A and t have to be
estimated.

For dehazing purposes airlight coefficient is generally estimated from the
brighter pixels of the input image. For enhancement, instead of the brighter pixels
the mean of the image is assumed to be the airlight coefficient [2].

A ¼ 1=KL
XK

k¼1

XL

l¼1
I k, lð Þ (31)
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I is the input image with dimensions of K � L and I k, lð Þ is the intensity value of
the pixel at location k, lð Þ. In general, in dehazing algorithms, the transmission map
is estimated using the airlight coefficient and normalized input image. The normal-
ized image is obtained by estimated airlight coefficient. Following the similar man-
ner, this method also normalizes the image with the estimated airlight and estimate
the transformation as:

t ¼ 1� ω
1
A

� �
(32)

Here, ω is an arbitrary coefficient. The coefficient can be determined as the
standard deviation σð Þ of the input image [2]. Finally, the enhanced image is
obtained by simply taking out J out of (30) as:

J ¼ I � A 1� tð Þ
t

(33)

2.7 Robust guided filtering based method (SDF)

This method uses the Robust Guided Filtering described in [27] which uses
two guidance images namely dynamic guidance and static guidance. In order
to perform Robust Guided Filtering, the following cost function should be
minimized:

∈ u ¼
X
i

ci ui � f i
� �2 þ λΩ u, gð Þ (34)

Here, f is the input image, u is the dynamic guidance and g is the static guidance.
λ is the regularization parameter and ci ≤0 is the confidence level. The regularizer
Ω u, gð Þ can be defined as [27].

Ω u, gð Þ ¼
X
i, j∈N

ϕμ gi � g j

� �
φv ui � u j
� �

(35)

where

φv xð Þ ¼ 1� φv xð Þ
v

and ϕμ xð Þ ¼ e�μx
2

(36)

N is the neighborhood size which is 8� 8, while μ and v are parameters
controlling the smoothness level.

In order to perform image enhancement, a multi-scale decomposition based on
Robust Guided Filtering similar to the multi-scale bilateral filtering is proposed in
[1]. The filtering output is considered as the first approximation layer of the original
image as:

A1 ¼ SDF I½ � (37)

Here, I is the input image, A1 is the first level approximation layer and SDF
operator stands for Robust Guided Filtering. In order to obtain further levels of
approximation layers, SDF is applied to previous approximation layer as:

Al ¼ SDF Al�1½ � (38)
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with initial value A1 ¼ I. The difference between two adjacent approximation
layers give the detail layer of the corresponding level as:

Dl ¼ Al � Al�1 (39)

One can obtain the original image by simply adding the detail layers to the final
level approximation layer.

I ¼
XL
j¼1

D j þ AL (40)

SDF based enhancement firstly decomposes the input image by using (40).
After obtaining the detail layers, the details are amplified and added directly to

the original image as:

I ¼
XL
j¼1

ω jD j þ AL (41)

The decomposition level and weights are determined by comparing different
number of levels and weights. The best results for different images are applied for
all images. Therefore, the decomposition level is chosen as 4. Moreover, the weights
ω1,ω2,ω3,ω4ð Þ are chosen as 2 [24].

2.8 Hybrid bilateral filtering and hazy image model method (BF-HIM)

The BF based enhancement method [1] has a good enhancement, however the
color distortion is present, whereas the HIM method [2] has a good color preserva-
tion with a lower enhancement performance. Therefore, a hybrid method combin-
ing these two methods can be a good candidate to obtain a good performance for
enhancement along with a good color preservation.

The hybrid method first applies the multi-scale bilateral filtering given in (24) to
the input image to obtain the bilateral filtering outputs and detail layers. Since, we
will add the HIM model, the decomposition level is chosen as 2. Then, the detail
layers are amplified as given in (25) to obtain the prior enhancement result. The
prior enhanced image is divided into non overlapping blocks. HIM method given
above is applied to these blocks separately to perform a local enhancement. Finally,
the enhanced blocks are combined to construct the final enhancement result.

Here, the choice of the block size is important. The lower block size is expected
to have a better local enhancement result. Therefore, the block size is chosen as
3� 3.

3. Evaluation criteria

It is possible to determine the performance of an image enhancement method
visually. However, a visual conclusion may not be objective. Therefore, in order to
make objective comparisons, evaluation criteria has been developed. Here, the
choice of criteria is also important. It is already known that every criterion can give
an idea about one property of the resulting image. Therefore, criteria for different
properties of the image should be used. Moreover, since each criterion gives an idea
for a certain property of the image, all criteria should be considered together to have
an overall idea of the image. The criteria presented below gives an idea for the
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performance of the enhancement methods, however all should be considered
together and along with visual results.

3.1 Contrast gain (CG)

The first criteria to measure the performance of enhancement method is Con-
trast Gain (CG) [32]. This criterion focuses on the contrast improvement of the
image as follows:

CG ¼ C Yð Þ
C Xð Þ (42)

where C is average of the local Michelson contrast, which is calculated for 3x3
sized windows within an image and given as:

C ¼ max � min
max þ min

(43)

The higher CG value indicates that the contrast improvement is better.

3.2 Enhancement measurement (EME)

This criterion also considers the contrast improvement within the enhanced
image and defined by following [22]:

EMEα,k1,k2 φð Þ ¼ 1
k1k2

Xk1
l¼1

Xk2
k¼1

α
lk,lmax φð Þ

lk,lmin φð Þ þ c

 !α

ln
lk,lmax φð Þ

lk,lmin φð Þ þ c
(44)

Here the image I is split into k1 � k2 sized blocks. I k, lð Þ
max and I k, lð Þ

min are the
maximum and minimum values within the block, while c is a small constant to
avoid division by zero. EMEα,k1,k2 φð Þ is called the Enhancement Measurement of
Entropy with respect to transform φ.

The higher EME value indicates that the contrast improvement is better.

3.3 Discrete entropy (DE)

Discrete entropy of an image can be evaluated as:

DE ¼ �
XK

k¼1
p xkð Þ log p xkð Þ (45)

Here, p xkð Þ is the probability of the pixel xkð Þ. The higher value of DE indicates
that a smoother distributed histogram is obtained, which may indicate that the
contrast is higher.

3.4 Absolute mean brightness error (AMBE)

Absolute Mean Brightness Error (AMBE) [18] is an error function calculated
between image X and image Y as:
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AMBE ¼ 1
MN

XM
m¼1

XN
n¼1

∣X m, nð Þ � Y m, nð Þ∣ (46)

Here, M and N are the dimensions of the images and m, nð Þ is the pixel location.
The lower AMBE value indicates that, the brightness preservation is better.

4. Experimental setup

The enhancement described above have been applied to several images. Com-
parisons of the methods are made both visually and quantitatively. Before applying
the enhancement methods, the parameters for each method is determined.

4.1 Visual comparison

Visual comparisons are performed for different images and they are available
online.1

The first image used for comparison is a tank image taken by a digital imaging
system as shown in Figure 1(a). Figure 1(b)–(i) show the enhancement results
obtained by AGCWD, DWT-SVD, RHE-DCT, ACSEA, BF, HIM, SDF, and BF-HIM
methods, respectively. In order to demonstrate closely, the zoomed version of the
area inside the red square is given inside the green square. As seen in Figure 1(b),
AGCWD method has improved the contrast, however the color preservation of the
method is not good. The contrast improvement of DWT-SVD seems to be low, as
seen in Figure 1(c). Even though the color preservation seems to be good, the edge
information is lost as seen in the zoomed area. RHE-DCT method, shown in
Figure 1(d), has a good contrast improvement, however the color preservation is
not good. The edge enhancement of RHE-DCT is better than AGCWD and DWT-
SVD methods. ACSEA method in Figure 1(e) demonstrates a better color preser-
vation, however the contrast improvement is not as good as the other methods.
Moreover, the edge enhancement is lower than RHE-DCT method. As seen in
Figure 1(f), BF method preserves the color like as the ACSEA method and has a
good edge enhancement performance. Figure 1(g) shows that HIM method has a
good color preservation capability. However, the edge enhancement performance is
not good compared to the BF method. SDF method, given in Figure 1(h) has a very
good edge enhancement performance, but the color preservation is lower than
ACSEA, HIM and BF methods. As demonstrated in Figure 1(i), the hybrid BF-HIM
method preserve the colors closer to the ACSEA and BF methods and enhances the
edge information better than the former methods.

The second image used for comparison is an aerial image taken by a digital
imaging systemmounted on an air vehicle as shown in Figure 2(a). Figure 2(b)–(i)
show the enhancement results obtained by AGCWD, DWT-SVD, RHE-DCT,
ACSEA, BF, HIM, SDF, and BF-HIM methods, respectively. In order to make a
closer look, a zoomed version of the area inside the red square is given in the green
square.

As seen in Figure 2(b), AGCWD method has improved the contrast, however
the color preservation of the method is not good. The car within the zoom area is
visible. The contrast improvement of DWT-SVD is better than AGCWDmethod, as
seen in Figure 2(c). The color preservation is lower than AGCWD method and the

1

http://sipi.usc.edu/database/
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visibility of the car in the zoomed area is not as good as AGCWD method. RHE-
DCT method, shown in Figure 2(d), has a good contrast improvement and better
color preservation than AGCWD and DWT-SVD methods. The edge enhancement
of RHE-DCT is closer to the AGCWD method as seen in the zoomed area. ACSEA
method in Figure 2(e) demonstrates a better color preservation, however the con-
trast improvement is not as good as the other methods. Moreover, the edge
enhancement is lower than RHE-DCT method. As seen in Figure 2(f), BF method
preserves the color like as the ACSEA method and has a better edge enhancement
performance than RHE-DCT methods, as seen in the zoomed area. Figure 2(g)
shows that HIM method has a good color preservation capability. However, the
edge enhancement performance is not good compared to the BF method. SDF
method, given in Figure 2(h) has a very good edge enhancement performance, but
the color preservation is lower than ACSEA, HIM and BF methods. As demon-
strated in Figure 2(i), the hybrid BF-HIM method preserve the colors closer to the
HIM method. A closer look demonstrates that the edge improvement is better than
the former methods.

Figure 1.
(a) Input image, enhancement results for (b) AGCWD (c) DWT-SVD, (d) RHE-DCT, (e) ACSEA, (f) BF,
(g) HIM, (h) SDF, and (i) BF-HIM methods.
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The final image used for comparison is an aerial image of an area containing
harbor and airport taken by a digital imaging system mounted on an air vehicle as
shown in Figure 3(a). Figure 3(b)–(i) show the enhancement results obtained by
AGCWD, DWT-SVD, RHE-DCT, ACSEA, BF, HIM, SDF, and BF-HIM methods,
respectively. For a closer look, the area shown in red square is zoomed and given
within the green square.

As seen in Figure 3(b), AGCWD method has improved the contrast, however
the color preservation of the method is not good. Moreover, the edge information is
lost as seen in the zoomed area. The contrast improvement of DWT-SVD seems to
be low, as seen in Figure 3(c). Even though the color preservation seems to be
good, the edges have not been improved as seen in the zoomed area. RHE-DCT
method, shown in Figure 3(d), has a good contrast improvement, and the color
preservation is good. The edge enhancement of RHE-DCT is better than AGCWD
and DWT-SVD methods. ACSEA method in Figure 3(e) demonstrates a good color
preservation, and a fine contrast improvement. Moreover, the edge improvement
seems to be better than RHE-DCT method. As seen in Figure 3(f), BF method

Figure 2.
(a) Input image, enhancement results for (b) AGCWD (c) DWT-SVD, (d) RHE-DCT, (e) ACSEA, (f) BF,
(g) HIM, (h) SDF, and (i) BF-HIM methods.
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preserves the color better than ACSEA method and has a good edge enhancement
performance. Figure 3(g) shows that HIM method has a good color preservation
capability. However, the edge enhancement performance is not good enough com-
pared to the BF method. SDF method, given in Figure 3(h) has a very good edge
enhancement performance, but the color preservation is lower than ACSEA, HIM
and BF methods. As demonstrated in Figure 3(i), the hybrid BF-HIM method
preserve the colors closer to the ACSEA methods and enhances the edge informa-
tion better than the former methods.

For an objective visual evaluation, the profiles of the horizontal lines given in
Figure 1(a), Figure 2(a) and Figure 3(a) are constructed for the enhancement
methods, and the drawn profiles for the original image are given along with
enhancement methods are given in Figure 4(a)–(c), respectively.

According to Figure 4(a), DWT-SVD and ACSEA methods cannot follow the
changes which means the details of the image are lost for these methods. BF-HIM
method can follow the changes better. Moreover, BF-HIM method have increased

Figure 3.
(a) Input image, enhancement results for (b) AGCWD (c) DWT-SVD, (d) RHE-DCT, (e) ACSEA, (f) BF,
(g) HIM, (h) SDF, and (i) BF-HIM methods.
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the intensity range more compared to the other methods, which indicates that the
contrast improvement is better for BF-HIM method.

According to Figure 4(b), all three methods seem to follow the pattern of the
original image properly, in general. ACSEA method has lost the pattern in some
parts. SDF and BF-HIM methods have followed the pattern better than ACSEA
method. Moreover, BF-HIM seems to have a slightly wider range than SDF method
as well.

According to Figure 4(c), all three methods seem to follow the pattern of the
original image properly. AGCWD method have increased the intensity values in
general, which results in a brighter region. By this way, the contrast improvement is
not good enough. Similarly, HIM method have decreased the intensity values,
which results in a darker region. BF-HIM method has improved the contrast better
than the other methods.

Therefore, according to the visual comparisons, the higher the detail level is
within the image, the better the results for methods like AGCWD and RHE-DCT
are, as expected, since both methods use histogram modification.

It can also be concluded that histogram modification methods like AGCWD and
RHE-DCT methods have a good performance, if the resolution is low (Figure 1) or/
and the input image contains higher-scale edge information (Figure 2), while
transform domain methods are generally better for high resolution images or/and
images containing small-scale details. Also, transform domain methods seem to
have a solid performance for high-scale details.

In addition to this, considering all aspects of the resulting images, in terms of
color preservation, contrast improvement, and edge enhancement, the BF, and
hybrid BF-HIM methods seem to have better results. Moreover, hybrid BF-HIM
method seems to be the best method when looking at all three aspects.

4.2 Quantitative comparison

In order to perform an objective comparison, the criteria aforementioned are
evaluated for enhancement results obtained by the methods, the visual results of
which are given in Figures 1–3. The quantitative results are provided in Tables 1–4
where the best results are emphasized in bold. The first criterion used for compar-
ison is the Contrast Gain (CG). Table 1 shows the CG values obtained for AGCWD,
DWT-SVD, RHE-DCT, ACSEA, BF, HIM, SDF, and BF-HIM methods.

According to Table 1, for Figure 1, the best score is obtained by SDF followed by
BF-HIM method. For Figure 2, the best score is obtained by RHE-DCT method
followed by BF-HIM method. For Figure 3 is achieved by hybrid BF-HIM method,
followed by SDF method. Therefore, it is possible to say that RHE-DCT method has
a better contrast gain for images containing high-scale details like Figure 3.

Figure 4.
Drawn profiles for input and enhanced images for (a) Figure 1, (b) Figure 2, (c) Figure 3.
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The second criterion used for comparison is the Enhancement Measurement
(EME). Table 2 shows the EME values obtained for AGCWD, DWT-SVD, RHE-
DCT, ACSEA, BF, HIM, SDF, and BF-HIM methods.

According to Table 2, for Figure 1 the best EME scores are obtained by BF-HIM
method, followed by SDF method. For Figure 2, the best score is obtained by DWT-
SVD method followed by ACSEA method. For Figure 3, the best EME scores are
obtained by BF-HIM method for followed by SDF method. Therefore, it is possible
to say that DWT-SVD method has a better enhancement performance for images
containing high-scale details, likeas in Figure 2.

The third criterion used for comparison is the Discrete Entropy (DE). Table 3
shows the DE values obtained for AGCWD, DWT-SVD, RHE-DCT, ACSEA, BF,
HIM, SDF, and BF-HIM methods.

According to Table 3, for Figure 1, the best score is obtained by RHE-DCT
method followed by BF-HIM method. For Figure 2, the best score id obtained by
RHE-DCT method followed by SDF method. As it is seen in DE values, the higher
the scale of detail is within the images, the higher is the performance of RHE-DCT
method. BF-HIM method has better DE values for Figure 3, and has a close score to
RHE-DCT method for Figures 1 and 2.

The fourth criterion used for comparison is the Absolute Mean Brightness Error
(AMBE). Table 4 shows the AMBE values obtained for AGCWD, DWT-SVD, RHE-
DCT, ACSEA, BF, HIM, SDF, and BF-HIM methods.

According to Table 4, for Figure 1, the best score is obtained by ACSEA method
followed by BF-HIM method. For Figure 2, the best score is obtained by BF-HIM
method followed by BF method. For Figure 3, the best value is obtained by BF-HIM

Method AGCWD DWT-SVD RHE-DCT ACSEA BF HIM SDF BF-HIM

Figure 1 1.0600 0.7468 1.6442 1.4369 1.9099 1.3171 2.2560 2.0457

Figure 2 1.5302 1.1635 2.9214 1.6665 1.8910 1.6529 2.0120 2.0517

Figure 3 1.0555 0.5505 1.3110 1.7592 1.9522 1.1654 2.0217 2.0789

Table 1.
CG values obtained for the enhancement methods.

Method AGCWD DWT-SVD RHE-DCT ACSEA BF HIM SDF BF-HIM

Figure 1 1.47 1.91 327.05 4.11 329.11 6.00 384.70 407.07

Figure 2 1.29 7.92 5.86 7.44 1.81 1.66 4.94 6.95

Figure 3 2.59 5.01 4.41 1.35 6.91 2.00 7.98 9.29

Table 2.
EME values (104) obtained for the enhancement methods.

Method AGCWD DWT-SVD RHE-DCT ACSEA BF HIM SDF BF-HIM

Figure 1 6.5601 6.8245 7.8527 7.3600 7.3778 6.4493 7.6648 7.6723

Figure 2 6.6672 6.8799 7.6940 7.0889 7.1340 6.7327 7.4061 7.2010

Figure 3 5.9251 5.7998 6.3719 6.4604 6.4508 5.9944 6.6397 6.6682

Table 3.
DE values obtained for the enhancement methods.
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method followed by DWT-SVD method. Since, AMBE is the error between the
original image and enhanced image, the smaller value of AMBE indicates better
color preservation. This criterion does not give an idea about enhancement
performance.

