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Chapter 1

Mucosal Immunology
Saeed Sepehrnia

Abstract

Approximately 80% of the pathogens that lead to deadly infections in humans 
choose mucosal tissue as the first site of infection. The mucosal surfaces of the 
body include the gastrointestinal tract, airways, oral cavity, and urogenital mucosa, 
which provide a large area conducive to the invasion and accumulation of many 
microorganisms and are of great importance in this regard. The large extent of 
mucus, as well as the accumulation of bacteria and countless foreign antigens in 
these areas, are the most important reasons for the importance of mucosal tissues. 
In addition to the myriad of symbiotic bacteria, large amounts of oral antigens 
(both pathogenic and non-pathogenic) enter a person’s body daily and human 
mucosal tissues are exposed to these antigens. The function of the mucosal immune 
system is to distinguish pathogenic antigens from non-pathogenic ones. In this 
way, against a large number of oral antigens or co-tolerant microorganisms, and 
pathogenic antigens, a favorable (and even non-inflammatory, possible) immune 
response is produced. Mucosal tissue, as the largest lymphatic organ in the body, 
is home to 75% of the lymphocyte population and produces the highest amount of 
immunoglobulin. The amount of secreted IgA (slgA) produced daily by mucosal 
surfaces is much higher than the IgG produced in the bloodstream. A 70 kg person 
produces more than 3 grams of IgA per day, which is about 70–60% of the total 
antibodies produced in the body. The first embryonic organ in which immune 
system cells are located in the intestine. Some researchers consider this organ (and 
specifically mucosal lymph nodes) to be the source of the human immune system.

Keywords: mucosal immunology, mucosa associated lymphoid tissues, organized 
mucosal associated lymphoid tissue, diffuse mucosal associated lymphoid tissue, 
innate lymphoid cells, M cell, poly immunoglobulin receptor, mucosal vaccination

1. Introduction

Mucosal surfaces interact directly with the outside of the body and interact with 
countless antigens. The need to establish an immune system in this tissue to fight 
pathogens is obvious, but the development of an immune response against native 
antigens or bacterial bacteria is an undesirable response. Therefore, the immune 
system in the mucosal tissues must be tolerant of many antigens, while maintain-
ing the ability to respond to a small number of pathogenic antigens. Any tissue 
that can secrete mucus on the surface of the epithelial layer and can participate in 
the immune response is considered part of the mucosal lymphatic tissue (MALT). 
MALT is present in the gastrointestinal tract, airways, urogenital tract, conjunctiva, 
and endocrine glands (salivary and sweat glands), but has been studied mainly in 
the gastrointestinal tract, respiratory tract, and urogenital tract. Both innate and 
adaptive immune systems (humoral and cellular) are seen in these tissues. One of 
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the defense mechanisms in the mucosa is the physical and mechanical defense that 
acts as a non-specific barrier against infections, including the mucosal epithelial 
layer, intestinal peristaltic activity, and the mechanism of mucosal-mucosal clear-
ance in the airways. The first line of defense in the mucosa is physical defense and 
innate immunity. Innate immune cells, such as tissue-resident macrophages and 
migrating neutrophils, are the first cells to act upon the onset of pathogen exposure. 
After innate immunity, adaptive immunity and its cells are activated by dendritic 
cells in the marginal lymph nodes (or in organized mucosal-associated lymphoid 
tissue) and called to the sites of infection. B cells in mucosal tissues produce and 
secrete antibodies, especially IgA. T lymphocytes also play a role in secreting pro-
inflammatory cytokines or inducing cytotoxic activity. Moreover, mucosal tissues 
contain populations of Tαβ and Tγδ [1, 2].

1.1 Lymphatic tissues in the gastrointestinal tract

The human gastrointestinal tract consists of a tubular structure covered by a 
mucosal epithelial layer. Beneath the epithelial cells is the lamina propria, or lining 
of the mucosa, which contains the mucosal connective tissue (MALT), blood 
vessels, and lymph vessels. MALT located in the gastrointestinal tract is also called 
GALT1. MALT in this area also contains a large number of immune cells, which 
alone are larger than any other set of bone marrow, thymus, spleen, and lymph 
node cells. Mucosal lymph tissue is mainly composed of intraepithelial lymphocytes 
(IELs), lamina propria lymphocytes, IgA-producing plasma cells and macrophage 
antigen-presenting cells, dendritic cells, neutrophils, eosinophils, and mast cells. 
In certain areas of the mucosa, there are lymphoid follicles that contain T lympho-
cytes, B lymphocytes, etc. In general, it can be said that the intestine prevents the 
entry of bacteria and infectious agents in three ways, the first is through the muco-
sal layer that prevents the penetration of bacteria from the epithelium. The second 
barrier is the production and secretion of antimicrobial peptides in the intestinal 
lumen and killing them within the lumen. The third method of inhibition is the 
production of IgA from the plasma of lamina propria, which neutralizes pathogens 
within the intestinal lumen [3, 4].

2. The role and structure of mucosal lymph tissues

Mucous lymphatic tissues can be classified according to their structure and 
function. Structurally, mucosal lymph nodes are divided into two categories: 
organized or O-MALT2 and diffuse or D-MALT3. Functionally, O-MALT is known as 
the site of induction of the immune response and D-MALT is the site of the immune 
response. In other words, immune responses are formed in O-MALT and perform 
their executive function in D-MALT. O-MALT is a place for antigen processing and 
production of effector and memory cells, after which the produced cells migrate to 
other mucosal diffuse lymph tissues such as D-MALT, leading to the protection of 
body surfaces. However, it has recently been shown that both types of lymph tissue 
play an important role in the production and differentiation of mucosal lympho-
cytes and mucosal immunity. Epithelial cells also play a role in the differentiation 
and production of cytotoxic T cells. It seems that intestinal mucosa and other muco-
sal surfaces affect bone marrow progenitor cells (T and B cells) and are effective in 

1 Gut Associated Lymphoid Tissue.
2 Organized Mucosal Associated Lymphoid Tissue.
3 Diffuse Mucosal Associated Lymphoid Tissue.
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gene rearrangement of immunoglobulins and T cell receptors. The activation of the 
enzymatic machine required for the genetic synthesis of progenitor cells in the gut 
supports this theory. T cells also regulate the activity of epithelial cells. For example, 
intercellular permeability and ion secretion (by these cells) are affected by IFN-γ. 
Crypt cell proliferation in the small intestine and mucosal morphology are also 
regulated by T cell cytokines. O-MALT is called the afferent lymphoid region, which 
is the site of antigen entry and the formation of immune responses. While D MALT 
is an efferent lymphoid region and acts as a site of antigen interaction with differ-
entiated cells (leading to antibody secretion and the activity of helper and cytotoxic 
lymphocytes) [1, 4, 5].

2.1 Organized mucosal associated lymphoid tissue (O-MALT)

O-MALT in the gastrointestinal tract includes Peyer’s patches and isolated lymph 
follicles (ILF). The number and location of mucosal follicles vary greatly between 
species and in an individual also changes over time and exposure to antigens. Most 
of these centers are isolated and scattered throughout the airways and gastroin-
testinal tract, but their extent increases to the colon and rectum. Some of these 
lymphatic tissues together form large complexes such as the palatine, lingual, and 
pharyngeal tonsils called the Waldeyer’s ring, mucosal follicles in the appendix, and 
Peyer’s patches in the small intestine. Peyer’s patches are more in the ileum (the last 
third of the small intestine) and less in the jejunum (not seen in the colon). Mucosal 
lymphoid follicles in both single form (ILF) and complex (Peyer’s patches) are cov-
ered by a specific epithelium. The general structure of the lymph plaques of Peyer’s 
patches is shown in Figure 1. Each Peyer’s patches contain more than 100 lymphoid 
follicles, each with a dark border and a relatively lighter circular center. O-MALT in 
gastrointestinal lymphatic tissues includes Peyer’s patches (in the ileum) and ILFs 
(in the colon).

Figure 1. 
The general structure of Peyer’s patche lymph follicles. FAE, Follicule associated epithelium.
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The follicles are separated from the mucosal epithelium by intercellular spaces 
and a dome-shaped area filled with lymphocytes called the corona. The mucosal 
surface above the corona of the follicle is free of villi on the surface of the epithe-
lium of other areas and contains antigen-carrying cells or M cells (found only in 
this area). High endothelial venules (HEV) where lymphocytes leave the artery are 
located in the interfollicular section [1, 4, 5].

2.1.1 Lymphocytes in O-MALT

Lymphocytes in O-MALT and follicle associated Epithelium (FAE) has been 
studied in several species [6–8]. The follicles are the site of accumulation of B 
lymphocytes, dendritic cells, and macrophages. However, T lymphocytes are mainly 
predominant in the internal and parafollicular parts [6, 9]. Most of the parafollicu-
lar B lymphocytes and located in the corona are IgM+ and the B cells in the germinal 
centers are IgA+. CD4 + T lymphocytes are mostly found in the corona, below the 
epithelium of the dome area, and the parafollicular regions, and CD8 + T cells are 
often found in the interfollicular regions.

2.1.2 Antigen-presenting cells

Antigen-presenting cells in O-MALT (such as Peyer’s patches) include follicular 
dendritic cells within the germinal center, interdigitating cells near lymphocytes of 
parafollicular regions, macrophages, and B cells. Macrophages are mostly concen-
trated in the coronal and B lymphocytes are often found in the follicular regions  
[7, 10, 11]. Antigen-presenting cells trap antigens of extracellular origin in endo-
somes. In these phagosomes, antigens are digested and processed by specific pro-
teolytic enzymes, and finally the peptides are presented to T lymphocytes by MHC 
II. Cells isolated from Peyer Patch mice can be stimulated with antigen in vitro, 
resulting in a primary and secondary immune response, leading to the production 
of IgM class antibodies and IgG and IgA class antibodies, respectively [12].

2.2 Diffuse mucosal associated lymphoid tissue (D-MALT)

Diffuse lymphoid tissue is scattered throughout the mucosal surface and 
includes lymphocytes, diffuse plasma cells in the lamina propria, mucosal connec-
tive tissue, and intraepithelial lymphocytes (IELs). Some of these cells are derived 
from O-MALT and contain effector and memory lymphocytes. These cells are 
caused by antigen stimulation in areas such as Peyer’s patches. In a regular process, 
antigen-stimulated cells begin to migrate from the site of stimulation and settle in 
other mucosal tissues [13, 14].

2.2.1 Intraepithelial lymphocytes (IELs)

Intraepithelial lymphocytes are often T cells located in the epithelial layer. About 
15 to 20% of the population make up epithelial cells. These cells are considered 
guarding cells in the immune system and react with antigens earlier than others, 
and therefore show memory phenotype (CD45RO+).

IELs are found in two types, Tαβ and Tγδ. The main function of these cells is to 
establish tolerance against symbiotic bacteria and to protect against pathogenesis. In 
humans, about 90% of IELs are Tαβ and only 10% are Tγδ. In mice, the percentage 
of Tγδ cells reaches 50%.

Most IEL cells are CD8+ and are divided into two categories in terms of origin. 
Some of these are conventional Tαβ cells that have evolved in the thymus that 
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can express both the CD4+ marker and the CD8+ marker. The other group is the 
unconventional or natural Tαβ cells and Tγδ, which have evolved in environments 
other than the thymus, such as the intestine. These lymphocytes have the power 
of self-renewal and are restricted to non-classical MHC molecules. These uncon-
ventional IELs usually show a specific CD8 consisting of α chain homodimer. Most 
intraepithelial Tγδ cells, as well as many Tαβ lymphocytes in the gut, express the 
CD8αα homodimer. For this reason, the expression of CD8αα has been considered 
an indicator of intraepithelial T cells in the intestine compared to peripheral blood 
T cells.

Few IELs are found with the CD4+CD8+ or CD4−CD8− phenotype. Unlike con-
ventional TCRs, which have a wide variety, TCRs in IELs have limited variability.

Most IELs are dormant under normal conditions but react as soon as they are 
exposed to the antigen due to a memory phenotype. TαβCD8+ and Tγδ cells show 
cytotoxic activity against infection. Production and storage of perforins and gran-
zymes can be done in IEL.

Conventional T cells, unlike unconventional T cells, must be activated to play 
their executive role. Both abnormal Tαβ and Tγδ cells in the intestinal epithelium 
detect antigens at the level of non-classical MHC molecules such as CD1, which 
allows factors expressed on the surface of damaged epithelial cells to respond to 
stress. Thus, Tγδ cells can also be activated in response to foreign antigen peptides 
and host cell-derived danger signals.

Tγδ cells have a more limited gene repertoire of TCR and in the gut often express 
the Vδ1 chain, which is different from blood Tγδ. Vδ1-expressing Tγδ cells can 
detect non-classical MHCs induced by MICA and MICB stress. MICA and MICB 
are known as the damage-associated molecular pattern (DAMP) and increase in 
response to cellular stress. Tγδ can respond to tissue damage in the shortest possible 
time. By secreting IFN-γ, these cells increase the cytotoxic response against virus-
infected cells and enhance the neutrophilic response against bacteria.

Tγδ lymphocytes in the gut play an important role in protecting mucosal 
surfaces from damage caused by immune responses. Tγδ lymphocytes also regulate 
immune responses by increasing TGFβ and limiting the migration of inflamma-
tory leukocytes to the intestinal tract. In addition, these cells produce Insulin-like 
growth factor-1 (IGF-1) and keratinocyte growth factor (KGF).

The proportion of Tγδ cells is higher among IEL cells in infancy. As you age, the 
proportion of Tαβ cells increases, so Tγδ cells in infancy are likely to play an effec-
tive role in defending against pathogens [2, 5].

2.2.2 Lamina properia lymphocytes

Lamina Properia Lymphocytes include B cells (often transformed into plasma 
cells) and T lymphocytes. In mice, 40% of lamina properia lymphocytes are B cells 
that produce mainly IgA. 25% of the cell population are T lymphocytes (mainly with 
the CD4 + TH2 phenotype) [15–19]. Human lamina propria CD4 + T cells provide 
memory cell markers and do not proliferate in response to antigenic stimuli. Rather, 
they produce cytokines such as IFN-γ [20]. The predominant population of T lym-
phocytes in the lamina propria is CD4 + T (60–70%), the majority of which exhibit 
the TCRα/β phenotype. Most of these cells have the CD45RO (specific for memory 
cells) and are different from peripheral blood T lymphocytes in this respect. Lamina 
propria is an important center for IgA production. In these areas, O-MALT derived 
B lymphoblasts (such as Peyer’s patches) are affected by cytokines such as IL-6 and 
undergo differentiation [21]. Lamina properia TH1 cells proliferate TH2 cells by 
secreting IL-2 and IFN-γ. On the other hand, TH2 cells, by producing IL-5 and IL-6, 
prepare for the differentiation of B cells into IgA-producing plasma cells [22].
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The lymphocytes in the lamina propria are mainly in the late stages of differenti-
ation and often turn into plasma cells. Furthermore, In the intestinal lamina propria 
cells such as macrophages, neutrophils, eosinophils. There are dendritic cells and 
mast cells. Lamina propria CD4 + T cells can react with these cells, enhancing their 
phagocytic and antimicrobial capacity. Macrophages may also be involved in the 
processing and delivery of antigens to T cells.

3. Innate lymphoid cells in intestinal mucosa

Innate Lymphoid Cells (ILCs) in the intestinal mucosa are involved in defense 
against pathogens, enhancing the function of the physical barrier, and tolerance to 
the microbial flora. There are two types of ILC2 and ILC3 in the mucosa, and ILC2 
is involved in the defense against worms in the gut. Besides, in response to cytokines 
IL-33 and IL-25, they can secrete cytokines IL-5 and IL-13, the former of which is 
effective in activating eosinophils and the latter in increased mucus production and 
thus repelling worm parasites. ILC3 is also present in the gut and can produce the 
cytokines IL-17 and IL-22 in response to stimulation with IL-18 and IL-23 cyto-
kines. The cytokines produced by these cells are involved in enhancing the physical 
function of the mucosa by stimulating the production of defensins and strengthen-
ing strong epithelial connections.

Other cells in the mucosa are Mucosal associated invariant T (MAIT), which are 
a subset of CD8 + T cells with invariant TCR Va7.2-Ja33. The main role of these cells 
is to defend against bacteria and fungi that cross the intestinal epithelial barrier and 
enter the bloodstream. Intestinal bacteria (normal flora or other bacteria) enter the 
liver through the portal vein and encounter the MAIT cells if they pass through the 
intestinal epithelium and enter the bloodstream. These cells detect fungal and bacte-
rial metabolites through an MHC-like protein class 1 called MRI and, once activated, 
produce a cytotoxic role by producing inflammation-promoting cytokines. 50% of 
the population of T cells located in the liver belongs to this group [1, 4, 5].

3.1 Enterocytes and antigen-presenting

Mucosal epithelial cells (especially small intestinal enterocytes) act as antigen-
presenting cells and present MHC II molecules [23–26]. Besides, CD1d (MHC 
I-like) molecules are present on the surface of these cells. Mature enterocytes from 
intestinal villi express class II molecules whereas crypt cell production may be 
affected by cytokines such as IFN-γ [27]. Enterocytes are able to present antigens to 
T cells in vitro. However, the T cell response is suppressive [28, 29] and this mecha-
nism seems to be involved in mucosal tolerance.

