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Preface

Cancer is one of the leading causes of death worldwide. Tumor angiogenesis, the 
development and growth of blood vessels, plays a crucial role in tumor progression. 
The hypothesis of tumor angiogenesis was first proposed by Dr. Judah Folkman in 1971, 
and tumor angiogenesis has since become one of the most important fields in cancer 
research. When tumor mass reaches a size of 0.2–2.0 mm in diameter, it becomes 
hypoxic and loses nutrients, which limits its growth. This stimulates angiogenesis and 
the newly formed blood vessels deliver nutrients and remove metabolic waste from 
the tumor cells. Neovascularization involves several mechanisms, including sprouting 
angiogenesis, intussusceptive angiogenesis, vasculogenesis, recruitment of endothelial 
progenitor cells, vascular mimicry, and trans-differentiation of cancer stem cells. 
The tumor microenvironment promotes tumor angiogenesis via angiogenic factors, 
cytokines, non-coding RNA, and hypoxia. Tumor angiogenesis plays a vital role in 
tumor growth, especially in tumor invasion and metastasis. This book provides broad 
coverage of the field of tumor angiogenesis.

In Section 1, “Tumor Angiogenesis in Cancer”, Chapter 1 reviews the research 
history of breast tumor neovascularization in both in situ and invasive breast 
cancer, the processes by which it occurs, and the impact of the microenvironment 
on neovascularization. It focuses on the factors that promote angiogenesis including 
hypoxia and vascular endothelial growth factor (VEGF) and the mechanisms of 
angiogenesis. Despite that pituitary tumors have been found to be less vascularized 
than normal pituitary tissue, accumulating evidence has shown that angiogenesis 
also plays an important role in pituitary tumors. In Chapter 2, the authors discuss 
several genes involved in angiogenesis. Hypoxia-inducible factors (HIFs) react to 
hypoxia and stress and maintain oxygen homeostasis, which influences development, 
metabolism, inflammation, and tumor progression. Endocan was induced by VEGF-A 
via phosphorylation and activation of VEGFR-2. Endocan promotes cell migration 
and tube formation during VEGF-A–mediated tumor angiogenesis.

In Section 2, “Modulators of Tumor Angiogenesis”, Chapter 3 shows how tumor-derived 
exosomes play a significant role in tumor progression by accelerating angiogenesis. 
In this chapter, the authors introduce the exosome biogenesis, exosomal content, and 
mechanisms involved in exosome-induced angiogenesis in various types of cancers, 
including glioblastoma, breast cancer, lung cancer, and pancreatic cancer. They also 
discuss the therapeutic potential of tumor exosomes in angiogenesis. Chapter 4 reviews 
the sequence of morphological events that occur during neo-angiogenesis and the 
chemical mediators involved in this process, in particular the role of the IL-6/JAK/
STAT signaling pathway in the control of these mediators. It also discusses estrogen 
intervention in this control procedure. This provides useful information for developing 
novel antitumor therapies. Chapter 5 reviews the functions of galectin-3 and IL-17 
in tumor progression through their impacts on angiogenesis. Galectin-3 orchestrates 
practically all critical events during angiogenic cascade through interaction with various 
ligands and their downstream signaling pathways. Galectin-3 shapes the chronic 
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inflammatory tumor microenvironment that is closely related to angiogenesis by 
sharing common signaling cascades and molecules. IL-17 contributes to tumorigenesis 
and progression via promoting critical events such as angiogenesis and the creation of 
an immunosuppressive milieu. Chapter 6 discusses the role of VEGF in liver disease. 
Liver diseases cause inflammation and hypoxia, which increase VEGF levels. The 
high VEGF level promotes the risk of chronic liver diseases and is associated with 
progressive disease course and poorer outcomes. Thus, VEGF is a promising modality 
for diagnosing liver cirrhosis and hepatic cell carcinoma (HCC). It may also be utilized 
to predict the outcome of liver cancer and to monitor the therapeutic response of 
patients. Chapter 7 examines the role of adipocytokines, which are a family of enzymes, 
hormones, growth factors, proteins, and other bioactive molecules that are important 
regulators of many processes. Adipocytokines are predominantly produced by  
pre-adipocytes and mature adipocytes to act through a network of autocrine, paracrine, 
and endocrine pathways. Leptin (LEP) is the first discovered adipocytokine. In 
angiogenesis, LEP acts directly as an endothelial growth factor or indirectly through 
cellular pathways such as STAT3/ERK1/2, JAK2/STAT3, MAPK/ERK, PI3K/AKT, p38, 
p53, MAPK, and Wnt/β-catenin. Chapter 8 investigates the role of the extracellular 
matrix (ECM) in tumor angiogenesis. ECM undergoes turnover and physiological 
remodeling, and during inflammation, experiences wound repair and tumor invasion. 
Remodeling of the ECM is an integral component of the angiogenic process and 
depends on the composition of matrix molecules, soluble pro-angiogenic and  
anti-angiogenic factors, and their spatial regulation. This chapter focuses on the 
myriad roles of those molecules and emphasizes their involvement in critical points 
of angiogenesis.

Despite significant progress in the study of tumor angiogenesis, the mechanism 
underlying tumor angiogenesis is still not fully elucidated. It is believed that based on 
new achievements in tumor angiogenesis research, as well as the rapid development 
of novel technologies, more cancer patients will benefit from new treatment strategies 
targeting tumor angiogenesis. This book is a useful resource in this regard.

Ke Xu
Tianjin Lung Cancer Institute,

Tianjin Medical University General Hospital,
Tianjin, China
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Chapter 1

Tumour Angiogenesis in Breast 
Cancer
Pooja G. Singh, Kanthesh M. Basalingappa, T.S. Gopenath  
and B.V. Sushma

Abstract

Since the last comprehensive assessment of antiangiogenic therapy was  
published in Breast Cancer Research 3 years ago, clinical trials in a variety of tumour 
types, including breast cancer, have underscored the key relevance of tumour neo-
vascularization. Bevacizumab, a drug designed to target vascular endothelial cell 
growth factor, was utilised in many of these studies (VEGF). Clinical trials using 
antiangiogenic treatment in breast cancer have highlighted the critical role of tumour 
neovascularization. Personalised medicine will become increasingly important to 
generate maximum therapeutic benefit to the patient but also to realise the optimal 
economic advantage from the finite resources available, according to a report by the 
US Department of Health and Human Services (HHS) and the National Institute for 
Occupational and Environmental Health (NIH). This overview covers the history of 
breast tumour neovascularization in both in situ and invasive breast cancer, the pro-
cesses by which it occurs, and the impact of the microenvironment, with a focus on 
hypoxia. The regulation of angiogenesis, as well as the antivascular drugs employed in 
antiangiogenic dosing schedules, both innovative and traditional, are discussed.

Keywords: angiogenesis, VEGF, breast cancer

1. Introduction

Cancer has the potential to spread to nearby or distant organs, posing a life-
threatening threat. For the metastatic spread of cancer tissue, the growth of the 
vascular network is crucial. Angiogenesis and lymphangiogenesis are the processes 
by which new blood and lymphatic vessels originate.

Cancer has the potential to spread to nearby or distant organs, posing a life-
threatening threat. Tumour cells can enter blood or lymphatic vessels, circulate 
through the intravascular stream, and then spread to a new location (metastasis) [1]. 
The growth of the vascular network is crucial for cancer tissue metastatic dissemina-
tion. Angiogenesis and lymphangiogenesis are the processes that result in the forma-
tion of new blood and lymphatic vessels. Both are necessary for the formation of a 
new vascular network that will provide nutrients, oxygen, and immune cells while 
also removing waste. In tumour vascularization studies, angiogenic and lymphangio-
genic factors are gaining popularity.
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1.1 Angiogenesis in cancer

Endothelial cells, epithelial cells, mesothelial cells, and leucocytes, as well as can-
cer cells and host cells, all release chemicals that aid in angiogenesis. Plateletderived 
endothelial cell growth factor (I’D-ECGF), plateletderived growth factor (PDGF).

Angiogenesis is a series of events that are triggered by microvascular endothelial 
cells. Angiogenesis and lymphangiogenesis are essential for tumour growth and 
metastasis, and are triggered by chemical signals from tumour cells in the early stages 
of development. In a prior study, Muthukkaruppan and colleagues [2] looked at how 
cancer cells behaved when they were placed in different parts of the same organ. 
Blood circulation was present in the iris, but not in the anterior chamber [2]. Cancer 
cells without blood circulation grew to a diameter of 1–2 mm3 and then stopped grow-
ing when placed in an area where angiogenesis was possible, but they grew to a diam-
eter of more than 2 mm3 when placed in an area where angiogenesis was possible.

If there is insufficient blood flow, tumours can become necrotic or even apoptotic 
[3, 4]. Angiogenesis thus aids cancer progression. The neovascularization stage of 
tumour angiogenesis is one of four steps in the process. Local injury to the basement 
membrane occurs first in tissues. Destruction and hypoxia take place almost imme-
diately. Angiogenic chemicals cause endothelial cells to become activated and move. 
Endothelial cells multiply and settle in the third step of the process. Angiogenesis is 
still influenced by angiogenic stimuli, according to the fourth point.

Every 1000 days on average, vascular endothelial cells divide [5]. When tumour 
tissues need nutrition and oxygen, angiogenesis is induced. Activators and inhibitors 
of angiogenesis regulate the process. On the other hand, increasing angiogenic factor 
activity is insufficient to enhance neoplasm angiogenesis. Negative regulators or 
vascular growth inhibitors must also be inhibited [6].

1.2 Breast cancer: tumour angiogenesis

Clinical studies in a range of tumour types, including breast cancer, have proven 
the vital role of tumour neovascularization in the 3 years after the last comprehen-
sive review of antiangiogenic therapy was published in Breast Cancer Research [7]. 
Bevacizumab (AvastinTM; Genentech, South San Francisco, CA, USA) was utilised 
in many of these trials since it was particularly intended to target vascular endothe-
lial cell growth factor (VEGF). Bevacizumab is a recombinant VEGF antibody that 
binds to all known isoforms of VEGF-A and blocks receptor interaction, inhibiting 
angiogenesis and tumour growth. It was made from a mouse monoclonal antibody 
that had been humanised. One of the successes of antiangiogenic treatment, which 
was first suggested by Judah Folkman more than 35 years ago, is the critical con-
tribution of this angiogenic factor in controlling many of the processes involved in 
angiogenesis, as well as its importance as a paradigm for the rational design of an 
anticancer agent.

Because all tumours (including liquid tumours like leukaemias) are angiogenesis-
dependent, angiogenesis is highly restricted in adults, the endothelium of the 
vessels is accessible, and any treatment would be amplified through subsequent 
tumour infarction, the antiangiogenic approach has always appealed to researchers. 
Furthermore, because endothelial cells are non-neoplastic and should have a stable 
genome, cancer resistance should no longer be an issue [8].

To grow larger than a few centimetres in diameter, breast cancer, like other solid 
tumours, requires the formation of new blood vessels (neovascularization). The extra 
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veins not only supply more nutrients to the tumour, but they also provide possible 
pathways for tumour dispersal and metastasis [9].

Tumour-induced angiogenesis first develops in pre-invasive high-grade ductal 
carcinoma in situ. In this case, a distinctive ring of microvessels emerges around the 
ducts, which are packed with proliferating epithelial cells. As the tumour grows, the 
amount of neovascularization increases [10]. Increased microvascular density or 
development, as well as variables that encourage new vessel growth, have been associ-
ated to poor breast cancer prognosis.

As a result, a significant amount of study has been focused on identifying the 
factors in the tumour microenvironment that promote and maintain angiogenesis in 
the hopes of limiting neovascularization and, as a result, tumour development and 
dissemination. Furthermore, unlike tumour cells, which are genetically unstable and 
can develop resistance to many therapeutic medications fast, normal vascular endo-
thelium lacks mutations that would allow drug resistance [11, 12]. Both research lines 
are investigated in this paper.

Although the presence of axillary lymph nodes is the most important prognostic 
marker in operable breast cancer, it does not entirely explain for the wide range of 
disease outcomes. More precise prognostic indications would aid in the identification 
of patients at high risk of illness recurrence and mortality who would benefit from 
systemic adjuvant therapy [13]. Microvessel density (count or grade) in invasive 
breast cancer (a measure of tumour angiogenesis) is associated with metastasis and so 
may be a prognostic sign, according to recent research.

Breast tumour growth requires angiogenesis, or the rapid formation of new blood 
vessels, in order to acquire enough oxygen and nutrients [14]. Breast cancer cells, like 
all other biological tissues, rely on a vascular network of capillaries to provide food 
and oxygen on a regular basis. Endothelial cells (ECs), which line the interior surface 
of blood vessels, do not reproduce, hence capillaries do not proliferate. Hypoxia (low 
oxygen) triggers a variety of transcriptional responses that are mediated by transcrip-
tion factors called hypoxia-inducible factors (HIFs) [15–18]. HIFs are transcription 
factors that regulate the expression of genes involved in physiological processes like 
metabolism, angiogenesis, and cell division. Local angiogenesis is one of the tumour 
microenvironment’s long-term major responses to low O2 levels [19, 20].

It is the fusion of EC precursors that leads to the creation of capillary plexus, 
which thereafter evolves into blood vessels. Angiogenesis is required for a variety 
of normal processes, including embryonic development, growth, and wound  
healing [21].

As a result, the tumour activates an angiogenic switch and enters an irreversible 
active angiogenic state. Because of the tumour’s newly acquired status, it can recruit 
new capillaries, restoring oxygen and nutrients to both angiogenic and non-
angiogenic cells, resulting in rapid tumour growth [9, 22–24]. Despite the fact that 
surgical excision of tumours is the current standard of care for breast cancer, adjuvant 
therapy, such as anti-angiogenic therapy, has been used after surgery in advanced 
disease stages when surgery is no longer an option [25].

Angiogenic growth factors, such as vascular endothelial growth factor (VEGF) 
and fibroblast growth factors, are primarily involved in the initiation and progres-
sion of tumour angiogenesis (FGF). Angiogenic factor levels, as well as the number 
of vascular networks created as a result, have been shown to predict breast cancer 
survival in many studies. To put it another way, high levels imply that the tumour 
cells are aggressive and are linked to a poor prognosis. The rate and degree to which 
blood vessels permeate are controlled by these variables in connection with beginning 
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angiogenesis [26–29]. Angiogenesis-targeting compounds have recently received a lot 
of attention in breast cancer research.

Bevacizumab, a humanised anti-VEGF monoclonal antibody, has been the most 
extensively investigated molecule [30–33]. After promising results in preclinical 
trials targeting VEGF, the FDA authorised bevacizumab in 2008 for the treatment of 
metastatic HER2-negative breast cancer [34, 35].

Following that, multiple anti-angiogenic medicines targeting VEGF or blocking its 
receptor’s action were licenced, and they are now routinely utilised in the treatment 
of various malignancies [36–40]. The FDA, however, revoked its certification in 2011 
due to conflicting results from earlier trials and allegations of increased toxicity as a 
result [41–44].

While the discovery of these anti-angiogenic drugs and small molecules was 
heralded as a potential victory in one aspect of the cancer fight, the agents’ modest 
activities, such as their inability to arrest recurrent tumours in a latent state and the 
moderate improvement in overall patient survival, dampened the celebration.

1.3 The angiogenic cycle

Endothelial cells in normal, quiescent capillaries are in contact with a laminin-
rich basement membrane and a layer of supportive pericytes that is 1- to 2-cell thick. 
Angiogenesis necessitates the weakening of connections between nearby pericytes 
as well as the degradation of the basement membrane [45]. The integrin adhesion 
receptors help endothelial cells re-enter the cell cycle and infiltrate the surrounding 
stromal matrix. Endothelial cells begin to resynthesize a basement membrane, which 
aids in cell cycle exit and promotes the creation of a capillary-like morphology [46]. 
Pericytes are then recruited to newly formed capillaries to help mature arteries sta-
bilise [47]. Chronic exposure to angiogenic factors in the tumour microenvironment 
that promote basement membrane proteolysis or antagonise endothelial–pericyte 
interactions leads to the formation of a relatively unstable, highly permeable network 
of vessels that does not fully mature but can supply nutrients to meet the tumour’s 
growing metabolic demands. Increased arterial permeability is thought to encourage 
tumour cell extravasation and, eventually, spread [48, 49].

2. Factors that promote angiogenesis

2.1 Hypoxia

Hypoxia has long been suspected as a significant angiogenic stimulator within the 
tumour microenvironment. Densely packed, quickly proliferating cells with limited 
nutritional inputs are the source of low tissue oxygen tension [50]. In recent years, 
researchers have made tremendous progress in understanding the biochemical and 
molecular reactions to hypoxia, as well as how the tissue senses low oxygen tension 
[51]. It was discovered that the hypoxia-inducible factor (HIF), a heterodimeric 
transcription factor made up of the hypoxic response factor (HIF-1) and the constitu-
tively expressed aryl hydrocarbon receptor nuclear translocator (ARNT or HIF-1), is 
particularly significant [52, 53].

HIF-1 binds to the von Hippel-Lindau (VHL) protein in oxygenated circum-
stances, causing ubiquitination and fast destruction [54]. In hypoxic settings, on the 
other hand, this factor is stabilised: it is unable to associate with VHL protein because 
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prolyl hydroxylase, an enzyme that typically alters HIF-1 to facilitate its interactions 
with VHL protein, is inactive. As a result, the oxygen sensor has been proposed as 
prolyl hydroxylase [55–59].

Animals lacking HIF-1 had markedly reduced angiogenic responses, indicat-
ing that it plays a vital role in experimental tumour growth and tumour-associated 
angiogenesis. Human ductal carcinomas overexpress HIF-1, whereas benign tumours 
with little angiogenesis do not. In the hypoxic tumour microenvironment, stabilised 
HIF-1 induces the expression of a variety of proangiogenic mediators, including 
vascular endothelial growth factor (VEGF) and one of its receptors, VEGF receptor 1 
(VEGFR1) [60–62].

2.2 Vascular endothelial growth factor

VEGF is a powerful and selective endothelium mitogen that can produce a rapid 
and full angiogenic response, as its name suggests. VEGF (VEGF-A), the most investi-
gated and implicated in tumour-induced angiogenesis, is a family of glycoproteins 
(VEGF-A, -B, -C, and -D) that are linked to VEGF (VEGF-A). The lymphatic endo-
thelium responds to VEGF-C and -D in a big way [63].

VEGF is produced and released by a range of normal cell types, but its expression 
is dramatically increased in tumour cells, including a variety of breast malignancies, 
as well as reactive breast tumour stromal cells [64]. In contrast to other cytokines 
produced by tumour cells, VEGF functions almost exclusively on endothelial cells 
because expression of the major VEGF receptor, VEGFR2, is confined to such cells. 
Interfering with VEGF or VEGFR2 allows for the specific targeting of tumour endo-
thelium [65]. VEGFR1, on the other hand, is expressed by endothelial cells, mono-
cytes, and macrophages, and its role was unknown until recently.

When VEGF binds to its receptor, it activates an intracellular signalling cascade 
that causes gene expression modifications that promote endothelial cell migration and 
proliferation [66]. Furthermore, because VEGF not only functions as an endothelium 
mitogen but also increases capillary permeability, it’s not surprising that the leakiness 
of tumour arteries is a fundamental distinguishing feature.

2.3 VEGF and breast tumour angiogenesis

An increase in VEGF synthesis by tumour cells and cells in the tumour stroma has 
been connected to angiogenesis induced by breast tumours, as previously mentioned. 
VEGFR2 expression was also shown to be greater in the endothelial cells of the adja-
cent breast tumour. Indeed, higher VEGF expression correlates with the first detect-
able breast-tumour driven angiogenesis in pre-invasive high grade ductal carcinoma 
in situ [67].

The elevated expression of VEGF in the breast tumour environment is thought to 
be due to a number of causes. Hypoxia and HIF-1 are clearly important factors. The 
fact that premenopausal women had higher levels of VEGF expression than post-
menopausal women suggests that steroid hormones may also boost VEGF expression 
[68, 69]. Estradiol has long been known to be angiogenic, and evidence suggests 
that oestrogen effects may be mediated through VEGF induction. In certain breast 
cancer cell lines, estrogens increase VEGF expression whereas progestins lower it. 
Tamoxifen, an oestrogen receptor inhibitor, has recently been found to reduce VEGF 
transcription. However, whether oestrogen receptor expression is linked to VEGF 
expression and vascular density has to be determined.
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VEGF production is also influenced by changes in the tumour environment. 
Matrix metalloproteinases, for example, are frequently secreted by numerous tumour 
cells, including human breast cancers [70]. Matrix metalloproteinase (MMP)-9, 
which is produced by tumour cells and expressed at high levels in human breast 
cancers, is one member of this family that has attracted a lot of attention. MMP-9 
has been found to proteolyze the surrounding extracellular matrix, releasing trapped 
VEGF and thereby enhancing its bioavailability.

The expression of HER2 is another significant alteration in breast cancers. HER2 
is a tyrosine kinase receptor that belongs to the epidermal growth factor recep-
tor family and is expressed by the ERB2 gene [71, 72]. It signals in the lack of a 
known ligand. Furthermore, HER2 overexpression or heregulin stimulation causes 
an increase in VEGF mRNA, whereas treatment of breast tumours with an anti-
HER2 neutralising antibody inhibits VEGF synthesis in a dose-dependent manner. 
Furthermore, HER2 was found to boost the rate of HIF-1 protein production in a 
new, rapamycin-dependent mechanism, rather than by blocking degradation as seen 
during hypoxia [73, 74].

VEGF production can also be boosted by changes in epithelial gene expression 
linked to tumorigenicity. The 644 integrin, which typically facilitates connections 
between breast epithelium and basement membrane, is upregulated and mislocalized 
in breast carcinoma cells, promoting tumour cell invasiveness. According to recent 
research, 644 signalling causes the inactivation of eIF-4E, a translational repressor, 
which enhances VEGF translation and, in turn, tumour cell survival [75–77]. The 
644 signalling pathway, which enhances VEGF translation, converges on a rapamy-
cin-sensitive route, similar to the HER2-mediated increases in HIF-1 and VEGF. 
Importantly, the tumour cells’ increased VEGF production has been shown to act in 
an autocrine manner, promoting epithelial cell survival directly.

2.4 Mechanisms of angiogenesis

Tumour development and metastasis are dependent on angiogenesis. Necrosis 
occurs when a tumour’s blood supply is cut off, preventing it from growing. After 
a while, any further metastatic spread into the systemic circulation is stopped. 
Scientists have been studying angiogenesis and the different variables that regulate 
it in order to better understand how it affects breast cancer and develop a strategy 
to limit tumour progression [25, 29]. Because of the dual nature of this process, 
it’s critical to understand and distinguish between normal angiogenesis processes, 
such as wound healing, normal growth, and embryo nutrition, and tumour-related 
angiogenesis mechanisms.

Angiogenesis, which involves communicating between tumour cells and a variety 
of other cell types within the tumour microenvironment, is initiated by some com-
pounds known as angiogenic activators because of their capacity to stimulate cell 
proliferation in vitro. The generation of pro-angiogenic growth factors by tumour 
cells, which impact the existing vasculature, has been shown to be necessary for the 
induction of this process [21]. To generate and stabilise newly created blood vessels, a 
delicate signal balance between pro- and anti-angiogenic factors is vigorously main-
tained in the microenvironment during these closely regulated processes [78]. As a 
result, numerous investigations have demonstrated that these angiogenic activators 
are critical in the growth of malignancies.

Certain tumour cells express both pro- and anti-angiogenic proteins, which 
encourage and inhibit angiogenesis, according to previous research. Tumours are 
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thought to turn on the angiogenic switch by reversing the balance of angiogenesis 
inducers and inhibitors [29, 37]. This switch can be made by altering gene tran-
scription, as seen in various cancers where VEGF and/or FGF levels are higher than 
in healthy tissue. The levels of endogenous inhibitors are lowered in some cancers, 
on the other hand. The intricate mechanism that drives these alterations in the 
regulators’ balances, on the other hand, remains a fascinating subject of research 
(Figure 1).

The tumours ability to switch on angiogenesis is determined by the balance of this 
switch. Further research revealed that a decrease in anti-angiogenic protein produc-
tion activates the tumour angiogenic switch, promoting tumour growth and metasta-
sis [79–81]. Stimulating angiogenesis in a tumour and forming the endothelial tubes 
that result is a multistep process governed by hypoxia at each stage. This pathway is 
heavily reliant on ECs expressing HIF-1, a heterodimeric transcription factor. Under 
hypoxic conditions, the HIF-1 protein is stabilised and forms a heterodimer with 
HIF-1, and this pair promotes the transcription of multiple target genes to adapt to 
the hypoxic environment in human cancer cells.

HIF-1, in conjunction with other members of the HIF family, has been demon-
strated in certain studies to govern practically every element of angiogenesis, making 
the HIF pathway a master regulator of angiogenesis [82]. In various malignancies, 
HIF-1 and HIF-2 expression has also been linked to a poor prognosis and metastatic 
illness. As a result, it’s regarded as a promising therapeutic target for a variety of 
medical conditions (Figure 2).

Figure 1. 
Angiogenesis is a physiological process that results in the formation of new blood vessels from existing ones. From 
pre-existing capillaries, new blood vessels emerge. The tumour receives crucial nutrients for growth from the new 
blood vessels that have sprouted near and within the tumour. Angiogenesis in healthy tissues is regulated by a 
balance of anti- and pro-angiogenic factors (bottom), but the presence of angiogenic factors in tumours disrupts 
this balance, resulting in abnormal blood vessel structure and function, as well as hypoxia. The vasculature is 
normalised and the balance is restored.
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Hypoxia and activation of the HIF pathway in cancer cells are required for the 
sprouting and formation of new blood vessels because they control the expression of 
several pro-angiogenic genes [83]. Some of the most powerful cytokines are VEGF, an 
endothelial mitogen and pro-angiogenic factor, angiopoietin-1, angiopoietin-2, platelet-
derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) [84–88].

The FGF and VEGF families of angiogenetic growth factors have gotten more 
attention than the others. In 1983, the protein VEGF-A (vascular endothelial growth 
factor) was identified and sequenced. It was the first cytokine to be identified as a key 
contributor to tumour angiogenesis, was purified from tumour cell ascites as vascular 
permeability factor (VPF), and was also revealed to have pharmacological effects on 
EC mitogenesis; consequently, VPF is referred to as VEGF (Figure 3) [89, 90].

In vivo and in vitro, VEGF is now known to be a multifunctional peptide capable 
of triggering receptor-mediated endothelial cell proliferation and angiogenesis. The 
VEGF family contains at least five members, each of which has three VEGF receptors 
(VEGFR) [91–93]. These receptors use transmembrane receptor tyrosine kinases to 
communicate with the cell’s interior (RTKs). The VEGF gene is subject to complex 
transcriptional control, and four distinct RNA isoforms are produced with varying 
biological features as a result of alternative splicing of its pre-mRNAs. VEGF-B, 
VEGF-C, VEGF-D, VEGF-E, and platelet-derived growth factor are all produced as a 
result of this process (PDGF).

Figure 2. 
This figure depicts the balance hypothesis of the angiogenic switch. Angiogenesis switch mechanism is assumed 
to be in charge of normal angiogenesis (formation of new capillaries). By utilising angiogenesis inducers and 
inhibitors, which flip the switch, this balance can be tilted in favour of enhanced blood vessel formation. Reduced 
inhibitor levels (thrombospondin-1, 16 kD prolactin, interferon, platelet factor-4, Angiostatin, and others) or 
increased activator levels (aFGF, bFGF, VEGF, and others) can tip the balance and activate the switch, resulting 
in the formation of new blood vessels.
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By attaching to VEGF receptors and ligands, VEGF, for example, can trig-
ger angiogenesis. The effects of vascular endothelial growth factor (VEGF), as 
well as acidic and basic fibroblast growth factors (FGF1/2), can be employed to 
investigate the induction and progression of angiogenesis at various phases of 
tumour development. VEGF binds to its receptor (VEGFR) and ligands on the 
surface of ECs. It causes dimerization, autophosphorylation, and activation of the 
downstream signalling cascade after binding to and activating the transmembrane 
tyrosine kinase receptors on the cell’s surface [94–96]. Tube development and 
sprouting follow EC survival, proliferation, migration, and apoptosis avoidance 
through several cascade phases. Over time, this process results in the development 
of a complex network of new blood vessels. Vasodilation and vascular permeabil-
ity, a key feature of tissue inflammation and the tumour microenvironment, are 
also induced by VEGF [97–103].

The activity of the ECs outlined above is caused by an increase in pro-angiogenic 
factors such as VEGF and proteolytic enzymes, as well as a decrease in anti-angiogenic 
factors. Finally, a capillary network is successfully established, supplying enough 
nutrition and oxygen to the growing tumour. Taking advantage of this new vascular 
bed, the tumour cell may reach the systemic circulation and induce distant metasta-
ses. As a result, the number of metastasis sites is proportional to the amount of cancer 
cells that enter the circulation at the outset [104–111].

Angiogenic inducers have been implicated in the regulating process of angiogen-
esis in malignancies since their discovery a decade ago. Anti-angiogenic treatment 

Figure 3. 
This diagram depicts the receptor binding selectivity and signalling pathways of members of the vascular 
endothelial growth factor (VEGF) family. VEGF family members bind to VEGFR-1, VEGFR-2, and VEGFR-3 
receptor tyrosine kinases, which activate a variety of signalling pathways and allow them to exert their 
physiological effects.
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decreases tumour vascular growth by interfering with VEGF and VEGFR intracellular 
signalling [112–116].

Angiogenesis was originally linked to cancer, arthritis, and psoriasis. However, 
the impact it has on a variety of other disorders has been documented. Tumours 
are innately primed for successful angiogenic development due to their nature 
and composition. An active vascular system is made up of adipose tissue that is 
encased in stromal cells and serves as a scaffold for the tumour’s vascular system 
to emerge [117–119].

Brown adipose tissue (made up of cells with numerous mitochondria) promotes 
tumour growth by supplying a steady supply of oxygen and nutrients, whereas white 
adipose tissue promotes the formation and progression of breast cancer in a mouse 
model. Both types of adipose tissues, which have been associated to breast cancer, 
produce angiogenic factors such as VEGF A, B, and C, basic fibroblast growth factor 
(bFGF)/FGF-2, matrix metalloproteinases (MMPs), and IL-8. This aberrant blood 
vessel creation has been linked to cardiovascular illness, cancer, blindness, and 
diabetic ulcers [120–122].