As a result, even though the visual comparison may give the observer an idea
about the enhancement performance, quantitative comparison has to be made to
obtain a more objective conclusion. Here, the choice of the quantitative criterion is
also important. As it is known, each criteria indicates different aspects for the
resulting images. For instance, CG gives an idea about the contrast improvement,
while AMBE is about the color preservation. If the aim is to compare the overall
performance for the methods aforementioned, all criteria should be considered all
together. Thus, the quantitative comparisons, as well as the visual comparisons
demonstrate that the hybrid methods combining different methods like BF-HIM
result in better enhanced images.

5. Conclusion

The use of image enhancement methods which improve the contrast and edge
information of the image is vital for remote sensing applications. In this work,
different remote sensing image enhancement methods based on histogram modifi-
cation techniques (HE, AGCWD) and transform domain methods (DWT-SVD,
ACSEA, RHE-DCT, BF, HIM, and SDF) have been reviewed. The resulting images
have been compared visually and quantitatively. For quantitative comparison, sev-
eral image quality criteria have been used. The resolution and the detail scales of the
image affects the performance of the enhancement methods. For instance, the detail
scales of the input image affect the performance of RHE-DCT and AGCWD
methods deeply. Since both methods are histogram modification methods, even
though RHE-DCT also uses a transformation, it can be concluded that histogram
modification based methods are better if there are higher-scale details within the
image or if the image has a lower resolution. The transform domain methods have a
better performance for the images with low-scale details, but also the results of
these methods are very solid compared to the histogram based methods for
high-scale details, as well.

Another contribution of this work is to introduce a hybrid method, which
combines the bilateral filtering with hazy image model. The visual and quantitative
results demonstrate that using hybrid methods have a superior performance to the
methods applied separately. Therefore, future research on remote sensing image
enhancement should focus on hybrid methods.

Method AGCWD DWT-SVD RHE-DCT ACSEA BF HIM SDF BF-HIM

Figure 1 0.2798 0.0657 0.1871 0.0149 0.0652 0.1014 0.0692 0.0459

Figure 2 0.0904 0.1083 0.1145 0.1503 0.0364 0.1265 0.0355 0.0254

Figure 3 0.1121 0.0331 0.0811 0.0629 0.0713 0.0651 0.0697 0.0326

Table 4.
AMBE values obtained for the enhancement methods.
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Chapter 6

Feature-Oriented Principal
Component Selection (FPCS) for
Delineation of the Geological Units
Using the Integration of SWIR and
TIR ASTER Data
Ronak Jain

Abstract

Geological studies have been performed using the Band Ratios (BR), Relative Band
Depth (RBD), Mineral Indices (MI), Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), lithological and mineral classification techniques
from Short-Wave Infrared (SWIR) and Thermal Infrared (TIR) data. The chapter
aims to delineate various geological units present in the area using the combination of
SWIR and TIR ASTER bands through the Feature-Oriented Principal Component
Selection (FPCS) technique. Different BRs and RBDs were applied to map the min-
erals having Al-OH and Mg-OH compounds with the chemical composition of clay
(kaolinite, smectite), mica (sericite, muscovite, illite), ultramafic (lizardite, antigorite,
chrysotile), talc, and carbonate (dolomite) from SWIR bands. The MI was used to
map quartz-rich, mafic/ultramafic, and carbonate rocks using TIR bands. The BRs,
RBDs, and MIs mapped the geological units but every single greyscale image showed a
variety of features. To compile these features False Color Composite (FCC) was
prepared by the combination of RBDs andMIs in the R:G:B channels which demarked
various geological units to a larger extent present in the region. To overcome the
limitation, the FPCS technique was applied with the integration of all BRs, RBDs, and
MIs. The FPCS technique extracts valuable information from different input bands
and shifts the information in the first few bands. The generated eigenvalues and
eigenvectors represented the retrieved information in the specific band. The loadings
of the eigenvector were used for the selection of the different brands to create the FCC
for the delineation of geological strata. The best discrimination was made by the
selection of FPCS1, FPCS3, and FPCS6which differentiated all the geological units like
ultramafics, dolomites, thin bands of talc, and muscovite and illite (as phyllite and
mica-schist), silica-rich rocks (as quartzite), and granite outcrops.

Keywords: Remote Sensing, Optical data, Feature-Oriented Principal Component
Selection, Data integration, Geological studies

1. Introduction

Water (oceans, rivers, lakes, etc.) and land (rocky mountains, hills, peneplain,
islands, etc.) are the major components of the Earth’s surface out of which only 29%
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are occupied by the land surfaces. This 29% land coverage included the forest,
desert, mountains, islands, etc. so, a very little amount of land is reserved for
geological studies.

Traditional mapping methods are time-consuming and require lots of effort for
the preparation of lithological maps, mineral maps, structural maps, etc. But some-
times manually collected data may have errors due to inaccessibility and recording
of the data which exaggerate in due course. To avoid these errors and corrections
introduced therein an advanced technology came into the picture and is known as
Remote Sensing. This technique helps in the mapping of the different litho-units
and associated structural features with higher accuracy in a short period as
compared to the traditional methods.

Remote Sensing is a tool used for the gathering of the target information without
any physical/direct contact with the earth’s surface [1–6]. It is a widely used science
for the identification and mapping of the various objects/materials present on the
earth’s crust. The electromagnetic wavelength ranges from 0.38 μm to 100 cm i.e.
visible to microwave region [3] is utilized for capturing the information from the
earth’s surface along with different sensors to capture the EM spectrum’s energy
[4, 5, 7]. This technique is useful for the monitoring, protection, and management
of diverse natural resources and land cover [8]. The geological studies include the
demarcation of various lithologies, alteration zones, minerals, and structural
features.

Multispectral Remote Sensing is utilized in the domain of geosciences for litho-
logical mapping [9–16], mineral mapping [17–24], identification of the alteration
zones related to the base metal mineralization [25–42], structural features as a
controlling factor for mineralization [26, 28, 42–46] and mapping for demarcating
favorable zones of mineralization [21, 47, 48]. Spectral characteristic absorption
features of the rocks and minerals are utilized for the identification and mapping of
lithologies and minerals like calcite, dolomite, clay, mica, and ultramafics, etc. The
spectral absorption features of minerals vary with chemical composition and the
resultant spectral curve varies in shape, depth, position, and asymmetry [49].

Wavelength range from 0.38 to 2.5 μm is utilized for the mapping of the various
hydroxyl (Al-OH, Mg-OH), iron oxides (Fe-OH), carbonates (CO3

�2), and sul-
phates (SO4

�2) bearing minerals like clay, mica, ultramafics, hematite, limonite,
dolomite, calcite, etc., due to the presence of characteristic absorption features in
the VNIR and SWIR region of the EM spectrum [5, 42, 50–53]. In the case of
feldspar, silica-rich rocks, and discrimination between ultramafics and dolomites
are possible due to spectral features associated with the TIR region in the wave-
length range of 3 to 50 μm [20, 23, 54–58]. The dissimilarities in the spectrum in the
TIR spectral-domain arise due to variation in chemical composition and molecular
structure.

Geological studies are done with the help of Landsat series, ASTER, Sentinel �2,
SPOT, Worldview series, GeoEye, etc. optical remote sensing satellites. They are
mainly utilized for the perspective of mineral exploration by using the various
methods like band ratio (BR), relative band depth (RBD), Principal Component
Analysis (PCA), Independent Component Analysis (ICA), Minimum Noise Frac-
tion (MNF), unsupervised classification (K-means, isodata, etc.), supervised classi-
fication (Spectral Angle Mapper, Spectral Feature Fitting, Mixture Tuned Matched
Filtering, etc.), machine learning (support vector machine, decision tree, artificial
neural network, etc.). Various BR and RBD have been used for the delineation of the
different rock outcrops like dolomite, calcite, Iron rich-rocks, ultramafics, epidote,
clay and mica minerals, etc. [17, 21–24, 42, 58–60] and mineral prospects by the
demarcation & mapping of the associated alteration zones [20, 22, 27, 28, 37, 45, 61].
Lithological mapping of the exposed outcrops and their associated features are
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demarcated with the help of PCA, ICA, and MNF analyses to govern the mineral
potentiality of the outcrops [9, 17, 40, 42, 44, 62, 63]. Different supervised,
unsupervised, machine learning and prospectivity mapping algorithms were
applied to the optical datasets to prepare the mineralogical and prospective zone
maps of the region and these maps contain the information about the mineral
potential zones which were utilized for the perspective of mineral explorations
[17, 20, 21, 31, 42, 47, 48, 64–71].

2. Objective of the chapter

This chapter explains the use of SWIR and TIR spectral bands for the demarca-
tion of the different minerals and lithologies present in the region. The importance
of integrated datasets from SWIR and TIR-derived outcomes and the utility of the
integrated dataset for the demarcation of the various litho-units has also been
explained.

3. Study area and geological setup

The coverage of the study area extends between latitude 23°51035.45″ to 24°
18034.14″ in the North and longitude 73°28043.95″ to 73°49034.24″ in the East and
occupies the region in Udaipur and Dungarpur districts of Rajasthan, India
(Figure 1).

Figure 1.
Location of the study area in inset maps of India and Rajasthan. Lithological map of the study area. Modified
after Gupta et al. [72]. Red dashed lines are representing the existing faults. Mp: Mando ki Pal; Sr: Sarada
(BGC); Np: Natharia ki Pal; Ss: Sisa Magra; Kt: Kathalia; Mn: Mandli; Bm: Baroi Magra; Bl: Balicha; Zw:
Zawar; Gr: Goran; Sm: Samlaji Formations.
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Geologically the study area falls in the Udaipur sector exposes various litho-
stratigraphic units of the Archean and Palaeoproterozoic age [72–74] (Figure 1,
Table 1). The basement rocks are the Banded Gneissic Complex (BGC) [73, 75] or
the Bhilwara Supergroup (BSG) [72, 74]. They are overlain by the rocks of the
Aravalli Supergroup through an erosional unconformity. The Aravalli Supergroup
has been categorized into Debari, Udaipur, Bari Lake, Jharol, Dovda, Nathdwara,
Lunavada Groups [72]. It has also been subdivided into Lower, Middle, and Upper
Aravalli Groups [73].

Majority of the pristine Archean features of the basement rocks have diminished
due to tectono-thermal reconstruction of the basement [73]. Basement rocks from
Mangalwar Complex are composed of heterogeneous rocks of amphibolite-facies
metamorphites [75] or granite-greenstone belt [74]. Gneisses, metabasics,
migmatites, and schists constitute the basement while greywacke, chert, marble,
dolomite, quartzite, fuchsite quartzite, and mica schist represents the
metasediments within the basement [74, 76]. Biotite schist, garnets, and staurolites
are present in the Sarara ki Pal inlier [73, 77] and the presence of chlorite and
chloritoid represents the retrogression mechanism [78].

The base of the Aravalli Supergroup is having thin bands of quartzites and
pebbly oligomictic conglomerate. The continuity of quartzite is interrupted by the
ESE-WNW, NE–SW, and ENE-WSW faults. In the majority of the study area
phyllites and mica-schists are exposed. Graded bedded greywacke occurs within the
phyllite [79]. Poddar & Mathur [80] mentioned the characteristic repetition of
graded bedded and slaty phyllite. Different varieties of dolomites are exposed in the
Zawar region with gradational contact with greywacke. They are pure to siliceous
and massive to gritty nature. Lead-zinc mineralization is confined in the siliceous
dolomites [72–75, 77, 81–86]. The lithological and chemical control of the
metallogenesis in the region is supporting the concept of the syngenetic origin of
lead-zinc sulphides [72]. The Rakhabdev-Dungarpur area consists of ultramafic
rocks as linear belts which are serpentinized and are metasomatically altered

Era Supergroup Group Formation

Paleoproterozoic Aravalli Synorogenic Granite and Gneiss (intrusion)
Rakhabdev Ultramafic Suite (intrusion)

Jharol Samlaji

Goran

Udaipur Tiri
Sub-group

Zawar

Balicha/ Baroi Magra

Mandli

Debari Kathalia

Sisa Magra

——Unconformity——

Natharia ki Pal

Gurali/ Basal

——————————————Unconformity——————————————

Archean Banded
Gneissic
Complex

Mangalwar Complex Mando ki Pal

Sarada

Table 1.
Stratigraphic succession of the Aravalli Supergroup from the study area. Modified after Gupta et al. [72].
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[73, 87–90]. The ultramafic rocks occur along a prominent lineament named
Rakhabdev lineament which passes through the Aravalli fold belt [77, 89]. Thicker
ultramafic outcrops are more massive and fractures are developed in an irregular
manner [91].

4. Image processing techniques used in this investigation

4.1 Dataset

The present study uses the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer Level-1 Precision Terrain Corrected Registered At-Sensor Radiance
(ASTER L1T) dataset. ASTER sensor carries the VNIR, SWIR, and TIR scanners which
have 3 (1–3), 6 (4–9), and 5 (10–14) bands respectively, and its technical specifica-
tions mentioned in Table 2. The ASTER L1T imagery is already geometrically
corrected, georeferenced (WGS-1984) and UTM projected (UTM zone 43 N) [92].

4.2 Methodology

The overall methodology flowchart for the delineation of the various litho-units
is depicted in Figure 2. The different litho-units were traced out with the help of the
Feature-Oriented Principal Component Selection (FPCS) method which uses the
various derived outcomes of band ratios, relative band depths, and mineral indices
from SWIR and TIR datasets through an integrated approach.

Vegetation and water bodies are present in the region which creates a hindrance
in geological mapping therefore, these land features were masked from the derived
outcome. Vegetation coverage was calculated using the Normalized Difference
Vegetation Index (NDVI) and the values ranging greater than 0.2 were used for the

Granule
ID

Sensor-
scanner

Band
number

Spectral
width (μm)

Spatial
resolution

(mtr)

Radiometric
resolution

Valid
range

AST_L1T_
003042220
03055021_
201504280
31510_405
83

ASTER-VNIR 0.520–0.60 15 8-bits 0–255

2 0.630–0.690 15 8-bits 0–255

3 0.760–0.860 15 8-bits 0–255

ASTER-SWIR 4 1.600–1.700 30 8-bits 0–255

5 2.145–2.185 30 8-bits 0–255

6 2.185–2.225 30 8-bits 0–255

7 2.235–2.285 30 8-bits 0–255

8 2.295–2.365 30 8-bits 0–255

9 2.360–2.430 30 8-bits 0–255

ASTER-TIR 10 8.125–8.475 90 12-bits 0–65535

11 8.475–8.825 90 12-bits 0–65535

12 8.925–9.275 90 12-bits 0–65535

13 10.25–10.95 90 12-bits 0–65535

14 10.95–11.65 90 12-bits 0–65535

Table 2.
Technical specifications of the ASTER L1T dataset. Source: [92].
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preparation of the vegetation mask. Water bodies were masked using band 1. The
DN values ranging from 0 to 100 were selected to prepare the water mask. Both of
the masks were applied on the derived outcomes to eliminate the vegetative lands
and water bodies from the mineral and lithological map of the region.

4.2.1 Preprocessing of SWIR and TIR datasets

The ASTER SWIR dataset has the spillover of the energy from band 4 to band 5
and band 9 which is known as crosstalk effects [17, 41, 45, 47, 93, 94]. Crosstalk
correction was applied for the removal of effects from the dataset and to enhances
the spectral signatures of the minerals/rocks. A semi-empirical atmospheric correc-
tion, QUick Atmospheric Correction (QUAC), was applied to retrieve the surface
reflection from the sensor radiance [95–100].

The ASTER TIR datasets were converted into the calibrated radiance from the
digital number using Eq. (1) [46, 55, 58, 101, 102].

Li
sen ¼ cofi ∗ DNi � 1

� �
(1)

where:

cof10 cof11 cof12 cof13 cof14

0.006882 0.006780 0.006590 0.005693 0.005224

Figure 2.
Overall methodology for the derivation of the lithological map.
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4.2.2 Image processing

Band Ratio (BR) is a method in which one band is divided by another band
(Eq. (2)) to get the better delineation of the rocks/minerals instead of using a single
band and combined with enhancement of spectral properties.

BR ¼ B1=B2 (2)

where: BR = Output Band Ratio image; B1 and B2 = Brightness value of selected
bands.

Relative Band Depth (RBD) is another technique for mineral mapping in which
the position and depth of the mineral spectrum were considered for calculation
[103]. The RBD governs better discrimination of minerals than BR because it con-
siders the characteristic absorption features and normalizes the effects generated
due to topography and albedo [32, 37, 104]. The bands acquired the shoulder
position on absorption spectrum are summed up as (S1 and S2) and divided by the
band having minimal absorption value (T; Eq. (3); Figure 3).

RBD ¼ S1þ S2ð Þ=T (3)

Mineral Indices (MI) is also a mathematical expression derived for mapping of
the minerals by using the band math operators with different logics in the TIR
wavelength region. The TIR part of the EM spectrum is utilized for the mapping of
the feldspars, silicates, carbonates, and ultramafic minerals.

BR and RBD were applied on the atmospherically corrected SWIR datasets and
MI was applied on the calibrated radiance TIR datasets (Table 3). Al-OH consisting
of minerals like mica and clay minerals were delineated with the help of different
BRs and RBD6 (Table 3). Spectral absorption minima were recorded at band 6 of
ASTER at 2.205 μmwhich highly suitable for the mapping of clay and mica minerals
[12, 34, 37, 42, 105]. Similarly, Mg-OH and CO3

�2 containing minerals showed the
absorption minima at band 8 of ASTER at 2.336 μmwhich was used in the RBD8 for
mapping of carbonates and ultramafics [34, 37, 106, 107]. The SiO2 containing
minerals/rocks showed the emissivity minima at the band 12 of ASTER at 9.075 μm
due to vibrational energy along the Si-O bond. The CO3

�2 bearing minerals showed
the emissivity minima at 11.318 μm which is represented by the band 14. The Mg-
OH bearing minerals of ultramafics recorded the emissivity minima at band 13 at
10.657 μm.