4. Antigen penetration into O-MALT

4.1 Follicule associated epithelium (FAE)

The intestinal epithelium can be thought of as a complex of crypt-centered 
cells. In the small intestine, each crypt contains a large number of undifferentiated 
germ cells from which other cells are formed. Differentiated crypt cells then cover 
adjacent villi [30].

Goblet cells, enterochromaffin, and pIgR-containing enterocytes are located 
in the lateral wall of the villi. Cells that move from the crypt to the dome of the 
lymphoid follicles become pIgR-containing enterocytes and M cells [31].
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The location of Peyer’s patches and other parts of O-MALT in members of an 
animal species is known. Immature M cells remain even after lymphocyte depletion 
with radiotherapy [32, 33]. The formation of mucosal tissues is organized before 
birth [34]. However, the antigen transfer process causes the mucosal follicles to 
expand. In general, it can be said that the superficial components of epithelial cells 
together with local secretory products are involved in the formation of O-MALT.

4.2 M cells

The cytoplasm of M cells forms a thin membrane-like structure in the upper part 
of the cytoplasm that separates the inner space of the intestine from the space below 
the epithelium, hence it is also called the membrane epithelial cell. In other words, 
these cells have a large envelope in which many immune cells, such as antigen-sup-
plying cells, are located in this envelope, closest to the intestinal tract (Figure 2).

An important role of M cells is the transfer of antigen to the O-MALT. These 
cells are not presenting of antigen, but only its transporter. These cells endocytose 
the antigen not specifically, but selectively, meaning that not every antigen can pass 
through M cells. M cells select and pass antigens based on molecular load, hydro-
phobicity, and viability.

Since the transfer of antigen by M cells can play an important role in the first 
stage of the immune response, the factors that affect this transfer are very impor-
tant in choosing a mucosal immunization strategy. M cells make up between 10% in 
humans and animals and up to 50% in rabbits around the follicular epithelial cells 
(FAE) [35]. Areas specific to endocytosis are present between irregular or shallow 
short microvilli on the upper surface of the M cell [36]. These cells lack some of 
the digestive enzymes present on the anterior membrane of enterocytes. However, 
M cell membranes contain many glycoconjugates compounds that can be suitable 
binding sites for lectin-like microbial surface molecules [36–38]. These cells endo-
cytose and transmit microorganisms, particles, and lectins that selectively attach 
to their apical membrane with high efficiency [36], in other words, substances 
that bind to mucosal surfaces elicit a strong secretory response. For example, oral 
administration of lectin leads to the production of anti-lectin-specific IgA. While 

Figure 2. 
M cell. The basement membrane of the M cell begins to form an intracellular envelope. M cells first transfer 
antigens from the airways and gastrointestinal tract to the envelope and then to the defense cells located beneath 
the epithelium.
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the administration of the same amount of another immunogen that does not have 
adhesion and binding properties is ineffective [39].

The reason for the lack of adverse responses to food antigens and the normal 
intestinal flora should be sought in the inability of M cells to transmit soluble lumi-
nal antigens and nonadherent particles [40]. It seems that the introduction of small 
but frequent oral or inhaled amounts of soluble immunogens leads to tolerance [41].

Some viruses, bacteria, and protozoa, such as Cryptosporidium, selectively 
attach to M cells and transmit well. Among these viruses, only reovirus type I, 
poliovirus, and HIV 1 bind specifically to the upper membrane of M cells. These 
viruses do not attach to cell surfaces in the FAE or the epithelium of the villi.

In reovirus type I, one of the outer capsid proteins (δ1 or μ1), after being 
activated by the proteolytic process in the gastrointestinal tract, causes the virus to 
contact the M cell.

In animals, large numbers of gram-negative pathogens and Streptococcus pyogenes 
bind selectively or preferably to M cells. Some viruses (such as rotaviruses and 
transmissible gastroenteritis viruses), as well as bacteria such as Escherichia coli 
[42], Yersinia pseudo-tuberculosis, Vibrio cholerae [43–45], Shigella [46], Yersinia 
enterocolitica [47], and Campylobacter jejuni [48], have proliferated in M cells 
after infiltration and they cause local infection and inflammation. M cells use a 
carbohydrate-lectin detection system with multiple receptors to identify a variety of 
pathogenic microorganisms in the gut.

The cell surface of M is increased due to the presence of accessible membrane 
regions and specific binding regions of large ligands and is therefore different from 
other epithelial cells.

In the gut, immunoglobulins also bind specifically to M cells [49], so that for the 
first time in suckling rabbits, accumulation of milk slgA was observed on M cells of 
Peyer’s patches.

Both Fc and Fab IgG fragments attach to the M cell. Lectins present on the 
surface of M cells identify abundant oligosaccharides present on immunoglobulins. 
Specific binding and transport of immunoglobulins by M cells may be involved in 
the regulation of immune responses. slgA usually prevents antigens and microor-
ganisms from coming into contact with mucosal surfaces. The Fc Domain IgA mol-
ecule is hydrophilic (hydrophilic and hair-phosphatic) and binds IgA (attached to 
microorganisms) to epithelial cells. The Fc properties of the IgA molecule prevent 
the colonization of pathogens (without causing inflammation).

Antigens of these complexes are reabsorbed and evaluated by macrophages and 
lymphocytes inside or below the epithelium (containing Fcα receptors) [50–52]. 
This event intensifies the secretory immune response against pathogens that have 
not been effectively eliminated from the gut. However, convincing evidence of the 
ultimate fate of IgA or IgA-Antigen complexes is not available after uptake by M 
cells but it is speculated that Fcα receptors on the surface of mucosal cells may play a 
role in other stages of the mucosal immune response. IgA reacts with lactoferrin and 
lactoperoxidase through the FC region, thereby enhancing the function of these 
nonspecific defense elements.

4.3 Antigen transfer

M cells absorb adhesive molecules such as lectins and ferritin through membrane 
clathrin vesicles and discharge them into vesicular or tubular structures similar 
to the cytoplasmic apex endosomes (above the epithelial pocket) [36]. In this 
part of the cell structure, vesicular endosomes are rarely found and no structures 
are containing acid phosphatase [53]. During transfers, endocytic materials do 
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not decompose extensively. However, the presence of endosomal hydrolase in M 
cell transport vesicles has not been ruled out. The apical vesicles of M cells are 
acidic [54].

Proteins and microbes that have entered the M cell vesicles are discharged out 
of the epithelial cell by the exocytosis membrane up to 10 minutes after vertebral 
endocytosis [36, 55].

Exocytic vesicles originate from endosomal intermediate components and 
structures. Lysosomes are present in the pericardial Golgi of M cells, but endocytic 
materials of the apical membrane have not been observed in these areas.

M cells shorten their transport path by lifting the lateral membrane toward the 
apex and shortening the lateral endosomes directly to specific regions of the lateral 
base (Figure 2). The intraepithelial membrane of M cells is different from the 
lateral membrane (which attaches to the adjacent cell) and the basement membrane 
(which attaches to the basal lamina).

For example, it has been shown that Na/K ATPase pumps are concentrated in 
the lateral part (not in the envelope membrane of M cells. It is said that the presence 
of a specific population of lymphocytes in the M cell envelope indicates the pres-
ence of specific lymphocyte receptors in the envelope membrane (Figure 2). The 
mechanism of distribution of specific lymphoid cells in this area is still unknown 
The pattern of glycosylation determines the specificity of M cells. The structure of 
LPS in salmonella typhi morium fimbriae plays a role in binding to M cells.

M cells, make up a small population of epithelial cells. However, their ability to 
transmit intestinal adhesive particles is remarkable.

4.4 M cells, areas of infiltration of pathogenic microorganisms

M cells have developed their non-specific mechanisms for binding and absorp-
tion of intestinal material so that the mucosal immune system can access a variety 
of microorganisms and particles. The ability of M cells to bind to bacteria such as 
Vibrio cholerae allows the immune system to sample these non-invasive pathogens 
well and to organize the appropriate secretory immune response. The secretion of 
sIgA anti-cholera toxin (CT) plays an important role in limiting the course of the 
disease and preventing the recurrence of infection [56–58].

Many pathogenic bacteria and viruses that attach to M cells use this intraepi-
thelial transport pathway as an invasion pathway. For example, reoviruses 
and polioviruses reach the Peyer’s patches by selectively binding to the apex of 
the M cells [59, 60]. Salmonella typhimurium in mice and Salmonella typhi in 
humans are gram-negative pathogens that transmit to M cells attached to Peyer’s 
patches and cause disease [45]. An effective mucosal immune response against 
Salmonella cannot prevent the organism from spreading to the liver and spleen. 
Therefore, with intestinal infiltration into the host, the systemic spread of 
the disease will occur. In addition, early transport of Shigella flexneri [46] and 
Yersinia enterocolitica [47] causes these organisms to enter the lamina propria 
by invading the lateral basal surfaces of epithelial cells and infecting mucosal 
macrophages.

O-MALT contains IgA-producing plasma cell precursors and is the center of the 
mucosal IgA response. After being transfected by M cells, the antigens first encoun-
ter the antigen-presenting cells and the lymphocytes in the cell’s inner envelope 
[7]. In the dome area below the FAE, IgM+B cells, CD4 + T cells, dendritic cells, and 
macrophages form a cellular network by which antigens are absorbed, processed, 
and delivered to lymphocytes. After activation, the process of maturation and dif-
ferentiation of B cells occurs in O-MALT.
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Figure 3. 
Different ways antigen enters mucosal tissues.

5. Dendritic cells in the gastrointestinal tract

In mucosal tissues, dendritic cells are known to be the main controllers of immune 
responses These cells act as a protective system and, by identifying pathogens, can 
stimulate naive T and B cells. Both O-MALT and D-MALT tissues contain dendritic 
cells. There are several subgroups of DCs in the mucosa, each with unique properties. 
DCs in the Peyer’s patches are often located in the M cell envelope and the subepi-
thelial dome (SED) and are CD11b+, CD8α−, CCR1+, and CCR6+. CCR1 and CCR6 
receptors bind to CCL9 (MIP-1γ) and CCL20 (MIP-3α) chemokines, respectively.

CCL9 and CCL20 are continuously secreted from FAE cells and are located by 
the CCR1 and CCR6 receptors, causing these DCs to be located in the Peyer’s patches 
epithelium.

DCs of Peyer’s patches secrete 10-IL in the absence of infection in response to the 
uptake of dietary antigens or microbiome, which inhibits the inflammatory response 
to these antigens. When exposed to pathogens, these DCs are rapidly recalled below 
the FAE by increasing CCL20 secretion from the epithelium. Microbial products 
cause the expression of co-stimulatory molecules on the surface of DCs, and excited 
DCs lead to the activation and differentiation of naive T cells into effector cells. In 
Peyer’s patches, in addition to the above-mentioned DCs, there is another DC sub-
class, which, unlike the first type, is CD11b−, CD8a+ and CCR6−. These cells are found 
in T cell-rich areas in Peyer’s patches and produce IL-12 inflammatory cytokines.

A major route of antigen transport to Peyer’s patches (O-MALT) is M cells. Other 
ways to transport antigens to the O-MALT region include the entry of food and 
soluble antigens through the epithelium. Moreover, the presence of FcRn on the 
surface of enterocytes enables these cells to detect IgA-coated antigens. The binding 
of FcRn to the antigen and antibody complex can trigger the entry of immune com-
plexes from the luminal surface to the basal surface of enterocytes by transcytosis. 
When apoptosis kills pathogen-infected enterocytes, antigens can penetrate the 
subepithelial layer. More specifically, DCs uptake apoptotic cell debris and associ-
ated antigens (Figure 3).
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Another way to pick up antigens in the gastrointestinal tract is through DCs and 
macrophages, can send their appendages into the intestinal lumen without disrupt-
ing the integrity of the epithelial cells and actively sampling the antigens in the 
lumen, thereby transporting the antigen to the Transmit lamina propria.

Lamina propria dendritic cells (LPDCs) that pick up antigens in ways other than 
M cells play an important role in maintaining tolerance to non-pathogenic intestinal 
antigens.

LPDCs express the CD103 index (integrin αE: B7) at their surface and can 
migrate to T-cell-rich regions of the mesenteric lymph nodes through afferent 
lymphatics. In the mesenteric lymph nodes, LPDCs can react with naive T cells and 
activate them, inducing intestinal homing characteristics in these cells. As a result, 
active T cells can return to the gut and differentiate into effector cells. The migra-
tion of CD103+DCs to the lymph nodes is dependent on CCR7 expression. CCR7 is 
constantly expressed on the surface of these DCs, but its expression increases dur-
ing infection. When there is no infectious agent, about 5 to 10 percent of mucosal 
DCs migrate to the mesenteric lymph nodes.

CD103+ dendritic cells produce the non-protein retinoic acid (RA) molecule that 
is involved in cell signaling. RA is the product of the effect of retinal dehydrogenase 
enzyme on vitamin A. RA production from these DCs induces CCR9 and integrin 
α4: β7 markers on the surface of B and T cells, which is effective in implanting these 
cells in the intestine. LPDCs respond poorly to inflammatory stimuli such as TLR 
ligands and produce more IL-10. For this reason, the migration of CD103+ DCs 
into the mesenteric lymph nodes in the absence of an infectious agent causes dif-
ferentiation into Treg FoxP3+ (iTreg) cells. RA secreted from DCs and TGFβ plays 
an important role in differentiating these Treg. TGFβ is abundantly produced by 
intestinal cells. In addition, intestinal DCs produce a substance called Indoleamine 
2, 3-Dioxygenase (IDO). This enzyme catalyzes tryptophan and leads to the differ-
entiation and induction of Treg cells in the intestine.

CD103+ DCs in the small intestinal mucosa are effective in combating inflammation. 
Factors such as RA, TGFβ, PGE2, and TSLP4 are effective in perpetuating this anti-
inflammatory response. TSLP, RA, and TGFβ are made by intestinal epithelial cells.

Macrophages located in mucosal tissue naturally produce IL-10. This cytokine 
deactivates DCs and preserves mucosal Tregs.

Studies have indicated that DC103+DCs, located in the large intestine, play a 
role in maintaining tolerance and the immune response to symbiotic bacteria and 
are rarely seen in Peyer’s patches. In addition to CD103+ DCs, other myeloid cells 
are found in the lamina propria, which stimulate inflammatory responses. These 
cells produce cytokines such as IL 6, IL 23, TNF a, and nitric oxide (NO), which are 
involved in differentiation into executive TH17 cells and class switching to IgA in B 
lymphocytes. These CD103− DCs are stimulated by TLR5 and express the CX3CR1 
index, which is the receptor, and chemokine fractalkine. The aforementioned cells 
cannot migrate to the lymph nodes and are not able to present antigen to the naive 
T cell and produce RA. Furthermore, in addition, they are not classified as classical 
DCs, are more like macrophages, and are involved in the production of inflamma-
tory cytokines.

6. Adaptive immunity in the gastrointestinal tract

Humoral immunity and mucosal IgA production are the main forms of acquired 
immunity in the gastrointestinal tract. Secretory IgA dimer into the lumen, IgG and 

4 Thymic Stromal Lymphopoietin.
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IgM participate in the defense against pathogens. The role of cellular immunity in 
the gastrointestinal tract is to control responses in the gut with the help of Treg and 
TH17 cells.

After capturing the antigen, dendritic cells migrate to the mesenteric lymph 
nodes and Peyer’s patches, and acquired intestinal immune responses are formed5. 
Active T and B lymphocytes enter the bloodstream through the lymph flow at the 
site of the thoracic duct. They then settle in the mucosal tissues through the appear-
ance of implanted surface molecules in the intestinal mucosa [1, 4].

6.1 Mucosal B lymphocytes and IgA production

In Peyer’s patches, most B cells in the corona and dark zone of the follicular 
germinal centers are IgM+/ IgD+, while in the light zone the germinal centers cells 
are more than 90% IgA+ cells. IgA cells in the germinal centers leave the O-MALT, 
enter the mesenteric lymphatic ducts, and then the blood flows from there to 
the mucosal and glandular areas of different parts of D-MALT and become IgA-
producing plasma cells. IgA cells in the germinal centers are called immune cells. 
Unlike villi capillaries, which allow the release of serum proteins into lamina 
propria, capillaries in Peyer’s patches have no pores and are impermeable to serum 
proteins. Therefore, it can be said that immune response interactions such as 
antibody response, cell accumulation, and secretion of cytokines against intestinal 
O-MALT antigens are not affected by systemic processes. Based on this, it can be 
acknowledged that circulating IgA is unable to prevent viral invasion of Peyer’s 
patches and the proliferation of infectious agents in the mucosa. Class switching to 
IgA occurs in O-MALT. The predominant class of antibodies in the gastrointestinal 
mucosa is the IgA dimer. In humans, two IgA subclasses are encoded in the genome 
by two separate and distant sequences. Class switching is associated with the 
removal of genes upstream of the CH fragment.