2.5 Non-angiogenic functions of VEGF in breast cancer

VEGF increases the formation of new blood vessels and lymphatics, as well as 
increasing vascular permeability, and has a variety of tumour-related effects. The 
importance of VEGF in vascular and lymphangiogenesis has dominated research in 
breast and other cancers [123]. The importance of VEGF in cancer behaviour cannot 
be overstated. The presence of hypoxic patches in most malignancies, on the other 
hand, implies that VEGF-induced angiogenesis is insufficient to alleviate hypoxia 
[124]. Hypoxia works as a strong selection pressure, allowing only the most aggres-
sive and metastatic cells to thrive. Understanding the mechanisms that allow tumour 
cells to survive under hypoxia is therefore critical for interpreting cancer biology and 
developing therapeutic approaches [125, 126].

VEGF produced by tumour or stromal cells interacts to VEGF receptors on tumour 
cells, producing a signalling response that supports survival in the face of hypoxia and 
other apoptotic triggers, according to our and other labs’ research [127]. This process, 
which most likely operates in tandem with p53 inactivation, provides self-sufficiency 
to tumour cells, making it simpler for them to form tumours and increasing the possi-
bility that they will spread to other parts of the body [128, 129]. To put it another way, 
we believe that hypoxia favours cells that can signal VEGF, and that the most aggres-
sive tumour cells (metastatic cells) are determined by their dependency on VEGF.

A side effect of VEGF signalling in breast cancer cells is that it can help them move 
and invade more easily.

3. Breast carcinoma cells and VEGF signalling

3.1 Survival signalling by autocrine VEGF

Tumour cells receive signals from various sources as a result of the complex 
microenvironment of solid tumours, and these signals alter the activity of other 
cells. However, it is becoming obvious that cancer cells can attain a certain level of 
self-sufficiency by creating autocrine signalling pathways that aid critical tasks such 
as growth, survival, and invasion [130] within this web of paracrine signalling. As 
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tumours develop towards invasive and metastatic illness, autocrine pathways become 
more critical as the tumour’s environment becomes increasingly hostile. As a result, 
autocrine signalling pathways are a major target for anti-tumour therapy. Our study 
on invasive breast carcinoma cell lines provided one of the first indications that VEGF 
may have autocrine functions in cancer [73, 131].

We discovered that a 50% reduction in VEGF expression resulted in a considerable 
increase in apoptosis, even in the presence of 10% serum, when we utilised an anti-
sense oligonucleotide approach to limit VEGF expression. This evidence backs with 
the theory that these cells were selected in vivo because they rely on VEGF to survive 
[132]. The importance of VEGF in carcinoma and other cancer cell survival has now 
been validated by research from our lab and others.

Because it increased VEGF expression in invasive breast cancer cell lines, hypoxia 
inhibited apoptosis caused by serum deprivation. The mechanism by which autocrine 
VEGF maintains the survival of breast carcinoma cells appears to involve constitu-
tive activation of the PI3-kinase pathway, as evidenced by the findings that reduc-
ing VEGF expression results in a significant decrease in PI3-kinase basal activity, 
hypoxia stimulates Akt activity, and inhibition of PI3-kinase induces apoptosis [133]. 
According to previous studies, VEGF inhibits apoptosis in breast cancer cells via 
upregulating the anti-apoptotic protein Bcl-2.

3.2 The role of VEGF in breast carcinoma migration and invasion

Carcinoma cells acquire the ability to migrate and infiltrate tissues as a result of 
malignant transformation and development. Although chemoattractant gradients 
may enhance carcinoma migration and invasion, it has been established that cells’ 
ability to form autocrine signalling pathways might boost their sensitivity to external 
stimuli [134]. Depleting VEGF expression in the presence of caspase inhibitors, which 
prevent apoptosis caused by VEGF expression loss, allowed us to find a role for auto-
crine VEGF in the migration and invasion of breast cancer cells towards chemokines. 
The capacity of breast cancer cells to migrate and invade in response to chemotactic 
stimuli is considerably diminished in such circumstances.

One mechanism for VEGF’s involvement in these events is its ability to alter the 
expression of the chemokine receptor CXCR4 [135]. This finding is significant for 
breast cancer growth since stromal-derived factor-1, the receptor’s ligand, is abun-
dant in tumour stroma as well as organs such as the lymph and lung, which are the 
primary targets of invasive breast carcinoma cells, and CXCR4 inhibitors impede 
metastasis [136].

In addition to its survival benefits, VEGF autocrine signalling may contribute to 
tumour growth by boosting chemokine receptor expression and allowing tumour cells 
to migrate towards chemokine gradients [137].

3.3 Perspective

The revelation that breast cancer cells produce VEGF receptors is significant, but 
further research is needed to understand how these receptors are expressed as a result 
of transformation and progression, including EMT, and the mechanisms through 
which these receptors regulate tumour cell behaviour. Despite having inherent 
signalling capabilities, little is known about how NP-1 enhances VEGF165 signalling 
on breast cancer cells. In endothelial cells, it appears to work with either VEGFR1 or 
VEGFR2, although this has yet to be validated in breast cancer cells.



Tumor Angiogenesis and Modulators

14

Author details

Pooja G. Singh1, Kanthesh M. Basalingappa2*, T.S. Gopenath3 and B.V. Sushma1

1 Department of Nutrition and Dietetics, School of Life Sciences, JSS AHER, Mysuru, 
India

2 Division of Molecular Biology, School of Life Sciences, JSS AHER, Mysuru, India

3 Department of Biotechnology and Bioinformatics, School of Life Sciences,  
JSS AHER, Mysuru, India

*Address all correspondence to: kantheshmb@jssuni.edu.in

Another hypothesis is that NP-1 transmits NP-1 signals in neurons via interacting 
with non-VEGF receptors in cancer cells, such as plexins. Our findings reveal that 
plexin A1 is expressed in breast cancer cells and can affect cell motility. The study of 
plexin involvement in NP-1 signalling will require a much more in-depth understand-
ing of plexin expression and function in breast and other cancers. In addition, more 
exact data on the location and relative expression of NP-1 in the mammary gland and 
human breast malignancies is needed.

VEGF-C and VEGF-D, for example, have been linked to angiogenesis and lym-
phangiogenesis in breast tumours. It’s critical to figure out whether these VEGFs have 
a paracrine or autocrine effect on breast cancer cells. Some data suggests that breast 
cancer cells can respond to VEGF-D autocrinely, although additional research is 
needed to confirm this.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 2

Tumor Angiogenesis in Pituitary 
Adenoma
Daizo Yoshida and Akira Teramoto

Abstract

The role of angiogenesis in pituitary tumor development used to be questioned, 
since pituitary tumors have been usually found to be less vascularized than the 
normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has 
been shown in invasive or macropituitary prolactinomas when compared to nonin-
vasive and microprolactinomas. We should know VEGF was found firstly in pituitary 
anterior lobe, then tumor angiogenesis must occur. Meanwhile the vascular arrange-
ment raised by VEGF is irregular, that sometimes lead to pituitary apoplexy. In this 
chapter, hypoxia inducible factors (HIF), transcription factors regulating expression 
of several genes related to oxygen homeostasis are in response to hypoxic stress. We 
focus on tumor angiogenesis regulated by the signaling cascade in tumor angiogenesis 
in pituitary tumor.

Keywords: hypoxia inducible factors, tumor angiogenesis, pituitary adenoma

1. Introduction

Hypoxia is critical for the life. Autonomic nerves system responds to the hypoxia 
regulating circulatory and respiratory organs to ensure adequate oxygen delivery. 
Separately, cellular responses to hypoxia are mainly regulated by the activation of 
transcription factors called hypoxia-inducible factors (HIFs). HIFs affect hypoxia and 
stress response signaling pathways that influence development, metabolism, inflam-
mation, and circulatory and respiratory physiology [1–5]. Hypoxia-inducible factors 
are also associated with many diseases in the circulatory system, mainly via VEGF. 
Copper is a co-factor of bFGF, accumulated in malignant glioma, the chelation inhib-
its glioma growth and angiogenesis in murine model. HIF pathways are triggered by 
hypoxia. The hypoxia regulates both in the cell signal level and in the circulatory and 
respiratory system by autonomic nerves. Hence, compromised response to ischemia 
is crucial. Inhibition of angiogenesis by reducing the HIF pathway can be a rational 
method in patients with ischemic diseases. Investigation regarding hypoxia mediated 
by intracellular signaling have been emerged as new targets focusing on the related 
genes or protein delivery to stabilize HIFs, but not yet accomplished. Oxygen tension 
is markedly below physiological levels in solid tumors also in pituitary adenoma. 
In fact, solid tumors contain severely hypoxic regions, in which pO2 values are 
<10 mmHg [6, 7]. Tumor vessels raised by VEGF are regularly lacking tight junction, 
we consider that it leads pituitary apoplexy, hemorrhagic infarction.
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In this chapter, we focus on the current understanding of the relationship between 
HIFs and pituitary adenoma in tumor angiogenesis.

2. Discussion

Endocan is known as endothelial cell-specific molecule-1 (ESM-1) that has a 50 kDa 
polypeptide with a single dermatan sulfate [8, 9]. After secreted from endothelial 
cell, endocan interacts between leukocyte function-associated antigen-1 (LFA-1) and 
intercellular adhesion molecule-1 (ICAM-1). Recent studies have shown that endocan 
mRNA expression in endothelial cells is specific to several angiogenic factors and cyto-
kine, such as VEGF and TNF. Herein, function of endocan has been emerged in tumor 
hypoxia context. Endocan overexpress stimulates tumor progression in mouse models 
of human tumor xenografts. Anyway, these studies demonstrated that endocan can 
be a biomarker of tumor progression, and a potentially therapeutic target for cancer. 
Despite general immunotherapeutic therapy to cancer is not satisfactory, antibodies 
against endocan be still promising cancer treatment. Both plasma endocan and VEGF-A 
levels are elevated in patients with invasive tumor. Cornellius showed that, pituitary 
adenoma cells expressed endocan, though it was not observed in all normal pituitary 
[10]. Microvessels revealed significantly greater mean vessel areas in subgroups of 
tumors with endothelial endocan expression. Thus, endocan in endothelial cells may be 
a relevant marker of aggressiveness in pituitary tumors.

Two p53 binding sites are present in the promoter sequence of the gene encoding 
cathepsin D [11, 12] suggesting a direct relationship between cathepsin D and the 
induction of apoptosis. Cathepsin D is activated by an intracellular acid-dependent 
autoactivation mechanism. It has been reported that cathepsin D secreted by prostate 
carcinoma cells is responsible for the generation of angiostatin, an endogenous inhibi-
tor of angiogenesis that is produced by the tumor-mediated proteolysis of plasmino-
gen. Clinically, cathepsin D overexpression has been studied in several malignant 
tumor types [11] although most research has been focused on breast cancer, in which 
cathepsin D expression correlates with poor prognosis. Expression of cathepsin D is 
also significantly higher in malignant than in benign ovarian tumors [12]. In colon 
cancer cells, cathepsin D is upregulated by HIF 1α under hypoxic conditions, perhaps 
counteracting the effects of VEGF via angiostatin regulation [13]. Angiogenesis is 
a major mechanism by which oxygen supply is increased in tumors. Hypoxia has 
been found to regulate angiogenesis activators and may some- times downregulate 
angiogenesis inhibitors. In the mouse pituitary adenoma cell line GH4C, secretion 
of cathepsin D was inhibited under hypoxic conditions, suggesting that hypoxia acts 
directly on pituitary lactotrophs to inhibit PRL expression. In addition, cathepsin D 
can promote tumor invasiveness by acting as an autocrine growth factor within the 
pituitary to stimulate cell growth. The hormonal moiety in the hypoxia-responsive 
motif, however, has not yet been established.

In pituitary adenomas, regional oxygen saturation is lower than in normal pituitary 
lobes. VEGF and HIF-1α are also expressed in several pituitary adenomas; however, 
the role of HIF-1α and the relationship between HIF-1α and VEGF has been emerged 
Vidal et al. reported that HIF-1α was expressed in all types of pituitary adenoma 
and that the expression level in GH-producing pituitary adenomas and pituitary 
carcinomas was higher than in the other adenomas. We detected HIF-1α mRNA and 
protein in several pituitary adenoma types. Our statistical analysis confirmed earlier 
results that there was no significant correlation between HIF-1α expression and 
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patient age, gender, and tumor size. GH-producing adenomas exhibited the highest, 
and ACTH-producing adenomas the lowest expression levels of HIF-1α; however, 
the difference was not statistically significant, possibly due to the small number of 
available samples. Our study confirmed earlier reports that VEGF was expressed in all 
types of pituitary adenoma [14, 15]. According to Lloyd et al., VEGF expression was 
high in GH-producing adenomas, corticotrophs, silent corticotrophs, silent subtype 3 
tumors, non-oncocytic null-cell adenomas, and pituitary carcinomas [16]. However, 
between normal tissue and adenomas or tumors of different histotypes, there was no 
statistically significant difference with respect to VEGF expression. We also found no 
significant difference among the different adenoma types we examined.

We performed quantitative assessment of the expression of HIF-1α and VEGF 
in pituitary adenomas and examined the co-expression of HIF-1α and VEGF. Our 
results suggest that VEGF may be regulated not only by HIF-1α but by a different 
mechanism mediated by several cytokines and growth factors. In normal pituitary 
cells, pituitary adenylate cyclase-activating polypeptide (PACAP) and IL-6 can 
stimulate VEGF expression in vitro, whereas glucocorticoid has inhibitory action. In 
pituitary adenoma cells, VEGF expression was increased by TGF-α, PACAP, estradiol, 
IL-6, IGF-I, and pituitary tumor transforming gene (PTTG), and was inhibited by 
dexamethasone. Moreover, VEGF was co-localized with various pituitary hormones, 
suggesting that hypothalamic factors may play a role in the regulation of pituitary 
VEGF release. Therefore, the regulation of VEGF in pituitary tumors may not depend 
primarily on HIF-1α expression.

Our study also demonstrated that stromal cell-derived factor (SDF)-1 expres-
sion was positively correlated to microvascular density (MVD), strongly obvious in 
macroadenomas. Intensity for immunoreactivity for SDF-1 was not related. Given 
by these results we consider, abnormal blood vessels in the pituitary adenoma tissue 
may be not be able to supply the normal oxygen concentration like the normal vessels. 
Both SDF-1 mRNA and protein expression were firmly upregulated in hypoxia, and 
then regulate tumor angiogenesis in pituitary adenoma.

SDF-1 (CXCL12) is expressed both in embryo and cancer cell lines, and is an 
ELR-CXC chemokine that has angiogenic activity, role of the capillary-like formation 
stimulating human vascular endothelial cells also in pituitary adenoma [17]. Meanwhile 
CD34 is a cell-surface marker of hematopoietic stem cells (HSCs), mature vascular 
endothelial cells also express a receptor for SDF-1, CXCR4. CD34 cell migration is 
stimulate by CXCR4 via SDF-1 in vitro and could be a key factor for trafficking HSC 
between the peripheral blood and the bone marrow, named a homing effect. During 
embryogenesis, primitive blood vessels are shaped newly by the angioblasts aggrega-
tion, which is termed vasculogenesis.

In embryo, when the vasculogenesis starts mainly fibroblast growth factors 
(FGFs) cause some cells in the mesoderm differentiated into endothelial progenitors. 
SDF-1/CXCR4 axis has an initial role in all of hematopoiesis, vascular development, 
and cardiogenesis [18–20], whiles also in adults, homing of HSCs to the bone marrow 
and CD34 progenitor cell proliferation is regulated by SDF-1 [17]. Various organs, 
such as the liver, brain, and lymphoid organs widely expressed SDF-1. In particular, 
human ovarian cancer was firstly discuss to express high levels of SDF-1, and subse-
quently has been reported in glioblastoma.

Recently, several studies have focused on pituitary adenoma. Some showed that 
SDF-1 and its receptor, CXCR4, were expressed in rat pituitary adenomas, but they 
did not discuss the relationship between SDF-1 expression and angiogenesis [21–23]. 
Both prolactin and GH in the GH4C1 are regulated in cell proliferation and the release 
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by CXCR4 activation, plausibly through complicated intracellular signals. However, 
discussion of exogenous SDF-1 has not yet clearly disclosed, because pituitary 
adenoma cells express CXCR4 but not SDF-1. Barbieri et al. analyzed the expression 
of both SDF-1 and CXCR4 in human pituitary adenomas, compared with normal 
hypophyses. They elucidated first the SDF-1 and CXCR4 expression in normal and 
adenomatous human pituitary and revealed that overexpression occurs in adenomas 
comparing normal-related pituitary cells, then indicating that this profile may 
contribute to the increasing proliferation [24].

Invasive pituitary adenoma has a complicated mechanism and interacts with the 
nerve-endocrine-immune network. It is affect DDR1 ligand combined with DDR1 can 
promote the DDR1 signaling pathway. DDR1 promotes MMP-2/9 expression, leading 
to ECM reconstruction and tumor invasion [25–27]. Cell apoptosis, change tumor cell 
invasiveness, and regulation of energy metabolism is mediated by hypoxic condition. 
Herein, discoidin domain receptor (DDR)-1 expression and its effect on pituitary 
adenoma under hypoxia still need further investigation. Our study confirmed that 
DDR1 mRNA and protein are elevated in primary pituitary adenoma cells along with 
hypoxia. Elevated DDR1 expression can regulated expression of MMP-2 and MMP-9 
expression in supernatant, thereby promoting cell proliferation and invasion of pitu-
itary adenoma. Nilotinib administration can diminish DDR1 expression and further 
reduce MMP-2 and -9 expression to reduce pituitary adenoma cells proliferation and 
invasion.

The above-mentioned factors have been discussed much few in pituitary adenoma. 
Cornelius et al. investigated that endocan, secreted by endothelial cells, associated 
with an aggressive behavior in pituitary tumors. The study by immunohistochemistry 
and reverse transcription polymerase chain reaction (RT-PCR) in patients operated 
for a pituitary adenoma, comparing normal post-mortem pituitaries. In normal 
pituitaries, endocan was never observed in vessels but was detectable in adenoma 
cells. In adenoma tissue, a significant relation between endocan immunoreactivity in 
endothelial cells and progression, tumor size, mitotic count, and p53 expression were 
demonstrated. The immunohistological study of endocan in endothelial cells there-
fore can be a new marker of aggressive behavior in pituitary tumors [28].

Cathepsin B expressed in invasive pituitary adenoma and is an important func-
tional protein in apoptosis. One might hypothesize that shifting the balance between 
mediators of cell death could result in changes in pituitary tumor behavior [29].

Pituitary adenoma is considered to be benign, accounting 20% of intracranial 
tumors generally, that is the third most common intracranial tumor. But approximately 
30% of pituitary adenomas are invasive. It can be said the already-established molecu-
lar mechanisms of the pituitary adenomas invasion, turning out mainly HIF-1α, 
pituitary tumor transforming gene, FGF-2, VEGF, and MMPs (mainly MMP-2, and 
MMP-9) are core signaling. These molecules have the ability to create a suitable micro-
environment within the tumor. Together, they have a complicated interaction [30].

Nonfunctioning pituitary adenoma is sometime hard for surgery. However, there 
is no established conservative treatment. MicroRNA-134 (miR-134) may be promised 
that suppress tumor cell proliferation and invasion. Therefore, the effect of miR-
134 on improving non-functioning pituitary tumor cells expansion is considered to 
be challenging. The molecular mechanism of the SDF-1α/miR-134/VEGFA axis is 
representative a novel mechanism in the pathogenesis of NF-PitNETs and may serve 
as a potential therapeutic target for the treatment of NF-PitNETs [31].

Study with flow cytometry show that the rates of CXCR4- and CXCL12-
positive cells in invasive pituitary adenomas was significantly elevated in the cell 
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suspensions than those in non-invasive pituitary adenomas. Immunohistochemical 
study unveiled that CXCR4 and CXCL12 staining index of the invasive pituitary 
adenomas were clearly higher than those of the non-invasive pituitary adenomas. 
Meanwhile, none of flow cytometry and immunohistochemistry could disclose 
significant difference between CD44 and CD147 expression, respectively. Then, 
CXCR4 and CXCL12 may potentially can be powerful biomarkers to detect early 
stage of pituitary adenomas [32].

Recently, Nilotinib has been highlighted to reduce DDR1 expression, decrease 
MMP-2 and MMP-9 expression, and inhibit pituitary adenoma cells proliferation and 
invasion [33].

Conclusively further investigations are required to elucidate the mechanisms 
underlying the invasiveness of pituitary adenoma-related phenomena is a new 
horizon in the field of neuro-oncology.

Conflict of interest

The authors declare no conflicts of interest.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Tumor Angiogenesis and Modulators

30

[1] Ke Q, Costa M. Hypoxia-inducible 
factor-1 (HIF-1). Molecular 
Pharmacology. 2006;70(5):1469-1480

[2] Fallah J, Rini BI. HIF inhibitors: Status 
of current clinical development. Current 
Oncology Reports. Jan 22 2019;21(1):6

[3] Albadari N, Deng S, Li W. The 
transcriptional factors HIF-1 and HIF-2 
and their novel inhibitors in cancer 
therapy. Expert Opinion on Drug 
Discovery. Jul 2019;14(7):667-682

[4] Graham K, Unger E. Overcoming 
tumor hypoxia as a barrier to 
radiotherapy, chemotherapy and 
immunotherapy in cancer treatment. 
International Journal of Nanomedicine. 
Oct 2018;13:6049-6058

[5] Hsu TS, Lin YL, Wang YA, 
Mo ST, Chi PY, Lai AC, et al. HIF-2α 
is indispensable for regulatory T cell 
function. Nature Communications. 
Oct 6 2020;11(1):5005. DOI: 10.1038/
s41467-020-18731-y

[6] Bhandari V, Hoey C, Liu LY, 
Lalonde E, Ray J, Livingstone J, et al. 
Molecular landmarks of tumor hypoxia 
across cancer types. Nature Genetics. Feb 
2019;51(2):308-318

[7] De Freitas Caires N, Gaudet A, 
Portier L, Tsicopoulos A, Mathieu D, 
Lassalle P. Endocan, sepsis, pneumonia, 
and acute respiratory distress syndrome. 
Critical Care. Oct 26 2018;22(1):280

[8] Kuluöztürk M, İn E, İlhan N. 
Endocan as a marker of disease severity 
in pulmonary thromboembolism. The 
Clinical Respiratory Journal.  
Dec 2019;13(12):773-780

[9] Cornelius A, Cortet-Rudelli C, 
Assaker R, Kerdraon O, Gevaert M-H, 

Prévot V, et al. Endothelial expression 
of endocan is strongly associated with 
tumor progression in pituitary adenoma. 
Brain Pathology. 2012;22(6):757-764

[10] Minarowska A, Gacko M, 
Karwowska A, Minarowski Ł. Human 
cathepsin D. Folia Histochemica  
et Cytobiologica. 2008;46(1):23-38

[11] Kakimoto Y, Sasaki A, Niioka M,  
Kawabe N, Osawa M. Myocardial 
cathepsin D is downregulated in 
sudden cardiac death. PLoS One. Mar 
16 2020;15(3). DOI: 10.1371/journal.
pone.0230375

[12] Pranjol ZI, Whatmore JL. Cathepsin 
D in the tumor microenvironment of 
breast and ovarian cancers. Advances 
in Experimental Medicine and Biology. 
2020;1259:1-16

[13] Basu S, Cheriyamundath S, 
Gavert N, Brabletz T, Haase G, Ben-Ze'ev 
A. Increased expression of cathepsin 
D is required for L1-mediated colon 
cancer progression. Oncotarget. Aug 27 
2019;10(50):5217-5228

[14] Kim K, Yoshida D, Teramoto A. 
Expression of hypoxia-inducible factor 
1alpha and vascular endothelial growth 
factor in pituitary adenomas. Endocrine 
Pathology. Summer 2005;16(2):115-121

[15] Yoshida D, Noha M, Watanabe K, 
Sugisaki Y, Teramoto A. Novel approach 
to analysis of in vitro tumor angiogenesis 
with a variable-pressure scanning 
electron microscope: Suppression by 
matrix metalloproteinase inhibitor SI-27. 
Tumor Pathology. 2001;18(2):89-100

[16] Vascular endothelial growth factor 
(VEGF) expression in human pituitary 
adenomas and carcinomas Ricardo V. 

References



Tumor Angiogenesis in Pituitary Adenoma
DOI: http://dx.doi.org/10.5772/intechopen.102377

31

Lloyd, Bernd W. Scheithauer, Takao 
Kuroki, Sergio Vidal, Kalman Kovacs, 
Lucia Stefaneanu Endocrine Pathology. 
Autumn 1999;10(3):229-235

[17] Barbieri F, Bajetto A, Porcile C, 
Pattarozzi A, Schettini G, Florio T. 
Role of stromal cell-derived factor 
1 (SDF1/CXCL12) in regulating 
anterior pituitary function. Journal 
of Molecular Endocrinology. Mar 
2007;38(3):383-389

[18] Barbieri F, Bajetto A, Stumm R, 
Pattarozzi A, Porcile C, Zona G, et al. 
Overexpression of stromal cell-derived 
factor 1 and its receptor CXCR4 induces 
autocrine/paracrine cell proliferation 
in human pituitary adenomas. 
Clinical Cancer Research. Aug 15 
2008;14(16):5651-5672

[19] Bajetto A, Barbieri F, Dorcaratto A, 
Barbero S, Daga A, Porcile C, et al. 
Expression of CXC chemokine receptors 
1-5 and their ligands in human glioma 
tissues: Role of CXCR4 and SDF1 in 
glioma cell proliferation and migration. 
Neurochemistry International. Oct 
2006;49(5):423-432

[20] Bajetto A, Bonavia R, Barbero S, 
Piccioli P, Costa A, Florio T, et al. Glial 
and neuronal cells express functional 
chemokine receptor CXCR4 and its 
natural ligand stromal cell-derived  
factor 1. Journal of Neurochemistry.  
Dec 1999;73(6):2348-2357

[21] Li S, Zhang Z, Xue J, Guo X, 
Liang S, Liu A. Effect of hypoxia on 
DDR1 expression in pituitary adenomas. 
Medical Science Monitor. Aug 19 
2015;21:2433-2438

[22] Yoshida D, Teramoto A. 
Enhancement of pituitary adenoma cell 
invasion and adhesion is mediated by 
discoidin domain receptor-1. Journal of 
Neuro-Oncology. Mar 2007;82(1):29-40

[23] Hilton HN, Stanford PM, 
Harris J, Oakes SR, Kaplan W, Daly RJ, 
et al. KIBRA interacts with discoidin 
domain receptor 1 to modulate 
collagen-induced signalling. 
Biochimica et Biophysica Acta. Mar 
2008;1783(3):383-389

[24] Porcile C, Bajetto A, Barbieri F, 
Barbero S, Bonavia R, Biglieri M,  
et al. Stromal cell-derived factor-1alpha 
(SDF-1alpha/CXCL12) stimulates 
ovarian cancer cell growth through 
the EGF receptor transactivation. 
Experimental Cell Research. Aug 15 
2005;308(2):241-253

[25] Yang Q, Li X. Molecular network 
basis of invasive pituitary adenoma: A 
review. Frontiers in Endocrinology. Jan 
24 2019;10:7

[26] Ruskyte K, Liutkevicienė R,  
Vilkeviciute A, Vaitkiene P, 
Valiulytė I, Glebauskiene B, et al. MMP-
14 and TGFbeta-1 methylation in 
pituitary adenomas. Oncology Letters. 
Oct 2016;12(4):3013-3017

[27] Gupta P, Dutta P. Landscape of 
molecular events in pituitary apoplexy. 
Frontiers in Endocrinology. Mar 20 
2018;9:107

[28] Cornelius A, Cortet-Rudelli C, 
Assaker R, Kerdraon O, Gevaert M-H, 
Prévot V, et al. Endothelial expression 
of endocan is strongly associated with 
tumor progression in pituitary adenoma. 
Brain Pathology. 2012;22(6):757-764

[29] Tanase C, Popescu ID, Mihai S, 
Necula L, Cruceru ML, Hinescu ME. 
Decreased expression of APAF-1 and 
increased expression of cathepsin B in 
invasive pituitary adenoma. Oncotargets 
and Therapy. Dec 22 2014;8:81-90

[30] Yang Q, Li X. Molecular network 
basis of invasive pituitary adenoma: A 



Tumor Angiogenesis and Modulators

32

review. Frontiers in Endocrinology.  
Jan 24 2019;10:7

[31] Wang X, Fang Y, Zhou Y, Guo X, 
Ke X, Li C, et al. SDF-1α/MicroRNA-134 
axis regulates nonfunctioning pituitary 
neuroendocrine tumor growth 
via targeting VEGFA. Frontiers in 
Endocrinology. Dec 9 2020;11. DOI 
10.3389/fendo.2020.566761

[32] Xing B, Kong YG, Yao Y, Lian W,  
Wang RZ, Ren ZY. Study on the 
expression levels of CXCR4, CXCL12, 
CD44, and CD147 and their potential 
correlation with invasive behaviors 
of pituitary adenomas. Biomedical 
and Environmental Sciences. Jul 
2013;26(7):592-598

[33] Li S, Li S, Zhang Z, Xue J, Guo X, 
Liang S, et al. Effect of hypoxia on  
DDR1 expression in pituitary  
adenomas. Medical Science Monitor.  
Aug 19 2015;21:2433-2438



Section 2

Modulators of Tumor
Angiogenesis

33





Chapter 3

Role of Exosomes in Tumor
Induced Neo-Angiogenesis
Joni Yadav, Nikita Aggarwal, Apoorva Chaudhary,
Tanya Tripathi, Dikkshita Baruah, Suhail Chhakara,
Divya Janjua, Arun Chhokar, Kulbhushan Thakur,
Anna Senrung and Alok Chandra Bharti

Abstract

Exosomes are the nanovesicles, belonging to the type of extracellular vesicles
(EVs), produced by normal as well as tumor cells and function as a mode in cell-to-cell
communication. Tumor cells utilize various approach to communicate with neighbor-
ing cells for facilitating tumor invasion and progression, one of these approaches has
been shown through the release of exosomes. Tumor-derived exosomes (TEX) have
the ability to reprogram/modulate the activity of target cells due to their genetic and
molecular cargo. Such exosomes target endothelial cells (among others) in the tumor
microenvironment (TME) to promote angiogenesis which is an important element for
solid tumor growth and metastasis. So, exosomes play a vital role in cancer invasive-
ness and progression by harboring various cargoes that could accelerate angiogenesis.
Here first, we will present an overview of exosomes, their biology, and their role in
different cancer models. Then, we will emphasis on exosomes derived from tumor
cells as tumor angiogenesis mediators with a particular importance on the underlying
mechanisms in various cancer origins. In the end, we will unveil the therapeutic
potential of tumor derived exosomes as drug delivery vehicles against angiogenesis.

