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Preface

Progress in industrialization and automation engineering is creating many new 
opportunities in the autonomous systems industry. Thus, there is a demand for 
control engineering across numerous industries. For example, in the automotive 
industry, “software-defined” vehicles, which are vehicles whose features and func-
tions are primarily enabled through software, are being researched and developed. In 
the maritime world, companies like Wärtsila and ABB are working on autonomous 
vessel technologies. Similar progress can be seen in aircraft technologies with the 
innovation of flying taxis.

With the uncertain and highly nonlinear dynamics of the real world where these 
new technologies will be deployed, a reliable control strategy is necessary. One of 
these methods is model-based control engineering. This book provides a high-level 
discussion on model-based control engineering and its various applications.

The book is divided into three sections. The first section includes an introductory 
chapter. The second section, “Identification and Prediction,” discusses topics such as 
parameter identification and particle filter-based approaches for prediction purposes. 
The final section, “Modelling and Optimization,” contains several discussions on 
model predictive control as well as control optimization.

The editors are experienced researchers in the control engineering field, currently 
based in Sweden and Malaysia. We would like to thank all the reviewers who con-
tributed to the creation of this book: Erkan Adalı, Dr. Ayush Jain, Zejiang Wang, 
Dr. Vinay Pandey, and Dr. Mathias Metzler.

Dr. Umar Zakir Abdul Hamid
China Euro Vehicle Technology AB,

Gothenburg, Sweden

Dr. Ahmad 'Athif Mohd Faudzi
Professor,

Universiti Teknologi Malaysia,
Johor Bahru, Malaysia
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Chapter 1

Introductory Chapter:  
Model-Based Control Engineering 
and Its Significance for 
Automation Technology  
and Autonomous Systems
Umar Zakir Abdul Hamid and Ahmad 'Athif Mohd Faudzi

1. Introduction

The progress in industrialisation and automation engineering creates a lot of 
new opportunities in the autonomous systems industry [1]. For example, in the 
automotive world, the term ‘software-defined’ vehicle is starting to accumulate 
more discussions [2]. It refers to the future where the vehicle value will be defined 
more on its software, in addition to the hardware platform.

Across the industries, we are seeing the need for control engineering knowl-
edge continuously in demand. For example, in the maritime world, companies 
such as Wärtsila and ABB are working on autonomous vessels technologies [3, 4]. 
Furthermore, similar progress can be seen in aircraft technologies with the advances 
of flying taxis innovations [5].

For all of these technologies to be delivered safely to the public, it needs to be 
able to be operating continuously while being exposed to the uncertainties of the 
systems. Therefore, one of the methods to address the mentioned issues is model-
based control engineering adoption to yield a reliable performance of the systems.

2. Model-based control engineering

Model-based control engineering facilitates the development of complex 
systems using a model-based design approach. Among the notable examples of 
application in the control engineering is model predictive control (MPC), where it 
is usually adopted to address the complex behaviour of nonlinear dynamic systems 
(Figure 1). MPC is a highly studied topic in the control system field. The inclusion 
of the dynamic models of a plant or process into the formulation aids in improving 
the control system performance.

In typical model-based control engineering works, the plants can be modelled 
via several means. Once the obtained model has been verified, the controller and 
algorithm development can be driven with it. These include the validation and 
verifications of the algorithms with the modelled plant. For example, a vehicle 
collision avoidance control system development can be simulated with a reliable 
vehicle model [9, 10]. With the advances of computing devices, a lot of researchers 
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are now integrating model-based applications with machine learning applications 
for complex autonomous systems [11, 12].

With model-based control engineering, a lot of benefits can be attained. For 
example, the time-to-market of the product can be reduced by solving the bottle-
neck subjects between hardware readiness and control system development [13, 14]. 
Furthermore, a model with good fidelity will allow for simulation-based testing of 
the control systems in different scenarios during the system testing stage. Despite 
this, model-based control engineering encounters more challenges too. Among the 
topics that are related to model-based control engineering are system identifica-
tions, modelling, and optimization.

3. Aim of this book

With advances in computational devices, model-based control applications, 
particularly MPC has started to gain recognition by practitioners in varied indus-
trial sectors such as chemical engineering and industrial plant applications, and 

Figure 1. 
Different types of model predictive control strategies [6–8].
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recently in robotics and autonomous vehicles, among many others. However, 
despite the advance and progress, implementation in uncertain environments and 
highly nonlinear scenario remains challenging.

This book aims to provide model-based control engineering topics high-level 
discussions to the generic audience with varied use cases. It is hoped to provide a 
good overview of model-based control engineering for interested readers. As we 
are seeing more autonomous systems entering the market, the editors of this book 
believe the discussions made in this book will be useful for the readers’ knowledge 
of model-based control engineering.

As this book is aimed to be brief and cover different perspectives, the editors 
are also encouraging interested readers to read more extensive discussions on the 
theoretical part of model-based control engineering in these works [15–17].
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Chapter 2

Identification of Predicted Load
Cluster Pattern Power Generation
Parameters Based on Descriptive
Time Series Analysis
Ismit Mado

Abstract

This chapter describes the process of identifying a power generation system.
This is important because in principle the system parameters as a whole are not
linear and uncertain. For this reason, it is necessary to carry out an identification
process using an experimental approach that is able to represent the system as a
whole. The technique used in this identification process is Prediction Error Mini-
mization (PEM) as a tool available in Matlab. Identification is done by simulating
changes in the value of frequency, voltage and electrical power due to changes in
load. The change in load over time is a characteristic of the time series pattern.
Through descriptive analytic approach, the cluster load is patterned for each load
operating condition. Through load clusters, the identification results of power
generation systems are obtained based on their operating conditions. This chapter
presents validated parameter estimates for each change in instantaneous load
conditions. The simulation results obtained better performance between the actual
output and the identification model, namely the calculation of the Intergal Absolute
Error (IAE), with MAPE for the average frequency value of 73.95 percent, nominal
voltage of 0.23 percent, and electric power of 23.46 percent.

Keywords: Identification parameters, Validation, Descriptive analysis, Clustering
model, Electric loads, Power generation system

1. Introduction

In reality, existing systems are a combination of linear and nonlinear models.
Modeling with mathematical derivation is done with a lot of neglect of unmeasured
parameters. The calculation is carried out around the linear area only, while the
nonlinear area is not much heeded or neglected. Therefore, the results of the model
derived based on the laws of physics or mathematical derivation, are still not very
effective to be applied directly in the field.

Apart from the method of deriving the laws of physics or deriving it mathemat-
ically, there are also other methods for modeling, namely by using the identification
method. This method will model a system as a whole, both linear and nonlinear
parameters. All of these are considered to be one integrated system. Identification is
an approach process by means of mathematical modeling of an unknown system
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through learning of data collected from previous experiments as well as
input–output data from pre-existing controlled systems. The results obtained are
parameter values in the form of a mathematical model. The data is compared with
the actual model, wherein the difference between the two systems is used as an
objective function which will later be minimized. In principle, the identification
process is an introduction to a system to be controlled. Identification is one of the
important factors that support success in engineering a control system that is stable,
robust and able to represent the actual model in the field.

Matlab has a very effective identification tool for simulations. Several studies on
parameter identification have been carried out through one of them the System
Identification Toolbox (SIT) package. Initial research which is the reference for this
writing as has been done by Fruk et al. [1]. The model can be determined by
adjusting the assumed process model settings, until the modeling is satisfactory and
accurate according to the input data in the SIT package. Research has also been
carried out to identify the dynamic model parameters of a permanent magnet direct
current (PMDC) DC motor [2]. The process of identifying DC motor parameters in
the last year has also been carried out and published. This study identifies DC motor
parameters whose initial values are estimated by MATLAB/ Simulink based on a
Genetic Algorithm [3]. Identification research on large-scale power generation sys-
tems has been carried out to test the frequency value of the load shedding test on
the 39 bus hydraulic turbogenerator system [4]. This identification process is car-
ried out in the form of a Matlab simulation.

The identification in this paper is a variant of the single machine infinite bus
(SMIB) parameters due to load changes. The fluctuation of electric power at the
load center is very important to analyze so that the stability of the power generation
system can be maintained optimally. Changes in load over time can be identified as
minor disturbances in the generating system. Minor disturbances or so called small-
signal stability studies occur in the operating conditions of the system after the first
swing at which time the response of control equipment such as governors, AVR,
and auxiliary devices has been taken into account [5, 6]. Load fluctuation results in
changes in the value of the frequency and voltage in the power generation system so
that the stability of the system will be disturbed.

The load characteristics of the period of use whether it is used by household,
commercial, industrial and public loads are necessary so that fluctuations in the
loading system can be analyzed. Changes in electric load form a continuous pattern
and are time series in nature. Through a descriptive analytical statistical approach,
the load pattern is analyzed so that the operating conditions of the power generation
system are obtained in the form of a continuous load cluster pattern. To achieve the
research objectives, steps were taken to identify any changes in electrical power at
the load center. Changes in load are classified through the identification of SMIB
parameters using the reduced-order model approach.

2. Research methods

This research aims to identify and validate the power generation system param-
eters. The identification process uses the prediction error minimization approach to
obtain a more accurate mathematical model.

In this research, identification is carried out for all dynamic conditions due to
changes in electric power on the load side. Namely, creating a load cluster pattern
based on the analytical descriptive method in a time series approach.

The achievement that will be produced in this research is the identification
model equation for each cluster in the form of a state space matrix equation. So that

12
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the results of this research will be useful in designing controls on a power genera-
tion system that is more efficient, optimal response and robust.

2.1 Proposed research

Mathematical models through physical analysis will not provide accurate identi-
fication results, because there are parameters that can only be obtained through an
experimental process. So it is necessary to approach the system model. The system
model approach can be carried out through the identification and validation process
stages. System identification is defined as a method used to obtain an approach
model from the actual system through evaluation of input–output measurement
data [7]. In other words, the process of identifying a system is a combination of two
efforts, namely the effort to form a mathematical model and estimate the optimal
parameter value through experimental steps. System identification in general can be
described as in Figure 1 below.

According to Law and Kelton, validation is the process of determining whether
the simulation conceptual model is really an accurate representation of the real
system being modeled [8]. Model validation can also be said as a step to test
whether the identified model can represent the real system correctly. A model can
be said to be valid when it does not have a significant difference with the real
system which is observed either from its characteristics or from its behavior.

It is important to identify and validate the power generation system in deter-
mining the load change pattern. The dynamic load characteristics will be patterned
in the form of clusters based on statistical analysis. Load every moment is a time
series dynamic behavior. A time series is a series of observations carried out
sequentially based on time [9]. The observation process is carried out at the same
intervals, for example in hourly, daily, weekly, monthly, yearly intervals, or other
intervals. There are two objectives of time series analysis, namely to model the
stochastic mechanisms contained in the observations and to predict the value of
future observations.

Electric load data can be viewed as a reality of stochastic processes [9]. Where
statistical phenomena are arranged in time order based on the law of probability. If
the time series observation is denoted by Zt, where t∈A with A the set of natural
numbers. According to Wei, the stochastic process is a time-based data group
composed of random variables Z ω, tð Þ where ω is the sample space and t is the time
index [10]. The distribution functions of the random variables Zt1 ,Zt2 , … ,Ztn are as
follows:

F zt1 , zt2 , … , ztnð Þ ¼ p ω : z ω, tð Þ≤ zt1 , … , z ω, tnð Þ≤ ztnf g (1)

Figure 1.
Block diagram of the system identification process.
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Observation of Z1,Z2, … ,Zn is a stochastic process, so the random variables
Zt1 ,Zt2 , … ,Ztn are said to be stationary in the distribution if:

F zt1 , zt2 , … , ztnð Þ ¼ F zt1þk, zt2þk, … , ztnþkð Þ (2)

A model like the one above is called a stochastic process, because of the sequen-
tial observations that are arranged in time. The variant of the electric load due to use
in consumers can be viewed as an approach to the electrical load cluster pattern.
The main purpose of this cluster pattern is to determine the operating conditions of
the power generation system. Analytical descriptive method is a statistical approach
that can describe a continuous load state. This method is concerned with collecting
and presenting a data set so that it provides useful information [11]. Analysis of this
cluster data processing into information containing a set of electrical load charac-
teristics that can be summed up numerically.

This descriptive analysis includes several things, namely: first, frequency distribu-
tion, namely the arrangement of data according to certain categories in a systemati-
cally arranged list. Second, the measurement of central tension, which is a statistical
analysis that specifically describes a representative score, includes data frequency
figures such as mode, mean, median or arithmetic mean. Third, the measurement of
variability, namely the degree of spread of variable values from a central tendency in a
distribution. Variability is also known as dispersion. Variability can be measured
through measurements: range, mean deviation, and standard deviation [12].

Cluster pattern groups in the same interval will make it easier to analyze load
changes and be able to provide intervals of variants of the distribution of electric
power from the power plant to the load. This analysis is important in achieving the
planning goals and schedules of a more efficient and optimal generating system in
maintaining the balance of the electric power system.

2.2 Physical model of the power generation system

The physical model used in this study is the SMIB model. The SMIB model refers
to Park modeling, with the following criteria: negligible stator resistance, balanced
system conditions and negligible core saturation of the generator, and the load is
considered a static load [13]. This model refers to the synchronous machine that was
introduced by De Mello and Concordia [14]. Recent studies still refer to this single
engine model as has been done by [15–17].

The electric power produced by the power plant must be balanced with the electric
power absorbed at the load center. By applying a variant of the electric load pattern
and the load cluster approach, this research is able to maintain a balance between the
electrical power supplied and the electric power consumed at the load center.

2.3 Identification power generation system

Parameter identification through derivation of the mathematical equation of the
SMIB model. The mathematical model of a dynamic system is defined as a set of
mathematical equations that represent the dynamics of a system accurately or at
least close to the characteristics of the dynamic system. As a first step in analyzing a
dynamic system is to derive the mathematical model. The mathematical model of
each system will vary, it depends on the system components. Previous studies have
derived mathematical models of generating systems to support the design of small
signal stability control [18].

The identification approach uses a system identification toolbox with prediction
error minimization (PEM) black-box identification techniques. PEM builds a
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measured input–output system mathematical model with the aim of updating the
initial model as a reference model.

The PEM function also handles multiple-input-single-output structures in the
form of polynomial representation of transfer functions

A qð Þy tð Þ ¼ B1 qð Þ
F1 qð Þ u1 t� n k1ð Þ þ … þ Bnu qð Þ

Fnu qð Þ unu t� n knuð Þ þ C qð Þ
D qð Þ e tð Þ (3)

Where A, B, F,C and D are polynomials in the operator delay. Here, the numbers
na and nb are the orders of the respective polynomials. The number nk is the
number of delays from input to output. With ny output channels and nu input
channels. An Output-Error structure is obtained ase tð Þ. In this study, using discrete
time with a 3rd order approach.

3. Results of the parameter identification

To reach the results stage of this research, the steps taken in this study are
simulations of the identification of the power generation system parameters, the
results of time series analysis, validation, and simulation of the validation
parameters compared to the actual model.

3.1 Parameter modeling

Based on Figure 1, the mathematical model of the SMIB system is represented in
the form of the following state space Eq. [14]:

_x ¼ A xþ B u and y ¼ C x (4)

Where, x is the state variable, n� 1, u is the input variable, m� 1, y is the output
variable, r� 1, A is the system matrix, n� n, B is the control matrix, n�m, and C is
the measurement matrix, n�m.

