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Preface

Natural cognition systems, such as those of animals, humans, and many in nature, 
inspire the development of cognitive robots, which is an emerging interdisciplinary 
field in robotics. These robots represent forms of embodied cognition that focus on 
predictive capabilities, anticipate intended actions by perceiving their operational 
environments, and determine the necessary decisions and motor control. The cognitive 
robotics field describes robots that are continuously evolving and can achieve their 
goals by perceiving and interacting with their natural environment, recognizing and 
understanding events of interest, conducting adaptable planning, and anticipating the 
outcome of their actions and the actions of other entities sharing the same environment. 
These interactions enable the development of cognition capabilities through effective 
sensory-motor coordination. These robots use learning dynamics to exploit the full 
power of these interactions to deal with environment and task uncertainty and engage 
in continuous real-time reasoning.

This book provides up-to-date research development in the field of cognitive robotics. 
Topics covered include (but are not limited to) cognitive robotics, intelligent behaviors, 
systems intelligence, adaptive robotics, nature and bioinspiration, cognition architecture, 
cognitive modeling, knowledge representation, machine learning techniques, deep 
learning techniques, human-robot interaction, and evolutional robotics.

The six chapters contribute to the state-of-the-art and up-to-date knowledge on 
research advances in the field of cognition and robotics, introducing research at the 
interface between biology, sciences, engineering, and technology. With this book, we 
aim to develop a line of transformative research directions based on the adaptation 
of creative design and using intelligent methodologies, algorithms, and solutions. 
Tasks can be solved, and direct and indirect interaction with the task environment 
is developed by building evolving experiences through real-time learning. Cognitive 
robotics, AI, and machine learning allow researchers to think outside the box and 
open the way for new scientific challenges and developments.

Maki K. Habib
Mechanical Engineering Department,

The American University in Cairo,
New Cairo, Egypt
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Chapter 1

The Neo-Mechanistic Model of 
Human Cognitive Computation 
and Its Major Challenges
Diego Azevedo Leite

Abstract

The neo-mechanistic theory of human cognition is currently one of the most 
accepted major theories in fields, such as cognitive science and cognitive neurosci-
ence. This proposal offers an account of human cognitive computation, and it has 
been considered by its proponents as revolutionary and capable of integrating 
research concerning human cognition with new evidence provided by fields of 
biology and neuroscience. However, some complex cognitive capacities still present 
a challenge for explanations constructed by using this theoretical structure. In this 
chapter, I make a presentation of some of the central tenets of this framework and 
show in what dimensions it helps our understanding of human cognition concerning 
aspects of capacities, such as visual perception and memory consolidation. My central 
goal, however, is to show that to understand and explain some particular human 
cognitive capacities, such as self-consciousness and some conscious informal reason-
ing and decision making, the framework shows substantial limitations. I conclude the 
chapter by suggesting that to fully understand human cognition we will need much 
more than what the neo-mechanistic framework is actually able to provide.

Keywords: theoretical cognitive science, human cognitive computation, consciousness, 
informal reasoning, decision making and action

1. Introduction

A new intellectual movement in the field of cognitive science1 has been developed, 
above all, in the last two decades of the current century, starting from debates that 
took place, mainly, in the philosophy of science at the end of the twentieth century. 
This movement has been described more broadly by many authors as a “new mecha-
nistic philosophy” [4–7]. Strongly influenced by recent advances in computer science, 
neuroscience, and artificial intelligence, the theoretical framework developed by some 

1 I will use the term “cognitive science” in a general sense and a specific sense. In the general sense, the term 
will be treated as synonymous with the term “psychology” [1, 2]. In a specific sense, it will be treated as an 
attempt to build a science of cognition, integrating several different areas of knowledge, which took place 
in the 1970s in the USA [3].
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of the movement’s most prominent authors offers a new physicalist (or materialist) 
and mechanistic view of human cognition2 [9–21].

The theory formulated from the application of the neo-mechanistic philosophy to 
cognitive science and, specifically, to human cognition, can be called the Mechanistic 
Theory of Human Cognition (MTHC) [22]. This proposal is currently one of the most 
accepted major theories in fields, such as cognitive science and cognitive neurosci-
ence, and it has been considered by its influential proponents as revolutionary and 
capable of integrating research concerning human cognition with new evidence 
provided by fields of biology and neuroscience.

One of the most central elements present in the framework of MTHC is a “model 
of human cognitive computation” [9–11, 13, 15], which is also part of the attempt 
made by several influential authors to provide some type of unification or integration 
for the field of cognitive science [9, 10, 23–25]. However, some complex cognitive 
capacities and some particular aspects of human cognition still present a challenge for 
explanations constructed by using this theoretical structure [22].

My central goal in this chapter, therefore, is to present an argument to show 
that human cognition cannot yet be completely understood and explained in terms 
of mechanistic computation and that this view indeed presents many substantial 
limitations.

To develop my argument, I present, firstly, some of the central elements of this 
neo-mechanistic framework and its application to cognitive science. Secondly, I pres-
ent the mechanistic model of human cognitive computation, as it is currently framed, 
and, based on the specialized literature, I show in what dimensions it helps our under-
standing of some aspects of human cognitive capacities, such as visual perception and 
memory consolidation. Thirdly, I show that to understand and explain some human 
cognitive capacities, such as self-consciousness and conscious informal reasoning 
and decision making, the neo-mechanistic framework shows substantial limitations. 
I conclude the chapter by suggesting that the notion of human artificial cognitive 
computation can be useful for several projects, but to fully understand natural human 
cognition we will most certainly have to consider theories that go beyond the current 
neo-mechanistic model of human cognitive computation.

2. Mechanistic theory of human cognition

The contemporary movement of neo-mechanistic philosophy has been histori-
cally associated with ideas already present in the period of Ancient Philosophy. 
Philosophers, such as Democritus, Leucippus, Aristotle, Epicurus, and Lucretius  
[9, 14, 26], for example, have been mentioned in the specialized literature as precur-
sors. Although there is no unity of thought regarding this philosophical tradition, these 
thinkers would arguably have launched, in Western philosophical thought, the first 
notions linked to mechanistic reflections. In other words, these philosophers would 
have proposed the general idea that many phenomena in nature must be explained 
through their basic components, their forms of movement, their properties, and their 
interactions since these phenomena are also composed of these basic elements.

In Modern Philosophy, the history of what might be called “mechanistic philoso-
phy” is quite complex, given the many debates over definitions of the term and the 

2 I will use the term “cognition” as synonymous of the term “mind” for the sake of clarity and objectivity. 
For an important discussion concerning the term “cognition,” cf. Akagi [8].
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variety of positions that can be considered within a more general view of what the 
term means in this period. In any case, many authors consider that the movement 
of mechanistic philosophy in the seventeenth century is a reaction to Aristotelian 
natural philosophy and various natural philosophies of the Renaissance period [27]. 
The French philosopher René Descartes (1596–1650), for example, is considered one 
of the main figures who laid the foundations of modern mechanistic philosophy, 
especially with regard to explanations of biological natural phenomena [9, 27–31]. 
Des Chene [30] argues that Descartes united a mechanistic ontology, on the one 
hand, with a method of mechanistic explanation, on the other, applying these ideas to 
numerous biological phenomena, including the behavior of non-human animals and 
the human body.

Shortly thereafter, this reasoning would also be applied quite influentially to 
human beings and their mental capacities. One of the most prominent advocates 
of this view was the French philosopher and physician Julien Offray de La Mettrie 
(1709–1751), who published Histoire Naturelle de L’âme (Natural History of the Soul), 
in 1745, and L’ Homme Machine (Man a Machine), in 1747, expanding Descartes’ 
philosophy of biology to human beings [21]. It can be said, therefore, that modern 
mechanistic philosophy is fundamentally committed to the “machine analogy,” that is, 
just as it occurs in a machine, all-natural processes can be explained in terms of their 
constituent components and the interaction between the activities they perform to 
produce their result [32]. This mechanistic framework was quite influential in many 
dimensions of many central issues and debates during the eighteenth and nineteenth 
centuries.

At the beginning of the twentieth century, the debate about the best explanation 
for the complex phenomenon of “life” was still quite strong [32]. The controversy was 
over whether or not this phenomenon could be explained in mechanistic terms. In this 
context, a very influential work was that of the German-born American physiologist 
and biologist Jacques Loeb (1859–1924), published in 1912, The Mechanistic Conception 
of Life. In this work, Loeb [33] indicates his interest in discussing the question of 
whether “life” (or all vital phenomena) could be explained in physicochemical terms. 
He sought to reduce “higher-level” biological phenomena to their more basic “low-
level” components and thus ultimately place biology on the same level of scientific 
prestige and legitimacy as physics and chemistry [28].

In the second half of the twentieth century, philosophers of science sought to 
analyze, in a more precise way, this mechanistic explanatory strategy. One of the most 
influential analyzes is present in the work of the American philosopher Ernest Nagel 
(1901–1985), The Structure of Science, published in 1961. Chapter 12 of this work is 
entitled Mechanistic explanation and organismic biology. In it, Nagel [34] discusses the 
problem of explaining “life” and says that a mechanist is one who believes, as Jacques 
Loeb believed, that all vital processes can be explained in physicochemical terms. 
This work profoundly influenced the understanding of what a mechanistic scientific 
explanation was in the philosophy of science of the period.

It was also during this period that some philosophers of science working in the 
field of biology began the task of elaborating, in an even more robust and system-
atic way, notions related to mechanistic explanations in science – mainly in biol-
ogy. Along these lines, some pioneering works were the following: Herbert Simon, 
The Architecture of Complexity, published in 1962; Stuart Kauffman, Articulation 
of parts explanations in biology and the rational search for them, published in 1970; 
and William Wimsatt, Reductive explanation: a functional account, published  
in 1976.
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Within this line of philosophical thinking, the work of William Bechtel and Robert 
Richardson, Discovering Complexity, published in 1993, is normally considered in the 
specialized literature as being the first to elaborate mechanistic explanations of a more 
solid, detailed, and mature form. Moreover, in 1996, Stuart Glennan published the 
article Mechanisms and the nature of causation; in 1998, Paul Thagard published the 
article Explaining disease: correlations, causes, and mechanisms; in 2000, Peter Machamer, 
Lindley Darden, and Carl Craver published the article Thinking about mechanisms; and 
in 2002, Jim Woodward, published the article What is a mechanism? A counterfactual 
account. All these works were extremely important for the development of the new 
mechanistic movement in the philosophy of science, especially related to biology.

It is also important to point out that in the development of the neo-mechanist 
movement, at the end of the twentieth century, we can distinguish, more generally, 
two main trends [5]. One of them focuses more on metaphysical and ontological 
directions. Authors who work in this line seek, above all, to answer what mechanisms 
are as real things in the world. The other strand followed in the direction of a greater 
elaboration of the philosophy of science with epistemological and methodological 
discussions about scientific explanations, mainly in the area of   biology. They seek 
to explain how something works and not make claims about the ultimate reality of 
things. These two strands of the new mechanism have been elaborated in an enor-
mous specialized literature that covers several scientific and philosophical areas, 
dominating a great part of the central debates. Despite being two dimensions that can 
be separated in the debate, ontological and epistemological discussions are deeply 
related in many works, both directly and indirectly.

The neo-mechanistic philosophy began to be applied with greater emphasis to cog-
nitive science since the decade of 1990 – with this application becoming stronger in the 
first decade of the twenty-first century – and it has been better elaborated since then 
until the present days in central works of very influential authors [9–15, 18–20, 35–43]. 
According to this view, human cognition, specifically, as well as biological cognition, 
in general, can be understood and explained through complex models of multilevel 
neurocognitive mechanisms. At these levels, there are causal processes related to 
cognitive information processing, cognitive representation, cognitive computing, as 
well as processes related to chemical and physical reactions that can be used to explain 
a given cognitive phenomenon. These are, in fact, autonomous processes of causation, 
which take place at all these different levels and are relevant to the explanation of the 
phenomenon of interest [44]. According to this theory of human cognition, namely, 
MTHC, all these causal levels and processes, although autonomous, can be related 
in a pluralistic mechanistic explanation, where the relevant scientific theories are 
integrated. As a result, MTHC includes not only a theory of human cognition but also 
a theory of the human neurocognitive relationship; that is, the theoretical framework 
suggests a possible solution to the problem of how we are to understand and explain 
the connection between human neural and cognitive phenomena, thus attempting to 
relate neuroscience and cognitive science.

The main objective of a mechanistic scientific explanation in scientific areas, such 
as biology, cognitive neuroscience, and cognitive science, is to identify the parts of a 
mechanism, its operations, its organization, and thus show how these elements consti-
tute the system’s relationship with the phenomenon that must be explained [9, 10, 45]. 
Particularly, in cognitive science, the central idea present in the theory is that human 
neurocognitive processes are a type of information processing performed by neural 
systems (mechanisms). These processes and the components that carry them out can be 
decomposed into subparts, and these subparts are decomposed again, as far as necessary 
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for the understanding of the investigated phenomenon. After that, these components 
and activities have to be located in the brain as spatiotemporal parts of a complex multi-
level neurobiological mechanism. As a result, there may be multiple levels of mechanistic 
composition in a human neurocognitive mechanism.

Another important feature of MTHC is that it was developed within a broad 
physicalist context that is present in a vast amount of work in contemporary cognitive 
science, philosophy of cognitive science, and philosophy of mind. In this physicalist 
context, the theory tries to combine central ideas present in traditional cognitive 
science with the main ideas present in certain fields of neuroscience that investigate 
human cognition. In this sense, some authors argue that this mechanistic physicalist 
framework can provide a consistent way to build a unified science of cognition and 
integrate cognitive science and neuroscience [23–25, 40].

Indeed, integrating and unifying, from a physicalist background, traditional 
cognitive science and traditional neuroscience to understand and investigate 
human cognition is an old dream held by many authors. Patricia Churchland, in 
1986, calls for the unification of cognitive research and neural research in her book 
Neurophilosophy: Toward a unified science of the mind-brain. The aim of Churchland’s 
book was to outline a general framework that would be suitable for the develop-
ment of a unified theory of what she called “mind-brain,” as well as to encourage the 
interaction between philosophy, psychology, and neuroscience [46].

It is possible to argue that MTHC was articulated with the objective of provid-
ing this integration and unification in a more precise theoretical way and within a 
clear physicalist background. The influential version of MTHC by William Bechtel 
is a clear example. He considers the human phenomenon “mind-brain” as “a set of 
mechanisms for controlling behavior” [9], and he explains that cognitive phenomena 
(e.g., perception, attention, memory, problem solving, and language) can be charac-
terized as “information-processing mechanisms” [9]. Bechtel [9] states that scientific 
disciplines that aim to explain cognitive activities recognize that “in some way, these 
activities depend upon our brain.” Or, to put it in another way: “Psychological phe-
nomena are realized in brains comprised of neurons” [45]. This means that cognitive 
phenomena are physical and need to be explained in some physical (neural) way.

Craver and Tabery [47] describe the physicalist commitment quite clearly—“many 
mechanists opt for some form of explanatory anti-reductionism, emphasizing the 
importance of multilevel and upward-looking explanations, without rejecting the 
central ideas that motivate a broad physicalist world-picture.” Therefore, in this 
approach, there is no space for any form of dualism, pluralism, or non-physicalism 
of any kind in relation to the ontology of human cognition. There is, indeed, a clear 
commitment to a form of ontological monism, namely, physicalism, that underlies the 
neo-mechanistic theory of human cognition.

Neo-mechanistic ideas about human cognitive phenomena are becoming increas-
ingly dominant in fields related to theoretical cognitive science and cognitive neuro-
science [48]. Consequently, the neo-mechanistic framework is often presented as one 
of the main theories, or the main theory, to explain human cognition in the twenty-
first century.

3. Mechanistic model of human cognitive computation

Formulations of the idea that human cognition can be considered in compu-
tational terms can already arguably be found in the works of Thomas Hobbes 
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(1588–1679) and Gottfried Leibniz (1646–1716). However, it is in the first half of 
the twentieth century that new developments in this tradition made the thesis gain 
great strength [49]. Alan Turing (1912–1954), with his work on computation, made 
a solid mathematical contribution to advances in the attempt to build machines 
capable of thinking like humans. And with the development of the computer and 
the emergence of studies in computer science and artificial intelligence, there was an 
even greater push for the acceptance of these ideas in the period. Indeed, these were 
crucial factors in the development of cognitive psychology in the 1950s and cognitive 
science (in the specific sense) in the 1970s. In discussing the foundations of cognitive 
science, Gardner [3] states that “there is the faith that central to any understanding 
of the human mind is the electronic computer.” Furthermore, according to him: 
“Involvement with computers, and belief in their relevance as a model of human 
thought, is pervasive in cognitive science” [3].

The first formulations of the philosophical foundations and the most central bases 
of the “computational theory of cognition” were presented, above all, in central works 
by Hilary Putnam (1926–2016) and Jerry Fodor (1935–2017). It is mainly based on 
works like these that the “classical model of cognitive computation” was formulated 
[49]. According to this proposal, the human mind is a computational system similar 
in important respects to a “Turing machine,” which works through “Turing-style 
computations.” In this view, cognitive processes, such as problem solving, decision 
making, and formal reasoning, are performed through computations similar to those 
of a Turing machine.

Another line of work, however, developed an alternative notion of cognitive 
computation. Inspired by research in the field of neurophysiology, some authors in 
the 1980s proposed that cognitive computation was something very different from 
Turing-style computation [50]. The correct format of cognitive computation for them 
was that of neural networks, in which, very briefly, data nodes are connected in a par-
ticular way so that when the network is activated through an input, it can provide an 
output. This framework became known as connectionism, and it has been developed 
in numerous works since then. Many cognitive models of different phenomena were 
built based on this view, such as object recognition, speech perception, and sentence 
comprehension.

The notion of “cognitive mechanistic computation” is part of this tradition, and it 
is especially related to the model of neural networks. Craver [10], for example, writes 
about the “computational properties of brain regions” and “computational proper-
ties of neural systems,” without giving much detail about what exactly this means. In 
any case, it is clear that the supposed computation is much more related to concrete 
properties of neural systems than to abstract functional properties of psychologi-
cal capacities considered in terms of Turing computation or something similar. 
Milkowski [11], in turn, presents a proposal that holds that neurocognitive processing 
occurs over states that contain information, but he does not elaborate much on the 
content and the semantic dimension of cognitive information or of putative cognitive 
computations.

Bechtel [9, 19] considers mental mechanisms as information-processing mecha-
nisms that operate through neural representations and neural computations about 
vehicles and content. In his view, the “control theory of dynamical systems” shows 
how content is placed in this context. And Thagard [14, 15] thinks that mental 
mechanisms operate through computations that take place on representations at 
the cognitive level and computations that take place at the neural and molecu-
lar levels. In Thagard’s work, there is also recourse to the “theory of dynamical 
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systems” (as in Bechtel’s); however, just in his version of the mechanistic theory, 
there is a definite number of mechanistic levels and extensive discussion about the 
“semantic pointers theory” of Chris Eliasmith.

Finally, there is the work of Piccinini [12, 13, 51], which is one of the most theo-
retically sophisticated and detailed among neo-mechanists regarding such issues. 
The author defends a mechanistic neurocomputational theory of human cognition. 
In his view, the human nervous system is a functional mechanism that produces 
computations through the activation of neurons, while the processing occurs in 
vehicles according to rules. Cognitive capacities are explained then by multilevel 
neurocognitive mechanisms that perform neural computations over neural represen-
tations. Besides, he thinks that neural computation (i.e., computations defined on 
the functionally relevant elements of neural activity) is not purely digital, as classi-
cally understood, nor purely analog, as alternatively understood; in his view, neural 
computation is sui generis – neither wholly digital nor wholly analog.

One does not need to enter so deep into these individual theories to see that they 
differ significantly. Craver mentions computations but does not offer an elaborated 
account. Thagard is the only one mentioning semantic pointers as central to the 
account. Milkowski and Piccinini attempt to avoid the problems with content, by 
means of focusing on formal properties. And Bechtel uses control theory to deal 
with the issue of content. As a result, it is not possible to derive from those accounts 
a single theory, as each author develops his own point of view with its significant 
particularities. There is, therefore, no theoretical substantial unity among these 
proponents.

However, one can try to find common aspects to evaluate at least the most basic 
and important tenets. To do that, an analysis of two cases where this mechanistic view 
on human cognitive computation can be applied will be helpful.

One of the best examples found in the specialized literature of a concrete applica-
tion of this view to particular cognitive phenomena is related to memory, which, 
indeed, has been traditionally an object of study in the field of psychology [9, 10]. 
Functional analyses of the human memory capacity reveal the existence of many sub-
capacities, such as short-term memory, long-term memory, phonological memory, 
visuospatial memory, semantic memory, episodic memory, and memory consolida-
tion. In mechanistic terms, one of the best-understood phenomena in this memory 
system is memory consolidation. Roughly put, this is the phenomenon of transform-
ing short-term memories (which are liable and easy to disrupt) into long-term memo-
ries, which are robust and enduring, when consolidation takes place and permits the 
organism to remember important events for a longer period of time and modify its 
behavior accordingly [52]. To explain this phenomenon, all the relevant regions in the 
brain responsible for the functions that compose the neuro-cognitive mechanism of 
memory consolidation, including all relevant mechanistic levels of decomposition, 
must be identified, that is, all the particular component parts and component opera-
tions of the whole mechanism must be determined, as shown on Figure 1. Finally, the 
causal processes and causal interactions within the mechanism functions need also to 
be understood, that is, the general organization of the mechanism.

The explanation starts at the highest level of the whole mechanism. At this level, 
it is necessary to correctly identify all the large neural network that is responsible for 
memory consolidation. Secondly, it must be established whether this large neural 
system is indeed all that is relevant for the explanation of the phenomenon. The 
mechanistic explanation at this level also needs to clarify how the neural network 
process information about new memory episodes through computational operations 



Cognitive Robotics and Adaptive Behaviors

8

and how these processes produce and affect, for instance, the different degrees of 
consolidation that characterize the memories under investigation.

Once this has been clarified, the explanation turns to the second level of descrip-
tion in which the large neural system is decomposed into particular sub-neural 
systems localized in more specific regions. Here the goal is to understand the informa-
tion processing and computational operations (e.g., spiking patterns in populations 
of neurons) of these smaller neural networks and how they contribute to the perfor-
mance of the whole mechanism composed of such neural nets.

Moreover, a further stage of decomposition must be reached that concerns the 
processes underlying memory at an intercellular level. The explanation at this par-
ticular level aims at describing the components of a particular neural network and at 
understanding how a small number of neurons operate (e.g., how they depolarize and 
fire in the process of propagation of action potentials, or how they are responsible for 
synaptic processes, neurotransmitters being released, and so on). Here it is possible to 
measure spiking rates of neurons, or spiking frequency and record neural activity in 
general.

Finally, the explanation can go even to another lower mechanistic level—the 
intracellular and molecular level. At this level, the description is in terms of the 
activity of relevant proteins, molecules, and ions. As one can see, this kind of 
explanation “exhibits a progression from the behavioral-level characterization of 
memory consolidation to the identification of important components in the pro-
cess at progressively lower levels.” [52]. All levels are equally important to achieve 
the complete multilevel mechanistic explanation of the particular phenomenon in 
the end.

Figure 1. 
An example of a simple model of a neuro-cognitive biological mechanism (M1). In this model, M1 is composed, at 
the level L1, by its component parts C1, C2, and C3, which perform the functions (or activities) f1, f2, and f3. The 
component parts can be decomposed into smaller components, as it happens with C3, which is composed, at level 
L2, of the sub-components SC1, SC2, SC3, and SC4. The component SC3 can be further decomposed, at level L3, 
into its subcomponents ssc1, ssc2, and ssc3.
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Another example is related to human visual perception [9, 13, 40], which is 
roughly understood as the capacity to acquire and process visual information from 
objects and events in the environment. In the biological mechanism related to human 
visual perception, the occipital lobe is central, since many studies on humans show 
deficits in visual processing due to damage in the occipital lobe. The mechanism 
also includes a projection of the optic tract going from the eye, passing by the lateral 
geniculate nucleus (LGN), which is an area of the thalamus, and achieving the occipi-
tal lobe. Besides, it includes the eyes, optic nerves, and other brain areas responsible 
for visual perception. All these areas can be decomposed in working components and 
their operations, and each decomposition is considered to be a lower level in the entire 
constitution of the mechanism. The occipital lobe, for instance, can be itself decom-
posed in areas responsible for particular visual functions, such as the striate cortex, 
also known as Brodmann area 17, or V1 (primary visual cortex, or visual area 1).

The same procedure can be done for all the other areas in the brain that are also 
part of the mechanism responsible for visual perception; for instance, V2, V3, V4, and 
V5/MT. It is necessary to identify also the cells (including visual receptor cells in the 
retina of the eye, such as cones and rods), networks of cells, or larger neural systems 
in these areas that are responsible for information processing and computation, for 
example, about light and dark spots, bars of light (edges), size, shape, color, depth, 
location, and motion of objects in the visual field. The mechanism also includes the 
pathways and channels through which the information is transmitted and the infor-
mation about intercellular, intracellular, and molecular processes.

As one can observe by looking at these two examples, the notion of “computation” 
in the mechanistic framework stands for some causal interactions within the nervous 
system and this is how different brain regions “compute” different information. Each 
brain region “stands for” some kind of particular information—related to perception, 
sensation, memory, language, reasoning, emotion, etc. The substantial problems with 
such an account of human cognition will be analyzed in what follows.

4. Major challenges to the model

A great deal of criticism has arisen in the specialized literature concerning the 
notion of human cognitive computation. It is nearly impossible to review all of the 
works, but I will make some considerations of some of the most influential critics.

Fodor [53–55], for instance, claims that many mental representations (e.g., beliefs) 
and mental processes (e.g., abductive reasoning) are sensitive to global properties 
(i.e., properties that beliefs, for instance, have so that they are determined by a set of 
other beliefs which they are members of). For example, a belief about a tennis racket 
being broken may complicate the plan of playing tennis on the weekend, but not the 
plan of playing soccer. This means that a mental representation, such as an intention 
to play tennis, will depend on the context at the moment—whether there is a racket 
available for the game or not. Fodor argues, though, that classical symbolic comput-
ing models are only sensitive to local properties, and neural network models cannot 
handle this feature of human cognition.

Dreyfus [56], in turn, claims that much human knowledge cannot be captured by 
symbolic manipulation and formal rules, since this knowledge is constructed through 
direct contact and practicing in the world. Nagel [57] brings attention to the problem 
of phenomenal consciousness—roughly, the issue of what it feels like to experi-
ence something subjectively. Following this line of thinking, we can also say that a 
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computer cannot know (if it can know anything) what it feels like to taste the flavor 
of chocolate. It has no idea of what it is like to eat chocolate, something that is quite 
basic for any child that does it. More than that, computers do not feel pain or pleasure, 
which is quite basic for human beings. Furthermore, Searle [58] brings attention 
to the difficulties related to intentionality, understanding, and meaning, with his 
famous “Chinese room argument.” And, additionally, Putnam [59] develops the idea 
that mental states cannot be identified with computational states, consequently argu-
ing vigorously against computational reductionism3.