Keywords: extracellular vesicles, angiogenesis, exosomes, tumor, endothelial
cells (ECs)

1. Introduction

Tumor microenvironment interacts with tumor cells, creating an environment to
suppress or contribute towards tumor development and progression [1]. For the
tumor development, inflammation and angiogenesis are the processes which play vital
roles from initial to the advanced stages of cancer [2]. Extreme angiogenesis and neo-
angiogenesis play a fundamental role in tumor progression, which is driven by various
pro-and anti-angiogenic factors [3]. There are different ways for tumor cells to com-
municate with adjacent cells/tissues for facilitating tumor progression; one of these is
through exosomes [4, 5]. Exosomes can transport various biomolecules like DNA
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fragments, mRNAs, noncoding RNAs, proteins, and lipids from a source cell to target/
recipient cells that can enhance angiogenesis, which play a significant role in cancer
progression [6]. There are evidences that various noncoding RNAs, particularly
microRNAs and long non-coding RNAs (lncRNAs) play significant role in the regula-
tion of angiogenesis [7]. Thus, alteration of angiogenesis has become a striking
approach for development of effective cancer therapy [1].

2. Extracellular vesicles (EVs)

Prior to the discovery of exosomes it was assumed that the transmission of infor-
mation between mammalian cells occurs in an indirect manner. In 1983, two pioneer
studies carried out on the differentiation of reticulocytes into mature erythrocytes,
reported release of transferrin receptors into extracellular space in form of small
vesicles, which were later termed as “exosomes” by R.M. Johnstone [6, 8–10]. EVs are
vesicles enclosed with phospholipid bilayer secreted in the extracellular matrix. Ini-
tially, they were initially considered as “garbage dumpsters” but now they are popu-
larly being referred as “signal boxes” [11]. The presence of extracellular vesicles in
solid tissue, physiological fluid, and cell culture supernatants has been demonstrated
by a number of studies [12]. EV’s are broadly categorized into different subtypes like
microsomes, microvesicles, retrovirus-like particles and apoptotic bodies, different
from each other on the basis of size, surface markers and their mode of biogenesis
[13]. Extracellular vesicle is a collective term for exosomes and microvesicles.
Microvesicles originate from through outward budding and fusion of plasma mem-
brane whereas, exosomes are released via endocytosis and fusion with plasma mem-
brane [14]. Exosomes are the smallest (30–100 nm) subpopulation of EVs. CD9, CD63
and Alix are the specific surface markers for these exosomes [13]. Exosome serve as
important cell communication regulators and have gained more attention among all
the diverse types of extracellular vesicles because they represent a more homogenous
set of vesicular population more closely representing the parent cell of origin [15].

2.1 Exosome biogenesis

Exosomes are endosome derived extracellular vesicles. Multivesicular endosomes
(MVEs) or multivesicular bodies (MVBs) are secreted via intracellular secretion
pathway, from the plasma membrane. Early endosomes develop into MVBs which
fuse with the cell membrane and release the exosomes or else undergoes degradation
in lysosomes and autophagosomes. They are cup-or disc-shaped when observed under
electron microscopy having a diameter of 30–150 nm [11, 16]. Various proteins and
molecules like (ALIX, VPS4, and TSG101) are some of the major proteins involved in
exosome biogenesis, content assembly and their secretion via endosomal sorting
complex [16]. Exosome biogenesis supposedly occurs via two major pathways:
Endosomal sorting complexes required for transport (ESCRT) dependent and ESCRT
independent. The ESCRT dependent process includes ESCRT complex (0, I, and II)
which are involved in recognizing and sequestering the ubiquitinylated proteins on
the endosomal membrane. Exosomes are formed by membrane remodeling, involving
bud formation by invagination of this endosomal membrane [17]. ESCRT independent
pathway involves tetraspanins such as CD63 and lipid metabolism enzymes like neu-
tral sphingomyelinase (nSMase) and rab family protein consisting of more than 60
GTPases that regulate intracellular trafficking of exosomes [16]. Anchoring of MVBs
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and transportation of different exosomes is carried out by different RAB subtypes
proteins. Early endosome transportation involves RAB5 and RAB21 proteins to medi-
ate endocytosis pathway from early to late endosome and then to lysosome for degra-
dation involves RAB7 protein. Tumor-associated vesicle trafficking requires a vital
protein that is RAB27 and it is highly expressed in several tumors. Other than this,
various RAB proteins which include RAB 3,11,26,27, 35, 37 and RAB 38 are linked with
the exocytic pathway of vesicle trafficking [11]. RAB27 helps in the release of
exosomes from mature endosomes enriched in TSG101, ALIX and CD63 whereas
RAB11 & RAB35 are associated with the release of early nuclear endosomes which are
enriched with PLP, Wnt and TfR. Finally, MVBs fused with the plasma membrane
and exosomes are excreted out in the extracellular environment [12]. Diagrammatic
representation of exosome biogenesis and secretion has been shown in Figure 1.

2.2 Exosomal content

Exosomes are nanovesicles enriched with a repertoire of biomolecules like pro-
teins, nucleic acids and lipids [16]. Exosomes are dynamic and heterogeneous in
nature with respect to their content which majorly depends on their cellular origin,
pathological and physiological state of the parent cells. Exosomes from different cell
types are enriched specifically in proteins like Alix, Tsg101, integrins, Rab GTPases,

Figure 1.
Schematic representation of exosome biogenesis and secretion from eukaryotic cells. Exosome’s formation starts with
endocytosis, which involves inward budding of plasma membrane, leading to the formation of early and late
endosomes. Further, small vesicles are generated by inward budding of late endosomes and forming multivesicular
bodies (MVBs). The ultimate fate of MVBs can be either fusion with lysosome for degradation or fusion with
plasma membrane to release exosomes. The exosome formation from MVBs proceeds through ESCRT-dependent
and ESCRT-independent pathways. ESCRT-dependent pathway involves various ESCRT proteins like (ESCRT 0,
I, II, and III) and ESCRT-independent includes lipids (ceramide) and the tetraspanins.
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tetraspanins (CD9) and (CD63), MHC class II proteins and heat shock proteins
(HSP90, HSP70), which alsoserve as exosome marker proteins [16, 18]. Besides these,
exosomes are also enriched with double-stranded DNA’s and RNA population of
different classes such as microRNA (miRNA), long noncoding RNA (lncRNA) [19].
ExoCarta and Vesiclepedia (http://microvesicle.org/), databases have cataloged the
RNA, protein and lipid content of exosomes derived from different sources.

3. Mechanisms involved in exosomes-induced angiogenesis

Tumor derived exosomes (TEXs) have been shown to play a significant role in
tumor progression by accelerating angiogenesis [20]. New blood vessel formation
occurred when angiogenic signaling pathways are activated by tumor-derived
exosomes, when they are up taken by normal ECs [21]. Exosomal cargo once inter-
nalized into recipient cells present in the tumor microenvironment, can regulate their
fate, function, and phenotype [22, 23]. Tumor cell derived exosomal cargo can acti-
vate/inhibit the various signaling pathway in ECs via receptor-ligand interaction [24].
There are several studies represent multiple avenues in which cancer-derived
exosomes exert pro-angiogenic effects on ECs. Till date, the different signaling path-
ways that are involved in exosomes-induced angiogenesis are poorly known. How-
ever, the exosomal cargo which is involved in tumor progression and angiogenesis
have been documented. Role of TEXs cargoes which is involved in tumor angiogenesis
is showed in Figure 2. Also, a list of all mRNAs, proteins, and noncoding RNAs which
are found in TEXs for regulating tumor angiogenesis are listed in Table 1.

Figure 2.
Tumor derived exosomes as carrier of pro-angiogenic cargo from different cancer models promote neo-angiogenesis.
Tumor-derived exosomes are enriched in proangiogenic proteins, mRNAs, miRNAs, and long noncoding RNAs
which are transferred to recipient endothelial cells and activate various angiogenic signaling pathways involved in
different angiogenesis process via cell proliferation, migration, and invasion.
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3.1 Glioblastoma

Exosomes derived from glioblastoma cells are known to carry different mRNAs,
miRNAs and angiogenic factors which interacts with ECs and thus stimulate angio-
genesis. Kucharzewska et al. demonstrated export of pro-angiogenic factors IL-8 and
PDGF through exosomes derived from the hypoxic glioma cells and thus induce
endothelial proliferation and cell migration by activating the PI3K/AKT signaling
pathway [30]. Exosomes from glioblastoma cells showed enrichment of different non-
coding RNAs that include, microRNAs (miRNAs): miR-148a-3p, miR-182-5p; long
non-coding RNAs (lncRNAs): POU3F3, HOTAIR, CCAT2 in the regulation of glioma
cell angiogenesis [22, 28, 29, 32, 33]. Exosomes derived from glioma cells are also
known to carry pro-angiogenic proteins such as EGFRvIII, VEGF-A and DII4 which
are important for tumor growth, survival and angiogenesis through the activation of
Akt and MAPK signaling pathways [25–27, 31].

3.2 Breast cancer

Breast cancer derived-exosomes transfer majorly pro-angiogenic microRNAs: miR-
10b, miR-101, miR-105, miR-122, miR-145, miR-210 and miR-373 responsible for
tumor invasion, metastasis and lead to angiogenesis [34–36, 39–41]. However, Wu
et al. found that exosomes secreted from breast cancer cells loaded with miR-497 are
responsible for anti-angiogenesis by downregulating the VEGF and HIF-1 [37]. Maji
et al. have observed that Annexin A2 was transferred via breast cancer exosomes to
ECs and induces the process of vascularization and angiogenesis through the tissue
plasminogen activator (tPA)-dependent manner in-vitro and in-vivo [38].

3.3 Multiple-myeloma

Multiple myeloid cancer cells derived exosomes are known to carry miR-135b and
responsible for tube formation in ECs by suppressing its target FIH-1 [42]. Wang et al.
observed that various pro-angiogenic factors are released into the exosomes derived
from multiple myeloma cells such as angiogenin, bFGF and VEGF that promote tumor
growth [43].

3.4 Melanoma

In a study conducted by Zhuang et al. demonstrated that exogenous miR-9 can
advance tumor angiogenesis by downregulating the SOCS-5 levels, which can discor-
dantly regulate the JAK-STAT signaling pathway [44]. Hood et al. have observed
exosomes released from melanoma cells stimulate the expression of HIF-1α, HIF-2α
and GM-CSF, which leads to angiogenesis in endothelial cells [46]. Moreover,
Ekstrom et al. showed that the WNT5A signaling promotes the exosomal secretion
from melanoma cells containing immunomodulatory and pro-angiogenic factors such
as IL-6, MMP-2 and VEGF [45].

3.5 Pancreatic cancer

Pancreatic adenocarcinoma produced exosomes having high levels of tetraspanin
Tspan8 (D6.1A) that promote migration, proliferation and sprouting in ECs. More-
over, these exosomes also help in maturation of endothelial progenitor cells [47, 48].
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Guo et al. showed that lncRNA UCA1 was exported through exosomes derived from
the hypoxic pancreatic cancer cells are responsible for angiogenesis via miR-96-5p/
AMOTL2 signaling pathway [50].

3.6 Colorectal cancer

Studying the exosomes from the colorectal carcinoma demonstrated that these
exosomes carry pro-angiogenic factors Wnt 4, which helps in angiogenesis of ECs
through Wnt/β-catenin pathway [49]. Hong et al. found that the exosomes released
from SW480 colorectal cancer cell lines are loaded with M-phase related transcripts
such as RAD21, CDK8, and ERH and regulate M-phase of the cell cycle and promotes
proliferation and in turn enhance angiogenesis [51].

3.7 Lung cancer

Exosomes derived from small cell lung cancer (SCLC) cells are found to be
enriched with miR-21 and miR-23a, which is correlated with the pro-angiogenic
activities in ECs [52, 53]. A study of Mao et al. demonstrated that exosomes from
SCLC cells are responsible for pro-angiogenic effect via miR-141/KLF12 pathway in
targeted ECs [54]. In another recent study, Profilin2 protein was transferred from the
lung cancer cells via exosomes and leads to angiogenesis by activating the t-PFN2
dependent pERK pathway in endothelial cells [55].

3.8 Hepatocellular carcinoma (HCC)

Vasorin (VASN), a type I transmembrane protein has an effective role in tumor
progression and angiogenesis, was secreted by exosomes of hepatocellular carcinoma
cells (HCC) and promotes the migration of HUVEC cells [56]. In another study of Xie
et al. showed that angiopoietin-2 protein is transferred to ECs from HCC cells via
exosomes and responsible for pro-angiogenesis [57]. Recently, it was found that miR-
1290 is also released from the HCC cells through exosomes and responsible for angio-
genesis by inducing the miR-1290 induced pro-angiogenic phenotype in endothelial
cells, by targeting the SMEK1 [58].

3.9 Renal cell carcinoma (RCC)

Zhang et al. demonstrated that exosomes derived from renal cancer cell enhances
angiogenesis by upregulating the expression of VEGF and downregulating the
hepaCAM expression in ECs [59]. Moreover, exosomes derived from renal cancer
786-0 cells promotes invasion and migration of the endothelial cells through
upregulation of chemokine receptors CXCR4 and MMP-9 [60]. A recent study of Hou
et al. observed that the exosomes derived from renal clear cell carcinoma (RCCC) are
loaded with miR-27a and inhibits SFRP1 expression which leads to accelerated angio-
genesis in HUVECs [63].

3.10 Bladder cancer

Beckham et al. observed that the exosomes derived from urine of patients with
bladder cancer and high-grade bladder cancer cell lines contain an angiogenic factor.
Epidermal growth factor (EGF)-like repeats and discoidin I-like domain-3 (EDIL-3)
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that facilitate cell proliferation and migration which leads to angiogenesis in endothe-
lial cells. EDIL-3 activated EGFR signaling overrule this EDIL-3 induced bladder cell
migration [24].

3.11 Papillary thyroid cancer (PTC)

In a recent study by Wang et al. observed that miR-181a is delivered by hypoxic
PTC-secreted exosomes inhibits DACT2 by downregulating MLL3, leading to YAP-
VEGF-mediated angiogenesis by increasing proliferation and forming capillary-like
network in HUVECs. Further, angiogenic potential of hypoxic PTC-secreted
exosomes was confirmed in-vivo, which was reversed in presence of hypoxic miR-181
inhibitor [64].

3.12 Head and neck cancer (HNC)

Chan et al. showed that nasopharyngeal carcinoma (NPC) derived exosomes are
supplemented with pro-angiogenic factors, ICAM-1 and CD44v5, which helps in
angiogenesis of endothelial cells [66]. In another study by Gu et al. recognized a vital
role of PFKFB-3 in NPC derived exosomes, which helps in migration, proliferation
and angiogenesis of HUVECs [67]. Exosomes derived from FaDu cells are highly
enriched with miR-21, captured by monocytes present in the TME and responsible for
increasing the expression of M2 polarization of TAMs markers, which helps in tumor
progression by regulating the tumor invasiveness and angiogenesis [65]. In a recent
study, it was observed that a nuclear protein HMGB3 is transferred to endothelial cells
via exosomes released from NPC cells and responsible for accelerated angiogenesis in-
vitro and in-vivo [68].

3.13 Esophageal squamous cell carcinoma (OSCC)

Zhang et al. demonstrated that exosomes released from esophageal squamous cells
are enriched with lncRNA FAM225A, which accelerates esophageal squamous cell
carcinoma progression and angiogenesis by sponging miR-206. Further, they showed
the upregulation of NETO2 and FOXP1 expression when FAM225A absorbed the miR-
206 thereby activating PI3K/Akt/NF-κB/Snail axis [69].

3.14 Gastric cancer

Exosomes derived from gastric cancer cell are enriched with miR-130a and plays a
central role in tumor angiogenesis. They showed that exosomal miR-130a is able to
facilitate angiogenesis by downregulating the c-MYB, which is an important tran-
scription factor in different biological processes [70]. In another study by Li et al.
demonstrated that exosomes released from irradiated gastric cancer cells promote
invasiveness and proliferation of endothelial cells [89].

3.15 Chronic myeloid leukemia (CML)

LAMA84 a human CML cell line releases exosomes and are able to trigger diverse
signaling pathways in ECs, leading to enhanced expression of important angiogenic
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factor IL-8 [72]. Umezu et al. observed that exosomes from leukemia cells can trans-
port miR-92a into ECs and responsible for enhanced tube formation and migration by
downregulation of integrin-α5 [73]. In another study, it was found that leukemia cell
derived exosomes are able to induce tube formation in HUVECs by activating Src [71].
It has been observed that exosomes released from K562 leukemia cells are loaded with
miR-210 downregulate the receptor tyrosine kinase ligand, Ephrin A3 (EFNA3) [74].
However, in contrast, Taverna et al. showed that curcumin treatment deeply changes
the molecular properties of exosomes released by leukemia cells, in particular, deplete
the exosomes of the pro-angiogenic proteins and leads to enrichment of proteins with
anti-angiogenic activity and miR-21 [75].

3.16 Prostate cancer

Exosomes derived from prostate cancer cells are known to carry TGF-β1 protein,
which can induce the differentiation of recipient fibroblasts to myofibroblasts [76]. In
a study by DeRita et al., showed that prostate cancer cell exosomes were loaded with,
IGF-IR, FAK and c-src, which could promote tumor angiogenesis [77].

3.17 Ovarian cancer

Taraboletti et al. demonstrated that exosomes from ovarian cancer cells are
known to carry pro-angiogenic growth factor VEGF, which helps in interaction
between tumor and endothelial cells and is very important for angiogenesis [78].
Ovarian cancer exosomes are enriched with pro-angiogenic protein CD147, ATF 2,
MTA1, SARS and ROCK1/2. They observed that these proteins can enhance the
expression of vital angiogenic factors like VEGF, HIF-1α and MMPs and resulting
in the enhanced angiogenesis of HUVECs [79, 80]. Additionally, Masoumi-Dehghi
et al. observed that exosomes from ovarian cancer cells are enriched in miR141-3p,
which helps in angiogenesis by activating the JAK/STAT and NF-kB signaling
pathways [82].

3.18 Chondrosarcoma

Cheng et al. demonstrated that microarray analysis revealed that exosomes
released from chondrosarcoma cells carried lncRNA RAMP2-AS1, which promotes
HUVECs migration, proliferation, and tube formation which leads to angiogenesis
through miR-2355-5p/VEGFR2 axis, thereby regulating the angiogenic ability of
endothelial cells. Successive experiments showed that RAMP2-AS1 knockdown
could decrease the pro-angiogenic effect of exosomes released from chondrosarcoma
cells [86].

3.19 Retinoblastoma

Recently a study conducted by Chen et al. demonstrated that exosomes released by
human retinoblastoma cell line WERI-Rb1, were enriched inmiR-92a-3p. The study,
predicted that Krüppel-like factor 2 (KLF2) might activate target of miR-92a-3p, using
bioinformatics tools & analysis. Thus, exosomal miR-92a-3p was found to modulate
tumor angiogenesis by targeting KLF2 [87].
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3.20 Burkitt’s lymphoma

A study performed by Yoon et al. observed that miR-155 is transported from EBV-
positive Burkitt’s lymphoma cells derived exosomes which could induces angiogenesis
in retinal epithelial pigment (RPE) cells (ARPE-19) by upregulation of transcriptional
and translational levels of VEGF A via VHL/HIF-1α pathway. Thus, study demonstrated
that miR-155 accumulation through exosomes affect nearby recipient cells [88].

3.21 Cervical cancer

Zhang et al. observed that exosomes released from cervical cancer cells harboring
miR-221-3p, which accelerate the MVEC migration, proliferation, invasion and angio-
genesis in cervical cancer cells by regulating MAPK10 [81]. In another study performed
by Bhat et al. showed that cervical cancer exosomes were highly enriched with upstream
proteins of hedgehog-GLI signaling includes, PTCH1, SMO, SHH and Ihh [83]. Also,
they observed that these cervical cancer exosomes facilitate pro-angiogenic endothelial
reconditioning through transfer of Hedgehog-GLI signaling components [84].

4. Therapeutic potential of tumor-exosomes in angiogenesis

The discovery of exosomes as natural carriers of different mRNAs, miRNAs and
lncRNAs makes them a suitable candidate as therapeutic drug vehicles and drug
carriers to target cancer cells and modulation of tumor microenvironment. Recent
advance in the field reveals several success stories (Table 2). The manipulation of

Exosomal cargos Study models Study Outcome References

let-7a miR Breast cancer Secreted exosomes delivered miR-let7a to the
breast cancer cells expressing EGFR and
inhibited cancer growth by blocking
angiogenesis

[90]

HGF siRNA Gastric cancer Exosomes decrease the tumor growth and
angiogenesis in gastric cancer by delivering
hepatocyte growth factor siRNA (HGF siRNA)

[91]

Antisense RNA
targeted to miR-150

NA Downregulated the expression levels of VEGF
in mice and blocked angiogenesis

[92]

miR-21, miR-23b, miR-
27a/b, miR-320b, let-7
and let-7a

Breast cancer DHA treated exosomes have altered miRNA
content that have anti-angiogenic properties in
breast cancer

[93]

miR-340 Old Bone
Marrow Stromal
Cells (BMSCs)

Exosomes having miR-340, inhibits
angiogenesis through HGF/c-MET signaling
pathway in ECs

[94]

miR-21 Chronic Myeloid
Leukemia
(CML)

Exosomes transferred miR-21 to ECs and
downregulated the expression of RhoB

[75]

Abbreviations: HGF: hepatocyte growth factor; EGFR: epidermal growth factor receptor; VEGF: vascular endothelial
growth factor; DHA: docosahexaenoic acid; RhoB: Ras homolog family member B.

Table 2.
Engineered exosomes as anti-angiogenic drug carriers in different cancer models.
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exosomes as drug carriers provides significant advantage for example their
nonimmunogenic nature [95]. Exosomes are also known to carry different cell surface
molecules due to which they have a commendable ability to transgress numerous
biological barriers, such as the BBB (blood-brain barrier). They are highly stable in
blood, which permits them to perform long distance intercellular communication
[96]. Clinical data from various studies revealed that progression of cancer can be
delayed or prevented when tumor angiogenesis is blocked [97]. So, angiogenesis
during tumor development has now become the major emphasis of study and angio-
genesis inhibition is evolving as a new method to treat cancer [98]. Recent investiga-
tions reported that exosomes can decrease or increase angiogenesis based on their
molecular content. Thus, there is a lot of promise in developing engineered exosomes
to transport numerous biological and synthetic genetic materials that can modify the
expression of various genes involved in tumor angiogenesis [99]. For example, Ohno
et al. demonstrated that modified exosomes carrying EGF or GE11 on their surface can
deliver miR let-7a (tumor suppressor miR) to EGFR expressing breast cancer cells in
RAG2�/� mice model. Their previous investigation showed that GE11-exosomes
which delivered miR-let 7a, effectively downregulated HMGA2 expression in cancer
cells [90]. This study verifies that exosomes can be used as drug delivery vehicle to
transport their cargo efficiently to the target cells. Exosomes have capability to act as
carriers for delivering different small interfering RNAs (siRNAs) for targeted cancer
treatment. Exosomes having HGF siRNA packed inside them can be transported into
gastric cancer cells, where they downregulate the HGF expression [91]. Liu et al.
demonstrated that exosomes are able to transport antisense RNA targeted to miR-150,
which induces the expression of VEGF. They established that the neutralization of
miR-150 downregulates the VEGF levels in mice and blocked angiogenesis [92]. Gupta
et al. have shown that the bone marrow stromal cells (BMSCs) are involved in the
tumor progression by secreting different pro-angiogenic factors, bFGF and VEGF
[100]. In another study, it was observed that the miR content of exosomes derived
from old and young BMSCs was different from each other. Young BMSC exosomes
were highly enriched with miR-340, which inhibited the angiogenesis through
HGF/c-MET signaling pathway in ECs. The antiangiogenic effect of older BMSCs was
remarkably enhanced, when miR-340 was transferred to older BMSC exosomes that
was highly expressed in young BMSC exosomes. Therefore, this investigation indi-
cates the exosome-based cancer therapy via replenishment of miRNAs of exosomes
[94]. The Arg-Gly-Asp (RGD) sequence containing peptide specifically bounds to
αVβ3 integrin and plays an important role in endothelial cell survival, migration and
angiogenic growth. In a study performed by Wang et al. showed successful binding of
the RGD sequence containing peptide to the exosomal membrane surface and thereby
binding of the αVβ3 integrin on the surface of angiogenic blood vessel. Thus,
engineered exosomes are emerging as a new probable therapeutic motor for angio-
genesis therapy [99]. In another study, it has been observed that curcumin treated
CML cells released the exosomes, which are highly enriched with miR-21, which is
further transferred to ECs and downregulates the expression of RhoB [75].
Docosahexaenoic acid (DHA) is a polyunsaturated omega-3 fatty acid (PUFA) and
popularly known for its anti-cancer and anti-angiogenesis properties. A group of
researchers demonstrated that exosomes released from the DHA-treated breast cancer
cell lines are highly enriched with miRs, including miR-21, miR-27a/b, miR-23b,
miR-320b, let-7 and let-7a, which are well known for their anti-angiogenic properties.
They observed the increased expression of these miRs when exosomes were
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co-incubated with the endothelial cells. Collectively, the exosomes show a strong
therapeutic potential as natural nano carrier [93].

5. Conclusion

Herein, we have emphasized the current advances in the roles of tumor derived
exosomes in cancers of different origins in tumor angiogenesis. Exosomes could modu-
late the angiogenic programming in target cells by transferring the angiogenic cargoes
that include different mRNAs, miRNAs, lncRNAs and proteins. Angiogenesis is a very
complex process in which aberrant growth of tumor and its metastasis occurs. So, the
inhibition of angiogenesis is a pivotal point to control the progression of cancer. In spite
of increasing amount of information about tumor derived exosomal cargo and changes
prompted by them on target cells, the complexity of exosomal cargoes remains to be
fully elucidated. There are several limitations and road blockers in the significance of
exosomes in cancer therapy. These specifically pertain to exosomal yield, exosomes
efficacy and specificity of targeting for effective cancer therapy. This field is yet elusive
to assess the effect of exosomes on tumor angiogenesis and use them as potential means
for different cancer therapies. So, future investigations should focus on identifying the
fundamental exosomal cargoes and the mechanisms behind differential loading of dif-
ferent bioactive molecules, whose role could be implemented for designing non-
invasive procedures to detect exosomes for cancer diagnosis and prognosis as well as
development of effective therapeutic approaches based on exosomes.
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Abstract

Solid tumors, despite being hypervascularized, are hypoxic. This is due to the 
imbalance that exists between the inputs of the blood vessels that supply nutrients 
and O2 and that remove metabolic waste products, on one side; and the demands 
of the tumor cells that are part of the neoplasm that is forming, on the other. From 
this perspective, we briefly review the sequence of morphological events that occur 
during neo-angiogenesis; what chemical mediators are involved in this process; and 
we emphasize how the IL-6/Jak/Stat signaling pathway is involved in the control of 
these mediators. At the same time, we review how estrogens intervene in this control 
procedure, and how it opens the door to understanding the mechanism of action 
of these mediators. This would make it possible to propose alternative treatments, 
which can be added to the conventional ones, and which would exploit the findings 
described here in the search for new antitumor therapies.

Keywords: hypoxia, solid tumor, HIF, VEG, neovascularization, Jak/Stat, estrogens

1. Introduction

Blood vessels formation is an essential activity for the proper development of the 
organism. The development of new blood vessels is a well-regulated process, but it is 
a double-edged sword. Hence, in a physiological situation, such as embryonic devel-
opment, it leads to the formation of a correct vascular network directed to provide 
the necessary nutrients and O2, as well as to waste products removal. However, in a 
tumoral scenario, is a problem since it uncontrollably feeds the tumor and provides 
the ways for its spread.

Paradoxically, although solid tumors are invariably hypervascularized, they contain 
hypoxic regions [1], with low pO2 levels. This is because the high rate of tumor growth is 
greater than the rate of new vessel formation [2] and there is no balance between supply 
and demand. This causes neoplastic cells to be too far from a blood vessel [1], generat-
ing a nutrient and O2 deficient state [3]. The hypoxia generated is also due to a poor O2 
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diffusion and to the fact that the cells of the neo-vessels are structurally abnormal [4]. 
The consequence of this tumor hypoxia leads to therapeutic radio- and chemo-resistance, 
as well as an increased probability of generating metastatic disease [4, 5]. The cellular 
change towards a state of tumoral hypoxia provokes an adaptive response that facilitates 
cell proliferation or angiogenesis, coordinated by the activity of HIF-1α [6]. The adaptive 
response to hypoxia generated by HIF-1α through angiogenesis and enhanced glucose 
metabolism confers a survival and growth advantage to hypoxic tumor cells [7].

2. Hypoxic tumor cells generate new capillaries

Neoangiogenesis is the process by which new capillary vessels grow out of pre-
existing ones (sprouting angiogenesis). These blood vessels will provide oxygen and 
nutrients and will remove the metabolic waste [6], which is regulated by a variety of 
pro- and anti-angiogenic factors [1].

The process of sprouting angiogenesis involves several sequential steps [8] that 
starts with the activation of endothelial cells due to diverse angiogenic stimulus, like 
hypoxia or inflammation [8]. The activity of endothelial cells, normally joined by 
adhesion molecules such as cadherins, is mediated by growth factors released after 
degranulation of platelet alpha granules [9, 10]. Pericytes, surrounding endothelial 
cells, inhibit the proliferation of the endothelial cells, also releasing cell survival 
signals such as VEGF and Angiopoietin-1.