The state space equation, where the state variable x is defined as

x ¼ ΔY ΔTm Δδ Δω ΔE0
q ΔvF

h iT
(5)

and the output variable y as

y ¼ ΔY ΔTm ΔP Δω Δv ΔvF½ �T (6)

where,

Matrix Aii ¼

� 1
Tgu

0 0 � Kgu

Tgu R
0 0

1
Ttu

� 1
Ttu

0 0 0 0

0 0 0 ωo 0 0

0 0 �K1

M
� D
M

�K2

M
0

0 0 � K4

T0
do

0 � 1
K3 T0

do

1
T0
do

0 0 �KAK5

TA
0 �KAK6

TA
� 1
TA

2
666666666666666664

3
777777777777777775
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Matrix Bii ¼

Kgu

Tgu
0

0 0

0 0

0 0

0 0

0
KA

TA

2
6666666666664

3
7777777777775

and Matrix Cii ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 K1 D K2 0

0 0 0 1 0 0

0 0 K5 0 K6 0

0 0 0 0 0 1:

2
666666664

3
777777775

And for the output state variable of the equation that satisfies:

ΔP ¼ K1Δδþ K2ΔE0
q þDΔω (7)

Δv ¼ K5Δδþ K6ΔE0
q (8)

Where, ΔY is the change in turbi valve height, ΔTm is the change in mechanical
torque, Δδ is the change in rotor angle, Δω is the change in rotor angular velocity,
ΔE0

q is the change in generator transient voltage, ΔvF is the change in excitation
output voltage, ΔP is the change in generator electrical power, and Δv is the change
in terminal voltage.

3.2 Time series analysis based load cluster

The dynamics of the electrical load is a series of data calculated every half hour on
the SMIB that transmits power to the load center. The operating points were selected
based on load cluster modeling using descriptive analytical statistical methods. The
cluster interval range is simply implemented between the minimum value of electri-
cal load, quartile 1, middle value, quartile 3, and maximum value as the operating
point under load conditions. To model the cluster pattern based on the distribution of
electrical load data as shown in Figure 2, this study uses the Minitab software.

Load variation is defined as a disturbance mechanism that occurs in the system due
to changes in electrical power at the load center represented by changes in load groups.
While the input from the turbine side and constant excitation. This modeling is
represented by the input signal (u) which is on the turbine side (Δugu) and the excita-
tion side (ΔuE) with a reference a signal of 0.5 sin (0.1 t) + 0.5 pu. Output (y) which
represents the signal change in frequency value (Δω), change in terminal voltage on the
generator bus, (Δv) and generator electrical power (ΔP) in the form of 1 pu.

The input change load is in the form of a cluster pattern which represents the
cluster load model in the form of a sinusoidal signal equation. As shown in Figure 3,
the cluster pattern in the form of a variation in the load model is set manually. The
cluster charge signal is a reference input with a signal pattern: cluster 1 represents a
0.125 sin (0.5 t) +0.125 signal, cluster 2 is 0.125 sin (0.5 t) +0.375, cluster 3 is 0.125
sin (0.5 t) +0.625, and cluster 4 of 0.125 sin (0.5 t) +0.875 in 1 pu.

In terms of the discrete state model equation, the identification results are
expressed by:

x kT þ 1ð Þ ¼ aM1 x kTð Þ þ bM1 u kTð Þ (9)

y kTð Þ ¼ cM1 x kTð Þ (10)

For all identification processes using a sampling interval of 0.1 s with a discrete
equation mode of order 3. The program listing on the system identification toolbox
is as follows
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S%Identification ModelSMIB
dat = idddata(y11 y12 y13],u11 u12],0.1);
SMIB = pem(dat,nx,…

‘DisturbanceModel’,‘none’,…
‘InitialState’,‘zero’);

[aM1d, bM1d, cM1d, dM1d, ke] = ssdata(SMIBDskrt);
aM1d
bM1d
cM1d

Figure 2.
(a) The distribution pattern of the cluster model data, (b) the level of data density.
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3.3 Validation power generation system

Power generation system validation model represents the mathematical model
of the actual model and the 3rd order approach model. The representation of the
simulation model approach with Matlab/Simulink is in the following block diagram.

The sub-system model of the generation system validation is shown in the
following Matlab/Simulink block diagram (Figure 4).

The results of the identification and validation of the generating system are
expressed in the form of the equation state space order 3 matrices A, B, and C below.

Modeling the identification of the power generation system parameters through
the simulation of loading of electrical power in each cluster obtained a linear model
of the input state matrix (A matrix), the output state matrix (C matrix) and the
control signal state matrix (B matrix).

3.4 Power generation system parameter simulation results

The identification result is a state space matrix equation as shown in Eqs. 9 and
10 in Table 1 above. The identification process is outlined in a flowchart as shown
in Figure 5 below:

The identified state space equation model is then validated as a reference
equation for the mathematical model of the power generation system load cluster
parameters compared to the actual model, with the following results:

Figure 3.
Block diagram of the SMIB validation.

Figure 4.
Sub-system model of generation system validation.
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Cluster Matrix A Matrix B Matrix C

1 1, 0006 0, 4699 �0, 0567

�0, 0562 0:8521 0, 0317

�0, 0208 0, 1863 0, 9662

�1, 1014 �0, 4644

0, 0906 �0, 8310

�0, 5709 �0, 7381

�0, 0333 �0, 0208 0, 0594

�0, 0179 �0, 1015 �0, 0531

0, 2325 0, 5239 �0, 4321

2 0, 9499 0, 6371 �0, 0459
�0, 0397 0, 8488 �0, 0070

0, 0234 �0, 3796 0, 9921

�0, 6493 �0, 4438
0, 0823 �0, 9872

0, 4765 0, 6902

�0, 0056 0, 0043 �0, 0084
�0, 0246 �0, 1114 0, 0185

0, 1572 0, 3463 0, 2393

3 1, 0513 0, 5022 0, 2361

�0, 0662 0, 8710 �0, 0124
0, 0251 �0, 1192 0, 8908

0, 1099 �0, 9611

�0, 2356 �0, 6486
0, 5362 0, 5751

0, 0022 0, 0125 0, 0049

�0, 0735 �0, 1159 �0, 0107
0, 0960 0, 4697 0, 2131

4 0, 8189 �1, 1845 �0, 5249

0, 0910 1, 3565 0, 2761

�0, 1205 �0, 4570 0, 5857

0, 1141 2, 4466

�0, 1583 0, 7748

0, 2317 �1, 7243

�0, 0188 �0, 1593 �0, 1006

0, 0151 0, 0293 �0, 068

0, 0310 �0, 2124 �0, 1050

Table 1.
Cluster based state space matrix.

Figure 5.
Flowchart research.
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1.Validate the following cluster 1 power generation system parameters
(Figure 6):

Figure 6.
Simulation results of cluster 1 load, (a) frequency, (b) bus voltage, (c) electrical power.
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2.Validate the following cluster 2 power generation system parameters
(Figure 7):

3.Validate the following cluster 3 power generation system parameters
(Figure 8):

Figure 7.
Simulation results of cluster 2 load, (a) frequency, (b) bus voltage, (c) electrical power.
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4.Validate the following cluster 4 power generation system parameters
(Figure 9):

Comparative representation between the actual model and the validation model
is presented in Table 2 form as follows:

Figure 8.
Simulation results of cluster 3 load, (a) frequency, (b) bus voltage, (c) electrical power.
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Based on the results obtained in Table 2, it can be seen that the IAE calculation is
very significant between the actual output and the identification results, especially
for changes in frequency and electrical power.

Figure 9.
Simulation results of cluster 4 load, (a) frequency, (b) bus voltage, (c) electrical power.

23

Identification of Predicted Load Cluster Pattern Power Generation Parameters…
DOI: http://dx.doi.org/10.5772/intechopen.99126



To calculate the performance comparison between the actual results and
identification, the Mean Absolute Percentage Error (MAPE) formula is used as
follows:

MAPE ¼
Pn

t¼1
Zt�Ẑt
Zt

���
���

n
� 100% (11)

where Zt and Ẑt are the actual value and the identification value, while n is the
number of calculation data sett.

Based on the MAPE calculation, the average frequency value is 73.95 percent,
nominal voltage is 0.23 percent, and electric power is 23.46 percent.

4. Conclusion

The identification process of the power generation system in this paper is very
supportive for further research, especially in the field of controlling the power
generation system.

Prediction Error Minimization is very helpful in the identification process that is
able to adjust the response to the desired signal model. Response time delay is
calculated so that the generation system equipment on the mechanical and electrical
side can work optimally. The delay time in Figure 4 is included so that the power
generation system equipment on the mechanical and electrical side can work
optimally. The simulation results are obtained with better performance between the
actual output and the identification model, namely the calculation of Integral
Absolute Error (IAE), with MAPE for the average frequency value of 73.95 percent,
nominal voltage of 0.23 percent, and electric power of 23,46 percent.

For future research work related to the identification of parameters of multi-
engine generating systems as well as interconnection systems, it is necessary to
carry out experiments. Even though it is in the form of a simulation, this work will
help researchers to get closer to solving problems in real conditions.

Finally, this paper can be used as a reference for further research on the identi-
fication of power generation system parameters. In maintaining the stability of the
frequency value on the mechanical side, the nominal voltage of the generator
terminal and electric power when the electric load fluctuates.

Kluster IAE actual output IAE identification model output

F V P F V P

1 2.046 51.32 51.49 0.7489 51.27 50.54

2 1.856 51.32 35.81 0.3652 51.55 30.8

3 1.909 51.31 31.17 0.4764 51.46 17.48

4 2.184 51.3 37.7 0.4927 51.45 20.72

Average 1.999 51.313 39.043 0.5208 51.433 29.885

Table 2.
Comparison of integral absolute error (IAE) identification model output and actual output.
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Chapter 3

Particle Filter Based Approach for
Remaining Useful Life Prediction
of High-Speed Shaft Bearing in
Wind Turbine Generators
Sharaf Eddine Kramti, Jaouher Ben Ali, Hugo Andre,
Eric Brhhoefer and Mounir Sayadi

Abstract

This work involves a novel data-driven procedure using vibration analysis for
bearing health prognosis. In this work, we investigate the time-domain features and
applying spectral kurtosis features in order to extract the damage indicators which
eventually represent the degradation of the high-speed shaft bearing (HSSB). These
damages were characterized by their Monotonicity, Trendability, and Prognosability.
The most appropriate indicator was then used as a health index for the remaining
useful life (RUL) prediction task. In this study, we used an integrated approach based
on Particle Filter approach which was then developed for direct RUL prediction of
HSSB. This methodology was validated using real world vibration data wind turbine
gearbox. The experimental results and the prognostics metrics like fitness degree equal
to 0.9941 shown that the Particle Filter approach is more feasible prediction tool.

Keywords: Bearing vibration monitoring, particle filter, prognostics and health
management, Wind turbine generator (WTG)

1. Introduction

The economic development was based on low cost energy. The growth of
renewable energy, especially that is produced by wind turbine generator (WTG)
helps continued growth while curbing CO2 emission. While the costs of WTG
power production is low, operations and maintenance costs are higher than
expected due to higher rates of electrical and mechanical failures. According to
national renewable energy laboratory (NAREL), failure in HSSB accounts for 48%
of all drive-train damage. Mechanical failure in (WTGs) leads to sudden downtime
and electricity production cessation causes a higher than expected maintenance
cost. Prognostics and health management (PHM) ofWTGs aim to predict the future
behavior of the generator’s health condition by estimating the RUL of HSSB. This
allows requires a proactive maintenance policy that can reduce the operations and
maintenance cost and provides better balance of plant.

Mechanical failures in WTG bearings drive train is often the result of moisture
contamination of the oil, especially in offshore application. Contamination causes
reduction in oil lubrication, reducing the life cycle [1]. Bearing failures can create
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long down time and costly maintenance. To maintain balance of plant, implemen-
tation of a Condition Based Maintenance (CBM) program should be considered.
CBM along with PHM are able to identify the failure and estimate the RUL of the
elements.

PHM is a maintenance paradigm that merges diagnostics, future loads and a
damage propagation model to estimate the RUL. Diagnosis describes the current
state and the damaged component in the system. Applying the current state to a
propagation model, based on future estimated load, and a point where maintenance
is appropriate (e.g. the threshold), the RUL [2–5] can be estimated. As shown in
Figure 1 the PHM cycle is composed of three principal parts ranged as follows:

• Observe contains two steps: Acquire data from sensors installed on the
machine, then data processing/feature extraction to generate a condition
indicator (CIs). Some other techniques, such as digital signal processing
improve the signal to noise and quantify the representative statistics of
component damage.

• Analysis is a three steps process. First, a condition assessment is made of the
observed CIs. Second, the given diagnostic represents is given representing the
component state of health. This also includes fault isolation and identification.
Third, using the current state of health and the threshold, estimate the RUL
and the associated confidence level of the RUL for the given component.

• Act is a two-step process. First, decision support tool evaluates the evidence,
which can generate a maintenance intervention. The last step is Human
Machine interfaces, which display the PHM status.

A PHM architecture [6, 7] leads to implement a paradigm that supports mainte-
nance planning with the goal of eliminating unscheduled maintenance and improv-
ing operational readiness.

The activity associated with PHM is growing, with a number of scientific papers
and several reviews have been published in CBM domain. Lee et al. [4] introduce
different strategies for the detection of failures associated with rotating equipment.

Figure 1.
PHM cycle retyped and adapted from the ISO 13374.
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Lee goes on to describe many of the analysis algorithm that can be used, and the
analysis performance (advantages and disadvantages).

The review by Jardine et al. in [8] is an excellent overall summary of CBM. Even
though this publication is old, all the proposed approaches used in data processing
and maintenance decision support are still valid until now.

In [9], the authors applied a Kalman smoother approach with confidence bounds
in order to predict the RUL of HSSB. The prognostic approach is hybrid using both a
data driven approach and physics-based degradation model. Vibrating data col-
lected over 50 days was used to estimate the damage associated with propagating
inner race crack. Using a Kalman filter, the unknown parameters associated with
Paris’ Law model were determined in order to estimate RUL.

In [10], Kramti et al. applied Elman neural network (ENN) technique. They
proposed an approach using time-domain features and frequency-domain via Spec-
tral Kurtosis (SK) as inputs. These features were extracted from raw vibration
bearing signal in order to predict the RUL of HSSB. The architecture of an ENN is
built with two hidden layers. The first hidden layer is composed of five neurons,
and the second hidden layer is composed of three neurons. The hidden layers
transfer function is Logarithmic sigmoid. The output layer is composed of one
neuron using a pure linear transfer function ranging between 0 and 1. This ENN
gave a prediction horizon of 20 days. While a powerful model, there were some
gaps in the predicted RUL when compared to the true RUL with large fluctuations.

The authors in [11] used a support vector regression (SVR) approach based on
classical, time domain features. This SVR model used spectral kurtosis (SK) to
predict the RUL of HSSB. Spectral kurtosis derived indices reduce the noise by using
the Short-Time Fourier Transform (STFT) and provide good trendability and
monotonicity metrics.

In the SVR study, the model was trained by 60% and tested by 40% of area
under SK index data. In other words, it was trained using 40% of the data and tested
using 60% of the same type of data used in the first step. The experimental results
have shown that the estimated RUL based on area under SK index tracks the actual
RUL with a small prediction error using 60% of training data. Unfortunately, the
model did not predict any SK values.

The [12], the authors used Acoustic Emission (AE) data which were delivered
from four bearings. The fault feature was Root Means Square (RMS) and Signal
Intensity Estimator (SIE). All bearings features were fitted. The bearing feature
bearing 1, were used as inputs of training process of three learning machines using:
Gaussian Process Regression (GPR), support vector machine regression (SVMR)
and multilayer artificial neural network (ANN). The other three bearings features
are used as input of process test. The experimental results have shown that ANN
gave the lowest error compared to SVMR and GPR.

The proposed method aims to improve the reliability of the HSSB and reduce
maintenance cost. Therefore, the new proposed failure prognostics method is based
on the analysis of the behavior of vibration signal. The proposed failure prognostics
method uses the most suitable feature, which is then mapped to a Health index
(HI). The RUL is then the estimated time for the current HI, to the HI threshold
were it is appropriate to do maintenance.