Figure 3.
Artistic sketch for interpretation of the RBD for any mineral.
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Principal Component Analysis (PCA) is widely used for the identification and
delineation of the litho-units and hydrothermal alteration minerals using the spec-
tral bands generated from different sensors [9, 17, 28, 45, 48, 108]. The PCA uses
the statistical mechanism for the transformation of the variables into several linear
variables which are not having a correlation with each other, known as Principal
Components (PCs). It is implemented on the symmetric matrix which is based on
the either correlation matrix or covariance matrix (Eq. (4)). The PCs have the
information related to the specific mineral which can be retrieved with the help of
loadings of eigenvector (Eq. (5)). The strong eigenvector loadings of the PCs were
utilized for the demarcation of the various mineral/groups through its PC indicative
bands (Eq. (6)) which showed bright and dark pixels for the specific minerals in the
PC image [108]. The present work uses the Feature-Oriented Principal Component
Selection (FPCS) on the integrated data derived from BR, RBD, and MI from the
ASTER SWIR and TIR data for mapping of the lithological units present in the
region. The FPCS was used to achieve the desired goal by the combination of SWIR
and TIR-derived outcomes. The phyllite and mica-schist can be marked with the
help of BRs and RBD6, carbonates and ultramafics gave a similar tone by the use of
RBD8 of SWIR region while MI has the capabilities to distinguish these two min-
erals/groups. Quartzites were not mapped in the SWIR EM region due to lack of the
characteristic absorption band while TIR EM regions have these capabilities. Min-
eral/rock identification was not possible through the single kind of dataset like only
by SWIR only by TIR so, integrated approach was required to delineate all litholog-
ical units existed in the study area. Therefore, FPCS was implemented on the basis
of covariance matrix of the integrated outcomes of ASTER SWIR and TIR. The
derived eigenvector matrix is tabulated in Table 4.

cov X,Yð Þ ¼ 1
n� 1

Xn
i¼1

Xi� xð Þ Yi� yð Þ (4)

S. no. Mineral
composition

Indicator minerals Formula Absorption band:
wavelength (μm)

References

SWIR bands Band Ratio (BR)

1. Al-OH Sericite, smectite,
muscovite, and illite

B7/B6 6: 2.205 [106]

2. B4/B6 [8]

3. Alunite and kaolinite B7/B5 5: 2.167 [106]

Relative Band Depth (RBD)

4. Al-OH (RBD6) Sericite, smectite,
and illite

(B5 + B8) /B6 6: 2.205 [12, 42]

5. Mg-OH and
CO3

�2 (RBD8)
Carbonates and
ultramafics

(B6 + B9) /B8 8: 2.336 [37, 106]

TIR bands Mineral Indices (MI)

6. Mg-OH Ultramafics (B12/B13) �
(B14/B13)

13: 10.657 [23]

7. SiO2 Silica-rich (B11/
(B10 + B12)) �

(B13/B12)

12: 9.075 [56]

8. CO3�2 Carbonates B13/B14 14: 11.318 [54, 101]

Table 3.
BR, RBD, and MI used for the derivation of the mineral maps from ASTER SWIR and TIR bands.

108

Recent Remote Sensing Sensor Applications - Satellites and Unmanned Aerial Vehicles (UAVs)



E
ig
en

ve
ct
or
s

M
I
C
O

3�
2

M
I
Si
O

2
M
I
M
g-
O
H

B
R
7/
5

R
B
D
6

R
B
D
8

B
R
4/
6

B
R
7/
6

B
an

d
1

0.
00

66
92

�0
.0
22
24

0.
05

67
49

�0
.1
80

58
�0

.5
04

83
0.
77
25
56

�0
.1
16
78

�0
.3
13
52

B
an

d
2

�0
.0
28
98

�0
.0
12
31

�0
.0
42

99
�0

.0
82
42

�0
.4
05

3
�0

.4
89

72
�0

.7
25
84

�0
.2
43

81

B
an

d
3

�0
.6
98

19
�0

.3
39

87
�0

.6
27
11

�0
.0
01

9
0.
00

11
32

0.
04

90
81

0.
03

64
74

0.
00

23
23

B
an

d
4

�0
.0
06

�0
.0
13
68

0.
02

05
63

�0
.2
60

53
�0

.4
83

61
�0

.3
99

45
0.
66

92
43

�0
.3
00

25

B
an

d
5

0.
01

53
69

0.
01

78
49

�0
.0
23
98

0.
80

78
85

�0
.4
99

43
�0

.0
00

99
0.
08

80
98

0.
29
83

33

B
an

d
6

�0
.0
35
4

�0
.0
03

43
0.
04

26
73

�0
.4
85
43

�0
.3
10

84
0.
00

34
89

�0
.0
48

09
0.
81
38

37

B
an

d
7

0.
21
64

06
0.
73
65
43

�0
.6
36

3
�0

.0
58
78

�0
.0
28
68

0.
03

60
48

0.
01

47
19

0.
00

05
81

B
an

d
8

0.
68

06
51

�0
.5
83

81
�0

.4
40

41
�0

.0
30

78
�0

.0
11
17

0.
00

71
18

0.
00

43
85

0.
02

78
43

T
ab

le
4.

E
ig
en
ve
ct
or

m
at
ri
x
ge
ne
ra
te
d
fr
om

th
e
in
te
gr
at
ed

de
ri
ve
d
m
in
er
al

m
ap

s
fo
r
FP

C
S.

109

Feature-Oriented Principal Component Selection (FPCS) for Delineation of the Geological…
DOI: http://dx.doi.org/10.5772/intechopen.99046



Av! ¼ λv! or v! A� λIð Þ ¼ 0 (5)

y ¼W 0 � x (6)

where:
cov(X, Y) = Covariance matrix; X and Y = Variables;
Av! = eigenvector of matrix A; λ = eigenvalue (scaler value); I = Identity matrix.
y = Final outcome; W0 = transpose of scaler data; x = Feature vector.

5. Results

5.1 Band ratios (BRs) and relative band depths (RBDs)

5.1.1 Distribution of Al-OH consisting minerals

Clay (kaolinite, illite, montmorillonite) and mica (sericite and muscovite) min-
erals consist of the Al-OH in their chemical composition. These minerals especially
illite, montmorillonite, muscovite, and sericite exhibited characteristic spectral
absorption features at a wavelength of 2.205 μm which is detectable with band 6
(2.185–2.225 μm) of the ASTER sensor. Kaolinite mineral also showed minor
absorption at 2.165 μm for that band 5 (2.145–2.185 μm). The Al-OH consisting of
minerals were mapped in the quartzites south of Rakhabdev and near the granitic
outcrop of Kherwara inlier [89]. Phyllite and mica-schist also depicted higher values
for Al-OH containing minerals by using BR 7/6 (Figure 4A). The granitoids of the
basement, granites, and quartzites have high values for Al-OH by using BR 4/6
(Figure 4B). On applying BR 7/5, almost the entire region depicted higher values
for kaolinite (Al-OH) which is indicative of a poor interpretation (Figure 4C). The
RBD (5 + 8)/6 gave a similar kind of result like BR 7/6. It depicted higher values of
the Al-OH consisting of rocks/minerals for the quartzites, phyllites, mica-schists,
conglomerate, and arkose litho-units (Figure 4D). Ultramafics and carbonates
(dolomite) have very low values from BRs 7/6, 4/5, and RBD6 due to the absence of
Al-OH minerals.

5.1.2 Distribution of Mg-OH and CO3�2 consisting minerals

Ultramafics are having the Mg-OH while dolomites are having both Mg-OH and
CO3�2 constituents in their composition. These minerals have the characteristic
absorption feature at 2.33 μm, which occurs at band 8 (2.295–2.365 μm). The RBD
(6 + 9)/8 was applied for mapping of the Mg-OH and CO3�2 consisting of minerals.
Ultramafics depicted extremely high values while dolomites have moderate values
(Figure 5A). The regions of Zawarmala and Hati Magra are dominated by dolomite
exposures but a poor carbonate map as an outcome may be due to the presence of
extreme vegetation on the hills.

A lithological map has also been prepared from RBD6, RBD8, and BR4/6 in RGB
channels respectively (Figure 5B). Basement rocks are depicted as pinkish-blue,
phyllite, and mica-schist as reddish color. Dolomite is depicted as dark green while
ultramafics are as green color. Quartzites are light pink in color. The resultant map
discriminates the various lithologies present in the area and is comparable with the
published geological maps.
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5.2 Mineral indices (MI)

5.2.1 Distribution of mafics/ultramafics

The ultramafic map was developed using the mafic index defined by Guha &
Vinod Kumar [23]. The derived map of the mafic index mapped the outcrops of the
ultramafics with very higher values near the Rakhabdev region and along other thin

Figure 4.
Results from the SWIR data for Al-OH bearing minerals using the techniques of BRs and RBDs. (A) BR 7/6 for
mica and clay minerals. (B) BR 4/6 for clay minerals. (C) BR 7/5 for kaolinite. (D) RBD6 (5 + 8)/6 for clay
and mica minerals.

111

Feature-Oriented Principal Component Selection (FPCS) for Delineation of the Geological…
DOI: http://dx.doi.org/10.5772/intechopen.99046



belts of the ultramafic outcrops south of Rakhabdev and on the west of Kherwara
(Figure 6A). The dolomites were suppressed and showed their uniqueness to
distinguish by ultramafics.

5.2.2 Distribution of SiO2 consisting minerals

Silica-rich rocks were marked by using the silica index of Rockwell & Hofstra
[56] (Figure 6B). Quartzites present on the outer periphery of basement rocks
were precisely demarcated through the silica index. Silica index also mapped the
quartzites present adjacent to the dolomites in the Zawar region. The derived
mineral map showed very low values for the ultramafics and dolomites.

5.2.3 Distribution of CO3�2 consisting minerals

Ninomiya et al. [54] defined the mathematical expression for the mapping of
carbonate rocks and the derived mineral map showed dense noise, consequently,
identification of the carbonate outcrops was not precisely obtained (Figure 6C).
The presence of stripping noise and poor signal at band 14 hinders the demarcation
of carbonate outcrops [20, 109, 110]. The ultramafics and quartzitic outcrops were
depicting very low values in the carbonate map.

A lithological map was prepared using the silica, mafic, and carbonate indices
in RGB channels respectively (Figure 6D). Dolomites of the region were marked
by bluish-green color but the majority of the region was marked as bluish-green
color which is a poor identification for dolomites, quartzites are depicting the
maroon color and ultramafics as bright green color. The yellow color at the
tips of ultramafics and within the massive outcrops of ultramafics are identified
as talc.

Figure 5.
Results from the SWIR data. (A) RBD8 (6 + 9)/8 for the mapping of ultramafics and carbonates.
(B) Lithological map using the RBD6, RBD8, and BR4/6 in the RGB channels.
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5.3 Feature-oriented principal component selection (FPCS)

The FPCS technique was implemented to the integrated derived outcomes from
BRs, RBDs, and MIs of the ASTER SWIR and TIR bands for discrimination of the
different litho-units present in the study area. The generated eigenvector matrix
from the FPCS from the integrated derived mineral maps is shown in Table 4. The
PC1 shows the extreme values for the ultramafics and moderate values for the
dolomites. Quartzites showed very low values and represented dark pixels
(Figure 7). The PC1 shows the combined outcome from the RBD8 and MI Mg-OH
because RBD8 highlighted ultramafics and dolomites of the region while MI Mg-OH
mapped the ultramafics and suppressed the quartzites of the region. The PC2
showed extremely high values for phyllite and mica-schists and dark pixels for the
quartzites of the region. The ultramafics & dolomites of the region are depicting the
low values (Figure 7). The PC2 showed the combination of BR 4/6, BR 7/5, and
RBD6 in which BR 4/6 highlighted the silica-rich rocks. The Al-OH consisting
minerals are suppressed in the PC2 while RBD6 highlighted the phyllite and

Figure 6.
Results derived from the TIR data. (A) Ultramafic map derived using the Guha and Vinod Kumar index [23].
(B) Silica-rich rocks were demarcated by using the Rockwell and Hofstra index [56]. (C) Carbonate map
derived using Ninomiya et al. index [54]. (D) Lithological map prepared using the silica-rich, ultramafics, and
carbonate maps in RGB channels.
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mica-schists as Al-OH consisting rocks and BR 7/5 also highlighted the Al-OH
consisting minerals. The PC3 depicted very high values for quartzites i.e. silica-rich
rocks as by MI SiO2 but on the south of Rakhabdev the distribution of silica-rich
rocks is not showing the vague distribution like MI SiO2, and a clear delineation of
quartzites are obtained (Figure 7). The PC4 depicted a similar kind of pattern as BR
4/6 but the extremity of the pixel values gets lower down and appearance gets noisy
(Figure 7). The PC6 depicted higher values for the ultramafics and silica enriched
rocks of the granitoids & migmatites from the basement, quartzites, and phyllite,
and mica-schist while carbonates are depicted moderate values (Figure 7). The PC6
is helpful for the delineation of the litho-units of the region but the band showed an

Figure 7.
FPCS components generated using the PCA technique on integrated BRs, RBDs, and MIs from the SWIR and
TIR bands.
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association of the moderate amount of noise. The PC5, PC7, and PC8 are not useful
for the discrimination of the geological units due to the presence of a high amount
of noise with them (Figure 7).

FCC was been prepared using the combinations of bands PC1, PC3, and PC6
respectively for delineation of different litho-units (Figure 8). Granitoids and
migmatites appeared as greenish-blue colors while quartzites as light green with a
mixture of cyan color. Phyllite and mica-schist appeared as dark blue to greenish-
brown color. Conglomerate and meta-arkose gave shades of green color. Dolomites
appeared as purplish colors and ultramafics as pinkish colors. Light yellow color
on the tips of ultramafics and within the ultramafics which showed the presence
of talc.

Figure 8.
Lithological map of the study area prepared by the combination of FPCS1, FPCS3, and FPCS6 in the RGB
channels respectively.
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5.4 Verification of the derived lithological map

To verify the different litho-units of the region various field reconnaissance was
conducted and for the estimation of the overall accuracy of the generated litholog-
ical map, GPS surveys were carried out. Various traverses were conducted along the
major litho-units of the region and some traverses were conducted for the verifica-
tion of changes observed in the generated lithological map. Field photographs and
rock samples were collected for the determination of accurate locations and associ-
ated lithology/ies if present at the contact zone. Pink colored granites from the
Kherwara Inlier were observed (Figure 9A) and deformed quartzites were present
with the contact of it (Figure 9B). Serpentinites of the Rakhabdev showed the
variation all along the belt-like massive to fibrous nature and open mining pits of
the serpentinites in the massive variants (Figure 9C, D, G and I). In the field,
outcrops of the different dolomites were observed (Figure 9E) associated with the
quartzites, metagraywacke, phyllite, and mica-schist (Figure 9F). Contact between
the phyllite & mica-schist and quartzites was also observed (Figure 9H). Talc was
also observed in the field and it is mainly in the region of deformation (Figure 9G).
The isolated patch of the serpentinite near the Parbeela region shows the contact
with the granites of Kherwara Inlier. Furthermore, the accuracy assessment was
carried out between the generated lithological map and field-collected information

Figure 9.
Field validation of the different litho-units. (A) Granites from the Kherwara inlier. (B) Mullions of quartzites
from Kherwara inlier. (C) Talc mineralization along the serpentinites from southeast of Rakhabdev. (D)
Massive serpentinites from Rakhabdev. (E) Dolomites from the northeast of Rakhabdev. (F) Massive quartzites
from the east of Rakhabdev. (G) Mining activities for talc from the hinges of serpentinites outcrops from south of
Rakhabdev. (H) Contact between the quartzites and phyllites from north of Rakhabdev. (I) Serpetninites and
its alteration products from south of Rakhabdev.

116

Recent Remote Sensing Sensor Applications - Satellites and Unmanned Aerial Vehicles (UAVs)



using the GPS (Table 5). The derived confusion matrix shows the overall accuracy
and kappa coefficient as 85.25% and 0.8164 respectively for the lithological map.

6. Discussions

The study area belongs to the Aravalli Orogeny and several deformational histo-
ries were recorded [72–75, 77, 81, 84–86, 89, 111–113]. The remote sensing tech-
nique is widely used for mineral mapping and lithological mapping around the
study area [9, 58, 102, 114]. In the present research, different BR, RBD, & MI and
their combinations were generated using the ASTER SWIR and TIR bands for the
demarcation of the different litho-units present in the region. The BRs and RBDs
were used to derive the Al-OH and Mg-OH & CO3�2 consisting minerals [8, 12,
35, 37, 42, 106] like phyllite & mica-schist, carbonates, and ultramafics. And their
FCC combinations helped to delineate granitoids, granites, phyllite, mica-schist,
quartzites, dolomite, and ultramafics (Figure 5B). The MIs were used to derive
SiO2, Mg-OH, and CO3�2 mineral maps of the region [23, 54–56, 58, 101], and
quartzites, ultramafics, and carbonates were delineated. The FCC also helped a lot
to determine the lithologies of the region but were limited to the quartzites,
ultramafics, and carbonates (Figure 6D).

FPCS technique was utilized for the delineation of litho-units present in the
region on the basis of the combined results derived from the BRs, RBDs, and MIs
from the ASTER SWIR and TIR bands. The PC1, PC3, and PC6 have capabilities to
discriminate the ultramafics, carbonates, quartzites, phyllite, mica-schist, and
granitoids. The prepared FCC using the combinations of these PCs demarcated the
granitoids, granites, phyllite, mica-schist, quartzites, conglomerate, meta-arkose,
dolomites, ultramafics (Figure 8). The integrated approach from the ASTER SWIR
and TIR proved its potentials for lithological mapping. The generated confusion
matrix showed the overall accuracy as 85.25% and kappa coefficient as 0.8164 in
which maximum producer’s accuracy (%) was attained by dolomite while user’s
accuracy (%) by granite. Field validation was performed on the generated litholog-
ical map by observing the various litho-units present on the surficial exposures and
gathered the location information by the use of a GPS survey. Association of
quartzites with dolomites and serpentinites with dolomites was observed in the

Class Dolomite Serpentinite Quartzite Talc Phyllite Granite User’s
Accuracy

Dolomite 34 1 0 2 0 1 89.47%

Serpentinite 2 16 0 1 0 0 84.21%

Quartzite 0 1 10 0 2 0 76.92%

Talc 2 1 0 14 1 0 77.78%

Phyllite 1 0 2 0 17 1 80.95%

Granite 0 0 0 0 0 13 100.00%

Producer’s Accuracy 87.18% 84.21% 83.33% 82.35% 85.00% 86.67%

Overall Accuracy 85.25%

Kappa Coefficient 0.8164

Table 5.
Accuracy assessment of the derived lithological map using the GPS survey collected localities.
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field. Talc is found with the serpentinites and was produced due to the process of
serpentinization and mainly formed at the deformational zones [115].