The case of Bruner’s critics is also very interesting. One of the names most fre-
quently mentioned in influential works of historical reconstruction of the events 
and studies that contributed to the beginning and development of the cognitive 
movement in psychology is the American psychologist Jerome Bruner (1915–2016) 
[1–3, 60, 61]. He is recognized for having founded, together with George Miller 
(1920–2012), the Center for Cognitive Studies at Harvard University, in 1960. In 
addition, Bruner published, together with colleagues, in 1956, A Study of Thinking, in 
which he dealt, in a systematic way, with the formation of concepts under a cognitive 
perspective, which gave great impetus to the movement. In his various works, Bruner 
has contributed to scientific knowledge on various topics of psychology, such as 
perception, language, learning, and cognitive development [62].

One of the most interesting points in Bruner’s work, however, is his strong criti-
cism of the very cognitive movement he helped to develop. He has presented this 
criticism in key works, such as Acts of Meaning, published in 1990, and The Culture 
of Education, published in 1996. Examination of these works can thus show what an 
author with a rigorous background in scientific psychology, a high degree of theoreti-
cal sophistication, and extensive research in the field observed that was wrong with 
the development of cognitivism.

In Acts of Meaning, Bruner [63] states that the original idea of the cognitivist 
movement of the 1950s was, in fact, to establish “meaning” as a central concept 
of psychology. However, in Bruner’s view, this original impulse was distorted by a 
reductionist emphasis, adopted by a dominant trend of the movement that defended 
computationalism. The emphasis was given to “information,” “processing of infor-
mation,” and “computability;” and not to meaning and to “meaning construction” 
[63]. As a result of this approach, concepts central to traditional inquiry in scientific 
psychology have been distorted, eliminated, or obscured, such as the concepts of 
“intentional states” (believing, desiring, intending, understanding a meaning) and 
the concept of “agency,” that is, the conduct of human action under the influence of 
intentional states [63].

However, in Bruner’s view, this is not the way forward. In The Culture of Education, 
Bruner [64] says that, since the cognitive revolution, there have been two quite differ-
ent conceptions of how the human mind works—the first establishes the hypothesis 
that the human mind works as a computational system; the second proposes the 
hypothesis that the human mind is constituted and realized in the use of human 
culture. Bruner claims that his version of cognitivism is not based on reductionist 
computationalism, but rather on what he called culturalism. He claims that his inten-
tion is really to develop a theory of the human mind alternative to computationalism 

3 Of course, these arguments are still being strongly debated currently, and there are many attempts to 
answer these concerns. If the answers are satisfying or not, it is something that cannot be settled here. 
However, in any case, these arguments taken together provide a very compelling case against the idea that 
all human cognition can be understood and explained in computational terms.
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and that his theory focuses exclusively on “how human beings in cultural communi-
ties create and transform meanings” [64].

One of the major problems pointed out by Bruner in the computationalist 
approach is that the production of meaning is often extremely complex, sensitive to 
the context, and involves the difficulty of clear and precise understanding [64]. This 
is not the same as establishing computational procedures for the processing of input 
and output information to the system, whether this is computational processing in 
digital format or the form of neural networks. For Bruner, meaning making is not 
merely information processing; it is something more profound and more complex. 
Culture, in his view, has a fundamental role in human life and it is only through it and 
in it that certain processes and mental structures are formed and used.

The human being, in Bruner’s view, was able to develop a way of life in which real-
ity is represented by a symbolism shared by members of a cultural community, and 
human life is organized and built from this symbolism that is conserved, elaborated, 
and transmitted through successive generations [64]. Although meaning is in the 
mind and is produced by it, it also has its origins in culture and has its importance 
within the culture in which it was generated. And for the production of meanings, 
the human mind creates and makes use of symbolic cultural systems. Thus, in this 
view, thinking and learning are always situated in a cultural context [64]. Computer 
systems, however, are not capable of producing meanings. They only deal with 
a certain set of formalized and operationalized meanings, but they do not make 
interpretations of human and cultural phenomena.

Furthermore, there is no very clear reason to suppose that processes and relation-
ships between all mental phenomena are literally computational in nature, nor that 
all mental representations have this same character. The application of the concept 
of computation to these phenomena investigated in the tradition of psychological 
research is based only on a working hypothesis present in a certain particular theo-
retical system. Nevertheless, there is as yet no concrete proof that all human cognition 
works according to a type of computational processing x, y, or z. In fact, finding out 
what kind of computational processing is related to the human mind has become 
an extremely debated issue internally by adherents of any computational model of 
human cognition [49]. It is no accident that comprehensive theoretical systems were 
developed precisely with the intention of questioning the computational model of 
cognition.

Now, to illustrate more concretely some of the difficulties mentioned with the 
notion of human cognitive computation, let us consider some cases involving con-
scious complex informal reasoning and conscious complex decision making where 
explanations for human behavior might be required [22].

Consider, firstly, a case where a person is dissatisfied with her marriage and is 
thinking about getting a divorce. To make such a decision, she has been consciously 
reflecting for months on the current state of the marriage, her beliefs about the 
relationship, her emotions about her partner, her desires and expectations in life, the 
beliefs of her family and closest friends about the issue and what are the reasons to 
take action in this regard. After thinking carefully for a very long time, being aware 
that she really does not feel comfortable and happy at all, she decides to go for a 
divorce.

Consider also a second example. A person needs to decide which candidate she 
will vote for as president of her country. To make this decision, she needs to use her 
conscious informal reasoning ability. Thus, she reflects on the arguments put forward 
by politicians running for the election, the arguments put forward by commentators, 
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scientists, and political analysts, as well as journalists writing on the subject, and the 
arguments of friends and family she finds relevant and credible. After three months 
of thinking, she has not decided yet but is rather still in doubt concerning her vote in 
the major candidates A and B. When someone asks her which candidate she is going 
to vote, she says: “I still don’t know.” Then, some surprising news arises in a serious 
newspaper with charges of corruption against candidate A, and she is a frequent 
reader of this newspaper, so she becomes immediately aware of this. Upon reflec-
tion on the matter and related issues, she takes the new information seriously and 
she finally decides that voting for candidate B is the best option. The major reason 
is that there is no charge whatsoever of corruption against him. When she is asked 
now which candidate she is going to vote for, she answers immediately: “candidate B.” 
After she made up her mind, she finally goes to the appropriate place on the proper 
day and time to cast her vote.

A third example is the case of a college student who suffers from difficulties 
related to his excessive anxiety. Through a general psychological assessment, it can 
be seen that the factors related to student anxiety are financial difficulties, difficul-
ties in family life where physical and psychological violence occurs, difficulties in 
finding leisure time to relax and have fun (since they need to work and study at the 
same time) and difficulties with excessive concerns about the uncertain future, as he 
believes that it will not be easy to find a job when he graduates. All of these factors 
seem to contribute to generate in the student’s mind distorted and dysfunctional 
negative thoughts about himself and his life, and it seems very plausible that these 
distorted thoughts are strongly associated with his excessive anxiety. This interpreta-
tion is, indeed, supported by numerous works in the specialized literature in clinical 
psychology. Thus, we observe that the most relevant causal factors to explain this 
psychological phenomenon are not merely computational, but psychological, social, 
and environmental.

Psychological scientific explanations, in these cases, need considerations that go 
beyond the investigation of computations being performed in nervous systems or 
even in any abstract functional system. What explains the psychological phenomenon 
of belief formation and decision making in the first example and the excessive anxiety 
in the third example is the meaning formation and interaction of beliefs, desires, 
and intentions to act (according to logical rules, practical rules, and interpretation of 
reality), which are strongly affected by emotions, physical environment, and social 
factors.

In the second example, evidently, an informative explanation would have to 
mention an important causal factor—the event of the corruption charges against 
candidate A, appearing in a serious newspaper. Moreover, the explanation would have 
to mention that the person becomes aware of this event, accepts it as reliable, accepts 
the charges as true and accurate, and now this content is present in one or some of her 
beliefs. In possession of this content, she can rationally justify herself when engag-
ing in discussions about the topic with family, friends, and other people, providing 
reasons for her related beliefs and her related behaviors. Thus, the influence of the 
event on her is external and affects the internal logic and content of her systems of 
beliefs, emotions, desires, and intentions. This explanation involves then particular 
properties of human cognitive systems, present for instance in belief and intention 
systems. These properties are clearly different than those involved in merely describ-
ing supposed automatic computational activities in her neural networks or describing 
what is happening in terms of physical and chemical neural processes. The explana-
tion for this phenomenon of belief formation, therefore, would also have to account 
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for how this new information could change a particular belief given her system of 
beliefs about the topic.

In the examples above, there are cognitive processes that often necessitate con-
sciousness and complex informal reasoning about belief systems that are often linked 
to particular perceptions, sensations, emotions, desires, intentions, attitudes, as well 
as related to each other and the external environment. Some of these beliefs have 
great value, such as some moral beliefs, which makes this whole dynamic even more 
complex. In these cases, blind computation might even occur at some level, but what 
is most relevant are environmental, social, cultural, historical, and psychological 
factors (such as beliefs, emotions, desires, and intentions) that acquire meaning in a 
given cognitive system.

The relevant explanation of the actions in such cases is made through consider-
ations—(1) about the creation and alteration of the content of perceptions, beliefs, 
sensations, emotions, maxims, wills, desires, intentions, etc.; (2) about their internal 
relationships; and (3) about their external relationships with the physical, social, 
historical, and cultural context. Rigorous empirical scientific research can aid in 
discovering strong and systematic (stable) regularities in human behavior explained 
in such terms without the need for the notion of computation. Statistical tools and 
analysis, through the mathematical application, can bring greater objectivity, avoid-
ing both an extremely subjective and confusing vocabulary, as well as unproductive 
speculation and mere common sense.

Moreover, self-consciousness here is crucial, since we humans have the ability to 
evaluate our own beliefs, not just to be aware that we have them. If we can access some 
beliefs as belonging to our cognitive belief system, we can evaluate whether they are 
true or false, precise or imprecise, how they are related to our emotions and sensa-
tions and we can decide if we want to keep them or not. The complex social dynamics 
are also crucial, since our systems of beliefs are constantly interacting with the beliefs 
of others during our lifetime and this interaction has a major influence on the forma-
tion and modification of our belief system, emotional system, and volitional system.

Therefore, human beings have the ability to form original belief systems and relate them 
according to logical and interpretative rules, building arguments to support their point of 
view, which often influences their behavior. Human beings are also able to think about dif-
ferent types of relevant information for months or years to make an important and complex 
decision. To make a difficult decision, a human being can take into account information 
related to plans for the very distant future, in which many scenarios are considered. A 
human may wonder what happened in the very distant past, or what might have hap-
pened, even if he or she knew what really happened. And complex informal reasoning and 
complex decision making are things that humans do naturally and often in their daily lives.

Thus, in cognitive science, it is necessary to deal with extremely complex phenom-
ena, given that human beings show great differences when compared to other animals 
in nature. Human beings have a cumulative, complex, dynamic, and elaborate culture 
that is passed on through generations. Humans are also involved in understanding 
and writing their own history. They have natural languages   with enormous, complex, 
and refined expressive power and sophisticated grammar. Human beings practice and 
appreciate art, such as literature, painting, cinema, and music. They engage in purely 
formal or very abstract thoughts when they do mathematics, logic, and engage in certain 
religious thoughts. They create legal laws for their societies and think about morality, 
building moral systems. They build artificial intelligence machines that are able to learn 
with a certain level of autonomy and are able to explore other planets. Furthermore, 
humans are involved in politics, science, and philosophy.
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Computers, by contrast, so far, do not form beliefs on their own, they do not have 
the capacity to evaluate and improve them by themselves, and they do not interact in 
the social environment neither using natural language with a huge degree of sophis-
tication as humans do nor engaging in social and cultural practices. If we look at the 
problem from a very concrete and objective point of view, we observe that even the 
most advanced computer systems, the most advanced robots, and the most advanced 
artificial neural and cognitive architectures today are still very far from behaving 
like human beings in relation to language and actions that involve consciousness and 
informal rationality. Humans are capable of playing chess, cooking pizza, making 
coffee, having a conversation about politics, creating a new song on a guitar, and play-
ing tennis on the same day. No computational artificial system is currently capable of 
this generality in cognition. So, as a matter of current fact, computational artificial 
cognition cannot be used to fully explain the major capacities of human cognition and 
intelligence.

It is no surprise, then, that mechanistic accounts of psychological capacities 
usually suggest only where the putative computations are probably taking place in the 
idealized standard human brain (as we can see in the examples presented in the previ-
ous section), not what exactly are these computations and how they can be related to 
the internal subjective experience of a person (like the content of a strong belief, for 
instance, that can normally be accessed and become conscious).

Difficulties with the notion of cognitive computation are recognized by influ-
ential neo-mechanists themselves. Milkowski [21], for instance, concludes his work 
by admitting that we “still don’t know how to model consciousness mechanisti-
cally.” Additionally, there are several alternative models of cognitive computation 
in cognitive science nowadays—syntactic computation; algorithmic computation; 
causal computation; and semantic computation [65]. None of the models has gained 
significant prominence over the others concerning the understanding and explana-
tion of human cognition. Finally, there is strong criticism even of the attempt by 
neo-mechanists to propose that good computational explanations in cognitive science 
must be also mechanistic explanations [66, 67].

Therefore, if we think about the issue from the point of view of current facts, 
we need to recognize that the neo-mechanistic proposal for human cognition is still 
far from being able to be considered the best or most plausible understanding and 
explanation of human cognition. It is just one view among many.

5. Conclusion

The mechanistic framework has been offering significant contributions to the 
field of cognitive science, on the one hand. One of its best contributions is the 
promotion of debates on the issue of human cognitive computation. In this sense, 
there is a search for a better understanding of what this notion actually means. All 
this effort is very worthwhile and welcome. More generally, the theoretical debate 
about fundamental questions in cognitive science promoted by new mechanists is 
also very important, as well as their effort to clarify what a “biological mechanism” 
and a “cognitive mechanism” are and what a “mechanistic explanation” in cognitive 
science is. Furthermore, another contribution of the new mechanistic philosophy is 
to encourage historical research and current debate, in cognitive science and beyond, 
about the relationship among “mechanism,” “materialism,” “reductionism” and “com-
putationalism”, so that these concepts are not confused and that the positions adopted 
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by the authors, as well as the different dimensions of the debate, are appreciated in 
a fair and correct way. Finally, the new mechanistic philosophy applied to cognitive 
science is also contributing to the important debate concerning the unity, integration, 
and plurality in the field.

On the other hand, however, many of the current promises of the new mechanism 
for cognitive science are quite difficult to fulfill. Firstly, neo-mechanistic philosophy 
is a philosophy of science built primarily from examples from the biological sciences 
and neuroscience that is serving as the basis for building a philosophy of the science 
of mind. We live in a period in which neuroscience and artificial intelligence research 
have gained great prestige and recognition. A great deal of economic investment has 
been made in these areas and this is very attractive. In part, this also influences “the 
new wave of mechanism,” and the necessity of some authors to expand the frame-
work. However, numerous particularities related to psychology and human cognition 
are being neglected in this theoretical structure, as I tried to show.

Secondly, there is considerable disagreement among leading neo-mechanists over 
the most plausible formulation of MTHC regarding fundamental issues, such as the 
idea of   human cognitive computation. Thus, there is a considerable difficulty related 
to the internal articulation and unification of the theory. Furthermore, many alterna-
tive major theories, and the research programs based on them, strongly threaten the 
neo-mechanistic framework in current cognitive science, since they are also seeking 
predominance in the field, or just for having more space and recognition.

Given this, we can conclude that the mechanistic model of human cognitive 
computation cannot provide substantial theoretical or explanatory unification 
or integration to the field of cognitive science today, since there is no unification 
between the proponents themselves. Moreover, their different proposals are often 
unclear on many important aspects concerning traditional problems of intentionality, 
consciousness, and self-consciousness. The accounts are sometimes internally not 
well-articulated; and, externally, there is serious criticism of them, with countless 
debates and controversies on several fundamental questions. In addition, there are 
several alternative models competing for predominance on this particular issue. And 
it is yet by no means clear whether the explanatory power of any of them is greater 
than the explanatory power of the others.

This analysis shows, therefore, that the neo-mechanistic proposal concerning 
human cognitive computation has serious weaknesses. But the problem is not to use 
the idea of   cognitive computing to advance models of biological and artificial cogni-
tive architectures, since many human cognitive abilities can already be simulated. 
Indeed, it is very interesting to see that our science has advanced to the point where 
a computer can win against the best chess and go game players in the world. In fact, 
advancements within computational artificial systems and robotics could well be 
applied to improve our educational and health systems. For example, inspired by 
scientific developments in the field of cognitive science, artificial cognitive systems 
could possibly be developed to help children with the learning process of mathemat-
ics, natural language, or history at schools, or even at the university level. Artificial 
systems could possibly be developed to help people with excessive anxiety symptoms, 
as well. This could be extremely worthwhile. Moreover, better and more advanced 
artificial cognitive systems and robotic systems can contribute to improving theories 
of human cognition, as much as better and more correct theories of human cognition 
can help in faster advancements of cognitive artificial systems and robotic systems. 
But there is good reason to keep these efforts separated and to consider human cogni-
tion as a very complex and particular phenomenon in nature.
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Chapter 2

Learning Robotic Ultrasound Skills
from Human Demonstrations
Miao Li and Xutian Deng

Abstract

Robotic ultrasound system plays a vital role in assisting or even replacing
sonographers in some cases. However, modeling and learning ultrasound skills
from professional sonographers are still challenging tasks that hinder the development
of ultrasound systems’ autonomy. To solve these problems, we propose a learning-
based framework to acquire ultrasound scanning skills from human demonstrations1.
First, ultrasound scanning skills are encapsulated into a high-dimensional multi-modal
model, which takes ultrasound images, probe pose, and contact force into
account. The model’s parameters can be learned from clinical ultrasound data
demonstrated by professional sonographers. Second, the target function of
autonomous ultrasound examinations is proposed, which can be solved roughly by the
sampling-based strategy. The sonographers’ ultrasound skills can be represented by
approximating the limit of the target function. Finally, the robustness of the
proposed framework is validated with the experiments on ground-true data from
sonographers.

Keywords: robotic ultrasound, robotic skills learning, learning from demonstrations,
compliant manipulation, multi-modal prediction

1. Introduction

Ultrasound imaging technology is widely used in clinical diagnosis due to its
noninvasive, low-hazard, real-time imaging, relative safety, and low cost. Nowadays,
ultrasound imaging can quickly detect diseases of different anatomical structures,
including liver [1], gallbladder [2], bile duct [3], spleen [4], pancreas [5], kidney [6],
adrenal gland [7], bladder [8], prostate [9], and thyroid [10]. Besides, during the
global pandemic caused by COVID-19, ultrasound is largely used for the diagnosis of
infected persons by detecting pleural effusion [11, 12]. However, the performance of
ultrasound examination is highly dependent on the ultrasound skills of sonographers,
in terms of ultrasound images, probe pose, and contact force (Figure 1). In general,
the training of an eligible sonographer requires a relatively large amount of time and
cases [13, 14]. In addition, the high-intensity repetitive scanning process causes a

1 More details about our original research: https://arxiv.org/abs/2111.09739; https://arxiv.org/abs/

2111.01625.
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heavy burden on sonographers’ physical condition, further leading to the scarcity of
ultrasound practitioners.

To address these issues, many previous studies in robotics have attempted to
use robots to help or even replace sonographers [15–17]. According to the extent of
the system autonomy, robotic ultrasound can be categorized into three levels—
teleoperated, semi-autonomous, and full-autonomous. A teleoperated robotic
ultrasound system usually contains two main parts—teacher site and student site
[18–20]. The motion of the student robot is completely determined by the
teacher, usually a trained sonographer, through different kinds of interaction
devices, including a 3D space mouse [18], inertial measurement unit (IMU)
handle [20, 21], and haptic interface [21]. While for a semi-autonomous robotic
ultrasound system, the motion of the student robot is only partly determined by the
teacher [22–24].

For a full-autonomous robotic ultrasound system, the student robot is supposed to
perform the whole process of local ultrasound scanning by itself [25–27] and the
teacher robot is only used for emergencies. Until today, only part full-autonomous
robotic ultrasound system has been reported in the literature [28, 29]. These robotic
ultrasound systems usually focus on the scanning of certain anatomical structures,
such as the abdomen [28], thyroid [26], and vertebra [29]. A comprehensive survey
on robotic ultrasound is given in Table 1. Despite these achievements, there are still
many obstacles to the development of the robotic ultrasound system. For example, the
robustness of most systems is poor and some preparations are required before
performing the examination. The key is that there is not a high-dimensional model to
learn ultrasound skills (Figure 2) from the sonographer, further to guide the adjust-
ment of the ultrasound probe.

In this chapter, we proposed a learning-based approach to represent and learn
ultrasound skills from sonographers’ demonstrations, and further guide the
scanning process [31]. During the learning process, the ultrasound images together
with the relevant scanning variables (the probe pose and the contact force) are
recorded and encapsulated into a high-dimensional model. Then, we leverage the

Figure 1.
The medical ultrasound examination (as left figure shown) needs the dexterous manipulation of ultrasound probe
(as right figure shown), which is caused by the environmental complexity in terms of ultrasound images, probe pose
and contact force. (a) Clinical medical ultrasound examination. (b) Ultrasound probe.
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Paper Autonomy
degree

Specific
target

Modality Guidance Publication
year

[18] teleoperated no force, orientation, position human 2015

[19] teleoperated no force, orientation, position human 2016

[20] teleoperated no force, orientation, position human 2017

[21] teleoperated no force, orientation, position human 2020

[22] semi-autonomous no force, orientation, position,
elastogram

elastogram,
human

2017

[23] semi-autonomous no force, orientation, position, vision CNN, human 2019

[24] semi-autonomous yes force, orientation, position trajectory,
human

2019

[30] semi-autonomous yes force, orientation, position, image CNN, human 2020

[25] full-autonomous yes force, orientation, position, vision,
image, MRI

vision, MRI,
confidence map

2016

[26] full-autonomous yes force, orientation, position, image SVM 2017

[27] full-autonomous no force, orientation, position, vision vision 2018

[28] full-autonomous yes force, orientation, position, vision,
MRI

vision, MRI 2016

[29] full-autonomous yes force, position, vision RL 2021

Table 1.
A brief summary of robotic ultrasound. Initials: Convolutional neural network (CNN), magnetic resonance
imaging (MRI), support vector machine (SVM), reinforcement learning (RL).

Figure 2.
The feedback information from three different modalities during a free-hand ultrasound scanning process. The first
row represents ultrasound images. The second row represents the contact force in the z-axis between the probe and
the skin, collected using a six-dimensional force/torque sensor. The third row represents the probe pose, which is
collected using an inertial measurement unit (IMU).
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power of deep learning to implicitly capture the relation between the quality of
ultrasound images and scanning skills. During the execution stage, the learned
model is used to evaluate the current quality of the ultrasound image. To obtain a
high-quality ultrasound image, a sampling-based approach is used to adjust the probe
motion.

The main contribution of this chapter is two-fold: 1. A multi-modal model of
ultrasound scanning skills is proposed and learned from human demonstrations,
which takes ultrasound images, the probe pose, and the contact force into account. 2.
Based on the learned model, a sampling-based strategy is proposed to adjust the
ultrasound scanning process, to obtain a high-quality ultrasound image. Note that the
goal of this chapter is to offer a learning-based framework to understand and acquire
ultrasound skills from human demonstrations [31]. However, it is obvious that the
learned model can be ported into a robot system as well, which is our work for the
next step [32].

This chapter is organized as follows. Section II presents related work in the field of
ultrasound images and ultrasound scanning guidance. Section III provides the meth-
odology of our model, including the learning process of task representation, the data
acquisition process through human demonstrations, and the strategy for scanning
guidance during real-time execution. Section IV describes the detailed experimental
validation, with a final discussion and conclusion in Section V.

2. Related work

2.1 Ultrasound images evaluation

The goal of the ultrasound image evaluation is to understand images in terms of
classification [33], segmenting [34], recognition [35], etc. With the rise of deep
learning, many studies have attempted to process ultrasound images with the help of
neural networks.

Liu et al. have summarized the extensive research results on ultrasound image
processing with different network structures, including convolution neural network
(CNN), recurrent neural network (RNN), auto-encoder network (AE), restricted
Boltzmann’s machine (RBM), and deep belief network (DBN) [36]. From the per-
spective of applications, Sridar et al. have employed CNN for the main plane classifi-
cation in fetal ultrasound images, considering both local and global features of the
ultrasound images [37]. To judge the severity of patients, Roy et al. have collected
ultrasound images of the COVID-19 patient’s lesions to train a spatial transformer
network [38]. Deep learning is also adopted in the task of segmenting thyroid nodules
from real-time ultrasound images [39]. While deep learning provides a superior
framework to understand ultrasound images, it generally requires a large number of
expert-labeled data, which can be difficult and expensive to collect.

Confidence map provides an alternative method in ultrasound image processing
[40]. The confidence map is obtained through pixel-wise confidence estimation using
a random walk algorithm. Chatelain et al. have devised a control law based on the
ultrasound confidence map [41, 42], with the goal to adjust the in-plane rotation and
motion of the probe. Confidence map is also employed to automatically determine the
proper parameters for ultrasound scanning [25]. Furthermore, the advantages of the
confidence maps have been demonstrated by combining with position control and
force control to perform automatic position and pressure maintenance [43].
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However, a confidence map is proposed with the hand-coded rules, which can not be
directly used to guild the scanning motion.

2.2 Learning of the ultrasound scanning skills

While the goal of ultrasound image processing is to understand images, learning
ultrasound scanning skills aims to obtain high-quality ultrasound images through the
adjustment of the scanning operation. Droste et al. have used a clamping device with
IMU to obtain the relation between the probe pose and the ultrasound images during
ultrasound examination [44]. Li et al. have built a simulation environment based on
3D ultrasound data acquired by a robot arm mounted with an ultrasound probe [45].
However, they did not explicitly learn ultrasound scanning skills. Instead, a rein-
forcement learning framework is adopted to optimize the confidence map of ultra-
sound images, by adapting the movement of the ultrasound probe. All of the above-
mentioned work only take the pose and the position of the probe as input, while in this
chapter, the contact force between the probe and humans is also encoded, which is
considered as a crucial factor during the ultrasound scanning process [46].