In the intestinal mucosa, by two mechanisms dependent or independent of T 
cells, the class is selectively switched to lgA. Cytokines are extremely important 
in any phenomenon of class change. In the gut, TGFβ also plays an important role 
in switching classes to IgA. If class switching is T-dependent, IgA is produced 
with a higher affinity for the antigen. The DCs capture the antigen, move it to the 
interfollicular zone (in Peyer’s patches) or the mesenteric lymph nodes, and deliver 
it to the naive CD4 + T. CD4 + T cells are then activated and differentiated into 
TFH (follicular helper T cells). Then, they react with B IgM+/ IgD+ cells and induce 
class switching to IgA. The prerequisite for this is TGFβ and CD40L binding of T 
cell surface to CD40 expressed in B cell. NO production from dendritic cells can 
increase the expression of TGFβ receptor on B cells. In T-cell-independent switch-
ing, active dendritic cells produce cytokines such as APRIL6, BAFF7, and TGFβ, 
leading to the induction of class switching in B IgM+ / IgD+ cells (especially B1 
cells). In this case, IgA is produced with less binding affinity than in the T cell-
dependent state.

In the process of differentiating BIgA+ cells into IgA-producing plasma cells, the 
cell secretory system is fully developed, α-CH fusion occurs at the mRNA level, and 
a J chain is produced. IL-2 is involved in regulating J chain production in B lym-
phocytes and plasma cells. In vitro, B cells committed to producing IgA of O-MALT 
origin undergo 6-IL differentiation in the final stages of differentiation. But in vivo 
studies do not confirm this finding. Therefore, it can be concluded that there are no 

5 Inductive Sites.
6 A proliferation-inducing ligand.
7 B-cell activating factor of the TNF family.
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factors required for IgA differentiation and secretion. By migrating these lympho-
cytes to D-MALT regions and effector sites, the conditions for differentiation into 
end-cell cells are provided [1, 4, 5].

6.2 The role of secretory IgA in the regulation of immune responses

IgA B cells do not differentiate in O-MALT and therefore IgA concentration 
is low in these areas. Serum immunoglobulin concentrations are also very low 
in these areas [61]. However, sIgA located in the lamina propria and glandular 
secretions enter the O-MALT by binding to the apical membrane of M cells in the 
FAE [62].

T cells containing the Fc receptor in Peyer’s patches act as helper cells and 
increase BIgA + cells. Fcα receptor T and B cells are involved in the specific regula-
tion of the isotype of the mucosal immune system [63].

Antigen-IgA complexes are also transported to O-MALT by M cells [62], so it 
can be said that the Fcα receptor of B cells or macrophages enhances the immune 
response by increasing antigen uptake and processing. In conclusion, IgA reabsorp-
tion by M cells and reaction with Fcα receptors are involved in modulating the 
immune response [64].

Also, in mucous secretions and glands, anti-idiotypes can enhance the immune 
response by such a mechanism. This clarifies the reason for the reaction of breastfed 
infants (sIgA absorption) to oral and injectable vaccines [65].

6.3 Lymphocyte migration and homing

Lymphocyte and monocyte migration and implantation play an important 
role in the mucosal immune response. This process causes a set of specific cells to 
migrate to areas such as the Peyer’s patches where antigens are present, and the 
widespread effector and memory cells to different parts of the mucosal surface 
provide comprehensive protection for the body.

Numerous molecules and receptors are involved in the lymphocytes homing into 
the intestinal mucosa, including homing receptors, cell adhesion molecules (integ-
rins) of chemokines, and chemokine receptors.

Naive lymphocytes enter the mesenteric lymph node and O-MALT (Peyer’s 
patches) through HEV. Lymphatic tissues facilitate the entry of naive lymphocytes 
expressing CCR7 and L-selectin by secreting CCL19 and CCL21. If in O-MALT and 
lymph nodes, these lymphocytes are exposed to specific antigens presented at the 
APC, the incidence of CCR7 and L-selectin is reduced. Once the cells are activated, 
they leave the mesenteric lymph nodes through the lymph and Peyer’s patches and 
enter the bloodstream through the thoracic duct. Dendritic cells in the mucosa can 
induce specific molecules to localize activated lymphocytes in the gastrointestinal 
tract. Activated lymphocytes increase the expression of α4: β7 integrins that bind 
to MadCAM1 on their surface. MadCAM1 is expressed on the endothelial surface 
lining the blood vessels of the intestine and its associated lymphatic tissues. Due to 
this interaction, it provides the conditions for the adhesion of active lymphocytes to 
the endothelial vessels of the gastrointestinal tract. Activated T and B cells express 
the CCR9 chemokine receptor on their surface after initial exposure to antigen 
in the small intestine. This receptor binds to TECK (CCL25) at the epithelial surface 
of the small intestine, leading to the re-implantation of these cells in this area. 
Primary activation of lymphocytes in the colon leads to the development of the 
chemokine receptor CCR10, which binds to the MEG (CCL28) surface of the colon 
epithelial cells. Furthermore, CCL28 can be secreted by the mammary and salivary 
glands [1, 2].
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Lymphocytes that have first been exposed to the antigen and have detected it on 
the surface of intestinal mucosal DCs have identified implantation molecules and 
can implant in the gastrointestinal mucosa. For this reason, it seems that vaccina-
tion against intestinal infections requires the administration of the vaccine in the 
mucosa because DCs in the mucosa will have the power to induce specific implanta-
tion molecules [4].

With the passage of active lymphocytes through the vascular endothelium, the 
expression of α4: β7 integrins stops on their surface, and instead another integrin 
called αE: β7 appears on their surface. αE: β7 can attach to the cadmium E molecule 
on the surface of intestinal mucosal epithelial cells. In this way, the lymphocytes 
are kept in the vicinity of the epithelial cells after entering the lamina propria 
(Figure 4).

6.4 Secretory IgA

In an adult human, more than 3 grams of IgA is secreted daily in the mucosa and 
glands. Secretory IgA is made up of two interconnected molecules (each containing 
four immunoglobulin chains).

In mice, rats, and rabbits there is only one IgA isotype, but in humans, there are 
two isotopes IgA1 and IgA2 encoded by two separate genes [66].

IgA2 is often made by mucosal plasma cells, and the lack of 13 specific amino 
acids in the α2 chain makes IgA2 resistant to specific anti-IgA1 proteases produced 
by purulent bacteria.

dimeric IgA also contains the J chain and the secretory component (SC). The 
carboxylic part of Fc is the two IgA molecules next to each other and their Fab 
is outward. In humans, mice, and rabbits, the penultimate cysteine of the two α 
chains binds to the cysteine J chain through disulfide bonding.

The J chain has an Ig-like domain and the SC has five Ig-like domains. A com-
plete slgA molecule consists of two IgA monomeric molecules of a J chain and a 
secretory component. The secretory component covers areas sensitive to proteolytic 
digestion and the IgA hinge, and the secretory variants of this immunoglobulin are 
highly resistant to proteases [1, 4].

Figure 4. 
Homing in gastrointestinal mucosa. Effector T lymphocytes attach to MadCAM-1 surface endothelial cells for 
homing in the gut (A). Intestinal epithelial cells express specific chemokines for T cells that intend to home in 
the gut (B).
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7. Intraepithelial IgA transport

7.1 Poly immunoglobulin receptor (pIgR)

The transfer of IgA from the production site in the mucosal and glandular tissue 
areas to the secretions takes place in an active process with the involvement of 
membrane polymer receptors (Figure 5).

The pIgR receptor is a membrane glycoprotein consisting of five Ig-like domains 
(reinforced with disulfide bounds) at the cell surface, an intramembrane fragment, 
and a 100-amino acid sequence within the cytoplasm.

The human immunoglobulin polymer receptor gene is located on chromosome 
1. The genes of these receptors in epithelial cells are affected by cytokines such as 
IFN-γ in vitro and are expressed on the surface of these cells. Therefore, it can be 
said that mucosal inflammation has an aggravating role in the transfer of slgA to 
secretions [1, 66].

7.2 Binding of IgA to the immunoglobulin receptor

IgA binds to the first Immunoglobulin-like domain of the Poly-Ig receptor. 
Following the separation of pIgR from the epithelial cell, a disulfide bond is estab-
lished between the cysteine of the fifth SC region and the Fc portion of one of the 
IgA monomer monomers. Domains 2, 3, and 4 of the secretory component do not 
participate in the binding but are necessary for the establishment of the two cyste-
ine roots [66].

8. Mechanisms of secretory IgA protection

8.1 Immune exclusion

Secretory IgA dimer is responsible for binding to microorganisms in the intes-
tine and mucosal surfaces of the gastrointestinal tract, respiratory tract, and genital 
tract [67, 68].

Figure 5. 
Mechanism of IgA dimer production in lamina propria and its transmission by epithelial cells. Lamina 
propria plasma cells produce IgA dimers (A). These antibodies are transported into the epithelial cells via pIgR 
at the basal surface (B). Following the release of IgA from the luminal surface of these cells by the mechanism of 
transcytosis (C), due to proteolytic cleavage, part of the receptor remains attached to the IgA dimer, which is the 
secretory component or SC (D).
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The slgA-antigen complex can be easily trapped in mucus, excreted by bowel 
movements, and the beat of cilia of the respiratory tract. Also, the sIgA can directly 
block the microbial binding sites to epithelial cells [69].

The basic way of protection by sIgA is the same as immune exclusion. Therefore, 
the presence of appropriate levels of specific sIgA can only cause protection (even 
in the absence of other immunological mechanisms) [2].

9. Respiratory mucosa

The airways are an important route for the entry of pathogen antigens, allergens, 
and airborne particles. The upper respiratory tract mucosa contains the nasal lym-
phatic tissue (NALT), the bronchial lymphatic tissue (BALT), and the airway lymph 
nodes, and the lower respiratory tract mucosa contains the smaller airway lymph 
nodes and alveoli.

The immune system is present in the airways like other mucous membranes and 
plays an important role in regulating homeostasis and preventing harmful immune 
responses to harmless antigens. The respiratory system also contains specialized and 
organized mucosal tissues such as the palatine, lingual, pharyngeal, and adenoids, 
which form a ring-like structure called the “Waldeyer’s ring” in the pathway of air 
and food antigens (Figure 6).

The extensive vascular network of the respiratory system provides a favorable 
environment for the migration of lymphocytes and the passage of blood vessels 
to the lung tissue. Leukocytes do not follow the conventional method of homing 
in lymphoid tissues and do not have processes such as rolling and attaching to the 
endothelium and passing through the HEV.

One of the defense mechanisms in the mucosa is physical and mechanical 
defense, which is seen in the respiratory system as a mechanism of clearance of the 
ciliary mucosa (mucociliary). The most abundant cells in the upper airways are 
ciliated epithelial cells that form the physical barrier [2, 5].

Figure 6. 
Waldeyer’s ring. The tonsils and adenoids form a ring of lymphatic tissue in the gastrointestinal tract and 
airways called the Waldeyer’s ring.
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Goblet cells are present in the margins of ciliated epithelial cells and are respon-
sible for secreting mucus.

The mucus layer is directed to the upper respiratory tract by the movement of 
the cilium, so that suspended particles and pathogens are excreted or swallowed 
through sneezing and coughing which is called mucociliary clearance. Various 
cells in the respiratory tract, such as ciliated epithelial cells, alveoli, and immune 
cells located subepithelial, can produce and secrete antimicrobial peptides such as 
defensins, cathelicidins, collectins, and protease inhibitors [5].

9.1 Waldeyer’s ring

The tonsils and adenoids are a great place to trap antigens from the mouth and nose. 
In humans, the Waldeyer’s ring forms a network of lymphatic tissue in the nasopharyn-
geal mucosa, which is the structure of NALT. The epithelial surface of the tonsils and 
adenoids is the site of antigen entry due to its proximity to the external environment.

The palatine tonsils are two oval masses of secondary lymphatic tissue that are 
located in pairs behind the oral cavity and at the beginning of the oropharynx and 
are the entry point for respiratory and gastrointestinal antigens. The tonsils have 
several depressions called crypts. The presence of crypts increases the surface of the 
tonsils and the ability to remove antigens. The outer layer of each crypt is composed 
of epithelial cells, which have M-like cells present and perform the function of 
antigen uptake and transport through the epithelium. Below the epithelium of each 
crypt is one or more secondary lymph follicles.

Most cell populations of NALT lymphatic structures are composed of T and B 
lymphocytes and to a lesser extent dendritic cells and macrophages. NALT is struc-
turally similar to MALT and has FAE-containing cells similar to M goblet and IELs. 
Lymphatic follicles are also seen in the subepithelial layer. Most tonsils located in the 
tonsils are B cells that turn into antibody-producing plasma cells (often IgA). The 
number of CD4 + T cells in this area is very low and IEL lymphocytes CD8 + T is 
found as CD8 + αβT or in the unusual phenotypes CD8αα + αβ T and CD8αα + γδ T.

Lymphatic tissues along the airways form the BALT structure. The upper airways 
have more organized lymphatic structures than the lower airways. In the lungs, 
active immune cells migrate mainly to the mediastinal and cervical lymph nodes, 
which enlarge in the face of infectious agents. In the BALT structure, the number of 
M and IEL cells in the overlying epithelium is very rare and there are no goblet cells 
in this area. In BALT, similar to MALT, lymph follicles are seen. B cells located inside 
the follicles usually have a memory phenotype and are mostly IgA+. In the absence 
of infection, BALT is difficult to detect. Therefore, BALT is considered a secondary 
structure in cases of infection [4, 5].

9.2 Regulation of immune responses by airway epithelial cells

Airway epithelial cells specialize in regulating immune responses in the respira-
tory tract. While these cells can detect pathogenic microbes, they do not respond to 
harmless antigens and cause respiratory homeostasis These cells produce antimicro-
bial peptides, inflammatory cytokines, and chemokines, and express much lower 
levels of TLRs than the gastrointestinal epithelium, However, the expression of 
these TLRs is strongly influenced by TNF-α and IFN-γ [5].

9.3 Dendritic cells in the respiratory mucosa

BALT and NALT have a large number of DCs. These cells help maintain homeo-
stasis by detecting and differentiating between pathogenic and harmless antigens 
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and by inducing tolerance to their antigens. Airway DCs are often of the myeloid 
class, but plasmacytoid DCs are rarely seen.

There is also a population of positive langerin DCs in the upper airways that 
are somewhat similar to cutaneous Langerhans cells and are involved in immune 
surveillance. In the lower airways and lung tissue, there are lung parenchymal 
dendritic cells (LPDCs) or interstitial DCs that are scattered in the alveolar 
 epithelium and the alveolar space or the connective tissue between the  epithelium 
and the arteries. LPDCs are often CD11b + and belong to the myeloid class.

DCs in the respiratory tract are considered strong cells in antigen uptake but have 
weak power in stimulating T lymphocytes. Airway DCs mainly direct the response to 
T2 and Treg, and by producing TGFβ lead to the switching of B cell class to IgA-
producing plasma cells. In other words, airway dendritic cells regulate and modulate 
the immune response. Similar to MALT, dendritic cells meet and stimulate T cells by 
moving to the lymph nodes in the lungs. The lymph cells, then activated by lymph 
flow and then blood flow, return to the position of the lungs and participate in the 
immune response [4].

9.4 Lymphocyte homing in the respiratory mucosa

Integrins play an important role, especially α4 (α4: β7 and α4:β1) in the process 
of lymphocyte homing in the respiratory mucosa. E-cadherins are prominent 
in lung and intestinal cells and bind to αE:β7 integrins and are involved in the 
establishment of lymphocytes. Active T lymphocytes attach to CCL5 (RANTES) 
by expressing the CCR5 chemokine receptor at their surface and are located in the 
parenchyma of lung tissue. CCL5 is a chemotactic agent that is naturally secreted 
from lung tissue and increases during inflammation. In the airways, IgA-producing 
plasma blast implant by binding to the CCR10 chemokine receptor on its surface 
and the CCL28 chemokine secreted from the respiratory epithelium [1, 5].

10. Mucosal vaccination

By administering one or more oral doses of mucosal vaccine, in addition to 
producing sIgA on mucosal surfaces, it also stimulates cellular and systemic immune 
responses. With the entry of pathogens into O-MALT, the process of production and 
maintenance of memory lymphocyte population is established. In addition to the 
characteristics of injectable vaccines, oral vaccines must be able to pass through the 
stomach, intestines, and be resistant to bacterial enzymes and low pH.

Also, oral vaccines must be able to escape clearance mechanisms such 
as being trapped in mucus and be able to reach specific areas of the FAE-
covered mucosa.

Furthermore, in addition, these vaccines need to compete by binding to the 
inner membrane to penetrate M cell vesicles. Immunological epitopes should be 
able to maintain their immunogenicity after crossing the epithelial barrier and pen-
etrating the vesicles and be available to antigen-presenting cells for  processing [2].

10.1 How vaccines get access to O-MALT

10.1.1 Inert particulate carriers

Vaccine access to Peyer’s patches depends on the ability of M cells to transmit 
adherent multivalent macromolecules. One of the strongest products that have been 
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proven to be effective in the form of systemic vaccines is the Immune stimulating 
complex (ISCOM).

ISCOMs are particles 35 nm in diameter that are formed by the accumulation 
of protein antigens, such as the surface proteins of viruses, in a specific pattern. 
It should be noted that this form of immunogen was created for the proper and 
immunological present of viral surface proteins [70].

