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Preface

It is estimated that the world population will increase to 11 billion and cultivated 
agricultural land per capita will decrease to 0.15 hectares in 2050. Every year 
parallel to the increasing population, agricultural fields are shrinking fast due 
to reasons such as misuse (settlement, road, factory, etc.), erosion, salinization, 
acidification, intensive agriculture, and overgrazing.

Every year, thousands of people in many parts of the world die due to malnutrition 
and hunger. For humankind to maintain its existence on earth, crop production 
needs to be increased. This can only be achieved by increasing the yield obtained 
per unit area. To achieve this, the genetic structure of plants should be improved 
and the agricultural techniques used in cultivation such as fertilization, irrigation, 
disease, and pest control should be applied. However, it has been observed that 
unconscious use of agricultural techniques adversely affects ecological balance in 
the long term.

Potato (Solanum tuberosum L.) is an annual plant in the Solanaceae family. It is 
reported that potato is the most consumed nutrition after cereals. In addition, 
it is the most produced plant in the world after maize, wheat, and rice. Among 
the reasons for such widespread consumption are its widespread production and 
consumption by almost all countries of the world due to it being cheap and easy to 
digest, as well as its high nutritional value and ability to grow in all kinds of climates 
allowing for obtaining more products per unit area. Considering that a significant 
number of people in the world are struggling with hunger, the importance of the 
potato plant is better understood. From this point of view, potato is one of the most 
important plants that can solve hunger and nutrition problems worldwide with 
their rich nutrient content. This book discusses these topics from all aspects. We 
hope this book will guide growers and researchers in solving problems in potato 
cultivation.

Dr. Mustafa Yildiz
Professor,

Faculty of Agriculture,
Department of Field Crops,

Ankara University,
Ankara, Turkey

Yasin Ozgen
Faculty of Agriculture,

Ankara University,
Turkey
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Chapter 1

Solanum tuberosum Yield for 
Selected Countries
Fulgence Dominick Waryoba

Abstract

This chapter, aimed at analyzing potato yield among selected countries, has 
seven sections. The panel analysis of potato production and productivity has shown 
significant differences among countries. The main panel analysis of the random and 
fixed effect model indicates a negative influence of land size on yield and a posi-
tive influence on production. However, using multilevel mixed effect model, some 
country specific estimates deviate from main model results. In yield and output 
equations, the influence of land is positive for some countries and negative for 
others. Improvement of potato productivity is vital for hunger relief and starvation 
reduction. Even though, area specific analysis can bring in many determinants of 
potato production and productivity. A detailed analysis can give the right direction 
for policy makers in their effort to reduce hunger and starvation as well as improve 
the living standards of people.

Keywords: World potato share, regional potato production, potato yield,  
random effect model, fixed effect model, multilevel mixed effect model

1. Introduction

Spreading to about 160 countries of the world, Solanum tuberosum or Irish Potato 
or sometimes referred to as potato, is originated from the Andes of South America 
[1]. Potato is in the fourth order with respect to production and area harvested 
after maize, wheat and rice [2, 3]. Potato is one of the most world productive crop 
with high value as a balanced and nutritious food [2]. Being so important, potato is 
central to food security [4]. This implies that potato is an ideal crop for starvation 
related problems when weather is favorable. Smallholder farmers in developing 
countries like Kenya use almost 25 percent of their nearly 2.4 hectares farm area to 
grow potato for consumption and commercial purposes [5]. While fresh potato con-
sumption has declined, it is observed that the consumption of processed products 
has continued to gain popularity [1].

This chapter analyzes potato productivity trend in some selected low and high 
income countries. In this analysis, the aim is to answer the following two ques-
tions. Has there been an increase in potato production among selected countries? Is the 
increase in potato production a result of land expansion or yield improvement? The 
question of increased potato yield is important because [6] increased popula-
tion requires increased food production which is constrained by water and land 
availability. As a result, the increased potato production should be supported by 
increase in potato yield rather than land expansion. It is clear that with growing 
population and income, food crop yield must keep expanding to meet global food 
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demand [6]. The rest of the study is organized as follows. Section two discusses 
about regional average potato production. Section three discusses about the 
contribution of potato in world food production. Section four discusses the pro-
ductivity trend of potato. Section five concludes on the ability of the tuber crop in 
fighting against starvation.

2. World potato share of food crop

Potato belongs to the root and tuber crops group [7], such as sweet potato, yams, 
and cassava, which are among leading crops in the world [8]. The group of tuber 
crops as can be viewed in Figure 1 comes fourth after cereals, sugar crops primary 
and sugar cane. However, as highlighted in section one, potato maintained a fourth 
position after maize, wheat and rice. This reality makes Solanum tuberosum (potato) 
the leading crop in the group of tuber crops because no other tuber crop has out-
weighed potato other than cereals. The average values provided in the figure, how-
ever, are computed from 1961 to 2029. Sugar cane is leading among crops standing 
on their own rather than in groups. Sugar consumption is very high from industrial 
consumption to domestic consumption. The crop can be eaten raw, processed to 
make juice and processed to make industrial and domestic sugar.

The demand for sugar is very high due to the fact that it is highly needed as an 
ingredient in other processed food. Most of the food people consume have sugar 
components [10], for instance cakes, bread, and other bites are all mixed with sugar. 
Juices from other fruits like orange, mango and others processed either domestically 
of at industrial levels are mixed up with sugar. There are a lot that can function 
with sugar, even fresh milk, ice cream, candy and chocolate that are favorites of 
children and people of all demographics must be mixed up with sugar contents. 
As a result, sugar cane production is highly favored for domestic consumption 
and industrial input for commercial purposes. It is found [11] for instance that US 
citizens’ purchase is highly based on high processed foods with high contents of 
sugar. However, even with this high level of demand and high promotion of sugar 
cane production with large and new plantations being started, sugar cane cannot be 
promoted to fight against starvation. The crop cannot be consumed alone as food 
crop, but rather additional and cannot be taken in excess. As it is discussed in the 
book, “Sweeteners and Sugar alternatives in Food Technology”, research is under-
taken to find sugar alternatives for food in order to improve consumer health [12]. 

Figure 1. 
World’s most produced crops. Source: [9]. Note: The values used for the analysis are the average values of 
FAOSTAT computed from 1961 to 2029 [9].
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Therefore, promotion of high yielding food crop is the most important decision 
among policy makers as it reduces hunger and fight against starvation.

3. Regional potato production

Potato production has spread worldwide. The regional production averages 
from 1961 to 2019 as shown from FAOSTAT in the table below, indicate a very high 
proportion of potato coming from Europe. The average is very high for the period 
mentioned showing that Europe is the leading region compared to other regions. 
For the period under consideration, Asian region comes second followed by the 
Americas, that is, North and South America combined with 11 percent. Africa 
which is one of the least developed regions comes with only 4 percent of the world 
potato share. The shares are approximated, for instance in the upper right chart of 
panel (b), Oceania region has a 0.5 percent but due to round off, the figure turned 
into 0 percent. The region produces on average, about 1736491.5 tones of potato for 
the period from 1994 to 2019. The periods have been randomly selected to check on 
consistence of potato production dominance.

In panel (b), by changing the period of analysis, the world average share of 
potato production by region also changes. Using the full period data to get the 
average favors Europe compared to other regions. The European region is over-
weighed by the Asian region in the period starting from 1994 to 2019. A simula-
tion analysis on the impact of climate change on potato [13], indicate a significant 
reduction of potato production in Eastern Europe and Northern America. Even 
though, African region remained in the same position with a very low share of 
production. The change can be attributed to the improvement in agricultural pro-
duction technology in Asia. The average production in Asia increased but declined 
in Europe. For instance, the average production in Europe was 166767397.02 tons 
in the 1961–2019 period and was 125436231.88 tons in the 1994–2019 periods. 
While the average production in Asian increased from 87285656.59 to 140597815, 
respectively. This clearly indicates an improvement in average potato production 
in the Asian region compared to the average potato production in the European 
region. Nevertheless, the increased average potato production in Asia is likely 
to result from both land expansion and productivity improvement. Accordingly 
[14], China is the world leading potato producer due to land expansion and 
increase in potato yield (Figure 2).

The average share of potato production in panel (b) indicates the Asian domi-
nance. This dominance comes from a great improvement because as it is shown in 
panel (d), the periods before 1994 a large proportion of world potato came from 
Europe. About 72 percent of world potato came from Europe and Asia, through 
that period, produced only 16 percent of world potato. It is clear evidence that 
Asia worked very hard to reach to the later period’s level of potato production. All 
the periods later after the 1990s, Asian region has dominated the rest of regions 
in potato production. Even taking the 2000s’ average production in panel (c), we 
still witness potato production dominance by the Asian region compared to other 
regions. Asia’s awake in potato production is very important in increasing the world 
food security. With improved potato processing technology, potato is becoming a 
promising food crop suitable for fighting against starvation. Nevertheless, the crop 
can also be a driver for industrial development particularly in developing countries.

Figure 3 provides a list of countries leading in potato production using the 
average values computed from 1961 to 2019. The list includes even the Soviet Union 
which collapsed [15] in 1991. That is why Russian Federation has a shorter span of 
time from 1991 to 2019.
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The shorter time period of Russian Federation is likely to be the reason for lower 
average potato production compared to other countries included in the analysis. 
The Soviet Union is leading in the average potato production since 1961 to 2019 
even though it collapsed in 1991 because the union involved many countries. It is 
a group of countries rather than an individual country. For individual countries, 
China mainland is leading in average potato production from 1961 to 2019. Even in 
the trend analysis, China has a very high level of potato production which is again 
trending upward at a very high speed. The slope of the production trend is roughly 
steeper than those of other countries. As a result, even if China’s potato productiv-
ity is almost half the potato productivity of the USA, total potato production is far 
larger than that of the USA. This is highly influenced by the increased land under 
potato production, but also potato productivity [14] in China. The increased land 

Figure 2. 
Region production shares of potato. Note: Due to approximations, Oceania seems to have zero share of potato in 
the world. However, Oceania has in every panel some quantities of potato produced.

Figure 3. 
Top 10 in potato production. Source: [9].
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devoted for potato production in China is due to increased processing of coarse 
starch which is the most important component of potato processing industry in 
China. But also other processing industries such as crisps, and French friesare 
expanding [14].

4. Potato harvestedarea for some selected countries

As shown in the previous section, Africa’s potato share has remained stagnant 
and lagging behind other regions except Oceania. The region is large in geographi-
cal size, but with a lower average production compared to other small sized regions 
like Europe. This is due to the fact that most agriculture practices in Africa is under 
subsistence farming where farmers grow crops in small plots with poor farming 
implements. In Kenya for instance [5] farmers cultivate on a land of less than 
2.4 hectares with diseases constraint. In this part, six African countries that are, 
Nigeria, Rwanda, Senegal, Uganda, Tanzania, and Zambia have been selected to 
represent the region. For Europe, Sweden and Romania have been used as repre-
sentatives. China, Korea, Japan and Philippines have been used to represent the 
region of Asia. Nevertheless, Peru, Uruguay, Canada and the United States have 
been selected to stand for the Americas region. The Oceania has been represented 
by Australia. As the list shows, the representation is not even but only to provide 
some light on the production status of the region. The countries as we all know 
have different characteristics to become a regional representative. But, for analyti-
cal purposes, the sample is still worth of knowledge generation. A clear specific 
country trend analysis can be provided on request. But due to space limitation, the 
overlay graphical analysis is used to highlight important results.

The graphical analysis of area harvested, quantity produced and the land pro-
ductivity is provided in this section. It is important to have production area expan-
sion especially in low income countries due to low agricultural mechanization. The 
increased technology leads to increased production without necessarily expanding 
the area under potato cultivation. From appendices, the trend shows that on average 
almost every country increased the area under potato production although with 
some variations of up and downs. For instance, in the late 1990s, Nigeria expanded 
potato production area which had previously been almost constant from 1961. An 
expansion from less than 50,000 hectares to about 200,000 hectares is significant 
in increasing production quantities. The potato production area trends in Rwanda, 
Tanzania, and Zambia are shown with hump shaped structure reaching peaks in 
late 2000s and dropping in around 2010s. The likely explanation of this drop is poor 
weather condition because the area provided here is that which has been harvested 
with potato. So, it is likely that the cultivated area did not shrink but due to unfavor-
able weather conditions, the harvested area declined.

Potato production in Europe has also been declining in terms of the world 
average potato share. For the selected countries, however, Israel is also termed as a 
European country in the analysis here. Israil cannot be accepted in Europe due to its 
geographic position. But for analytical purpose, it still works better to place Israel 
in Europe. An important point to stress here is that we have the ability to talk about 
Israel potato production regardless of the region we place the country. The analy-
sis just takes few of the selected countries to show how area harvested has been 
trending throughout the analysis period. The selection is not based on any scientific 
reasoning but rather a random selection made discretionarily.

The analysis shows a quit unique trending for each of the countries involved. 
However, unlike other European countries which have shown some hump shaped 
curves, Sweden has reduced the land size for potato production by time. Even 
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Romania has also decreased the land size for potato production. Although, it is the 
area harvested with potato, the reduction of land size can be an appropriate expla-
nation for harvested area shrinking. The reason comes from the fact that Europe has 
a high agricultural technology which improves productivity thereby reducing the 
area to be cultivated with crops. The reduction in area under potato harvest explains 
why world potato share of Europe has been declining by time.

The harvested area for Canada has been low but then increased shortly just to 
return to the lower levels making a hump shaped curve. Peru has shown increas-
ing interests after dropping down in the 1990s then rising throughout. The United 
States of America and Uruguay have almost the same potato harvest pattern of 
fluctuations but continually dropping down. Even though, as it can be seen, the two 
have a significant difference in terms of absolute potato harvest area. The Uruguay’s 
harvested area is almost ten times less than the one of the USA. So, even if the 
harvested areas of both countries have been declining in the same trending pattern, 
the USA produces large quantities of potato compared to Uruguay and the rest of 
included countries in the regional analysis.

After we have traced the trend of potato harvested areas for Americas, Africa, 
and Europe, it is also important we slightly analyze the case for some Asian coun-
tries. In this case, China, Japan, Korea, and Philippines have been used to provide a 
glimpse of the Asian region. However, as noted before, they are not used as reflect-
ing what is happening in Asia but rather their analysis presents a representative of 
the region.

In the harvested area, China has been expanding the size annually, the pattern 
which is also experienced with Philippines. Even though, China’s area is far larger 
than Philippines’ harvested area. The rest of the included countries, that is, Japan 
and Republic of Korea have continually experienced potato harvested area shrink-
ing. The increased technology in the countries allow for the reduction of planted 
area with either increased or constant potato output. In the next section, the trend 

Figure 4. 
Area harvested with potato. Source: [9].
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analysis of potato land productivity is provided. This is the focus of the chapter 
which however becomes more informative after the harvested area trend analysis. 
Increased potato productivity is at the center of starvation and poverty reduction.

From Figure 4 above, the red colors are for China and the USA with larger sizes 
being recorded for China. The upper red line is for China while the lower red line 
is for the USA showing a very huge difference between two countries. After Soviet 
Union collapsed, Russian Federation started operating independently with potato 
allocated land of the size of China. But the size of potato cultivated land in Russia 
has been continually declining, whilst that of China’s has been continually increas-
ing. However, in terms of land productivity, China is far less than the USA as the 
analysis in the following section shows.

5. Potato productivity for selected countries

Before we consider productivity, it is important to have a total production 
analysis. As it is shown in Figure 5 below, total production trend almost resembles 
area under potato production in Figure 4 above. The red lines again stand for China 
and USA, and the blue line is for Russia. Just like for land under potato production, 
total potato production when Russian Federation started operating independently 
was the same as that of China. However, the production for Russia has been down-
ward trending following potato production land shrinking. Potato production for 
the USA has been lower than the production for China. Apart from China, Russia 
and the USA, potato production trends for the remaining countries lie below 20 
million tones.

But, contrary to total production analysis, potato yield trend analysis shows a 
different picture. The productivity analysis shows very different outcomes whereby 
countries with increasing harvested areas have experienced lower productivity 
than countries with declining harvested area. In other words, countries which have 

Figure 5. 
Potato production among selected countries. Source: [9].



Solanum tuberosum - A Promising Crop for Starvation Problem

10

experienced increasing productivity, have discretionarily reduced the size of their 
potato farming land. For instance, the red lines in Figure 6 again stand for China 
and the USA. But this time, it is the lower line which represents China and the upper 
line standing for the USA. As it can be seen, from almost 2012 or later, the USA is 
leading in terms of potato productivity. For low income countries like Uganda which 
is represented by the blue line, productivity is very low. Uganda and Australia which 
are represented by the blue lines have a very big difference with Australia’s potato 
productivity being far larger than that of Uganda.

The country specific trend analysis in appendix shows that the USA and 
Uruguay have been experiencing a growth in potato productivity which led into a 
declining potato harvested area. However, the productivity level of the USA is far 
larger than the productivity of Uruguay. Japan with a declining harvested area has 
very high productivity levels compared to China for instance which has experi-
enced increasing harvested area. Productivity in Japan has gone up to higher levels 
than 30 tons per hectare while that of China has not managed to reach even 20 
tons per hectare. As shown in Figure 3, China is leading in tuber crop production. 
Nevertheless, in appendix B, China has the highest level of potato production far 
larger than the rest of the countries involved in the analysis. It is therefore, clear that 
the increased production level has been influenced by land expansion. An improve-
ment in China’s productivity level to that of the USA for instance without shrinking 
the potato cultivable land will improve food security to a large extent. As a result, 
increasing productivity is necessary for development as the remaining land can be 
utilized for other development purposes. The increased potato and other crop yield 
is important [6] to spare land for nature conservation.

The next section provides panel regression analysis on the relationship between 
output and harvested area, as well as yield and harvested area. The importance 
of this analysis is its ability to tell on the statistical significance of the relationship 
between output or yield and harvested area. Nevertheless, the panel estimation is 

Figure 6. 
Potato yield for selected countries. Source: [9].
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followed by the post estimation test for random effect. This helps to identify the 
appropriate model for the coefficient estimation in the study.

6. The effect of land on potato production

6.1 Post-estimation test

After running the random effect model, the test for a zero variance hypothesis 
is imperative. This is because the random effect assumes a zero correlation between 
the error term and the independent variable. The zero correlation hypotheses are 
tested using Breusch and Pagan lagrangian multiplier test for random effects. From 
the tests, we reject the null hypothesis or zero variance because the test is statisti-
cally significant at all levels of significance. Nevertheless, the null hypothesis of 
zero correlation between the independent variable and the error term is rejected for 
both output and yield equation. The procedure involves testing whetherthe follow-
ing equations holds or not.

 [ ] [ ] [ ], , Yield Country t Xb u Country e Country t= + +  (1)

 [ ] [ ] [ ], , Output Country t Xb u Country e Country t= + +  (2)

Where, X is the natural logarithm of land which is the only independent variable 
used in the analysis, b is the land elasticity of yield in the first equation or output in 
the second equation. The variance of the model due to country specific differences 
is represented by u[Country], and the variance of the model due to country differ-
ences and time differences is represented by e [Country, t].

In the random effect model, the assumption is that the equation does not hold 
because there is no influence of country specific differences. The crucial difference 
[16] between random effect and fixed effect models is whether the unobservable 
individual elements are correlated with the regressors in the model. However, the 
results show clearly that country specific differences influence the variation of the 
dependent variable since ( ) 0Var u ≠  for all the equations estimated, that is yield 
equation as well as output equation.

6.2 Estimation results

Estimates of both random effects and fixed effects models are provided in 
Table 1 below. The difference in the magnitude of their coefficients, however, is 
not significant. Potato yield is negatively affected by land size because land is in the 
denominator of the ratio. This implies that any increase in the denominator affects 
the yield ratio negatively. The results contend with the yield trend analysis where 
countries with high yield growth rates have also reduced potato harvested area 
significantly. However, land expansion is better for higher levels of potato output.

Something worth noting in the table above is the similarity of standard errors 
for each model. That is, random effect model estimation provides similar standard 
errors for both equations and the same applies for fixed effect model. Nevertheless, 
even the intercept coefficient is similar for that matter. Similarities are also noted 
in the variance parameters provided in the lower part of Table 1. This similarity 
tells us on the similarities of the equations due to the fact that the yield equation has 
both output and land as it is for the output equation.
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Since we have involved many countries of different characteristics in terms of 
mechanization, it is important to have estimates for each of the countries in the 
sample size. Nevertheless, it is true that these countries differ in terms of potato 
production level, productivity and the size of land apportioned to potato produc-
tion also differ from country to country. The multilevel mixed effect model is 
applied to get country specific effect. The approach uses overall data to get esti-
mates for a specific country.

So, even if a country or unit of analysis has lower number of observations, 
no estimation problem will result due to insufficient number of observation. For 
instance, for the sample used in the analysis, Russian Federation has 28 observa-
tions which is less than the minimum requirement of 30 observations. But, due 
to the application of multilevel mixed effect model, estimates for Russia have no 
observational problem just like the rest of the countries which have each 59 obser-
vations. The results show differences in intensity of influence of the land size on 
potato output or yield level.

The country specific estimates show differences in the influence of land on 
either yield or output. Some countries show results contrary to the main model 
estimation results in Table 1. For instance, yield is negatively affected by land 
size in the main model estimation. But, country specific estimations show some 
positive effects of land on potato yield. Potato yields for countries like China, 
Israel, Netherlands, Peru, Philippines, Senegal, Tanzania, and Zambia, are posi-
tively influenced by land size. For these countries, an increase in land size helps 
to increase potato yield. It can be interpreted that for these countries, although 
there has been expansion of land under potato production, production of potato 
has increased at a higher rate than the land expansion rate. Therefore, the pulling 
down effect of land expansion has been outweighed by the pushing up effect of 
production increase. It can therefore, be argued that potato yield has been growing 
at a higher rate than the land expansion rate. An investigation in Yunnan province 
[17], suggests the use of mixed cropping for developing countries where farming is 
dominated by small-scale farming. Their findings revealed an increased crop yield 
between 33.2 percent and 84.7 percent for the same season due to mixed cropping.

For the rest of the countries, potato yield is negatively affected by land size 
whereby increased potato yield has led to a reduction in the size of land under 
potato production. It is best to interpret the results that way rather than saying that 
in order to increase potato yield the area under potato production must be reduced. 
It is of course the increased potato productivity that influences a particular country 
to reduce the size of land under potato production. The findings contend with [18] 
where increased food crop yield corresponds to reduced food crop grown area.

Random Effect Model Fixed Effect Model

Variable Output Yield Output Yield

Land .922***(.014) −.078***(.014) .916***(.015) −.084***(.015)

Constant 3.50***(.209) 3.50***(.209) 3.56***(.156) 3.56***(.156)

sigma_u .628 .628 .678 .678

sigma_e .328 .328 .328 .328

rho .786 .786 .810 .810

Source: [9].
Note: *** implies statistically significant at 1 percent levels of significance and standard errors are in parentheses.

Table 1. 
Random effect and fixed effect estimates.
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Alternatively, these countries have reached the saturation levels of  
potato productivity that increases in land size increases potato production but at a 
rate lower than expansion rate. But, as we have seen in the trend analysis,  
most of these countries have reached to a point where no improvement in pro-
ductivity or productivity has been fluctuating around a constant acting as if 
stationary without increasing or decreasing trend. But, some of the countries 
have shown increasing yield trend while declining trend of land under potato 
production.

On the output side, some countries have their potato production being nega-
tively affected by land size. From Table 2, it is clear that potato productions in 
the USA and Australia are negatively influenced by increases in land under potato 
cultivation. The implication here is that, even with a shrinking cultivated land 
size, total production in these two countries has increased. As a result, their potato 
productivity is very high as comparedto other countries. High agricultural technol-
ogy in these countries, has led into high improvement in potato production that 
reduction in the area under cultivation does not reduce potato production. When 
all countries reach to this level of potato productivity, hunger and starvation will 
remain history in the world.

Yield Output

Country Coefficient Constant Coefficient Constant

Australia −1.46***(.333) 18.7***(3.50) −.463***(.333) 18.7***(3.50)

Canada −.609***(.070) 10.3***(.848) .391***(.070) 10.3***(.848)

China .484***(.035) −4.69***(.515) 1.48***(.035) −4.69***(.515)

Israel .122**(.048) 2.36***(.433) 1.12***(.048) 2.36***(.433)

Japan −.543***(.042) 9.64***(.486) .457***(.042) 9.64***(.486)

Netherlands .818***(.155) −6.12***(1.85) 1.82***(.155) −6.12***(1.85)

Nigeria −.211***(.010) 3.85***(.106) .789***(.011) 3.85***(.106)

Peru .694***(.201) −6.42***(2.50) 1.69***(.201) −6.42***(2.50)

Philippines .801***(.045) −4.45***(.384) 1.80***(.045) −4.45***(.384)

Republic of Korea −.996***(.073) 13.2***(.759) .004**(.073) 13.2***(.759)

Romania −.488***(.184) 8.65***(2.31) .512***(.184) 8.65***(2.31)

Russian Federation −.515***(.066) 10.1***(.964) .485***(.066) 10.1***(.964)

Rwanda .284***(.038) −1.10***(.412) 1.28***(.038) −1.10***(.412)

Senegal .252***(.087) .975***(.568) 1.25***(.087) .975***(.568)

Sweden −.421***(.049) 7.78***(.518) .579***(.049) 7.78***(.518)

Uganda −.176***(.049) 3.75***(.511) .824***(.049) 3.75***(.511)

United Republic of Tanzania .248***(.031) −1.02***(.332) 1.25***(.031) −1.02***(.332)

United States of America −1.63***(.191) 24.9***(2.51) −.628***(.191) 24.9***(2.51)

Uruguay −.830***(.046) 10.1***(.436) .170***(.046) 10.1***(.436)

Zambia .240***(.048) .781***(.314) 1.24***(.048) .781**(.314)

Source: [9].
Note: ***, **, and * are levels of significance at 1, 5, and 10 percent respectively. Standard errors are given in 
parentheses.

Table 2. 
Multilevel mixed effects model estimates.
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7. Conclusion

The chapter aimed at answering two questions that is whether there has been 
an increase in potato production among countries involved in the analysis, and 
whether this increase is due to productivity or land expansion. From the findings, 
it is clear that, on average, potato production has been increasing from 1961 to 
2019. However, potato production increment for some countries has been due to 
productivity increase, while for others, production increase has been a result of 
land expansion. For some countries like Tanzania, however, potato yield has been 
positively influenced by potato cultivable land expansion. For almost all countries 
except Australia and the USA, potato production has been positively influenced by 
potato cultivable land expansion. As it has been emphasized [19], potato production 
increase should come from yield increase rather than land expansion.

The crop is highly produced in developed countries compared to developing 
countries. Potato productivity for most developed countries has been increasing 
compared to potato productivity among developing countries. Higher per hectare 
productivity in developed countries is a result of agricultural mechanization. The 
application of appropriate farming technologies, which are more advanced, influ-
ences more output coming from one hectare. Low potato productivity in developing 
countries can be explained by low farming technology which forces countries to 
expand farming land in order to increase production. Given the availability of 
improved technology and farming techniques in developed countries, developing 
countries can adopt the technology to increase their own potato productivity. With 
high technology adoption among low income countries, both potato production and 
yield are expected to increase in the near future at a higher rate thereby fighting 
against hunger and starvation.

Potato is an ideal food crop to fight against hunger and starvation especially in 
low income countries. However, in order for potato to help reducing starvation, 
countries particularly low income countries must invest in advanced farming 
technologies to increase potato productivity. Higher potato productivity will avail 
food at a lower cost, increase employment from industrial processing and therefore 
improve the living standard of people. Nevertheless, for developed countries with 
high productivity, potato production land reduction decisions should be revised. 
This means that since productivity is increasing in developed countries, more land 
should be available for potato production to ensure food security even in countries 
with low productivity. Countries with low productivity can access food from 
high income countries at an affordable price. So, reduction of land under potato 
production does not match with food security improvement strategy. Even though, 
if all countries reach to a level of technology where land size reduction leads to 
increased production and higher potato productivity, then it will be optimal 
to reduce potato cultivable land for other uses. At this stage, starvation will be 
something of the past.

This chapter has analyzed potato production and productivity in relation to 
potato harvested area which is the approximation of potato grown area. There 
are more factors which influence potato production such as labor, machineries, 
irrigation, fertilizer application, and spacing which are not included in the current 
chapter. Future, studies should incorporate these factors to make a detailed analy-
sis. Nonetheless, focusing the analysis on a small area is more appealing as it can 
include social and economic characteristics of the farm manager which are more 
important in influencing potato production. From these specific analyses, policy 
recommendations can be more useful for farmers which are mainly smallholders in 
developing countries to improve food security by applying more advanced farming 
technology.



15

Solanum tuberosum Yield for Selected Countries
DOI: http://dx.doi.org/10.5772/intechopen.97174

Author details

Fulgence Dominick Waryoba
Economics Department, St. Augustine University of Tanzania, Mwanza, Tanzania

*Address all correspondence to: fuldominick@yahoo.com

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



16

Solanum tuberosum - A Promising Crop for Starvation Problem

[1] Camire ME, Kubow S, Donnelly DJ. 
Potatoes and Human Health. Crit Rev 
Food Sci Nutr. 2009 Dec;49(10):823-40.

[2] Spooner DM. Solanum tuberosum 
(Potatoes). In: Brenner’s Encyclopedia 
of Genetics. Elsevier; 2013. p. 481-3.

[3] Razzaghi F, Zhou Z, Andersen MN, 
Plauborg F. Simulation of potato yield in 
temperate condition by the AquaCrop 
model. Agric Water Manag. 2017 
Sep;191:113-23.

[4] Xu X, Pan S, Cheng S, Zhang B, 
Mu D, Ni P, et al. Genome sequence and 
analysis of the tuber crop potato. 
Nature. 2011 Jul;475(7355):189-95.

[5] Jane Muthoni J, Shimelis H, Melis R. 
Potato Production in Kenya: Farming 
Systems and Production Constraints. J 
Agric Sci. 2013;

[6] van Ittersum MK, Cassman KG, 
Grassini P, Wolf J, Tittonell P, 
Hochman Z. Yield gap analysis with 
local to global relevance—A review. F 
Crop Res. 2013 Mar;143:4-17.

[7] Sanginga N. Root and Tuber Crops 
(Cassava, Yam, Potato and Sweet 
Potato) Roots. An Action Plan African 
Agric Transform. 2015;

[8] Liu Q, Liu J, Zhang P, He S. Root and 
Tuber Crops. In: Encyclopedia of 
Agriculture and Food Systems. Elsevier; 
2014. p. 46-61.

[9] Food and Agricultural Organization 
of the United Nations. FAOSTAT Crops 
[Internet]. Crops. 2020. p. last access: 
May,2020. Available from: http://
ec.europa.eu/eurostat/statistics-
explained/index.
php?title=Agricultural_production_-_
crops%0Ahttp://ec.europa.eu/eurostat/
statistics-explained/index.php/
Agricultural_production_-_crops

[10] Baker P, Friel S. Processed foods and 
the nutrition transition: evidence from 
Asia. Obes Rev. 2014 Jul;15(7):564-77.

[11] Poti JM, Mendez MA, Ng SW, 
Popkin BM. Is the degree of food 
processing and convenience linked with 
the nutritional quality of foods 
purchased by US households? Am J Clin 
Nutr. 2015 Jun;101(6):1251-62.

[12] Mitchell H. Sweeteners and Sugar 
Alternatives in Food Technology. 
Mitchell H, editor. Sweeteners and 
Sugar Alternatives in Food Technology. 
Oxford, UK: Blackwell Publishing 
Ltd; 2006.

[13] Raymundo R, Asseng S, 
Robertson R, Petsakos A, 
Hoogenboom G, Quiroz R, et al. Climate 
change impact on global potato 
production. Eur J Agron. 2018 
Oct;100:87-98.

[14] Jansky SH, Jin LP, Xie KY, Xie CH, 
Spooner DM. Potato Production and 
Breeding in China. Potato Res. 2009 
Feb;52(1):57-65.

[15] Borjas GJ, Doran KB. The Collapse 
of the Soviet Union and the Productivity 
of American Mathematicians*. Q J Econ. 
2012 Aug;127(3):1143-203.

[16] Torres-Reyna O. Panel Data Analysis 
Fixed & Random Effects. Princet 
Univ. 2014;

[17] Li C, He X, Zhu S, Zhou H, Wang Y, 
Li Y, et al. Crop Diversity for Yield 
Increase. Fuller DQ, editor. PLoS One. 
2009 Nov;4(11):e8049.

[18] EWERS RM, SCHARLEMANN 
JPW, BALMFORD A, GREEN RE. Do 
increases in agricultural yield spare land 
for nature? Glob Chang Biol. 2009 
Jul;15(7):1716-26.

References



17

Solanum tuberosum Yield for Selected Countries
DOI: http://dx.doi.org/10.5772/intechopen.97174

[19] West PC, Gibbs HK, Monfreda C, 
Wagner J, Barford CC, Carpenter SR, et 
al. Trading carbon for food: Global 
comparison of carbon stocks vs. crop 
yields on agricultural land. Proc Natl 
Acad Sci. 2010 Nov;107(46):19645-8.





19

Chapter 2

The Role of Crop Protection in 
Sustainable Potato (Solanum 
tuberosum L.) Production to 
Alleviate Global Starvation 
Problem: An Overview
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Abstract

Among food crops in terms of consumption, potato ranks fourth, most  
important and valuable crop worldwide in terms of production and area harvested 
after maize, wheat and rice. In the coming years, potato production must keep pace 
with global population expansion nutritiously and sustainably which can partially 
be achieved by reducing the yield losses caused by the destructive pest and disease 
activities to the crop. The challenge of 70–80% total microbial crop yield loss posed 
by pathogens must be addressed for sustainable potato production in order to prop-
erly alleviate the global starvation problem. Potato as a food security crop can help 
to achieve the four food security requirements: food availability, quality, acces-
sibility and stability. Health benefits of potato have shown the presence of phyto-
chemicals as well as resistant starch which serve as anticancer and antidiabetic. The 
role of potato in the global food security should not be over emphasized, hence in 
this chapter we want to give an overview on the global hunger and food security at 
present, and the role played by potato as a food security crop. In addition, potato 
yield losses caused by pests and diseases especially phytopathogens, their etiology 
and the role of crop protection in sustainable potato production to alleviate global 
starvation problem will be discussed.

Keywords: Crop protection, food security, potato, starvation, yield losses

1. Introduction: global hunger and agricultural growth at present

Mankind cannot survive without food which is one of the three basic necessities 
of life. Potato (Solanum tuberosum) ranks fourth most important food crop in the 
world after maize, wheat and rice in terms of human consumption (Figure 1) [1]. 
Potato as a food crop can help to achieve the four food security requirements: food 
availability, quality, accessibility and stability. At present, agri-food systems do not 
sufficiently provide nutritious food in a sustainable and eco-friendly way to the 
growing global population [2, 3]. Potatoes continue playing a very important role in 
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feeding the human population. According to [4], by 2050 an estimated global popu-
lation of 9.7 billion people will demand 70% more food than is consumed today and 
feeding this expanded population both sustainably and nutritiously will require 
substantial improvements to the global food system. The food system should be one 
that provides livelihoods for farmers as well as nutritious products to consumers 
while conserving the environment and passing it in situ to the coming genera-
tions [5]. The Global Hunger Index (GHI) as reported by [6], showed substantial 
progress in terms of hunger reduction for the developing world and the GHI ranks 
countries on a 0–100-point scale with 0 being the best score (no hunger) and 100 
being the worst. Whereas the 2000 GHI score for the developing world was 29.9, 
the 2017 GHI score is 21.8, with 27% reduction. Although, there are pronounced 
disparities in hunger at all levels and progress has been uneven. Poverty is the 
clearest manifestation of societal inequality and this supported the GHI report of 
2017 that emphasizes the fact that inequality and hunger are extremely linked and 
both are rooted in uneven power relations that often are exacerbated and perpetu-
ated by laws, policies, attitudes, and practices. GHI in 2013 showed that fifty-six 
countries are at alarming levels of hunger as published by the International Food 
Policy Research Institute [7]. The GHI aggregates three equally weighted indicators: 
(i) Prevalence of underweight in children (ii) Proportion of undernourished (iii) 
Mortality rate of children under five. Today more than 850 million people are suf-
fering from hunger in addition to the several hundred million children categorized 
as malnourished children or as “hidden hungry”.

Growth in agricultural sector can particularly be effective in reducing hunger 
effect, starvation and malnutrition problem because most of the extremely peas-
ant poor farmers depend solemnly on agriculture and other related activities for 
their livelihoods. At the 2014 World Economic Forum (WEF), Shenggen Fan, 
Director of the IFPRI, advanced that tackling hunger and malnutrition is not only 
a moral issue but also one that makes economic sense as mentioned in a debate 
on “Rethinking Global Food Security”. The world loses Gross Domestic Product 
(GDP) of 2–3% per year because of hunger, while investing US$1 in tackling 
hunger that yields a return of US$30. Additionally, it was mentioned in a debate 
on Rethinking Global Food Security by Ajay Vir Jakhar, Farmers’ Forum Chairman 
(Bharat Krishak Samaj) in India that farmers think on food security at their house-
hold level, but not global level. Globally, if small-scale farmers were supported, 
they could become self-sufficient and also food insecurity problem would be 

Figure 1. 
Global consumption of maize, wheat, rice and potato. Source: FAO [1].



21

The Role of Crop Protection in Sustainable Potato (Solanum tuberosum L.) Production…
DOI: http://dx.doi.org/10.5772/intechopen.100058

solved by 40 to 60%. Therefore policies should be geared towards localized solu-
tions, worldwide issues and solutions, and motivation from the private and public 
groups required to help the huge number of peasant farmers who are cultivating 
small areas of land and which have an important role to play in the chain of food 
production and social development. The International Year of Family Farming 
declared in 2014 supported the acknowledgement made by the United Nations 
on the importance of family farming in improving worldwide food security and 
poverty reduction. Hence localized, technical, and commercial solutions with the 
support of both public and private sectors are needed in combination with global 
food security policies. An important way forward to design research in agriculture 
is to understand where hunger and poverty are converged. Potato is produced in 
poor areas globally including China and the Andes of South America; hence, inno-
vations particularly on potato science can be a very important tool for targeting the 
poor and hungry as part of a broader set of research and development activities.

2. Potato as a food security crop

According to [8, 9] “Food security exists when all people, at all times, have 
physical, social and economic access to sufficient, safe and nutritious food to 
meet their dietary needs and food preferences for an active and healthy life.” Food 
security has four major key dimensions: (a) food availability (b) quality and use  
(c) stability and (d) accessibility to food.

• Availability of food implies that supply of food at both levels (regional and 
national) that determines the ultimate price of food should be improved in 
order to reduce food insecurity and hunger.

• Accessibility to food implies the ability for one to buy or produces his food, 
which has to do with having the purchasing power to do so.

• Quality of food and use implies the level of nutrition obtained from food 
intake (consumption) at a nutritional, sanitary, sensory, and sociocultural 
point of view.

• Stability of food implies the idea of having food accessibility at all times thus 
incorporating issues such as price stability and securing incomes for affected 
populations [9].

With this breakdown, efforts in research may likely assist food security in the 
categories below:

• Access: Encouraging farm production competition, farmers’ income improve-
ment and other agri-food systems.

• Availability: Rising agricultural production via good cropping systems,  
integrated pest control for loss minimization and genetic improvement.

• Food use and quality: Quality food safety as well as food quantity by value 
addition to traditional local products.

• Stability: Improving agriculture and food production through sustainable 
management of such natural resources such as soil, water, and biodiversity.
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Figure 3. 
Percent change in crop production of staple food crops in sub-Saharan Africa, 1994–2011. Source: FAO [1].

Some peculiar features of potato crop such as adaptation range coupled with 
high nutritional value and production ease has aroused the interest of many 
people to embark on its cultivation which has led to the steady increases in potato 
production and consumption in many developed and developing countries. In the 
last few years, there is an increase in production of potato and its demand in Asia, 
Africa, and Latin America from less than 30 million tons to more than165 million 
tons. Today, the biggest potato producer is China followed by India. According to 
FAO, potato yields more food per unit of cropland in less time than any other major 
crop [10]. Millions of farmers depend on potatoes for food as well as cash income. 
Potato is a highly reliable food security crop that can help ease future turmoil 
in world food supply and demand [10]. Potato cropping systems help improve 
resilience especially among smallholder farmers by providing direct access to 
nutritious food, increasing household incomes, and reducing their easiness to food 
price volatility (Figure 2).

Figure 2. 
Shift in potato production. Source: FAO [1].
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Farmers in Africa have responded to increased demand for food by increasing 
the production area for numerous crops that include banana, potato, sweet potato, 
and rice. This production increase was as a result of an increase in the production 
area of potato, which has doubled from 1994 to 2011 and now exceeds that of the 
Caribbean and Latin America (Figure 3) [1].

3.  Otato in the global food system: production and demand trends by 
region

At present the global stands for potato production is 378 million tons on an 
estimated 19 million hectares of farmland worldwide (Table 1). Temperate area of 
northern hemisphere is where potato is mostly produced during the summer period 
(frost-free period). In these regions, potato is cultivated mainly as a cash crop and 
an important income source. Potato is significant in the Rift valley of the tropical 
regions of the African highlands, the highlands of the Andes, and the volcanic 
mountains of West Africa and Southeast Asia, where production is both for cash 
and food [12]. The crop is cultivated at the heat-free period as a winter crop in the 
subtropical regions such as in the southern China, Mediterranean region and North 
India. The crop is not considered as a staple crop in the lowlands of the tropics due 
to the high temperatures in the areas that do not favor potato growth and develop-
ment [13]. Figure 4 illustrates the recent pattern of the potato distribution world-
wide [14, 15].

In order to boost the impact on the lives of the peasant farmers on investment 
in potato-related research and innovation, it is important to identify who are the 
peasant farmers, where they are dwelling, and that potato crop is crucial in the 
local food chain. In areas where production of the crop is in existence with poor 
income, there is a good chance to use potato as a tool to slashed poverty. In order 
to get optimal potential effect on living welfare of peasant farmers, International 
Potato Center (CIP) has prioritized its programs based on a pro-poor research-for-
development paradigm where scientific research adhere to specific needs to address 
the peasant poor, other than a science driven paradigm which generates outputs 
of research, that may or may not adhere to real demands, and hands them to the 
partners.

Across landscapes of the globe, the adaptability of the potato combined with 
increases in its cultivation in different countries in the pass decades is dissimilar, 
even though this rise has been generated primarily by land expansion followed by 
improvements in yields. Statistics of the global potato production indicated a shift 

Continent (Region) 2014–2016

Production % Yield % Area %

Europe 119,551 21.6 5547

Latin American and Caribbean 18,334 17.9 1023

North American 24,430 32.0 763

Asia 190,617 19.1 9975

Africa 25,270 14.4 1756

World 378,202 19.8 19,063

Source: [11].

Table 1. 
Indicators of global potato production.
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towards developing countries virtually with strong rise in production in Africa, 
more especially in East Africa. More so, the developed world’s potato production is 
below that of developing world for the first time in 2005 [1] and this confirms the 
rising value of potatoes as a source of food, income and employment in Africa, Asia 
and Latin America. As world population levels are predicted to show the greatest 
rise in Africa in the coming decades, increased contribution of potato to local food 
systems in this region is of considerable importance [16]. Taking into consideration, 
production of potato in Latin American and Caribbean (LAC) over some years (at 
least 60 years), the average annual potato domestic production has risen from 7.2 
million tons in the 1961–1963 periods up to 19.6 million tons in 2011–2013, which 
represents an average annual growth rate of 2%. By way of comparison, growth 
rates for potato production in Asia and Africa averaged over 4% for a similar period, 
i.e. more than double those of LAC [17]. Most of the production is oriented towards 
human consumption (74%, maintaining this trend throughout the period) and it 
highlights a relatively low processing level of 1% [11].

The fifth largest potato producer in the world is the United States in the global 
potato statistics with more than 420,000 ha harvested in 2013 and a total output 
of nearly 20 million tons [18]. Although in the United States potato is no longer 
the traditional staple of the past, it is nevertheless gaining increased apprecia-
tion by nutritionists because of its nutrient density and its contribution to a more 
balanced diet [19]. Potato yields in the United States have more than doubled over 
the last 50 years, rising from 22 tons ha−1 in 1961 to 49 tons ha−1 in 2016 as a result 
of improvements in the management practices [20]. This therefore will meet the 
demand of the agro- processing industry to produce chips and frozen French fries 
for consumers in the markets. In Asia, China became the world’s largest potato 
producer in 1993 and currently accounts for almost one quarter of global potato 
production and about 28% of total cultivated areas [18] and used is mainly for food, 
both in processed forms and as a vegetable [21]. In India potato is cultivated mainly 
in the plain called Indo-Gangetic plain, intercropped in rotation with maize, rice 
and/or wheat or as singled crop (monoculture); and it is considered as important 
cash and a staple crop. Rising in potato production volumes, its yields have signifi-
cantly increased in India at an average of 2% per annum, as a result of successful 
quality seed systems, breeding programs, and storage infrastructure that have 
decrease post-harvest losses [21].

Regarding Europe; France, Germany, Netherlands, Belgium and the United 
Kingdom are together the largest producers of potato in the European Union (EU), 

Figure 4. 
Potato global distribution and harvested area. Source: You et al. and FAOSTAT [11, 14].
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as potato yields more than 40 tons ha−1 in this area of north Western Europe and to 
the strong links of production with the dynamic European potato processing indus-
try. Potato is also versatile in Eastern European countries, particularly in Ukraine, 
Russia, and Poland where per capita consumption has traditionally exceeded 100 kg 
annually. Future prospect and trends by region indicate a major production increase 
in Asia and Africa as compared to other regions. Taking into consideration some 
assumptions like increase in population, economic growth pathways, and climate 
change, a decline in population in China and growth of per capita (GDP) was 
projected by the UN which will subsequently influence their diet composition at 
long run. Hence, the supply of potato in China in future will not continue to grow 
faster as it was in the past. According to [22], it is in India where potato supply will 
almost triple because of the very high population growth, especially under certain 
socioeconomic scenarios.

4. Benefits of potato in the diet and health

4.1 Benefits in the diet

To a larger or lesser extent, the contributions of potato in the diet and health 
of human being for thousands of years should not be overemphasized. Proteins, 
fibers, carbohydrates, vitamins, lipids and minerals are present as food for human 
diet. Other benefits include its contribution as antioxidants, anticancer, anti-
inflammatory, hypocholesterolemic, anti-obesity, and antidiabetic etc. Like other 
plant foods, the nutritional contribution and composition of potatoes is affected 
by many factors including bioavailability, bio-accessibility and cooking as well. 
For example cooking, the most important nutrient compounds found in potato 
that includes minerals, dietary fibers, and proteins are well retained after cooking 
as well as anthocyanins and carotenoids [23]. Vitamins C and B6 are significantly 
reduced after cooking from the food matrix. Vitamin E is also contained in potato 
tubers at moderate amount [24]. Potatoes are mainly eaten as boiled and provide 
between 28 and 38% of the recommended total energy requirements for women 
[25]. The energy provided by 100 g of boiled tubers of potatoes varies from 96.33 
to 123.17 kcal [25], which is similar to the energy provided by 100 g of cooked rice 
(130 kcal) but lower than the energy provided by 100 g of wheat (361 kcal), 100 g 
of cooked cassava (160 kcal) and soybeans (173 kcal) [26]. Total lipids in potatoes 
are found in low quantities ranging from 0.1 to 0.5 g–100 g−1 FW, consisting mainly 
of galactolipids and glycol (22%) and phospholipids (47%) that are structurally 
elements of biological membranes as well as neutral lipids (21%) like free fatty 
acids and acylglycerols [27]. More than 94% of the tuber lipids contain esterified 
fatty acids. According to [28], the protein content of potatoes generally ranges from 
1 to 1.5 g/100 g−1 FW depending on the potato cultivar. Also [25] reported higher 
levels of protein in cooked tubers of Peruvian floury landraces (1.76–2.95 g-100 g−1 
FW). Potassium is the most abundant mineral in potato with concentrations vary-
ing from 150 to 1386 mg-100 g−1 FW [29]. Potassium functions as an important 
electrolyte in the nervous system. High intake levels of potassium can help control 
high blood pressure and may decrease the risk of stroke [30]. Adequate Intake 
(AI) of boiled potatoes (100 grams) can contribute potassium recommended 
for adults (4700 mg per day). Phosphorus, iron, magnesium and zinc are also 
present in potato in small quantities ranging from 42 to 120 mg-100 g−1 FW for 
phosphorus and from 16 to 40 mg-100 g−1 FW for magnessium, respectively [31]. 
Again, potatoes are excellent source of diet in the form of iron especially in the 
highlands of Andean due to their high consumption and where accessibility to meat 
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is little and levels of anemia and malnutrition are high. Typical example is that of 
Huancavelica, in the highlands of Peruvia, where women and children on average 
consume 200 to 840 g of potato per day [25].

4.2 Benefits in the health

Regarding health benefits, health-promoting effects attributed by potatoes were 
observed in human cell culture, human clinical studies, and experimental animals, 
including anti-inflammatory, anti-cancer, hypocholesterolemic, anti-diabetic and 
anti-obesity features. Compounds such as phenolics compounds, fiber, anthocya-
nins, and starch as well as compounds regarded as anti-nutritional compounds like 
lectins, glycoalkaloids, and proteinase inhibitors are considered to be attributed to 
the health benefits of potatoes. Many compounds found in potato are good in health 
promotion although some could be beneficial or detrimental to human depending 
on specific circumstances. Studies geared to investigate the association between 
potato consumption and diabetes, cardiovascular disease, obesity, and cancer while 
controlling for fat intake are needful [32]. As a key dietary source of potassium, 
vitamin C, and dietary fiber, potatoes contribute significantly to nutrients with 
defined roles in promoting cardiovascular health [33]. It was mentioned earlier that 
potato contains high amount of potassium and intake of potassium-rich foods has 
been shown to protect people against risk of stroke [34]. It was also reported that 
gelatinized potato starch containing a high level of phosphate reduced concentra-
tions of serum-free fatty acids and triglycerides and liver triglycerides [35]. Potato 
consumption has often been associated in cohort studies with elevated risk of type 
2 diabetes [36] and obesity [37], which has been attributed to a relatively high 
glycemic index in some potato varieties and processed potato products contain-
ing added saturated and trans fats. A major confounding factor in such studies is 
typical Western dietary patterns associated with increased disease risk typically 
include potato consumption along with high intake of red and processed meat, 
refined grains, high-fat dairy products, fried foods and sugar [38]. Reddivari et al. 
[39] showed that α-chaconine exhibited potent anti- proliferative properties and 
increased cyclin-dependent kinase inhibitor p27 levels in two prostate cancer cell 
lines, LNCaP and PC3. More recently, it has been reported that α-solanine, has a 
positive effect on the inhibition of pancreatic cancer cell growth in vitro and in vivo. 
Sun et al. [40] demonstrated that α-solanine inhibited cancer cell growth through 
caspase 3-dependent mitochondrial apoptosis and that the expression of tumor 
metastasis-related proteins, MMP-2 and MMP-9, was also decreased in the cells 
treated with α-solanine.

5. Pests and diseases of potato

5.1 Pests of potato

In addition to the present global climate change that used to worsen the situ-
ation, the potato’s vulnerability to numerous pests such as tuber moth of potato 
(Phthorimaea operculella) [41], the leaf miner fly of potato (Liriomyza huidobren-
sis) [42], Guatemalan potato tuber moth (Tecia solanivora) [43]; the White flies 
(Bemisia tabaci), Andean potato tuber moth (Symmetrischema tangolias) [44] and 
Trialeurodes vaporariorum [45]. Pests, especially insects, are the major living factors 
affecting potato yield and tuber quality. Globally, losses are estimated on average at 
16% [46]. It has been estimated that about 30–70% loss in tuber yield and quality 
can occurred for various pests, if pest infestation not routinely controlled [47, 48]. 
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Disease Incitant Symptoms Reference

Fungal diseases

Late blight Phytophthora ifestans • water-soaked light to dark brown 
spots on leaves

• brown spots on stems

• (slightly depressed areas with 
reddish-brown color on tubers)

[2, 80–82]

Early blight 
(EB)

Alternaria solani
A. alternate

• dark brown to black necrosis on the 
lowest oldest leaves

• a series of dark concentric rings are 
visible within the ring

• The symptoms of EB on tubers are 
dark, slightly sunken lesions

• It is not possible to distinguish 
between the different Alternaria spp

[83, 84]

Black scurf Rhizoctonia solan • It affects roots, stolen, stems and 
tubers

• formation of sclerotia on the surface 
of the tubers

• girdling on the stem with brown 
color

• upward rolling of the leaves

[85]

Wart Synchytrium 
endobioticum

• small greenish warts on the 
top of plants: stem, foliage and 
in extremely conditions on 
inflorescences

• the typical symptoms of the disease 
on tubers are the proliferating 
warts which may vary markedly in 
form but are primarily spherical to 
irregular

• the color of the vary with the variet

[86, 87]

Powdery 
Scab

Spongospora 
subterranean

• it infect all underground organs 
of porato (i.e. stolons, tubers, and 
roots)

• purplish brown lesions are observed 
as initial symptoms on tubers

• infection can be susceptible to root 
or stolon gall production

[88]

Bacterial diseases

Bacterial wilt Ralstonia solanacearum • Wilting is the common symptoms [89, 90]

Bacterial 
Blackleg and 
Tuber Soft 
Rot

Pectobacterium 
aroidearum P. 
atrosepticum
P. betavasculorum
P. brasiliense
P. cacticida
P. carotovorum
P. odoriferum
P. parmentieri
P. peruviense
P. polaris
P. punjabense
P. wasabiae

• stem necrosis

• pith of the stem is often decayed

• Infected plants produce few or no 
tubers

• Plant leaves may turn bright yellow 
and the plant will eventually and die

[91–93]
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In this book chapter we provided some major and minor insect pests present in 
tropical, subtropical and temperate regions of the world (Table 2). Many pests have 
their evolution in the potato centre of origin, and farmers in the Andean region are 
confronted by numerous insect pests than those in Asia or Africa. Some species like 
the leaf miner fly (Liriomyza huidobrensis) and potato tuber moth (Phthorimaea 
operculella) has become highly invasive pests in many tropical and subtropical 
regions. In contrast, the strong adaptation of Andean potato weevils (Premnotrypes 
spp.) to the climate of the Andean region and its monophagous feeding habitat on 
potato and its wild relatives has restricted its distribution. Similarly, bud midge 
(Prodiplosis longifilia) presently with a distribution restricted in Florida, Virginia 
and South America (Peru, Colombia, and Ecuador) could be an invasive pests 
adapted by its polyphagous feeding habit. The Colorado potato beetle (Leptinotarsa 
decemlineata) native to Mexico, has spread across most of the United States, and was 
introduced into France in the 1920s from where it spread further reaching also parts 
of China [64]. Farmers in tropical and subtropical countries must contend with a 
higher number of pest species, and with some exceptions, a minimum of 2–4 pests 
often reach pest status requiring the application of control methods [52].

5.2 Diseases of potato

A disease is series of harmful physiological processes caused by continuous 
irritation of the host by a primary agent called a pathogen and exhibited as mor-
biphic cellular activity known as symptoms [78]. Potato diseases can be caused by 
fungi, bacteria, and viruses. Globally, the major potato diseases are late blight caused 
by Phytophthora infestans, early blight caused by Alternaria solani/, A. alternata, 
Fusarium dry rot caused by Fusarium spp., Potato common scab caused by patho-
genic Streptomyces spp. Black leg of potato caused by Erwinia spp. and bacterial wilt 

Disease Incitant Symptoms Reference

Potato Ring 
Rot

Clavibacter 
michiganensis

• Young infected leaves expand more 
slowly in the infected zones and 
become distorted

• Leaves affected by xylem block-
ages further down the stem often 
develop chlorotic, yellow to orange, 
interveinal areas-

• Leavers and tubers may simply be 
reduced in size and occasionally 
whole plants can be stunted

[94]

Common 
Scab

Streptomyces spp. • necrosis on all underground parts of 
a potato

• pitted scab, erumpent scab, and mild 
netted scab on the tuber

[95, 96]

Zebra chips Liberubacter spp. • severe Zebra chips on both the 
foliage and the tubers

• Tuber development slows or ceases 
in symptomatic plants, resulting in 
yield losses

• Infected tubers either do not sprout 
or have only hair sprouts

[97]

Table 3. 
Summary of fungal and bacterial diseases of potato.
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Distribution Genus/family Virus Transmission

Southern Andean 
region

Tepovirus. 
Betaflexiviridae

Potato virus T (PVT) Contact, seed

Andean region, Brazil Comovirus. Secoviridae Andean potato mottle 
virus (APMoV)

Beetles

Peru Nepovirus. Secoviridae Potato black ringspot virus 
(PBRSV = TRSV-Ca)

true seed, 
nematodes

Peru Potato virus U (PVU) Nematodes

Peru Potato virus B (PVB) Nematodes

Europe Cherry leaf roll virus 
(CLRV)

Nematodes, TPS, 
pollen?

Australia, Europe and 
New Zealand

Tomato black ring virus 
(TBRV)

Nematodes

Europe, North and 
South America

Lucerne Australian latent 
virus (LALV)

Unknown

Worldwide Polerovirus Potato leaf roll virus 
(PLRV)

Aphids

Worldwide Potexvirus, 
Alphaflexiviridae

Potato virus X (PVX) Contact

Potato aucuba mosaic 
virus (PAMV)

Worldwide Cartavirus, 
Betaflexiviridae

Potato virus S (PVS) Contact, Aphids

China Potato virus H (PVH) Unknown

Argentina and Brazil Potato virus P

Worldwide Potato virus M (PVM) Aphids

North America Potato latent virus 
(PotLV)

Europe. South 
America

Potyvirus, Potyviridae Potato virus V (PW) Aphids

Worldwide Potato virus A (PVA)

Potato virus Y (PVY)

Andes, only reported 
in wild potatoes

Wild potato mosaic virus 
(WPMV)

Andean region Tymovirus, Tymoviridae Andean potato latent virus 
(APLV)

Beetles

Andean potato mild 
mottle virus (APMMV)

Carribean Begomovirus. 
Geminiviridae

Potato yellow mosaic virus 
(PYMV)

Whiteflies

North America Nucleorhabdovirus, 
Rhabdoviridae

Potato yellow dwarf virus 
(PYDV)

Leafhoppers

Worldwide Pospiviroid, Pospiviroidao Potato spindle tuber viroid 
(PSTVd)

Aphids, contact

Americas, Europe, 
Asia in cool and humid 
environments

Pomovirus, Virgaviridae Potato mop-top virus 
(PMTV)

Spongospora

Colombia Colombian potato soil-
borne virus (CPSbV)

Table 4. 
Summary for viral diseases of potato.
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caused by Ralstonia solanacearum [79] etc. The summary of the diseases caused by 
both fungal and bacterial pathogens is presented in Table 3 and viral diseases in 
Table 4. Annual losses have been estimated for late blight (Phytophthora infestans) 
alone to be about €6.1 billion with resulting effects on food security, especially in 
developing countries. Disease symptoms can be noticed in the leaves as spots with 
light to dark brown water-soaked appearance. In the stems spots are usually brown 
in color and tubers appeared with slightly depressed areas with reddish-brown color. 
Mild temperatures and high humidity are requisite for disease development and, 
under optimal conditions; the disease can destroy a field in a few days.

6. Crop protection and sustainable potato production

According to [98], sustainability is the development that meets the needs of 
the present generation without compromising the ability of future generations to 
meet their own needs. The growing global population needs to be satisfied with 
food availability and accessibility through an intensive agricultural production 
system which signifies the need for various green revolutions. At present, our 
practices that involve indiscriminate use of synthetic chemicals, chemical fertil-
izers, and high utilization of non-renewable energy source have led to a large threat 
to environmental sustainability. For example use of agrochemicals to increase 
crop production is one way of adding unwanted substances to the environment, 
which eventually contributes to the emission of greenhouse gases and subsequent 
environmental alterations. These harmful practices can be reduced if appropri-
ate crop protection measures are used stewardly in agricultural activities for vital 
approaches of improving potato crop production. Although continuous increase in 
the world population at an alarming rate requires more food for nutritional security 
[99], but the world is now facing a great challenge to adopt sustainable measures, 
green technologies, sustainable science, and cleaner production such that the 
generations to come may be able to benefit from the earth’s ecology at its conserved 
form [100]. Conservation of the planet becomes necessary as “We don’t have a Plan 
B, since there is no Planet B” [101]. All key processes in the biosphere and related 
human activities are quite interdependent, interconnected, and hence should be 
steered through a mutual systems approach [102]. Food security is one of the three 
most pressing super challenges of the twenty-first century, after climate change 
and overdependence on petroleum importation, and microbes are good enough 
in meeting out these challenges [103]. The aims or goals of sustainable production 
or development are People, Planet, Profit (Prosperity), Peace, and Partnerships 
(Figure 5) [105] and if good crop protection measures such as used of microbes are 
utilized judiciously they can make a significant contribution in the achievement 
of these goals [100, 106]. Microorganisms as part good crop protection measures 
are much of our past and our future, pivotal agents of ecosystem and planet’s 
functioning hence are key parts of the stewards committee of planetary health and 
sustainability.

6.1 Crop protection and pests Management in Sustainable Potato Production

6.1.1 Chemical control of potato pests

At present, the most important challenge facing professionals in agriculture 
worldwide is ensuring sustainability in potato production [107]. Insect pests are 
major biotic constraints affecting potato tuber quality and yield. Global losses are 
estimated on average at 16% [46]. Locally, if not routinely controlled, reductions 
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in tuber yield and quality can be between 30 and 70% for various pests [47, 48]. 
Likewise in other cultivated plants, control of insect pests in potato is achieved 
predominantly via application of pesticides. By some estimates, potatoes are the 
most chemically dependent crop in the world [107]. Even though insecticides have 
been largely successful in keeping potato production successfully going, there are 
well-known and serious concerns about long-term sustainability of this approach. 
Chemical control of pests involves the use of synthetic chemicals which have a 
long-standing reputation in agriculture and ensures produce protection. They 
produce instant effects on the pests because they are fast-acting biocides, resulting 
in the arrest of pest infestations [108]. Negative effects of insecticides on numerous 
organisms, including health risks to farmers and beneficial insects, gained consid-
erable notoriety since 1960s [109]. Development of resistance and environmental 
concerns are the major reasons that lead to phasing out of many insecticides. 
Numerous cases are recorded for Potato pest species that are most prone to evolv-
ing resistance to a wide variety of chemicals. For example, the (2018) Arthropod 
Pesticide Resistance Database lists 300 cases of Colorado potato beetle (Leptinotarsa 
decemlineata) resistance to a total of 56 active ingredients; 469 cases of green peach 
aphid (Myzus persicae) resistance to a total of 80 active ingredients; 501 cases of 
two-spotted spider mite (Tetranychus urticae) resistance to 95 active ingredients; 
111 cases of greenhouse whitefly (Trialeurodes vaporariorum) resistance to rather 
impressive 27 active ingredients [2].

It is a difficult and expensive task to develop replacement insecticides, and it is 
highly questionable that a plethora of new active ingredients will regularly appear 
on the market in perpetuity [110]. Therefore, good stewardship of existing chemi-
cals is imperative and, whenever possible, their replacements with nonchemical 
control alternatives become an increasingly important business strategy for the 
pesticide industry and potato farmers. According to [110] development of resis-
tance by insects could be managed by preventing the situation when only highly 
resistant homozygotes survive in a population and this can be achieved by doing the 
followings:

Figure 5. 
The five goals of sustainable production and development. Source: Tijjani and Khairulmazmi [104].
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• Avoiding applications of the same or related products repeatedly throughout a 
growing season.

• Monitoring insecticide efficacy.

• The use of insecticide applications should not be the first option, but when the 
ultimate control option in an IPM approach after all other management options 
could not prevent to keep a specific pest population under the economic 
threshold.

• Whenever possible, leaving parts of the field untreated to allow susceptible 
pests to survive and interbreed with resistant pests.

• Applying insecticides at rates that are not lower than a recommended  
minimum. Otherwise, heterozygotes will survive and breed with each other.

• Applying insecticides only when pest populations are sufficiently high to cause 
economically important damage.

6.1.2 Integrated Pest management (IPM)

IPM is defined as an “ecosystem approach for crop production and protection 
that combines different management strategies and practices to grow healthy 
crops and minimize the use of pesticides. Kogan [111] also defined IPM as “a 
decision support system for the selection and use of pest control tactics, singly 
or harmoniously coordinated into a management strategy, based on cost/benefit 
analyses that consider the interests of and impacts on society, producers and 
the environment”. It means “a careful consideration of all available pest control 
techniques and subsequent integration of appropriate measures that discourage 
the development of pest populations and keep pesticides and other interventions 
to levels that are economically justified and reduce or minimize risks to human 
health and the environment. IPM emphasizes the growth of a healthy crop with 
the least possible disruption to agro-ecosystems and encourages natural pest 
control mechanisms” [112].

The integration of control methods will ensure quality and safety and also 
provide retailers with desired extended shelf life. Other benefits of IPM include 
dramatic slowdown of evolution of pesticide resistance. Again, simultane-
ous adaptations to diverse and unrelated management techniques will require 
statistically unlikely genetic changes in pest populations [110]. Moreover, 
integrating various measures to control pests, it may possibly reduce our over-
dependence on the “pesticide treadmill” of constantly replacing longstanding 
chemicals. Additionally, with all IPM advantages, it should be made close and 
available to farmers across all potato-growing regions of the world. For example 
in the management of leafminer fly, an IPM measure based on the use of seed 
treatment, action threshold, trapping devices, and steward application of 
insecticides showed a higher efficiency in the control of potato pests including 
Liriomyza huidobrensis rather than the conventional application of insecticides 
by farmers in the Canete valley of Peru. IPM decreased the total amount of 
pesticides used per season by 56% compared to the conventional management, 
representing a decrease of 69.2% in the environmental effect. Furthermore, 
IPM achieved 35% of higher marketable potato yield rather than conventional 
management [113].
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6.1.3 Cultural practices

A number of cultural practices commonly used for the management of potato 
tuber pest are many and should not be overemphasized. Such practices includ-
ing deep planting, the use of pest-free seed tubers, regular irrigation to avoid 
soil cracking, timely harvest, high hilling to protect tubers, clearing tubers after 
harvest exposed in the field for a long time (especially throughout the night), i.e., 
immediate harvest and storage; and removal of leftover tubers to reduce the over-
wintering field population are all common practices. Also, early maturing varieties 
can contribute for reduced risk of infestation. For example, weeding and removal 
of alternative and overwintering hosts such as wild mustards (Brassica spp.), use 
of wheat straw or white plastic as mulch, and intercropping with onion, garlic or 
coriander (Coriandrum sativum L.) have shown to reduce aphid populations.

6.1.4 Biopesticides/biological control

It can be an effective strategy in all those regions in which the pests have been 
unintentionally introduced and where natural enemies of the pests are absent 
to keep the pest population below economic threshold. The endoparasitoids 
Halticoptera arduine Walker (Pteromalidae), Phaedrotoma scabriventris (Nixon) 
(Braconidae) and Chrysocharis flacilla Walker (Eulophidae) were successfully 
introduced and established in three agro-ecological regions (low, middle, and high 
altitude) in Kenya [42, 114]. Also in the Andes, predators like carabids are wide-
spread and affect the weevil population. Most common species are Blennnidus sp., 
Notiobia schnusei (Van Endem) and Harpalus turmalinus Er. Additionally, fungi 
like Beauveria bassiana (entomopathogenic) and nematodes (Heterorhabditis sp., 
and Steinernema sp.) have been identified and used to develop biocontrol strate-
gies [52, 53, 115]. Biopesticides such as spinosins and abamectins generally provide 
excellent control of Colorado potato beetle (Leptinotarsa decemlineata) pest (but 
see cautionary note on insecticide resistance below). Bacterial insecticides based 
on delta endotoxin of bacterium Bacillus thuringiensis subsp. tenebrionis are also 
effective, but they must be applied against the first two instars. Plant extracts from 
such plants including leaves of Nerium oleander L., Melia azedarach L. fruits, neem 
leaves and seeds, Bassia muricate (L.) Asch., Parthenium sp., Lantana sp., Hyptis sp., 
Tephrosia nubica (Boiss.) Baker, Ipomoea carnea Jacq., Bidens pilosa L. and Rumex 
nepalensis Spreng, roots have been shown to demonstrate an excellent level of toxic-
ity to the larvae of Agrotis ipslon [74].

6.1.5 Physical control

It is essentially a good method used to control pests in the field or at storage. For 
example yellow attracts most insects; therefore, yellow sticky traps can effectively 
reduce the leafminer fly adult population. In the Cañete valley of Peru, a cumulative 
capture of up to seven million adults ha−1 by using fixed and mobile yellow sticky 
traps which resulted in a reduction of the control costs by 55.5% compared with 
chemical control, and an average use of six adulticide applications per season [116].