For the learning of force-relevant skills, a great variety of previous studies in
robotic manipulation focused on learning the relation between force information and
other task-related variables, such as the position and velocity [47], the surface elec-
tromyography [48], the task states and constraints [49], and the desired impedance
[50–52]. A multi-modal representation method for contact-rich tasks has been pro-
posed in ref. [53] to encode the concurrent feedback information from vision and
touch. The method was learned through self-supervision, which can be further
exploited to improve the sampling efficiency and the task success rate. To the best of
our knowledge, for a multi-modal manipulation task, including feedback information
from ultrasound, force, and motion, this is the first work to learn the task representa-
tion and the corresponding manipulation skills from human demonstrations.

3. Problem statement and method

Our goal is to learn free-hand ultrasound scanning skills from human demonstra-
tions. We want to evaluate the multi-modal task quality of combining multiple sen-
sory information, including ultrasound images, the probe pose, and the contact force,
with the goal to extract skills from the task representation and even transferring skills
across tasks. We formulate the multisensory data by a neural network, where the
parameters are trained by the data supervised by human ultrasound experts. In this
section, we will discuss the learning process of the task representation, the data
collection procedure, and the online ultrasound scanning guidance respectively.

3.1 Learning of ultrasound task representation

For a free-hand ultrasound scanning task, three types of sensory feedback are
available—ultrasound images from the ultrasound machine, force feedback from a
mounted F/T sensor, and the probe pose from a mounted IMU. To encapsulate the
heterogeneous nature of this sensory data, we propose a domain-specific encoder to
model the task, as shown in Figure 3. For the ultrasound imaging feedback, we use a
VGG-16 network to encode the 224� 224� 3 RGB images and yield a 128-d feature
vector. For the force and pose feedback, we encode them with a four-layer fully
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connected neural network to produce a 128-d feature vector. The resulting two feature
vectors are concatenated together into one 256-d vector and connected with a one-
layer fully connected network to yield a 128-d feature vector as the task feature vector.
The multi-modal task representation is a neural network model denoted by Ωθ, where
the parameters are trained as described in the following section.

3.2 Data collection via human demonstration

The multi-modal model as shown in Figure 3 has a large number of learnable
parameters. To obtain the training data, we design a procedure to collect the ultra-
sound scanning data from human demonstrations, as shown in Figure 4. A novel
probe holder is designed with intrinsically mounted sensors such as IMU and F/T
sensors. A sonographer is performing the ultrasound scanning process with the probe,
and the data collected during the scanning process is described as follows:

• D ¼ Si,Pi, Fi� �� �
i¼1…N denotes a dataset with N observations.

• Si ∈224�224�3 denotes the i-th collected ultrasound image with cropped size.

Figure 3.
The multi-modal task learning architecture with human annotations. The network takes data from three different
sensors as input—The ultrasound images, force/torque (F/T), and the pose information. The data for the task
learning is acquired through human demonstrations, where the ultrasound quality is evaluated by sonographers.
With the trained network, the multi-modal task can be represented as a high-dimensional vector.

Figure 4.
The ultrasound scanning data collected from human demonstrations. The sonographer is performing an ultrasound
scanning with a specifically designed probe holder. The sensory feedback during the scanning process is recorded,
including the ultrasound images from an ultrasound machine, the contact force and torque from a 6D F/T sensor,
and the probe pose from an IMU sensor.
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• Pi ∈4 denotes the probe pose in terms of quaternion.

• Fi ∈6 denotes the i-th contact force/torque between the probe and the
human skin.

For each recorded data in the dataset D, the quality of the obtained
ultrasound image is evaluated by three sonographers and labeled with 1=0. 1 stands for
a good ultrasound image while 0 corresponds to an unacceptable ultrasound image.
With the recorded data and the human annotations, the model Ωθ is trained with a
loss function of cross-entropy. During training, we minimize the loss function
with stochastic gradient descent. Once trained, this network produces a 128-d
feature vector and evaluates the quality of the task at the same time. Given the task
representation model Ωθ, an online adaptation strategy is proposed to improve the
task quality by leveraging the multi-modal sensory feedback, as discussed in the next
section.

3.3 Ultrasound skill learning

As discussed in related work, it is still challenging to model and plan complex
force-relevant tasks, mainly due to the inaccurate state estimation and the lack of a
dynamics model. In our case, it is difficult to explicitly model the relations among
ultrasound images, the probe pose, and the contact force. Therefore, we formulate the
policy of ultrasound skills as a model-free reinforcement learning problem, and the
target function is as follows:

maxmize
P,F

Qθ ¼ f S,P,F Ωθj Þð

subject to P∈DP, F∈DF,

Fz ≥0: (1)

where Qθ denotes the quality of the task, which is computed using the learned
model Ωθ by passing through the sensory feedback S,P, F. The constraint Fz ≥0means
that the contact force along the normal direction should be positive. DP and DF denote
feasible sets of the probe pose and the contact force, respectively. In our case, these
two feasible sets are determined by human demonstrations. However, it is worth
mentioning that other task-specific constraints for the pose and the contact force can
also be adopted here.

By choosing model-free, it requires no prior knowledge of the dynamics model of
the ultrasound scanning process, namely the transition probabilities from one state
(current ultrasound image) to another (next ultrasound image). More specifically, we
choose Monte Carlo policy optimization [54], where the potential actions are sampled
and selected directly from previous demonstrated experience, as shown in Figure 5.
For the sampling, we impose a bound between P0

t, F
0
t and Pt, Ft, which prevents the

next state from moving too far away from the current state. If the new state
<P0

t, F
0
t, St > is evaluated by the task quality function Qθ as good, thus the desired

pose P0
t and contact force F0

t are used as a goal for the human ultrasound scanning
guidance. Otherwise, new P0

t and F0
t are sampled from the previous demonstrated

experience. This process repeats N times, and the P0
t, F

0
t with the best task quality, is
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chosen as the final goal for the human scanning guidance. Note that this sampling-
based approach does not guarantee the global optimality of Eq. 1. However, this is
sufficient for human ultrasound scanning guidance because the final goal is only
required to be updated at a relatively low frequency.

4. Experiments: design and results

In this section, we use real experiments to examine the effectiveness of our pro-
posed approach to multi-modal task representation learning. In particular, we design
experiments to verify the following two questions:

• Does the force modality contribute to task representation learning?

• Is the sampling-based policy effective for real data?

4.1 Experiments setup

For the experimental setup, we used a Mindray DC-70 ultrasound machine with an
imaging frame rate of 900 Hz. The ultrasound image was captured using MAGEWELL
USB Capture AIO with a frame rate of 120 Hz and a resolution of 2048� 2160, as
shown in Figure 6.

As shown in Figure 4, the IMU mounted on the ultrasound probe was ICM20948
and the microcontroller unit (MCU) was STM32F411. The highest frequency of IMU
could reach 200 Hz, with an acceleration accuracy of 0.02 g and a gyroscope accuracy
of 0:06∘/s. The IMU could output the probe pose in the forms of quaternion. For the
force feedback, we used a 6D ATI Gamma F/T sensor with a maximum frequency of
7000 Hz. The computer used for the data collection was with Intel i5 CPU and Nvidia
GTX 1650 GPU, and with the operating system of Ubuntu16.04 LTS and ROS Kinetic.

4.2 Data acquisition

To make collected data comparable, the recording program needs to implement two
functions—coordinate transformation and gravity compensation. The IMU will start to
work as soon as the power is turned on. At that time, the probe pose corresponds to the
initial coordinate system, so the quaternion’s values are equal to (1, 0, 0, 0) and the

Figure 5.
Our strategy for scanning guidance takes the current pose Pt, the contact force Ft, and the ultrasound image St as
input, and outputs the next desired pose P0

t and contact force F0
t. For sampling, we impose a bound between P0

t, F
0
t,

and Pt, Ft, which prevents the next state from moving too far away from the current state. For evaluation, if the
sampled pose and force are predicted as high-quality according to Eq. 1, the skill-learned model will select them as
desired output, otherwise, it will repeat the sampling process. For execution, the desired pose P0

t and contact force F0
t

are used as the goal for the human ultrasound scanning guidance.
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rotation matrix is the identity matrix. However, it will take some time from the wiring
of the whole system to recording data, that is, the quaternion’s values at the beginning
of recording are never equal to the initial ones. To solve this problem, the coordinate
transformation is necessary so that the original pose corresponds to the initial coordi-
nate system. Besides, the force/torque signal contains the contact force with the device’s
gravity, which means our program should have the function of gravity compensation.

The real-time quaternion Q output by the IMU includes four values (w, x, y, z),
which should be transformed into a real-time rotation matrix R for calculation. The
initial rotation matrix is recorded as R0. As the rotation matrix is always orthogonal,
the inverse and transpose of R0 are equal and recorded as R�1

0 . The relative real-time
rotation matrix R ∗

x is calculated as follows:

R ∗
x ¼ R�1

0 � Rx (2)

The gravity components Gx,Gy,Gz in X,Y,Z directions are calculated by R ∗
x and

gravity G, as follows:

Gx,Gy,Gy
� � ¼ 0, 0,G½ � � R ∗

x (3)

In this experiment, we mainly consider the influence of force, so simply record
original values of torque. The force/torque sensor’s output signal contains real-time
force components Fx,Fy, Fz and torque components Tx,Ty,Tz in three directions. The
fixed values F ∗

x ,F
∗
y , F

∗
z ,T

∗
x ,T

∗
y ,T

∗
z are calculated, as follows:

F ∗
x , F

∗
y ,F

∗
z

h i
¼ Fx,Fy, Fz
� �� Gx,Gy,Gz

� �
(4)

¼ Tx,Ty,Tz
� �

(5)

It is worth noting that gravity G can be calculated by Eq. 6, where the maximum
and minimum values of force components in three directions are denoted by
Fx�max , Fx�min , Fy�max ,Fy�min , Fz�max ,Fz�min .

G ¼ Fx�max � Fx�min þ Fy�max � Fy�min þ Fz�max � Fz�min

6
(6)

Figure 6.
Experiments setup. (a) the ultrasound machine – Mindray DC-70. (b) the video capture device – MAGEWELL
USB capture AIO. (c) Data-acquisition probe holder. (d) the computer for data collection with Intel i5 CPU and
Nvidia GTX 1650 GPU, Ubuntu16.04 LTS.
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The recording frequency is 10 Hz and the accuracy of gravity compensation is
0.5 N. The ultrasound data were collected at the Hospital of Wuhan University.
The sonographer was asked to scan the left kidneys of 5 volunteers with different
physical conditions. Before the examination, the sonographer vertically held the
probe above the left kidney of a volunteer. The ultrasound scanning process
began with the recording program launched. The snapshots for the scanning
process are shown in Figure 7. The collected data consists of ultrasound videos, the
probe pose (quaternion), the contact force (force and torque), and labels (1/0). In
total, there are 5995 samples of data. The number of positive samples (labeled 1)
is 2266, accounting for 37.8%. The number of negative samples (labeled 0) is
3729, accounting for 62.2%. Figure 8 presents trajectories of the recorded
information.

4.3 Experimental results

The detailed architecture of our network is shown in Figure 9. In this case, the
256-dimensional vector denotes the feature vector presented in Figure 3. We
started the training process with a warm start to classify the ultrasound images. The
adopted neural network was VGG-16 with cross-entropy loss. A totla of 5995 sets of
recorded data were divided into 8:2 for training and validation. Data for training
included ultrasound images and labels. The learning rate was 0.001 and the batch size
was 20. For the ultrasound skill evaluation, data for training included images S,
quaternion P, force F, and labels. By inputting P, F, S, this neural network would
output predicted label. We fixed channels of the last fully connected layer in
VGG-16 to 128 channels and merged it with P,Fð Þ feature vector. Four fully connected
layers were added to transform P, Fð Þ vector into 128 channels, which were
concatenated with VGG-16 output vector. After getting the vector with 256
channels, two fully connected layers and a softmax layer were added to output
the confidence of the label. Figure 10 presents accuracy and loss in training neural
networks. The neural network for classification finally reached an accuracy of 96.89%
and 95.61% in training and validation. The neural network for ultrasound skill

Figure 7.
The snapshots of human ultrasound scanning demonstrations and samples of the obtained ultrasound images. Here
the images (e) and (f) are labeled as good quality while (g) and (h) are labeled as bad quality.
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Figure 8.
The trajectories of the recorded force and pose during an ultrasound examination. Force component in (a) X
direction (b) Y direction (c) Z direction; rotation axis: (d) X Axis (e) Y Axis (f) Z Axis.

Figure 9.
Framework of the neural network. The ultrasound images were encoded with VGG-16. Four fully connected layers
were added to transform P,Fð Þ the vector into 128 channels. Vectors from S and P, Fð Þ were concatenated. Two
fully connected layers were added to transform concatenated vector’s channels from 256 to 2. Finally, the softmax
layer would map the last values to the probability of label 1 or 0.
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evaluation finally reached an accuracy of 84.85% and 88.50% in training and
validation.

To confirm the correlation between P and F, we divided data into
different levels for training of four networks with different input ports. Net1
was trained with S and P, while Net2 was trained with S and F. Net3 was trained with
S, P, and F with two parallel four-layer fully connected neural networks for inputting
P and F. Net4 (Figure 9) was trained with S, P, and F, with concatenated P,Fð Þ
vectors. The main difference between Net3 and Net4 was the existence of interactions
between P and F during the training process. Each network had been trained five
times with 20 training epochs. Figure 11 presents the performance of four networks in
validation.

Online ultrasound scanning skill guidance: We selected some continuous
data streams from the dataset for verification, which had not been used for
training the neural network. The sampling process in Figure 5 was repeated
1000 times and the actions P, F with the best task quality were selected as the
next desired action. The whole process took 3 to 5 seconds to output the desired
action.

Figure 10.
(a) Accuracy and (b) loss in training the neural network for ultrasound image classification. (c) Accuracy and
(d) loss in training the neural network for ultrasound skills evaluation.
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Figure 12 presents predicted results about components of contact force, compared
with ground truth data. Figure 13 presents the predicted probe pose with
corresponding ultrasound images. Figure 14 presents predicted and true probe poses
with corresponding ultrasound images.

Figure 11.
Accuracy of four networks in validation. Net1 was trained with S and P. Net2 was trained with S and F. Net3 was
trained with S, P, and F, without interaction between P and F. Net4 was trained with S, P, and F, with the
interaction between P and F.

Figure 12.
Predicted force’s component in (a) X-axis direction. (b) Y-axis direction. (c) Z-axis direction.

Figure 13.
Predicted probe pose and corresponding ultrasound images. The confidence is the probability of label 1.
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5. Discussion and conclusion

5.1 Discussion

This chapter provides a general approach to realizing autonomous ultrasound
guidance with some merits as follows: (1) The clinical ultrasound skills are considered
as a multi-modal model without any unique factor or parameter, namely, it could be
used in most robotic ultrasound systems. (2) The ultrasound skills are mapped into
low-dimensional vectors, which makes our approach more flexible with other
machine learning methods, such as support vector machine, Gaussian mixture model,
and k-nearest neighbors algorithm. (3) The autonomous ultrasound examinations are
defined as roughly solving the proposed target function by Monte Carlo method,
which provides a newborn and robust method to fulfill autonomous ultrasound.

There are some limitations in this chapter. First, the online guidance method is
based on random sampling, which leads to a certain degree of randomness. Therefore,
there is a certain difference between forecast results and true values in the short term.
Second, to ensure the effectiveness of the sampling, a large number of samples are
required, which means a higher task quality improvement would require more com-
putation cost. With the expedition of the dataset, this method is difficult to meet the
requirement of timely guidance, which can be solved by denoting the feasible set as a
probabilistic model to acquire better sampling efficiency. Finally, we believe that
through detailed adjustments to the neural network, the efficiency of this model has
the opportunity to be greatly improved without losing too much accuracy.

6. Conclusion

This chapter presents a framework for learning ultrasound scanning skills from
human demonstrations. By analyzing the scanning process of sonographers, we define
the entire scanning process as a multi-modal model of interactions between ultra-
sound images, the probe pose, and the contact force. A deep-learning-based method is
proposed to learn ultrasound scanning skills, from which the skill-representing target
function with a sampling-based strategy for ultrasound examination guidance is
proposed. Experimental results show that this framework for ultrasound scanning

Figure 14.
Predicted and true probe pose, with corresponding ultrasound images. The confidence is the probability of label 1.
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guidance is robust, and presents the possibility of developing a real-time learning
guidance system. In future work, we will speed up the prediction process by taking
advantage of self-supervision, with the goal to port the learned guidance model into a
real robot system.
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Chapter 3

Skill Acquisition for
Resource-Constrained Mobile
Robots through Continuous
Exploration
Markus D. Kobelrausch and Axel Jantsch

Abstract

We present a cognitive mobile robot that acquires knowledge, and autonomously
learns higher-level abstract capabilities based on play instincts, inspired by human
behavior. To this end, we (i) model skills, (ii) model the robot’s sensor and actuator
space based on elementary physical properties, and (iii) propose algorithms
inspired by humans’ play instincts that allow the robot to autonomously learn the
skills based on its sensor and actuator capabilities. We model general knowledge in
the form of competencies (skills) of the mobile robot based on kinematic properties
using physical quantities. Thus, by design, our approach has the potential to cover
very generic application domains. To connect desired skills to the primitive
capabilities of the robot’s sensors and actuators, it playfully explores the effects of its
actions on its sensory input, thus autonomously learning relations and dependencies
and eventually the desired skill. KnowRob is used for knowledge representation
and reasoning, and the robot’s operation is based on ROS. In the experiments, we use
a millirobot, sized 2 cm2, equipped with two wheels, motion, and distance sensors.
We show that our cognitive mobile robot can successfully and autonomously
learn elementary motion skills based on a playful exploration of its wheels and
sensors.

Keywords: artificial intelligence, autonomous learning systems, cognitive
architecture, reinforcement learning, knowledge representation and reasoning,
resource-constrained systems, low-energy mobile robots

1. Introduction

Our starting point is a robot with (a) a set of sensors and actuators, (b) tight
resource limitations, (c) access to a database that captures general motion-related
competencies (e.g. moving along a rectangle or navigating to a target location), and
(d) built-in assumptions about physical laws and geometric relations. Our objective is
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to develop methods that allow the robot to autonomously learn competencies stored in
the database.

Initially, the robot does not know the meaning and effect of its sensors and
actuators (e.g. if an actuator controls a LED or a wheel). Therefore, the first activities
are concerned with learning the meaning of its sensors and the effects of its actuators.
Then, basic competencies from the knowledge base are acquired followed by increas-
ingly complex competencies. A priori, the robot only has built-in knowledge of how to
interface its sensors and actuators and basic assumptions about physical laws and
geometric relations, but not what the sensors and actuators mean or how a specific
motion can be accomplished.

Our long term goal is to provide the robot with general methods that allow the
robot to work with any kind of sensors and actuators, in any kind of physical envi-
ronment, and learning any kind of competence, provided it is possible at all (e.g. if the
robot has only LEDs but no motors, it cannot learn to move).

We consider this a worthwhile vision because this approach to minimize prior
knowledge and assumptions will facilitate very flexible systems that can work with
any kind of sensors and actuators, in wheel-equipped or flying robots, on level plains,
rocky or grassy surfaces, or even in wet environments. It will allow the use of accurate
or inaccurate sensors and actuators, and to adapt to aging and wear-out effects. This
approach is general because the only assumptions we make are the laws of kinematics
and geometry, the availability of and access to sensors and actuators, the availability
of learning methods (e.g., RL), and the availability of a database describing the skills
to be learned.

While this is our vision, in this article, we make the further assumption that the
robot knows the meaning of its sensors and operates in a two-dimensional plane.
Inspired by the play instinct observed in humans and animals we propose
exploratory, hierarchical learning. Simple and elementary tasks are tried out
and learned first, followed by complex and composite tasks. This means the robot
starts by asking if it can move at all, then it tries to learn elementary linear and
angular motions, based upon which it studies moving along rectangles and
similarly simple shapes. For each learning task, we use Reinforcement Learning
(RL) as it matches well the exploratory nature of the robot’s setting. The learning
tasks are identified based on entries from a knowledge database that describes
the motion skills and the hierarchical relation between skills. Specifically, we use
the KnowRob knowledge processing system [1], which is designed to provide
autonomous robots with the knowledge base for performing motion and
manipulation tasks.

In this paper, we propose and demonstrate the Skill Acquisition Method
(SAM) for the case of a wheel-equipped tiny robot operating on a smooth, level
plain; in future work, we will show that the same techniques generalize to other
settings and environments. We evaluate our approach in a simulation environment
for a two-wheeled and a four-wheeled mobile robot moving in a two-dimensional
space. Experiments show that the system can learn and interpret its basic motion
commands and derive complex motions, and finally, it succeeds in driving a
rectangle (set of basic motion commands). Our contributions are summarized as
follows:

i) We identify a minimal set of prior knowledge mandatory for learning basic
movements.
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ii) We propose a cognitive system behavior, the Playful Continuous Competence
Acquisition (PCCA), that enables the learning and development of skills based on

a) the model of generic competencies (skills),
b) and the system’s Sensor and Actuator Space (SAS) grounded in elementary

physical properties.

2. Related work

The use of knowledge representation and reasoning in robots has a long tradition,
where the Shakey robot had already 1984 an internal representation of its environment
[2]. Extensive research has been done in robotics and artificial intelligence in recent
decades, to which this article mainly refers. Since robots have specific demands on
knowledge bases and appropriate methods, e.g., linking abstract knowledge represen-
tation and specific control systems, this can be best solved with frameworks explicitly
designed for this purpose.

In this context, KnowRob was specifically developed to equip autonomous robots
with knowledge and methods (Knowledge Representation and Reasoning (KR&R)) to
perform everyday manipulation tasks and to provide an infrastructure for cognitively
enabled robots [1, 3, 4]. It represents one of the most advanced knowledge processing
systems for robots, which has evolved even further with OPEN-EASE [5], which
integrates KNOWROB2 [6], and aims to provide a remote knowledge and reasoning
service that offers unprecedented access to the knowledge of autonomous robotic
agents performing human-scale manipulation tasks. This seems promising for agents
performing such rich human-scale manipulations but also places significant demands
on the system’s resources, which is crucial for systems with limited resources. There-
fore, we use KnowRob as the basis for knowledge processing and representation to
take full advantage, but we target the approaches and methods that allow it to be
deployed in such tiny systems.

A recent work dealing with the generalization of experience into abstract knowl-
edge for novel situations, entitled Socio-Physical Model of Activities (SOMA [7]),
consists of a comprehensive model for connecting physical and social entities that
enable flexible execution by robotic agents. Since this representation seems essential,
we use a similar approach, keeping our model flat in the first line due to resource-
constraints. This limits the flexibility of the application (smaller knowledge base) but
is crucial, and we aim for a reasonable trade-off. In this context, we also discuss a set
of a small amount of prior knowledge.

RoboEarth has similar goals and approaches to our work [8]. Capabilities are also
modeled, where we differ mainly in how they are used. We assume a set of general
prior knowledge and basic methods to acquire skills, while their work accepts more
complex algorithms to derive specific knowledge. Additionally, we further evaluate
and improve skills to achieve continuous development.

Other works also deal with systems that learn semantically from different experi-
ences, taking different approaches [9]. While learning relies on recorded experiences
in semantic structures containing high-level representations. A key difference in our
approach is that we generate skill-specific episodic knowledge through real-time
learning methods, leading to knowledge abstraction at an earlier stage. To further
leverage this, we define a set of prior knowledge that must be present to enable use in
resource-constrained systems.
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3. Skill acquisition

In the following, we present SAM, which starts from a set of general assumptions
(knowledge and methods) to autonomously acquire and develop specific complex
capabilities and aims for generic deployment in resource-constrained systems.

3.1 Overview

SAM (Figure 1) consists of various elements structured in layers. The bottom
layer reflects the physical part, i.e., the robot and its environment. The layer above
hosts the central computational agent, which abstracts the interface to the environ-
ment via the SAS. This general and generic interface is deliberately based on the
fundamental physical properties of sensors and actuators. Thus, by definition, any
environment can be integrated elegantly and efficiently as long as it follows the
matching properties, defined in 3.4. Further, the agent has access to the knowledge
base and reasoners. SAM follows a cognitive-behavioral architecture to autonomously
learn skills using a KR&R methods combined with real-time learning from the phys-
ical environment.

3.1.1 Cognitive model

Cognitive models go beyond traditional behavioral models regarding what an
entity (robot) knows, how that knowledge is acquired, and how it can be used. As a
result, they are becoming increasingly popular in artificial intelligence. They are well
suited for implementing highly autonomous systems that exhibit some intelligence
and are expected to develop over time. There are several approaches to these models
in the literature, particularly in robotics, which attempt to mimic the behavior of
intelligent agents based on human cognition. Recent work on a generic form of this,
such as the Socio-physical Model of Activities (SOMA) consists of a comprehensive
model that combines physical and social entities and allows flexibility of execution by
robotic agents through symbolic reasoning [7].

Figure 1.
SAM overview with its layered architecture and the distinction between software and hardware. The KnowRob
layer consists of methods for KR&R, while the computing agent (python) drives the system flow to autonomously
acquire skills. It has access through the SAS to the physical environment and the database. All components are
integrated in ROS.
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Since cognitive models, in the broader sense, represent complex processes and
behavior, we focus our modeling on the core elements that we consider essential for
our millirobot to acquire basic skills. In the medium term, we intend to adapt them to
SOMA.

Figure 2 illustrates our proposed cognitive system model, divided into the physical
and mental domains. The SAS depends on the physical properties of the robot. We
divide the mental part into elementary capabilities and behavioral methods. A com-
petence reflects knowledge of a particular skill acquired and applied through the
PCCA behavioral method, while RL is used to learn a specific competence (e.g. motion
commands). We will introduce and discuss these essential elements step by step in
this article.

3.1.2 Use of KR&R and episodic memory

For each activity that SAM performs and observes (physical interaction,
knowledge inference, learning, etc.), it generates skill-specific knowledge as episode
memory and stores it with timestamps. Such episodic memory could include what the
robot saw, reasoned, and did, how it did that, why, and what effects it caused [5]. It
can be used for further conclusions and learning at any time. While the size and scope
of the episodic memory directly relate to the resources required for the particular
system. Many approaches attempt to collect a large amount of extensive detailed
knowledge, which directly impacts computing time. This seems impractical for sys-
tems with limited resources. Therefore, we propose to keep episodic knowledge flat
and small and to store only highly relevant information. In this context, we also
consider a set of general prior knowledge that an intelligent system must have to learn
and exhibit sufficient episodic memory for a given skill. We argue that these two facts
are essential to consider for use in systems with tight resource limitations. Section 3.5.1
outlines an approach to a set of concrete prior knowledge and episodic knowledge
developed by SAM, intended for use in resource-constrained systems.