7. Conclusions

1.Lithological and mineral mapping of the region can be done with the help of
various BR, RBD, & MI and by the combinations of these but discrimination
between every single litho-unit is not possible with it.

2.The data integration (combination of derived mineral maps from ASTER
SWIR and TIR bands) approach played an important role to obtain the desired
research goal.

3.PCA is a statistical technique that is utilized for the demarcation of the various
litho-units using the original bands but, in this research, FPCS was utilized on
the integrated data which shows its capabilities towards discrimination of
every single litho-unit.

4.PC1, PC3, and PC6 from the FPCS were utilized for the discrimination of
various litho-units in which talc is also identified within ultramafics which is
an alteration product of serpentinization.

5.The overall accuracy and kappa coefficient of the generated lithological map
are 85.25% and 0.8164 respectively and calculated with the help of GPS
surveys.
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Chapter 7

Trans_Proc: A Processor
to Implement the Linear
Transformations on the Image
and Signal Processing
and Its Future Scope
Atri Sanyal and Amitabha Sinha

Abstract

We present here Transproc, a reconfigurable generic processor which can
execute operations related to linear transformations like FFT, FDCT or FDWT.
A graph theoretic lemma is used to find the applicability of such a processor to
calculate the flow graph related parallel operations found in these linear transfor-
mations. The architecture level design and processing element level design is
presented. The primitive instruction set and the control signal implementing the
instruction set is proposed. A detailed simulation validating the correctness of PE
level and the architecture level data calculation and routing operations are carried
out using Xilinx Vivado Webpack. The result related to size, power and timing
requirement is presented.

Keywords: Transform processor, Graph Theoretic Concept, Design,
Primitive Instruction Set, Simulation

1. Introduction

In this paper we have proposed an efficient architecture for implementation of
frequently used and computationally intensive linear transformations in signal or
image processing. The linear transformations like FFT, FDCT or FDWT are com-
putationally intensive and also critical for the processing applications. The papers
proposing different designs in this domain are mainly of three types. The first
category papers propose architectures to implement only a single category of linear
transformations like FFT or FDCT [1–14]. Since these implementation’s primary
focus is on speed so they are mainly implemented on ASIC. These include a variety
of algorithms to decrease the number of computationally intensive operations. We
have seen multiplier less variety, high speed pipeline, data forwarding, step lifting
techniques implementing FFT or FDCT algorithms which greatly decrease the
computational complexity and increase the speed, and others. The second category
of papers propose processors or architectures which can implement a number of
general linear transformations like FFT, FDCT, FDWT. Since these architectures
include basic building blocks common to all these transformations and so they need
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to reconfigure itself before executing different transformations, they are mainly
implemented using reconfigurable architectures like FPGA [5–17]. Our paper pro-
poses a processor of that category. The third category of papers discuss implemen-
tation of more generic image/signal applications [18–20]. While describing a linear
transform data flow graph is used extensively in different literatures. It was proved
earlier in [21, 22] by graph theoretical and mathematical induction that a MIMD
processor consisting of processing elements connected like a completely connected
equi- vertex bi partite graph can copy any actions shown in the flow graph of
transformations like FFT, FDCT, FDWT etc. of any arbitrary size. This confirms
that a processor with such type of architecture can execute the transforms
represented using flow graph method. The architecture of processing element and
the overall architecture discussed in [21, 22] is described thoroughly here. The
architecture of control unit and the data exchange procedure between the main
CPU and memory and this processor and its local memory is discussed in detail
here. The instruction set for processing element and the overall processor are all
described along with their corresponding control lines. The representative examples
of each category of the instruction set are considered and the step wise control
signal to implement them is discussed. The entire architecture requires
reconfigurability as it is capable of implementing several transforms by its own.
Then the architecture is coded in VHDL, synthesized and simulated using Xilinx
Vivado. The processor is simulated to verify the operations in three stages. First the
component inside the processing element (floating point adder and multiplier) is
simulated and tested. Then the longest sequence of execution required in Loefflers
FDCT algorithm is tested for each and every processing element and finally the
testing of the overall architecture and the data routing between different processing
element is simulated and tested. The synthesis result showing the size of the archi-
tecture in LUT level and the synthesis result of power and time are discussed. The
rest of the paper is composed in this way, Section 2 discusses the theoretical back-
ground of the architecture, Section 3 discusses the implementation of the processor
in a modular way, the overall architecture of the processor and the implementable
CU is presented, then the processing element level architecture is presented,
instruction set and the control signals implementing some representative examples
of the instruction set is shown. Section 4 discusses the step by step synthesis and the
simulation results in terms of speed, timing and size. Finally Section 5 discusses the
conclusion and future scope of the work.

2. Proof of the architecture using graph theoretic approach

The theoretical proof using mathematical induction is given in [21] in detail.
Here in this paper we will just present a brief of the argument.
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The flow graph shown in the picture [23] is a widely used method of
calculating transformations like FFT, FDCT and FDWT. In FFT or FDCT we can
see that the flow graph looks physically like an equi vertex k partite graph where k
is equal to the no of stages, the vertices are processing elements and the
connections among the processing elements are the edges. Since the stages are
mutually exclusive among each other so an equi vertex k partite graph like
architecture can be reproduced by a fully connected equi vertex bipartite graph
if the vertex set contains an one to one mapping between every stage of the k –

partite and two stages of the bipartite graph. So any algorithm which is described
by a flow graph of the first category can be described by a graph of the later
category since the vertex set has the one to one mapping as described. From this
argument it is clear that an architecture representing the second category will be
efficient as a transform processor and the reconfigurity will make it easy to
switch over from one transform to another making it a general transform processor.
The orginal architecture requires two sets of processing elements in both the
parts and a fully connected bidirectional communication wire between them. The
hardware cost can be largely reduced if instead of that we take one set of processing
elements and another set of registers, a fully connected feed forward network from
register to processing elements and a single feedback network connecting each
processing element to their corresponding register. Then the data exchange
between two processing elements Pi!Pj can be rewritten as Pi!Ri!Pj. This will
take two clock pulses rather than one but the hardware cost will be significantly
reduced.
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3. Implementation of the architecture

3.1 Implemenation of the overall architecture design

The fully connected feed forward path described in the previous section is
created by 8 multiplexers of size 8 x 3. Each one of them can take input from any
eight registers and send the output to any one Processsing Element. The signal lines
of the individual multiplexer select the input register loading the value in the
Processing Element (PE). This constitutes the most simple but effective
feedforward communication lines between the registers and PEs The feedback line
is implemented by a combination of 1x2 demultiplexer and 2x1 multiplexer duo
which direct the output of the PE to the Input line of the corresponding register.n
The same duo can also load the data from the memory in the beginning and once the
calculation is complete can store them. The current design is examined with 8 such
stages keeping mainly the view of implementing one stage of a FDCT algorithm.
The architecture uses 8 bit register sets to latch value while entering or exiting
to/from processing element.

3.2 Implementation of the processing element inside the processor

The implementation of the processing element (PE) inside the processor is done
keeping in mind the type of operations which are performed to compute these type
of transformations. Most of the operations are floating point type. So we used one
floating point adder/subtractor and one floating point multiplier inside the PE. We
have used commonly found floating point adder and multiplier in this PE. Keeping
open the testing of state of the art designs to improve the performance of adder and
multiplier in future for this design. There are two registers which will be used to
latch source data of adder and similar two registers which will be used to latch
source data of multiplier. The result of adder and multiplier is stored in similar two
registers. The PE contains multiplexer and demultiplexer inside to route the data
from one internal register to another and to send/receive data to/from the registers
outside PE.
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The Table 1 lists below the routing control signals and their functions for the
processor and the routing and activation control signals and their functions for
Processing elements PE.

3.3 Primitive instruction set of the processor

The primitive instruction set which is formulated for the processor is mainly
contains two categories. Category A is for the instructions to implement routing
operations of the processor outside PE and category B is for the arithmetic calcula-
tion and data movement operations inside PE.

A.Data Loading/Routing Operations Outside PE:

1.Load Direct MIDREG i: To load data from outside memory in the
MIDREG i from TP i [i = 1...8]

2.Load Feedback MIDREG i: To load data in MIDREG i from feedback line
FB i [i = 1...8]

3.3. Rout PE i,MIDREG j = Routing data from any MIDREG j to any PE i.
[i,j = 1...8]

4.Out OUTREG i = For storing the value from OUTREG i to outside
memory. [i = 1....8]

B. Data Loading/Movement and Mathematical Operations Inside PE:

1.Load [D0-D3][PE i] = to load data in any of the registers D0-D3 from
outside memory of PE i.
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2.Load [D0-D3], [C0-C7], [PE i] = to load data in any of the registers of
D0-D3 from any of the constant registers C0-C7of PE i.

3.Add [PE i] = to add the data present in D0 and D1 and keep it in D4 of PE i.

4.Mul [PE i] = to multiply the data present in D2 and D3 and keep it in D5
of PE i.

5.Move [D0-D3], [D4-D5], [PE i] = data movement operation from any of
the output registers of D4-D5 to any of the input registers of D0-D3 of PE i.

6.Out [D4-D5], [PE i] = Write back data from any of the output registers
D4-D5 of PE i to OUTREG i of PE i.

Next we calculate the total number of instruction per PE and the overall
architecture in the Table 2 below for each group as well as the overall total:

We can see that the total numbers of instructions are 472 out of which 48 are for
each PE and 88 are for outside PE. The control signals of the different components

Signal Name Select bits Function

Inmux 1–8 0/1 0 = select input data from outside memory (TP1–8)
1 = select input data from the feedback line (FB1–8)

Routmux1–8 000–111 000 = Select data from the Midreg1 to PE1–8
.....................

111 = Select data from the Midreg8 to PE1–8

Outdemux1–8 0/1 0 = select output data from Outreg1–8 to FB1–8
1 = select output data from Outreg1–8 to output

CMUXSEL 000–111 Select any constants C0-C7 based upon the select line.

PECL1 0/1 0 = DEMUX1!MUX0
1 = DEMUX1!MUX1

PECL2 00–11 00 = Direct Load from outside to D0/D1
01 = Movement of data from D4 to D0/D1
10 = Movement of data from D5 to D0/D1

11 = Load constant data from C0-C7

PECL3 00–11 00 = Direct Load from outside to D2/D3
01 = Movement of data from D5 to D2/D3
10 = Movement of data from D4 to D2/D3

11 = Load constant data from C0-C7

PECL4 0/1 0 = Enable bit for D0, 1 = Enable bit for D1

PECL5 0/1 0 = Enable bit for D2, 1 = Enable bit for D3

PEEN1 0/1 1 = Enable bit for D4

PEEN2 0/1 1 = Enable bit for D5

PECL6 0/1 0 = DEMUX2!.MUX0/MUX1
1 = DEMUX2!.MUX2

PECL7 0/1 0 = DEMUX3!.MUX0/MUX1
1 = DEMUX3!.MUX2

PECL8 0/1 0 = Select input from DEMUX2
1 = Select input from DEMUX3

Table 1.
Name of the control signals, there values and functions used in Trans_Proc.
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and their functions of the processor units are specified in the previous table, from
that we can specify the sequence of control signals which will be activated in order
to implement each of the instructions of the instruction set. We can see one repre-
sentative instruction for each group and the corresponding control signals and their
sequence of activation to implement the instruction in the following Table 3. The
table listing all the instructions can be found in appendix.

3.4 Implementation of operations using the instruction set of the architecture

If we consider the flow graph of the FDCT algorithm of figure taken as an
example, we can see that the algorithm is divided into 4 stages and each stage
contains 8 PE executing operations which are of three types: floating point addition/
subtraction, floating point multiplication and floating point operation evaluating
expression of the type C1*X + C2* Y. Next, we see a stage wise operation schedule of
the 8 PEs (specifying what each PE does in these 4 stages) in the below Table 4:

Category A Sequence of control signals

Load direct MIDREG 1 1.TP1!Data 2. INMUX1!0 3. EN-MIDREG1!1

Load Feedback MIDREG1 1.OUTDEMUX1!0 2. INMUX1!1 3.EN-MIDREG1!1

Rout MIDREG3,PE5 1.EN-MIDREG3!0 2. ROUTMUX5!011

Out OUTREG6 1.EN-OUTREG6!0 2. OUTDEMUX6!1

Category B Sequence of control signals

Load D0,PE 1 1.input_PE1!data 2.PECL1_PE1!0 3.PECL2_PE1!00 4.PECL4_PE1!1

Load D0,C5,PE 4 1.EN-C5_PE4!1 2.CMUX_PE4!101 3.PECL2_PE4!11 4.PECL4_PE4!1

Add PE3 1.PEEN1_PE3!1

Mul_PE2 2.PEEN2_PE2!1

Out D4_PE7 1.PECL6_PE7!1 2.PECL8_PE7!0 3.data_PE7!output

Move D1,D5,PE 6 1.PECL7_PE6!0 2.PECL2_PE6!10 3. PECL4_PE6!0

Table 3.
Sequence of operations for implementing C1*X + C2*Y.

Group name Total number of instruction per PE Total number of instruction

A1 N/A 8

A2 N/A 8

A3 N/A 64

A4 N/A 8

B1 4 32

B2 32 256

B3 1 8

B4 1 8

B5 8 64

B6 2 16

Total 48 472

Table 2.
Total no of instructions of different group.
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We will list the instructions required to execute three cases as a representative
example: a > stage 1 operation of PE 5 b > stage 4 operation of PE 7 and c > stage 2
operations of PE 6. These three cases exhibit three category of floating point
operations described previously (Table 5).

Time
unit

Instruction Description

1 Load direct MIDREG3 Load data from the TP3 line to MIDREG 3.

2 Rout PE[5],MIDREG[3] Load data from MIDREG3 to input line of PE5

3 Load [D0],[PE 5] Load input data to D0 from input line of PE 5

4 Load direct MIDREG4 Load data from the TP4 line to MIDREG 4.

5 Rout PE[5],MIDREG[4] Load data from MIDREG4 to input line of PE5

6 Load [D1],[PE 5] Load input data to D1 from input line of PE 5

7 Add [PE5] Add the content of D0 and 2’s complement value of D1 and store the
value in D4 of PE5

8 Out D4 Output data from D4 to OUTREG 5 of PE 5

9 Load Feedback MIDREG
[5]

Load the data from the OUTREG 5 of PE5 to FB5 and then to MIDREG 5.

1 Rout PE[7],MIDREG[6] Load data from MIDREG6 to input line of PE7

2 Load [D2],[PE 7] Load input data to D2 from input line of PE 7

3 Load [D3],[C7],[PE 7] Load D3 with constant from the constant register C7 selected by CMUX

4 Mul [PE7] Multiply the content of D2 and D3 and store the value in D5 of PE 7

5 Out D5 [PE7] Output data from D5 to OUTREG 7 of PE 7

6 Load Feedback MIDREG
[7]

Load the data from the OUTREG 7 of PE7 to FB7 and then to MIDREG 7.

1 Rout PE[6],MIDERG[5] Load data from MIDREG5 to input line of PE6

2 Load [D2], [PE 6] Load input data to D2 from input line of PE 6

3 Load [D3],[C5],[PE 6] Load D3 with constant from the constant register C5 selected by CMUX

4 Mul [PE 6] Multiply the content of D2 and D3 and store the value in D5 of PE 6

Stage 1
P1: Reg0 + Reg7
P2: Reg1 + Reg6
P3: Reg2 + Reg5
P4: Reg3 + Reg4
P5: Reg3-Reg4
P6: Reg2-Reg5
P7: Reg1-Reg6
P8: Reg0-Reg7

Stage 2
P1: Reg0 + Reg3
P2: REg1 + Reg2
P3: Reg1-Reg2
P4: Reg0-Reg3
P5: C3π/16*Reg4 + S3π/16*Reg7
P6: Cπ/16*Reg5 + Sπ/16*Reg6
P7: -Sπ/16*Reg5 + Cπ/16*Reg6
P8: -S3π/16*Reg4 + C3π/16*Reg7

Stage 3
P1: Reg0 + Reg1
P2: Reg0-Reg1
P3: √2 C3π/8*Reg2 + S3π/8*Reg3
P4: -S3π/8*Reg2 + √2C3π/8*Reg3
P5: Reg4 + Reg6
P6: Reg5-Reg7
P7: Reg4-Reg6
P8: Reg5 + Reg7

Stage 4
P1:——

P2:——

P3:———

P4:———

P5: Reg4-Reg7
P6: √2*Reg5
P7: √2*Reg6
P8: Reg4 + Reg7

Table 4.
Stage wise operation schedule 8 PEs performing FDCT algorithm.
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3.5 Implementation of the control unit of the processor

Hardwired implementation of the correct control signals, their values and the
sequence for total 472 instructions is very difficult physically. Here in this work we
have only developed instructions required for proving the correctness of the design,
which are of three type. 1.We have developed instructions inside the PE to do a floating
point addition and multiplications. 2. We have developed instructions to implement
the longest sequence of the FDCT algorithm C1*X + C2*Y inside one PE implemented
of a single stage. And 3. Next we have done the same implementation of stage 2 for all
PEs and routed the output values randomly to prove the correctness of the implemen-
tation. So the control unit is partially developed.We require a programming based
approach to develop a full grown assembler to generate all the instructions for all the
instructions. These is an incomplete design of the TransProc which we presented in the
paper but shows that it has the capability which can be used correctly for generationg
all the instructions required for all the transform generators as a hardware co processor
implemented in FPGA once the CU is finished generating all the instructions.