6.1.6 Resistance plant varieties

The most valuable and effective strategies to manage some pests like zebra chip 
is to discourage vector feeding by using plants that are resistant to psyllid feeding or 
less preferred by the psyllid.
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6.2 Crop protection and diseases management in sustainable potato production

Control of disease in plants is defined as keeping disease severity below the 
level at which it may become economically significant [78]. In a bid to control 
these fungal pathogens causing losses to valuable crops at present, chemical con-
trol have been identified as the most common, popular and most effective strategy 
for managing plant diseases but public opinion demands a reduction in the use of 
chemical [117–119]. In addition to chemical control, there are a number of strate-
gies including physical, biological, cultural, use of resistant varieties and in recent 
time plant-based pesticides that are enabling and instrumental to manage potato 
diseases and extend their shelf life without pollution to the environment and risk 
to the public health. This part of the chapter highlights the different techniques 
that are used to manage myco-induced potato diseases and other perishable 
produce viz.

6.2.1 Biological control

Biological control is the inhibition of infection, growth, survival and activity 
of one pathogen (organism) via the use of another organism with the result that 
there is a reduction in the evidence of the disease caused by the pathogen  
[118, 120, 121]. Biocontrol strategy can be a matter of harnessing any form of bio-
logical agent that exists in the environment or introduction of exotic species. The 
most important microoganisms causing serious losses annually in agriculture are 
the fungal plant diseases [122] but some of the fungal diseases including posthar-
vest diseases of fruits and vegetables caused by fungal pathogens such as  
P. infestans and other disease causing organisms have been successfully controlled 
via the use of biocontrol agents [121–123]. The first experiment in biological 
control with antagonists was conducted by GB Sandford in Canada [2]. The 
mechanism of activity of these biocontrol agents may be by antibiosis (secretion 
of antibiotics as a result of an interaction with microorganisms, which at low 
concentration poisons or kills other microorganisms); by competition for space 
and nutrients; by metabolite production (production of cell wall lytic enzymes 
that can breakdown polymeric compounds, including chitin, cellulose, DNA, 
hemicellulose and proteins; by parasitism in form of hyperparasitism (in which 
the pathogen is directly attacked by a specific biological control agent that kills it 
or its propagules or mycoparasitism, that is microbial predation that results in the 
reduction of the pathogenicity of the pathogen [117, 121, 123, 124]. Combining 
biocontrol agent or antagonist with other postharvest treatments could increase 
the efficacy of the biocontrol agents [125, 126] Vesicular-arbuscular mycorrhizae 
(VAM) and Plant Growth Promoting Rhizobacteria (PGPR) are well known to 
reduce plant diseases and increase crop yield. Biocontrol applications on potato 
plants require a better understanding of the symbiotic fungal partners. Numerous 
bio-agents in the phyllosphere are antagonistic to P. infestans, which included 
the yeasts Acetobacter spp., Sporobolomyces spp., isolates of Bacillus spp. and 
Pseudomonas spp. [127, 128]. Various naturally occurring microorganisms, that is, 
Trichoderma viride, P. aurantiogriseum, and Penicillium viridicatum, Chaetomium 
brasiliense [129], Acremonium strictum [130], Myrothecium verrucaria and P. auran-
tiogriseum [131], showed antagonistic effect against P. infestans. Application of P. 
fluorescens at 0.5% was found effective against early blight disease of potato for 
decreasing the intensity of the disease under field conditions [132]. The biologi-
cal control agents T. harzianum and P. fluorescens (seed treatment + foliar spray) 
were effective in decreasing the intensity of early blight disease of potato and also 
increase tuber yield [85].
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6.2.2 Use of resistant varieties

Identification of new resistance sources and functional resistance or suscepti-
bility genes has been recently greatly accelerated by modern techniques, such as 
effectoromics and resistance gene enrichment sequencing technologies. After the 
discovery of the Mexican wild species Solanum demissum as an excellent source 
of resistance, eleven major genes were introduced in cultivated tetraploid potato 
breeding lines [133, 134]. Although some of these genes can be considered defeated, 
others, for example R8, are still effective against current pathogen populations 
[135]. Over 50 R genes have been identified from wild Solanum species as detailed 
by [136], and the research field remains active with a growing list of genes available 
for potato breeding programs [135, 137–139]. However, due to crossing barriers 
and linkage drag, there are only few successful cases where R genes have been 
introduced into improved tetraploid breeding lines by classical breeding [140]. 
Introduction of a single R gene from wild germplasm is a lengthy procedure as 
demonstrated by the examples of commercial varieties Bionica and Toluca that con-
tain Rpi-blb2 originating from Solanum bulbocastanum, and were released almost 
50 years after the first crosses were made [141]. However, recently it was shown that 
R genes can also have quantitative effects. The potato cultivar Sarpo Mira contains 
at least four R genes that confer complete resistance against incompatible isolates 
and a quantitative R gene, Rpi-Smira1 that confers broad-spectrum field resistance 
[142]. Durability of quantitative resistance will, however, continue to depend on 
the size of the cultivation area of a variety as well as the dynamics of the pathogen 
population.

6.2.3 Chemical control

The application of chemical fungicides continues to be the most common 
strategy for the control of most disease causing phytopathogens, for example 
making late blight one of the top drivers for pesticide use in the world. The demand 
for weekly applications generates a billion-dollar business globally every year [143]. 
Chemical control involves the use of synthetic chemicals to control the pathogens 
which have a long-standing reputation in agriculture and ensures produce protec-
tion. They produce instant effects on the pathogens because they are fast-acting 
biocides, resulting in the arrest of disease epidemics [118, 144]. Various synthetic 
fungicides that have a broad spectrum of application in the field, transit, markets 
or storage houses have been used for controlling postharvest fruit rot diseases of 
tomato caused by many fungi [118, 145]. For example, [146] reported that the use of 
low-weight chemical compounds of sulfur dioxide (SO2), ozone, and acetic acid as 
fumigants used for postharvest protection of produce especially fruits have proved 
to be effective in eradicating most of the rot-inducing pathogens. To optimize the 
use of fungicides, it is important to know the efficacy and type of activity of the 
active ingredients. The frequency and timing of fungicide applications may depend 
on the foliar resistance of the cultivar, fungicide characteristics, rate of growth of 
new foliage, weather conditions, irrigation, and incidence of blight in the region 
[147]. The most common chemicals used include diphenyl, dichloran, sodium-
o-phenyl phenate, 2-amino-butane, benomyl, thiabendazole, imazalil, thiophanate-
methyl, triforine, iprodione, captan, vinclozolin, borax and soda ash [148]. They 
have fungicidal properties and are used as wash treatments and are highly effective 
when used “hot” at temperatures in the range from 28 to 50°C depending on the 
crop susceptibility to the hot injury [148]. Fungicides like biphenyl, acetaldehyde 
vapors dichloran, and some ammonia-emitting or nitrogen trichloride-forming 
chemicals are used as supplementary volatile in pakage of fungistats impregnated 
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in paper sheets during storage and transit. Some strains fungi are resistant to one 
or more of the synthetic fungicides therefore broad spectrum fungicides should be 
used in their control [148].

6.2.4 Cultural control

Cultural control includes all the measures undertaken as agronomic activities to 
change the microclimate, condition of the host and also the behavior of the pathogen 
in order to interfere with the activity of the pathogen i.e. reproduction, dispersal and 
survival [149]. Include in these cultural practices are the use clean certified seed, use 
of adequate inter and intra-row spacing, hilling, crop rotation, destruction of plant 
debris, harvesting at hot conditions and when tubers are matured [82, 149]. Crop 
rotation is one cultural practice that influences the occurrence of many pathogens. 
For example A. solani that causes early blight disease, the fungus persists as spores 
or mycelium in plant debris or soil in the field from one potato-growing season to 
the other or next. Therefore, the practice crop rotation, including the control of host 
plants such as weeds (black shadow) in the nonhost crops, reduces the initial soil born 
inoculum. A short crop rotation with host crops (tomato, potato) results in an earlier 
and more severe early blight epidemic [150]. In addition, the removal or burning of 
infected plant debris reduces the inoculum level. The fungus does not directly infect 
intact periderm, and so allowing tubers to fully mature before harvest reduced the 
risk of tuber infection. Additionally, wounding prevention at harvest and providing 
good storage conditions to promote wound healing can also reduce tuber infection 
[151]. The use of disease- and virus-free seed potatoes is the basis for an economical 
potato production. Virus-infected potato plants are more susceptible to most patho-
ges than healthy plants. Another important thing is the legislation related primarily 
to prohibit the importation of infected potatoes from one country to another. Disease 
avoidance using uncontaminated seed in uninfested soil represents the best method 
of disease prevention. The relative importance of soil inoculum level in causing 
disease on tubers was conclusively demonstrated by [152] who showed that when 
arbitrary soil inoculum threshold values of 0, <10 and > 10 sporosori-g−1 soil were set, 
it was observed that the number of crops developing powdery scab increased with 
the level of inoculum quantified in the field soil preplanting. In field trials carried out 
to investigate the link between the amount of inoculum added to the soil and disease 
development, disease incidence and severity on progeny tubers was found to be 
significantly (P < 0.01) greater in plots with increasing levels of inoculum.

6.2.5 Integrated disease management

Integrated disease management implies the integration of two or more control 
methods to benefit from their additive or synergistic effects and improve the 
efficacy of each method in order to tailor a complete disease management [153]. 
The combination of various methods may provide a more durable, sustainable and 
practical solution to the producers who utilize the available methods to eliminate 
the menace of pathogens [117]. The integration of control methods will ensure 
quality and safety and also provide retailers with desired extended shelf life. 
Amalgamation of compatible and complementary approaches will lead to efficient 
disease control. The combination could be bio control agent with physical treat-
ment, bio-control agents (BCAs) with chemical at low doses, plant product with 
soil amendment and BCAs, BCAs with another BCAs, and fungicide with natural 
waxes, etc. Many researchers have reported the synergistic effect of combining 
different control methods together for the control of postharvest decay of potato 
tubers. For example integrated disease management to control early blight requires 
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the implementation of several approaches. The disease is primarily controlled by 
the use of cultural practices (to reduce the soil born inoculum), less susceptible 
cultivars and the use of pesticides. Trichoderma spp. are beneficial fungi in the 
rhizosphere of plants in which some species are reported to act as BCAs either by 
directly antagonizing other pathogens or indirectly by inducing ISR [154]. When 
applied in alteration with a fungicide, the latter does not have impact the growth 
of the BCAs, and performance in disease control is enhanced. Also when B. cereus 
is applied as seed treatment, it induces systemic resistance that could reduce the 
number of sprays of another non-systemic fungicide like chlorothalonil, to manage 
early blight caused by Alternaria solani in potato and tomato [155]. The number of 
fungicide sprays therefore could be scaled down from 10 to 20 applications while 
the yield was unaffected over a 90-day field study, confirmingthelong-lasting effect 
of inducers of resistance on plant defense mechanisms.

7. Concluding remarks

The role of crop protection in environmental management and sustainable 
potato production should not be overemphasized as it offers countless benefits. The 
food security challenge is to produce just as much, but waste less through better 
pre and post-harvest management. Pre-harvest and post-harvest management in 
potato, including pests and diseases management; storage, processing and value 
chain efficiency, is a much larger problem than cereals and deserves special atten-
tion. Reduction of food losses appears as a key opportunity. The main causes of 
losses are poor crop and harvest management, infested tubers by pest and diseases, 
high percentage of small tubers and weather conditions: frost and heavy rains etc. 
Since potato is a major crop for humankind, it has a global distribution and it is 
attacked by pests which can substantially reduce its productivity and its quality. The 
increasing awareness about the nutritional, agronomic, and cash creating advan-
tages potato provides is likely to further increase its status as a global crop, particu-
larly in developing subtropical and tropical countries. The development, adaptation 
and use of integrated pest management will be an important area of future research 
crucial for a sustainable and more resilient and economic profitable potato produc-
tion in all potato growing regions worldwide. Emphasis should be given to develop 
and use biological approaches in pest management. This will reduce the depen-
dence on insecticides as well as will reduce the risk that insect populations develop 
resistance against insecticides. Diseases of potato have remained an economically 
significant disease worldwide. Farmers lose millions of dollars annually due to 
activities of diseases. However, considering the perspective of climate change, 
effective utilization of crop protection measures can provide better chance of their 
vast application in environmental as well as agricultural sustainability.
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Chapter 3

The Impact of Bio-Organic and  
N, P, K Fertilizers on the Growth 
and Yield of Potato
Duraid K.A. AL-Taey and Rusul F. AL-Shmary

Abstract

Bio-organic agriculture considers the medium- and long-term impact of 
agricultural interferences on the agro-ecosystem. It aims to produce food while set-
ting an ecological balance to soil fertility. Bio-organic agriculture takes a proactive 
design as opposed to treating problems after they emerge, so the study was con-
ducted for studying two factors: First: the cultivars (Riviera and Arizona) class A 
resulting from cultivation of class E imported and cultivated in spring season 2018. 
The second factor: fertilizer combinations (bio-organic fertilizers compared with 
traditional chemical fertilizers). Arizona cultivar significantly achieved the highest 
values, in most of the study parameters compared to Rivera cultivar. Significant 
differences were observed between the treatments of fertilizer combinations, the 
treatment (organic fertilizer + bio-fertilizer + 25% chemical fertilizer) signifi-
cantly achieved the best values compared to the control. Bi-interaction treatment 
(Arizona cultivar + organic fertilizer + bio-fertilizer + chemical fertilizer 25%) 
achieved the highest yield per hectare (43.24 tons.ha−1).

Keywords: Sustainability, Bio fertilizers, Organic compost, Nutrients availability

1. Introduction

Potato (Solanum tuberosum L.) is considered one of the most important vegeta-
ble crops in the world in terms of production and cultivated area, it belongs to the 
Solanaceae family, which includes about 90 genera and about 2000 species [1, 2]. 
Cultivated areas of potato crop in Iraq are increasing, however, that the produced 
quantities do not meet the requirements of the Iraqi consumers. This is due to 
many of the problems facing the cultivation of the crop in Iraq, the most important 
of which is soil salinity, which plays an important role in determining productivity 
[3, 4], where the crop’s exposure to salt stress causes a decline the production in 
most vegetables [5]. Therefore, research has recently tended to study raising the 
average of growth and production in such, improving the reality of cultivation 
of this crop in Iraq requires attention to the various agricultural service opera-
tions and providing plants with the necessary nutrients. Organic fertilizers are an 
important way to provide plants with the necessary nutrient requirements and 
they do not adversely affect the environment [6], where the addition of organic 
fertilizers to the soil improves their synthetic traits and increases the activity and 
numbers of microorganisms [7].
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Bio-fertilizer is natural substance, which is composed of many strains of bac-
teria and fungus for decreasing the chemical use in fertilization applications. In 
addition, bio-fertilizer has a positive role in helping the plants because it contains 
microorganisms, which are capable of mobilizing nutrient elements from unavail-
able form to available form through different biological processes [8], also play 
a role in improving the physical, chemical and biological traits of the soil. Bio-
fertilizers are one of the used materials in this field which are natural preparations 
containing a group of beneficial microorganisms that have an active and effective 
role in improving soil fertility and supplying plants with part of their nutritional 
needs; where it maintains the equilibrium of the elements in agricultural lands 
and converts the elements to the soluble and available form suitable for plant 
nutrition. It is also involved in the biological resistance for some pests and plant 
diseases [9, 10]. The concept of integrated fertilization has emerged, which is a 
combination of chemical, organic and bio-fertilization in order to rationalize the 
use of chemical fertilizers and compensating them with natural fertilizers for the 
purpose of increasing yield and improving quality [1].

This study aims to test the response of two potato cultivars to organic and bio-
fertilization and their interaction with chemical fertilization for the traits of growth 
and yield in saline-affected soils.

2. Material and methods

The experiment was conducted in a private field of Babylon governorate, located 
on longitude 44.39 E and latitude 32.3 N during the autumn growing season (2018). 
Soil samples were taken from different locations and depth for the purpose of 
conducting some physical and chemical properties as shown in Table 1.

Potato tubers for the two cultivars (Arizona and Riviera) class (A) was obtained 
from the harvest of agricultural season (2018), which was cultivated with the 
class (E) and stored at 4°C in refrigerated warehouses. Tubers was cultivated on 
10/9/2018 on a furrow where the length (2 m), the distance between the furrow 
(75 cm), 1 m was left between the experimental units and plots.

The NPK fertilizer (15:15:15) was added in two batches before culture and 
after 45 days of the first addition, with specified rates (25% of the recommenda-
tion of fertilizer, 50% from of the recommendation of fertilizer, 100% of the 

Soil properties Values

pH 7.5

EC (dS.m−1) 6.23

Organic matter (%) 1.25

Nitrogen (%) 0.33

Phosphorus (%) 0.12

Potassium (%) 1.07

Sand (%) 22

Silt (%) 54

Clay (%) 24

Texture Silty loam

Table 1. 
Some of the physical and chemical properties of the soil.
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recommendation of fertilizer at a rate of (600 kg.ha−1 N: 20, P:20,K: 20), bio-
fertilizer (a mixture of Bacillus megaterium + Azotobacter chroococcum + Fluorescent 
Pseudomonas) was added before cultivation according to a recommendation 
(200 g from bio-fertilizer to 5 L of water). Tubers were directly immersed into 
this solution for 30 minutes. Bio-fertilizer was obtained from the Ministry of 
Science and Technology, Laboratories of the Agricultural Research Department in 
Al-Zafaraniya.

The experiment was conducted based on Randomized Complete Block Design 
(RCBD), with a split-plot system with two factors, the first factor is cultivars that 
are symbolized by (V), which is the Main-plot, the second factor is fertilizer com-
binations that are symbolized by (F) with 8 treatment combinations, which is the 
sub-plots. Each treatment replicated with three times and the total of experimental 
units are (48). The significant differences between the treatments were calculated at 
a significant level of (0.05) for the least significant difference (LSD) using Genstat 
program.

2.1 Study parameters

Plant height (cm), Leaf area (cm2.plant−1), chlorophyll contents in leaves (SPAD 
unit), percentage of dry matter of leaves and total yield of tubers (tons.ha−1).

3. Results and discussion

3.1 Plant height

Table 2 showed that a significant difference between the two cultivars, Arizona 
cultivar, was recorded the highest value of plant height (48.38 cm) compared to the 
Riviera cultivar which gave the lowest values (34.82 cm). The treatments of fertil-
izer combinations F6 (organic fertilizer + bio-fertilizer + 25% chemical fertilizer) 
achieved the highest value of plant height (45.87 cm) compared to the control 
treatment which amounted to 37.79 cm. As for the bi-interaction between cultivars 
and fertilizer combinations as shown in Table 3. The treatment (Arizona cultivar 
+ 100% chemical fertilizer) has achieved the highest average amounted to 53.61 cm 
which did not significantly differ from the treatment (Arizona cultivar + organic 
fertilizer + bio-fertilizer + 25% chemical fertilizer).

3.2 Leaf area (cm2.plant−1)

The fertilizer combinations had a significant effect, the treatment (organic 
fertilizer + bio-fertilizer + 25% chemical fertilizer) had recorded the highest average 
amount to 9448 cm2.plant−1, and the lowest value at the control treatment which 
amounted to 5158 cm2.plant−1. In the bi-interaction between cultivars and fertilizer 
combinations Table 3, the treatment (Arizona cultivar + Organic Fertilizer + Bio-
fertilizer + 25% Chemical Fertilizer) gave the highest value of leaf area amounted to 
9454 cm2.plant−1.

3.3 Chlorophyll contents in leaves (SPAD unit).

Table 2 showed the highest value of chlorophyll contents in leaves amounted 
to 38.21 SPAD compared to the Rivera cultivar, which recorded the lowest value 
amounted to 35.51 SPAD. As for fertilizer combinations, the treatment (organic 
fertilizer + bio-fertilizer + 25% chemical fertilizer) recorded the highest value 
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amounted 38.70 SPAD compare with other fertilizer combination treatments, 
while there was no significant differences among the treatments of bi interactions 
between cultivars and fertilizers combinations Table 3.

3.4 Percent of dry weight of leaves

Table 2 has shown that Arizona cultivar was achieved the highest value of 
percent of dry weight in leaves amounted to 14.98% compared to the Rivera cultivar 
which has been recorded the lowest percent of dry weight of leaves amounted 
to 14.01%.

The results indicated that a significant differences between the fertilizer com-
bination treatments, the treatment (Corn cobs compost + 25% chemical fertilizer) 
recorded the highest average amounted to 15.56% which did not differ significantly 
from the treatment (corn cobs compost + bio-fertilizer + 25% chemical fertilizer) 
which amounted to 15.09%. Differences between bi-interaction treatments did not 
reach a significant level Table 3.

3.5 The total yield (tons.ha−1)

Table 2 has indicated that Arizona cultivar has been achieved the highest 
value of total yield amounted to 35.49 tons.ha−1 compared to Rivera cultivar which 
recorded the lowest total yield amounted to 31.21 tons.ha−1.

The results in Table 2 has indicated that Arizona cultivar has achieved the 
highest value of total yield amounted to 35.49 tons.ha−1 compared to Rivera cultivar 
which recorded the lowest total yield amounted to 31.21 tons.ha−1. As for fertilizer 

LSD 0.05 Study factors

Plant 
height 

cm

Leaf area  
(cm2.plant−1)

Chlorophyll 
content 
(SPAD)

Percent of dry 
weight of the 

leaves

Total 
yield

ton.ha−1

V1 48.38 7842.88 38.21 14.98 35.49

V2 34.82 7681 35.51 14.01 31.21

LSD 0.05 2.734 0.311 1.858 0.823 1.553

F1 39.39 6351.50 36.77 14.10 35.62

F2 37.90 5876.50 33.19 13.50 28

F3 41.17 8079.50 37.37 14.76 33.80

F4 45.74 9218.50 37.66 15.56 36.20

F5 40.42 8911.50 37.79 14.40 37.56

F6 45.87 9448 38.70 15.09 40.58

F7 44.50 9052 36.80 14.85 33.50

F8 37.79 5158 36.62 13.67 21.55

LSD 0.05 2.885 1.642 1.576 1.147 1.112

V = Cultivars, V1 Arizona, V2 Rivera; F = Fertilizer combinations, F1, (corn cobs compost), F2 (corn cobs compost 
Organic fertilizers + bio-fertilizer), F3 (corn cobs compost + chemical fertilizer 25% of recommended fertilizer), F4 
(corn cobs compost + chemical fertilizer 25% of recommended fertilizer), F5 (corn cobs compost + bio-fertilizer + 
chemical fertilizer 50% of recommended fertilizer), F6 (corn cobs compost + bio-fertilizer + chemical fertilizer 25% 
of recommended fertilizer), F7 (Chemical fertilizer 100% full recommended fertilizer), F8 (Control).

Table 2. 
Effect of cultivar and fertilizer combinations on the traits of growth and yield of potato plant.
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combinations treatments recorded a significant difference between them, the 
treatment (corn cobs compost + bio-fertilizer + 25% chemical fertilizer) achieved 
the highest value with 40.58 tons.ha−1, while the control treatment recorded the 
lowest value amounted to 21.55 tons.ha−1. Table 3 has shown that Arizona cultivar 
which was treated with (Corn cobs compost + Bio-Fertilizer + 25% Chemical 
Fertilizer) gave the highest total yield amounted to 43.24 tons.ha−1 compared to 
other treatment.

The results above emphasized that the Arizona cultivar has been achieved the 
best values compared to Rivera cultivar in all study parameters, may that due to the 
variation of genetic traits among the cultivars as well as to the response of Arizona 
cultivar to the factors and conditions of the soil properties more than Riviera.

The superiority of the Arizona cultivar in the plant height, number of leaves, 
leaves area, led to an increase in the carbon metabolism, and accumulation of car-
bohydrates, amino acids and finally increased proteins, that elevated the dry matter 
in leaves, which reflected on total yield.

The mixing of corn cobs compost (compost) and bio-fertilizer raised the 
nitrogen availability in the Rhizosphere and encouraged the activity of the micro-
organisms, and elevation of microorganisms activity accompanied by raising 
the rate of organic phosphorus mineralization, then an increase of phosphorus 
availability, which had been effected on stimulating co-enzymes and forming 
chlorophyll [11, 12].

Study factors

LSD 0.05 Plant 
height 

cm

Leaf area  
(cm2.plant−1)

Chlorophyll 
content (SPAD)

Percent of dry 
weight of the leaves

Total 
yield

ton.ha−1

V1 F1 46.17 6543 37.63 14.27 37.50

V1 F2 45.54 5965 35.67 14.17 29.65

V1 F3 49.73 8043 38.90 15.35 37.24

V1 F4 49.89 9369 38.41 15.82 39.62

V1 F5 47.31 9056 39.33 15.14 41.35

V1 F6 50.45 9454 40.63 15.33 43.24

V1 F7 53.61 9027 37.40 15.68 33.79

V1 F8 44.31 5286 37.73 14.06 21.55

V2 F1 32.62 6160 35.90 13.94 33.75

V2 F2 30.26 5788 30.70 12.84 26.35

V2 F3 32.60 8116 35.83 14.18 30.35

V2 F4 41.59 9068 36.90 15.3 32.78

V2 F5 33.54 8767 36.25 13.66 33.76

V2 F6 41.29 9442 36.77 14.85 37.92

V2 F7 35.38 9077 36.20 14.03 33.21

V2 F8 31.27 5030 35.50 13.28 21.55

LSD 0.05 4.024 2.177 Non-Significant Non-Significant 1.662

Significant at P<0.05, ANOVA; since the 2-way interaction was significant it was used to explain results.

Table 3. 
Effect of interactions on the traits of yield and growth of potato plant.
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The mineral and bio-fertilizers mixing with the organic matter have a positive 
role in improving the vegetative traits and providing the elements necessary for 
plant growth and development, which contributes to increasing the photosynthesis 
process, thus increasing manufactured carbohydrates, and stored in tubers. These 
results agree with [13–15], which they found that organic fertilizers have a role in 
increasing the yield.

This may also due to the role of bio-fertilizers and mineral fertilizers because 
they contain nutrients such as where they are available to absorption after mineral-
izing it in the soil due to soil revitalization and this leads to improving vegetative 
growth, thus an increase in the yield [16, 17].

4. Conclusions

1. The results above have been confirmed the role of cultivars in obtaining an 
economic yield in response to the surrounding conditions, as the Arizona 
variety was more suitable in the conditions of the cultivated area.

2. The addition of chemical fertilizer was reduced by 75% through the combi-
nation treatment F6 (Corn cobs compost + Bio-Fertilizer + 25% Chemical 
Fertilizer), which realized the highest yield compare with other combination 
treatments.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 4

Solanum tuberosum Cultivation 
Using Nitrogen Recovered from 
Local Wastewater
Daniel P. Smith and Nathaniel T. Smith

Abstract

This chapter presents an approach to recover nitrogen from human waste-water 
at local-scale for cultivation of Solanum tuberosum (potato) as food crop. Nitrogen 
capture is by ion exchange of ammonium (NH4

+) onto zeolite, a natural low cost 
mineral which is available worldwide. A coupled process is described in which waste-
water ammonium is sorbed to granular zeolite, biologically extracted (desorbed), 
and used to support Solanum tuberosum growth in fill-and-drain or irrigation 
cultivation. The system employs separate components to optimize conditions for 
ammonium sorption (anaerobic ion exchange), desorption (aerobic bioextraction), 
and cultivation (flexible timing of water and nitrogen supply and nutrient recycle). 
System architecture provides a low cost and readily implemented system for highly 
efficient nitrogen capture and incorporation into potato tuber. The nitrogen recycle 
system enables sustainable local-scale intensification of Solanum tuberosum produc-
tion and enhanced food security through use of a reliable local nutrient supply. 
Metrics are presented for per capita tuber production, land area, and productivity. A 
system design is presented with a path forward for demonstration and development.

Keywords: wastewater, nitrogen, resource recovery, ion exchange, plant nutrient, 
Solanum tuberosum

1. Introduction

The challenge of feeding the world’s population requires sustainable intensifica-
tion of food production– producing more food from the same amount of land with 
fewer external inputs and less profound negative effects on the environment [1]. 
Potato (Solanum tuberosum) has an important role to play in sustainably increasing 
food supply. More than a billion people worldwide eat potato (Solanum tuberosum) 
and potato consumption is steadily expanding in the face of population growth and 
food security needs [2]. Potato is the world’s number one non-grain food, with a 
global crop production of 370 million metric tons in 2019 cultivated on 17.3 million 
ha [3]. The recent State of the World report by FOA stated that the cost of food is a 
significant factor in global food security and low levels of productivity are a signifi-
cant barrier to lower costs [3]. Regional potato yields range widely, from 50 tons per 
hectare (t/ha) and greater in high-input agricultural systems to less than 0.6 t/ha in 
subsistence cropping with minimal fertilizer use [4]. Nitrogen (N) is a key nutrient 
required for Solanum tuberosum growth and is the fertilizer component that must be 
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supplied in greatest quantity [5]. Nitrogen is essential to vegetative growth, protein 
synthesis, high potato yields and optimum crop quality [6]. Wastewater is a reliable 
local source of nutrients, and capturing nitrogen from wastewater and directing it 
to potato cultivation could increase productivity with low input costs. Since potato 
prices are often determined by local production costs [7], use of wastewater as 
locally available nitrogen source merits serious consideration.

2. Nitrogen for Solanum tuberosum production

Solanum tuberosum crop yield and quality are mostly dependent on the avail-
ability of nutrients and adequate moisture in the growth medium [8, 9]. Nitrogen is 
a major required macronutrient for Solanum tuberosum production and is essential 
to vegetative growth, protein synthesis, and high potato yields and quality [5, 6, 
10, 11]. While potato consumption is steadily expanding in developing countries, 
more rapid expansion of supply is desirable to for adequate world food supply [2]. 
According to FOA, limited levels of productivity are a significant barrier to the 
lower costs needed to increase global food security [4]. However, where low input 
or subsistence cropping is employed, potato yields are much lower (< 5 t/ha) versus 
yields of 50 t/ha or more in high-input agriculture [3].

Human waste contains large quantities of nitrogen and other growth nutrients 
for Solanum tuberosum production. Where toilet systems are installed, human waste 
takes the form of wastewater, which is locally produced and continuously available. 
Wastewater treatment can supply low cost nitrogen and other nutrients at low cost. 
Coupling wastewater treatment with resource recovery for potato production can 
provide a system to realize the potential of Solanum tuberosum to increase global 
food security. Modern high-input agricultural practices contribute significantly to 
human alteration of the global nitrogen cycle [12]. Use of human waste for Solanum 
tuberosum production assists in the need to transform food production systems [4] 
and the UN sustainable development goals of higher standards of sanitation [13]. 
The use of controlled wastewater systems to deliberately recover nitrogen for potato 
production also reduces nitrogen losses to the environment and degradation of 
water quality [14].

The composition of major elements in potato tubers is listed in Table 1 along 
with per capita generation rates for humans estimated from detailed studies of urine 
and fecal composition and generation rates [18]. Potato composition estimates were 
made from compositing multiple literature sources [11, 15–17]. Three major growth 

Element Potato tuber g/kg1 Human waste g/cap-day2

Nitrogen N 3–14 12.80

Phosphorus P 2.6–3.2 2.51

Potassium K 2.9–13 2.78

Magnesium Mg 0.21–1.3 0.35

Calcium Ca 0.05–0.17 1.21

Iron Fe 0.007–0.023 30.00

Sodium Na 0.034–0.070 0.80
1Millard [11], El-Latif et al. [15], Beldjilali et al. [16], Burrowes and Ramer [17].
2Estimated from Rose et al. [18].

Table 1. 
Element composition in potato tubers and human waste generation.
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elements (N,P,K) are required for Solanum tuberosum propagation and tuber quality 
[19]. N, P, and K elements are present in large quantity in human waste (Table 1). 
Nitrogen (N) is the mineral nutrient most commonly deficient in agricultural soils 
[20] and a major determinant of tuber yield and quality [21–23]. The capture of 
wastewater nitrogen with zeolites and its recycle into plant protein is the major focus 
of this chapter. Positively charged elements in wastewater (K+, Ca+2) can also partici-
pate in ion exchange sorption and desorption cycles on zeolite [24, 25]. The provision 
of bulk wastewater storage in the system design described in this chapter can also be 
used as a source for other growth nutrients.

Wastewater is widely used for both irrigation and as nutrient source in agricul-
ture, where the degree of treatment affects plant productivity and soil quality [26]. 
Wastewater agricultural uses include conventional field cropping [27], aquaponics 
[28] and hydroponic growth systems [29]. This chapter presents a system in which 
nitrogen is separated from the bulk wastewater to enable its deliberate and con-
trolled supply for Solanum tuberosum cultivation.

Nitrogen is essential for conversion of solar energy into carbohydrates that are 
stored in the tuber. Proper nitrogen supply is needed for high yields and potato 
quality [30, 31]. It is desirable to match the timing of nitrogen supply with specific 
growth stages. Potato development generally follows sequential stages of 1. sprout 
development, 2. vegetative growth, 3. tuber initiation, and 4. tuber bulking. 
Nitrogen demand is low in the first month after planting (sprout development) and 
high in tuber initiation and bulking stages. The timing of growth stages is approxi-
mate and varies with environmental conditions and cultivars, and a nitrogen 
supply system must have a flexible nitrogen delivery rates to meet a range of plant 
growth needs.

For the recovery of wastewater nitrogen for potato production, it is desirable 
that the system reduce nitrogen losses to the environment such as occur with widely 
used soluble nitrogen fertilizers [32, 33]. Environmental losses can be minimized 
with a system that captures wastewater nitrogen on zeolite for its controlled 
release to match plant metabolic needs, as by a cultivation system that collects and 
recycles water.

Soil moisture affects the growth and yield of potato crops from both micro and 
seed tubers, and can soil water stress from lower irrigation rates can lead to lower 
tuber yields [34]. A system to capture nitrogen for Solanum tuberosum production 
must also supply adequate water throughout potato growth stages. The potato 
growth system described in this chapter includes storage of bulk treated wastewater 
that can be used for water consumptive demand and to supply nutrients other than 
nitrogen.

3. Capture of wastewater nitrogen with granular ion exchange media

Nitrogen in sanitation water is primarily ammonium (NH4
+) and organic nitro-

gen and the organic nitrogen form is converted to NH4
+ in anaerobic treatment [35]. 

Ammonium nitrogen in wastewater can be sequestered onto zeolites, natural low 
cost minerals with ion exchange properties which are available worldwide [36, 37]. 
Sorption of NH4

+ by cation exchange zeolites is effective under anaerobic conditions 
[38]. Anaerobic treatment of sanitation water and NH4

+ removal by ion exchange 
can comprise an integrated and low cost system to recovery of nitrogen from human 
sanitation water for potato production [39, 40].

Zeolites The sequestration of ammonium ion has been reported for a wide variety 
of natural zeolites, including salt activated Chinese (Hulaodu) zeolite [41], locally 
sourced zeolite in South Africa [42], natural Iranian zeolite [43, 44], Carpathian 
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clinoptilolite [24], Malaysian zeolite [45], Doganteppe Turkish zeolite [46], natural 
Australian zeolite [47], natural Turkish (Yıldızeli) zeolite [48], and Serbian clino-
ptilolite [49].

In addition to NH4
+, potassium ion (K+) can also be sequestered by natural 

cation exchange zeolites, and desorbed [25, 45]. Potassium is a significant elemental 
component in potato tuber (Table 1). Potassium and other cations may partici-
pate along with NH4

+ in the processes of capture and release from zeolite and 
cation sorption of cations is competitive [50]. Wastewater constituents other than 
ammonium and prominent cations can also be removed from wastewater by ion 
exchange though there is limited research in this area [51, 52]. Zeolite as soil amend-
ment enhances grain crop yield and reduces nitrate leaching [53]. Zeolite-sorbed 
wastewater nitrogen to enhanced growth of Arthrospira platensis cyanobacteria 
[49]. Zeolite was used to separate NH4

+ from wastewater, which was substantially 
recoverable and useful for slow release nitrogen fertilizer [54].

Anaerobic Baffle Reactor The Anaerobic Baffle Reactor (ABR) is suitable as for 
primary sanitation water treatment prior to granular zeolite media. The Anaerobic 
Baffle Reactor (ABR) is an anaerobic solids blanket bioreactor with multiple upflow 
chambers that are hydraulically linked through alternating downflow plena [55]. 
Flow between ABR chambers does not require pumps and is suitable for primary 
anaerobic treatment of sanitation water [56]. ABR has been applied in ecological 
sanitation systems for passive, low maintenance primary treatment of sanitation 
water in low-income communities [57, 58]. The solids blankets in anaerobic upflow 
reactors foster sedimentation, filtration and colloidal retention of sanitation water 
components, as well as anaerobic biological treatment [59–61].

Field IX Prototype The integration ion exchange recovery of wastewater NH4
+ 

with anaerobic pre-treatment of sanitation water was verified in a field prototype 
study [62]. The IX reactor contained three upflow chambers, each preceded by 
a downward plenum and each containing granular porous zeolite (Figure 1). IX 
chambers retain NH4

+ by ion exchange and function as anaerobic biofilters [35]. 
Design features of the IX prototype are listed in Table 2. The IX reactor had a 
liquid empty bed volume including down flow channels of 41.7 L. Specific con-
struction details were presented previously [35]. Zeolite was NV-Na Ash Meadows 
Clinoptilolite (St. Cloud Mining Company), selected for its low cost, availability 
in multiple grain sizes, and its stable long-term supply. Nv-Na properties are listed 
in Table 3. Nv-Na is a hydrous sodium aluminosilicate with high specific surface 
area (40 m2/g) and bulk density of ca. 800 kg/m3. The major chemical components 
are 69.1% SiO2, 11.9% Al2O3, 3.8% K2O, and 3.5% Na2O. According to the manu-
facturer, Nv-Na has a clean water Cation Exchange Capacity (CEC) of 1.85 meq./g 
(185 cmol(+)/kg). Media in Chamber 1 consisted of 100% of US 4x8 Nv-Na (2.38–
4.75 mm). Media in Chambers 2 and 3 was 100% US 8x16 Nv-Na (1.18–2.38 mm).

Figure 1. 
IX field prototype wastewater nitrogen capture.
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Field testing was conducted in Maryland at the Mayo Water Reclamation Plant 
in Anne Arundel County. The Mayo facility receives treats a daily flow of 1,890 m3/
day primary treated household wastewater from 3,500 residences. Influent to IX was 
pumped from the plant influent wet well. Zeolite was placed in the three Chambers 
on Day 0. The goal of initial operation was to establish the validity the IX concept and 
confirm its central treatment architecture. The IX prototype was dosed once per hour 
by peristaltic pump at 10.2 L/d from start of operation to Day 319 (4.1 day empty bed 
HRT. The prototype operated over an ambient temperature range of 7–24°C through-
out the study. Flowrate was increased on Day 320 to accelerate the breakthrough of 
NH4

+ and exhaust the sorption capacity of the IX media. Flowrate was increased to 
36.5 L/d on Day 320 (factor of 3) and 71.4 L/d on Day 344 (factor of 7).

IX Prototype Performance A characteristic profile of nitrogen species through 
IX chambers after initial operation was established is shown in Figure 2. The 
predominant nitrogen forms in IX influent are Organic Nitrogen and ammonium, 
which are substantially decreased by IX Chamber 1 through Day 85. Nitrate and 
nitrite are not present through the IX system. Monitoring results are summarized 
in Table 4 for the monitored period of Day 1–214 well before breakthrough of 
NH4

+ past Chamber 1. For the Day 1–214 period, TN removal was greater than 
95%. The retention of NH4

+ by ion exchange was the major factor that determined 
Total Nitrogen (TN) removal by IX throughout the study. Through the entire pro-
totype operation, Organic Nitrogen (ON) remained below 2 mg/L in IX effluent 
and nitrate and nitrite were below detection levels. Effective NH4

+-N removal was 
calculated from effective influent NH4

+-N and measured effluent NH4
+-N, where 

effective influent NH4
+-N is the sum of measured influent NH4

+-N and the change 
in ON across the IX reactor. Effective NH4

+-N reduction was virtually complete 

Chamber Media Empty Bed 
Volume (L)

Empty Bed Residence 
Time (hour)2

Zeolite Mass 
(kg)

Zeolite1

1 U.S. 4 × 8 15.9 37.4 6.55

2 U.S 8 × 16 13.2 31.1 7.18

3 U.S 8 × 16 12.6 29.6 5.13

Total 41.7 98.2 18.8
1Clinoptilolite, 1.85 meq/g CEC.
210.2 L/d mean flowrate.

Table 2. 
Prototype IX design.

Grain size, mm 1.5–4.5

Color Tan - Green

Pore Volume, % 1500%

Pore Diameter, Angstrom 4.0

Specific Surface Area, m2/g 40

Bulk density, kg/m3 820

Solid Density, kg/m3 1,600

Ion Exchange Capacity, meq/g 1.85
1https://www.stcloudmining.com/.

Table 3. 
Properties of granular Clinoptilolite.
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from Day 1–214 (Table 4). For the extended operation period (Day 215–355), 
mean TN removal was affected by NH4

+ breakthrough; mean removals of TN and 
NH4

+-N were 29.7% and 12.1%, respectively. IX treatment substantially reduced 
wastewater organic matter, as indicated by a mean COD reduction of 58.7% (Day 
1–214). IX effluent pH remained circumneutral throughout the study and ORP in 
chamber effluents remained negative.

The timecourse of ammonium nitrogen in IX chamber effluents is shown in 
Figure 3. Chambers 1, 2 and 3 showed sequential breakthrough of NH4

+ over 
extended operation. IX effluent NH4

+ (Chamber 3) remained below 0.07 mg/L 
through Day 214 and was ca. 2 mg/L through Day 319 after substantial break-
through had occurred in Chambers 1 and 2 (Figure 3). The timecourse of NH4

+ in 
chamber effluents during continuous flow showed the NH4

+ breakthrough fronts 
as sorption capacity became exhausted. Flow rate was increased from Day 320 to 
the end of operation on Day 355. Effluent NH4

+ increased rapidly after flow rate 
was increased and continued through Day 355. At the end of operation, NH4

+ lev-
els in the effluents of Chambers 1, 2 and 3 were at or near the influent NH4

+ level, 
suggesting complete exhaustion of the ion exchange media in all IX chambers. 
The effective ammonium exchange capacity was 11.3 mg NH4

+-N/g dry weight 
(0.81 meq/g), or 44% of the Nv-Na clean water capacity. For the Mayo waste-
water matrix, effective Nv-Na capacity for NH4

+ was 16% lower than that found 
in a Florida onsite wastewater IX [35]. Lower capacity in the Maryland IX was 
possibly due to competitive ion exchange. Calcium and sodium are prominent 

Figure 2. 
IX nitrogen removal profiles (day 0–85).

Nitrogen fraction Mean Influent Mean Effluent % Removal

Total 54.0 1.3 97.6

Total kjekldahl 54.0 1.9 96.5

Organic 14.3 1.3 91.2

Ammonia 42.7 0.014 100.0

Nitrate - nitrite 0.02 0 —

Table 4. 
IX nitrogen removal performance (day 1–214).
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competing cations that could affect NH4
+ capacity [44]. Jama and Yucel, 1989 

developed forward and reverse ion-exchange isotherms for clinoptilolite and 
binary solutions of NH4

+/Ca+2 and NH4
+/Na+, at a total ionic concentration of 

0.10 eq/dm3. Significant reductions in NH4
+ capacity were observed for both 

competing Ca+2 and Na+ ions. The conductivity of Maryland wastewater (3,650 
uS/cm) suggested that NH4

+ capacity might have been reduced by competing 
cations, possibly from collection system infiltration in this coastal location or Na+ 
from water softener backwash.

Flow rate increases of 3 and 7 times were imposed after Day 320 (Figure 1) 
and IX Empty Bed Contact Time was decreased to as low as 0.6 d. The IX process 
showed no observable adverse effects on operation during this period, other than 
the intended acceleration of NH4

+ breakthrough. This suggests that IX performance 
can be robust and resilient when challenged by the significant flow variations 
that are typical of local sanitation systems. IX is a highly effective system for local 
nitrogen recovery. It is passive, mechanically simple, has no inherent energy need, 
and requires little operator attention. The IX process is resilient and amenable to 
seasonal operation. IX a highly appropriate technology for local application and 
provides a new option for locations where wastewater nitrogen removal is critical. 
Nitrogen captured in IX can be recovered for recycling.

A field IX prototype identical to the Maryland prototype was operated in 
Florida. The Florida IX prototype also treated actual wastewater that had received 
anaerobic primary treatment. Total Nitrogen in sanitation water was reduced by 
over 95% by both prototypes. Nitrogen removal capacities of clinoptilolite zeolite 
(1.85 meq/g CEC) are shown in Table 5 [35, 62]. Retention capacity of ammonium 
nitrogen was 13.5 and 11.3 g NH4

+-N per gram clinoptilolite, or 52.1 and 43.6% of 
clean water CEC. The effective ammonium capacity was ostensibly reduced by 
competing cations (Na+, Ca+2) or other factors. Ammonium capacity reductions 
from competing cations would be expected to generally occur for various zeolites 
from different regions and sources. The operational ammonium capacity shown 
by the prototypes, however, is quite useful technologically for sequential sorption 
and bioextraction of nitrogen for plant growth. In developing countries, low per 
capita water usage could result in higher nitrogen concentrations in wastewater and 

Figure 3. 
Time Profiles of Ammonium Nitrogen through IX Chambers.
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possibly increase the competiveness of NH4
+ sorption. It is noted high effective-

ness of TN recovery by IX was maintained at temperatures of 7 to 31C (Table 5). 
Ammonium recovery by IX may be suitable across many climate zones.

Summary IX is a viable means to for recover of nitrogen from wastewater over 
extended periods. IX treatment of primary effluent sanitation water can recover 
nitrogen in a passive, mechanically simple process without pumps and sophisti-
cated controls. The system recovers a high percentage of nitrogen, is reliable, and 
is effective at high and low temperatures. It is effective at varying flow rates, for 
discontinuous operation and, suitable to local scale deployment. Final effluent of 
IX treatment is low in total suspended solids (TSS) and low in five-day carbona-
ceous biochemical oxygen demand (C-BOD5) as a measure of bulk organic oxygen 
demand [35].

Solute transport model A one-dimensional solute transport model that accounted 
for advection, diffusion & equilibrium adsorption was used to model the transport 
of NH4

+ through ion exchange chambers [62]. In the z direction:

  
= − 
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where C = solute concentration (mg/cm3 NH4
+-N), t = time (d), D = hydrody-

namic dispersion coefficient (cm2/day), z = length (cm), and vo = pore water veloc-
ity (cm/day). The dimensionless retardation factor R encompasses instantaneous 
adsorption equilibria between pore water and solid phase:
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where p = solid phase bulk density (g/cm3), K = solute distribution coefficient 
(L/kg), N = sorption parameter (−) and θ = porosity (cm3/cm3). Solution of the 
model employed an analytical solution for fully saturated flow through porous 
media [63].

Simulation of NH4
+ transport The 1-D solute transport model (Eqs. (1) and 

(2)) model was used to predict the NH4
+-N concentrations in the effluents of the 

three ion exchange chambers. The model was applied with z axis of zero at the 
entrance to the first ion exchange chamber (Chamber 1) and time zero on the day 
of zeolite placement into Chambers 1, 2 and 3. Parameters were estimated for initial 

Site Wastewater County Park Residence and Day 
Lavatory, Florida

Influent to Maryland 
WWTP

Days Operated 662 355

Temperature Range, °C 23–31 7–17

Mean Influent Total Nitrogen, mg/L 44.2 56.0

TN Reduction, % 97.6

NH4
+ Capacity, mg N/g dw 13.5 11.3

% of CEC 52.1 43.6

Table 5. 
IX nitrogen removal performance and capacity.
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conditions and for each term in Eqs. (1) and (2). The simulation used the mean 
influent NH4

+-N concentration of 52.0 mg/L that entered Chamber 1 through the 
study. The total mass of NH4

+-N removed in IX operation was calculated as the 
difference between influent and effluent mass over 355 d of operation, which were 
estimated as the integrated areas under the influent and effluent time profiles of 
NH4

+-N. The total NH4
+-N mass removed divided by the dry weight of Nv-Na added 

to the three ion exchange chambers yielded a sorption capacity of 11.3 mg NH4
+-N/g 

dw Nv-Na (0.81 meq/g) for the IX treating Mayo wastewater. The distribution coef-
ficient of 218 L/kg was calculated from the clinoptilolite sorption capacity and the 
mean influent NH4

+-N concentration. Linear sorption was assumed for the simula-
tion (N = 1 in Eq. (2)). A media porosity of 0.45 was used based on manufacturer 
information and the retardation factor was 389 (dimensionless). Analytical solu-
tions were calculated using 1-D path lengths and pore velocities in each of chamber.

Simulated breakthrough of NH4
+-N in Chambers 1 through 3 are shown in 

Figure 4 along with measured NH4
+-N concentrations. The 1-D model provided a 

generally reasonable simulation of NH4
+-N breakthrough in IX chambers. Zeolite 

is predicted to approach exhaustion on Days 300, 420, and 540, respectively, in 
Chambers 1, 2 and 3. Monitored chamber breakthroughs occurred sequentially 
as expected and in accord with the simulation. The 1-D model approximated 
measured NH4

+-N values for Chambers 1 and 2 throughout, and for Chamber 3 
up until Day 320. The monitoring data for Chambers 1 and 2 are predicted fairly 
well by the 1-D simulation. Model predictions are quite acceptable considering 
that that the 1-D solute transport solution employs a constant influent concentra-
tion versus the actual influent nitrogen level that varied significantly (Figure 3). 
The discrepancies between NH4

+-N measured in Chamber 3 effluent versus the 
simulation model are due to the high increase in influent flowrate after Day 320, 
which invalidated the model assumption of constant flowrate and resulted in a 
much more rapid breakthrough of NH4

+.
The general competence of the simulation illustrates that NH4

+ retention by 
granular ion exchange media appears to be a tractable when treating actual onsite 
wastewater. Rational procedures for analysis, design, and monitoring can be 
developed for field deployments. NH4

+ retention is the main factor affecting Total 
Nitrogen removal. Modeling and data suggest that operational methods can be 

Figure 4. 
Simulation model of ammonium ion breakthrough.
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developed to optimize NH4
+ retention, prevent nitrogen breakthrough and loss, 

cease wastewater flow to the ion exchange chambers, and initiate bioextraction of 
nitrogen from the spent media.

Simple field measurement of NH4
+ in the IX chamber effluents can assess media 

exhaustion in each chamber, determine location of a breakthrough front, and assist 
on determining when to cease operation and switch to an alternate parallel IX train.

4. Incorporation of wastewater nitrogen into Solanum tuberosum

Bioextraction Incorporation of recovered wastewater nitrogen requires desorption 
of NH4

+ from zeolite and supplying nitrogen to plant roots. Biological extraction 
couples biological oxidation of ammonium to nitrate (nitrification) with ammonium 
desorption from zeolite. The driving force for desorption is affected by the sorption 
density of NH4

+ in the zeolite and the concentration of NH4
+ in bulk water in media 

pores or in film water on the media surfaces. Nitrification reduces the NH4
+ concen-

tration and increases driving force. Nitrification rates are affected by the population 
of nitrifying microorganisms, temperature, oxygen supply, and pH.

Bioextraction is accomplished by circulating extraction water through 
zeolite(IX) to simultaneously desorb and nitrify NH4

+. In fill and drain bioextrac-
tion, water is pumped from a bioextraction reservoir in order to fill and saturate 
the IX media, which then passively drains back to the reservoir when pumping is 
discontinued. In fill stage the zeolite media becomes flooded (saturated) are remains 
so until pumping is discontinued. In drain stage, passive drainage begins at high rate 
and gradually declines, restoring unsaturated conditions until the next fill stage. 
The frequency, duration and magnitude of pumping in the fill stage are important 
operational features that determine the quantity and timing of water supply, the 
temporal extents of saturated and unsaturated conditions and their relative dura-
tions, and the oxygen supply regimes.

Nitrogen bioextracted from IX accumulates in the volume of bioextraction water, 
generally as ammonium (NH4

+) or nitrate (NO3
−). Oxygen is supplied by water added 

during the fill stage and in the drain stage by ingress of air into the unsaturated media. 
Nitrification consumes alkalinity, which may depress the pH of the bioextraction 
solution and inhibit nitrification. Sodium carbonate and sodium bicarbonate can be 
amended to the bioextraction water to prevent pH decline [64]. Ammonium is inhibi-
tory to nitrification at high concentrations. The buildup of ammonium in the bioex-
traction reservoir can be limited by bleed off to a separate plant growth system. Bleed 
off of the bioextraction reservoir can also have alkalinity preservation consequences.

The requirements of zeolite bioextraction coupled to plant growth suggests two 
system architectures:

• One stage: direct fill and drain cultivation of potato in zeolite media

• Two stage: fill and drain bioextraction and separate stage potato production

In the one stage system, potato grows directly in the zeolite media bed used 
for recovery of wastewater nitrogen. The two stage system separates fill and drain 
bioextraction from plant growth. The one stage system requires less area and has 
less supported volume for IX media and plant cultivation. Plant growth in the one 
stage system is obligatorily conducted in fill and drain mode. Management of the 
bioextraction reservoir nutrient content, chemical composition, and plant water 
and growth requirements are more intricately related.
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In the two stage system, bioextraction can be optimized independently of the 
requirements and constraints of plant growth. Plant growth can be accomplished 
either in fill and drain mode with highly porous media, or with more conventional 
soil based systems and irrigation practices. A separate nutrient reservoir can flex-
ibly supply nutrients and water for plant growth requirements. The bioextraction 
reservoir and plant growth nutrient reservoir can be linked for more flexible control 
of nutrient content and chemical composition. Solanum tuberosum cultivation 
produces prolific underground biomass in addition to potato tubers. An advantage 
of the two stage system is that Solanum tuberosum is not cultivated directly in the 
granular ion exchange media. Subsurface plant biomass products such as fine 
micro-roots, plant mycelium, and other constituents would not remain in the IX 
media after harvesting. These plant products could hamper the ability to regenerate 
and reuse IX media for continuous future deployments.

Transmission of pathogens and other constituents are of concern when waste-
water is used for irrigation of crops, as reported for sewage farming [65, 66]. A two 
stage system incorporates inherent transmission barriers because the bioextraction 
and plant growth functions are separated. Solanum tuberosum does not grow in the 
zeolite media through which wastewater has passed, and transfer of IX bioextrac-
tion water to the growth system is the only communication from IX to Solanum 
tuberosum. The two stage system also has opportunities to create additional barriers. 
A one stage system has fewer barriers to transmission than a two stage system.

Direct plant growth in zeolite The integration of recovery of wastewater nitrogen 
with zeolite with direct growth of food crop in zeolite media has been demonstrated 
for Solanum lycopersicum [62]. The coupled system for zeolite bioextraction and 
plant growth is shown in Figure 5. Fill-and drain experiments were conducted 
using spent zeolite that had reached its ammonium retention capacity when treat-
ing wastewater at the Mayo Water Reclamation Plant in Anne Arundel County, 
Maryland (described in previous section). Spent zeolite was removed from the three 
IX chambers, blended, and applied in parallel treatments. Plant growth experiments 
were conducted in flood-and-drain regime, with a dedicated bioextraction reservoir 
for each planting container. A fill cycle was initiated on 8 hour interval (3/day) for 
35 min. Establish a 2 cm standing water column above the top of the media. After 

Figure 5. 
Fill and drain cultivation with nitrogen from spent zeolite.
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the 35 min. Fill period, water in the planting containers drained back to the bioex-
traction reservoir and unsaturated conditions in the media were restored.

A controlled growth chamber was used to conduct growth experiments. Parallel 
treatments were conducted using spent Nv-Na clinoptilolite and fresh expanded 
clay (Table 6). Each treatment consisted of a columnar planting container (21.3 cm 
diameter) with 12 cm media depth (3.3 L media volume). The bioextraction reser-
voirs served as source of external growth nutrients and enabled the nitrogen levels 
to be separately monitored for each treatment. Experiments were initiated by plac-
ing 15 Solanum lycopersicum (cherry tomato) seeds one centimeter below the media 
surface at the center of the planting containers. Operation of treatments was then 
commenced under identical conditions. Light was supplied uniformly to the growth 
chamber by a fluorescent 6400 K grow light fixture (Hydrofarm T-5), with a daily 
cycle of 12 h on/12 h off daily cycle. The Photosynthetic Photon Flux (PPF) was 
~250 μmol/m2-sec at 30.5 cm above the granular media surfaces, as measured with 
a quantum meter (Apogee MQ-200, Logan, Utah). The cultivation temperature 
varied between 13.8 to 17.7°C [62].

Bioextraction reservoir water differed in parallel treatments. The full nutrient 
suite contained N, P, K, Ca, Mg, and Si at the levels listed in Tables 1, and 10 ml/L 
of supernatant from an Anaerobic Baffled Reactor (ABR) treating municipal 
wastewater treatment plant influent. Treatment T1 had clean Nv-Na zeolite and 
received the full nutrient suite including synthetic nitrogen (Table 1). T2 received 
no added nutrients. T3 and T4 received no synthetic nitrogen. T4 received the full 
nutrient suite minus nitrogen, whereas T3 received only K and P (Table 1). Growth 
response of T4 versus T1 would ostensibly demonstrate if wastewater nitrogen on 
spent Nv-Na (T4) could be effectively recycled into Solanum lycopersicum growth. 
Bioextraction reservoir volumes at initial start-up were 7.57 L and the pH was 
adjusted to 5.9 ± 0.05. To maintain working volumes of at least 5.7 L, make-up 
water having the same nutrient composition as the starting solutions was added on 

Treatment T1 T2 T3 T4

Granular Media Fresh Media Spent Media from AN-IX Reactor

% 4 × 8 clino — 40 40 40

% 8 × 16 clino 60 60 60 60

% 3/8 exp. clay 40 — — —

Nutrient Supplementation Full Suite None P & K only Full Suite Minus N

Growth Media Ionic

Composition, mM

HNO3 6.0 — — —

K2HPO4 0.5/1.5a — 0.5/1.5a 0.5/1.5a

KCl 2.6 — 2.6 2.6

CaCl2
·2 H2O 1.0 — — 1.0

MgSO4
·7 H2O 1.0 — — 1.0

K2O3Si 1.0 — — 1.0

NaHCO3 6.0 3.0 3.0 6.0

ABR supernatant, ml/L 10 — — 10
aBefore/after Day 63.

Table 6. 
Solanum Lycosperium growth on with spent Clinoptilolite.
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Experiment Days 14, 28, 49, 63 and 81 listed in Table 1. After each make-up water 
addition, bioextraction reservoir pH was adjusted to pH 5.9 ± 0.05.

A comparative, non-destructive measure of plant growth for the parallel treat-
ments was plant canopy volume. Significant differences in Solanum lycopersicum 
growth were observed (Figure 6). The greatest canopy volume was obtained in 
the T4, for which all nitrogen was provided by Nv-Na zeolite. Intermediate plant 
growth was obtained for treatments T1 and T3, which also received external 
nutrients, whereas plant canopy volume was minimal for T2, which received 
no external nutrients (Figure 6). Treatments T1 and T4 were identical with the 
exception of the supply synthetic nitrogen fertilizer to T1 versus growth of T4 in 
spent IX media without synthetic N. The greater growth of T4 versus T1 shows 
that nitrogen separated from human wastewater by IX can be directly recycled to 
production of Solanum lycopersicum. It also suggests that spent media may contain 
components other than nitrogen that are stimulatory to Solanum lycopersicum 
growth. Treatments T3 and T4 were both cultivated in spent IX media but only 
P and K nutrients were supplied to T3 (Table 1). Since both treatments would 
have had access to nitrogen from spent IX media, the lower canopy increase of T3 
suggests that T3 growth may have been limited by trace inorganic nutrient supply 
or a component in ABR supernatant. The number of Solanum lycopersicum fruits 
and flowers in treatment T4 were over two times those of T1 at Day 93, which 
accords with the canopy volume comparison and further demonstrates that spent 
IX provides a favorable medium for plant propagation. The consumptive water use 
for crop production is a significant factor in many regions where water supplies are 
limited. Water use in parallel Solanum lycopersicum treatments was estimated by the 
recorded make-up volumes supplied to the bioextraction reservoirs. The increase in 
canopy volume on Day 93 per consumptive water use was equal to or greater for T4 
(spent IX nitrogen) than synthetic nitrogen fertilizer in T1 [62].

The timecourse of NH4
+ and NO3

− in the dedicated hydroponic reservoirs of 
parallel Solanum lycopersicum treatments are shown in Figure 7. Bioextraction of 
ammonium ion initiated quickly and was substantial through 93 day (Figure 6). 
With spent IX media, nitrogen accumulated in the hydroponic reservoir solution as 
NH4

+ and NO3
− (NO2

− was not detected). Spent zeolite treatments had the highest 

Figure 6. 
Solanum Lycosperium canopy establishment.
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NH4
+-N concentrations (T4 > T3 > T2) with very low NH4

+-N levels observed in 
fresh media of T1. In each of the treatments with spent IX, NO3

−-N increased to 
over 100 mg/L by Day 50, providing evidence that NH4

+ in IX media was readily 
extracted and nitrified (Figure 7b). No deliberate microbial seeding was employed 
in T2, T3 and T4. NO3

− levels in Treatments T2, T3, and T4 in were generally higher 
than NH4

+ to Day 50, showing that nitrification rates kept up with the rates of NH4+ 
extraction from the IX media.

Nitrification was slower to establish in T2, however, perhaps due to the lack of 
added external nutrients. After Day 50 NH4

+-N in T4 reached substantially higher 
levels than T2 and T3 (Figure 7a), during which NO3

− in T4 decreased substan-
tially (Figure 7b). After Day 50, declining NO3

− levels in bioextraction reservoirs 

Figure 7. 
Bioextraction and nitrification in reservoir nutrient solutions: a. Timecourse of ammonia and b. timecourse of 
nitrate in reservoir nutrient solutions.
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(Figure 7b) and highest increases in canopy volume (Figure 5) occurred for 
treatments T1 and T4, suggesting plant biomass assimilation of NO3

−. T2 exhibited 
the highest NO3

− levels, which might be explained by significant bioextraction 
from spent IX and limited plant growth due to the lack of external nutrients. The 
differences in Solanum lycopersicum growth and timecourse of nitrogen species 
in the bioextraction reservoirs illustrate the complex interactions that determine 
solution nitrogen levels and nitrogen availability in coupled bioextraction/plant 
growth systems. Nitrogen availability has important implications for plant growth 
in IX/hydroponic systems, as nitrogen levels and composition can affect growth 
rates and nitrogen allocation in leaves, stems and seeds. Further research is needed 
to optimize nitrogen availability in bioextraction/growth systems.

This study verified that wastewater nitrogen sorbed on zeolite IX process can be 
directly recycled for growth of Solanum lycopersicum (cherry tomato). The bioextrac-
tion/growth system has potential for cultivation of Solanum tuberosum (potato), 
another edible plant in the nightshade family. Unlike the harvestable component 
of Solanum lycopersicum, however, Solanum tuberosum tubers lie below the surface 
of the planted medium. The significance of subsurface tuber production to potato 
production in a one stage bioextraction/growth is a matter that bears consideration. 
For Solanum tuberosum, the separation of the bioextraction and plant growth func-
tions in a two stage system may be warranted.

Separate Stage Bioextraction A separate system for bioextraction of nitrogen from 
spent media can be optimized without the constraints of integrated plant growth. 
Optimization methods include the frequency, duration and magnitude of fill and 
drain cycles, seeding of spent IX media with nitrifying bacterial cultures, and 
alkalinity supplementation. Report in this arena come from wastewater treatment 
where zeolites are integrated into aerobic treatment processes to enhance nitrogen 
removal. Zeolites serve the two functions of ammonium retention through ion 
exchange and as solid substrate for attached growth of nitrifying microorgansms. 
A single reactor, two mode process for ammonium removal from secondary waste-
water effluent using zeolite as the carrier for nitrifying biomass was proposed [67]. 
In the batch bioextraction mode, a nitrification rate of 6 g NH4

+-N/L reactor-day 
(0.44 mg NH4

+-N/g zeolite-hr.) was obtained in a fluidized bed reactor with chaba-
zite as the carrier. Although this rate is in the high range of reported values for bio-
film reactors, desorption experiments proved that nitrification will be the process’s 
rate limiting step, rather than the desorption rate when regenerant solutions as low 
as 2,440 mg/L Na+ were used. Separate mode bioextraction of chabazite zeolite with 
regenerant recycle and sodium bicarbonate buffer for nitrification was investigated 
[68]. They reported ammonium extraction rates of 0.21 g NH4

+/L-hour which were 
limited by the supply of oxygen and equivalent to equivalent to 0.36 mg NH4

+-N/g 
zeolite-hour in their system. Successful single stage zeolite bioextraction of zeolite 
has been reported at temperatures as low as 6°C, and addition of sodium carbonate 
and sodium bicarbonate was been used to supplement alkalinity and prevent pH 
decline which would be inhibitory to biological nitrification [64]. High ammonium 
levels may build up in the bioextraction reservoir of the fill and drain separate stage 
bioextraction system. High ammonium may inhibit nitrification. Coupling of bio-
extraction reservoir with the nutrient reservoir for Solanum tuberosum cultivation 
may be an approach to ameliorate excessive ammonium buildup in the bioextraction 
reservoir.

In the experiments with direct cultivation of Solanum lycopersicum with zeolite 
bioextraction, nitrogen release occurred in consort with plant uptake. Substantial 
nitrogen release occurred over 93 days with NO3

− depletion in nutrient reservoirs 
at ~11 weeks in some cases [62]. Separate stage bioextraction enables optimizations 
that are free of plant growth requirements, such as seeding of spent IX media with 
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nitrifying bacterial cultures and alkalinity supplementation. For an optimized 
separate stage bioextraction process, the time scale for complete ammonium ion 
removal from spent zeolite through oxidation desorption can be estimated as 6 
to 12 weeks. A technological nitrogen capture system could employ alternating 
operation of two parallel IX treatment trains, with one IX train in treatment mode 
(i.e. receiving ABR effluent and capturing wastewater N) and the second IX train in 
regeneration mode (i.e. fill and drain bioextraction). An IX design with an 8 month 
nitrogen capture capacity (single treatment train) would enable bioextraction of 
spent zeolite in the second IX train well within the time to IX exhaustion.

Hydroponic Potato Cultivation There is substantial interest in potato cultivation 
with controlled growth including hydroponic systems. Hydroponic systems that apply 
controlled growth using nutrient solution feeding appear to offer significant advan-
tages for potato production. Hydroponic concepts can draw upon to develop systems 
that grow potato with wastewater nitrogen recovered on zeolites, particularly for 
variant of fill and drain cultivation. Hydroponic systems offers higher areal yields and 
less space than conventional agriculture, large potential reductions in consumptive 
water use, high efficiency of nutrient use, faster growth and lower cultivation times 
[69]. Controlled growth using nutrient solution feeding appears to offer significant 
advantages for potato production. Greater potato productivity and high tuber quality 
with hydroponically grown seed tubers was reported versus those planted in porous 
substrate; higher efficiency of water use and greater mineral nutritional control were 
also advantages of hydroponic culture [70]. Hydroponic systems have the potential of 
discriminating nutrient control, as for example in the delineation of the interactions 
and effects and of nitrogen and potassium ions in nutrient growth solutions on the 
yield, dry matter content, and number of tubers of hydroponically grown potatoes 
[71]. Potato production (Solanum tuberosum L.) is among the most responsive of crop 
species to nitrogen application and controlled growth environments provide a means 
to optimize nitrogen supply and increase productivity [72].

The system for potato cultivation with recovered wastewater nitrogen offers 
some of the advantages of hydroponic systems by intensifying productivity and 
reducing the arable land area required [73]. Fill and drain cultivation of Solanum 
tuberosum provides some of the advantages that hydroponic systems have over 
field soil agriculture [74]. Additionally, the system is provides a resilient method to 
reduces the overreliance on rain-fed agriculture and vulnerability to climate change 
that are emblematic of regions in the developing world [75]. The system is intended 
to achieve high productivity with locally sourced nitrogen, albeit with far less criti-
cal complexity than might be found with many hydroponic growth systems.

Summary Nitrogen on granular zeolite can be incorporated into potato by bioex-
tracting ammonium from the zeolite and supplying ammonium or nitrate for plant 
cultivation. One and two stage systems are envisioned with different advantages, 
degrees of complexity and opportunities for optimization. A system for wastewater 
nitrogen recovery and plant growth is an appropriate technology for sustainable 
intensification of Solanum tuberosum production at local scale. In addition to the 
nitrogen content, wastewater sources can provide other growth nutrients and 
supply consumptive water demand for Solanum tuberosum production. The potato 
growth system described in the following section includes a storage feature for bulk 
treated wastewater.