Our long-term vision is that all relevant parts of the proposed SAM are hosted on
such a system, e.g., a tiny millirobot powered by a micro-controller. We are aware of
the challenges of migrating databases and logical reasoning to resource-constrained
systems. As an intermediate step, we propose separating the acquisition and exploita-
tion phases, where the system has access to KR&R in the first phase. Once the skill has
been successfully acquired (sufficient episodic memory) to some degree, the system
may be able to master it independently. Then it exploits the acquired skill with
appropriate methods on the tiny millirobot. Whenever the system detects significant
changes or decides to search for new capabilities, it contacts the database again. In this

Figure 2.
SAMs cognitive system model. The left side shows the distinction between physical and mental entities. The right
side shows their relations, where an agent seeks to acquire and further improve a particular competence using the
PCCA method. RL methods are used to learn a specific skill while interacting when required with SAS to access the
physical environment. The modules in the dashed line show examples of instances.
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way, we can elaborate a similar knowledge acquisition behavior for resource-
constrained systems compared to those with fewer constraints that host KR&R
directly.

3.2 Competence

A central core element of SAM is competence, generally understood as mental
property. The focus of this work is on the modeling of competencies that, when
defined, lead to physical actions of the system through the SAS. However, competence
in itself does not always have to be related to the physical facts of the system. It could
also be a purely mental ability, such as spatial awareness, concentration, attention,
reasoning, logic, and so forth. To model capabilities in an intelligent system, essential
basic elements of those capabilities must be considered to grant an appropriate devel-
opmental progression. In a nutshell, a system should learn a skill independently and
reason with appropriate knowledge about how good that skill is. Moreover, the eval-
uation of skills is of particular interest, used to continuously improve the respective
skills. In this way, a cognitive system that also has an interest in developing itself
further can become better over time.

In this context, two fundamental elements of competence have been attributed.
These are (i) fitness, which is a statement of how well system masters the skill, and (ii)
learnability, which indicates a skill that can be learned by the agent.

Figure 3 illustrates the general concept of competence modeled in the knowledge
base. The fitness is represented with a numeric value and the learnability with a
boolean value. The learnability is fulfilled if (a) all properties for learning the skill are
satisfied, and (b) the system provides methods to learn this competence. The proper-
ties of (a) can be determined either by inference knowledge from the database or, if
they depend on the physical space, directly by physical interaction. For instance, in
the case of the movement skill, we determine the physical agent’s ability to move
through physical interactions (Section 3.5.1). For (b), certain methods must be in
place to learn specific skill knowledge. Such knowledge could be, for example, a set of
specific actions and their command values. We use RL to learn specific motion com-
mands executed via SAS. Other learning methods such as Deep RL or supervised/
unsupervised methods could also be utilized. However, the goal is to acquire a subset
of episodic memory sufficient to exhibit a particular skill. The fitness is used to
evaluate how well the skill is mastered and is represented by a number from 0 to 100,
with 100 being the maximum achievable. For example, we directly assign the RL
method reward to fitness of a basic motion competence (Section 3.5.4). In addition to
the general properties of competence, a corresponding instance may also store specific

Figure 3.
The competence entity with its two fundamental properties (learnability and fitness), modeled in the knowledge
base using ontologies.
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knowledge relevant to the execution of skill in a particular system. In our case, we
memorize the action commands, their fitness, and the timestamp, as discussed in
Section 3.5.5.

3.3 Playful continuous competence acquisition

Another key core element is behavior, which ensures continuous development by
learning new skills and further improving existing ones. Generally, a system that
acquires specific skills should not consider them finally learned after the first success.
Instead, the goal is to evaluate what has been learned and, if necessary, to develop
further and improve it. In this way, a system can evolve autonomously and continu-
ously adapt to certain changes in its environment. To this end, we consider the
following key behavioral elements crucial: (a) the striving for new skills and (b) the
continuous improvement of already learned skills.

Figure 4 illustrates our proposed PCCA method, focusing on knowledge acquisi-
tion and skill development. An interpretation of the learned skills in terms of possible
application scenarios and their combinations in specific contexts, i.e., for which pur-
pose skill could be used, is future work and not considered here. Further, to generalize
the high-level system flow, a promising approach would be to model it directly in the
knowledge base in tasks and actions. For that, KnowRob offers a promising approach
that might also be applicable to our system [1, 7].

However, SAM’s high-level behavioral process is determined using the PCCA
reasoner, directly queried by the computing agent. We define two different high-
level-behavioral phases acting on the competence model properties (fitness and
learnability), shown in Figure 4: (i) seeking for new competencies and (ii) improving
known competencies. Phase (i) and (ii) are general cognitive-behavioral patterns based
on the competence model (presented in Section 3.2) that are independent of the skill
being learned. Whereas skill-specific learning methods (dashed lines in Figure 4),

Figure 4.
The PCCA flow is divided into two high-level-behavioral phases, (i) and (ii). It acts based on the competence
properties (fitness and learnability). It covers key behavioral elements (a) and (b) by utilizing phases (i) seeking
for new competencies and (ii) improving known competencies, in an incremental fashion. The elements marked by
dashed lines represent skill-specific learning methods.
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triggered by the PCCA, acquire the respective competence-specific knowledge (e.g. an
RL element for a navigation skill). It switches playfully between these two phases and
can thus develop and improve over time.

3.3.1 Seeking new competencies

SAM searches for new capabilities based on the instances available in the knowl-
edge base. Currently, these still need to be instantiated manually, with the long-term
goal being to create them automatically. If one is present, the system uses the compe-
tence’s fitness property to determine if it is already known and learned. If not, the
learnability property is used to determine if it can be learned. If yes, it enters the skill-
specific learning phase, and otherwise, it continues searching.

3.3.2 Improving known competencies

The system decides whether a competence can still be improved based on the
fitness property. When the fitness value is below a certain threshold, SAM relearns the
skill by re-running the RL method exploration phase. If a better solution is found, it
memorizes it as the best for further use. Moreover, it operates on an incremental basis,
ensuring that the best solution is found after a certain period of time. It further allows
to react to changes in the environment and thus make immediate adaptations.

3.3.3 Skill-specific learning methods

A specific competence is explored, learned, and exploited using appropriate learn-
ing methods (RL, supervised/unsupervised learning). These methods are competence
specific and must be designed according to the particular skill. In principle, it is
possible to integrate highly optimized learning algorithms for the respective functions.
However, our goal is to use basic algorithms and execute them using general knowl-
edge modeled in the knowledge base. In this way, we expect even more flexible usage,
where only the primary parameters in the database need to be adjusted while the
algorithm remains the same. When needed, the skill-specific learning method is
triggered by the PCCA. In Section 3.5.4, we further discuss this approach and propose
an RL basic algorithm that we extend with methods from KR&R to achieve generali-
zation.

3.4 Sensor and actuator space

The sensor and actuator space (SAS) represents a generic interface to the robot
environment, solely based on physical quantities. For example, consider an Inertial
Measurement Unit (IMU), an odometry sensing unit as sensors, and two motors as
actuators. SAM’s matchingcapabilities rely on the physical quantities of those sensors
and actuators that the robotic-system must provide. Figure 5 illustrates the resulting
abstracted interfaces for sensors (ψ , x and y) and actuators (m1 and m2), with their
physical quantities shown in Table 1.

We assume that these interfaces abstract the robot-specific sensor data and actua-
tor commands. For example, how the respective motor of the robot is controlled
(using a motor controller that takes the acceleration properties into account) needs to
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be modeled robotic-system-dependent. In our case, the respective sensor data pre-
processing layer and the actuator data post-processing layer take care of this.

This approach is generic, and we argue that the system initially does not need to
know which actuators or sensors it is dealing with. A long-term goal is to employ
appropriate methods and knowledge to identify and learn its capabilities. The Seman-
tic Sensor Web follows this approach, annotating sensor data with various semantic
metadata (including physical quantities) [10]. Further, there is promising work in
automatic semantic knowledge acquisition for sensor data, which aims to annotate
raw data with semantic knowledge [11]. Thus, our approach aims to leverage generic
interfaces to integrate those methods seamlessly in future work.

However, the specific experimental setup is illustrated in Figure 5 for a two-
wheeled mobile robot. It is equipped with two motors (for a 4-wheeled robot,
extended by two additional motors), each driving a wheel, an inertial measurement
unit (IMU), and an odometry sensing unit (obtained from the simulation environ-
ment) that is used to reduce the drift error of the IMU over time using a Kalman filter
[12]. We are well aware of the challenges to the precision of these sensor measure-
ments required for stable localization, which is extensively discussed in many publi-
cations [13, 14]. However, we do not further discuss this and assume that the problem

Figure 5.
Example of a sensor and actuator space (SAS) consisting of two motors, an IMU, and an odometry sensing unit.
The respective data’s pre- and post-processing is robotic-system-dependent and must be addressed individually.
Thus, SAS must abstract the low-level data appropriately to meet SAM’s matching capabilities.

Data Description Physical Quantity Unit

Sensor space

ψ Yaw rotation Angle ∘

x Horizontal cartesian coordinate Length m

y Vertical cartesian coordinate Length m

Actuator space

m1 Wheel torque Torque N m

m2 Wheel torque Torque N m

Table 1.
Matching capabilities: SAS with its physical quantities.
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is well understood. In conclusion, with this generic design, any robot environment can
interact with SAM as long as the required physical matchingcapabilities are supported.

3.5 Motion skills

As mentioned earlier, this work focuses on modeling competencies that lead to
physical actions of the system through SAS. Considering this fact and the physical
characteristics of a wheeled robot, specifically the actuators in the form of wheels,
potential movement possibilities can be assumed. For that, we consider basic move-
ments, which in turn are subdivided into atomic and more complex movements. In a
broader sense, for atomic actions, the robot is assumed to always be stationary,
moving by applying torque to the actuators and stopping when it is removed. Such an
atomic motion thus represents a sub-element of a more complex motion. It is not
claimed that those movements are the most efficient in terms of smoothness and
speed. However, they still allow the robot to approach all positions in a given space.
Figure 6 illustrates a set of motion skills where atomic movements such as angular and
linear movements ground complex movement patterns such as rectangles, cycles, or
even more generally, a navigation path. The acquisition of these skills occurs in the
same hierarchical manner that enhances the physical learning methods discussed in
the next section.

3.5.1 Hierarchical knowledge acquisition

Let us first consider the knowledge we can gain about a movement, which we draw
from a small set of prior knowledge. Assuming the system has not yet acquired any
specific knowledge about motion, it has first to find out whether it can move at all
with its given actuators: Ið Þ“Am I able to move?” To answer this question, the system
initiates random actions and observes their consequences. In our case of a two-
wheeled robot, both actuators are moved randomly, and the physical effects are
evaluated based on a spatial position change. At the level Ið Þ the question is only about
the possibility of any movement, as depicted in Figure 7. If the system has an actuator
that controls only a LED, it would be recognized as irrelevant for movements. Next, at
level IIð Þ, we can start asking for basic movement patterns without specific lengths or
angles. IIð Þ “Am I able to turn forward/backward/left/right?” The actuators are triggered
again, and SAM searches for angular (left/right) and linear (forward/backward)

Figure 6.
Competence graph (modeled in the database), with a set of motion skills, sub-divided into atomic and complex.
Where the atomic movements form the basis for more complex patterns.
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movement patterns. Turning left/right may be caused by a two-wheeled robot turning
one wheel forward while the other wheel is moving backward, where forward/back-
ward patterns may result from driving both actuators simultaneously. Hence, the
system learns general natural language-based motion patterns. At the next level IIIð Þ
these rules are used to learn a specific distance, say 1 cm, and angle, say 10∘. Further
building on this, more complex movements are learned at level (IV), which in turn
consist of a series of specific movements. For example, for a rectangle with lengths of
3 cm and 2 cm, the following sequence of commands would be constructed: three
times straight 1 cm, then 9 times left with 10∘, two times straight with 1 cm, and so on
until the rectangle is closed. Following this hierarchical knowledge acquisition
approach, we can significantly limit the search space and thus bootstrap the learning
performance I � III.

3.5.2 Basic motions

For an atomic, basic motion, we refer to the basic kinematic and dynamic proper-
ties of a system, where kinematics describes the relationship between coordinates in
motion space. Dynamics correlates the torque and force in each joint (wheels of the
robot) with the acceleration of the joint and the velocity over time. When the wheels
touch the ground, these forces act indirectly on the overall system and thus cause it to
move. With the aid of the kinematic properties, inferences about this resulting motion
can be drawn. Motion control for mobile robots is extensively covered in the litera-
ture. To navigate accurately, kinematic or dynamic models are used to generate
accurate motion commands, considering all effects, including the resulting tracking
error [15–19]. We are aware of the challenges of designing or even learning motion
controls that lead to accurate robot movements. Thus, our work demonstrates the
possibility of a generic approach to learning movements with general knowledge, even
if the movements are still subject to certain errors. We will address minimizing this
error by following the same general approach in future work.

However, based on universal laws of physics, we derive atomic base motions,
illustrated in Figure 8. The robot’s position is represented by a vector with a pair of
numerical coordinates x tð Þ and y tð Þ from the cares coordinate system and orientation
ψ tð Þ. The robot is indirectly set in motion with constant acceleration by applying an

Figure 7.
The development of hierarchical knowledge over time. The motion skill acquisition starts with the fundamental
question Ið Þ”Am I able to move?”, followed by IIð Þ “Am I able to turn forward/backward/left/right?”, IIIð Þ “Am I
able to move a specific length/angle?” and IVð Þ “Am I able to follow a specific rectangular path?”. While SAM
draws associations directly from actions performed in the physical environment to answer these questions.
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arbitrary torque m1 and m2 of the robot’s actuators for a specific time t f . As soon as
this torque is removed, the system brakes with the same constant negative accelera-
tion until it stops after some time tnf . Thus, the atomic motion time is expressed by the
total action time of ta ¼ t f þ tnf , as depicted on the right in Figure 8. The resulting
spatial movement (distance d and yaw angle ψ) for the respective actuator torques is
determined by the change in position over time ta using an inverse kinematic rea-
soner. Using RL, we search for the best actions (actuator torques and action time t f )
for a given spatial position change. This applies to all atomic actions, while more
complex movements are simply composed of a series of atomic actions.

3.5.3 Kinematic reasoner

KnowRob [1] provides a kinematic reasoner, which we adapt to our SAM’s needs.
It derives motion-specific competence knowledge based on general kinematic laws
and is utilized during hierarchical knowledge acquisition level II � IV. We distinguish
two types of motion knowledge, (i) basic movement patterns and (ii) specific motion
distances. To reason about (i), we define the following logical rules:

is_basic_linear_motion_pattern(X0, Y0, YAW0,
X1, Y1, YAW1, Distance): -.
DX is X1 - X0,
DY is Y1 - Y0,
Angle is wrap(YAW0, YAW1),
Distance is sqrt((DX*DX) + (DY*DY)),
Distance! = 0.0, abs(Angle) == 0.0.
is_basic_angular_motion_pattern(X0, Y0, YAW0,
X1, Y1, YAW1, Angle): -.
DX is X1 - X0,
DY is Y1 - Y0,
Angle is wrap(YAW0, YAW1),
Distance is sqrt((DX*DX) + (DY*DY)),
Distance == 0.0, Angle!= 0.0.

A basic linear motion pattern is detected when the robot’s angle does not change
during an action, but the distance does. Further, we can restrict it to a forwardmotion
pattern if the position change has a positive value and backward if it is negative.

Figure 8.
Basic commands and observations for atomic motions. The left image shows a linear motion, while the middle
shows an angular turn. The illustration on the right shows the respective action times and the velocity progression
over time.
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For an angular movement, the same rules apply. To detect angular motion patterns
(left, right), we use an angle wrap function that calculates the angle moved and the
direction of rotation.

For (ii), we define the following reasoner to argue about specific distances and
angles used in level III of hierarchical knowledge acquisition.

is_spatial_motion(X0, Y0, YAW0, X1, Y1, YAW1,
Distance, Angle): -.
DX is X1 - X0,
DY is Y1 - Y0,
Angle is wrap(YAW1, YAW0),
Distance is sqrt(((DX*DX) + (DY*DY))) .

These rules represent a general knowledge of the kinematic properties of a two-
dimensional system, where we argue that SAM can be easily extended to three-
dimensional systems by adding appropriate kinematic reasoners.

3.5.4 Skill specific learning methods

A specific competence is explored, learned, and exploited using appropriate skill-
specific learning methods. Since SAM primarily focuses on acquiring skills that lead to
physical actions, the respective atomic motion commands have to be learned in real-
time by interacting with the environment. An appropriate learning procedure is
required, whereas reinforcement learning methods achieve good results in this
domain. The method dates back to the early 1990s when Q-learning was already used
to learn specific, mostly robotic, tasks. However, many works solve various tasks with
RL, whereby these are primarily designed in a context-specific, goal-directed manner
and without explicit general prior knowledge, which significantly limits the learning
of complex skills. We attempt to overcome this with our approach by using generally
formulated prior knowledge to learn skill-specific, in our case, atomic motion
commands.

In the following, we introduce our RL-based approach, which we extend with
KR&R methods. In RL, an agent interacts with its environment over periods of
discrete time steps t. An action at is taken following a policy π based on the observed
state st and the reward rt, as shown in Figure 9. The main difference from traditional
RL methods is that we use KR&R to infer the reward and the state. More specifically,
the kinematic reasoner is applied to argue with the general kinematic knowledge
about the newly observed state stþ1, which in turn is defined as the distance and angle
traveled during a time step t. Where the reward rtþ1 is computed with an RL Reward
Reasoner, following Eq. (2) and Eq. (3).

We chose a model-free approach for the specific RL algorithm based on a simple
Q-Table RL method [20] for resource reasons. Keeping the required resources low
seems to be the most intuitive first step for tackling our long-term vision, where all
relevant parts of SAM, including RL, are hosted on a resource-constrained system.
Q-Learning is a value-based method, where the Q-value is computed from the action-
sate value function (Eq. (1)). It seeks to find the optimal Q-value for pairs of states
and admissible actions. During exploration, the agent computes and stores them in a
Table (Q-Table), where the Q-value indirectly represents the optimal policy π. Once
the agent performs exploitation, it simply selects its actions from the Q-Table. This
method performs well in systems with limited resources since it scales with the size of
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the Q-Table in terms of resources. One significant challenge is to define the search
space well, which directly affects the size of the table. We address this with our
hierarchical learning approach, which constrains the respective search space quite
well and thus achieves good results with Q-learning.

The Q-value function is defined according to the Bellman equation and notated as:

Qπ st, atð Þ ¼ Q st, atð Þ þ α r st, atð Þ þ γmaxQ stþ1, atþ1ð Þ½ � (1)

Where α is the learning rate, and γ is the discount rate for the expected future
reward. The action space consists of the motor force m1, m2, and the applied time t f .
The state space is represented by the distance covered dta and the angle ψ ta as well as
the time required ta.

The design of the reward function is formulated to learn specific basic motion
distances and angles, while the angular and linear motion skills are learned separately
and denoted as:

rlinear st, atð Þ ¼ 100 ∗ 1� abs dtarget � dta
� �� �

(2)

rangular st, atð Þ ¼ 100 ∗ 1� abs ψ target � ψ ta

� �� �
(3)

In principle, they each reflect a simple assumption: the closer a performed basic
movement is to the desired distance, the higher the reward for that action. Thus, these
rewards can also be considered a piece of specific general knowledge and are assessed by
the RL Reward Reasoner. The resulting extended Q-Learning algorithm (Algorithm 1)
follows a traditional flow, where the reward rt and the state stþ1 are computed by the
Kinematic- and RL Reward Reasoners. Their computation time is essential for systems
that learn from the physical environment in real-time. In particular, these decisions
must be made in a specific period, especially for tasks requiring a time-dependent
control cycle, e.g., the robot is in motion and must receive its commands in time to
navigate accurately. In the current work, we have solved this problem by using atomic
motions that result in the robot being stationary, eliminating the time-dependent
requirements during KR&R. In future work, we will investigate these considerations on
real hardware that learns various skills from its environment in real-time.

Figure 9.
RL flow with an extension of using KR&R to compute to state and reward using general knowledge.
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Algorithm 1: Q-Learning with KR&R interactions.

1: Init Q � Table with random data.
2: Observe initial state s1.
3: for episode = 1, N do.
4: Select an random action action atjπð Þ.
5: Execute at.
6: Observe new state stþ1 ¼ Kinematic_ReasonerðÞ.
7: Observe reward rt ¼ RL_Reward_ReasonerðÞ.
8: Calculate Q-value Qπ.
9: Update Q � Table.
10: end for.

3.5.5 Prior knowledge and episodic memory

As discussed in Section 3.1.2, we propose to keep episodic memory flat and small
and to store only highly relevant information. Further, we seek a set of general prior
knowledge (semantic knowledge and general methods) that needs to be provided to
learn and exhibit sufficient episodic memory for a given skill. We argue that these two
facts are essential to consider for use in systems with limited resources. The following
outlines how this might be addressed specifically in the case of SAM.

Figure 10 illustrates a set of prior assumptions, including semantic knowledge and
general methods for acquiring motion-related episodic knowledge. The KR&R part
might be provided by an edge device during the acquisition phase, while for the
motion-specific learning, we deliberately propose Q-Table RL that requires few
resources and thus can be hosted directly on the tiny millirobot. Further, we memo-
rize only the motion commands learned by the RL with a timestamp and fitness to
continuously evaluate their performance. In the case of SAM, this amount of episodic
memory is sufficient to develop and improve motion skills over time. With this hybrid
system flow and the conscious design of a set of generic prior and episodic knowledge,
we argue that movement skills can be learned and used even on a system with limited
resources. While these are general considerations, we will specifically address this
subject on real hardware to consider all implications and requirements in future work.

4. Experiments

To evaluate the proposed SAM, we base our experiments on a simulation of a
millirobot. Based on ROS, we use Gaezbo as a simulation environment, a Python ROS

Figure 10.
A set of prior knowledge, including semantic knowledge, about competencies, SAS, PCCA, kinematic properties,
and skill-specific learning methods (dashed lines) to acquire motion-related episodic memory.
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node for the computing agent, and KnowRob for the knowledge base and reasoning
methods. We show the development phases I � IV (Section 3.5.1), starting with
evaluating a principle movement possibility up to the execution of a rectangular path.
Moreover, we study two different robot models, i) a two-wheeled model and ii) a
four-wheeled model.

The primary experimental question is whether SAM can a) autonomously learn a
motion skill based on a small set of prior knowledge, b) evaluate and continuously
improve it, c) exhibit reasonably good time performance, and d) cover a generic
application on various robot models.

4.1 Two-wheeled model

In the first experiments, a two-wheeled robot with dimensions of 2 cm2 and a mass
of 100 g is used. The action space of the wheels (m1, m1), which expects a torque, was
selected with 0.01 N m to 0.3 N m. The action period (t f) was set to 50 ms to 1000 ms
and the fitness has a range from 0 to 100, directly computed from the reward. In the
following context, the term step indicates a basic movement over time ta, while an
episode is a set of five steps.

For the initial fundamental question, Ið Þ“Am I able to move?”, SAM succeeds in the
very first step and computes the learnability to TRUE. This is not surprising since as
long as the two-wheeled robot is in contact with the ground, it can initiate a move-
ment. SAM then begins learning a basic movement by randomly exploring movement
patterns and reasoning about them with prior kinematic knowledge. Figure 11 illus-
trates the results of level II, in which all patterns (forward=backward=left=right) were
successfully found in only 50 steps, taking a total of 65 s. For a model with two
actuators (wheels), the search space is manageable and works relatively fast, but the
performance decreases as the number of actuators increases, which we will observe
with the four-wheeled model. However, this can be addressed with suitable heuristics.

Figure 11.
Acquisition of basic motion patterns (level II - section 3.5.1). The red markers represent the respective patterns
(forward = triangle, backward = square, left = pentagon, right = diamond) argued and identified in a particular
step (physical interaction) with kinematic knowledge.
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At the next level IIIð Þ, these rules are used to learn a forward liner movement
alin fwf g 20mmf g with a specific distance of 20 mm and a left turn angular movement
aang ltf g 10∘f gwith an angle of 10∘. The RL Q-Table learning is applied for each motion
action, where the reward (0–100) directly represents the fitness of each. Figure 12
depicts the learning performance of aang ltf g 10∘f g (green) and alin fwf g 20mmf g (red).
The reward settles at episode 35, with the total time of the 50 episodes averaging 4 min
30 s. The respective learned motion commands are:

aang ltf g 10∘f g : m1 ¼ �0:15Nm, m2 ¼ 0:15Nm, t f ¼ 355:71ms, fitness ¼ 83, and:
alin fwf g 20mmf g : m1 ¼ 0:26Nm, m2 ¼ 0:26Nm, t f ¼ 450:71ms, fitness ¼ 80:

(4)

In the first attempt, we achieve relatively good results in an early phase, after only a
few minutes. This is promising for use in resource-constrained systems, as it meets the
resource requirements for migration mentioned earlier. The acquired competence
knowledge is further used in level IV to accomplish amore complex skill. Figure 13 shows
the execution of a complex motion(rectangular path), where the continuous improve-
ment of the respective motion commands is investigated. The blue rectangular path
shows the first attempt using the learned angular and linear motions
(aang ltf g : fitness ¼ 83 and alin fwf g : fitness ¼ 80). Clearly visible, the fitness is not yet
sufficiently developed to follow a reasonably good rectangular path. In the following,
SAM tries to improve those (using PCCA) over several iterations until a sufficient fitness
(threshold ¼ 99) is learned. After about 60 min it has improved its capabilities and
successfully navigates the red rectangular path significantly better than the green (after
25 min) one. When performing complex actions, it is also clearly visible (red path) the
effects of a small movement error, which accumulates over further steps. This is due to
the non-consideration of the actual respective error of action. In this work, we con-
sciously accept this fact, but we will attempt to reduce it in a general way in further work.

Figure 12.
Acquisition of specific motion distance and angle (level III - section 3.5.1). The left illustration shows the successful
learned specific motions (green: 10 and red: 20 mm). The right image depicts the accumulated reward from the Q-
table RL per episode, where an episode consists of five steps.
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4.2 Four-wheeled model

Further, we extend our experiments to a four-wheeled robot model as a first step
to verify the general applicability of SAM. The basic assumptions and
implementations of the robot model remain the same, except for two additional
wheels. Due to these two further actuators, the search space increases, which leads to
significant differences in the learning phase (level I) of the motion patterns
(forward=backward=left=right), depicted in Figure 14. Unlike the two-wheeled model,
SAM requires significantly more time, i.e., 200 steps (four-wheeled model) instead of
the previous 50 steps (two-wheeled model). However, this was expected and will
become even more complex with other systems, such as drones (acting in three-
dimensional space). Once this phase is overcome, SAM can achieve the same good RL

Figure 14.
Acquisition of basic motion patterns (level II - section 3.5.1) of the four-wheeled robot. The green markers
represent the respective patterns (forward = triangle, backward = square, left = pentagon, right = diamond) argued
and identified in a particular step (physical interaction) with kinematic knowledge. In contrast to the two-step
model, SAM requires significantly more time, i.e. 200 steps instead of the previous 50 steps (two-wheeled model).