Immunization by ISCOMs leads to IgG production and cellular immune 
response against other viruses such as measles as well as inhibition of TH cells [70]. 
Intranasal immunization with ISCOM and influenza hemagglutinin leads to a local 
increase in anti-influenza cytotoxicity [71]. As a result, ISCOMs, as mucosal anti-
gens, can be thought to produce IgA. In other words, ISCOMs are useful for mucosal 
use and are resistant to salt and bile acids.

Oral immunization in multiple doses with ISCOM containing ovalbumin or 
bacterial proteins results in the production of sIgA, systemic IgA, and cellular 
immunity [72].

They can also be used to immunize viral proteins that are naturally resistant 
to digestive proteases. Because they may not be resistant in the gut unless they are 
inside the capsule. Today, with the help of small hydroxyapatite crystals, effective 
solutions for particle penetration have been developed.

Crystals of 0.1 to 0.5 microns attach to M1 cells and are efficiently transported to 
intraepithelial envelopes. Because hydroxyapatite is a non-immunogenic and non-
toxic component of bone structure, these antigen-coated crystals can be consumed 
in large quantities. These compounds should be used in capsule coatings [2].

10.1.2 Live vaccine vectors

The best way to stimulate mucosal immunity is to insert antigens into liv-
ing microorganisms that can attach to M cells and settle and multiply in Peyer’s 
patches and mucous membranes. Because living microorganisms elicit a strong 
and long-lasting immune response, a large number of viral and bacterial carriers 
are considered for this purpose. Given that living carriers can produce antigens 
for a long time and cause the production of antibodies as well as the development 
of cellular immune responses, the possibility of their use as a vaccine is being 
strongly considered.

The vaccinia virus recombinant has been tested as an oral vaccine [73]. But the 
mechanism of its absorption and transfer to Peyer’s patches is still unknown. This 
method can probably be a safe and effective method of mucosal immunization. 
Because infection of mucosal cells with the recombinant virus can cause the pres-
ence of antigens on the cell surface. The vaccinia virus recombinant is used as a 
mucosal vaccine to enhance the capacity of bacterial carriers for foreign DNA [74]. 
Because viral carriers have limited replication and are unable to germinate the virus, 
the infection may be transient, with limited antigen present and the carrier cannot 
spread well in the mucosa of Peyer’s patches.

Different species of bacteria can settle in Peyer’s patches, including the live 
Attenuated strains of Salmonella and BCG [75, 76]. BCG is an effective adjuvant 
whose systemic immunization is safe. Once given at the time of birth, this vac-
cine provides long-term safety. BCG is also considered an oral vaccine [77] and is 
 effective in transmitting O-MALT through M cells [78].

By orally administering recombinant Salmonella, laboratory animals have been 
vaccinated against a range of foreign antigens, including the heat-stable E. Coli 
enterotoxin [79], the streptococcal adhesin [80], and the malaria circumsporozoite 
protein [81]. In general, Salmonella is considered a strong mucosal immunogen. 
However, this limits the use of these carriers for repeated immunizations. Because 
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the anti-secretory immune response prevents re-absorption of oral doses of the 
carrier that deliver this antigen or other recombinant antigens.

IgA secretion of the superficial salmonella typhoid epitope of Morium can 
favorably prevent the penetration of these microorganisms into the mucosa [82].

However, applying effective methods to various events, such as immunogen 
retention in the gut, the ability of immunogen to bind to the surface of M cells, 
effective interaction with antigen-supplying cells, or facilitating its detection by M 
cells, can enhance mucosal immunity.
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Abstract

Most of our gut microbiota live with us in a mutually beneficial life-long  
relationship. The gut microbiota plays a vital role in the host’s overall health through 
its metabolic activities. Human microbiota might be supported by consuming 
friendly bacteria (probiotics) and consuming foods to improve the microbiota 
(prebiotics). During the last two decades, probiotics’ interest has increased with 
rising scientific shreds of evidence of benefits on human health. Hence, they have 
been exploited as various food products, mainly fermented foods. Probiotics as a 
treatment modality may restore normal microbiota and functioning of the gastro-
intestinal (GI) tract. Strong scientific evidence is associating these bacteria with the 
prevention and therapy of various GI disorders. (In light of the ongoing trend of 
probiotics, further research is needed to obtain the perspective of potential appli-
cations for better health. Probiotic applications have been extended from health 
applications to food and agricultural applications. The benefits of probiotics led to 
its applications in probiotic ‘health food’ industries and agricultural sectors.

Keywords: Probiotics, Prebiotics, Food products, Gut microbiome, Benefits

1. Introduction

The human body exists in close relation with numerous structurally and 
functionally diverse microbes inhabiting different parts of the body. The mouth, 
the gastrointestinal tract (GIT), and the vagina are most heavily populated. This 
composition is known as microbiota which is acquired soon after birth [1]. The 
microbiota that is exclusively found in GIT is referred to as ‘Gut microbiota.’ Gut 
microbiota is primarily non-pathogenic and plays a vital role in conferring health 
benefits to the host [2]. Through metabolic activities and physiological regulation 
such as resistance to pathogens, improvement of intestinal barrier function, promo-
tion of nutrient absorption, formation of bioactive compounds [2]. It may also 
influence the physiology, biochemistry of the host [3].

The idea that bacteria can confer health benefits to humans was postulated 
100 years ago by Elie Metchnikoff. The ‘probiotic’ word is derived from the Greek 
word, meaning “for life” and has had several different meanings over the years [4]. 
The increase in evidence of the benefits of probiotics and prebiotics, especially in 
health improvement, led to its applications in various food industries. This book 
chapter highlights the significance of gut microbiota and the emergence of probiotic 
concepts to benefit human health. In this chapter, we have made a little attempt to 
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introduce the concept of probiotics and prebiotics, their benefits to humans’ health, 
and their probability of being applicable in various fields.

2. Gut microbiota

The human body harbors a complex ecosystem that includes more than 1000 vari-
ous microorganisms [5, 6]. It means the number of bacteria within the gut is about 
ten times that of eukaryotic cells in the human body. In a healthy animal, the internal 
tissues such as blood, brain, muscle, etc. in a healthy animal are usually free of micro-
organisms. However, the surface tissues, such as skin and mucous membranes, are 
constantly in contact with environmental organisms and become readily colonized by 
various microbial species. The microbiota extends from mouth to anus and into the 
vaginal tract of women. In the healthy host, enteric bacteria colonize the alimentary 
tract soon after birth, and the composition of the intestinal microbiota remains rela-
tively constant [7]. The normal flora of humans consists of a few eukaryotic fungi and 
protists, but bacteria are the most numerous and obvious microbial components of 
the normal flora. The total genomic content of microbiota is referred to as a microbi-
ome that inhabits a specific anatomical site of the body [8]. The mixture of organisms 
regularly found at any anatomical site is referred to as the “normal flora”. However, 
researchers in the field who prefer the term “indigenous microbiota,” which includes 
resident microbiota, transient microbiota, and opportunistic microbiota.

The gut microbiome exhibits various interactions with the human body. It may be 
mutualistic or pathogenic. The interactions between the gut microbiome and host have 
evolved into symbiotic relations. It confers various benefits to the human body, sig-
nificantly strengthens the host’s immune system, and protects against various diseases 
caused by harmful pathogens. Hence, it is helpful to study the symbiotic relationship 
of the gut microbiome with the host and its influence on the host’s overall health.

2.1 Composition of gut microbiota

The gut microbiota is composed of four main phyla: Firmicutes, Bacteroidetes, 
Actinobacteria, and Proteobacteria. Predominantly, anaerobic bacteria colonize the 
Gastrointestinal tract (GIT) [9].

GI tract consists of the stomach, small intestine, and large intestine. Various 
parts of the GI tract differ in their environmental characteristics, chemical compo-
sitions, and physiological properties. Therefore types and numbers of microbiota 
vary in different parts. In general, microorganisms increase in numbers from the 
stomach to the small intestine to the large intestine.

2.1.1 Microbiota of stomach

The microbes in the stomach are primarily of similar types that are present in the 
mouth and throat. Generally, aerobic microbes inhabit the stomach, and that too in 
a lesser amount than the population of mouth and stomach. The stomach receives 
many microbes from the mouth through food and water, but most of them are killed 
due to hydrochloric acid (HCl). Thus, few microorganisms that can tolerate high pH 
can form normal resident flora of the stomach.

Organisms generally found in the stomach are – Lactobacillus, Enterococcus, 
Streptococcus, Staphylococcus, Peptostreptococcus, Candida, Helicobacter pylori, etc. 
[10, 11]. Some of them are hazardous to health, such as Helicobacter pylori, which 
can cause chronic gastritis and peptic ulcers.
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2.1.2 Microbiota of small intestine

The small intestine is a tube about 6 meters long-running from the stomach to 
the large intestine. The small intestine usually has three sections: duodenum, jeju-
num, and ileum. Each section reflects slightly different functions. The microbiota 
of the small bowel is the least well understood due to its inaccessibility for study.

Duodenum is adjacent to the stomach, and it is slightly acidic. The duodenum 
includes similar types of organisms that are found in the stomach. It mainly acquires 
acid-resistant organisms such as Lactobacillus and Enterococcus. The intestine 
becomes less acidic from the duodenum to the ileum; hence, the microbial popula-
tion increases. In the jejunum, prominently, lactobacillus, Enterococci, Candida 
albicans, etc., are found. In ileum microbial population resembles that of the large 
intestine. It mainly includes obligate anaerobes such as Clostridium perfringes, anaer-
obic E. coli., Bacilli, Streptococcaceae. Actinomycinaeae and Corynebacteriaceae are 
abundant in the duodenum, jejunum, or ileum [12, 13].

2.1.3 Microbiota of large intestine

The large intestine follows on from the small intestine. The large intestine 
receives remains of food that enzymes have not digested. The chyme, on entering 
the large intestine, is referred to as feces. The large intestine is divided into three 
distinct parts: caecum, colon, and rectum. About 1100 different species of microbes 
are present in the large intestine [14].

The large intestine harbors obligate anaerobes and facultative anaerobes. The 
more common genera include Bacteroides, Clostridium, Eubacterium, Roseburia, 
Faecalibacterium, and Ruminococcus [15, 16]. The large bowel includes increased 
Lachnospiraceae (Firmicutes) proportions, and Bacteroidetes are found in the colon 
[13]. It also inhibits E.coli, Lactobacillus, Bifidobacterium, Enterococcus in smaller 
numbers.

2.2 Benefits of gut microbiota

Earlier, the gut microbiota was thought to be commensals whose only ben-
efit was controlling the abundance of pathogenic bacteria. However, as the 
knowledge about these symbionts increased, their essential roles, such as aiding 
digestion and various metabolites, were also known to improve the immune 
system [17, 18]. The gut microbiota plays a crucial role in immunomodulation 
and the nervous system and intestinal mucosal system development. In addi-
tion, gut microbiota plays a crucial role in synthesizing essential vitamins such 
as vitamin B12, vitamin K, nicotinic acid, pyridoxine, thiamine [19]. The gut 
microbiota generates short-chain fatty acids (SCFAs) by fermenting complex 
carbohydrates. These SCFAs play a significant role in inflammatory response and 
regulation of immune response. The gut microbiota also influences epithelial 
homeostasis [19].

There are pieces of evidence that gut microbiota provides extra nutrition. It 
could be due to the digestion by enzymes of the resident microbiota. Another 
benefit of gut microbiota is a defense against a range of pathogens, including 
Listeria cytogenes, Clostridium botulinum, and Cryptosporidium parvum. The gut 
microbiota provides a hostile environment, produces antimicrobial substances, and 
strengthens the human body’s defenses to defend against pathogens. It also stimu-
lates peristalsis, so gut contents are moved more quickly, making it more difficult 
for newly-arrived pathogens to be established.
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2.3 Disturbance of gut microbiota

The composition of gut microbiota may vary between individuals though some key 
bacterial species are typically present in most. Diet is thought to explain over 50% of 
these microbial structural variations in mice and 20% in humans, signaling the potential 
for dietary strategies in disease management through gut microbiota modulation [20]. 
The gut microbiota shows drastic changes in infants with lactation followed by an 
introduction to solid food. The mode of intake, medication dosage may influence the gut 
microbiota. Gut microbes are regularly purged and have the ability to double in specific 
time intervals. The short-term and long-term dietary changes and modification in 
micronutrient intake can significantly change gut microbiota composition. The experi-
ment conducted by Wu et al. showed a dramatic shift in the fecal microbiota of the 
participants due to high fat/low fiber and low fat/high fiber. Fiber content and type were 
thought to be primer determinants of the composition of the microbiota of the gut.

Through antibiotics, improvement in human health is achieved through the 
drugs have negative consequences also. Antibiotic drugs control the infections 
caused by pathogens, but other beneficial bacteria are also harmed. A disturbed 
microbiota may not function well against infections caused by new pathogens, 
resulting in the overgrowth of pathogens such as Clostridium difficile [21]. Several 
factors may influence the disturbance of gut microbiota caused by antibiotics:  
(i) the dose and duration of the drug (ii) the range of microbes affected by antibiot-
ics (e.g., broad-spectrum or narrow-spectrum) (iii) the proportion of antibiotic 
that is being absorbed into the body or resides in the intestine.

Most antibiotics are taken orally, and some are given intravenously. The latter 
type has a significant influence to disturb microbiota. Different antibiotics have 
different effects, e.g., penicillin has minor effects on the gut microbiota, while 
ampicillin causes significant disturbance to the gut microbiota. Thus, there is a need 
to develop an alternative that is safer and effective for use. Increasing knowledge of 
probiotics and their efficacy against pathogens can aid the recovery of gut micro-
biota. Probiotics may be suitable to take after or simultaneously as antibiotics to 
reduce the risk of disease from disturbance of microbiota.

3. Probiotics

Probiotics are live organisms which when administered in an adequate amount, 
confers health benefits to the host (FAO and WHO, 2002). The characteristics 
of effective probiotics are their ability to survive the passage through the diges-
tive tract and utilize the nutrients and substrates in a normal diet. Probiotics are 
healthy gut flora and thereby improve digestion. Several criteria have been used to 
prove any strain as novel probiotic strains, categorized into two groups: safety and 
functionality. The concept of probiotics deals with the constant introduction of the 
new microbes beneficial to the human host as an attempt to change the indigenous 
microbial population equilibrium to increase overall health [22].

3.1 History of Probiotics

The concept of using microbes to improve health is a hundred years old. 
During the twentieth century, probiotics gained much interest due to an increase 
in scientific evidence proving the beneficial effects of probiotics. The idea that 
bacteria could benefit human health was postulated almost 100 years ago by Elie 
Metchnikoff while working at the Pasteur Institute in Paris. Metchnikoff ’s adop-
tion of an idea to use beneficial bacteria to improve the bacterial population of 
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the intestine arose from his inquiries into how old age could be delayed and life 
prolonged. Metchnikoff concluded that fermented milk drank by peasants of 
Bulgaria has a key role (Metchnikoff 1907) [21] in their longevity. He found a 
bacterium from peasant’s milk and named it Bacillus bulgaricus. He explained that 
the production of lactic acid by a bacterium reduces the harmful effects of other 
microorganisms. It is not sure which bacterium was found by Metchnikoff. It may 
be Lactobacillus bulgaricus, a strain that is commonly used in yogurt.

The term probiotic literally means ‘for life is derived from the Greek language. 
Lilly and Stillwell first coined this term in 1965 to describe “substances secreted by 
one microorganism which stimulates the growth of another” and thus was con-
trasted with the term antibiotic [23]. Parker modified this definition to “organisms 
which contribute to intestinal microbial balance” [24]. The concept of probiotics 
became weak after the early death of Metchnikoff and the development of antibi-
otic drugs. Though, interest in the general public did not fall entirely. One of the 
factors that gained the popularity of probiotics towards the end of the century is the 
rise of resistant strains of pathogens against different antibiotics.

3.2 Mechanism and action of probiotics

The mechanisms of probiotic action are diverse. The activities of these strains 
can influence other factors such as the presence of other bacteria in the intestinal 
environment or even the disease setting in which the strain is being used [25]. 
The characteristics of effective probiotics are their ability to survive the passage 
through the digestive tract and utilize the nutrients and substrates in a normal diet. 
However, some mechanisms have been reported for most of the probiotic strains, 
which include: colonization resistance, antimicrobial activity, antimutagenic 
effects, antigenotoxic effects, influence on enzyme activity, etc.

The probiotic bacteria have antagonistic effects on different microorganisms 
and competitive adherence to mucosa and epithelium. These characteristics also 
work as antimicrobial activity. By decreasing luminal pH, they are inhibiting other 
bacterial adherence, translocation, and secretion of antimicrobial substances 
such as antimicrobial peptides (e.g., bacteriocin), organic acids (lactic and acetic 
acid), hydrogen peroxide (in environments in which oxygen is present), diacetyl, 
β-hydroxypropionaldehyde [26–30]. The probiotics are also capable to modulate 
cell proliferation and apoptosis. Polysaccharide fermentation by probiotic strains 
increases the availability of short-chain fatty acids (SCFAs), which felicitate repair 
of epithelial damage. Some strains also produce mucus excessively, which enhances 
the intestinal barrier. It can separate bacteria from the lumen and prevent the 
colonization of the epithelium [31]. Probiotics can exert control over epithelial 
cells, dendritic cells, monocytes, macrophages, lymphocytes, IgA through differ-
ent mechanisms for the stimulation of the human immune system; increased IgA 
decreases the number of pathogens, thus improving gut health [32, 33]. Figure 1 
shows various mechanisms by which probiotics benefits health of host.