5. Potato production system

A formulaic design is developed for a system to recover nitrogen from wastewa-
ter by sorption on zeolite and to supply captured nitrogen for Solanum tuberosum 
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production. The system extracts nitrogen from wastewater to provide a reliable and 
flexible nitrogen supply for potato cultivation on an as needed basis, while produc-
ing a quality treated wastewater for consumptive demand, harvesting of other 
constituents, and reuse.

The nitrogen recovery and recycle system:

• Uses a reliable locally generated nitrogen source

• Provide for continuous wastewater processing

• Provide high quality wastewater effluent for reuse

• Recovers and stores nitrogen

• Equalizes nitrogen supply on daily to seasonal time scales

• Provides nitrogen to Solanum tuberosum on as as-needed basis

• Provides transmission barriers between wastewater and Solanum tuberosum 
production

• Maximizes efficiency of nitrogen transfer from wastewater to plant biomass

• Limits nitrogen loss to groundwater as nitrate (NO3
−)

• Limits nitrogen loss to the atmosphere as ammonia (NH3)

Basis of System A design of the nitrogen capture and potato production system 
is based on 10 people and the nitrogen contained in their waste (Table 7). The per 
capita nitrogen excretion rate is estimated as 12.8/cap-day of which 95% can be 
recovered by IX. Water usage rates depend on available water sources. Higher per 
capita water use rates dilute waste components and reduce the nitrogen concentra-
tion (Figure 8). The wastewater nitrogen concentration is 128 mg/L at a design 
flowrate of 100 liters per capita per day, a water use rate established by the World 
Health Organization that ensures that most basic human needs are met and few 
health concerns arise [77]. The system provides the sanitation waste of 10 people to 
provide 44.4 kg/yr. of nitrogen for potato production.

Optimization of potato production with the controlled growth system provide 
advantages over non-controlled cultivation. The system design considers an aerial 
tuber production rate of 30 t/ha-yr. to be achievable, which is well below the 
reported tuber productivities of 50 t/ha-yr. and greater for high input production 
systems [3] and 157 t/ha-yr. in hydroponic systems [74]. If higher areal productivi-
ties can be achieved, which is quite possible, the main effect on the system archi-
tecture would be smaller area of cultivation. The nitrogen content of potato tubers 
is reported to increase with increasing nitrogen availability, plateauing at 1.53%, 
while nitrogen content of foliage was twice as high as tubers [8]. A potato tuber 
content of 1.53% was used in the basis of system design (Table 7). Tuber biomass is 
reported to constitute ca. 80% of total plant mass for Ants and Vigri potato varieties 
at growth maturity [78]. It is maintained, however, that 60% of nitrogen uptake by 
Solanum tuberosum occurs before tubularization [30]. The nitrogen use efficiency 
(NUE) has been defined as the tuber dry matter yield per unit of applied nitrogen 
[76]. For the purpose of a tuber yield calculation, a nitrogen use efficiency (NUE) 
of 33.3% was estimated from these reports for Solanum tuberosum tuber production 
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from supplied nitrogen. An aerial nitrogen supply of 138 g/m2-yr to 322 m2 pro-
duces 967 kg/yr. potato tubers, a yield of 97 kg/cap-year. The system provides the 
high areal productivity that is central to increasing potato production in many low 
income areas dominated by small scale farmers [79].

System Components A schematic of system for nitrogen capture from wastewater, 
bioextraction of nitrogen from zeolite, and Solanum tuberosum production is shown 
in Figure 9. Components of the system are listed in Table 8. The wastewater flow 

Figure 8. 
Water use and wastewater nitrogen concentration.

System Basis

# people 10

g N/cap-day 12.8

g COD/cap-day 154

Per capita flow, L/cap-day 100

N cone., mg/L 128

COD cone., mg/L 1,540

% N capture 95

kg N/yr 44.4

tuber yield, t/ha-yr 30

tuber N content, % 1.53

NUE, %1 33.3

Areal N supply, g/m2-yr 138

Cultivation Area, m2 322

ha 0.0322

Tuber production, t/yr 0.967

Per capita yield, kg/cap-yr 96.7
1Nitrogen Utiliztion Efficiency [76].

Table 7. 
Formulaic design for Solanum tuberosum growth on wastewater nitrogen: System basis.
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Figure 9. 
System schematic.

Component Configuration Function Mechanisms Flow Regime

Anaerobic Baffled 
Reactor (ABR)

Series Upflow 
Chambers

Pre-treatment 
for IX Reduce 
suspended & 
colloidal solids, 
Ammonification

Sedimentation 
Filtration 
Hydrolysis 
Anaerobic 
treatment

Continuous 
flow as 
wastewater is 
generated

Ion Exchange (IX)  
(2 parallel modules)

Series Media 
Chambers

NH4
+ sequestration 

NH4
+ bioextraction

Flow through 
porous media 
Oxygenation of IX 
media Nitrification

Loading mode: 
Continuous 
flow Extraction 
mode: Fill and 
Drain

Storage Pond (SP) Open Pond Storage of IX 
effluent

Retention Continuous 
flow

Bioextraction 
Reservoir (BR)

In-ground Tank Bioextraction of 
NH4

+ from IX 
Media

Oxygenation of IX 
media Nitrification 
Accumulation of 
extracted nitrogen

Fill and Drain

Solanum tuberosum 
Cultivation (SC)

Subsectioned 
Growth Plots

Receive nutrient 
solution from NR

Solarium 
tuberosum 
Growth

Fill and 
Drain Mode 
Irrigation 
Mode

Nutrient Reservoir 
(NR)

In-ground Tank Supply nutrient 
solution to SC

Nutrient and water 
supply to SC

Fill and 
Dram Mode 
Irrigation 
Mode

Table 8. 
System components: Solanum tuberosum growth on wastewater nitrogen.
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path is into the Anaerobic Baffled Reactor (ABR), through Ion Exchange (IX), and 
into the storage pond (SP). Wastewater passes through this system at the rate at 
which it is generated. ABR provides pre-treatment for IX by reducing suspended 
and colloidal solids and oxygen demand. There are two parallel IX modules that 
each alternate between nitrogen recovery mode and regeneration mode, with each 
IX module in the opposite mode as the other.

In nitrogen recovery mode, IX media is saturated, preventing oxygen ingress 
and maintaining anaerobic conditions for which ion exchange retention of NH4

+ is 
highly effective [38]. IX receives ABR effluent, extracts NH4

+, and passes treated 
wastewater to the storage pond. One IX module is sized to provide an eight month 
NH4

+ recovery capacity, providing sufficient time for regeneration of the other IX 
module. For regeneration, a Bioextraction Reservoir (BR) is placed below ground 
for passive drainage from IX. In regeneration mode, IX media is saturated in the 
fill stage and unsaturated in drain stage, enabling oxygen ingress for nitrification 
and desorption. The Bioextraction Reservoir (BR) is pumped to saturate the IX 
media with gravity return flow (fill and drain). Bioextraction results in a buildup 
in BR of NH4

+ and NO3
−. The storage pond received effluent and serves to augment 

consumptive water use, supply other nutrients, and for other beneficial reuses. The 
potato production system is the 322 m2 area of Solanum tuberosum Cultivation (SC) 
and the coupled Nutrient Reservoir (NR) that receives nutrient solution from BR. 
NR supplies SC with nutrient water and receives drainage from SC. NR/SC operates 
in either fill and drain mode or irrigation mode. In fill and drain mode, SC media 
are periodically saturated and then drained; media have high porosity and hydraulic 
conductivity. During the drained period, oxygen ingress into unsaturated pore 
spaces is greater than for the finer grained soils of conventional soil-based agricul-
ture. In irrigation mode, SC media are more conventional soils with lower porosity 
and hydraulic conductivity, with appropriate irrigation schedules.

Anaerobic Baffle Reactor The Anaerobic Baffle Reactor (ABR) has been used for 
passive, low maintenance primary treatment of sanitation water in low income com-
munities [57]. The ABR is readily constructed and suitable for the nitrogen recycle 
system. The features of the ABR in the system design are listed in Table 9. The three 
chamber ABR provides a 10 day Hydraulic Residence Time (HRT) and low COD 

Anaerobic Baffled Reactor

Continuous flow through

HRT, day 10

Liquid volume, m3 10

COD Loading, kg/m3-day 0.154

Chambers

# 3

W × L × D, m 1.5 × 2.0 × 1.11

headspace height, m 0.4

total depth, m 1.51

mean upflow velocity, cm/hr 1.4

Total ABR

W × L × D, m 1.5 × 6.0 × 1.51

Table 9. 
System design: Anaerobic baffled reactor.
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loading (0.15 kg/m3-day) typical of onsite treatment of sanitation waste in anaerobic 
upflow reactors [60, 80]. Anaerobic treatment of organic wastes produces methane 
(biogas), which could be harvested from the ABR system. Biogas a local source of 
energy that can be used as fuel for cooking or lighting for example.

Ion Exchange and Bioextraction Reservoir The salient features of the ion exchange 
and bioextraction components of the system design are listed in Table 10. The two 

Ion Exchange Module (2 parallel units)

Continuous flow through

Clioptilolite media

Longevity, mouths 8

Effective CEC, meq/g 0.925

Mass, kg 2,285

Bulk density, kg/m3 800

Volume, in3 2.86

IX chambers

# 4

volume, m3 0.71

W × L × D, m 0.8 × 0.8 × 1.12

total depth, m 1.70

mean upflow velocity, cm/hr 6.5

Total IX (single module)

W × L × D, m 0.8 × 3.2 × 1.7

Porewater volume, m3 1.43

Bioextraction Reservoir

Fill and draw

volume, m3 3.0

diameter, m 2.0

depth, m 0.96

Fill event

events/day 6

event time increment, hr 4

pump on period, min 15

pump flowrate, L/m 150

total pumped volume, L 2,250

# porewater volumes 1.58

Storage Pond

days storage 45

volume, m3 45

area, m2 49.0

depth, m 0.92

Table 10. 
System design: Ion exchange modules (2 parallel units) & storage pond.
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parallel IX modules are included (Figure 9). The IX modules are identical, each with 
four chambers containing 0.71 m3 zeolite. The two IX modules operate alternately, 
with one in sorption mode receiving ABR effluent while the second is in regenera-
tion mode. The zeolite in each module provides a longevity of eight months for 
nitrogen recovery (Table 10). The eight month design provides substantial storage 
of the nitrogen load and regeneration time in the alternate IX. When the NH4

+ 
capacity of the IX module in the sorption mode approaches exhaustion, each IX 
module is switched to the alternate function.

When IX modules are each switched to the alternate function, regeneration of 
spent zeolite is initiated in the IX module that has just been switched from sorption 
mode. Regeneration is accomplished in fill and drain mode and is conceptually similar 
to one stage bioregeneration that shown in Figure 5 without the plant growth. The 
Bioextraction Reservoir (BR) is pumped to the IX chambers in fill stage, which then 
passively drains back to BR after pumping ceases (drain stage). The duration and rate 
of pumping determines oxygen supply to nitrifiers on the zeolite surfaces and NH4

+ 
and NO3

− levels in pore water or film water on the zeolite media. The fill and drain 
schedule in Table 10 shows six events per day in which IX media if fully saturated; 
adjustment to this schedule can readily be made during system operation. The time 
scale for complete ammonium ion removal from spent zeolite through oxidation 
desorption can be estimated as 6 to 12 weeks for an optimized bioextraction process. 
As bioextraction of zeolite proceeds, NH4

+ and NO3
− levels will build up in BR, and 

transfer of BR content to the Solanum tuberosum Production system will consume the 
BR nitrogen (Figure 9).

IX effluent is low in TSS, organic oxygen demand (COD) and carbonaceous 
biochemical oxygen demand (C-BOD), comparable to a well-treated wastewater 
effluent [35, 62]. IX effluent is directed to a storage pond for consumptive water 
supply, provision of other nutrients, or other reuse needs.

Solanum tuberosum Production The system for potato production includes the 
Solanum tuberosum Cultivation (SC) area and the Nutrient Reservoir (NR), which 
work as a coupled system (Figure 9). Salient design features of SC and NR are 
listed in Table 11. The cultivation area of 322 m2 is based on the nitrogen supply 
from 10 people and the nitrogen requirement for tuber production at 30 t/ha-yr. 
(Table 7). NR serves as source of nutrient solution by pumping from NR to SC. 
NR is placed below ground for passive return drainage from SC. NR nutrient 
solution is managed based on the metabolic needs of Solanum tuberosum plants. 
NR receives nitrogen solution from BR on the basis of nitrogen supply needs and 
receives SP water on the basis of consumptive water demand and the need for 
other nutrients.

SC is subsectioned into twelve 26.8 m2 plots with 42 cm media depth to accom-
modate potato root depth. Two manners of Solanum tuberosum cultivation are 
considered: fill and drain mode and irrigation mode (Table 11). Either mode 
enables careful control of the magnitude and timing of nitrogen and water supply 
to optimize Solanum tuberosum growth, maximize the fraction of nitrogen trans-
ferred from wastewater to nutrient reservoir to plant biomass, and limits nitrogen 
losses to groundwater and atmosphere. The potato has a shallow root system and 
significant yield response to frequent irrigation. The two growth system presented 
in Table 11 provide water application rates that enable intensification of the potato 
yield in small areas.

The fill and drain mode of potato cultivation is similar to architecture one stage 
bioregeneration shown in Figure 5. SC media are periodically saturated and then 
drained, with growth media of relatively high porosity and hydraulic conductiv-
ity. The fill and drain frequency is three fill events per day at eight hour interval to 
each subsection (36 events/day total), where enough NR water is pumped to fully 
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saturated the growth media. A nitrogen concentration of 100 mg/L in the nutrient 
solution provides 9.6 g/m2-day for cultivation, with only a portion used for plant 
assimilation and the remainder retuning to NR. In irrigation mode, SC media are 
more conventional soils with lower porosity and hydraulic conductivity. The irriga-
tion mode schedule is one application per day (12 events per day total) of 0.l56 cm 
depth, providing a nitrogen application of 0.14 g/m2-day from 180 mg/L nitrogen 
concentration in NR (Table 11). The irrigation schedule would be adjusted through 
the growth cycle to match the metabolic needs of the potato plant.

Fill and drain mode entails growth in granular, non-cohesive medium and potato 
prefers naturally loose soils which offer the least resistance to enlargement of the 
tubers [81]. It can be speculated that fill and drain cultivation of potato may be 
superior to irrigation mode in flushing or breaking down of potato pathogens, or in 
limiting their accumulation. Fill and drain and irrigation mode cultivation can both 
incorporate ridging (earthing up) of growth media, which is advantageous for pest 
control [81].

Solanum tuberosum Cultivation System

Cultivation

total area, m2 322

# subsections 12

area, m2 26.8

Nutrient Reservoir

Sequential pumping to subsections

volume, m3 2.5

diameter, m 2.0

depth, m 0.80

Fill and drain mode Irrigation mode

Growth media

depth, cm 42 42

porosity 0.50 0.40

pore water volume, m3 5.64 4.51

Subsection pumping event

# events/day 3 1

total events/day 36 12

event time increment, hr 0.67 2.0

pump on period, min 30 15

pump flowrate, L/min 200 10

total pumped volume, L 6,000 150

water depth applied, cm 22.4 0.56

# porewater volumes 1.06 0.033

water depth applied, cm/day 67.1 0.56

nitrogen conc., mg/L 100 180

nitrogen applied, g/m2-day 9.6 0.14

Table 11. 
System design: Solanum tuberosum cultivation.
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Summary A system is presented to capture nitrogen from locally generated 
wastewater and recycle it into potato production. Nitrogen is recovered and 
provided for Solanum tuberosum production on as as-needed basis. The system 
efficiently transfers nitrogen from wastewater to plant biomass and limits 
nitrogen losses to groundwater and atmosphere. Physical separation of wastewa-
ter treatment and Solanum tuberosum cultivation provides a barrier to transmis-
sion of pathogens. The nitrogen recycle system is an appropriate technology 
for sustainable intensification of Solanum tuberosum production at local scale. 
Projected tuber yields are 967 kg/year on a 322 m2 plot (10 person basis). The 
nutritional productivity of this system can be estimated as 92.5 kg/year of crude 
protein [82].

Use of local wastewater nitrogen can increase Solanum tuberosum produc-
tion and contribute to a reliable world food supply. The nitrogen recycle system 
meets the development goals of sustainable intensive farming, including use of 
local of resources to close the yield gap, reduction of footprint, and reduction of 
wastes [83, 84]. An alternative deployment of the nitrogen recycle system is for 
intensive breeding of potato seedlings to plant on adjacent areas. Potato crop is 
usually grown from seed potatoes, small tubers or pieces of tuber sown to a depth 
of 5 to 10 cm [2]. Potato seedling can be a price barrier, for example comprising 
40 to 60% of the total potato production cost to smallholder farmers in African 
countries [79]. Dedicating the nitrogen system to seed production would focus 
its more intensive operation on a significant component in the price chain. 
Other adaptions of the nitrogen recovery and potato growth system are enclosed 
growth cultivation and agroforestry.

6. Summary and path forward

Local scale Solanum tuberosum cultivation has the potential to contribute to food 
security in low-income and developing countries. This chapter proposes to grow 
Solanum tuberosum using nitrogen captured from wastewater, providing a reliable 
and low cost nutrient supply that is available in urban, peri-urban and rural areas. A 
multi-element production system is envisaged that optimizes the functions of pri-
mary wastewater treatment (anaerobic upflow solids blanket), ammonium (NH4

+) 
capture (anaerobic ion exchange), ammonium release (aerobic bioextraction), and 
Solanum tuberosum cultivation (fill-and-drain hydroponics and irrigation). Key to 
ammonium capture is the use of natural, low cost ion exchange zeolites which are 
available worldwide. The architecture of the system separates capture of nitrogen 
from nitrogen release and delivery, enabling the quantity and timing of nitrogen 
delivery to match the metabolic needs of Solanum tuberosum growth. Potential 
potato yields of 967 kg/year on a 322 m2 plot (10 person basis) make the system 
an appropriate technology for sustainable intensification of Solanum tuberosum 
production at local scale.

This chapter provides the conceptual framework of a system focused on 
supplying nitrogen for Solanum tuberosum growth. The technique can be adapted 
or interfaced with other processes to provide additional growth needs includ-
ing water and other nutrients. The intent of the chapter is to stimulate inven-
tive thought and facilitate innovation, demonstration and adoption. Design 
and testing of field systems is needed to develop process knowledge and skill. 
Partnerships of environmental/sanitary engineers and agronomists would 
provide the most fruitful collaborative expertise. Funding from NGOs, non-
profits or governments can accelerate the path forward and bring the benefits to 
realization.
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Chapter 5

Solanum jamesii as a Food Crop: 
History and Current Status of a 
Unique Potato
David Kinder, John Bamberg, Lisbeth Louderback, 
Bruce Pavlik and Alfonso Del Rio

Abstract

Solanum jamesii is a wild potato found in the US southwest. There is ample 
evidence that this potato was used by ancestral Puebloans as a food source, where 
some researchers think it was used as a starvation food while others consider it to 
be regular food source. Currently this potato is being grown by Native Americans, 
notably the Navajo, as a specialty food as well as a food crop. There are several attri-
butes to this potato that make it especially suitable for development as our climate 
changes and food needs become more demanding, including its drought tolerance 
and ability to be crossed with other wild potato species and cultivars.

Keywords: Solanum jamesii, desert adapted, drought tolerant ancestral Puebloan use, 
starvation crop

1. Introduction

1.1 Background to S. jamesii

Solanum tuberosum is often regarded as a crop that originated from the US or 
Ireland, but in reality, only two wild potatoes are found in the United states (and 
none in Ireland). They are Solanum jamesii and Solanum stoloniferum which are 
found in the desert southwest. S. stoloniferum is the tetraploid relative to S. jamesii 
(jam). Jam predominates in the southwest desert regions and is found in western 
Texas, northern Mexico and north into southern Utah and Colorado (See Figure 1). 
Collections have been found primarily near sites of ancestral habitation which are 
primarily found in the high desert of the Colorado Plateau. Elevation maximum 
for jam can be as high as 2280 meters at Chimney Rock National Monument in SW 
Colorado and south at 2000 meters in Magdalena New Mexico [1]. Jam can be culti-
vated as far north as Salt Lake City in open areas where it survives the winter under-
ground. The Escalante formation in central Utah is home to several stands of jam 
and is cultivated by some traditional Navajo farmers in that area. There is currently 
an effort being made to cultivate jam for sale as a specialty crop to restaurants.

Jam prefers drier climates to that of the moister environments of the east. It typi-
cally grows in sandy soils to leaf litter strewn areas in Pinyon Juniper stands as well 
as in open well drained silted washes. Jam is known to lie dormant for years before 
sprouting, which occurs generally after the monsoon rains of July and August. The 
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plant sprouts and produces a mother tuber followed by additional tubers on stolons 
that depend on the length of time for growing. We have observed several tubers 
forming in dry years when monsoon rains did not provide more than 2–3 inches of 
rain in Mesa Verde’s Navajo Canyon. When ample rains were received (6 inches from 
August to September of that year, 2014) the stolons continued to expand without 
producing tubers until September as fall approached. In storage Bamberg found 
that jam tubers that were kept for 8 years were able to sprout and produce a new 
crop of tubers. Additionally, in years of surveying Chaco Canyon and Mesa Verde, 
among other sites, there were minimally 10 years between finding sprouting jam 
in the canyons being examined. The drought tolerance and the ability to lie dor-
mant for several years suggests that the genetics of jam would be well served when 
crossed with other species of potato. Such work is being conducted at the Wisconsin 
Potato Gene Bank by Bamberg and colleagues [2].

We do know that jam was used by ancestral Puebloans. At this juncture we do 
not know if they first found it by browsing, or if the use coincided with the begin-
ning of agriculture. Early agricultural methods are murky where we extrapolate 
backwards for the methods of cultivation by native groups in the SW who practiced 
traditional agricultural techniques, but even those might not reflect how agriculture 
was carried out in the beginnings of the settling. Indeed, there is potential that the 
various groups or tribes were seminomadic, and left crops such as jam for their 
return to the area. Mesa Verde is an example where we see entering and exiting the 
area over the course of the year, and where grain was stored sealed in silos against 
animal intrusion and protected from the weather by overhangs.

Louderback [3] showed the presence of starch grains on stone tools that could be 
dated to 8950 BC. The starch grains are very characteristic for jam and were identified 
on food processing tools (metates). Other starch grains were also present suggesting a 
somewhat varied diet of plants that were grown in the ground. We are very confident 
that jam was an important food crop and provided for a varied diet to the early groups 
who settled the Americas first. Below is a map showing the approximate distribution of 
jam in the US SW. There are a few examples of stands in Northern Mexico, but research 
in those areas to further discover stands have been hampered by violence in the areas.

Figure 1. 
Solanum jamesii Torr. Distribution in the US SW. Data source: Plants National Database; home/profile page/
data source and documentation for Solanum jamesii Torr.
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1.2 Characteristics of S. jamesii

Jam has the characteristic flower of the Solanum genus as shown in the two pho-
tos below (Figure 2). The flowers are white with yellow centers. When pollenated 
jam can produce fruit, but we have noted that even with pollinators present jam 
often will not fruit. We have rarely seen fruiting of the jam populations in MEVE 
and have yet to observe it in Chaco Canyon, albeit Chaco Canyon receives only 
2–3 inches of moisture in a year which might speak to the non-fruiting. However, 
the population of Chaco is more homogeneous when compared to the population 
at MEVE, and Pavlik has proposed that when the genetics are similar, fruiting is 
limited but when more diverse genetic populations are present the fruiting becomes 
more robust (personal communication). We have observed this in experiments 
where two populations of jam are presented fruiting becomes abundant, but when 
single collections are grown, fruiting is rare.

Jam is also found growing in heavy grass stands where the grass has died back 
following sprouting in the spring. This is seen in the photo below of a stand of jam 
in Bandolier National Monument (Figure 3). This stand was adjacent to a block 

Figure 2. 
S. jamesii blooms. Photo credit: David Kinder.

Figure 3. 
S. jamesii in situ, august 2019. Photo credit: David Kinder.
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house ruin just below the cliff structures. The soil here is sandy with silt from 
 flooding of the nearby river in the canyon.

The fruit are small and green with very small seeds (Figure 4). These seeds are 
among the smallest of the Solanaceae family [4]. They are bitter in taste, and we 
have not observed animal consumption of fruits; however, that may be because of 
limited fruiting in the wild and limited time in the field.

e tubers themselves can range from the size of a small pea up to 2 cm (Figure 5). 
Some larger tubers have been produced under cultivation. The tubers in the photo 
above show the variability in size. The darker colored tubers are older (and said 
to be stronger by native cultivators). Glycoalkaloid content is variable depend-
ing on stand. The two glycoalkaloids commonly found in jam are Chaconine and 
Solanine. The genin portion of the alkaloids is identical (solanidine) differing only 
in the sugar portion. The genin portion is not as toxic as the glycoalkaloid predomi-
nately causing liver damage. It should be noted that Chaconine possess anticancer 

Figure 5. 
S. jamesii tubers showing variation in size of wild harvested potatoes. Photo credit: David Kinder

Figure 4. 
S. jamesii fruit. Photo credit David Kinder.
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activity in cell culture. This is similar to the activity of tomatine which is primarily 
found in green tomatoes. To our knowledge no one has looked for tomatine in the 
fruit of jam.

2. Evidence for early use of jam and probability of cultivation

There is ample ethnobotanical information that indicates jam was used by mul-
tiple tribes in the American SW and northern Mexico. This ethnobotany stems from 
reports in the last 150 years and is assumed to have been information passed down 
from previous generations. The potato is ephemeral in the archaeobiology record, 
but there is one example of jam being found in a burial in Chaco Canyon during 
excavation of a grave in the 1920s [4]. This suggests that jam was at least important 
to those living in Chaco canyon at the time.

More recently Louderback and Pavlick found stone tools in the Escalante 
wash which had been used for food processing that had jam starch grains on 
them [3]. Jam starch grains are unique and easily distinguished from others. The 
tools date to over 10,000 years ago supporting the use of the potato as a food in 
the early first migrations. The starch grain finding supports processing of jam, 
but does not indicate whether it was cultivated. One assumes that cultivation 
began in central America and was passed northward along with corn and other 
food stuff, and likely with the planting of gardens the potato was also planted 
as well. However, the overlap between foraging and gardening is blurred by the 
ephemeral nature of agriculture in general with assumptions made as to what was 
or was not cultivated. More concrete evidence of cultivation occurs when water 
manipulation structures are found where those are mainly made of stone or other 
more permanent materials. In those same areas, wooden tools used for digging 
in the soils have been found (Figure 6). For example, in Mesa Verde there is an 
abundance of check dams found throughout the areas where habitation sites are 
found and where jam is found growing in the remnants of those structures. While 
this is not proof of ancestral cultivation of jam, it is compelling evidence that jam 
was included with other crops grown in those check dams with their fertile silty 
soils. This is contrasted to Chaco Canyon where the check dams were not made of 
stone but what remnants remain were made from soil and with time eroded. The 
jam found there grows in the silty washes. Chaco is unique in that it is an outlier 
in terms of moisture it receives, does not have a substantial water source, and 
was likely abandoned by the 1300s where it is thought they assimilated into the 
Pueblo groups located along the Rio Grande (based on Linguistic considerations 
by Ortman) [5].

A substantial number of jam stands that are found in areas where there is 
evidence of ancestral Puebloan habitation are especially large prompting one to 
suppose that the potatoes were cultivated along with other plants. For example, in 
Mesa Verde’s Navajo Canyon which is adjacent to the side canyons where most of 
the cliff dwellings are located is a mega-population of jam that runs the length from 
spruce canyon’s mouth to the Navajo canyon overlook where an ancient landslide 
blocked the valley below which then filled with silt. This canyon is thought to have 
been under cultivation while it was occupied more than 1000 years ago judging by 
the storage structures and the finding of tools for cultivating soil [4].

An interesting feature of stands of jam in major population centers such as 
Chaco Canyon, Mesa Verde, Bandolier Nat. Monument, and other places is that the 
populations are often bracketed by Lyceum pallidum. While this is not true of all 
stands, it is true of mega populations we have identified so far.
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Genetic diversity of jam. Examination of genetic diversity can give clues to how 
long a population has survived in a particular area, or how the population might 
have drifted from surrounding populations of the same species. In the case of jam, 
there are a multitude of markers associated with the populations, but one remark-
able finding is that the mega-population of MEVE contains 80% of the markers 
found in other jam populations. While one might think this is the ground zero for 
the beginning of jam, an alternative and more reasonable interpretation is that 
this populations is comprised of additions from around the southwest which were 
carried into MEVE and cultivated, or at least planted leading to this diversity of 
markers [6]. Since starch grains can give information as to sources of jam in the 
archeologic record, this might prove to be a useful tool applied here [7].

A further interesting finding is that the jam found in Chaco Canyon has rela-
tively few markers that overlap with other communities without great diversity 
suggesting that only a single source from outside the canyon was brought in and 

Figure 6. 
Early digging tools, Museum of Natural History, University of Utah. Photo credit: David Kinder.
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planted/cultivated. It is known that Chaco Canyon was used for cultivation and cer-
tainly many interpretations of the use of Chaco suggest it was a trade center more so 
than a residential area only. No doubt ceremonies and other events were held there. 
The populations in Chaco are extensive with one mega-population occurring in the 
wash west of West Mesa beyond Peñasco Blanco. This wash contains the remnants 
of buildings thought to have been constructed as shelter for those engaged in tend-
ing crops, however this hypothesis is still being considered and is hampered by lack 
of resources to explore this canyon beyond that which occurred in the early part of 
the 1900s.

Jam is thought to have been consumed in several ways, with ethnobotanical 
information among several sources indicating that it was boiled and eaten with clay 
(8). The white clay is most likely kaolin which is thought to take away the bitter 
taste. The matter of the taste is subjective as jam is similar in taste to the russet 
potato. There were anecdotal reports from natives whose families had consumed 
jam where they roasted, sauteed the tubers in fat, flattened the tuber and roasted 
on a hot stone over an open fire and mashing the tubers following boiling. None of 
these methods are however recorded in literature and come from modern Navajo for 
the most part as well as Hopi.

3. Characteristics of the potato nutritionally

Potatoes are considered super foods by many, and S. tuberosum certainly helped 
maintain the Irish population during the years of English domination until the 
unfortunate occurrence of the potato blight. S. jamesii is no exception to the nutri-
tional value from the perspective of minerals and other trace nutrients. Examining 
potatoes from Chaco Canyon and Mesa Verde for their nutritional content demon-
strated that jam nutrient content is consistent between populations. It was also clear 
that soil content of various minerals could have some degree of influence on content 
but not to a great degree.

Potatoes harvested in the wild compared to S. tuberosum for several nutri-
tional markers averaged 4% for protein for jam, 2% protein for S. tuberosum. 
Average amounts (in mg/100 gm wet wt. potato) for Calcium 30 mg Jam, vs. 
~11 for S. tuberosum; for iron, ~3 mg jam, ~1 for S. tuberosum. For Zinc, ~0.9 
vs. ~0.4 S. tuberosum. Calcium content was high with approximately 600 mg vs. 
400 for S. tuberosum. In general this is twice the protein, zinc, and three times the 
calcium and iron [4].

Daniel Moerman’s book on ethnobiology [8] of various medicinal and food 
plants shows among the southwestern native groups jam was an important compo-
nent for the Apache, Hopi, Kawaik, Navajo and Pueblo groups along the Rio Grande 
river. Today many traditional Navajo grow potatoes for their own use.

The finding of jam starch grains on stone tools dating back over 10, 000 years 
from the present shows that the potato was an important component of the diet of 
ancestral Americans. That is especially important when considered in the light that 
corn did not reach the southwest until some 5000 years later making a slow migra-
tion onto the Colorado Plateau.

4.  Potential for use in modern times – Advantages of jam for dry climate 
adaption

Jam has been known to exist in the American SW for some decades, and was 
not considered significant in the early days of plant study of indigenous people’s 
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use of this potato. More recently with interest in maintaining gene banks of 
native plants, and to use them for breeding purposes either by selection of plants 
with certain characteristic or deliberate crossing of one species with another 
there has been a more robust look at where these potatoes are found, and how 
they can be managed to the betterment of the potatoes. This work has been 
spearheaded by Bamberg and colleagues at the Wisconsin Potato Gene Bank 
(Greenbay WI) as well as others including Pavlik and Louderback at the U. of 
Utah. The storage potential added to various crosses with other wild or domestic 
potatoes holds promise for the future where potatoes can be grown in more arid 
climates, or can be stored for extended periods of time and maintain viable 
tubers for planting. In terms of third world populations where drought causes 
extensive starvation this small potato could be developed with potatoes with 
other favorable characteristics to provide a food source for those populations. 
Thus harnessing the potential favorable genes from jam could well produce a 
series of potatoes with the favorable nutritional content as well as the ability to 
thrive in some inhospitable climates for addressing starvation around the globe. 
However, it remains to be seen what this potential will mean to further produc-
tion of cultivars.

5. Conclusion

Jam has a long and untold story that is just beginning to be worked out. It has 
characteristics that have allowed it to survive in harsh conditions, and has nutri-
tional content that makes it even more attractive for consumption by humans. Its 
potential to add its genes to other potatoes is great where drought tolerance would 
benefit many populations greatly where more modern crops fail. Indeed, under-
ground growing of foods would prevent browsing to adversely affect the production 
of potatoes in some populations unlike the attractiveness of corn for some foraging 
animals.

Given the findings of the use of potatoes in the American SW, as well as noting 
that other plant materials were used for food. The old adage of the Three Sisters – 
Corn, Squash and Beans – should more properly be replaced by Succotash instead to 
reflect the broad diet of the first Americans.
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Abstract

Solanum tuberosum is the most popular vegetable in people’s diets all over the 
world, and it’s considered a staple crop in many countries. It has immense potential 
to reduce food insecurity and prevent malnutrition in developing and developed 
countries because of its productivity, nutritional composition and unique biochemi-
cal features. However, a lack of information about the nutritional composition and 
biochemical properties of this tuber severely limits its use. Improved awareness of 
the biochemical and nutritional quality, utilization, and future economic impor-
tance of the crop has important implications for human food systems, nationally 
and internationally. This chapter presents a brief overview of key findings that led 
to our current knowledge of the biochemical and nutritional composition of the 
Solanum tuberosum tuber. The wide range of Solanum tuberosum varieties lays a great 
foundation for their industrial production and applications. The biochemical and 
nutritional composition of the Solanum tuberosum is summarized briefly.

Keywords: Antioxidants, Biochemical properties, Minerals, Solanum tuberosum, 
Solanum tuberosum nutrition

1. Introduction

Potato is in the 4th order with respect to production and area harvested after 
maize, wheat and rice, as a staple crop for human nutrition with a production of 
more than 368 million tonnes [1, 2]. This famous tuber is grown in 80 percent of 
the world’s countries [3, 4]. This shows that Solanum tuberosum is one of the most 
productive crops in the world. Potato can produce more nutritious food on less land 
and in harsher climates than most other major crops. Furthermore, this tuber can 
be harvested after only 8 weeks [5]. There are numerous myths about the biochemi-
cal and nutritional value of Solanum tuberosum. Solanum tuberosum is a versatile, 
carbohydrate-rich food that is widely consumed and prepared in a variety of ways 
around the world. This tuber is typically regarded as a ritual food or a garnish for 
other major meal components, and it is consumed as a complementary vegetable 
with staple foods [6]. Solanum tuberosum is commonly thought to contribute insig-
nificantly to the nutritive value of a meal. Even in areas where Solanum tuberosum is 
considered staple foods, they are typically viewed solely as a source of energy, with 
little awareness of their vitamin or protein content [6, 7].

Solanum tuberosum contains a variety of biochemical and nutritional proper-
ties, including starch, ascorbic acid, reducing sugars, non-reducing sugars, total 
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sugars, phenolic content, flavonoids, polyamines, and carotenoids, all of which are 
highly desirable in the diet due to their beneficial effects on human health [8, 9]. The 
nutritional value of Solanum tuberosum tubers is primarily defined by the presence of 
essential amino acids, particularly lysine, as well as high levels of starch and dietary 
fiber and a low concentration of fats [10]. The chemical composition of Solanum 
tuberosum determines the quality of the processing and is influenced by a series of 
factors including the production area, crops, soil and the climate, farming practices, 
storage and marketing conditions [11]. Solanum tuberosum tubers with no or low-fat 
addition have high levels of bioactive compounds and antioxidants, such as phenolic 
acids, primarily chlorogenic acid, ascorbic acid, and flavonoids, which are phyto-
chemicals [10]. Increased consumption of potato tubers may increase antioxidant 
levels in blood and tissues and protect against oxidative stress, which is responsible 
for lipid, protein, and enzyme damage [3]. One of the global health goals is to increase 
nutrient availability to a large portion of the world’s population. A sensible approach 
to achieving this goal would be to boost the nutritional content of commonly con-
sumed crops like Solanum tuberosum [5]. Furthermore, Solanum tuberosum have 
superior biochemical and nutritional properties and are amenable to development 
via breeding and biotechnology methods [5, 12]. However, a paucity of information 
regarding the biochemical and nutritional composition of the Solanum tuberosum 
greatly limits its exploitation. Improved awareness of the biochemical and nutritional 
quality, utilization, and future economic importance of the crop has important 
implications for human food systems, nationally and internationally.

2. Nutritional composition of Solanum tuberosum

Solanum tuberosum have been discovered to be an especially nutritious vegetable. 
Freshly harvested Solanum tuberosum tubers contain approximately 80% water and 
20% dry matter. Solanum tuberosum is primarily composed of starch, but they also 
contain trace amounts of protein and alkaline salts. They are complex carbohydrate 
in the form of sugars that are virtually fat and cholesterol-free. Beta-carotene, 
vitamin C, A, B1, B2, B6, and folic acid are among many vitamins found in Solanum 
tuberosum. It also contains trace amounts of protein, amino acids, and nicotinic acid 
[6]. However, there have been significant variations. Because many of the nutrients 
in Solanum tuberosum are found in their skin, eating them whole rather than peeled 
has been linked to more health benefits [12]. Solanum tuberosum is not only impor-
tant food security crops, but they are also excellent candidates for commercial use 
[13]. Processing adds value to this tuber, extends their shelf life and convenience, 
reduces post-harvest losses and waste, and yields a diverse range of products for 
various applications. Solanum tuberosum tubers are eaten raw or processed into 
products such as French fries, crisps, and canned potatoes [14].

2.1 Carbohydrate

Solanum tuberosum carbohydrates can be divided into four types: starch, non-
starch, polysaccharides, and sugars. Starch is present in the form of granules, 
which are composed of amylopectin and amylose in a fairly constant 3:1 ratio. 
Amylopectin is a large, ramified molecule with approximately 105 glucose residues. 
The amylose molecule is smaller, with approximately 5000 glucose residues. There 
are trace amounts of phosphorus in the amylopectin fraction, which is chemically 
combined with starch [3]. Because of the high starch content, manufacturing 
Solanum tuberosum starch is now economically feasible in developed countries. 
Solanum tuberosum starch is used in the manufacture of adhesives, textiles, food, 
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and the production of derived substances such as alcohol and glucose. Unlike cereal 
starches, these starch gels set quickly and have a high pot-paste viscosity. Non-
starch polysaccharides account for only a small proportion of tuber dry matter. 
Because of their role as dietary fiber, non-starch polysaccharides contribute to the 
nutritional value of Solanum tuberosum. The major sugars found in white potato are 
sucrose, fructose, and glucose, with traces of other minor sugars [6].

2.2 Fat

Solanum tuberosum fat content is low, ranging from 0.08 to 0.13 percent fresh 
weight basis. This range is too low to be nutritionally significant, but it contributes 
to Solanum tuberosum flavor, tuber cellular integrity and bruising resistance, and 
helps to reduce enzymic darkening in tuber flesh [15]. The lipids are more impor-
tant because they are susceptible to enzymatic degradation and non-enzymatic 
auto-oxidation, which cause off flavor and rancidity in dehydrated and instant 
Solanum tuberosum products. Polyunsaturated linoleic and linolenic acids account 
for 75% of total fatty acids in lipids. These factors contribute to the development 
of both desirable flavor characteristics in cooked tubers and undesirable off flavors 
in processed products. During tuber processing, lipid-degrading enzymes rapidly 
convert polyunsaturated acids to free fatty acids and other compounds, and they 
are also extremely susceptible to auto-oxidation [6].

2.3 Crude protein

Solanum tuberosum contains approximately 2 to 3% protein content on a fresh 
weight basis [8], and is comparable to most other root and tuber staples, except for 
cassava, which has half this amount. On a dry basis, it is comparable to cereals, and 
on a cooked basis, it is comparable to boiled rice [6]. One advantage that Solanum 
tuberosum have over cereal staples is their high lysine content. It does, however, 
have lower concentrations of sulfur-containing amino acids (such as methionine 
and cystine/cysteine) than cereals. Solanum tuberosum, when combined with other 
foods, can supplement diets that are low in lysine, such as rice accompanying 
Solanum tuberosum, which provides a higher quality protein. Meals in some develop-
ing countries are frequently served with a combination of boiled tubers of Solanum 
tuberosum and rice or pasta. However, consumers in developed countries frequently 
mistakenly believe that such mixtures provide nothing more than large amounts of 
carbohydrate energy [3]. It has been proposed that Solanum tuberosum comparative 
advantage as a food in the tropics, on a unit weight basis, stems from its ability to 
supply high-quality protein.

Using the most recent figures for energy and protein requirements, it can be 
calculated that 100 g (one small tuber) of Solanum tuberosum can supply 7%, 6%, 
and 5% of daily energy, and 12%, 11%, and 10% of daily protein needs of children 
aged 1–2, 2–3, and 3–5 years, respectively. Adults, depending on body weight and 
gender, can get from 3–6% of their daily protein needs from 100 g of tuber [15]. 
Bekele and Haile [16] reported that the protein contents of improved Solanum 
tuberosum varieties were 1.65% to 3.28%. The results show that these contents were 
variety dependent.

2.4 Nitrogen

Solanum tuberosum is rarely eaten as the sole source of nitrogen and mixing 
potatoes with other foods has supplementary or synergistic effects. Solanum 
tuberosum is not a high-energy food, providing only about 80 kilocalories per 100 g, 
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but it does provide high-quality protein. This is especially important in developing 
countries, where energy is more readily available than protein [3]. When compared 
to many other vegetable crops, the nitrogenous content of the Solanum tuberosum 
tuber has a high nutritional value. The distribution of nitrogen within the tuber is 
not uniform, with the skin having the highest concentration, followed by the cor-
tex, and then rising again toward the pith. Solanum tuberosum tubers’ total nitrogen 
content consists of the following elements: (a) soluble, coagulable (true) protein; 
(b) insoluble protein; and (c) soluble non-protein nitrogen, which is composed 
of free amino acids, the amides asparagine and glutamine, and small amounts of 
nitrate nitrogen and basic nitrogen compounds including nucleic acids and alka-
loids [6]. The insoluble protein fraction is mostly found in the peel. It accounts for 
only about 4% of total nitrogen [15].

2.5 Fiber

The dietary fiber content of raw Solanum tuberosum ranges between one and two g 
per 100 g of fresh weight. Furthermore, some of the dietary fiber may be starch that 
is resistant to hydrolysis by the enzymes used to remove starch before determining 
dietary fiber [15]. This resistant starch is created by subjecting foods to heat or dehy-
dration, which gives the starch molecules a more ordered structure and makes them 
less susceptible to enzymatic digestion. In comparison to other raw items, the fresh 
Solanum tuberosum has dietary fiber content similar to sweet potatoes, but slightly 
lower than other roots and tubers and much lower than most cereals and dried 
phaseolus beans, though potatoes and cereals are similar on a dry basis [3]. Dietary 
fiber determinations have primarily been done on raw foods rather than cooked 
foods. Boiled potato flesh has fiber content comparable to cooked white rice but 
significantly lower than boiled green plantains or boiled phaseolus beans. Consuming 
the entire tuber rather than just the flesh may increase dietary fiber intake [3].

2.6 Mineral

Minerals are an important part of a healthy diet. Because of its relatively high 
content of certain macro and trace minerals, Solanum tuberosum, as a major staple 
food crop, could play an important role in combating mineral deficiencies. Boiling 
thinly sliced Solanum tuberosum will result in a large reduction in mineral levels 
while boiling whole Solanum tuberosum or that have been cut into large pieces 
increases [17].

The presence of magnesium, potassium, iron, and zinc is notable in Solanum 
tuberosum [7]. Potassium is the most abundant mineral (320 mg/100 g raw), with 
a higher concentration in the skin and, as a result, a lower concentration in peeled 
Solanum tuberosum products [6]. Solanum tuberosum is a good source of a variety of 
dietary minerals. Solanum tuberosum is listed as providing 18% of the RDA for potas-
sium, 6% for iron, phosphorus, and magnesium, and 2% for calcium and zinc. Most 
minerals are well retained in boiled Solanum tuberosum cooked with the skin. Baking 
Solanum tuberosum with the skin on is a good way to retain minerals. There are signifi-
cant differences in major and trace mineral contents between Solanum tuberosum geno-
types. Potassium levels varied the most, while manganese levels varied the least [6].

2.6.1 Potassium

Solanum tuberosum is a valuable source of potassium in the human diet. It 
contains a source of dietary potassium (42.73 dried matter), which plays an 
important role in acid–base regulation and fluid balance and is required for 
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optimal functioning of the heart, kidneys, muscles, nerves, and digestive systems 
[17, 18]. Potassium levels in Solanum tuberosum are comparable to those found 
in most fruits and vegetables per unit weight, and because potatoes are typically 
consumed in larger quantities, they are an important and dependable food source 
of this nutrient [15].

2.6.2 Phosphorus

Aside from potassium, phosphorus is the most abundant mineral in Solanum 
tuberosum (3.54 g/kg dried matter) [18]. It plays numerous roles in the human body 
and is essential for healthy cells, teeth, and bones. Inadequate phosphorus intake 
results in abnormally low serum phosphate levels, which affect appetite loss, ane-
mia, muscle weakness, bone pain, rickets osteomalacia, susceptibility to infection, 
numbness and tingling of the extremities, and difficulty walking [15].

2.6.3 Calcium

Solanum tuberosum is a good source of calcium, with a wide range being 
reported. Two studies found calcium levels as high as 130 mg/100 dry weight 
and 455 mg/kg. Resistance to pathogens is linked to high levels of tuber calcium. 
Calcium is important for bone and tooth structure, blood clotting, and nerve 
transmission [6].

2.6.4 Iron, zinc and copper

Iron is found in small amounts in potatoes. A study of cultivated varieties 
revealed 0.3–2.3 mg of Fe per 100 g. The iron content ranges between 6 and 158 μg/g 
dry weight [6]. Some Solanum tuberosum contain iron levels comparable to those 
found in some cereals (rice, maize, and wheat). Solanum tuberosum iron should 
be bioavailable because, unlike cereals, it contains very little phytic acid. Solanum 
tuberosum have significant differences in zinc content [19]. The zinc content 
varies between 1.8 and 10.2 ug/g fresh weight. Solanum tuberosum from different 
cultivars contain zinc in 0.5–4.6 ug/g fresh weight. Zinc is required for the proper 
functioning of the body’s immune system and is involved in cell division, growth, 
and wound healing. The copper content of Solanum tuberosum ranges from 0.23 to 
11.9 mg/kg fresh weight. Copper, like zinc, is abundant in yellow-fleshed Solanum 
tuberosum [19]. Copper is required for hemoglobin synthesis, iron metabolism, and 
blood vessel maintenance [6].

3. Biochemical properties of Solanum tuberosum

In addition to supplying energy, Solanum tuberosum contains biochemical ingre-
dients such as phenolics, flavonoids, anthocyanins, carotenoids, folates, ascorbic 
acid and sugar [3, 12, 20]. Phenolics, anthocyanins, flavonoids and carotenoids are 
the major antioxidants found in Solanum tuberosum that are beneficial for human 
health [8].

3.1 Phenol content

Solanum tuberosum is an excellent source of these compounds. After apples and 
oranges, Solanum tuberosum was thought to be the third having the most impor-
tant source of phenols [20]. Both the skin and flesh of Solanum tuberosum contain 
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phenolic compounds, whereas, the concentration is greater in the skin than in the 
flesh. Purple and red-skinned tubers had twice the phenolic acid concentration 
as white-skinned tubers. The most important phenolic acids have been identified 
as chlorogenic acid, protocatechuic acid, vanillic acid, and p-coumaric acid. Even 
though, the peels of Solanum tuberosum tubers contain the most phenols they 
discarded as waste during potato processing [12]. Fresh Solanum tuberosum pulp 
and skin contain 30 to 900 mg/kg and 1000 to 4000 mg/kg, respectively. It was 
also reported that the concentration of phenolic acids in purple or red-fleshed 
cultivars was three to four times higher than in white-fleshed cultivars. White 
fleshed Solanum tuberosum varieties were found to have fewer phenolics (less than 
4 mg/g dry weight) than purple-fleshed wild species (more than 5 to 6 mg/g dry 
weight) [3].

The total phenolics in eleven Indian Solanum tuberosum varieties were evaluated 
after 0, 30, 60 and 90 days of storage at room temperature, 15°C and 4°C. All 11 
showed a variation among the varieties and were different with storage tempera-
ture; their levels fluctuated during storage but remained above the initial level 
until the last day of observation [21]. Cooking significantly affects the retention 
and availability of phenolic compounds [22]. The effect of three domestic methods 
of cooking (boiling, steaming, and microwaving) on total phenols, antioxidant 
and anticholinesterase activities were studied. All three modes of cooking cause 
a decrease in the total polyphenol contents, antioxidant and anticholinesterase 
activities [23]. Their results show that the polyphenols are lost to different degrees 
according to the method of cooking, the classification of the polyphenol contents 
places the microwave in the first position then comes the steam cooking and lastly 
the cooking in the water. Similar observations have been reported in which frying 
causes the greatest loss of total phenolic compounds, followed by baking, steaming, 
boiling, and microwaving [23]. Twelve Solanum tuberosum landrace clones collected 
from established cultivations on Chiloe Island and Valdivia were selected and the 
total phenolic content was evaluated. The total phenolic content varied in the peeled 
Solanum tuberosum samples from 191 to 1864 mg/100 g dry matter meanwhile these 
parameters varied from 345 to 2852 mg/100 g dry matter in unpeeled samples [24].

3.2 Flavonols and Anthocyanins

Although Solanum tuberosum contains flavonols such as rutin, they are not 
thought to be significant sources of dietary flavonols. Flavonol concentrations 
increased in fresh-cut tubers, reaching up to 14 mg/100 g, implying that because 
of the large number of potatoes consumed, they could be a valuable dietary source. 
Numerous studies have suggested that flavonols have a variety of health benefits, 
including a lower risk of heart disease and a lower risk of certain respiratory dis-
eases such as asthma, bronchitis, and emphysema as well as a lower risk of certain 
cancers such as prostate and lung cancer [3, 7, 25].

Anthocyanins are a type of pigmented flavonoids. The composition of anthocya-
nins in pigmented Solanum tuberosum is complicated by acylation in the glycoside 
ring. The purple and red colors of Solanum tuberosum varieties are due to anthocy-
anin pigment [26]. Solanum tuberosum anthocyanins have recently been recognized 
for their health benefits, as they have been shown to have strong antioxidative activ-
ity, anti-influenza virus activity, and anti-stomach cancer activity [27]. Flavonoids 
such as anthocyanins were found in high concentrations in pigmented flesh 
Solanum tuberosum, ranging from 5.5 to 35 mg/100 g fresh weight in tubers. Purple 
or red-fleshed Solanum tuberosum varieties had two times the flavonoid concentra-
tion than that of white-fleshed varieties and their concentration was significantly 
higher in the skin, impending 900 mg in purple-fleshed and 500 mg in red-fleshed 
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types per 100 g fresh weight [12]. Anthocyanin pigments are found in the periderm 
of the tuber and impart various colors to their skin, with purple being the most 
common. As pigmented Solanum tuberosum is low-cost crops that are also a good 
source of antioxidant micronutrients, it could be a good source of natural anthocy-
anin pigments. Purple fleshed Solanum tuberosum had higher levels of anthocyanins 
than red-fleshed potatoes [28]. The extracts of flavonoids and flavones had high 
scavenging activities against oxygen free radicals. Solanum tuberosum exhibited 
94 percent hydroxyl radical scavenging activity and nearly complete inhibition of 
superoxide radicals in the presence of anions [28]. Various biotechnological and 
transgenic approaches have demonstrated that it is possible to significantly increase 
the phenolic, anthocyanin, and flavonoid content of Solanum tuberosum tubers [28].

3.3 Carotenoids

Carotenoids are useful as food ingredients because they can replace synthetic 
pigments while also benefiting human health due to their provitamin content 
[29]. Carotenoids and other lipophilic compounds found in Solanum tuberosum 
tuber are also beneficial to one’s diet. Carotenoids are synthesized in plastids from 
isoprenoids, and one of their functions is to protect against photo and oxidative 
stress [30]. Carotenoid concentrations in Solanum tuberosum germplasm have been 
reported to vary over a 20-fold range, with much of the variation controlled at 
the transcriptional level [27]. The major carotenoids found in Solanum tuberosum 
are lutein, violaxanthin, zeaxanthin, and neoxanthin, with trace amounts of 
-carotene. Zeaxanthin and lutein are responsible for the orange and yellow flesh 
colors of the tuber. White fleshed Solanum tuberosum varieties contained fewer 
carotenoids than yellow or orange-fleshed ones. Total carotenoids content in white 
and yellow-fleshed Solanum tuberosum varieties was reported to be in the range of 
50–350 g/100 g fresh weight and 800–2000 g/100 g fresh weight, respectively [31]. 
Carotenoid levels in potato tubers vary greatly, with levels in yellow-fleshed culti-
vars being 20 times higher than levels in white-fleshed varieties [32]. Valcarcel et al. 
[33] reported that higher levels of total carotenoids in the skin of Solanum tuberosum 
tubers, with variety ‘Burren’ showing maxima values of 28 and 9 mg kg/dry weight 
in skin and flesh, respectively. They observed that yellow-skinned or fleshed variet-
ies had higher contents than those with paler or white tissues, with no relationship 
found for other colors.

Solanum tuberosum have low basal carotenoid levels when compared to most 
fruits and vegetables [34]. For example, the maximum total carotenoid content 
of a Solanum tuberosum tuber is 20 mg/kg fresh weight, whereas the maximum 
carotenoid content of brussel sprouts is 1100 mg/kg fresh weight and carrots 
is 14000 mg/kg fresh weight. Despite the relatively low level of carotenoids in 
Solanum tuberosum tubers, the content of carotenoids in potato tubers is of dietary 
significance because Solanum tuberosum is a staple part of the diet.

3.4 Glycoalkaloids

Solanum tuberosum produce glycoalkaloids during germination, which protect 
the tuber from pathogens, insects, parasites, and predators [35]. The primary 
glycoalkaloids found in domestic Solanum tuberosum are -chaconine and -solanine, 
which is concentrated in the outer layers of the Solanum tuberosum skins (i.e., the 
periderm, cortex, and outer phloem). Glycoalkaloid levels in different Solanum 
tuberosum varieties can vary greatly and may be influenced postharvest by envi-
ronmental factors such as light mechanical injury and storage [35]. Small Solanum 
tuberosum also have higher glycoalkaloids levels (per unit weight) than larger ones. 
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Plant secondary metabolites known as glycoalkaloids are toxic to microorganisms, 
viruses, insects, animals, and humans. The saccharide moiety of these compounds 
differs structurally in that solanine contains the trisaccharide solatriose, whereas 
chaconine has the aglycone attached to chacotriose [36]. The glycoalkaloid content 
of Solanum tuberosum tubers varies greatly and is influenced by post-harvest factors 
such as light exposure, irradiation, mechanical injury, and storage conditions. 
Solanum tuberosum peels are a rich source of steroidal alkaloids, which are well 
known for their toxicity in high concentrations for human consumption (>1 mg/g 
dry weight sample).

3.5 Folates

Potato is a well-known significant source of folates in the diet due to its high 
consumption level rather than its endogenous content. The folate concentrations in 
mature raw Solanum tuberosum range from 12 to 37 g/l00 g fresh weight [37].

3.6 Ascorbic acid

Ascorbic acid is a strong reducing agent in plant metabolism, it improves 
the absorption and internal transport of dietary iron and zinc from other plant 
sources. Solanum tuberosum tubers have been reported to contain up to 46 mg 
of ascorbic acid per 100 g tuber on a fresh weight basis, and their availability is 
dependent on the variety, maturity status, and environmental conditions under 
which the crop is grown [12]. The concentration of ascorbic acid in freshly har-
vested peeled raw tubers ranged from 22.2 to 121.4 mg/100 g on a dry weight basis 
and from 6.5 to 36.9 mg/100 g on a fresh weight basis and decreased with storage 
period in tubers of all varieties [12]. A British study measured vitamin C levels in 
33 varieties grown in three different locations across Europe [38]. The vitamin C 
content ranged from 13 to 30.8 mg per 100 g fresh weight. Numerous studies have 
shown that vitamin C levels in potatoes decrease rapidly during cold storage, with 
losses approaching 60% [12, 38].

Valcarcel et al. [33] measured the L-ascorbic acid content in 60 varieties of 
Solanum tuberosum grown in Ireland and reported the highest content of 800 mg/kg 
on a dry basis. They observed significant differences in L-ascorbic acid content across 
years and sites. The vitamin C content of eleven Indian Solanum tuberosum varieties 
was observed to be in the range from 0.0828 to 0.2416 mg/g fresh weight and these 
concentrations were variety and storage temperature dependent [21].

3.7 Sugars

The sugar level in Solanum tuberosum during suberization and harvest is heavily 
influenced by the variety. Low sugar content is a desirable trait for processing. Sucrose 
content at harvest is an indicator of the tuber’s chemical maturity [12]. The higher 
sucrose levels in Solanum tuberosum tubers at harvest indicate immaturity. The sucrose 
content at harvest is critical because invertase hydrolysis results in the accumula-
tion of reducing sugars, rendering Solanum tuberosum unfit for processing [12]. An 
increase in total sugars or a specific sugar and dry matter is a heritable trait, but it is 
also influenced by a variety of environmental factors. The sugar content of Solanum 
tuberosum during tuberization and harvest is heavily influenced by the variety. The 
quantity and type of sugars in a specific cultivar are inherited characteristics [12]. 
Since Solanum tuberosum increased its ability to produce sucrose as the storage period 
increased, more than 65 percent of the maximum sucrose accumulation occurred 
within 5 days of storage. According to Zhitian [39], the sucrose concentration in 
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Solanum tuberosum increased early in storage and then remained constant. At rela-
tively higher temperatures (25-30°C), Solanum tuberosum storage in ordinary rooms, 
traditional heaps, and so on showed very little increase in reducing sugars. Freshly 
harvested mature tubers of a few Indian Solanum tuberosum varieties have a low level 
of reducing sugars. The concentration of glucose increased early in storage and then 
remained constant [39].

4. Conclusion

Solanum tuberosum is a staple food crop providing basic nutrition to millions 
of people globally. It provides numerous compounds of high nutritional value 
including protein, carbohydrates, minerals, carotenoids, dietary fiber, vitamins, 
very little fat, and sodium and other bioactive compounds. The nutrient composi-
tion of potato tubers varies greatly according to genetic and environmental factors. 
As a result, the nutrient content of Solanum tuberosum should be considered 
during variety screening, demonstration, and growing Solanum tuberosum with 
the climate. Phenolics, anthocyanins, flavonoids and carotenoids are the major 
antioxidants found in Solanum tuberosum that are beneficial for human health.
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Red and Purple Flesh Potatoes a 
Healthy and Attractive Alternative 
Associated with New Market 
Trends
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Abstract

The potato is the fourth most important crop in the world in terms of human 
food, after maize, wheat and rice (FAOSTAT, 2019). The cultivated potato is a 
vital food-security crop considering its worldwide growth, from latitudes 65° Lat 
N to 53° Lat S, high yield, and great nutritive value. The potato is a good source of 
dietary energy and micronutrients, and its protein content is high in comparison 
with other roots and tubers. The cultivated potato is also a concentrated source of 
vitamin C and some minerals such as potassium and magnesium. Tuber flesh color 
generally ranges from white to dark yellow in cultivated potato; however, the high 
potato diversity shows tuber flesh color varies from white to dark purple. Red and 
purple-flesh potatoes are an interesting alternative for consumers due to phenolic 
compounds and antioxidant capacity. The goal of this publication is to show the 
advances in red and purple flesh potato, in terms of anthocyanin profile, color 
extraction and stability in simulated in vitro digestion.

Keywords: Antioxidant activity, Anthocyanins, in vitro digestion,  
Red and purple flesh potato, Solanum tuberosum

1. Introduction

The cultivated potato (Solanum tuberosum L.) is the fourth most important 
crop in the world, after maize, wheat, and rice. The cultivated potato is a vital 
food-security crop considering its worldwide growth and nutritional value. This 
crop is cultivated from latitudes 65° Lat N to 53° Lat S. However, the major potato-
producing regions are in the relatively temperate zones, but it is also cultivated 
in Andean tropical highlands and in tropical and sub-tropical environments as 
a winter crop [1]. In the last decade, the developing world’s potato production 
exceeded that of the developed world, showing a significant increase and demand 
in Asia, Africa, and Latin America, however in these areas it is often cultivated 
in marginal areas with limited access to farm inputs [2]. Potato is a very efficient 
food crop and produces more dry matter and proteins per unit area in comparison 
to cereals. In addition, potato is an efficient water user, however drought sus-
ceptible crop, because under rainfed conditions, it yields more food per unit of 
water than other major crops. For every m3 of water applied to the crop, potato 
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produces 5600 kcal of dietary energy, compared to 3860 in maize, 2300 in wheat 
and 2000 in rice [3]. Because of its high nutritional value and yield, cultivated 
potatoes constitute the bulk of the economically and agronomically important 
crop production. It accounts for large quantities of dietary daily energy intake 
compared to other crops and contributes to hunger reduction and improved nutri-
tion. In addition, potato is also a good source of protein content, micronutrients, 
a concentrated source of vitamin C and potassium in comparison with other roots 
and tubers [4]. However, depending on potato flesh color, the nutritional value 
may be higher or different, because the color is associated to unique metabolite 
profile on phenolics, flavonoids, and carotenoids. These compounds are directly 
associated with antioxidant activity, and highly desirable in diet because of their 
beneficial effects on human health [5]. The present chapter will be focused on red 
and purple flesh potatoes as a healthy and attractive alternative associated with 
new market trends.

2.  Color fleshed potatoes high in anthocyanins and antioxidant activity 
is promising food

2.1 Potato diversity in Chile

Chile is one of the countries with the largest potato diversity in the world and is 
also recognized as a center of origin (or center of diversity). Potato migration from 
the Andes to coastal Chile caused its adaptation to long-day conditions, this process 
contributed to the development of commercial cultivars worldwide [6]. Chile is the 
origin of the Solanum tuberosum group Chilotanum corresponding to lowland tetra-
ploid landraces. Several Chilean potato genetic diversity and population structure 
studies have shown the close genetic distance between Chiloe Island landraces and 
the modern potato group. This germplasm appears to represent an interesting gene 
pool that could be exploited in potato breeding programs or also used for niche mar-
kets, by the specific needs and preferences. A collection of S. tuberosum consisting 
of 30 accessions of native landraces originating from the island of Chiloe, nine com-
mercial cultivars commonly used in Chile and one accession of S. fernandezianum 
from Robinson Crusoe Island, located at 257 m altitude (33°39′9.03” S, 78°50′45.9” 
W) was evaluated; the results showed that commercial cultivars do not present 
the same genetic variability as native potatoes, and the allelic richness of commer-
cial cultivars is lower than that of native S. tuberosum ssp. tuberosum. Most of the 
native potato were clustered in accordance with their geographical location, while 
commercial cultivars, were clustered in accordance with their breeding programs 
in Chile and Europe [7, 8]. The most complete morphological description of the 
Chilean germplasm was published in 2008 in the Catalog of Native Potatoes from 
Chile. Two institutions of the Chilean government, INIA, and SAG (Agricultural 
and Livestock Service of Chile), among 589 native accessions analyzed, 320 dif-
ferent allelic phenotypes were found indicating that there are at least 320 different 
genotypes in the collections. Of these, 158 belonging to the INIA collection were not 
found in the SAG collection. These 158 new genotypes should increase the number 
of known Chilean potatoes. As expected, different genotypes were known under the 
same popular name [9]. The genetic diversity and heterozygosity contain invaluable 
genetic, physiological, and biochemical attributes, that can guarantee new healthy 
food and safe global food productivity. The INIA (Agriculture Research Institute 
of Chile) is working to preserve that biodiversity, identifying the attributes of each 
landrace for further crop improvement, in terms of nutrition, flesh color, disease 
resistance, and other attributes.
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2.2 Cultivated potato and red-purple fleshed potatoes

Cultivated potato is a high valued crop because of its nutritional properties and 
biochemical composition, rich in starch, reducing sugars, non-reducing sugars, 
proteins, and carotenoids. Other important nutrients in potatoes include miner-
als and vitamins such as potassium, magnesium, vitamin C as well as vitamin 
B6, among others [10, 11]. Potatoes are a reliable source of ascorbic acid – ranged 
from to 5.8 to 21 mg of vitamin C per 100 g tuber on a fresh weight (FW) basis–, 
however several studies have reported changes in the content of vitamin C in 
potato tubers depending on variety [12, 13]. Potato flesh color ranged from white 
to dark yellow cultivars are the most common, a recent review showed that the 
total carotenoids content of tubers is influenced by location, season, genotype, and 
their interactions, with values between 5 and 10 mg kg−1 FW of total carotenoids, 
for white-fleshed potatoes, to over 100 mg kg−1 FW of total carotenoids for dark-
yellow potatoes [14]. Total carotenoids expression was observed in the mid of the 
tuber maturation process rather than in ready-to-harvest tubers. The predominant 
carotenoid forms found in cultivated potato were lutein, violaxanthin, zeaxanthin, 
and neoxanthin [15].

Today, with a major market shift for antioxidant-rich foods, the traders are also 
seeing an increase in the demand for red and purple fleshed potatoes, because these 
contain an important group of secondary plant metabolites associated with posi-
tive health benefits: phenolics, flavonoids, and anthocyanins [16]. Red and purple 
fleshed potatoes provide a natural source of anthocyanins and antioxidant activity 
[17]. Anthocyanins are recognized as natural flavonoid colorants ranged from 
orange-red (pelargonidin), reddish to blue-violet (malvidin), for use in food indus-
try and pharmaceutical ingredients, because of their potential health benefits. The 
six predominant anthocyanidins found in higher plants (including root and tubers) 
are cyanidin, delphinidin, pelargonidin, peonidin, petunidin, and malvidin [18]. 
The phenolics compounds, flavonoids, and anthocyanins are potent antioxidants 
which contribute to the physiological defense against oxidative and free-radical-
reactions. Food containing anthocyanins have been associated with a reduction 
in inflammation markers and a lower risk of chronic diseases, including obesity, 
diabetes, cardiovascular disease, and cancer [19, 20]. In addition, a recent study 
showed that anthocyanins ameliorate neurodegeneration at a molecular and clinical 
level and dietary anthocyanin’s supplement prevents neurodegenerative diseases 
[21]. Colored fleshed potatoes contain relatively low amount of total phenolic acids, 
but its flavonoids and flavones extracts showed high scavenging activities toward 
oxygen compared to other fruits and vegetables [16].

In relation to the predominant anthocyanidins, a study in four potato cultivars 
(“Hermanns Blaue”, “Highland Burgundy Red”, “Shetland Black”, and “Vitelotte”) 
identified Petunidin derivatives in all of them except in “Highland Burgundy 
Red”. Malvidin was the predominant on the “Vitelotte” cultivars. “Shetland Black” 
was the only one containing minor peonidin [22]. The evaluation of anthocyanin 
phenolic compounds of potato peels from ten colored potato cultivars (red and 
purple) the most prominent were pelargonidin, peonidin, and malvidin aglycones. 
All samples revealed antioxidant and antitumor activities, and no toxic effect [23]. 
Another recent study on colored potato (three red-fleshed, three-purple fleshed, 
and one marble-fleshed) showed that red and purple-fleshed potatoes are rich 
sources of anthocyanins. Pelargonidin and petunidin were the main anthocyanidin 
forms, and all aqueous extracts presented in vitro antioxidant, antibacterial and 
antifungal activities, and no toxic effects [24].