The remainder of this work is organized as follows. Section 2 reports the bearing
characteristic and describes the data used in the experiment. In Section 3 the
proposed methods and techniques used like features extraction methodology, par-
ticle filter prognosis is introduced with the model degradation. In Section 4 we
detail the procedure to obtain the RUL. Section 5 A discussion and a comparison
with some previous work and methodologies in the literature. Finally, we conclude
this chapter and future work are synthetized in Section 6.
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2. Experimental steps

The vibration signals data were obtained from an online condition monitoring
system from Green Power Monitoring System (GPMS). During 50 days of mea-
surements, data was collected at a rate of once per 10 minutes (144 acquisitions per
day), where once per day raw vibrating signal data was downloaded. The sensor
monitoring the high-speed bearing was sampled at 97656/second for six seconds,
along with tachometer data. The data was collected from a real wind turbine gen-
erator (S88, Suzlon) with 2 MW electric power generation.

The failing bearing supports the high-speed shaft, which drives the generator.
This shaft rate was approximately 1800 revolutions per minute (these are doubled
feed induction machines, so that the gearbox/generator is not synchronous at
60 Hz, while the output of the generator is electronically controlled to be line
synchronous).

The vibrating signal data given by the Green Power Monitoring System from
USA. The vibrating sensor was made by MEMS accelerometer (analog device
ADXL001, the bandwidth is a 32 kHz, the resonance at 22 kHz, with a sensitivity of
+/�70 Gs. The data was sampled by a delta-sigma analog to digital converter
ADS1271 (24 bit). The vibrating sensor was installed above the HSSB.

On the fiftieth day, the HSSB was inspected, where the damage to the inner race
fault was verified, as indicated in Figure 2. The HSSB model is 32222-J2 [13] tapered
roller bearing it is made by SKF. Bearing dimensions are 200 mm in outside diam-
eter; the inside diameter is 110 mm, the width is 56 mm, it has a 20 rolling elements
each one has 46 mm of width, the taper angle is 16°, weighs 7.10 kg and the speed-
limit is 3200 r/min.

The rotating speed of WTG depends on climatic condition, the pressure altitude,
offshore or onshore location. Indeed, these environmental conditions directly
influence the bearings radial and axial loads. When wind speed is near the cut-in
wind (i.e. the lowest wind speed needed for power generation), the main shaft will
be in lower speed (high speed shaft perhaps 1500 rpm). When the wind speed is
higher than cut-in wind, the main shaft speed operates higher on the power curve,
close to 1800 RPM, the Figure 3 shows the mean of speed shaft over 50 days. Loads
are moderated by the wind turbine blade pitch. Figure 4 shows the concatenation of
the 50 days of measurements data in a 6-second period each time. It is clear that the
RMS increases with time and damage propagation.

Figure 2.
Inner race fault.
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A.Proposed prognostic approach

In this chapter, we propose an effective prognostic method to estimate
degradation in the bearing. The proposed method for HSSB failure is
summarized in Figure 5. The proposed method consists mainly of three task
features definition, feature selection and RUL prediction. During the first task
of the proposed method, two types of features are used to extract information
from vibration data: classical time-domain features and a SK feature (which is
a frequency-domain feature). Once the features definition task has been done,
feature selection was performed. In this task, we use three metrics in order to
determine a suitable feature, which will inform the RUL prediction step.
Finally, the RUL prediction step implies the use of the particle filter method to
predict the RUL according to prognostics metrics.

B. Features

1.The Classical features

Classical features are presented inTable 1 [5, 14] were applied on historical
vibration signal run-to-failure over 50 days as shown in Figure 6(a).

Generally, time-domain features are well proven and historically, are the
basis of many condition-monitoring systems. The classic features used in

Figure 3.
The mean speed variation in high speed shaft over 50 days.

Figure 4.
The historical vibration data ending with inner race fault.
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this study are; RMS, Kurtosis, Skewness, Peak to peak, Crest Factor,
Mean, Standard deviation (Std), Energy, and Entropy. A detailed
description of the classical features are given as follows in Table 1.

2.Features derived from SK

In order to estimate the RUL process, it is necessary to identify features that
show trendability, monotonicity and that can be used as a surrogate for component
damage. For this study, we used features derived from SK. SK typically involves the
band-pass filtering of the raw data to remove signal that is not associated with the
fault. Also, it improves the SNR.

The approach requires a band-pass filter to find a bandwidth that emphasizes
the demodulated impulsive signature (associated with bearing fault) which is hid-
den in the raw vibrating signal. For a full treatment on SK, pleases refer to Randall
and Antoni [15].

The kurtosis is defined as:

K ¼
1
N

PN
i¼1 xi � xð Þ4

1
N

PN
i¼1 xi � xð Þ2

� �2 (1)

Figure 5.
Flow chart of the proposed prognosis method.

Feature name Mathematical expression

RMS 1
N

PN
i¼1x

2
i

� �1
2

Kurtosis 1
N

PN
i¼1

xi�xð Þ4
ρ4

Skewness 1
N

PN
i¼1

xi�xð Þ3
ρ3

Peak to peak xmax � xmin

Crest Factor xmax
RMS

Mean x ¼ 1
N

PN
i¼1xi

Standard deviation
σ ¼ 1

N

PN
i¼1 xi �meanð Þ

� �1
2

Energy PN
i¼1x

2
i

Entropy �PN
i¼1xi log xið Þ

Table 1.
The proposed features.
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Where i is the sample index, x and x̄ are the sample time index and sample mean
respectively and N is the number of samples. This normalized fourth moment is
defines the “peakedness” of the signal. The spectral kurtosis of signal is described as
the kurtosis of its spectral elements. The SK is defined as follow [16].

SK fð Þ ¼ X4 t, fð Þ�� ��� �

X2 t, fð Þ� �2 � 2 (2)

Where X2(t,f) and X4(t,f) are the second-order and fourth-order cumulate
respectively of a band-pass filtered signal of x(t) around f. ‹•› correspond to the
time frequency averaging operator.

Figure 6.
The trend for the 50 days (a) representing the time domain, classical features, and (b) features derived
from SK.
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The most important characteristics of this description defined as:

• In case of stationary system, the SK is a permanent function of frequency.

• In case of stationary Gaussian system, the SK is the Gaussian process.

The SK has been shown to be a more powerful indicator of damage than raw
signal kurtosis. SK detects the high-frequency train of impulse derived from a
damaged bearing. It can be shown that the SK of a non-stationary system x(n) and a
damaged stationary noise b(t) source is defined as

SK xþbð Þ fð Þ ¼ SKx fð Þ
1þ ρ fð Þð Þ2 þ

ρ fð Þ2SKb

1þ ρ fð Þð Þ2 (3)

Where f 6¼ 0, then ρ(f) is the signal-to-noise ratio (SNR) as function of frequency.
If b (t) is an additive stationary Gaussian noise independent of x(t), then the SK

is transformed into.

SK xþbð Þ fð Þ ¼ SKx fð Þ
1þ ρ fð Þð Þ2 (4)

Now, it can be seen that the SK is able to characterize and detect bearing damage
that is masked by a non-stationary signal in the frequency domain. Additionally,
this shows that the when using the SK, for a nominal, stationary signal, the value of
SK is approximately 0. For non-Gaussian, damaged signal (e.g. transients), the
value is 6¼ 0, see Figure 7 for more explication.

3.HSSB degradation model

The principal cause of damage and early bearing failures are overload, inade-
quate lubrication, lubrication contamination, or corrosion. Bearing faults can
appear on inner race, outer race, rollers and cage. Bearing damage may result in
large, quasi-periodic impacts, which degrade exponentially over time [17, 18].

When the model degradation with a defined level of damage, the measured data
can be used to calibrate and identify the parameters ofmodel. If the model parameters
are known, they can be applied to estimate the prospective behavior of the damage.

Figure 7.
Sate of health in HSSB using spectral kurtosis.
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• The model degradation is defined as

d ¼ a exp btð Þ2 (5)

Where d is the magnitude degradation, a, b are the model constant parameters and
t is the time index. This model allows a “best fit” trend of the health index of HSSB.

C. Particle filter based prognosis

In this section we present a brief review of Particle Filter (PF). More detailed
study on PF can be found in [19] In this chapter we present only the basic theory.

PF has been applied in numerous engineering domain such as robotics, aero-
space, automatic control, etc. and more currently in diagnosis and prognosis. PF
may also be known as the sequential Monte Carlo method. The main uses of PF are
to accurately model the degradation state with a set of particles. The PF has a
corresponding state values, and a correlated set of particles weights, which corre-
spond to the discrete Probability masses of the distinctive particles.

In PF, the Bayesian update is processed in sequential mode with samples (or
particles) having the information probability of hidden parameters: when a new
measured data is obtained, the posterior step is used as the information for the present
step, and the parameters are updated by multiplying it with the likelihood function.

The particle can be created and updated recursively by the use of non-linear
state-transition model, illustrating the evolution of the system under control. The
Bayesian tracking task is described by two equations as follows

• The state equation, the state transition function f.

xk ¼ f xk�1, θk, vkð Þ (6)

• The model observation, measurement function h.

zk ¼ h xk,ωkð Þ (7)

Where k is the time step index, xk is the system state at the preceded step in this
work xk represents the damage state of HSSB. θk is a model parameters vector, zk is
measured data, ωk and vk are respectively measurement data and process noise. All
these variables fluctuate at each time step, and the progress from the k-1 to the k step
is produced by the transition function f. As mentioned before, this work is about
prognostics area so the state transition function f is designed as damage model.

According to the state model in (Eq. (6)), the HSSB degradation model in
(Eq. (5)) can be edit in the following shape

xk ¼ xk�1 exp bkΔtð Þ2 (8)

Where the process noise vk is neglected because it can be managed through the
uncertainty in model parameters. In case of measurement function, it is supposed
that zk is the selected feature that reflects the HI of HSSB (see Figure 8) This feature
includes measurement Gaussian noise ωk � N (0,σ) which is applied with unknown
standard deviation σ. Consequently the unknown parameters are θ = [b,σ],
containing the damage state xk which is acquired based on the model parameter bk.

A probability density function (PDF) p(xk|z1:k) is needed to obtain the distribu-
tion of the possible states of x at time k. The initial state is estimated by the state
distribution p(x0|z0) = p(x0). It is assumed that the PDF is known. The optimal
Bayesian solution is given by iterating prediction and update functions respectively:
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• Prediction

P xkjz1:k�1h i ¼
ð
P xk xk�1j ih P xk�1 z1:k�1j idxk�1h (9)

• Update

P xkjz1:kh i ¼ P zk xkj iPh xk z1:k�1j ih
P zk z1:k�1j ih (10)

Unfortunately, this solution cannot be obtained systematically, but PF is a robust
approach designed to obtain an approximate solution via feedback.

Figure 9 shows an algorithm of the PFwhich can be recapitulated as follow [20, 21].
The primary step consists in subdividing the initial state distribution p(x0) into n

samples called also particles. The next three steps are then reiterated until the
appropriate results are achieved see Figure 9.

1.Prediction: in this step the particles are generated through the state model
from k-1 to the k step providing each incremental time a new PDF. The
information from preceding step should be fully accessible.

2.Update: the model parameters and state degradation are updated. The
measurement data are utilized to computing the likelihood function p(z0|xk),
and provides weights to the particles. The new particles states converge to the
actual one provided by the last measured data which have the higher
likelihood, as they are more suitable to describe the system state.

3.Resampling: the concept of resampling is to keep all samples (i.e., particles)
have the same weight. Particle that have a low weight are removed. And
particles with the high weights are manifold. This operation can favorite the
best filter results. Namely a higher number of particles with poor weight can
degenerate the filter results in the previous stages.

All these steps are used during the learning process. In case there is no available
data, no measured data zk should be used to compute the likelihood function, and

Figure 8.
Health index data.
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the prognosis pass into prediction phase. In this prediction step, the particles are
diffused via the state model. When the failure threshold is crossed the latest distri-
bution of particles are the most appropriate state, (i.e., the state expressed via the
weighted average of the particles).

3. Tracking fault degradation

A.Features definition

In order to define the degradation of HSSB, two types of features have been used
[5]. The first is time domain indices of classical features such as: kurtosis, skewness,
mean, standard deviation (std), peak to peak, root means square (RMS), energy,
entropy and crest factor. The second are features based on the SK but operated on
by the same classical features: kurtosis-SK, skewness-SK, mean-SK, standard
deviation-SK (std-SK), peak to peak-SK, root means square-SK (RMS-SK), energy-
SK, entropy-SK, crest factor-SK and area under curve-SK which is added. These
features are extracted for the 50 day data set, as shown in Figure 6.

B. Feature selection

Feature selection performed to identify the best analysis for classification
and prognosis. The principal idea is find the most relevant features that provide

Figure 9.
Illustration of PF principle estimation process and prediction process.
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useful information and that can predict a future state. This was done by two
methods:

• By transforming the same feature set into new domain, such as main
component evaluation or linear discriminant evaluation [4]. This approach
unfortunately generates new feature sets in the new domain that are dissimilar
to actual features.

• By choosing a feature that allows for prognosis. As noted in recent literature on
prognosis, metrics such as: trendability, prognosability and monotonicity
[22, 23] can be used to determine the most appropriate feature set.

Monotonicity can define the main negative or positive trend of the feature. This
is a powerful metric to detect degradation because degradation in bearing is an
irreversible and a growing process. The monotonicity of a group features is affected
by the mean between the number of positive and negative step for every assessment
point of time. Suppose that n is the number of assessment point of time, the
monotonicity will be defined as follows

Mono ¼ noof d
dt <0
� �� noof d

dt >0
� �

n� 1

�����

����� (11)

The range of monotonicity value between 0 and 1, non-monotonic features will
take the value of 0 and greatly monotonic features will take the value of 1.

Trendability quantifies the correlation of the features vs. time. If the feature is
constant, the correlation with time will be 0. However, if the derivative of the
feature is linear, the correlation with time will take on a non 0 value. In the same
way, correlation can change with increase in non-linearity (i.e, a nonlinear feature
will result in low correlation). Trendability is ranged between �1 and 1 it is defined
as follows

Tren ¼ corrcoef time, featureð Þj j

¼ n
P

timefeatureð Þ � P
timeð Þ P featureð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

time2 � P
timeð Þ2

h i
� n

P
feature2 � P

featureð Þ2
h ir (12)

Prognosability is the exponential of the standard deviation of degradation fea-
ture measure divided by the difference between final and first value of degradation
feature measure.

Prog ¼ exp � std degmeasuresð Þ
mean finaldegmeasure� firstdegmeasurej jð Þ

� �
(13)

According the numerical values of suitability (Eq. (14)) in Tables 2 and 3, the
most significant feature for the prognostic task among all ones, is the mean-SK
which has an exponential growth. Note the feature is usually combined with noise.
The noise can obscure the trend and reduce the power of the RUL estimation.

Suitability ¼ Monotonicityþ Prognosability þ Trendability (14)

Extracted features are usually associated with noise. The noise with opposite
trend can sometimes be harmful to the RUL prediction. In addition, one of the
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feature performance metrics, introduced above is not robust to noise. Therefore, a
causal moving mean filter with a lag window of 5 steps is applied to the most
suitable extracted features, where “causal” means no future value is used in the
moving mean filtering. The Figure 10 showing the mean-SK feature before and
after smoothing, the smoothed mean-SK is used as health indicator of HSSB.

The smoothed mean-SK feature as shown in Figure 8 is normalized in range [0 1].
0 corresponds to 0% degradation and 1 corresponds to 100% degradation. This
feature is used as Health index (HI) data in the following prognosis steps and the
smoothed feature is normalized using (Eq. (15)).

mean� SK0 ¼ mean� SK �mean� SKmin

mean� SKmax �mean� SKmin
(15)

4. RUL prognostic

A.RUL prognosis based particle filter approach

Measured Data is applied to predict model parameters, which are used then to
estimate the RUL. The damage model equation in (Eq.(8)) is defined as follow: the

SK-features Monotonicity Trendability Prognosability Suitability

Kurtosis-SK 0.1020 0.8873 0.6469 1.6362

Std-SK 0.0612 0.7702 0.7957 1.6271

Peak to peak-SK 0.0204 0.7997 0.7988 1.6189

RMS-SK 0.0204 0.7928 0.7938 1.6070

Skewness-SK 0.0204 0.9024 0.6881 1.6109

Energy-SK 0.0612 0.7061 0.8316 1.5989

Crest factor-SK 0.0612 0.8896 0.6525 1.6033

Mean-SK 0.1429 0.8852 0.7730 1.8011

Entropy-SK 0.0612 0.8332 0.5920 1.4864

Area-under curve 0.0612 0.8851 0.7730 1.7193

Table 3.
Derived features-SK results during 50 days.