As a consequence of this activation, there is a rupture of the endothelial cells 
tight junctions; the pericytes detach from the wall and the basement membrane, 
which, together with the extracellular matrix, will be degraded by activated prote-
ases (metalloproteinases). Loss of junctions between endothelial cells allows them 
to invade into the surrounding interstitial tissue and, subsequently, proliferate and 
migrate through the matrix. These endothelial cells afterward become motile tip cells, 
which are located at the growing ends of the new vessels [11, 12].

Angiogenic factors, such as VEGF, increase the vascular permeability of endothe-
lial cells, causing extravasation of plasmatic proteins and generating an extracellular 
matrix (ECM). In response to integrin signaling, cells migrate within that ECM, 
following the tip cells.

Endothelial cells move forward following the angiogenic signal sent by the tip cell 
that will guide them in the specific direction [12]. Adjacent cells to the tip cell will fol-
low them, dividing to elongate the stalk and establish the lumen. This structure thus 
formed is an immature vessel [13].

Endothelial cells then rapidly proliferate [8], form tight and adherens junctions 
with other endothelial cells [11, 12], and finally, the endothelial cell migration and 
proliferation are inhibited.

The stabilization of the immature vessels is established by the recruitment of 
pericytes, which will line the capillary walls and stabilize the new vessels [11, 14]. 
Finally, a new extracellular matrix will be generated [15].

3. Neo-angiogenesis is a well-regulated process

The process of sprouting angiogenesis is tightly controlled by positive and nega-
tive regulators whose purpose is to control in a balanced way the structured formation 
of new vessels through the action of growth factors and cytokines (Table 1).
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We will distinguish those factors that will improve the forming action of new 
vessels (enhancing factors), from those that are designed to modulate and stop the 
appearance or development of these vessels (inhibitory factors).

3.1 Enhancing factors

3.1.1 Hypoxia-inducible factor

Hypoxia-inducible factor (HIF-1α) is a transcription factor that regulates and 
coordinates the cellular response to hypoxia [31, 32], by activating genes encoding 
pro-angiogenic factors, such as VEGF, angiopoietin or PDGF.

Factor Function Cell References

HIF-1α Transcription genes: angiogenesis; 
erythropoiesis; cell proliferation; 
energy metabolism.

Tumor cell [16, 17]

VEGF Stimulation of endothelial cell survival, 
proliferation, and motility

Tumor cells, macrophages, 
platelets, endothelial cells

[18]

FGF Cell differentiation, proliferation, 
migration, morphogenesis, survival of 
endothelial cells; extracellular matrix 
degradation

Macrophages vascular endothelial 
cells

[19]

PDGF Potent mitogen Platelets, smooth muscle cells, 
activated macrophages, and 
endothelial cells

[20, 21]

Anp Angiogenesis
Wound healing

Pericytes, vascular endothelial 
cells macrophages involved in 
angiogenesis

[22]

HGF HGF stimulates mitogenesis, cell 
motility, and matrix invasion

Endothelial cells, smooth muscles 
cells, bone brown-derived 
endothelial progenitor cells.

[23–25]

Ang Inhibit endothelial cell proliferation 
and migration, tube formation, 
neutrophil activation and migration, 
monocyte and macrophage migration, 
leukocyte recruitment, MMP 
expression induces endothelial 
cell apoptosis and the production 
of anti-angiogenic factors, such as 
thrombospondin-1

Endothelial cells, tumor cell [26]

Endostatin Inhibits the migration of vascular 
endothelial cells
Inhibiting VEGF-induced 
phosphorylation
Apoptosis in proliferating endothelial 
cells

Endothelial cells [27, 28]

PF 4 Strong angiogenesis inhibitor Platelets [29]

TSP-1 Inhibition of migration, proliferation, 
and survival of endothelial cells and 
the formation of capillary tubes

Platelets [30]

Table 1. 
Relationship were the most common growth factors during the neo-angiogenesis process are reported, their 
function, and the most common cells that produce them.
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When tissue and cellular oxygen levels are in a normal range, HIF-1α is degraded, 
disrupting the signaling cascade aimed at improving vascularization by means of 
pro-angiogenic factors [33].

Under low pO2 status, HIF-1α is involved in hypoxia response by binding to 
canonical DNA sequences (hypoxia-responsive elements or HREs) in the promoters 
or enhancers of target genes [34–38]. Also, HIF-1α, through the union of hypoxia-
responsive elements or HREs with the promoters of target genes, coordinates a broad 
response to counteract the effects of hypoxia. Under hypoxic conditions, proteasomal 
degradation of HIF-1α ends, and it translocates to the nucleus to activate hypoxia-
inducible genes [36, 39], such as VEGF, angiopoietin, PlGF, or PDGF [40].

3.1.2 VEGF

VEGF is a glycoprotein that plays an essential role in the development of new 
vessels. It is produced by tumor cells, macrophages, platelets, and endothelial cells, 
binding to the VEGF-R1/R2 receptors present on endothelial cells. This growth factor 
stimulates the endothelial cells survival, proliferation, and motility, initiating the 
growth of new capillaries by activating the RAS/MEK/ERK pathways or the PI3K/
AKT/mTOR pathway. The final effect is the stimulation of endothelial cell survival, 
proliferation, and motility, initiating the growth of new capillaries.

3.1.3 FGF

FGFs are a family of proteins, mostly with angiogenic effects. The best known 
are FGF-1 and FGF-2. They are essentially secreted by macrophages and vascular 
endothelial cells. They are involved in numerous processes, including the induction of 
endothelial cell differentiation, proliferation, migration, morphogenesis, and survival 
of endothelial cells; and extracellular matrix degradation by stimulating the secretion 
of proteases [19, 41]. FGF-1 is necessary for the differentiation and proliferation of all 
the cell types necessary for creating the vessel wall; while FGF-2 signaling is related to 
the preservation of vascular endothelial cell junctions and vessel permeability [19].

3.1.4 PDGF

Platelet-derived growth factor is a dimeric glycoprotein synthesized, stored (in 
the alpha granules of platelets), and released by platelets upon activation, it is also 
produced by other cells including smooth muscle cells, activated macrophages, and 
endothelial cells. PDGF is a potent mitogen for cells of mesenchymal origin.

3.1.5 Angiopoietins

Family of proteins involved in vascular repair. Ang-1 and Ang-2 are the best 
known. Its function is carried out by coupling an angiopoietin to its corresponding 
receptor (Tie-1 and Tie-2). These receptors are expressed specifically on vascular 
endothelial cells and on a certain type of macrophages involved in angiogenesis.

3.1.6 Hepatocyte growth factor

HGF is a factor secreted by mesenchymal cells in a paracrine manner that exerts 
its function through its c-Met receptor. This receptor is expressed in several cell types, 
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such as endothelial cells, smooth muscles cells, and bone brown-derived endothelial 
progenitor cells. HGF stimulates mitogenesis, cell motility, and matrix invasion.

3.2 Inhibitory factors

3.2.1 Angiostatin

Angiostatin is a protein produced by autoproteolytic cleavage of certain proteins, 
like plasminogen. Its function is to inhibit endothelial cell proliferation and migra-
tion, tube formation, and tumor cell invasion. In addition, it decreases VEGF expres-
sion and induces endothelial cell-mediated apoptosis by thrombospondin-1.

3.2.2 Endostatin

Endostatin is a C-terminal type XVIII collagen fragment, cleaved by the proteo-
lytic activity of MMP-7. It has anti-angiogenic activity by inhibiting FGF-2 and VEGF 
[1]. It also has an anti-migratory effect by binding to the α5-αv-integrins. It has the 
ability to directly combine to VEGFR2, inhibiting the VEGF-induced phosphorylation 
and consequently down-regulating receiver, as well.

3.2.3 Platelet Factor 4

It is a small protein belonging to the CXC chemokine family, usually associated 
with complexes with proteoglycans and released from alpha-granules of activated 
platelets during platelets aggregation. It is a potent inhibitor of angiogenesis, espe-
cially when acting in conjunction with the receptors of FGF2 and VEGF, leading to 
downstream effects on endothelial cell migration and proliferation.

3.2.4 Thrombospondin-1

TSP-1 is a glycoprotein that mediates intercellular interactions or with the ECM. This 
protein can bind to elements of this ECM (to fibrinogen, fibronectin, laminin, collagen 
types V and VII, and integrins alpha -V/beta-1), and exerts an inhibitory effect on the migra-
tion, proliferation, and survival of endothelial cells and the formation of capillary tubes.

4. Role of the IL-6/Jak/Stat pathway on the neoangiogenesis process

After a tissue injury, a cascade of events is set in motion aimed at repairing the 
damage. The products generated by tissue destruction stimulate the cells of the immune 
system. In response to this damaging process, immune cells in the tumor environment 
secrete multiple cytokines, such as histamine, serotonin, prostaglandins, leukotrienes; 
and inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1 
(IL-1), and various chemokines. Many of them belong to the IL-6 family [42]. These sub-
stances help to repair healthy tissues but nevertheless have deleterious effects on tumors.

4.1 IL-6/Jak/Stat pathway

Janus kinase (Jak), the signal activation transducer (Stat) pathway, is recognized 
as an evolutionarily conserved signaling pathway (Figure 1). After binding the 



Tumor Angiogenesis and Modulators

64

cytokine to the receptor, Jak is activated by the specific tyrosine residues phosphory-
lation. Phosphorylated Jak in turn induces the phosphorylation of Stat, which, after 
dimerization, translocate into the nucleus where it regulates the transcription of 
numerous genes [43].

The IL-6/Jak/Stat pathway is overexpressed in various tumors, causing continuous 
transcription of cell growth factors that promote tumor progression. However, this 
pathway not only regulates aspects such as tumor proliferation, survival, and inva-
sion, but also contributes significantly to tumor neo-angiogenesis [44, 45], enhancing 
endothelial cells survival, infiltration of the ECM by immune cells followed by activa-
tion of mesenchymal cells, and finally the generation of metastases [46].

Jak/Stat is activated upon stimulation by IL-6, among several effectors, promot-
ing endothelial cell migration and tumor angiogenesis. This function is suppressed 
when Jak inhibitors are administered, ending the observed endothelial cell migration 
in vitro [47].

Regulation of tumor angiogenesis is dependent on VEGF and HIF-1α transcription 
by endothelial cells [48–50]. This action is induced by tumor IL-6 and mediated by 
Stat3 [51]. These results are validated by the fact that the aberrant expression of Stat3 
causes an increase in the expression level of HIF- 1α and VEGF, as well as of the metal-
loproteinases MMP-9 and MMP-7, enhancing tumor progression and aggressiveness 
[52]. This pathway is reciprocally enhanced by the action of IL-6 secreted by endothe-
lial cells on tumor cells [53]. This boost signal is also produced by other pathways, such 
as that promoted by EGFR, HER2, Ras, and Rho, which lead to Stat3 activation [46].

Figure 1. 
IL-6/Jak/Stat pathway. After binding the cytokine to the receptor, Jak is activated by the specific tyrosine residues 
phosphorylation. Phosphorylated Jak, in turn, induces the phosphorylation of Stat, which, after dimerization, 
translocate into the nucleus where it regulates the transcription of numerous genes.
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On the other hand, IL-6-induced activation of Stat3 in tumor and stromal cells 
protects neoplastic cells from the immune surveillance system. This pathway pro-
motes immune evasion [54], by modulating the secretion of various inflammatory 
factors such as IL-6 and TNF-α [55] and reducing natural killer cell activity [56, 57]. 
This favors tumor expansion by avoiding immunological control.

Furthermore, the metastatic process is regulated by Stat3, by controlling the 
capacity for cell migration and invasion of tissues. On one side, Stat3 acts directly on 
the promoter of MMP genes [58, 59], increasing their expression and thus the ability 
of cancer cells to degrade the basement membrane/extracellular matrix. Tumor cells 
then invade the surrounding ECM by migrating due to the action of RhoA on the 
cytoskeleton [60] after activation of the Stat3/ROCK-myosin pathway. The cells then 
spread through the circulatory or lymphatic system, forming metastatic foci in lymph 
nodes and distant organs.

5. Effect of the IL-6/Jak/Stat pathway on neo-angiogenesis mediators

Several authors show that the Jak/Stat pathway plays an important role in neo-
angiogenesis through these growth factors.

5.1 HIF-1α

In a hypoxic environment, the HIF-1α protein is stabilized and its proteasomal 
degradation rate is reduced by slowing down the protein ubiquitination of HIF-1α 
and thereby achieving enhanced HIF-1α protein levels [61]. This increases its half-life 
and the cellular concentration of HIF-1α. The IL-6/Jak/Stat3 pathway mediates in the 
regulation of this process; in such a way that Stat3 interacts with HIF-1α and with 
VEGF in order to generate greater tumor vascularization (Figure 2).

Similar results are obtained after sustained administration of the constitutively 
active form of Stat3, which causes an increase in HIF-1α transcription, with the 
consequent increase in HIF-1α protein levels. Changes in HIF-1α levels are also due 
to the interaction between this molecule and PIAS [62], a negative regulator of the 
Jak/Stat pathway. Hypoxia causes the interaction between molecules, promoting the 
stabilization of HIF-1α and prolonging its half-life.

5.2 VEGF

It is well-known that HIF-1α stimulates vascularization and metastasis upon 
activation of VEGF expression [63]. But there are evidences that show that Stat3 
plays a central role in this response. Thus, Xu et al. [64] shows that in various types 
of human cancer cell lines Stat3 activation induces HIF-1α and up-regulates VEGF 
expression, promoting tumor angiogenesis [64]. The inhibition of Stat-1/Stat-3 
phosphorylation was accompanied by a decrease in VEGF transcription and secretion 
due to the direct transcriptional action of the VEGF gene by Stat3 (Figure 2). On 
the other hand, Stat3 cooperates with HIF-1α, binding both simultaneously to the 
promoter region of the VEGF gene, leading to its maximum transcriptional activa-
tion and angiogenesis [65].

This action of Stat3 on the VEGF pathway also affects its VEGF receptor. Thus, it 
has been seen that indirubin suppressed severely the VEGFR-mediated Jak/Stat3 sig-
naling pathway in prostate tumor cells, affecting angiogenesis and tumor growth [66]. 
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Similarly, in pancreatic cancer cell lines, suppression of VEGFR-2 phosphorylation 
and Stat3-dependent expression of HIF-1α reduced the expression of the Rho-GTPases 
RhoC, which is downstream of VEGF signaling. This effect plays a vital role in tumor 
angiogenesis and metastasis [67] because RhoC plays an essential role in transmitting 
the VEGF signals downstream to angiogenesis and invasiveness [51].

In addition, inhibition of Stat-1/Stat-3 down-regulates other pro-angiogenic 
factors, such as eNOS, iNOS, MMP-2, and FGF-2 in HUVEC, associated with reduced 
capillary sprouting and tumor angiogenesis [68, 69]. These molecular findings, taken 
to clinical practice, translate into a reduction in cell viability, proliferation, adhesion, 
migration, and tube formation.

Lymphangiogenesis is carried out in a similar way, observing activation of the 
IL-6-Jak-Stat3-VEGF-C signaling pathway in the growth and invasion process [70, 71].

5.3 PDGF

On the other hand, other aspects must be taken into account. Thus, in the angio-
genesis process, it is necessary to increase the cell population, either proliferating new 
cells or the chemo-attraction of others (Figure 2). To do this, PDGF, a growth factor 
that stands out for being a potent mitogen and chemoattractant for VSMC, stimu-
lates the phosphorylation of Jak-2 and Stat3 in VSMCs [10, 72, 73] and contributes 
to PDGF-BB-induced mitogenesis [73] and VSMC motility [72]. In addition, PDGF 
helps regulate the IL-6/Jak-2/Stat pathway through phosphorylation of SOCS, a natu-
ral regulator of Jak, by platelet-derived growth factor receptor tyrosine kinase [64].

Figure 2. 
Diagram that summarizes the neo-angiotizing action of certain cytokines and growth factors that influence neo-
angiogenesis and how the mediators of the Jak/Stat pathway act on them.
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5.4 FGF

New vessel formation is also regulated by growth factors such as FGF, another 
downstream effector to IL-6 that induces angiogenic activity in basal cell carcinoma 
cell lines [74], dependent on the activation of Jak/Stat3. Thus, IL-6 overexpression 
increases FGF-2 levels (Figure 2), tube formation by HUVEC cells, and consequently 
neoangiogenesis [74].

5.5 Angiopoietins

These molecules are also involved in relevant functions during neo-angiogenesis, 
such as vascular repair after binding with the endothelial cell-surface receptor tyro-
sine kinase, Tie2. It also highlights the regulatory activity of Stat on the cell survival, 
migration, and proliferation [75, 76] by Ang1/Ang2-Tie2 receptor activated. Thus, 
after Stat5, VEGFR-1 the Tie-2 receptor co-expressed, an increased expression of the 
cell cycle inhibitor p21 is induced [76], which will arrest cell proliferation (Figure 2). 
On the other hand, angiopoietin-like 4 stimulates Stat 3-mediated iNOS expression 
and enhances angiogenesis [77].

5.6 HGF

The IL-6/Jak/Stat signaling pathway is regulated by HGF, mediated by SOCS1 [78]. 
In the case of SOCS3 [79], it counteracted Stat3-dependent keratinocyte migration 
after being stimulated by HGF (Figure 2). In the case of EGFR, SOCS3 is involved in 
the regulation of IL-6/Jak/Stat signaling, attenuating the EGF signal [78, 80].

5.7 Endostatin

Endostatin activation in the extra cellular environment is enhanced by means of 
MMP-2/MMP-9 activation, which is accompanied by decreased tumor vasculariza-
tion [81]. The administration of IL-35 to fibroblast-like synoviocytes produces an 
inhibition of vascularization due to an increase in the expression of endostatin and 
a decrease in the expression of VEGF, FGF-2, TNF-α, and IL-6, by means of Stat1 
[82]. Synergism between endostatin and Stat3 suppression by a Stat3-siRNA has been 
observed. In the hepatocarcinoma model, each of both treatments had a potent anti-
tumor effect; but, the combination had a superior effect. It was observed a decreased 
VEGF expression, decreased cell proliferation, induced cell apoptosis, and inhibited 
angiogenesis [83] (Figure 2).

5.8 PF4

PF4 may contribute to suppress tumor growth in the melanoma murine model, 
decreasing IL-17, IL-6, and p-Stat3 pathway (Figure 2) via up-regulation of SOCS3 
expression [84].

5.9 Leptin

Leptin secreted by adipose tissue has a well-known paracrine effect on endo-
thelial, stromal, and tumor cells, enhancing the aggressive tumor behavior. On 
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adipose-derived stromal cells, VEGFA, MMP-2, MMP-9, IGF-1, and b-FGF genes 
expression are up-regulated and angiogenesis is stimulated by the Jak/Stat3 pathway 
[85]. In addition, leptin increases the migration and proliferation of VSMC [86, 87], 
by inducing the phosphorylation of the tyrosine residue of Jak and the activation of 
its effectors Stat3 and MAPK [88, 89] (Figure 2). Jak, on the other hand, produces 
leptin-dependent up-regulation of TSP-1 [90].

6. Effect of the estrogens on neoangiogenesis mediators

Sex steroids cooperate with the pro- and anti-angiogenic factors involved in 
the tumor neo-vascularization process. The connection between the inflammatory 
pathway represented by the IL-6/Jak-Stat pathway, and the tumor estrogenic pathway 
is very close and is involved in the pathogenic processes of these diseases [43].

Recently, evidence has emerged showing that cytokines generated during the 
inflammatory process interact with estrogen signaling pathways [43]. On one 
side, there is a very close relationship between ER α protein levels and Stat 1 activ-
ity (Figure 3). Thus, if Stat1 levels are insufficient or its function is blocked, a 
decrease in ERα levels and cell proliferation is observed. This occurs through the 
direct action of Stat1 on the promoter region of ERα, regulating the transcription of 
mRNA levels [91].

On the other hand, estrogenic activity has been found in adipose tissue and 
tumoral stroma. Thus, immunohistochemical studies have found the expression 
of cytochrome P450 aromatase, responsible for the aromatization of adrenal and 
testicular androgens into estrogens (Figure 3). It is also known that the IL-6/Jak/Stat 
pathway stimulates the cytochrome P450 aromatase expression, transforming tissue 
androgens into estrogens that will act in a paracrine manner on the tumor, causing 
tumor growth and development [92].

This connection between IL-6/Jak/Stat and estrogens is regulated, in such a way 
that there is negative regulation of Jak2 with respect to ERα [43] because Jak2 induces 

Figure 3. 
Diagram summarizing the action of how estrogens and mediators of the Jak/Stat pathway interact during the 
process of neo-angiogenesis.
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the ubiquitination of ERα for being degraded in the proteasome (Figure 3). On the 
other hand, sustained treatment with E2 induces Jak-2 expression, thus controlling 
the formation and destruction of these molecules.

These observations are integrated by the adipose tissue cytokine leptin function. 
It activates the phosphorylation of the tyrosine residue of the receptor and causes 
the activation of its effectors Stat3 and MAPK (Figure 3). In this way, the estrogenic 
pathway is enhanced at the tissue level, since Stat3 induces the generation of estrogens 
by aromatization of androgens, and MAPK stops the proteasomal degradation of ERα 
[93], enhancing the estrogenic status [43].

Estrogens, in addition to synergizing with the IL-6/Jak/Stat pathway, regulate 
the action of mediators involved in the neo-angiogenesis process (Figure 3). Thus, 
regarding HIF-1α, estrogens stabilize the protein in normoxia by regulating its expres-
sion through the Akt pathway [63, 94].

In addition, IL-6 induces the expression of VEGF in granulosa cells through FSH 
mediation, favoring the expression of HIF-1α and COX2, thanks to the activation 
of the Jak/Stat3 pathway (Figure 3). Other evidence indicates that ovarian steroids 
increase the production of HGF by peritoneal macrophages, promoting the prolifera-
tion of endothelial cells and the organization of capillaries.

The angiopoietins, promote the formation of endothelial cells through the media-
tion of estrogens. Thus, the up-regulation of brain Ang-1 mRNA caused an increase 
in the capillary density. Besides, E2 acting through ERβ up-regulates Ang-2, increased 
Tie-2 phosphorylation, and promoted angiogenesis [95].

In ER-positive breast cancer tumor cells, estrogens control the production of TSP-
1, which is under the direct control of estrogens, performing regulatory functions 
favorable to tumor growth [96].

It is also the case that a growth factor is influenced by both pathways. In the case 
of FGF, while estrogens potentiate its release, it signaling pathway was mediated by 
activated Stat1 [97].

All these coordinated measures between both systems are aimed at enhancing 
vascular neo-formation and thus potential metastatic dissemination.
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Abstract

Angiogenesis is a pivotal point in tumor progression driven by firmly orchestrated 
process of forming the new blood vessels relying on the complex signaling network. 
Here, the pleiotropic functions of Galectin-3 and IL-17 in tumor progression have 
been overviewed through their impacts on angiogenesis. As a key player in tumor 
microenvironment, Galectin-3 orchestrates practically all critical events during 
angiogenic cascade through interaction with various ligands and their downstream 
signaling pathways. Galectin-3 shapes chronic inflammatory tumor microenviron-
ment that is closely related to angiogenesis by sharing common signaling cascades 
and molecules. In chronic inflammatory makeup of tumor microenvironment, IL-17 
contributes to tumorigenesis and progression via promoting critical events such 
as angiogenesis and creation of immunosuppressive milieu. VEGF, as the master 
regulator of tumor angiogenesis, is the main target of Galectin-3 and IL-17 action. 
The better understanding of Galectin-3 and IL-17 in tumor biology will undoubtedly 
contribute to controlling tumor progression. Therefore, as important modulators of 
tumor angiogenesis, Galectin-3 and IL-17 may be perceived as the potential therapeu-
tic targets in tumor including anti-angiogenic therapy.

Keywords: galectin-3, IL-17, VEGF, tumor angiogenesis, tumor progression

1. Introduction

Tumor angiogenesis or aberrant vascularization is considered a critical hallmark 
of tumor progression that is inevitable for tumor growth and metastatic spread [1]. 
This complex multistep process of new vasculature formation from pre-existing blood 
vessels is triggered by numerous signals from tumor cells in a phase of rapid growth 
[1]. The expression and secretion of various activators and inhibitors of angiogenesis 
are regulated by gene mutation (e.g., oncogenes and tumor-suppressor genes), and 
microenvironmental factors such as hypoxia and accumulation of different metabo-
lites [2, 3]. As the growing tumor requires more blood vessels for nutrition and oxygen 
supply, angiogenic pathways are induced by tilting the balance toward pro-angiogenic 
molecules (angiogenic switch) to drive new blood vessel growth [3].
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High expression levels of pro-angiogenic factors reflect the tumor aggressive-
ness [4]. Within the angiogenic cascade, a diverse group of mediators are shown 
in Figure 1. These molecules participate in the establishment of new tumor vessels 
in various ways. Among them, vascular endothelial growth factor (VEGF), also 
called VEGF-A, is key “molecular player” that modifies the endothelial barriers 
[3]. Moreover, VEGF as master regulator of angiogenesis in tumor tissues and its 
receptors, particularly VEGFR-2, have been implicated in tumor vascularization [3]. 
Namely, activation of VEGF/VEGFR-2 signaling pathways triggers an angiogenic 
program in the endothelial cells (ECs) [3]. Thus, VEGF binds to its cognate receptor 
that results in autophosphorylation of specific tyrosine residues of VEGFR-2, and 
consequential activation of multiple downstream signaling networks in the vascular 
endothelial cells through the recruiting of the MAP kinase (ERK1/2 and p38), PI3K, 
AKT, PLC-γ, and JAK-STAT [5–7]. The final result is the activation of full range of 

Figure 1. 
Pro-angiogenic mediators implicated in the tumor angiogenesis. Plethora of mediators that promotes tumor 
angiogenesis can be categorized into several groups. VEGFs-vascular endothelial factors; FGFs-fibroblast growth 
factors; PDGFs-platelet-derived growth factor; EGFs-epidermal growth factor; TGFs-transforming growth 
factors; MMPs-matrix metalloproteinases; uPA-urokinase-type plasminogen activator; TNF-α-tumor necrosis 
factor-α; NO-nitric oxide; PGE2-prostaglandin E2; S1P-sphingosine-1-phosphate.
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biological responses that modulate angiogenesis, including vascular permeability as 
well as endothelial cell proliferation, survival, adhesion, and migration.

It is well established that VEGF is multifunctional molecule. VEGF has been first 
identified as vascular permeability factor, which exerts potent ability to increase 
vascular permeability, resulting in leakage of plasma protein and other molecules out 
of blood vessels [8]. Furthermore, VEGF is a potent mitogen that is highly specific for 
ECs and stimulates cell proliferation through VEGFR-2-mediated activation of the 
RAS/RAF/ERK/MAPK pathway [9]. Acting as survival factor for ECs, VEGF increases 
expression of the anti-apoptotic proteins Bcl-2 and A1 in the ECs [10]. On the other 
hand, VEGF also participates in tumor angiogenesis through increased migration 
and invasion of ECs by enhancing of matrix metalloproteinases (MMPs) release [3], 
and further amplifying angiogenesis by enhanced recruitment and homing of bone 
marrow derived vascular precursor cells [11]. PI3K/AKT signaling promotes VEGF-
mediated invasion and metastasis of ECs [12].

VEGF expression is tightly regulated by plethora of transcriptional regulators, 
such as transcription factor called hypoxia-inducible factor (HIF). Beside them, 
VEGF signaling is also upregulated by multiple stimuli, including cytokines and 
galectins by tumor microenvironments. We discuss the role of IL-17 and Galectin-3 
in mediating angiogenesis, either directly or indirectly via induction of pro-
angiogenic factors such as VEGF. The better understanding of Galectin-3 and IL-17 
in tumor biology will undoubtedly contribute to controlling tumor progression. 
Namely, we will review the role of these two molecules in tumor angiogenesis and 
highlight the other mechanisms involved in the acceleration of tumor growth and 
metastases.

2.  Galectin-3 and IL-17: an important piece in the puzzle of tumor 
microenvironment

The tumor microenvironment represents a complex ecosystem involving interac-
tions between tumor cells, ECs, epithelial cells, immune cells, fibroblasts, and the 
extracellular matrix, as well as secreted cytokines and growth factors. All of these 
factors provide essential support for the tumor progression. The dynamic cross-talk 
between angiogenesis and tumor microenvironment is important to further accelerate 
tumor growth and metastasis [13]. Thus, released angiogenic factors can promote 
tumor immunosuppression by inhibiting maturation of dendritic cells, increasing 
mobilization of immunosuppressive cells, and suppressing CD8 + T cell activity [14]. 
The tumor microenvironment, in turn, produces numerous soluble molecules and 
growth factors that stimulate angiogenesis, thus forming a vicious circle for tumor 
progression [15]. Increasing evidence suggests that Galectin-3 and IL-17 are the 
significant pieces of that puzzle that shape angiogenesis and tumor progression in 
many ways (Figure 2).

Galectin-3, a unique chimaera-type member of the lectin family with selectivity 
for β-galactosides, is a versatile galectin involved in fundamental biological processes 
as well as various pathological circumstances [16, 17]. This evolutionary conserved 
molecule is usually overexpressed in variety types of tumor [18]. The ECs, immune 
cells, mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), and 
myofibroblasts also produce and secrete Galectin-3 [19–21]. Galectin-3 expression is 
higher in endothelial progenitor cells as compared with normal ECs [22]. However, 
the tumor microenvironment, for example, tumor cells, inflammatory cells, and/or 
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specific glycan-ligands on galectin-binding proteins, alters endothelial Galectin-3 
expression as it provide most of the signals to which the ECs respond [23, 24]. 
Accordingly, pro-inflammatory cytokine IL-1β increases Galectin-3 expression by 
ECs [25]. ECs not only have a pivotal role in angiogenesis, but also they facilitate 
tumor invasion by secreting growth factors and extracellular matrix proteinases 
[26]. Released molecules sequentially increase chances that tumor cells enter to the 
circulation and metastasis [26].