Because most native color fleshed potatoes have low yield, wide phenotypic 
variations and uneven flesh color, the INIA Chile’s Potato breeding program has 
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developed new putative color flesh potato cultivars as raw material to food coloring 
and ingredient extraction, with high anthocyanins flesh concentration and high 
yield. Table 1 shows significant differences in color intensity (E1%), total antho-
cyanins (CAT), total polyphenol content (TPC), and antioxidant activity (FRAP), 
for selected red flesh potato (INIA RS58-3), purple flesh potato (INIA RQ12-521), 
blue-violet flesh potato (INIA RÑ98-9). Principal component analysis and matrix 
of correlation coefficients showed a good fit between color intensity (E1%) and 
total anthocyanins (CAT) with values from 0.63 between E1% and CAT-based in 
tuber dry weight between 0.90 for E1% and CAT-based in tuber fresh weight. Both 
red (INIA RS58-3) and blue-violet (INIA RÑ98-9) fleshed potatoes showed higher 
color intensity and higher total anthocyanins (CAT), also these two potato lines 
showed higher values in total polyphenol content (TPC), and antioxidant activity 
(FRAP). Conversely, the light purple flesh potato (INIA RQ12-521) showed low-
est color intensity and consequently lower CAT, TPC, and antioxidant activity. 
Thus, selected red flesh potato (INIA RS58-3) and blue-violet flesh potato (INIA 
RÑ98-9) are promising raw material for natural color extraction and food coloring 
ingredients.

In term of Anthocyanin profile (Table 2), in these color fleshed potatoes, the 
predominant anthocyanins identified were Pelargonidin-3-glucoside, Peonidin-
3-glucóside, Peonidin-3-arabinósido, Delphinidin 3-glucoside, Delphinidin 
3-galactoside, Delphinidin 3-rutinoside, Delfinidina-3,5-diglucósido, 
Delphinidin 3-galactoside, Delphinidin 3-glucoside, Delphinidin 3-rutinoside, 
Malvidin-3-glucóside, and Malvidin-3,5-diglucóside. The major picks in red 
flesh potato (INIA RS58-3) were in Peonidin and Delphinidin derivatives, while 
in blue-violet flesh potato (INIA RÑ98-9) the picks were in Delphinidin and 
Malvidin.

2.3 Stability and Bioaccesibility: potato anthocyanins

The concentration and stability of these anthocyanins are affected by several 
parameters such as agronomic factors and postharvest storage. However, the stabil-
ity of acylated anthocyanins is still not well addressed, and few studies in anthocya-
nins contents (CAT) in colored-flesh potato tubers during processing and digestion 
have been published [25, 26]. The stability of anthocyanins is affected by pH, tem-
perature, and light. During the digestion process, anthocyanins stability is affected 
because undergo variation in pH and in digestive enzymatic activity. Therefore, 
the anthocyanins stabilization is needed to maintain their health effects in the 
human body and increase its positive effects. The anthocyanins stability could be 
improved by using micro-encapsulation technology such as spray-drying [26–28]. 
Micro-encapsulation is a technique wherein a bioactive compound is encapsulated 
by a biopolymer, to protect the compound from oxygen, water, or other conditions, 
thereby improving its stability and release in the desired stage [26, 28]. In order 
to know bio stabilization of anthocyanins extract from purple flesh cultivated 
potato, a study was addressed on the encapsulation anthocyanins’ efficiency and 
bioaccesibility. The anthocyanin extract from INIA purple flesh potato (PPE) was 
micro-encapsulated by spray-drying [29] (Figure 1). Maltodextrin (MD) was used 
as the encapsulating agent, due to its high solubility in water, low viscosity, bland 
flavor, and colorlessness. Briefly, the mixture (extract PPE-maltodextrin) was fed 
into spray dryer at 130°C. The encapsulation efficiency (EE) was 86%, due the 
high anthocyanins-MD interactions caused by hydrogen bonding and/or electro-
static interactions. The total anthocyanins were 1.34 ± 0.02 mg cy-3-glug−1 and 
antioxidant activity (FRAP) was 10.1 ± 0.6 mg trolox equivalentg−1. The moisture 
(5.6 ± 0.4%), water activity (aw = 0.225 ± 0.001), and particle size (6.51 ± 0.1 um) 
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were within the range described for anthocyanin encapsulated obtained by spray-
drying [27, 30, 31].

PPE-MD encapsulation improved its anthocyanins stability due to anthocyanin 
extract and encapsulating agent interaction that may occur by hydrogen bond-
ing and/or electrostatic interactions. Reduced damage of active anthocyanins was 
observed under adverse storage conditions. The time-course of the storage stability 
assay during 140 days at 60°C showed that encapsulated extract (PPE-MD) showed 
significantly higher anthocyanins retention than non-encapsulated PPE (Figure 2), 
thereby extending shelf life, color, and antioxidant capacity [29]. These results agree 
with earlier reports on use of spray drying technique on black-carrot, black berry, 
maqui and plum [27, 32–34].

Other important aspect is the in vitro bio accessibility (BA) of anthocyanins. 
Bio accessibility is defined as the amount of bioactive compound (anthocyanins) 
that was released from the food matrix after digestion [35]. The BA of encapsu-
lated anthocyanins extracts of purple flesh potato (PPE-MD) was significantly 
higher than non-encapsulated extract (Figure 3). Micro-encapsulation protects 
PPE-MD during in vitro digestion, against environmental conditions, especially 
pH. The BA of the PPE and PPE-MD was higher than previous similar studies 
in maqui extract [27] and blueberry extract [28]. The encapsulation  technology 
is a useful strategy to protect anthocyanins from purple flesh cultivated 
potato, during storage and in vitro gastrointestinal digestion model, as well. 
The anthocyanins micro-encapsulation contributes to the development of new 
purple potato products in powder formulation, potentially useful as colorants 
for the food industry or health ingredients (antioxidant and anti-inflammatory 
properties).

2.4  Red and purple flesh potato-based food and natural ingredients responding 
to new global food market trends

The global consumer trend preferences and the health and wellness market in 
the next coming years, show a promising future for non-traditional color fleshed 
potato, as red, purple, and blue fleshed potato, because their antioxidant activity 

Color flesh 
Potato selected 
lines

Skin 
Color

Flesh 
Color

Tuber 
Shape

Anthocyanin profile (predominants)

INIA RS58-3 RF RF Rd Pelargonidin-3-glucoside, Peonidin-3-glucoside, 
Delphinidin 3-galactoside

INIARQ12-521 PF PL O Peonidin-3-arabinósido, Delphinidin 3-glucoside, 
Delphinidin 3-galactoside, Delphinidin 
3-rutinoside, Malvidin-3-glucóside,

INIARÑ98-9. VB VB Rd Peonidin-3-arabinósido, Delfinidina-3,5-
diglucósido, Delphinidin 3-galactoside, 
Delphinidin 3-glucoside, Delphinidin 
3-rutinoside,
Malvidin-3,5-diglucóside,

Where, Red = RF, PF = Strong purple, PS = Light purple, VB = blue-violet; Tuber shape Rd = Round, O = Oval. 
Anthocyanin profile by HPLC analysis was carried out in Jasco Intelligent Quaternary Gradient PumpPU-2089 
Plus, UV/VIS detector e interface LC-NetII/ADC, C18 Kromasil 100-5 de 150 mm at 30C°. Detection: UV @ 
520 nm.

Table 2. 
Anthocyanin profile of tubers, for selected red flesh potato (INIA RS58-3), purple fleshed potato (INIA RQ12-
521), blue-violet flesh potato (INIA RÑ98-9) cultivated in Osorno (40°34′26.22”S, 73°8′0.53”W.) Chile, during 
two seasons (2019-2020 and 2020-2021).



125

Red and Purple Flesh Potatoes a Healthy and Attractive Alternative Associated…
DOI: http://dx.doi.org/10.5772/intechopen.99181

and health benefit are capturing the consumers’ attention. Most studies about mar-
ket trends have projected that “the global health and wellness food market” would 
grow at a CAGR of over 6% (6–8%) during the next years. This forecast is explained 
in part, because the world, upon COVID-19 pandemic impact, will face the growing 
incidences of chronic diseases, stress, obesity, aging and other adverse health condi-
tions, see more detail in [36–38] reports. In potato, some reports about its market 
under the COVID-19 pandemic situation shows that potatoes become popular due 
to their long shelf-life. In relation to global market, most potatoes are consumed as 
fresh vegetable, however, is shifting from fresh potatoes to processed potato-based 
foods. Based on application, the processed potato market is segmented into ready-
to-cook, snacks, potato flour-gluten free, and other potato-based food additives for 
soups, gravies, bakery, and desserts driven by urbanization and changes in eating 
habits among many other factors. Thus, these global food market trends, raises 
further questions for food industry and R&D institutions, would be capable to 
develop new color fleshed potato-based foods and potato-based ingredients keeping 
its nutritional value and color.

Figure 1. 
(a) Microencapsulated powders (anthocyanin extract from INIA purple flesh potato (PPE + maltodextrin) 
and (b) scanning electron microscopic (SEM) for anthocyanins microencapsulated powders.
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Figure 2. 
Time-course storage stability assay for anthocyanins retention at 60°C for 140 days storage from non-
encapsulated extract (PPE, ©) and encapsulated extract (PPE-MD, ∆), and the visual degradation of 
anthocyanins for liquid (analysis solution) on non-encapsulated PPE (source: Adapted Vergara et al. [29]).

Figure 3. 
Bio accessibility (%) of non-encapsulated (PPE) and encapsulated (PPE-MD) anthocyanins extract after 
simulated in-vitro digestion.



127

Red and Purple Flesh Potatoes a Healthy and Attractive Alternative Associated…
DOI: http://dx.doi.org/10.5772/intechopen.99181

A recent research studied how the anthocyanin degradation and anthocyanin 
profile were influenced in red-fleshed potatoes (cv Herbie 26) after different 
methods of processing (dried cubes, French fries, chips, semi-finished products, 
and finished products); most evaluated processes showed losses on anthocyanin 
content. Chip products showed higher retention anthocyanins. Pelargonidin-3-
feruloylrutinoside-5-glucoside, and pelargonidin-3-caffeoylrutinoside-5-glucoside, 
were most thermally stable [25]. To reduce the loss of effectiveness of plant-based 
compounds as anthocyanins, and polyphenols from color fleshed potatoes, micro-
encapsulation arise as an alternative. This technique allows the development of 
novel plant-based ingredients able to keep their functionality after processing. 

Figure 4. 
(a) Potato-based ingredient, flakes elaborated from red flesh potato (INIA RS58-3), purple fleshed potato 
(INIA RQ12-521), blue-violet flesh potato (INIA RÑ98-9). (b) Flakes elaborated from light purple fleshed 
potato (INIA RQ12-521).
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However, commercial product development depends on financial and operational 
viability. In the previous section of this chapter, anthocyanins’ stability and 
bioaccesibility from color fleshed potatoes were discussed with emphasis in micro-
encapsulation for INIA purple flesh potato and in vitro digestion. Thus, micro-
encapsulated spray dried powder from purple-fleshed potato could be applied in 
drinks, in snacks, and in milk products because its stability and bioaccesibility [29]. 
The application of aqueous extracts from color fleshed potato was also tested and 
validated as natural colorants in a soft drink during 30-days shelf-life when com-
pared with the commercial colorant E163 [24].

Potato flake is an ingredient with multiple applications in processed food and 
long shelf life. A recent study compared the convective tray drying method with 
a refraction-based drying method for producing potato flakes (cv. Kufri Pukhraj, 
a light yellow to gold flesh potato). The results showed that those flakes obtained 
by refraction-based drying had better nutritive value, color and acceptability. It 
recommended its application for the fortification of flour, baby foods, and extruded 
products [39]. Previously, a study in anthocyanin-rich red potato flakes showed 
that might improve the antioxidant system by enhancing hepatic SOD (superoxide 
dismutase) mRNA in mice [40]. The replacement of part of the wheat flour with 
purple fleshed potato powder (from freeze-dried) and albedo showed an enhance-
ment antioxidant activity of fortified breads, and longer shelf life [41]. In addition 
to the previous reported health benefits, the purple fleshed potato powder (from 
freeze-dried) has the potential to aid in the amelioration of ulcerative colitis symp-
toms, a major form of inflammatory bowel disease [42].

Potato-based ingredients (flakes, spray dried powder, and freeze-dried powder) 
were elaborated from red flesh potato (INIA RS58-3), purple fleshed potato (INIA 
RQ12-521), and blue-violet flesh potato (INIA RÑ98-9) because their application 
in food industry (Figure 4). The spray dried powder shows better physical proper-
ties when compared to the freeze-dried powder. Conversely, freeze-dried powder 

Potato-based ingredients Color (E1%)  
Color intensity

CAT
(mg C3G g−1) 

ingredient

FRAP
(μmol Trolox g-1) 

ingredient

Flakes
Red flesh INIA RS58-3

0.42 ± 0.03 ab 1.9 ± 0.2 b 45.1 ± 1.2 b

Flakes
Purple flesh potato INIA 
RQ12-521

027 ± 0.02 c 1.2 ± 0.3 c 47.0 ± 1.7 b

Freeze-dried powder
Red flesh INIA RS58-3

0.47 ± 0.01 a 2.7 ± 0.1 a 56.9 ± 4.9 a

Freeze-dried powder
Purple flesh potato INIA 
RQ12-521

0.39 ± 0.01 b 2.2 ± 0.2 ab 46.4 ± 0.6 b

Color intensity (E1%) is the optical density of a 1% juice solution at the wavelength of maximum absorbance 
intensity (INIA RÑ98-9: Abs = 522 nm, INIA RQ12-521: Abs = 521 y RS58-3: Abs = 506 nm) by spectrophotometer 
(Jasco V-700). Total anthocyanin content (TAC) by pH differential method expressed as mg of cyanidin-3-
glucoside equivalents per fresh weight (FW). Antioxidant activity (FRAP) measured by the FRAP method as 
described as Trolox equivalent by spectrophotometer (Jasco V-700). Different letters in the same column indicate 
statistical difference (p ≤ 0.05) among ingredient and potato lines. Three replicates were analyzed (with 3 
instrumental measures per sample). Data were analyzed by one-way ANOVA followed by the Tukey test (p < 0.05) 
by InfoStat version 2020. http://www.infostat.com.ar).

Table 3. 
Color intensity (E1%), total anthocyanins (CAT) and antioxidant activity (FRAP) of potato-based 
ingredients (flakes and freeze-dried powder) elaborated from red flesh potato (INIA RS58-3), and purple flesh 
(RQ12-521).
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preserves better the nutritional value such as naturally occurring. And, in spray 
dried powder the high temperature of heat may cause the loss of nutritional value. 
Red flesh potato (INIA RS58-3) and purple flesh potato (INIA RQ12-521) were 
selected for further evaluation because they fresh tubers show greater differences 
in color intensity. Potato-based ingredients as flakes and freeze-dried powder were 
compared (Table 3) for color intensity (E1%), total anthocyanins (CAT), and 
antioxidant activity (FRAP). As expected, freeze-dried powder preserved better the 
color intensity (E1%), total anthocyanins (CAT) and antioxidant activity (FRAP), 
however the flakes values were also attractive. These potato-based flakes and freeze-
dried powder are food coloring because both ingredients provide color and bioac-
tive compounds, with different applications.

3. Conclusion

All these antecedents, suggest that red and purple fleshed potatoes are not only 
a promising crop for starvation problem, also their consume promote health and 
may prevent chronic diseases. Anthocyanin-rich extracts from red and purple 
fleshed potatoes have high potential as natural colorants with multiple applications 
in food industry. Also, these potatoes contain an important group of secondary 
plant metabolites associated with antioxidant activity and positive health benefits, 
as phenolics, flavonoids, and anthocyanins. INIA’s new putative color flesh potato 
cultivars (red flesh potato (INIA RS58-3), purple flesh potato (INIA RQ12-521), 
blue-violet flesh potato (INIA RÑ98-9)) are promising raw materials for natural 
color extraction and food coloring ingredients.
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Abstract

Potato (Solanum tuberosum L.) is a staple food crop that could play a major role 
in improving food security in developing nations. The sustainable production of 
this crop faces many challenges like pests, diseases, abiotic stresses and post-harvest 
problems. Transgenic technology and gene silencing strategies offered a new hope 
of solution to the conventional time consuming breeding programmes. However the 
genetically modified crops are affected by regulatory approvals and safety concerns. 
In this aspect, gene editing techniques like ZFNs (zinc-finger nucleases), TALENs 
(transcription activator-like effector nucleases), and CRISPR/Cas9 (clustered regu-
larly interspaced short palindromic repeats/CRISPR associated Cas9), offer better 
choice for production of transgene and marker free disease resistant potatoes.

Keywords: Potato, ZFNs, TALENS, CRISPR/Cas9

1. Introduction

Potato (Solanum tuberosum) belonging to the Solanaceae family is the fourth 
most important staple food crop of the world consumed by more than a billion 
people [1]. The global total potato production exceeds 300 million metric tons [2]. 
Popularly called the ‘poor man’s friend’, this crop can play a vital role to safe guard 
the food security and sustainability in the current scenario of surging population 
growth. The crop is a rich source of starch, vitamins especially C and B1 and miner-
als. It is also used for several industrial purposes such as for the production of starch 
and alcohol.

There is an urgency to increase the production and quality of potatoes to meet 
the demands of the rising population. However the development of new potato 
cultivars using traditional cross-breeding is complicated and slow due to tetrasomic 
inheritance and high heterozygosity of cultivated varieties [3]. Currently, research 
work using genome editing (GE) tools are being deployed for the precise improve-
ment of desirable traits in crops. Genetically modified (GM) crop production faces 
many hurdles due to the complicated regulatory approval procedures whereas the 
technique of GE offers a better promise in crop improvement by making efficient 
and precise changes in the plant genome. This chapter describes the research 
advancements in potato using GE tools and the hurdles ahead due to the regulatory 
measures.
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2. Constraints in potato production

2.1 Pests and diseases

Pests and diseases are major constraints to commercial production of potato. The 
major pests infesting potato include Colorado potato beetle (Leptinotarsa decemlin-
eata), leafminer fly (Liriomyza huidobrensis), cyst nematodes (Globodera pallida and 
G. rostochiensis) and potato tuber moth (Phthorimaea operculella) during storage. The 
important diseases of potato include late blight (Phytophthora infestans), early blight 
(Alternaria ssp.), potato virus Y, potato leaf roll virus, bacterial wilt or brown rot’ 
(Ralstonia solanacearum) and blackleg (Pectobacterium carotovorum) during storage.

2.2 Weeds

Weeds are a major problem in potato production and can reduce yields through 
direct competition for light, moisture, and nutrients, or by harbouring insects 
and diseases that attack potatoes. Weeds can have a detrimental impact on tuber 
yield when compared to potatoes grown in weed-free conditions [4, 5]. The weeds 
present at harvest can be detrimental to yield by increasing mechanical damage to 
the tubers and reducing harvesting efficiency by slowing the harvesting operation. 
Farmers mostly employ herbicides to enhance weed control.

2.3 Post-harvest shelf life

Postharvest management and storage of the potato is an important factor not 
only in preventing postharvest losses but also in maintaining its nutritional quality. 
This is because potato contains glycoalkaloids (GAs), a family of steroidal toxic sec-
ondary metabolites that occur in all parts of the potato. The levels of these toxins are 
significantly affected by postharvest handling stress factors with exposure to light, 
storage temperatures, and injuries/bruising being important stress factors. Storage 
is an important post-harvest activity in seed production. Storage under specific 
conditions is important to prevent excessive loss of weight as a result of drayage and 
to preserve germination quality. Prevention of diseases in storage is also important 
whether it be small farmer storage or commercial potato seed storage.

2.3.1 Starch composition

Potatoes are used for a variety of purposes, and not only as a vegetable for 
cooking at home. In fact, it is likely that less than 50 percent of potatoes grown 
worldwide are consumed fresh. The rest are processed into potato food products 
and food ingredients; fed to cattle, pigs, and chickens; processed into starch for 
industry; and re-used as seed tubers for growing the next season’s potato crop. The 
commercial value of potato starch is governed by the proportion of its derivatives 
mainly amylose and amylopectin. There is much demand for amylose free potatoes 
in food and paper industries and more availability of potato cultivars with high 
amylopectin is warranted.

3. Genome editing and crop improvement

Crop improvement using conventional methods are often labour-intensive and 
time-consuming and the rarity and randomness of significant mutations to produce 
desirable traits hinder the development of new commercial varieties. Although 
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genetically modified crops were introduced since 1996, concerns have been raised 
regarding its safety and the regulatory measures adopted by different countries 
has hindered its popularity. However the use of genome-editing tools for crop 
improvement has gained much attention because of greater accuracy and efficiency 
compared to conventional breeding. Genome editing has revolutionised the field of 
agriculture. Genome editing methods utilise sequence – specific nucleases (SSNs). 
The potential of genome editing using various methods like Oligonucleotide 
Directed Mutagenesis (ODM), Zinc-Finger Nucleases (ZFNs), bacteria-derived 
Transcription Activator-Like Effector Nucleases (TALENs, based on protein–DNA 
interactions), Meganucleases (MNs), and Clustered Regularly Interspersed Short 
Palindromic Repeats (CRISPRs)/CRISPR-associated 9 (Cas9) endonuclease (an 
RNA-guided DNA endonuclease) system are being explored by many researchers 
because of availability of draft sequences of various crops in public databases. These 
methods make precise modifications in the target genome by DNA repair mechanism 
to produce transgene free genetically modified desired phenotypes. It is also possible 
to make epigenetic changes, where the DNA sequence remains unchanged but gene 
expression is altered because of chromatin changes that may be heritable. Targeted 
mutagenesis results in double-strand breaks (dsbs) at specific genomic locations [6] 
and this in turn induce either of the two native DNA repair mechanisms, namely:

Non-homologous end-joining (NHEJ): an imprecise repair mechanism that 
introduces variable length insertions or deletions at the breaking point, rendering 
the target gene non- functional.

Homologous recombination (HR): that inserts homologous DNA templates at the 
targeted point, allowing the precise insertion or deletion of nucleotides in a specific 
locus [7]. This technology has proven to be an efficient mechanism for genome editing, 
not only for model plant organisms, such as Arabidopsis thaliana and tobacco, but also 
for economically important crop plants, including soybean, corn and rice [8–11]. This 
method remains more complex as it requires the simultaneous delivery of a DNA repair 
template that carries the desired modification to be incorporated into the repaired 
locus [12]. However it has wider application in site specific gene insertion, stacking of 
genes at a specific genome position and genome alteration to a single base level [13].

3.1 Merits of genome editing

Genome editing as already mentioned is a precise breeding method that allows 
for targeted single gene modifications capable of altering gene expressions through-
out the entire plant genome producing desirable outcomes. Random mutagenesis 
breeding method using radiations or chemicals on the other hand is undirected and 
alters thousands of genes [14].

Genome editing or ‘precision genome engineering’ method offers numerous 
applications like [15]:

• Improvement of crop yield in varying types of soil

• Production of plants more resistant to biotic and abiotic stress

• Development of plants with better root systems for nutrient uptake and the 
ability to source soil moisture

• Improvement of post - harvest storage

• Increase a plant’s ability to sequester carbon. – research on modifying plants to 
increase their CO2 fixation ability is underway in many laboratories [16]
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Hence these novel biotechnological tools offers immense scope to meet the 
increasing demand of food supply by increasing the productivity of crops with the 
same level of resources and inputs.

3.2 Major genome editing tools

3.2.1 Zinc finger nucleases

During the 1990s attempts were made by various researchers to improve the pre-
cision in genome editing with the discovery of zinc finger nucleases (ZFN). ZFNs 
are artificial restriction enzymes comprising of a specific zinc finger DNA-binding 
domain composed of 3-base pair site on DNA and a cleavage domain. The structure 
of ZFNs were engineered so that the DNA binding domain binds to specific DNA 
sequences in the genome and the cleavage domain cuts the DNA.at that specified 
location. The cleavage domain is a type II restriction enzyme (FokI endonuclease). 
Using this technique scientists can make a cut in the desired region thereby allowing 
to either delete the target sequence or insert a new DNA sequence via homologous 
recombination.

Multiple ZFNs can be combined to recognise longer sequences of nucleotides, 
increasing specificity and success rate of genome editing by 10 percent. The major 
drawbacks of ZFNs were:

• for each target a new ZFN had to be designed

• it was time consuming to engineer a successful ZFN

• poor targeting density and

• relatively high levels of off-target effects, leading to cytotoxicity

3.2.2 TALENs

With the advent of time, transcription activator-like effector nucleases (TALENs) 
emerged as the more powerful tool in gene editing technology. TALENs are engineered 
from proteins found in nature and are similar to ZFNs in that they are composed of a 
non-specific cleavage domain from the type II restriction endonuclease FokI, fused to 
DNA-binding domain sequences. The engineering of these two domains resulted in 
stimulating NHEJ and HR leading to precise genome editing. The main difference is 
that each TALE domain recognise single nucleotides rather than relying on 3-base pair 
sites as in ZFNs. Hence, does not affect the binding specificity of neighbouring TALEs, 
making the engineering of TALENs much easier than ZFNs.

Forsyth and coworkers, demonstrated that the TALEN system could be used to 
successfully target T-DNA incorporation into a specific pre-chosen site in the potato 
genome that is transcriptionally active. Importantly, these investigators designed a 
vector that would not allow stable integration of the TALEN genes into the genome. 
Their data indicated that TALEN-induced integration of the gene of interest at 
specific sites, results in co-segregation and results in predictable expression level of 
the integrated gene [17].

Nicolia et al., employed site-directed mutagenesis in tetraploid potato through 
transient TALEN expression in protoplasts. The study highlighted that the site-
directed mutagenesis technology could be used as a new breeding method in potato 
as well as for functional analysis of important genes to promote sustainable potato 
production [18].
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TALENs are effective genome engineering technologies but their major limita-
tion is that tailoring the DNA binding proteins to target a sequence of interest can 
be costly and time-consuming [19]. Furthermore, engineering TALENs to generate 
targeted DSBs requires two TALEN proteins capable of binding in a tail-to-tail 
orientation to facilitate the dimerization of FokI nuclease domain [20]. These and 
other, limitations were considerably reduced in the past few years due to the advent, 
development, and subsequent technological advancements of the CRISPR/Cas9 
system [12].

3.2.3 CRISPR

CRISPR/Cas9 system is presently the widely used genome editing  technology 
in wide range of species ranging from the smallest microbes to the largest 
plants and animals. Clustered regularly interspaced short palindromic repeats 
(CRISPRs) are a family of DNA repeats present in most Archaea and few bacte-
rial species that act as molecular immunity systems against invading phages and 
nucleic acids. These distinctive loci consist of repetitive palindromic sequences 
(21–47 bp), separated by hypervariable spacer sequences that exhibit homology 
to exogenous viral and plasmid sequences, ranging between 21 and 72 bp. These 
arrays are often located adjacent to helper cas (CRISPR-associated) genes that 
encode polymerases, nucleases and helicases. When spacer sequences are tran-
scribed, they generate small CRISPR-RNA (crRNA) fragments that hybridise with 
a small non-coding transactivating crRNA (tracrRNA). This double-stranded 
RNA molecule is used as a guide to target invading DNA sequences as a result of 
complementarity, and it directs the Cas9 endonuclease to these sequences for 
DNA degradation by double-strand cleavage at a site preceding the protospacer 
associated motif (PAM) [21].

The CRISPR/Cas9 genome editing technology has been successfully employed 
for the genetic editing of single or multiple gene targets in several plants, such 
as A. thaliana, tobacco, rice and sweet orange [10, 22–24] and for engineering of 
durable resistance, even at different levels of ploidy [25].

4. Genome editing in potato

Potato (Solanum tuberosum) is a heterozygous polyploid crop and this makes the 
introgression of valuable traits from wild varieties challenging and time-consuming 
task. Conventional breeding therefore failed when multiple traits or novel traits not 
present in germplasm need to be introduced for crop improvement. Availability of 
genome sequence data in public database and established genetic transformation 
and regeneration protocols has made potato a strong candidate for genome editing. 
These techniques can hence be utilised to improve the production and quality traits 
without impacting optimal allele combinations in current varieties [26–33]. The first 
successful demonstration of the use of TALENs in a tetraploid potato cultivar was by 
knocking out all four alleles of sterol side chain reductase 2 (StSSR2) [34] involved 
in anti-nutritional sterol glycoalkaloid (SGA) synthesis [35, 36]. In 2015, came an 
important breakthrough that both TALENs [18] and CRISPR/Cas9 [37] gene-editing 
systems could be used to efficiently modify the potato genome. In a tetraploid plant, 
instead of two copies (alleles) of any particular gene present in a diploid plant, 
there are four copies of the same gene. Advances in gene editing techniques have 
shown that for several polyploid plant species, rapid and efficient modification can 
be achieved for most, if not all, chromosomes in the multiple chromosome sets of 
polyploid plants [38]. In 2015, Wang and coworkers, conducted a study in potato and 
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demonstrated that the CRISPR/Cas9 system was highly efficient for targeted muta-
tion of StIAA2 gene encoding an Aux/IAA protein. They could obtain homozygous 
monoallelic and biallelic mutations in the first generation of transgenic plants [37].

4.1 Trait improvement in potato using genome editing

4.1.1 Disease resistance in potatoes

Plant diseases cause a major constraint in potato production and incurs huge 
loss to the farming community. Researchers are yet to make a major breakthrough 
in producing potato resistant to viruses, bacteria and fungi using the gene-editing 
techniques. TALEN technology has already been successfully used for engineer-
ing bacterial blight resistant rice cultivars [10]. There has also been reports on the 
production of virus resistant plants using CRISPR/Cas9 method either by directly 
targeting and cleaving the viral genome, or by modifying the host plant genome to 
introduce viral immunity [39].

Late blight disease, caused by fungus Phytophthora infestans, is the major obstacle 
in increasing potato production [40]. Hence a major area of focus is the produc-
tion of late blight resistant potato varieties by knocking out or removing disease 
susceptibility genes (S-genes) [41]. Currently the disease is controlled by fungicide 
spraying and breeding for disease resistance.

R genes (Resistance genes) encode R protein that degrades the toxin produced 
by the pathogen and initiates defence mechanism in plant. However there are 
chances of losing this resistance due to high rates of evolution of effector proteins 
by the pathogen. Genome editing method could be applied to produce late blight 
resistant potatoes by editing specific amino acids in R-genes essential for effector 
recognition. Another strategy for durable broad spectrum resistance is by loss of 
susceptibility [42]. Silencing of multiple susceptibility genes (S-genes) by RNAi 
resulted in late blight resistance in potato [43]. The drawback of RNAi is that it does 
not always result in a complete knockout. Genome-editing on the other hand by the 
introduction of both extracellular and intracellular receptors in potato cultivars can 
simultaneously knockout genes belonging to the S-locus, thus aid in attaining durable 
broad-spectrum resistance for late blight. Du and coworkers has reported the use of 
an extracellular receptor protein ELR (elicitin response) from the wild potato species, 
S. microdontum, in recognising an elicitin that is highly conserved in Phytophthora 
species offering a broad spectrum durable resistance to this pathogen [44].

The team led by Aman had reported the use of Cas13 for interference against 
Turnip Mosaic Virus (TuMV) expressing green fluorescent protein in Nicotiana 
benthamiana both in stable and transient systems. Various potato viruses like the 
Potato virus X (PVX), Potato virus Y (PVY) and Potato leafroll virus (PLRV) account 
for the low production of potato. So the above study raises the hope of employing 
CRISPR/Cas13a system in combating the pathogenic viruses [45].

4.1.2 Herbicide resistance in potatoes

Butler et al., reported the creation of a single-stranded gemini virus-based DNA 
replicon (GVR) that carries TALEN genes targeting the potato Acetolactate synthase1 
(ALS1) gene and also a fragment of the ALS1 gene that carries a mutation confer-
ring tolerance to several classes of ALS-inhibiting herbicides. Transfection of potato 
cells with the gemini virus DNA replicon construct results in transient expression 
of TALEN genes. The double strand break created at the target site was repaired by 
Homologous recombination to recognise the ssDNA fragment of the ALS1 gene car-
rying the desired mutation and integrate this new sequence in place of the wild-type 
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ALS1 sequence. The plants thus modified with GVRs did not have the presence of 
TALEN or gemini virus DNA sequence but held point mutations within ALS1 locus 
and exhibited significant tolerance to herbicide treatments [46].

4.1.3 Improving post harvest shelf life in potato

Potatoes are harvested only once annually and it therefore necessitates the cold 
storage of the tubers to extend its postharvest shelf life. This storage leads to the 
conversion of sucrose to reducing sugars (cold-induced sweetening (CIS)) that can, 
upon frying, lead to reactions with amino acids resulting in undesirable brown-
ing, creation of bitter tastes, and production of low amounts of toxic acrylamide. 
Clasen et al., targeted the vacuolar invertase (Vinv) genes of Ranger Russet potatoes 
for knockout using the TALEN gene-editing system to reduce CIS. Five out of 18 
regenerated plants contained knockouts of all four Vinv alleles. Tubers from these 
plants contained no detectable reducing sugars, were light brown and after pro-
cessing contained lower levels of acrylamide [30]. This Vinv-knockout potato was 
commercialised by Cellectis Plant Sciences (now Calyxt Inc.) [47].

4.1.4 Modification of starch composition of potatoes

Potato starch provides important nutrition for humans and animals besides its 
numerous industrial uses. The relative ratio of the two major starch types, amylose 
and amylopectin, determines the quality of potato starch. Hence controlling this 
balance has significant commercial applications. High amylopectin (amylose-free) 
starch has been an important common trait in staple crops due its commercial value 
in the food and manufacturing paper industries. In potato starchy tubers, the GBSS 
gene was successfully knocked-out to generate high-amylopectin potato using dif-
ferent gene editing tools.

Kusano et al. used the TALEN system to successfully disrupt copies of one key 
enzyme in the starch biosynthesis pathway, granule-bound starch synthase (GBSS) 
gene in potato protoplast cells [48].

In a study, Andersson et al. used transient expression of the CRISPR/Cas9 
system to demonstrate complete knockout of all four GBSS alleles in PEG-treated 
potato protoplasts and in up to 2% of regenerated lines. The successful knockout 
of the GBSS genes completely resulted in only the amylopectin starch (amylose 
free) in regenerated potato microtubers [32]. In yet another study, Andersson et al. 
carried out a DNA-free genome editing method, using delivery of CRISPR-Cas9 
ribonucleoproteins (RNP) to potato protoplasts, by targeting the gene encoding 
granule bound starch synthase (GBSS) [49].

Ma et al. used a non-viral, Agrobacterium-mediated infiltration method to 
express two TALENs with different molecular weights to target two endogenous 
genes -starch branching enzyme (SBE1)) and an acid invertase(INV2) into two 
vegetatively propagated potato cultivars, Solanum tuberosum Russet Burbank and 
Shepody. These TALENs, successfully agroinfiltrated and induced mutations at both 
targeted loci thus affecting the degree of branching potato cold sweetening. The 
agroinfiltration method was cheaper, less laborious and could save time as compared 
to the protoplast culture approach. The mutation was induced at the specific target 
site and this resulted in the production of improved plant varieties with less soma-
clonal variation [50]. Tuncel et al., demonstrated that Cas9-mediated mutagenesis 
of SBE genes has the potential to generate a range of new potato phenotypes with 
valuable starch properties without integration of foreign DNA into the genome [51].

Kusano et al. improved the gene editing system by fusing the translational 
enhancer dMac3 of the 5′ UTR of rice OsMac3 mRNA to the 5′-end of Cas9 to 
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increase its level of expression. It was found that the Granule-bound starch synthase 
I (GBSSI) gene mutant frequency induced by CRISPR/Cas9 system was greatly 
increased and the mutant plants produced tubers with low amylose starch [52].

In 2019, Johansen et al., reported the improvement of CRISPR/Cas9 editing 
efficiency in the Granule-bound starch synthase gene at the protoplast level when 
Arabidopsis U6 promoter was replaced by endogenous potato U6 promoters. This 
team of researchers also used the Indel Amplicon Analysis (IDAA) technique for 
faster and direct assessment of insertions/deletions (indels) in plants with complex 
genomes like potato [53].

Sevestre et al. reported the successful usage of SNP physical map of Solanum 
tuberosum L. cv. Desiree revealing the position of diverse indels for designing a 
specific gRNA and knocked out an isoform of starch synthase SS6 (gene), a key 
enzyme of the starch biosynthetic pathway [54].

Veillet et al. used the CRISPR-Cas9 base editing, precisely in the conserved cata-
lytic KTGGL encoding locus of the StGBSSI enzyme using a cytidine base editor 
(CBE). This lead to the discrete variation in the amino acid sequence and loss-of-
function allele producing plants with impaired amylose biosynthesis [55].

4.1.5 Production of SGA free potatoes

Potato tubers accumulate steroidal glycoalkaloids (SGAs) α-solanine and 
α-chaconine that confer a bitter taste and exhibit toxicity against various organisms 
[56]. Commercial tuber production mandates a total glycoalkaloid content of less 
than 20 mg 100 g−1 tuber fresh weight as per industry standards, but the SGA level 
should be higher in the aerial parts as it can act as an allelochemical to deter insect 
pests like Colarado potato beetle [57, 58]. Genome editing can be utilised to target 
specifically the tuber expressed or aerial parts expressed genes of the SGA biosyn-
thetic pathway leading to the development of potato cultivars with low SGA levels 
in tubers while maintaining higher levels in the aerial parts.

Akiyama et al., from Japan reported the successful production of potato with 
reduced concentrations of the toxic steroidal glycoalkaloid (SGA) compounds, 
α- solanine and α-chaconine that accumulate in sprouts and green tubers by genome 
editing. The team applied CRISPR-Cas9 system to knockout the potato CYP88B1 gene 
involved in a later step of the SGA biosynthetic pathway. The CYP88B1-knockout 
potatoes showed no accumulation of SGAs. Furthermore, the corresponding amounts 
of steroidal saponins, important compounds in the pharmaceutical industry, accumu-
lated in the knockout potatoes as a result of the decrease in SGA synthesis [59].

Nakayasu et al., and Yasumoto et al., used TALEN and CRISPR/Cas9 to knock-
out the SSR2 gene encoding for sterol side chain reductase 2 and the St16DOX gene 
encoding for the steroid 16α-hydroxylase in the SGA biosynthetic pathway. This 
prevented SGA accumulation in potato tuber and hairy roots, respectively [60, 61].

4.1.6 Reduction of enzymatic browning in potato tubers

Polyphenol oxidase (PPO) catalyses the conversion of phenols to quinones result-
ing in browning and reducing the devaluation of the processed products from the 
tubers. TALEN methods was employed to knock out one of the PPO genes in potato 
tubers resulting in decreased browning. This technique was commercialised using 
different delivery techniques (PEG-mediated transfection or Agrobacterium-mediated 
transformation) by two companies (Calyxt Inc., and Simplot Plant Sciences).

Gonzalez et al., produced potatoes with reduced browning by specific editing of 
the polyphenol oxidase gene (StPPO2) in the tetraploid cultivar Desiree. CRISPR/
Cas9 system using RNPs as a delivery system was employed to induce mutations in 
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the StPPO2 gene resulting in the production of lines with a reduction of up to 69% 
in tuber PPO activity and a reduction of 73% in enzymatic browning, compared to 
the control [62].

Khromov et al. compared in vitro activities of various sgRNAs designed for 
different regions of phytoene desaturase (PDS) from the carotenoid biosynthesis 
pathway and a coilin gene involved in plant resistance. The visual phenotype of PDS 
knockout makes it convenient for detection and analysis of potato genome editing 
due to the depigmentation in the absence of PDS. Knockout of coilin gene is highly 
desirable as deterioration of coilin is mainly involved in pathogen resistance and 
improving tolerance to biotic and abiotic stresses. The study revealed that the first 
six nucleotides located in the DNA substrate proximal to the 3’PAM site directly 
binded with Cas9 but did not affect the activity of Cas9-sgRNA complex. The 
researchers drew a conclusion that the unpaired nucleotides of target DNA with 
sgRNA can both stimulate or repress the activity of Cas9-sgRNA complex in vitro 
depending on the position of the mismatch [63] (Table 1).

4.2 Challenges in genome editing of potato

Potato is a clonally propagated highly heterozygous polyploid crop and hence 
complicates the use of gene editing techniques- difficulty in target designing for 
genome editing, obtaining homozygous mutants with all target genes mutated.

This mandates the need for screening large number of transformants to iden-
tify and propagate multiallelic mutagenic lines. Another challenge is that not all 
cultivars of potato are amenable to transformation and others need to be tested for 
transformation and regeneration in tissue culture. Protoplast transformation and 
regeneration of plants from leaf protoplasts also can lead to somaclonal variation, 
which may have negative impact(s) on plant development [67].

Attempts are being made by breeders to develop diploid potato lines inorder to 
understand complex agronomic traits. A major obstacle in potato breeding was the 
development of inbred lines due to self-incompatibility that hinders the fixing of 
gene edits and selection of progeny by segregating out the inserted foreign gene. Ye 
et al. developed self-compatible diploid potatoes by knocking out the self-incompat-
ibility gene, Stylar ribonuclease gene (S-RNase) using the CRISPR-Cas9 system. This 
strategy opens new avenues for production of diploid inbred and self- compatible 
potato germplasm and pave way for studying other self-incompatible crops [66].

However many diploid, self- compatible potato germplasm were found to be 
recalcitrant to conventional Agrobacterium tumefaciens -mediated transformation 
[68]. Butler et al. demonstrated the utility of A. rhizogenes strains for rapidly gener-
ating stable mutations within hairy root clones in potato genotypes recalcitrant to 
A. tumefaciens and regenerating fertile lines capable of fixing targeted mutations, 
segregating out T-DNA insertions and production of additional mutants when 
needed. There is however a limitation to analysis of hairy root clones. CRISPR/Cas9 
technology was successfully employed for targeting the potato phytoene desaturase 
(StPDS) gene, expressed in hairy root clones and regenerated. Targeted mutation 
was expressed in 64–98% of the transformed hairy root clones and this broadens 
the potato genotypes amenable to Agrobacterium-mediated transformation while 
reducing chimerism in primary events and accelerating the generation of edited 
materials [69].

Another area of concern is the occurrence of off-target mutations in non-target 
genes of potato during the process of GE. This results in undesired changes in plants 
and makes the process of mutational analysis studies more complicated. Attempts 
have been made to reduce or even eliminate such off-targeting by good design and 
test of sgRNA activity [70] and use of synthetic proofreading Cas9 variants [71].
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A major area of focus is the generation of transgene free potato. Inorder to be 
accepted by the public and regulatory bodies, there should not be any trace of the 
exogenous DNA in the GE crops. Segregation of genetic lines is used in genera-
tion transition from T0 to T2, so that stably inherited transgene-free plants can be 
obtained in T2 mutant lines [72]. However, this strategy cannot easily be adopted in 
tetraploid potato with high allelic polymorphism. RNP delivery into protoplasts is 
now emerging as an excellent alternative system that avoids DNA intermediates [73].

5. Regulations on genome edited crops

The cultivation and commercialization of genetically modified crops did not 
attain the expected growth as it received a setback due to the strict regulations 
imposed by various countries. With the advent of the gene editing techniques, 
attempts were made to produce genome modified plants without exogenous DNA so 
that they do not come under the purview of the regulations.

Regulatory approaches for genome edited products is still in its infancy and 
different countries have issued their own legal interpretations. Different countries 
have adopted regulation on genome edited crops based on two types of regulatory 
frameworks: process-based and product based. In the case of process-based regula-
tion, regulation is typically triggered if nucleic acids are introduced into crops or 
recombinant DNA technologies are deployed in the development of a crop. The 
European Union (EU), Argentina, Brazil and several other countries have a process-
based regulatory framework [15]. EU declared that the genome edited plants can 
alter the natural genetic material of the plant producing adverse environmental 
issues and hence should be treated as transgenic plants. This stringent approach can 
hinder research in the development and also impact the trade of gene edited crops.

In the case of a product based regulatory framework the focus is placed on the risk 
inherent in the final product. The United States which has a product-based regula-
tory framework has no regulation for genome edited plants if no genetic elements 
from pathogenic species or pesticidal traits are introduced [74]. Multiple level checks 
are followed like FDA weighs on health benefits and the EPA weighs on the envi-
ronmental impact of the edited crops. Null segregants – progeny of the transgenic, 
edited parent that still retain the germline edit but lack the integrated foreign DNA 
sequence – are exempted from regulation. Clonally propagated plants like potato 
normally does not produce null segregants. Japan also adopted a regulatory policy 
similar to the United States stating that the gene-edited plants in Japan should not be 
regulated (The Scientist news). Although the products of rDNA technology will still 
be regulated, it was stated that the genome editing technologies poses no increase in 
risk and therefore do not require additional regulatory oversight. No regulations were 
imposed by USDA on anti-browning mushrooms developed by targeting PPO using 
CRISPR/Cas9, indicative of the acceptance of traits created by gene editing [75].

The world’s first regulation for GE crops was reported by Argentina [76]. Later 
on, Brazil and Chile adopted the same policies. Currently, many countries do not 
have a clear regulatory framework for GE crops. However, several countries like 
Kenya, Nigeria, and India are in the process of developing the regulatory guidelines 
for the application of genome editing [77].

5.1 Impact of the regulations

The commercialization of genome edited crop poses a challenge to the public 
sector breeders who lack funding, if they are treated equivalent to GM crops. The 
uncertainty in regulations will also have logistical challenges for international 
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commodity trade. The application of genome editing can reap its benefit and ensure 
agricultural sustainability depending mainly on the regulatory measures adopted 
by each country. The potential of genome editing can be exploited fully only if it is 
not treated on par with genetically modified plants and not subjected to the same 
regulatory measures.

Another constraint in the deployment of gene editing technology is the lack 
of a clear implementation and effective management strategy for the sustainable 
development of crops produced using this tool. Do we have to adopt the practice of 
crop monoculture inorder to harbour durable resistance is a question under debate? 
From the sociological point of view also, the public acceptance of food crops engi-
neered using genome editing technology also needs to be considered.

6. Conclusion

Genome editing could play a major role in the modification of starch content, 
decrease antinutrient and toxic substances and enhance the nutritive value of 
potatoes. This technology with high efficiency and precision raises the scope of 
improving other desirable plant traits. The research advancements in this field 
can be accelerated by the production of transgene free GE potatoes and the com-
mercialization of the technology can be promoted only by assuring the public of its 
safety. Despite the challenges faced in the commercialization of GE crops and its 
products, intense research is being carried out in different countries. Attempts to 
exclude GE crops from the GMO regulations raises hope in the advancement of the 
editing related technology. The availability of whole genome sequence of potato, 
transformation and regeneration protocols of potato, and novel gene editing tools 
instills hope of producing elite transgene free potato plants with desirable traits in 
short span of time.
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Chapter 9

Genetically Modified Potato for 
Pest Resistance: Thrift or Threat?
Martin Raspor and Aleksandar Cingel

Abstract

Significant limitations in potato production are crop loss due to the damage 
made by insect pests, and the cost of enormous amount of chemicals, harmful 
to humans and environment, extensively used in their control. As an alternative, 
development of genetically modified potato offered possibility for pest manage-
ment in a more sustainable, environmentally friendly way. Over the past 30 years 
introduction of pest resistance traits progressed from a single gene to multiple 
stacked events and from Bt-toxin expression to expression of proteins from non-Bt 
sources, dsRNA and their combination, while advances in molecular biology have 
brought “cleaner” gene manipulation technologies. However, together with benefits 
any new technology also bears its risks, and there are still a range of unanswered 
questions and concerns about long-term impact of genetically modified crops – 
that with knowledge and precautionary approaches can be avoided or mitigated. 
Sustainability of genetically modified crops for pest control largely depends on the 
willingness to gain and implement such knowledge.

Keywords: potato, Solanum tuberosum L., genetic engineering, pest resistance, 
environmental safety, Bt-toxins, protease inhibitors, RNAi

1. Introduction

Almost four decades after the initial success [1], production of genetically modi-
fied plants still takes a central place in the experimental studies and biotechnology 
of plants. Genetic engineering has made possible introducing beneficial traits from 
unrelated plants, bacteria, viruses, fungi, or animal species, to overcome the major 
limitations of conventional plant breeding. Introduction of one or more genes into 
commercial crop species has helped boost crop yields due to increased resistance of 
transgenic lines to abiotic stress, pests and pathogens, and manipulation of meta-
bolic pathways resulted in improving the nutritional or industrial value of geneti-
cally modified plants. Also, plant “factories” have been designed to produce high 
amounts of various pharmacologically important compounds, nutrients or other 
useful substances.

Genetically modified (GM) crops have been cultivated for more than twenty 
years and in 2019, the global area under GM crops was 190.4 million hectares, a 112-
fold increase since their first commercialization in 1996 [2]. Gains from increased 
yields and cost savings brought net economic benefits amounting to more than $225 
billion and added one hundred million tons to the global crop production without 
the need for using additional land for cultivation [3]. The development of insect 
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resistant GM crops resulted in reduction of insecticides by 775.4 million kg (8.3%) 
and decreased the environmental impact of these chemicals by 18.5%. By cutting 
fuel usage associated with the production of chemical spray runs and tillage, this 
technology also reduced carbon dioxide emissions equivalent to removing more 
than 15 million cars from the roads [4]. However, wider adoption of GM crops 
remains the subject of biosafety concerns due to potential risks such as gene flow, 
evolution of resistance in insects and weeds, adverse effects on beneficial non-target 
organisms, or toxicity and allergenicity to humans.

2. Incorporating insect resistance traits

A wide range of pests and pathogens (over 50 insect and about 10 nematode 
species, 11 viral, 6 bacterial and over 20 fungal pathogens) [5] threaten potato 
(Solanum tuberosum L.), causing at least 40% of production losses worldwide [6]. 
Among them, Colorado potato beetle (CPB; Leptinotarsa decemlineata Say) and 
Potato tuber moth (PTM; Phthorimaea operculella Zeller) are the most widespread 
insect pests of potato that, if not controlled, can cause total yield or storage losses 
[7, 8]. CPB, particularly capable of rapid build-up of resistance to toxins, is today 
resistant to 56 different compounds belonging to all major insecticide classes with 
different modes of action [9], and tens of millions of dollars are spent annually for 
its management [10]. The long history of failure in chemical control of CPB and 
other pests, dubbed “the 125 years of mismanagement” [11], gave way to alternative 
means of control, including genetic engineering as more pest-specific and less risky 
for the environment.

Potato is one of the few crops naturally susceptible to infection by agrobacteria, 
so the first report on the generation of transgenic potato plants using Agrobacterium 
[12] dates from the very beginning of the “era of plant genetic engineering”. Since 
then, many recombinant DNA delivery systems have been developed (biolistic, 
electroporation, PEG-mediated, etc), but, enabling high transformation frequency 
and efficiency, Agrobacterium-mediated transformation has remained the preferred 
method for heterologous gene integration into the potato genome, and became a 
routine technique in many laboratories. Over the past 30 years introduction of pest 
resistance traits progressed from a single gene to multiple stacked events (directed 
to the same or different pests), and from Bt-toxin expression to expression of 
proteins from non-Bt sources, dsRNA and their combination. Above all, recent 
advances in genome editing, with its nearly unlimited potentials, could bring about 
a new era in crop protection.

3. Constructing Bt-potato

Isolated in 1901 as the causative agent of silkworm disease, Bacillus thuringiensis 
(Bt) toxin became the first bioinsecticide commercially available since 1938, and 
remained for decades the most important microbial agent for insect control. Bt 
crystalline proteins (Cry toxins) appeared as an alternative to chemical insecticides, 
with molecular potency several hundred times greater than organophosphates 
and synthetic pyrethroids [13]. Cry1Ab was the first insecticidal gene introduced 
in tobacco [14], and since 1996, some Bt-plants such as maize, cotton, potato and 
rice, became commercialized. Now, more than 700 identified cry genes constitute 
a valuable “arsenal” with high and selective toxicity towards different insect taxa – 
and cloning, transfer and expression of these genes is a widely adopted strategy for 
incorporating resistance in commercially important crops. In the USA, for instance, 
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Bt-maize represents 82% of total maize production, while Bt-cotton accounted for 
88% of all cotton grown in 2020 [15].

When insects feed on Bt-plants, ingested Cry protoxin is solubilized and pro-
teolytically activated in the alkaline environment of the insect midgut to the active 
toxin. The activated toxin goes through complex sequential binding events with 
an array of receptors on the surface of midgut cells, beginning with binding to 
cadherin, that facilitates additional protease cleavage and assembly of oligomeric 
forms of the toxin. The oligomers have increased binding affinity to the second-
ary receptors, leading to membrane insertion and lytic pore formation [16]. Such 
midgut tissue disruption halts insect feeding and causes subsequent mortality.

Transgenic potato lines with introduced Cry3A delta-endotoxin from B. thuringi-
ensis var. tenebrionis, that targets coleopteran pests, showed significantly increased 
resistance to the CPB. Constitutively expressed in potato, Cry3A toxin caused 100% 
mortality of neonate larvae within two days and 99% adult mortality within two 
weeks [17]. Bt-transgenic NewLeaf™ potato cultivars of Monsanto Corporation 
were commercialized in the USA starting in 1995, and potato became one of the 
first GM crops commonly used for human consumption. Next, CPB resistance was 
combined with virus resistance, and commercial potato cultivars NewLeafPlus™ 
and NewLeafY™ were launched in 1998. Additional virus resistance benefited seed 
producers, and commercial growers gained higher yields with reduced need for 
insecticides. Although commercially and agronomically successful, the NewLeaf™ 
varieties were withdrawn from the market in 2001, due to public concerns and 
competition with a new, highly effective insecticide imidacloprid [18].

Expression of several Bt-toxins of Cry1 or Cry9 classes, that target lepidopteran 
pests, conferred resistance to the potato tuber moth (PTM), a major potato pest in 
tropical and subtropical regions. Bt-lines with variable level of PTM resistance have 
been obtained after potato transformation with cry1Aa [19], cry1Ab [20], cry1Ac 
[21, 22], cry1Ac9 [23, 24], cry1Ia1 (previously known as cry5) [25, 26] or cry9Aa2 
[27]. Among them cry1Ac and cry1Ia1 expressed in potato proved to be highly 
effective in PTM control, causing mortality of 80–97% of first-instar larvae fed on 
leaves and ~ 100% on tubers [21, 26], but none of these Bt-potato lines are available 
commercially. Additionally, cry1Ac or cry1Ia1 expressing potato exhibit appreciable 
level of resistance to CPB - with up to 90% reduction of feeding, that correlates 
with increased first instar larvae mortality [22, 26].

Moreover cry3A [28], cry1Ac9, cry9Aa2 [29] and cry1Ab [30] were independently 
expressed in potato under control of light-inducible promoters. Such spatial expres-
sion of cry genes enables high level of leaf protection against CPB or PTM, with 
minimal or no Cry toxin accumulation in the tubers, which represents a desirable 
feature for consumers.

3.1 Resistance to Bt: a CPB case

Insect resistance has become a significant problem after WWII, when intensive 
agriculture with reliance on chemicals and uniform cultivation practices led to 
about 17,000 cases of insecticide resistance among 612 insect species by 2020 [9]. 
Since Bt-crops also provide strong and uniform selection pressure on insect popula-
tions it is hard to believe that pest problems can be solved with Bt-approach alone. 
By 2017, two decades after their commercialization, reduced efficacy of Bt-plants 
caused by field-evolved resistance has been reported in 16 out of 33 major crop pest 
populations, compared to only 3 reported in 2005 [31].

In Cry3A-potato, toxin was expressed at a very high level relative to the CPB 
susceptibility: at least 50 times as necessary to kill first instar, and at least twofold 
as necessary to stop third and fourth instar development or to arrest adult egg 
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laying [17]. Although effective in short term, this high-dose strategy represents an 
extremely high selection pressure for developing resistance in the insect popula-
tions, and without additional management practices, it has been predicted that 
CPB can develop resistance to Bt-potato within 6 generations [32]. CPB resistance 
potential has been demonstrated in the laboratory by repeated Cry3A toxin applica-
tion, resulting in about 60-fold increase in resistance ratio after 12 generations [33], 
and about 300-fold increase after 35 generations [34].

Developing Bt-resistance is a complex and diverse process, and populations of 
the same insect species of different origins may exhibit different mechanisms of 
resistance to the same Cry toxin [35, 36]. Two major resistance mechanisms are: 
alteration of midgut proteases involved in processing of Cry proteins in the insect 
midgut; and modification of binding sites for Bt-toxins. Other resistance mecha-
nisms may include retention of Bt-toxin by the midgut peritrophic membrane, 
aggregation of toxin proteins by the midgut esterase, elevated melanization activity 
of the hemolymph and midgut cells, increased rate of repair or replacement of 
affected epithelial cells, and increased antioxidant activity [37]. Bt-resistant CPB 
strains exhibit at least two levels of adaptive responses that render immunity to the 
Cry3A toxin: the first is lower toxin binding to the receptors, probably as a conse-
quence of reduction of binding sites within the receptor or reduction in receptor 
numbers, while the second one are changes in digestive enzyme profiles and specific 
increase in aminopeptidase activity [38]. Although this alteration of CPB digestive 
profile is not connected with toxin processing or its inactivation, it can be involved 
in modulation and amplification of signals that activate specific innate immune 
responses such as melanization, coagulation and defense peptide synthesis [39] – 
mechanisms that have been confirmed in overcoming the exposure to Bt-toxin in 
other insect species [35, 40].

Moreover, plasticity of its life cycle, large pool of genetic variation in life his-
tory traits and capability to effectively cope with naturally occurring host plant 
toxins or almost every chemical insecticide, leave no doubt that CPB can develop 
resistance to Bt-potato, given sufficient time. This also brings concerns on whether 
CPB can be prevented from developing resistance to Bt-potato – since with only a 
single resistance gene expressed, the high dose/refuge strategy is the only resistance 
management option available [41]. Although such strategy can hinder accumulation 
of initially rare homozygous resistance genes in Bt-exposed insect populations by 
decreasing selection pressure, its effectiveness is questionable in the case of CPB. 
While the susceptible beetles are “arrested” on Bt-potato, in the resistant strains 
ingestion of Cry3A toxin significantly increased both CPB larval motility and adult 
flight activity, whereby more physiologically resistant individuals showed higher 
behavioral responsiveness. Such behavioral resistance can affect gene flow between 
susceptible and resistant beetles, increasing distribution of resistant homozygous 
CPB offsprings within and between Bt-potato fields [33, 42]. In addition, effective-
ness of the refuge strategy will be compromised not only when expressed toxin 
genes do not kill all of the heterozygous progeny, but also if resistance is non-reces-
sive. Evidence of both the laboratory-selected [43] and field-evolved [44] resistance 
to Cry toxins indicates that some populations of target pests evolve dominant 
resistance alleles, which can be hardly defeated with the refuge strategy.

3.2 Improving toxicity and preventing resistance

When exploring the functions of specific regions of Cry proteins, some of 
site-directed mutations resulted in increased binding affinity of Cry toxins to insect 
midgut receptors, conferring additional toxicity. For example, a triple Cry1Ab 
mutant protein showed up to 36-fold increase in toxicity [45], while multiple Cry3A 
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mutations conferred 2-fold higher toxicity against CPB [46] compared to wild-type 
Cry toxins. Deletion of small regions of the toxin can result in increased toxicity 
or in toxins that could counter insect resistance to native Cry toxins. Deletion of 
42 residues of the amino-terminal region resulted in an up to 6.6-fold increase in 
Cry2A toxicity against a lepidopteran pest [47], while Cry1AMod toxins (that due 
to the lack of α-helix can form oligomers in the absence of cadherin receptor) are 
effective against Cry1A-resistant target pests with mutations in the cadherin gene 
[48]. Additionally, added cadherin receptor fragment showed significant syner-
gistic effect with Cry toxins, including 3.7-fold and 6.4-fold enhanced toxicity of 
Cry3Aa and Cry3Bb, respectively, to CPB [49].

The specificity of Cry proteins allows targeting a single pest or closely related 
insect species within the same order, but such specificity does not provide a wide 
range of protection. Improving or broadening the range of protection (as well as 
minimizing secondary pest infestations upon primary pest control) can be achieved 
through combining multiple resistance factors – a strategy that at the same time 
prevents or delays the evolution of insect resistance. The construction of hybrid Cry 
toxins can confer a wider target spectrum or higher toxicity than each of the paren-
tal toxins from which they are derived. Examples include hybrid Cry1Aa/Cry1Ac 
and Cry1Ab/Cry1C toxins, that exhibited 30- and 10-fold higher toxicity against 
target pests [50, 51]. Furthermore, a cry1Ba/cry1Ia hybrid gene (SN19) driven by a 
light- or wound-inducible promoter protects potato leaves from attacks of coleop-
teran (CPB) and lepidopteran (PTM, European corn borer and tomato leaf miner) 
pests, causing 100% mortality of first instar larvae when fed on SN19-transformed 
potato [52, 53]. However, among all these strategies gene stacking appeared as most 
effective, and there are numerous examples of introducing multiple resistance or 
other agronomic enhancement factors in commercially grown plants, including 
potato where pyramided cry3A and SN-19 genes can provide 100% control of CPB 
[54]. The first stacked-traits crop that gained regulatory approval in 1995 was 
cotton expressing cry1Ab and epsps (conferring resistance to the herbicide glypho-
sate), leading to the several hundred stacked events for increased pest resistance in 
commercial crops, approved to date. The recently released ten-gene maize under 
the name SmartStax™ Pro x Enlist™, combines three herbicide tolerance genes, six 
Bt-genes (targeting both lepidopteran and coleopteran pests) and dvsnf7 dsRNA 
[55]. However, benefits of Bt-gene pyramiding can be compromised due to inappro-
priate management strategies, as well as insects capable of cross-resistance.

For instance, concurrent use of one-toxin and pyramided two-toxin crops will 
enhance resistance to pyramided Bt-plants if the two-gene plants produce a similar 
toxin as the single-gene plants (for example, this is the case for marketed maize and 
cotton where the additional Bt-gene was “added” to an already existing Bt-line). 
Target pests can evolve a single gene resistance that overcomes both Bt genes used 
in the pyramiding, even if expressed Bt-toxins have different binding sites. A clear 
example are Helicoverpa zea populations that exhibit increased survival on cotton 
with stacked cry1Ac and cry2Ab genes, as result of extensive exposure to Cry1Ac 
before two-toxin cotton was introduced [56]. Mechanisms that could cause cross-
resistance in the target insects may include alteration in digestive proteases (if 
the same proteases activate or degrade both Bt-toxins) or changes affecting pore 
formation or pore function, a general step in the action mechanism of many Cry 
proteins [37]. Thus, the promising strategy for stacking varieties should be combin-
ing genes with different mechanisms of actions, such as a cry gene with host plant 
resistance or other heterologous factors (including Vip toxins, protease inhibitors 
or dsRNA, combined in some approved events) to minimize the possibility that 
random mutations in a single insect gene could confer resistance to both or more 
introduced traits.
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3.3 Bt-related concerns

In 1999, laboratory studies showed that Bt-maize pollen had deleterious effects 
on Monarch butterfly larvae [57], raising questions and concerns about Bt-crop 
impacts on non-target organisms. Additionally, since both target and non-target 
insect pests ingest toxin when feeding on Bt-plants, Bt-toxin may also affect ben-
eficial predatory arthropods through consumption of target pests or by facultative 
feeding on transformed plants.

Riddick and Barbosa [58] showed no adverse effect on survival, fitness or preda-
tion potential of Coleomegilla maculata, an entomophagous and pollenophagous 
beetle, when fed on Cry3A-intoxicated CPB. Similarly, another beneficial carabid 
beetle, Nebria brevicollis, was not affected with Cry3A when fed with non-target 
potato pest Lacanobia oleracea larvae [59], indicating that, due to its high specific-
ity, Cry3A toxin presents a very low risk to coleopterans other than the targeted 
CPB. In addition, EPA (Environmental Protection Agency) studies on impacts of 
Cry3A-potato found no adverse effects on non-target wildlife exposed to the crop, 
indicating that beneficial arthropods were generally more abundant in Bt-potato 
plots compared to those treated with synthetic insecticides. Natural enemies are 
sufficient for aphid control on Bt-potato, while high numbers of this secondary 
potato pest populations are present in plots where beneficial arthropods were 
eliminated by insecticide treatment and no chemical aphid control was applied 
[60]. For instance, ladybird beetles, that are abundant and valued predatory 
species, preferably feeding on aphids and occasionally pollen when prey is scarce, 
remain unaffected on Cry3A expressing potato [59]. It was shown that Bt-potato 
fields were inhabited with diverse populations of these aphidophagous coccinellids, 
whose numbers significantly decreased with application of chemical insecticides 
[61]. Also, Bt-potato is not a threat to other endangered coleopteran species, since 
their habitat does not overlap with potato fields and their larvae do not feed on 
potato [60]. In addition, 25 studies that assessed potential effects of Bt-toxins intro-
duced in commercialized GM crops (lepidopteran-active Cry1, Cry2, or Cry9 and 
coleopteran-active Cry3 class) found no negative effect on survival of either honey 
bee larvae or adults [62]. However, it may be also expected that some CPB predators 
will be less abundant in Bt-potato fields due to low pest densities (rather than Cry3A 
toxicity), such as in the case of carabid Lebia grandis [63], or that complexity of 
interaction on tritrophic (plant-pest-natural enemy) level can be altered in an unex-
pected way. For instance, survival, weight gain and fecundity of the wasp Aphidius 
nigripes, parasitoid of the potato aphid (Macrosiphum euphorbiae), was negatively 
affected on Bt-potato, although Cry3A did not directly affect the aphid, nor should 
be toxic to parasitic wasps [64].

Furthermore, studies on commercialized SmartStax maize with six Bt-genes 
(cry34Ab1, cry35Ab1, cry3Bb1, cry1F, cry1A.105 and cry2Ab2) provided evidence that 
the different Cry proteins do not interact in a way that poses a risk to the investigated 
non-target species under controlled laboratory conditions [65, 66]. However, data 
available in the literature regarding the impact of Bt-crops on non-target arthropods 
are mostly incomplete and sometimes controversial. Most studies have focused on 
certain but not all aspects of non-target or beneficial insect fitness and most of the 
field trials were conducted on a small scale, over a relatively short period of time.

Although free Bt-toxin released in root exudates and from decaying plant resi-
dues is rapidly degraded by soil microbes, it can be stabilized by binding on clays or 
humic substances and stay unchanged for two weeks to 6 months [67], depending 
on soil composition and pH, or crop species [68]. However, studies on Bt-crops 
have generally revealed no or minor transient effect on earthworms, nematodes, 
 protozoans, bacteria, and fungi in soil [68].
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Due to the acidic environment of the mammalian digestive tract and the 
absence of specific receptors, it is generally accepted that Bt-toxins do not bear 
substantial risk for human health. Additionally, about 60 years of history of using 
Bt-products as biopesticides showed that risks of toxicity or allergenic reactions to 
the Cry proteins are minimal. Cry3A toxin does not exhibit acute oral toxicity to 
mammalians in doses 10,000 times higher than its amount in potato tubers, and 
is rapidly digested in vitro [60, 69]. In simulated digestion models the protein is 
degraded within 30 s to polypeptides less than 2 kDa, suggesting that Cry3A will 
be even more efficiently degraded in robust gastrointestinal systems of humans 
and other mammals. Efficient degradation and lack of structural similarity to 
known allergenic proteins significantly minimize the potential for Cry3A to induce 
allergic reactions [69]. Likewise, similar findings on safety exist for other Cry 
toxins introduced in maize, cotton and soy, that are authorized for cultivation in 
one or more countries [70]. The only exception is Cry9c toxin, which due to its 
resistance to breakdown by digestive enzymes may be found in the bloodstream 
after oral feeding in the rat model, with potency to induce immunological responses 
[71]. In 1998, cry9c-expressing maize named ‘Starlink’ has been approved only for 
animal feed and industrial use, but recalled two years later in the USA, EU, Japan 
and South Korea, after detection of Cry protein residues through human food 
supply. This controversy indicated the need for a broader and properly managed 
assessment in monitoring and enforcement concerning potential health risks of 
toxicity, allergenicity and genetic hazards associated with Bt-crops, to ensure their 
greater acceptance. Although majority of studies indicate that Bt-crops would be 
as safe as parental lines – with few exceptions [72, 73] that were rather critiqued 
than accepted in scientific community – studies on the long-term health effects of 
Bt-plants will still be necessary [74]. Also, the potential of cumulative, combined 
or unexpected effects in the “next generations” Bt-crops with stacked cry genes, or 
combined with other resistance factors, clearly calls for revisions of “outdated” risk 
assessments made based on single Bt-gene expression.

4. Targeting digestive enzymes

As a reflection of more than one hundred million years of coevolutionary “arms 
race”, plants developed numerous mechanisms to resist the attacks of pathogens 
and herbivores. Here, being part of the plant “chemical warfare” arsenal, secondary 
metabolites take an important place, with more than 200,000 known compounds 
with defensive activity. Among that broad repertoire, protein antimetabolites such 
as lectins, α-amylase inhibitors and especially plant protease inhibitors (PIs) are the 
most used for engineering crop resistance against various pests.