Features Monotonicity Trendability Prognosability Suitability

Kurtosis 0.1020 0.8081 0.7810 1.6911

Std 0.1020 0.6555 0.6944 1.4519

Peak to peak 0.1020 0.8004 0.7599 1.6623

RMS 0.1020 0.6479 0.6892 1.4391

Skewness 0.0612 0.1007 0.7913 0.9532

Energy 0.1020 0.6319 0.7084 1.4423

Crest factor 0.0204 0.7852 0.7419 1.5475

Mean 0.0204 0.2496 0.5232 0.7932

Entropy 0.0204 0.5275 0.5393 1.0872

Table 2.
Classical features results during 50 days.
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time interval Δt equal to 1 which corresponds to one inspection per day. Also, the
model parameters bk and the damage state at the previous step xk-1, and the stan-
dard deviation of measurement error s. The initial distribution is P� Q matrix of
probability parameters of the initial distribution, which P is the number of
unknown parameters and Q is the probability parameters. In this case, the prior
information are not available, it is supposed that the initial distribution of these
unknown parameters (P = 3) are uniform, where the probability parameters are
(Q = 2), lower and upper bounds:

x0 � Uð0:01;0:03Þ; b0 � Uð0:038; 0:04Þ; s0 � Uð0:251; 0:253Þ:

The other setting for the prognosis using particle filter are the number of sam-
ples (or particles) n and significance level for adjusting the prediction interval (PI)
and the confidence interval (CI). In this work, it is used (n = 5000 particles) and
90% of significance level. For more details according to the number of samples
please read the work published in [19].

The other results can be plotted such as the model parameter and the prediction
of failure state can be obtained by the use of sampling results during the updating
process. The sampling results can be displayed for any variable at each step. In this
work the exact values of the model parameters are known, the result should be
compared with the known values. The exact value of b = 0.03919 and s = 0.2520, the
failure state can be calculated using the (Eq. (8)). More graphical results are shown
in the following plots: Figures 11–13.

Once the model parameters are classified as a physisc based approach, the
mathematical exponontial fucntion in (Eq. (8)) is trained using a the derived data.
The particle filter uses these as imputs to predict the remaining time until the
degradation propagates to a maintenance threshold.

The expremental results were made using a total of 50 measurement data points
for HSSB HI (see Figure 8). The Particle filter process is runing only with 48% of
measured data (24 points) and the rest of degradation trend were predicted by the
proposed method.

The main goal of the particle filter based prognosis is to predict the degradation
behavior by the use of the exponential degradation model. If the model accuratly
represents the HI, then it can be appliyed to find the RUL using (Eq. (16)). The true
RUL is achieved by substracting the current time (24 days) from the failure

Figure 10.
The selected feature.
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Figure 12.
The s value estimation.

Figure 13.
Particle filter RUL prediction.

Figure 11.
Estimation of b model parameter.
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threshold time (50 days). The threshold time is given by the last value of HI which
is 1. According the Figure 13, and (Eq. (16)) the true RUL is 26 days.

TrueRUL ¼ tFT � tCT (16)

Figure 14 shows, 5 percentile equal to 16, median equal to 24 and 95 percentile
equal to 28 which are caused by 90% of significance level interval. The median
value result can be compared with the true RUL in Figure 13 which is computed
using the (Eq. (16)). Therefore, the median value of RUL prediction of 24 days is
fairly accurate compared with the true RUL of 26 days. The RUL prediction can be
more exact by decreasing the time interval after the current time.

B. Particle filter perfermance

In this section, the discussion is going to compare the robustness and perfor-
mance of the proposed particle filter approach. Defining prognostics metrics allows
comparison and evaluation of different RUL algorithm. By comparing the true and
predicted RUL, we can define statistical metrics to measure performance. This
comparison needs to be evaluated by the following metrics.

• Prognostic horizon (PH): The prognostic horizon [24] is described as the
difference between the first time when the predicted RUL continuously resides
in the accuracy zone and the last cycle time (i.e. End Of Life (EOL)).
According the Figure 13 the accuracy zone has an invariable bound with a
value of �5% error with respect to the last cycle, plotted as two parallel broken
lines. The first time when predicted RUL resides in the accuracy zone is at the
cycle 24 and the last cycle is 50, thereby PH is 26. The prognostics approaches
with a larger PH designate a greater performance, which gives earlier RUL
prediction with more reliability.

• Convergence: Eventually, the convergence [25] can be defined with a non-
negative error metric (Eq. (17)) of precision or prediction accuracy between
the true RUL and predicted RUL. We consider the actual or linear RUL values
(denoted X), the predicted RUL (denoted X̂), and the length of predicted data

Figure 14.
RUl destribution with percentiles.
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is n. The RMSE is defined as follows: In this chapter, the relative error is
illustrated below:

E ¼ Xi � X̂i
�� �� (17)

• RUL error: presents the value computed between true RUL and predicted RUL
for each day. The lower value confirms that this method has a good way to
predict bearing degraded mode, mathematically the error percent defined as
[12, 26].

Error %ð Þ ¼ Xi � X̂i

Xi
� 100 (18)

• Root Mean Square Error (RMSE) is used to measure the precision of
prediction because it is able to make the error and predicted value at the same
magnitude [27] We consider the actual or linear RUL values (denoted X), the
predicted RUL (denoted X̂), and the length of predicted data is n. The RMSE is
defined as follows

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Xi � X

_

i

� �2r
(19)

• Mean Absolute Percentage Error (MAPE) is generally applied to determine
the error size as a percentage. However, it is not advisable with small data sets.
The MAPE is defined as follows

MAPE ¼ 100
n

Xn
i¼n

Xi � X
_

i

Xi

�����

����� (20)

• Fitness degree (sometimes called the R2 coefficient), gives an indication of
good prognostics when the R2 value is close to 1. R2 is defined as fellow

R2 ¼ 1� Xi � X̂i
� �2

X2
i

 !
(21)

• Relative Error Analysis (REA) is used to measure the precision which is
defined in percentage. It presents relative information between the
measurement and the size of data measured. The error is proportional to the
size of the RUL being measured. REA is defined as follows

REA ¼ 100
n

Xn
i¼1

Xi � X̂i

Xi
(22)

• Accuracy metric (A) calculates the “exactitude” between the true RUL and the
predicted RUL.. The result of this metric is presented as a percentage, if the
accuracy is close to 100% that prove the predicted RUL is similar to the true
RUL. The accuracy is defined as

A %ð Þ ¼ 100� 1� Xi � X̂i
�� ��

Xi

" #
(23)

These abovementionedmetrics are used to evaluate PF results as shown inTable 4.
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The PF method adopted in this chapter is called hybrid prognosis approach. This
study is based on the combination of data driven approach and exponential model
degradation. This combination makes a very powerful prognostics tool. This idea
can be extended to combine parameters model and state prediction. After the
comparison and the discussion, it is proved that RUL prediction using particle filter
method provides a more accurate PH with a 26 cycles. Although we used in the
training step only 48% of measured data. It should be noted, this method is able to
be applied on any HSSB in wind farm, with an initial value parameter setting (eg;
failure threshold).

5. Discussion and comparison with some previous works

Concerning resent work and according to our bibliographic study, this chapter
presents a pedagogic implementation of a hybrid prognostic approach based on
particle filter for bearing PHM. We encourage all researchers to work on this to
have universal approach for bearing prognosis and complete one of the aims of
industry 4.0 challenges. In [11], authors have applied the same data of this chapter
the RUL prediction based on SVR. A smaller estimation error was found in 60% of
training data compared to using 40% of training data. The SVR process is consid-
ered as internal RUL prediction. In addition, the SVR model parameters prediction
was done after reaching 60% of degradation and that cannot be done online. It is
impossible to define online the time where the degradation reaches 60%. In addi-
tion, it is hard to build the SVR model and validate it before the recording of the
next raw vibration data. Some specific systems need to generate RUL prediction in
little times due to the short lifetime of the used bearing and the required precision
and excellence such as in robotics or nuclear application. In [5] the proposed Elman
Neural Network (ENN) is motivated by a feature extraction from raw vibration
data. The feature reduction is considered very important, as non-informative fea-
ture will be then discarded. Therefore, the online computational time will be
reduced and ENN converge can be easily reached. Consequently, selecting suitable
features is a prerequisite for accurate prognostics. ENN based prognosis is powerful
but the implementation is costly and complicated. PF used in this chapter is a
powerful tool for bearing failure prognosis; the implementation is very easy for and
do not require a large data. The main thing to have the best RUL prediction is to
build the right exponential degradation model with the true initial parameters,
which can make an online PHM. As shown in Figure 13 the exponential curve trend
the HI over 50 days with imperceptible fluctuations see Table 4.

Metrics Particle Filter

Error % 7.69

RMSE 0.2828

MAPE 0.1538

R2 0.9941

REA 0.1538

A % 92.30

PH 26

Table 4.
Perfermance of the proposed methods.
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6. Conclusion

This chapter introduces how to use approach based on condition monitoring
data on HSSB for WTG. Classical statistical features and features derived from SK
were used to elicit the bearing health state from the raw vibration data.
Trendability, Monotonicity, Prognosability and Suitability are used as metric indi-
ces to obtain the corresponding feature for training step. The selected feature is
used as Health index for the two proposed prognosis approach in order to predict
the best RUL with higher performances.

The acquired results indicate that the Particle filter is more feasible tool for HSSB
RUL prediction where the error equal to 7.69% and the degradation model with
estimated parameters presents better trends for HI, compared to existing works.

As future work, the proposed method needs to be evaluated in a large amount of
HSSB over a very long period. Also, the investigation of time-frequency-domain
features will be considered. In addition, we invite next work to focus on external
prognostic and to investigate new methodology or adopt some existing ones for
dynamic feature selection. This ensures more alignment with industry 4.0
requirements.
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Chapter 4

Use of Discrete-Time Forecast
Modeling to Enhance Feedback
Control and Physically
Unrealizable Feedforward Control
with Applications
Derrick K. Rollins

Abstract

When the manipulated variable (MV) has significantly large time delay in
changing the control variable (CV), use of the currently measured CV in the feed-
back error can result in very deficient feedback control (FBC). However, control
strategies that use forecast modeling to estimate future CV values and use them in
the feedback error have the potential to control as well as a feedback controller with
no MV deadtime using the measured value of CV. This work evaluates and com-
pares FBC algorithms using discrete-time forecast modeling when MV has a large
deadtime. When a feedforward control (FFC) law results in a physically
unrealizable (PU) controller, the common approach is to use approximations to
obtain a physically realizable feedforward controller. Using a discrete-time forecast
modeling method, this work demonstrates an effective approach for PU FFC. The
Smith Predictor is a popular control strategy when CV has measurement deadtime
but not MV deadtime. The work demonstrates equivalency of this discrete-time
forecast modeling approach to the Smith Predictor FBC approach. Thus, this work
demonstrates effectiveness of the discrete-time forecast modeling approach for FBC
with MV or DV deadtime and PU FFC.

Keywords: Model Predictive Control, Nonlinear Dynamic Modeling,
Artificial Pancreas

1. Introduction

Modeling data is critical to the advancement of information and data science on
many levels and in many areas. Accurately modeling data is often important to
system monitoring, understanding, and control; and thus, ultimately to the
advancement of technology.

A characteristic of data that that is not well understood, even by those in the
physical sciences, is dynamic behavior. However, the behavior of Covid-19, which
is inherently dynamic, has forced wide-spread conversations from even the non-
science community about such terms as lag and deadtime. Just as understanding the
attributes of Covid-19 dynamically can lead to intelligent and thus, safe behavior,
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good decision making and preparation, and even save lives, the lack of understand-
ing can do the opposite. Thus, the better our understanding of dynamic behavior is,
physically and biologically, the better our understanding of data will be, leading
only to better solutions to many problems facing society.

Forecast modeling is a type of predictive modeling that uses current and antici-
pated future input values to predict values for outputs in the future. For example,
forecast modeling is used to predict the wind velocity in a certain region five days
into the future. Another example is forecast modeling to predict the number of
deaths caused by a virus a week into the future. This chapter focuses on the
application of forecast modeling to enhance feedback control (FBC) and
feedforward control (FFC) when the problem is physically unrealizable (PU).

A PU system is a mathematical phenomenon of a dynamic system. It occurs in
two ways. The first one is when the order of the differential equation for the output
is less than the order of the differential equation for the input. An example is the
development of a FFC law determined from a load transfer function divided by the
process transfer of a lower order. The second one is when an output depends on
deadtime that has a negative value, in effect causing a dependence on future values
of a time dependent variable(s). This also occurs in FFC when the load transfer
function has a smaller deadtime than the process transfer function. The most com-
mon approach for addressing a PU system is to use approximation(s) to make it
physically realizable. However, such approximations can lead to large modeling
errors, thus leading to unacceptable control.

The dynamic modeling literature [1, 2] defines causality somewhat differently
than the statistics literature. More specifically, “if a system[‘s] output depends on
the future input values … the system is noncausal [2].” This definition is synony-
mous with PU, it seems. In forecast modeling, all values of inputs are before the
forecast distance in the future. They can be in the future, but not a distance beyond
the forecast time. Another description for PU in the dynamic modeling literature is
improper transfer function.

In FFC, MV is the output and depends on input changes. When MV has a
deadtime of θMV, for example, it takes this time before a change in MV affects CV.
Within this period, other inputs may change that impact CV before the change in
MV does. An example is the control of blood glucose concentration (BGC) in type 1
diabetes. The deadtime for insulin infusion is much larger than the deadtime for
carbohydrate consumption. The best approach for control of BGC is to consider the
timing and the amount of carbohydrates consumed and to bolus this with a deter-
mined amount of insulin, a calculated amount of the time before the meal. This
procedure is just a manual type of PU FFC practiced by people with type 1 diabetes.

The use of causality in the statistics literature seeks to distinguish it from corre-
lation. Thus, in the statistics literature, causality is not focused exclusively on
dynamic systems (e.g., only those with lag or deadtime) but a cause-and-effect
relationship between input and output, that can be nondynamic [3]. For forecast
modeling, cause-and-effect is not essential if the model is accurate. However, in
control, cause-and-effectmodeling is essential. A PU system does not have an exact
solution which would be a continuous-time solution. However, a discrete-time
solution can be determined directly from the PU continuous-time structure. Hence,
this work uses highly structured discrete-time forecasting and FFC models.

1.1 Objective and contribution of the work

Moreover, the primary objective of this chapter is to apply a novel discrete-time
forecasting modeling methodology to systems with large MV deadtime in FBC and
PU FFC without physical realizable approximations. For this scope, FBC is
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examined and evaluated under three prediction horizons: 1. None – Classical FBC
that uses the currently measured value of CV [4, 5]; 2. θMV – Feedback Predictive
Control (FBC) [6] and; greater than θMV – Model Predictive Control (MPC) [7, 8].
The Smith Predictor (SP) [9] is a novel FBC approach when θMV = 0 and there is
deadtime in the measurement of CV. This work shows that FBPC gives equivalent
control of the SP, but also has the advantage that it is applicable when θMV > 0,
which the SP is not. In addition, this work reveals the detrimental use of the bias
correction as given in the block diagram of the SP and used widely in process
control [4]. Thus, this work proposes a better bias correction method. Finally, this
works presents a novel discrete-time PU FFC algorithm that is multiple-input and
single-output and hence, is able to treat complex multiple-input feedforward model
structures. Although MPC is a FBC approach, comparison is made to illustrate the
potential improvement of FFPC over model-based predictive FBC.

2. Physically unrealizable

Physical unrealizability (PU) is an anomaly that is strictly an artifact of a
dynamic system. A dynamic system has at least one process state (i.e., output or
response) that does not change to its new value immediately when input changes
occur that cause its value (i.e., level) to change. This behavior contrasts with a
nondynamic system that changes to its new state immediately when inputs change
(also, called “disturbances”).