Figure 2. 
Pro-angiogenic effects of Galectin-3 and IL-17 as a part of tumor progression machinery. Many cells and 
soluble mediators create tumor microenvironment characterized by hypoxia, chronic inflammation, and 
immunosuppression. Galectin-3 participates in all steps of angiogenic cascade via activation of different signaling 
pathways and/or polarization of macrophages toward pro-tumorigenic TAM2 phenotype. Galectin-3 affects 
the production of pro-inflammatory cytokines implicated in tumor promotion. Within the complex cytokine 
network in tumor microenvironment, IL-17 is recognized as one of the critical stimulators of the production of 
pro-angiogenic mediators, including VEGF. IL-17 mediates the recruitment of TAN2 thus augmenting angiogenic 
factors release. IL-23 and IL-33 seem to be significant co-workers in triggering angiogenic cascade. Both IL-17 
and IL-33 induce recruitment of pro-angiogenic MDSC, while IL-23 further promotes function, survival, and 
expansions of Th17 lymphocytes, and subsequent IL-17 production. The activation, proliferation, and migration 
of endothelial cells, as well as sprouting and tube formation, precede the formation of new blood vessels critical 
for tumor progression. CAF-cancer-associated fibroblast; TAM-tumor-associated macrophage; TAN-tumor-
associated neutrophil; MDSC-myeloid-derived suppressor cell; ECM-extracellular matrix.
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Depending on cell types and cellular localization, Galectin-3 drives force in the 
diverse processes critical in tumor biology, including apoptosis, invasion, metastasis, 
immune surveillance, gene expression, and inflammation [27]. The cytoplasmic 
Galectin-3 blocks apoptotic machinery in tumor cells [16] through several mecha-
nisms [28]. Galectin-3 secreted by tumor cells contributes to immunosuppression 
within the tumor microenvironment by polarizing to pro-tumor phenotype of 
tumor-associated macrophages 2 (TAM2), restricting T cell receptor clustering, and 
triggering apoptosis of CD8 + T lymphocytes, further facilitating tumor escape [29]. 
The upregulation of Galectin-3 by TAMs in the hypoxic regions of breast cancer 
promotes tumor cell migration and invasion and TAMs-mediated metastasis, as well 
as angiogenesis [30]. Expression of Galectin-3 in CAFs in breast cancer has been 
associated with distant metastasis [31]. Galectin-3 is also found in extracellular 
vesicles released by tumor cells, and it seems that this galectin is critical regulator in 
cell-cell and cell-extracellular matrix interactions [32]. Endothelial Galectin-3 expres-
sion in the lungs cooperates with poly-N-acetyl-lactosamine on N-glycans of B16-F1 
murine melanoma cells, as a ligand for Galectin-3 [33]. Our data demonstrated that 
host-derived Galectin-3 facilitates B16-F1 cell adhesion to the metastatic target and 
interferes with efficiency of the antitumor immune response, thereby accelerating 
melanoma metastasis [34].

Tumor angiogenesis and chronic inflammation are closely related and often 
share common signaling pathways and molecules [35]. In addition to angiogenesis, 
Galectin-3 participates in shaping of tumor inflammatory microenvironment likely 
through the recruitment of inflammatory cells and modification of their polarization 
[36], as well as the production of pro-inflammatory cytokines that have been impli-
cated in tumor promotion (Figure 2, [37]). Overexpressed pro-inflammatory IL-1, 
IL-6, and TNF-α contribute to various steps of tumor progression [38]. This cytokine 
network, required for the establishment of chronic inflammation in the tumor 
microenvironment, facilitates tumor growth and metastasis, enhances angiogenesis, 
and inhibits immune surveillance [39]. In particular, tumor-infiltrating Th17 lympho-
cytes orchestrate the maintenance of chronic inflammation. IL-6, TGF-β, and IL-1β 
are pivotal drivers of development of Th17 cells that secrete IL-17 and other cytokines. 
Although IL-23 is not required for triggering Th17 differentiation, it is essential for 
the function, survival, and expansion of Th17 lymphocytes in the inflamed tissue 
[40]. To increase inflammation, IL-17 induces mobilization, recruitment, and activa-
tion of different immune cells [40]. Interestingly, the finding of correlation between 
serum Galectin-3 levels and IL-17 production in patients with colorectal carcinoma 
has suggested that Galectin-3 may be one of the important modulators in the regula-
tion of inflammatory conditions (Figure 2, [41]).

IL-17A (commonly referred to as IL-17) is the first discovered and best character-
ized member of the IL-17 family. Currently, six structurally related cytokines of 
IL-17 family have been identified (IL-17A to IL-17F) [42]. It is well documented that 
IL-17 plays protective role in infections, but here, we will review the multifunctional 
impacts of IL-17 on tumor biology.

IL-17 is mostly produced and secreted by Th17 lymphocytes, but it can be also 
produced by a broad spectrum of other cell populations [42]. Many studies describe 
the Th17-rich microenvironment in various types of tumor and that Th17 lympho-
cytes are endowed with a unique functional plasticity [40, 43]. Tumor cells, CAFs, 
and myeloid-derived suppressor cells (MDSCs) have been found to produce cytokine 
milieu that elicits recruitment and/or generation of Th17 lymphocytes [44, 45]. In 
addition, metabolic conditions present in the tumor milieu including indoleamine 
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2,3-dioxygenase (IDO) and hypoxia drive the differentiation of CD4 + T lymphocytes 
toward the Th17 lineage [46, 47]. Type 17 CD8 + T cytotoxic (Tc17) lymphocytes 
among tumor-infiltrating lymphocytes (TILs) were detected in nasopharyngeal 
[48] and gastric cancer [49]. Further, the main IL-17-producing cells in breast cancer 
are tumor-infiltrating γδT cells [50], and it seems that these TILs can promote the 
breast cancer progression [51]. NKT cells and group 3 innate lymphoid cells (ILC3s) 
represent other innate lymphocytes capable to produce IL-17 in the tumor microenvi-
ronment [52]. On the other hand, IL-17R is widely expressed in ECs, epithelial cells, 
fibroblasts, hematopoietic cells [53], and tumor cells [54], which implicates pleiotro-
pic effects of IL-17 in the tumor microenvironment.

It seems that IL-17, as Roman god Janus, exerts two opposite faces in the tumor: 
“dark face” that drives tumor progression and “light face” responsible for the devel-
opment of effective antitumor immunity. By in vitro and in vivo experiments, IL-17 
signaling was shown to be “malevolent player” that promotes tumorigenesis and 
tumor progression, in many ways. In general, IL-17 exerts pro-tumor properties 
by direct influence on the tumor cells via triggering malignant transformation and 
tumor growth [55, 56] and/or indirectly by controlling chronic inflammatory and 
immunosuppressive tumor microenvironment, as well as angiogenesis [40, 57]. The 
IL-17/IL-17R axis upregulates phosphorylated ERK1/2 in breast cancer cells lines 
thereby promoting their proliferation, migration, and invasion [58]. Also, IL-17 
can indirectly support the cell proliferation and tumor growth by shaping of tumor 
microenvironment through the production of chemokines and cytokines [59]. IL-17 
was shown to be able to promote hepatocellular carcinoma invasion and migration 
by upregulation of matrix metalloproteases, MMP-2, and MMP-9, via NF-κB signal-
ing [60]. IL-17 promotes STAT3 activity in both tumor and stromal cells, leading to 
upregulation of anti-apoptotic Bcl-2 and Bcl-XL in an IL-6-dependent manner [61]. 
This may reflect the fact that IL-17 present in the tumor microenvironment may be 
an important survival factor and reason for tumor chemoresistance. Accordingly, 
IL-17 promotes resistance of breast cancer cells to chemotherapeutic docetaxel via 
activation of ERK1/2 pathway [58]. Based on these findings, it can be speculated 
that IL-17 contributes to development of chemoresistance in variety tumor cells via 
activation of prosurvival and/or proliferative signaling. Recent evidence suggests 
that IL-17 links inflammation to tumor progression. Indeed, long-term IL-17 activity 
leads to pro-tumor microenvironment by inducing the secretion of inflammatory 
mediators and reshaping the phenotype of stromal cells [62]. Additionally, IL-17 
stimulates the chemokine and VEGF expression that favor the recruitment of spe-
cific subsets of immune cells to the sites of inflammation and angiogenesis, respec-
tively [63]. This IL-17-mediated maintenance of inflammatory environment results 
in the stimulation of tumor growth and metastasis via subsequent expression of 
anti-apoptotic molecules and increased tumor cell survival [64]. Ironically, Wang et 
al. [57] illustrated that IL-17, as pro-inflammatory cytokine, contributes to immune 
paralysis in the tumor microenvironment. Namely, IL-17 increases the expression of 
programmed death-ligand 1 (PD-L1) inhibitor on MSCs that shape the immunosup-
pressive environment and facilitate tumor progression. Further, chemokines (e.g., 
CXCL1 and CXCL5) stimulate the recruitment of MDSCs in IL-17-depandent manner 
to establish a proangiogenic and immunosuppressive tumor microenvironment [62]. 
Alongside its pro-tumorigenic functions, IL-17 may act as a tumor regressor. The 
protective role of IL-17 in tumor relies on its property to induce the vigorous immune 
responses to attain tumor regression. In fact, it has been demonstrated that effective 
antitumor immune response is mediated by Th17 lymphocytes and highly depends 
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on IFN-γ [65]. Further, IL-17 enhances the CTLs-mediated immune response 
directed against hematopoietic tumors by induction of IL-6 and IL-12 production 
[40]. Therefore, IL-17 is multifunctional cytokine with divergent actions on tumor 
that are highly context-dependent. It seems that epigenetic and transcriptional 
modifications as well as certain cytokine milieu in the tumor microenvironment 
specific to each tumor type and stage may account for the functional plasticity of 
IL-17 making difficult to predict its role. Finally, IL-17 brings different net outcome 
in a complex disease such as tumor.

3. Galectin-3 as a tumor angiogenesis virtuoso

The critical events during angiogenic cascade such as activation, proliferation, 
and migration of ECs, as well as sprouting and tube formation, largely depend on 
Galectin-3 [66]. Initially, it has been observed that soluble Galectin-3 affects the 
migration of human umbilical vein endothelial cells (HUVECs) and capillary tube 
formation indicating its potential as chemoattractant for ECs [19]. This result has 
been confirmed by the increased tumor angiogenesis in the presence of Galectin-3 
in vivo. The direct binding of Galectin-3 for endothelial cell surface appeared to be 
carbohydrate recognition-dependent event as it may be inhibited by disaccharide 
lactose and modified citrus pectin (MCP) [19, 67, 68].

Ever since, Galectin-3 has been widely recognized as powerful pro-angiogenic 
molecule acting through various receptors on the ECs, subsequently activating 
distinct signaling pathways involved in tumor angiogenesis (Figure 2). Interactions 
between Galectin-3 and different integrins expressed on ECs supposed to be critical 
in controlling endothelial cell migration and adhesion. Pericyte-derived neural/glial 
antigen 2 (NG2) proteoglycan, Galectin-3, and α3β1 integrin form the membrane 
complex that triggers intracellular signaling involved in endothelial cell motility 
[69]. The blocking antibodies specific for αVβ3, α5β1, and α2β1 integrins interfere 
with endothelial cell adhesion to Galectin-3-coated surface [70]. In addition to 
integrins, Galectin-3 on endothelial cell migration markedly depends on direct 
binding to the membrane highly glycosylated cell adhesion molecule CD146, also 
known as melanoma cell adhesion molecule [71]. CD146 has been recognized as 
VEGFR-2 co-receptor and a potential target for anti-angiogenic therapy in tumors 
[72]. The interaction between Galectin-3 and CD146 is also responsible for secretion 
of pro-metastatic cytokines by ECs indicating that this axis regulates distinct events 
during tumor progression [73]. Galectin-3 interacts with glycoprotein endoglin 
expressed predominantly by ECs as a component of TGF-β receptor complex [74]. 
Endoglin is abundantly expressed by proliferating ECs indicating an important role 
of TGF-β/endoglin signaling in tumor vasculature formation [75]. Therefore, thanks 
to its carbohydrate-binding capacity, Galectin-3 interacts with different molecules 
expressed by ECs in tumor microenvironment. Moreover, truncated Galectin-3, 
containing CRD domain, interacts more efficiently with ECs in comparison with 
full-length molecule [76, 77]. Apart from CRD domain, it seems that angiostimu-
latory effect of Galectin-3 also depends on its N-terminal tail [78]. Full-length 
Galectin-3, including its ability to oligomerize through N-terminal domain, appears 
to be necessary to affect migration of ECs and capillary tube formation [78]. Taken 
together, angiostimulatory effect of Galectin-3 on distinct events during angio-
genesis has been mediated by different parts of the molecule in both carbohydrate 
dependent and independent manner [68].
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Further investigation of the molecular mechanisms responsible for Galectin-3 pro-
angiogenic actions in tumors documented its involvement in modulation of VEGF 
and basic fibroblast growth factor (bFGF) signaling pathways. Galectin-3 binds 
N-glycans of integrin αvβ3 via CRD thus promoting its clustering and subsequent 
activation of focal adhesion kinase (FAK) in ECs [78]. FAK is a principal regulator of 
endothelial cell migration, proliferation, and survival, which participates in signal 
transduction triggered by integrins and growth factor receptors such as VEGFRs [79]. 
The expression of VEGFR-2, a major mediator of VEGF effects on ECs, is tightly 
regulated by FAK activation, its translocation to the nucleus, and subsequent regula-
tion of VEGFR-2 gene transcription [79]. Given its carbohydrate-binding properties, 
Galectin-3 engages different N-glycosylated tyrosine kinase receptors including 
VEGFR-2 or FGF receptor-1 (FGFR-1) [80, 81]. It has been documented that 
Galectin-3 induces VEGFR-2 signaling during angiogenesis through modulation of 
expression and clustering of receptor on the ECs thus enabling its higher availability 
to VEGF [81]. However, the recent study has revealed that Galectin-3 amplifies the 
activation of VEGFR-2 and its downstream signaling only in the presence of VEGF 
[82]. Moreover, Galectin-3 is not necessary for VEGF-induced activation of VEGFR-2, 
nor it can activate the receptor in the absence of VEGF [82].

Galectin-3 has been described as a regulator of Jagged-1 (JAG1)/NOTCH1 
signaling axis involved in tumor vasculature formation, in particular sprouting 
angiogenesis [83]. Under hypoxic condition, secreted Galectin-3 directly binds Notch 
ligand JAG1 in ECs thus activating pro-angiogenic JAG1/NOTCH1 signaling pathway. 
Galectin-3 prolongs the half-life of JAG1 over the Delta-like-4 (DLL4) thus affect-
ing the balance between these molecules with opposite functions during angiogenic 
cascade [83, 84]. Interestingly, the proposed mechanism seems to be independent 
of VEGF/VEGFR signaling thus revealing novel potential targets in anti-angiogenic 
therapy.

In addition, Galectin-3 promotes the progression of hepatocellular carcinoma, 
including angiogenesis, through upregulation of β-catenin signaling [85]. Given its 
presence in different cellular compartments including nucleus, as well as its pleio-
tropic functions, Galectin-3 interferes with β-catenin pathway known to be active in 
various types of tumor. Galectin-3 activates PI3K/AKT signaling thus enhancing the 
phosphorylation and inactivation of key molecule of β-catenin degradation complex 
known as glycogen synthase kinase-3β (GSK-3β) [85, 86]. Subsequently, β-catenin 
accumulates in the nucleus and regulates the expression of genes involved in Galectin-
3-mediated angiogenesis and epithelial-mesenchymal transition (EMT) [85].

Exosomes are vesicles secreted by living cells that participate in intercellular com-
munication during essential processes such as proliferation, apoptosis, migration, and 
angiogenesis [87]. A highly glycosylated protein named lectin galactoside-binding 
soluble 3 binding protein (LGALS3BP), as a ligand for Galectin-3, has been previously 
recognized as a modulator of breast cancer angiogenesis that elevates VEGF expres-
sion via PI3K/AKT signaling pathway [88]. It has been shown recently that exosomes 
highly containing LGALS3BP affect endometrial cancer growth and angiogenesis 
[89]. The exosomes delivering LGALS3BP induce tumor cell proliferation and migra-
tion and HUVEC angiogenesis by triggering PI3K/AKT/VEGF signaling pathway [89].

The complex interplay between immunosuppression and angiogenesis is the 
integral part of tumor progression [29]. TAMs are the critical participants in tumor 
progression involved in the creation of immunosuppressive microenvironment thus 
enhancing metastasis and angiogenesis [90]. TAMs produce various pro-angiogenic 
molecules including growth factors (e.g., VEGF), chemokines, cytokines, as well 
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as MMPs [90]. Galectin-3 promotes alternative activation of TAMs toward their 
pro-tumorigenic M2 phenotype (Figure 2, [29]). Increased angiogenesis in tumor is 
strongly associated with macrophage influx driven by elevated Galectin-3 expression 
[36]. Furthermore, Galectin-3 deficiency in both tumor tissue and stroma impairs 
angiogenesis via interfering with the responses of macrophages to the complex two-
way VEGF and TGFβ-1 signaling pathways [91].

Collectively, thanks to its distinctive structure, Galectin-3 engages plenty of 
ligands both intracellularly and extracellularly, further interfering with various 
signaling pathways that regulate tumor angiogenesis. As a potential orchestrator 
of angiogenic cascade, Galectin-3 may be successfully targeted for anti-angiogenic 
tumor therapy.

4.  Cytokine regulation of tumor angiogenesis: pro-angiogenic activity  
of IL-17

Apart from galectins, certain cytokine network within the tumor microenviron-
ment contributes to angiogenesis mainly through sophisticated interplay between 
different cells and extracellular matrix components as well as stimulation of key 
pro-angiogenic mediator productions.

The data from human subjects have indicated the strong association between 
increased angiogenicity and high frequency of tumor-infiltrating Th17 lympho-
cytes [92, 93]. IL-17 overexpression has been associated with higher microvascular 
density (MVD) in tumors [92]. In general, IL-17 indirectly amplifies angiogenesis 
mostly by inducing VEGF upregulation, as well as another angiogenic factors by 
tumor cells and CAFs [94–96]. Also, IL-17 induces the recruitment of inflamma-
tory cells with angiogenic phenotype (e.g., macrophages and neutrophils) and 
immunosuppressive cells to the tumor microenvironment, which contributes to 
different points of angiogenesis in many ways (Figure 2, [59, 97]). Even though 
the IL-17 overexpression has been detected in tumors, mechanisms of IL-17 that 
contribute to angiogenesis are still unclear. IL-17/IL-17RA axis promotes the activa-
tion of JAK-STAT3 signaling pathway resulting in phosphorylation and nuclear 
translocation of STAT3 [98]. STAT3 is important regulator of VEGF expression 
[96]. Furthermore, IL-17-mediated tumor angiogenesis involves the activation of 
STAT3/GIV (Gα-interacting vesicle-associated protein, Girdin) signaling pathway 
and subsequent upregulation of its downstream target VEGF [99]. Wu et al. [96] 
determined that IL-17 induces VEGF upregulation and neovascularization through 
STAT3-mediated signaling pathway in tumor cells that could be blocked by JSI-124, 
an inhibitor of phosphorylated STAT3. In addition, other mediators such as granu-
locyte colony-stimulating factor (G-CSF), EGF, FGF, PDGF, and IL-6 exhibit their 
pro-angiogenic functions via STAT3 signaling [61, 100]. IL-17 exerts synergistic 
effects with TNF-α by enhancing the secretion of potent angiogenic factors by 
stromal fibroblasts [94], which in turn triggers the angiogenic program in ECs and 
stimulates the new blood vessel development [95]. The inhibition of IL-17 sup-
presses VEGF expression in tumor tissue and decreases intratumoral MVD, which 
confirms important role of IL-17 in angiogenesis [101].

IL-17 stimulates the production of IL-8 [102]. IL-8 acts directly on ECs by promot-
ing their proliferation, survival, and migration, as well as indirectly by increasing 
the recruitment of neutrophils that are important source of angiogenic factors in 
tumor microenvironment [103]. IL-17 activates ECs to produce pro-inflammatory 
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chemokines and cytokines, including CXCL1, IL-8, and granulocyte macrophage-
colony-stimulating factor (GM-CSF), thus promoting neutrophil recruitment and 
adhesion to ECs [98]. It is well known that neutrophils release plethora of molecules 
that promotes angiogenesis. In particular, neutrophil-derived MMP-9 is critical for 
catalyzing angiogenic switch in tumor cells and releasing of sequestered growth fac-
tors (e.g., VEGF), as well as remodeling of extracellular matrix (ECM) components 
during angiogenesis [104].

Accumulation of neutrophils has been associated with higher MVD and there-
fore more aggressive phenotype of gastric cancer [105]. IL-17 enhances the produc-
tion of many angiogenic CXC chemokines including CXCL1, CXCL5, CXCL6, and 
CXCL8 (IL-8) [106, 107]. Among these, CXCL1 and CXCL5 are the important che-
moattractants for neutrophils [108]. The listed chemokines also promote CXCR2-
dependent angiogenesis by stimulating the migration and proliferation of ECs 
[107]. On the other hand, IL-17 facilitates recruitment and activation of MDSCs in 
tumor microenvironment [109]. Apart from immunosuppressive activity, MDSCs 
modulate angiogenesis via different mechanisms. Mostly, MDSCs stimulate angio-
genesis by secreting numerous growth factors including VEGF, bFGF, and PDGF. 
They also remodel ECM components via MMPs production and reprogramming 
of other cells to tumor-promoting phenotype that are source of many angiogenesis 
activators [110].

Increased IL-17 and IL-23 mRNA expression has been associated with inva-
sive gastric cancer [111]. We have shown that serum levels of IL-17 and IL-23 
are significantly elevated in patients with colorectal carcinoma, but only IL-23 
significantly correlated with overexpression of VEGF [112, 113]. It seems that 
IL-23 induces tumor-associated inflammation and angiogenesis thus promoting 
tumor growth [114]. IL-23-induced differentiation of Th17 lymphocytes suggests 
the possible indirect role of IL-23 in angiogenesis in IL-17-dependent manner 
(Figure 2).

There is evidence of tightly relationship between IL-17 and IL-33. Serum IL-33 
has been associated with elevated IL-17 levels in patients with autoimmune hepatitis 
[115]. In addition, intestinal epithelial cells-derived IL-33 stimulates the recruitment 
of Th17 lymphocytes as the main cellular source of IL-17 in the small intestine [116]. 
Further, IL-6 can be critical trigger of IL-17 production, suggesting that the IL-33/
IL-6/IL-17 axis plays a potential role in tumor biology [117]. It is well known that 
IL-33 is another pro-inflammatory cytokine with strong pro-angiogenic capacity 
(Figure 2). Similar to IL-17, IL-33 promotes the production of different pro-angio-
genic factors, including VEGF and IL-8 [118]. It appears that IL-33 increases endothe-
lial cell proliferation and vascular permeability [119]. Milosavljevic et al. [120] have 
found significantly higher expression of IL-33, IL-33 receptor, and VEGF in breast 
cancer. IL-33 and IL-33R expression correlated with VEGF expression in tumor tissue. 
VEGF expression positively correlated with MVD implicating that IL-33/IL-33R path-
way is involved in breast cancer growth [120]. Further, tumor-derived IL-33 induces 
the recruitment of CD11b + Gr1+ and CD11b + F4/80+ myeloid cells to the tumor 
microenvironment further contributing to angiogenesis via different mechanisms 
[121]. IL-33/ST2 axis rapidly increased NO production through TRAF6-mediated 
activation of PI3K, AKT, and NO synthase in the ECs [119]. Also, AKT signaling in the 
ECs is transiently regulated by angiogenic factors such as VEGF and angiopoietin-1 
[122]. Taken together, the better understanding of cytokine-regulated angiogenesis, 
notably by IL-17, is of great importance for the rational development of new tumor 
therapeutic strategies.
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5. Galectin-3 and IL-17 in anti-angiogenic tumor therapy

Angiogenesis is complex and dynamic process in which more actors take part. 
To date, several anti-angiogenic agents, mainly acting via targeting VEGF and its 
receptor, have been in clinical use. It seems that the blockade of pro-angiogenic 
Galectin-3 and IL-17 might be the potential strategy to open opportunities for 
additional tumor immunotherapy, in particular in tumors that overexpress Galectin-3 
and IL-17. It has been shown that IL-17 signaling pathways, notably, IL-17-mediated 
paracrine network in the tumor microenvironment, mediate tumor refractoriness to 
the anti-angiogenic effects of VEGF blockade [123, 124]. IL-17 induces expression of 
numerous cytokine, most notably, G-CSF that is essential for the development and 
recruitment of CD11b + Gr1+ MDSCs [97, 124] to the tumor microenvironment in 
which these “angiocompetent cells” probably take part in both VEGF-dependent and 
VEGF-independent angiogenesis [125]. Taken together, these data suggest that the 
inhibition of IL-17 signaling may render tumor sensitive to VEGF-targeting therapy 
and/or reduce the VEGF-independent tumor angiogenesis.

MCP is specifically inhibitor of Galectin-3, which significant decreases the 
MVD, suggesting that targeting Galectin-3 may open novel perspectives to interfere 
with tumor angiogenesis [67]. On the other hand, anti-angiogenic treatments have 
therapeutic limitations including varying degrees of response and resistance due to 
VEGF-independent mechanisms. Thus, VEGF blockade creates hypoxic conditions in 
the tumor, which in turn causes increased invasion and poorer survival by inducting 
of HIF-1α-dependent c-Met overexpression [126]. In hypoxic areas, tumor cells also 
survive oxygen-depleted environment by upregulating Galectin-3 expression, which 
may in turn increase tumor aggressiveness [127]. The simultaneous blockade of VEGF 
and Galectin-3 could be providing a more potent antitumor effect, which is mediated 
by, among others, anti-angiogenic mechanisms.

Finally, due to the fact that multiple actors are involved in tumor angiogenesis, 
Galectin-3 and IL-17 targeting is likely to improve the efficacy of current anti-angio-
genic tumor therapy.
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Abstract

Vascular endothelial growth factor (VEGF) is the most potent stimulating factor 
for angiogenesis. Its expression is related to inflammation and hypoxia. In normal 
conditions, VEGF is important in the wound healing process. The binding of VEGF 
with its receptors triggers angiogenesis and lymphangiogenesis and increases vascular 
permeability. Liver diseases comprise acute and chronic ones. Liver diseases cause 
inflammation and hypoxia, which increase VEGF level. If they occur chronically, 
persistent high VEGF levels will promote the risk of chronic liver diseases, including 
hepatic viral infections, alcoholic and nonalcoholic fatty liver diseases, liver cirrhosis, 
and finally hepatocellular carcinoma (HCC). High VEGF level is also associated with 
progressive disease course and poorer outcomes. Tissue remodeling by replacement 
of normal liver tissue with fibrous tissue occurs. Due to the importance of VEGF in 
angiogenesis and liver diseases, therapeutic agents targeting VEGF have been devel-
oped. Drugs that neutralize VEGF and modulate VEGF receptors have been approved 
for treating various disorders, including liver disease. Additionally, VEGF is a promis-
ing modality for diagnosing liver cirrhosis and HCC. VEGF may also be utilized to 
predict the outcome of the liver and to monitor the therapeutic response of patients.

Keywords: angiogenesis, carcinoma, cirrhosis, hepatocellular, liver, management, 
VEGF

1. Introduction

A hypothesis regarding blood vessel growth stimulating factors had been proposed 
nearly 70 years ago. This was based on the development of organs and diseases. The 
substance induces vessel growth in positive manner, such as normal retinal vascula-
ture and negative ones, such as tumor cells [1]. In 1989, vascular endothelial growth 
factor (VEGF) was finally identified, isolated, and cloned [1, 2]. Gene coding human 
VEGF is located in chromosome 6p21.3. Its consists of 8 exons and is separated by 
seven introns [3, 4]. This structure makes a high genetic variation to become possible. 
Approximately 140 variations have been identified and affect the substance itself [4]. 
There are several subtypes of VEGF, including VEGF-A, VRGF-B, VEGF-C, VEGF-D, 
and placental growth factor (PlGF), with VEGF-A being the most frequently studied 
one. VEGF-A has isoforms, with the most common ones being VEGF-A121, VEGF-A165, 
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VEGF-A189, and VEGF-A165. Each isoform has different heparin-binding ability. 
When VEGF binds its receptor, angiogenesis activity and vascular permeability are 
increased [1, 5–8]. VEFG also acts as an anti-apoptotic factor for endothelial cells, 
thus enhances angiogenesis [5, 7–9].

Liver cirrhosis represents the fate of almost all liver diseases. The prevalence of 
liver cirrhosis is estimated at 0.15% of the total population in USA. However, the 
exact prevalence is difficult to predict since many cases are asymptomatic. Liver 
cirrhosis is considered as a precursor for hepatic cellular carcinoma (HCC). HCC 
is one of the most common solid organ tumors globally [10] and the most common 
primary malignancy of the liver. It comprises approximately 80% of liver malignant 
lesions. Over 500,000 new cases are diagnosed annually worldwide. The incidence 
rate is increasing from time to time. In USA, the incidence had doubled from 1.4 
per 100,000 in 1975–1977 to 4.8 per 100.000 in 2005–2007 [11]. Approximately 2 
million deaths are recorded annually due to liver diseases. Half of them are caused by 
complications of liver cirrhosis and the rest is due to viral hepatitis and HCC. Liver 
cirrhosis and HCC account for 3.5% of global deaths. In developed countries, liver 
cirrhosis is most commonly caused by alcohol and non-alcoholic fatty liver (NAFLD) 
while hepatitis B is the most common etiology of liver cirrhosis in China, other Asian, 
and African countries [10–12]. Liver cirrhosis and HCC are the third most common 
cause of death in European countries. The overall 5-year survival is less than 12%. 
Both conditions also increase the rate of liver transplantation [5, 10, 11]. In USA, 
chronic liver disease-related hospitalization is constantly increased from 3056 in 2012 
to 3757 in 2016 per 100,000 cases with total inpatient hospitalization costs increased 
from $14.9 billion to $18.8 billion. Among all chronic liver diseases, alcoholic and 
non-alcoholic fatty liver diseases are dominant with an increasing trend. The presence 
of liver cirrhosis and HCC further worsens the socioeconomic burden of chronic liver 
diseases [13].