The most important role of PIs in plants is protection from both biotic and abiotic 
stresses. They may also have other functions: from tissue-specific regulation of 
endogenous proteases – especially in storage organs such as seeds and tubers [75], to 
the regulation of programmed cell death [76]. About 500 plant PIs were described, 
and according to the protease type they inhibit, PIs are classified as cysteine, serine, 
aspartyl and metallo protease inhibitors [77]. Generally, the inhibition is based on PIs 
binding to or near the enzyme active site, forming a stable complex with a low dis-
sociation constant. This complex is often additionally “locked” by disulphide bonds, 
so that upon eventual hydrolysis the inhibitor remains associated to the enzyme, 
effectively blocking access of the substrate [78]. The mechanism of PIs antimetabolic 
effect on insects has not been fully elucidated and, due to its high specificity, it is 
assumed that different types of PIs also have different modes of action. The sim-
plest model implies a direct antidigestive effect due to inhibition of proteolysis [79].  
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The second, more accepted model, is based on compensation for the loss of proteolytic 
activity – proteinase hyperproduction – which by redirecting amino acid utilization 
reduces their availability for insect growth and development [80] which, in addition 
to reduced performance, often increases insect mortality. PIs can also disrupt pro-
cesses such as molting, neuropeptide synthesis, water balance, and enzyme regulation 
[81–83] or directly interfere with insect reproductive processes [84].

The early evidence on the protective role of PIs came in mid-20th century, when 
it was observed that soybean products negatively affect development of red flour 
beetle larvae [85]. In a pioneering research, Green and Ryan [86] reported on a rapid, 
both local and systemic, accumulation of PIs in potato and tomato leaves upon CPB 
attack, demonstrating the importance of PIs in plant defense against insects. Not 
long after, the first PI-transformed plant, tobacco expressing cowpea trypsin inhibi-
tor, CpTI, conferred increased resistance to several lepidopteran, coleopteran and 
orthopteran insect pests [87]. This initial success triggered a generation of numerous 
transgenic plants expressing different PIs, more or less efficient in control of target 
pests. However, despite this promising development, none of PI-transgenic plants 
have been commercialized to date. One of the reasons is the conclusive “acute mortal-
ity” efficacy of Bt-plants, similar to the chemical insecticides. By contrast, PIs often 
cause decrease in insect fitness on a relative level, such as a reduction in growth and 
reproduction or extended development, that in a time scale can significantly reduce 
the size of pest population (for example, prolonged larval development brings longer 
exposition to predators, while the reduction in body mass decreases investment in 
reproduction). Secondly, a more important reason are adaptive capacities of insects 
that can compromise this approach, clearly demonstrated in some cases. These 
evolutionary, diet-induced strategies include overproduction of sensitive digestive 
enzymes that outnumber inhibitors, switching to digestive protease complements 
insensitive to PI or PI degradation with non-target proteases [88].

After evidence of deleterious effects of E-64, a broad spectrum thiole cysteine PI 
isolated from Aspergillus japonicum, on larval growth, survival, and adult fecundity 
of CPB [89], CPB cysteine proteinases (that account for most of CPB digestive pro-
teolysis) have become target for heterologous cystatins expressed in potato plants. 
Two rice cystatins, oryzacystatins I and II (OCI and OCII), although exhibiting 
inhibition of CPB larvae cathepsin H-like proteases in vitro [90] proved ineffective 
in CPB control. With no increase in mortality, CPB larvae overcame initial digestive 
inhibition by hypertrophic behavior and restored cysteine proteinase activity by 
introducing isoforms insensitive to OCI [91] or OCII [92]. Contrary to expectations, 
some aspects of CPB larvae performance were actually enhanced by chronic inges-
tion of each of the two rice cystatins: faster growth and leaf consumption, shorter 
development time and even increase in body mass before pupation in case of OCI 
[91]. Slight reduction in insect growth rate was also observed with recombinant CDI 
(cathepsin D inhibitor from tomato), as a result of overproduction of inhibitor-
sensitive proteases. However, after this initial response CPB larvae switched their 
digestion to the CDI insensitive protease complement, resuming normal growth 
and development despite ingestion of the inhibitor expressed in potato plants [93].

These results clearly demonstrate that, due to its exceptional adaptability to the 
different host plant protective compounds [88], CPB can hardly be controlled by 
a single, narrow spectrum PI. Thus, to achieve more efficient control and prevent 
compensatory insect responses, broadening the spectrum of inhibition by protein 
fusion, transgene stacking or using multidomain PIs appeared as a possible solution. 
However, only a slight reduction in CPB larvae performance was achieved in potato 
expressing stacked rice cystatins, OCI and OCII [94, 95] or with multidomain serine 
PI from locust (LIP), active against both trypsin and chymotrypsin [96].
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In contrast to this, equistatin, a PI from the sea anemone, with one domain that 
inhibits cysteine and a second domain active against aspartic proteases, had detri-
mental effect on CPB larvae growth and significantly increased their mortality after 
ingestion of equistatin-coated potato leaves [97]. Unfortunately, with expression 
of this potent PI in potato very low resistance level against CPB was achieved: the 
amount of active inhibitor in leaves was considerably reduced due to its degradation 
by native potato proteinases [98]. The promising results came with a hybrid CDI-
CCII inhibitor (fusion of CDI with maize cystatin II), also active against both aspar-
tate and cysteine proteinases. When painted on potato leaves, CDI-CCII initially 
reduced CPB larvae growth and food consumption by about 50% [99], but its real 
effects still remain to be proved in long-term feeding assays. Finally, fungal cysteine 
PIs, macrocypin and clitocypin, emerged as more favorable. Exhibiting strong 
inhibition of CPB cysteine proteinases, these PIs, introduced in potato, reduced 
growth and increased development time of CPB larvae [100, 101]. Moreover, the 
most promising trait of macrocypin and clitocypin is the absence of CPB digestive 
compensatory responses [100, 101] observed for PIs derived from other sources. 
However, relatively low expression was achieved in transgenic potato and, since 
they act in dose dependent manner, it is necessary to improve macrocypin and 
clitocypin expression levels for more pronounced negative effects on CPB larvae.

Additionally, potato expressing serine PI (CpTI or Soybean Kunitz, C-II and 
PI-IV) exhibited enhanced resistance to the lepidopteran larvae with about 50% 
reduction in total insect biomass [82, 102].

Several approaches based on structure–function models have been used to 
improve the inhibitory potency of protease inhibitors against specific proteases, 
including site directed mutagenesis of specific amino acids, molecular phage display 
procedures involving random mutagenesis in specific regions of the inhibitor 
sequence, or activity-based functional proteomics approach. By single mutations 
at the positively selected amino acid sites of the tomato multicystatin SlCYS8, 
variants with improved inhibitory potency toward the CPB digestive proteases 
were generated [103], and functional proteomics approach was used for identify-
ing variants that efficiently capture CPB digestive protease targets [104]. P2V10, 
the most potent variant of SlCYS8 PI, expressed in potato, significantly reduced 
growth of CPB larvae in a 72 h feeding assay [104]. Similarly, after 4 days of feeding 
on potato expressing a modified variant of cystatin from barley (HvCPI-1 C68 fi 
G), that targets the cathepsin B-like fraction of cysteine digestive proteolysis, CPB 
larvae had about 23% lower weight, probably due the metabolic cost associated with 
the hyperproduction of inhibited digestive proteases [105]. However, knowing the 
remarkable CPB larvae adaptability to adjusting their digestive profile to function-
ally distinct plant PIs, studies assessing the long-term detrimental effects of these 
engineered cystatins are needed.

Although the usefulness of recombinant PIs expressed alone still remains to be 
proved or improved, they can enhance Cry toxicity. Several serine protease inhibi-
tors can increase the insecticidal activity of Cry toxins 2–20 fold [106] and delay 
the resistance evolution of the targeted pest [107]. Although it is not known how 
PIs enhance Bt-toxin activity, it is supposed that they may inhibit the inactivation 
of Bt-toxins by specific gut proteases, or prevent the degradation of membrane 
receptors, increasing binding ability of Cry toxins [108]. In such way, hybrid SN19 
(cry1Ba/cry1Ia) combined with OCII in potato caused 100% mortality of all CPB 
larval stages within 6 days, and adults within 2 weeks [54]. However, as of today 
there are only three approved events with PI (all stacked with cry1Ac): cotton 
co-expressing CpTI, maize with pinII (from potato) and poplar with API (from 
Sagittaria  sagittifolia) [55].
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Due to the existence of targets in most organisms in nature, beside the toxic 
effect on the pest, recombinant PIs can directly affect the digestive proteolysis in 
pollinators, symbionts and/or indirectly, through prey feeding on transgenic plants, 
they can endanger the ecological function of predators. However, although artificial 
diet studies indicate that predatory insects may be susceptible to the PI, prey-
mediated effects are usually not observed when cystatins or CpTI are expressed 
in transgenic potato. When Podisus maculiventris was fed with tomato moth (L. 
oleracea) caterpillars reared on CpTI-potato plants, no negative effects on the preda-
tor were observed [109]. Predation on neither CPB nor Egyptian cotton leafworm 
(Spodoptera littoralis) larvae reared on potato plants expressing barley cystatin had 
negative effects on survival and growth of the predatory bug P. maculiventris [105]. 
Also, no detrimental effects were observed on larvae and adults of the ladybird 
Harmonia axyridis upon consuming larvae of diamondback moth (Plutella xylo-
stella) reared on OCI-expressing plants [110], or in Diaeretiella rapae, a parasitoid of 
potato-peach aphid (Myzus persicae) [111]. Stinkbug Perillus bioculatus feeding on 
CPB reared on OCI-potato compensated for the effects of this cystatin by introduc-
tion of serine-type proteases [112], while improved performance of secondary pest 
Macrosiphum euphorbiae on the same host plant also improved performance of the 
parasitoid wasp Aphidius nigripes [113].

On the other hand, although the effects of native plant PIs, such as CpTI or 
OCI, on non-target organisms have been well documented, there is little evidence 
of effects of new-generation inhibitors with stronger effects on pest proteinases, 
hybrid inhibitors or combined effects of several different insecticidal proteins. The 
challenge, of course, is to find or devise those variants of PIs that show increased 
activity against the target pest proteinases and decreased activity against protein-
ases of the host plant or of beneficial insects. Also, cystatins that occur naturally in 
seeds of rice and maize, present in potato tubers or in egg-white, are not novel in the 
human diet, and expressed in transgenic plants should not cause public concerns 
[114] – but the expression of strong broad-spectrum aspartate and serine PIs may 
raise many questions in the future.

5. Lectins

Widely distributed in nature, lectins are a heterogeneous group of sugar-binding 
proteins with numerous biological functions. In plants they are involved in the 
transport and utilization of carbohydrates, cell organization, division and signal-
ing, embryomorphogenesis, phagocytosis or as mediators of plant-microorganism 
symbiosis [115]. However, their most distinctive role is in plant defense mechanisms 
against pathogens and pests. Binding to a variety of glycoproteins, plant lectins can 
inhibit absorption of nutrients by disruption of insect gut epithelium structure 
or, by interacting with targets in insect hemolymph, fat tissue and ovaries, inter-
fere with a number of physiological processes, such as growth, development and 
detoxification [116]. Although they can exhibit protective roles against insect pests 
from different orders, lectins are particularly useful for controlling Hemiptera, that 
are generally less sensitive to Bt or PIs.

Snowdrop mannose-binding lectin (Galanthus nivalis agglutinin, GNA) is the 
first lectin known for insecticidal activity. Expressed in potato, GNA can decrease 
growth and fecundity of potato-peach aphid (M. persicae) or glasshouse-potato 
aphid (Aulacorthum solani), reducing the rate of their population growth up to 
four times [117, 118]. Effects of GNA on M. persicae vary with its expression level in 
potato plants: at low level GNA reduces colonization of transformed potato, without 
significant impact on insect performance [119], while highly expressed, GNA can 
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reduce aphid survival and performance [120]. Besides, GNA can be effective in 
control of lepidopteran pests – tomato moth (L. oleracea) larvae exhibited about 
50% reduction in biomass, prolonged development and 40% increased mortality 
rate when fed on transformed potato [121]. Concanavalin A (ConA), a glucose/
mannose-binding lectin from jackbean (Canavalia ensiformis), can also be effective 
in control of both hemipteran and lepidopteran potato pests. Despite its relatively 
low expression level in potato plants, ConA decreased the fecundity of M. persicae 
(up to 45%) and reduced L. oleracea larval weight (about 50%) and retarded their 
development [122].

However, lectins can negatively impact beneficial non-target organisms, and for 
instance, preys that were fed on GNA potato were less favored or resulted in smaller, 
shorter-lived predators or parasitoids [123, 124]. Although they are present in most 
plants – especially abundant in cereal and legume seeds or potato tubers – lectins 
are generally considered toxic to animals and humans. So even though GNA did 
not show considerable toxicity in rat feeding studies [125], there is no doubt that 
food expressing such proteins requires long-term studies to evaluate its potentially 
harmful effects.

6. Silencing vital genes

After the Nobel prized discovery of RNA interference (RNAi) as a basic mecha-
nism of post-transcriptional gene silencing by double-stranded RNA (dsRNA) 
[126] RNAi has become a powerful experimental tool for determining gene func-
tions, had an immense impact on biomedical research and found its application 
in the management of insect pests. Evolutionarily conserved in all eukaryotes, 
the mechanism of RNAi is involved in different processes including internal gene 
regulation (micro RNA or miRNA pathway), genome protection against transpo-
sons (piwi-interacting RNA or piRNA pathway) and defence against viral infections 
(small interfering RNA or siRNA pathway) [127]. Althought the siRNA pathway 
in insects mostly represents the first line of defense against viral RNA, it can be 
exploited for introduction of specific dsRNA that, through mechanism of RNAi, 
can initiate degradation of complementary endogenous insect mRNA. Thus, selec-
tion of any target gene and delivery of its sequence-specific dsRNA to cells can lead 
to functional knockout of that gene – affecting insect growth and development or 
increasing their mortality. A first proof-of-concept came in 2007, when transgenic 
maize expressing V-ATPase-specific dsRNA showed significant reduction in feeding 
damage caused by western corn rootworm (WCR) [128]. Maize with dsRNA tran-
script containing a 240 bp fragment of the WCR Snf7 gene (encoding a membrane-
remodeling protein) stacked with several cry genes (cry3Bb1 and cry34/35Ab) was 
first such crop commerically approved in 2017, and five more events expressing Snf7 
dsRNA and different Cry proteins stacked in maize were approved to date [55].

However, various studies showed that different insect orders differently respond 
to orally delivered dsRNA – coleopterans are mostly sensitive, while RNAi efficiency 
is low for most lepidopterans. Multiple mechanisms contribute to this variability, 
including instability of dsRNA upon ingestion, insufficient dsRNA internalization, 
endosomal entrapment, deficient function of the RNAi machinery and reduced 
systemic spreading. Once consumed, the dsRNA first has to avoid degradation by 
dsRNases (dsRNA-specific ribonucleases) on their way through insect digestive 
tract. Level of dsRNA degradation by saliva or midgut nucleases varies among 
different insect orders and, for instance, midgut stability of dsRNA is greater in the 
CPB (Coleoptera) than in Schistocerca gregaria (Orthoptera) or budworm Heliothis 
virescens (Lepidoptera) [129, 130]. The next barrier is the internalization of the 
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dsRNA in the cell. Two mechanisms of cellular uptake of dsRNA have been identi-
fied in insects: SID-like (Systemic RNA Interference Deficient) transmembrane 
channels, and clathrin-dependent endocytosis. The latter mechanism seems to 
play the primary role in the uptake of dsRNA in many insect species, whereas 
SID-like genes have been identified in Hemiptera, Lepidoptera and Coleoptera 
but their additional role in mediating dsRNA uptake has only been confirmed for 
WCR and CPB [131, 132]. In clathrin-dependent endocytosis, after binding to the 
receptors and forming endosomes, the dsRNA is released into the cytoplasm before 
reaching the lysosomes. In CPB, such endosomal escapes occur easier than in most 
lepidopterans, where the dsRNA can enter the cells but remains trapped in the 
endosomes [130].

Once taken up in the cytoplasm, dsRNA is recognized by the core RNAi 
machinery and processed into 21–23 bp siRNA by the enzyme Dicer 2 (DCR-2). 
The siRNA are loaded onto Argonaute 2 (Ago-2) protein and incorporated into 
the RNA-induced Silencing Complex (RISC). Upon degradation of the passenger 
strand of siRNA, RNase active domain of Ago-2 cleaves the mRNA recognized by 
the siRNA guide strand, inducing gene silencing. One of the reasons for efficient 
RNAi in coleopterans is the duplication of core RNAi pathway genes, including 
DCR-2 and Ago-2 [133]. Additionally, in CPB, components of miRNA and piRNA 
pathways are also critical for effectiveness of gene silencing by the siRNA pathway, 
but their involvement in dsRNA-mediated RNAi needs to be further investigated 
in Coleoptera and other insects [134]. A particularly interesting aspect of the RNAi 
response in insects is its potential systemic character, whereby the silencing signal 
can spread from the midgut to other tissues, causing systemic RNAi. The exact 
nature of this signaling pathway still remains elusive, and efficient silencing of 
genes in midgut tissue was predominant, especially in more derived dipteran and 
lepidopteran species that appear to be more refractory to systemic RNAi [135].

Although there is a vast number of essential genes in insect genomes, the 
choice of the target gene can significantly affect the efficiency of RNAi – but the 
factors making one essential gene a better target than another one are not cur-
rently understood. Variation in transcriptional activity, mechanisms of expression 
regulation, mRNA stability and its accumulation level may play an important role 
in defining a particular gene susceptibility to dsRNA, and screening of a larger 
number of potential target genes for RNAi efficiency remains the only reliable 
method of choice.

6.1 Targeting CPB

The availability of the CPB transcriptome [136] allows specific targeting of 
CPB genes critical for normal physiological processes and numerous studies 
demonstrated successful knockdown of target genes in dsRNA-fed CPB. Silencing 
the expression of genes that are crucial for maintaining physiological functions, 
such as actin and V-ATPase genes, or genes coding components involved in protein 
transportation (Sec23 and COPβ) can directly impair growth and induce mortality 
[137]. Knockdown of genes crucial for synthesis of 20-hydroxyecdysone and juve-
nile hormone, disrupts larval molting and pupal metamorphosis, decreasing the 
emergence of adults [138–141], while suppression of proline degradation (necessary 
for ATP production) reduces flight ability and increases mortality of CPB adults 
[142, 143]. In addition, RNAi can enhance the effectiveness of other control mea-
sures or resistance factors introduced in potato. For instance, suppression of CncC, 
a transcription factor regulating multiple cytochrome P450 genes, increased CPB 
susceptibility to insecticide imidacloprid [144], while silencing of a Cry3Aa-binding 
protein, prohibitin, enhanced the toxicity of Cry3Aa [145].
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Reduction in CPB juvenile hormone (JH) titer, that regulates metamorphosis 
and reproduction in insects, was achieved by knockdown of JHAMT (JH acid meth-
yltransferase), the last rate-limiting enzyme in JH biosynthesis. Feeding on trans-
genic potato plants expressing dsJHAMT had negative impact on CPB larvae growth 
and development, increased larval mortality (about 25%) and reduced pupation 
rate by 50%. Moreover, emerged CPB adults had lower weight and females lay fewer 
or no eggs, which was confirmed in field trials [146]. Additionally, feeding CPB 
larvae on transgenic potato expressing EcR (molting-associated Ecdysone receptor) 
gene dsRNA resulted in 15–80% mortality, reduction in body weight and disturbed 
metamorphosis [147]. However, the success of the RNAi gene silencing is limited 
by the level of dsRNA expression and dsRNA stability in transgenic plants. Since 
insects lack RNA-dependent RNA polymerase, the RNAi signal cannot be amplified 
in their cells, and efficiency of target gene knockout mostly depends on the amount 
of ingested dsRNA. Also, insects are more responsive to longer dsRNA –  
but dsRNAs produced in plant cytoplasm are usually processed into siRNAs by 
native plant RNAi machinery. For example, dsRNAs longer than 60 bp can trigger 
DvSnf7 gene silencing in WCR, while 21 bp siRNAs were not efficient [148].

On the other hand, transformation of chloroplast DNA has potential for over-
coming the constraints of nuclear transformation in dsRNA-mediated pest control. 
First advantage of transplastomic plants are markedly high gene expression levels, 
that due to tissue specificity, occur predominantly where functional plastids are 
present. An example is expression of Cry2Aa2 protoxin in tobacco chloroplasts in 
20- to 30-fold higher levels than current commercial nuclear transgenic plants, 
which is lethal for both susceptible and Bt-resistant target insects [149]. Secondly, a 
great advantage of plastid transformation is the stability of dsRNA in plastids, as 
chloroplasts do not have the RNAi machinery. Among about 130 genes encoded 
by the chloroplast genome, none is Dicer-like or Argonaute-like, and there is no 
evidence of import of these nuclear-encoded proteins in chloroplasts [150]. Three 
recent studies demonstrated that when expressed from chloroplast genome, hp/
dsRNA can confer a high level of protection against either lepidopteran (Helicoverpa 
armigera) [151, 152] or coleopteran (CPB) pests [153], compared to their nuclear 
transgenic counterparts [152, 153]. Transplastomic potato expressing β-actin 
(ACT) or SHRUB (analog to Snf7) dsRNA, or both, produced large amounts of 
unprocessed dsRNA in leaves (but not in tubers) with detrimental effect on CPB 
growth and development. All first-instar larvae fed on transplastomic ACT dsRNA-
expressing plants died within 5 days, while 40% of larvae survived on SHRUB 
dsRNA-expressing leaves. Nuclear-transformed plants produced much less dsRNA 
but more siRNAs, exhibiting a weaker suppression of target mRNA and almost no 
mortality was observed in CPB fed with leaves from nuclear transgenic potato [153].

Furthermore, chloroplast genome transformation also offers other advantages 
over nuclear transformation, including introduction of multiple genes in a single 
transformation event and lack of gene silencing, position or pleiotropic effects. 
Additionally, maternal inheritance excludes plastid genes and therefore reduces 
dispersion of the transgene by pollen transmission, increasing the biosafety of 
transgenic plants. However, plastid transformation is still much more challenging 
than nuclear transformation and limited by the methods of DNA delivery, homolo-
gous recombination efficiency and the methods for efficient selection and regenera-
tion of transformants [154].

6.2 RNAi-related concerns

Numerous studies have shown that under long-term pressure of control 
strategies such as chemical insecticides or Bt-toxin, insects can rapidly evolve 
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resistance, and there is no reason to believe that it would be differently with 
RNAi. Theoretically, there are three possible sources of resistance: mutations in 
the sequence of the target gene, mutations inactivating the RNAi machinery and 
mutations that affect the stability and/or uptake of ingested dsRNAs in the insect 
digestive tract. First two mechanisms are unlikely to become source of resistance. 
For instance, in CPB the mismatch rate of β-Actin dsRNA and a target mRNA lower 
than 3% does not reduce the RNAi efficiency [155], while drastic sequence changes 
in target (essential) genes or those that inactivate the highly conserved genes of 
the RNAi machinery can easily jeopardize insect fitness and survival. However, the 
third scenario is quite possible and a first insect population, WCR with developed 
resistance to RNAi was reported in a transgenic maize field. Moreover, DvSnf7-
dsRNA resistance in WCR is not sequence-specific, and cross-resistance to other 
dsRNAs is connected with dsRNA uptake rather than degradation [156]. Similarly, 
cross resistance to dsRNAs was achieved in a laboratory population of CPB, where 
foliar application of V-ATPaseA dsRNA resulted in >11,100-fold resistance after 
nine generations of selection [157]. Again, reduced uptake of dsRNA in midgut cells 
was responsible for the evolution of RNAi resistance.

With perfect sequence homology between dsRNA and mRNA only target gene 
suppression is expected, but it appears that siRNAs operate within cells with a cer-
tain level of “freedom” among targets. Mutation analyses showed that RNAi can be 
efficiently triggered with >80% sequence identity between siRNA and mRNA [158] 
but this mismatching tolerance can vary with insect species, target gene and dsRNA 
concentration [159, 160]. Moreover, dsRNA can provoke responses independently 
of its sequence, affecting insect antiviral immunity, gene expression and perfor-
mance [158, 160]. Although not fully understood, these effects are particularly 
pronounced for dsRNA administered at high concentrations, supposing that high 
levels of siRNA may saturate the core RNAi machinery [161]. Given the small sizes 
of siRNAs, off-target effects that can appear in RNAi are probably quite common 
[162] and not considered as a concern in target organisms, but off-target binding 
in non-target organisms can represent a hazard if they are sufficiently exposed 
to the RNAi. To date, question how dsRNAs affect target and off-target genes in 
non-target organisms has received little attention, and existing studies indicate that 
the insecticidal effects of V-ATPase, DvSnf7 or NUC (nuclease) dsRNAs are nar-
row, presuming adverse effects on non-target arthropods to be very low [163–165]. 
Additionally, in crops expressing dsRNA non-target insects can be only affected 
by feeding on plant. In the case of transplastomic potato expressing β-actin dsRNA 
[153], non-target insects had to consume potato leaves to be affected by RNAi – but 
by doing so they were considered pests. At the same time, pollinators and pollen-
eating insects are exposed to minimal amounts of dsRNA, since chloroplasts are 
excluded from pollen due to maternal inheritance. Thus, careful design of the 
dsRNA and bioinformatic analyses can minimize non-target or off-target effects, 
but they cannot be completely excluded, since siRNAs do not need to share perfect 
sequence identity with target mRNAs to inhibit their translation in both predictive 
and unpredictive ways.

dsRNAs exhibit low persistence in environment and microbial degradation of 
nucleic acids has been shown to be a key driver for such lack of stability. Biological 
activity of DvSnf7 dsRNA expressed in maize was undetectable within approxi-
mately 2 days after application to soil [166], and within 7 days in the aquatic envi-
ronment [167]. In addition, biodegradation kinetics of dsRNA were independent 
of the dsRNA concentration, sequence length and secondary structure (hairpin or 
linear) [166].

Vertebrates are exposed to dietary intake of a number of various dsRNAs from 
animal, plant or microbial origin. Some are completely complementary to human or 
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animal genes [168] and capable of initiating the RNAi pathway if they reach a target 
cell. However, there are numerous biological barriers, including nucleases along the 
digestive tract, and in bloodstream, series of cellular membrane barriers and endo-
somes significantly reduce dsRNAs to the levels insufficient for mediating RNAi. In 
28-day repeat oral toxicity study in mice with DvSnf7 dsRNA or with siRNAs and a 
long V-ATPase dsRNA (effective in WCR control and with 100% sequence comple-
mentarity to mouse vacuolar ATPase) no adverse effect was observed, even with 
doses billions time higher than anticipated human dietary exposure [169]. Thus, 
according to available data, it is likely that consumption of plants expressing dsRNA 
will not present a safety issue. However, whether ingestion of dsRNA can affect the 
immune systems of humans and animals, both directly or through impacting the 
gut microbiota, is currently unclear [170].

7. Transgene flow

Gene flow is the transfer of genetic material from one organism to another, 
including inheritance (vertical gene transfer) or transfer between unrelated spe-
cies (horizontal gene transfer). Althought horizontal gene transfer can contribute 
in “shaping” genomes of both prokaryotes and eukaryotes, there are almost no 
evolutionary examples of gene transfer from eukaryotes to bacteria [171]. Transfer 
of plant DNA to bacteria has been demonstrated at a very low frequency under 
artificial conditions, and the only genes from GM plants that are likely to be suc-
cessfully transferred are other bacterial genes, commonly used for selection in 
transformation [172]. More than 90% of transgenic plants that have been generated 
in different laboratories carry one of the three genes used for selection (resistance 
to antibiotics kanamycin or hygromycin, or herbicide phosphinothricin) [173], all 
of bacterial origin. Antibiotics are the most effective selection system for potato 
transformation, increasing its efficiency from 0.2%–4.5% under non-selective 
conditions to over 80% [174, 175]. However, they generally have no use after the 
selection phase of transformation, and can be completely removed or excised by 
different approaches, including segregation from the gene of interest after co-
transformation, and different site-specific or homologous recombination systems 
[176]. In this way, using self-crossing segregation or inducible self-excision by the 
Cre-loxP system, selectable marker-free transgenic potato lines with increased 
resistance to pest or pathogens were created [177, 178], alleviating possibility of 
horizontal gene transfer.

On the other hand, vertical gene transfer, especially mediated by pollen, raises 
more concern. Transgene escapes have been documented for cotton, maize, soy-
bean, oilseed rape, rice and wheat, indicating global dimensions of this problem 
[179]. In the case of Bt-plants, crop-to-crop gene flow can cause seed contamina-
tion, decrease efficiency of refuge strategies, or interfere with conventional or 
organic crop production. For instance, in Mexico where GM maize was not allowed 
for commercial cultivation, transgene escapes (Bt-cry9C, Bt-cry-1Ab/1Ac and CP4 
EPSPS herbicide resistance transgene) have been found in traditional maize variet-
ies [180]. An additional concern is the risk that pharmaceutical proteins, industrial 
enzymes, and vaccines produced by transgenic crops considered unsuitable for 
human consumption, can enter the food supply by outcrossing [181]. Transgenes 
can also move from GM crops to their wild relatives and alter their fitness, so that 
wild or weedy populations become more competitive and/or invasive, especially 
with introgression of insect-resistance or herbicide-tolerance genes. Although 
this invasiveness is more hypothesized than proven, GM crops or their volunteers 
often grow in vicinity of their wild variants, and hybridization with these plants 
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has frequently occurred. Examples include cotton and oilseed rape, where traits of 
insect and herbicide resistance, even stacked in combinations that do not exist in 
commercially available crops, were found in their wild relatives [179].

Cross-pollination between GM and non-GM potato should be less worrying, 
since vegetative propagation by tubers (rather than true seeds) is the dominant 
reproduction strategy of potato, and tubers are not affected by the plant fertiliza-
tion with “foreign” pollen. Outcrossing has been observed to occur only between 
adjacent potato fields, with rapid decreasing rate with distance, and no cross-
pollination detection when the pollen-receiving plants were separated by more than 
20 meters from the GM plants [182]. Additionally, majority of modern cultivars that 
evolved from complex hybridizations among several diploid and polyploid potato 
species, suffer from different types of male sterility and produce little or no viable 
pollen. Also, S. tuberosum is not able to hybridize with any of the non-tuber bearing 
Solanum species outside of the section Petota [183], and in most parts of the world, 
crosses with wild or cultivated relatives are highly unlikely, due to geographical iso-
lation from potential crossing partners with a suitable endosperm balance number 
[184]. In contrast, from Southwestern USA to Southern Chile, in areas of potato 
diversity, natural hybridization occurs between wild and cultivated Solanum species 
[185], bearing risk of the gene flow from transgenic potato to neighboring plants of 
related species. Nevertheless, with measures such are increased isolation distance 
and development of transgenic lines from male sterile potato varieties [186], unde-
sirable introgenesis in these wild species can be prevented or minimized. Besides, 
other biological means of confinement, including chloroplast transformation, 
apomixis, cleistogamy and diverse genetic barriers [179], can further minimize risks 
of transgene escapes.

8. Unintended traits

Crop improvement by genetic engineering requires obtaining transgenic lines 
with adequate expression of the heterologous gene and simultaneous preservation 
of all elite parental genetic attributes. One of the main limitations in achieving these 
requirements is the emergence of atypical plants – most often as a result of inser-
tional mutagenesis or somaclonal variations that may occur in the tissue culture 
itself and/or during transformation.

In many plant species, including potato [187], the frequency of heterologous 
DNA insertions within coding or regulatory gene sequences exceeds 50% upon 
genetic transformation. Additionally, insertion-site mutations can alter the expres-
sion patterns of neighboring genes, especially if the heterologous gene is under 
the control of a strong promoter [188]. Another type of mutation, related to the 
transformation process itself, can occur in any part of the plant genome (genome-
wide mutations) and is reflected in DNA polymorphism between transgenic and 
non-transgenic plants [189]. These latter changes are of epigenetic nature: the 
transformation process can activate transposon elements (TEs – whose activity is 
normally prevented by DNA hypermethylation), which then increase mutation 
rates and genomic rearrangements [190]. It is assumed that the same mechanism – 
activation of TEs – underlies somaclonal variations, a phenomenon associated with 
in vitro tissue culture and particularly pronounced during the callus phase which is 
characterized by a general reduction in cytosine methylation levels [191].

Insertional mutagenesis is not expected to be manifested in potato, being 
autotetraploid and possessing three other alleles that can potentially compensate 
for the insertional effect of a gene functional deletion. Even when insertional 
mutagenesis produces visible phenotypic changes due to the high heterozygosity 
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of commercial potato cultivars, such phenomena are considered an extremely rare 
event [192]. On the other hand potato is quite susceptible to somaclonal variations 
in tissue culture even in the absence of transformation [193]. The incidence of 
atypical plants attributed to somaclonal variations, ranges between 15% and 80% in 
the population of transgenic potato lines, depending on cultivar [192, 194]. These 
are often manifested as reduced growth, deformed leaf shape, lower yield and other 
changes in development, clearly visible in changing field conditions, rather than 
in uniform ones such as greenhouses or in vitro cultures [192, 195]. Elimination of 
these variations by sexual hybridization is impossible without the simultaneous loss 
of the genetic integrity of the initial line, while asexual reproduction permanently 
fixes the status of the transgene within potato genetic background. Thus, the 
emergence of atypical plants is most often overcome by creating a large population 
of transgenic lines and selection of several lines with the desired phenotype and 
high transgene expression.

Beside insertional mutagenesis or somaclonal variations, the unexpected 
changes in transgenic lines may be a consequence of the transgene expression 
itself. It is especially expected with PIs, that may interact with plant endogenous 
protease targets structurally and functionally related to insect digestive proteases, 
bringing both positive and negative pleiotropic effects in planta [196]. For example, 
metabolic interference of introduced resistance factors in potato can impact protein 
levels in leaves, positively or negatively [197, 198], reduce glycoalkaloid levels natu-
rally involved in host-plant resistance [199] or, on the contrary, trigger constitutive 
expression of naturally abiotic or biotic stress-responsive proteins, unexpectedly 
providing wider protection than the transgene itself [200].

Unintended traits have been identified in commercial GM crops, including 
insect or herbicide resistant maize, cotton, soybean and oilseed rape – that can 
exhibit different agronomic and compositional changes relative to their non-GM 
parental lines [201]. For example, Mon810 maize, carrying cry1Ab, exhibits compo-
sitional differences such as increased lignin, altered sugar and protein content, and 
a slight but significant delay in seed and plant maturation, connected with dif-
ferential expression of 140 genes compared to its near-isogenic variety [202, 203]. 
On the other hand, plants protected by introduced insect or pathogen resistance are 
expected to reduce upregulation of self-defense proteins and metabolites compared 
to less protected near-isoline plants [204] since they experience a different level of 
biotic or abiotic stress related to transgenic traits. Furthermore, occurrence of unin-
tended effects is not unique to the introduction of recombinant DNA. Traditional 
breeding is also confronted with undesired changes that result from hybridization, 
natural genetic recombination and chromosomal rearrangements or activity of 
transposable elements in plant genomes. There are a number of examples where 
conventional methods resulted in undesired effects, including potato cultivars with 
high level of glycoalkaloids [205], that were withdrawn from the market. Thus, for 
a safety assessment, it is necessary to ensure that transformation does not introduce 
new compounds, or cause changes in the levels or characteristics of endogenous 
compounds that may negatively impact human health [206]. Whether the trans-
genic line is as safe as its conventional variety is the fundamental safety issue to be 
addressed, rather than how much different they are.

9. Beyond transgenesis

Owing to public concern and reserved acceptance of transgenic crops in many 
parts of the world, two approaches, cisgenesis and intragenesis, are designed as an 
alternative to “old” transgene technology. Both concepts include introduction of 
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genetic material derived from the species itself (intragenesis) or closely related, 
cross compatible species (cisgenesis). Although they use a genetic transforma-
tion step, the modified crop genome is designed to not contain any foreign gene, 
including selectable markers. Therefore, crops developed using these techniques 
correspond to plants generated through conventional breeding, but without 
unintentional introduction of undesired genetic elements. Intragenesis has been 
successfully used for developing potato with high amylopectin content by silencing 
of the granule-bound starch synthase gene, GBSS [207] or for potato with improved 
processing qualities, by specific tuber-silencing of several genes, StAst, PhL and 
R1 (for low acrylamide) and ppo (reduction in black spot bruise development) 
[208, 209]. On the other hand, cisgenesis has been used for late blight resistance, 
with introduction of Rpi-vnt1 gene from Solanum venturii in potato [210]. These 
intragenesis-generated potato varieties have been approved under different com-
mercial names, including traits of modified tuber quality stacked with cisgenic late 
blight resistance (for instance Innate® Hibernate or Innate® Acclimate) [55].

Genome editing is the latest and most potent molecular technology. Using 
programmable endonucleases (Zincfinger, TALENs or CRISPR-Cas), alterations can 
be made at precise locations in the genome, including targeted insertion, replace-
ment or disruption of genes in plants. Because of their precision, these techniques 
can produce fewer unintended effects, and therefore “edited” crops are considered 
potentially safer than those generated by random mutagenesis or insertion. In case 
of potato, both TALENs and CRISPR/Cas9 technologies have been mainly used to 
improve tuber quality (glycoalkaloids reduction, low acrylamide content and altered 
starch metabolism) or for herbicide resistance [211], but despite unlimited potential 
in genetic engineering, no pest-resistance gene incorporation has been reported yet. 
Importantly, CRISPR-based gene drives could be implemented to spread desirable 
genetic elements through pest populations themselves. For CPB, there is only one 
such report to date, where CRISPR/Cas9 was used for vest gene knockout, which 
resulted in a wingless phenotype [212]. However, this potential of gene editing for 
pest control or even pest eradication is currently highly controversial.

10. Looking into the future

For the growing world population that is expected to reach 10 billion by 2050, 
food production should be increased by 25–70% and, at the same time, it is nec-
essary to reduce nutritional losses, greenhouse gas emissions from agriculture, 
pesticide overuse and address other environmental concerns [213].

Potato is now the world’s third most important crop for human food consump-
tion, after wheat and rice, but its production in the last 10 years stopped between 
360 and 370 million tons annually [214]. Additionally, yield potential of potato 
has remained relatively unchanged, despite intensive breeding efforts [215], and 
century-old varieties (i.e., Russet Burbank and Bintje) are still cultivated due to lack 
of significant genetic improvements in potato. Narrow genetic base as a result of 
clonal propagation, multiple constraints such as inbreeding depression, self-incom-
patibility and incorporation of undesirable traits, limit the progress in conventional 
development of inbred potato lines [216]. On the other hand, genetic engineering 
has shown potential for fast, feasible, economic and environment-friendly intro-
duction of resistance (and other beneficial) traits in commercially grown crops. 
However, to make full use of that potential it is necessary to improve existing and 
bring about new, more sustainable and cleaner gene manipulation technologies. 
By optimization of transgene expression level, its temporal or spatial program-
ming (i.e., by use of wound-inducible or tissue-specific promoters), generating 
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marker-free modified plants and exploiting new approaches such as cisgenesis/
intragenesis or genome editing – it is possible to both decrease unintended effects 
and increase efficiency and public acceptability of transgenic crops.

For potato, there are no GM varieties with insect resistance traits in the markets, 
and strategies that rely on insecticides cannot be avoided – as well as their failure 
in pest control. For instance, imidacloprid, a neonicotinoid successfully used for 
almost 10 years in CPB control, started being ineffective at the beginning of this 
century [217]. On the other hand, as global population continues to expand, food 
production, including potato, has to increase by many folds and with wild potato 
varieties as only source of resistance traits and their introduction by breeding, that 
seems unattainable. Also it is questionable whether all potato pests, CPB especially, 
could be stopped by resistance factors existing in Solanum species [218] while these 
resistance traits combined with heterologous sources such as Cry-toxins can offer 
more extensive and durable protection [219]. Moreover, there are other Bt-toxins, 
such as Vip, Cyt and Sip [220], or toxins from other bacteria, waiting to prove their 
usefulness in pest control. So far only Vip3A has been commercialized in Bt cot-
ton and maize [55]. Additionally, RNAi and even PIs can efficiently supplement 
and strengthen such protection. However, insects are exceptionally adaptable and 
evolution of resistance to any of these control measures, including combinations 
of different traits, is inevitable – but the rate of resistance evolution can be slowed 
down by efficient management strategies.

As a crucial concept of insect resistance management, refuges are essential for 
durability of both stacked and single-toxin crops, and where resistance is rare, 
20% (or at least 10% for stacked traits) of a pest host plant refuge may be suf-
ficient to delay resistance by a decade or more [31]. Smaller refuges are insecure 
even under highly effective toxins (or other traits) and all cases of field-evolved 
resistance are associated with low refuge presence, as one of the main factors [221]. 
Additionally, within IPM context, refuges also provide better support to popula-
tions of natural enemies, that are not only important in target pest control, but to 
prevent non-target secondary pest outbreaks that can seriously reduce benefits 
from introduced traits and bring production back to running on the insecticide 
treadmill [222]. Adding pheromone disruption, mass trapping or intercropping 
arrangements – integrated into scientifically supported management and adapted 
to the pest biology – can efficiently reduce pest population size, keeping damage 
below the economical threshold. Experiences with combination of the simplest 
practices in potato fields in some parts of the USA, such as rational use of chemical 
insecticides, trap rows and crop rotation [223] proved a potential of well-structured 
IPM approach to balance one technology with other complementary strategies. 
Such avoidance of relying on only one means of control would require complex pest 
adaptations that are less likely to happen compared to the occurrence and fixation 
of random single gene mutations that can render resistance to insecticides, Bt-toxin, 
PIs, RNAi or any other measure that may be implemented in the future.

The benefits of pest-resistant GM crops, incorporated in well-balanced IPM 
strategies, are clear – but it is also necessary to define and understand their limita-
tions and risks. Heavy dependence and overuse of insecticides undoubtedly had 
many consequences: food poisoning, reduction in biodiversity, negative effects on 
non-target species and other formidable impacts on environment – and genetic 
engineering provides a chance to not repeat all those mistakes. However, we can-
not expect that Bt or other pest-resistant modified crops will not have long-term 
ecological or evolutionary consequences, as well as that small or substantial compo-
sitional changes, as intended (or unintended) quantitative or qualitative alterations 
of metabolites, nutrients or toxins, cannot impact ecological interactions and/or 
food or feed safety. Such risks are present and inevitable, can vary depending on 
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traits introduced and strategy used for its introduction – and with a precautionary 
approach, at least some of them can be avoided or mitigated. Additionally, every 
generated crop line is created in a unique event and should be evaluated for risks, 
benefits and sustainability only on a case-by-case basis.

So, taking all together, is genetic modification of plants a thrift or a threat? It 
only depends on how carefully and advisedly we use that tool in our hands.
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Chapter 10

Visiting Potato from a Breeding 
Perspective: Accomplishments and 
Prospects
Navjot Singh Brar, Sat Pal Sharma and Prashant Kaushik

Abstract

Several enhancements to the conventional potato breeding are possible though 
they have encouragement as well as limitations. I n this direction, the marker-
assisted selection may be utilized to stack major genes as well as QTLs. Whereas 
the genetic transformation and genome editing methods accelerate the process of 
ricking of genes/transgenes. Moreover, these methodologies supplemented with the 
next-generation sequencing (NGS) platforms and pipelines further aid in reach-
ing the potato ideotype. Here, we overviewed the critical topics that are related 
to potatoes, from general background, breeding behavior, breeding approaches 
employed to the potato improvement. Overall, this information complied might 
serve as background information that is important for potato breeders.

Keywords: Potato, varieties, heterosis, heterosis, polyploidy, wild relatives

1. Introduction

Potato is among the most important food staples that rank overall fourth after 
cereals (maize, wheat and rice), belonging to one of the largest genus Solanum 
(over 1500 species) of family Solanaceae [1, 2]. Solanaceae family comprises of 
about 90 genera consisting of 3000–4000 species. Potato offers a considerable 
component of the world’s food source. From unknown until the sixteenth century in 
the six following centuries, potato cultivation had spread from its centre of origin, 
in South America into the rest of the world [3, 4]. The genetic diversity is harboured 
in wild relatives and landraces considered to be valuable sources of deviation for 
genetic enhancement and crop improvement because the genetic foundation of the 
modern cultivated potato is quite narrow [5]. At present, the collected developed 
to guarantee the long-term upkeep of potato hereditary resources and reaffirms the 
benefits of potato genetic resources [3]. Collaboration between potato researchers 
and gene bank curators promotes the utilization of the genetic resources [6].

Moreover, there are over 5000 cultivar varieties of potato-based on its size, color, 
shape, texture, flavor, taste, storage quality and cooking quality [7]. These varieties 
are differing in physiochemical properties (carotenoids and ascorbic acid content) 
because of the location, agronomy practices, climatic and degree of stress conditions 
of that area [8, 9]. The potato crop is affordable (the poorest and most undernour-
ished households can afford), high in quality nutrients (potential high food security 
crop), matures rapidly (4–6 months), need moderate care (irrigation at an interval 
of 6–7 days), easy to cook, protect itself against microbes (impermeable to gases, 
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water and chemicals), feed entire populations from hunger (high food security 
crop), easy to digest (quick breakdown with high glycemic index), used for some 
byproducts production (starch and alcohol) and also consumed by the animal as 
fodder [10]. Potato has high dietary fibers, magnesium, manganese, potassium, 
phosphorus, amino acids, proteins, carbohydrates, minerals, moisture, starch 
content, vitamins (Vit-C, B6) as well as other antioxidants like polyphenols and 
carotenoids and low in fats [11, 12].

Worldwide, economic losses occur in potato because of diseases like late blight 
although these diseases are controlled by regular application of fungicides [13, 14]. 
Recent improvement in next-generation sequencing (NGS) technologies has resulted 
in a major reduction in the sequencing costs that makes genotyping with NGS 
systems cheaper and achievable [15]. Massive genotyping of the gene bank collec-
tions as well as posting the info will be a strategy to show the prospective utilization 
of germplasm collections in gene banks. Some gene banks have started distribution 
of germplasm collections together with all the genotyping information by NGS 
datasets [16]. NGS technologies are particularly helpful in the taxonomy that depends 
considerably on the herbarium specimen conceived from wild plants from the wild 
[17]. In this review, we have gathered the information from the general background, 
breeding behaviour, conventional breeding, genetic engineering to NGS methodolo-
gies employed to the potato improvement. This information is going to be a useful 
resource for potato breeders, offering information about the development made and 
prospects of reading a potato ideotype.

2. Taxonomy

S. tuberosum further diverges into two subspecies:

a. andigena: It is a diploid grown mainly in the Central and South American 
regions and is adapted to short day conditions.

b. tuberosum: It is a tetraploid potato with worldwide cultivation [18–20]. A 
general belief is that the subspecies tuberosum has descended from subspecies 
andigena introduced to Europe that later adapted to longer day lengths [21].

The section Petota is splits in to 8 cultivated and 228 wild species of potato, 
which are further grouped into 21 taxonomic series (19 tuber bearing+2 non-
tuberous) [22]. Out of the cultivated species, only S. tuberosum ssp. tuberosum is 
extensively cultivated all around the globe, while others are cultivated especially in 
the Andean nations.

Sr No Solanum species Chromosome number Ploidy level

1 Solanum ajanhuiri
Solanum goniocalyx

Solanum phureja
Solanum stenotomum

2n = 2x = 24 Diploid

2 Solanum chaucha
Solanum juzepczukii

2n = 3x = 36 Triploid

3 Solanum tuberosum ssp. tuberosum
Solanum tuberosum ssp. andigena

2n = 4x = 48 Tetraploid

4 Solanum curtilobum 2n = 5x = 60 Pentaploid
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3. Origin and evolution

Series tuberosa (containing S. tuberosum) and other series of subsection potatoe 
have two centres of diversity. One is a long-stretching Andean terrain in Argentina, 
Bolivia, Colombia, Ecuador, Peru, and Venezuela, while the other is in central 
Mexico [18, 23–31]. This theory is based on the fact that the plants originally 
introduced into Europe were late flowering and tuberising, and the morphological 
description [32]. Such transition can take place in a fairly short period of approxi-
mately ten years of selection [33]. An alternative school of thought is that, after the 
potato blight epidemic in Europe, new germplasm of S. tuberosum subsp. tuberosum, 
which originated from Chile was introduced into Europe [18].

Hawkes [18] and Grun [34] opined that the cultigenic species S. stenotomum is 
the most primitive and progenitor of all other cultivated material. S. leptophyes Bitt. 
has been theorized as the probable progenitor of S. stenotomum based on morpho-
logical similarity [18]. The first cultivated material of S. stenotomum, has also been 
considered to be domesticated from S. brevicaule complex genepool [25, 34–37]. 
With advent of molecular techniques seven different chloroplast haplotypes were 
distinguished in a selection of wild and cultivated species [38]. Kardolus et al. [39] 
revealed that S. tuberosum subsp. tuberosum forms a cluster with S. multidissectum 
and S. canasense in the Brevicaule complex. S. tuberosum is believed to be a straight 
tetraploid of S. stenotomum by some workers but some evidence strongly support the 
allotetraploid origin of S. tuberosum [40]. As per another report the cultivated species 
are in the same clade as the northern Brevicaule clade that consists of S. bukasovii, 
S. ambosinum, S. canasense, S. leptophyes, S. achacachense Card. and S. multidissectum 
[41]. Multiple origin from S. stenotomum is believed to be cause of rising of initial 
populations of S. tuberosum subsp. andigena [42].

To summarize, first diploid cultivated material (S. stenotomum) has probably 
descended from one of the species in the Brevicaule complex. Sexual polyploidiza-
tion, accompanied by hybridization and human selection led to the development of 
tetraploid landraces (S. tuberosum subsp. andigenum). However, there is an absence 
of sufficient molecular data to point out a particular wild ancestral species.

4. Domestication of potato

Spanish conquerors introduced potato into the European countries by the 
16th century [18, 43–46]. There are two competing theories about the nature of 
the first material to be introduced into Europe. Grun [34] and Hawkes [18] sug-
gested the very first potato material brought to Europe consisted of S. tuberosum 
subsp. andigena from the Andes, quite probably from Colombia. The late blight 
epidemic in Europe during the 1840s led to the destruction of most of the original 
stock of potato. In the post epidemic period, new introductions consisted mainly 
of S. tuberosum subsp. tuberosum. Whereas Juzepczuk and Bukasov [47] were of 
the opinion that the subsp. tuberosum germplasm from Chile was already a part 
of early introductions in Europe, as morphology and growing conditions of early 
European plants and Chilean material bore similarities. Chilean potatoes were 
suitable for growing in Europe as they were adapted for tuberization under long-
day conditions. DNA analysis of the historical herbarium specimens suggested that 
although Andean potato arrived first but Chilean potato was present long before 
late blight epidemics in Europe [44].

Introduction of potato to the Bengal floodplains, Nile delta, Morocco and Nigeria 
was made by European colonizers, colonial governors, missionaries [48, 49]. 
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Emigrant farmers carried the potato to Australia and South America that led to the 
establishment of the potato in Argentina and Brazil. The tuber spread was along the 
old Asian routes through the Caucasus to Turkey, and from Russian federation to 
western China [31].

During the 20th century, potato emerged as a truly global food. After the 
Second World War, the potato was grown on a huge span of arable land in Germany 
and Britain, and potato has surpassed cereal production in Belarus and Poland. 
Since 1960s, cultivation of potato has been expanding in the ever-developing world 
[50, 51], it is grown as a cash crop in Bangladesh.

5. Floral biology

Potato inflorescence is terminal comprising 1–30 (but usually 7–15) flowers, 
depending on the type of cultivar [52–55]. The inflorescence is cymose, and flowers 
are actinomorphic and hypogynous. Arrangement of floral parts is regular. Five 
petal arrangement of the flower gives it a star shape [56]. Depending upon the 
cultivar, shape and size of lobes of sepals vary. The androecium comprises of five 
stamens alternating with the petals. The anthers collectively form a cone shaped 
structure to conceal the ovary [55]. Anthers are bright yellow or orange coloured 
except in case of male sterile plants in which the colour of anthers is light yellow or 
yellow green [57]. The ovary is superior and bilocular with ovules arranged at the 
periphery of the placenta.

Details of the S. tuberosum inflorescence are given below:

Colour of the corolla varies from white to complex range of blue, red, and 
purple [53]. Opening of flowers start near the base of the inflorescence and 
proceed upward at the rate of about 2–3 flowers each day [54]. Long day length 
accompanied by high humidity and low temperature are conducive for potato 
flowering [57, 58]. Flower production and berry setting is favoured by 12–14-
hour photoperiod and night temperature of 12-15°C [59, 60]. Short day duration 
at the time of flowering may result in abscission of floral bud [58]. Flower and 
fruit production in potato is influenced by several factors such as genotype, 
temperature, photoperiod, inflorescence position, plant/stem density, competi-
tion between flower and tuber, precipitation, date of planting and nutrient level 
[61–65]. Flowers remain open for 2–4 days, and out of this duration, pollen 
production and stigma remains receptive for about 2 days [57]. The fruit type is 
a berry, and are spherical to ovoid in shape, about 14 cm in diameter. Berries are 
green in colour or green-tinged, and upon ripening bear white or purple spots or 
bands [53, 66].

Inflorescence Solitoryor cymose

Flower Bisexual, actinomorphic

Calyx Sepals five, united, persistent valvate aestivation

Corolla Petals five, united, velvate aestivation

Androecium Stamens five, epipetalous

Gynoecium Bicarpellary syncarpoes, ovary superior bilocular, placenta with many vacuoles

Fruits Berry or capsule

Seeds Many, endospermous
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Floral bud abscission occurs in case of short days at the time of flowering, hence 
giving the impression of poor flowering of a cultivar [58]. Thus, conditions favour-
able for flowering and fruiting in tropics and subtropics can be found at higher 
altitudes (1500 m above sea level) [67]. Characteristics like days to flowering, flow-
ering duration, the intensity of flowering and fruit set have wide genetic diversity 
[60]. A survey on flowering behaviour, male sterility and berry set was conducted 
across 25 countries by Gopal [67]. Flowering initiated after 6–15 weeks of planting 
and duration of flowering ranged from 1 to 10 weeks. The setting of berries ranged 
from 0 to more than 5 berries/plant, while there no setting in 31.8% of accessions 
in blooming. Production of flowers and fruits is influenced by several factors like 
temperature, photoperiod, genotype, inflorescence position, plant/stem density, 
flower and tuber competition, precipitation, date of planting and nutrient level 
[61–65]. The number of primary flowers increased with increase in plant density 
while the proportion of flowers on lateral stems reduced [62].

6. Pollination

Potato is predominantly a self-pollinated plant and is occasionally cross-
pollinated [54, 56]. Generally, diploid wild species are insect-pollinated and cross-
breeding in nature. Presence of insects is imperative in facilitating cross-breeding 
and selfing in potato. Bumblebee species like Bombus terricola and B. impatiens 
are particularly good pollinators for potatoes [68, 69]. European honey bee (Apis 
mellifera) and B. fervidus do not contribute to the pollination of potato, as the flowers 
are devoid of nectar [70]. Despite the lack of pollinator resources provided by the 
crop, a great diversity of bees was recorded in a potato-dominated agroecosystem 
[71]. Wind does not play any role in the pollination of potato, and no seed set was 
observed [68]. There are no detailed studies of pollination behavior of potato in 
India. Controlled pollination can be achieved under field or greenhouse. However, 
crosses made under the field conditions are prone to losses from the environmental 
factors like wind, rain, heat and drought. Therefore, breeders prefer crossing in the 
greenhouse. The crossing should preferably be done during the early morning hours 
when the temperature is moderate [54].

7. Wild relatives of potato

Comprehensive taxonomic treatment by Hawkes [18] found there are 235 
potato species in total, 228 outdoors and 7 cultivated potato species. Various stud-
ies, implementing advanced molecular resources with a considerable amount of 
samples covering a broad range of species have advised that a reconsideration of the 
taxonomic classification is necessary [72]. As previously, potato species are hugely 
sophisticated in taxonomic classification. A broad area of distribution, together 
with an extensive selection of altitudinal division, from sea level up to 4500 MSL, 
indicates a broad range of adaptation this has resulted in the huge diversity and 
adaptations in the potatoes [73].

Genetic diversity of the germplasm and usefulness has been the drive to incor-
porate wild genes into cultivated types. The achievements of the application of wild 
relatives for genetic improvement relies a great deal on crossability with developed 
species. The gene pool is essentially the most often used concept determining the 
level of relatedness between species [74]. Though the genepool concept has been 
generally accepted, efforts to utilize the genepool concept to the potato was also 
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presented [75]. Manipulation methods to alter the ploidy level in potato have been 
discovered. Even important genes from the tertiary genepool could be unveiled 
using bridge species in the crossing, embryo rescue, and somatic hybridization [76]. 
Currently, potato genetic materials are preserved in gene banks around the planet 
and therefore, are offered for potato breeders as well as researchers [77]. Cultivated 
potatoes are conserved primarily as clonal collections, like a tuber, in vitro and 
cryopreservation; on the flip side, wild potato species are primarily gathered up and 
also retained in the type of botanical seeds [78, 79].

8. Fertility issues in potato breeding

Potato is propagated sexually by seeds and asexually by tubers [80]. Most of 
Solanum species are diploid in nature with obligate allogamy (cross-pollination) 
which is result of multi-allelic gametophytic self-incompatibility (S) locus, thus 
preventing self-fertilization among Solanum species. In contrast to this, tetraploid 
cultivated potato (Solanum tuberosum ssp. tuberosum L.) [81]. However, their highly 
heterozygous nature (interlocus and intralocus) with tetrasomic inheritance pose 
difficulty in genetic complexity and challenge in potato breeding, and this is further 
aggravated by, high genetic load due to accumulation of deleterious alleles as a result 
of its vegetative propagation. Severe inbreeding depression is anticipated upon self-
ing, which results in the reduction of seedling germination and many reproductive 
complexities like reduction in flowering [57].

Conventionally potato varieties are developed through hybridization and 
selection, with a huge investment of time and resources because of its complex 
multi-locus inheritance and tetraploid genome. Successful hybridization pro-
gramme between different potato populations have to deal with many barriers like 
pre-zygotic barriers including pollen and pistil incompatibility and post-zygotic 
barriers like embryo and endosperm abortion, sterility and hybrid breakdown 
in segregating generations [82], that leads to the hindering of the breeding pro-
grammes [60]. In male-sterile plants, flowers do not produce functional anthers or 
viable pollen, but the ovaries usually function [57]. The failure to produce pollen 
may be an inherent characteristic with sterility being dominant over fertility [83]. 
Even after successful fertilization by overcoming these issues, development of seeds 
requires proper endosperm development.

Male sterility is the result of nuclear cytoplasm interactions; the predominant 
Ms. gene interacts with the cytoplasm, for instance, the diploid hybrids between 
S. tuberosum Group Tuberosum haploids × Group Phureja yield all or perhaps 
nearly all-male sterile progeny [84]. The occurrence of male sterility typically 
leads to issues for potato breeders, as the option of parental lines can limit the 
introgression of characteristics [85]. The frequency of male fertile offspring in a 
hybrid between the group Tuberosum and Phureja are different because of their 
different ploidy levels [86–88].

In the last couple of years, a pattern emerged in a group of potato breeders to 
reconsider the pick as a diploid species constructed from a compilation of inbred 
lines that capture the favourable genetic diversity accessible in cultivated and 
wild potatoes [89]. Inbreeding due to selfing might be useful for organizing the 
entire gene pool into different favourably interacting and healthy epistatic sys-
tems. Whatever the nature of its, self-compatible 2x cultivars will offer an even 
more appealing self-compatible source than S. chacoense since they will avoid the 
undesirable linkage drag regarding the usage of an untamed species within the 
development of 2x inbred lines. Loss of S-RNase functionality is a standard route to 
self-compatibility [90].
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9. Unilateral compatibility

The endosperm balance number (EBN) seems to be very likely that a mechanism 
related to a loss of protein functionality results in the formation of 2n gametes. 
Although it is not complete, the consistency of the self-incompatible self-compatible 
rule indicates a link between inter- and intraspecific pollen rejection [91, 92]. The 
EBN concept was helpful to elucidate the nature of the pollinator result in haploid 
removal. The triploid block is a reproductive screen resulting from endosperm mal-
function due to the epigenetic event of genomic imprinting. Evidence implies that 
the endosperm dosage devices are imprinted within the gametes; therefore, the simi-
lar gene being functionally different in paternal and maternal chromosomes [93].

Spooner et al. [22] proposed a concept particularly for the Potato, implementing 
5 crossability groups based on self-compatible/self-incompatible systems and endo-
sperm balance number (EBN). The main genepool of potato contains S. tuberosum 
ssp. tuberosum with all cultivars and landraces. All the cultivated potatoes are 
tetraploid (2n = 4x = forty eight) with 4EBN. Potato has a vast secondary gene pool 
comprising of related wild species that gives a rich, distinctive, and different supply 
of hereditary variation. The EBN is a unit identifying the realizations of inter-
specific crosses [94]. Hybridization within every group is anticipated to achieve 
success rather than hybridization across groups, and therefore the executions of 
hybridization may be predicted. Whereas the genepool principle, as well as the EBN 
model, provides assistance in the utilization of wild genetic resources, additionally, 
they provide insight into phylogenetic connection and also taxonomy. Nevertheless, 
species crossability are always crucial to offer concrete evidence. Potato researchers 
have developed strategies to conquer the hybridization screen to transfer genes from 
wild species of the secondary and even tertiary genepool [95].

Haploids exhibited disomic inheritance, that implies that every chromosome 
combined with its homolog, thus giving means for simplifying genetic research in 
potato. They can furthermore be well utilized for research on natural mutation and 
chromosome pairing accumulated at the tetraploid fitness level. In this direction, the 
reason behind the generation of haploids was acquiring a genetic bridge between the 
different genomes of Solanum species [96]. Haploids from tetraploids usually don’t 
flower and can also be male sterile because of inbreeding throughout the tasks of 
haploidization [97]. Selection of haploids can result in diploid breeding lines; addi-
tionally, a particular kind of haploids are accustomed for understanding the segre-
gation of characteristics at the tetraploid level if numerous haploids are made of a 
single tetraploid genotype [98]. Whereas, tuberization in potato is controlled by day 
length [99, 100], and plant hormones, such as gibberellin and jasmonic acid also play 
a crucial role in defining tuberization. Although, specific potato genotype tuberizes 
under a particular day length condition along with specific physiological require-
ments that vary from genotype to genotype. In in vitro studies, no particular method 
of tuberization is found, and it’s regarded as a complex trait. Utilizing the genome 
sequence [101] as well as info on Ft, it was determined that the potato genomic locus 
StSP6A, induces movable tuberization signal. The StSP6A signal led to the induction 
of tuber growth at the stolon termini. They’ve postulated that diverse allelic devia-
tion of this gene is connected with the domestication of potatoes.

10.  Breeding behavior of potato: from conventional to new breeding 
technologies

Potato breeding and improvement is an uphill task owing to its complex genetic 
structure and multi-allelic gene action arising due to its tetraploid genome [102]. 
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Any breeding programme relies on the objective of the programme, germplasm 
availability and breeding method/technique. Genetic resources of potato are quite 
rich as compared to any other cultivated plant consisting of about 190 wild and 
primitive species [103], resulting in great amount of genetic diversity readily avail-
able for exploitation. Its rich variations are also attributed due to its reproductive 
biology which shows there can be 40% (range 21–74%) natural cross-pollination 
[104]. Besides this, its tetraploid nature (2n = 4x = 48) having four sets of chromo-
somes entirely homologous shows random pairing at meiosis [57] further adding 
to its diversity and genetic variations. This sexual reproduction generates ample 
amount of diversity by recombining the variants of genes that arose by mutation. As 
a consequence, potatoes are highly heterozygous individuals that display inbreeding 
depression on selfing and thus become the major impediment for the exploitation 
of its heterosis [105, 106].

Despite the broad genetic base, progress in efforts for potato breeding is quite 
slow, and its genetic gains are not fixable due to the obligatory out-breeding nature. 
Several conventional, as well as modern breeding techniques, have been utilized for 
improvement in yield, processing, storage-quality [107] and against biotic stresses 
[108, 109]. Although conventional breeding approaches like hybridization, clonal 
selection, irradiation/mutagens and introgression has been successfully employed 
[57]. But the progress is limited and slower due to demanding tasks of introgres-
sion and phenotypic characterization of better performing individuals in succes-
sive generations. Apart from this, intraspecific incompatibilities and inbreeding 
depression lead to failure of trait incorporations in the polyploid crop.

Although conventional breeding has played an important role in potato 
improvement by developing coloured potatoes and potatoes with improved nutri-
ents [110], but the progress is very slow. In order to overcome these challenges, 
biotechnological, molecular breeding and genome editing tools, considered as new 
breeding techniques, have played an important role to facilitate interspecies crosses, 
and towards augmenting and broadening of the genetic base of gene pool of culti-
vated material. Biotechnological techniques like in vitro meristem shoot tips culture 
have been successfully eliminated potato virus Y [111]. This method was crucial 
and reliable for supplying pathogen-free seed potatoes to farm [112]. Embryo 
culture technique has been used successfully for improving resistance to potato 
leafroll virus so as to circumvent interspecific incompatibility [113]. Utilization of 
somaclonal variation resulting heritable phenotypic changes arise during the cell 
culture and regeneration of potato tissue culture was reported from leaf protoplasts 
of ‘Russet Burbank’ cultivar [114] along with improved resistance to pathogens like 
Phytophthora infestans; Alternaria solani [114, 115] and tuber morphology [116]. The 
somatic fusion of potato protoplasts with protoplasts of wild relatives has also been 
extensively exploited for introgression of novel sources of disease and pest resis-
tance [105, 109, 117–119].

Potato is a model crop in which transgenic or genetic engineering technology 
has been exploited to the maximum extent, and it is one of the first crops for which 
transgenic plants were regenerated [120]. Genetic engineering is an important and 
highly effective tool for incorporating single gene or pyramiding gene into elite 
potato cultivars with minimal or no disturbances to their genetic background [121]. 
Numerous transgenic genotypes have been developed for a wide range of traits, 
including pest and disease resistances; abiotic stress resistance; quality attributes 
for improved processing, nutrition and appearance etc. Gene silencing is another 
novel technique which uses RNAi for traits like increased carotenoid content and 
reducing cold-induced sweetening [122–124].

Apart from transgenics/genetic engineering techniques, marker-assisted 
breeding (MAB) has been successfully demonstrated in tetraploid potato [125] 
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for potato cyst nematode resistance trait. Several other examples like resistance to 
the nematode Globodera rostochiensis, resistance to potato virus X and resistance to 
potato wart [126] are the success stories of the application of MAB in potato. But the 
progress in MAB is negligible as compared to other crops due to its complex tetra-
somic inheritance and high allelic variation [127]. However, in the current era of 
genomic breeding, prediction of genomic information is the best method to use for 
making breeding decisions [128]. Rather than using only significant marker-trait 
associations to build a prediction version, genomic prediction makes simultane-
ous usage of all markers [129]. In potato, genomic selection (GS) models are being 
utilized for predicting the accuracies of prediction models for various traits like 
for maturity [130], tuber starch content and chipping quality [131], Phytophthora 
infestans infection, plant maturity, tuber starch yield and tuber yield have been 
successfully predicted using GS models [132].

For the successful application of genome editing technologies, the first and 
foremost requirement is the availability of efficient transformation systems. Since 
potato has excellent availability of genomic resources as well as genome sequence 
and efficient transformation systems, several workers used various genome edit-
ing approaches viz. zinc-finger nucleases (ZFNs) [133–137] for improving traits 
like herbicide resistance, modification of starch, bio-fortification and reducing 
anti-nutritional factors to enhance overall increased quality of produce. Earlier for 
targeting traits like insect resistance, proteins, vitamins and carotenoids, transgenic 
technology was extensively used. Still, due to their off-target, copy number varia-
tions and other drawbacks, the trend has been shifted towards these new breeding 
technologies whereby TALENs and more recently CRISPR/CAS9 genome editing 
technologies were used for targeting traits like alteration of starch composition or 
hormonal expressions, reduction of anti-nutritional elements, imparting herbicide 
resistance, improving starch quality and overcoming self-incompatibility issues.

11. Conclusions and future prospects

The genetic improvement of potato depends on germplasm sources. In the 
genomics era, germplasm development can be easily performed by incorporat-
ing noval alleles from wild species, landraces, cultivated varieties, and even from 
distantly related species. In corporating the genomics equipment will substantially 
enhance the effectiveness of introgressing multi genic characteristics. Introgression 
may be possible through sexual hybridization, or molecular manipulations. In the 
context of molecular manipulations, different breeding technologies as TALEN and 
CRISPR/Cas9 are already used to improve the potato ideotype as per the market 
requirements. Moreover, the potato genome sequence, as well as useful potato 
hereditary transformation strategies, have hugely facilitated potato genetic engi-
neering. The commercialization of these engineered goods is challenging because of 
regulatory/ethical restrictions and consumer preferences.