There are two basic dynamic phenomena – time lag and time delay (also called
“dead time”) which are shown in Figure 1. This figure illustrates nondynamic and
dynamic relationships for the response, y, to a step change in the input, x, occurring

Figure 1.
Response y to a step change in x: a. nondynamic; b. lag; c. time delay and; d. lag and time delay.
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at time (t) = 0. As shown, for the nondynamic response (a), y changes immediately
to its new steady state value. Lag (b) is shown by the change in y starting to occur at
t = 0, but monotonically increasing over time to its new steady state value. Time
delay (c) is shown by the change in y to its new value occurring θ time later. Lag and
time delay (d) are shown by y starting to change θ time later and then monotoni-
cally increasing over time to its new steady state value. “Everyday” examples of
nondynamic changes are eyes opening (x) and immediate sight (y) and turning on
the radio in a car (x) and hearing it (y) immediately. A dynamic time delay example
is lightening occurring very far away. It occurs when one sees the lightening, but the
thunder is delayed and occurs at a significant time after seeing the lightening. It
does not build up to its final value, there is just a big boom that occurs, essentially,
at once. A dynamic change with lag occurs when a person has been out in the cold
for a while and their skin temperature is quite cold and when they move to a
warmer environment, their temperature starts to rise but it takes time for the
temperature to reach its new level in this warmer environment.

When a system is dynamic, its mass and/or internal energy changes over time,
being driven to a new state due to input changes, arriving there at a time different
than when the input was changed. Mathematically (and theoretically) this is seen as
a time-order differential equation. Such an equation is given in terms of input x and
output y in Eq. (1).

an
dny tð Þ
dtn

þ an�1
dn�1y tð Þ
dtn�1 þ⋯þ a1

dy tð Þ
dt

þ a0y tð Þ ¼

bm
dmx t� θð Þ

dtm
þ bm�1

dm�1x t� θð Þ
dtm�1 þ⋯þ b1

dx t� θð Þ
dt

þ b0x t� θð Þ
(1)

The dynamic form represented by Eq. (1) is PU if n < m, if θ is negative, or if
both are true. More specifically, the output, y, which depends on the input, x,
cannot have a time dependent derivative structure that is of lower order than the
variable that causes it to change. The response of a system to a disturbance also
cannot have negative time delay. A system cannot respond to a disturbance before it
occurs. There is no true solution for these conditions.

However, there are ways to address these PU cases in practice. For the first case,
n < m, discrete-time backwards different derivatives can be used to approximate
the continuous-time derivatives. This approach should provide adequate accuracy
when the sampling time is constant and sufficiently small, and sensor noise is not
too great. Eq. (2) illustrates this approximation when m = 2, n = 1, a constant
sampling time, Δt, and with θ = 0 (for simplicity). Note, since y(t) cannot be
immediately affected by x(t), xt-Δt is used to approximate x(t).

a1
dy tð Þ
dtn

þ a0y tð Þ ¼ b2
d2x tð Þ
dt2

þ b1
dx tð Þ
dt

þ b0x tð Þ

) yt ≈
yt�Δt þ

b2
Δt

þ b1 þ b0Δt
� �

xt�Δt � 2b2
Δt

þ b1

� �
xt�2Δt þ b2

Δt
xt�3Δt

1þ a0Δt

(2)

Thus, digital and sensor technologies, among other advancements, have
significantly contributed to an ability to approximate Eq. (1) when n < m.

For the other case, i.e., when the time delay is a negative value such as a -5Δt
(e.g., in FFC when deadtime for the disturbance variable (θDV) is smaller than the
deadtime for the manipulated variable (θMV)), Eq. (2) becomes
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a1
dy tð Þ
dtn

þ a0y tð Þ ¼ b2
d2x tþ 5Δtð Þ

dt2
þ b1

dx tþ 5Δtð Þ
dt

þ b0x tþ 5Δtð Þ

) yt ≈
yt�Δt þ

b2
Δt

þ b1 þ b0Δt
� �

xtþ5Δt�Δt � 2b2
Δt

þ b1

� �
xtþ5Δt�2Δt þ b2

Δt
xtþ5Δt�3Δt

1þ a0Δt

¼
yt�Δt þ

b2
Δt

þ b1 þ b0Δt
� �

xtþ4Δt � 2b2
Δt

þ b1

� �
xtþ3Δt þ b2

Δt
xtþ2Δt

1þ a0Δt
(3)

Thus, as shown by Eq. (3), the output depends on future values of the input.
However, discrete-time modeling provides a means to express an approximate
solution in a PU form where knowledge of future changes allows approximation of
the output. An example where this type of approximation is applied, is the control
of blood glucose concentration (BGC) for people with type 1 diabetes [10]. The
manipulated variable (MV) for the automatic regulation of the exogenous insulin
infusion from a servo-mechanical pump can have a deadtime of 60 minutes and
carbohydrates from meals can have a deadtime of 30 minutes [11], resulting in x(t)
becoming x(t + 30) in the numerator of the FFC law, with MV as the output
variable. Moreover, for these values, a change in insulin flow rate will take one hour
to begin to lower BGC. During this period, eating can increase BGC. People with
type 1 diabetes understand this phenomenon and will bolus their insulin infusion,
based on when they will eat and how many carbohydrates they will eat. This is
called “a meal announcement” [12, 13]. But just as this idea is applied to carbohy-
drates, it can be applied to other variables with dead times less than MV such as
stress, exercise, etc. As one can imagine, the relationships of such a set of variables
on BGC is quite complex and accurately modeling their relationships and automatic
feedback/feedforward control (FBFFC), with accurate announcements, appears to
be the most viable one for success. In the content to follow, we focus on dynamic
modeling with application to feedback control (FBC) and FFC when time delay in
MV is significantly larger than time delay in disturbances. For this situation, when
CV is the output, forecast modeling is necessary and when MV is the output, future
announcement (i.e., knowledge) is needed for any variable with a dead time less
than that of MV.

3. Discrete-time forecast dynamic modeling

Accurate forecast dynamic modeling in the context of process control has two
critical applications. One is accurately forecasting CV at least θMV distance into the
future, depending on the type of model-based control algorithm being used in FBC.
The other one is an accurate cause-and-effect model for CV that is inverted for
determining MV as a function of disturbances in FFC. Empirical modeling methods
(EMM) (i.e., the so-called “data-driven” methods such as linear regression and
artificial neural networks) are fit to a correlation structure and should not be used
for cause-and-effect modeling unless the modeling data are generated from a statis-
tical experimental design covering the full range of the operating (i.e., input) space.
This input space will be orthogonal and prevent extrapolation, which is risky for
EM. For “freely existing data” or any data not generated from a statistical experi-
mental design, accurate EM for CV forecasting is possible. However, when model-
ing data are not generated by a statistical experimental design, it would not be wise
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to use EM when cause-and-effect modeling is needed since EMM are data driven and
not knowledge driven, rely on high levels of parametrization, do not have structures
or parameters that are physically interpretable based on first principles modeling,
and are typically very risky for, even slight, extrapolation. In contrast, first princi-
ples model structures are: 1. nonlinear and thus, naturally break down correlation
structures in the input data; 2. have physically interpretable parameters; and 3.
often physical constraints with a theoretical basis. Nonetheless, theoretically based
modeling of real data outside a controlled environment such as a lab, is often some
combination of empiricism and first principles knowledge, which is essentially a
“hybrid model” that is often called “gray box” or “semi-empirical” models. Models
that are fully theoretical in derivation and structure but use data to obtain unknown
physically interpretable model parameters, are classified in this document as
semi-theoretical models.

Theoretically structured dynamic systems can be linearized (i.e., approximated)
in time dependent variables (i.e., x = x(t)) while maintaining their time derivative
structures (i.e., the order of derivatives will remain intact) and physical parametri-
zation. For example, Eq. (4) represents the result of a dynamic overall mass balance
on a process tank with one inlet stream with flow rate, q1(t), and one outlet stream
though a hand valve with flow rate, q(t) = h2(t)/Rv, where h is the tank level, Rv is
the resistance to flow through the valve, and A is the cross-sectional area of the
tank. The density and temperature of the fluid in the tank is constant in this
example. Using a 1st order Taylor Series approximation to linearize all time depen-
dent variables in Eq. (4), gives the solution in Eq. (5), where the “0” represents a
variable as a deviation from its initial steady state at t = 0.

A
dh tð Þ
dt

¼ q1 tð Þ � R�1
V h2 tð Þ (4)

A
dh0 tð Þ
dt

¼ q01 tð Þ � 2R�1
V h 0ð Þh0 tð Þ (5)

Rearranging Eq. (5) into the form of Eq. (1) gives:

a1
dh0 tð Þ
dt

þ a0h
0 tð Þ ¼ b0q01 tð Þ

τ
dh0 tð Þ
dt

þ h0 tð Þ ¼ Kq01 tð Þ
(6)

where a1 ¼ A 2R�1
V h 0ð Þ� ��1 ¼ τ, a0 ¼ 1 and b0 ¼ K ¼ 2R�1

V h 0ð Þ� ��1
: Eq. (6) is

a first-order dynamic relationship with time constant, τ, and steady-state gain, K,
and is represented in “standard form [4, 5].” Many dynamic processes can be
approximated accurately by either a first-order-plus-deadtime (FOPDT) or second-
order-plus-deadtime (SOPDT) structure [4, 5].

Eq. (7) gives a second-order version of Eq. (1) for inputs x0i, i ¼ 1, … , p, and
unity gain, with y replaced by v0i: Thus, Eq. (7) represents the dynamic response due
to x0i, in the units of x0i: Eq. (8) represent the dynamic response of y as a function of
v00i s where f(V) is an unrestricted mathematical function that maps each v0i to the
units of the output variable in standard form. Thus, it is f(V) that transforms
the linear dynamic inputs into the nonlinear dynamic and static response for the
output y.

τ2i
d2vi tð Þ
dt2

þ 2τiζi
dvi tð Þ
dt

þ vi tð Þ ¼ τai
dxi t� θið Þ

dt
þ xi t� θið Þ (7)
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y tð Þ ¼ f V tð Þð Þ þ ε tð Þ ¼ η tð Þ þ ε tð Þ (8)

where V tð Þ is a vector of the v00i s and the estimate of y(t), denoted as ŷ tð Þ, is equal
to the estimate of η tð Þ, η̂ tð Þ: This hybrid dynamic modeling structure is called a
Wiener network [14] and is in a class of structures that are called “block-oriented
models.” The block diagram for this network is shown in Figure 2.

Rollins, et al. [15] developed a multiple-input, single-output, discrete-time, non-
linear Wiener dynamic approach using backwards difference derivatives based on
Eqs. (7) and (8). Using a backward difference approximation applied to a sampling
interval of Δt, an approximate discrete-time form of Eq. (7) is obtained (for p
inputs):

vi,t ¼ δ1,ivi,t�Δt þ δ2,ivi,t�2Δt þ ω1,ixi,t�θi�Δt þ ω2,ixi,t�θi�2Δt (9)

where ω2,i ¼ 1� δ1,i � δ2,i � ω1,i to satisfy the unity gain constraint with

δ1,i ¼ 2τ2i þ 2τiζiΔt
τ2i þ 2τiζiΔtþ Δt2

(10)

δ2,i ¼ �τ2i
τ2i þ 2τiζiΔtþ Δt2

(11)

ω1,i ¼ τai þ Δtð ÞΔt
τ2i þ 2τiζiΔtþ Δt2

(12)

After obtaining vi,t for each input i (i = p is MV), the modeled output value is
determined by substituting these results into f (V), such as

ηt ¼ f Vð Þ ¼ a0 þ a1v1,t þ⋯þ apvp,t þ b1v21,t þ⋯þ bpv2p,t
þc1,2v1,tv2,t þ⋯þ cp�1,pvp�1,tvp,t

(13)

Modification of Eq. (13) for forecasting η tð Þ a distance θMV into the future with
p = 3, for example, gives

Figure 2.
Block diagram for the wiener network with p inputs and one output. Each input, xi, is passed through their own
unity gain linear dynamic block, Gi, after which these unobservable intermediate outputs are collected and
passed through a single unrestricted static gain function, f(V), to produce the output, y.
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ηtþθMV
¼ a0 þ a1v1,tþθMV þ⋯þ a3v3,tþθMV þ b1v21,tþθMV

þ⋯þ b3v23,tþθMV
þ c1,2v1,tþθMV v2,tþθMV þ⋯þ c2,3v2,tþθMVv3,tþθMV

(14)

where ai, bi, and ci,j, denote the linear, quadratic and interaction parameters for
i = 1, 2, 3 and j = 2 and 3, and

v1,tþθMV ¼ δ1,1v1,tþθMV�Δt þ δ2,1v1,tþθMV�2Δt

þω1,1x1,tþθMV�θDV1�Δt þ ω2,1x1,tþθMV�θDV1�2Δt
(15)

v2,tþθMV ¼ δ1,2v2,θMV�Δt þ δ2,2v2,tþθMV�2Δt

þω1,2x2,tþθMV�θDV2�Δt þ ω2,2x2,tþθMV�θDV2�2Δt
(16)

v3,tþθMV ¼ δ1,3v3,tþθMV�Δt þ δ2,3v3,tþθMV�2Δt

þω1,3x3,tþθMV�θMV�Δt þ ω2,3x3,tþθMV�θMV�2Δt

¼ δ1,3v3,tþθMV�Δt þ δ2,3v3,tþθMV�2Δt þ ω1,3x3,t�Δt þ ω2,3x3,t�2Δt

(17)

where the θ’s are integer multiples of Δt. Depending on the rate of change of CV,
forecast accuracy (and hence, control) can suffer significantly by setting θMV - θDV

to zero. Developers of BGC devices that use current sensor glucose measurements in
the feedback error restrict these devices for use only during long sleeping periods
when BGC changes very slowly. For an application such as automatic BGC control,
with a very large deadtime for MV and many disturbances with smaller deadtime
than MV, that are nonlinear and interactive, the required accuracy for forecasting
BGC is quite challenging. However, as health monitoring sensor technology con-
tinues to advance, forecast modeling accuracy continues to improve. The strengths
of the method presented in this chapter are the use of dynamic structures that are
embedded in first principles modeling; that is, they have physically interpretable
parameters embedded in highly nonlinear structures (Eqs. (10)–(12)) with physical
constraints such as ω2,i ¼ 1� δ1,i � δ2,i � ω1,i, τi >0 and ζi >0, for all i. While the
method has these strengths for forecasting [16, 17], these strengths are quite critical
in FFC applications where cause-and-effect modeling is essential. Next PU is
examined from a control perspective – FBC first and then feedback feedforward
(FBFFC).

4. FBC when θMV is large

As discussed above, a change in MV will not affect CV until θMV time into the
future. When θMV is 0, the feedback error for FBC is, rightly, et = Yset – yt, where yt is
the measured value of CV at the current time, t. When θMV is not 0, the equivalent
feedback error is et = Yset – yt+θMV which is unknown because yt+θMV is not obtained
until time t + θMV. This section describes and compares three FBC approaches when
θMV is not 0. The first one is classical FBC [4, 5] which uses et = Yset – yt. The second
one is feedback predictive control (FBPC) [6] which uses et = Yset –ŷtþθMV

: The third
one is model predictive control (MPC) [18–20]. The MPC control law is for CV to
be equal to Yset, J time steps after t + θMV while holding the current value of MV
fixed [4]. Thus, J is the only controller tuning parameter for MPC. More specifi-
cally, its feedback error is: et = Yset –ŷtþθMVþJΔt:Hence, the MPC prediction horizon is
longer than FBPC by the amount JΔt: For MPC, the optimal value of JΔtwill tend to
increase as the time lag of yt increases for changes in MV. Since forecasting accuracy
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typically decreases as the distance into the future increases, MPC control can
significantly deteriorate as JΔt increases.