Liver cirrhosis and HCC progression are associated with angiogenesis. 
Angiogenesis increases hepatic resistance and the risk of liver failure, leading to mani-
festations such as gastroesophageal varices, upper gastrointestinal bleeding, ascites, 
spontaneous bacterial peritonitis, and hepatic encephalopathy. Angiogenesis also 
plays a critical role in HCC growth and metastases. VEGF is the main pro-angiogenic 
factor in the liver. Its expression is increased in pathological conditions of the liver. 
The underlying triggers such as hypoxia, inflammation, and mechanical stress have 
been proven to increase VEGF levels in liver diseases [2]. In this article, we will 
discuss VEGF mechanism of action, its role in liver diseases, and its importance in the 
management of liver diseases.

2. Mechanism of action of VEGF

Hypoxia and inflammation are the most frequent triggers for VEGF production. 
Inflammation exerts tissue damage and activates endothelial cells. Both condi-
tions triggers VEGF production in concordance with the tissue repair mechanism. 
Hypoxia itself may trigger VEGF production by the role of hypoxia-inducible fac-
tors (HIF). Hypoxia also triggers further inflammation and creates a viscous cycle 
between inflammation and angiogenesis [14, 15]. VEGF binds to its receptor with 
the aid of neuropilins as co-receptor and activates tyrosine kinase. There are three 
subtypes of VEGF receptor and binding of VEGF-A elicits the most potent signaling 
for angiogenesis (Figure 1). The receptors are found in a wide variety of cell types 
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including endothelial cell, hematopoietic stem cell, monocyte, macrophage, and 
lymphatic endothelial cell. Tyrosine kinase then activates the signaling pathway 
through mediators such as phosphatidylinositol kinase, mitogen-activated kinase, and 
protein kinase C. These mediators promote angiogenesis, lymphangiogenesis, and 
vascular permeability, accordingly [2, 6, 8, 15, 16]. Nitric oxide is the first substance 
produced after binding between VEGF and its receptor. The later process increases 
intracellular calcium, activates calmodulin, and increases NO synthesis. Elevated NO 
is in line with increased vascular permeability and endothelial cell survival [2, 14]. 
The extravasation of vascular content including extracellular matrix components 
marks the initial angiogenesis process. Endothelial cell proliferation, tube formation, 
and branching of new vessels will occur. When the repair mechanism is completed, 
angiogenesis will be stopped by the action of inhibitors such as plasminogen activator 
inhibitors [14]. Overall, angiogenesis is regulated by a balance between stimulating 
and inhibiting factors [8].

3. VEGF and liver disease

Angiogenesis is a process of new blood vessel formation. As blood vessels carry 
important nutrients to organs and dispose of unnecessary metabolites, angiogenesis 
plays important homeostatic role [1, 14]. In normal conditions, angiogenesis is 
important in liver regeneration from several conditions including partial hepatectomy 
and liver transplantation [5, 17]. This is called physiological angiogenesis and involves 
liver sinusoidal endothelial cells. The process starts at 48–72 hours after the damage 

Figure 1. 
Binding of VEGF subtypes with VEGF receptor subtypes elicits various processes including angiogenesis. PlGF: 
Placental growth factor, VEGF: Vascular endothelial growth factor, NP: Neuropilin [6].
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and peaking at 4–5 days. Angiogenesis may occur from pre-existing blood vessels or 
directly from endothelial cell proliferation [5, 9].

Unregulated angiogenesis causes a negative impact and results in diseases 
including tumors. Unregulated angiogenesis may result from an imbalance 
between pro- and anti-angiogenesis. In this situation, VEGF is the culprit. Several 
abnormalities regarding VEGF coding genes are one of the underlying pathogenesis 
of the diseases [1, 5, 17]. Baitello et al. conducted a study to determine the role of 
genetic variations in liver disease, particularly HCC. They observed that VEGF 
polymorphism C936T and A1154G are associated with elevated VEGF level and 
incidence of HCC [18]. VEGF promotes angiogenesis and increases vascular 
permeability. Tissue hypoxia is the major signaling for VEGF expression [1, 5, 17]. In 
liver, angiogenesis involves hepatic stellate cell (HSC), a specific which plays a central 
role in tissue remodeling. Prolonged inflammation and tissue damage trigger VEGF 
expression together with angiogenesis. In angiogenesis, HSC is activated and normal 
tissue is replaced with fibrous tissue. This impairs tissue oxygenation, cerates hypoxia 
state, and triggers further inflammation. This cycle should be halted by eliminating 
any points from the pathway [14].

Elevated VEGF level is proposed in alcoholic liver disease. Luo et al. investigated 
liver tissue of rats with alcoholic liver disease. They found that mRNA level of VEGF 
is elevated significantly in liver tissue of rats with the alcoholic liver disease compared 
to liver tissue of normal rats. A similar finding was reported for mRNA level of 
HIF. The degree of disease was positively correlated with VEGF and HIF mRNA 
levels. The trigger of VEGF overexpression, in this case, is different from other liver 
diseases. In alcoholic liver disease, VEGF overexpression is triggered by leptin that 
is released from adipocytes [14, 19]. Kasztelan-Szczerbinska et al. confirmed the 
previous study. The level of plasma VEGF in patients with alcoholic liver disease in 
their study is significantly higher compared to healthy control [15]. Serum VEGF 
level may also distinguish between alcoholic liver disease and chronic hepatic viral 
infections. A higher level was observed in alcoholic liver disease. However, further 
studies are mandatory before extrapolating this result in general population [20]. 
Similar to nonalcoholic fatty liver disease (NAFLD), the expression of VEGF is 
up-regulated by a different pathway. Leptin as an adipocytokine plays a central 
role in promoting VEGF and other pro-inflammatory cytokines expression. VEGF 
expression is elevated through the recruitment and stabilization of HIF by leptin. This 
leads to angiogenesis and fibrogenesis, and progression from NAFLD to non-alcoholic 
steatohepatitis (NASH) [14, 17]. The severity of steatosis in NASH is associated 
positively with VEGF level [17].

Pathological angiogenesis has been observed in chronic liver diseases for a 
long period of time. This phenomenon is observed in chronic hepatitis B and C, 
autoimmune hepatitis, and primary biliary cirrhosis. The damage suffered by the 
liver triggers inflammation and initiates the wound healing process with increased 
expression of several growth factors including VEGF. Elevated VEGF level promotes 
angiogenesis then angiogenesis leads to fibrosis and liver tissue remodeling distinctive 
of liver cirrhosis. The latter process involves hepatic stellate cells which produce 
an extracellular matrix. If the damage occurs chronically, high VEGF expression 
also becomes chronic, followed by chronic angiogenesis and fibrogenesis. Hypoxia 
resulted from extensive fibrogenesis further increases VEGF expression as stated 
above, which is mediated by HIF. Lately, it is found that not only VEGF level is 
increased but also VEGF receptor [5, 14, 17]. Hepatitis B virus itself surprisingly can 
induce VEGF release without the presence of inflammation and hypoxia state. The 
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positive correlation is reported between serum VEGF level and severity of chronic 
liver diseases [14].

A study by Franchitto et al. supports the previous facts. Patients with chronic 
viral hepatitis and primary biliary cirrhosis have abundant hepatic progenitor cells 
in their liver. Furthermore, VEGF and its receptor’s expression is increased in those 
progenitor cells. The number of progenitor cells expressing VEGF is correlated 
with angiogenesis, fibrogenesis, and carcinogenesis in subjects in their study [21]. 
VEGF is level not only elevated in primary liver disease but also in diseases with liver 
complications. Nihei, et al. conducted a study in children with Kawasaki disease. They 
found that inflammatory growth factors are elevated in all patients. More than half 
of the patients in their study had liver dysfunction as a complication from Kawasaki 
disease and VEGF was significantly elevated in patients with liver dysfunction 
compared to those without liver dysfunction [22].

Massive formation of portosystemic collateral vessels particularly in the 
esophagus and gut is the underlying pathogenesis of variceal bleeding. Collateral 
vessels shunt blood from portal to systemic circulation and cause substances that 
are normally detoxified by the liver to enter the systemic circulation. This leads to 
encephalopathy and sepsis in patients with liver disease. VEGF also contributes to 
portal hypertension. Angiogenesis increases blood flow in splanchnic organs draining 
into the portal vein and further increases portal venous flow. Nitic oxide furtherly 
enhances vasodilatation and blood flow. VEGF is known to promote nitric oxide level 
[5, 14, 17, 23]. Tissue remodeling also increases liver tissue resistance and ends with 
portal hypertension [14]. An animal study conducted by Huang et al. shows that rats 
with portal hypertension have increased VEGF expression as high as 40% compared 
to healthy rats as control. Portal pressure was also positively correlated with VEGF 
level [23]. Spider angiomas also result from elevated VEGF level. A study proved 
that subjects with liver cirrhosis and spider angiomas have higher plasma VEGF level 
compared to liver cirrhotic patients without spider angiomas [24].

Liver cirrhosis is the end-point of chronic liver disease and predisposing lesion to 
HCC. Chronic damage to liver maintains a high VEGF level over time and is associated 
with continuous angiogenesis and fibrogenesis. In the end, liver tissue is replaced by 
abnormal fibrous tissue [12]. Li et al. reported that plasma VEGF level is elevated 
significantly in liver cirrhotic patients compared to control group [24]. Abdelmoaty 
et al. also conducted a study regarding serum VEGF level in patients with liver 
cirrhosis. Serum VEGF level was significantly increased in patients with liver cirrhosis 
compared to healthy individuals. This result is in line with the result from previous 
study. Serum VEGF level was also positively related to degree of liver dysfunction 
based on Child-pugh score [25].

In cancers, increased expression of VEGF is positively associated with its growth 
and risk of metastases but negatively associated with the outcome of disease. VEGF 
triggers angiogenesis and angiogenesis itself nurtures the cancer cells [1, 6–8]. 
HCC is a highly vascularized cancer thus its progression and outcome are closely 
related to angiogenesis [5, 21, 26, 27]. Additionally, VEGF acts in an autocrine 
fashion in HCC. A study by Sharma et al. showed that both VEGF and its receptor 
expressions are elevated in HCC cell lines. This marks the ability of cancer tissue to 
grow independently from normal angiogenesis pathway [28]. The high angiogenesis 
activity in HCC is suspected due to increased oxygen demand by cancer cells during 
their growth trigger hypoxia state. Hypoxia further increases pro-angiogenesis 
factors including VEGF. VEGF has a good discrimination ability between HCC and 
chronic liver diseases. Therefore, it can be utilized as one of the diagnostic modality 
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to detect HCC at its early stage [8]. Li et al. conducted a study in patients with HCC, 
benign liver lesions, and normal controls. The result showed that plasma VEGF level 
in HCC patients is significantly elevated compared to patients with benign liver 
lesions and normal subjects. In HCC group itself, subjects with large tumor size, 
distant metastasis, portal vein thrombosis, and arterial-portal vein shunting had 
higher plasma VEGF level compared to their counterparts [29]. The above result 
is confirmed by Zhang et al. In their study, plasma VEGF level was higher in HCC 
patients with multiple lesions, lesion larger than 5 cm, bilobar tumor distribution, 
and metastasized cancer [30]. In contrast, Uematsu et al. found different results in 
their study. Serum VEGF level was increased in patients with HCC and significantly 
higher compared to healthy volunteers but the difference was not significant if being 
compared with liver cirrhosis [27].

4. VEGF and management of liver disease

As HCC possesses high morbidity and mortality rates, diagnosis at its early stage 
is important to improve the patient’s outcome. Hamdy et al. reported that VEGF is 
a promising diagnostic modality for HCC from their study. A VEGF cut off point 
of ≥280 pg./mL has sensitivity of 60.27% and specificity of 100% in discriminat-
ing HCC and chronic liver diseases from healthy subjects while a cutoff point of 
≥482 pg./mL has sensitivity of 52.59% and specificity of 100% in discriminating 
HCC from chronic liver diseases [26]. Mukozu et al. in their study also proposed 
VEGF as novel marker for HCC diagnosis in patients with chronic hepatitis C virus 
infection. They reported that serum VEGF is better compared to alpha-fetoprotein 
in discriminating between HCC and liver cirrhosis. The sensitivity and specificity 
of VEGF were reported to be 98% and 46%, respectively. The values were obtained 
with a VEGF cutoff of 108 pg./mL [31]. Jinno et al. supported the previous findings. 
They proved that plasma VEGF level in subjects with HCC is significantly higher 
compared to healthy control, subjects with chronic hepatitis, and subjects with liver 
cirrhosis. Furthermore, plasma VEGF level in stage IV-B HCC patients was signifi-
cantly higher among all stage groups. This implies that besides diagnosing HCC, 
VEGF is also useful in diagnosing metastasized HCC [32]. Another study from 
Japan reported concordance results. Serum VEGF level is higher in advanced HCC 
such as stage IV-B disease, giant and multinodular lesion, and distant metastasized 
disease [20].

Considering the role of VEGF in liver diseases, management focusing on VEGF 
manipulation has become popular [1, 5, 33]. Judah Folkman had hypothesized a 
strategy for managing cancers and other diseases with anti-angiogenesis [1]. The 
strategy comprises VEGF, its receptors, and it signaling pathways interventions. 
Nowadays, there are drugs targeting VEGF such as bevacizumab, ziv-aflibercept, 
rapamycin, and ramucirumab [1, 2, 5–7]. Bevacizumab and ramucirumab are 
neutralizing antibodies to VEGF. Approved in 2004, bevacizumab has become the 
most widely used anti-VEGF in the field of oncology. Ziv-aflibercept is soluble VEGF 
receptor that prevents the binding of VEGF with its natural receptor [1, 2, 6, 7].

Other agents such as tyrosine kinase receptor inhibitors (sunitinib, sorafenib, and 
imatinib) have been approved as therapeutic agents [5, 7, 33]. Among all, sorafenib 
which was developed in 1990 has become the most commonly used agent for HCC 
treatment [33]. The list of anti-angiogenic agents may be observed in Table 1 [2]. In 
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vivo studies proved that the agent may decrease pathologic angiogenesis as high as 
52% in patients with liver diseases. Combination with other anti-angiogenesis agent 
is also urged and shows better outcome in patients. Platelet-derived growth factor 
(PDGF) signaling inhibitor is one of the treatment modality in the combination 
regime [5].

Single anti-angiogenesis therapy is effective in several cancers including HCC 
in the advanced stage [7]. Some side effects should be put in consideration when 
administering anti-angiogenesis therapy. Hypertension, renal dysfunction, 
proteinuria, thrombosis, bleeding, and arrhythmia are the most common side 
effects reported. Hypertension is the most common side effect, occurring in 25% 
of patients treated with anti-angiogenesis. This is strongly related with decreased 
NO level due to anti-angiogenesis agents. Similar mechanisms underlie further  
side effects [2, 6]. Resistance against anti-angiogenesis therapy is another threat-
ening problem even though this phenomenon has not been proven consistently. 
However, long-term follow-up showed the tendency of growing resistance to this 
treatment [6].

Serum VEGF level is also useful in monitoring a patient’s response toward 
therapies. Matsui et al. measured serum VEGF level in patients with HCC receiving 
chemotherapy. The chemotherapeutic agents used were leucovorin, cisplatin, and 
5-fluorouracil. The results showed that serum VEGF level is higher in patients with 
partial response or stable disease compared to progressive disease [20]. A similar 
result is reported by Li et al. Even though the treatment modality in their study was 
different (transcatheter arterial chemoembolization/TACE), the result showed 
that patients with high pre-therapeutic plasma VEGF level are associated with poor 
response to treatment [29]. Plasma VEGF level is suggested to be a modality for 
monitoring prognosis after liver transplantation in HCC cases. A plasma VEGF level 
of >44 pg/mL is associated with worse overall and disease-free survival. Additionally, 
it is also associated with higher disease recurrence and poorer disease outcomes [30]. 
However, an anomaly was submitted by Shigesawa et al. They observed HCC patients 
receiving anti-angiogenesis agent for 8 weeks and found that serum VEGF level is sig-
nificantly lower in patients who experienced deterioration compared to those without 
deterioration [34]. Ramadan et al. found similar result with Shigesawa et al. Patients 
with hepatitis C virus-associated HCC had higher VEGF level after receiving treat-
ments compared to those untreated ones. The recurrence rate became higher in line 

Agents Mechanism of action Approved by 
FDA

Bevacizumab, ramucirumab Monoclonal antibody 
against VEGF

Yes

Ziv-aflibercept Decoy VEGF receptor Yes

Sorafenib, sunitinib, apatinib, axitinib, cabozantinib, 
lenvatinib, nintedanib, pazopanib, regorafinib, imantinib

Tyrosine kinase 
inhibitor

Yes

Cediranib, lucitanib, semaxanib, tivozanib Tyrosine kinase 
inhibitor

No

FDA: Food and Drug Administration, VEGF: vascular endothelial growth factor.

Table 1. 
List of anti-angiogenesis agents and their mechanism of action [2, 6].
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with elevated VEGF level [16]. These findings raise suspicion regarding the possibility 
of treatment resistance.

5. Conclusions

Liver diseases are conditions that may occur both acutely or chronically. Liver 
cirrhosis and HCC are the end-points of chronic liver diseases which carry heavy 
socioeconomic burden. Angiogenesis plays a significant role in liver diseases, 
including alcoholic fatty liver disease, NAFLD, chronic hepatic viral infections, 
and their progressions. The most potent mediator for angiogenesis is VEGF. A 
high level of VEGF is associated with an increased incidence of liver disease and 
a worse clinical course. Inflammation and hypoxia from chronic liver diseases are 
the triggering factors for VEGF release. The binding of VEGF with its receptors 
triggers angiogenesis, lymphangiogenesis, and vascular permeability increment. 
If occur for a long period, liver tissue remodeling is observed as a precursor lesion 
of HCC. Due to the importance of angiogenesis, anti-angiogenesis therapy target-
ing VEGF is becoming popular. Several agents that neutralize VEGF and modulate 
its receptors have been approved to treat various diseases. Besides, VEGF is also a 
promising modality for the diagnosis of liver diseases and for predicting disease 
outcomes. The therapeutic response of patients may also be monitored using 
VEGF level.
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Chapter 7

Adipocytokines: Are They the 
Theory of Cancer Progression?
Rowyda Nawwaf Al-Harithy

Abstract

Adipocytokines have gained significant attention in the scientific community over 
the past few decades. They are a family of enzymes, hormones, growth factors, pro-
teins, and other bioactive molecules that are important regulators of many processes. 
Adipocytokines are predominantly produced by preadipocytes and mature adipocytes 
to act through a network of autocrine, paracrine, and endocrine pathways. Leptin 
(LEP) is the first adipocytokine discovered that has a role in modulating adiposity 
and has been shown to exert pleiotropic effects on many metabolic pathways through 
the leptin receptors (LEPRs). LEP has pro-tumoral roles; it promotes angiogenesis, 
proliferation, survival of tumor cells, and inhibits apoptosis. To exercise its role in 
tumorigenesis, LEP-LEPR signaling and epithelial-mesenchymal transitions (EMTs) 
play a significant role. LEP is an oncogenic factor mainly due to its proinflammatory 
and proangiogenic effects. In angiogenesis, LEP acts directly as an endothelial growth 
factor or indirectly through cellular pathways, such as STAT3/ERK1/2, JAK2/STAT3, 
MAPK/ERK, PI3K/AKT, p38, p53, MAPK, and Wnt/β-catenin.

Keywords: adipocytokines, leptin, inflammation, angiogenesis, cancer

1. Introduction

Adipose tissue is a complex, dynamic, and heterogenic endocrine organ with 
diverse homeostatic processes [1]. During the past few decades, the structural and 
functional principles of adipose tissue have evolved considerably to get to today’s con-
cept [2]. In the human body, the adipose tissue is restricted in depot sites and varies 
in cellular composition and character. Adipose tissue can be classified by morphology 
into white, brown, beige, pink, and yellow [3]. Our understanding of their impor-
tance started with identifying a range of adipose tissue products and their functions. 
Since then, much has been learned about how adipose tissue communicates with 
other organs of the body. More recently, its functions have been reported to be highly 
influenced by bioactive molecules with widespread systemic effects contributing to 
numerous physiological and pathological processes [4]. The white adipose depots are 
considered a specialized organ representing the largest endocrine tissue in humans. 
It can be broadly classified by location into subcutaneous and visceral. In its different 
locations, it shows different metabolic profiles with different functions. In general, 
they are responsible for storing chemical energy formatted as triglycerides packed in 
unilocular lipid droplets. The white adipocytes, especially in the visceral area, secrete 
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abundant mediators, including exosomes, miRNA, lipids, inflammatory cytokines, 
and peptide hormones that participate in the process of interorgan communication 
via paracrine and endocrine modes [5].

White adipose tissue comprises many different cell types; approximately 40–50% 
of the cells are adipocytes, with the rest represented by the stromal vascular fraction 
(SVF) of cells, including preadipocytes, fibroblasts cells, endothelial cells, vascular 
progenitor cells, mesenchymal stem cells, and a variety of immune cells (macro-
phages, natural killer cells, B-lymphocytes, and T-lymphocytes) [6]. Adipocytes, 
specific to white adipose tissue, are plastic and respond to changes in metabolism 
by altering their size, number, and their exerted functions [7, 8]. The white adipose 
tissue multifarious composition renders white adipose tissue an important mediator 
of metabolism and inflammation [9]. White adipose tissue influences metabolism 
through maintaining energy homeostasis, adipocyte differentiation, and insulin 
sensitivity. It also affects inflammation through its actions in the immune system 
as pro- and anti-inflammatory mediators (Figure 1). This function is controlled by 
numerous adipocytokines, other cytokines, chemokines, and growth factors [10]. 
While the term adipokine is commonly used to refer to adipose tissue-derived pro-
teins, adipocytokines are mainly, but not solely, produced by adipocytes.

2. Adipocytokines

The word adipocytokine is derived from the Greek root meaning fat cell move-
ment. Adipocytokines are produced exclusively or substantially by preadipocytes 
and mature adipocytes, hence their name. They are biologically active molecules 

Figure 1. 
Adipocytokines and their mechanisms as an anti-inflammatory and proinflammatory.
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that are important regulators for many physiological processes. Adipocytokines are 
heterogeneous in structure and function, which is mainly affected by the specific 
anatomical location of the producing adipocytes. Adipocytokines have the ability to 
act locally or distally as inflammatory, immune, or hormonal signalers. They can be 
categorized in terms of their function as metabolic factors, proinflammatory factors, 
proangiogenic factors, and extracellular matrix components. Adipocytokines are 
secreted in response to different triggers; their involvement has been noted in insulin 
action, endothelial cell function, blood pressure, appetite, hemostasis, reproduction, 
angiogenesis, and immunity [11].

The year 2022 marks the 35th anniversary of adipocytokines. The breakthrough 
discovery of the first adipocytokine, adipsin, followed by tumor necrosis factor 
(TNF), leptin (LEP), and adiponectin led to the widespread recognition of adipose 
tissue as an endocrine organ. Adipsin (also known as complement factor D) was 
identified as an adipokine in 1987 [12]. In 1993, TNF was identified as a proinflam-
matory adipocytokine in the models of diabetes and obesity, becoming pioneering 
evidence for a functional link between obesity and inflammation [13]. The identi-
fication and cloning of LEP in 1994 followed by that of adiponectin in 1995 were an 
inflection point into the endocrine era [14, 15]. LEP and adiponectin are the classic 
adipocytokines of visceral adipose tissue and clearly the two most widely studied 
adipocyte products. LEP is acknowledged as an adipose tissue-specific secreted 
protein that regulates food intake and energy. Adiponectin, also known as ACRP30, 
AdipoQ , and gelatin-binding protein-28, has anti-inflammatory actions on the 
liver, the heart, the kidneys, muscle cells, and pancreatic β cells, to name a few 
[16–18]. It plays roles that are most likely relevant to cognitive dysfunction, namely, 
synaptic regulation, insulin sensitivity, neuroinflammation, neuroprotection, and 
neurogenesis [19, 20].

Adiponectin and LEP’s detailed mechanisms of action at the cellular level of 
their target organs and their mutual effects on each other remain ambiguous. 
Despite extensive research on the topic, much more regarding LEP and adipo-
nectin, their relationship to each other and to the body remains to be discovered. 
However, it is important to note that the ratio of adiponectin to LEP has been 
proposed as a marker of adipose tissue dysfunction [21, 22]. On review of the 
literature, LEP is found to be the most studied in the context of cancer risk and 
progression (Figure 1).

3. Leptin

Friedman and his colleagues discovered LEP in 1994 and named it after the word 
“leptos,” which means thin in Greek reference to its demonstrated effect on the body. 
In humans, LEP is encoded by the LEP gene that is located on chromosome 7 7q31.3 
and consists of three exonic regions with two intronic regions. It is a nonglycosylated 
adipocytokine consisting of 146 amino acids. LEP is a multifunctional adipocytokine 
primarily secreted by the white adipocytes. LEP is also produced by other tissues, 
such as the stomach, placenta, and mammary glands [23–26]. The past 25 years of 
research on LEP have provided important insights into the intricate network that 
links nutrition, metabolism, reproduction, endocrine regulation, inflammation, and 
immune function [27–29]. LEP is a key regulator of the adipose organ, and its main 
task is to regulate energy balance, which is possible by lowering the appetite. The 
essential characteristics of LEP are listed in Table 1.
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LEP expression in the adipose tissue is influenced by a variety of hormones, 
including insulin, glucocorticoids, catecholamines, and cortisol, and several other 
metabolic factors, including TNF-α, fatty acids, and glucose [30–33]. Recently, a 
fat-specific long noncoding RNA (lncRNA) has been identified to interact with 
redundant enhancers and regulate LEP expression [34]. LEP deficiency or resistance 
is associated with the dysregulation of cytokine production, increased susceptibility 
to infections, autoimmune disorders, malnutrition, and inflammatory responses. The 
elevated levels of serum LEP have been unequivocally correlated with an increased 
risk of developing various tumor forms, including testicular, breast, prostate, colon, 
and pancreatic cancers [35–40]. The short-, medium-, and long-term regulatory 
actions of LEP are supported by its specific LEP receptor (LEPR). The LEPR is a class 
I cytokine receptor and structurally a transmembrane receptor encoded by the LEPR 
(OBR) gene on chromosome 1p31.3 [41–43]. In humans, there are at least four splice 
variants of the LEPR gene that have been identified and categorized as long (LEPRb), 
short (LEPRa, and LEPRc), and secretive (LEPRe) isoforms. The isoforms have 
different lengths of intracellular C-terminal domains. The LEPRb contains the full 
intracellular domain 303 amino acids, and the short isoforms contain 32–40 amino 

Adipocytokine Characteristics

Leptin (LEP) Signals through leptin receptor isoform b (LEPRb)

Binds short and soluble leptin receptor isoforms (LEPRa, LEPRc)

Regulates bone mass

Regulates reproduction

Regulates body weight gain

Regulates immune cell functions

Regulates food intake and energy expenditure

Regulates glucose tolerance and insulin sensitivity

Regulates brain sympathetic output to different tissues

May regulate body temperature

May regulate hematopoiesis

Induce epithelial-mesenchymal transition

Promote adipogenesis

Increases adipocyte lipolysis

Increases angiogenesis

Increases brown adipose tissue activity

Increases skeletal muscle cell glucose uptake

Increases adipocyte, hepatocyte, and skeletal muscle cell fatty acid oxidation

May increase adipose tissue stromal cell proliferation

May increase white adipose tissue browning

Decreases adipocyte glucose uptake

Decreases adipocyte, hepatocyte, and skeletal muscle cell lipogenesis

Table 1. 
The functions of leptin.
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acids. Although long and short isoforms share a sequence of 29 amino acids proximal 
to the transmembrane region, the LEPRe isoform lacks both transmembrane and 
cytoplasmic domains [44, 45]. The long LEPR contains the full intracellular domain 
to fully induce intracellular signaling necessary for the activation of critical second 
messenger pathways and normal leptin action. The LEPR isoforms are distributed in 
almost all peripheral tissues and seem to mediate the transport of LEP. In humans, 
the effects of LEP can be detected at various sites given that LEPR are found in the 
brain, heart, placenta, lung, liver, muscle, kidney, pancreas, spleen, thymus, prostate, 
testes, ovary, small intestine, and colon [46]. Therefore, LEPR locations demonstrate 
LEP’s importance in human molecular processes. The signaling events that follow the 
binding of LEP to its LEPRs have been studied extensively and characterized at the 
biochemical and molecular levels in many systems and, more recently, in relation to 
immune responses [47].

4. Leptin and cancer

LEP is the most studied adipocytokine, particularly in metabolism and obesity-
related cancers. It is well established that LEP has pro-tumoral roles; it promotes 
angiogenesis, proliferation, survival of tumor cells, and inhibits apoptosis [48]. To 
exercise its role in tumorigenesis, LEP-LEPR signaling and epithelial-mesenchymal 
transitions (EMTs) play a significant role in tumor initiation, progression, metas-
tasis, and chemoresistance. The function of the leptin axis in cancer is through 
LEP-LEPR singling. The binding of LEP to LEPR induces the activation of several 
signaling pathways, such as JAK/STAT3, PI3K/AKT, and MAPK/ERK. Cumulative 
research demonstrated high levels of LEP and LEPR expression in cancer cells. 
LEP and LEPR levels are usually missing in epithelial breast tissue but are found in 
abundance in breast cancer [49]. Other cancers that show high levels of LEP and 
LEPR include hepatocellular carcinoma [50], lung cancer [51], prostate cancer [52], 
colorectal cancer [53], melanoma [54], ovarian cancer [55] renal carcinoma [56], 
and breast cancer (Figure 2) [57]. It was also demonstrated that the upregulated 
level of LEP correlates with clinical and prognostic outcomes in multiple cancer 
types such as the presence of remote metastasis of breast cancer and the short 
survival of its patients. The level of LEP expression is influenced by numerous 
physiological mechanisms, which are noted to be associated with fat mass. One of 
such mechanisms is the ability of inflammatory cytokines, i.e., TNF-α, interleukin-1 
(IL-1), and leukemia inhibitory factor, to induce adipocytes to produce LEP and 
increase the expression of its mRNA synthesis [58]. Another factor is the genetic 
variations in the LEP gene and/or LEPR gene that modulates LEP level [59, 60]. The 
genetic variations in these genes have been specifically linked to the progression 
of prostate, breast, gastric, and lung carcinomas [61–63]. Since the proposal of 
LEP as an EMT inducer a decade ago, research has proven it to be very important 
in driving the cellular process to aggressive cancer phenotypes. EMT is a complex 
reprogramming cellular process allowing epithelial cells to acquire mesenchymal 
characteristics, an important role in the tumor microenvironment (TME). This 
change enhances migratory and invasive capability and has been demonstrated to 
be essential in the metastatic spread of several cancer types, including prostate, 
lung, liver, pancreatic, and breast cancers [64, 65]. EMT programs were also found 
to stimulate the production of LEP by cancer cells, suggesting a signaling loop in 
tumor progression. Other important signaling molecules involved in the process 
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include integrins, growth factors, and cytokines, such as IL-8, IL-6, and TNF-α, 
which are often secreted by tumor stroma [66, 67]. Literature has also documented 
that EMT programs can stimulate the production of proinflammatory factors. 
Olea-Flores demonstrated the mechanism by which LEP promotes EMT program-
ming, through Src and FAK activations that control the secretion and activation of 
metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9). Leptin promotes 
the expression of EMT-related transcription factors and invasion in a Src and FAK-
dependent pathway in MCF10A mammary epithelial cells [68]. In a recent review, 
Tsung-Chieh and Michael indicated that cancer cells and the tumor microenviron-
ment express LEP and LEPRs and suggested that the potential leptin autocrine/
paracrine signaling loop could affect tumor progression [49].