Breeding objectives like bio-fortification, as well as the removal of anti-
nutritional factors like steroidal glycoalkaloids as already achieved. Additionally, 
incorporation of abiotic (environmental, salinity, drought, temperature) anxiety 
resistance that comes with improved nutrition can facilitate potato to acclimatize 
in varied agro-ecological zones, therefore impeding food shortage in less fertile/
water deficit farming lands. Further expansion of food studies can establish several 
preliminary values to rationalize the health advantages of potato derived foods. 
Indeed, the potato genome sequence has facilitated the relative genomic analyses to 
determine the genes helpful for improving several agronomically significant char-
acteristics as tuberization, damage of bitterness, along with ailments opposition. 
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Abstract

Solanum tuberosum (Potato) is one of the essential economic crops with the poten-
tial to reduce hunger due to its high yield per unit area of land compared with many 
economic crops. However, its yield losses due to pest and disease attacks could be as 
high as 100%, depending on its tolerance level and pest and disease. Over the years, 
several disease management strategies have been researched, ranging from synthetic 
pesticides to the formulation of biopesticides as disease control measures. Moreso, 
recent breakthroughs in genetic engineering have simplified plant disease manage-
ment strategies by developing techniques for conferring resistance on plants. Potato is 
a vital food crop worldwide, and with the struggle to suppress world food insecurity, 
effective disease management strategies must be employed for high production of 
quality and quantity potato, enough to feed the ever-increasing world population. 
Therefore, attention must be given to how disease-free potatoes can be produced to 
meet the unending demand for food by the continually increasing world population.

Keywords: Potato, Disease-free, Crops, Pathogens, Biocontrol, Resistance

1. Introduction

Potato (Solanum tuberosum L.) is the most popular vegetable crop of great 
importance worldwide and follows only wheat and rice as a food crop [1]. It is a 
source of carbohydrate being a starchy vegetable; it is, however, as a vegetable 
a very significant source of vitamin C, potassium, and dietary fibre as well as 
magnesium, vitamin B6, iron, carotenoids, and phenolic acids [2, 3]. It grows in a 
wide range of climates and is adopted by a broad range of cultures [4]. Potato is a 
critical alternative to the major cereal crops for feeding the world’s population [5]. 
However, its production has two main challenges: disease and nutrient manage-
ment [6]. Pathogens such as bacteria, fungi, viruses, nematodes, and phytoplasmas 
attack potato plants, causing diseases, which result in a significant loss of yield [7]. 
Naming a pathogen that negatively affects the host’s health is the primary means 
to define any disease [8]. For instance, potato plays host to heterothallic species, 
Phytophthora infestans [9], which causes late blight disease. This single pathogen 
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caused severe devastation in the late 1840s in Europe [10] and cost Ireland 25% of 
its population in just four years [11]. Potatoes still have many diseases, but many 
other alternative crops make most countries not depend on potatoes like Ireland 
in the 1800s [12]. In recent time, potato crop loss due to late blight disease alone is 
estimated at $6.7 billion annually worldwide [5]. A significant challenge to the man-
agement of P. infestans is the rate at which it adapts to control strategies [5]. More 
research on epidemiology and the host-pathogen interaction is needed to devise the 
most appropriate management strategy [7]. Also, insight into pathogen population 
dynamics offers an essential input for effective disease management [13].

Meanwhile, effective management of the disease requires implementing an 
integrated disease management approach [14]. Guchi [7] proposed investigating 
several control options and implementing an integrated management strategy 
based on local needs [7]. Therefore, this chapter aims to discuss the general/overall 
impact of the diseases of Solanum tuberosum as well as their management. This 
would increase awareness and awaken researchers’ intervention to develop globally 
effective control or management strategies.

2. Some host pathogens and diseases of potato

Diverse host-pathogens are associated with the different diseases of potatoes, 
among which are bacteria and fungi. Plant pathogens responsible for diseases in 
potatoes include viruses, fungi, oomycetes, and bacteria [15]. A pathogenic bacte-
rium known as Ralstonia solanacearum is responsible for the devastating bacterial 
wilt of potato and other solanaceous plants [16, 17]. The bacterium, Ralstonia 
solanacearum, is a gram-negative, non-spore-forming, aerobic, soil-borne motile 
pathogen that hinders tuber production resulting in economic losses [16–18]. It 
is distributed worldwide, affecting more than 200 economically essential crops, 
including potato [19]. The pathogen, usually disseminated by infected seed tuber, 
soil, water, and farm machinery [20], penetrates to infect the roots through wounds 
or natural openings and rapidly propagates within the host to attack the plant’s 
vascular system. Consequently, it forestalls the translocation of nutrients and water, 
culminating in wilt, collapse and complete deadening of the plant and its decay [21, 
22]. The ubiquitous plant pathogenic fungus of Colletotrichum coccodes is responsible 
for the blemish disease of potatoes called black dot [23].

The typical characteristic of black dot disease is the microsclerotia on infected 
tissue present in all potato parts. These microsclerotia, which usually survive in the 
soil for lengthy periods, lead to high disease incidence when soil inoculum levels 
increase [24]. Sequel to fungal colonisation of roots are colonisations in the stems, 
stolons, and tubers [25], and fungal contamination of tubers with C. coccodes leads 
to the development of lesions on the epicarp and loss of water during storage [26, 
27]. The potato late blight disease is caused by Phytophthora infestans [28]. It affects 
the potato foliage and tubers. The foliage symptoms begin with brown to black, 
water-soaked lesions on leaves and stem that produce visible white spores at the 
lesion margins under humid conditions. This may result in the rapid collapse of the 
entire plants and orchards. Sporangia in the soil from the foliage initiate the tuber 
infection that starts from the wounds, eyes, or lenticels. The lesions appear as cop-
per brown, red, or purplish, and white spores appear on tuber surfaces in storage.

Streptomyces spp. is the bacterial pathogen responsible for common scab in 
potato, and characteristic tan to dark brown, circular or irregular lesions rough 
in texture are produced. The scab may be superficial (russet scab), slightly raised 
(erumpent scab), or sunken (pitted scab). Its lesion type is determined by potato 
cultivar, maturity of tuber at infection, soil organic matter content, pathogen 
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strain, and the environment [29]. Another disease caused by the bacterium is 
soft rot, which is the most destructive of all storage diseases caused by Erwinia 
carotovora. The disease symptoms include tan- to brown-coloured water-soaked 
areas of granular, mushy tissue often outlined by brown to black margins. During 
storage periods, soft rot bacteria penetrate tubers already infected with other potato 
diseases. The rottening from bacterial penetration is accelerated by the heat gener-
ated from the intense respiration in the storage environment.

Early blight of potatoes, caused by Alternaria solani, usually affects its leaves, 
but tuber infections can also occur. The lesions found in the tubers are dark, 
sunken, and circular, usually surrounded by purple to grey raised tissue. Its 
underlying tissues are void of moisture, leathery and these brown lesions may have 
increased during storage with shrivelled tubers [29]. Fusarium sambucinum or F. 
coeruleum is responsible for dry rot that causes inner light to be dark brown or black 
dry crumbly rot of potato with collapsed tissue often lined with secondary white 
other-coloured fungal growth. This rot may commence at an injury site (bruise or 
cut), and the fungus penetrates the tuber to rot out its centre. In furtherance, the 
extensive rotting results in the shrinking and complete collapse of tissue and usually 
leaves a dark sunken area outside the tuber and internal cavities [29]. The silver 
scurf, caused by Helminthosporium solani, infects only the uber periderm (skin). The 
lesions appear first at the stolon end as small pale brown spots that may be difficult 
to detect at harvest but continues development during storage. While in storage, 
these lesions darken, sloughing off the skin occurs with many small circular lesions 
coalescing to form large lesions. The potato tubers tend to dry out and become 
wrinkled from excessive moisture loss during storage [29]. The fungus Rhizoctonia 
solani causes the black scurf disease, which does not reduce yield, even in storage. 
Fungal sclerotia develop in irregular, black hard masses on the tuber surface that 
harvesting tubers may reduce immediately after vine-kill and skin set. Sclerotia 
allow the pathogens to survive in the soil. Inside wet soils, R. solani may induce 
dark, sunken lesions on underground sprouts and stolons with consequent depriva-
tion of nutrients, the complete killing of the potato tubers, reduction in transfer of 
starches (results to reduced sizes) [29].

Pink rot infections caused by Phytophthora erythroseptica commence at the 
stolon end and culminates in rotten, internal rubbery skin that turns pink after 
about 15 to 20 minutes of exposure to warm air (with a clear delineation between 
healthy and diseased tissue). On exposure to air, the tuber flesh turns pink and then 
brown-black. The fungal pathogen Pythium spp. is responsible for leak infections, 
penetrates tubers through harvest wounds, and continues to grow in transit and 
storage. Its infections develop into internal watery, grey, or brown rot, but the outer 
cortex remains intact, with well-defined red-brown lines demarcating healthy and 
infected tissue [29].

Viruses are among the predominant phytopathogens that cause approximately 
50% of all emerging plant diseases [15]. Potato virus Y (PVY) is one of the most 
harmful viruses infecting potatoes across the globe since the 1980s [30].

3. The impacts of diseases on the yield (quality and quantity) of potato

In 2013, more than 368 million tonnes were produced from 19.4 million hectares 
[31]. Though hundreds of varieties of potato are grown in temperate and sub-trop-
ical areas, its diversification in various agroclimatic conditions leads to a decrease 
in its production and productivity due to its low genetic base and various biotic 
factors, which makes it susceptible to many devastating diseases. The crop infection 
due to fungi, viruses, bacteria, and viroids alters its metabolism. These pathogens 
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affect the crop’s morphological, physiological, and biochemical characteristics lead-
ing to altered distribution of photoassimilates, with resultant effects on its quality 
ad quantity.

Viral diseases of potatoes are devastating because they are tough to manage and 
transmitted via the tubers to subsequent generations. Viruses have the potential to 
alter the physiology of potato plants drastically, causing disorders. These disorders 
of growth processes cause stunting, leaf deformation, dwarfing, and reduction in 
the yield of potato tubers and product quality up to 88% [32–34]. Tens of potato 
viruses have been discovered and characterised, and the most cataclysmic are: 
Potato virus M (PVM): Potato virus S (PVS); Potato virus X (PVX); Potato virus Y 
(PVY); and Potato leaf roll virus (PLRV, virus L). PVX can debilitate 10–40% of 
potato in a single infections cycle and possess enormous devastating effects when 
combined with other potato viruses; due to its synergistic interaction with potyvi-
ruses, tuber losses yield close to 80% [33]. For example, the yield of potato simulta-
neously infected with PVM and PVX will decline to 60%, and when it is a complex 
infection of PVM + PVX + PVY, it will decline by 83.7%, i.e., total loss of yield [35]. 
In potato tubers infected with viral diseases, the content nutrients become reduced 
compared to healthy ones. Other biochemical and physiological changes also occur, 
resulting in a decrease in the quantity and quality of starch grains in the debilitated 
tissues, the acidity of starch, and amylase content [36]. There are varying losses in 
potato production from viruses; they are determined by the variety’s resistance, the 
viral pathocomplexity, the level of spread of a specific virus, and their combina-
tions with other viruses [37].

Bacterial diseases are one significant biotic constraint of potato production in 
the subtropical and tropical regions. Several bacterial diseases devastate potato, 
resulting in severe damages, especially on tubers, leading to economic losses. The 
most acute diseases are bacterial wilt caused by Ralstonia solanacearum [38] and the 
backleg caused by Pectobacterium atrosepticum, P. carotovorum subsp. brasiliensis, 
P. wasabiae, Dickeya solani and D. dianthicola [39, 40]. Loss of yield in potato crop is 
due to bacterial diseases that could be direct and indirect. There are specific facets: 
short-term impacts like yield loss and unvendability, and others with long-term 
impacts with environmental, economic, and social effects [39].

To date, potato late blight is still one of the most devastating diseases in potato-
producing regions worldwide and causes substantial economic losses of about 
25–57%. Pathogenic fungus, Phytophthora infestans, are responsible for late blight 
disease in potato. Late blight disease is highly destructive and one of the diseases 
threatening global food security [41]. Its outbreak in Ireland resulted in famine, 
which led to millions of people’s starvation and eventual death and subsequent 
continuous significant losses of potatoes worldwide. Therefore, it remains the most 
debilitating disease of the food crop, which causes annual potato losses sufficient 
enough to feed several millions of people [42]. Despite the apparent debilitating 
potential of late blight, it is tough to estimate losses because of other environmental 
factors that simultaneously affect potato yield.

Meanwhile, the economic impact of potato late blight in the USA was appraised 
to be around 210 million US dollars, while a worldwide assessment of potato loss by 
late blight in the second world countries based on an average production was about 
15%. This represents approximately 2.75 billion US dollars loss in developing coun-
tries. However, a critical method of estimating the economic impact of potato late 
blight is by determining the usage of fungicide. With this method, the estimated 
fungicide currently used in developing countries stands at 750 million US Dollar. 
Therefore, about 1 billion US Dollar is spent on fungicides yearly to manage fungal 
disease worldwide [43].



217

Impact and Management of Diseases of Solanum tuberosum
DOI: http://dx.doi.org/10.5772/intechopen.98899

4. Management strategies of the diseases of potato

Potato is among the high-income-yielding crops globally and can contribute to 
poverty reduction in developing regions [44]. However, Potato cultivation is beset 
with several diseases caused by diverse pathogens in the field and during storage, 
accounting for 50 to 60% of annual losses [45–47]. Control strategies that have been 
deployed to manage diseases in potato include the application of chemical fungi-
cides, biological control agents, and cultural practices involving crop rotation.

4.1 Chemical control

Diseases caused by fungi are critical in potato production and require several 
synthetic fungicide options to reduce them to tolerable economic levels. Fungicides 
are preparations of different organic and inorganic compounds which can inhibit 
or destroy phytopathogenic fungi. These chemicals exert their effects by disrupting 
cell membranes of their targets or instigating catalytic enzymes in plant host tissue 
to suppress fungal growth and proliferation [48]. Practically, conventional manage-
ment of potato diseases relies on the timely application of preventive fungicides 
[48, 49]. To control black rot disease, seed tubers are immersed in the fungicides 
thiabendazole, captofal, chloramizol sulphate, prochloraz, or a combination of each 
before field planting. Pencycuron and thiabendazole have also been documented 
to control black scurf and silver scurf effectively, respectively [26, 27]. Rahman 
et al. [50] demonstrated the effectiveness of Filthane M-45, Melody Duo, Secure, 
Metaril, and Ridomil gold to minimise Phytophthora infestans-induced late blight 
improve the yield of potato. More so, the application of dimethomorph, mancozeb, 
and fenamidone + mancozeb can significantly reduce the severity of late blight and 
increase potato yield [51]. The application of the antagonist Trichoderma harzianum 
combined with flutolanil seed dressing offers protection against Rhizoctonia solani 
damage throughout the growing season (Wilson et al., [52]. Although fungicides 
have been shown to manage potato diseases effectively, they are not without their 
attendant problems. It is now known that continuous application of fungicides 
results in resistance in many pathogenic fungi of potato. Whereas metalaxyl 
containing fungicides show good action against Phytophthora infestans, prolonged 
applications have resulted in resistant P. infestans [53]. Several metalaxyl-insensitive 
genotypes of P. infestans have been reported in different regions of the world. For 
example, in 1980, phenylamide resistant isolates of P. infestans were detected on 
field-grown potatoes in Netherlands, Switzerland, and Ireland [48, 49, 54]. In 
addition to fungicide resistance, the harmful consequences on non-target organ-
isms, risk to soil environment, and carcinogenic potentials have discouraged the 
use of synthetic fungicides, thereby prompting the search for efficient, safe, and 
 eco-friendly disease management options [55, 56].

4.2 Biological control

Disease management using biological control agents is touted as efficient alter-
natives to chemical fungicides as they are more eco-friendly and reduce the risk of 
the emergence of fungicide-resistant strains of plant pathogens [57, 58]. A biologi-
cal control refers to the application of microbial antagonists or their by-products 
to inhibit plant diseases. Organisms that antagonise plant pathogens are known as 
biological control agents (BCAs). Such organisms are highly specific in their action 
against target pathogens, their products are biodegradable, and their mass produc-
tion requires low cost [59, 60].
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Here, we discuss the biological control strategies – microbial inoculants (ben-
eficial, non-pathogenic single-strains of microorganisms that antagonise plant 
pathogens), microbial consortium (combination of different genera or species of 
symbiotically living microorganisms) isolated from the natural environment, and 
the application of phytoextracts [61–63].

4.3 Microbial inoculants

These are single strains of active beneficial microorganisms that offer protection 
against diverse pathogens or promote crop productivity and health when applied 
to crops or incorporated into the soil [63]. Microbial inoculants are an effective 
and cheap alternative strategy to reduce the severity of plant diseases [64–66]. 
Agrobacterium, Pseudomonas, Bacillus, Alcaligenes, Streptomyces, and others have 
been reported as effective bacterial control agents [16, 17, 60]. These organisms 
suppress bacterial and fungal pathogens by releasing active compounds, includ-
ing siderophores, antibiotics, enzymes, and the plant hormone, indole-1,3-acetic 
acid. Pseudomonas strain has been widely investigated for their potential as BCAs 
because of their active nature and abundance in the rhizosphere [60]. Tariq et al. [67] 
demonstrated the antagonistic potential of Pseudomonas sp. StS3 against Rhizoctonia 
solani, which causes potato black scurf. Streptomyces violaceusniger AC12AB promoted 
growth by 26.8% and significantly reduced potato typical scab disease severity by up 
to 90% in field trials [66]. In addition to enhancing potato tuber biomass by 33% and 
22% in two location field trials, Bacillus amyloliquefaciens strain BAC03 considerably 
reduced the severity of potato scab disease by 17–57% compared to control. BAC03 
also enhanced potato tuber weight by 33% and 26% in the two locations [68].

4.4 Microbial consortium

This combination of BCAs consists of various microbial strains that synergisti-
cally confer enhanced plant growth activities and superior pathogen inhibition 
capabilities [69–71]. Compared to single-species microbial inoculants, the microbial 
consortium is more useful in field applications as it offers a wide range of biocontrol 
activities that promote inoculant efficiency and, in turn, improve plant growth and 
disease suppressability [56]. The application of a microbial product comprising a 
consortium of Bacillus subtilis and Trichoderma harzianum inhibited common scab 
disease in potato caused Streptomyces spp. by 30.6%–46.1%, and improved yield by 
23.0%–32.2% [72]. Inoculation of Fusaria infested soil with a bacterial consortium 
of Pseudomonas aeruginosa (B4, B23, B25, and B35), Alcaligenes feacalis (B16), and 
S. marcescens (B8) was reported to not only suppress fusarium wilt of potato by 
94% but also considerably improved plant biomass by 186.9% (Fresh weight) and 
214. 75% (dry weight) [56]. Treatment with a consortium formulation comprising 
Enterobacter amnigenus strain A167, Serratia plymuthica strain A294, Serratia rubidaea 
strain H440, S. rubidaea strain H469 and Rahnella aquatilis strain H145 significantly 
reduced potato soft rot severity and incidence by 62–75% and 48–61%, respectively, 
when compared to a positive control with pathogens alone [73]. Also, a combina-
tion of rhizobacteria in combination with commercial arbuscular mycorrhiza fungi 
(AMF) have been reported to effective in abating bacterial wilt of potato [16, 17].

4.5 Phytoextracts

Green plants harbour a plethora of secondary metabolites that could serve as 
eco-friendly, natural alternatives to chemical fungicides [50, 74, 75]. Phytoextracts 
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are botanicals, natural oils, and plant volatiles that show pest/pathogen control 
activities. They are usually extracted from fresh or dried plant parts using alcohol, 
water, or other solvents. Phytoextracts can be fungicidal or fungistatic in action 
and exert their effects by inducing conditions unfavourable for pathogen growth 
and proliferation [44]. The application of botanicals can significantly reduce the 
cost of crop protection and the occurrence of pathogen resistance [44]. Several 
phytoextracts have been widely tested and reported as effective suppressors of 
plant pathogens [50, 75]. Dried cheerota plant (Swertia chirata Ham.) and jute leaf 
(Corchorus capsularis L.) have been reported to exhibit in vitro antibacterial activity 
against Erwinia carotovora subsp. carotovora (Ecc) P-138 s, the causative pathogen 
of soft rot in potato. Under storage conditions, the plant extracts also considerably 
attenuated bacterial soft rot disease of different potato varieties [50]. Regardless of 
the mode of application (seed coating or soil inclusion), Canada milkvetch extract 
(MVE) effectively abated Verticillium dahlia-induced wilt by 55–84% in two potato 
cultivars – Kennebec and Russet Burbank compared to the control under growth 
room conditions. MVE also significantly reduced vascular discolouration and 
infection by 55% and 45%, respectively, in two potato cultivars in the first year of 
the field trial. In the second year, MVE reduced all wilt parameters by 19–31% while 
increasing yield by 18% on the cultivar Kennebec [76]. Soil drenching with aque-
ous leaf extracts of Hibiscus sabdariffa, Eucalyptus globulus, and Punica granatum 
substantially reduced the severity of bacterial wilt disease of potato relative to 
inoculated control under greenhouse and field conditions. While the reduction in 
disease severity under field conditions was similar (up to 63.23 to 68.39%) for all 
the three plant extracts, E. globulus leaf extract showed maximum abatement (94% 
reduction) of disease symptom development under greenhouse condition com-
pared to extracts of H. sabdariffa and P. granatum [77]. Fumigation of seed tubers 
of potato with Allium sativum – derived essential oils has been shown to manage 
stem cancer, silver scurf, dry rot, black scurf, and gangrene in small–scale farming 
systems [78, 79].

4.6 Cultural control

A well-known cultural method to manage the diseases of potato is crop rotation. 
This refers to cultivating economic plants in recurrent succession and a sequential 
fashion on the same piece of land [80]. Rotation using different cover crops and suit-
able fallow periods can contribute to the attenuation of multiple soil-borne pathogens 
and diseases and enhance the diversity of beneficial soil microflora [81]. Evidence is 
mounting to show the use of Brassica spp. like cabbage, broccoli, cabbage, kale, cauli-
flower, turnip, rapeseed, canola, radish, different mustards, and other related plants 
as rotation or green manure crops [82, 83]. These crops produce sulphur-containing 
glycosinolates degraded as part of a biofumigation process to generate isothiocyanates 
deleterious to several soil pathogens. Brassica spp. have been effectively used to abate 
populations of soil-borne fungal pathogens, nematodes, and weeds and promote 
crop yield and soil properties [82]. Other non-brassica crops like ryegrass have good 
suppression ability over soil-borne pathogens. In several rotation studies, rapeseed 
and canola crops prior to potato cultivation significantly attenuated (in the range of 
25–75%) soil-borne disease due to common scab and Rhizoctonia over many seasons 
to less successful rotations or no rotation [84, 85]. A field trial at a highly infested site 
with a powdery scab, ryegrass, rapeseed, canola, and Indian mustard grown as rota-
tion crops and green manure suppressed powdery scab in the subsequent potato crop 
15–40%. Additionally, rapeseed and canola abated black scurf by 70–80% compared to 
a standard oats rotation (Figure 1) [82].
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5. Methods for raising disease-free potato

Potato is affected by a wide range of fungal, viral, bacterial, and nematodal 
diseases [86]. These result in colossal yield loss annually. Therefore, it is impera-
tive to exploit strategies for raising disease-free potato to reduce losses caused by 
pathogens, thus ensuring food security.

Some of the strategies for raising disease-free potato are:

5.1 Conventional plant breeding

The breeding of potato is a huge task due to inherent genetic and biological 
factors. Breeding for increased resistance to Phytophthora infestans (causal agent of 
late blight) is one of the most critical targets in potato breeding [87]. Plant breeders 
incorporated resistance against early and late blight disease by crossing hybrid lines 
with wild species (S. brevidens and S. bulbocastanum), which exhibited resistance 
against fungal pathogens [88, 89]. Potato plants resistant to diseases have been 
produced using conventional plant breeding. However, this process is tedious, and it 
takes time to achieve success.

5.2 Induced resistance

Resistance in plants can be induced by applying exogenous substances, or 
agents including living and non-living agents. Resistance to both fungal and viral 
diseases has been reported in potato. Quintanilla and Brishammar [90] reported 
systemic induced resistance to late blight in potato by treating with salicylic acid 
and Phytophthora crptogea. In their study, the non-pathogenic fungus Phytophthora 
crptogea and salicylic acid were used as inducer agents. Nadia et al., [91] showed that 
chemicals under greenhouse and field conditions induced resistance against early and 
late blight diseases. The inducers used in this study were ascorbic acid, dichloro-iso-
nicotinic acid, ethylene diamine tetraacetic acid, and calcium chloride. Chemicals and 
fungicides (at low concentration) can induce resistance [92]; similar reports include 

Figure 1. 
Management strategies for potato diseases.
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Andreu et al., [93]. Several studies have reported using biological agents as inducers 
of resistance in potato [94–98] reported mycorrhiza-induced resistance in potato. 
Induced resistance against potato virus Y (PVYNTN) has also been achieved [99].

5.3 Genetic engineering approach

Genetic engineering has been used to raise-disease free transgenic potato plants. 
However, this technique requires specialised skill, sophisticated equipment, and tech-
nical know-how. However, the problem of acceptance and ethical issues may also arise.

Extreme resistance to late blight disease by transferring 3 R genes from wild 
relatives into African farmer-preferred potato varieties was reported by [100]. Three 
late blight resistance genes from wild potato species were transferred as a stack into 
the farmer-preferred varieties, Tigoni and Shangi. R gene expression analysis in 18 
transgenic events showed different transgenic events exhibiting different expression 
levels in the three genes. Engineering virus resistance using a modified potato gene 
has been reported by [101]. They reported that the transgenic expression of the pvrl2 
gene from pepper confers resistance to potato virus Y (PVY) in potato. The develop-
ment of late blight-resistant potato by cisgene stacking was studied by Jo et al., [102].

RNA interference (RNAi) is an emerging post-transcriptional technique that has 
been used to produce crops resistant to diseases. Production of potato lines resistant 
to P. infestans through the RNAi technique has been reported [103]. RNAi technol-
ogy can be directed to degrade the pathogen’s mRNA that enters the host cell or 
silence endogenous genes of the host cell that aid pathogenicity. RNAi’s mechanism 
of pathogen control is not dependent on producing a foreign protein that could be 
allergenic or toxic in the host plants. This makes this technology more acceptable 
than the typical transgenic approaches for disease control [104].

5.4 Plant tissue culture techniques

This technique can be used to produce disease-free pre-basic seeds. Disease-free 
pre-basic seed potato was produced through tissue culture in Nepal [105]. The use 
of disease-free seeds can help reduce the transmission of pathogens from propagat-
ing materials such as tuber to the field. It has been reported that quality seeds alone 
can increase yield by 15–20% in Bangladesh [106]. Therefore, micropropagation 
of potato can help reduce disease transmission through propagating materials; 
however, little has been achieved on the use of somatic embryos [107], and more 
researches are required for more remarkable breakthroughs in this regard.

5.5 New/advanced breeding techniques

Genome editing of potato using new technologies such as zinc-finger nucleases 
(ZFNs), transcription activator-like effector nucleases (TALENs), and clustered 
regularly interspaced palindromic repeats (CRISPR) associated nuclease 9 is currently 
been exploited. CRISPR/Cas9 has emerged as a breakthrough in gene editing; how-
ever, limited studies have been done on potatoes using this technique [108]. Genome 
editing using CRISPR/Cas9 has been used to engineer virus resistance in plants by tar-
geting host genes directly involved in host-viral interactions [109–113]. This technique 
has been used to knock out potato genes/factors like eukaryotic translation initiation 
factors (elf4E and isoform elf(iso) 4E that interact with viruses to assist viral infection 
[114]. Potato varieties resistant to viruses can be produced using this technique. Late 
blight resistance in potato has also been achieved using CRISPR/Cas9 genome editing. 
Functional knockouts of stDND1, StCHL1, and DMG400000582 (STDMR6–1) genes 
generated increased resistance against late blight in potato [115].
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Therefore, holistic and integrated approaches are required for raising disease-
free potato in order to overcome the ever-evolving phytopathogens and mitigate 
losses; including post-harvest losses caused by these pathogens, therefore ensuring 
food security.

6. Conclusions

This chapter discusses the host-pathogens association of different diseases in 
potato and their impact on yield. The findings highlight management strategies of 
these diseases: chemical control, biological control, microbial inoculants, microbial 
consortium, phytoextracts, and cultural control. In addition, current methods for 
raising disease-free potatoes to reduce annual yield loss were reported in detail. 
Based on the presented findings, annual yield loss (pre-and post-harvest) is still 
high. Thus, the management strategies alone are promising but combining the dif-
ferent methods and exploiting disease-free potato can translate into an integrated 
management approach of potato diseases.
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Chapter 12

Molecular Host-Nematode 
Interactions and Tuber 
Development
Refik Bozbuga and Selman Uluisik

Abstract

Potato, Solanum tuberosum, the most important non-grain food crop and essential 
crop globally, has been widely cultivated around the world for centuries. The signifi-
cance of this plant is increasing due to high nutritional value of the tubers combined 
with the simplicity of its propagation. As a plant organ, tuber of potato, is mainly 
edible part of it and popular as nutrient for almost all nations. Tuberization in potato 
is a very complex biological occurrence affected by numerous ecological signals, 
genetics, plant nutrition and several different hormones. Many pests including nema-
todes limit potato tuber development that plant hormones play roles in nematode 
feeding cell formation. Parasitic nematodes, important pests which cause damage 
to plants, tubers, suck up nutrients from plants and weaken plant development and 
yield losses. Many genes involve in tuber development and plant response nematodes. 
The aim of this chapter is to demonstrate the new advances in the field of molecular 
host-nematode interactions and tuber development.

Keywords: Nematode, gall, tuber, potato, molecular, gene, interactions

1. Introduction

Potato (Solanum tuberosum) is one of the first domesticated vegetables with 
cultivation over 6000 years. It is the fourth most important staple food crop pro-
duced worldwide with continuously growing production capacity up to 370 million 
tonnes/year [1]. Potato tuber is rich in health-promoting carotenoids, anthocya-
nins, and antioxidants such as polyphenols, essential minerals, and amino acids [2].

The production of potatoes has been expeditiously increasing in the last forty 
years, especially in industrialising countries. However, the average amount of pota-
toes produced in developing countries is only half that of developed countries. The 
reasons for this are that modern agriculture is quite different between both devel-
oped and developing countries, and only limited contributions have been observed 
on potato yields revealed by modern breeding strategies in developing countries [3]. 
Because of these reasons, novel genes associated with yield, such as those related 
to flowering, tolerance to a/biotic stress conditions, and enhanced postharvest 
quality attributes should be characterised and introgressed into cultivated potato 
genotypes. The advances in different omic platforms (transcriptomic, metabolomic, 
and proteomic) not only reduces the costs but also provides expanded knowledge 
about diversity in crop genomes. The datasets provide an excellent resource for 
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selecting new genetic resources (e.g., single nucleotide polymorphisms, SNPs 
arrays) for introducing agronomically important improved varieties. The better 
linkage maps, gene annotations and much easier deciphering the genes related to 
different quality parameters, such as tuberization have been provided by releasing 
of potato genome sequence [4]. For example, 185 clones that had previously been 
SNP genotyped by the Solanaceae Coordinated Agricultural Project (SolCAP) and 
detected 981 features which represent a mixture of metabolites, and hydrolysed 
fragments of abundant proteins were examined [5]. Therefore, with the help of 
new genetic technologies, the quicker screening of large populations which improve 
the identification of quality candidate traits and genes will be more accessible and 
chargeable [6].

Potato tuberisation (tuber formation) is a complex physiological phenomenon 
regulated by both exogenously (environmental factors) and endogenously (meta-
bolic pathways, hormones and genes) [7, 8]. Contrary to most plants that develop 
from roots, potato tuber originates from an underground specialised stem or sto-
lons, accumulates starch which results in enlargement in favourable conditions [9]. 
This complex development process can be examined in four stages in its simplest 
form, which are stolon initiation, enlargement of apical and subapical parts of the 
stolon, cell divisions and enlargement for tuber is triggered, and resource storage 
(starch accumulation) until tuber reaches its final mass [10]. The induction of 
tuberisation is favoured under conditions of long dark periods, cool temperatures, 
and low amount of nitrogen fertilisation, regulation of a graft-transmissible signal 
transported from leaves to stolon tips for tuber-inducing stimuli [11]. Initiation of 
tuberisation signalling and the transition from stolon to tuber is a very dynamic 
process at the molecular level. Identification of FLOWERING LOCUS T (FT)-like 
protein (StSP6A), CONSTANS (CO), POTATO HOMEOBOX 1 (POTH1), StBEL5 
transcription factor, and microRNA156 and-172 revealed the governing the tuber 
formation process in potato [12–15]. In stolon tips, before the onset of tuber initia-
tion, StBEL5/StKNOX complex coordinates hundreds of genes, including the genes 
involved in phytohormone synthesis [11]. Signalling and crosstalk of phytohor-
mones, abscisic acid (ABA), auxins, cytokinins (CKs), gibberellins (GAs), ethylene, 
and strigolactones (SLs), and other compounds, such as carbohydrates and organic 
acids are known to play important key roles in regulating the morphological events 
of tuber development [16].

Several biotic stress factors effect negatively on potato plants that plant parasitic 
nematodes which are among them cause significant damage to potato growth and 
tuber development.

2. Plant parasitic nematodes and host-plant interactions

Plant-parasitic nematodes are significant crop pests and cause billions of 
dollars around the globe [17]. Plant-parasitic nematodes (PPNs) have more than 
4,100 species in the world [18]. They infect many crops encompassing from the 
Solanaceae family to Fabaceae and Poaceae families [19]. Plant-parasitic nematodes 
may divide based on feeding behaviour as ectoparasites, semi-endoparasites, 
and endoparasites [19, 20]. Ectoparasites do not spend their life cycle within the 
plant. However, endoparasitic nematodes spend all their life cycle within plant 
hosts. Root-knot nematodes (RKNs) are best examples of endoparasitic nematodes 
that complete their life cycle within a plant after entering the root. The RKN 
(Meloidogyne species) and Globodera rostochiensis and Globodera pallida (cyst 
nematodes) are known as noteworthy sedentary endoparasitic nematodes. The 
RKNs cause a unique feeding structure termed feeding site by modification of cell 
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wall molecular architecture. The host cell differentiation occurs in plant tissues 
following the infection of RKNs [21, 22]. After entering the root, cyst nematodes 
move intercellularly, Meloidogyne species move between the cells within the plant 
roots and cause galls. RKNs and cyst nematodes secrete nematode effectors to 
manipulate plant defence mechanisms and manipulate the cell wall for increasing 
the nematode parasitism [23].

During the pathogen attack, plants recognise pathogens with different pathogen 
recognition systems such as pathogen-associated recognition systems (PAMP) and 
damage-associated molecular patterns (DAMPs) [19, 24].

Many plant-parasitic nematode (PPNs) species cause damage in potatoes and 
decrease the tuber quality. There are many nematodes species are found in potato 
plants: B. longicaudatus, H. pseudorobustus, H. galeatus, T. claytoni, Pratylenchus 
andinus, P. brachyurus, P. coffeae, P. crenatus, P. mediterraneus, P. minyus, P. neglec-
tus, P. penetrans, P. scribneri, P. thornei, P. vulnus, P. zeae, N. dorsalis, D. dipsaci, 
Paratrichodorus spp., Trichodorus spp., Belonolaimus longicaudatus, Helicotylenchus 
pseudorobustus, Hoplolaimus galeatus, Tylenchorhynchus claytoni, Rotylenchulus reni-
form, Radopholus similis, Meloidogyne acronea, M. arenaria, M. incognita, M. fallax, 
M. hapla, M. javanica and Xiphinema spp species [25]. Among those, some of them 
are major species: potato cyst nematodes (PCNs) Globodera rostochiensis and G. 
pallida, RKNs Meloidogyne spp., specifically M. chitwoodi, the root-lesion nematode 
Pratylenchus spp., Ditylenchus destructor, Nacobbus aberrans [25].

Among the plant-parasitic nematodes, RKNs are one of the most damaging 
nematode genera, particularly Meloidogyne chitwoodi, the most damaging species on 
tuber and decreases tuber quality (Figure 1). Therefore, this chapter mainly focuses 
on plant-root knot interactions.

Root-knot nematodes, which are found in the Meloidogyne genus, are economi-
cally significant PPNs in the world. They are obligate PPNs that cause damage to 
roots and tubers, resulting in a high amount of yield losses. This group of nema-
todes is mostly found in tropical and temperate zones around the globe. In addition 
to direct crop loss, RKNs have also quarantined organisms for many countries 
and need regulation [26]. There are many RKN species in the world. Meloidogyne 
chitwoodi is one of the most common and most damaging RKNs in potato areas 
among these species.

Figure 1. 
Symptoms of an RKN species, Meloidogyne chitwoodi, on potato tubers. M. chitwoodi Induced tuber 
deformations are shown (a). The nematode caused small swellings (pimple-like structures) on the tuber represent 
within circles (a). Damage caused from the nematode is seen when the potato tuber is peeled (b). Nematodes can 
be found in discoloured spots (indicated by arrow) in the potato tubers and feed there (b).
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Meloidogyne incognita, Meloidogyne arenaria, Meloidogyne luci and Meloidogyne 
javanica, are RKN species which are found in vegetable areas in Turkey [27]. Even 
Meloidogyne species has different races, for instance, M. incognita race 1, 2, 3,  
M. javanica race 3, and M. arenaria race1 and 3 [27]. Nematodes are densely found 
in many orchards where agriculture is carried out with cultivated plants belonging 
to the Solanaceae family, such as tomato, pepper, and eggplant [28]. M. javanica, 
Meloidogyne acronea, M. fallax, M. chitwoodi, M. incognita, M. hapla, M. arenaria 
are RKN species that cause damage to potatoes [25].

Potatoes are exposed to diseases and pests while growing. Nematodes that 
damage the tuber due to the propagation of potatoes by tubers constitute a serious 
problem in potato production. Nematode species such as potato cyst nematodes, 
RKNs (Meloidogyne spp.) are important potato pests [29]. Root-knot nematodes take 
the first place among plant-parasitic nematodes in terms of the level of economic 
damage they cause on plants [17].

In the second stage, juveniles and males of M. chitwoodi are thread-shaped, 
females are pear or lemon-shaped microscopic worms. The life cycle of  
M. chitwoodi takes place in approximately 3-4 weeks under favourable conditions. 
Although most reproduce parthenogenetically, sexual reproduction is also seen 
[30]. M. chitwoodi spends its first offspring on the potato roots, infects the tuber 
in the following generations, and develops there. A female can lay approximately 
1000 eggs. The number of offspring per year varies, depending on the host plant 
condition and environmental conditions, especially temperature. M. chitwoodi 
needs 600-800 days to complete the first generation and 500-600 days to complete 
the next generations [31]. M. chitwoodi may infect many plants, but potato and 
tomato are good hosts and economically important nematode causing damage 
on potato [32]. It causes many pimple-like structures on tubers, and it is added 
to the quarantine list in Europe to prevent the distribution within this continent 
[32]. Meloidogyne chitwoodi, feeding in potato plant tubers, may occur in the form 
of spots caused by the colours visible on the bottom when the tuber is peeled off, 
causing quality problems (Figure 1a). Many necrotic spots are seen on the fleshy 
parts of the potato tuber. Therefore, the tuber’s quality decreases, and it’s caused by 
the nematode (Figure 1b).

The second stage is the juvenile root-knot nematodes, an infective stage that is 
found in free form in the soil which enters the root tip [33]. Chemotactic genes may 
be involved in host-finding strategies, e.g., Meloidogyne incognita. Sucrose, glucose, 
arabinose, galactose, and mannitol are chemo-attractants of Meloidogyne incognita, 
and signal transduction may involve Mi-odr-1, Mi-odr-3, Mi-tax-4 and Mi-tax-
2genes [34–36]. Vanillic acid, lauric acid (signal transduction may require Mi-odr-1, 
Mi-odr-3, Mi-tax-2 and Mi-tax-4 genes) [34–37], arginine, lysine [34–36] and cal-
cium chloride [35, 38], Mi-odr-3, Mi-tax-2, Mi-tax-4 genes are chemotactic genes 
involve in Meloidogyne incognita and predicted functions are membrane-bound 
guanylyl cyclase that produces secondary messenger, α protein that regulates cyclic 
nucleotide metabolism, subunits of cyclic nucleotide-gated cation channel involved 
in G-protein-mediated signalling, respectively [35, 36]. Carbon dioxide (CO2) is an 
important attractant released by roots for RKNs [39], and lauric acid controls the 
chemotaxis of root-knot nematodes [37].

In the second stage, juveniles move between the cells (without damaging cells) 
and reach the feeding site [40]. Sugar transporter genes: Sugars Will Eventually be 
Exported Transporter (SWEET), vacuolar glucose transporter (VGT), tonoplast 
monosaccharide transporter (TMT), and sucrose transporter (SUT/SUC) genes 
may be involved during early infection of M. incognita [41]. The host gene expres-
sion is manipulated by RKNs [42]. Nematodes secrete several effectors to enable 
parasitism that macrophage migration inhibitory factors (MIFs) are among them 
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that MIF-like effector overwhelms the Arabidopsis immunity and enables  
M. incognita parasitism by cooperating with plant annexins [43]. Similarly, 
SlWRKY3 plays a role in plant resistance to Meloidogyne javanica by involving lipids 
and hormone activation [44]. Mi gene decreased ability for the nematode infection 
in tomato through the infection of M. incognita [45]. Meloidogyne incognita Profilin 3 
(MiPFN3) effector results in the actin cytoskeleton of Arabidopsis [46].

During the feeding, the nematode creates a feeding tube where it inserts the 
stylet to release nematode secretions of glands to manipulate plant resistance and 
create a feeding site [47]. Karyokinesis occurs without cytokinesis in nematode 
feeding sites termed giant cells in plant tissues [48]. Several nuclei are found in 
giant cells, and giant cells are much larger than normal cells. The thickness of giant 
cell walls in the vascular cylinder is much higher than the thickness of neighbour-
ing cell walls (CWs) induced by M. incognita. The thickness of giant cell walls may 
change depending on the host plant [49]. The thickness of giant CWs of Aduki bean 
is thicker than Arabidopsis and maize, and the giant cell walls are a minimum of 2.5 
times thicker than neighbouring cell walls [49].

3. Formation of galls and plant- nematode molecular interactions

Nematodes cause damage to plants by influencing the phytohormone structure 
and modify plant development to establish feeding sites in plants [50]. Plant hor-
mones such as auxin and cytokinin play an important role in forming a sedentary 
nematode (Cyst and RKN) feeding site [50]. Auxin, a plant hormone, is involved 
in the formation of galls after infection of RKN, Meloidogyne javanica in plant 
roots [51]. Auxin triggers the gall initiation; however, it is not needed for the later 
development of the galls [51]. Cytokinin and ethylene may be involved in plant 
gall formation processes [48]. Ethylene involves in RKN, Meloidogyne javanica, 
induced gall formation in tomato plants [52]. Some plant hormones (jasmonate 
acid and salicylate (SA)) are involved in plant defence; however, the nematode 
secretes chorismate mutase to decrease plant defence [50]. The increased level of 
Pathogenesis related 1 and Pathogenesis related 5 gene expressions are seen during 
the SA-induced M. incognita infection [53, 54]. Auxin performs a function in a cell 
division and development in host roots [55]. Auxin transport involves develop-
ing gall and expansion in the roots of Arabidopsis thaliana after the infection of 
M. incognita [56]. Modification of the auxin accumulation and distribution in 
the roots of plants is observed after infection of M. javanica [51]. Plant growth 
hormones, particularly cytokinin and auxin, play an important role in causing 
plant galls in pathogen-infected hosts [57].

Small RNAs are differentially expressed in the galls induced by Meloidogyne 
javanica in Arabidopsis [58]. Acting as vital mechanisms in gene expression, 
MicroRNAs are small non-coding RNAs, play an important role in plant nematode 
interactions. For example, miR159 and MYB33 play an essential role in establishing 
giant cells of Arabidopsis infected by RKN [59]. The specific gene expression pat-
terns appear in nematode induced galls caused by the RKN [60]. Root-knot nema-
todes and cyst nematodes (CNs) are significant plant parasitic nematode genera of 
PPNs [17]. They cause hypertrophied and multinucleate feeding cells in the host 
plant to allow nutrient flow, and they are metabolically active with many organ-
elles, dense cytoplasm, and modifying cell walls [49, 61, 62]. The second stage 
juveniles of RKNs choose few parenchyma cells and stimulate dedifferentiation 
into giant cells through succeeding mitosis deprived of cytokinesis [22, 63]. During 
the nematode infection, nematodes manipulate plant functions, plant defence, 
phytohormone [50], and cell wall modification [22]. Auxin and ethylene are 
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involved in the transfer cells (TCs) in initial nematode feeding cells of Arabidopsis 
[64]. Auxin and cytokinin are involved in expansion of phloem in nematode 
induced feeding sites [65]. The atypical transcription factor, DP-E2F-like 1 (DEL1), 
suppresses salicylic acid (SA) gathering in Meloidogyne incognita-induced galls and 
increased the level of lignification in galls are found in the roots of Arabidopsis 
thaliana [66].

Pattern-triggered immunity (PTI) responses involve camalexin and gluco-
sinolate biosynthesis that BAK1-dependent and -independent PTI are nematode 
recognition mechanisms in Arabidopsis [67]. Msp40 effector of RKN manipulates 
plant immunity to enable parasitism by suppressing PTI and/or ETI signals [68]. 
Nematode-associated molecular pattern (NAMP) plays an important role [69].

Microbes attaching to endoparasitic phytonematodes: PTI-responsive defence 
genes, particularly jasmonic acid-mediated PTI marker genes TFT1 and GRAS4.1, 
are up-regulated following microbe infections and M. hapla in suppressive soil, 
stimulating initial basal defences in plants by this way overwhelming nematode 
act in plant roots [70]. TIR-NB-LRR immune receptor DSC1 (DOMINANT 
SUPPRESSOR OF Camta 3 NUMBER 1) and TIR-NB-LRR-WRKY-MAPx protein 
WRKY19 adjust basal stages of immunity against M. incognita in Arabidopsis [71].

Nematodes may modify several plant hormones for successful parasitism. 
Furthermore, each defined hormone co-ordinately stimulates (IAA, CKs, ABA, 
and JA) or suppresses (GAs) the formation of tuberization. Numerous researches 
have reported the importance of the hormones and the genes to play key roles in 
the synthesis for tuberization. In this part of the chapter, recent studies will be 
discussed by bringing together the genes related to hormones that are involved in 
the formation of potato tubers.

4. Hormonal regulation of tuberisation

With respect to the involvement of hormones, gibberellic acid (GA) has been 
described as one of the most important regulators for tuber development [72, 73]. 
It is the required hormone for the elongation of stolon meristems during the initia-
tion of tuberisation [74]. Copalyl pyrophosphate synthase (CPS), ent-kaurene 
synthase (KS), ent-kaurene oxidase (KO), GA-20 oxidase (GA20ox), and GA-2 
oxidase (GA2ox) are described as the key enzymes involved in the synthesis of GAs. 
CPS is the first key enzyme of the gibberellin biosynthesis pathway, which can be 
stopped by mutating the CPS. However, there is no study that reveals the function-
ing mechanism of the CPS gene, its expression increases during potato elongation 
[75]. GA20ox and GA3ox catalyse the last two steps of active GA biosynthesis; the 
former is directly related to the photoperiod of short/long days [76]. Knocking 
down the expression of the potato GA20ox-1 gene, resulted in reduced stem elonga-
tion and increased tuberisation and yield of tubers [77]. While over-expression of 
StGA3ox2 slightly delayed tuberisation phenotype, down-regulation of it did not 
change the time point of tuber initiation with a smaller average tuber weight [78]. 
Higher expression of StGA2ox1 was observed during the early stages of potato tuber 
development, increased and decreased levels of the gene expression resulted in 
earlier and delayed tuberisation, respectively [79]. In a recent study, potato plants 
transformed with the AtGA20-oxidase or AtGA2-oxidase genes, the former pro-
motes biosynthesis of bioactive gibberellins (GAs) and the latter acting oppositely, 
respectively. While tuber formation was increased in plants transformed with 
AtGA2-oxidase, the potato productivity was reduced in plants transformed with 
AtGA20-oxidase, which promotes active GA synthesis [80]. Overall, GAs levels are 
quite high at the stolon tips of potato plants and go down intensely when the stolon 
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tip starts swelling and remains at a low-level during tuber formation [81]. These 
previous and recent studies confirm that GAs are the main tuberisation inhibitors.

Auxin is an exceptional plant hormone. It plays pronounced roles in many plant 
developmental processes, including tuber initiation, which is crosstalk with gib-
berellin and strigolactone. In other words, at the initiation of tuber development, 
the number of GA decreases, whereas that of auxin increases in the stolon subapical 
region which results in a swollen stolon [82]. The roles of auxin hormone in vari-
ous biosynthesis metabolisms have been explained in detail [83]. The amount of 
endogenous auxin positively correlated to tuber growth rate [84]. If it is zoomed at 
molecular studies, changes in the expression of auxin transport (PIN gene fam-
ily), auxin response factors (ARF), and Aux/IAA genes during the tuber initia-
tion have been shown [85, 86]. Auxin transcription factor6 (ARF6) decreased its 
expression several-fold during the transition from longitudinal to transverse cell 
division at swelling stolon tips [85]. In transgenic potato plants, tuber formation 
was stimulated by an additional auxin biosynthesis gene (tms1) under the control 
of the tuber-specific B33 promoter [80]. StARF1/2a expression was relatively high 
in stolons, which might have contributions to the swelling of stolons [87]. Indole-
3-acetic acid (IAA), one of the most abundant natural forms of auxin, was found 
extensively across the plants. The role of StIAA genes in tuber development was 
assessed, and 12 genes highly expressed in stolon organs and during the tuberisa-
tion stages. Therefore, Aux/IAA genes could be used as novel potential candidate 
genes to improve tuber development of potatoes. With the advent of bioinformatic 
analysis, it was observed that the gene regulatory network and tuberisation path-
way controlled by mobile RNAs (StBEL5 and POTH1) and proteins (StPTB1/6 and 
StSP6A) have appeared to be conserved among storage root crops like potato, carrot 
and radish. In this way, StBEL5 targeting genes involved in auxin biosynthesis was 
unveiled and may prove to be one of the key factors involved in the initiation of 
potato tuberisation [88]. The PIN genes have a central role in polar auxin transport 
and subsequently mediate the growth of different plant tissues, and 10 of PIN genes 
were identified in potatoes [73]. StPIN2 and StPIN4 genes are highly homologous 
with Arabidopsis thaliana PINs, displayed a role for auxin in tuber development 
[86]. Although it is insufficient to examine the auxin hormone alone, and the 
exact role of this hormone is still controversial, a moderate organ-specific increase 
in auxin level may be suggested as an encouraging approach for improvement of 
potato productivity by biotechnological methods.

Abscisic acid (ABA) is also well characterised and has been shown to have a 
supportive effect on tuber development when applied exogenously and to act 
antagonistically towards GAs, auxins and cytokinins [89]. However, the main role 
for ABA was determined as dormancy induction and maintenance by different 
working groups [90]. Genes encoding most enzymes of the ABA synthesis pathway 
have been identified and cloned from different species [91]. Over-expression of the 
ABA synthetic gene StNCED2 promotes tuber yield due to the increase of single 
potato tuber weight, not the tuber number. ABA signalling transcription factor 
(TF) StABF1 and GA metabolism gene StGA2ox1 were up-regulated while GA 
synthetic genes StGA3ox2, StGA20ox1, and GA signalling TF GAMYB were down-
regulated in stolon and tubers of over-expression lines, suggesting there might be 
a direct interaction between ABA and GA. Ectopic expression of Arabidopsis ABF4 
or ABF2 (ABRE-binding factor) proteins are transcription factors involved in ABA 
and stress signalling, which positively regulate potato tuber induction. Increasing 
of ABA also resulted in decreased expression of GA metabolism genes, which shows 
ABA-GA signalling crosstalk during tuberisation [92].

Among the phytohormones, it has long been known that cytokinins (CKs) func-
tion as universal regulators of storage-organ formation in plants. It was previously 
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shown that CKs have a stimulating effect on tuber formation [93, 94]. CKs are an 
agronomically and commercially important trait, as CK application before tuber 
formation can increase tuber yield [95]. However, although there are many effects 
of CKs on tuber development, tuber development regulated by CKs has not been 
fully elucidated at molecular level. The role of CKs for tuberisation is closely related 
to differential expression level of the genes, which can directly reflect the changes 
of related protein levels and metabolism regulation. Over-expression of AtCKX1 
from A. thaliana in soil-grown potato (Solanum tuberosum L.) displayed a severely 
altered phenotype, including reduced tuber yield and morphology. AtCKX1-over-
expression negatively affected tuber number and tuber size per plant, proving that 
cytokinin deficiency had significant effects on tuber induction and tuber  initiation/
growth [96]. In another study, introducing of the ipt gene related to bacterial 
cytokinin biosynthesis, under control of a chalcone synthase promoter (PCHS) 
generated potato plants with more tubers but reduced tuber weight and nitrogen 
content [97].

Strigolactones (SLs), carotenoid-derived plant metabolites, have emerged as an 
important new plant hormone, making it more attractive than other endogenous 
plant hormones. They mainly regulate various aspects of plant architecture, includ-
ing the inhibition of shoot branching [98]. Because SLs is a new hormone class, 
knowledge about SLs related genes in tuberisation and their regulation is much 
less compared to other hormones. Transgenic potato plants generated by down-
regulating CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the 
SL biosynthetic pathway, resulted in changes in potato tuber morphology [99]. 
Therefore, interestingly, stolons of the StCCD8 RNAi lines tend to emerge from the 
soil and form aerial shoots. The transgenic lines also provided a higher number of 
tubers but smaller in size. As it has just been mentioned, SLs is quite a new plant 
hormone. Therefore, more genes on the SLs synthesis pathway should be function-
ally characterised in potato tuber development.

5. Postharvest

Potato tubers are generally consumed fresh, but they can also be consumed 
throughout the year. Therefore, it might be necessary to store them under favour-
able conditions for an extended period like from one growing season to another 
one. After the potato has completed its maturation process, they transit to the 
dormancy period, in which reserves of starch and protein are kept for future 
sprouts [100]. A major commercial issue is dormancy breakage following sprouting, 
resulting in quality losses and reduced tuber marketability. CIPC ([isopropyl-N-
(3-chlorophenyl) carbamate) is particularly important as a sprout suppressant for 
potatoes during storage. However, CIPC has been proven not to be safe for humans 
and the environment in recent years [101]. Therefore, alternate sprout suppressant 
approaches, for example constant ethylene supplement, could be used to suppress 
post-harvest sprouting [102]. Storing potato tubers which were treated with/
without ethylene binding inhibitor 1-methylcyclopropene (1-MCP at 1 μL L − 1 
for 24 h), in air or air enhanced with constant ethylene (10 μL L − 1) [103], 
revealed extended ecodormancy in the potato samples treated with grouping of 
ethylene plus 1-MCP, while the inhibited sprout elongation in exogenous ethylene 
treated samples. Moreover, at the molecular level, continuous ethylene application 
activated two genes coding 1-aminocyclopropane-1-carboxylate oxidase (ACO) 
and parenchymatic ABA catabolism via CYP707A, encoding ABA 8ˊhydroxylase 
upregulation. Consequently, this novel study provided information on how exog-
enous ethylene and/or 1-MCP elicited their results on the tuber quality of potato. 
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Another technology that can be used instead of CIPC is in order to grow new potato 
cultivars with reduced rate of sprout development and/or a long dormancy period. 
For example, down- and up-regulation of StCEN accompanying to an enhanced 
and decreased of sprout development than controls, respectively [103, 104], showed 
that there is no link between exogenous ethylene and StCEN expression. This result 
supports [104] as endogenous ethylene production from transgenic StCEN tubers, 
generally, is not meaningfully dissimilar from controls. The dormancy period of 
tubers is regulated by both internal/external factors and plant hormones, genetic 
factors, post-harvest storage conditions, and particular signalling molecules, such 
as nitric oxide (NO) and gibberellins [105, 106]. Although there are many studies 
specific to the mentioned factors, this part will try to concentrate on main molecu-
lar studies related to the post-harvest condition of potato tuber.

The plant cell wall composed of mainly pectin, is a complex and dynamic 
network of polysaccharides. Cell wall compositions function in plant development, 
stress responses, shelf life and plant growth. Basically, the primary cell wall (CW) 
consists of cellulosic (1,4-β-D-glucan), hemicellulosic polysaccharides for example 
xyloglucan (XG), and pectic polysaccharides for example homogalacturonan (HG) 
and rhamnogalacturonans I-II, which are all explained very well in different studies 
[107]. The recent vision of the plant cell wall (PCW) suggests that the relationship 
of cellulose–pectin is more extensive and makes more important contributions 
to wall biomechanical properties than was previously thought [108]. The CWs 
of tuber tissues are constitute of cellulose and hemicellulose which hold together 
a large amount of pectic polysaccharides [109]. The texture of plant products is 
highly affected by the cell wall structure, and modifications of this part of the cell 
are the biggest contributors to texture. Generally, during fruit maturation, enzyme 
activities of hemicelluloses (HCL), celluloses (Cel), β-galactosidases (β-Gal), 
polygalacturonase (PG) and increase to lessen the intercellular associations and 
accomplish cell seperation, ensuing in modifications in fruit roughness and soften-
ing [110, 111]. Potato tuber texture is one of the most important quality character-
istics of cooked potato and an obviously dominant trait that influences consumer 
preference, as mainly affecting the taste, aroma, and mouthfeel of the storage roots 
in potato [112]. Two types of potatoes that differ in terms of texture represented an 
extreme variant in textural properties. The expression levels of the genes encoding 
two important cell wall degrading enzymes, pectin acetylesterase and xyloglucan 
endotransglycosylase, were significantly higher in Phureja, an accession that 
greatly reduced cooking time compared to Tuberosum accession [113]. In another 
recent study, the correlation between the texture of cooked potato and β-amylase 
activity shows the negative correlation between the enzyme activity and firmness 
in cooked sweet potato [114].

Moreover, various studies have been conducted to elucidate the cell wall 
mechanism and texture changes in potato tuber. For example, two potato varieties 
showing significant differences in texture (Yushu No 10 with soft texture, Mianfen 
No 1 with firm texture) have been recently characterised in terms of the cell wall 
composition content and cell wall-related enzyme activities [60]. The ‘Yushu No 10′ 
have more than twice soluble pectin content than ‘Mianfen No 1′, but the unsolvable 
pectin ingredient was lower than that of ‘Mianfen No 1′. It has been an important 
correlation of gumminess and chewiness between hemicellulose activity of ‘Yushu 
No 10’, and ‘Mianfen No 1′ having an unimportant correlation with Cel, PG, HCL, 
and β-Gal enzymes [115].

Potato is a highly heterozygous crop. Therefore, genetic advance of this crop 
using conventional breeding is labour-intensive and time-consuming work. For 
this reason, genetic engineering offers an opportunity to progress a limited genetic 
gain whilst retaining the well-known advantages of traditional varieties. The 
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genetically modified potatoes show developments in quality traits that benefit 
farmers [116], consumers [117], and for the land in terms of sustainability [118]. 
In recent years, with the increasingly aggravated global warming conditions, the 
research concentrated more on generation potato crops tolerant against extreme 
conditions such as salinity and drought [119]. However, due to the concept of this 
chapter, we try to cover the transgenic studies using cell wall related enzymes. 
Transgenic potato made by the introduction of the gene encoding rhamnogalactu-
ronan lyase (RGL) from Aspergillus aculeatus had a surface with a wrinkled appear-
ance [120]. The expression of a β-galactosidase (β-Gal) gene from Cicer arietinum 
introduced into the potato and resulted in the removal of the galactan side chains 
from RG-I [121]. In a more recent study, genes encoding β-Gal or RG-I lyase were 
introduced to wild-type potato Karnico. The mutant lines of β-Gal contained 54% 
less galactose, representing shorter galactan side chains. Over-expression RG-I 
lyase potato lines contained more galacturonic acid and less galactose, which 
was due to the removal of galactan-rich RG-I branches [122]. Over-expression of 
endo-1,5-α-arabinanase of A. aculeatus caused no modified phenotype comparison 
the wild type but reduced galactan sidechains of RGI and increased the number of 
uronic acids [123].

High-throughput RNA sequencing (RNA-Seq) is a powerful tool for revelaing 
the variability of gene expression levels between different samples. An RNA-Seq 
was performed to investigate the potato tuber dormancy release process, and 5912 
and 3885 DEGs (differentially expressed genes) from dormancy tuber (DT) vs. 
dormancy release tuber (DRT) and DRT vs. sprouting tuber (ST), respectively 
[124]. In another study carried out by iTRAQ labelling strategy, a total of 1752 
proteins associated with tuber dormancy release in DT, DRT, and ST were identi-
fied. lncRNAs generally have structural features of mRNA, with exceptional 
roles in DNA methylation, histone modification, chromatin remodelling, and 
other biological processes. Moreover, lncRNAs regulated the expression of target 
genes by interacting with DNA, RNA, and proteins [125]. In a recent study, 235 
potato miRNAs out of 386 lncRNAs differentially expressed during sprouting 
were identified as putative targets. The results provided lncRNAs were involved 
in the potato tuber sprouting process and identified their possible functions in 
dormancy and sprouting [126]. Based on these results, it can be said that tuber 
dormancy release is a complex process, and the genes upregulated during this 
period suggest the activation of multiple mechanisms enabling the tuber dor-
mancy release.

Enzymatic browning is a serious problem for both producers and the industry as 
the tubers can be affected during storage and distribution. This problem is usually 
overcomed by applying chemical and/or physical agents or storing the potato in 
controlled storage conditions [127]. However, keeping harvested potato tubers at 
low temperatures causes physiological changes, such as photosynthetic capacity, 
electrolyte leakage, and respiration rates [128]. Transcriptomic and proteomic 
analysis were carried out in potato tubers stored at 15°C, 4°C, and 0°C to examine 
the mechanism of cold responses during post-harvest storage. The results showed 
that sugar accumulation increased at low temperatures.

Moreover, fifteen heat shock proteins (Hsps) were upregulated by low tem-
peratures, which may act to prevent damage from cold stress [129]. Application of 
the CRISPR/Cas9 to induce mutations in the StPPO2 gene in the tetraploid variety 
‘Desiree’ reduced up to 69% in tuber PPO (Polyphenol oxidase) activity and 73% 
in enzymatic browning in transgenic lines compared to control [130]. This result 
demonstrated that the CRISPR/Cas9 system has been successfully used to generate 
new potato varieties that reduce enzymatic browning through specific regulation of 
a single member of the StPPO gene family.
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6. Conclusion

Plant hormones are involved in the gall formation and tuber development of 
potato plants. Numerous nematode species infects potato and cause an adverse 
effect on plant development and crop quality. Specifically, CNs (Globodera rosto-
chiensis and G. pallida) and RKNs (Meloidogyne chitwoodi) cause severe damage to 
potato plants and RKNs cause gall formations in the roots of plants. The gall forma-
tion has not been fully understood yet. M. chitwoodi causes damage to tubers, too. 
In addition to direct damage of these nematodes, some nematode species, such as 
root-knot nematodes, are also quarantined organisms that cause restriction of trade. 
For this reason, they are extremely important organisms for potato production due 
to causing crop losses. Many genes are involved in nematode parasitism and plant 
defence mechanism. Plant-parasitic nematodes cause damage in potato tuber by 
manipulating plant hormones to create feeding sites in potatoes. Understanding 
the molecular mechanisms of plant nematode interactions (gall formation) and 
molecular mechanism of tuber development may share some similarities, leading 
to the researcher creating better potato crops against biotic stress as a future aspect. 
In this way, using improved pest management strategies and new insights in genetic 
breeding against nematode may lead to producing healthier crops and high-quality 
tubers using new molecular and genetic methods.

To improve future potato tuber quality, it should be worked with industry and 
academic groups to meet producer and consumer preferences. With molecular 
and improved phenotyping techniques, knowledge about the mechanisms affect-
ing potato tuber development, texture and post-harvest storage conditions will 
be increased for potato tuber quality. Furthermore, this combined information 
will profit the improvement of new cultivars by enlarging sustainable agricultural 
practices and storing approaches. Therefore, the combination of novel molecular 
techniques (gene-editing technologies) and pre/post-harvest applications will help 
the improvement, protection and viability of upcoming tuber quality.
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Transfer in Potato (Solanum 
tuberosum L.)
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Abstract

Potato (Solanum tuberosum L.) is one of the major crops of the world. Significant 
improvements can be achieved in terms of yield and quality by the determination of 
efficient transformation methods. On the other hand, low transformation fre-
quency seriously limits the application of molecular techniques in obtaining trans-
genic crops. In the present study, the effect of gamma radiation on Agrobacterium 
tumefaciens-mediated transformation to the potato was firstly investigated. Sterile 
seedlings of potato cv. ‘Marabel’, which was grown on Gamborg’s B5 medium in 
Magenta vessels, were irradiated with different gamma radiation doses (0-control, 
40, 80, 120 Gy 60Co). Stem parts having axillary meristems were excised from 
irradiated seedlings and inoculated by A. tumefaciens (GV2260), which harbors 
the binary plasmid p35S GUS-INT contains and GUS (β-glucuronidase) gene 
controlled by 35S promoter (CaMV) and nptII (neomycin phosphotransferase II) 
gene driven by NOS (nopaline synthase) promoter). Inoculated stem parts having 
axillary meristems explants were then directly transported to a selection medium 
containing duocid (500 mg l−1), and kanamycin (100 mg l−1), 4 mg l−1 gibberellic 
acid, 1 mg l−1 BAP and 0.1 mg l−1 NAA. The adult transgenic plants were detected by 
polymerase chain reaction (PCR) analysis. According to the number of transgenic 
plants determined by PCR analysis, results obtained from explants treated with 
40 Gy gamma gave the best results compared to the control (0 Gy) application. The 
doses over 40 Gy were also found statistically significant compared to the control 
(0 Gy). It is expected that the protocol described in this study make the transforma-
tion studies easier by skipping the stages of ‘co-cultivation’, ‘culturing explants on 
selection medium’ and ‘recovery of transgenic shoots on selection medium’ not only 
for potato but also for other crop plants. This study was supported by a grant from 
the Scientific and Technological Research Council of Turkey (TUBİTAK) (Grant 
number 113O280 to Prof. Dr. Mustafa YILDIZ).

Keywords: transformation efficiency, gamma radiation, potato, A. tumefaciens
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1. Introduction

Genetic transformation technologies developed with recombinant DNA technol-
ogy and in vitro regeneration methods are successfully used to overcome the species 
differences and taxonomic obstacles encountered in traditional breeding programs.

Agrobacterium-mediated transformation method is the most proficient and com-
monly used plant transformation method among different gene transfer techniques. 
However, there are a number of variables that affect the success of Agrobacterium-
mediated genetic transformation [1]. The success of genetic transfer efficiency 
with A. tumefaciens depends on, Agrobacterium strain used, bacteria concentration, 
antibiotic types and concentration used for in vitro selection, inoculation time, 
and temperature [2]. Besides, the type of the target plant, plant explants, hormone 
combinations used in in vitro regeneration, pH, etc., are among the factors affecting 
the recovery of transgenic plants [3]. Increasing the transformation efficiency by 
reducing the limiting factors in genetic transformation studies will significantly 
contribute to the success rate [4].

Gamma radiation treatments are innovative biotechnological interventions used to 
increase yield and quality. Gamma radiation technique is successfully applied in plant 
breeding programs to increase genetic diversity and biotic/abiotic stress tolerance [5]. 
With the use of this method, thousands of mutant varieties have been obtained from 
approximately 200 plant species [6]. Gamma radiation is considered a physical muta-
gen that has significant effects on cytological, biochemical, molecular, physiological 
and morphological processes in plants [7–9]. The biological effect of gamma radiation 
is due to its interaction with atoms and water molecules in the cell [10]. As a result of 
the interaction of gamma rays with atoms, free radicals are produced at the cellular 
level. These radicals affect physiological and metabolic activities in plants [11].

Low doses of gamma have positive effects on cell proliferation; cell and tissue 
growth, germination percentage, enzyme activity, chlorophyll content, biotic and 
abiotic stress tolerance and crop yield [12–15]. On the other hand, high doses of 
gamma particles cause damage to protein synthesis, enzyme activity hormone bal-
ance, water exchange and leaf gas exchange [16].