Figure 13.
The exploitation of complex motion following a rectangle path (level IV - section 3.5.1). The respective color shows
the development (improvement) over time, starting with the blue path (accomplished with the commands learned
from the first few attempts), followed by the green, and finally the red, representing the best movement competence.

58

Cognitive Robotics and Adaptive Behaviors



results (level III) with the four-wheeled as with the two-wheeled model. We did not
experience any significant difference in terms of learning performance.

The reason for this is the hierarchical learning approach, where the level above is
abstracted from the level below in terms of performance. This gives us confidence that
SAM is well suited for generalization. The last image of our experiments shows the
development of the rectangular path by the four-wheeled robot with SAM, which was
successfully mastered in 50 min (see Figure 15).

In summary, we have demonstrated with our experiments that SAM can learn
autonomously complex motion skills based on a small set of prior knowledge and can
further develop them with reasonable good time performance. We showed the first
step for a generic application to various robot models by demonstrating the different
wheel-based models.

5. Conclusions

In this article, we introduced SAM, which starts with a set of general prior knowl-
edge and appropriate methods to autonomously acquire and develop specific complex
skills. It combines methods of KR&R with methods of learning from the physical
environment and aims to be applied in resource-constrained systems. We proposed a
cognitive behavior (PCCA), which enables the continuous acquisition of skills, their
evaluation, and the further development and adaptation of already learned skills. To
this end, we modeled generic competencies using ontologies and formulated SAS
based on elementary physical quantities to build a generic interface to the physical
environment. Specifically, we demonstrated SAM based on motion skills learned
through a general knowledge of kinematics laws and geometry. Further, we applied
hierarchical knowledge acquisition with RL to acquire basic and more complex move-
ments. We argue that this approach is general because the only assumptions we make
are the laws of kinematics and geometry, the availability of and access to sensors and
actuators, and the availability of a database describing the skills to be learned. Based
on this generic knowledge, we demonstrated the acquisition of basic motion and a

Figure 15.
Exploitation of complex motion following a rectangle path (level IV - section 3.5.1) or the four-wheeled robot. The
respective color shows the development (improvement) over time, starting with the blue path (accomplished with
the commands learned from the first few attempts), followed by the green, and finally the red, representing the best
movement competence. No significant differences to the two-wheeled model can be identified in this skill level due to
the hierarchical learning approach.
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complex movement where the robot successfully moved along a rectangular path. To
prove the generic approach, we evaluated it through experiments with a two-wheeled
and four-wheeled millirobot. Where the acquisition performance in terms of
resources delivers promising results for further deployment of the method in
resource-constrained systems.

Thus, in the first step, we have demonstrated a cognitive system that develops
more complex behaviors with a set of general prior knowledge and appropriate
methods to function in arbitrary environments. In this work, we still assume that the
robot knows the meaning of the actuators and sensors, although these do not neces-
sarily have to be present a priori. In the next step, we want to remove this assumption.
There is promising work in automatic semantic knowledge acquisition for sensor and
actuator data that could help address this problem in a meaningful manner, which we
will investigate further. Moreover, we will continue to develop an even more general
approach, where an exhilarating challenge in this context could be the applicability of
our method in a three-dimensional system. In addition, there are still limitations to the
use of KR&R methods in resource-constrained systems, which we discussed in this
work. Another medium-term goal is to study SAM in resource-constrained systems.
Therefore, we will specifically address the transition to a real resource-constrained
system in the form of a millirobot. In summary, our first results indicate that the use
of SAM has an advantage for generic applicability, and we will continue to try to
advance this approach.

Abbreviations

RL Reinforcement Learning
SAM Skill Acquisition Method
PCCA Playful Continuous Competence Acquisition
SAS Sensor and Actuator Space
KR&R Knowledge Representation and Reasoning
SOMA Socio-physical Model of Activities
IMU Inertial Measurement Unit
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Chapter 4

An Episodic-Procedural Semantic
Memory Model for Continuous
Topological Sensorimotor Map
Building
Wei Hong Chin, Naoyuki Kubota and Chu Kiong Loo

Abstract

For humans to understand the world around them, learning and memory are two
cognitive processes of the human brain that are deeply connected. Memory allows
information to retain and forms an experiences reservoir. Computational models
replicating those memory attributes can lead to the practical use of robots in
everyday human living environments. However, constantly acquiring
environmental information in real-world, dynamic environments has remained a
challenge for many years. This article proposes an episodic-procedure semantic mem-
ory model to continuously generate topological sensorimotor maps for robot naviga-
tion. The proposed model consists of two memory networks: i) episodic-procedural
memory network (EPMN) and ii) semantic memory network (SMN). The EPMN
comprises an Incremental Recurrent Kernel Machines (I-RKM) that clusters incoming
input vectors as nodes and learns the activation patterns of the nodes for spatiotem-
poral encoding. The SMN then takes neuronal activity trajectories from the EPMN
and task-relevant signals to update the SMN and produce more compact representa-
tions of episodic experience. Thus, both memory networks prevent catastrophic
forgetting by constantly generating nodes when the network meets new inputs or
updating node weights when the incoming input is similar to previously
learned knowledge. In addition, idle or outlier nodes will be removed to preserve
memory space.

Keywords: episodic memory, semantic memory, sensorimotor map, topological map,
robot navigation

1. Introduction

One of the essential features of common living locomotive organisms is
their capability to traverse their daily environment with life-critical tasks. For
example, rats can learn to visit or avoid places of food that they have visited, and
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squirrels are excellent at rediscovering places of food that they have previously
hidden. Many animals escape to a previously visited shelter if they are undergoing
an urgent threat, such as a bear that escapes to a cave for hibernation to
preserve energy during the winter season. A specious hypothesis is that living
organisms should have a cognitive mechanism to represent their environment as a
collection of important regions, such as nest locations and food places. When
necessary, they can recall these regions and utilize their relations to perform
navigation tasks [1].

The capability of an autonomous mobile robot to represent its environment as a
spatial map and to determine its position concurrently has been widely analyzed in the
robotics society. The process is termed SLAM (Simultaneous Location and Mapping),
and several state-of-the-art have been introduced that works remarkably well [2, 3].
Another research area is to generate a topological map that maps the environment’s
structure. Robots can plan trajectories and navigate to target locations using topolog-
ical graphs. However, the sophistication of maps increases exponentially with the
length of the robot’s journey in most current graph-based approaches [4]. If new
nodes and edges are added to the map continuously, the requirement for processing
time and memory storage increases over time, stopping applications from long-term
mapping. As a result, methods for controlling the scale of the topological map are
critical in functional robotic applications that require continuous exploration in envi-
ronments [5–7].

Biological methods do not appear to experience enormously from the deficiencies
mentioned above in artificial navigation [1]. For example, rats can explore, search,
and travel in large and dynamic environments for a long time. They can adapt to the
environment changes quickly, for instance, searching new ways if a previously
visited route is unavailable or choosing potential shortcuts when new access spots are
available. Therefore, several computer goal-oriented navigation systems were intro-
duced to partially emulate how the brain could represent space and apply these
representations for navigation tasks. Memory is a fundamental perspective for the
acquisition of experience. Memory is essential for the understanding, learning, and
cognition of the interactions of robots in complex environments [8]. Episodic mem-
ory is a kind of memory that retains human experiences in a particular and
conscious way.

This article proposes an episodic-procedural semantic memory model for topolog-
ical sensorimotor map construction. The robot can use the generated topological
sensorimotor map to perform indoor navigation. The following are our contributions
to this study: i) The proposed model can learn multiple sensory information to gener-
ate the topological sensorimotor map incrementally; ii) Because of the nature of
episodic memory attributes, the robot can perform goal navigation with path-
planning algorithms; iii) The semantic memory layer can serve as a medium for
humans to interact with a robot to perform navigation tasks, and iv) The proposed
method continuously updates the generated topological map (can expand or shrink)
to maintain the size of the map based on the environment without the need for human
interference.

2. Related works

Many practical approaches to solving the SLAM problem have been introduced in
robot mapping. Lu and Milios [9] were the first to use a pose graph to implement
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global map optimization. The robot’s poses are represented as vertices in a graph, and
the spatial boundaries between poses are represented as edges in a graph. The map’s
scale proliferates in this traditional graph-based approach as the robot discovers new
regions. Consequently, there is a rapid rise in the need for storage and computing
resources. When direct linear solvers are applied, the traditional graph-based solution
has quadratic memory consumption growth with the number of variables in the worst
case. Efforts to increase the performance of graph-based mapping algorithms are
underway. In standard equations, the sparsity structure of the matrix is used to allow
quick linear online solvers. Many SLAM libraries are available to deal with this
dilemma with tens of thousands of variables in just a few seconds, such as g2o [10],
and RTAB-Map [11]. Memory usage increases linearly with the number of variables,
even using iterative linear solvers. Returning to the exact location many times com-
plicates the case. This strategy becomes less effective as more vertices and edges are
applied to the same spatial area. For the time being, there are only a few works that
attempt to answer how to store a map for long-term exploration. Consequently,
achieving a long-term mapping solution [5] that can control, or at the very least
restrict, the size of the map is essential.

Vertex and edge sparsification, which trades map precision for memory and com-
putational power, is one of the most effective techniques to reduce the map’s com-
plexity. To avoid redundant vertices and insert informative measurements to the map,
an information-based compact pose SLAM algorithm was proposed in an information-
theoretic fashion [12]. In pose global optimization, an information-based criterion was
adopted to determine the laser scans should be marginalized, maintaining the sparsity
of laser-based 2D pose maps. To obtain a light blanket based on the Markov blanket of
a boundary vertex, the generic linear constraint criteria [13] and nonlinear graph
sparsification were proposed [14].

Another approach was introduced that focused on solving the traditional pose
graph’s temporal scalability [15]. This approach eliminates the addition of redundant
vertices and edges before the graph’s global optimization. This approach has been
demonstrated in indoor areas using a binocular visual SLAM framework, and it is an
effective solution for medium-scale environments such as houses and factories. The
idea of neighborhood area and scene integration is introduced [7] to achieve
sparsification of the cognitive map without adding unnecessary vertices and edges to
the cognitive map.

One of the biologically-inspired proposed methods is RatSLAM [16, 17]. The
approach represents the environment as a set of pose cells, and each pose cell is linked
to a view cell. RatSLAM was successfully implemented in small and large environ-
ments for spatial mapping, but the framework does not handle target-oriented navi-
gation. Erdem and Hasselmo [18] proposed a biologically inspired computational
model for goal-oriented navigation. In this model, the environment is represented as
several grid cells with different scales and spacing and gradually converge into one
place cell. The model gradually recruits new place cells to encode the autonomous
agent’s current location when the agent meets a notable location during exploration.
Each place cell has a reward cell, and the lateral weight of the connection between two
reward cells is equivalent to the time between the autonomous agent’s successive visits
to the reward cells. With the lateral connections, autonomous agents can navigate to
the goal location from its starting location. However, the methods mentioned above
focus on emulating place cells and grid cells for spatial map building.

Humans seem to accommodate themselves better in complex environments and
recall past experiences to perform tasks simultaneously generate new experiences and
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skills. These significant behaviors usually develop from experiences that rely on
learning. Likewise, the assumption is that experience also implies for robots [19].
Thus, the learned experiences can be integrated into a spatial map so that robots can
freely observe and navigate in any environment. Current methods rely on the
RatSLAM concept, such as BatSLAM [20] using sonar sensing, which has been devel-
oped. Tang et al. [21] included an episodic memory module in navigational tasks to
process contextual information. The approach is designed for maze-controlled situa-
tions, but its effectiveness in open spaces such as corridors, offices, and homes is still
unknown.

3. Proposed method

The proposed model consists of two hierarchical memory networks: i) episodic-
procedural memory and ii) semantic memory. New nodes (experiences) are generated
in each memory network as new sensory information is obtained. Topology links are
generated to connect nodes and store robot behaviors. These connections provide the
robot with procedural knowledge so that an action can be taken to proceed from one
circumstance to another. The episodic-procedural network is an Incremental Recur-
rent Kernel Machines (I-RKM) which incrementally cluster incoming input data as
nodes in an unsupervised fashion. The I-RKM is the Infinite Echo State Network
extension [22, 23]. Each node in the network further encodes an activation value used
for spatiotemporal learning. The semantic memory network is hierarchically
connected to the episodic memory network. It is also another I-RKM that receives
bottom-up inputs from the episodic memory network and top-down signals such as
labels or signs for generating representations that contain semantic knowledge on a
larger timescale. The mechanism of neural operation in the semantic memory network
is similar to the episodic procedural memory network with an additional requirement
to create a new node. In this network, node learning happens as the network correctly
predicts the class label of the classified input sequence from the episodic memory
network through the learning process. A new node will only be created if the incorrect
network class label. This criterion is also the additional element that modulates nodes
update. In particular, each semantic node preserves information over time sequences
higher than episodic nodes due to the hierarchical learning of input data.

The episodic network serves as a novelty detector in the robot navigation mission.
Each node in the network represents a group of related input features and creates new
nodes if the incoming input features do not fit into any network nodes. Nodes in the
episodic network also encode the robot’s location for localization purposes. In addi-
tion, each link encodes a robot’s action, such as turning angle and moving speed, to
serve as procedural information that allows the robot to perform a sequence of actions
and travel from one place to another. Each node encodes the semantic meaning of
human operator cues in the semantic network. Semantic definition marks the
explored space with various names, such as a hallway, room, or kitchen, to provide a
medium for human-robot interaction. If no external sensory information is available,
the episodic procedural memory network performs an action-oriented internal simu-
lation through the playback of node sequences and actions encoded in their links to
consolidate knowledge (memory) and mitigate catastrophic forgetting. Each node in
the SMN represents a region of the environment. The robot utilizes this information to
change its moving behaviors, such as wall following, obstacle avoidance, or fast travel.
Figure 1 shows the overview of the proposed method.
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3.1 Echo state network

Echo State Networks [24] can be considered large, randomly recurring neural
networks with a single sequential, trained readout layer. The network computes a
wide range of non-linear, spatial–temporal mappings of input data. The reservoir can
be seen as a spatial–temporal kernel in which the mapping of a high-dimensional space
is explicitly computed. Hermans et al. [22] proposed a Recurrent Kernel Machines
(RKM) that extends Echo State Networks’ idea to infinite-sized recurrent neural
networks (RNNs). The proposed method is regarded as recursive kernels. When a
RNN with internal weights W, input weights V, and an internal state s receives an
input xt at time t, it produces the following output:

yt ¼ h Vxt þWstð Þ (1)

where h is the product of the activation function (for example, the hyperbolic
tangent) and the projection function. A recursive method’s core idea is that Eq. (1) can
be represented as follows:

h Wst þ Vxtð Þ ¼ h WjV½ � st
xt

� �� �
(2)

It’s a function of the input’s concatenation with the prior internal state. The same
reasoning can be applied to kernel functions, with the base function inputs consisting
of a concatenation of the current input and the prior recursive mapping:

ϕ xt,ϕ xt�1,ϕ …ð Þð Þð Þ ¼ ϕ xtjϕ xt�1jϕ …ð Þð Þ½ �ð Þ (3)

Figure 1.
The overview of the proposed method which consists of two memory networks: The episodic procedural memory
network and semantic memory network. The episodic procedural memory network clusters incoming sensory input
as nodes progressively and learns fine-grained spatiotemporal correlations between them. The semantic memory
network adjusts the amount of architectural flexibility based on task-relevant inputs to build a topological
semantic map with more compact episodic representations.
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Hermans et al. [22] has shown that recursive variations of kernels with k x, x0ð Þ ¼
f ∥x� x0∥2
� �

and k x, x0ð Þ ¼ f x � x0ð Þ form can be derived using this structure as a
reference. For example, the recursive-SE kernel has the form:

κSEt x, x0ð Þ ¼ exp � ∥xt � x0t∥
2

2l2

� �
exp

κSEt x, x0ð Þ � 1
σ2p

 !
(4)

We propose a computational model called Incremental Recurrent Kernel Machines
(I-RKM) for continuously creating topological maps based on characteristics of RKM.
The EPMN and the SMN are two hierarchical memory levels in the proposed method.
The I-RKM is described in-depth in the following sections.

3.2 Episodic procedural memory network (EPMN)

An I-RKM constitutes the EPMN. In reaction to input vectors, the network
dynamically grows or contracts by adding or removing nodes. To encode node rela-
tionships, edges will be created to connect nodes. The I-RKM notations are tabulated
in Table 1.

Based on the sensory input, the network first generates two recurrent nodes. Each
node in the network is comprised a weight vector wj. For further learning, the
network uses the Eqs. (5) and (6) to identify the node that best fits the current sensory
input x tð Þ. Eq. (6) creates the Infinite Echo State which is identical to Eq. (4).

b ¼ argmin T j tð Þ
� �

(5)

T j tð Þ ¼ exp � ∥xc tð Þ �wc
j∥

2

2σ2i

" #
exp

T j t� 1ð Þ � 1
σ2

� �
(6)

Notation Definition

T j tð Þ Activation value of node j at t

κ tð Þ Recursive kernel at t

wb t � 1ð Þ Best matching node weights at t � 1

r j Regularity counter of node j

γ j Contributing factor of node j

τ j, λ Decay factors for regularity counter

σ2i , σ
2 Kernel width

ρ Learning threshold

P m,nð Þ Temporal connection between node m and n

V Associative matrix for labeling

b Index of best matching node

Table 1.
The notations of I-RKM.
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Following that, the activation value of the best matching node (BMN) J is
determined as follows:

ab tð Þ ¼ exp �Tbð Þ (7)

If the activation value ab tð Þ is smaller than a predefined threshold aT, the condition
is fulfilled. A new node N is added to the network with the following weights:

wN ¼ 0:5 � x tð Þ þwbð Þ (8)

To connect the winning node b and the second BMN, a new link is established. If
ab tð Þ is greater than aT, the winning node b can represent the input x tð Þ. As a result,
the winning node b and its neighbor nodes n are updated as follows in response to
input x tð Þ:

wj newð Þ ¼ γ j � r j � x tð Þ �wj oldð Þ
� �

(9)

If no connection exists between the BMN ab tð Þ and the second-best matching node,
a new connection will be made to connect them. Each edge has an age counter that
grows by one with each iteration. The age of the link between the best and second-best
matching nodes is reset to zero. Nodes with no connections and a habituation
counter larger than the preset value will be removed from the network, as will
connections with an age greater than the preset threshold. In addition, each episodic
node has a regularity counter r j ∈ 0, 1½ � that indicates the strength of its firing over
time. The value of the newly formed episodic node is r j ¼ 1. Using the following
equation, the regularity value of the BMN and its adjacent nodes decreases with
each iteration:

Δr j ¼ τ j � λ � 1� r j
� �� τ j (10)

As a result, the significance of the node’s regularity can be associated with the
relevance or importance of the information stored in the node. Regularity values for
nodes that have been often activated in response to learning inputs are presented in
the regularity Eq. (10). If the link exceeds the threshold, isolated nodes will be
removed from its network. Due to the nature of the network, the topological network
expands during the robot’s journey in the robot navigation mission. However, nodes
generated at the start of the journey are eliminated from its network. Thus, we have
introduced a new criterion of node removal [25] with the following equation:

v ¼ μ Hð Þ þ σ Hð Þ (11)

where H is a vector representation of the network’s regularity, μ is the mean
function, and σ is the standard deviation. Nodes with regularity values more than the
threshold will be removed.

Only if bJ tð Þ< ρb and rJ < ρr can a new episodic node be added to the network. If the
activation and regularity thresholds are met, the episodic nodes will be updated via
Eq. (9). In the EPMN, a set of events constitutes an episode, which retains distinct
historical occurrences and episodes that are linked to one another. To learn recurrent
node activation patterns in the network, we incorporate temporal connections. Tempo-
ral connections represent the sequence of activated nodes throughout the learning stage.
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A temporal connection between the two consecutively activated nodes will be enhanced
by 1 for each learning iteration. When the BMN b is activated at time t and then again at
time t� 1, the temporal relationship between them is reinforced as follows:

Pnew
b tð Þ,b t�1ð Þð Þ ¼ Pold

b tð Þ,b t�1ð Þð Þ þ 1 (12)

For each recurrent node m, the next node g from the encoded time series can be
obtained by selecting the largest value of P as shown below:

g ¼ argmaxP m,nð Þ (13)

where n are the neighbors of m. As a result, the recurrent node activation sequence
can be reestablished without the need for any further input data.

3.3 Semantic memory network (SMN)

The semantic memory layer is linked to the episodic memory layer hierarchically.
It is made up of an I-RKM that obtains bottom-up inputs from the episodic memory
layer and top-down inputs such as labels or tags to develop representations that
incorporate semantic information over a more extended period. By delivering signals
from the top-down signals, semantic information could be retrieved.

The mechanism of neural activity in the SMN is similar to that of the EPMN, with
the requirement for the creation of new nodes. Node learning happens in this layer
when the network accurately predicts the class label of the labeled input sequence
from the EPMN during the learning process. If the class label is incorrect, a new node
will be added. This additional criterion influences the rate at which the nodes update.
Furthermore, due to the hierarchical learning of incoming data, each semantic node
maintains knowledge through periods higher than episodic nodes. As a result, the
SMN selects the winning node based on the BMN of the EPMN in the following
manner:

bs ¼ argmin TSMN
j tð Þ

� �
(14)

TSMN
j tð Þ ¼ exp � ∥x tð Þ �wj∥2

2σ2i

" #
exp

TSMN
j t� 1ð Þ � 1

σ2

" #
(15)

The selected node is either assumed to be the correct semantic node for the given
sequence of episodic inputs, or it is more dominant than other semantic nodes, or
both. The SMN receives input data from the EPMN, i.e., the EPMN’s BMNs with
regard to x tð Þ. The BMNs in the network are calculated with the Eqs. (14) and (15).
Because the input is derived from bottom-up neural episodic weights, x tð Þ is
substituted by wem

b for node learning.
Thus, a new semantic node is created only if the BMN b fails to satisfy three

criteria: 1) asmb tð Þ< ρa; 2) rsmb < ρr; and 3) BMN’s label ζsmb is not the same as the data
input’s label ζ (Eq. (21)). It should be noted that if the data input is not labeled, this
label matching requirement in the semantic memory layer is ignored. If the winner of
the semantic node b predicts the label ζb that is the same as the class label ζ of the
input x tð Þ, the node learning process is started by the extra learning factor ψ ¼ 0:001.
As a result, Eq. (9) will become:
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wSMN
j newð Þ ¼ ψ � γ j � r j � wEPMN

b �wSMN
j oldð Þ

� �
(16)

The SMN learns to create more compact representations of the input labels.
Data labels govern the network’s stability and plasticity, with new semantic nodes
addition only when the network is unable to estimate the correct data input class
label.

3.4 Episodic procedural memory self-replay

To generate meaningful sequential data for memory playback, we exploit the
spatiotemporal connections of nodes in the EPMN. When there is no input feed into
the network, the EPMN uses its nodes as input for learning (self-replay). For example,
if the winning episodic node b is activated by input data, the next temporal node
can be selected by choosing the node with the largest activation value of P. For each
node j, a set of nodes playback with length KEPMN þ 1 is calculated as follows:

U j ¼ wEPMN
u 0ð Þ ,wEPMN

u 1ð Þ ,⋯,wEPMN
u KEPMNð Þ,

� �
(17)

u ið Þ ¼ argmaxP j,u i�1ð Þð Þ (18)

where KEPMN is the number of temporal nodes, P i, jð Þ is the episodic temporal
connection matrix, and u 0ð Þ ¼ j. The temporal connection of episodic nodes stored
in the network is capable of autonomously generating a series of events and
replaying to the network without retaining the relations of previously received
training data.

3.5 Data associative system

During the training phase, each node can be assigned a class label of l based on the
input data. The L class label yields the l label. The frequency of each individual label in
the network is stored in the V j, lð Þ associative matrix for this labeling approach. This
implies that each node j has a distribution counter that holds the frequency of a
certain sample label. When a new node N is created and the label ζ associated with the
input data x tð Þ is specified, the matrix V is enlarged by one row and initialized with
V N, ζð Þ ¼ 1 and V N, lð Þ ¼ 0. When an existing BMN b is chosen for updating, the V
matrix is updated in the following manner:

V b, ζð Þ newð Þ ¼ V b, ζð Þ oldð Þ þ φþ (19)

V b, lð Þ newð Þ ¼ V b, lð Þ oldð Þ þ φ� (20)

Notice that φþ must always less than φ� and the label ζ is within the L class label.
If the data label ζ does not exist in L, a new column in V is added and set to
V b, ζð Þ ¼ 1 and V b, lð Þ ¼ 0. The matrix V will not be updated if there is no label
associated with the given input gesture. The winning label ζ j for a node j is calculated
as follows:

ζ j ¼ label jð Þ � argmaxV j, lð Þ, (21)
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where l is label in class label L. The advantage of this labeling approach [26] is that
no number of class labels must be specified in advance. Because the number of class
label is uncertain, this is crucial when dealing with continuous learning in real world
application.

4. Experimental setup and results

We first validate the proposed method using the COLD benchmark dataset [27,
28]. The COLD dataset is a large-scale, customizable testing environment for generally
validating vision-based localization algorithms intended to perform on mobile plat-
forms in realistic environments. A mobile robot gathers the dataset in three separate
locations with different environmental conditions such as weather conditions, day or
night time. It contains various formats, including RGB images, videos, and laser scans.
RGB images and videos are gathered using a standard onboard camera and an omni-
directional camera. Instead of learning the image pixels, we use fixed random weights
of Convolutional Neural Network (CNN) [29] for extracting visual features that
sufficiently express the environment states. A simple CNN with fixed random
weights, for example, can extract visual information with high classification accuracy
in image classification tasks [30]. In this work, the extracted features from fixed
random weights CNN and the robot’s odometry data will be inputs to the EPMN, and
the output of the EPMN will be the input of the SMN. Each data is fed into the
memory networks sequentially without repetition for topological map building.
Unlike batch learning, feeding the data sequentially to the memory networks fulfill
the continuous learning criteria where data is only seen once. This criterion is crucial
for robot navigation as the robot often traverses the environment continuously from
one place to another. The hyperparameters for training the I-RKM in both memory
networks are tabulated in Table 2.