4. Simulation and synthesis

Time
unit

Instruction Description

5 Mov [D0],[D5],[PE 6] Move the content from D5 to D0 of PE6

6 Rout PE[6],MIDERG[6] Load data from MIDREG6 to input line of PE6

7 Load [D2], [PE 6] Load input data to D2 from input line of PE 6

8 Load [D3],[C6],[PE 6] Load D3 with constant from the constant register C6 selected by CMUX

9 Mul [PE 6] Multiply the content of D2 and D3 and store the value in D5 of PE 6

10 Mov [D1],[D5],[PE 6] Move the content from D5 to D1 of PE6

11 Add [PE 6] Add the content of D0 and D1 and store the value in D4 of PE6

12 OUT [D4], [PE 6] Output data from D4 to OUTREG 6 of PE 6

13 Load Feedback Data
MIDREG[6]

Load the data from the OUTREG 6 of PE6 to FB6 and then to MIDREG 6.

Table 5.
List of instructions for a > stage 1 operation of PE 5 b > stage 4 operation of PE 7 and c > stage 2 03 operations
of PE 6.
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The first two simulations show the correct floating point implementation of
floating point multiplier and adder/subtractor. While the floating point multiplier
has lots of scope of improvement but floating point adder/subtractor is quite state of
the art.

Here we see the longest sequence of multiplication and adder inside a single PE.
Pein1xCein5 + Pein1xCEin6 = 2.0x0.5 + 4.0x8.0 = 33.0.
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Here we see the routing correctness of the every PEs of the Trans_Proc
according to the following flow graph shown in a tabular format:

PE1 = 1, PE2 = 2, PE3 = 3, PE4 = 4, PE5 = 5, PE6 = 6, PE7 = 7, PE8 = 8.
C1 = 2, C2 = 8.
PE1 = PE1x C1 + PE8xC2 = 66.
PE2 = PE2x C1 + PE7xC2 = 58.
PE3 = PE3x C1 + PE6xC2 = 50.
PE4 = PE4x C1 + PE5xC2 = 42.
PE5 = PE4x C2 + PE5xC1 = 34.
PE6 = PE3x C2 + PE6xC1 = 26.
PE7 = PE2x C2 + PE7xC1 = 1.
PE8 = PE1x C2 + PE8xC1 = 10.
This is the way the routing correctness among the different PEs of the processor

is tested and we can see that it is working.
Once the behavioral simulation is correctly shown, next we present the result the

synthesis of the entire processor done by the Xilinx Vivado and comment on the
result (Tables 6–9).

The overall utilization report gives an idea of the size of the processor while the
number of primitive blocks used in the processor is also given. Please remember
that the study here did not include the CU utilization as that is incomplete but and
will be used as an separate design in the future study. Total on chip power with its

Utilization report (Primitive blocks)

Primitive name Number Functuional category

LUT6 6096 LUT

LUT5 920 LUT

LUT4 2984 LUT

LUT3 576 LUT

LUT2 536 LUT

LUT1 1257 LUT

FDCE 3616 Flop & Latch

FDRE 3312 Flop & Latch

MUXF7 320 MuxFx

CARRY4 168 Carry Logic

IBUF 489 IO

OBUF 73 IO

BUFG 1 Clock

Table 7.
Utilization report of primitives block.

Utilization report (Summery)

No of LUT 10897

No of FF 6928

No of IOB 562

Table 6.
Summery of utilization report.
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two components dynamic and static is also suggesting an implementable design. T
ming report shows Setup up time, WPWS is 4.650 ns, we calculated by hand that
the instruction inside the floating point operations inside the takes maximum 4
clock pulses. This makes the maximum clock frequency as 292 MHZ.

5. A discussion on the memory and instruction exchange between the
main processor and Trans_proc

Timing report (Summery)

Max Setup Time 3.419 ns

Worse Pulse Width Slack 4.650 ns

Avg CP required for FP operations inside PE 4

Max Clock Frequency 292 MHz

Table 9.
Timing report summery.

Power report (Summery)

Total On-Chip Power 0.417 W

Device Dynamic Power 0.335 W

Device Static Power 0.082 W

Table 8.
Power report summery.
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Here we can see the data transfer procedure between the main processor and
Trans-Proc which will be implemented as a future scope of this study. The process
uses an linear image RAM (LIRAM) to store the primary data. Then there are two
data registers used as buffers while going in and out to the Trans-Proc. There is one
counter to count the no of blocks going to Trans-Proc and one address register to
store the block of transformed image again back to LIRAM. This will be
implemented further as the future scope of this study.
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Chapter 8

Application of UAV Remote 
Sensing in Monitoring Banana 
Fusarium Wilt
Huichun Ye, Wenjiang Huang, Shanyu Huang, Chaojia Nie, 
Jiawei Guo and Bei Cui

Abstract

Fusarium wilt poses a current threat to worldwide banana plantation areas. 
To treat the Fusarium wilt disease and adjust banana planting methods accord-
ingly, it is important to introduce timely monitoring processes. In this chapter, 
the multispectral images acquired by unmanned aerial vehicle (UAV) was used 
to establish a method to identify which banana regions were infected or unin-
fected with Fusarium wilt disease. The vegetation indices (VIs), including the 
normalised difference vegetation index (NDVI), normalised difference red edge 
index (NDRE), structural independent pigment index (SIPI), red-edge structural 
independent pigment index (SIPIRE), green chlorophyll index (CIgreen), red-edge 
chlorophyll index (CIRE), anthocyanin reflectance index (ARI), and carotenoid 
index (CARI), were selected for deciding the biophysical and biochemical charac-
teristics of the banana plants. The relationships between the VIs and those plants 
infected or uninfected with Fusarium wilt were assessed using the binary logistic 
regression method. The results suggest that UAV-based multispectral imagery 
with a red-edge band is effective to identify banana Fusarium wilt disease, and 
that the CIRE had the best performance.

Keywords: Fusarium wilt, banana, UAV, remote sensing

1. Introduction

Bananas (Musa spp.) are a widely cultivated cash crop in both the tropical 
and subtropical regions. Caused by the soilborne fungus Fusarium oxysporum f. 
sp. cubense (Foc), Banana Fusarium wilt (also known as Panama disease) seri-
ously threatens global banana cultivation and export [1, 2]. As reported, banana 
Fusarium wilt may have affected up to 100,000 hectares of banana plantations. 
Moreover, it continues to spread, through infected plant materials and contami-
nated soil and flowing water, or through farm machinery and inappropriate 
sanitation measures [2]. Externally, the first sign that a plant is infected with the 
disease is the withered plant, with the old leaves turning yellow on the edge. With 
the progression of the disease, the leaves eventually droop and form a ‘skirt’ around 
the pseudo-stem before finally falling off. The new leaves may show irregular 
and wrinkled blades as well as pale margins [3]. Currently, no effective chemical 
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treatment method has been proposed to control Fusarium wilt. “Removal in time” is 
the optimal way to prevent the disease spread once a diseased plant is identified [4].

For treatment of the disease, and for crop planting adjustments, real-time moni-
toring and effective identification of banana Fusarium wilt play a significant role 
[5]. Traditionally, soil investigations have been the only effective means to monitor 
crop diseases, but such surveys take a lot of time and are often expensive. Recent 
years have witnessed the rapid development of the remote sensing technology, which 
has developed into a viable method for disease assessment and monitoring. The leaf 
pigment content, leaf area index (LAI) and water content of a plant which is infected 
with a disease will all undergo changes. And such biochemical and biophysical 
changes in the plant will also present in its spectral reflectance characteristics [6]. 
Remote sensing technology has been applied to monitor diseases, including Fusarium 
head blight [7, 8], rust infection [9–11], and powdery mildew [7, 8, 12, 13] in wheat, 
grey leaf spot in maize [14], bacterial leaf blight in rice [15, 16], and late blight 
disease and bacterial spot in tomatoes [17, 18] in some studies. However, the sensi-
tivity of spectral bands and VIs varies with the category of diseases. For example, 
Bravo et al. [19] calculated the normalised difference vegetation index (NDVI) using 
wavelengths of 620–640 nm and 740–760 nm for extracting powdery mildew from 
wheat patches. Devadas et al. [20] distinguished yellow rusted wheat from healthy 
wheat using the anthocyanin reflection index (ARI). Huang et al. [10] suggested that 
the position of the red edge can be used as a disease indicator. With this in mind, it is 
of essence to identify which spectral bands and VIs are suitable for the identification 
of which specific diseases.

UAV remote sensing technology has been developed rapidly over recent years. 
It has become of interest due to its advantages of long flight time, real-time image 
transmission, effective detection of high-risk areas, low cost and easy manoeu-
vrability. It provides new means for the timely and non-destructive extraction of 
infected plants from the in-season crops [21]. Using UAV multispectral and hyper-
spectral images, a great number of studies have achieved significant progress in 
growth monitoring, crop classification, and the identification of diseases and insect 
pests [22–24]. Within banana production, a few studies have adopted UAV-based 
images to map the spatial patterns of photosynthetic activity in banana plantations 
[25]. Nonetheless, there are few studies that use UAV-based remote sensing to moni-
tor banana Fusarium wilt [26, 27]. Furthermore, the spatial scale for remote sensing 
information and scaling remains one of the fundamental problems in geoscience 
[28]. Selecting an optimal spatial scale for remote sensing imagery plays a signifi-
cant role in agricultural monitoring in particular.

Therefore, the goals of this chapter are to: (i) develop an identification method 
for Fusarium wilt based on UAV multispectral remote sensing, (ii) determine the 
optimal VI needed for the establishment of a quality identification model, and 
(iii) evaluate how different image resolutions affect the accuracy of Fusarium wilt 
identification in order to provide guidance for the application of satellite-based data 
in a massive scale.

2. Materials and methods

2.1 Field experiment

The experiments were carried out at two experimental locations in Guangxi and 
Hainan, respectively.

The Guangxi experiment site is located in Guangxi Province of China (23°7′53″ 
to 23°8′4″ N, 107°43′45 to 107°44′7″ E) (Figure 1). It has a subtropical monsoon 



147

Application of UAV Remote Sensing in Monitoring Banana Fusarium Wilt
DOI: http://dx.doi.org/10.5772/intechopen.99950

climate characterised by year-round sunshine and rainfall, with a mean annual 
temperature between 20.8 to 22.4°C, and an average annual rainfall of 1200 mm. 
The soil type according to the FAO soil classification system is Ferralsol [29]. The 
banana variety in the study area was “Williams B6”. The leaf number of this variety 
is 34–36, the plant height is about 2.4–3 m, and the growth period is 10–12 months. 
The banana plantation was established in September 2015, with the planting dis-
tance of 2.0 m by 2.6 m. The first harvest was carried out in November 2016. As of 
August 2018 (the time of the field investigation discussed in this chapter), the third 
generation of bananas was in the fields and more than 40% of the banana plants 
were infected with Fusarium wilt.

The Hainan experiment site is located in Hainan Province, China (19°49′4″ to 
19°49′16″ N, 109°54′40″ to 109°54′53″ E) (Figure 1). It has a tropical monsoon 
climate characterised by year-round sunshine and rainfall, with a mean annual 
temperature between 23.1 to 24.5°C and an average annual rainfall of 1750 mm. The 
soil type according to the FAO soil classification system is Humic Acrisol [29]. This 
experimental field was divided into two sub-fields (left area and right area) with 
the middle road as the boundary (Figure 1). The left area was developed in June 
2017, with the planting distance of 2.0 m by 2.3 m. The first harvest was carried 
out in July 2018. The banana variety was “Baxijiao”. the plant height of this variety 
is about 2.6–3.2 m and the growth period is 9–12 months. In this field, the rate of 
banana Fusarium wilt infection was about 10%.

The right area was developed in August 2018. The planting distance was the 
same as that in the left field. The banana variety was “Nantianhuang”. The plant 
height of this variety is about 2.5–3.0 m and the growth period is 10–13 months. At 
the time of the field investigation in December 2018, no banana plants were found 
to be infected with Fusarium wilt.

Figure 1. 
Location of the experimental sites with the survey sites.



Recent Remote Sensing Sensor Applications - Satellites and Unmanned Aerial Vehicles (UAVs)

148

In this chapter, the experimental data obtained from the Guangxi site was used 
for calibration and validation of the Fusarium wilt identification model, and from 
the Hainan site used for model validation.

2.2 Field investigation

2.2.1 Plant investigation

The experiment at Guangxi site was carried out on August 7, 2018. A total of 120 
sample plots were investigated to assess the occurrence or non-occurrence of Fusarium 
wilt (Figure 1). Among them, there were 57 healthy samples and 63 diseased samples. 
The size of each sample plot encompassed one banana plant. Eventually, 75% samples 
were randomly extracted and employed for the construction of Fusarium wilt iden-
tification model denoted by modelling dataset (MD); and the remaining 25% for 
model validation, denoted by validation dataset 1 (VD1). The experiment at Hainan 
site was performed on December 11, 2018. The survey strategy was in line with that 
of the experiment at Guangxi site. A total of 35 sample plots were finally investigated, 
of which 16 were healthy and 19 were diseased. All the sample plots from Hainan sties 
were served for model validation, denoted by validation dataset 2 (VD2).

2.2.2 UAV multispectral imagery acquisition

The surveys were carried out by a DJI Phantom 4 Pro quadcopter (DJI 
Innovations, Shenzhen, China) equipped a MicaSense RedEdge-M multispectral 
camera (MicaSense, Inc., Seattle, WA, USA). The camera is configured with five 
bands: Blue (475 nm center, 20 nm bandwidth), Green (560 nm center, 20 nm 
bandwidth), Red (668 nm center, 10 nm bandwidth), Red edge (717 nm center, 
10 nm bandwidth), Near-IR (840 nm center, 40 nm bandwidth). The flight experi-
ment at the Guangxi site was performed between 12:30 p.m.–13:30 p.m. on 7 August 
2018, covering an area of 21 ha. While the flight experiment at the Hainan site was 
implemented between 11:00 a.m.–12:00 p.m. on December11, 2018, covering an area 
of 11 hectares. The flight altitude above ground level was 120 m with an 8 cm ground 
sample distance (GSD). Then, the original UAV imagery was resampled to generate 
images with five resolutions (i.e., 0.5-m, 1-m, 2-m, 5-m, and 10-m) by using nearest 
neighbour resampling algorithm.

2.3 Data analysis

2.3.1 Vegetation indices

In this section, the VIs method was applied to assess the infection status of 
Fusarium wilt in banana plantations. Eight VIs that related to plant growth and 
pigment absorption were selected to characterise the biophysical and biochemical 
variations due to individual infections. These VIs included the NDVI, normalised 
difference red edge index (NDRE), structural independent pigment index (SIPI), 
red-edge structural independent pigment index (SIPIRE), green chlorophyll index 
(CIgreen), red-edge chlorophyll index (CIRE), anthocyanin reflectance index (ARI), 
and carotenoid index (CARI). Table 1 lists the formulations of the VIs.

2.3.2 Statistics analysis

The binary logistic regression (BLR) was used to established the relationships 
between the VIs and the plants infected or uninfected with Fusarium wilt. As one 
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of the most common multivariate analysis methods, BLR has a dependent variable 
as a binary variable that represents the presence or absence of an event. The BLR 
dependent variable is a probability function, which can be expressed as [38]:

 ( )1/ 1 yp e−= +  (1)

where p represents the probability of Fusarium wilt occurrence in this chapter, 
ranging between 0 and 1, e is the numerical constant, and y refers to the linear 
combination. They can be expressed in a formula as:

 0 1 1 2 2 n ny x x xβ β β β= + + +…+  (2)

where β0 refers to the intercept, βi and xi (i = 0, 1, 2, …, n) are the slope coef-
ficients and independent variables, respectively. The logistic regression models were 
fitted with the modelling dataset through SPSS 20.0 software (SPSS Inc., Chicago, 
Illinois, USA) in this section.

Following the model fitting, the validation datasets were used to verify the accuracy 
of Fusarium wilt identification models, with indicators of the Kappa coefficient and 
overall accuracy (OA) [39, 40]. The Kappa coefficient ranges between −1 and 1, kappa 
≥0.75 represents excellent agreement, 0.75 > kappa ≥0.4 represents fair to good agree-
ment, kappa <0.4 represents poor represents [41]. The OA is the sum of the correctly 
identified plots divided by the total number of plots.

3. Banana fusarium wilt recognition

3.1 Statistical characteristics of VIs change after disease infection

Table 2 shows the VI values of the diseased and healthy sample plots. Significant 
differences (independent t-test) were observed in the NDVI, NDRE, CIgreen, CIRE, 
ARI, and CARI values between the healthy plots and diseased plots (p < 0.01), but 
not observed in the SIPI and SIPIRE values (p > 0.05). Hence, we selected NDVI, 
NDRE, CIgreen, CIRE, ARI, and CARI for follow-up analysis.