The adverse effects of gamma rays are divided into two as direct and indirect. 
While its direct impact is realized by the interaction between radiation and target 
living molecules, its indirect effect arises from the formation of free radicals [17]. 
These free radicals are called radiation hormones and inhibit the growth of the 
plant [18]. Besides, the effect of gamma-ray on the plant depends on the source 
and dose of gamma radiation, exposure time, target plant species and variety, plant 
tissue and the plant’s growth period [19].

New approaches are needed to increase the low success rate in genetic trans-
formation studies. The positive effect of a reduced dose of gamma radiation on 
genetic transformation efficiency has been investigated in a few studies [4, 20]. 
Determining the effect of gamma radiation on genetic transformation frequency 
in different plant species will contribute to genetic transformation and molecular 
assisted cultivar development studies. This study was aimed to determine the effect 
of gamma radiation to increase the genetic transformation frequency in potato and 
to create a repeatable successful protocol.

2. Materials and methods

2.1 Plant material

Potato (S. tuberosum L.) tubers of cv. ‘Marabel’ were used in the study.
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2.2 Explant material

Stem parts having axillary meristems isolated from irradiated sterile seedlings 
were used as explant (Figure 1).

2.3 Radiation source

0.8 kGy h−1 of 60Co γ ray source at the Sarayköy Nuclear Research and Training 
Center, Turkish Atomic Energy Authority, Sarayköy, Ankara.

2.4 A. tumefaciens strain

The GV2260 including p35S GUS-INT plasmid of A. tumefaciens strain was 
utilized for inoculation. The characteristic of p35S GUS-INT binary plasmid 
described Yildiz et al. [20]. GV2260 strain (OD = 0.6) was incubated overnight in 
a liquid medium (Nutrient Broth) including rifampicin (50 mg l−1) and kanamycin 
(50 mg l−1) in an incubator (rotary shaker) at 180 rpm under 28°C and used for 
transformation studies.

2.5 Irradiation of seedlings

One-month-old sterile seedlings were irradiated with different doses (0-control, 
40, 80 and 120 Gy) of 60Co γ source. Fricke and alanine dosimeters were used for 
dose mapping and determination of dose rates of gamma source. Seedlings were 
irradiated along with a dosimeter for each dose to be sure that ionization was 
uniform.

2.6 Culture conditions

Seedlings were grown on the Gamborg’s B5 medium containing the mineral salts 
and vitamins, sucrose (3%, w/v) and agar (0.7%, w/v). The pH of the medium was 
adjusted to 5.8 before autoclaving. All cultures were grown at 25 ± 1°C under cool 
white fluorescent light (27 μmol m−2 s−1) with a 16/8 h day/night photoperiod in the 
growth chamber.

2.7 Transformation procedure

A. tumefaciens GV2260 carrying p35S GUS-INT plasmid was incubated 
overnight and diluted with a liquid medium to 1X108 cell/ml. Stem parts having 

Figure 1. 
Stem parts having axillary meristems excised from irradiated sterile seedlings.
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axillary meristems excised from irradiated sterile seedlings were inoculated in 
a liquid regeneration medium containing 4 mg l−1 gibberellic acid, 1 mg l−1 BAP 
and 0.1 mg l−1 NAA for 20 min. After inoculation, stem parts having axillary 
meristems were directly transferred to selection medium bypassing co-culture 
stage in Magenta vessels containing 4 mg l−1 gibberellic acid, 1 mg l−1 BAP and 
0.1 mg l−1 NAA, supplemented with 100 mg l−1 kanamycin and 500 mg l−1 duocid 
for 2 weeks.

2.8 Recovery of putative transgenic plants

Seedlings were planted to pots having commercial soil in a growth chamber 
for 3 weeks where temperature (24 ± 1°C), light (27 μmol m−2 s−1) and humid-
ity were controlled. To keep the humidity high, the pots were covered with a 
thin nylon transparent bag and placed in the growth chamber. The humidity 
was gradually reduced by making small holes in the bags every 2-3 days. After 
10 days, the bags were completely removed. By this way, humidity was reduced 
gradually from 100–40%. Candidate transgenic plants were irrigated with 50 ml 
water including kanamycin (100 mg l−1) at 2 day-intervals during 14 days for 
further selection.

2.9 gDNA (genomic DNA) extraction

The gDNA was extracted from fresh leaves of putative transgenic plants and 
from control (non-transformed) plants with slight modification of the protocol 
described by [21].

2.10 Polymerase chain reaction (PCR)

PCR amplification was performed to detect the npt-II gene with the follow-
ing designed specific primer sets Forward: 5′-TTGCTCCTGCCGAGAAAG-3′ 
and Reverse: 5′-GAAGGCGATAGAAGGCGA-3′. PCR amplification of the 
chromosomal virulence gene (chv) was carried with the following primer 
sets Forward: 5′-CGAACCGCTGTTCGGCCTGTGG-3′ and Reverse: 
5′-GTTCAGGAGGCCGGCATCCTGG-3′ for determine of A. tumefaciens contami-
nation in putative transgenic plants.

The PCR was conducted in 2 μL containing 100 ng of DNA, 10 pmol of each 
forward and reverse primers, 0.25 μM dNTP, 2 mM MgCl2, 1× PCR buffer, and 
0.625 U of DreamTaq DNA polymerase enzyme (Thermo Scientific, Waltham, 
Massachusetts, USA). The PCR was run with an initial denaturation of the DNA 
template at 95°C for 5 min followed by 36 cycles, each consisting of 95°C for 
1 min, 58°C for 1 min and 72°C for 1 min, and final extension at 72°C for 5 min in 
a Prime G Gradient Thermal Cycler (Techne, Staffordshire, UK). Amplified PCR 
products were electrophoresed on a 1% agarose in TAE (tris-acetate EDTA) buffer. 
The bands were stained with ethidium bromide staining and visualized with 
UV light.

2.11 Observations

Number of explants cultured on selection medium, number of plants grow-
ing on selection medium, number of putative transgenic plants transferred to 
soil, number of PCR positive (+) plants, number of PCR (+) plants after chv gene 
analysis and transformation efficiency were determined.
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2.12 Statistical analysis

Five replicates of rooted plants in the pots were tested and considered the units 
of replication. One-way Analysis of Variance (ANOVA) was used to test the effect of 
gamma radiation on gene transformation efficiency. All experiments were repeated 
two times. Data were statistically analyzed by “IBM SPSS Statistics 22” computer 
program. Duncan’s multiple range test was used to compare the means [22].

3. Results and discussion

Results of gene transformation to stem parts having axillary meristems of 
irradiated seedlings were given in Table 1. In the current study, inoculation was 
performed to 30 stem parts having axillary meristems at each of the gamma doses 
(0-control, 40, 80 and 120 Gy). Only 14 plants were grown in control treatment 
where gamma radiation was not applied. As the result of PCR analysis, band of npt-
II gene was detected in only 5 putative transgenic plants. However, after chv gene 
analysis, it was determined that none of 5 putative transgenic plants was real trans-
genic which meant band of npt-II gene detected in 5 putative transgenic plants came 
from bacteria being on the plants in control treatment. In all gamma treatments, 
increases were observed in the number of plants growing on selection medium. In 
all the parameters examined, the highest values were recorded in plants grown from 
stem parts having axillary meristems to which 40 Gy gamma dose was applied. At 
40 Gy gamma dose, 28 out of 30 inoculated stem parts having axillary meristems of 
irradiated seedlings were successfully grown in soil. Thirty three out of 28 putative 
transgenic plants were found PCR(+) (Table 1, Figure 2). The presence of chv gene 
was checked in 33 putative transgenic plants, and consequently, 28 plants were 
confirmed as real transgenic without bacterial contamination. Transformation 
efficiency was calculated as 100% (Table 1, Figure 3).

Results showed positive effects of gamma radiation on transformation at 40 Gy 
as compared to control. Higher gamma doses over 40 Gy, transformation hindered 
significantly. PCR analysis confirmed that 28 plants out of 33 were transgenic at 
40 Gy gamma treatment (Table 1).

A. tumefaciens, a plant pathogen, is commonly used as a vector for genetic 
transformation to plants [23, 24]. The genetic transformation prosperity of A. tume-
faciens method is limited in plant species largely, because the mechanism of plant’s 
resistance will be active when pathogen attacks. That is why, genetic manipulations 
of the plant, physical conditions and bacteria have been applied to increase the 
virulence of bacteria and to increase the transformation efficiency [25, 26].

Before inoculation, pre-culturing explants [25, 27], alteration of temperature 
[25, 28] and medium pH [28, 29], addition chemicals to inoculation medium such 
as acetosyringone [25, 26, 28, 30–32], altering bacterial density and co-cultivation 
time [27, 29, 31] and vacuum infiltration [33–35] have been reported to increase 
transformation.

Possible molecular effects of gamma radiation in plants include activations of 
RNA and protein synthesis, acceleration of cell division, and direct or indirect 
activation of genes [36, 37]. Ionizing radiation causes a single strand break and 
replication inhibition at high doses, while at low doses it causes only minor rep-
lication blockade [38]. Gamma radiation cause chromosome strand breaks and 
consequently integration of genes transferred from extracellular to DNA. Köhler et 
al. [39] reported an increase in the frequency of transgenic plants regenerated from 
protoplasts exposed to gamma radiation. It has been reported that this occurred as a 
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result of the increased recombination mechanism in the irradiated cells, resulting in 
an increased number of transformed colonies with high integration rates. Similarly, 
in our study, the positive effect of low dose gamma dose on potato transformation 
efficiency was determined. Another possible effect of gamma radiation on genetic 
transformation efficiency may be related to the process of radiation of the target 
plant. It was reported that protoplast radiation one hour before transformation 
increased the success rate, whereas radiation performed one hour after transfor-
mation had no effect on the transformation efficiency [39]. In our study, gamma 
irradiation was applied before the gene transfer stage. The results obtained from our 
study coincide with the results stated above.

From the results of the current study, in the gene transformation to potato 
stem parts having axillary meristems by A. tumefaciens, it was observed that 40 Gy 

Figure 2. 
PCR analysis of genomic DNA of putative transgenic plants grown from stem parts having axillary meristems 
of irradiated seedlings for the amplification of npt-II gene. L-DNA ladder, + positive control, − negative 
control. a. 0 Gy, b. 40 Gy, c. 80 Gy, d. 120 Gy.
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gamma dose significantly increased the transgenic plant frequency compared 
to control in which no gamma was used. To our knowledge, this was the first 
study revealing gene transformation to stem parts having axillary meristems via 
A. tumefaciens in potato.

Figure 3. 
PCR analysis of genomic DNA of putative transgenic plants grown from stem parts having axillary meristems 
of irradiated seedlings for the amplification of chv gene. L-DNA ladder, + positive control, − negative control. 
a. 40 Gy, b. 80 Gy, c. 120 Gy.
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Chapter 14

Biotechnological Strategies for a 
Resilient Potato Crop
Elena Rakosy-Tican and Imola Molnar

Abstract

The aim of this chapter is to describe in a synthetic manner the most efficient 
biotechnological techniques which can be applied in potato breeding with emphasis 
on multiple resistance traits. To this end, most important results of all biotech-
nological techniques will be pointed out including new biotechnological tools of 
genome editing. The somatic hybridization will be the core of the presentation as 
the only non-GMO strategy with good results in transferring multiple resistances 
into potato gene pool. The chapter is presenting all data in a synthesized form and 
made comparisons between the existing techniques and their possible adoption in 
breeding in different parts of the world, depending on regulations and consumer 
choice. Moreover, the recently discovered value of potato as a healthy food and its 
possible applications in cancer treatment will be also discussed with new data on 
both potato and some of its wild relatives.

Keywords: advantages, genetic transformation, multiple resistance traits,  
new biotechnological techniques, potato breeding, somatic hybridization

1. Introduction

As a major food staple, the potato is contributing to the UN Millennium 
Development Goals of food security and poverty eradication. Today, potato is 
the most widly grown non-cereal crop [1] and important vegetable for human 
consumption [2]. The wide climatic adaptability and short growing time of potato 
facilitated its spread across diverse geographical regions. To date more than three 
thousand potato cultivars are cultivated in 165 countries with a production exceed-
ing 350 million tonnes per year, particularly under temperate, subtropical and 
tropical regions, covering a major economic share in the global agricultural market 
[2]. For the last two decades, potato cultivation and utilization have also been 
notably increased in developing countries such as China, India and Bangladesh [3]. 
Although, classical breeding has developed thousands of new cultivars, potato is 
still sensitive to countless diseases and pests, which lead to 44.9% yield losses in 
every year [4]. Diseases such as late blight produced by the oomycete Phytophthora 
infestans (Pi), viruses like potato virus Y (PVY) and pests as Colorado potato beetle 
(CPB) are able to completely destroy a potato field if left uncontrolled. Even today 
the main way to combat diseases and pests is massive application of pesticides. 
Pesticides increase pollution of the environment, are toxic for non-target organisms 
including humans and exert selection pressure on the diseases and pests, which 
develop resistance. New sustainable and effective ways to combat diseases and pests 
of potato are required and biotechnological approaches have been lately developed 
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also to address this challenging issue (Figure 1). Moreover, climate change has 
challenged potato production worldwide in the last decades and new strategies to 
develop resilient potato to drought, high temperature, salt and other abiotic stresses 
or multiple stresses are an urgent need for potato cultivation. To achieve these goals, 
both classical breeding and biotechnology are aware of the resources of resistance 
genes in the crop wild relatives, as for example the project of International Potato 
Centre (CIP). There are published several books and reviews dealing with potato 
biotechnology and breeding [1, 2, 5, 6], but in this chapter we are going to over-
view, synthetize and point out those techniques that are included in potato genetic 
improvement for a resilient potato crop in order to develop a sustainable agriculture 
and reduce poverty.

2. Genetic engineering sustainability for a resilient potato crop

Modern biotechnology is defined as the technology which use living cells, micro-
organisms, or functional parts, such as enzymes, proteins, DNA or RNA molecules 
to develop basic research and deploy new useful products [7]. Genetic engineering, 
as part of plant biotechnology, covers techniques which change the genome of 
plants. In its larger sense, plant genetic engineering includes: (i) somaclonal varia-
tion, (ii) cell fusion and regeneration of somatic hybrid plants, (iii) gene transfer 
and (iv) genome editing. Since somaclonal variation has already been presented 
in detail and its results are currently not widely used in potato breeding [8], in this 
chapter we are presenting the other genetic engineering techniques and obtained 
results in developing resilient potato crop. Potato crop requires considerable inputs 
of: nutrients, pesticides, and water to maintain yield, tuber quality, and protection 

Figure 1. 
Overview of classical breeding tools, as well as biotechnology and their applications for improving crops in 
general and potato resilience, in particular.
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from its pathogens, pests and extreme climate conditions. Genetic variations for 
the most important traits is low in commercial cultivars, but related wild relatives 
contain many unique, valuable traits missing from cultivars, which represent a rich 
genetic source for potato improvement [9]. Potato breeding efforts have historically 
focused primarily on yield, fresh market and processing quality, storability as well 
as disease resistance. Only after developing genetic transformation and/or other 
biotechnological approaches, a faster transfer of valuable traits like quality of tuber 
composition and resistance to biotic and abiotic stresses became possible. Moreover, 
with using classical breeding one new cultivar can be produced in 10 to 15 years 
from the initial cross to cultivar release, while with biotechnology, particularly gene 
transfer, shorter time is required, from some months (6–12 months) to a few years, 
ignoring the long regulatory clearances [6]. There are many attempts and results 
on the transfer and integration of economically important genes in potato crop and 
some previous reviews have presented the state of art in plants or in this tuberous 
crop [6, 8, 10].

2.1 Gene transfer to develop resilient potato to biotic and abiotic stresses

Genetic transformation of potato was first achieved in 1988 [11, 12], potato 
being the third plant to be successfully transformed. This technology uses 
Agrobacterium tumefaciens - mediated gene transfer, which is reported as the most 
efficient for potato crop and some of potato wild relatives [13]. The first com-
mercially grown potato was introduced by Monsanto as New Leaf™ in 1995, the 
first released genetically modified crop of the company. Besides gene transfer from 
bacteria, fungi, animal or other plant species commonly called transgenesis, more 
recently wild species are considered as a rich reservoir of resistance genes. The 
transfer of genes from the same genus, i.e. from related species that can be crossed, 
is called cisgenesis. Because the genes can be also integrated into the recipient plant 
genome by classical breeding, cisgenesis was thought to be exempted from GMO 
low in Europe. Plant own genes can be also transferred in order to increase their 
expression, and this technique is called intragenesis [14, 15]. Solanum wild species, 
that evolved to resist in diverse climates in South and North America, are indeed a 
rich reservoir of genes which can be introgressed in potato genome. It is estimated 
that around 190 wild tuber-bearing relatives of potato, in the section Petota of the 
genus Solanum, are available for resistance breeding [16, 17]. Moreover, besides 
their rich genetic resources, potato and its wild relatives benefit from a good ame-
nability to in vitro tissue and protoplast culture, making it possible to exploit this 
diversity through genetic engineering [8].

2.1.1  Single or multiple resistance gene transfer to improve pathogen and pest 
resistance

Genetic engineering has the potential to transfer single genes to increase disease 
or pest resistance, if the selectable marker gene, which is necessary for transgenic 
plant selection is not considered. Such single genes can be introgressed in potato 
elite varieties to improve one resistance trait. The frequently used marker gene dur-
ing potato gene transfer is nptII (bacterial neomycin phosphotransferase II gene), 
which renders transgenic cells resistant to aminoglycoside antibiotics, including 
kanamycin and G418 [18]. Selection based on kanamycin has been proven to 
generate escapes in potato crop [13]. In this study both genes: nptII and reporter gfp 
(green fluorescent protein), have been used to reveal the transgene transfer effi-
ciency, which allowed to evaluate the escape events. In order to transfer single genes 
that increase host plant resistance to pathogens and pests, the researchers have 
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to identify and clone the genes of interest (GOI). At this stage, a good knowledge 
of mechanisms of host plant– pathogen interaction and gene characterization is 
necessary. In the last decades new insights into the complex molecular race between 
pathogens and/or pests and crop hosts were advanced and many genes are charac-
terized and some cloned [19, 20]. With the advent of Potato Genome Sequencing 
Consortium [21] and completion of the first reference genome of potato [17], and 
later the release of genome data for some of its wild relatives i.e. S. commersoni [22], 
and S. chacoense [23], potato breeding and biotechnology entered into the genomic-
based improvement era. Gene transfer is already taking advantage of genome 
sequencing data in first instance through the transfer of potato own resistance genes 
and secondly utilization of potato wild relative (PWR) genes. In Table 1, examples 
of the latest year’s single and multiple gene transfer for improving potato resilience 
to biotic and abiotic stresses are given, as well as some results on insect resistance. 
Potato wild relatives have evolved defense mechanisms against pathogens and pests 
at multilayer level (Figure 2). The interaction between host potato species and 
its pathogens involves the following mechanisms: (1) physical and physiological 
barriers that prevent the pathogens to enter into the plant cells; (2) plasma mem-
brane-bound and intracellular immune receptors that initiate defense responses 
upon the perception of pathogens; (3) interference RNA (RNAi) used by plants to 
detect invading viruses and fragment their RNA [20]. Pathogens as bacteria and 
fungi, respond to potato defense through: (1) production and release of cell-wall-
degrading enzymes; (2) production and delivery into host cytoplasm of effector 
proteins, some of which suppress host defense and promote susceptibility; (3) 
viruses produce suppressors of host plant RNAi and/or hijack host RNAi to silence 
host genes and promote viral pathogenicity [20]. On the other hand, the interaction 
between herbivorous insect pests and plants also involves various mechanisms: (1) 
non-glandular and especially glandular trichomes that act as physical and physi-
ological barrier to insect feeding; (2) toxins such as glycoalkaloids, which are well 
characterised in the Solanum genera; (3) enzyme inhibitors such as protease inhibi-
tors; (4) use of bacterial insecticidal genes [61] (references herein) (Figure 2). All 
genes involved in host plant resistance to pathogens and pests as well as pathogen-
esis susceptibility genes can be transferred to produce resistant potato crop.

For instance, genes for pattern recognition receptors (PRRs), from other spe-
cies can recognize pathogen associated molecular patters (PAMPs) and activate 
defense responses, as was demonstrated in Arabidopsis thaliana lectin receptor 
kinase LecRK1.9 transferred into potato that increased resistance to Phytophthora 
infestans (Pi) (Table 1) [31]. This first level of defense is known as pathogen targeted 
immunity (PTI). It is likely that there are different type of PRRs in potato but one 
was identified as ELR protein, which was capable to recognize the INFI elicitin from 
Pi [62]. Others are known from tomato and other species [6]. The tomato PRR Ve1, 
which recognize the Ave1 protein from Verticillium dahliae, when was expressed in 
potato was conferring resistance to this disease [63]. Gene transfer gave good results 
when R genes could be isolated and cloned. R proteins represent the second level 
of defense recognizing specific effector proteins of the pathogen, called effector 
targeted immunity (ETI) (Figure 2) [6]. Compared to PRR system, effectors use a 
similar defense response in the host plant, but effectors coupled with R genes elicit 
a stronger response which activates hypersensitive reaction (HR) in resistant plants. 
HR imply cell death surrounding the pathogen attack and represent a barrier for 
further pathogen spread. Pathogen effectors have high diversity but R genes have 
two conserved domains: nucleotide binding (NB) and leucine reach repeat (LRR), 
which makes their identification easier [6]. In the last two decades many R genes 
were cloned from potato wild relatives that induce resistance to Pi and transferred 
into potato varieties, either as single or multiple genes (Table 1). Some examples 
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of R genes are: R1, R2 and R3a, R3b, originally identified in S. demissum; Rpi-blb1 
(RB), Rpi-blb2, Rpi-blb3 from S. bulbocastanum; Rpi-vnt1.1 and Rpi-vnt1.2 from S. 
venturii; Rpi-mcq 1 from S. mochiquense [6, 64], etc. R genes were also delivered into 
potato varieties as gene stacks. In Europe BASF Company petitioned for the release 
of potato Fortuna resistant to late blight (Pi) after stacking of two R genes: Rpi-blb1 
and Rpi-blb2, obtained after a long effort of breeding, but unfortunately, this cultivar 
was never marketed [6]. The Simplot’s second generation Innate® potato which 
besides reduced browning and bruising, also carries R genes and hence is resistant 
to late blight (Pi), was approved for cultivation in USA [65], and for cultivation 
and consumption in Canada [66]. One important research project was developed 
in Netherland between 2006 and 2015 on Durable Resistance in potato against 
Phytophthora (DuRPh) at Wageningen University and Research Centre [64]. The aim 
of this project was to identify and clone new durable resistance genes from potato wild 
relatives and transfer them as single or stalked genes into varieties by cisgenesis using 
marker assisted selection (MAS). Through this project a great deal of data has been 
accumulated and cisgenic varieties resistant to late blight were produced but these 
will require some more backcrosses to be released as resistant and productive varieties 
[64]. Still cisgenesis is considered as GM in Europe. A successful cisgenic approach 
was applied in Africa, where highland varieties were transformed with an efficiency 
of 75% using three Rpi genes: Rpi-blb1, Rpi-blb2 and Rpi-vnt1.1 (Table 1) [34]. R genes 
that improve resistance to other pathogens were also discovered: Rx1 and Rx2 (from 
S. tuberosum ssp. andigena and S. acaule, respectively), that confer resistance to 
potato virus X (PVX) [67]; Gro1–4 from S. spegazzinii, confer resistance to root cyst 
nematode Globodera rostochinensis (Table 1) [41]. Another strategy for resistance to 

Figure 2. 
The principal mechanisms of interaction between pathogens (bacteria, fungi and viruses) on the left and 
insect pests on the right with the potato host: the pathogens trigger two responses PTI (pathogen triggered 
immunity) and ETI (effector triggered immunity); in PTI the membrane proteins PRR recognize pathogen 
molecular patterns (PAMPs) and induce transcription factors (TFs) which activate immunity genes; in ETI 
effector molecules interact with specific resistance genes (R), but they can also interact with sensitivity genes 
(S) to inhibit PTI; insect pests interaction with its host is less understood but at first the pest interacts with leaf 
trichomes, glandular and/or non-glandular, mainly acting as a physical barrier; after wounding the leaf cells 
are inducing either tolerance responses like compensatory photosynthesis and delayed plant development, or 
resistance responses through synthesis of toxins like glycoalkaloids. Resistance mechanisms can activate HIPV 
(herbivore induced plant volatiles).



Solanum tuberosum - A Promising Crop for Starvation Problem

272

a broad spectrum of pathogens is overexpression of a single gene located upstream 
in signalling cascades and thus regulates large number of defense-responsive 
genes. There are many examples of successful engineered plants using different 
constructs to overexpress trans- and endogenous genes in crops, including potato. 
Overexpression of these upstream signalling genes and defense-related genes can 
lead to a constitutive expression of resistance phenotype. In plant disease resis-
tance, a vital role is played by small G-proteins and subsequent cellular responses 
to pathogens such as bacteria, fungi and viruses [52]. A number of G-proteins have 
been transferred to different plant species including potato where stable overexpres-
sion of AtRop1 (DN-AtRop1) increased resistance to Pi infection (Table 1) [32]. 
An important breakthrough is the continuous research identifying new molecular 
markers linked to resistance genes or more recently QTLs (quantitative trait loci) 
such are: AFLP, RFLP, SSR, RAPD and their maps available for potato breeding [68]. 
At International Potato Center a continuous effort, as mentioned above, aims to store 
genetic diversity and improve it for the benefit of the next generations and efficient 
alleviation of underdeveloped nations’ poverty. Several other genes were also cloned 
and transferred into potato crop for improvement of resistance to: PVY (eIF4E-1 
variant Eva1) and Pi – host induced gene silencing (HIGS) (Table 1) [33, 48]. The 
aim of the latest strategy is to achieve more durable resistance than R genes, but this 
also uses gene constructs that fall under GM rules [6].

2.1.2 Insect resistant potato crop

Insects are also a plague for potato production but the most difficult to control 
is the voracious Colorado potato beetle (CPB). It is estimated that 75% of potato 
production can be lost by pests if left uncontrolled [69]. CPB develop on potato 
crop, larvae and adults eat leaves and are able to completely skeletonize the plants. 
During development, the three stages of instar larvae consume around 40 cm2 
of potato leaves [70]. Plant breeding and biotechnology were not able to release 
a variety resistant to CPB without GM technology. Wild potato relatives are a 
reservoir of resistance traits as it was discussed for pathogens. Two natural host 
plant resistances are known: glandular trichomes and specific glycoalkaloids, the 
leptines I and II [71]. Detailed knowledge on the interaction between potato and 
resistant relatives with the voracious beetle are still scarce (Figure 2). Another 
interesting mechanism of resistance was discovered [72], the hypersensitive reac-
tion of plants to CPB egg masses and egg drop. Any breakthrough into the physical, 
physiological and molecular mechanisms of resistance will fasten the progress of 
resistance breeding using biotechnology. The main strategy of genetic engineering 
to induce resistance to CPB was based on bacterial toxin from Bacillus thuringiensis 
(Bt), a bacterium also used in integrated pest management by spraying bacterial 
suspensions in the field. The technology is very specific for a certain species of 
pest, because Bt not only has a large repertoire of the cry genes that produce the 
protoxins involved in pest induced mortality, but the toxin is formed only in the 
gut of feeding pests and would not affect non-targeted beneficial insects [71]. 
The first success was introducing by gene transfer the cry3a gene into potato cv. 
Russet Burbank to protect it from CPB attack [73]. The GM variety with resistance 
to CPB was approved for human consumption and was commercially available in 
USA between 1996 until 2001, proving to control the beetle in the field without any 
unwanted effects on the cultivar [74]. NewLeaf™ potato, developed by Monsanto, 
containing cry3a proved to supress CPB populations at greater extent as insecti-
cides or sprays based on formulations from Bt bacteria containing CRY3A protein 
[71]. In the next years, after the first success with cry3a, other cry genes have been 
optimize and transferred into potato: cry3Ca1, cry1, cry3Bb1 [71] (Table 1).  
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Coombs et al [75] combined leptines, glycoalkaloids considered as toxic to CPB, 
with glandular trichomes and Bt-cry3a to obtain transgenic potato host plants 
resistant to CPB. In that way the main problem of Bt potato, the development 
of resistance, could be also managed [75]. To date, there are no Bt potato on the 
market, as discussed in public acceptance of GM potatoes. Recent studies have 
been focusing on RNAi technology, including direct spraying of dsRNA in the 
field [71]. The first success with dsRNA used in a transgenic approach [76], lead 
to long or short double stranded RNA used to target a specific gene at posttran-
scriptional level determining mRNA fragmentation and hence silencing the gene. 
This proof of concept brought about a growing interest for the use of RNAi tech-
nology for controlling the CPB pest [57]. Moreover, non-transgenic alternatives 
were developed including dsRNA spraying on the plants [59, 77], but in this year 
(2021), resistance development in CPB populations after dsRNA foliar-delivery in 
potato has been already observed [78]. Sequence of CPB transcriptome can assist 
in the identification of new target genes for RNAi that can be used to control this 
pest [79]. To date, 24 target genes with important roles in cellular functions were 
silenced using RNAi, as reviewed by Balaško et al [71]. Knockdown of those genes 
affect insect morbidity and mortality. There were also different delivery methods 
of dsRNA into CPB, like the use of bacteria, liposomes and nanocarriers, all of 
them able to protect and deliver dsRNA [77]. Moreover, other improvements 
for CPB control were the xenobiotic transcription factor Cap ‘n’ collar isoform 
C (CncC) that regulates the expression of multiple cytochrome P450 genes, and 
plays crucial roles in CPB insecticide resistance. The suppression of CncC by RNAi 
reduced imidacloprid resistance of CPB [80]. Ochoa-Campuzano et al [81] identi-
fied prohibitin, an essential protein for CPB viability, as Cry3Aa binding protein. 
Combination of feeding prohibitin dsRNA and treatment with Cry3Aa enhanced 
the toxic effect by threefold and CPB was killed faster with 100% mortality in 
five days. The molecular mechanisms of synergism between prohibitin, RNAi and 
Cry3Aa toxin are not understood, but this study proposes an interesting method, 
combining toxins derived from bacteria or other organisms with RNAi in order to 
improve efficiency of dsRNA in pest control. Moreover, recently targeted mutagen-
esis using CRISPR-Cas9 technology in CPB was demonstrated [60], a technology 
which holds great promise for the future.

2.1.3 Gene transfer for resilience to abiotic stress

Abiotic stresses such as drought, salt, high temperatures and extreme weather 
also limit potato yield around the world. With global climate change, abiotic stress is 
expected to be less predictable in the years to come and also affect pathogen attacks 
and pest effects on potato and other crops. The response of the plants to abiotic 
stresses involve generally the expression of inducible resistance genes. In particular, 
transcription factors (TFs) that control resistance genes are a key in gene regulatory 
networks that control the expression of many genes involved in stress responses [82]. 
Transgenesis uses genes for such TFs like WRKY, MYB or DREB, the last also used 
in potato crop (Table 2). Other genes that were engineered in potato are related to 
response of the plants to abiotic stress, like StProDH1, which is a key player in potato 
response to drought stress [93]. Through the manipulation of abscisic acid signal 
transduction after loss of function of cap-binding protein (CBP) [71], in cv. Désirée, 
a higher tolerance to drought was reported [92]. Through transgenic approach, 
potato lines with increased betaine aldehyde dehydrogenase, an enzyme for glycine 
betaine biosynthesis, which has important role in drought stress, has been able to 
induce drought tolerance in potato [88]. Transcriptome analysis, comparing control 
with drought stressed potato plants, has indicated many genes that are overexpressed 
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Trait Gene/s Result/tolerance to: Reference

Heat 
tolerance

CaPF1 High temperature [83]

AtCBF3 Heat tolerance [84]

Allelic variant HSc70 Moderately high temperatures in cv. Désirée [85]

Freezing 
tolerance

Atrd29A::DREB1A Freezing [86]

Drought 
tolerance

ScTPS Studies on water content and photosynthesis [87]

Glycin betaine aldehyde 
dehydro-genase

Drought [88]

TPS1 Drought - increased threhalose [89]

PaSOD Increased photosynthesis under drought [90]

AtDREB1/CBF Drought [91]

CPB80 Drought [92]

amiRNA silencing of StProDH1 Drought [93]

Salt 
tolerance

Δ1-pyrroline-5-carboxylate 
synthetase

Salt - increased proline [94]

HvNHX2 Salt [95]

Overexpression of AtHKT1 Salt [96]

StCYS1 Salt [97]

Two stresses BADH Drought and salt [88]

StEREBP1 Cold and salt [98]

SOD, APX Oxidative stress and high temperature [99]

At DREB1B Drought and freezing tolerance [100]

StDREB1, StDREB2 Salt or drought tolerance [101, 102]

ggpPS Drought and salt/ tuber increased glucosyl 
- glycerol

[103]

GB Salt and cold [104]

StWRKY1 Resistance to Pi and improved tolerance to 
drought

[105]

AtABF4 Salt and drought, increased yield and tuber 
quality

[106]

AtHXK1 and SP6A Drought and heat [107]

Multiple 
stresses

CodA/chloroplast Oxidative, salt, and drought stresses [108]

SOD, APX, CodA/ chloroplast Oxidative, salt, and drought stresses [109]

StnsLTP1 Multiple tolerance to heat, salt and drought [110]

IbOr Multiple tolerance to drought, oxidative 
stress and high salinity, increased 
carotenoid contents

[111]

amiRNA – artificial miRNA; APX - ascorbate peroxidase; BADH - betaine aldehyde dehydrogenase; CaPF1- pepper 
transcription factor belonging to the family of TFs ERF/AP2; CBF - C-repeat Binding Factor;DREB - dehydration 
responsive element binding protein; CodA - choline oxidase; GB – Glycinebetaine; HSc70 – heat shock cognate 70 
gene; HvNHX2 – Hordeum vulgare vacuolar Na+/H+ antiporter; IbOr – Ipomeaea batata orange gene; ScTPS- 
Saccharomyces cerevisiae trehalose-6-phosphate synthase; SOD - superoxide dismutase; StEREBP1 – S. tuberosum 
ethylene responsive element binding protein 1; StnsLTP1 – S. tuberosum nonspecific lipid transfer protein 1; 
StProDH1 – S. tuberosum proline dehydrogenase 1; TPS1- yeast trehalose-6-phosphate synthase 1.

Table 2. 
Examples of single or multiple resistance genes transfer to improve abiotic stress tolerance in potato.
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or underexpressed during drought stress, with genes involved in processes like: 
intracellular water and ion homeostasis, membrane structural stability, and recon-
struction of primary and secondary metabolism, and stress regulatory genes, as 
calcium ions, TFs and receptor protein kinases that are involved in stress response 
through signal transduction and metabolic pathways [112].

Salt stress caused by soil salinization is an increasing threat to agriculture 
worldwide [113]. Different factors lead to the continuous salinization of the soil, 
mainly different agricultural practices such as irrigation and some fertilization 
procedures. The mechanisms that are involved in salt stress response are cellular 
and physiological: e.g. different cellular signalling, various ion transport, water 
management and specific gene expression which are involved in growth, develop-
ment and survival [113]. Researchers are working on halophytes, plants that are 
adapted to salty soil, to get new insights on plant responses to salt stress. In the case 
of potato, as presented in Table 2, there are transgenic strategies which proved their 
utility in obtaining salt tolerance, either alone or in combination with other stress 
factors. Potato plants adapt to salinity stress through different mechanisms like 
osmotic adjustment by accumulating compatible solutes in the cytosol, decrease 
leaf water potential leading to reduced cell turgidity and growth retardation and 
tuber yield loss. One of the most important compatible solute is proline, which was 
accumulated in cv. Désirée 3.5 fold and 11 fold at 100 and 200 mM NaCl, respec-
tively [114]. However the proline effects on salt tolerance need additional studies 
because foliar application of proline has no effect on salt tolerance of plants [115]. 
Potato is adapted to cool weather mostly preferring temperate zone. The vegetative 
part of plants grow properly at 20–25°C temperature, while tubers develop better 
at 15–20°C. The response of potato plants to high temperature varies across the 
cultivars, one example being the commercial cv. Russet Burbank, which exhibit 
maximum rates of photosynthesis at 24 to 30°C and a reduction of photosynthetic 
activity only at or above 35°C [116]. Global warming and drought are expected to 
drastically reduce the potato productivity, but with biotechnology heat tolerant 
potato was successfully obtained (Table 2). Plants exhibit different strategies to 
cope with high temperature stress involving physiological, morphological and 
molecular levels. At molecular level heat stress increase the activity of heat stress 
TFs (HSFs), which trigger the accumulation of heat shock proteins (HSPs). HSPs 
are known to govern heat stress response (HSR) and acquired thermo-tolerance 
through their role as molecular chaperones [117]. In a genome wide study 27 StHSFs 
in the Solanum tuberosum genome were identified [118], which have diverse regula-
tory functions during stress. Underlining the molecular mechanism of how heat 
stress induces HSFs trimerization, their activation and synthesis of HSPs is still 
underway. Elucidation of the mechanisms of heat stress response may offer new 
insights that will be useful in breeding new heat resilient cultivars with sustained or 
even enhanced potato crop productivity and quality in response to climate change.

2.1.4 Multiple stress factors

In nature, generally multiple stresses act on crops at the same time and all of 
them contribute to noticeable losses in production. Nowadays, there is knowledge 
about various genes that contribute to both biotic and abiotic stress response and 
resistance/tolerance. The effects of abiotic stress on potato crop under climate 
change is detailed in a recent review [117]. Molecular and genomic analysis revealed 
transcriptionally regulatory pathways involved in modulation of stress responsive 
genes. As mentioned above TFs are playing a crucial role, particularly in multiple 
stress response of plants [119]. Examples of TFs that activate stress responsive genes 
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are AP2/ERF, containing AP2/ERF binding domain, a large superfamily that divides 
in AP2, ERF and RAV [120]. This family of genes participate in developmental 
processes. AP2 family is involved in regulation of development, together with ERF 
protein family. Based on the differences in DNA box-binding ability of the single 
AP2/ERF domain, the ERF family is divided in ERF and CBF/DREB (C-repeat 
Binding Factor/Dehydration Responsive Element-Binding) (Table 2). ERF proteins 
are mainly involved in inducing disease resistance in a negative or positive mode of 
action. Gangadhar et al [121] have identified 95 genes involved in heat tolerance in 
potato, eleven of them being associated with multiple stress tolerance, like drought, 
salt and heat. Prolamins are a group of plant storage proteins that represent useful 
factors implicated in controlling both abiotic and biotic stress-response in plants. 
The plant non-specific lipid transfer protein, nsLTP, is involved in phospholipid 
transfer but also various other biological functions as seed storage, lipid mobiliza-
tion, cuticle synthesis, somatic embryogenesis and pollen tube adhesion [110]. 
Transgenic potato lines over-expressing StnsLTP1 acquired improved tolerance 
to multiple abiotic stresses through enhanced activation of antioxidative defense 
mechanisms via cyclic scavenging of ROS and regulated expression of stress-related 
genes (Table 2) [110]. Another example is the use of TF StWRKY1, which success-
fully induced resistance to Pi and improved tolerance to water scarcity. This experi-
ments prove the role of TFs and in particular WRKY in regulating both biotic and 
abiotic stress resistance thereby modulating plant basal defense networks and thus 
playing a significant role for potato crop improvement.

3.  Use of cell fusion between potato crop and its wild relatives for 
resilient potato

Over the past fifty years the introgression of new traits from wild Solanum 
species have mainly achieved by using classical breeding methods. The number of 
wild species that could be integrated into potato breeding is quite limited because 
of sexual incompatibility and endosperm balance number (EBN), although there 
are techniques other than sexual crosses, such as manipulations of ploidy levels 
[122], breeding 2n gametes or using bridging species to integrate genes from wild 
Solanum species into modern cultivars [123]. Through sexual crosses the main 
source of resistance genes is still S. demissum, more than half of the modern cul-
tivars contain introgressions from this species [123]. The main limitations of the 
potato classical breeding are tetraploidy and heterozygosity, which make breeding 
very complex and time-consuming [124]. Moreover, when genes from an incompat-
ible wild species have to be exploited, as was in the case of S. bulbocastanum, the 
use of a bridging species was applied to produce new cultivars which took 49 years 
and then only one resistance gene (Rpi-blb2) against late blight was integrated into 
potato gene pool (cvs. Bionica and Toluca) [125]. Nowadays, somatic hybridization 
through protoplast fusion is a well refined and routinely used method in order to 
create Solanum hybrids with different useful properties [126, 127]. Plant protoplasts 
are naked somatic cells from which the cell wall has been removed by enzymatic 
digestion, therefore these cells can be used for gene transfer, somatic hybridization 
[128], and more recently for targeted mutagenesis and genome research. Protoplasts 
are still totipotent and they are able to regenerate new cell wall, divide to form 
new cell colonies, microcalluses, calluses and finally new plants. This protoplast 
technology proved to be very efficient in potato crop and is a reliable and useful 
way to regenerate large numbers of somatic hybrids (SHs) with distinct genetic 
backgrounds [129–131]. Among the agronomical important crops, potato was the 
first used in protoplast culture and somatic hybridization [132, 133], which opened 
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the way for free gene transfer from potato wild relatives into potato crop [134]. 
Leaf mesophyll cells of in vitro-grown plants were used to isolate protoplasts [135], 
then the obtained fused products were cultured in VKM medium [136], followed 
by shoot development on the MS13K medium [137]. Recently, selection of SHs 
(S. tuberosum + S. chacoense) based on callus growth tagged with gfp has been also 
observed [138]. Different methods are available for protoplast fusion, but only two 
are generally used: electrofusion and PEG (polyethylene glycol) induced fusion 
[128]. Electrofusion is the most widely used method since its discovery in 1979 
[139], and it consists in first instance of protoplast agglutination induced by the 
use of an alternating current (AC) field, the so-called dielectrophoresis [140]. In 
the second phase the agglutinated aligned protoplasts are induced to fuse by using 
direct current (DC) square wave pulses with a high intensity (2000 V cm−1) and 
very short duration (10–100 μs) [141]. PEG-induced fusion generally has a similar 
efficiency as electrofusion, especially after applying calcium solution washing 
step [128]. Immediately after fusion or after the plants have been regenerated, the 
obtained SHs are subject to different analysis, such as cytological (flow cytometry, 
chromosome counts, chloroplasts counts in guard cells, FISH - fluorescence in 
situ hybridization and GISH - genomic in situ hybridization), molecular: isozyme, 
molecular markers (e.g. RAPD, RFLP, ISSR - inter simple sequence repeat, SSR- 
simple sequence repeat, AFLP - amplified fragment length polymorphism, and 
DArT-diversity array technology) [8, 129], phenotypic changes (e.g. foliage, stem, 
leaf, flower and tuber traits) and pollen fertility. Due to their stability and univer-
sality SSR markers are the most widely used [129, 130]. Recently, the application 
of DaRT made it possible to find out the composition of the SHs genome between 
potato and S. x michoacanum, which demonstrated the presence of both parents 
genome in hybrid plants, and provided evidence for late blight resistance trait 
transfer from wild relatives into SHs [142]. SHs are also analysed for cytoplasm 
types (haplotype of chloroplast/mitochondria: W/α, T/β, W/γ, W/δ and S/ε) [143], 
based on organelle segregation after fusion and organellar genome-specific markers 
as described by Lössl et al [144]. Finally, SHs are examined for the presence of target 
traits under field or controlled conditions eventually being tested for phenotype 
and tuber qualities in the field [8, 145]. Somatic hybridization through protoplasts 
fusion, which circumvents pre- and post-zygotic crossing barriers, can be success-
fully used to insert resistance into potato (Table 3) [143]. It has a greater potential 
for self-generating biodiversity in numerous nuclear and cytoplasmic genome 
combinations than sexual hybridization [184]. It also provides an opportunity for 
initiating recombination events between parental genomes. Moreover, homeologous 
recombinations (recombination between similar but not identical DNA molecules), 
can also be increased, that might increase the integration of valuable traits, by 
inducing a DNA repair deficiency, for instance, mismatch repair deficiency (MMR) 
[145, 175, 185]. MMR was successfully induced by Agrobacterium-mediated trans-
fer of AtMSH2 gene in antisense orientation or a dominant negative gene into S. 
chacoense [185], followed by somatic hybridization with potato tetraploid variety 
Delikat through electrofusion. Resistance to Colorado potato beetle (CPB) was 
more common in MMR deficient somatic hybrid plants [175]; MMR was also 
responsible for greater diversity and a novel trait tolerance to drought stress [180]. 
Since 1980s, different wild Solanum species have been hybridized with potato using 
protoplast fusion, and many of them express various valuable traits, including 
resistance to viruses [186], bacteria [187], fungi [188], insect pests [175] or toler-
ance to abiotic stresses (Table 3) [181]. Furthermore, multiple resistance can be 
also transferred from wild relatives into the potato gene pool [130] and even SHs 
with multiple parent lines can be produced, as in the case of the tri-species somatic 
hybrids [178].
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Traits of interest Somatic hybrid
St + wild relative:

Tools for characterization 
and/or selection

Reference

Biotic factors

Resistance to bacterial diseases

Clavibacter S. acaule Glycoalkaloid aglicones [146]

Erwinia carotovora S. brevidens
(S. palustrae)

RFLP, GISH, FISH [147]

Ralstonia 
solanacearum

S. chacoense SSR, cytoplasm type, MAS, 
BC1

[148, 149]

S. melongena SSR, smPGH1 gene [150]

S. stenotonum Isoenzymes, SSR, PEPC/
RUBISCO ratio

[151]

Streptomyces spp. S. brevidens
(S. palustrae)

Laboratory and field 
resistance tests

[152]

Resistance to fungal diseases

Alternaria 
tomatophila

S. brevidens
(S. palustrae)

RFLP, GISH, FISH [147]

Phytophthora 
erythroseptica

S. berthaultii (+)
S. etuberosum

NS [153]

Phytophthora infestans S. bulbocastanum MAS for RB gene (Rpi-blb1) 
GISH, cytoplasmic DNA

[154, 155]

SSR, cytogenetics, Rpi-blb1; 
Rpi-blb3 gene

[131, 145]

S. cardiophyllum RAPD [156]

SSR, AFLP, MFLP, ploidy [130]

RAPD, SSR, ISSR, AFLP,
cytoplasmic type molecular 
markers, FC

[157]

S. circaeifolium Morphology, RAPD, 
chromosomes

[158]

S. chacoense RAPD, morphology [156]

S. x michoacanum Ploidy, RAPD [159]

DaRT [142, 160]

S. nigrum Morphology, ploidy, RAPD [161]

S. pinnatisectum RAPD, morphology [156]

Ploidy, cytoplasm type [162]

RAPD, SSR, cytoplasm 
type, FC

[163, 164]

ISSR, BC1 characterization, 
Rpi-blb2 gene, field
resistance tests

[165, 166]

S. tarnii SSR, AFLP [129]

S. verrucosum RAPD [167]

S. villosum RAPD, GISH, ROS [168]
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Traits of interest Somatic hybrid
St + wild relative:

Tools for characterization 
and/or selection

Reference

Pythium spp. S. berthaultii (+)
S. etuberosum

NS [153]

S. tuberosum cvs. Aminca 
(+) Cardinal Cardinal 
(+) Nicola

Isoenzymes, SSR, ISSR [169]

Verticillium spp. S. commersonii Southern analysis of 
organelles

[170]

Resistance to viral diseases

PRLV S. etuberosum Characterization of BC 
populations

[171]

S. tuberosum x
S. berthaultii (+)
S. etuberosum

NS [172]

PVX S. tuberosum x
S. berthaultii (+)
S. etuberosum

NS [172]

PVY S. cardiophyllum SSR, AFLP, MFLP, ploidy [130]

S. etuberosum RAPD, SSR, GISH,
cytoplasm type

[173]

Cytoplasm type, FC, RAPD, 
SSR

[174]

S. tuberosum x
S. berthaultii (+)
S. etuberosum

NS [172]

S. tarnii SSR, AFLP [129]

S. tuberosum cvs. Aminca 
(+) Cardinal Cardinal 
(+) Nicola

Isoenzymes, SSR, ISSR [169]

Resistance to insects

Colorado potato 
beetle

S. tuberosum (+)
S. cardiophyllum

RAPD [156]

SSR, AFLP, MFLP, ploidy [130]

S. tuberosum (+)
S. chacoense

MMR deficiency, SSR, 
RAPD marker for leptines

[175]

S. tuberosum x
S. berthaultii (+)
S. etuberosum

NS [172]

S. tuberosum (+)
S. pinnatisectum

RAPD, morphology [156]

Meloidogyne 
chitwoodi

S. tuberosum (+)
S. bulbocastanum

Laboratory and field 
resistance tests

[176]

MAS RMc1(blb) [177]

Green peach and 
potato aphids, 
wireworm

S. tuberosum x
S. berthaultii (+)
S. etuberosum

NS [172, 178]
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One of the most economically valuable SH was obtained by fusion between the 
incompatible S. bulbocastanum species and cultivated tetraploid potato [189], which 
highlighted the advantages of somatic hybridization in potato genome improve-
ment, because the SHs were highly resistance to Pi in the laboratory and a field 
under intense disease pressure. After back-crossing of these SHs with potato 
cultivars the resistance to this disease was not lost. Subsequently, RB gene involved 
in durable resistance was isolated, which is located on chromosome VIII [190]. 
Transgenic plants with RB, were regenerated after Agrobacterium–mediated gene 
transfer and proved durable resistant [191]. Since then, S. bulbocastanum demon-
strated several times its value as a resource of durable resistance genes against late 
blight, therefore it has been an increasing interest in transferring the resistance 
traits of this species to cultivated potato [154, 192]. RB gene was the first durable 
resistance gene described for late blight, but soon many other genes were discovered 
both in S. bulbocastanum and other wild species. To date, there are four character-
ized resistance genes in S. bulbocastanum: Rpi-blb1 (formerly RB), Rpiblb2, Rpi-blb3 
and Rpi-bt1 [190, 193–196]. In addition, late blight resistance from other sources 
was also accessed by generation of interspecific SHs with the wild species S. pinnati-
sectum [163], S. tarnii [129], S. cardiophyllum [130] and more recently S. x micro-
achanum, a wild diploid derived from a spontaneous cross between S. 
bulbocastanum and S. pinnatisectum [160]. These newly produced SHs were also 
tested in the field and were resistant after two or three years of assessment, there-
fore they are suitable for introducing in breeding. S. stenotonum is an exquisite 
source of resistance to bacterial wilt caused by Ralstonia solanacearum, and all of the 
SHs obtained by fusion of potato protoplasts with this wild species were as resistant 
as the wild parent line [197]. Similarly, S. chacoense was explored for molecular 
markers associated with bacterial wilt resistance, and for introgression of resistance 
into the potato gene pool [148]. A very successful approach involved the transgenic 
induction of MMR deficiency in a high leptine-producing accession of S. chacoense, 
followed by somatic hybridization, because large number of generated plants 
exhibited both antixenosis and antibiosis against CPB [175]. Recently, by using gene 
specific markers four Pi resistance genes: Rpi-blb1, Rpi-blb3, R3a and R3b were 
identified in S. bulbocastanum and derived SHs with potato cvs. Delikat and Rasant. 
The genes were present also in BC1 and BC2 progenies and resistance to late blight 

Traits of interest Somatic hybrid
St + wild relative:

Tools for characterization 
and/or selection

Reference

Abiotic factors

Drought tolerance S. tuberosum cvs. Aminca 
(+) Cardinal Cardinal 
(+) Nicola

Greenhouse tolerance test [179]

S. chacoense Laboratory and 
phenotyping

[180], Molnar 
et al. (under 
publication)

Frost tolerance S. malmeanum SSR, ploidy, BC1 
characterization, laboratory 
tolerance tests

[181]

Salt tolerance S. berthaultii ISSR, cytoplasmic DNA, FC [182]

Oxidative stress responses [183]
NS – not specified.

Table 3. 
The most important somatic hybrids with proved resistance to pathogens, pests and tolerant to abiotic stresses 
and the methods applied for their analysis.
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was maintained along good tuber traits [146]. The resistance gene pool of wild 
Solanum species can also be used to combat abiotic stresses like salt, drought and 
frost. For example SHs originating from fusion between potato and S. bertaultii are 
tolerant to salt stress [182]. Freezing is another abiotic factor, which decrease the 
yield of potato and SHs of S. tuberosum (+) S. malmeanum proved to be tolerant to 
frost [181]. Furthermore, SHs of potato and S. chacoense show different level of 
drought and salt tolerance beside resistance to CPB [184]. Interspecific somatic 
hybridization gave good results but the intraspecific somatic hybridization proved 
to be also suitable for potato improvement. Starting in the 1990s, somatic hybridiza-
tion was used to study different dihaploid lines of potato generated by crossing with 
S. phureja [198] or pollen and anther in vitro culture. The results of the protoplast 
fusion of two dihaploid potato lines were at first not very promising, but the 
restoration of tetraploids from two dihaploid lines with valuable yield and resis-
tance traits soon proved to be a valuable approach for potato breeding. 
Furthermore, resistance to nematodes, viruses (PVY) and Phytium bacterial 
diseases were achieved by intraspecific protoplast fusion [169, 199]. The intraspe-
cific hybridization has a finite repository, but as long as this area is not exploited, it 
is worth considering. During interspecific somatic hybridization two obstacles may 
occur: (1) transfer of too much exotic, wild genetic material along with the desir-
able gene(s) from the wild species; and (2) genetic imbalance which lead to somatic 
incompatibility. These limitations result either in abnormal growth and develop-
ment of the SHs, and/or regeneration of infertile plants. In order to reduce the wild 
imprint, the introgressive hybridization is followed by one or multiple back-crosses 
of the somatic hybrids with cultivars. The purpose of these cross-hybridization 
processes is on the one hand to eliminate the undesirable part of the wild genome, 
on the other to retain the target traits inherited from the wild parents and to restore 
the agronomic valuable cultivars, with high yield and adequate tuber quality  
[129, 130, 139]. Several experiments proved that, the above mentioned disadvan-
tages could be eliminated through multiple back-crosses. Somatic hybrids of 
cultivated potato and S. tarnii were resistant to late blight and PVY, and these 
valuable traits were successfully transferred to BC1 progenies, which also presented 
good tuber yield and quality [129]. Multiple years of field evaluations of S. etu-
berosum + S. tuberosum and progenies showed stable transmission and expression of 
PLRV and PVY resistances in three BC1, BC2 and BC3 and two BC1 and BC2 
generations, respectively [171]. Furthermore, late blight resistance can be trans-
ferred through breeding from tetraploid somatic hybrids (S. × michoacanum +  
S. tuberosum and autofused S. × michoacanum) to common varieties [142]. Bacterial 
wilt resistance was transferred to advanced progenies of somatic hybrids between  
S. commersonii and cultivated potato, and three highly resistant clones (BC1 and 
BC2) were selected as breeding materials [170]. In the case of potato there are many 
reports of symmetric interspecific somatic hybridization between diploid wild 
species and potato dihaploid lines [127]. The main problem with the majority of 
these hybrids was the infertility, which made difficult the restoration of valuable 
cultivar. For this reason symmetric somatic hybridization between tetraploid potato 
cultivars and diploid wild species became more popular [200]. The expected results 
after tetraploid with diploid protoplast fusion are hexaploid SHs, but among them 
aneuploid or mixoploid hybrids are often regenerated [131]. Genetically, the 
hybrids may be unstable and usually eliminate chromosomes from the wild species 
during the next stage of tissue culture, as occurred in the case of potato and  
S. bulbocastanum hybrids, but, after two back-crosses with cultivated potato, many 
of them re-stabilize at tetraploid level [131, 145]. Theoretically hexaploid or near 
hexaploid SHs of potato will tend to eliminate the wild species chromosomes and 
maintain only a few alien chromosomes or introgress some genes from the wild 
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parent. Chromosome elimination in some interspecific somatic hybrids of potato 
largely depends on the phylogenetic relationship, type of genome: A, B, C, D and P 
[201], cell cycle synchronization after fusion and the two parent chromosomes 
interaction during mitosis [202]. Asymmetric somatic hybrids can be a result of the 
ordinary symmetric fusion or can be induced by fragmenting the donor species 
DNA by using the donor-recipient method [203]. Production of asymmetric somatic 
hybrid plants aroused interest of breeders, because with controlled chromosome 
transfer the restoration process of cultivars is faster and easier [204]. Usually, the 
donor protoplasts are treated with sub-lethal doses of ionizing irradiation, such as 
gamma, X rays [205, 206] or UV irradiation [207], in order to induce double-strand 
breaks and hence partial genome elimination [208]. In addition to irradiation, 
chemical agents can be used to induce chromosome elimination, such as restriction 
endonucleases, spindle toxin or chromosome condensation agents [209]. With 
applying these methods, asymmetric potato hybrids with some wild Solanum species 
[210] and intergeneric somatic hybrids were successfully produced [211, 212]. 
Another possible limitation of somatic hybridization is the production of somatic 
hybrids with resistant traits, but with decreased tuber yield and/or quality (mis-
shaped tubers). Various solutions exists to overcome these disadvantages: use of 
haploidization and intra-specific hybridization of dihaploid potato lines [198], or 
the use of somatic fusion in which tetraploid potato cultivars are fused with sexu-
ally incompatible diploid wild species, when the resulted hexaploids are most of the 
time fertile and are crossable with other tetraploid cultivars [129–131]. Somatic 
hybridization produced a large number of somatic hybrids in potato some of them 
being integrated into pre-breeding and then breeding programs. The advantage of 
somatic hybridization is the transfer of multiple resistance genes, although it is 
difficult to control the genes transferred into the crop from its wild relative. It was 
thought that asymmetric fusion will allow better control on the genetic material to 
be transferred but soon it was demonstrated that only a low amount of donor DNA 
is eliminated and there is no correlation between the dose of radiation and DNA 
fragmentation. Nowadays, new strategies can be applied to better control the 
genetic fate of the SHs. Molecular markers can be used to select the traits or genes of 
interest [145], selection pressure like pathotoxins can be applied to increase the 
number of resistant SHs to a certain pathogen, etc. Moreover, there is a new oppor-
tunity to use all the genomic tools to get more insights into the complexity of the 
SHs and better understand the complex interaction between six genome forced 
together by artificial fusion in one cell. The main advantages of this biotechnologi-
cal tool is its status as non-transgenic in Europe (directive 2001/18/EC, annex 1B) 
and its acceptance by consumers.

4.  The new biotechnological techniques (NBT) and their success in 
improving potato crop

In the last decade, new plant breeding technologies (NPBT) have been developed 
to address plant breeding for important traits of current days. Those technologies 
were refinements of transgenesis and ended up with such advancements as leav-
ing no foreign DNA in the new modified plants. In a review published by Lusser 
et al [213] the techniques used for NPBT were zinc finger nucleases (ZFN) and 
transcription activator-like effector nucleases (TALENs). In the same year a new 
NPBT was discovered and became the preferred alternative for plant genome 
editing, the clustered regulatory interspaced palindromic repeats or CRISPR [214]. 
CRISPR, a natural system used by bacteria and archaea to fight bacteriophages and 
foreign genetic fragments, has emerged as one of the most powerful and promising 
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genome editing techniques shaping the future of biotechnology [215]. CRISPR-Cas 
method is based on a short single-guide RNA (sgRNA), with a 20 bp guide sequence 
complementary to a target region in recipient genome, a promoter and a sgRNA 
scaffold, which in combination with a Cas9 nuclease [214], can induce mutations in 
a target region of choice. Cas9 or an alternative nuclease induce double strand breaks 
(DSBs), that are repaired by the cell’s own repair mechanism, either through non-
homologous end joining (NHEJ) or homologous recombination (HR) [214]. NHEJ is 
an error prone and often leads to random-sized inserts or deletions (indels), which 
may cause a knockout of gene function. In potato the first results using CRISPR-Cas9 
have shown mutations by using Agrobacterium-mediated stable transformation. The 
targeted genes were: gene encoding an Aux/IAA protein, the StIAA2, in a double 
haploid potato cultivar [216] and the ALS gene in both diploid and tetraploid potato 
[217]. More recently, TALEN and CRISPR-Cas9 were stably introduced targeting 
ALS and using a geminivirus-mediated guide, to facilitate designed mutations [218]. 
Because of its simplicity and cost efficiency CRISPR-Cas9 was adopted for many 
plant species [219], including potato as a tetraploid where targeted multialleles 
mutagenesis was achieved [220]. Traits such as: improved resistance to cold-induced 
sweetening, herbicide tolerance, processing efficiency, modified starch quality and 
self-incompatibility have been targeted in potato using CRISPR/Cas9 and TALEN 
editing technologies in diploid and tetraploid clones [221]. Potato varieties with 
knockout mutations in all alleles of the VInv (vacuolar invertase gene) through 
precise genome engineering were also produced [222]. This was accomplished by 
transiently expressing transcription activator-like effector nucleases (TALENs) 
designed to bind and cleave specific DNA sequences in the VInv locus. The double-
stranded breaks (DSBs) created by the TALENs were repaired by NHEJ, which 
introduced indel (insertion/deletion) mutations that compromised VInv gene 
function. Due to the high levels of heterozygosity in the potato genome, the task 
of simultaneously targeting multiple alleles required careful TALEN design and 
optimization [223]. In contrast to previous RNAi work, TALENs achieved complete 
knockout lines without incorporating foreign DNA. As a result, the new potato lines 
have significantly lower levels of reducing sugars and acrylamide in heat-processed 
products [224]. In another attempt CRISPR-Cas9 was successfully applied to reduce 
browning of potato silencing PPO gene [225]. Increase resistance to late blight was 
obtained by mutating S (sensitivity gene) genes StDND1 and StCHL1 [226]. CRISPR-
Cas13a was used to increase resistance to PVY, and it induced resistance to all strains 
of the virus [51], while RNAi confronted with many drawbacks because of the virus 
genetic evolution (Table 1) [50]. Although, the successfully edited plants by using 
CRISPR-Cas are deposited in Plant Genome Editing Database (PGED) [227], to date 
(2021-04-31) there is no registry for potato.

5. Acceptance by consumer and combinatorial biotechnology

Potato biotechnology has developed potato varieties with one or multiple genes, 
which resist one or multiple biotic and/or abiotic stresses. Unfortunately, the 
continuous debate and consumer lack of trust affect the GM cultivation in the field 
and specifically the adoption of GM plants in the food chain. There were success 
stories about genetically engineered potato crop, some of them were deregulated 
and had a short time of field cultivation. One of the examples that presents the fate 
of GM potato is the Monsanto potato story. Monsanto has developed GM potatoes 
with insect resistance (IR) and virus resistance (VR). In 1995, Monsanto received 
US government approval for Cry3A Bt potato, resistant to CPB. 600 ha were planted 
with this transgenic potato in USA. Another GM potato with resistance to potato 
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leaf roll virus (PRLV) was approved in 1998 and a variety resistant to PVY in 1999. 
Moreover the Bt trait was stacked with PRLV and/or PVY resistance. From 1995 
to 1998 the area with GE (genetically engineered) potato increased to 20,000 ha 
representing 3.5% of total area of potato crop in USA. But, in 2000 the area planted 
with GE potato declined sharply, a decline attributed to lack of acceptance by 
some consumers, the fast-food chain refusal of GE potato use and the incapacity 
of potato industry to test and segregate GE from non-GE potato. In these condi-
tions, growers were concerned that their GE potato will no more be purchased by 
their buyers. The farmers, on the other hand, were purchasing a new insecticide 
for CPB and other pests rather than using GE varieties. In 2001 Monsanto decided 
to close its potato division [69, 228, 229]. Another story is about Amflora potato 
in Europe. After authorization procedure and favourable scientific opinions the 
European Commission approved the cultivation of BASF Amflora starch potato in 
2010. This was the first GE plant approved for cultivation in EU in 12 years. The 
Amflora potato was not intended to be authorised for food, only for industrial use 
in starch production and its by-products as feed. Many member states were reacting 
against the GE potato authorization. In 2013, the EU General Court annulled the 
authorization of Amflora potato. In 2012 the BASF Company decided to move it’s 
headquarter in USA (North Carolina) and halted the production of Amflora potato 
from EU market. Although, new breeding technologies and particularly CRISPR-
Cas technology does not leave any foreign DNA into targeted mutagenized crops, 
EU has decided to consider edited crops under GM low in 2018, but there is hope 
that these modified crops will be accepted for cultivation and commercialization 
in the near future. The acceptance of modified crops by consumers varies from one 
country to another, depending on culture, history, environmental pressure etc., but 
it seems that the benefits of transgenic and editing methods will at the end extend 
at scientific level, because cost benefits, CO2 reduction and reduction on pesticides 
use will override the consumers unscientific doubts. But until then there are other 
effective biotechnological tools that are not considered as GMOs, for instance, 
somatic fusion and production of somatic hybrids as presented above can also 
address many resistance traits and be included in breeding. We have proposed a new 
strategy of biotechnological results integration in potato breeding called combi-
natorial biotechnology and already gave some good examples for the SHs of potato 
varieties (4x) with the diploid wild species S. bulbocastanum and S. chacoense [145, 
180]. For instance in the case of somatic hybrids potato + S. cahacoense, presented 
above, transgenesis using AtMSH2 gene, somatic hybridization, molecular analysis 
and stress selection were combined. For further integration in breeding somatic 
hybrids have to be back-crossed with cultivars and embryo rescue will be applied 
for BCs regeneration. Moreover, to remove the transgenes another strategy has to 
be applied as: gene segregation, RNAi or CRISPR-Cas. Finally, these genotypes with 
very interesting traits: resistance to CPB (antibiosis and antixenosis), tolerance to 
drought and salt would be integrated in breeding. The adoption of these biotechno-
logical tools coupled with new knowledge on potato genomics and phenome’s will 
most probably change the ways how the biotechnology is integrated in potato breed-
ing for resilient potato, which is indispensable in today’s challenging agriculture.

6. Conclusions

There are many tools in potato biotechnology which could be applied to improve 
potato resistance to biotic and abiotic stresses and to increase the quality of potato 
tubers for different application as food, feed, industrial use of even medicinal 
applications (Figure 3). These tools coupled with the new knowledge of genomics 
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and phenomics will be more and more accepted in improving potato crop for actual 
and future agriculture. Combinatorial biotechnology that in our opinion will use 
all advantages of potato genome manipulation, tissue culture techniques, and next 
generation biotechnologies along with genome, transcriptome and metabolome 
research will contribute to resilient potato crop.
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Figure 3. 
Starch, protein and other valuable compound content of a potato raw tuber (detailed on the left (mg)) 
(modified data for cv. Russet Burbank https://www.researchgate.net/publication/265480176_27_).
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Abstract

In the Andean region of Peru, the predominant production system for potatoes 
is family farming, oriented towards self-consumption, seed provision, and the 
sale of surplus production. Labor force activities for land preparation, sowing, 
maintenance, harvest and postharvest are under the responsibility of the family 
and eventually they hire farm laborers, when parcels are of a considerable size. 
Approximately 95% of the cultivated surface of potato crops is located in the high 
Andean zone, from 3000 to 4200 meters above sea level (masl), employing native 
varieties of tuber seeds and modern seeds introduced to production systems in the 
past 50 years. Potato systems in Peru, like the majority of underdeveloped coun-
tries, are characterized by the co-existence of formal and informal systems. Formal 
systems prioritize production and commercialization of seeds of just a few varieties 
positioned in modern markets which are regulated and accredited by a certification 
body according to the current legislation, while in the informal system the guaran-
tee of seed quality falls under the responsibility of the very producers and users of 
those seeds.

Keywords: certified seed, family farming, seed regulation, Solanum tuberosum, 
traditional seed

1. Introduction

Peru is considered to be a center of origin and diversity of edible food species, 
and among them the potato (Solanum tuberosum L), a crop initially domesticated 
in the northern area of Lake Titicaca where among wild species the first cultivated 
forms were selected 7,000–10,000 years AD [1–4]. According to the International 
Potato Center (CIP), in Peru there can be found nine cultivated species of potatoes 
that originate from wild species of the group with S. candolleanum as a potential 
ancestor [5]. Other studies indicate that, in the Peruvian Andes 8 cultivated species 
can be found and around 200 wild species, which give rise to a large diversity of cul-
tivated species included in polyploid series (2n = 24, 36, 48, and 60) with approxi-
mately 4200 varieties or morphotypes of native potatoes, recognized worldwide for 
their high nutritional value and potential for genetic improvement [4, 6, 7].

Starting in the second half of the 16th century, the Spanish began a process 
of world expansion of potato cultivation. Initially the first tubers were brought 



Solanum tuberosum - A Promising Crop for Starvation Problem

306

from Peru to the Canary Islands and thereafter to Spain, the United Kingdom, the 
Netherlands, India, Ethiopia, and Saudi Arabia [6]. Currently the potato on a global 
level is the crop with the fourth largest cultivated surface area after maize, wheat 
and rice, and therefore, forms a critical part of the global food system [8, 9]. In the 
high Andean zone in Peru, for the majority of farmers, the potato continues to be 
a basic food crop and is produced through traditional techniques such as the use 
of numerous different varieties and cultivated species with different spatial and 
temporal distribution.