Several metrics have been developed to assess the quality of a topological memory
network. The total quantization error (TQE) is a popular metric, which quantifies the
average distance between each data vector and its BMN. The BMU is the winning
node in our case since it has the most significant match value and fulfills the vigilance
parameter. The TQE measures the fitness of the generated topological map to the

Hyperparameter Value

α1, α2 0:5

ρa 0:75

ρr 0:1

τ j 0:5

λ 1:05

σ2i , σ
2 1:1, 1:4

γb 0:2

γn 0:001

re 0:001

Table 2.
Training parameters for the I-RKM of the memory networks.
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robot’s actual navigation route. As a result, the ideal topological map is expected to
have the lowest TQE. The lower the TQE, the smaller the average distance between
the BMNs and the robot’s actual trajectory, indicating that the topological map is
closer to the original route.

Furthermore, we evaluate the feasibility of the generated topological map using
node localization accuracy. The pre-processed image dataset is transmitted to the I-
RKM of both memory networks for each iteration to determine the BMN. The Euclid-
ean distance between the BMN’s encoded position and the robot’s position from the
dataset is used to compute the localization accuracy. Localization is accomplished if
the Euclidean distance is smaller than a predefined value (0.1 m in these experi-
ments). Because the purpose of SMN is to encode location label information, the
localization accuracy is computed differently. Localization in SMN is fulfilled if the
BMN’s encoded location label is the same as the label from the dataset, similar to the
standard classification accuracy.

4.1 Benchmark dataset results

The odometry and pre-processed image datasets were utilized as input to the
I-RKM in the benchmark dataset experiment. To accomplish self-memory replay in
EPMN, we continually feed the data in a mini-batch fashion (10 data per mini-batch).

Figure 2.
Row (a) shows the robot’s real path for collecting the COLD dataset: Saarbruken, Freiburg and Ljubljana (from
left to right). Rows (b) and (c) illustrate the topological map of the episodic-procedural memory network and the
semantic memory network, respectively. (a) robot navigation path, (b) episodic procedural memory network, (c)
semantic memory network.
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Then, after each mini-batch, memory self-replay was triggered. The topological map
is made up of a series of nodes and edges. Different colored circles represent nodes,
and each one holds the robot’s coordinates (x, y), a place label, and a feature vector
representing the surroundings. Links are black lines that link all nodes in the map to
indicate node relationships. Figure 2 shows the exact path taken by the robot in three
different buildings with different environmental conditions and the topological maps
generated by the proposed method. Table 3 shows the TQE and localization accuracy
of the topological map for each dataset. TQE and localization accuracy was found to be
relatively constant across datasets. As a result, memory network learning is consistent
across buildings with varying environmental conditions.

4.2 Physical robot experiment results

We validated our suggested technique further utilizing a mobile robot attached to an
iPhone for image data acquisition and an Intel i5 CPU NUC PC for processing data and
controlling the robot as shown in Figure 3(a). The robot can traverse the surroundings
autonomously, avoid obstacles, and follow walls. The robot’s movement speed ranges
from 0.05 to 0.5 m/s. The EPMN receives data from the iPhone and odometry to
produce a topological map, whereas the SMN accepts EPMN output as input.

The experiments were carried out on the 7th floor of a university hallway, study
area, and rest space that connected with one other, as shown in Figure 3(b). The

Dataset TQE (EPMN) TQE (SMN) Accuracy (EPMN) (%) Accuracy (SMN) (%)

Freiburg cloudy 1 0.0283 0.2048 94.0 94.4

Freiburg cloudy 2 0.0322 0.2793 94.0 96.4

Freiburg cloudy 3 0.0204 0.2112 91.4 94.3

Freiburg sunny 1 0.0093 0.2122 94.0 95.0

Freiburg sunny 2 0.1179 0.2495 95.3 96.0

Freiburg sunny 3 0.0228 0.1466 91.5 92.0

Ljubljana cloudy 1 0.0143 0.2613 91.8 93.0

Ljubljana cloudy 2 0.0898 0.2743 84.9 85.0

Ljubljana cloudy 3 0.0047 0.3568 91.6 85.7

Ljubljana sunny 1 0.0118 0.2231 94.3 95.1

Ljubljana sunny 2 0.0480 0.2273 93.3 94.0

Ljubljana sunny 3 0.0798 0.3939 90.2 91.5

Saarbruken cloudy 1 0.0661 0.1544 91.5 92.0

Saarbruken cloudy 2 0.0020 0.1700 82.1 83.0

Saarbruken cloudy 3 0.0990 0.1410 91.7 93.1

Saarbruken night 1 0.0063 0.1292 92.1 93.6

Saarbruken night 2 0.0016 0.1678 89.5 90.2

Saarbruken night 3 0.1075 0.1899 85.0 86.9

Table 3.
The TQE and localization accuracy of the topological map that generated by the memory networks using COLD
datasets.
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purpose of experimenting with such environmental settings is to confirm that our
proposed technique can work in a natural environment with moderately varying
environmental factors. We instructed the robot to explore the experimental site,
beginning in the study area and traveling to the rest area through the hallway, then
returning to the start point. I-RKM continually learns from incoming sensory data in
both memory networks and builds the topological map. After the first traverse, self-
memory replay is triggered before the next traverse begins. The robot explored the
surroundings with various movement behaviors depending on the location. For
example, in the study area, the robot is set to obstacle avoidance mode since the
environment is crowded with moving people and objects. Because the hallway is a
straight path, the movement behavior is altered to the wall following and fast-speed
mode when the robot enters the hallway. We repeated the experiment ten times. The
metrics evaluation is identical to the benchmark dataset experiments (Figure 4).
Figure 5(a) and (b) show the TQE and localization accuracy of the memory networks
respectively.

Figure 3.
(a) Physical robot equipped with an iPhone. (b) The experimental environment.

Figure 4.
(a) Robot navigation path; (b) topological map generated by the EPMN; (c) topological map generated by the
SMN.
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5. Discussion

We have shown that the memory networks can generate topological maps with
benchmark datasets and physical robot experiments. Topological maps are built up
from nodes that encode specific sensory information, providing flexibility and main-
tainability for robot navigation. New nodes are constantly added to the memory
networks during environment learning, or existing nodes are updated. Edges link new
nodes to existing nodes and can be used to guide navigation activities. Each node
represents a region of the world, and it will be selected for learning if it corresponds to
the robot’s current sensory data. This property demonstrates that I-RKM retains
previously learned knowledge and creates a topological map based on the robot’s
traverse path. According to the experiment results, all of the topological maps gener-
ated by I-RKM are almost identical to the actual robot path.

Because of the nature of memory network learning, the EPMN generates more
nodes than the SMN. Because the SMN will use the EPMN output to generate the
topological map, the SMN will learn the more sparse category representation. EPMN’s
topological map can be utilized for robot localization and navigation. The topological
nodes connection allows the robot to navigate from one location to another. The topo-
logical map in SMN is sparser than in EPMN, and the TQE is higher than in the EPMN.
However, the topological map of the SMN can be utilized for place classification tasks.

The proposed memory network training takes odometry data into account and
visual measures. As a result, memory networks can distinguish areas with relatively
similar visual sensory input, overcoming the difficulties of online detection and rec-
ognition of topological nodes. According to the node matching and localization find-
ings, the robot failed to locate itself during navigation on several occasions because of
a sudden change in the environment, resulting in no topological nodes matching with
these sensor data. This issue can be solved by adjusting the vigilance parameter. The
higher the value of the vigilance parameter, the more sensitive the memory networks
are to changing environmental conditions and vice versa.

6. Conclusion

We presented Incremental-Recurrent Kernel Machines that mimic human
episodic-procedural semantic memory and can progressively learn the spatiotemporal

Figure 5.
(a) TQE of the topological map generated by the memory networks; (b) localization accuracy of the memory networks.
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connection of sensory input from camera and odometry to build a topological map.
I-RKM in both memory networks autonomously updates the topological map by
expanding or shrinking its episodic memory structure. Furthermore, I-RKM consoli-
dates the spatial map through self-episodic memory replay, eliminating the require-
ment for external sensory inputs. I-RKM has been validated through benchmark
datasets and physical robot implementation. In the future, we will combine I-RKM
with a path planning algorithm to use the topological map’s structure for goal-directed
navigation. In addition, we plan to leverage the edges connection between nodes by
encoding traverse information on the edges. The robot can navigate from one place to
another autonomously that solely depends on memory with little or no human inter-
vention. Finally, we will improve and test I-RKM’s performance in more challenging
and larger environments.
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Chapter 5

A Robotics-Based Machine 
Learning Approach for Fall 
Detection of People
Teddy Ordoñez Nuñez, Raimundo Celeste Ghizoni Teive  
and Alejandro Rafael Garcia Ramirez

Abstract

For a person when carrying out household chores or even when walking on the 
streets, there is a risk of falling. This risk increases throughout the years due to the 
natural aging process. In this work, a bibliographic review was performed to find 
related papers who discussed different techniques for fall classification. The aim of 
this study was to develop two ML models: an SVM and a k-NN model, to classify the 
fall. An accelerometer, gyroscope, and magnetometer located on the waists of 15 
volunteers are the application sensors. The extracted features were the mean, stan-
dard deviation, and range for each sensor. The best accuracy obtained was 93.89%, 
a sensitivity of 85.10%, and a specificity of 96.99%. All results were obtained by 
simulations, by using the test set separated in the first stage of the implementation. 
So, a shortcoming is the fact that the ML models were not tested with a hardware 
implementation. In future works, the models can be embedded into a microcontroller 
and classify data in real time.

Keywords: k-NN, SVM, inertial measurement unit, elderly, falls, wearables

1. Introduction

As the years go by, bodies become weaker and thus give up their physical health. 
It can lead to new problems and challenges for the elderly because there comes a time 
when they need to be more cautious, and not everyone can be that way. And it is in 
this context that falls among the elderly are becoming more and more frequent. Falls 
among them have more consequences than a scrape on their bodies. People over 60 
are gradually becoming more vulnerable to falls [1].

Falls among the elderly happen suddenly and are very frequent. According to Ref. 
[2], about 30% of people over 65 years old suffer a fall at least once a year, increasing 
to 50% when they are over 80. Falls are a problem of worldwide interest, which brings 
consequences to people and governments due to the heavy investment to recover its 
citizens. Therefore, researchers are always looking for solutions to improve people’s 
quality of life.
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Since 1991 the authors in Ref. [3] began studies to use wearable sensors to solve 
this problem. Other works in this field were in Refs. [4, 5], which proposed a protocol 
for evaluating the performance of any developed system.

Usually, those devices are at high end and challenging for a consumer with a low 
income to acquire because of the costs. The two most popular ways to detect falls 
are video [6] and measuring signals from an accelerometer placed on the body [7]. 
There are vast possibilities for integrating these devices with machine learning (ML) 
techniques to correctly classify data received from video streaming or sensors placed 
on the body.

2. Falls

“Fall detection involves complex pattern recognition, which tends to vary 
according to each individual who suffers a fall” [8]. According to Ref. [1], falls can 
be defined as “an event that results in a person unintentionally stopping their activi-
ties on the ground, floor, or a lower level.” Falls can also be defined as “falling to the 
floor or some other lower level as a consequence of receiving a violent blow, loss of 
consciousness, paralyzes such as a stroke or a seizure of epilepsy” [9]. Approximate 
684,000 fatal falls occur each year, with 80% of these fatalities concentrated in low- 
and middle-income countries [1].

According to Ref. [9], most falls happen in the sagittal and coronal planes, as 
shown in Figure 1. These names are related to the human body and its anatomy. It 
is worth noting that when a fall occurs with the loss of consciousness, as described 
in Ref. [9], that is when the body suffers more. It is due to the lack of absorption of 
impact since the body falls directly to the ground. When a fall happens, the person is 
conscious can absorb the impact by stretching their arms to protect themselves if they 
fall forwards.

Figure 1. 
Sagittal and coronal planes of the human body.
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Serious injuries include traumatic brain injury, concussion, hemorrhages, and 
cuts [6]. In Brazil, the Sistema Unico de Saude (SUS) spends more than R$51 mil-
lion annually treating various fractures because of falls [6]. According to Ref. [10], 
approximately one in three adults who live in their homes suffers a fall annually. And 
of those adults, about half of them will experience falls more frequently. According to 
Ref. [1], numerous factors can influence a person to suffer a fall, and among the most 
prominent are age, gender, and health.

2.1 Factors who contribute to falls

According to Ref. [9], the age factor is not enough to describe the risk of a person 
falling; therefore, a person is more likely to fall depending on several other factors. It 
is worth noting the risk of an elder suffering a fall is higher due to the inherent aging 
process. The factors that contribute to the event of a fall can be separated into two 
categories: intrinsic and extrinsic [6, 9].

Intrinsic factors are those that depend on the person, such as medication use, low 
muscle mass percentage, dizziness, and lightheadedness [6]. Among these factors, 
Ref. [9] also includes osteoporosis, Parkinson’s, dementia and cognitive problems, 
inadequate lifestyle, vision problems, chronic diseases, and previous falls. An inad-
equate lifestyle is directly linked to a sedentary lifestyle since physical activity helps to 
strengthen muscles [6].

Extrinsic factors are external to the individual [6]. Among them are slippery 
floors, stairs, inadequate footwear, crowded places, low light conditions, and dam-
aged sidewalks [1]. Poor condition sidewalks represent a worrying problem in Brazil, 
based on a study conducted by Ref. [11]. They found that the average score attributed 
to sidewalks in several cities, on a scale of 1 to 10, is 3.40. A good score for the quality 
of sidewalks would be 8.0 [11].

2.2 Consequences of falling

There are several consequences because of a fall. Falls as an outcome of accidents 
are one of the reasons for hospital admissions and the leading cause of death among 
people over 65 years [9]. Among the types of consequences, Refs. [6, 9] emphasize 
physical and psychological damage, and in addition, Ref. [9] also mentions financial 
losses. Serious injuries are related to physical consequences. The most common minor 
wounds are bruises and scrapes [9]. There are many serious injuries, such as concus-
sions, bleeding, skull trauma, and fractures [6].

According to Ref. [6], the most common consequence among the psychological 
type is fear of suffering new falls, but still Ref. [9] also mentions the lower quality 
of life, loss of independence, low self-esteem, and limited abilities. The economic 
implications are just as important as others because of the medical expenses. 
Among these expenses are rehabilitation therapies, medical examinations, hospi-
talizations, and the purchase of medical equipment [9]. Due to such arguments, 
it is a must to prevent falls. Figure 2 shows an example of a fall registered by 
the three sensors considered in this work. For every sensor, there are three indi-
vidual graphs.

In Figure 2, one can observe a graph created using the accelerometer, gyroscope, 
and magnetometer readings while simulating a forward fall. This is a simulation of 
a fall caused by fainting or syncope forwards. These three sensors are located in the 
person’s waist.
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In this example, the volunteer stands up until the ninth second. When this mark is 
reached the person falls forwards, simulating a consciousness loss. At this moment, 
there is an abrupt change in the sensor’s readings, and the accelerometer’s value 
reached its peak at ±5 g. There was an impact, and towards around the 10th second, 
the volunteer hit the ground and remained in this position (this scenario did not 
consider recovery after impact).

2.3 Related works

Bibliographic research was carried out through the Univali Integrated Library 
System (SIBIUN), which performs a search in the Univali collection, CAPES Portal, 
EBSCO, Biblioteca A, Saraiva, Vlex, Scielo Livros, Scielo Periodicals, and Open 
Access Directories. The search strings “Machine Learning” AND “Fall Classification” 
were used, yielding 184 results. After reading the abstracts, four relevant studies were 
selected.

In Ref. [12], three sensors collected data from an accelerometer, a gyroscope, and 
a magnetometer. This group of sensors were placed in five places on the volunteers’ 
body, such as on their head, chest, waist, wrist, and legs. The authors used six differ-
ent ML techniques, including k-nearest neighbor (k-NN), support vector machines 
(SVM), least square method, Bayesian decision making, dynamic time warping, and 
artificial neural networks. Overall, the work scored optimal results, with an accuracy 
of 99.91%, a sensitivity of 100%, and a specificity of 99.79% [12]. The best accuracy 
was achieved by the k-NN algorithm, with 99.1% [12].

Figure 2. 
A fall registered by the application sensors.
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In Ref. [13], was carried out a similar work by using the same sensors as previously 
cited. However, authors placed the sensors only on the waist of the volunteers since 
the human body’s center of mass is located there. To perform the signal classification 
were used three stages of a fall. These stages are impact, post-impact, and posture. 
The proposed solution is based on a threshold comparison to identify each one of the 
stages. It is worth noting that in Ref. [13], SVM was used to extract thresholds for each 
phase. With this proposed solution, the result was 100% accuracy, sensitivity, and 
specificity for the classification [13].

The work in Ref. [6] differs from the related studies. In particular, the authors 
used an accelerometer and a gyroscope embedded in a smartphone to capture the 
sensors signals and classify them. A belt was used to secure the smartphone to the 
volunteer’s waist. Like [12], this study used the idle time. After detecting the inactiv-
ity time, data were classified using a decision tree and a threshold classifier and veri-
fied the actual orientation of the device. If all verifications are true, a fall is notified. 
The system in Ref. [6] achieved an accuracy of 93.25%, a sensitivity of 95.45%, and a 
specificity of 87.65%.

The most recent work is Ref. [14]. The authors also used all three sensors. They 
created the dataset FallAllD, which is available to the academic community. The 
volunteers used the set of sensors on three parts of their body: the chest, wrist, and 
waist. The authors explore four different ML techniques to classify falls: k-NN, 
SVM, random forest classifier, and convolutional neural network. Although all the 
three sensors collect data, only the accelerometer readings were used to train the ML 
models, looking for a simplified operation. The authors found an accuracy of 89.70%, 
a sensitivity of 95.06%, and a specificity of 95.20% when applying the k-NN tech-
nique. The implementation of the SVM technique with a quadratic kernel achieved an 
accuracy of 85.86%.

In Ref. [15], the authors demonstrate techniques not only to reliably detect a fall 
but also to automatically classify the type. Fifteen volunteers simulate four different 
types of falls-left and right lateral, forward trips, and backward slips—while wear-
ing mobile phones. They applied five machine learning classifiers to a large time-
series feature set to detect falls. Support vector machines and regularized logistic 
regression were able to identify a fall with 98% accuracy and classify the type of fall 
with 99% accuracy.

In Ref. [16], the authors present a comprehensive literature review on various 
ML-based classifications in fall detection. The authors identify the main problems in 
threshold-based classification from existing works and find the need for an efficient 
ML-based classification technique to accurately identify the fall. In addition, the 
shortcomings associated with the ML-based techniques for future research and other 
problems, such as data preprocessing and data dimensionality reduction techniques, 
are investigated. They concluded that ML-based techniques are far superior to 
threshold-based techniques.

Table 1 shows the comparison between the related works.

3. Development

In this work, the Python programming language was used. Besides the built-in 
library, we used other embedded resources to manipulate the data samples, that is, to 
create the ML models and to generate the confusion matrices. In addition, the Pandas’ 
library was used to manipulate the data. This library is popular among Data Scientists 
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due to its reliability and ease of use. Another functionality of this library is the ability 
to handle missing samples and to calculate simple statistical characteristics.

The Scikit-learn library was also used in this work. This library allows to create, 
train, and test the ML models. The Scikit-learn also release access to ML models, and to 
different training techniques, prediction, and allows to divide the dataset into training 
and test sets. The confusion matrices are also generated by a function of the Scikit-learn 
library. The Matplotlib was also used to plot the confusion matrices previously gener-
ated. Finally, Pickle allows developers to save and load datasets and ML models.

Datasets available to the academic community were researched. In Refs. [12–14] 
were found three datasets. The dataset in ref. [12] has the biggest data samples, 
however some miss relevant data. On the other hand, the dataset in ref. [13] does 
not have a pattern in the time domain of sensor readings. In this work, the dataset 
created in Ref. [14] was used. It was recently created and does not utilize mattresses 
to cushion the falls, making them more realistic. Figure 3 depicts the block diagram 
of the proposed system.

The information extracted from the dataset contains the sensors readings from 
an accelerometer, a gyroscope, and a magnetometer. Next, the feature extraction 
was performed to train and validate the ML model. It is possible to perform the data 
classification after training the model, which can be done in two categories: Fall or 
Activity of Daily Living (ADL).

In Ref. [14], developers can capture data from the wrist, waist, and chest. The data 
captured from the waist was created by 14 volunteers, who used safety equipment 

Figure 3. 
Block diagram of the system.

Characteristics [12] [13] [8] [14] This work

Dataset Erciyes 
University

DOFDA MobiFall, 
MobiFall2, & 
own

FallAllD, 
Sisfall, & 
UMA-Fall

FallAllD

Number of 
volunteers

10 men & 7 
women

6 men & 2 
women

4 youngsters 
& 4 elders

8 men & 7 
women

8 men & 
7 women 
(simulation)

Sensors* A, G & M A, G & M A & G A, G, M 
& B

A, G & M

Groups of sensors 6 1 1 3 1

ML algorithms K-NN, LSM, 
SVM, BDM, 
DTW, ANN

Threshold 
based

Binary tree & 
threshold

k-NN, 
SVM, 
LSTM & 
other

SVM & k-NN

*A = accelerometer, G = gyroscope, M = magnetometer, and B = barometer.

Table 1. 
Comparison between related works and algorithms.
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to prevent injuries. The authors chose not to use mattresses to cushion the falls to be 
as realistic as possible. The volunteers were free to choose which ADLs or falls they 
desired to simulate. All 14 volunteers chose to simulate ADLs and 12 out of 14 volun-
teers performed simulated falls. Every single scenario was recorded for 20 seconds. 
During the first 9 seconds, the volunteer had a movement to simulate, when the ninth 
second was reached the volunteer mimicked a fall, and the person could stay down or 
recover depending on which type of fall he was simulating.

The authors labeled as ADLs or Falls data samples within the dataset by using 
numbers as activity IDs. IDs ranging from 1 through 44 are samples representing 
ADLs. Since we are only considering samples recorded by those sensors located 
in the waist, ADLs range from 13 through 44, because those activities labeled from 
1 through 12 were recorded by sensors located in the volunteer’s wrist. Among 
those ADLs, one can find activities such as: walking, running, standing up from a 
chair, and jumping.

Falls were labeled from 100 through 135. Among these falls, you can find different 
types of falls that normally would occur to people day to day. Volunteers simulated 
falls slipping, tripping, or losing balance while walking and slipping, and those falls 
were forwards, backwards, and laterally. They also simulated falls while running, 
lying in bed, trying to sit down, or standing for a while; these falls were simulated 
forwards, backwards, and laterally. It is also important to point out that falls with 
recovery were considered effectively as falls in this work.

It is important mention that those 14 simulating ADLs and those 12 simulating 
falls had to repeat the scenario several times to obtain the best and most accurate 
result. They could decide how much time they needed to rest between trials, and also, 
volunteers could decide the order in which they desired to perform the activities [5]. 
Repetition becomes a factor, as described in Ref. [5], because the volunteers can get 
used to the pattern of simulating that activity, resulting in activities performed in an 
unnatural manner.

With this said, we created a new column to label each sample as ADL or fall, 
represented by 0 s and 1 s, respectively. For this, we implemented a for loop, in which 
we compared the value stored in the activity ID column, and if this value was greater 
or equal to 100, we set the output column to 1, otherwise 0 was attributed.

Since the volunteers performed several times the same activity, the best scenarios 
were chosen to compose the dataset. Taking this into consideration, the dataset has 
1797 samples of simulated falls and ADLs. Three features were extracted from the 
dataset to train the models: the mean, the standard deviation, and the range. The 
features were extracted for each one of the three axes of the sensors. The dataset was 
divided into three parts to perform training, validation, and testing of the models.

It is noteworthy to mention that the dataset needed simple data manipulation 
before extracting those features. The original dataset published by Ref. [14] is in 
bytes, so this way authors can adapt the dataset to their sensor’s sensitivity. We 
considered the same sensitivity for the accelerometer, gyroscope, and magnetometer. 
The sensitivities were 0.244 mg/LSB, 70 mdps/LSB, and 0.14 mgauss/LSB, respec-
tively. Since the dataset was used as a Pandas dataframe, we multiplied every column 
by its corresponding sensitivity; after multiplying every data sample, we obtained the 
sensor’s original readings.

Figure 4 shows part of the Dataframe structure. It has 1798 rows and 7 columns 
in total. It is important to remark that only the data collected by the sensors located 
at the waist of the participants were used in this work. Also, the barometer readings 
were not considered.
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The feature extraction was performed using the built-in functions in the Pandas’ 
library. Pandas has a mean, standard deviation, and minimum and maximum 
functions available and ready to use, so firstly 27 new columns were added to the 
dataframe to save the features. Eighteen columns were needed since we are consid-
ering the three features for every one of the three axes, that is, three columns for 
acceleration mean in x, y, and z, repeating this to the standard deviation and range of 
the accelerometer, so having a total of 27 columns.

We transformed the original column of each sensor containing all three axes into 
three separated columns to represent each of them. Next, we used the functions 
mentioned before to calculate the features. Since there is no built-in function to 
calculate the range, we find the maximum value and subtracted the minimum value. 
After completing these steps, the dataframe has all the characteristics and it is ready 
to use with the ML model.

Figure 5 shows the Dataframe final state after including the accelerometer, gyro-
scope, and magnetometer features.

In Figure 5, it is possible to observe the pure data of the “Acc”, “Gyr,” and “Mag” 
sensors; however, the models will be trained with the columns that are on the right of 
those measures. A column called “Fall” identifies whether this event represents a fall 
or an ADL.

We used 80% of the data (not the 80% of the volunteers) for training, 10% of 
data for validation, and the residual 10% for final testing. It is important to note that 
the models were trained using the stratified k-fold cross-validation technique, with k 

Figure 5. 
The modified Dataframe structure.

Figure 4. 
Example of the Dataframe structure.
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equal to 10, to obtain a good balance among the output classes. Data for both, training 
and validation, are divided into 10 parts, where k-1 is used for training and k is used 
for validation. This task is repeated k times to complete the training of the models. 
Figure 6 illustrates this process.

To perform the data classification, two ML models were created. One model uses 
the SVM classifier, and the other one uses the k-NN. Both models use all the sensors’ 
data with their respective characteristics. The models were studied and compared 
with the results obtained by the authors in the related works.

4. Results

4.1 SVM

In this work, the dataset was divided randomly. By performing the training and 
validation, it was possible to achieve an accuracy of 95.05% using the SVM model. 
However, this value cannot be considered the final accuracy because it is necessary to 
submit the model to a final test. In the final test, we used data which was not previously 
known by the model. The purpose of this procedure is to classify the unknown data.