Other studied theories on the involvement of LEP in carcinogenesis were 
described to be mediated by LEPR activation of PI3K, ERK1/2, and Jak2/Stat3 signal-
ing pathways. These pathways regulate the expression of cancer-related genes, such 
as cyclin D1, cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), 
and potentiate several procarcinogenic processes, including angiogenesis, migration, 
and mesenchymal transformation [69, 70]. Additionally, in vitro studies have docu-
mented the antiapoptotic and mitogenic effects of LEP on different cancer cell lines. 
Zhang and his team have shown that LEP can play the role of being an antiapoptotic 
by regulating the expression of proteins involved in the apoptotic pathway. They 
observed that LEP decreases the apoptotic potential of adipose tissue by increasing 
the Bcl2 and decreasing proapoptotic Bax and CD95 protein expression [71]. More 
importantly, LEP has been studied as an oncogenic factor due to its proinflammatory 
and proangiogenic effects.

Figure 2. 
LEP and LEPR expression in a pancancer panel. From Lin and Hsiao [49].
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5. Role of leptin as a proinflammatory factor

The immune system response, acute and chronic inflammation, is called into 
action when other homeostatic mechanisms are inadequate. Inflammatory mediators 
play a significant role, adjacent in importance to mutations and epigenetic alterations. 
In tumor initiation, LEP plays a pleiotropic role in the immune response and can 
appropriately be considered, both structurally and functionally, as a proinflamma-
tory cytokine. LEP regulates both innate and adaptive immune responses through 
the modulation of immune cells’ survival and proliferation as well as its activity 
[72–74]. LEP has a modulatory impact on the course of inflammation, affecting the 
expression of proinflammatory cytokines and their receptors. In the innate immune 
response, LEP enhances the secretion of TNF-α, a proinflammatory mediator, and 
interacts with interleukin1beta (IL1β) [75]. IL1β has the ability to increase the levels 
of cytokines, such as Interleukin 6 (IL6), Interleukin 8 (IL8), and prostaglandin E2 
(PGE2), by its mechanism on nitric oxide synthase-2 (NOS2) through the JAK2, PI3K, 
MAP2K1/MEK1, and MAPK14/p38 signaling pathways [76]. These cytokines also 
regulate the expression of LEP, creating a signaling loop that supports sustaining a 
chronic proinflammatory state [77]. In the adaptive immune response, LEP promotes 
the alteration of memory T-cells immune response toward T helper-1 cells, as well 
as escalating CD4+CD25– T-cell proliferation and reducing the autophagy process 
during T-cell receptor (TCR) stimulation by triggering MTOR signaling pathway 
and upregulating the synthesis of B-cell lymphoma 2 (BCL2) [78]. LEP controls the 
crosstalk between innate and adaptive immunity by affecting dendritic cell number, 
maturation, cytokine production, and capacity to induce CD4+ T-cell proliferation 
[79]. Chronic infectious, immune, and metabolic diseases may lead to LEP resistance, 
increasing LEP levels and further fueling the inflammatory state. LEP’s involvement 
in the immune and inflammatory response has become increasingly evident and, in 
turn, is important in cancer.

6. Role of leptin as an angiogenic growth factor

Angiogenesis, a hallmark of cancer, refers to the formation of new blood vessels 
from preexisting ones. It is a vital process that plays a role in normal physiological 
as well as pathological processes. Angiogenesis enables tumor growth and metas-
tasis through a multistep progression commencing with endothelial cell migration, 
proliferation, invasion, and ultimately novel capillary formation. Though the basic 
steps of angiogenesis are similar in all tissue, it is likely that the vascular network of 
each organ will be established through tissue-specific key mechanisms. Angiogenesis 
requires a balance between proangiogenic and antiangiogenic factors; changes in 
equilibrium can lead to oncogenic angiogenesis.

White adipose tissue is embedded in a dense vascular network and is the most 
vascularized tissue in the human body. The hypervascularization of the white adipose 
tissue indicates the presence of an intimate interplay between both the vascular 
and adipose compartments. The functions of adipose vasculature are summarized 
in Table 2. It has been previously noted that the white adipose tissue regulates the 
production of various adipocytokines, but it also releases angiogenic factors; there-
fore, it influences and modulates angiogenesis as well as vascular structure [80–82]. 
Scientific research has been able to narrow the culprits of angiogenic growth in white 
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adipose tissue to two possibilities: first, in response to signals initiating from neigh-
boring adipocytes that are undergoing proliferation and enlargement; the other possi-
bility is through metabolic signals produced locally or distally. These two possibilities 
are not mutually exclusive, and probably tissue expansion involves both local signals 
arising from expanding adipocytes and distant signals reflecting the developmental 
and metabolic state of the whole organism. It has been acknowledged that adipogene-
sis, angiogenesis, and vascular remodeling are tightly related and regulated processes. 
Dysfunction in the regulation of one or more of these processes leads to changes in 
vessel growth, vascular permeability, remodeling, adipose mass, and function, which 
will ultimately cause pathological angiogenesis or vascular regression [83].

In white adipose tissue, LEP was found to be an important proangiogenic factor 
or an angiogenesis inducer [84]. In 1998, Sierra-Honigmann and colleagues produced 
one of the first studies to demonstrate that leptin-induced cell proliferation, cell sur-
vival, and 3D matrix formation of capillary-like tubes mimicking vascular endothelial 
growth factor (VEGF) 165 [85]. This supported the notion that LEP is an endothelial 
growth factor. LEP is able to act as a direct factor to induce the angiogenic potential 
of endothelial cells evident by the presence of LEPR on endothelial cells. Both in vivo 
and in vitro studies have demonstrated the activation of endothelial LEPR by LEP, 
leading to capillary tube formation [86]. The indirect involvement of LEP in angio-
genesis has been explored immensely. Garonna et al. showed that leptin enhances 
endothelial cyclooxygenase-2 (COX-2) expression and causes rapid VEGFR2 phos-
phorylation through the activation of P38 MAPK/AKT/COX-2, which is needed 
for leptin-stimulated neoangiogenesis [87]. LEP increases the levels and activity of 
enzymes involved in angiogenesis through metalloproteinase-2 (MMP-2) and MMP-9 
activity [82]. Additionally, LEP has been shown to upregulate and act synergistically 
with the key angiogenic mediators like fibroblast growth factor (FGF)-2, VEGF, and 
its receptor VEGFR, resulting in stimulation of blood-vessel growth [88]. The VEGF 

Adipose vasculature functions

1 Providing nutrients and oxygen essential for the maintenance of adipocyte survival and functions

2 Removing metabolic products from adipose tissue

3 Paracrine regulation of adipocyte functions through the production of various factors and cytokines 
from vascular cells

4 Transporting adipose-tissue-derived growth factors, adipokines, and cytokines for removal of tissues 
globally regulating physiological functions via the endocrine mechanism

5 Transporting non-adipose-tissue derived growth factors, cytokines, and hormones for modulating 
adipocyte functions and growth

6 Alteration of the adipose microenvironment such as hypoxia and acidosis, which control adipocyte 
function, preadipocyte differentiation, and adipose tissue mass

7 Supplying circulating stem cells from non-adipose tissues to adipose tissues

8 Supplying adipocyte vessel wall stem and precursor cells that can eventually differentiate into mature 
adipocytes

9 Supplying other cell types such as inflammatory cells that secondarily affect adipocyte function

10 Preparation of adipose niche formation during embryonic development by the vasculature

Table 2. 
Adipose vasculature functions in the modulation of adipocyte functions.
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and VEGFR have a special signaling transduction system that plays a significant role 
in the process of oncogenic angiogenesis. In vitro and in vivo findings have implicated 
the role of VEGFR in the facilitation of angiogenic growth and endothelial cell tube 
development [89]. LEP can upregulate VEGF expression and function, VEGF can, in 
turn, activate LEP demonstrating the functional interplay between both cytokines. 
The increase in the presence of both cytokines could generate and amplify a proan-
giogenic environment. Moreover, crosstalk between LEP and VEGF has been noted 
in other tissues, such as in cancerous breast tissue; LEP activates HIF-1α and NF-κB 
to upregulate VEGF [89]. Additionally, LEP is involved in tumor angiogenesis-related 
signaling pathways such as STAT3/ERK1/2, JAK2/STAT3, MAPK/ERK, PI3K/AKT, 
p38, p53, MAPK, and Wnt/β-catenin [90]. Less studied are the Akt and Wnt signaling 
pathways’ effect on the proliferation and angiogenic differentiation of endothelial 
cells, though LEP’s involvement was demonstrated [91]. Furthermore, distinct 
mechanisms, regulated Wnt-responsive GSK-3β and growth factor/Akt responsive 
GSK-3β, suggest that GSK-3β has a crucial role in the crosstalk between the Akt and 
Wnt signaling pathways [92]. However, the underlying cellular mechanism remains to 
be elicited. Of note, tumor angiogenesis is closely associated with the tumor micro-
environment and is regulated by a variety of proangiogenic factors and/or angiogenic 
inhibitors. The genetic and epigenetic alterations of angiogenesis-associated genes 
might result in angiogenesis dysfunctions and promote tumorigenesis.
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Chapter 8

Extracellular Matrix in Tumor 
Angiogenesis
Gvantsa Kharaishvili

Abstract

Extracellular matrix (ECM) is a complex three-dimensional network that provides 
structure, strength, and contextual information for cellular growth, communica-
tion, differentiation, survival, adhesion, and migration. ECM basic proteins resist 
compressive forces and/or allow rapid diffusion, others strengthen the matrix, and 
give resilience or modulate cell-matrix interactions. ECM undergoes turnover and 
remodeling physiologically and during inflammation, wound repair and tumor inva-
sion. Remodeling of the ECM is an integral component of the angiogenic process and 
depends on the composition of matrix molecules, soluble pro-angiogenic and anti-
angiogenic factors, and their spatial regulation. This review will focus on the myriad 
roles of those molecules and will emphasize their involvement in critical points of 
angiogenesis.

Keywords: extracellular matrix, tumor microenvironment, angiogenesis,  
pro-angiogenic, anti-angiogenic

1. Introduction

“Tumor progression is defined by irreversible change in the tumor characteristics 
reflecting the sequential appearance of a genetically altered subpopulation of cells 
with the new characteristics” [1]. The term, “tumor progression” is used to describe 
phenotypic changes in the preexisting neoplastic lesion. It is a coincidence of complex 
events characterized by morphological, molecular, and functional changes in tumor 
cells and their environment and encompasses a wide scale of mechanisms [2]. It is in 
part recognized as a product of evolving crosstalk between different cell types within 
the tumor and its surrounding supportive tissue or tumor stroma [3]. Invasive tumor 
cells interact with their microenvironment in a bidirectional manner and remodel it 
into a supportive context for tumor growth and progression. The composition of the 
tumor microenvironment varies between tumor types, but hallmark features include 
cellular components such as immune cells (T-cells, B-cells, NK-cells, macrophages, 
neutrophils, dendritic cells), stromal cells, blood vessels, cancer-associated fibro-
blasts, adipocytes, stellate cells, and noncellular components such as extracellular 
matrix (ECM) and exosomes [4].
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2. Extracellular matrix: its composition and molecular profile

Extracellular matrix (ECM) is a noncellular, proteinaceous component of the 
stroma. It is a complex three-dimensional network of macromolecules. The ECM 
provides architectural structure, strength, and contextual information for cel-
lular growth, adhesion, communication, differentiation, migration, and survival. 
Molecules that provide ECM structure are: glycosaminoglycans and proteoglycans 
(form a hydrated gel-like substance, resist compressive forces, and allow rapid 
diffusion) and fibrous proteins and collagens (strengthens the matrix and give 
resilience). They represent insoluble factors of the matrix [5]. Structural molecules 
are synthesized mainly by fibroblasts but also by other cells of connective tissue. ECM 
molecules named, “matricellular proteins” (e.g. thrombospondin-1 and -2, SPARC, 
tenascin-C, and osteopontin) do not function as structural elements but modulate 
cell-matrix interactions and cell functions [6]. ECM is in a dynamic state and under-
goes turnover and remodeling in conjunction with signals and is enhanced during 
inflammation, wound repair, and tumor invasion. However, ECM can limit initiation 
of tumor at an early stage of its development, later, ECM stimulates tumor growth 
and progression and enhances its aggressiveness. Key enzymes which remodel ECM 
are matrix metalloproteinases (MMPs) and urokinase-type plasminogen activators 
(uPAs). They degrade components of the basement membrane as well as proteins 
and proteoglycans of connective tissue and liberate latent growth factors from their 
storage sites in the extracellular matrix. Factors that are activated in this fashion are, 
for example, fibroblast growth factors (FGFs), hepatocyte growth factor (HGF), and 
transforming growth factors (TGFs) [7]. Tumor growth-induced solid stress, matrix 
stiffness, increased interstitial fluid pressure, hypoxia and altered tumor pH have 
been established as a result of tumor growth and on the other hand, neoangiogenesis-
supporting conditions. As structural and metabolic alterations of ECM can lead to the 
development or progression of disease, its molecules can serve as important targets 
for pharmacotherapy.

2.1 Collagens

Collagen represents 30% of dry weight in the human body and is the most 
abundant protein synthesized by fibroblasts and by several other cell types distinct 
by their molecular profile, morphology, distribution function, and involvement in 
pathologies [8]. Collagens play structural roles and contribute to mechanical proper-
ties, organization, and configuration of tissues. Some collagens have a restricted 
tissue distribution and hence specific biological functions [9]. Collagens are trimeric 
molecules composed of three polypeptide α chains, which contain the sequence 
repeat that allows the formation of a triple helix. Besides triple-helical domains, 
collagens contain non-triple-helical domains, used as building blocks by other 
extracellular matrix proteins. At present, 28 types of collagens are classified as fibril-
lar collagens, unconventional collagens including collagen VII, network-forming 
collagens (VI, VIII, and X), fibril-associated collagens with interrupted triple helix 
(IX, XII, XIV, XVI, and XIX), basement membrane collagens, transmembrane 
collagens, and multiplexins [10, 11]. Type I, II, III, V, XI, XXIV, and XXVII collagens 
belong to the classical fibrillar collagens [12]. Fibrillar collagens can assemble into 
supramolecular aggregates. Type I collagen is major collagen of tendons, ligaments, 
skin, cornea, and other connective tissues representing 90% of the total collagen 
in humans. It is mostly a part of the compound containing either type III collagen 
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seen in skin and reticular fibers [13] or type V collagen found in bone [14]. The 
biomechanical properties of these compounds (e.g., torsional stability and stiffness 
or tensile strength) establish the stability and integrity of these tissues [15]. Bourgot 
and colleagues describe the evolution of fibrillar collagen organization during tumor 
progression where tumor-derived paracrine signals promote a desmoplasic reaction 
characterized by the activation of the resident fibroblasts into cancer-associated 
fibroblasts (CAFs) with enhanced secretory activity, reorganization of the collagen 
fibers (their cross-linking), augmenting the stiffness of the stroma. Tumor adjacent 
collagen fibers that promote invasive cancer cell migration can be organized parallel 
(Tumor Associated Collagen Signature—TACS-2) or perpendicular to the tumor 
border (TACS-3) [16]. Collagen fibers employ guidance signals for endothelial cell 
migration during regenerative angiogenesis. Inhibition of collagen cross-linking 
results in a 70% shorter regeneration area with 50% reduced vessel growth and dis-
integrated collagen fibers. The disrupted collagen scaffold impedes endothelial cell 
migration and induces the formation of abnormal angioma-like blood vessels [16]. 
Type I collagen, potently stimulates angiogenesis in vitro and in vivo [17]. Crucial to 
its angiogenic activity appears to be ligation and possibly clustering of endothelial 
cell surface α1β1/α2β1 integrin receptors by the GFPGER (502–507) sequence of the 
collagen fibril. Authors describe here genetically engineered “angiogenic superpoly-
mers”, containing type I collagen, fibrillar collagens and collagen mimetics, possibili-
ties of their modifications to display ideal angiogenic properties, and prove their 
usefulness for tissue engineering and human medicine [17].

The vascular basement membrane represents an insoluble structural compo-
nent of the wall of newly formed capillaries and undergoes several changes during 
tumor-induced angiogenesis. Initially, the membrane is degraded and disassembled 
by proteolytic activity of matrix metalloproteinases, mainly MMP2 and 9, but is 
finally after complex molecular crosstalk by regulation mainly via VEGF signaling, is 
reorganized to a native state around a newly formed capillary. Such vascular matrix 
changes during angiogenesis are associated with the expression of matrix proteins 
that can interact with vascular endothelium and provide endogenous angiogenic and 
anti-angiogenic signals. Basement membrane molecules play a role also in the process 
of the relapse of pathological angiogenesis [18]. Rapid relapse of tumor angiogenesis 
is hypothesized to be facilitated by the empty basement membrane sleeves (ebms) of 
previously regressed vessels, which are postulated to serve as scaffolding for endo-
thelial cells during new angiogenic sprouting, following cessation of antiangiogenic 
treatment [19]. Type IV collagen is found in solid and soluble states in ECM, it is 
composed of three α(IV) chains [20]. The a1 and a2 isoforms are ubiquitously present 
in human basement membranes. Type IV collagen promotes cell adhesion, migration, 
differentiation, growth [21], and regulates endothelial cell proliferation and behav-
ior during the critical steps of the angiogenic process. Studies have shown that the 
function of type IV collagen in the elongation and stabilization of microvessels was 
dose-dependent with low concentrations of type IV collagen promoting elongation, 
and high concentrations stabilizing them. Anti-angiogenic properties were associated 
with inhibitors of collagen metabolism and basement membrane collagen synthesis 
and deposition were crucial for blood vessel formation and survival [18]. There are 
six known bioactive peptides generated from collagen type IV [22]. These peptides 
are fragments of non-collagenous domains from the α1 (arresten), α2 (canstatin), α3 
(tumstatin), α4 (tetrastatin), α5 (pentastatin), and α6 chains (hexastatin). Arresten, 
is an inhibitor of angiogenesis in squamous cell carcinoma, binding with α1β1 integrin 
in endothelial cells [22–24]. Carcinoma cells showing overexpression of arresten 
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changed to an endothelial phenotype, suggesting inhibition of migrating carcinoma 
cells by inducing mesenchymal to endothelial (MET) transition [24]. Role of arresten 
is demonstrated in modulating the function of capillary endothelial cells and blood 
vessel formation using in vitro and in vivo models of angiogenesis and tumor growth 
[25]. Recently, the NC1 domain of the α2 chain of type IV collagen (canstatin) was 
also identified as an angiogenesis inhibitor. In the study by [25], Canstatin was first 
identified as vasculogenic mimicry (VM) inhibitor. Vasculogenic mimicry is a neovas-
cularization phenomenon that was first reported in melanoma models. Distinct from 
classical tumor angiogenesis, VM provides a blood supply for tumor cells independent 
of endothelial cells and formed by deregulated tumor cells. VM is established in lung 
cancer [26], hepatocellular carcinoma [27], and glioma [28] and is associated with 
poor prognosis in cancer patients [29]. Vautrin-Glabik demonstrated that 13 amino 
acid sequence of tetrastatin decreases VEGF-induced-angiogenesis in vivo using 
the Matrigel plug model and decreases Human Umbilical Vein Endothelial Cells 
(HUVEC) migration and pseudotube formation in vitro [30]. Oskimaki et al. recently 
developed a bioinformatics-based approach to predict over 100 novel endogenous 
anti-angiogenic peptides [31]. An important peptides determined were tetrastatins, 
pentastatins, and hexastatins that were validated in vitro in cell proliferation and 
migration assays on HUVECs [32]. Using pentastatin-1 to an angioreactor-based 
directed in vivo angiogenesis assay (DIVAA), and in vivo NCI-H82 SCLC xenograft 
model strong potential for pentastatin-1 as a therapeutic agent for lung cancer was 
demonstrated [30].

2.2 Elastin

Elastin provides elasticity to the ECM. Elastin is roughly 1000 times more flexible 
than collagens. It is produced as tropoelastin, a 72 kDa precursor protein by fibri-
blasts, smooth muscle cells, chondrocytes, or endothelial cell and is secreted from the 
cell to the extracellular space, where it crosslinks with other elastin molecules. Elastin 
is the primary ECM protein present in arteries where it composes ~50% of their dry 
weight [33]. During aging, continuous mechanical stress and an increase in elastase 
activity contribute to the fragmentation of elastic fibers resulting in the release of 
elastin-derived peptides (EDPs) [34]. EDPs are matrikines—matrix fragments having 
the ability to regulate cell physiology and display a wide range of biological activities 
in a number of normal and transformed cells [35]. For example, they potentiate the 
migration and matrix invasion of tumor cells, stimulate the migration and prolifera-
tion of monocytes and skin fibroblasts and up-regulate MMP expression by fibro-
blasts inducing a remodeling program for melanoma invasion. Additionally, they are 
pro-angiogenic, chemotactic for inflammatory cells and promote elastase release [36]. 
Robinet and colleagues showed that elastin-derived peptides enhanced angiogenesis 
in the chick chorio-allantoic membrane in vivo, augmented pseudotube formation 
from human vascular and microvascular endothelial cells in the matrigel and pro-
moted cell migration in wound healing assay [37].

2.3 Glycosaminoglycans

Glycosaminoglycans (GAGs) were primarily known as “space fillers” in the 
ECM, but later appeared as active signaling molecules in cell fate regulation via 
cytokine production, leukocyte recruitment, or inflammatory response [38]. GAGs 
are linear polysaccharides with two basic saccharide molecules that vary according 
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to epimerization, sulfation, and deacetylation. Their specificity and functionality 
depend on the order of the carbohydrate chain and the other chemical modifica-
tions [38]. Hyaluronan is the simplest GAG since it is non-sulfated, does not undergo 
epimerization, and does not use typical covalent bonds for linking to proteins. 
Other GAGs—chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparan 
sulfate usually use covalent bonds for attachment to proteins in proteoglycan mol-
ecules. Chondroitin and heparan sulfate are further remodeled by sulfation [33, 39]. 
Hyaluronan is synthesized at the plasma membrane by transmembrane enzymes of 
the HA synthase family (HAS1–3) [40, 41]. Chain length is dependent on polymer-
izing enzyme type, for example, HAS1 and HAS2 produce high molecular weight 
(~2000 kDa) HA and HAS3 produce lower molecular weight (100–1000 kDa) HA. 
After synthesis via HASes, extracellular HA can be rapidly altered due to its impres-
sive turnover rate via a variety of hyaluronidases (mainly HYAL1 and 2) [40]. Despite 
the relative simplicity of its molecule, HA regulates a variety of cellular functions 
including wound repair, inflammation, cell migration, and angiogenesis [41, 42], 
and recently emerged as a key player in regulating the tumorigenic and inflamma-
tory milieu [43]. Interestingly, its physiological sequel is largely related to the size of 
the molecule, for example, full-length HA mainly demonstrates anti-inflammatory 
property whereas its smaller fragments exert pro-inflammatory and pro-angiogenic 
features [40]. In cancer and other pathologic states, HA fragments are abundantly 
deposited in the extracellular environment that, in one hand, is a result of increased 
synthesis of HA via HASes and on the other hand—accelerated degradation via hyal-
uronidases, reactive oxygen species, and mechanical forces [44] creating a microen-
vironment supporting angiogenesis and inflammation [41, 45, 46]. Several evidence 
suggests that aberrant levels of HAS2 promote breast cancer growth, differentiation, 
lymph node involvement, and worse patient survival [47, 48]. HAS2 knockdown 
inhibited breast cancer growth and attenuated HA expression. Similarly, HAS2 has 
a regulatory effect on tumorigenicity and metastasis of prostate, colon, and ovarian 
tumors through excessive HA synthesis [49, 50]. Recently, Chen and colleagues [40] 
suggested a novel mechanism of angiogenesis regulation via autophagic degradation 
of HAS2 in endothelial cells. In [51], colleagues showed that the C-terminal module of 
perlecan, endorepellin, blocks VEGFR2 kinase activity, thereby evoking a strong pro-
autophagic and anti-angiogenic response in vascular endothelial cells both ex vivo and 
in vivo. Bix and colleagues [52] have also shown that systemic delivery of recombinant 
endorepellin inhibits tumor growth and angiogenesis and increases tumor hypoxia in 
squamous and Lewis lung carcinoma xenograft models. Recently, HAS2 was degraded 
in vascular endothelial cells via autophagy evoked by nutrient deprivation, mTOR 
inhibition, or pro-autophagic proteoglycan fragments endorepellin and endostatin 
[40]. Autophagic degradation of HAS2 suppressed extracellular hyaluronan and 
inhibited ex vivo angiogenesis showed in aortic ring assay where they quantified 
the extent of active sprouting issued from the aortic rings and measured the radial 
distance of the newly-formed vessels where they found a significant reduction in 
angiogenesis [40]. The antiangiogenic activity of the role of endostatin and tumstatin 
was also emphasized, where tumor suppressor protein p53 prevented an incipient 
tumor from switching to the angiogenic phenotype mediated in part by endostatin 
and tumstatin [53].

The role of tumor-associated macrophages in angiogenesis is documented in [54]. 
TAMs induce tumor vascularization by releasing several factors, including VEGF 
which is the main angiogenic factor [55]. Monocytes (Mo) and monocyte-derived 
macrophages (MØ) can bind HA which induces intracellular signals [56, 57], however, 
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the anti-tumor or pro-tumor role, is dependent on the size of HA in colorectal and 
breast carcinomas. As it is shown in [55] tumor necrosis factor (TNF)-stimulated 
gene 6 (TSG-6) was downregulated in Mo/MØ by high molecular weight hyaluronan, 
modulating their angiogenic behavior in breast carcinoma milieu, but not in colorectal 
carcinoma [55].

2.4 Proteoglycans

Next to collagens, proteoglycans (PGs) constitute a major class of extracellular 
matrix/cell surface components known to be involved in primary physiological and 
pathological phenomena; and due to the altered transcription/translation patterns 
that these PGs exhibit, they have been identified as potential diagnostic/prognostic 
and therapeutic targets in diverse disease states [58]. Based upon its direct involve-
ment in cell-cell and cell-ECM interactions, this gene family has been strongly 
implicated in the regulation of cell movement. Assignment of diverse roles of PGs 
in promoting, or inhibiting, cell movement seems to be dictated by the biological 
system [58]. The proteoglycan superfamily now contains more than 30 molecules. 
They sustain the transparency of the cornea, the elasticity of blood vessels, the tensile 
strength of the skin, tendon, or cartilage, as well as compressive forces of the mineral-
ized matrix of bones. PGs can alter the biology of growth factors and cytokines [59]. 
The basic proteoglycan unit consists of a “core protein” with one or more covalently 
attached glycosaminoglycan chain(s). Proteoglycans can be categorized depend-
ing upon the nature of their glycosaminoglycan chains and/or by size (kDa). Four 
major classes of PGs exist: (i) chondroitin sulfate/dermatan sulfate PGs (decorin, 
biglycan, versican); heparan sulfate/ chondroitin sulfate PGs (testican, perlecan); 
(ii) chondroitin sulfate (neurocan, aggrecan); (iii) keratan sulfate (fibromodulin, 
lumican). Among them, decorin, biglycan, testican, fibromodulin, lumican are small 
proteoglycans, and versican, perlecan, neurocan, and aggrecan are large proteogly-
cans. The small leucine-rich repeat proteoglycans (SLRPs) form a group of molecules 
on the basis of their relatively small protein core (36–42 kDa) [60, 61]. Some of these 
gene products are not classical proteoglycans. Despite being structural proteins, 
SLRPs constitute a network of signal regulation: being mostly extracellular, they 
are upstream of multiple intracellular signaling cascades. They affect intracellular 
phosphorylation and modulate pathways, including those driven by bone morphoge-
netic protein/transforming growth factor β superfamily members, receptor tyrosine 
kinases such as ErbB, and the insulin-like growth factor I receptor, and Toll-like 
receptors.

Decorin was originally discovered as a collagen-binding protein necessary for 
fibrillogenesis [62, 63], hence related eponym of decorin [64]. Soluble decorin is a 
high-affinity antagonistic ligand for several key receptor tyrosine kinases resulting 
in protracted oncostasis and angiostasis [65]. Recently, decorin has emerged as a 
soluble pro-autophagic cue by initiating endothelial cell autophagy through activa-
tion of AMPK, an energy sensor kinase, and evoking tumor cell mitophagy as the 
mechanistic basis for the oncostatic effects [66]. Decorin, due to its role as a tumor 
repressor and anti-angiogenic factor was designated as “a guardian from the matrix” 
[67]. According to the review, decorin suppresses tumor growth and angiogenesis 
via EGFR and Met where decorin monomer binds a narrow region of an epitope that 
in part overlaps with the agonist binding site [68]. This binding further augments 
receptor dimerization, the consequence of which is rapid phosphorylation of the 
intracellular tails [69]. This event further recruits and activates downstream effectors, 
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e.g. provides caveosome-mediated internalization of the decorin/receptor complex, 
and eventual degradation in lysosomes [70, 71]. The latter causes a protracted ces-
sation of intracellular receptor signaling. As a major consequence of inhibiting Met, 
two potent oncogenes, β-catenin, and Myc, are targeted for sustained degradation via 
the 26S proteasome [72]. Decorin suppresses β-catenin signaling in a non-canonical 
fashion and the latter is targeted for degradation in a manner consistent with direct 
phosphorylation of β-catenin by an RTK, such as Met [73–75]. Wnt/β-catenin signal-
ing activation and its member molecule mutations are well established in colorectal 
cancer and different epithelial tumor sprouting and nonsprouting angiogenesis. 
Wnt agonists (e.g., B cell Lymphoma 9 protein (BCL9) is the angiogenesis promot-
ing, where antagonists such as the DKK-4 (also called the Dickkopf Wnt signaling 
pathway inhibitor 4), in particular, conditioned media from DKK-4 expressing cells 
promoted the migrative abilities of CRC and formation of capillary-like tubules of 
human primary microvascular endothelial cells [76].