It is the main transitory crop with approximately 367,000 ha of area planted, 
directly involving 710,000 families [6–8, 10, 11]. They are grown from sea level 
to 4200 meters above sea level depending on the adaptation of the varieties, the 
production system (traditional or conventional) and the destination of produc-
tion for self-consumption or sale to the market [6, 12]. Modern varieties such as 
INIA 303 Canchan and UNICA adapt very well to the agro climatic conditions 
of the coast and were ‘Andeanized’ or adapted by family farming and they are 
cultivated from sea level, in the inter-Andean valleys and part of the plateau up to 
3800 meters above sea level. The native varieties of various cultivated species are 
sown under the rainfall regime of 3,500 to 3800 meters above sea level, and bitter 
varieties of the species S. X juzepczukii y S. x curtilobum from 3800 to 4200 meters 
above sea level.

According to data from the last National Agricultural Census (CENAGRO-2012), 
family farming represents 97% of the more than 2.2 million agricultural units (AU), 
concentrated mainly in the Sierra region [13]. According to the Encuesta Nacional 
de Hogares (ENAHO - National Household Survey), Family Farming (FF) gener-
ates about 80% of the food products consumed in the national market. In order to 
recognize and strengthen small famers in rural areas, the government promulgated 
the Estrategia Nacional de Agricultura Familiar (ENAF- National Strategy for 
Family Farming); however, it does not include plans for the sustainability of potato 
cultivation based on genetic and ecological potential, to favor access and use of 
quality seeds, ENAF-2015 [14].

Other temporary interventions were implemented by some non-governmen-
tal organizations (NGOs), international technical cooperation organizations, 
the church and local governments; the most notable being Semillas Andinas 
(Andean Seeds) implemented by MINAGRI and FAO between 2011 and 2016. 
The project, with a high component of capacity building in seed technology, leg-
islation and business plans, managed to overcome paradigms that small farmers 
would not be able to produce high quality certified seed. Family farmer system 
producer organizations that were trained in the production and use of quality 
seed through the field school methodology (ECA), managed to increase potato 
crop yields by 64%, exceeding the national average [15]. However, failure to 
follow-up by the agricultural sector and the lack of strategies for the continuity 
of successful models impeded the consolidation and autonomy of seed produc-
ing organizations [10, 11, 15].

Various studies carried out on the sustainability of potato cultivation in the high 
Andean zone agree that the use of low-quality seeds is the main factor that explains 
the low yields [15, 16]. For the year 2018, the national average yield was 15.76 t/ha; 
while, at the level of small farmers in the High Andean zone, yields are below 8; con-
sidering that almost all potato production is located in the Sierra (90%) it deserves 
immediate attention [8]. This situation is less overwhelming for potato producers in 
Latin American countries such as Argentina, Brazil, Colombia, Chile and Venezuela, 
which reach average yields of 20.86 t/ha. These differences may be due to environ-
mental conditions, technology, management, but are mainly due to the use of quality 
seed [6, 8].
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Much of the yield gap that currently limits productivity in low-income countries 
is attributed to poor seed quality. The availability, access and use of quality seeds of 
adaptable crop varieties are of vital importance to improve agricultural productiv-
ity, ensure food security and improve farmers’ livelihoods. However, despite the 
advances in research and development of varieties, the rate of use of quality seed is 
low in traditional systems [9].

Formal systems promote the production and use of certified seed, generally of 
modern or hybrid varieties, preferred in conventional production systems that use 
external inputs such as pesticides, fertilizers and intensive soil tillage. Likewise, this 
system is governed by seed legislation supervised by the seed authority in charge 
of public entities. On the other hand, informal potato seed systems use native seeds 
or the so-called local, artisanal or ‘personal seeds’, with an ancestral dynamic such 
as the exchange of seeds, seed production in high areas to reduce the risk of virus 
infection and, therefore, for various reasons, they often produce relatively high 
quality seeds. The informal seed system can be complex; however, there are many 
links between the two prevalent systems in Peru [9, 11].

The coexistence of formal and informal seed systems is evident in the case of 
potato cultivation, which began with the enactment of the Ley General de Semillas 
(LGS- General Seed Law) in order to promote research, production, marketing 
and the use of quality seeds. The LGS regulations prioritize the production and 
commercialization of certified seeds with a clear objective of formalizing all seed 
production; however, in the last 30 years the rate of use of certified potato seed 
has not exceeded 1%. Consequently, this process has favored technology transfer 
processes, including the introduction of modern potato varieties that were adopted 
with relative success in family farming systems.

Family farming can contribute significantly to the development of the formal 
seed sector, not only in increasing the rate of use of certified seed, but also in the 
production of seed of native and modern varieties [10, 15]. However, the sustain-
ability of the system will depend on a favorable environment, based on adequate 
seed legislation, efficient services, technical assistance, training, and technology 
transfer both at the level of producers and seed users [11, 15].

2. Family farming systems

Family farming is of high importance for food security, generation of agricul-
tural employment, poverty alleviation, conservation of biodiversity and cultural 
traditions of communities in Latin America and throughout the world [10]. They 
are agricultural holdings with a predominance of use of the family labor force, 
where the administration of the economic-productive unit is assigned to the head of 
the household [17]. Another distinctive characteristic of other forms of agriculture 
is the limited access to land, water and capital resources; multiple-income survival 
strategy and heterogeneity [14].

Unlike other production systems, family farming presents a high degree of flex-
ibility, dedicating efforts to work according to the situation and especially according 
to market prices. The management of production systems using the logic of crop 
diversification allows this flexibility, and is a factor that contributes to the economic 
stability of the sector. Likewise, it includes on-farm and off-farm activities (tempo-
rary work on other farms, mining and other activities), generating economic income 
in rural or urban areas. These activities are carried out in dynamic interrelation with 
the social, economic, cultural and environmental circumstances. Hence, it is insepa-
rable from the family production unit, since it has the same resources at its disposal, 
and decisions about employment influence both in the family and the productive unit.
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In family farming, the size of the farm and/or agricultural production is a 
determining factor for its classification [14, 17]. This classification includes subsis-
tence family farming, families without land and family farmers fulfilling existing 
demand and generating surpluses. Family Farming (Table 1), depending on its land 
resources, cultivated area, technology and access to the market, can be classified 
as Subsistence Family Farming (SFF), intermediate or transitional Family Farming 
(IFF) or Consolidated Family Farming (CFF).

2.1 Potato cultivation in high Andean production systems

Peru is considered one of the main centers of genetic diversity and variability 
of cultivated and wild potato species and it is known that an intensive process of 

Variable Subsistence family 
farming

Intermediate family 
farming

Consolidated family 
farming

Production system Traditional, use of 
supplies and local 
technology

Mixed production 
system: traditional and 
conventional

Conventional 
production

Farming system Diversified crops, more 
than two crops in one plot 
and more than two species 
per crop

Monoculture, one 
variety

Single crop 
monoculture

Workforce Family or community Family and local 
farmers

Local laborers 
contractors or from 
other localities

Type of exploitation (150–200 wages/ha) 80–120 wages/ha 60–100 wages/ha

Water dependency Under temporary regime, 
it depends on rains

Temporary regime and 
irrigation

Temporary regime and 
irrigation

Seed system Informal, the use of 
traditional seed

Informal/formal Formal

Environmental 
conditions

Vulnerability to water 
extremes (drought, frost, 
hail or excess of rain)

Variable but less 
adverse conditions

Variable but less 
adverse conditions

Seed use Native; wide variability 
available, “mixed sowing” 
(Chagro, Huachuy)

Native and modern 
selected by market 
demand

Native and modern 
selected by market 
demand, urban 
distributors, or 
processing companies

Type of Production 
and exploitation 
of land

Smallholding, planting 
area less than 1 ha

Small and medium 
farmers of 1 to 4 ha

Medium to large 
farmers from 10 to 
150 ha

Efficiency 2–10 t / ha (extremes from 
0 to 15 t / ha)

15–25 t / ha (extremes 
from 8 to 30 t / ha)

20–35 t / ha (extremes 
from 10 to 50 t / ha)

Market Far from urban centers or 
markets

Medium proximity 
to urban centers or 
markets

Close proximity to 
urban markets

Cost of production US $ 600–1200 / ha US $ 1500–2500 / ha US $ 3000–4500 / ha

Endpoints 
production

Production for self-
consumption, exchange 
and less than 20% sale to 
the market

80% to the market To the market (100%)

Table 1. 
Characteristics of family farming potato production systems and their relationship with seed production 
and use.
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domestication of cultivated species took place from species that gave rise to various 
potato morphotypes called native varieties that are characterized by their various 
shapes, colors, and size. Archeological remains suggest that Pre-Columbian and 
Inca cultures were possibly those that contributed to selecting and developing the 
cultivated species that are currently known. Among the species cultivated in Peru 
are; Solanum tuberosum sp. andigena, Solanum goniocalyx, Solanum stenotomum, 
Solanum x chaucha, Solanum x ajanhuiri, Solanum x juzepczuki. As a result, farm-
ers have a great diversity of potatoes that contribute to their resilience and food 
security strategies. For example, the diversified multi-variety planting with more 
than two cultivated species of potato in a single plot in the high Andean zone called 
Chaqro, is a strategy that allows them to manage and mitigate the effects of climatic 
risks such as frost or the incidence of pests and play an important role in the in-situ 
conservation of native potato diversity [18].

According to the national agricultural census carried out in 2012 
(CENAGRO-2012), in Peru there are approximately 2,160,000 farmers, of which 
90% have less than 10 ha and correspond to the category of small and medium 
farmers [13]. In the case of the high Andean zone of Peru, the average land-
holding per family is 0.80 ha where small farmers, especially traditional ones, 
practice diversified agriculture with potato crops as head crops, corn (Zea mays 
L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), broad bean (Vicia 
faba L.), tarwi (Lupinus mutabilis Sweet) and some vegetables [17, 19, 20]. Potato 
cultivation in Peru generates permanent work for approximately 710,000 families 
with 33 million daily wages in all tasks and production activities, harvest and 
post-harvest.

Potato production generates approximately, a corresponding demand for 4.5 
million tons of seed tubers annually, thus constituting an important activity in the 
generation of income and the basis of their food security [6]. The average per capita 
consumption is 90 kg/person/year and continues with a growing trend despite the 
introduction of other foods, both those from government social programs and the 
flow of industrialized or processed products that are gradually causing changes in 
the rural communities diet [18].

3. Seed systems in potato cultivation

Seeds are the principal input of agriculture, regardless of the production system, 
the technology used, and the end product point. Consequently, the supply of seeds 
is a function of the predominant seed systems in a region where formal systems 
(certified seeds) and informal systems (non-certified seeds) coexist. Various actors 
from public and private institutions, producer organizations, plant breeders, ser-
vice providers, technical assistants, agricultural innovation centers and universities 
participate in both systems; likewise, commercial potato and seed producers and 
traders. Seed inspectors also participate in the certification, supervision, marketing 
and distribution of seeds [3, 20, 15].

The coexistence of informal and formal systems is unavoidable and possibly 
the same actors participate in both systems; however, each has its own charac-
teristics. Formal systems produce and use generally modern certified seed from 
conventional production systems (Figure 1); it typically works for a limited sector 
of farmers [3, 21]. In contrast, informal potato seed systems use native seeds or 
so-called local, artisanal or personal seeds, with a natural dynamic such as the 
exchange of seeds that dates back several centuries and, for various reasons, often 
produces quality seeds. Although the informal seed system is complex, there are 
many links between the two systems [9, 11, 22].
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Family farming contributes significantly to the production of both certified 
and non-certified seeds; Currently, modern varieties are registered in the national 
registry of commercial cultivars, as well as native varieties with greater demand in 
the national market, which may be subject to certification [15].

3.1 Access to seeds categorized as higher quality

The production of elite seeds such as pre-basic and basic potato is in the charge 
of public and private institutions that have infrastructure and laboratories for 
the accelerated multiplication of potato cultivars with the highest demand in the 
market. Generally, the maintenance and management of a seed program has high 
costs because it is a highly specialized activity. In many developing countries, these 
functions are often performed by public sector breeding programs [10, 11, 15]. 
Consequently, the sustainability of certified seed production in family farming 
systems is weak, because it is almost impossible to maintain improvement programs 
with their own resources that do not allow them to access new varieties and/or 
produce seeds of higher categories (genetic, basic or registered).

For this reason, the producers of seeds of certified, authorized and declared 
categories depend on the operational and logistical capacity of the institutions or 
companies that produce the pre-basic and basic seeds. Delays in the availability of 
adequate quantity and quality of seeds can cause large bottlenecks in the production 
of quality seeds. Therefore, it is necessary to promote the establishment of agree-
ments or contracts between seed producer organizations and public improvement 
programs that establish commitments to deliver seeds with quantity, quality and 
punctuality [10]. Likewise, it is necessary to strengthen the capacities of producers 
and users of quality seeds with training methodologies where knowledge is gained 
through participatory and experiential practices.

3.2 Seed quality in family farming systems

Four key characteristics have a big impact on the quality of the harvest of a 
potato field: physiological age, genetic purity of the seed, size and phytosanitary 
appearance of the seed [6, 23]. When referring to seed tubers, in the case of high 
Andean farmers, quality refers to the level of response of the seed to adverse agro-
climatic situations. When a local variety does not respond to the expectations of the 
farmer who uses the seed, distrust of the seed producer begins and it is classified 

Figure 1. 
Potato seed systems.
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as poor quality or degenerate and is generally discarded. Potato degeneration is the 
main cause of reduction in yield or quality caused by accumulation of pathogens 
and pests in planting material due to successive cycles of vegetative propagation and 
it has been a long-standing production challenge for farmers and potato growers 
around the world [24]. In the Andes, seed degeneration caused by virus infection is 
much slower at altitudes greater than 2800 masl and even more reduced at altitudes 
greater than 3500 masl [6, 25].

Native cultivars managed by high Andean farmers have been maintained for 
several years with relatively low rates of disease spread. This is supported by studies 
carried out in traditional Andean potato seed systems during the last 30 years; they 
often found relatively low frequencies of virus-infected tubers limiting yield [6]. 
Farmers maintain local knowledge to define whether a seed is of quality or not; 
among them, knowledge of the phytosanitary status by verifying the presence 
of pest insects such as the Andean weevil (Premnotryphes spp.) that damage seed 
tubers; fungal diseases such as wart (Synchytrium endobioticum), powdery scab 
(Spongospora subterranea); and bacteria such as potato smut (Tecaphora solani) or 
blackleg (Pectobacterium ssp.) and finally the discoloration or dwarfism caused by 
viruses [16]. When farmers observe tuber deformations, they associate that the seed 
is tired, degenerated or aged, due to the use of a batch of seeds for several planting 
seasons, generally for more than five years [24].

Factors such as genetic material, agronomic management and cultural practices 
contribute to maintaining the quality of potato seed in the informal systems of the 
Andes. Agricultural practices, location of seed production fields at high altitudes, 
types of tillage, crop rotation, diversified planting, sectoral management and the 
number and height of hills are factors which can reduce the phases of diseases 
transmitted in the soil leading to degeneration of seed tubers [6, 26]. Other intrinsic 
factors of each variety such as resistance to Potato virus Y (PVY) and Potato leafroll 
virus (PLRV) in S. tuberosum ssp. andigena may contribute to reducing the spread of 
these diseases between plants or their replication within plants [6, 25].

3.3 Perception of the concept of quality seeds in the informal sector

In informal sector seed production systems, perceptions of seed quality differ 
from those of formal system farmers; while farmers who use their own seed rate 
their seeds as good, bad or fair, farmers with formal systems trust some certifying 
body that guarantees the quality of the seeds [3, 15]. Farmers in the high Andean 
areas associate quality through color, shape, size and the presence or absence of 
deformations in the tubers [16, 27].

Currently, with the introduction of modern varieties, this can be observed in 
rural communities, where good farmers are those who meet the minimum require-
ments for quality seed production. In the perception of quality, small farmers in the 
Andean highlands prioritize personal values such as safety, health and well-being 
and based on this logic they prefer seed tubers that reflect the characteristics of the 
variety in combination with seed quality signals that reflect altitude, soil and low 
input management and do not associate the latter with tuber seeds from the formal 
seed sector [28]. Seed certification cards do not substitute for perceptions of quality 
that farmers have learned to use and seeds they trust for generations.

A very important aspect is the leading role played by women in family farming 
systems in the management of agricultural units. They are not only responsible for 
family care and feeding the children but also for the maintenance of basic resources 
for family food security. Women play a key role in maintaining the genetic diversity 
of potatoes, particularly in the seed selection stages of the complex varieties, stor-
age and planning of future plantings [15, 29, 30]. In the higher altitudes of Andes 
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of Peru and Bolivia, women act as conservationists preserving the greatest possible 
diversity of bitter potatoes (Solanum Jueepczukii and S. curtilobum) that can be 
grown at temperatures as low as −3°C and can be dried to obtain traditional prod-
ucts such as chuño and moraya consisting of frozen, dried and dehydrated potatoes.

The selection of seeds of the native varieties is carried out based on the mor-
phological interpretation and the in-situ yield of the crops, the culinary quality, the 
crop yield, the quality of the processing and the resistance to diseases, drought or 
flood. Consequently, controlling genetic diversity through careful management of 
variety and combinations allows communities to manage risks, particularly where 
climatic stress is more frequent and intense.

3.4 Certified seed potato production in the formal system

The production of certified seeds starts from in vitro seedlings with origins fully 
proven under specific production guidelines or standards and these stocks move 
through a series of steps following clear regulations and result in high-quality certi-
fied seeds [6, 31]. The aforementioned procedure includes the production of virus-
free seedlings for both native and modern cultivars. However, the exclusion from 
the registry of commercial cultivars of other native varieties with high potential 
in quality and yield are limiting in the development of the seed system in the high 
Andean zone; this may influence the fact that a lack of virus cleaning in relegated 
varieties can result in low yields and low profitability [11].

In Peru, rice, cotton and hard yellow corn crops have the highest rate of use of 
certified seed; while, for crops such as potatoes and starchy maize, the seed use rate 
does not exceed 1% [8]. Therefore, it is explained that formal systems respond to 
the expectations of large commercial farmers and companies that prioritize a very 
limited number of crops with modern or hybrid varieties [21]. In the case of the 
cultivation of potatoes and other Andean grains, the flow of seeds works with its 
own dynamics and operates at different scales in local contexts which guarantee the 
supply of seeds [20].

In the past 10 years, there have been some favorable changes in seed legislation, 
improving the production, access and use of quality seeds which has gone some way 
towards strengthening local seed companies in relation to supporting the sustain-
ability of family farming [21]. The renewed legislation in the regulation of specific 
potato seeds incorporates the declared class that is not subjected to the certifica-
tion process, so the guarantee of its quality is the responsibility of the producer; 
additionally, it includes traditional seed categories from native potato biodiversity 
[31]. However, there are several important challenges to improve the institutional 
framework of the seed authority and to apply what is indicated in the Seed Law, 
which states the production and use of quality seeds is of national interest [32].

The limited supply or flow of premium seeds is unfavorable to the sustainability 
of individual seed producers as well as organized ways to meet local demand for 
quality seeds. Another aspect that influences the sustainability of the formal sector 
is the slow development of technology for harvesting and post-harvest aimed at 
family farmers, which is why some work has to be carried out manually or with 
rudimentary tools, reducing the efficiency of the process [11].

The Ministry of Agriculture (as the governing body of the agricultural sector), 
international cooperation and other private initiatives have made great efforts and 
investment to promote the adoption of quality seed; however, the use of certified 
seed has had little penetration into informal seed systems, as is currently the case 
in most developing countries. The rate of use of certified seed of the formal system 
in Peru is 0.5%; while in China and India it can reach up to 20% [8, 24]. Small 
farmers in developing and particularly high Andean countries continue to use seed 
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tubers acquired through the informal seed system, that is, produced on the farm or 
purchased from neighbors or local markets. The formal certification system in Peru 
is a much smaller percentage of total seeds used (less than 5%), but it is useful to 
introduce genetic material free of viruses and other key pathogens that affect the 
quality of the seeds. This explains why in recent years the national average yield has 
had a significant increase from 8.5 to 15.5 t ha−1, thanks to the growing adoption, 
access and use of quality seed tubers.

It is possible to improve the access and use of quality seeds by advocating for 
the capacity building of the official sector (Ministry of Agriculture), extension 
agents, producers and seed users. Between 2011 and 2015, FAO, together with the 
Ministry of Agriculture and the National Institute of Agrarian Innovation (INIA), 
implemented a joint initiative to promote the use of certified seeds of potato, starch 
corn and quinoa with farmers of family farming systems. The training method 
through the FFSs facilitated the process and 32 producer organizations managed to 
integrate into the formal sector for the production of certified seeds. The yields of 
the three crops indicated above increased by 50%. Agricultural organizations and 
individual producers that chose to use certified seed managed to increase yields by 
64% in potatoes, 56% in quinoa and 31% in starchy corn respectively, a fact that has 
contributed to improving food security in the high Andean zone [15].

3.5  Agronomic management of potato seed production in family farming 
systems

Informal potato seed production systems are typically traditional, incorporat-
ing components and technologies from the local environment, as well as projects 
promoted by the public and private sectors. The informal system has its own 
characteristics and strategies to produce and supply the demand for seeds of local 
communities. It involves the appropriate seed size, the correct cultivars for the 
particular niche, utilizing certain production areas (typically in higher mountain-
ous areas to reduce the degeneration of stocks from virus infections), a complex dis-
tribution system of seeds and good coordination between regions in Peru according 
to planting seasons and seed needs.

In family farming systems, the supply of seeds does not represent a great dif-
ficulty, applying traditional techniques and not necessarily using certified seed, 
producers can achieve a multiplication rate of 1:32, supposing that an average seed 
tuber of a native cultivar generates six stems. However, the seeds can have high 
rates of infection by bacteria, fungi, viruses and viroids. The huge reserves of 
native potatoes cannot always be of quality during successive cycles of vegetative 
propagation [9, 24, 33].

The flow of potato seeds in Peru is characterized by a horizontal and vertical 
distribution, a fact that contributes to the active exchange of genetic material 
between communities and farmers [16]. Seed exchange spaces occur at local fairs, 
religious festivals and community anniversaries, where not only seeds of native 
varieties are exchanged, but also modern varieties that were incorporated into their 
production systems; with however, the risk of displacing their local varieties for the 
best yield and demand in the markets.

3.6 Agronomic management of potato seed production

The main form of multiplication of the potato crop is through clonal propaga-
tion; however, this potato seed production system can be laborious, expensive and 
time consuming to accelerate seed multiplication [6, 9, 33]. Due to the low multipli-
cation rate (generally 1: 6), it takes many years to produce significant quantities of 
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seed to meet the demand. The clonal seed is voluminous, delicate and constitutes a 
vehicle for the transmission of diseases, increasing the cost of producing, handling 
and transporting the seed; consequently, seeds represent a high percentage of 
production costs: 20–25% is typical in developing countries [25].

In family farming systems, the fields for the production of potato seeds should 
be located between 3,000 to 4,200 masl; in addition to being part of the traditional 
food safety and quality management strategies. In the case of certified seed produc-
tion, it is a mandatory requirement and its non-compliance may be grounds for 
rejection in accordance with the specific regulation of potato seed. Seed produced in 
cold climates exhibits a broader growth curve and greater productive potential than 
seed produced in hot climates [16]. In the higher altitude areas, the bitter potato 
varieties that belong to S. curtilobum y S. juzepczukii predominate. In the interme-
diate zones very diverse varieties are cultivated belonging to S. tuberosum subsp. 
andigena, S. goniocalyx, S. stenostomum and S. chaucha. The areas of lower altitude 
are characterized by a greater presence of modern or hybrid varieties (S. tuberosum 
subsp. tuberosum x S. tuberosum subsp. andigena).

Fallow systems, locally known as laymes, predominate in higher altitude areas. 
These involve communal lands subdivided into well-defined sectors that are man-
aged under the decision of the local authorities. Rotation commonly begins with 
potato cultivation during the first year, followed by rest or barley cultivation in the 
second year [5]. The rest period fluctuates between 3 to 6 years and is characterized 
by the rotating use of the sectors. This applies mainly to subsistence family farming.

Soil preparation is an important practice given the requirements of the potato 
plant to facilitate good root development and facilitate complementary agricultural 
tasks such as hilling and weed management. The use of agricultural machinery 
and tools in Andean farming currently depends on the location and physiography 
of the land. In areas with steep slopes, for primary tillage, the ancestral tool called 
“chakitaclla” is commonly used, a manual tool adapted for the difficult geographical 
conditions of the Andes and consisting of a 1.5-inch wooden arm and metal teeth.

The selection and classification of seeds are practices that consist of selecting 
healthy potatoes in the first instance, then classifying by size; it is generally custom-
ary to classify seed tubers into large, medium, and small size. Due to the volume of 
crops, their delicate and perishable condition and the possibility of transmitting 
diseases during harvesting, post-harvest and seed processing, it represents a high 
percentage of production costs [25].

In traditional systems, sowing is done manually, where 15 to 20 daily wages 
per hectare are used. The amount of seed varies depending on the size of the seed 
used. Medium-sized seeds (40 to 60 g) are equivalent to 1800 to 2000 kg of seed 
per hectare. Some farmers prefer small tubers whose weight does not exceed 60 g, 
therefore, adjustments are made in the spacing between plants and between rows. 
With a distance of 20 cm between plants and 80 cm between rows, a population of 
37,000 plants per ha is estimated. Whole seeds are used as it is considered that the 
risk of disease transmission and virus infection is reduced.

The production of seed tubers from potato botanical seed progeny is a tech-
nological alternative for obtaining abundant first-generation seed tubers of high 
phytosanitary and physiological quality in a short period of time. This technol-
ogy can help reduce production costs and increase the multiplication rate of 
high-quality seeds, in addition to being kept for five to seven years with a high 
germination percentage equal to or greater than 70%. However, for family farming 
systems that mostly use native varieties, the use of botanical seed is not common 
due to its unstable behavior in terms of risk of segregation [6]. In addition, the true 
seed management process is a challenge for the environmental conditions of the 
Peruvian Andes due to sudden changes in temperature, precipitation, drought and 
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other adverse factors. A seedling from true seed when affected by frost for example 
is totally lost, while a stem from true seed in its early stages can be recovered by a 
regrowth of the seed tuber.

‘Hilling’ is a complementary task that consists of accumulating soil in the form 
of a ridge or ridges at the base of the stem of each plant when the plants reach 
between 30 to 40 cm in height (or 55 days after sowing), in order to give the plant 
support, protect tubers from pests and damage by biophysical agents such as low 
temperatures [6, 26]. The number of hills depends on the characteristics of the soil, 
the variety, the sowing season and the production system; therefore, in the high 
Andean areas for some varieties hilling may be one or two ridges [26].

Regarding pest management, farmers integrate agronomic labor, physical, 
mechanical and chemical control methods. In traditional production systems they 
are less dependent on external inputs such as industrial pesticides. Agronomic 
practices are part of traditional strategies in potato production to reduce damage 
from biotic and agricultural factors such as crop rotation, variety selection, use 
of good quality seed tubers, sowing density, timing sowing depth, sowing depth, 
number and timing of hilling and pest management and harvest [6]. A physical 
control strategy includes the use of barriers with species such as Tarwi (Lupinus 
mutabilis L.) and the use of polyethylene as physical barriers to prevent the entry 
of Prennotrypes ssp. For disease control they mostly use chemical products as in the 
case of the oomycete Phytopthora insfestan (Mont.) de Bary.

To manage weeds in seed fields, farmers combine agricultural practices and 
mechanical and chemical methods. In family farming systems tillage is an impor-
tant activity for weed control in potatoes, regardless of region or production 
system, and includes a wide variety of tactics ranging from simple manual weeding 
to the use of complicated implements of cultivation [6, 16]. Chemical control is 
mostly carried out in conventional production systems, but the options for active 
ingredients of herbicides recommended to control potato weeds are limited; while 
in traditional production systems it is carried out during the production practices of 
preparing the land and hilling. The aforementioned activities directly or indirectly 
involve the concept of integrated weed management where control methods with 
agronomic work, as well as physical and mechanical work are combined with local 
knowledge of weed biology [34].

Research in Peru also indicates potentially complex host-pathogen interactions 
in degenerative diseases. The incidence of the virus could decrease in subsequent 
generations (that is, not passing from an infected mother plant to all the tubers 
of the progeny) and that this phenomenon is strongly favored by the production 
of seeds in high altitude areas. The effectiveness of management practices, such 
as symptom-free planting selection and clearing, is highly dependent on disease 
detection.

When the potato crop reaches harvest maturity, farmers carry out the harvests 
that can be manual or mechanical in some cases, depending on the production 
system; however, due to the difficult geographical conditions, it is usually manual. 
The seed tuber storage systems are carried out according to the characteristics of 
the cultivar, the harvest time, and the dynamics of the seed market. In subsistence 
family farming systems [14], the seeds are stored indoors or on pallets, covered with 
straw and muña (Minthostachys mollis) or eucalyptus (Eucalyptus globulus) leaves. 
In intermediate family farming systems that are in the process of articulation to the 
markets, the harvesting and processing of seed consists of the selection, classifica-
tion, bagging and labeling as long as it is certified seed. For informal systems this 
process may differ. Seed producers make large piles of tuber seeds and are protected 
from frost and sunny days with a thick layer of straw. Under these conditions stor-
age can be successful for up to three months.
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4. Conclusions

In family farming potato seed systems, informal or non-accredited seed systems 
predominate over formal systems with small farmers maintaining their native or 
traditional varieties with seeds selected from their own harvest to guarantee future 
planting seasons. On the other hand, in formal systems, priority is given to the 
production of certified seeds of modern varieties of higher categories such as basic, 
registered and certified -- which are regulated by a certifying body. In this context, 
in family farming, the use of certified seeds is not a priority or a conditioning factor 
for potato production; farmers maintain strategies such as the exchange of seeds 
that since ancient times guarantee the flow of seeds. However, the quality of the 
seed is not always the best, due to the high levels of genetic degeneration of its seed 
matter due to the low rotation or refreshment with quality seed. Consequently, the 
use of low-quality seeds has an impact on yield and are not self-sustaining.

Certified seeds cannot always be considered quality seeds; regulatory and insti-
tutional factors such as non-compliance with the quality parameters established 
in the Seed Law and the specific regulation for each class and category of seeds, 
adulteration of certification cards and the lack of internal control in institutions 
and companies that are responsible for generating seeds of the genetic and certified 
class weaken the seed system, generating distrust in users of quality seeds.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

Potato apical rooted cuttings (ARC) originating from juvenile simple rounded 
leaf mother plants are a significant new way of transplanting and field growing of 
seed potatoes under smallholder field conditions in the tropical highlands. The aim 
of this paper is to highlight the development of the technology by researchers and 
farmers in Vietnam, Philippines, Kenya and Uganda. The development of cultivars 
with late blight resistance for which no source of tuber seed was available stimu-
lated the creation of using ARC. The demystification of tissue culture by the 1980s 
greatly aided this development. The key hurdle was to multiply tissue culture plants 
in beds of growing media and maintain the physiological young stage of the mother 
plants from which apical cuttings could be repeatedly taken for several months to 
produce ARC for sale to farmers who demanded the new cultivars (cvs) with all the 
desirable attributes. The technology was first developed in warmer climates at lower 
elevations of less than 1,500 meters above mean sea level (mamsl) but gradually it 
was successfully developed at cooler climates in East Africa. The technology is well 
established in the highlands of Vietnam and Philippines. The largest family opera-
tion is producing over 4 million ARC annually. These high-quality ARC along with 
improved cvs have markedly improved yields of smallholder farmers, improving 
food security and increasing their income levels. In Kenya and Uganda there is a 
rapid adoption of ARC by seed producers, smallholder farmers and youths. The 
ARC revolution is bringing a great deal of excitement and promise of prosperity to 
remote poor highland communities.

Keywords: Apical Rooted Cuttings, tissue culture, juvenile mother plants,  
seed potatoes, smallholder farmers, food security

1. Introduction

Potatoes, the third most important food crop globally, is a major crop for both 
food security as well as income in many tropical countries. Millions of smallholder 
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resource poor farmers now grow potatoes. Productivity measured as harvested 
yields remains low in comparison to the yields obtained by European and North 
American farmers. The USA has an average yield of 49.8 t/ha as compared to less 
than 11 t/ha for countries in East Africa and 15 t/ha for the Philippines and Vietnam 
[1]. One of the primary reasons for this disparity is the lack of quality seed potatoes 
of suitable cvs. The continual reuse of seed stocks for many generations leads to 
severe virus infection. Bacterial Wilt infected seed caused by Ralstonia solanacearum 
further hinders potato production in the mid elevation tropical settings [2].

Traditional western seed potato production systems have been copied in many 
tropical countries with minimal success. Prevalence of soil borne diseases and 
virus diseases build up over several generations of seed propagation coupled with 
prolonged seed storage at warm ambient temperatures are major constraints. The 
amounts of tuber seed produced are a small fraction of the actual seed require-
ments, the cost is prohibitive and often seeds of desired cultivars are not available 
at the right time. Seed importation fills a small gap in the seed requirement of 
wealthier farmers in some countries.

Over the past 40 years, there has been a major push towards developing suit-
able seed systems in various countries with donor support and expertise from the 
International Potato Center (CIP) as well as experts from numerous national and 
international agencies. China has strongly supported a diverse set of measures 
using tissue culture, large scale greenhouses for mini tuber production both in 
substrate as well as in aeroponic systems. Government subsidies were a key part of 
this success both for capital investments as well as subsidized pricing for the buyers 
of the mini tubers. India has developed a large-scale seed production system which 
primarily benefits larger landowners who have the financial means to provide all the 
needed inputs to grow higher yielding crops from certified or higher standard seed 
potatoes grown in the northern isolated areas of the country.

Unfortunately, majority of smallholder farmers in most tropical countries did 
not benefit from these seed systems and yet grew potatoes as a food and income 
security crop. Potato production, although yields were exceptionally low, still fit 
into their cropping systems and was also considered a valuable cash crop. Two 
factors started the change in the opportunity for smallholder farmers to get bet-
ter quality planting materials. During the 1970s there was an international focus 
stimulated by CIP on evaluating cvs with late blight (Phytophthora infestans) resis-
tance in many parts of the tropical world. Cvs with superior resistance to late blight 
proved to be a large benefit to farmers who could not afford or access fungicides. 
Farmers expressed high demand in these new cultivars but there was no immediate 
source of seed potatoes. The second major development was the modernization 
and simplification of the use of tissue culture. Rapidly, the technical aspects of 
tissue culture were being learned and adopted by young scientists, technicians, and 
private businesses in many developing countries. CIP started distributing these new 
late blight resistant cvs for evaluation in different countries of South East Asia and 
Eastern Africa.

2.  Principles for successful utilization of apical rooted cuttings as 
transplants for tuber production

The physiology of the transplant is the most important factor in maximizing the 
growth and productivity in the greenhouse or field for tuber production. During 
the 1970s and 80s the use of stem cuttings became a rapid way of producing mini 
tubers in substrate in greenhouses. These stem cuttings generally originated from a 
sprouted tuber and always had compound leaves indicating physiological maturity 
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thus yielding only a 2–5 tubers per stem cutting. With the popularization of tis-
sue culture, the plants in vitro had simple rounded juvenile leaves and such tissue 
cultured plants, when transplanted to a substrate, produced many tubers, often 
exceeding 15 per plant. This leads to the thinking that if the juvenile plantlets with 
simple rounded leaves could be maintained in a substrate and from which apical 
cuttings could be taken periodically over an extended period, a large number of ARC 
could be obtained. Once transplanted to the field, many tubers could be obtained 
as first field generation seed tubers (G1). It is critical to maintain the mother plants 
in a juvenile simple rounded leaf state and then the apical cuttings would develop 
into excellent ARC for transplanting to the field [3, 4]. Figure 1a and b illustrates 
the desired physiology of the mother plants and the ARC. Figure 1c shows the initial 
phase of compound leaf formation. Depending on the genetic background of the 
cv, these would be discarded as these would not develop into a high tuber produc-
ing plant.

Environmental factors are also important to consider in a successful main-
tenance of rapidly growing juvenile mother plants in substrate filled beds. The 
tropical environments are generally in the 11 to 13 hour photoperiod range, which 
is conducive for tuberization. Extending day length to 16 hours improved apical 

Figure 1. 
Mother plants and rooted cuttings: a. Tissue culture origin mother plants maintaining the juvenile simple round 
leaf stage; b. Apical rooted cutting with simple rounded leaves; c. Apical rooted cutting with undesirable trait of 
already developing compound pointed leaves.
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cutting production [5]. Photoperiod is easily prolonged by turning some lights on 
during the evenings over the mother plant nurseries. A light break of 1–2 hours is 
sufficient to simulate the effect of extended day length. Warmer air temperatures 
encourage rapid growth of the plantlets and their regrowth after harvesting apical 
cuttings. Minimum air temperatures above 16°C are ideal such as in Dalat [3] at 800 
to 1,500 mamsl and in the Philippines at 800 mamsl [5].

At higher elevations, a proper greenhouse may be needed. At lower elevations, 
productivity is substantially reduced due to overall heat stress with minimum and 
maximum temperatures above 23°C and 31°C, respectively [6]. Reducing the light 
intensity through shading also helps to delay physiological aging and naturally 
delays tuberization.

Most cultivars can be maintained in a young vegetative stage up to 6–9 months 
with appropriate nursery management with extended day length, warm tempera-
ture, and appropriate spacing and fertilization [7]. Gibberellic Acid (GA3) applica-
tion was helpful for some cultivars but was later not being practiced. The use of 
hormones is not necessary when rooting ARC.

Interplay of factors would affect the survival, growth and yield of ARC in the 
field. Availability of water at transplanting and during the growth cycle is crucial 
for better survival and yield of transplants. In earlier studies, the most important 
factors that would influence growth and yield were determined. Cuttings perform 
better when planted in raised beds compared to planting in flat beds or furrows. 
Hilling up improved tuber yield (size, number, and weight) and reduced greening 
of tubers. Pruning of the apical shoot after transplanting did not stimulate more 
branching nor improve yields. Plant populations greater than 40,000 transplants/
hectare did improve total yields but reduced average tuber size. The highest yields 
were at 100,000 plants/hectare. The cost benefit ratio and the goal of the field pro-
duction will determine the ideal spacing in each season for most varieties. In terms 
of fertilization, nitrogen supply was the most important, as deficiency or excessive 
nitrogen supply reduced yield [4].

Genetic background of the cultivars being utilized is a major consideration. 
Generally, the cultivars from Solanum andigena and Solanum phureja backgrounds 
are most prolific and remain longer physiologically young. This is partially because 
tuber induction in these species is not so strong at 11–13 hours of photoperiod. 
Most Solanum tuberosum cultivars, are adapted to the longer days of Europe or 
other temperate climates and are strongly induced to tuberize under the short-day 
tropical conditions. Cv Igorota, a cultivar bred with Peruvian germplasm produced 
3 times as many apical cuttings as compared to the European cv Granola in a trial in 
the Philippines [2].

Knowing the cultivars as well as the environment and managing them appropri-
ately are essential for successfully launching a program of mass production of ARC 
and their transplanting in the field for further multiplication.

3.  Vietnamese farmers demystify sophisticated tissue culture technology 
for the successful utilization of apical rooted cuttings as transplants 
for tuber production

3.1 Background

Potato production was severely negatively impacted by the post war period 
in Southern Vietnam with a lack of clean healthy seed potatoes for viable potato 
production. That, coupled with a lack of good cultivars, placed the farmers and 
researchers in a difficult situation. The Center for Experimental Biology requested 
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CIP for new cultivars with resistance to Late Blight. A total of 16 cvs were received 
as virus free tissue culture plants. After some quick field evaluations there were 3 
cultivars that the farmers demanded. With no source of seed tubers available, farm-
ers took it upon themselves to take the tissue cultured plants and multiply them in 
vitro and then to establish the plantlets in a substrate as mother plants from which 
cuttings could be taken and after rooting, be transplanted to the field [3, 8]. With 
the support of researchers, farmers quickly learned how to maintain in vitro plants 
with the use of coconut water and some supplemental nutrients in a corner of their 
bedrooms with plastic walls and a Bunsen burner for sterilization. Then through 
trial and error, a suitable substrate media was developed using subsoil, sand and 
fine coconut husk material, composted manure and other materials to grow the 
mother plants.

Initially, 10 farming families established small outdoor mother plant nurseries 
on less than 100 m2 of land next to their homes. Nine of those farmers maintained 
tissue culture plants in their homes [3]. These multipliers were soon selling over 2.5 
million ARC in total annually to smallholder farms in Dalat area [8]. With the rapid 
adoption of the new cultivars, the demand for ARC was reduced and soon only 3 
farmers remained with tissue culture plants and mass production of ARC.

3.2  Recent developments in the utilization of ARC by farmers in Dalat and 
Lamdong Province

Production of G1 tuber seed directly in the field from ARC is a routine practice 
in Lam Dong province (1,000–1,500 mamsl). In 2020, there were 4 major ARC 
propagators who supplied around 5 million ARC to potato growers in the area. The 
largest multiplier sells 3 to 4 million ARC a year depending on the growers’ demand. 
Some half a million marble size mini tubers were also harvested from the mother 
plant beds and sold as quality planting materials to the growers. With good agro-
nomic management and plant density of 50–55 thousand per hectare, the average 
tuber yield of 20–25 tons per hectare (t/ha) has been obtained from the ARC with 
over half of that being ware potatoes. There were cases that yields of over 40 tons t/
ha were obtained and up to 70% were sold as ware potatoes.

Production of the ARC normally starts in May with tissue cultured disease-free 
plantlets in Dalat. Those are raised in stock plant beds on good substrate, under net 
house conditions with about 50% shade. The first two or three cuttings harvested 
from a stock plantlet are used for establishment of mother plant beds (Figure 2).

Further apical cuttings are then harvested for production of ARC for the tuber 
seed production in Dalat and lower elevation areas of Don Dzuong and Duc Trong 
(1,000 mamsl). The whole process goes through the months of May to October with 
rigorous application of hygiene measures and crop protection. The transplanting 
of ARC into the field takes place mostly in November and December with sprinkler 
irrigation as rainfall is minimal. The ARC are arranged in wooden trays holding 
1,000 each (Figure 3), and when ready for planting, are delivered to the growers’ 
farms by the multiplier on a truck or taken directly by the grower himself on a 
motorbike.

Not as in the past, when an apical cutting was rooted in a small hand-made 
banana leaf pot of the size approximately 2 x 3 cm for planting into the field, ARC 
are now rooted in a substrate cube of the size 3 x 3 cm (Figure 4). The cubes are 
mechanically produced in mass by a uniquely designed motorized machine. The 
substrate is basically the same, i.e. a mixture of fine and clean clay loam subsoil, 
coconut fiber dust and some composted manure. Much of the substrate production 
operation has also been mechanized to minimize the costs on screening, mixing the 
component materials and making the rooting cubes.
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Figure 2. 
Taking apical cuttings from mother plants.

Figure 3. 
Rooting of cuttings in wooden trays.
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Tissue culture is currently carried out in a research institution and three 
private farmers’ laboratories. Expensive test tubes and/or Erlenmeyer flasks 
have been replaced by plastic bags and boxes or reused serum bottles in raising 
the in vitro plantlets. This helps reduce the cost on culture vessels and labor for 
washing.

For the last 25 years, only two potato cvs are used for production for fresh 
market held by farmers, locally namely 07 (internationally known as Utatlan) and 
PO3 (released as Igorota in the Philippines). Seed stocks are customarily renewed 
by planting ARC after several generations in field production. Cv PO3 is resistant to 
several major viruses, thus seed tubers could be retained from ware fields up to 5–6 
generations provided no fungal and/or bacterial infections occur, while cv 07 could 
hold only for 2–3 generations due to its high susceptibility to viruses.

Though many operational techniques have been improvised, the basic steps 
in the technological line remain the same through the years since the early 1980s: 
disease free in vitro plantlets – stock mother plants trays/beds – mother plants beds 
– apical cuttings rooted in pots – G1 seed fields. The improvements take account for 
the better laboratory equipment, greenhouse facilities, irrigation system, mechani-
zation in the preparation of rooting substrate and pots/cubes and delivery system. 

Figure 4. 
Rooting of apical cuttings in substrate cubes 3 x 3 cm in size.
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These all, coupled with the great availability of quality pesticides and fertilizers, 
help assure stability and success of the novel seed potato system in Dalat.

From an economical point of view, the ARC propagation is a profitable busi-
ness. With the current price of USD 1.75 per 100 ARC, the total revenue of all the 
multipliers would be USD 87,500 for the 5 million ARC a year. Their net profit is 
estimated to be about 30% of the amount. A little income would be added from 
the mini tubers harvested from the mother plant beds. Though the unit price has 
increased by 2.5 since the early 1990s the proportion of net profit seems unchanged 
mainly due to the situation that transplanting of the ARC in the field (sale of ARC), 
take place primarily only during two months (November and December). Whereas 
the mother plants could be maintained for apical cuttings harvesting for up to 
4–5 months [9].

Partly, inflation of inputs, especially the labor cost, adds some strain to improve-
ment of net profit. However, the scenario shows that most of the benefit from the 
ARC technology has been going to the small holder farmers who make much higher 
profitability from their potato production owing to the higher quality of planting 
materials. The fact that the average potato yield in Dalat has been lifted from less 
than 10 t/ha during the late 1970s to around 15 during the 1990s and 25 at the pres-
ent is largely attributable to the use of disease-free ARC for seed propagation.

4.  Apical rooted cuttings permitted rapid adoption and maintenance of 
new cultivars for smallholder farms in Philippines

4.1 Background

The Regional Germplasm and Training Center of CIP in the Philippines was 
established in 1982 to multiply new sets of cvs for distribution and evaluation by 
institutions in Southeast Asia and the Pacific. ARC were successfully used for quick 
multiplication of tissue culture plants and the subsequent evaluation of diverse cvs 
in five different environments in the country [4].

In 1985–1986, ARC field trials were initiated with highland farmers. In some 
field trials yields were up to 38 t/ha. Based on these preliminary results some 
farmers were willing to buy ARC at nominal price [10]. In 1990, 3 out of 8 new 
clones with superior late blight resistance were selected by farmers. LBR1–5 was the 
most prolific in terms of cutting production while I-1039 and LBR-9 were highest 
yielders. Four of the clones from cuttings out yielded Granola from tubers (control 
check) [11]. LBR1–5, later coded as PO3 and officially released as cv Igorota in 2004, 
was selected for its early maturity, good tuber skin and shape, and high yields with 
large sized tubers. Cv Igorota was initially multiplied and sold for seed by Mr. Peter 
Raymundo, a farmer from Buguias, Benquet [2]. The use of ARC made possible the 
rapid multiplication of pathogen tested materials and introduction of new cvs for 
on farm evaluations.

4.2 Adoption of ARC and new cvs for commercial potato production

The commercialization of ARC for seed potato production was a con-
certed effort of government, private sector and farmers’ organizations. The 
Department of Agriculture provided funds for research and infrastructure 
development; Land Bank provided loans; while Northern Philippine Root 
Crops Research and Training Center (NPRCRTC) of Benquet State University 
conducted research, on-farm trials and dissemination of ARC and new cvs. 
Farmer organizations were multipliers. They bought ARC or invitro plants as 



329

Apical Rooted Cuttings Revolutionize Seed Potato Production by Smallholder Farmers…
DOI: http://dx.doi.org/10.5772/intechopen.98729

source of mother plants. The multipliers produced G0-G3 seed tubers for other 
farmers. NPRCRTC and a farmer cooperator were accredited by the Bureau of 
Plant Industry to produce certified ARC and mini tubers for farmers in Benquet 
and beyond.

Mr. Nelio Compelio is an outstanding multiplier. He started using ARC in 1992 
and invitro plants as source of mother plants in 2010. He replaces his seed stocks in 
2 years or whenever decrease in yields is observed. He started selling Igorota seed 
potatoes to farmers in other municipalities in 1995. Now, farmers have the option to 
buy from him either ARC or seed tubers. He was able to build a big house in Atok 
and another in Baguio out of his production venture. They call these “Houses that 
Igorota Built”.

Several farmer organizations followed the aforementioned example and sup-
ported their members through multiplication of ARC of their preferred cvs. On 
average, tubers harvested from an ARC field-grown crop can be multiplied 4 times 
as seed before selling them to other farmers for table or processing potato produc-
tion. All cooperators attest to the fact that seed production using ARC is efficient 
and profitable [12].

4.3 Impacts of ARC on dispersal of new/recommended cvs

The use of ARC and the informal seed systems by farmers had greatly contrib-
uted to the selection and dispersal of new and improved potato cvs. The dispersal of 
clean planting materials from NPRCRTC accelerated this process. As example, cvs 
Montañosa, Dalisay and Igorota were propagated in nurseries and in farmer’s fields 
prior to its release as official Seed Board Varieties. NPRCRTC had sold 353,000 
ARC of cv Igorota from 1987 to 1994. To date, 7.8 million pathogen tested ARC and 
minitubers were sold. The number of farmers served over the years also increased 
(Table 1).

Distribution of different cvs continues to the present. The most popular is 
Igorota with 3,440,000 ARC and 371,000 G0 mini tubers sold to farmers. The 
demand for other varieties varied depending on farmers’ preferences and market 
demand (Table 2).

Year(s) No. of Individual 
Clients

Planting Material (‘000’s) Distributed to Farmers

ARC G0 tubers Total No. per

Farmer

1987–1994 353 353

1995–1999 305 596 136 732 2.4

2000–2004 226 828 94 922 4.1

2005–2009 752 1,276 121 1,397 1.9

2010–2014 757 1,224 150 1,374 1.8

2015–2019 1,085 1,887 479 2,366 2.2

2020 156 139 152 291 1.9

April 2021 143 138 227 365 2.6

Total 3,424 6,441 1359 7,800

Mean 2.3

Table 1. 
Planting materials distributed by NPRCRTC from 1987 to April 2021.
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The NPRCRTC estimated production cost for ARC is 0.0210 USD/piece while the 
selling price is 0.031 USD/piece. The production cost and selling price per piece of 
invitro plant is 0.23 USD and 0.314 USD, respectively. Whereas, the G0 is produced 
at 0.0858 USD and sold at 0.104 USD per piece.

5.  Kenyan private and public sectors develop and rapidly promote ARC 
technology for farmers

5.1 Background

In Kenya, potato ranks the second most important crop after maize and is culti-
vated in the high-altitude areas between 1,500 and 3,000 mamsl [13]. Production 
is mainly rain-fed and is done in the long and short rains that occur in the period of 
March–July and October–January, respectively. The public institutions mandated 
to produce breeder seed or pre-basic seed potatoes can only meet about 1 to 2% 
of the certified seed demand in the country [14, 15]. These institutions mainly 
adopt the conventional clonal multiplication in which a set of disease-free tubers is 
repeatedly multiplied to bulk the seed. However, this method has low multiplication 
ratios of 3–6 and cannot meet the national seed demand. Certified seed is therefore 
highly priced in Kenya (at a cost of USD 30 to 40 per 50 kg bag) and is estimated to 
account for 20–70% of the total production costs. This compels farmers to use seed 
tubers obtained from informal sources. Such seeds are often infected with bacterial 
wilt and potato cyst nematode, thus resulting in low yields, poor quality produce, 
and spread of pests and diseases. The obtained potato yields are generally low with 
an average of 10 t/ha [16] against the potential of 30–40 t/ha [1, 13].

It is against this backdrop that CIP in partnership with the private sector 
Stokman Rozen Kenya (SRK), Kenya Agriculture and Livestock Organization 
(KALRO), Kenya Plant Health Inspectorate Service (KEPHIS- a body regulating 
seed certification in the country), and private businesses, sought to explore ARC 
as a complimentary rapid seed multiplication technique. The new improved CIP 
cvs: Unica, Wanjiku, Nyota, Chulu, Lenana and Kongo have been trialed against 

Cultivar ARC and Mini tubers Sold (‘000’s)

2006–2010 2013–2017 2018–2020 January to April-21 Total

Granola

a. ARC 94 184 140 5 423

b. G0 Tubers 62 185 194 441

Igorota

a. ARC 1,280 1,544 487 129 3,440

b. G0 Tubers 189 167 15 371

Other cvs

a. ARC 30 26 76 4 136

b. G0 Tubers 14 45 17 76

Total 1,404 2,019 1,100 364 4,887

a. ARC 1,404 1,754 703 138 3,999

b. G0 Tubers 265 397 226 888

Table 2. 
ARC and G0 mini tubers sold by NPRCRTC from January 2006 to April 2021.
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the conventional cv Shangi. Yields obtained from ARC have been robust and 
average 8–18 tubers per plant depending on the cv and management (Table 3). 
Subsequently, ARC has been endorsed by KEPHIS into the seed certification proto-
col to bulk up seed potato for multiplication and distribution to potato growers.

5.2 Taking ARC technology to farmers’ doorstep

At least 10 satellite nurseries investing in apical cutting production have been set 
up in Meru, Nakuru and Nyandarua counties. Four of these nurseries were initi-
ated by Farm Inputs Promotions Africa and CIP, and each has a capacity to produce 
100–200,000 ARC annually. World Food Program in partnership with CIP has 
supported additional 2 satellite nurseries. Two other commercial private nurseries 
(Grace Rock Ltd. and SRK) have incurred great investments in ARC production 
with capacity to each produce up to 1 million ARC annually.

5.3 Juvenility of the mother plant- Kenya’s case

As noted across the nurseries, mother plant productivity is highly dependent 
on the prevailing environmental conditions and routine management. Maximum 
productivity, vigor and mother plant juvenility has been associated with tem-
peratures of about 18-25°C, relative humidity of 60–85%; regular fertigation with 
adequate nitrogen applied at 2–3 day intervals and use of clean media that exhibits 
low salt concentration (EC <0.5 dS/m), pH 6.0–6.5, and can retain good moisture 
and nutrients). Cocopeat is the most commonly used media in Kenya. However, 
if not properly washed, cases of stunted growth, yellowing and even death of the 
ARC have been reported. As observed by most multipliers, frequent cutting of the 
mother plant extends juvenility up to 9 months. Cuts should be obtained as soon as 
apical shoots have grown 5–7 cm high, or if the shoot has 4–7 complete leaves with 
2–3 internodes. This is a key management protocol to attain prolific and juvenile 
mother plants. With regular proper training, nursery multipliers can vividly 
differentiate a physiologically young mother plant which they measure by simple 
round leaves, dark green vigorous shoot, delayed tuber formation/shoot senescence, 
and stems which are soft and easy to root in the absence of rooting hormones 
(Figure 1a and b). The commercial apical cutting derived from a juvenile mother 
plant has the bottommost leaves round and simple as opposed to the compound leaf 
characterizing the cutting derived from a mature mother/stem cutting (Figure 1c). 
A mature mother plant literally gives stem cuttings with low multiplication ratio of 
3–7 tubers/cutting; thus, the multipliers are made aware that only juvenile plants are 
propagated to result in high rates of ARC production. To rescue a mature mother, 
the multipliers cut back the plant as soon as compound leaves are evident. Once the 
mother plant is too old to be rejuvenated, it is transferred for mini tuber production.

County #of farmers 
sampled

#of tubers >20 mm

Shangi Unica Wanjiku Nyota Konjo Chulu

Kiambu 96 11.5 8.8 18.2 13.9 10.9 10.8

Nakuru 24 12.8 9.3 18.2 14.5 10.3 11.6

Uasin Gishu 16 14.4 9.7 17.6 13.2 9.5 10.5

Table 3. 
Average tubers per plant obtained from six potato cvs sampled from a total of 136 farmers. Sampling of at least 
140 plants was randomly done from farmers who received ARC in Kiambu, Nakuru and Uasin Gishu in the 
long rains 2020.
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5.4 Submothering for rapid ARC multiplication

With the technical guidance from CIP, the nurseries have adopted the practice 
of submothering to enhance rapid multiplication. The practice derives 1 to 2 
submother plants from the first 1 to 2 cuts obtained from an in vitro plantlet. The 
submothers are only derived from a very juvenile tissue culture derived mother 
plants (<1 month) that exhibits dark-green vigorous shoot with all round and 
simple leaves. Submothering allows rapid multiplication rates of high potential 
invitro derived mother plants and can help attain multiplication rates up to 70 ARC 
per tissue culture plant in a 4 month period just like the case of Grace Rock Farm 
Ltd. (Table 4).

5.5 Making ARC a demand driven technology

Building market demand becomes key to accelerate the uptake of ARC. Thus, over 
the last few years, CIP in partnership with KALRO and county governments have 
built capacity of more than 200 extension agents to train farmers on ARC produc-
tion. Women and youth groups have been supported to develop into small businesses. 
Additionally, CIP has built capacity of public agriculture training centers (ATCs) and 
supported the formation and registration of potato cooperative societies and private 
seed multipliers. Some of the cooperatives have been licensed as seed merchants and 
have acquired over 100 acres of land for seed multiplication. A few seed potato busi-
nesses now operate as out growers using ARC as starter seed material.

Increased sales of ARC have been observed across businesses licensed to produce 
and sell ARC. For example, farmers privately purchased 417,311 ARC in 2020 from 
8 nurseries valued USD 42,000, while CIP purchased 168,000 for training and 
promotional purposes. The purchase made by the farmers were directly related to the 
trainings and field demos conducted in the preceding period, and generally indi-
cated high preferences and acceptance of the new improved CIP potato cvs (Unica, 
Nyota, Wanjiku and Chulu). Benard Mwaura, a crop officer in Kiambu County, 
reported that “farmers are able to appreciate the rapid seed multiplication rates with 
the ARC technology and are so impressed that some of these cvs have good resistance 
to late blight and can tolerate water stress”. Particularly, Wanjiku cv has gained popu-
larity in Meru, Nakuru and Kiambu counties due to its good table qualities, and high 
multiplication rates ranging up to 50 ARC/tissue culture plantlet (Table 5). Cv Chulu 
was noted by farmers to be resistant to late blight while cv Unica has been preferred 
for its fast maturity and ability to tolerate heat and water stress.

Cultivar #in-vitro 
plantlets 

used

#sub 
mothers 

produced

Total mother plants 
(invitro + sub 

mothers)

Total 
cuttings 

produced

Multiplication 
Ratio

Shangi 250 388 638 45,342 71

Unica 100 147 247 17,697 72

Wanjiku 150 132 282 16,617 59

Chulu 100 98 198 9,900 50

Nyota 50 33 83 3,513 42

Konjo 100 90 190 5,242 28

98,311

Table 4. 
Total quantity of ARCs produced from combined mothers and sub mothers, and average multiplication ratio by 
six potato cvs obtained by Grace Rock Farm Ltd. in the period of March to December 2020.
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6.  Ugandan private and public sectors develop and rapidly promote ARC 
technology for farmers

6.1 Background

Potato is a key food and cash crop in Uganda, grown primarily by smallholder 
farmers in the eastern and southwestern highlands of the country. There are two 
major potato growing seasons (March–July; September–January), however, some 
off-season production also occurs in swamps, valley bottoms and irrigated areas.

National potato production has grown steadily over time, responding to an 
increasing demand and consumption [17]. This increase in production has been 
obtained by expanding the land cultivated rather than by increasing productivity 
[1]. Currently, Ugandan potato farmers harvest an average of 3–12 t/ha [18, 19]. The 
primary reason for this low yield is the use of low-quality seeds, that farmers recycle 
from previous harvests or purchase from other farmers or in the local markets [20]. 
Such seeds are often infected with seed-borne pathogens.

To improve farmers’ access to high-quality seed of desired cvs, and to unlock 
the yield potential of potato in Uganda, CIP and other development partners have 
supported decentralized seed multiplication for more than a decade. Decentralized 
seed multipliers (DSMs) are based in potato growing communities and use early 
generation seed (EGS) – mostly basic seed – as starter material for onward field 
multiplication and bulking. DSMs have the advantage of making seed available in 
proximity to ware potato farmers at affordable prices. Quality assurance is the main 
risk to seed production under a DSM approach, but can be addressed with effective 
system management.

DSMs in Uganda, however, are frequently confronted with a lack of quality 
basic seed because public and private seed producers do not generate enough seeds 
to assure these demands. The current seed potato production system in Uganda is 
relying on the production of mini tubers from invitro plantlets in the screenhouse, 
followed by two seasons of field multiplication to produce basic seed. Public agri-
cultural research institutes are currently leading the country’s seed potato produc-
tion. Private sector investment in commercial seed potato production is small and 
consists mainly of a few farmers in potato producing areas managing small screen-
houses producing EGS and bulking seed in the field [21].

Decentralized 
ARC producers

Location Elevation 
(masl)

Cultivar

Shangi Wanjiku

# invitro 
plantlets used

Ratio # invitro 
plantlets used

Ratio

Cecinta Nduru Meru 2,360 200 50 720 13

Mary Nkatha Meru 2,360 250 37 500 29

Robert Kimathi Meru 2,023 325 19 300 24

Paul Munene Meru 1,710 413 7 697 28

Faith Kajuju Meru 2,222 270 13 —

Erick Bittok Nandi 2,006 2,196 3 1,071 4

Potato Empire Nakuru 2,790 379 46 200 15

Table 5. 
Invitro plants used and average multiplication ratio for two cvs by privately owned satellite nurseries in the 
period of September 2020 – April 2021.
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6.2  Recent developments in the utilization of ARC by farmers in Eastern and 
Southwestern Uganda

In 2019, CIP partnered with public agricultural research institutes, farmer man-
aging screenhouses and a private commercial company to promote production and 
field multiplication of ARC. This initiative was to address the challenge of accessing 
tuber seed for farmers. The partners were trained and supported to produce ARC. 
The locations of their operations varied from 1,200 to over 2,200 mamsl (Table 6).

Nursery Type of 
nursery

Location Elevation 
(mamsl)

# invitro 
plantlets 

used

Ratio Number 
of cvs

Sale 
price 

(USD)

ARC 
Sold

Agromax 
Ltd.

Private Kampala 1200 8,824 12.5 8 0.2–0.25 81,510

Farmer 
Greenhouse 
managers

Private South 
western 

and 
Eastern 
Uganda

1,665-2,433 11,335 12.9 8 0.11–0.25 51,902

KaZARDI Public Kabale 
district 
(South 
western 
Uganda)

2,223 5,119 18.9 2 0.28 2,550

BugiZARDI Public Bulambuli 
district 

(Eastern 
Uganda)

1,760 4,250 5.9 4 — 0

Table 6. 
Different nurseries in Uganda producing ARC and their results during 2019 and 2020.

Figure 5. 
Seed multiplier in a seed plot with potato plants from ARC.



335

Apical Rooted Cuttings Revolutionize Seed Potato Production by Smallholder Farmers…
DOI: http://dx.doi.org/10.5772/intechopen.98729

DSMs were trained in field multiplication techniques to produce tuber seed of 
different cvs from ARC as illustrated by a smallholder field crop growing from ARC 
in Figure 5.

The NGO Self Help Africa was a key partner in implementing and monitor-
ing field activities. The ARC multiplication rates varied among nurseries and cvs 
planted. The highest multiplication rate of producing ARC/tissue culture plant was 
at the KaZARDI in Kachwekano. The most popular cvs demanded by the small-
holder farmers were: Victoria, Kachpot, Rwangume and Kinigi.

Despite the immense advantages of ARC for seed production, five major chal-
lenges are being addressed: to sell ARC at an affordable price depends largely on 
improving the multiplication rate of mother plants from tissue culture; improved 
cost-effective, easy-to-manipulate, locally acceptable, and environmentally-
friendly packing materials that can maintain the quality of the ARCs during 
transport; improve transplants survival and tuber yields; a better coordination 
among potato value chain stakeholders to develop and stabilize the market demand 
for ARC and avoid oversupply; and quality assurance mechanisms need to be 
developed and implemented to use ARC in certified seed potato production that is 
aligned with the seeds and plants regulations of Uganda.

7. Discussion

The development and utilization of ARC in the 4 countries have some significant 
commonalities and differences. The initial primary driver of adopting the use of 
ARC is the highly desirable characteristics of the cvs sought by the smallholder 
farmers in each country. Improving the access of seeds of cultivars resistant to late 
blight was the most significant initial reason for the trial and adoption of ARC. The 
cvs mentioned in each country were either derived from CIP shared germplasm or 
coming from the Mexican late blight resistance selection program prior to 1975. Cvs 
Igorota (PO3) and Utatlan are the prime examples for the Philippines and Vietnam. 
The cvs promoted in Kenya and Uganda are all from CIP germplasm with moderate 
late blight resistance. These cvs proved to be vastly superior for late blight resistance 
compared to European cvs for which seed could be imported. This factor was the 
primary driver for the rapid acceptance and utilization of tissue culture and the 
mass production of ARC.

The successful development of juvenile rounded simple leaf ARC after many 
months of maintaining mother plants in the juvenile stage allowed the transplants 
to develop in the field to large vigorous plant with only one primary stem producing 
on average 11 and 18 tubers/plant. This has been the case in all 4 countries. This 
productivity is equal to that of standard seed tuber planted crops with 3–4 stems/
plant. The climatic conditions for maintaining juvenile mother plants were initially 
at elevations of less than 1,500 mamsl in Vietnam and the Philippines. These 
warmer conditions favored rapid growth and frequent harvesting of apical cuttings. 
Interestingly in both Kenya and Uganda the productivity of juvenile mother plants 
can be maintained at cooler higher elevations above 2,000 mamsl. Better green-
houses and seasonal considerations as well as adding temperature control measures 
improved productivity.

The demand for ARC has stabilized in the highlands of both southern Vietnam 
and the northern Philippines. The high level of virus resistance of cv Igorota (PO3) 
permits the G1 seed to be regrown by farmers 5–7 times before replacing with new 
ARC. In the case of Dalat Vietnam, when bacterial wilt appears in a field crop, it will 
not be retained as seed for replanting. For the approximate 1,500 hectares of pota-
toes grown in the greater Dalat area a total of about 5 million ARC are sold annually. 
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In the Philippines highlands with an area of about 7,500 hectares in potatoes annu-
ally, approximately 350,000 ARC plus 100,000 mini tubers are demanded annually 
from NPRCRTC. Many small holder farmers multiply the ARC further.

In Kenya, there was a rapid growth phase in the acceptance of ARC as the tech-
nology allows to have virus free planting material of cvs with late blight resistance 
and other good attributes. Licensed seed merchants can now use ARC as starter 
materials to produce certified seeds. Uganda is at an earlier stage in the introduction 
and adoption of ARC.

There is a large difference in the selling price of 100 ARC among 4 countries. 
In Vietnam, the price is USD 1.75; Philippines 3.00; Kenya 10.00 and Uganda is 
11.00–26.00. The producers of ARC in Vietnam calculate a return to labor and 
investment of 30% while in the Philippines it is 24%. The largest producer in 
Vietnam prepares 100,000 tissue culture plants in May. These are placed in the 
substrate beds and multiplied to 720,000 mother plants by September. Then for 
2–3 months apical cuttings are harvested and rooted every 5 days. Over 4 million 
ARC will be sold to smallholder farmers by December when the transplanting sea-
son ends. The large-scale efficiency in the production process allows this producer 
and the others in Dalat to sell 100 ARC at USD 1.75, with a significant profit. The 
selling prices in the Philippines has stabilized at USD 3.00/100 ARC. ARC sold per 
single tissue culture plant is greater than 40. In Kenya, the multiplication rate is 
similar with some cvs such as Shangi and Unica reaching 70 ARC/tissue culture 
plant. In Uganda, these numbers are still generally less than 20. Production costs 
and selling prices will be lowered through efficiencies in Kenya and Uganda as the 
technology matures and competitors join in the business.

Impact of the ARC technology coupled with new desired cvs had made a marked 
difference in the level of food security and prosperity for the smallholder potato 
farmers in all countries. In Southern Vietnam, it is estimated that the average yield 
of potatoes has improved from 10 to now over 25 t/ha due to clean seed of late blight 
resistant cultivars. In the Philippines, a similar improvement has been observed 
over the past 20 years with yields of 40 t/ha frequently recorded. The impact is seen 
in the purchases of refrigerators, motorcycles, and other household amenities. One 
multiplier of ARC in Dalat even purchased a baby grand piano! In the Philippines, 
there are stories about houses built on the production and sale of ARC and G0 
mini tubers by some farmers. In general, all smallholder farmers who have opted 
to grow ARC and G0 mini tubers have improved food production and generated 
more income.

The ARC technology will continue to face strong competition from European 
tuber seed for the larger seasonal lowland production systems after rice and in the 
semi-arid regions of North Africa. Upland mountain area of India and other parts 
of Africa will be conducive for ARC adoption, especially where the planting season 
can be prolonged for 2 months or more. Aeroponics is an established system in high 
temperate locations of China, India as well as in other localities in South America 
and some in Africa to produce mini tubers. The level of sophistication with the need 
for reliable electricity, however, limits its adoption and favors the use of ARC in 
most tropical environments where potatoes are grown.
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