The accuracy of the final test was 93.89%, with a sensitivity of 85.10% and a speci-
ficity of 96.99%. The accuracy informs how many samples were correctly classified. 
On the other hand, the sensitivity is the ability to predict the true positives of each 
available category and lastly, the specificity is the ability to detect the true negatives 
of each category.

The confusion matrix is shown in Figure 7. This matrix was created from the 
results retrieved from the final test. It is possible to observe the true negatives, false 
negatives, false positives, and true positives, where 0 represents ADLs and 1 repre-
sents falls.

Figure 6. 
k-fold cross-validation. Adapted from Ref. [17].
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It is possible to observe that there were 129 true negatives, 4 false positives, 7 false 
negatives, and 40 true positives. This is a good result because the model correctly 
classifies 40 of the 47 falls.

4.2 k-NN

In this technique, we followed the same procedure as described before. After 
training, the model presented an accuracy of 88.45%. In the final test, with unknown 
data, it was possible to achieve an accuracy of 87.77%, a sensitivity of 82.98%, and a 
specificity of 89.47%. In this study, the results of the k-NN model were inferior, when 
compared with the SVM model, that is, the accuracy was 5.44% lower in relation to 
the SVM model. The confusion matrix for this model is shown in Figure 8.

Compared to the SVM model, the number of false negatives was increased by 1, 
and the number of false positives increased by 10.

4.3 Analysis

To get a better understanding of the results, it is necessary to make a comparison 
with the related works. It is worth noting that among the related works there is a dis-
crepancy among the results using the different ML techniques. Likewise, it should be 
considered that each one of the authors used different features or methods to perform 
the data categorization (Table 2).

The best results can be found in Ref. [12] because the authors in Ref. [13] did not 
base their solution using ML. The classifier is based on thresholds; however, it is 
important to note that the extraction of the thresholds was performed using the SVM 
technique. In Ref. [12], the authors achieved accuracy of 99.1%, and in Ref. [14], the 
accuracy was 89.70% when applying the k-NN technique. In this chapter, we achieved 
an accuracy of 87.77%, thus 11.33% below the result of Ref. [12] and 1.93% below the 
results in Ref. [14]. The results obtained here are comparable to the results in Ref. [14] 
due to the similarity of accuracy between these studies.

Figure 7. 
Confusion matrix for the SVM model.
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The SVM performed better in this work, so it is possible to make a direct compari-
son with Ref. [14]. In this chapter, the best accuracy was 93.89% compared with the 
85.86% in Ref. [14]. In Ref. [12], the higher accuracy was achieved (99.48%). Different 
features were used for the accelerometer, magnetometer, and gyroscope sensors, 
considering that each one of the related works used different features to train the ML 
technique. In Ref. [14], the authors used three features, obtained from the accelerom-
eter. In this work, we extracted three features, for each one of the three sensors.

Every work has its limitations, and this work is not an exception to that rule. The 
simple statistical characteristics can represent a limitation of this work. This can 
be considered as one due to its lack of precision representing the original signal. The 
original recorded signal was 20 seconds long, as mentioned before, so representing 
these signals only by using the chosen features can be not accurate enough. This 
limitation should be taken into consideration if the intent is having a more realistic 
classifier.

A shortcoming of this work is the fact that the ML models were not tested with 
a hardware implementation. All results were obtained by simulations, by using the 
test set separated in the first stage of the implementation. The models can be embed-
ded into a microcontroller and classify data in real time. The outcome of a hardware 
implementation can yield different results, them being higher or lower in comparison 
with those obtained by simulation.

Figure 8. 
Confusion matrix for the k-NN model.

Characteristics [12] [13] [8] [14] This work

Sensitivity (%) 99.56 100 95.45 — 85.10

Specificity (%) 99.38 100 87.65 — 96.99

Accuracy (%) 99.48 100 93.25 84.66 93.89

Table 2. 
Comparison between the best results achieved in the related works.
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5. Conclusions

An ML-based approach to fall problem detection was presented in this work. A 
literature review made possible to understand what is behind a fall and its conse-
quences on people, as well as to remark the ML techniques explored in the literature 
to approach this problem. In this study, two models were created using different ML 
techniques, and training was the same for both. We applied k-fold cross-validation, 
with training, validation, and testing sets. Both models were trained considering the 
data obtained from the accelerometer, gyroscope, and magnetometer.

The mean, standard deviation, and range were used as input features for the ML 
models. The results reached a value that enables comparisons to those in the related 
studies. The best result was accuracy of 93.89% for the SVM technique. Currently, an 
embedded system is being developed with an ESP32 microcontroller to communicate 
with the sensors, embedding the classification algorithm and sending notifications.

This work can be complemented by embedding the ML models and building a 
physical device to test the models in real time with sensor readings, consequently 
obtaining more realistic results. To further improve this work, we recommend 
employing more features, like authors of Ref. [12] did with their work. By applying 
more characteristics it is possible to have better results, since there is more informa-
tion regarding the sensor’s readings. Having more information fed to the models is a 
better approach because they can have a better understanding of what those charac-
teristics are representing; therefore, a better division of possible outputs is achieved.
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Chapter 6

Machine Learning and Cognitive
Robotics: Opportunities and
Challenges
Thomas Tawiah

Abstract

The chapter reviews recent developments in cognitive robotics, challenges and
opportunities brought by new developments in machine learning (ML) and informa-
tion communication technology (ICT), with a view to simulating research. To draw
insights into the current trends and challenges, a review of algorithms and systems is
undertaken. Furthermore, a case study involving human activity recognition, as well
as face and emotion recognition, is also presented. Open research questions and future
trends are then presented.

Keywords: neural networks, cognitive control architectures, software frameworks,
imitation learning, reinforcement learning

1. Introduction

Cognitive robotics aim at endowing robots with intelligent behaviour by providing
processing architecture that allows them to interact with the environment, learn,
understand and reason about the environment, and behave like humans in response to
complex world dynamics. These are problem-solving, intentional (planning), reac-
tive, learning, understanding and explaining behaviours. Behaviours are based on
modelling biological systems, optimal control theory (engineering), neurosciences,
and other behavioural sciences. Typical applications where cognitive capabilities are
important in manufacturing are pick and placement, machine inspection, and collab-
oration and assistance. Service robots are specialized robots [1], which operate either
semi or fully automatically to perform services useful to humans (excluding
manufacturing operations), such as caring for the elderly and rehabilitation. The
autonomy of such robots is fully oriented towards navigation in human environments
and/or human-robot interactions. Enabling more autonomous object manipulation
with some level of eye-hand coordination and high precision in a complex environ-
ment is a challenge [2]. To embed systems with more sense of intelligence, collabora-
tions between AI, machine learning and robotics communities are essential to achieve
remarkable progress. Robot learning refers to the robot learning about itself and the
effect of its motor commands and action. Examples include learning sensorimotor
skills (locomotion, grasping and object manipulation) or interactive skills
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(manipulation of an object in collaboration with a human being). The field of devel-
opmental robotics and evolutionary robotics has also emerged to deal with how robots
learn. In cognitive robotics, an integrated view is taken of the robots, their motor,
perceptual subsystems and the body’s interaction with the environment. The main
challenge is a lack of adequate knowledge of the human brain at different stages of
development to enable adequate modelling.

Mobile agents are the principal means of embedding cognitive processing capabil-
ities in robotic systems. These are software components that can carry out functions
autonomously on behalf of another entity to realize tasks and can migrate from one
robot to another through Wi-Fi networks. Embedded cognitive robotics focuses on
understanding and modelling perception, cognition and action in artificial agents
through bodily interactions with the environment to be able to perform cognitive
tasks autonomously [3]. Several authors have reported works using mobile agents
[4, 5]. From a technical point of view, there are several open challenges in the
implementation of motor and cognitive skills in artificial agents. State-of-the-art
robots are still not properly able to learn, adapt, react to unexpected conditions and
exhibit a level of intelligence to operate in an unconstrained environment.

Machine learning (ML) algorithms are computationally intensive data-driven
analysis, modelling and inference techniques based on statistical (clustering), evolu-
tionary computing, neural networks (deep neural networks) and mathematical opti-
mization [6]. The processing pipeline given a set of data sequentially consists of pre-
processing, feature extraction, modelling, inference and prediction. The modelling
stage may involve iterative minimization of the criterion of the model fit between a
discriminant and the data. It focuses on the development of algorithms that allow
computers to automatically discover patterns in the data and improve with experi-
ence, without being given a set of explicit instructions. ML has been applied in
experimental robotics to acquire new skills; however, the need for carefully gathered
data, clever initialization and conditioning limits the autonomy with which behav-
iours can be learned. In particular, deep learning neural networks with several levels
of composition have achieved remarkable performance in vision and natural language
processing. It can be leveraged via transfer learning to generalize from simulation to
the real world via domain randomization [7–9] to learn end-to-end visuomotor con-
trollers [10, 11]. The limitations of deep neural network (DNN) techniques such as
interpretability, susceptibility to adversarial attacks, privacy issues and stability under
perturbations in designing end-to-end control policies are worth addressing. In par-
ticular, reliable long-term prediction is desirable to enable re-planning to adapt to the
changing environment [12].

Machine learning techniques embedded within current AI systems (via agents)
have increasingly shown sophisticated cognitive capabilities. For example, an existing
approach in machine learning to lexicon acquisition is focused on symbol grounding
problems on how to connect sound information from a human and sensor information
from robots captured from the environment. A multi-sensory approach based on co-
occurrence probabilities between words and visual features that is observed by a robot
[13] improves as a result of using an active selection of motion based on saliency
[14, 15]. Several developments in cognitive robotics underlying its multi-disciplinary
nature are presented.

Traditional approaches of processing are based on a bottom-up approach with the
processing pipeline starting sequentially from sensing, perception, cognition and
action under control architecture such as in ref. [16], which is essentially behaviour
based and, later on with high-level decision processing [17], incorporated to enable
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more autonomy. Fundamental to robotics are the control policies that guide the
behaviour of a robot. It is mainly based on control theory and mathematical optimi-
zation or biologically inspired models with control relying on vision in combination
with other sensing modalities (olfactory) [18, 19]. A lot of models have been devel-
oped governing the behaviour of a robot itself and how it interacts with its environ-
ment [12, 20, 21].

There are three main control architectures, namely, logic-based, subsumption and
hybrid architectures [16]. The logic-based architecture uses a set of rules and provides
pro-active behaviour, whilst the latter incorporates intelligence and interaction with
the environment as a means of introducing cognition. Behaviour is organized hierar-
chically. The hybrid architecture achieves modularity and interactivity between
layers. Because the models used were relatively simple, it suffers from the problem of
scalability and modelling of complex scenarios. Instead of providing all information to
the robot a priori, for example, possible motions to reach a certain target position, the
agent will, through some process, ‘learn’ which motor commands lead to what action.
For autonomous systems, a decision level incorporating capacities of producing plans
and supervising their execution, whilst at the same time being reactive to events from
the previous layer has been added to the top-level hierarchy [6]. They are typically
used in controlling the robot (motion control) or in carrying out tasks. Different
multi-robot configurations including robotic swarm use multi-agent systems to carry
out complex tasks.

Predictive processing (PP) [3], a processing approach in cognitive sciences, is
increasingly being used in cognitive robotics. It is a top-down approach that aims at
unifying perception, cognition and action as a single inference processing. It is pre-
dominantly based on the free-energy principle [22], which is associated with frame-
works such as predictive coding, active inference and perceptual inference. The free-
energy principle seeks to minimize prediction errors [20]. It asserts that through
bodily interaction with the environment, agents are expected to learn and then be
capable of performing cognitive tasks autonomously [23]. The core of information
flow is top-down and the bottom-up flow of prediction error. Control motor com-
mands are replaced by proprioceptive top-down prediction using the forward model
[24]. PP is typically used in motor control and estimation of body states of a robot
[25, 26]. A neural network is typically used as the generative model. Active inference,
a related frame work, aims at minimizing prediction error or free energy using varia-
tional inference. It involves constructing a forward model involving hidden states to
reduce proprioceptive noise for control [21].

To address issues in cognitive robotics, researchers in developmental robotics build
artificial systems capable of acquiring motor and cognitive capabilities by interacting
with the environment inspired by human development [27]. Traditionally mobile
agents, simulated robots, humanoids or specially designed apparatus are used for
research into higher-order cognitive capabilities (learning, communication and
understanding) mimicking the functionalities of the human brain like its internal
structure, infrastructure and social structures. The model starts from foetal sensori-
motor mapping (mechanisms of dynamic motions and motor skill development) in
the womb, body and motor representation and spatial perception through to social
behaviour learning (communication, action execution and understanding) and spatial
perception. Important insights have been gained; for example, ref. [28] indicates that
control and body structure are strongly connected, with the body having the role of
controlling its motion. In ref. [29], dynamic walkers realize walking on slopes without
any explicit control or actuation, saving energy.
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Models of human communication mechanisms have been used in developing inter-
actions such as between caregivers and robots, action execution and understanding,
development of vocal imitation and joint attention [27] in human-robot communications.
Sumioku et al. [30] proposed an open-ended learning loop of social action by which
artificial infants reproduce experience contingency using information-theoretic measure
of contingency. Typically, gaze-following or utterances about the focus of attention are
used for joint attention. Human-like robots able to show distinct facial expressions to be
used in specific situations have been developed [31, 32], but the robots are unable to
adapt to non–pre-specified situations. From control perspective, some of the capabilities
required [33] for collaboration and assistance between robots and humans are as follows:
the ability to perceive the world in a similar way to humans; the ability to communicate
with humans using natural language; the ability to develop cognition through sensori-
motor association; the ability to use attention and emotion to control behaviours and the
ability to produce appropriate behaviours in a variety of situations. Clearly, this calls for a
multidisciplinary approach involving neural sciences, developmental robotics, psychol-
ogy, and engineering. Kawamura and Brown [34] approached the problem using work-
ing memory-based multi-agent systems for robot behaviour generation.

Evolution has equipped humans with a wide range of tools for collaboration,
including the use of language, gestures, touch, and facial expressions, to facilitate
interactions. Robots must support many of these communication methods to effec-
tively collaborate or assist humans. In particular, for robots working in human envi-
ronment, there is an urgent need to anticipate and recognize bodily movements and
facial expressions, to offer timely and effective assistance when needed. To this end, a
case study involving facial and action recognition to illustrate some capabilities in this
regard is presented. The rest of the chapter is structured as follows: Section 1.1
introduces computational architecture and platforms for cognitive robotic systems.
Sections 1.2 and 1.3 cover the roles of technology and software, respectively. Section
1.4 deals with the role of decision-making in cognitive systems. Sections 1.5, 1.5.1 and
1.5.2 briefly introduce the main algorithms used in cognitive robotics, namely, rein-
forcement learning and imitation learning algorithms, highlighting developments in
ML that have made it possible for renewed interest in these algorithms. Section 1.5.3
reviews deep learning networks for feature learning and classification. Sections 1.6
and 1.6.1 provide a case study on human activity recognition. Section 1.7 briefly
reviews current trends, whilst Section 1.8 discusses successes, challenges and research
directions. Finally, Section 1.9 concludes the chapter.

1.1 Architecture and platforms for cognitive robot research

To facilitate the development of mature cognitive robotic systems, several
computing platforms including real robots like humanoids (icub), panda and Hobo,
simulators, and middleware like ROS and YARP are available. Particularly, to facilitate
the development of mature cognitive systems, robots must continuously interact with
the environment, know where objects are in the scene and understand the conse-
quences of their generated actions. The icub [35] humanoid robot is a 53-degree-of-
freedom humanoid robot of approximately the same size as a three-year-old child. It
can crawl on all four limbs and sit up. Its hand allows dexterous manipulation, and its
head and eyes are fully articulated. It is an open systems platform available for
research under GNU general public license. Its capabilities are built based on an
ontogenetic pathway of human development. Figure 1 shows different postures of
icub. Robotic simulators are of interest despite not being able to provide a full model
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of the complexity present in the real environment. For example, the icub simulator
[35] has been designed to reproduce as accurately as possible the physics and dynam-
ics of the robot and its environment with the constraint of running approximately in
real-time. It is composed of multiple rigid bodies connected via joint structures. It
consists of the following components: physics and rendering engines, YARP protocol
for simulated icub and body model. All commands sent to and from the robot are
based on YARP instructions. More details are provided in ref. [36]. Besides, there are
several platforms for humanoids and other robots in studies reported in ref. [37–39].
Details of Pioner3-AT bender robotic platform are provided in ref. [40]. There are also
several European Union funded research projects on cognitive robotics that have
resulted in several architectures, system concepts and benchmark datasets [41]. Sev-
eral simulators for robotic systems are provided in ref. [42]. To build cognitive sys-
tems, several computational architectures have been designed and built to realise
different cognitive platforms.

The following are representative architectures: The Clarion [43–45] architecture is a
broadly scoped computational psychological model based on the dual theory of the
mind, capturing essential structures mechanisms and processes of the mind. It provides
a framework, essential structures and computational model for realising processes of
the mind. It also facilitates detailed exploration of the mind and psychological theories.
Clarion consist of four subsystems, namely, action-centred subsystem (ACS), non–
action-centred subsystem (NACS), motivational subsystem (MS) and metacognition
subsystem (MC). MS provides the impetus for action and cognition, whilst MC pro-
vides for monitoring and regulating other processes. Together, these subsystems
address action, skill learning, memory, reasoning, motivation, personality, emotions
and their interactions. Figure 2 is a high-level diagram of Clarion. Each subsystem
consists of two levels, which is a dual representation structure. The top-level encodes

Figure 1.
iCub robot in different postures from ref. [35].
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Figure 2.
CLARION architecture [44].

99

Machine Learning and Cognitive Robotics: Opportunities and Challenges
DOI: http://dx.doi.org/10.5772/intechopen.107147



explicit knowledge, potentially corresponding to ‘conscious’, and the bottom layer
encodes implicit knowledge corresponding to ‘unconscious’ knowledge and also corre-
sponds to symbolic versus connectionist representation.

Computationally, ACS is realised with multilayer perceptron or reinforcement
learning, whilst NACS implements implicit declarative processes with associative
memory. Explicit declarative processes are captured as symbolic associative rules.
Implicit processes deal with drive activations captured by MLP and explicit processes
deal with goals. More details of the architecture are provided in ref. [44]. Other general
purpose architectures include Soar [46], which integrate knowledge, intensive reason-
ing, reactive execution, hierarchical reasoning and learning from experience. It has the
goal of creating systems with cognitive capabilities like humans. Several other projects
that target specific robotic platforms have produced application-specific cognitive
architectures. These include the HAMMER [47, 48] and ArmarX and Xperience archi-
tectures on Armar humanoid robot [49]. The HAMMER architecture is for assistive
robotic agents cooperating with humans to carry out tasks. It provides for sensing user
states and actions, modelling skills and predicting intentions and personalising to max-
imise assistance effectiveness over extended periods of interactions. ArmarX is a hybrid
architecture, proposed for human observation and experience. Interactions with
humans occur in natural language. It recognises the need for help and reason about the
world. The original architecture proposed has been continuously extended in several
projects. It consists of three layers, namely, high-level layer for planning and reasoning,
mid-level layer for mediating symbolic knowledge and sensory-motor data; and low-
level layer for robotic behaviour focusing on functions and skills, hardware abstraction
layer and bridging middleware to other robot software frameworks.

Using virtual environments for simulation is very important to ensure the safety of
robots, humans and other objects in the environment; the slow wall clock time makes
it a too slow method to generate enough data in a reasonable time frame, and physical
trials are slow and costly and the learned behaviours are limited. Increasingly, the use
of complex simulation environments is being used for experimentation and research.
By training a virtual robot in countless situations, such as low-probability scenarios, it
is the objective of the system to learn to generalize from the scenarios and safely
handle future yet unseen scenarios. When the physical properties of the environment,
such as gravity, friction coefficients and the object’s visual appearance, are used and
randomized, it becomes apparent that the learned models transfer successfully to the
physical robot using domain randomization [50]. One such platform is the Unity
[51, 52] 3-D rendering platform, a cloud scalable infrastructure for generating thou-
sands of frames per second. For video games, Arcade learning environment (ALE)
[53] is a standard test bed for deep reinforcement learning (DRL) algorithms, and it
supports discrete actions. TORCS car racing simulator [54], on the other hand, sup-
ports continuous actions for deep reinforcement algorithms.

1.2 The role of technology

The pervasiveness of information communication technology (ICT) is evident
everywhere in our daily lives. In industrial settings, the following are some examples:

• Monitoring and control of all tools of production;

• Collecting data for many sensors for monitoring, control and predictive
maintenance of equipment;
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• Use of machine intelligence, wireless connectivity, cloud computing to integrate
physical systems and processes (Industry 4.0 effort);

• Use of key enabling networking technologies, namely, edge, fog and 5G using AI
agents;

• Applications of service robots (non-industrial) include shopping, travelling,
home assistance and elderly care.

In our daily lives, examples include the numerous gadgets in our homes to assist in
our daily lives and care for the elderly. Robotics network and cloud robotics have
evolved to connect robots and allow a central or distributed intelligence to command
and control any set of robots. Advantages include flexibility, simplification of hard-
ware and software about the robot, ease of re-planning and task management of
complex robots. Several configurations exist for robots, namely, stand-alone robots,
networked robots and cloud robotics [55]. Networked robots address the problem
associated with stand-alone robotic systems by sharing perceived data with each other
and executing tasks in a cooperative and coordinated manner. Cloud computing
empowers robots by providing faster and more powerful computational capabilities
through massively parallel computation (using CPUs, GPUs, and clusters and data
centres) and higher storage facilities, as well as access to open source, big datasets and
software cooperative learning capabilities.

Typical applications include human-assisted driving and self-driving vehicles for
safe transportation, Industrial 4.0 drives to create cyber-physical systems for indus-
trial processes based on cloud by creating a replica in the cyberspace for closed-loop
feedback [56] and support for autonomous and smarter processes. It also caters for the
convergence of sensing, computation and communication by providing a common
platform for integrating data acquisition, processing, storage and decision making. AI
agents for digital twin 4.0 provide movement prediction, tasking learning, risk
reduction and predictive maintenance. Fundamental to most of these developments is
AI and ML for continuous decision-making.

CR are expected to continuously learn and adapt to their environments and make
decisions in real-time when required under conditions of uncertainties in sensor data,
processing complexities, privacy and security constraint to arrive at timely and effec-
tive decision-making. AI and ML empowered agents is one approach to realising this
goal. Current robotics have made significant progress in sensing perception and con-
trol problems but find it challenging to provide integrated thinking, feeling and
knowing [57]. It is still very challenging for two-legged robots to walk naturally in
unconstrained environments. Several challenges exist in using robotic platforms such
as the high cost of prototyping, steep learning curve and programming robots to carry
out complex tasks like autonomous driving in unconstrained dynamic environments.

1.3 The role of software

Closely related to cognitive robotics is cognitive computing (CC), which is a
multidisciplinary field aiming at devising computational models and decision-making
mechanisms based on neurobiological processes of the brain, cognitive sciences and
psychology. It aims to endow computers with the ability to think, feel and know. Since
there is no commonly accepted definition of cognition, there are several definitions of
cognitive computing [58, 59]. Wang [59] defines cognitive computing in terms of
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cognitive informatics that applies how the brain processes information and copes with
decision-making to information sciences. CC is defined as an emerging paradigm of
intelligent computing methodologies and systems based on cognitive informatics that
implements computational intelligence by autonomous inferences and perceptions
mimicking the mechanisms of the brain. Research in cognitive computing is focused
on three thematic areas, namely, computer systems with a faculty of knowing, think-
ing and feeling. Applications of CC include education, healthcare, commerce and
industry.

When software adds intelligence to information-intensive processes, it is known as
robotic process automation. The process uses AI to extend and improve action and
saves cost and customer satisfaction. It is typically used in completing a complex
business process that uses unstructured data or persists over a long period [57].
Typically a bot (an agent for a user of a program) observes the process to automate the
process.

One of the requirements for robust and effective CR is software integration
frameworks. This is justified when one considers the following:

a. Cognitive models are derived from a large spectrum of computational
paradigms that are not necessarily compatible when considering the underlying
software architecture;

b. Changes in application requirements due to hardware interfaces, computational
and network latencies and the need for integration;

c. Cognitive research projects utilize robotic systems as demonstrators, and
therefore serve as an important proof of concepts and might also require
integration;

d. The need to provide common interfaces and functions;

e. Specific software frameworks may be required to take advantage of innovations
in hardware (new development of brain-like hardware architecture) and the
development of relationships among concepts of a given domain.

Software frameworks enable thinking by taking advantage of brain-like computer
machinery or determine causal relationships among concepts of a given domain.
There have been several published works on software frameworks [60] prototyping,
development of middleware, sustainable software design and architectural paradigms.
MARIE [61] is a component-based software architecture for integrating and combing
heterogeneous software and computational paradigms. It adapts the mediator design
pattern to create a mediator interoperability layer (MIL). MIL is implemented as a
virtual space where applications can interact together using a common language. ROS
(robot operating system) [62], an open-source robotic middleware suite, is frequently
used in robotic projects. ROS provides a set of software frameworks for software
development. ROS provides the following services: hardware abstraction, low-level
device control, message passing between two processing, package management and
other functions; ROS 2 [63] and above provide real-time support and an embedded
system. ROS is made up of three components: language and platform independent
tools for building and distributing ROS-based systems; ROS client implementations
(Roscpp, rospy, roslisp, etc) and packages containing application-related code. Ros
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typically connects to robots via webSockets and operates on cloud servers. There are
several platforms on which ROS runs including ROSbot, Nao Humanoid [64] and
Raven II surgical robotic research platforms. Peira et al. [65] provide a framework for
using ROS on the cloud. Davinci [66] is another software framework that is cloud-
based for service robots exploiting parallelism and scalability. It is based on the
Hadoop cluster combined with ROS as the messaging framework. Fast SLAM algo-
rithm, an environmental mapping algorithm for large-scale mapping, was
implemented on this platform with significant performance improvement.

A framework for unifying multi-level computing platforms and orchestrating het-
erogeneous edge, fog and cloud computing resources compliant with MEC [67] was
proposed in ref. [68]. It is suitable for integrating different computing, communica-
tion and software technologies.

1.4 The role of decision-making

At the core of most ML tasks is decision-making based on information fed to the
decision maker, for example steering or breaking a car. Decision-makers used to be
either a human or a group of humans; now it can be AI using different combinations
of ML and traditional algorithms via agents technology. According to Kahneman [69],
there are two modes, namely, system 1 and 2 modes of the human brain, and most ML
methods emulate the mode of operation in system 1. ML establishes empirical associ-
ations through training and learning. When given scenarios resembling training sce-
narios, ML yields results in a fast way. However, it struggles when given scenarios not
covered during training or the training was inadequate. In human decision-making,
when system 2 fails to intervene because it is fooled by an apparent coherent picture
created by system 1 tends to result in decision-making. Thus, if ML is to be used in
decision-making, the ability to detect difficult and dangerous situation tend to trigger
system 2.