Versican is a large chondroitin sulfate proteoglycan that forms aggregates with 
hyaluronan which connects it to the cell surface via hyaluronan receptors such as 
CD44 [77, 78]. Versican is implicated in many biological processes involving vascu-
lature, such as atherosclerosis and vasculitis [79, 80]. There are five known versican 
splice isoforms; V0–V4 [81]. Each isoform except V3 has a glycosaminoglycan (GAG) 
domain with covalently attached chondroitin sulfate (CS) chains. Versican is highly 
expressed in the early stages of development but becomes downregulated after tissue 
maturation [82], interestingly, it is reexpressed during wound repair, arteriopathies, 
pulmonary fibrosis, or tumor formation [83]. Versican is anti-adhesive since it is a 
poor cell attachment and migration substrate and is excluded from focal adhesions 
[77, 84, 85]. Several clinical studies have suggested that high versican expression is 
a poor prognostic factor in gastric, pancreatic, head and neck squamous, or mam-
mary cancers [77]. Increased versican immunostaining has been detected during 
tumor blood vessel formation [86]. Versican V2 isoform is the major type expressed 
in brain tissues, and brain tumors are greatly enriched in vascularization, therefore, 
authors hypothesized that the V2 isoform may play a role in angiogenesis in brain 
tumors. They injected U87 glioblastoma cells stably transfected with a versican V2 
expression construct or a control vector into nude mice and showed that the tumors 
formed by the V2-transfected cells were visibly enriched in vascularisation, whereas 
the tumors formed by the vector-transfected cells did not exhibit this phenotype [86]. 
Furthermore, V2 expression facilitated endothelial-tumor cell interaction observed in 
tube-like structure formation in matrigel [82]. Koyama and colleagues demonstrated 
that basic fibroblast growth factor-induced neovascularization was elevated in the 
presence of either hyaluronan oligosaccharides or a hyaluronan aggregate contain-
ing versican, using the Matrigel plug assay. Administration of hyaluronan-versican 
aggregates, but not native hyaluronan alone, promoted stromal cell recruitment 
with the infiltration of endothelial cells, suggesting that hyaluronan overproduction 
accelerates tumor angiogenesis through stromal reaction, notably in the presence of 
versican [87]. Versican localized preferentially to the vicinity of tumor vasculature 
and macrophages in the tumor. However, the extracellular protease ADAMTS-
generated versican fragment is uniquely localized to vascular endothelium. Members 
of the family of A disintegrin-like and metalloproteinase with thrombospondin type 1 
motifs (ADAMTS) are involved in versican proteolysis and tumor progression  
[88, 89]. ADAMTS1 was first shown to display anti-angiogenic properties [90]. 
Later, it’s angiostatic (antiangiogenic) and tumor-suppressive properties have also 
been shown in model systems [91, 92], but controversial results about its relevance 
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to metastasis and tumor growth have also gained attention [93]. ADAMTS family of 
secreted zinc-dependent metalloproteinases comprises at least 19 genetically distinct 
members in humans [94]. The expression of the majority of ADAMTS subtypes is 
associated with pre- and postnatal growth and onset and progression of cancer [95]. 
ADAMTS subtypes have been sub-classified as aggrecanases because of their ability 
to cleave large chondroitin sulfate. Despite their structural similarity to other matrix 
metalloproteinases, ADAMTS have a narrow substrate specificity. This feature could 
serve as an advantage for ADAMTS inhibitors in the treatment of cancer [95].

Asporin, also known as periodontal ligament-associated protein 1 (PLAP1) was 
identified in 2001 [96, 97]. Asporin mRNA was expressed primarily in the skeleton 
(perichondrium/periosteum of cartilage/bone) and other specialized connective 
tissues. Asporin blocks chondrogenesis and inhibits TGF-β1-induced expression of 
matrix genes and the resulting chondrocyte phenotypes [98]. Knockdown of asporin 
increases the expression of cartilage marker genes and TGF-β1; in turn, TGF-β1 
stimulates asporin expression in articular cartilage cells, suggesting that asporin and 
TGF-β1 form a regulatory feedback loop. Asporin, like decorin, can bind collagen at 
the same site, but in contrast to decorin and biglycan, it drives collagen biomineral-
ization [99]. Our laboratory has identified asporin as a novel cancer-related protein 
in invasive breast cancer [100]. Later, asporin was reported as an important player in 
tumor microenvironment [101] and experimentally proved that MDA-MB-231 and 
BT-549 cells invaded faster through collagen matrix which was prepared with the 
recombinant asporin. This finding was explained to be related to a less dense matrix 
due to the inhibition of collagen fibrillogenesis by asporin [102]. Recently, asporin 
was specifically reported in pancreas and prostate cancer by two additional groups 
[103, 104]. The direct role of asporin in angiogenesis/angiostasis is not been studied 
yet, however, a search of the Gene Expression Omnibus, revealed high levels of ASPN 
expression in white adipose-derived (WAT) CD34+ cells that are a very rich reservoir 
of CD45− CD34+ populations with endothelial differentiation potential/significantly 
increased levels of angiogenesis-related genes [101]. The multifaceted role of asporin 
was recently reviewed also in [105] where its emerging role in proliferation, migra-
tion, invasion, and angiogenesis through TGF-β, EGFR, and CD44 pathways was 
described [105].

2.5 Laminin

Laminins are major noncollagenous constituents of the basement membrane. The 
fragmentation or absence of BM structures seen in malignant tumors is due to active 
proteolytic degradation, decreased synthesis of BM components, and/or remodeling 
by the tumor cells [106]. There are 5α, 4β, and 6γ chains of laminin molecule [33]. It 
has three short and one long arm arranged in a cross-like structure. The α chains have 
a larger G domain at the C-termini, which is composed of 3 LG domains (LG1-LG3) 
connected by a binding region to other LG4 and 5 domains. Integrins bind to LG1–3. 
Heparan sulfate has been shown to bind to LG4 of the α1 chain. Certain laminin iso-
forms are predominant in vascular basement membranes and may be critical in main-
taining the proper development as well as stability of the mature vessel [107]. LN-1 
provoked angiogenesis in the chicken chorioallantoic membrane in the same manner 
as FGF-2, and vessel development in embryoid bodies was further enhanced in a 
synergistic mode by FGF-2 and LN-1. The latter significantly enhanced the differen-
tiation of endothelial cells in a 3D collagen environment, either in the absence or pres-
ence of FGF-2 [108]. In tumors, as in normal tissues, the blood vessels express laminin 
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α4, α5, β1, and γ1 chains, suggesting the presence of laminin-8 and -10, synthesized 
by VECs. Laminin-10 is more adhesive and migration promoting [109]. Microvessels 
are expected to express additional laminins α2, α3, and β2 [107]. The cellular origin of 
the laminin chains in the vessel should be carefully examined, since pericytes are also 
able to synthesize several laminins [110]. Lugassy and colleagues [111] in their work 
studied qualitative aspects of tumor cells and vasculature in melanoma and focused 
on the pericellular matrix. They demonstrated the angio-tumoral complex in which 
the tumor cell and endothelium are in direct contact via an amorphous matrix. This 
amorphous matrix lacks an organized lamina and contains predominantly laminin 
with noticeably less collagen type IV. Interestingly, this was absent in naevi. Authors 
regarded the laminin found in this amorphous matrix as “free” laminin, is distinct 
from laminin integrated into an organized lamina, and showed free laminin role in 
promoting the migration of melanoma cells in contact with vessels and suggested that 
this angio-tumoral complex represents a marker for metastasis [112]. During intrava-
sation, tumor cells penetrate BM rich in laminin-8 and 10. When in circulation, large 
tumor cells and cell aggregates are often covered with platelets, that contain and, 
following stimulation, secrete laminin-8 and other laminin isoforms [113]. Tumor 
cell extravasation again requires penetration of the vascular BM to generate second-
ary tumors [107]. Interaction of tumor cells with endothelial cells and the basement 
membrane seems organ-specific, time and tumor type-dependent in the ultrastruc-
tural study on lung, liver, brain, kidney, and adrenal tissues. Study shows that endo-
thelial cells of the lungs and liver can play a much more active role in the process of 
extravasation [114]. Laminin α3B chain normally expressed in vascular and epithelial 
basement membranes, was downregulated in skin cancers [115]. Notably, endothelial 
cell behavior during tumor progression is largely dependent on complex interactions 
between laminin molecules with integrins (please see also below).

2.6 Fibronectin

Fibronectin is a dimer with a molecular weight of ~270 kDa. There are two 
fibronectin forms, soluble plasma fibronectin (p-fibronectin), produced by hepa-
tocytes and cellular fibronectin (c-fibronectin) produced in tissues where it is 
further deposited as a component of the fibrillar matrix. Many of the functions of 
fibronectin depend on the 3-dimensional structure of the protein and its assembly 
into a functional fibrillar matrix [116]. In ECM, fibronectin binds collagen, heparin, 
other fibronectin proteins, and cell surface integrins. Fibronectin binds integrins 
through the tripeptide motif of arginine, glycine, and aspartic acid (RGD)2,3, α5β1 
integrin plays here a major role. Studies to elucidate the mechanisms of fibronectin 
fibrillogenesis in endothelial cells have revealed a determinant role for integrin beta 
subunit adaptor (ILK) in this process [117]. Example of how transient c-fibronectin 
expression participates in a “pro-angiogenic switch” comes from studies on vascular 
patterning in the developing retinal vasculature [118, 119]. During this process, 
blood vessels use the existing astrocyte network as a template, and fibronectin is the 
principal component of the astrocyte-derived extracellular scaffold. Bazigou et al. 
[120] showed that interaction between integrin α9 and fibronectin containing the 
EDA domain is required for fibronectin matrix assembly during lymphatic valve 
morphogenesis [120]. Targeted deletion of α4 in lymphatic vessels or pharmacological 
inhibition of α4β1 compromise growth factor- and tumor-induced lymphangiogen-
esis and suppressed metastatic spread in vivo. α4β1 and c-fibronectin were suggested 
as markers of proliferative lymphatic endothelium in malignant tumors [121]. 
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Fibronectin is a Wnt target gene and lung vascularization and branching morphogen-
esis are dependent on Wnt and fibronectin signaling [122]. However, fibronectin level 
is weak in morphogenesis and quiescent vasculature and highly upregulated together 
with tenascin-C following vessel injury. Tenascin-C expression is also highly associ-
ated with angiogenesis in a wide range of disease states, including diabetes, aortic 
aneurysm, artherosclerosis, ulcerative colitis, inflammatory bowel disease, Crohn‘s 
disease, vasculitis, and cancer [122]. Both proteins were localized in the vessel wall, 
where fibronectin was more abundant on the luminal side and tenascin-C on the 
extraluminal side of the vascular BM. To note, tumor vessels were diversely posi-
tive for tenascin-C and oncofetal fibronectin, suggesting a temporally and spatially 
regulated expression of these ECM proteins in the tumor vasculature and may reflect 
different maturation states of the vessels. Re-expression of fibronectin occurs during 
pathological angiogenesis in various diseases such as cancer, late-stage atherosclero-
sis, and blinding ocular conditions [123, 124].

3. Cell-extracellular matrix interactions and angiogenesis

3.1 Integrins

Integrins are the main receptors involved in cell-matrix contacts. They contain 
transmembrane subunits α and β, large extracellular domain, and intracellular 
domain that interacts with cytoskeleton proteins. Subunits form 24 integrins. 
Integrins provide transmission of chemical and mechanical signals, which results in 
rearrangement of the cell cytoskeleton and activation of pathways that control cell 
survival and motility, angiogenesis, differentiation, and apoptosis. The ability of the 
cell to survive without contact with a substrate is a feature of tumor cells. Integrin 
expression changes significantly during carcinogenesis and different tumors express 
different integrins. Integrin α6β4 in cooperation with epidermal growth factor recep-
tor (EGFR) is expressed mostly in breast carcinoma [125], while integrin αVβ3 in 
cooperation with platelet-derived growth factor (PDGF) and EGFR are expressed in 
glioblastomas and melanomas [126]. The role of integrins in tumor angiogenesis has 
been partially discussed above in relation to laminins and will also be discussed below.

Matrix metalloproteinases (MMPs), also known as matrixins, are members of the 
metzincin protease superfamily of zinc-endopeptidases. There are 187 members of 
MMPs which are encoded in the human genome and 28 members are secreted MMPs. 
They can degrade every protein in ECM and basement membranes. Several MMPs are 
membrane-type which contribute to the precise localization of protease activity, as 
this is required at the edge of migrating cells. Several MMPs—collagenase, gelatinase, 
matrilysin degrades collagen, gelatin, and fibronectin, respectively. Stromelysin 
degrades structural proteins and proteoglycans. MMP activity is regulated by tis-
sue inhibitors of MMPs (TIMPs 1–4) which are produced by more cells than MMPs 
themselves [127]. MMPs are directly implicated in embryonic growth and tissue 
morphogenesis that require disruption of ECM barriers for microenvironment 
remodeling and cell migration and contribute to the formation of a complex micro-
environment for tumor development and progression through activation of growth 
factors, suppression of tumor cell apoptosis, destruction of chemokine gradients 
developed by host immune response, or release ECM-sequestered angiogenic factors 
[128]. For example, MMP-11 (human stromelysin-3, hST-3) favored the release of 
insulin-like growth factor 1 that is bound to specific binding proteins (IGFBPs) [129]. 
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MMP-9 can proteolytically activate TGF-β and promote tumor invasion and angio-
genesis [130]. Several other pro-angiogenic factors such as VEGF and basic fibroblast 
growth factor (bFGF) are induced/activated by MMPs. MMP-14 overexpression by 
cancer cells increases VEGF synthesis and promotes angiogenesis in glioblastomas 
[131] and breast carcinomas [132, 133]. VEGF expression was also inspired by MMP-2 
in A549 lung adenocarcinoma cells through the binding to αvβ3 and activated integrin 
signaling [134]. Cancer cell-derived MMP-13 (collagenase-3) also induced VEGF 
synthesis by endothelial cells and fibroblasts and initiated tumor angiogenesis in vivo 
[135]. MMP-1, -8, and -13 are collagenases associated with angiogenesis and their 
loss leads to irreversible rupture of the matrix [136]. The fragmentation of basement 
membrane type IV collagen is carried out by MMP-2 and MMP-9. Type IV collagenase 
activity is important in the early steps of endothelial cell morphogenesis/capillary 
formation. Interstitial collagenase (MMP-1) is a membrane-type 1 matrix metallopro-
teinase (MT1-MMP) that can also break down collagen types I–III, gelatin, laminin, 
and other ECM components. MT1-MMP is expressed by endothelial cells and it may 
regulate angiogenesis by activating pro-MMP2 and by cleaving collagens on the cell 
surface at a highly localized site [136]. Tissue inhibitors of metalloproteinases regulate 
them, playing a key role in angiogenesis regulation by inhibiting neovascularization.

3.2 Matrix topology, stiffness, and solid stress

Physical and chemical features of the tumor environment determine matrix 
topology (architecture) and stiffness that depends on the size of biopolymer fibers 
and the density of the fiber network [137]. Connective tissue is characterized by 
different fiber arrangements. Different combinations and densities of the cells, fibers, 
and other ECM components as well as different fiber arrangements ranging from 
loose or random to highly aligned structures, produce graded variations of connective 
tissue. ECM topology can represent an important regulator of cell motility through 
physical signals that geometrically impel adhesion foci to conduct directional migra-
tion [138]. Cancer cells perform contact guidance mediated by mechanosensory 
integrins through which they, using contractile force, actively remodel the ECM fibers 
surrounding a tumor (align them perpendicularly to the tumor) [137–139]. Dense 
fibrillar collagen that is characteristic of breast cancer stroma forms radial patterns 
extending away from tumors. On the other hand, the reticular arrangement of the 
collagen matrix surrounding mammary glands may anchor and/or hinder cells. Thus, 
ECM topography, in particular, its non-linear pattern reduces invasion while linear 
structure promotes it. Matrix concentration and post-translational modifications such 
as glycosylation and cross-linking affect the mechanical properties, including visco-
elasticity or stiffness. Tumors exhibit a higher degree of stiffness than their normal 
adjacent counterpart. For example, the healthy mammary gland is highly compliant 
(elastic modulus E = ~200 Pa), while the average tumor is stiffer (E = ~4000 Pa). Both 
the tumor-surrounding stroma and vasculature exhibit increased stiffness (E = ~800–
1000 Pa and ~450 Pa [140].

Changes in ECM topology and stiffness can shape mechanosensing events and 
activate intracellular signaling processes involved in cell migration. Among signal-
ing pathways/genes involved in directionally persistent migration are, for example, 
vinculin, talin, FAK, p130CAS, and filamin A. Integrin receptors and the physical 
arrangement of adhesions assure orientation of the cytoskeleton while leading-edge 
protrusions can be stabilized by matrix orientation [137, 138]. When cancer cells 
experience an increase in ECM stiffness, they respond to the change by generating 
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increased traction forces on their surroundings by regulating growth factor signaling 
and focal adhesion formation. For this purpose, the cell has several alternatives: for 
example, it can either force the network fibers apart and remodel the shape, form 
trails of variable caliber until it can pass through the pore, or the tumor cell degrades 
the fiber matrix via multistep pericellular proteolysis that was observed in individual 
and collective cancer cell migration [140]. Increased tumor tissue stiffness has been 
linked to tumor progression, direct stem cell differentiation, cell-cell and cell–matrix 
adhesion, hyaluronan synthesis, and expression of genes that play important roles 
in invasion and metastasis [128, 141–143]. A computational model was used to 
investigate the effect of ECM topography on vascular morphogenesis and explana-
tion of mechanisms that control cell shape and orientation, sprout extension speeds, 
and sprout morphology. Sprout extension speed and morphology depend on matrix 
density, fiber network connectedness, and fiber orientation and varying matrix fiber 
density affect the likelihood of capillary sprout branching. The authors calculated 
optimal density for capillary network formation and suggested matrix heterogeneity 
as a mechanism for sprout branching. The density of the matrix fibers has a strong 
effect on the extension speed and the morphology of a new blood vessel pointing to 
new targets for pro- and anti-angiogenesis therapies [144].

Another important tumor characteristic is tumor growth-induced solid stress. 
As tumor cells proliferate they sequentially create new solid material (i.e. cells and 
matrix components) which pushes against the surrounding tumor microenvironment. 
Uncontrolled proliferation of cancer cells leads to ignorance of contact inhibition, 
their expansion imposes elastic tension on the surrounding tumor microenvironment, 
storing stress through the deformation of adaptable structures, and collapsing delicate 
structures, such as blood and lymphatic vessels. Interestingly, solid stress is accumu-
lated within the tumor and is still sustained after the tumor excision [145]. Collagen and 
hyaluronan molecules are the main contributors of the ECM to solid stress. Collagen, 
as it becomes stiffer when stretched, is responsible for tensile stress. This observation 
is valid for both capsular and interstitial collagen. When hyaluronan resists compres-
sion, its negatively charged chains are pushed away, owing to electrostatic repulsion 
and trap water, therefore matrix becomes poorly compressible [145]. The compression 
of vessels by solid stress may create potential obstacles to drug delivery: the collapse of 
blood vessels hampers access to systemically administered drugs. This collapse might 
explain the fact that neoplasias with more ECM might be more resistant to treatment. 
For instance, chondrosarcomas, chordomas, or pancreatic ductal adenocarcinoma (the 
latter has the highest solid stress magnitude 7 kPa = 52.5 mmHg) are tumors rich in 
ECM and refractory to chemotherapy [146–148]. Further, the lack of lymphatic vessel 
function induces drainage compromise, leading to uniformly elevated interstitial fluid 
pressure. As a result, the transport of therapeutics, like antibodies and nanoparticles, 
is reduced because the dominant mode of transport becomes diffusion which is an 
inadequately slow process for large particles [149]. In this sense, decreasing solid stress 
by the angiotensin inhibitor, losartan, decompress tumor blood vessels, enhances drug 
delivery, and potentiates chemotherapy effects [150].

As stated above, endothelial activation is believed to be predominantly related 
to biochemical signals. However, mechanical forces have more recently also been 
demonstrated to regulate endothelial cell phenotype and function. Recent work 
has shown that mechanical forces control endothelial cell proliferation, survival, 
and migration [151, 152] and fluid shear stress from blood flow plays a critical role 
in regulating vessel morphogenesis, sprouting, and barrier function [153, 154]. To 
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convert mechanical forces and biophysical signals into intracellular biochemical 
reaction cascades, endothelial cells employ a complex system of mechanosen-
sors (actin cytoskeleton, integrins, cell-cell adhesion receptors, receptor tyrosine 
kinases, ion channels, and G-protein-coupled receptors) to sense and respond 
to mechanical forces [155]. Matrix stiffening enhanced integrin-mediated Rho/
Rho-associated protein kinase (ROCK) activity and contraction in tumor epi-
thelial and endothelial cells [156–158]. Tumor endothelial cells have abnormal 
mechanosensitivity to uniaxial cyclic strain transmitted through the ECM, which is 
mediated by vigorous regulation of Rho activity and cytoskeletal tension. Normal 
and tumor endothelial cells express similar levels of active β1 and β3 integrins 
[159]. Tumor endothelial cells demonstrate constitutively high baseline activity 
of Rho and ROCK, thicker stress fibers, higher adhesion strength, and augmented 
cytoskeletal tension. Logically, described features are mainly due to higher intrin-
sic Rho and ROCK-related cytoskeletal tension in the background of unchanged 
levels of integrins. These dynamics between normal and tumor endothelial cells 
in response to mechanical impulses suggest that the aberrant mechanical forces 
from the tumor microenvironment may cause tumor endothelial cells to gradually 
obtain an altered phenotype. Such alteration may further enable tumor endothelial 
cells to spread over a wider range of matrix stiffness [155, 158]. Specific integrins 
have been demonstrated to contribute to non-tumor and tumor angiogenesis. The 
expression of α1β1 and α2β1 integrins is upregulated by VEGF in endothelial cells 
[160], and the combined antagonism of α1β1 and α2β1 reduced human squamous 
cell carcinoma growth and angiogenesis [161]. The α5β1 integrin is selectively 
expressed in angiogenic vasculature. Upregulated αvβ3 and αvβ5 integrins in 
endothelial cells are necessary for the growth and survival facilitation of neovessels 
[162]. As already mentioned, αv integrins are also involved in cytokine-dependent 
pathways of angiogenesis. Integrin αvβ3 is incumbent in pathways activated by 
FGF or TNFα while integrin αvβ5 is necessary for angiogenic pathways activated by 
VEGF or TGFα [163]. Specifically, the αvβ5 integrin pathway downstream of VEGF 
causes activation of FAK and Src kinase [164]. The αvβ3 integrin has also been 
associated with VEGFR2 and the binding of αvβ3 to its corresponding ECM ligands 
has been shown to increase VEGF signaling [165]. Integrin αvβ3 is overexpressed in 
newly developed vasculature of mammary carcinoma [166], the expression level of 
αvβ3 and αvβ5 integrins in tumor neovessels were found to be associated with the 
neuroblastoma grade [167]. The experimental inhibition of αvβ3 integrin sup-
pressed angiogenesis and related breast tumor growth in immunodeficient (SCID) 
mouse/human chimera [166] and resulted in tumor reduction in human clinical 
trials [168]. Combined inhibition of αvβ3 and αvβ5 integrins also significantly 
reduced growth of human melanoma xenografts in SCID mice [169]. Integrin α6β4 
signaling has similarly been involved in incipient invasive phase of pathological 
angiogenesis. The β4 substrate domain promotes bFGF-mediated angiogenesis in 
matrigel plug assay and hypoxia-inducible factor VEGF-mediated angiogenesis in 
the retinal neovascularization model regulates sprouting angiogenesis by forced 
nuclear translocation of activated ERK and NF-κB in migrating endotheliocytes 
[170]. Furthermore, targeted deletion of the signaling domain of the integrin β4 
significantly reduced the size and microvascular density in various tumors includ-
ing melanoma, lung cancer, lymphoma, or fibrosarcoma [170]. These data demon-
strate the role of cytoskeletal- and integrin-mediated mechanosensory pathways in 
facilitating tumor angiogenesis.
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3.3 Hypoxia and interstitial fluid pressure

Hypoxia is another feature of the abnormal tumor microenvironment that is 
intrinsically linked to the formation of neovasculature and clinically manifests with 
metastatic progression and worse patient survival [171, 172]. Diffusion-limited 
hypoxia is a sequel of tumor cells located distantly from the blood-supplied areas. 
Such cells “suffer” from prolonged hypoxia and tumor cells are kept viable for hours 
to a few days in such environment [173]. Within the cell, hypoxia induces oncogenes, 
enhances DNA mutation chance, and selects for cells with increased apoptotic 
rate [171, 174]. Extracellularly, hypoxia supports tumor progression by increased 
matrix deposition, turnover, cross-linking, and remodeling [175]. HIF-1α increases 
 vascularization in hypoxic areas and allows for the survival and proliferation of can-
cer cells, its inhibition prevents the expansion of neoplasia [176]. Along with known 
angiogenic factors, novel ones and their receptors include VEGF, VEGFR-1, -2,  
bFGF, platelet-derived growth factor B (PDGF), insulin-like growth factor II 
(IGF2), adrenomedullin, and epidermal growth factor (EGF) are targets of the HIF 
transcription factors. Several of these angiogenesis-related gene products, including 
iNOS, endothelin, adrenomedullin, and heme oxygenase 1, are also implicated in the 
modulation of local blood flow by regulating the vascular tone [177]. The well-known 
EMT activators such as Snail, Slug, and Twist are also induced by hypoxia [178]. 
Hypoxia also affects stem cells [179] that become pluripotent and aggressive with high 
metastatic potential. Resistance to anti-angiogenic therapy thus may be mediated 
by HIF-1α activated genes. Therapeutical targeting of hypoxia includes bioreductive 
prodrugs, HIF-1 targeting, and genetic engineering of anaerobic bacteria [180].

Abnormal metabolism in the tumor is further characterized by a decrease in 
extracellular pH. The known sources of H + ions in tumors are by- or end-products of 
anaerobic glycolysis, such as lactic acid and carbonic acid [181, 182]. The dysbalance 
between production and removal of  H + ions lowers the extracellular pH in tumors. 
The level of pH also decreases in tumors with increasing distance from nearest blood 
vessels. Low extracellular pH causes stress-induced alteration of VEGF and IL-8 gene 
upregulation and relevant protein expression in three different tumor cells in vitro 
[183]. When the possible relationship between pH, pO2, and their effect on VEGF 
expression in vivo was examined using GFP imaging of tissues, pO2 and pH appear 
to regulate VEGF transcription in tumors independently. For example, in the hypoxic 
state or neutral pH, VEGF-promoter activity increased, with a decrease in pO2 and 
independent of pH. In decreased pH or oxygenated conditions, VEGF-promoter 
activity increased, with a decrease in pH and independent of pO2 [184]. To conclude, 
these key microenvironmental factors regulate angiogenic profiles in a complemen-
tary mode.

Another pathophysiologic feature of the tumor microenvironment is elevated 
interstitial fluid pressure (IFP) in the range of 10–100 mmHg [185, 186]. IFP of 
normal tissue is around zero [187]. The driving force in increasing tumor IFP is the 
tumor vasculature [188, 189]. In contrast to normal vessels which are characterized 
by dichotomous branching, tumor vasculature is chaotic, with trifurcations and 
branches with unsteady calibers, larger inter-endothelial junctions, multiple fen-
estrations, vesicles, vesico-vacuolar channels and a disruption of normal basement 
membrane [190]. Due to described ultrastructural alterations, vascular permeability 
in solid tumors is generally higher compared to normal counterparts. Tumors, also 
either lack lymphatics or the intratumoral vessels are non-functional [191], as a 
result, excess fluid accumulates in the interstitium resulted in elevated IFP. In IFP 
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regulation model, fibroblasts actively regulate the tension applied to the ECM through 
integrins which enable fibroblasts to modify collagen fiber tension and modulate 
the elasticity of the ECM in response to hyaluronan and proteoglycan expansion. 
According to [192], interestingly, a significantly dense and stiffer collagen framework 
and related higher IFP is also a result of the synthesis of another important proteo-
glycan fibromodulin by stromal fibroblasts, which is mainly promoted by emerged 
inflammatory processes in malignant tumors. Interstitial fluid pressure may serve 
as another target for cancer therapy. Roh and colleagues [193] reported an inverse 
relationship between tumor IFP and degree of tissue oxygenation and suggested IFP’s 
role in predicting radiotherapy effect. Increased tumor IFP can also act as an obstacle 
to drug delivery, which makes questionable their efficacy. Several studies have also 
demonstrated advanced amelioration of chemotherapeutics following a reduction in 
tumor IFP [150].

4. Conclusions

The extracellular matrix in non-tumor states regulates tissue development and 
homeostasis, and its deregulation imparts to neoplasia and its progression. It serves 
not only as the mechanical milieu upon which cells/tissues inhabit but creates and 
exerts critical biochemical and biomechanical messages that drive cell growth, 
survival, differentiation, migration, and manage neoangiogenesis and immune scaf-
fold. The cellular mechanisms inducing both angiogenesis and immunosuppressive 
responses are often reached by the same cell types and soluble factors. Studies point 
out that combinatorial strategies toward many potential targets with emphasis on 
angiogenesis should be adapted as a useful therapeutic approach to hinder/reverse 
tumor progression.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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