3.3 Types of probiotic microbes

There is a growing number of microorganisms described as probiotics. Among 
the various types of microbes, bacteria are used as probiotics mainly. The potential 
of intestinal and dairy species Lactobacilli and Bifidobacteria as probiotics was 
postulated over a hundred years ago. At that time, the yearning to understand the 
microbial ecology of these groups in the human intestine was linked to the aspira-
tion to manage and maintain human health. The link between Lactobacilli and 
human health was first proposed in the late 1800s by Metchnikoff [34].
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The majority of the different species included in probiotics belong to the genus 
Lactobacillus. Metchnikoff favored this bacterium. They are normal flora of the 
small bowel as there is a wide range of food in that part of the small intestine. There 
are fewer lactobacilli present in the large bowel also. Lactobacilli are easy to grow, 
which aid as an essential factor in using probiotics at a commercial scale. Other 
characteristics of lactobacilli are resistance to gastric stress and the ability to grow in 
a microaerophilic environment that makes them well-suited to live in the gastroin-
testinal tract. Lactobacilli are heterofermentative and require many micronutrients 
to grow. The species most commonly used in probiotics are L. acidophilus, L. casei, 
L. crispatus, L. johnsonii, L. plantarum, L. reuteri, L. rhamnosus, L. salivarius. The 
probiotic effect of lactobacilli is as follow:

• Secretion of lactic acid lowers the pH of GIT and eliminates harmful bacteria. 
Some lactobacilli produce acetic acid, which gives a more substantial effect 
than lactic acid against pathogens.

• Lactobacilli produce antibiotic-like compounds referred to as bacteriocins, 
which restrict the growth of pathogens. Some of them also produce hydrogen, 
which exerts antibacterial effects.

• Lactobacilli tend to attach to mucosa and form colonies, which is the primary 
requirement of good probiotics. They block the attachment of pathogens and 
may also influence the immune cells in the gut wall. Some lactobacilli also 
produce mucus in excess to discourage attachment of pathogens.

Figure 1. 
Mechanism of probiotics.
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There are other genera of lactic acid-secreting bacteria. One of them is 
Enterococcus, which has species such as E. faecium that are used as probiotics. The 
mechanism is similar to those of lactobacilli.

Bifidobacteria are the second most commonly used type of bacteria in probiotic 
products. One of the reasons for their less popularity could be their incapability 
to grow and process commercially. Henry Tissier identified the unusually shaped 
Bifidobacterium from the stool of the baby. A large number of these bacteria in the 
intestine of the baby reassured that they are probably beneficial. Bifidobacteria 
reduce lactose intolerance, cholesterol levels, improve the gut immune system, and 
prevent gut infection in infants. Some of the species frequently used in probiotics 
are Bif. adolescentis, Bif. animals, Bif. bifidium, Bif. breve, Bif. longum, and Bif. infantis.

Like lactobacilli and bifidobacteria, other organisms such as E. coli, Bacillus 
subtilis, Saccharomyces cerevisiae, S. boulardii. Most E. coli are benign commensals, 
but some are opportunistic pathogens. E. coli Nissle 1971 (EcN) is the best known 
E. coli probiotic [35, 36]. Nissle bacteria are protected from stomach acid by added 
enteric coating. The coating won’t dissolve until it reaches the ileum and caecum. 
EcN strengthens the barrier function of epithelial cells against pathogens. EcN 
has been used as an anti-diarrhoeal and to treat constipation and ulcerative colitis 
[21]. Bacillus subtilis is a spore-forming bacterium; the spores protect the cells from 
gastric acid. Some of the spores germinate in the intestine and influence the gut 
immune system and stimulate lactobacilli’s growth. Some other Bacillus species 
are used as probiotics, such as B. coagulance, B. licheniformis, B. pumilus, and B. 
clausii. Saccharomyces boulardii, a sub-species of S. cerevisiae is used as probiotics. 
S. boulardiiis not normal flora of the gut, but it can live there temporarily and gives 
anti-diarrhoeal effects. Some probiotic organisms with Generally Regarded As Safe 
(GRAS) status are listed in Table 1.

4. Benefits of probiotics

There are certain diseases related to the disturbance of microbiota of the gas-
trointestinal tract. Some of them are infectious diarrhea, irritable bowel syndrome 
(IBS), inflammatory bowel disease (IBD), lactose intolerance, antibiotic-associated 
diarrhea, constipation, gastritis, and stomach ulcers. There are evidences available 
showing influence of probiotics to treat such diseases. Other body parts may benefit 

Probiotic Lactic acid bacteria

Lactobacillus spp. Bifidobacterium spp.

Lactobacillus rhamnosus Bifidobacterium lactis

Lactobacillus plantarum Bifidobacterium bifidum

Lactobacillusreuteri Bifidobacterium animalis

Lactobacillus acidophilus Bifidobacterium breve

Lactobacillus casei Bifidobacterium infantis

Bifidobacterium longum

Other lactic acid bacteria Non-lactic acid bacteria and yeast

Lactococcus lactis Propionibacterium freudenreichii

Streptococcus thermophilus Saccharomyces cerevisiae

Table 1. 
List of probiotic microorganisms [21, 37–39].
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from probiotics as microbiota is present in other body parts, not just the intestine. 
Furthermore, the immune system is connected to all parts of the body, so by influ-
encing one part of the immune system, probiotics may influence others.

4.1 Effect of probiotics on diarrhea

Infectious diarrhea, traveler’s diarrhea (TD), antibiotic-associated diarrhea 
are various types of diarrhea caused by different conditions. Infectious diarrhea is 
generally caused by pathogenic microbes such as viruses, bacteria, yeast, or proto-
zoan. Generally, normal bowel movements return after about three days, but they 
may not in children with acute diarrhea. In infants, rotavirus is the most common 
microbe responsible for diarrhea. Probiotics have been tried in many clinical stud-
ies as a supplement for rehydration therapy to treat infectious diarrhea in infants. 
The results have been positive and consistent [40]. In young children, the probiot-
ics were also found to be effective in preventing the development of infectious 
diarrhea. The types of probiotic microbes used are lactobacilli, bifidobacteria, S. 
boulardii (yeast).

The traveler’s diarrhea may be caused by the water supply being contaminated 
with fecal matter, contaminated food. In the case of traveler’s diarrhea, the use of 
probiotics is more likely to be considered by adults. Though, the use of probiotics 
in TD has given a mixed response as the cause of TD differs depending on the local 
situation [41].

The use of antibiotics has revolutionized the treatment of bacterial infections. 
However, it promotes the rise of resistant bacteria and disturbs gut microbiota’s 
composition, which makes us vulnerable to pathogenic infection. Such infection of 
the intestine leads to diarrhea, referred to as ‘antibiotic-associated diarrhea (AAD)’. 
When the gut microbiota is disturbed, Clostridium difficile increases to infection 
level; this bacterium causes about one-fifth of AAD. In several studies, probiotic 
yeast S. boulardii was effective against C. difficile when given along with antibiotics 
[42]. In a number of cases, probiotic microbes such as LAB, S. boulardii, Clostridium 
butyricum prevented such diarrhea, although not all studies have shown probiotics 
to be effective [42–45].

4.2 Effect of probiotics in Irritable Bowel Syndrome (IBS)

The irritable bowel syndrome is a common gastrointestinal disorder. In IBS an 
abnormal condition of gut contractions (motility) and increased gut sensations 
(visceral hypersensitivity) characterized by abdominal pain/discomfort, gas, 
bloating, mucous in stools, and irregular bowel habits with constipation or diar-
rhea. Several studies show the effect of probiotics on this disease; however, the 
mechanism by which probiotic organisms affect this condition is still unknown. A 
review and meta-analysis by Ford et al. concluded the beneficial effects of probiot-
ics as a treatment on IBS symptoms, including RCTs published between 1939 and 
2013, and it was emphasized that multi-strain probiotics had a more distinct effect 
on IBS symptoms [46, 47]. However, Lactobacillaceae and Bifidobacteriaceae (genus: 
Lactobacillus and Bifidobacterium) were the two most common families used in 
multi-strain probiotic supplements [47].

4.3 Effect of probiotics in inflammatory bowel disease (IBD)

Inflammatory bowel disease is a group of the chronic intestinal disease charac-
terized by inflammation of the large or small intestine. Crohn’s disease (CD) and 
ulcerative colitis (UC) are the most common types of IBD. UC only affects the large 
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bowel, and the inflammation is usually found in the rectum and the sigmoid colon 
but can be found anywhere along with the large bowel. CD can affect any part of 
the digestive tube from mouth to the anus but is most often found in the area of the 
junction of the ileum and caecum. The evidence of benefit from probiotics in UC 
is strong, while the evidence in Crohn’s is weak. There have been eight controlled 
trials involving people with UC in one study, and seven of them showed significant 
benefit from probiotics. Use of probiotics extended periods of remission or reduced 
active disease [48]. Some studies have been conducted with E. coli Nissle (EcN), 
Saccharomyces boulardii. These microbes have been reported to have some beneficial 
effects in IBD [41, 49]. E. coli probiotic was found to be as effective as a standard 
drug used in UC to prevent relapse. In comparison, only a small number of trials 
showed the benefit of probiotic yeast S. boulardii in Crohn’s disease.

4.4 Effect of probiotics in lactose intolerance

The inability of some adults to digest the sugar lactose, which is present in milk, 
is referred to as ‘lactose intolerance. The lactose is hydrolyzed by the enzyme lac-
tase, which is also known as lactose- galactosehydrolase (EC 3.2.1.108). The lactose 
is digested into glucose and galactose, which is taken up by intestinal cells and 
transported to the bloodstream. The remaining lactose, which is not hydrolyzed, 
passes to the colon [36]. The person with lactose intolerance produces less lactase, 
which is inefficient in digesting much of the milk sugar. The undigested lactose 
causes intestinal difficulties. When lactose intolerant people consume milk, they 
may suffer from excess gas, diarrhea, cramps, bloating, abdominal rumblings, and 
flatulence. One of the reasons for excess gas could be the fermentation of glucose 
by gut microbiota. As lactose is an active osmotic compound, it causes osmotic 
pressure, leading to high water content in the feces, causing clinical symptoms as 
diarrhea [36]. Probiotics have gained attention as an alternative to compensate for 
the low level of lactase [41, 50]. Probiotic can affect at two levels: (i) By increasing 
hydrolytic activity in the small intestine (ii) By increasing colonic fermentation 
[51]. Several studies have shown the effect of probiotic yogurt in better lactose 
digestion in lactose-intolerant people. The probiotic bacteria used in yogurt 
(Lactobacillus bulgaricus and Streptococcus thermophilus) produce a significant 
amount of their own lactase. Evidence suggests that probiotic organisms can digest 
lactose in yogurt products and continue digestion in the small intestine when con-
sumed [52]. They prevent excess gas production and reduce or eliminate diarrhea. 
The yogurt allows more time for lactase to digest lactose as yogurt has a thicker con-
sistency; it takes a longer time to pass through the intestine. There is some evidence 
showing that Russian fermented milk- kefir or variants of kefir (sugary kefirs, kefir 
grains) effectively alleviate lactose intolerance [53]. There are probiotic products 
available in capsule, tablet, or powder form (e.g., Lactobacillus and Bifidobacterium 
species used in non-milk products); however, they do not appear to be as effective 
as yogurt.

4.5 Effect of probiotics in gastritis and stomach ulcers

A bacterium, Helicobacter pylori, causes inflammation of the mucosal barrier of 
the stomach. As well as frequent long-term use of nonsteroidal anti-inflammatory 
drugs is the major factor involved in gastric ulcer development [53]. Gastric muco-
sal damage is common; if not treated adequately, it may lead to gastric cancer. To 
eradicate H. pylori, three drugs are used simultaneously: two antibiotics and a pro-
ton pump inhibitor [54]. However, this treatment fails in most of the cases due to 
antibiotic-resistant strains of H. pylori; thus, a fourth antibiotic is added to standard 
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triple therapy used previously. The therapy may cause side effects such as diarrhea, 
taste disturbance, and nausea.

The growing interest in probiotics to prevent or treat gastrointestinal diseases 
has attracted the attention of many researchers to explore the role of probiotics 
in the prevention and treatment of gastric ulcers [50]. Some studies have found 
out that when probiotics are used in conjunction with standard drugs, the rate of 
eradication was higher than drug therapy or probiotics alone  [55]. However, side 
effects caused by drug therapy were reduced by probiotics. Most of the studies have 
used lactobacilli, but not all strains showed effects against H. pylori. Probiotic yeasts 
S. boulardii also showed potential therapeutic effects in gastric ulcers. S. boulardii 
acquires neuraminidase activity which removes sialic acid, which results in the 
prevention of binding of H. pylori to epithelial cells [53].

4.6 Effect of probiotic in vaginal infections

In a healthy woman, the vagina has a resident microbial population. These 
resident microbiota live on the lining of the vagina wall. Most of them are lactoba-
cilli. The vaginal lactobacilli have a protective influence against urogenital infec-
tions [50]. The vaginal infections are referred to as vaginitis. In which pathogenic 
infections cause inflammation of the vaginal lining. If a bacterium causes vaginitis, 
it is known as bacterial vaginosis (BV). If vaginitis is caused by a fungus (generally 
Candida- a type of fungus), it is known as vaginal candidiasis (VC). Both types of 
vaginitis symptoms are similar, such as burning sensation during urination, itching 
in the vaginal area, and greyish or white discharge. Antibiotics or antifungals treat 
the infection. There is evidence that some women have H2O2 – secreting lactobacilli 
in their intestine, which lowers the risk of BV. This suggests that the rectum act as a 
reservoir supplement vaginal microbiota when it becomes disturbed. This informa-
tion leads to the development of probiotics to protect the female reproductive sys-
tem [56, 57]. Though studies have shown mixed responses. In the case of VC, a small 
number of clinical studies have been undertaken of probiotics against Candida. In 
most of the studies, probiotics didn’t show any significant effect. However, when 
probiotics were taken along with antifungal drugs, they improved the effectiveness 
of antifungal significantly [58].

4.7 Effect of probiotics in upper respiratory infections

The upper respiratory tract (URT) consists of the nose, throat, and windpipe. 
The nose and throat have microbiota, and the upper part of the windpipe has a 
changing microbial population as cilia move mucus upward to the throat. The 
various diseases associated with URT are common cold, sore throat, pharyngitis, 
epiglottitis, laryngitis, and diphtheria [29]. Most commonly, viruses such as 
rhinoviruses, coronaviruses, parainfluenza, and influenza viruses and bacteria such 
as streptococci, Mycoplasma pneumoniae, Chlamydia pneumoniae, Corynebacterium 
diphtheria, Staphylococcus aureus, Haemophilus influenzae type b, Streptococcus 
pyrogens, and Streptococcus pneumonia are associated with URT infection [59, 60]. 
Infection of URT may spread to the lungs, causing bronchitis and pneumonia. Some 
studies have shown that probiotics may reduce the severity and duration of the 
condition. Some probiotic bacteria such as Lactobacillus rhamnosus, Streptococcus 
thermophilus, Bifidobacterium animals were beneficial to reduce and prevent URT 
risks in children and adults [29]. Probiotics may also improve the effectiveness of 
influenza vaccination in the elderly. This improved immune reaction may enhance 
protection against acquiring influenza, although it is yet to be confirmed.
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4.8 Effect of probiotics in constipation

Constipation is quite a common condition that can be acute or chronic. 
Constipation causes a general feeling of abdominal discomfort. To pass the stool 
straining may put pressure on the tissues and structures of the anal area with 
adverse consequences such as hemorrhoids (piles). Other diseases associated with 
constipation are irritable bowel syndrome and cancer of the large bowel. Several 
studies have been conducted using Lactobacillus rhamnosus, Lactobacillus casei, 
Bifidobacterium animalis, and probiotic E. coli. [61, 62]. Prebiotics also may be 
effective against constipation as FOS, GOS, and lactulose have mild laxative effects 
[63]. These laxative effects can be due to osmosis as prebiotics are soluble fibers. 
Prebiotics also boost bifidobacteria and lactobacilli, and these probiotic bacteria 
accelerate the transit of large bowel content. However, meta-analyses also indicate 
that groups of probiotics and synbiotics have more efficiency than individual 
probiotics [64].