In cardiovascular medicine, ML is routinely used to perceive an individual by
collecting and interpreting his/her clinical data, and clinicians would reason on them
to suggest actions to maintain or improve the individual’s health. Thus, it mimics the
clinicians’ approach when examining and treating sick patients [70]. Big data lever-
aged by ML can provide well-curated information to clinicians so that they can make
better informed diagnosis and treatment. ML analyses have demonstrated human-like
performance in low-level tasks in robotics and cardiology.

There have been studies reporting on the success of sensing-perception-control/
action loop in autonomous vehicles [56].

Higher-level tasks involving reasoning such as patient status interpretation and
decision support, and reasoning under uncertainties and dynamic environment in
robotics have proven to be challenging. Intention predictions in a dynamic environ-
ment are also challenging. Similarly, human-robot cooperation for safe road transpor-
tation includes challenges in infrastructure [71] (sensor, communication subsystem,
computing and storage) and predicting behaviour when driving, motion prediction
and gesture recognition.

1.5 Review of algorithms

From the cognitive architecture descriptions discussed, at the high level, the
actions of a robot are goal-directed, with the middle layer responsible for intermediate
organisation, planning and execution using some memory hierarchy. The bottom
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layer is reactive and deals with the environment. For a robot to be able to interact with
other objects and its environment, it needs to know how to predict the consequences
of its actions using typically a forward model: X=(S, πθ), where s is the state of the
robot, and πθ: S->A is a parameterized action policy (A) to the space of effect or task
space. Similarly, the inverse model computes the action policies that can generate a
given effect (S, Y)-> πθ. Some examples are mapping of movements of the hand in the
visual field to the movement of the end point of a tool, and oscillation of the legs to
body translation of a robot. There are two main approaches, analytical approach based
on control engineering and learning-based approach. The main challenge is to model a
prior all the possible interactions between a robot and its environment. Learning is
additionally confronted with multimodal sensing perception, high dimensional
spaces, continuous and highly non-stationary spatially, and temporary state spaces.
Typically, statistical regression is used to guide autonomous exploration and data
collection. Alternatively, an approach for learning and constraining the environment
is active learning. Several learning paradigms have been used including reinforcement
learning and imitation learning. Several machine learning techniques such as deep
learning have been used to model robotic agents in the real world. Deep learning
networks build a model that produces end-to-end learning and inference system
driven purely by data. Most of the approaches reported in the literature make use of
neural networks to construct forward and inverse modules. To overcome the problem
of catastrophic forgetting (training a model with new information interferes with
previously learned knowledge [72]) in neural networks, special memory architectures
may be used [34] besides pure algorithmic approaches. Additionally, other cognitive
approaches from developmental robotics, neuroscience and other behavioural science
approaches have been used. Active learning and inference approaches constrain the
search space and allows self-exploration. These methods generally begin using ran-
dom and sparse exploration, build meta-models of the performances of the motor
learning mechanism and concurrently guide the exploration of various subspaces for
which the notion of interest is defined [73]. Interest is defined in terms of variants of
information gain (variance, entropy or uncertainty). Motivational and goal-driven
approaches where exploration and search are goals/curiosity or attention driven [74–
76] to reduce the large search spaces. Cognitive processing techniques can be split into
two main approaches, namely, the control theory approach and the free energy-based
approach. Although both of them use optimization techniques, the latter approach
seeks to minimize free energy prediction error using variational or Bayesian
approaches.

1.5.1 Review of reinforcement learning

There are three main classes of algorithms for machine learning, namely, super-
vised, unsupervised and reinforcement learning. In supervised learning, data defining
the input and corresponding output (often called ‘labelled’ data) are available. In
unsupervised learning, only the input is available and the structure of the underlying
data is typically solicited. It is used to explore the hidden structure of the data. In
reinforcement learning (RL), learning takes place by trial and error interactions with
the environments. It is goal-directed learning that constructs a learning model speci-
fying output to maximize long-term profit. Deep RL (DRL) uses deep learning
methods (multi-layer neural network) to learn models and representations at differ-
ent levels of abstraction [77] in an unsupervised manner. It leverages deep learning as
a function approximator to deal with high-dimensional data. DRL algorithms have
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been applied to robotics allowing control policies for robots to be learned directly
from camera inputs in the real world [11]. The basic model of RL is shown in Figure 3.

At time t, the agent receives state st from the environment. The agent uses its
policy to choose an action at. Once the action is executed, the environment transitions
a step providing the next state St+1, as well as feedback in the form of reward Rr+1. The
agent uses knowledge of state transitions of the form (St, At, St+1, Rt+1) to learn to
improve its policy. A policy (π) is a mapping function from any perceived state s to
action taken from that state. Alternatively, a policy can be interpreted as a probability
distribution of candidate actions that will be selected from state (s) as in Eq. (1):

π ¼ ϕ sð Þ ¼ p aijsð Þj∀ai ∈ΔπΛ
X

p aijsð Þ ¼ 1
n o

(1)

Δπ denotes candidate actions on policy π, and p(ai|s) denotes the probability of
taking action ai given the state s. A policy is deterministic if the probability of choos-
ing an action a from s is p(a/s)=1 for all state s, otherwise, stochastic, i.e, p(a|s)<1. A
value function is used to evaluate how good a certain state or state-action pair (s,a) is.
For this purpose, a generalized return value Rt, defined by Eq. (2) is used, where γ (0
< γ<1) is the discounted factor.

Rt ¼ rtþ1 þ γrtþ2 þ γrtþ3 … γT�t�1rt ¼
XT�t�1

i¼0

γirtþiþ1 (2)

The value of a state under policy π is evaluated as the expectation of Rt defined by
Eqs. (3) and (4) for the state and state-action pair, respectively. E denotes expectation
operation.

Vπ ¼ E Rrjst ¼ s, π½ � (3)

Qs s, að Þ ¼ E Rrjst ¼ s, at ¼ a½ � (4)

Underlying RL is dynamic programming [78] and bellman equations for optimality
under Markov decision process modelling. RL algorithms have been successfully
applied to several real-world problems with limited state spaces to problems in control
and navigation. However, it faces the following challenges:

• The optimal policy must be inferred by trial and error interaction with the
environment with the only learning signal being the reward.

State (St)

AgentEnvironment

St+1

Ac�on (at)
Policy update

Reward (rt)

Figure 3.
RL algorithm using a single agent.

105

Machine Learning and Cognitive Robotics: Opportunities and Challenges
DOI: http://dx.doi.org/10.5772/intechopen.107147



• Since the observations of the agent depend on its action, it may contain strong
temporal dependencies.

• Long-range dependencies may only emerge after many transitions.

• Balancing exploitation versus exploration.

Underlying RL is the Markov property that the current state affects the next state
or is conditionally independent of the past given the present state. Partially observable
Markov decision processes (POMDP) are Markov decision processes (MDP) in which
agent receives an observation p(ot+1|st+1,at) where the distribution is dependent on the
current state and previous action [79]. An episodic MDP resets after each episode of
length T, and the sequence of states, actions and rewards in an episode constitute a
trajectory or rollout of the policy. There are three main types of reinforcement algo-
rithms, namely policy-search, value-function based and those that combine both
policy and value function approaches. They include actor-critic method, temporal
difference and Monte Carlo-based methods [80, 81]. The increasing use of deep
reinforcement learning (DRL) algorithms has been attributed to the low-dimensional
representation of deep neural network representation and the powerful functional
approximation of neural networks. The following significant recent developments in
DRL have made it possible to scale to large dimensional state space:

• The combination of duelling DQN architecture with prioritized experience replay
in providing better estimates of expected return functions [82, 83].

• The use of an experience replay and target network that initially contains weights
of the network enacting the policy, but is kept frozen for a large period [83–85].

• Introduction of hierarchical reinforcement learning.

• Improvements in guided policy algorithms.

• Asynchronous advantage actor-critic (A3C) algorithm [86] developed for both
single and distributed machine settings. A3C combines the advantages of updates
with actor-critic formulation and relies on asynchronous update policy and value
networks in parallel.

1.5.2 Review of imitation learning

Imitation learning (IL) aims to mimic human behaviour in a given task by facili-
tating the teaching of complex tasks with minimal knowledge through demonstration.
There are three main classes of ML algorithms for imitation, namely, behaviour
cloning, inverse reinforcement learning and generative adversarial learning [87].
Behaviour cloning applies supervised learning by learning a mapping between the
input observation and the corresponding actions, provided there is enough data.
Generative adversarial imitation is inspired by generative adversarial networks [88].
Typically, an agent uses instances of performed action to learn a policy that solves a
given task using ML techniques. The agent could learn from trial and error or observe
other agents. It has been applied to problems in real-time perception and reaction,
such as humanoid robots, self-driving cars, human-computer interfaces and computer
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games. The assumption is that an expert (teacher) is more efficient than the agent
learning from scratch when given a task [89]. Imitation learning is an interdisciplinary
field of research, and it is sometimes difficult to define suitable reward function for
complex tasks. For example, it is often the case that direct imitation of an expert’s
motion does not suffice due variations in the task such as the position of the object,
environmental conditions and inadequate demonstrations [90]. Therefore, it is diffi-
cult to learn policies given demonstrations that generalized to unseen scenarios. The
policy must be able to adapt to variations in the task and surrounding environment.
Argall et al [91] address different challenges in the process of IL, such as computa-
tional methods used to learn from demonstrated behaviour and the processing pipe-
line. A typical representation of a sample for IL consists of pairs of action and state,
such as position, velocity and geometric information, and modelling the process as
MDP. The learning process is with pre-processing, sample creation and direct or
indirect imitation.

The following are some of the challenges of IL [90]: Noisy or unreliable sensing,
correspondence problem and observability where the kinematics of the teacher is not
unknown to the learner. Further, complex behaviour is often viewed as a trajectory of
dependent micro-actions, which violates independent and identically distributed
assumptions in machine learning. Lastly, safety concerns in human-robot interactions,
the ability of the robot to react to human force and adapt to the task. A typical flow
chart [90] is shown in Figure 4.

There are different methods from demonstrations, namely, structured predictions
[92], dynamic movement primitives [93], inverse optimal control (inverse reinforce-
ment learning [94], active learning [95], transfer learning and other techniques.

Feature Representation

Feature      
Extraction

Designed FeaturesRaw

Sources of Demonstrations

Online SensorsExternal SensorsTeacher Sensors

Learning from Demonstrations

Apprenticeship  
Learning

RegressionClassification

Refine Policy

Reinforcement
Learning

Transfer
Learning

Apprenticeship
Learning

Optimization

Active
Learning

Structured
Predictions

Figure 4.
Imitation learning flowchart [89].
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Active learning needs a dedicated oracle that can be queried for demonstration.
Inverse RL techniques use demonstrations to learn cost functions over extracted
features. It first recovers a utility function that makes the demonstration near-optimal
and searches for the optimal policy using a cost function as an optimization objective.
Closely related is apprenticeship learning, which uses demonstrations from an expert
or observation to learn a reward function. A policy that optimises the reward function
is then learned through experience (trial and error). Transfer learning use experience
from old tasks or knowledge from other agents to learn a new policy. The reader is
referred to refs. [87, 96] for details of imitation learning and its applications in
robotics. Learning a direct mapping between state and action is not enough to achieve
the required behaviour in most cases due to cascade errors, insufficient demonstra-
tions and the difficulty in reproducing the conditions and settings. The learner has to
learn actions and re-optimise policies with respect to quantifiable reward functions.
Figure 4 is a flowchart showing different variants of imitation learning. The following
are some recent developments:

• Use of goal-directed (motivation or curiosity-driven) learning to exploit and
explore multi-task spaces;

• Use of developmental robotics concept of goal babbling for visuomotor
coordination tasks for coordination of multiple subsystems (head and arms) [97].

• Use of predictive processing techniques [3].

• Use of memory systems for storage of knowledge of agents’ beliefs, goals and
short and long-term memory, together with efficient integration with other
components of cognitive architectures.

• Use of machine learning for integration of perceptual processing, feature
extraction, learning and control.

1.5.3 Review of deep learning algorithms

The recent success of deep neural networks (DNN) in computer vision and natural
language processing has led to its application in cognitive robotics. Traditionally,
cognitive robotics architecture has been built with artificial intelligence at the top level
using a restricted form of natural language and gestures for communication, and
biologically inspired mechanisms at the lower levels. Deep learning using DNN has
been applied to perceptual processing, motor control, object manipulation and differ-
ent cognitive processing level of the generic architecture discussed earlier on. A deep
learning survey focusing on deep reinforcement learning and imitation has been
provided by Tai et al [81], including applications in ML in robotics. Perception
processing is passive since an intelligent agent receives observations from the envi-
ronment and then infers the desired properties from the sensory input. Guo et al [98]
provide a comprehensive overview of deep learning for perception. Similarly, for
manipulation applications, Gu et al. [99] present on deep reinforcement learning for
robotic manipulations. Gupta et al. [100] also present on robotic manipulations using
human demonstrations. Several works relating to deep reinforcement learning in
robotic navigation [101–103] have been published including those using SLAM
[104, 105]. Zhang et al. [104] propose neural SLAM based on a neural map proposed
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by Parisotto and Salakhutdinov [106], which in turn uses a neural turing machine for
the deep RL agent to interact with. The main challenge with DRL is the reality gap,
which refers to discrepancies between models trained with data from simulated envi-
ronment, transferred to the real world, and deployed on real robotic platforms. It is
due to unrealistic environmental conditions such as lighting conditions, noise pat-
terns, texture, etc., synthetic rendering and real-world sensory readings. It is particu-
larly several with visual data (images and videos). Domain adaptations are typical to
use to mitigate the problem [107] based on generative adversarial networks (GANS).

Other DNN architectures include convolutional autoencoders for low-dimensional
image representation [108], deep recurrent neural networks [109] and deep
convolutional networks [11, 110]. To improve robustness of deep learning networks,
several strategies have been adapted, including the following: Use of auxiliary tasks in
either supervised or unsupervised fashion; experience replay, hindsight experience,
curriculum learning, curiosity-driven exploration, self-replay and noise in parameter
space for exploration. Table 1 provides a summary of representative research works
covering different ML approaches to solving cognitive problems and the functionality
provided. For industrial 4.0, initiative typical ML algorithms are provided in ref. [56].

1.6 Use case

For robots acting as human companions, autonomy is fully-oriented towards nav-
igation in a human-centred environment and human-robot interactions. It is facili-
tated if the robot’s behaviour is as natural as possible. Some requirements are that
robot independent movement must appear familiar and predictable to humans and
have similar appearance to humans. Human–robot interactions include the following:
use of natural language or subset for communication, gesture or activity interpretation
that involves tracking and action recognition; gesture imitation that involves tracking
and reproduction and the person following which involves 2-D or 3-D based tracking.
Acceptable performance at the task level requires real-time processing constraint of 50
milliseconds per second. Safety is also very important as robots are expected to evolve
in a dynamic environment, well populate with humans. The main challenge is that
robotic systems lack learning representation, and interactions are often limited to

Machine learning
paradigm

Reinforcement
learning

Imitation
learning

Deep learning End-to-end
processing task

Transfer learning [111]
[112] DQN

Games
Games

Representational
learning

[113]
[114]

Object recognition
Navigation

Feature extraction [115] k-means
[116] autoencoder
[117] autoencoder
[118, 119] recurrent
neural networks
[120] LSTM
[121, 122] CNN

Language and
behaviour learning
Trajectory planning
Object grasping

ML plus other
techniques

[123] [124, 125]

Table 1.
Comparison of different ML techniques reported in the literature.
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pre-programmed actions. One solution strategy is to conceptualize cognitive robots as
permanent learners, who evolve and grow their capacities in close interactions with
users [86]. Robots must learn new tasks and actions relative to humans by observing
and imitating (imitation learning). Thus human detection and tracking, activity rec-
ognition and face detection are some basic tasks that must be performed robustly in
real-time. A use case is presented next, which deals with daily activity recognition at
home and face recognition using publicly available dataset. These typically fit in
several robotic studies investigated in human-centred environments [40]. The algo-
rithms are first described, followed by an evaluation.

1.6.1 Activity recognition

Research activities in domestic service robots have increased in recent years. Some
of the main drivers are the projected future use of domestic robots for improving
elderly people’s quality of life, childcare, entertainment and education. Several
benchmark datasets [126–129] and methodologies for evaluating the capabilities and
performance of robotic platforms are available. Action recognition is used in several
application domains such as surveillance, patient monitoring systems, human–com-
puter interface, housekeeping activities and human assistance by robots (guiding
humans). There are two processing techniques: spatial approach, which allows recog-
nizing activities from images, and spatio-temporal approach for detecting specific
activity as space-time volume.

The HMDB51 [130] is an action dataset whose action categories mainly differ in
motion rather than static points. It contains 51 distinct action categories, each
containing at least 101 video clips. Video clips are extracted from a wide range of
sources. The clips have been annotated and validated by at least two human observers.
Additionally, meta information tags allow for a precise selection of tags for training,
testing and validation. Meta-data tags include information on camera viewpoint,
presence or absence of camera motion, video quality and a number of actors involved.
The training procedure is also described.

A simulation study on activity recognition based on spatio-temporal analysis of a
large video database of human motion recognition [130] is provided. The main
processing steps are shown in Figure 5. The algorithm consists of six main processing
steps, namely, pre-processing, spatio-temporal analysis in the wavelet domain, class
model construction (class dictionary), batch singular value factorization (BSVF), simi-
larity feature computation and classification. The pre-processing step involves filtering
for noise removal and optionally contrast enhancement using histogram equalization.

Sparse 
dictionary 
learning

Wavelet 
analysis 

and spatio 
temporal 
reduction

Compute  
similarity 

vectorPre 
processing

BSVPvideo Classif-
ication

Figure 5.
Similarity-based feature construction and classification.
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The wavelet analysis step applies orthogonal or biorthogonal wavelet (9/7 or 5/3 filter)
to produce subband frames. A silhouette feature map is constructed by combining low–

low and high–low subbands as described in Tawiah et al [130]. The map is a tiling of
rectangular features describing the dominant objects in the frame. Sparse dictionary is
constructed for each activity as described in refs. [131, 132]. Spatial frame resizing and
temporal frame subsampling by interpolation are applied to construct an action volume
of 64 � 32 � 100 pixels for each action volume. It is then reshaped to a vector of size of
51200. Batch singular value prediction (BSVP) is based on the classical singular value
decomposition [133] used in signal processing with batch data input (matrix). Each
column of the input matrix represents a sample action. The output is a decomposition
consisting of left and right-hand singular vectors (or matrices) for vector (or matrix)
input and a covariance matrix as the diagonal matrix.

BSVP prediction step consists of two sub-steps: first, apply singular value decom-
position to the same batch training sample used in constructing the dictionary,
replacing one column (e.g, the first) with an incoming action sample. Then, apply the
computation step in Eq. (5). The class dictionary is constructed using a batch sample
matrix, with each sample representing an action volume. The prediction for an input
action sample is computed using Eq. (5):

Est r, jð Þ ¼
Xnsample

j¼1

φ r, :ð Þ
Xdims

j¼1

LHS r, ið Þ ∗ α j, jð Þ þ
Xdims

j¼1

RHS r, jð Þ ∗ α j, jð Þ
" #

(5)

Ф denotes the class dictionary matrix, N sample denotes the number of samples in
the batch dataset, Dim S denotes the dimension of each sample, RHS (r,i) denotes the
right-hand singular vector, LHS(r,i) denotes the left-hand singular vector, α denotes
the covariance matrix and Est denotes the estimate of the sample. The indices, r and i,
are used to identify specific elements in a matrix. The similarity between the input
spatio-temporal volume and Est (refer to Eq. 5) is computed using five similarity
measures, namely, canonical correlation [134], Bhattacharyya distance [135], modi-
fied Bhattacharyya distance, histogram intersection [136] and cityblock. A similarity
vector is formed by concatenating all the similarity values. A multi-class feed-forward
classifier [137], consisting of 51 all versus one classifier, is constructed. The classifier is

Figure 6.
Brush hair sample video clip, showing frames 1, 2 and 3.
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able to assign an action volume to multiple classes. Samples of input video frames and
the corresponding object outline maps are shown in Figures 6 and 7.

BSVP does not reconstruct a sample using the sparsest representation as is the case
in classical sparse coding but instead uses one-time reconstruction from batch sample
whose representations are known (represented as LHS and RHS singular matrices
with known covariance) and applies BSVP algorithm. This provides a representation
for a sample taking into consideration statistical characteristics of all samples in the
batch. It is computationally efficient and avoids solving L1-norm optimization, and it
is suitable for real-time classification problems. The result on applying the proposed
algorithm to all the fifty-one action classes is summarised in Figure 8, using the action
categories provided by HMDB51 dataset (Table 2).

The confusion matrix is also shown in Figure 8 to illustrate action classes prone to
misclassification.

For robotics applications, facial expression recognition and gesture recognitions
are also very important. Reference [138] provides a good review of facial expression
recognition.

Figure 7.
Cartwheel sample video clip, showing frames 1, 3 and 5.

Figure 8.
Confusion matrix for HMDB51 dataset.
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1.7 Trends in cognitive robotics

Early approaches to imitation aim to reproduce reaching or grasping with simple
grippers. Imitation learning provides a desired sequencing of basic sub-skills to
achieve an observed task behaviour. Later on, more sophisticated system including
modules for visual attention, speech recognition, and integration of visual and lin-
guistic inputs for instructing robots to grasp everyday objects [139]. Online learning
and machine learning techniques, such neural networks, have been used in low-level
and reactive tasks from trajectory learning and adaptive control of multi-DOF robots,
and tasks learning from demonstrations. ML provides different paradigms of learning
from transfer learning, representation learning curriculum learning, etc, which pro-
vides for systematic means of acquiring systematic models for making inferences
[140]. The following are some trends that are apparent from the literature review:

• The use of neuroscience and behavioural psychology to synthesize computational
models for high-order cognitive skills in artificial agents.

• The use of neural networks as functional approximators.

• Use of motivations or goal-directed mechanisms to balance exploration and
exploitation in tasks space rather than in motor space.

• Use of robotic platforms for research in higher order research (social robots).

• Useofpredictive codingmechanisms to synthesise higher-order cognitive behaviours.

• Classical control theory is unable to handle complex scenarioswithmanyparameters.

• Use of swarm robotics to study social behaviours in robotic swarms.

• The increasing use of networked and cloud robotics and cyber-physical systems.

The use of artificial intelligence, especially machine learning, wireless connectivity
and cloud computing, is increasing to integrate physical systems and processes,
including robotics. At the core of most ML tasks, decision-making is based on infor-
mation fed to the decision maker. The study of decision-making is closely connected
with psychology and cognitive sciences.

Action class Scene content precision
(%)

Meta descriptors precision
(%)

Facial expression 75 25

Facial action 78 23

Body movement 86 37

Body movement with object interaction 97 43

Body movement with human
interaction

97 43

Table 2.
HMDB 51 action classification.
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1.8 Success, challenges and research directions

Several projects involving the use of cognitive robotics have been reported in
industrial settings (Industry 4.0), service robots, robotic surgery, cardiovascular sur-
gery [70], assistive technology [141] and several other fields. In ref. 70, ML methods
are used in perceiving an individual’s health by collecting and interpreting his/her
clinical data and would reason to suggest actions to maintain or improve the individ-
ual’s cardiovascular health. ML augmented decisions point to potential to improve the
outcome at a lower cost of care and increase satisfaction. In assistive technology [141],
vision-based hand wheelchair control using kinect sensor system enables the user to
control without wearing or touching.

As cognitive robotics continues to make some remarkable progress in industrial
process automation with Industry 4.0 initiative, cloud robotics and service robots, it
has resulted in more challenges [142–144]. For example, standardisation effort [56]
has ushered in a new era of robotics linked to cyber–physical system for effective
control and monitoring of industrial processes. Classical approaches to robotics have
made significant progress in control-based applications in stand-alone robotic appli-
cations, but there are challenges in multi-robot and multi-agent systems applied to
complex tasks in dynamic environments.

The main goal of integrating thinking, knowing and feeling in an artificial intelli-
gent system as cognitive process has not been realised today despite advances [57]. In
particular, integrating feeling into the existing system has proved very challenging.

The trends towards Industry 4.0 of providing cyber–physical framework for uni-
fying industrial processes and cyber–physical system would be extended to service
robots domain as well. The need to develop more robust and sophisticated ML algo-
rithms to enable AI agents to carry out complex tasks in a coordinated and cooperative
fashion to ensure reliability and cost-effectiveness. The robustness of ML algorithms
under adversarial learning would also have to be investigated.

The need is for more research into the decision-making process (using ML) to
make it robust, timely and relevant to situation, as well as meet real-time require-
ments. For multi-robot systems, the need for cooperation and coordination of tasks
is very challenging to improve the effectiveness and improved utilisation of
resources. Underlying these problems is the need for research into more robust ML
algorithms and transparent model interpretation, and guarantees against adversarial
attacks [145].

The need is for cost-effective management of resources (computing, network,
storage and devices), all interconnected for ambient intelligence. The problem of
scheduling, recovering from unexpected events and scalability issues require urgent
attention. Similarly, the integration of heterogeneous platforms (software and hard-
ware) into processes is required. Investigations into robust and generic processing
architecture for social robotics are another area worthy of investigation.

Investigations into protocols to ensure effective and robust cooperation between
humans and robots via human-machine interfaces to ensure trust and autonomy, as
well as ethical considerations, ought to be investigated.

To meet privacy and security concerns distributed learning [146, 147] approaches
to train models on the cloud keeping data localized and apply privacy-preserving
analysis. However, this has raised the issues of network latency and model consisten-
cies, which has been proven very challenging. Approaches to solving the challenges
include MEC-based training, federated learning and capsule network for internet of
vehicles. Other persistent challenges are latency, security and management of
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network infrastructure. Autonomic systems [148] seem very attractive for managing
problems related to network and computing infrastructure.

1.9 Conclusion

The chapter has presented a review of recent development in ML techniques for
cognitive robotic systems in the overall context of artificial intelligence. The main
algorithms for learning, namely, reinforcement and imitation learning techniques,
have been discussed.

The recent initiative in Industry 4.0 initiative, increasing trend in research in
service robots, telemedicine and computer-assisted medical delivery system means
that the industry holds lots of promise for research and personal applications.

Several processing architectures, as well as software frameworks for integrating
heterogeneous hardware and software components, have also been presented.
Towards simulating further research, current trends and research issues have also
been highlighted. An example scenario involving action recognition of humans and
facial expression has also been presented.
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