These three control algorithms were compared by [6] in their ability to auto-
matically control CV for a true FOPDT process with K = 1, τ = 10 and 50 min,
θMV = 3 min, and a sampling time, Δt, equal to 1 min. FBPC and FBC were PI-
Controllers with tuning parameters to give the best response with little, to no,
overshoot for a unit step change in the set point at time t = 0.

Figure 3 presents the results of this study found in [6]. As shown, CV (y) is on
the left and MV (M) is on the right. The top row represents τ = 10 (J = 3, 8, and 20)
and the bottom row represents τ = 50 (J = 8, 20, and 30). As shown, as J decreases, y
reaches the set point faster and overshoots it for the lowest values of J. FBPC reaches
the set point much faster than MPC, even when MPC overshoots the set point. As τ
increases, MPC takes longer to reach the set point, but this is not the case for FBPC
and FBC. FBC reaches the set point faster without overshooting than MPC for the
case with the larger τ. Moreover, depending on J and τ, FBC and MPC can reach the
set point about the same time without overshooting the set point. However, FBPC
has a faster response and reaches the set point much earlier than FBC and MPC in all
cases. MV for FBPC has an initial “kick” much greater than FBC or MPC. However,
its MV quickly drops below that of FBC and MPC and has significantly less move-
ment in both cases as shown in Figure 3. Thus, as expected, because of the longer
control horizon, which increases as τ increases, MPC responded slower than FBPC
in reaching and staying at the new set point. Similar conclusions were seen in a
comparison of FBPC and MPC in this article [6] for a simulated CSTR. Nonetheless,
the main conclusion is that there are model-based forecasting FBC algorithms that
are viable alternative to classical FBC when θMV is appreciably large.

Figure 3.
CV (y) responses (left panels) and MV (M) changes (right panels) for FBPC, FBC and MPC for the FOPDT
process. The top case is for τ = 10 (for MPC with J = 3, 8, and 20) and the bottom one is for τ = 50 (for MPC
with J = 8, 20, and 30) [6].
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5. FFC when θMV is large

All classical process control textbooks (e.g., [4, 5]) derive the FFC algorithm from
a block diagram and give the FFC transfer function for each DV, Gf, as -GDV/GMV.
The outputs from each Gf are added together to form the multiple-disturbance
feedforward control law. An example when both GDV and GMV are FOPDT is:

G f ¼ � GDV

GMV
¼ �

KDVe�θDVS

τDVsþ1
KMVe�θMVS

τMVsþ1

¼ � KDV

KMV

τMVsþ 1
τDVsþ 1

e θMV�θDVð ÞS ¼ � KDV

KMV

τMVsþ 1
τDVsþ 1

eΔθS

(18)

Thus, Gf will be PU when θMV > θDV, i.e., when Δθ > 0. Typically, this limitation
is addressed by just setting Δθ to 0 or increasing τMV to τMV þ Δθ and setting eΔθS to
1 [4]. This approximation is usually acceptable when Δθ is small, as commonly
found in chemical processes. However, modern applications of process control have
gone beyond chemical processes to biological processes where transport is cellular,
slow, and complex (i.e., not well understood). A common example is exogenous
insulin taken by people with diabetes as mentioned above [21]. Insulin deadtime is
significantly greater than the deadtime for carbohydrate intake and other distur-
bances. Recent advancements in activity trackers measure multiple variables that
likely affect BGC, and most, if not, all have a smaller deadtime than insulin [15–17].

Process Control textbooks commonly describe additive and linear dynamic FFC
and present the algorithms in the continuous-time Laplace (s-) domain. This section
presents a FFC approach that is: 1. given in the time domain; 2. discrete-time; 3. able
to treat all types of non-additive behavior as well as nonlinear dynamic and static
behavior and; 4. combines all disturbances functionally into one FFC law (i.e., all
the DV’s enter one FFC equation). A block diagram of this FFC approach based on
the Wiener network is given in Figure 4. As shown, the modeled disturbances are

Figure 4.
Multiple-input FBC/FFC block diagram for a p-input wiener network FFC model [22].
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x1 to xp-1 and xp is MV. Inputs x1 to xp-1 pass through their dynamic blocks to
produce v1 to vp-1. The FFC law associated with Figure 4 is:

effc ¼ Yset � f Veð Þð Þjxep ¼ 0 (19)

where f Veð Þis defined in Eq, (8) with the superscript e associating it with the FFC
law, i.e., xep ¼ xeMV ¼ value of MV that makes effc = 0, and thus, satisfying Eq. (19).

For p = 2, i.e., one disturbance and MV, and FOPDT structures for both inputs,
and application of linear forms for Eq. (13) (for simplicity) into Eq. (19) gives:

effc ¼ Yset � a0 � a1v1,t � a2v2,tð Þjx2 ¼ Yset � a0

�a1 δ1,1v1,tþθMV�Δt þ δ2,1v1,tþθMV�2Δt þ ω1,1x1,tþΔθ�Δt þ ω2,1x1,tþΔθ�2Δt½ �
�a2 δ1,2v2,tþθMV�Δt þ δ2,2v2,tþθMV�2Δt þ ω1,2x2,t�Δt þ ω2,2x2,t�2Δt½ � ¼ 0

) x2,t�Δt ¼ xMV,t�Δt ¼ 1
ω1,2

a0 � Ysetð
þa1 δ1,1v1,tþθMV�Δt þ δ2,1v1,tþθMV�2Δt þ ω1,1x1,tþΔθ�Δt þ ω2,1x1,tþΔθ�2Δt½ �
þa2 δ1,2v2,tþθMV�Δt þ δ2,2v2,tþθMV�2Δt þ ω2,2x2,t�2Δt½ �Þ

(20)

Eq. (20) gives an explicit solution for the FFC signal, xMV, in this example.
When f (V) has terms higher than first order, numerical root solving methods may
be required to find xMV, as illustrated in [22].

Eq. (20) is evaluated now to determine if it can meet the standard of perfect
control for x1 load changes. For a frame of reference, MPC is also included in this
study although it is a FBC method. For this example, Yset = 100 and remains
constant. Input changes are made in x1(t) and its dynamic response to these input
changes, v1(t), are given in Figure 5. The tuning parameter for MPC, J, has values of
1, 2 and 10. The model parameters are: a1 = 1, τ1 = 5 min, θ1 = 5 min; a2 = �1,
τ2 = 10 min, θ2 = 10 min; and the sampling time, Δt = 1 min. The results for CV and
MV for both FFPC and MPC are given in Figure 5. FFPC gives perfect control, as
anticipated, and MPC does not, as anticipated. The response of MV that gives
perfect control is the heavy black line in Figure 5. MPC with J = 1 appears to match
the FFPC MV profile the best in terms of shape and time of changes, but it is also
the most extreme. Thus, this example illustrates the ability of FFPC to meet
the requirement of theoretically perfect control. Figure 6 gives a general
multiple-input, block-oriented model FBFF block diagram similar to the one in
Figure 4. For more information see [13].

Figure 5.
CV (y) responses (left plot) and MV (M) changes (right plot) for FFPC and MPC (J = 1, 2, and 10). M = x2
for FFPC and MPC, and M = v1 for the DV (i.e., x1) [13].
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FFPC is now evaluated on the in silico continuous stirred tank reactor (CSTR) in
Figure 7 and described in [13] and taken from [5] with some minor modifications.
This study has two DVs – feed composition, CAi (x1), and temperature of the
coolant entering the jacket,TCi (x2)). MV is the flowrate of the coolant entering the
jacket, FC (x3). The output (CV) is the measured tank temperature,Tm (y). The
model for each input is SOPDT, as shown in Eq. (7). The output, y, follows Eq. (8)
and measurement noise was added to the true tank temperature (T) to produce Tm.
Modeling this process was an application of Eqs. (9)–(17) with θ1 = θ2 = 5 seconds (s)
and θ3 = θMV = 10 s. Thus, Δθ = 5 s for each input and both are PU in the FFC law.
Therefore, the objective of this study is to compare announcement of input changes
5 s ahead versus no announcement.

Figure 6.
A general BOM FBFF block diagram shown with m loads and p FFC variables [8].

Figure 7.
Flow diagram of the CSTR in the in silico study.
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A proportional-integral (PI) feedback controller was implemented in this study.
Thus, FBPC was not used for FBC in any case to evaluate FFPC exclusive of FBPC.
For this controller KC = 1.40, τI = 11.0 andMFB is the FBC signal to the control valve.
MFF = xe3 ¼ xeMV , is the FFPC signal. Thus, the signal to the valve, M, in Figure 7 is
M =MFB +MFF. The input sequence used for training the model is given in Figure 8.
The excellent fit of the model to Tm for these input changes is also shown in
Figure 8. The testing sequence (not shown) fit the response as well as the training
sequence.

The results of FBC with FFPC for the two disturbances is shown in Figure 9. The
left plot is for FBC only. The right plot is FBC with announcements for TCi and CAi.
As shown, the variation of Tm around its set point decreased greatly with FFC and
announcements for both disturbances. More specifically, the standard deviation
about the set point temperature dropped from 0.4352°C to 0.1131°C, a 74% reduc-
tion. Thus, modeling disturbances effectively and implementing them into FFC
algorithms that can take advantage of announcements of future changes for critical
disturbances can have a significant impact in reducing variation around the set
point of CV.

6. FBPC and the Smith predictor

As demonstrated above, FBPC is an effective FBC strategy when θMV is large.
The Smith Predictor (SP) [4, 9] is a widely accepted FBC strategy when there is no

Figure 8.
Input sequences (left plot) CAi (x1), TCi (x2) and M (x3) and its wiener model fit (right plot).

Figure 9.
The effect of Tci and CAi announcement on tank temperature Tm for FFPC (left plot is without announcement
for both and right plot with announcements for both).
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deadtime in MV, and CV is measured, not at t, when MV changes, but at t + θCV (see
Figure 10). The SP idea is to obtain a predictive model for CV with deadtime,
remove the deadtime, and use this estimator in the feedback error term for CV at t.
In Figure 11 an example of a SP process is illustrated with a block diagram
representing the process given in Figure 10. As shown in Figure 11, MV = M(t) (M
is the signal of MV) immediately affects CV = B(t) (B is the signal of CV), but the
sensor is at B1(t) = B(t-θCV). Thus, SP uses a prediction of CV at t with an MV that
changes CV immediately. In contrast, FBPC uses a forecast prediction of CV at
t + θMV when it takes a time of θMV for a change in MV to affect CV. Moreover, the
SP does not use a forecast estimator and is not applicable to cases with deadtime in
MV. However, this section will show that FBPC, using the forecasting estimator of
CV at t + θCV, gives the same result as the SP. Consequently, FBPC can be used in
place of the SP. However, the opposite is not true. More specifically, the SP is not
applicable when a change in MV has time delay in changing CV, whereas FBPC is
applicable for this case.

For a Figure 10 type process, the SP should compensate for the deadtime (i.e.,
reduce its effect) and respond quicker using an accurate estimate of Bt than using an
accurate measurement of B1,t. The block diagram for the SP [4, 9] shows feedback
control using CVt ¼ B̂t with bias correction (BC) to address measurement bias. BC
is the current measurement of B1,t � B̂1,t, where B̂1,t is the estimated value of B1,t:

Thus, in the SP block diagram,

et ¼ Yset
t � Bt � B1,t � B̂1,t

� �
(21)

Similarly, for FBPC,

et ¼ Yset
tþθMV

� B̂1,tþθMV (22)

The same simulated CSTR used above was used in this study to compare classical
FBC, FBPC and the SP control algorithm with and without feedback correction. A

Figure 10.
An example of a SP process with M as MV and B1 as CV.

Figure 11.
A block diagram showing the blocks between M and B1.
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step test in M was done and obtained B1 over time from the initial steady state to a
final steady state. These values are:M0 = 0.2569 andM∞ ¼ 0:3800 corresponding to
B10 = 0.4000 and B1,∞ ¼ 0:3800: The input change was large enough to cover the
change in Tm for the test data (i.e., a 4°C change in the set point temperature). A
FOPDT model was fit to the data and the fitted response is given in Figure 12. As
shown, the fit is excellent with the following estimates: K̂ ¼ 1:746, τ̂ ¼ 14:24 s and
θ̂ ¼ 14 swith δ̂ ¼ τ̂= τ̂ þ Δtð Þ ¼ 0:99303 and Δt = 0.1. A plot of the response over time
is given in Figure 12. The fitted forecast equation for B̂1,tþθMV is derived as follows:

τ
dB0

1 tð Þ
dt

þ B0
1 tð Þ ¼ KM0 t� θð Þ ) τ

B0
1,t � B0

1,t�Δt

Δt
þ B0

1,t ¼ KM0
t�θ�Δt

⋮ ) τ þ Δtð ÞB0
1,t ¼ τB0

1,t�Δt þ KΔtM0
t�θ�Δt

) B0
1,t ¼

τ

τ þ Δt
B0
1,t�Δt þ K

Δt
τ þ Δt

M0
t�θ�Δt ) B0

1,t ¼ δB0
1,t�Δt þ K 1� δð ÞM0

t�θ�Δt

) B̂1,tþ140 ¼ B0
1,t þ 0:4 ¼ δ̂B̂1,tþ139 þ K̂ 1� δ̂

� �
Mt�0:1

(23)

The SP estimate without BC is obtained from Eq. (23) as

B̂tþ140 ¼ δ̂B̂tþ139 þ K̂ 1� δ̂
� �

Mt�0:1 (24)

With BC, the SP estimate is

B̂t ¼ δ̂B̂t�0:1 þ K̂ 1� δ̂
� �

Mt�0:1 � B1,t � B̂1,t
� �

(25)

For a step change in the set point temperature of 4°C, the responses for tank
temperature (Tm) for all four cases are given in Figure 13. The proportional-integral
(PI) controller is the slowest to get to the new set point of 92°C. This is no surprise
since the deadtime is quite large as shown in Figure 12. The SP with BC gives a
modest improvement over PI which is surprising. This is also reflected in the

Figure 12.
The fitted process reaction curve of B1 the measured values used for the fitting for a step change in M.
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modest increase in Kc from 0.20 to 0.41 as shown in Table 1. However, when the BC
was removed, the SP response improved considerably as did Kc to 1.50. It gives the
same response as FBPC, which also has no BC. These two cases give the same
results, supporting the conclusion that FBPC and SP are equivalent for the SP
application. However, when MV has deadtime with respect to CV, SP is not appli-
cable, but FBPC is applicable. In [6] this BC method also did quite poorly with MPC
being 132% worse (This BC method was not applied to FBPC in this study). More-
over, for BC, the following time series approach is recommended where the ϕ’s are
estimated with all other parameters for fitted model [6]:

ŷtþθ ¼ η̂tþθ þ ϕ̂1 yt � η̂t
� �þ ϕ̂2 yt�Δt � η̂t�Δt

� �þ⋯

¼ η̂tþk1Δt þ ϕ̂1et þ ϕ̂2et�Δt þ⋯
(26)

7. Conclusions

This chapter has focused on the use of discrete-time dynamic forecast modeling to
enhance FBC and all types of FFC. Discrete-time modeling has the advantage of
obtaining solutions to PU systems without having to make assumptions to make the
system an approximation of a physically realizable system. Models do not have to be
cause-and-effect for forecasting but need to be as FFC models. Cause-and-effect
models result from statistical design of experiments because input changes are
orthogonal (i.e., uncorrelated) and for theoretical structured models because they will
be nonlinear in one or more physically based parameters, have physical constraints
that must be met, and physically interpretable unknown model parameters [23].

When MV has deadtime with-respects-to CV (e.g., θMV), a change in MV will
not begin to change CV until a time distance of θMV in the future. Three FBC

Figure 13.
Graphical SP results.

Controller KC τI

PI 0.20 12.70

SP w BC 0.41 14.00

SP w/o BC 1.50 15.00

FBPC 1.50 15.00

Table 1.
Tuning values in the SP study.
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approaches where evaluated in this scenario: classical FBC, FBPC and MPC, using
the current measured value of CV, forecast estimate of CV, θMV in the future, and
forecast estimate of CV, θMV + JΔt in the future, respectively. In the simulation
study, FBC responded quicker than MPC when the process lag was large and MPC
responded quicker when the process lag was small. FBPC responded much faster
than both under small and large lag. FBPC control has a prediction horizon of θMV

but for MPC it is JΔt longer. Since the optimal value of J increases as the lag
increases, MPC can be significantly more sluggish than FBPC when J is large. A
definite advantage of MPC is that J is its only tuning parameter.