4.9 Other benefits

The list of benefits of probiotics is not limited to the ones mentioned above. 
However, it includes a range of benefits that need to be explored for further human 
studies. Some evidences suggest that probiotics may influence cancer incidence 
[50]. As well as researchers are exploring various alternatives of drugs from probi-
otics that can be used to treat a disease like cancer and with lesser or no side effects. 
(i.e., L-asparaginase that is used in cancer treatment from L. casei, L. reuteri, etc. 
is being explored) [43, 65]. Furthermore, evidences suggests that food products 
with probiotic organisms may reduce serum cholesterol levels and control blood 
pressure. Probiotics may also prevent coronary heart disease [66, 67]. Several 
studies examined the effect of probiotics and prebiotics to treat allergic conditions. 
However, studies to prevent allergic conditions like asthma and allergic rhinitis 
did not show a positive response. However, studies examined that when pregnant 
women have probiotic intake, it improves the functioning of the mother’s immune 
system and indirectly improves the immature immune system of the infant, reduc-
ing the risk of allergies such as eczema and dermatitis [68]. But there are insuf-
ficient evidences to recommend probiotics as standard therapy to prevent allergies 
[44]. There is a close relationship between microbiota and the immune system of 
the skin. Consumption of probiotics has provided some protection against ultra-
violet radiation from the sun. Vitreoscilla filiformis showed a beneficial effect on a 
patient with seborrhoeic dermatitis and atopic eczema [69]. As described earlier, 
LAB, especially lactobacilli and bifidobacteria, exert a beneficial effect in infants 
with atopic eczema. A prebiotic cream has been developed with encouraging results 
in controlling acne-associated organism Propionibacterium acne. However, much 
more exploration and research are needed to use probiotics routinely for the skin.

5. Application of probiotics

Due to the health benefits exerted by probiotic organisms, they have a wide 
range of applications in clinical uses and various industries such as food industries 
and agriculture industries. Most species of lactobacilli and bifidobacteria are used 
commercially. Among them L. rhamnosus, L. plantarum, L. casei, L.paracasei, B. 
animalis are widely used. With that in some products organism such as S. thermophi-
lus is used.
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5.1 Application of probiotics in the food industry

Increasing knowledge of probiotic benefits leads to the development of func-
tional foods. Functional foods, also known as “nutraceuticals” or “designer foods,” 
are ingredients that offer health benefits that extend beyond their nutritional 
value. Some types contain supplements or other additional ingredients designed 
to improve health, and they are slowly emerging as ‘health food’ on supermarket 
shelves worldwide [70]. A wide variety of dairy products such as milk, yogurt, 
cheese, ice cream, chocolate mousse, quark, etc., include probiotic organisms to 
improve their nutrition characteristics [70–74]. Furthermore, whey-based and 
fortified dairy beverages are also available, including probiotic and prebiotic.  
L. rhamnosus GG is widely used in such beverages [75, 76]. The development of non-
dairy-based products has gained attention in developed countries as a population 

Food product Probiotic organism used References

Acidophilus milk Lactobacillus acidophilus [79]

Yogurt, bio-yogurts Streptococcus thermophilus
Lactobacillus bulgaricus
Bifidobacterium bifidum

[76, 80, 81]

Cheese Lactobacillus acidophilus
Lactobacillus paracasei
Lactobacillus reuteri
Bifidobacterium infantis

[81, 82]

Kefir (Fermented milk 
beverage)

Lactobacillus kefir
Lactobacillus paracasei
Lactobacillus parabuchneri
Lactobacillus casei
Lactobacillus lactis
Lactococcus lactis
Acetobacter lovaniensis
Saccharomyces cerevisiae

[80]

Yosa (oat-bran pudding) Lactobacillus acidophilus [80]

Uji Lactobacillus paracasei [80]

Sorghum Lactobacillus acidophilus [80]

Sauerkraut Leuconostocmesenteroides
Lactobacillus Brevis,
Pediococcuspentosaceus, Lactobacillus Plantarum
Lactobacillus sakei

[80,  83]

Kombucha (Fermented tea 
beverage)

Saccharomyces cerevisiae [80]

Kimchi (Fermented vegetable 
dish)

Lactobacillus sakei, Lactobacillus Plantarum,
Lactobacillus curvatus,

[80]

Natto Bacillus subtilis [84]

Miso Aspergillus oryzae
Saccharomyces cerevisiae

[80,  83]

Sourdough Lactobacillus sanfransiscensis,
Saccharomyces cerevisiae

[80, 85]

Bulgarian boza Lactobacillus coryniformis [35]

Hardline (Grapes) Lactobacillus Plantarum,
Lactobacillus paracasei,
Lactobacillus casei

[35]

Table 2. 
List of probiotic food products.



39

Probiotic: An Uprising Human Health Concept
DOI: http://dx.doi.org/10.5772/intechopen.98828

with vegetarianism and lactose intolerance is higher [77]. Non-dairy based product 
includes fermented vegetable and fruit-based probiotics. Other non-dairy products 
such as cereal, soy, and meat-based probiotics such as fermented oats, sourdoughs, 
sausages, fish are available [78]. Probiotic organisms and substances secreted by 
them are used to preserve and enhance the quality of food. Various probiotic food 
products are listed in Table 2.

5.2 Application of probiotics in agriculture

Other than human, probiotics application is extended to agriculture as well. One 
of them is probiotic farming, which is referred to as bio-intensive agriculture that 
combines various organic farming techniques to make soil healthier. It introduces 
beneficial microorganisms into the growing environment. The use of probiotics 
increases crop yield, limits the need for harmful fertilizers and pesticides and 
depletes damages caused by them. Probiotics also amplify plant’s resistance to 
pests and diseases. Due to antagonistic effects exhibited by probiotic bacteria by 
‘induced systemic resistance,’ plants are protected from pathogenic microorgan-
isms. Bacillus spp., LAB, Actinomycetous, etc. Protect plants from cropping hazards. 
Furthermore, plant probiotic microorganisms (PPM) can influence the synthesis of 
phytohormones and their balance in plants. Some commercial plant products that 
use probiotic cultures are Kodiak (Bacillus subtilis GB03), YiedShield (B. pumilis 
GB34), Rotex (Phlebiopsisgigantea) [21]. Probiotics used in animal feed supple-
ments advantageously alter gastrointestinal flora and improve host animals’ health 
and productivity. Probiotic solely or in combination with prebiotic improves the 
pattern of microbial population in GIT and benefits host’s health [86]. Probiotic is 
generously applied in poultry and aquaculture. Some feed additives can modulate 
the intestinal milieu and exert beneficial substances in the intestine [87]. Probiotics 
gained attention to use as an alternative to antibiotics in poultry to get the product 
with quality and safety [88]. It also reduces their mortality rate and increases bone 
quality. In ruminants, probiotics increase forage intake, increasing fiber digestion 
rate, which results in improved weight gain, milk yield, and milk fat content [86]. 
Probiotic also decreases the prevalence of coliform infection in pre-ruminant calves. 
The use of probiotics in aquaculture prevents the adhesion of pathogens from fish-
ing intestinal mucus.

5.3 Application of probiotics in clinical use

As described earlier, probiotics prevent or mitigate various diseases and severe 
symptoms by various mechanisms, but it is advisable to take care when used in 
immune-compromised patients. Encouraging evidences are emerging for pro-
biotics’ efficiency in the management of pouchitis and pediatric atopic diseases. 
Probiotics are also helpful in preventing postoperative infections [89]. There is 
strong evidence that some bacterial strains are efficient in enhancing immune 
function. Probiotics are also beneficial in mental disorders and reduce carcinogenic 
activity, cholesterol level, and blood pressure [35]. The significance of probiotics in 
preventing traveler’s diarrhea, sepsis-associated with severe pancreatitis, ulcerative 
colitis, and reduction of hyper cholesterol is unproven [89, 90]. The chemothera-
peutic drugs such as L-asparaginase with fewer side effects from probiotic bacteria 
are still being explored. A study reported the use of kimchi to treat cancer [21]. 
Furthermore, the development of alternative antibiotics such as lantibiotics, 
antimicrobial peptides (AMPs) from probiotic bacteria are being explored to reduce 
side effects caused by traditional drug therapies and as a next-generation drug 
system against resistant pathogens. LAB bacteriocin- Nisin is commercially used 
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as a food preservative [35]. It also has biomedical applications as it exhibits anti-
microbial activity against resistant pathogens and anti-biofilm properties to use in 
combination with therapeutic drugs [91]. Although probiotics have shown encour-
aging evidence of efficacy in various diseases, there is much exploration needed for 
standard clinical practice in humans.

6. Conclusion

Exploration of gut microbiota indicates that beneficial gut microbiota plays 
a crucial and constructive role in maintaining the health of host (human). The 
symbiotic relation of gut microbiota with host and benefits exhibited by them leads 
to the development of probiotics and prebiotics. Studies on various mechanisms 
of probiotics have shown their abilities to prevent or treat various diseases in 
human. Due to this efficiency, probiotics and prebiotics and their applications in 
various fields have shown a substantial increase in the last two decades. Probiotics 
are mainly applied in the food industry to develop functional foods and supple-
ments to benefit consumers. The applications of probiotics are also extended to the 
agriculture industry to boost the productivity and quality of crops and animals. The 
emergence of encouraging evidence has given a sight to use probiotics in clinical 
practices with minimum side effects. However, clinical use of probiotics as standard 
practice is under the umbrella of research yet.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

Probiotics are particularly beneficial living microorganisms that help improve 
human health. Although probiotics have long been used as nutritional supplements 
in various cultures around the world, new research has investigated their antimicro-
bial and immune boosting effects in individuals. Lactobacillus and Bifidobacterium 
are popular probiotics used worldwide that benefit human health by acting as 
antibacterial, antiviral, and antifungal agents, reducing pathogen binding to the 
host receptor and thus capturing pathogenic microorganisms. Probiotics have been 
shown to be beneficial in a variety of bacterial and viral diseases worldwide. The 
regulation of the host’s immune response is one of the most important mechanisms 
of probiotic action. Immunomodulatory effects of probiotic-derived compounds 
have been characterized using genomic and proteomic analysis. These compounds 
have the ability to regulate and initiate mucosal immunity against various diseases. 
Probiotics produce many bactericidal compounds, which inhibit the growth of 
pathogenic microorganisms and their toxins, promoting the sustainability and 
structural integrity of enterocytes. This chapter focused on recent scientific 
research findings that help us better understand how probiotics regulate the host 
immune response and how they can be used to prevent and treat disease and there 
beneficial role to improve the health status of individuals.

Keywords: Immunomodulatory, Antibacterial, Antiviral, Probiotics, Lactobacillus

1. Introduction

The human body is prone to many virulent microbes and their oxidative meta-
bolic substances. The human body is shielded from potentially pathogenic microbes 
by the immune system [1]. The gastrointestinal tract, which is approximately 7.5 
meters long, is the largest area of the immune system. Furthermore, trillions of bac-
teria reside in the gut, particularly in the colon, which served as the main reservoir 
for these mutualistic species. Most of the time, it is said that the number of human 
cells in the body is ten times less than that of bacterial cells, while this proportion 
has been revamped to about 1:1 [2]. Normal vaginal and fecal microorganisms 
were injected at birth to study the host microbe’s relationship with the newborn. 
This inoculum contains aerobic, anaerobic, gram-positive, and gram-negative 
bacteria belonging to dominant species such as Sneathia spp., Lactobacillus spp., 
and Prevotella spp. [3]. It has been studied that how gestational stage, environment, 
type of delivery, attitude, and breastfeeding habits influenced the proliferation and 
stability of the infant’s microbiome [4].
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The host-microbe relationship is critical for the growth of the gastrointestinal 
immunity within the first weeks after giving birth. The proliferation and growth 
of gut microorganisms continues until about the age of two years, at which point 
the intestinal immune system is said to be mature [5]. The intestinal environment 
of gut microorganisms is generally stable, particularly at the species and genus 
levels. Besides that, irrational antibiotic use, pathogenic parasites, malnutrition, 
or cold and hot stress all have an impact on the structural composition of gut 
microbiota [6].

Antimicrobial drugs, as well as human-targeted medicines, have been attrib-
uted to changes in gut microbial composition. More than a thousand antimicrobial 
drugs have been evaluated against forty different intestinal bacteria around 
the world. They discover 24 drugs that inhibit the growth of one or even more 
bacterial strains in vitro [7]. The defensive mechanism is triggered by innate 
immunity when an individual’s body is exposed to a foreign particle or sustains 
tissue damage. Innate immunity protects cells physiology by signaling adaptive 
immune responses to persistent threats and stimulating inflammatory response. 
Inconsistent innate and adaptive responses, on the other hand, result in highly 
inflammatory reactions, tissue damage, and disease. The host mucosal immune 
response induced by gut microbiota is important for maintaining intestinal 
homeostasis and developing a systemic defense response. Manipulation of the 
intestinal microbiota can thus be a viable alternative route to improving health 
and to prevent and/or cure illness [8].

Probiotics were described as ‘live microorganisms that impart benefits to 
the host health when taken in sufficient quantities as component of food”. 
Saccharomyces, Lactobacillus, and Bifidobacterium are three important probiotic 
Genus that have been extensively researched and used in animal and human feed 
[9]. Recent research indicates that probiotics have a number of beneficial effects on 
the host’s gastrointestinal tract protection mechanism. They produce bactericidal 
substances by which they counteract pathogenic microorganisms’ consequences 
and bind to the intestinal epithelium by interacting with pathogenic microorgan-
isms and their toxins. Probiotics facilitate the longevity of epithelial cells, improve 
the immune barrier, and improve the immune response to intestinal epithelium, all 
of which lead to gastric mucosal homeostasis [10]. Most notably, immune system 
regulation is among the most potential factors behind probiotics’ beneficial health 
effects. Probiotics strengthen innate and adaptive immunity and suppress bacte-
rial infection through toll-like receptor-regulated signal transduction pathways. 
Probiotic bacteria have been seen to enhance intrinsic host immune mechanisms. 
The use of probiotic microbes has significant effects on people’s immune systems, 
such as stabilizing the non-immunological or innate immune response triggered 
by gut microbes, improving adaptive intestinal immune response, and regulating 
non-specific inflammatory and hypersensitivity reactions [11].

2. Historical background of probiotics

The concept of probiotics therapy emerged after the discovery of gut micro-
biome that is an inherent part of the intestinal epithelial cells. A probiotic is rep-
resented as a live microorganism’s dietary supplement that benefits the individual 
by boosting the intestinal microbiome in the gastrointestinal tract. The probiotic 
definition is incomplete for the aim of human health and nutrition. In response, the 
European Commission and the International Institute of Life Sciences collaborated 
to reframe the concept of probiotics as a live microbial food item which is beneficial 
to human health [12].
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In 1953, German researcher Werner Kollath coined the term probiotic, which 
is comes from the Latin terms pro, which means for, and biotic, which means 
“bios” or “life.” Probiotics were defined by Lilly and Stillwell in 1965 as substances 
produced naturally by one microorganism that promotes the growth of another. In 
1992, Fuller described probiotics as “live microorganisms added as a supplement in 
feed that benefits the host by improving its intestinal microbial balance” Probiotics 
have a modern history dating back to the early 1900s, when future Nobel laure-
ate Elie Metchnikoff, a Russian scientist working at the Pasteur Institute in Paris, 
performed groundbreaking research [13].

Louis Pasteur established the microbes required for the fermentation process, 
while Metchnikoff first sought to determine the potential impact of the microbiota 
on public health. He attributed Bulgarian village peoples’ long life spans to their 
regular consumption of yoghurt, which are fermented dairy products. He related 
this to Stamen Grigorov, a physician who found the Bulgarian bacillus, and further 
proposed that lactobacilli could mitigate the decaying impact of digestive fermenta-
tion, that led to illness and aging. Furthermore, Socrates said over two thousand 
years ago that “death lies in the guts” and that “poor absorption is the root of all 
evil.” Metchnikoff also reported that toxins generated by microbial decomposition 
in the gastrointestinal tract and then discharged into to the bloodstream trigger 
aging [14]. Such microbes were originally referred to as decomposing microbes, 
but they are now known as proteolytic clostridia. Metchnikoff also noted that “the 
gastrointestinal microbiota’ reliance on food allows us to take steps to change the 
microbiome in our gastrointestinal tract and exchange pathogenic microorganisms 
with good bacteria.” Metchnikoff scientific theory of probiotics was the foundation 
for the first dairy industry in France [15].

Modern techniques have selected probiotics strains that manufacture fortified 
milk with strong nutritional and organoleptic features more than anyone else. 
Yoghurt was the first functional fermented food based to historical evidence [16]. 
However, since probiotics are usually associated to the consumption of fermented 
foods, they have a long and distinguished history. In ancient Indian Vedic litera-
ture, milk and milk products are associated to a reliable and comfortable life. 
According to legend, the first kefir grain was distributed by Prophet Muhammad 
(SAW) to the descendants of Caucasian mountaineers as a reward. Kefir is a fer-
mented milk drink that contains a lot of lactic acid bacteria and probiotics. Cheese 
and yoghurt have been used by Hippocrates, Marco Polo, Galeno, and Chinese 
people throughout history [17].

3. Probiotics stimulate innate immune system

The most distinguished cells of natural immunity in probiotic research are 
the dendritic and epithelial cells. These are the first cells to interact with the gut 
microbiota and its toxic metabolites. Gut associated lymphoid tissue (GALT) and 
intestinal mucosa is the reservoir of intestinal dendritic cells. Dendritic cells are also 
known as detector cells because they have unique receptors that attach to specific 
sites on pathogen surfaces. Dendritic cells also act as a catalyst for various forms of 
signaling pathways that modify phenotypes and secreted cytokines such as Toll-like 
receptors and c-type lectin receptors [18].