3.2 Recognition model fitting with different VIs

In this section, the relationships between the VIs and the plants infected or 
uninfected with Fusarium wilt were described by using the BLR method with 

VI Formulation Sensitive Parameter Reference

NDVI (RNIR–Rred)/(RNIR + Rred) Green biomass, LAI [30]

NDRE (RNIR–RRE)/(RNIR + RRE) Green biomass, LAI [31]

SIPI (RNIR–Rblue)/(RNIR – Rred) Leaf pigment content [32]

SIPIRE (RRE–Rblue)/(RRE – Rred) Leaf pigment content [33]

CIgreen RNIR/Rgreen–1 Leaf chlorophyll content [34]

CIRE RNIR/RRE–1 Leaf chlorophyll content [35]

ARI 1/Rgreen–1/RRE Leaf anthocyanin content [36]

CARI RRE/Rgreen–1 Leaf carotenoid content [37]

Table 1. 
List of the VIs used in this chapter.
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dataset MD. The classification accuracy of the relational models was verified via 
both dataset VD1 and VD2. It was found that the use of the NDVI, NDRE, CIgreen, 
and CIRE led to relatively good fitting recognition models with the OA values greater 
than 80% (Table 3). Of all the VIs, CIRE obtained the highest verified OA and 
Kappa coefficient for both VD1 (91.7% for OA and 0.83 for Kappa) and VD2 (80.0% 
for OA and 0.59 for Kappa), thereby indicating that CIRE performed best in the 
identification of Fusarium wilt. It could be seen that those VIs containing red-edge 

Experiment Site VI Sample plot Mean Std. Deviation p Value (t-test)

Guangxi site NDVI Healthy 0.54 0.11 0.00

Diseased 0.34 0.14

NDRE Healthy 0.20 0.08 0.00

Diseased 0.02 0.09

SIPI Healthy 0.88 0.36 0.24

Diseased 1.68 5.26

SIPIRE Healthy 0.58 0.71 0.25

Diseased 2.07 9.77

CIgreen Healthy 1.08 0.32 0.00

Diseased 0.43 0.33

CIRE Healthy 0.56 0.22 0.00

Diseased 0.09 0.22

ARI Healthy 0.85 0.15 0.00

Diseased 0.62 0.16

CARI Healthy 0.34 0.04 0.00

Diseased 0.30 0.06

Hainan site NDVI Healthy 0.44 0.05 0.00

Diseased 0.36 0.06

NDRE Healthy 0.35 0.10 0.00

Diseased 0.12 0.09

SIPI Healthy 1.07 0.07 0.06

Diseased 1.18 0.12

SIPIRE Healthy 1.11 0.11 0.04

Diseased 1.23 0.16

CIgreen Healthy 0.92 0.26 0.00

Diseased 0.49 0.26

CIRE Healthy 0.35 0.10 0.00

Diseased 0.12 0.09

ARI Healthy 0.87 0.30 0.03

Diseased 0.61 0.35

CARI Healthy 0.43 0.16 0.01

Diseased 0.33 0.19

Table 2. 
Statistical characteristics of the VI values of the diseased and healthy sample plots.
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band (e.g., NDRE vs. NDVI and CIRE vs. CIgreen) obtained higher verified OA and 
Kappa coefficients. Nonetheless, CARI and ARI achieved relatively low verified OA 
and Kappa coefficients.

3.3 Recognition model fitting with different resolution images

Evaluating the impact of image resolutions on the accuracy of Fusarium wilt 
recognition can provide guidance for the large-scale application of satellite-based 
data. In this chapter, the original UAV images were first resampled to five different 
spatial resolutions (0.5-m, 1-m, 2-m, 5-m, and 10-m), which were then used for 
Fusarium wilt monitoring. We calculated both the optimal VI without a red-edge 
band (CIgreen) and optimal VI with a red-edge band (CIRE) at different resolutions. 
Table 4 lists the results of Fusarium wilt recognition model for the CIgreen and CIRE 
VIs at different resolutions. As indicated by the verified results, the CIRE at resolu-
tion 0.5-m, 1-m, and 2-m were all obtained the acceptable verified OA (over 70%) 
and Kappa coefficients (over 0.40). When using the dataset VD1, the verified OA at 
resolution 0.5-m, 1-m, and 2-m were 91.7%, 79.2%, and 75.0%, respectively, and the 
Kappa coefficients were 0.83, 0.60, and 0.53, respectively. When using dataset VD2, 
the verified OA at resolution 0.5-m, 1-m, and 2-m were 85.7%, 74.3%, and 71.4%, 
respectively, and the Kappa coefficients were 0.71, 0.48, and 0.41, respectively. 
Despite that, the OA and Kappa coefficients at resolution 5-m and 10-m resolution 
were relatively low, and their values dropped as the resolution decreased. Moreover, 
at the same resolution, the accuracy of the CIgreen-based model for Fusarium wilt 
recognition was lower than that of CIRE-based model. In fact, the only acceptable 
result for the CIgreen was at 0.5-m resolution.

3.4 Fusarium wilt Banana distribution mapping at different resolutions

With the aim to further explore the visual effects of image resolutions, the 
distribution of Fusarium wilt infected and uninfected areas at the Guangxi site were 
mapped using different resolution images. CIRE-based and CIgreen-based Fusarium 
wilt identification models were respectively used to create the Fusarium wilt distri-
bution maps. As can be seen in Figures 2 and 3, the maps with 0.08-m, 0.5-m, 1-m 
and 2-m resolution show quite similar distributions of the occurrence of Fusarium 
wilt; however, the maps with 5-m and 10-m resolutions exhibited very little detail. 
Table 5 lists the area and percentage of the areas infected with Fusarium wilt at dif-
ferent resolutions. For the maps based on CIRE models, the total areas of Fusarium 
wilt were between 5.69 ha and 6.59 ha, accounting for 38.2% and 44.3% of the 

VI Recognition model Dataset VD1 Dataset VD2

OA (%) Kappa OA (%) Kappa

NDVI y = 5.373–11.851 × NDVI 83.3 0.66 62.9 0.22

NDRE y = 1.802–15.775 × NDRE 87.5 0.75 65.7 0.39

CIgreen y = 3.118–4.144 × CIgreen 87.5 0.74 74.3 0.47

CIRE y = 1.935–6.110 × CIRE 91.7 0.83 80.0 0.59

ARI y = 5.326–7.247 × ARI 83.3 0.66 68.6 0.37

CARI y = 3.172–9.966 × CARI 66.7 0.35 60.0 0.21

Table 3. 
Recognition models of banana fusarium wilt for different VIs.
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Resolution Recognition model Dataset VD1 Dataset VD2

OA (%) Kappa OA (%) Kappa

CIRE

0.5-m y = 1.987–5.826 × CIRE 91.7 0.83 85.7 0.71

1-m y = 1.645–4.896 × CIRE 79.2 0.60 74.3 0.48

2-m y = 1.475–4.178 × CIRE 75.0 0.53 71.4 0.41

5-m y = 1.027–2.854 × CIRE 70.8 0.42 65.7 0.30

10-m y = 0.761–1.817 × CIRE 62.5 0.25 62.9 0.24

CIgreen

0.5-m y = 3.166–3.946 × CIgreen 87.5 0.75 74.3 0.48

1-m y = 2.633–3.266 × CIgreen 75.0 0.51 65.7 0.32

2-m y = 2.421–2.936 × CIgreen 75.0 0.51 62.9 0.26

5-m y = 1.552–1.862 × CIgreen 66.7 0.35 48.6 0.01

10-m y = 1.044–1.158 × CIgreen 58.3 0.18 45.7 −0.01

Table 4. 
Recognition models of banana fusarium wilt for the CIRE and CIgreen at different resolutions.

Figure 2. 
Maps of the distribution of fusarium wilt based on the CIRE with different resolution images at the 
Guangxi site.
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banana plantation area. Taking a map with a resolution of 2 m as an example, the 
incidence of Fusarium wilt is between 40.8% and 43.6%. For the maps based on 
CIgreen models, the total areas of Fusarium wilt were between 5.09 ha and 6.63 ha, 
accounting for 34.2% and 44.6% of the banana plantation area. Among them, the 
percentages of Fusarium wilt of the 0.08-m and 0.5-m resolution maps were 40.1% 
and 44.6%, respectively.

3.5 Discussion

It was found that among all the VIs used in this chapter, CIRE was the best red-
edge VI and CIgreen was the best non-red-edge VI for Fusarium wilt identification. 
This is because these two VIs are sensitive to the changes of chlorophyll content of 
a plant, and Fusarium wilt infection in banana will cause a decrease in leaf chloro-
phyll content [34, 35, 42]. Furthermore, compared with VIs without the red-edge 
band, VIs with the red-edge band had higher OA and Kappa coefficients (e.g., 
NDRE vs. NDVI, and CIRE vs. CIgreen). It has been widely proved that the red-edge 
position is very sensitive to the changes of the plant chlorophyll content [43, 44]. 
Nevertheless, the UAV-based multispectral imagery used in this chapter only pos-
sessed 5 bands, which still cannot fully characterise the differences of the spectral 
characteristics between the diseased and healthy plants. It is therefore of great 

Figure 3. 
Maps of the distribution of fusarium wilt based on the CIgreen with different resolution images at the 
Guangxi site.
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significance to use hyperspectral data to further study the sensitivity of certain 
wavebands to banana Fusarium wilt.

The results also showed the potential of combining BLR and VIs to accurately 
identify Fusarium wilt of banana. Based on this method, an ideal framework 
for the use of spectral features can be obtained, so as to clarify the pathological 
mechanisms. In this chapter, the dependent variable was the occurrence of banana 
Fusarium wilt. Under the circumstance that the predicted variable has a binary 
nature, BLR can be regarded as a suitable approach [38]. In addition, BLR can 
deliver better performance than discriminant analysis in the case that the predic-
tor variables are continuous, categorical, or a combination of the two [45]. BLR 
is highly interpretable, very efficient, and does not require large computational 
resources, so it is widely used to describe the relationship between a dependent 
variable and multiple independent variables [38]. Moreover, due to its linear deci-
sion surface, non-linear problems cannot be solved by the logistic regression. With 
the development of artificial intelligence, pattern recognition and machine learning 
methods will become more common in the use of remote sensing to monitor and 
predict plant diseases [46].

The Fusarium wilt detection models were verified both using the dataset VD1 
VD2. It can be seen from the verification results that both CIRE and CIgreen performed 
well in the identification of Fusarium wilt (OA > 70%, and Kappa values >0.4). This 
indicates that the detection models of Fusarium wilt have a good transferability in 
other fields. Tables 3 and 4 show that the Kappa coefficients of the dataset VD2 
were lower than those of the dataset VD1, thus indicating that applying the detec-
tion methodology of Fusarium wilt in other fields would cause some precision 
loss. This situation may be due to the following factors. First of all, one of the most 
important factors affecting the verification results could be the fact that there were 
two different banana varieties at the experimental sites (“Williams B6” in VD1 and 
“Baxijiao” in VD2). These showed that there were differences in their biophysical 
and biochemical characteristics, which may cause differences in spectral character-
istic information. Secondly, due to the differences in the planting time and climatic 

Resolution Diseased area (ha) Proportion of diseased area (%)

CIRE

0.08-m 6.04 40.8

0.5-m 6.59 44.3

1-m 6.28 42.2

2-m 6.47 43.6

5-m 5.70 38.5

10-m 5.69 38.2

CIgreen

0.08-m 5.95 40.1

0.5-m 6.63 44.6

1-m 6.44 43.3

2-m 6.63 44.6

5-m 5.69 38.4

10-m 5.09 34.2

Table 5. 
Areas of fusarium wilt based on the CIRE and CIgreen with different resolution images at the Guangxi site.
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conditions of the two experimental sites, their growth stages differed greatly. In 
fact, the banana plants of two experimental areas were at different growth stages 
during the investigation. Moreover, soil types, planting density, and environmental 
conditions for crop growth are also important factors that affect the applicability of 
the Fusarium wilt identification model. Therefore, it is recommended to appropri-
ately optimise the BLR parameters when applying this method in other regions.

In this chapter, the original UAV images were resampled to generate five reso-
lution images (i.e., 0.5-m, 1-m, 2-m, 5-m, and 10-m) to evaluate the impact of 
different resolutions on the accuracy of Fusarium wilt monitoring. It was found that 
imagery with a resolution smaller than 2 meters had a good accuracy for Fusarium 
wilt monitoring, which may be related to the planting spacing and the canopy size 
of banana. With the reduction of the resolution, the mixed pixel problem influences 
the precision of object recognition and classification. However, image resolution is 
not the only difference seen between UAV-based and satellite-based sensors. The 
wavelength information captured by the satellite-based sensor is different from that 
of UAV-based sensors. Thus, the simulation results at different resolutions should 
be further verified with actual satellite-based data. In this chapter, single-period 
multispectral images were used, which limits the spectral response mechanism 
to determine the changes in the biophysical and chemical parameters caused by 
Fusarium wilt. In order to overcome this problem, it is necessary to use multi-
temporal and hyperspectral images for dynamic monitoring of the occurrence of 
Fusarium wilt. Additionally, it is also of great value to explore the differences in the 
spectral response characteristics of Fusarium wilt and other yellowing stresses (i.e., 
nutrition deficiency and drought stress).

4. Conclusions

This research used UAV multispectral images to develop a method for iden-
tifying Fusarium wilt of banana. The results revealed that the VIs method with 
BLR analysis can well identify Fusarium wilt. of all the VIs investigated, the CIRE 
exhibited the optimal performance, with the OA and Kappa coefficients of 91.7% 
and 0.83 for dataset VD1 and 80.0% and 0.59 for dataset VD2. VIs that included a 
red edge band obtained better results than those that did not have one. According to 
the analysis of different resolutions, a resolution smaller than 2 m produced a good 
identification accuracy of Fusarium wilt. As the resolution decreased however, the 
identification accuracy decreased. The results indicate that UAV-based multispec-
tral imagery can be applied to identify Fusarium wilt of banana, thus providing 
reference for disease treatment and crop planting adjustments.
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Chapter 9

Satellite Control System:
Part II - Control Modes, Power,
Interface, and Testing
Yuri V. Kim

Abstract

This part II of the chapter Satellite Control System (SCS) was originally
planned for publishing in the book Satellite Systems (Acad. Ed. Dr. T. Nguyen),
dedicated to the Systems Design, Modeling, Simulation, and Analysis, together
with the Part I (SCS Architecture and Main Components). However, restricted
volume of this book did not let the publisher to put then this part in the book.
The book Recent Applications in Remote Sensing (Acad. Ed. Prof. M. Marhgany)
considers the various aspects of the optical and radiolocation sensing and
imaging of the Earth surface from Space. Consequently, as it was presented in the
Part I, the author adheres to the point of view here that satellite is not just a
platform to carry in Space a payload, but is equipment integration system and its
designer is in charge for fully integrated and Space-qualified Space segment,
which with the corresponding operation and ground equipment would be capable
to successfully execute dedicated mission (Remote Sensing). The material,
presented in this part, briefly highlights the basic aspects of SCS control modes,
electric and informational interface, and ground testing, which would promote
successful interaction with satellite payload, such as Remote Sensing subsystem
and mission success.

Keywords: satellite control, attitude and orbit, determination, estimation, sensors,
actuators, coordinate systems, reference frame, state estimation and Kalman
filtering, earth gravity and magnetic fields, interface, assembling integration and
testing (AIT), space qualification

1. Introduction

For a remote sensing satellite, equipped with a remote sensing payload, the
Satellite Control system (SCS) is very important, providing for the payload required
attitude a position in space.

Hence, the payload functionality and its performance essentially depend on SCS
characteristics.

Often, specifically, the payload provider is responsible for satellite system inte-
gration and mission success. That is why payload company engineers should be
familiar with SCS and its role in the satellite mission performance. Below in the
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introduction some physical principles, showing dependence of the remote sensing
payload characteristics on SCS, are briefly discussed.

Historically radiolocation sensing of underlying Earth surface (footprints)
started from the high-altitude air patrol aircrafts, performing the military recon-
naissance purposes. They were equipped with special on-board Radio Location
Stations (RLS), having Side-Looking Antenna (SAR). The resolution (image qual-
ity) of such an RLS is essentially dependent on the SAR available length, which for
an aircraft cannot exceed a few meters. With the development of space exploration,
special remote sensing satellites became available for the Earth observation, and the
military reconnaissance purposes were essentially extended for the civil applica-
tions such as exploration of Earth-borne disasters, rescuing, agriculture, forestry,
and others. Using for Earth observation space platforms brought to this process new
important benefits. The main observations from them are as follows: broader
instantaneously observed from the space areas (spot 20–30 km), high resolution
(3–5 m), and the capability to observe in relatively short periods of time big areas of
Earth with periodically repeatable underlying tracks. Technologically, by develop-
ing RLS equipment, new benefits were achieved with using much longer antennas
(about 10–15 m) and synthesized analytically aperture (SSAR—side looking
synthetic aperture radar). More information about RLS SSAR technology can be
found in Refs. [1–6]. Considering Earth remote sensing system, we have to
emphasize that successful operation of such a system is not available without
physical (stabilization) or analytical availability of satellite angular attitude and its
position between SSAR coherent radio pulses, used in system memory for building
SSAR analytical aperture.

Any Space country using remote sensing satellites has to take care first about
satellite attitude and orbital determination and control or, in other words, about
SCS and its precision [7–9].

In Figure 1 below three generations of Canadian Earth observation satellites are
presented, Radarsat-1, Radarsat-2, and Radarsat Constellation (RCM). Canada is a
pioneer of using SAR technology for the civil tasks for Earth Remote sensing and
since launch of Radarsat-1 in November of 1995 has accumulated a big experience
and gained tremendous achievements in this area.

Figure 2 presents the basic SAR principles to get radiolocation image reflected
from Earth radio signal.

The satellite with on-board RLS-SAR orbits the Earth with the orbital velocity V
in the flight direction. The microwave beam is transmitted obliquely at right angles
to the direction of flight illuminating a swath. Slant range ρ (reflected signal
corresponding time delay) is measured, assuming that the flight altitude h and the
look angle and satellite position in orbit are known and nominal. Let us consider
SAR with a real aperture antenna, Figure 3.

Figure 1.
Canadian family of earth observation SAR satellites. Copyright: CSA//www.asc-csa.gc.ca.
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Then, SAR beam footprint dimensions in lateral (Y) and longitudinal (X)
directions (Ry and Rx resolutions) can be found with the following formulas
[1, 4, 6]:

Figure 2.
SAR principles. ρ is slant range, θ is look angle, h is flight altitude, SC is satellite, SAR is RLS SAR antenna,
XYZ is satellite body frame, V is flight velocity, l is the antenna length.

Figure 3.
Left (red): SAR antenna, right (green): SAR beam footprint. L is antenna length, W is antenna width,
Rx and Ry are SAR beam footprint dimensions, V satellite ground track vector.
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Ry ¼ cτ
2 sin θy

¼ Δλ

2 sin θy
(1)

Rx ¼ hλ
L cos θx

(2)

where c is light speed in vaccum (�300,000 km/s), τ is RLS transmitted pulse
duration, λ is RLS transmitted carrier frequency wavelength, Δλ is RLS transmitted
pulse bandwidth, h is flight altitude, θx and θy are SAR look angles in X and Y
directions correspondingly.