A discrete-time FFC approach (FFPC) was presented in this chapter that can
be effective when θMV is large and the multiple-input FFPC model is PU for any
reason (i.e., the order of the differential equation or negative deadtime). FFPC

Figure 14.
Flowchart illustrating the complete process of the proposed framework of this chapter.

69

Use of Discrete-Time Forecast Modeling to Enhance Feedback Control and Physically…
DOI: http://dx.doi.org/10.5772/intechopen.99340



was shown to satisfy perfect theoretical control in a simulated data study. A
critical strength of the approach presented in this work is that the FFC variables
enter one mathematical function that simultaneously solves for one FFC control
signal. This contrasts with classical FFC that has a FFC algorithm for each input and
combines their values to determine the value of the FFC control signal for MV. The
classical approach cannot treat complex interactive and nonlinear behavior of the
disturbances in determining the optimal value of the FFC signal for MV. Block
diagrams of this novel FFC approach were shown for the Wiener Network and a
general block-oriented modeling approach. When FFC inputs have a PU impact,
knowing how their values will change over the control horizon (i.e., announce-
ments), can significantly improve FFC as demonstrated in the CSTR simulation
study.

The SP is a model-based feedback control algorithm that can be quite effective
when there is no deadtime between a change in MV and its impact on CV, and the
measured value of CV has deadtime. For this situation, FBPC, that uses a forecast
value for CV based on a model developed from the measured value of CV with
deadtime, gives the equivalent result of the SP. However, the SP is limited to this
case, but FBPC is not. More specifically, FBPC is applicable when there is deadtime
for changes in MV and its effect on CV but the SP is not. Finally, one should exercise
care when using the bias correction (BC) method in the block diagram for the SP. It
can lead to a significantly suboptimal SP as shown in this work. A better alternative
is to use one that is obtained from modeling the serially correlated structure in the
process as given in this chapter. A flowchart illustrating the complete process of the
proposed framework of this chapter is shown in Figure 14.
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Nomenclature

A cross-sectional area of the tank
an the nth constant
B the signal of CV in the SP algorithm
BC bias correction in the SP algorithm
B1 the signal of CV with deadtime θCV
bm the mth constant
CAi inlet concentration to the CSTR (x1)
effc the feedforward control law criterion for perfect control
et the feedback error = Yset – yt,
FC inlet flow rate of the coolant to the jacket of the CSTR
f Veð Þ the true function in the FFC law that satisfy effc ¼ 0
f(V) is an unrestricted mathematical function that maps each v0i to the

units of the output variable in standard form. Thus, it is f(V)
that transforms the linear dynamic inputs into the nonlinear
dynamic response for the output y.

Gf feedforward transfer function
GDV DV transfer function
Gi transfer function with output vi
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GM transfer function for CV in signal
GMV MV transfer function
GP process transfer function
GV transfer function for MV
h the tank level
J the only controller tuning parameter for MPC.
K process gain
KC controller gain for FBC
m mth order derivative
M the input signal to MV transfer function
MFB FBC input signal to MV transfer function
MFF FFC input signal to MV transfer function
n nth order derivative
q1 inlet flow rate of Stream 1
Q flowrate in the Laplace domain entering the system
q flow rate of the outlet stream
Rv valve resistance
t current time or just time
T the physical value of CV in SP case
TCi inlet temperature of the coolant to the jacket of the CSTR
Tm measured tank temperature
vi dynamic output for ith input, xi, in the same units as xi
V tð Þ is a vector of the v00i s
x input
xt-Δt the value of x at time t -Δt
x0i deviation of xi at time t from xi at time t = 0
xep xeMV equals the value of MV in the FFC law that satisfy effc ¼ 0
y the response = output
ŷ tð Þ the estimate of y(t)

Greek Letters

θ time delay or deadtime
η tð Þ the true value of the output at time t
η̂ tð Þ the estimate of η tð Þ
ωi,j dynamic coefficient for the ith input at t – jΔt
δi,j dynamic coefficient for output vi at t – jΔt
θCV dead time of the controlled variable
θDV dead time of the disturbance variable
θMV dead time of the manipulated variable
τI reset time for FBC
τ process time constant
Δt the sample rate

Acronyms and abbreviations

BGC blood glucose concentration
CSTR Continuous-Stirred-Tank-Reactor
CV control variable
DT deadtime
DV disturbance variable
EM empirical modeling
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EMM empirical modeling methods
FBC feedback control
FBFFC feedback/feedforward control
FBPC feedback predictive control
FFC feedforward control
FFPC feedforward predictive control
FOPDT first-order-plus-deadtime
MISO multiple-input, single-output
MPC model predictive control
MV manipulated variable
PID proportional, integral, derivative
PH prediction horizon
PU physically unrealizable
SEM semi-empirical model
SDOE statistical design of experiments
STM semi-theoretical model
SP Smith Predictor
SOPDT second-order-plus-deadtime
TDPU time delay physical unrealizability
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Chapter 5

Optimization of Model Predictive
Control Weights for Control of
Permanent Magnet Synchronous
Motor by Using the Multi
Objective Bees Algorithm
Murat Sahin

Abstract

In this study, the model predictive control (MPC) method was used within the
scope of the control of the permanent magnet synchronous motor (PMSM). The
strongest aspect of the MPC, the ability to control multiple components with a
single function, is also one of the most difficult parts of its design. The fact that each
component of the function has different effects requires assigning different weight
coefficients to these components. In this study, the Bees Algorithm (BA) is used to
determine the weights. Using the multi-objective function in BA, it has been tried to
determine the weights that reduce the current values together with the speed error.
Three different PI controllers have been designed to compare the MPC method. The
coefficients of one of these are tuned with BA. Good Gain Method and Tyreus-
Luyben Method were used in the other two. As a result of experimental studies, it
has been observed that MPC can control PMSM more smoothly and accurately than
PI controllers, with weights optimized with BA. With MPC, PMSM has been con-
trolled with 15% settling time than other controllers and also with no overshoot.

Keywords: Model predictive control, permanent magnet synchronous motor,
the Bees Algorithm, the Good Gain method, Tyreus-Luyben method

1. Introduction

Permanent Magnet Synchronous Motors (PMSM) have been used for many
years due to their features such as high torque, high efficiency and fast dynamic
structure. Within the scope of controlling PMSM; robust control [1], field-oriented
control and direct torque control [2], fuzzy-based controllers [3, 4], sliding mode
controller [5], model predictive controller (MPC) [6], and so on different control
methods have been used. Especially in high speed PMSMs, driver dynamics must be
controlled successfully for effective control [7]. When the applications in the liter-
ature are examined, it is seen that MPC gives successful results in this scope. Model
Predictive Control (MPC), based on the optimal control theory, achieves successful
results, especially in power electronics applications. MPC uses the system model
equations together with the current state measurements to estimate the control
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movement. With this predictive ability, it can achieve more successful results
against traditional controllers [8].

Three phase inverter circuits are one of the main methods used to drive PMSM.
In these circuits, there can be a limited number of switching combinations for 6
switches. This is called the Finite Control Set (FCS). FCS-MPC can be implemented
even in low cost devices used today due to the optimization process performed with
a limited number of iterations [9]. One of the major advantages of the FCS-MPC
over other control methods is that different goals, variables, and constraints can be
included in a single cost function and controlled simultaneously [10]. Adding dif-
ferent categories of variables to the cost function brings great flexibility to MPC.
However, the effects of these variables on the system may be different. Therefore, it
is necessary to give weight coefficients for each of the variables.

Selection of weights for cost function of MPC optimization is one of the main
challenge for researchers. When the MPC studies in the literature are examined, it is
seen that a significant part of them are about to calculate these weights. It is seen that
different methods are used in different applications. The highlights of these; empiri-
cal methods, fuzzy-based methods, evaluation algorithms, heuristic methods etc. In a
sample study, a fuzzy-based calculation method was used in the PMSM current
control application. Id and Iq currents were used in the cost function [11]. In another
study, torque control of PMSM with MPC was performed. Torque and flux variables
were used in the cost function. While weight was not used for the torque variable, a
weight depending on the torque has been determined for the flux variable [12]. A
different cost function that can be selected for the speed control of the PMSMmay
include the controller output and speed error. In order not to cause sudden effects on
the system, the difference of the two control signals produced consecutively is added
to the cost function [13]. A similar strategy has been used in DC motor control. With
the Quadratic problem approach, along with the speed error and the difference
between the two consecutive outputs are included in the cost function [14].

FCS-MPC is also used in different fields other than electric motors and similarly
the weights need to be calculated. Simulated Annealing Particle Swarm Optimiza-
tion with Model Predictive Control was used to control of the electric vehicles [15].
Another application that uses genetic algorithm is shunt active power filter. Link
voltage, active power and reactive power are used in cost function of MPC within
the scope of proper switching [16]. In a different MPC application, the multi
objective genetic algorithm was used to calculate the weights [17].

In this study, the control of the PMSM used as the driving element of an actuator
to be used in the aerospace area was performed with FCS-MPC. Battery life is of
great importance in the aerospace area. For this reason, when creating the MPC cost
function, the power variable was added along with the speed and current variables.
In the PMSM control problem, apart from minimizing the speed error, minimum
current consumption is also aimed. In the scope of calculating the weights, the multi
objective BA is used. When the studies in the literature are analyzed, it is seen that
BA gives successful results against multi objective function problems [18–20]. In
order to compare the developed control system, 3 different PI controllers were
designed. The second part of the study includes PMSM equations and MPC studies.
The third part includes calculating weights with multi-objective BA studies. In the
fourth chapter, there are studies on PI controller design. The fifth section includes
experimental studies and comparisons.

2. PMSM equations and FCS-MPC design

In MPC design, first of all, it is necessary to prepare the mathematical model of
the system. One of the most popular methods of controlling of PMSM with MPC is
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to use machine equations in the rotor reference frame [6]. MPC is designed within
the scope of speed control of PMSM. Therefore, speed and current equations were
needed in the MPC cost function.

did
dt

¼ � R
Ld

id þ
Lqp
Ld

wriq þ 1
Ld

vd (1)

diq
dt

¼ � R
Lq

iq � Ldp
Lq

wrid � ψmp
Lq

wr þ 1
Lq

vq (2)

Te ¼ 3
2
p ψmiq þ Ld � Lq

� �
idiq

� �
(3)

dwr

dt
¼ 1

J
Te � Tlð Þ � B

J
wr (4)

In the currents and torque equations; ψm, iq, id, vq, vd, R, Lq, Ld, wr, and p and
are the rotor magnetic flux linkage, stator currents in q and d axis, stator voltages in
q and d axis, stator resistance, stator inductances in q and d axis, rotor angular
speed, and pole pairs respectively. In the equation of speed; J is the inertia, Tl is the
load torque, B is the viscous friction coefficient, and Te is the electrical torque
produced by the motor [11].

In the equations, resistance, inductance, pole pairs, inertia, and magnetic flux
values are known. (Motor resistance and inductance can vary depending on the
motor temperature [21]. This situation has been neglected in this study. It should be
consideration in applications where the motor will operate under load for a long
time.) In order to find Vd and Vq values, the inverter circuit must be analyzed. A
typical 3 Phase Inverter circuit used in the study is given in Figure 1. The circuit has
two driver components for each phase of the PMSM and switches for switching
these components. (In this study, mosfet is used as the driver component, it is
shown in green color in the figure.) In order that the components on the same phase
are not switched at the same time, there is a note gate between them. Therefore, 3
switches (Switches Sa, Sb, and Sc shown in blue color in the figure.) are sufficient for
switching operations. These 3 switches can be switched in 8 different combinations,
each with a 0 or 1 [22]. Conversions of Vdc (Bus voltage) to Vd and Vq according to
the switching states are found by Park-Clarke methods [23].

Figure 1.
PMSM drive with 3 phase inverter.
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θ is the angle of rotation of the rotor in radians (In this study, it is measured by the
encoder integrated into the PMSM. Also, wr is obtained by the derivative of θ.). Other
unknowns of the equations are the Id and Iq currents. Ia, Ib, and Ic currents are measured
with the current sensor. Again, Park-Clarke method is used for transition from abc
phases to dq axis (In the Eq. (5), instead of switches, this time the currents are placed.).

Various discretization methods can be used to obtain a discrete-time model for
calculating predictions. One of the simplest methods is the Forward Euler method,
which is based on derivatives. In this method, the prediction expression is obtained
by leaving the expression x(k + 1) alone. Ts is the sampling time [23].

dx
dt

≈
x kþ 1ð Þ � x kð Þ

Ts
(6)

When the Forward Euler approach is applied to stator currents (1) and (2) the
following MPC prediction equations are obtained [11].

id kþ 1ð Þ ¼ 1� RTs

Ld

� �
id kð Þ þ Lq

Ld
Tspwriq kð Þ þ Ts

Ld
vd (7)

iq kþ 1ð Þ ¼ 1� RTs

Lq

� �
iq kð Þ � Ld

Lq
Tspwrid kð Þ � ψmpwr

Ts

Lq
þ Ts

Lq
vq (8)

In the equations, expressions with (k) show the values measured from PMSM at
the previous sampling time, while the expressions with (k + 1) show the predicted
values.

For each sampling time, for the 8 different Vd and Vq values given above,
currents estimates will be made. Under normal conditions, what is expected from
the microprocessor is to make these calculations in the period determined for the
application and to generate the necessary control signal. In real application, the
microprocessor also has many different tasks. Therefore, there may be delays in
estimates. In this case, a dynamic system cannot be controlled successfully. Against
these possible delays, it has been suggested to predict two next steps. In this study,
the prediction equations for the next two steps were updated by taking this sugges-
tion into consideration [24].

id kþ 2ð Þ ¼ 1� RTs

Ld

� �
id kþ 1ð Þ þ Lq

Ld
Tspwriq kþ 1ð Þ þ Ts

Ld
vd (9)

iq kþ 2ð Þ ¼ 1� RTs

Lq

� �
iq kþ 1ð Þ � Ld

Lq
Tspwrid kþ 1ð Þ � ψmpwr

Ts

Lq
þ Ts

Lq
vq (10)

For velocity prediction, Eq. (4) is discretized by Forward Euler method. In the
equation, iq kþ 2ð Þ expression is used in Te [6].

wr kþ 1ð Þ ¼ 1� B
J

� �
wr kð ÞTs þ 1

J
Te � Tlð ÞTs (11)

For velocity control in PMSM, Eqs. (9), (10) and (11) may be sufficient in the
cost function. But for a more effective cost function, it has been proposed to include
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the switching losses in the inverter circuit. In the sample study, the power variable
was also added in this context, and the choices were made to use low power at each
step of the control system [25]. In this study, the power effect (P f Þwas added to the
cost function. However, this effect is added as shown in (12) in a simple form so
that the processing load does not increase.

P f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vd ∗ id kþ 2ð Þð Þ2 þ vq ∗ iq kþ 2ð Þ� �2q

(12)

One of the strong features of MPC is that the constraints required for the system
can be defined in cost function. The combination that gives the best result among
the switching alternatives may also cause high current from the PMSM. Therefore,
the current constraint given in (13) has been added to the cost function [22].
When the current values are higher than a limit value, a large value is assigned to
the relevant switching option to be excluded from the options. (In the part indi-
cated by ∞ in the equation, 1e10 is used in the application.)

f̂ id kþ 2ð Þ, iq kþ 2ð Þ� � ¼
∞ if idj j> imax or iq

�� ��> imax

0 if idj j≤ imax and iq
�� ��≤ imax

(
(13)

The final version of the cost function is shown below.

g ¼ w1 ∗ wref � wr kþ 1ð Þ� �2 þw2 ∗ id kþ 2ð Þð Þ2 þw3 ∗ iq kþ 2ð Þ� �2 þw4 ∗P f
2

þ f̂ id kþ 2ð Þ, iq kþ 2ð Þ� �

(14)

Figure 2.
Flowchart of MPC.
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For each sampling time, for 8 different switching combinations, current and
velocity prediction will be performed and the cost function defined in (14) will be
calculated. After 8 iterations, the switching configuration that gives the minimum
“g” value will be determined and sent to the inverter circuit. The flow diagram of
the designed MPC is given in Figure 2.