Bifidobacterium infantis 35624 is a probiotic strain that can regulate dendritic 
cells activity, leading to a rise in cDC1 (CD103+ DC) in the basal lamina. It has 
many advantages for human health because it decreases the incidence of Dextran 
sulphate sodium-induced colitis, which is caused by a retinoid acid-dependent 
process [19]. Furthermore, oral administration of B. infantis 14.518 to Albino 
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BALB/C mice stimulates the growth, development, and maturation of dendritic 
cells in GALT, which is responsible for the regulation of T cells and the inhibition of 
Th2-biased responses through a process known as differentiation [20]. Additionally, 
other B. longum, B. infantis, L. rhamnosus, and L. casei enhance CCR7, CD40, and 
CD80 production in both juvenile and old Dendritic cells donors, whereas only old 
donors can boost IFN-γ and TGF- expression. The oral administration of B. longum 
bv. infantis CCUG increased IL-10 output [21].

The use of probiotic strain L. rhamnosus JB-1 has many advantages to regulate 
the dendritic cells by production of haemoxygense, stimulation of DC-SIGN 
and TLR-2 pattern recognition receptors (PRRs). L. rhamnosus JB-1 helps reduce 
inflammation via inhibiting the expression of co-stimulatory molecules, production 
and maturation of cytokines and TH1/TH17 through stimulations of the human 
monocyte derived dendritic cells. The immunomodulatory activity of L. rhamnosus 
JB-1, which expresses Foxp3 and induces IL-10 development, has been documented. 
Probiotic bacterial strain cell wall components also regulate the immunomodulation 
of DCs. When capsular polysaccharide binds with TLR-2 receptors on dendritic 
cells, it stimulates the development of IL-10 from T helper cells, which reduces 
the inflammatory response caused by colitis [22]. Similarly, exo-polysaccharides 
derived from Bacillus subtilis are useful in the treatment of intestinal infections 
because they protect against Citrobacter rodentiumin toxicity. Probiotics, on the 
other hand, control the microbial populations in the intestine after modifying 
dendritic cells activation [23].

The absorptive role of intestinal epithelium is well described. Epithelial cells 
produce a mucosal barrier to safeguard the individual from harmful microbes 
and toxicants. The intestinal mucosa barrier has a powerful connection with 
the intrinsic immune system of the Peyer’s patches and lamina propria [24]. 
Probiotics are well-known for preserving the integrity of the intestinal barrier 
through a variety of mechanisms, including starvation of infectious agents as 
they compete for nutrients, detachment of bacteria from intestinal epithelium, 
which prevents pathogen invasion, immune response regulation, and aiding in 
regulatory T cell responses. Most of these are probiotics’ positive effects on the 
host’s internal health [25]. The use of B. infantis prevents Salmonella infection 
by reducing the induction of Peyer’s patch macrophage inflammatory protein-1 
(MIP)-1 and MIP-1 through a Treg-dependent pathway [26]. Human-defensin-2 
is a probiotic-produced antimicrobial peptide that strengthens the mucosal 
barrier against pathogenic microbes. Defensins are wide ranging anti-microbial 
peptides released by macrophages, epithelial cells, neutrophils and, Paneth 
cells as part of a natural immune reaction [27]. Shirota strain (L. casei) increases 
defensin mRNA transcription in Caco-2 colonic intestinal cells by increasing 
hBD-2 [28].

Multiple probiotic strains of the genus Bifidobacterium, such as B. infantis, B. 
adolescentis, B. bifidum, and B. longum, could be modulate the apoptosis process 
in intestinal epithelial cells. They can also enhance mucin secretion, which 
serves as the first line of protection against infectious agents in the intestine 
[29]. L. rhamnosus GG3 induces mucin production in intestinal epithelial cells 
by activating the Muc2 and p40 genes expression. When an antigen attaches 
to enterocytes, pro-inflammatory neurotransmitters, chemokine’s, and some 
tumor necrosis factor are secreted, triggering an efficient immune response [30]. 
L. casei and L. rhamnosus reduce the production of proinflammatory cytokines 
in enterocytes after infection with Clostridium difficile. B. polyfermenticus, 
Bifidobacterium lactus, B. animalis ssp. lactis Lactobacillus casei, L. paracasei ssp. 
paracasei, and L. plantarum stimulate the production of natural killer cells after 
infection [31].
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4. Probiotics stimulate humoral immune system

Probiotics are used to sensitize the host’s immune system to potentially danger-
ous pathogens. Oral administration of B. bifidum increased humoral immune 
response to egg albumin, whereas B. breve increased IgA exposure to cholera toxin 
[32]. Oral administration of L. rhamnosus triggered antibody IgA secreted B-cells 
in children with rotavirus infection in control studies [33]. Lactobacilli were given 
orally to suckling rats that had been sensitized with cow milk, and the number of 
cells secreting antibodies β-lactoglobulin increased. Human babies develop atopic 
dermatitis after consuming cow milk. Probiotic therapy, on the other hand, has 
been scientifically proven to minimize atopic dermatitis infection in humans. 
Food antigens are processed in the intestine with the aid of the gut microbiota. 
Low-molecular-weight peptides produced by bacteria collected from of the gastric 
microbiota can stimulate the immune reaction [34].

Probiotic derived proteases have been shown to digest cow milk casein and 
produce peptides that inhibit inflammatory cytokines in healthy people. A study 
was conducted to see whether caseins digested by probiotic bacteria producing 
proteases might induce the production of cytokine and anti-CD3 immunoglobulin 
mononuclear cells in atopic dermatitis in infants with cow milk allergies. Casein 
from cow’s milk stimulates the synthesis of IL-4, which causes hypersensitivity 
[35]. Oral administration of L. rhamnosus GG, on the other hand, breaks down 
casein and inhibits IL-4 synthesis. These results indicate that probiotics in diet 
change the composition of potentially toxic pathogens, thus altering their immuno-
genicity function [36].

The ability of probiotics to increase the number of T-regulated lymphocytic 
cells contributes for their anti-inflammatory and anti-colitis properties. B. 
longum has helped in the treatment of colorectal colitis in mice by upregulating 
T-regulated lymphocytic cells. As a result, IL-10 and IL-12 levels in the blood 
have risen, while inflammatory cytokines including IL-23, IL-12, and IL-27 have 
decreased [37]. In healthy people, B. infantis induces Foxp3 T-cells to become 
activated, which decreases the levels of inflammatory cytokines in psoriasis 
patients [38].

Probiotics strain produced short chain fatty acids molecules such as propionate, 
isobutyrate, acetate, butyrate etc., which directly or indirectly regulate the homeo-
stasis of T-cells. Butyrate activates Foxp3+ cells and Treg cell production outside 
of the hypothalamus. Propionate regulated the production of T-cell by inhibiting 
histone deacetylase. Probiotics e.g. L. acidophilu, B. breve, L. gasseri, B. longum, B. 
longum subsp. infantis prevented the development of Th17 inflammatory cells, which 
are responsible for the pathogenesis and progression of different inflammatory 
diseases such as irritable bowel syndrome [39]. Further to that, L. rhamnosus GG 
and B. breve inhibit IL-17 and IL-23, which are necessary for Th17 growth, stabil-
ity, and stimulation. INFγ and TNF-α was produced by various Lactobacillus and 
Bifidobacterium species, which inhibited the expansion of Th17 inflammatory cells. 
B. longum (JCM) increased IL-27 development, which has been linked to a reduc-
tion in the amount of IL-17 stimulating Th-17 cells [40].

Probiotics have the ability to shift the immune response from Th2 to Th1. L. 
casei can stimulate IL-12 development, polarizing the Th1 response and mitigating 
Th2 linked illnesses. L. rhamnosus curtails Th2 as well as Th17 cells and improves 
clinical symptoms of seasonal allergies, atopic dermatitis and psoriatic arthritis. 
Probiotic fermented dairy milk modified the allergic process triggered by ovo-
albumin in rats, polarizing a Th1 instead of a Th2 pattern reaction and leading 
throughout the production of IgG rather than IgE, with increased concentration of 
IFN-γ and IL- 10 accountable immunomodulation [41].
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Probiotics have a direct effect on the cells of the lamina propria and payers 
patches, resulting in an increase in IgA production cells. IgA plays an important 
function in the prevention of mucosal pathogens. Toxins are neutralized by IgA, 
which prevents pathogens bacteria from binding to intestinal epithelial cells. L. 
gasseri (SBT2055) has been shown in mice to activate the TLR2 signal pathway, 
which triggers IgA generating cells in the mucosa and payers patches of the small 
intestine. While B lymphocytes are responsible for production of specific immuno-
globulin and are the primary players in the adaptive immune response, they can also 
deprecating antibodies by manufacturing IL-10 through inflammatory and chronic 
diseases. The use of probiotics during combination with influenza vaccine increased 
an individual’s total number of IgG and memory B-cells [42].

5. Role of probiotics as antibacterial

The oral cavity is a highly complex structure containing over 700 different types 
of bacteria. When there is a disturbance in this environment, abnormalities such 
as periodontal disease may occur, resulting in a reduction of indigenous microbial 
populations to the advantage of infectious agents. The causative agents of oral cavity 
disease are S. mutans, A. viscosus, F. nucleatum and P. gingivalis. Microbial resistance 
tends to be a safe way to battle against the establishing of bacterial pathogens with in 
oral ecosystem, and this fight might well be enabled by probiotic strains [43].

Anti-bacterial substances formed by probiotic strains included defensin, acet-
aldehydes, hydrogen peroxide, bacteriocins, organic acids, ethanol, and peptides. 
Peptides and bacteriocins, in general, are essential in increasing the vascular perme-
ability of target cells that contributes to activation of the membrane permeability 
and, eventually, cell damage [44].

Probiotics have antibacterial effect, which is an essential feature. Bacteriocin 
synthesis may be one way to accomplish this antibacterial activity. Bacteriocins are 
produced by the industrial probiotic strains L. casei YIT 9029 and L. johnsonii LA1. 
The antimicrobial compound’s existence can be deduced from its behavior, which 
includes a limited inhibiting range, lack of function if administered with proteinases, 
and relatively tiny molecular weights [45]. L. amylovorus (DCE 471), L. johnsonii 
(LA1), and L. casei (YIT 9029) all developed bacteriocins that prevented helicobacter 
pylori infection in humans. Regrettably, H. pylorus was not inhibited by a fourth bac-
teriocin induced by L. acidophilus (IBB 801). This suggests that certain bacteriocins 
formed by unique probiotic strains may help to inhibit this specific bacterium [46].

The most commonly used probiotic strains are from the Lactobacillus genus, 
which is recognized as safe. Some researchers have explained the function of probi-
otics in the buccal mucosa during the last few decades. Intake of lactic acid bacteria 
containing items has been shown to mitigate dental caries of mutant streptococci, 
but the studied species were ATCC strains rather than standard probiotic species 
such as L. rhamnosus GG. It has been demonstrated that probiotic strains with 
good antibacterial activity are needed to eliminate or stop harmful bacteria [47]. 
Lactobacilli have long been considered to be able to produce antimicrobial com-
pounds. Lactobacilli may produce organic acid compounds as a result of carbohy-
drate fermentation, which can intervene with the function of neighboring microbes 
via depressing the pH of the environment. Some probiotic strains produce bacterio-
cins, which are well-known types of microbial animosity. L. gasseri was abundant 
in healthier people’s oral mucosa and developed bacteriocin against pathogenic 
microbes. L. reuteri appears to be able to produce reuterin, a powerful antibacterial 
substance derived from glycerol fermentation [48].
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6. Role of probiotics as antiviral

A number of microorganisms have been found in the human respiratory tract as 
the primary source of the respiratory virus. We may reduce the occurrence of dis-
ease development in humans by limiting the penetration of respiratory tract viruses 
into the membranes of mucosal epithelial cells. The human body contains a diverse 
community of mutually advantageous commensal bacteria known as microbiota 
[49]. Probiotics are microorganisms that have potential health benefits when eaten 
in a specific amount. There are two basic types of probiotics: Lactobacillus and 
Bifidobacterium and Both have a positive impact on human health since it acts as 
an antiviral agent, lowering the binding ability of viruses to the host receptor and 
thereby capturing the virus. Probiotics administering protects individuals from 
various respiratory viral infections like Respiratory syncytial virus, SARS-CoV-2, 
Influenza A virus. This antiviral activity was investigated by the strain’s specificity 
as well as the host immune status [50].

L. casei shirota (LcS) is a lactobacillus probiotic strain isolated from the oral 
microbiota. It has been stated that when Lcs was presented to influenza (H1N1) 
infected mice, the viral titer declined. Furthermore, LcS stimulates the innate or 
nonspecific immune system by increasing the production of antiviral cytokines like 
IFN-α. Another study discovered immunomodulatory activity against Respiratory 
syncytial virus. LcS, on the other hand, has shown negligible findings into clinical 
trials, especially among older community, when compared to the control group [51]. 
Clinical trials were conducted on L. Casei (DN-114,001) demonstrated substantial 
antiviral activity in separate studies in infants, adults, and the elderly. It decreases 
the clinical signs and symptoms of respiratory tract infection in infants, adults, and 
the elderly [52].

L. fermentum is a bacteria present in both people and animals microbiota and 
is commonly used it as a probiotic in people. This probiotic was tested in clinical 
studies, specifically in children and young adults, as well as lab animals to examine 
the process of viral prevention toward respiratory infections. The efficacy of L. 
fermentum CJL-112 and L. fermentum-1 have been studied against Influenza virus 
(H1N1) infected with mice and the findings indicate a marked decline in viral 
count, with significant stimulation of IL-12 and Immunoglobulin (IgA) develop-
ment, allowing for an improvement in mouse longevity. The combined effect of 
probiotic (L. fermentum CECT5716) and prebiotic (galacto-oligosaccharides) had 
assessed in healthy infants, and this research showed a significant decrease in the 
incidence of urinary and respiratory tract illness [53].

L. acidophilus is a well-known lactic acid bacteria strain that is used in medicinal 
treatments. Since L. acidophilus is commonly used to treat gastrointestinal issues, 
just few researchers have examined into its antiviral activity. L. acidophilus L-92, 
retrieved from a healthy Japanese citizen, demonstrated antiviral activity against 
influenza virus through IFN-α and natural killer cell modulation. The antiviral 
activity of L. brevis KB-290 against H1NI was examined, and virus levels were 
found to be depleted as a result of IgA and IFN-α stimulation [54]. Bifidobacteria 
aids in digestion, immunity, and the prevention of almost all gastrointestinal infec-
tions. These strains have been used in several clinical studies against viral respira-
tory diseases to determine the mechanism of antiviral effect [55].

B. longum (BB536) demonstrated anti-H1N1 activity in mice after parenteral 
route for two weeks prior to disease, owing to a decrease in IL-6 and IFN produc-
tion. Moreover, this probiotic strain exhibited the potential to dramatically reduce 
the clinical signs and symptom. The combination of B. animalis ssp. Lactis and L. 
reuteri indicated the strongest antiviral activity against respiratory system microbes. 
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L. rhamnosus GG is the most extensively researched probiotic, with substantial 
reductions in diarrhea length and rotavirus pathogenicity [56].

The COVID-19 disease affects the lungs and the gastrointestinal tract, inducing 
pro-inflammatory Th1-cells to release various cytokines such as TNF-alpha leading 
to the establishment of the cytokine storm. Dysregulation in the intestinal micro-
biome contributes to an imbalance of Th1 and Th2, which stimulates the formation 
of pro-inflammatory cytokines and, eventually, a cytokine storm in epithelial cells 
in the lungs [57]. Probiotics promote the proliferation of “beneficial bacteria” in 
the intestine, resulting in a change in the stability of Th1/Th2 cells, which lowers 
the cytokine storm and the severity of infections. It was recently found that using 
probiotic bacteria derived from Lactobacillus and Bifidobacterium improves the 
chance of healing from COVID-19 patients. L. paracasei and L. coryniformis has the 
ability to bind angiotensin converting enzyme type 2, which is a receptor needed by 
the SARS-CoV-2 virus for attachment, preventing its entrance into cell and thereby 
decrease the possibility of COVID-19 infection [58].

7. Role of probiotics as antifungal

The global fungal load is extremely high, and it is expected to rise even higher 
as the proportion of immunocompromised people rises. In contrast, the drugs used 
to treat fungal pollutions are extremely small, and some of them are extremely 
dangerous. Candida gullemondii, C. auris, C. glabrata, Aspergillus and Fusarium 
species are evolving as impervious and hazardous fungal pathogens. These species 
are responsible for 5–10% of global food spoilage [59].

Aflatoxin is an extremely hepatotoxic bioactive compound produced by fungi, 
which is a major global concern. A toxin-free feed is demanded by the existing 
agriculture and livestock production industries. Use of such microbes to food 
preservation has grown in popularity in recent years, owing to customer needs for 
less reliance on chemical preservatives. Lactic acid bacteria are widely regarded as a 
“beneficial organism,” that is used to avoid contamination of food and feed, as well 
as to chemically store food. It is also intended to produce antimicrobial agents [60].

L. fermentum L23 and L. rhamnosus L60 produced bioactive compounds such 
as hydrolytic enzymes, organic acids, bacteriocins, and hydrogen peroxide and 
blocked the fungal growth of most all aflatoxigenic strains. L60 has decreased 
Aflatoxin B1 output by greater than 90 percent and L23 by up to 100 percent. As 
a result, L23 and L60 have been used to properly manage aflatoxigenic fungi in 
livestock feed [61].