For example, for following numerical data (Radarsat-1):

L ¼ 15 m,W ¼ 1:5 m, h ¼ 800 km, θx ¼ 850, θy ¼ 230,

λ ¼ 0:06 m C‐bandð Þ,Δλ ¼ 10 m

Ry ¼ Δλ
2 sin θy

¼ 10
2 sin 230

¼ 12:8 m

Rx ¼ hλ
L cos θx

¼ 800000 � 0:06
15 cos 50

¼ 3212m

As one can see from the numerical example above, the physical aperture SAR
antenna (15 m) can provide quite a good resolution in the lateral direction, but not
good enough in the longitudinal. However, this resolution can be drastically
improved with the synthetic aperture SAR antenna (SSAR) [1, 4, 6] when all
reflected pulses, collected during certain period of time of Earth radiation, are
summarized in SSAR RLS on-board computer analytically with the purpose to get
RLS image, like it could be created by a physical antenna with a big length.

In this case, much higher longitudinal resolution can be achieved that theoreti-
cally can be expressed by the formula:

Rx ¼ L
2

(3)

This formula for the numerical example below provides the longitudinal resolu-
tion Rx ¼ 7:5 mthat drastically improves the resolution of the same RLS, but with
physical SAR aperture.

It should be mentioned that formulas ((1)–(3)) assume a certain steady
nominal satellite angular orientation (e.g., zero), set by the three Euler angles: Pitch
(αy ¼ 0), Roll (αx ¼ 0), and Yaw (αz ¼ 0) that in turn assume absolutely accurate
satellite attitude determination and control. Also, the process of synthesis of the
artificial SAR aperture–SSAR assumes absolute accurate knowledge of satellite
position. In practice, the attitude and the position are measured and controlled with
certain errors that lead to change of SAR RLS resolution and as a result, to the
distortion of RLS picture (deterioration of image quality). Not only big steady
errors impact on the image quality, but a small jitter also. Therefore, for the SCS of
Remote Sensing satellites where the payload is SSAR RLS essential are accuracy
requirements that can be transformed in resulted SSAR resolution distortion errors.
Analysis of this effect can be found in special literature [3, 10]. Here, we just
introduce the reader to some specific SCS tasks that can help for understanding of
the integration process of SSAR RLS and SCS on satellite. The reader himself can
carry out the impression about the importance of proper installation (mechanical
interface) and mutual alignment of the mechanical axes of SAR, satellite bus, GPS
antenna, and attitude determination devices (e.g., the Star Tracker). For modern
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satellites, we can provide some approximate numbers, related to a precise SCS
performance (attitude knowledge: 150 � 200, attitude control: 0:5° � 1°, position
knowledge: 10–30 m, position control 100–150 m).

Required SCS functionality and the performance must be ensured by a certain
design order, prescribed by the System Engineering discipline and validated during
Assembling Integration and Test complain in the Space Qualification Functional
test. Some of these aspects, namely: Control Modes, Power, Interface, and Testing
are covered by this Part II material presented in the book.

2. Typical SCS control modes

SCS dynamics can usually be presented by closed negative feedback control
loop, which consists of three typical components: plant (satellite), observer-
estimator (sensors and navigation-attitude/orbit determination algorithms), and
controller (actuators and control algorithms1). Modern approach to its design is
analytical synthesis, based on optimal/suboptimal algorithms, provided by System
Estimation and Control Theory [11, 12] and Mathematical Model-Based Design
tools from the MathWorks Inc. [13].

However, in practice (after evaluation of potentially available optimal solution),
conventional engineering design, based on former experience, still has been widely
used. This approach brings some generic system (SCS) architecture, components,
and operational modes.

Typical SCS (mainly, attitude control ACS) modes are as follows: Idle, Acquisi-
tion, Pointing, Maneuvering, and Safe Hold Mode. Mainly, all of them can be
activated/deactivated by the ground commands from the Mission Control Center
(MCC) and/or automatically (by on-board software). Orbital maneuvering and
sometimes attitude (slew) are executed exceptionally by the ground commands.

Anyway, a special command flag is generated upon reception of the TLM mode
transition command from MCC or after analyzing some internal SCS flags, gener-
ated following the operational logic, time, and system components’ state and status.

2.1 Idle

After satellite separation from the launch vehicle before starting AODCS opera-
tional modes, it could be in the so-called IDLE mode. It checks the system and its
components’ state, satellite attitude and angular velocity, and orbit. The system is
powered (ON) and activated (operational), except of the actuators. It provides
from the sensors TLM data to MCC for operational analysis. Satellite actuators are
not controlled, and it has random attitude and free rotation initially initiated by the
separation pulse from the launch rocket separation mechanism. If ground analysis
confirms the system state is nominal and angular motion is safe to have sufficient
electric power and thermal conditions, then SCS actuators can be activated to start
satellite control.

2.2 Acquisition

This mode can consist of two phases: de-tumbling and initial acquisition mode.
If premature de-spinning is required and applied, then it is usually performed

with MAG and MTR, using B-dot algorithm. Three-axis magnetometer (MAG)

1 Single satellite orbital control is usually executed by the telemetry (TLM) control command from

ground.
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output provides measured Earth magnetic field induction vector B. Its components
are differentiated and become proportional to _Bx,y,z. With appropriate control gains,
these signals are applied to the magnetic torque rods (MTRs). Initial spinning is
decelerated and the dumping process is finalized to the slow satellite rotation (a few
degrees per sec) about the local vector of Earth magnetic induction B. Next starts
the acquisition phase with coarse three-axis attitude determination and control. It
starts with three-axis attitude determination and PID control (e.g., MAG, Sun
Sensor-SS, MTR, and the Reaction Wheels unit—RW [9]). In this mode, satellite
body axes XYZ are prematurely aligned in parallel with desired reference axes
XrYrZr. This mode is usually fast. Control loop bandwidth in this mode is wide,
transfer process termination time is as short as possible, final attitude accuracy is
coarse (about of a few degrees). In some applications, this mode can start directly
without previous application of the de-spinning sub-mode.

2.3 Pointing

This usually is the operational working mode, required for the successful pay-
load operation. In this mode, the sensitivity axis of satellite payload instrument is
accurately pointed in the required direction. Accurate alignment (about a few
angular minutes) with the reference frame axes (where the required direction for
the payload instrument is set) should be achieved in this mode. The most accurate
attitude sensors (e.g., Star Tracer-ST) are applied. The control loop bandwidth can
be narrowed to filter external disturbances and measured noise more effectively. In
this mode, the control is slow but precise.

2.4 Maneuvering

2.4.1 Orbital

Orbital control thrusters are activated by the computed autonomously on-board
or dent from ground TLM command to perform scheduled orbit correction/
maneuver. Pre-calculated thruster activation time Δt is used to execute satellite
orbit correction pulse ΔV ¼ TΔt (where T is thrusters’ force). For example, in the
orbital flight direction to increase degraded with time satellite orbit altitude.

2.4.2 Attitude (slew)

In this mode, satellite is controlled in the closed control loop to turn it by the desired
angle to point it in new desired direction. Control law in this mode can be as follows:

Tc ¼ �kp α� αcð Þ � kd _α (4)

where Tc is control torque, kp and kd are proportional and damping control
gains, α and _α are angular deviation, and the velocity αc is desired attitude angle.

2.5 Safe hold mode (SHM)

This mode is commanded in some dangerous situations, when satellite life
critical failure or flight anomaly is automatically detected on-board by on-board
computer software (OBC SW) or identified on ground by satellite operators after
TLM data analysis. In this mode, SCS system task is to keep an appropriate
satellite angular orientation with respect to the Sun and the Earth providing
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sufficient thermal, electrical (solar panel energy generation), and radio communi-
cation (antennas orientation) conditions for as long as possible time (idealistically
the indefinite SHM) and consuming as less power as possible (battery electric
energy and attitude control thrusters cold gas). Idealistically, a satellite should have
a passive SHM, when SCS system can be in the state OFF. During the SHM, the
Operation Team should resolve the problem that caused this mode transition and
start the recovery procedure (transition in the Acquisition mode). Commands to
transition in and recovery from SHM can be considered as the final results
(command flags) of the special satellite Failure Detection Isolation and Recovery
(FDIR) [14] algorithm that can be realized outside of SCS.

3. Electric power and informational interface

3.1 Electric power

Satellite bus using solar panels (SP), on-board rechargeable batteries, and
centralized Power Management Unit (PMU) [15] supplies SCS with available DC
voltage. For example, 28 V/50 V and power 500 W from one SP at Sun incidence
angle <5 deg. If satellite has 2 SP nominally permanently facing sun, then available-
electric power is about 1 kW. During Sun eclipse periods and when sunlight is not
sufficient for the SP to generate enough electric power, on-board batteries are used.
For example, let us assume that two lithium-ion batteries (voltage 28 V, capacity
12 Ah (350 Wh), depth of discharge—DOD = 50% each) are used to provide storage
power during Sun eclipse periods, contingency shadowing, or SP failure.

AEU power convertors convert PMU voltage in lower voltages required for SCS
OBC, sensors, and actuators (e.g., 3.3 V, 5 V, 12 V). SCS power consumption
depends on its current operational mode and may vary from the nominal Pn to the
minimum (Pm) value. For example, SCS power budget is as follows:

• OBCS (related to SCS part)—10 W/3 W, GPS-7 W, 3-axis MAG-0.5 W,
SS-0 W (photo sensor) ST-8 W, 3xRS-1.2 W, 3xRW(s)-240 W, 3xMTR
(s)-60 W.

• Then for the nominal operation Pn = 397.5 W and for the active SHM (only
OBCS –(3 W), SS, MAG, MTRs are “ON”) Pm = 63.5 W.

• This example shows that satellite can nominally operate with fully lightened
SP consuming for SCS approximately 40% of available generated on-board by
SP electric power.

• SHM: if only satellite life essential equipment is powered on in this mode and
if by some reason Sun direction is totally lost or has not been captured, then
AODCS can work for about 6 hours without recharging the batteries.

3.2 Electric interface

Mainly two types of interface are used for informational connection SCS
equipment and date exchange, as follows:

1.Analogue interface with separate pair of wires in satellite harness. This type is
usually applied within AODCS for simple analog devices thermistors, Sun
sensors, horizon sensors, etc.
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2.Digital bus lines [15] that are applicable for all satellite digital equipment.
This type is used with digital devices that have embedded digital
computer such as GPS, ST, etc. Electrical interface for all AODCS equipment
is usually is defined in Interface Control Document(s) (ICD), that is,
essentially, data exchange protocol defining also signal electrical
characteristics, connectors, and pins. It is worth to mention here, at least, two
following busses:

a. MIL-STD-1553B [16] is US military standard that defines a TDM
multiple-source-multiple-sink data bus. By definition, MIL-STD-1553B
is a bidirectional, half-duplex (when transmit cannot receive)
deterministic communications protocol with central control (i.e., on-
board computer or OBC), where each member (i.e., remote terminal)
can receive or transmit data. A 1553B network consists of four major
components: transmission media, remote terminals, a bus controller,
and a bus monitor. The transmission media is a twisted, shielded wire
pair with direct or transformer coupling. The data rate is 1 Mbps of
Manchester-encoded, bi-phase data stream. Up to 32 words can
comprise a single message in which each word is 20 bits long. One
system can accommodate up to 31 remote terminals, a bus controller,
and a bus monitor (Figure 4).

b. RS-422 (TIA/EIA-422) [17], as it was named by the American
Standard National Institute ANSI, is a technical standard that specifies
electrical characteristics of a digital signal circuit used by International
Electronic Industry. It is digital, serial, asynchronous, one direction,
differential, point-to-point line (1 transmitter and 10 receivers, 10
Mbps) interface.

Figure 5 shows that a differential signaling interface circuit consists of a driver
with differential outputs and a receiver with differential inputs.

With using voltage between the wires A and B and the ground, the transmitter
transmits and receives serial flow of digital data in the binary form 0/1.

Figure 4.
MIL STD 1553 bus.
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4. SCS space environment protection and testing

The problems with Ground Tests of Space Systems (SS2) at first appeared
together with the lunch of the first human-made Earth orbiting satellites: Sputnick 1
(1957, USSR, launcher R-7), Explorer-1 (1958, USA, launcher RS-29/Juno),
Alouette-1 (1962, Canada, launcher DM-21/Thor-Agena B, USA). Unlike air flight
vehicles, flying mainly below an attitude of 25 km in the Earth’s athmosphere, space
vehicles-SS (under the acronym SS in futher considereation we will undermind
Space vechicle (spacecraft-S/C) and their equipment and components—S/C sub-
systems) should fly in Space at altitude above 225 km, practicaly without atmo-
spheric pressure, in other words in a vacuum, and in addition being affected by the
cosmic radiation.

For the air vehicles (airplanes), environmental conditions at that time were
already studied and well known, and ground test procedures existed and were
almost conventional. But for the SS they were totally new, as well as the launch
mechanical impact. Therefore, they were to be studied and ground test types,
methodology, and the procedures developed.

By now, it has already been done and presented in many International and
National standards and regulations.

After studying space environment and accumulation of some experience with
launch and operation of SS, a new group of special ground tests was developed and
introduced in the form of related standards and following procedures and docu-
ments presented in [8, 18, 19]. This group of tests generally includes the following
types: Thermo and Vacuum (TVAC), Vibration and Strength, Radio Communica-
tion and Electro Magnetic Compatibility (EMC), final refinement and verification
of system assembling and integration (AIT). These tests are finalized by the cus-
tomer or authorized independent expert conclusion about launch readiness and
named Space Qualification (SQ).

4.1 Environmental conditions

SCS system should be designed to work in Space environment conditions that
briefly can be characterized by the data below. It has to have special protection
measures to satisfy space requirements [8]. It also should be taken into account that
different system components may be located inside or outside (SS, ST, HS,
Thrusters, GPS antenna) of the satellite and be installed close to the nominally
hottest or the coldest surface of its body. However, typically all system components
are subjects of the environmental tests [8, 14] to verify different requirements for
the internal and external system devices.

Figure 5.
RS-422 serial bus, lines A and B. Transmitter (driver D), receiver (R), I—input, O—output, V—voltage.

2 Under the acronym SS in futher considereation we will undermind Space vechicle (spacecraft-S/C)

and their equipment and components—S/C subsystems.
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4.1.1 External pressure is close to vacuum [h = 500 km, P ¼ 10�7 Pa (1 Pa≈10�5atm)]

Impact: outgassing, change of material strength. Protection: hermetic sealing,
application of special materials, filling by the inert gas.

4.1.2 Temperature (no direct contact with Earth atmosphere, hence no heat convection as
in Aviation)

The heat balance between S/C and space takes place exclusively because of the
particles radiation. The main sources of external radiation are Sun radiation and
Earth-infrared reflection (Earth albedo).

Impact: S/C temperature significantly depends on its orientation relatively to
Sun and Earth. For example, for a small satellite m = 200 kg, cube: 1 m x 1 m x 1 m),
Temperature: Sun side +90C, Space side -20C, Earth side -10C. There are extreme
temperature gradients between S/C sides.

Protection: Special thermal design (thermos radiators and plates, materials, and
painting) and Thermal Control System (TCS) (thermistors and heaters, convec-
tional ventilation) are applied.

4.1.3 Electromagnetic Space radiation (Special effects in South Atlantic region)

Impact: on electronic equipment (mainly OBC: Glitches, Single Event Upsets,
Latch effects). Protection: Application of special radiation-resistant electronic ele-
ments, radiation case, special radiation protective shielding.

4.1.4 Disturbing influence of Earth magnetic field, residual atmosphere, and solar
pressure

Impact: disturbing forces and torques, affecting satellite orbit and the attitude.
Protection: periodic orbital correction, demagnetization on ground, and mini-

mization of the ballistic coefficient, effective attitude control.

4.1.5 Hard electromagnetic compatibility (EMC) conditions because of small volume for
the accommodation

Impact: mutual electromagnetic interference.
Protection: appropriate allocation, screening.

4.1.6 Sun eclipse

Impact: A-Solar panels cannot be used, and satellite power is provided only by
the on-board batteries that cannot be discharged during the eclipse period less the
critical voltage. AODCS should minimize power consumption.

B-SS cannot be used for the attitude determination.
Protection: A-Application of the sufficient type of batteries, starting eclipse with

previously charged prime and redundant batteries.
D-Switching during the eclipse period attitude determination method to another

sensor that does not need Sun visibility (e.g., HS) and/or using the Momentum
wheel for gyro stabilization of the satellite.
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4.1.7 Gravity acceleration

The gravity field acceleration is decreasing with increasing of satellite attitude. It
influences on the required velocity for the space flight in circular orbit at this
altitude. This velocity can be calculated with the following formula [7]:

V0 ¼
ffiffiffiffiffi
gR

p
(5)

where g is the gravity acceleration, R ¼ Re þ h is the distance between satellite
and the Earth center, Re ¼ 6378:137 km is Earth spherical model radius (equatorial),
h is satellite altitude.

Gravity gradient torque Tg impacting on a cylindrical shape satellite attitude is as
follows [7]:

Tg ¼ � 3
2
ω2
0 Je � Jp
� �

sin α (6)

where ω0 ¼ V0
R is satellite orbital rate, Je is satellite equatorial moment of inertia,

Jp is satellite polar moment of inertia, α is angle of deviation of satellite from local
horizontal plane.

Earth gravity acceleration can be calculated with the following formula [7].

g ¼ μ

Re þ hð Þ2 (7)

where μ ¼ γMe ¼ 398600:5km3=s2 is Earth gravity constant, γ is Universal Grav-
ity Constant, and Me is the Earth mass. Calculated with this formula, gravity
acceleration at the Earth surface is g Reð Þ ¼ 9:798 m=s2. The graph of the gravity
acceleration calculated with (7) is presented in Figure 6.

4.2 Environmental tests

To verify that SCS does meet the environmental requirements, AODCS usually
examines with special environmental tests.

Figure 6.
Gravity acceleration versa altitude g(h) (m=s2), h (km).
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The following tests related to environmental conditions could be performed3:

1.Thermo, Vacuum (TVAC-cyclic), and Humidity Category.

a. For internal components: Temperature 20C +/-5C for the unit with
thermostat, but -60C � +40—worst case of the thermostat failure.

b. For external component, for example, -100C–+150C.