3. Calculating weights with multi objective Bees Algorithm (MOBA)

BA is a population-based search algorithm. The algorithm mimics the nectar
source search behavior of honey bees. Basically, it does some kind of neighbor
region search along with random search and can be used for both integrated and
functional optimization [26]. Detailed explanations about the algorithm were pro-
vided in Ref.s [27–29]. The pseudo code of the algorithm is given in Figure 3.

When designing control systems in general, the integral of the square of the
error (ISE) is used as the objective function. The equation of ISE is given in (15).
The equation shows the reference velocity value with r(t), the output velocity value
with y(t) and the error value with e(t).

ISE ¼
ð∞
0

r tð Þ � y tð Þð Þ2dt ¼
ð∞
0
e tð Þ2dt (15)

When the error is only aimed to be minimized, it may cause high currents to be
drawn from the PMSM and thus excessive energy consumption. As a solution to this
issue, a multi objective (MO) optimization algorithm is suggested. The goal of MO
optimization is to try to optimize all defined objective functions simultaneously.
All objectives can be minimized or maximized at the same time, or some can be
minimized and some maximized. General definition in the literature is given
below [30].

Figure 3.
Pseudo code of BA.
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Min or Maxð Þ f 1 xð Þ ¼ y1, f 2 xð Þ ¼ y2, … , f j xð Þ ¼ y j

n o
(16)

Although there are different MO methods, the prominent method is the
weighted sum method. Here, each goal has a weight coefficient. This method is also
called scalarization method. In this method, basically, multiple solutions are com-
bined into a single solution using weights [31].

Min or Maxð Þ
XN
j¼1

w j f j xð Þ (17)

It is necessary to limit the current for low power consumption [32]. Based on this
situation, the integral of the square of the ibus is included in the multi objective
function (MOF) to find weights that will also minimize the ibus current.

MOF ¼
ð∞
0

e tð Þ2 þ ibus tð Þ2
� �

dt (18)

The optimization process consists of two main parts. First part is Matlab M file
with MOBA, second part is Simulink file with MPC, 3 Phase Inverter and PMSM
models. The algorithm starts with the definition of BA parameters given in
Appendix-B. Using these parameters, a random first population is created. Simulink
model is run and MOF value is obtained for each member of the population. After
this process is completed, the first population is sorted from small to large,
according to the MOF value. Then local search section starts. In the elite and non-
elite local areas, new values are generated by neighborhood search and simulations
are made with these values in the Simulink model. In the global search, new sites are
discovered randomly. Finally, the new population is re-sorted. These operations are
repeated for all iterations and the best values are recorded when completed.

The system model used in the simulation is given in Figure 4 and the flow chart
of the optimization algorithm is given in Figure 5. The simulation model has been
prepared in discrete-time to be close to the real application. The sampling frequency
is 50KHz. (Information about the model is given in Appendix-A.) The w1, w2, w3,
and w4 weights produced by the optimization algorithm are transmitted to the
Simulink model and the simulation is performed. At the end of the simulation, the
outputs are taken with the “Error” and “Current” blocks and sent to the MOF in the
optimization algorithm.

One of the critical parameters in the optimization algorithm is determining the
value ranges of weights. BA focuses on the areas with the best values with the first
iterations. Therefore, even if large ranges are specified for variables, it quickly
shrinks the solution set to include the parts with the best. For this reason, when

Figure 4.
Model of PMSM control with MPC.
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determining the value ranges, the range 0–1000 was initially chosen to have a wide
solution range. After the optimization study these values were calculated;
w1 = 251.5, w2 = 6.9, w3 = 5.1, and w4 = 1.05. Consideration of these values, 300 for
w1 and 10 for the others were selected and a second optimization study was carried
out. The results of the both studies are given in Figure 6. As can be seen, in the first
optimization where wide ranges are defined, there are higher error values in the
first iterations. But along with other iterations, cost functions are minimized
quickly. In the second optimization, since the limit values are chosen in a narrower
ranges, the cost function change is also in a narrow area. (Sufficient number of
searches must be made for escaping the local minimums. The important parameters
in this regard are the number of foraging bees and the number of iterations. As can
be seen from the figures, the minimization process has been fixed in the last
iterations. This indicates that the current algorithm parameters are sufficient. If the
decline continues in the last iterations, it is necessary to update the parameters.)

Figure 5.
Flowchart of optimization algorithm.
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4. PI controller design

One of the advantages of controlling PMSM with MPC that it does not need an
external section for commutation. When controlling PMSM with PID control, it is
necessary to prepare a commutation section as well. One of the methods used in this
context is PWM (Pulse width modulation). The PWM signal provides the signal in a
certain order with the duty cycle changes so that the DC signal becomes an AC
signal. (If this signal is passed through a low-pass filter, a pure sine wave is
obtained.) In SPWM (Sinusoidal Pulse Width Modulation), two signals are com-
pared. The reference signal is sinusoidal and the carrier signal is triangular. Pulses
are produced by comparing two signals, and the width of each pulse varies in
proportion to the amplitude of the sine signal. The frequency of the reference signal
determines the inverter output frequency and controls the reference peak ampli-
tude, the modulation index of the output voltage, and the RMS value [33]. SPWM
model used in the simulation is given in Figure 7.

Simulink model prepared for PI controller design is given in Figure 8. Id and Iq
currents are used in the model as in MPC simulation. As can be seen from Eq. (3),

Figure 6.
Results of optimization (MPC).

Figure 7.
SPWM model.

83

Optimization of Model Predictive Control Weights for Control of Permanent Magnet…
DOI: http://dx.doi.org/10.5772/intechopen.98810



the PMSM speed depends on the electrical torque generated and hence the Iq and Id
currents. If the inductances Lq and Ld are the same or very close, the electrical
torque depends only on the Iq current. As can be seen from the motor parameters
given in the Appendix-A, the Lq and Ld values are equal. Therefore, Iq current is
used to perform speed control. The output of the speed controller drives the current
Iq. SPWM is created for the calculated current value and PMSM is controlled
through the Inverter. The sampling time and solver type of the model are the same
as the MPC model.

The coefficients of the PI controller are first tuned with BA. The same struc-
ture in Figure 5 is prepared for the PI model. Similarly, the error value is used in
the objective function together with the currents. For Kp and Ki, values from 0 to
10000 were set as the limit for a wide range. BA parameters are the same as in
the MPC study. Figure 9 shows the optimization results. Costs decrease with the
first iteration. The minimum value was reached with the 13th iteration. The
changes in Kp and Ki are also shown in the table. The PI controller tuned with BA
is given in (19).

GBEES ¼ 3:67 þ 1601:4
1
s

(19)

Also, two different conventional methods were used to determine the coeffi-
cients of the PI controller. The first of these is the Tyreus-Luyben method. Tyreus

Figure 8.
Model of PMSM control with PI&SPWM.

Figure 9.
Results of optimization (PI).
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and Luyben’s adjustment method is based on oscillations as in the Ziegler-Nichols
method but has been modified for the controller parameters to achieve better
stability in the control loop compared to the Ziegler-Nichols method. First, only P
control is used and all gains are set to zero. The proportional gain Kp is increased
until there are oscillations in the system response. Kp is increased until the oscilla-
tions are symmetrical. The final Kp value is recorded as Ku. The oscillation period of
the signal is taken as Pu. Kp and Ti values are found according to the equation given
in (20) [34].

Kp ¼ 0:31Ku,Ti ¼ 2:2Tu (20)

When the Kp value is 27, the oscillations approached the symmetrical state
(Figure 10). Kp and Ti values are calculated using (20).

Kp ¼ 0:31 ∗ 27 ¼ 8:37, Ti ¼ 2:2 ∗ 0:01284� 0:0122ð Þ ¼ 0:0014

GTL ¼ Kp 1þ 1
Tis

� �
¼ 8:37 þ 5944

1
s

(21)

As the second conventional method, The Good Gain (TGG) method was used,
which is more stable than the ZN method and therefore can obtain fewer oscillation
values. In the TGG method, Ki value is chosen as 0 first and Kp value is increased
starting from 0. This increase is continued until the answers close to the desired
reference value are obtained. As shown in the graph below, when the peak value of
the system response approaches the reference value, the Kp increase is stopped and
the Tou value is calculated. Tou value is the time between the overshoot and
undershoot values in the system response. From the Tou value, the Ti and Kp values
are calculated as shown below [35].

Ti ¼ 1:5Tou,Kp ¼ 0:8Kp (22)

When the Kp value is 4, the system response approaches the reference value
(Figure 10). Kp and Ti values are calculated using (22).

Kp ¼ 4 ∗0:8 ¼ 3:2, Ti ¼ 1:5 ∗ 0:00156� 0:00116ð Þ ¼ 0:0006

GTGG ¼ Kp 1þ 1
Tis

� �
¼ 3:2þ 5333

1
s

(23)

Figure 10.
Velocity response for Tyreus-Luyben method and the good gain method.
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5. Experimental studies and results

To drive the PMSM, a motor driver card with a dsPIC33f model MCU is used. In
addition to the MCU, the driver board includes the communication interface, the
MOSFET H Bridge and drivers, and sensor reading interfaces. The driver board and
other hardware used in the tests can be seen in Figure 11. Target Language Com-
piler in Simulink was used to convert the model into a machine code that dsPIC
MCU can run directly. Firstly, ANSI C code was created and then machine code was
generated by using the C30 C compiler provided by Microchip. Current sensors are
located on the driver circuit in series with the motor phases. It is collected from each
phase separately. Position data are taken from the digital encoder connected to the
back of the motor shaft.

In experimental studies firstly, “100 rad/s” step command was applied to the
PMSM for all controllers. All velocity results are given in Figure 12. and current
results are given in Figure 13. It is seen that all four controllers are able to give
enough response to the velocity command. But as can be seen, there is an overshoot
(MPO) of 7% and 11.8% in PI controllers which were tuned by conventional
methods. On the other hand, an overshoot of 4.2% was observed in PI tuned with
BA. There is no overshoot in MPC. Because of the prediction realized by MPC using
the PMSM model, controller output is produced in a more controlled manner after
each step, thus creating a smooth effect on the system. In PI controllers, rise time
(RT) is 0.1 ms smaller than MPC. The aggressiveness seen in overshoot is also seen
here. On the other hand, in the settling time (ST) smaller value was obtained in
MPC. The most important factor here is the overshoot and oscillations in PI con-
troller responses. The resistance and inductance values of PMSM used in this study
are very low. For this reason, high currents can be seen especially during take-off.
Because of the optimum switching with MPC, instantaneous accelerations and
currents can be suppressed. The low-value fluctuations seen in the velocity
responses in PI control, after the settling time, cause continuous current to be
drawn from the battery. Table 1 shows the performance values of the controllers.

As the second test, a sinusoidal signal with an amplitude of 100 rad/s and a
frequency of 2 Hz was applied to the PMSM. Test results are shown in Figures 14
and 15. MPC also follows the reference value in this test with a steady state error of

Figure 11.
Experimental environment.
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approximately 0.4%. In the MPC cost function design, especially low power con-
sumption was emphasized and power constraints were added. Similarly, in the
calculation of the weights with BA, the bus current is also used with the speed error
in MOF. Thus, when calculating the weights, the values with low speed error and

Figure 12.
Velocity responses of controllers (step response).

Figure 13.
Iq & id Current Responses of controllers (step response).

Controller Results of step response

SS error RT ST MPO Max. Iq current

MPC 0.3% 1.3 ms 1.86 ms 0% 24.7 A

PI - BEES 0.5% 1.2 ms 2.2 ms 4.2% 26.9 A

PI - TGG 0.1% 1.2 ms 2.42 ms 11.8% 26.9 A

PI - TL 0.3% 1.2 ms 2.52 ms 7% 26.9 A

Table 1.
Results of step response.
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low currents at the same time came to the fore. Therefore, a very low steady state
error occurs in MPC control.

In PI controllers, although there is no steady state error, higher oscillations are
seen compared to MPC. These oscillations can cause significant damage to systems,
especially in applications requiring precise control. The effect of oscillations in the
velocity response is clearly seen in the flow results. Amplitudes less than 2 A in MPC
is up to 4 A in PI controllers.

Finally, a position control application was implemented to test the controllers.
Only a P controller with a gain value of 100 has been added to existing controllers.
As a test signal, a profile with many changes of direction was used to test its

Figure 14.
Iq & id Current Responses of controllers.
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performance with the switch for the PI coefficients, those tuned with BA were used.
Position results are shown in Figure 16 and position errors are shown in Figure 17.

Both controllers were able to respond to the references successfully. Error values
are around 0.02 rad, except for the instantaneous step reference applied initially.
Current data can also be seen in Figure 18. As with velocity application, MPC
control uses less current in position control. It is seen that the optimum inverter
switching method used in this study gives successful results. The success of the
weights calculated with BA in PMSM control has also been confirmed by the posi-
tion control application.

Figure 15.
Velocity responses of controllers (sinus response).

Figure 16.
Position responses of controllers.
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Figure 17.
Position errors of controllers.

Figure 18.
Current responses of position controllers.
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6. Conclusion

FCS-MPC has a limited number of optimization and calculation processes.
Therefore, the delay compensation method was used to prevent timing errors in
MPC. Thus, in this application, MPC was used with a relatively low-level processor
without any problem. In addition to speed error and current predictions, power
prediction has been added to the standard cost function used for speed control. In
this way, in each switching selection, the possibilities that the lowest power con-
sumption may occur along with other factors are evaluated.

For the Bees Algorithm, which is used to determine the weight coefficients, an
infrastructure has been established to minimize the speed error and bus current.
With the fast search capability of BA, optimum weight coefficients were calculated
in approximately 15 iterations. Because of the low current and low energy prefer-
ences used in both the MPC and BA, MPC has achieved a more effective and less
oscillatory control by using much lower currents than PI methods. With MPC,
PMSM has been controlled with 15% settling time than other controllers and also
with no overshoot. There is no exact method for determining the weight coeffi-
cients. It seems that manual adjustment is still preferred in many applications. With
the efficient neighborhood search structure of BA, weights can be calculated with a
small number of iterations. It provides great convenience for researchers. By
designing a multi objective function, the number of variables that can be optimized
can be increased if desired.

Energy consumption in autonomous vehicles and robots is one of great impor-
tance. MPC is used in this context with its smooth control structure. As in this
application, BA can be preferred for autonomous control applications that require
weight optimization. One of the advantages of BA over other meta-heuristic algo-
rithms is that there is no mathematical equation in its structure. In this way, it can
be used easily on different platforms and software languages.

In future works, the parameters of the CARIMA method, which is one of the
popular MPC methods, will be optimized using this algorithm. A comparison of
different MPC methods will be carried out together with the same test system.
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Appendix - A

Model Configuration
Solver type: Fixed step
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Solver: ode 5 (Dormand–Prince)
Fixed-step size: 2e-5 [s]
Tasking mode: Singletasking
PMSM Parameters:
R = 0.894;% Resistance [Ohm]
Ts = 2e-5; % Sampling time [s]
L = 0.338e-3;% Inductance [H]
Fl = 0.0329; % Flux linkage [Wb]
Vdc = 48;% DC-link voltage [V]
J = 368e-7; % Inertia [kg.m2]
p = 2; % Pole pairs

Appendix - B

Bees Algorithm Parameters.
MaxIt = 20;% Maximum Number of Iterations
nScoutBee = 20;% Number of Scout Bees
nBestSite = 4;% Number of Best Sites
nEliteSite = 2;% Number of Elite Sites
nBestSiteBee = 5;% Number of Recruited Bees for Best Sites
nEliteSiteBee = 10;% Number of Recruited Bees for Elite Sites
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