2.Pressure: h = 0 km - P = 1 atm (101 kPa); h = 20 km - P = 0.05 atm (5.06 kPa);
h = 609.6 km- P ¼ 4:74 � 10�12 atm (4:8 � 10�10 kPa);

3.Electromagnetic compatibility and interface (EMC/EMI and magnetic
cleanness) (depends on system accommodation and RF antenna patterns).

4.Radiation Hardness, Radiation hardiness designators M, D, FG, P, L, H
indicate unit capability to withstand to a certain radiation dose, for example,
M ¼ 3 � 103rad Sið Þ;

5.Mechanical launch impacts: sinusoidal/random/acoustic vibration in a
certain range of frequencies, static, and shock (depends on planned
launcher).

4.3 Space qualification (SQ) functional test (FT)

Usually, SQ FT is carried out in specially equipped for these purpose facilities by
trained personal and highly qualified experts as the final part of system Assembling,
Integration, and Testing Activities (AIT).

It must be mentioned that AIT activities should include this final functional test
for SS Flight Model that should demonstrate its capabilities to perform in Space
required functions after all other type of SQ (environmental) tests under the system
have been performed.

In this SQ FT SS is completely assembled and integrated, as well as refined
(calibrated). Specifically, in this test SS hardware (H/W) and software (S/W)
working jointly should be verified. This test should finalize SQ procedures, preced-
ing release of the Space Qualification Report (SQR), and declaring readiness SS for
launch and operation in Space.

Unfortunately, in common practice due to many various reasons, SQ FT does
not occupy the right place in a number of SQ tests. For example, for such
important for any spacecraft system as Attitude Control System (ACS), this test
often comes down to checking electric interface and right direction of rotation of
the Reaction wheels (“polarity test”). Sometimes, such a superficial attitude to
SQ FT leads to very stressful and even dramatic situations after the launch during
SS operation in space. That is why many authors [20–22] draw attention SS
developers to this problem and present some simulation tools and procedures to
resolve it.

With regard to the satellite control system (SCS) and its components [9, 23],
the main difficulty for FSQ is to model on ground orbital flight with relevant
gravitation and magnetic field, and orbital motion. For these purposes, for modern

3 Approximate range of changing conditions shown for example.
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small satellite, very sophisticated test beds, based on three degrees of freedom air
bearing tables, have being used [22].

Here, the author presents a different approach from System Dynamics
Identification point of View [24]. This general approach allows to identify SS
(in particular, SCS) dynamics in open control loop using currently commonly
available for engineers Matlab/Simulink Identification Toolbox. It does not
require complex test (control and verification) equipment. Mainly special labora-
tory emulators, activating SS sensors must be used additionally to conventional AIT
SQ equipment (assembling stand, laboratory registration console for simulation
radio link to satellite Tracing, Telemetry, and Control System (TTCS), power
supply, installation devices, and mass property determination machine).

Looking at the problem of SS SQ FT from the point of view of System
Dynamics theory, we can allege that if system has proper dynamics, previously
verified with mathematical simulation (MSim), which meets design requirements,
and it (structure and parameters) is validated with semi-natural simulation
(SNSim); then, this system will be capable to perform expected functions in space,
at least in some mission essential operation modes. The process of evaluation of
system dynamics by the experimental way is named System Identification process
[25]. Presently, identification methods have been developed to be practically used
in many engineer applications. The most known and commonly used engineer
tool for the identification is Matlab/Simulink Identification Toolbox (ITB) [26].
It is applicable for both cases; when system structure (mathematical model) is
partly known and only unknowns are system parameters (mathematical model
coefficients)—“gray box” case and when considered system is totally unknown
—“black box” case. For both these cases, ITB allows to identify (estimate) system
mathematical model. Only experimentally measured system input and output
signals are used. The ITB adjusts the most suitable model estimate to minimize the
difference between the output measured experimentally and its estimation,
provided by the estimated model. Briefly, the essential elements of this identifica-
tion are presented below. Let us consider an SS as a unit consisting of the harware
(HW) and the software (SW) components as presented in Figure 7.

From the System Dynamics point of view, this system can be characterized by
its input x tð Þ, output y tð Þ and some mathematical operation, ℑ determinning system
conversion from the output to the input

y tð Þ ¼ ℑ y tð Þ½ � (8)

At the first approximation, many Aerospace devices and systems dynamic can
be considered in the scope of Linear Time Invariant (LTI) dynamic system theory.
In this case, (8) can be represented as follows:

Figure 7.
Space system unit.
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y tð Þ ¼
ðt
0
g t� τð Þx τð Þdτ (9)

where g tð Þ is system’s impulse characteristic response to the Dirac’s
input impulse x tð Þ ¼ δ τð Þ. Using Laplace transformation to (9), it can be
represented as

y sð Þ ¼ G sð Þx sð Þ (10)

where y sð Þ ¼ L y tð Þ½ �, x sð Þ ¼ L x tð Þ½ � =L[y (t)] are Laplace transformation of out-
put and input signals and G sð Þ ¼ L g tð Þ½ � is Laplace transformation of system impulse
function. In other words,

G sð Þ ¼ y sð Þ
x sð Þ (11)

is the ratio of Laplace transformations of output to input signals.
In general case, LTI system transfer function can be expressed as the two poly-

nomial ratios:

G sð Þ ¼ bmsm þ bm�1sm�1 þ bm�2sm�2 þ … … þ b1sþ b0
amsn þ an�1sn�1 þ an�2sn�2 þ :… … þ a1sþ a0

(12)

where bi, aj are constant polynomial coefficients, m≤ n. Usually, (12) represents
a stable system with the characteristic equation

amsn þ an�1sn�1 þ an�2sn�2 þ :… … þ a1sþ a0 ¼ 0 (13)

which roots sk1,2 ¼ Re k � jImk satisfy the following condition

Re k ≤0 (14)

Usually, for any designed SS assumable (before identification) transfer function
G sð Þ for system unit, presented in Figure 4, is known from its design documentation.

Identification experiment provides measured input Xm tð Þ and output Ym tð Þ data
(Figure 8) and the identification procedures used in ITB allows to estimate this
function coefficients âi and b̂i.

Theoretical ratio between the input x and the output y of a LTI system G sð Þ is
(11). However practically, it takes place experimentally measuring input xm and
output data, distorted by some input Vi and output Vo errors

xm ¼ xþ Vi (15)

and
ym ¼ yþ Vo (16)

The difference between expected and experimental output signals is as follows:

e ¼ ym � y ¼ Ĝ sð Þxm þ Vo � G sð Þx ¼ Ĝ sð Þ xþ Við Þ þ Vo �G sð Þx ¼
¼ Ĝ sð Þ �G sð Þ
h i

xþ Ĝ sð ÞVi þ Vo
(17)

where Ĝ sð Þ is estimate of system transfer function.
This difference (14) is used in ITB to tune (adjust) model coefficients âi and b̂i to

minimize it so that the outputs ym and ye would coincide as much as possible.
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It can be mentioned that such identification does not require simulating of
system dynamic in closed feedback control loop configuration. To identify open-
loop transfer function is enough, then closed-loop transfer function can be
recalculated with the following formula [27]:

W sð Þ ¼ G sð Þ
1þ G sð Þ (18)

where W sð Þ is negative feedback control closed-loop transfer function, G sð Þ is
transfer function of this loop in open state (assuming that feedback has unit transfer
function F sð Þ ¼ 1).

This is important for SS and specifically for SCS because it does not require
unique complex equipment to simulate space flight and closed feedback control
loop formed by the SCS in it.

Basic ideas of such a simulation for the identification of transfer function of
open loop of SCS are presented in Figure 6.

The flight model of SS is installed on laboratory AIT table and electrically
connected to the Laboratory Control-verification console.

SS expected transfer function G sð Þ is known and should be verified with ITB, or
in other words, its experimental estimate Ĝ sð Þ should be identified.

SS is switched on in special Ground Test Mode (GTM) (Figure 9). Its power,
reference, and control data D are supplied via special data link from the laboratory
Control and Verification Console (CVC).

It is important to note that in GTM SS should use special reference data about
its state in SQ facility: Φ0—latitude, Λ0—longitude, h0—altitude, V0 ¼ 0—velocity,
B0—magnetic induction vector. Its input is physically activated with a kind of
laboratory imitator (red arrow in Figure 6). SS input and output data Xm and Ym
are recorded in real time in the CVC. After the end of the experiment, these data are

Figure 8.
System parameter identification experiment scheme.
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reformatted in the form of mat. File and downloaded into the flash memory chip
(FM in Figure 6) that using regular USB interface is connected to laboratory PC for
the data post-processing in ITB. This ITB carries out the estimate of SS transfer
function Ĝ sð Þ. If it is close to expected due the SS design function G sð Þ, then we can
allege that G sð Þ is verified by SQ FT.

Examples of identification of basic dynamic units
With purpose to validate identification method for SS SQ FT before performing

seminatural simulations, some typical liner time-invariant (LTI) dynamic unit
transfer functions were identified with mathematical (quasi-seminatural simula-
tion). Some examples can be also found in [28].

The same methodology for this “quasi seminatural simulation” was used. At
first, system was simulated without measured errors, idealistic (“clear” measure-
ments) input X and output Y and its step response Y was received. After input
Xm ¼ u and output Ym were distorted with superimposed Gaussian white noises,
imitated measured errors and these signals were used for identification system
dynamics (transfer function, step response, amplitude/phase frequency diagrams,
characteristic polynomial roots).

Example 1: Simplest aperiodic system, first-order unit.
Given system is first-order dynamic unit that has transfer function.

G sð Þ ¼ 1
Tsþ 1

(19)

where T ¼ 10 s is system time constant.
Characteristic equation Tsþ 1 ¼ 0 root is s ∗ ¼ � 1

T ¼ �0:1 s‐1.
Simulink block diagram of this system is presented in Figure 10.
This scheme allows analyzing the step response of the system without and with

measured noise.
1a-Mathematical simulation
Step response of the system (16) without noise is shown in Figure 11.
1b-“Quasi semi-natural” simulation
Step response of the system (19) with noise is shown in Figure 12.
1c- Identification results
System (19) identification results are presented in Figures 13–15.

Figure 9.
Scheme of SS transfer function identification experiment.
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Estimated characteristic equation of the system (12) is T̂sþ 1 ¼ 0 with the
root s ∗ ¼ �0:09, estimated Time constant is T̂ ¼ 1

s ∗
¼ 11:1 s.

Estimated transfer function of the system (19) is

G sð Þ ¼ 1

T̂sþ 1
(20)

Figure 10.
Simulink block diagram of first-order unit.

Figure 11.
Step response of the system (19) without noise. X is input-blue, Y is output-red.
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Figure 12.
Step response of the system (19) with noise in measurements. Xm is input-blue, Ym is output-red.

Figure 13.
Step response h tð Þ of the identified system (19).

Figure 14.
Amplitude A ωð Þ and phase φ ωð Þ diagrams of the identified system (19).
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Example 2: Damped oscillator, second-order unit
Given system is second-order dynamic unit that has transfer function

G sð Þ ¼ k
T2s2 þ 2dTsþ 1

(21)

where T ¼ 10 s is system time constant, d ¼ 0:707 is specific damping coeffi-
cient, k ¼ 5 is static control gain.

System characteristic equation is T2s2 þ 2dTsþ 1 ¼ 0. Its roots are s ∗ 1,2 ¼
�0:0707 � 0:0714j.

Simulink block diagram of this system is presented in Figure 16.
This scheme allows analyzing the step response of the system without and with

measured noise.
2a—Mathematical simulation
Step response of the system (21) without noise is shown in Figure 17.
2b—“Quasi semi-natural” simulation
Step response of the system (21) with noise is shown in Figure 18.
2c—Identification results
System (21) identification results are presented in Figures 19–21.

Estimated characteristic equation of the system (14) is T̂
2
s2 þ 2d̂T̂sþ 1 ¼ 0. It

has two complex roots s ∗ 1,2 ¼ �0:0622� 0:0688i,
Estimated transfer function of the system (21) is.

G sð Þ ¼ k̂

T̂
2
s2 þ 2d̂T̂sþ 1

(22)

where estimated Time constant is T̂ ¼ 10:78 s, specific damping coefficient is
d̂ ¼ 0:6707, static control gain is k̂ ¼ 4:99.

Figure 15.
Root of the characteristic equation of the identified system (19).
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Example 3: PID controller
Given system is Proportional, Integral, and Damping controller that has transfer

function

G sð Þ ¼ kp þ ki
s
þ kds (23)

where the control gains are as follows: kp is positional gain, ki is integral gain, kd
is damping gain.

Figure 16.
Simulink block diagram of second-order unit.

Figure 17.
Step response of the system (21) without noise. X is input-blue, Y is output-red.
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Practically, ideal differentiation assumed in (23) cannot be realized. Realisti-
cally, (23) should be represented as

Gc sð Þ ¼ kp þ ki
s
þ kds
τsþ 1

(24)

where τ is a small time constant. In other words, the differentiation with filtering
takes place and ωc ¼ 1

τ is the cut frequency (bandwidth) of this differentiating filter.
Let us given, that

kp ¼ 0:1Nm=rad, kd ¼ 0:03Nm=rad=s, ki ¼ 0:05Nm=rad � s, τ ¼ 10s (assuming
that the input of this controller is an angle in radians—radand output is the control
torque in Newton meters—Nm).

Figure 18.
Step response of the system (18) with noise in measurements. Xm is input-blue, Ym is output-red.

Figure 19.
Step response h tð Þof the identified system (21).
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After algebraic transformation (24) can be represented as follows

G sð Þ ¼ kpτ þ kd
� �

s2 þ kp þ kiτ
� �

sþ ki
s τsþ 1ð Þ (25)

Figure 20.
Amplitude A ωð Þ and phase φ ωð Þ diagrams of the identified system (21).

Figure 21.
Roots of the characteristic equation of the identified system (21).
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or in the numerical form

G sð Þ ¼ 1:03s2 þ 0:6sþ 0:05
s 10sþ 1ð Þ (26)

Denominator of (23) s 10sþ 1ð Þ ¼ 0 has following roots (poles): s ∗ 1 ¼ 0, s ∗ 2 ¼
�0:1 and the nominator 1:03s2 þ 0:6sþ 0:05 ¼ 0 following (nulls) s ∗1 ¼
�0:482, s ∗2 ¼ �0:101.

Simulink block diagram of this PID controller is presented in Figure 22.
3a—Mathematical simulation
Step response of the system (24) without noise is shown in Figure 23.
3b—“Quasi semi-natural” simulation
Step response of the system (24) with noise is shown in Figure 24.
3c—Identification results
Identification results of the system (24) are presented in Figures 25–27.
Estimated transfer function of the system (23)/(24) is

G sð Þ ¼ 1:034s2 þ 0:0618sþ 0:004929
s2 þ 0:0986sþ 1:289 � 10�16 (27)

Formula (27) can be approximately represented as follows:

Ĝ sð Þ≈ 1:0487s2 þ 0:6103sþ 0:05
s 10:142sþ 1ð Þ (28)

Figure 22.
Simulink block diagram of PID controller.
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Denominator of (28) s 10:142sþ 1ð Þ ¼ 0 has following roots (poles): s ∗ 1 ¼
0, s ∗ 2 ¼ �0:0986 and the nominator 1:0487s2 þ 0:6103sþ 0:05 ¼ 0 following
(nulls) s ∗1 ¼ �0:4818, s ∗2 ¼ �0:1008.

Comparing coefficients (28) with (24), we can determine PID control gains and
the time constant

kp ¼ 0:1033Nm=rad, kd ¼ 0:025Nm=rad=s, ki ¼ 0:05Nm=rad � s, τ ¼ 10:142s

Comparing identification results obtained with “quasi seminatural” simulation
with real mathematical model, we can see that for all three considered above
examples, identified model takes place in close coincidence between real and
identified models that show effectiveness of application of ITB for identification
purposes.

Figure 23.
Step response of the system (24) without noise. X is input-blue, Y is output-red.

Figure 24.
Step response of the system (24) with noise. Xm is input-blue, Ym is output-red.
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Presented above examples show that Matlab Identification Toolbox, at least for
simple LTI units, can be successfully used for identification their dynamic charac-
teristics. Further studies should verify mathematical simulation with real physical
experiments (semi-natural simulation), involving system hardware. More complex,
nonlinear, and nonstationary systems also should be studied.

Related to these tests methodology, requirements and standards can be found in
[8, 14, 18, 19, 29].

Practically, implementation of the presented above functional Space Qualifica-
tion Test can essentially decrease of many unexpected flight anomalies that
occurred and were learned during operation of first Canadian SSAR satellite
Radarsat-1 (Figure 28).

Figure 25.
Step response h tð Þ of the identified system (24).

Figure 26.
Amplitude A ωð Þ and phase φ ωð Þ diagrams of the identified system (24).
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5. Conclusion

This chapter (Part II) continues (see Part I in [9]) to present a basic ground for
Satellite Control System to integrate it with such a payload as satellite on-board
SSAR RLS. Namely, it presents SCS: Control Modes, Power, Interface, and Testing.
This material presented from the point of view of integration both systems into the
satellite bus, considering satellite as the integration platform and seeing the satellite
designer as the Prime Contractor, responsible for Earth observation mission

Figure 27.
Roots of the characteristic equation of the identified system (24).

Figure 28.
Canadian satellite Radarsat 2 in CSA David Florida space qualification test laboratory. Copyright: CSA//
www.asc-csa.gc.ca.

186

Recent Remote Sensing Sensor Applications - Satellites and Unmanned Aerial Vehicles (UAVs)



successful execution in Space. However, in some cases the payload (for example,
SAR) provider can perform the integration function as well. Of special interest can
be, presented above, methodology of SCS Space Qualification (SQ) Functional Test
(FT) that can be similarly applied to the remote sensing payload also and, finally, to
the integrated system identifying its dynamic at the final stage of satellite Space
Qualification program.

The chapter can serve to a wide pool of Space system specialists as an introduc-
tion to Satellite Control System development.
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