Probiotics have been shown to decrease C. albicans infections in a variety 
of body organ systems and are widely regarded as important for good health. 
Probiotics, for example, can treat gastroenteritis, dairy allergy, and the signs and 
symptoms of irritable bowel syndrome. C. albicans has been assigned two virulent 
functions: filamentation and biofilm growth. We can minimize both of these viru-
lent functions through using probiotics. The yeast form of candida is more readily 
phagocytized than the hyphal form, and probiotics help the host organism combat 
pathogens by preventing filamentation. However, the exact mechanisms by which 
fungal infections are prevented are unknown [62].

8. Conclusion

Nowadays, the discovery of the use of probiotic strains has improved our 
understanding of the relationship between diet and people’s health. Probiotics boost 
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innate and humoral immunity against pathogens. Probiotic bacteria bind to gut 
epithelial cells and release cytokines (IFN-γ) and interleukins (IL-10) that establish 
a microclimate in the tracheae, bronchi, and reproductive organs and gut lamina 
propria, triggering clonal proliferation of B cells to make IgA and activating Treg 
cells, thereby maintaining immune balance in the gastrointestinal tract. COVID-19 
is a newly emerging virus that causes deadly disease all over the world. Probiotic 
strains, especially lactobacillus species therapy, may be critical in controlling 
COVID-19, and probiotic treatment may be considered as a choice for the reduction 
and mitigation of COVID-19 infection globally.
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Abstract

Probiotics are microorganisms that live in symbiosis with the human body. 
The intake of probiotics in adequate amounts can improve biological functions 
bringing improvements in the health of the host. Many studies have demonstrated 
the indisputable antimicrobial activity of probiotics and their potential for an 
alternative treatment of infections. Nevertheless, the forms of encapsulation, as 
well as clinical trials on the clinical use of these microorganisms as a recognized and 
well-established protocol, are still incipient. In this chapter, we provide a general 
approach to the topic and point to future directions in the probiotics field for this 
purpose. Moreover, microbial resistance is a current public health problem and 
the search for new therapeutic alternatives is urgent. Probiotics and other natural 
therapies have been considered very promising. The approaches of future research 
should focus mainly on the isolation of new probiotic microorganisms, the defini-
tion of inoculum, forms of encapsulation for controlled delivery, and clinical trials 
for the definition of doses and mechanism of action in the fight against infections.

Keywords: probiotics, pharmacology, antimicrobial activity, microbiota, 
biomaterials

1. Introduction

The human body is inhabited by numerous microorganisms, including bacteria, 
fungi, viruses, and protozoa, which represent the human microbiota. Compared to 
the number of human cells, there is a much larger number of microorganisms [1], 
which affect the host’s physiological functions in different ways [2]. After a long 
time of science focusing on pathogenic microorganisms that cause human diseases, 
the interest was also turned to those that provide benefits to the organism, such as 
probiotics.
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The first time that probiotics were mentioned and defined was in 1965 and the 
concept was restricted to substances produced by bacteria that promote the growth 
of other bacteria [3]. In 2001, the Food and Agriculture Organization of the United 
Nations (FAO) updated the concept of probiotics for any living microorganisms 
that provide health benefits to the host when ingested in adequate quantities [4]. 
The most widely used and studied probiotics for human health benefits are gener-
ally gram-positive bacteria that function primarily as modulators and maintainers 
of gut health [5]. Examples of widely studied probiotics such as Lactobacillus, 
Bifidobacterium, Escherichia, Enterococcus, Bacillus e Streptococcus [6].

The commensal intestinal microbiota is related to important functions for 
maintaining the health of the organism, such as increased resistance against 
infections, differentiation of the immune system, and synthesis of nutrients [7]. 
Nevertheless, recent studies have shown that the benefits of probiotics for human 
health go beyond [8], including anti-inflammatory activities [9], anti-tumor activi-
ties [10], antioxidant [11], antimicrobial [12] and modulation of the microbiome 
[13]. Although, research on the antimicrobial activity of probiotic microorganisms 
remains incipient and its clinical applicability for the treatment of infections has 
not been fully explored [14].

Infections have been commonly treated with antibiotics. However, the unre-
strained and irrational use of these drugs can range from individual harms, such 
as specific adverse effects of the drug for the patient, to serious public health 
problems, such as the selection of drug-resistant microorganisms [15]. Likewise, 
research on alternative therapies for the treatment of infectious diseases should be 
encouraged and the field of probiotic microorganisms is very promising. Therefore, 
in this chapter, we will discuss the current reality of treating infections using 
probiotic microorganisms and/or their by-products as well as the prospects for this 
therapy to become a reality in current medicine.

2. Probiotic microorganisms

In 1965, Lilly and Stillwell first used the term probiotic, describing sub-
stances that one organism secretes and can stimulate the growth of another [16]. 
Nonetheless, its use goes back to millennia, as the use of recipes with fermented 
milk by Greeks and Romans. There are also reports of the use of sour milk in the 
bible. Thus, it is observed that the benefits of the use of probiotics to human health 
have been discussed for millennia [17].

These microorganisms, when colonizing the gastrointestinal tract, interact 
directly with the cells of the immune system, playing an important role in the 
maintenance and balance of the immune system [18]. The mechanisms of action of 
probiotics are complex and, in most cases, likely, more than one mechanism occurs 
simultaneously. The main biological pathways of action include increased epithelial 
barrier, inhibition of microbial adhesion and competitive exclusion of pathogenic 
microorganisms in addition to the production of antimicrobial substances, modula-
tion of the immune system, maintenance of normal levels of short-chain fatty acids, 
and regulation of intestinal absorption of electrolytes [19].

The word “probiotic” comes from Greek and means “for life” [20]. Probiotics 
are viable live microorganisms, bacteria, and yeasts, which confer benefits to the 
health of the host when ingested in adequate concentration. Probiotic microorgan-
isms, in general, are part of the intestinal microflora, but can also be found in 
ecological environments. Many factors need to be considered before isolating a 
potential probiotic microorganism. Initially, it is necessary that the strain is not 
pathogenic and shows some type of behavior that reflects in biological activities 
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for the benefit of the host [21]. Besides, it is important to consider that the probi-
otic action is not universal for all species and does not work the same in all tissues 
of the body [22].

Lactic acid bacteria (Lactococcus, Lactobacillus, Streptococcus, and Enterococcus) 
are among the most well-known microorganisms, used and studied by man for 
probiotic purposes. In addition to these, we can include, Bifidobacterium and 
Saccharomyces species, a non-pathogenic yeast [23–25]. Table 1 summarizes the 
main probiotic microorganisms mentioned in the literature for the benefit of 
human health.

Microorganisms can produce lactic acid from different carbon sources, as well 
as release secondary metabolites, including bacteriocins, exopolysaccharides, and 
enzyme complexes with antimicrobial properties preventing the installation and 
growth of other microorganisms [21, 37]. The mechanisms involved in the action 
of these microbial products are well understood concerning the benefits generated 
to the human intestine. However, the use of probiotics for alternative antimi-
crobial therapy against infections, in general, is incipient, although promising. 
Subsequently, we will discuss how probiotics can affect a human microbiota, ways 
of encapsulation, and their main uses for treating infections.

3. Probiotics affect the microbiota

In recent years, several findings have revealed benefits in the administration 
of probiotics, ranging from direct inhibition of pathogenic microorganisms to 
improvements in host immune system functions [38–43].

Despite a large number of studies with probiotics, most efforts are focused on 
understanding the benefits for the intestinal health of the host. Probiotics can exert 
their antimicrobial activity through different mechanisms of action. Generally, it 
has been reported that these microorganisms control/kill the pathogenic microbiota 
through the production of inhibitory substances such as bacteriocins and hydrogen 
peroxide (capable of inhibiting Gram-negative and Gram-positive pathogenic 
bacteria); interference at adhesion sites; competition for nutrients in the microenvi-
ronment, among others [41, 42, 44, 45]. Besides, there is also the modulation of the 
immune system, which also plays a role in the control of infections, which can occur 
in several ways: increased non-specific phagocytic activity through the activation of 
macrophages [9, 45, 46].

Genus Specie Main source Reference

Lactobacillus L. casei, L. bulgaricus, L. 
acidophilus, L. rhamnosus, L. 
reuteri, L. pantarum and L. 
johnsonii

Dairy and human 
gastrointestinal tract

[26, 27]

Bifidobacterium B. animalis, B. bifidum, B. breve, B. 
infantis, B. lactis, B. longum

Human, Dog, Primate, 
Pig, Cow and Horse 
gastrointestinal tract

[28–30]

Streptococcus Streptococcus thermophilus Dairy [31, 32]

Enterococcus Enterococcus faecalis, Enterococcus 
faecium

Human, Cow and Pig 
gastrointestinal tract

[33–35]

Pediococcus Pediococcus pentosaceus, Pediococcus 
acidilactici

Dry quark and rice wine [36]

Table 1. 
Main probiotic microorganisms that are cited in the literature for human health benefits.
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Several probiotic species are widely used in research showing its benefits to the 
host [46, 47]. Among these benefits, antimutagenic properties [48], anticarcino-
genic properties [49–51], antidiarrheal drugs [52–54], system stimulation [55], 
prevention of atopic dermatitis [56–58], reduced blood cholesterol [59, 60].

Therefore, the use of probiotics has been considered a promising strategy for the 
prevention and control of various infectious diseases [38–40, 42, 43, 48, 61–63].

Some studies have also demonstrated the importance of probiotics relating to 
multidrug-resistant bacteria [64]. Multidrug-resistant bacteria, such as vancomycin 
resistant enterococcus (VRE), carbapenemase-producing enterobacteria (CPE), 
and extended-spectrum beta-lactamase (ESBL)-carrying strains, represent a major 
public health issue because they are potential pathogens associated with a high 
mortality rate [64, 65]. Prevention strategies could be based on the use of probiotics 
to prevent the colonization of the colon microbiota. Transient colonization with 
multidrug-resistant bacteria could result in the transfer of antibiotic resistance 
genes in commensals or potential pathogens, resulting in the persistence of the 
resistance gene in the microbiota, which could be responsible for an increased risk 
of lethal infection due to the delay in introducing an effective antibiotic [64, 66]. 
Surprisingly, clinical cases demonstrated that fecal transplantation was able to cause 
decolonization of microbiota of naturally resistant Extended Spectrum β-lactamase 
(ESBL) bacterial strains [67–69]. Furthermore, there are reports that the composi-
tion of the microbiota of hospitalized patients is related to the susceptibility to 
colonization with multiresistant bacteria. The use of probiotic microorganisms 
such as L. plantarum or L. fermentum reduced the colonization of resistant patho-
gens such as Acinetobacter baumannii, Pseudomonas aeruginosa or Candida albicans 
[70, 71]. Nevertheless, an in vitro study showed that the culture supernatants of 
Clostridium butyricum, C. difficile, Clostridium perfringens, Enterococcus faecium, and 
L. plantarum were able to suppress the growth and transmission of gene resistance 
of bacteria carrying ESBL and Carbapenemase-Producing Enterobacteriaceae 
(CPE) [64]. It is undeniable that both colonization by probiotics and the use of their 
by-products have great potential in the treatment and prevention of infections, 
however these properties are still scarcely explored.

Vancomycin-resistant enterococci (VRE) seem less adapted to survival in the 
intestinal microbiota. Thus, these pathogens are more susceptible to decoloniza-
tion when compared to other multiresistant bacteria. The intestinal microbiota in 
patients suffering from hematologic malignancies is less frequently colonized by 
VRE in the presence of Barnesiella [7]. In vivo evidence demonstrates that supple-
menting resident microbiota with Barnesiella or Lactobacillus paracasei CNCM 
I-3689 reduces VRE colonization in mice [72, 73]. In clinics, a case report showed 
VRE decolonization after fecal grafting for the treatment of C. difficile colitis [64].

The clinical use of probiotics in the treatment of infection is challenging the 
thinking of encapsulation for delivery. It is necessary to maintain the viability of 
these microorganisms long enough to compete with pathogenic microorganisms. 
Next, we’ll discuss different potential encapsulation modalities for delivery.

4. Biomaterials for encapsulation of probiotics

The drug delivery systems through liposomes, micelles, carbon nanotubes, 
and dendrimers allowed the increase of therapeutic efficacy, reduction of toxicity, 
sustained and controlled release [74, 75]. The biotechnology industry has been aim-
ing at the development of techniques for encapsulating probiotics, since their health 
benefits are indisputable. However, unlike inert substances, probiotics are live 
microorganisms, which in a way is a challenge in their manufacture, as they must be 
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kept in a live/viable state during the processing, storage, and gastrointestinal transit 
steps to ensure its effectiveness on target sites [75].

The encapsulation technique consists of a set of physical–chemical or mechani-
cal processes in which solid, liquid or gaseous materials are packaged, trapped in 
another material, usually hydrocolloidal materials, resulting in the formation of 
particles that vary in shape and size (from nanometer to millimeter) [76–78].

The encapsulated part is named core material, internal phase, active agent, or 
payload phase, and the encapsulating agent is called the carrier, shell, external 
phase, or matrix [78]. From these components, the encapsulation forms different 
structures: reservoir (where the core is surrounded by a shell), matrix (the internal 
phase is distributed on the surface), or coated matrix, in which matrix is sur-
rounded by an additional coating layer [78].

The use of nanoencapsulation techniques (<1 μm) is not feasible because of 
the size of the bacteria (1 to 5 μm) [76]. On the other hand, it is possible to obtain 
microcapsules using other techniques [79, 80]. The first microencapsulation tech-
niques applied were spray drying, freeze-drying or lyophilization, foam drying, and 
fluidized bed drying [78]. Other techniques used are extrusion, emulsion technolo-
gies, gel particles, coacervation, and electrospraying [76, 78, 81].

The encapsulation of probiotics can be made using natural polymers, such 
as polysaccharides, polypeptides, and polynucleotides, or synthetic polymers. 
Conventionally, three processes are involved in encapsulation. First, the cells must 
be incorporated into a matrix, which can be liquid (by dissolution or dispersion) 
or solid (by agglomeration or adsorption). Then the solution must be dispersed 
(liquids) or sprayed (solids) on the surface. The last process aims to stabilize the 
structure, through polymerization, gelling, solidification, evaporation, coacerva-
tion, or coalescence [79].

Before choosing the technique, it is necessary to consider some important 
criteria: the relationship between the composition of the material, type of 
bacteria, temperature and pH of the medium, as well as the host’s immune 
response. The biocompatibility of the material used in the encapsulation is 
directly related to the viability of the probiotics, which must remain equal to or 
greater than 107 CFU/ml [82, 83]. Therefore, factors such as solubility, digestibil-
ity, and release capacity must also be carefully analyzed [84]. Consequently, it is 
expected that the biomaterial will be able to form an effective protective barrier 
to resist pH variations and ensure the survival of bacteria, without causing 
damage to the host organism. Next, some biomaterials commonly used for the 
encapsulation of probiotics will be discussed.

4.1 Alginate

It is a natural polysaccharide composed of alginic acid (β-D-manuronic acid 
and L-gunoronic acid), obtained through some types of seaweed (laminaria). It 
is considered the most used material for the encapsulation of probiotics. Calcium 
alginate is preferable because it associates the biocompatibility of the material with 
a simple and low-cost technique. However, some disadvantages are attributed, such 
as the high porosity of the particles, which can reduce the protection of cells in the 
matrix [85] and sensitization in an acid medium [86]. Nonetheless, the association 
of alginate with other polymeric components or the addition of additives to the 
surface of the particles can easily overcome these defects [87]. Alginate spheres 
reach the intestine satisfactorily, without undergoing significant degradation by 
stomach acids [88]. Besides, the structural configuration of the probiotic encap-
sulation to alginate is comparable to the beneficial biofilm formation by probiotics 
bacteria [89].
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4.2 Chitosan

It is a biodegradable copolymer obtained from the deacetylation of chitin 
(polysaccharide) present in the crustacean exoskeleton. It consists of units of 
D-glucosamine, capable of forming polymeric networks through Cross-link due to 
the presence of free amino groups. It is commonly found associated with another 
polymer since studies have shown that its isolated use in the matrix does not 
contribute to the maintenance of cell viability [86]. When applied in multilayers 
together with calcium alginate, have shown promising results, where the particles 
are coated with chitosan forming polyelectrolyte complexes that reinforce the algi-
nate structure [89, 90]. Although its use is relatively common, care should be taken 
when choosing this biomaterial to encapsulate some types of bacteria, such as those 
from lactic acid, since chitosan can cause their inhibition [91]. Additionally, its 
solubility is directly related to the pH of the medium, being insoluble at pH higher 
than 5.5 [92], which may result in null or insufficient release.

4.3 Carrageenan

These natural polymers are extracted from red algae (Rhodophyceae) and are 
commonly used as additives in the food industry. Three variables are found: (kappa) 
k-carryenink, (iota) i-carrageenan and (lambda) λ-carrageenan [93]. The use for 
encapsulation of probiotics is based on the sol–gel transition characteristics of the 
types k-carrageenan and i-carrageenan [93]. The dissolution of the polymer occurs 
after heating in a temperature range between 40 and 45°C, at which point the 
bacteria must be incorporated. Subsequently, the solution is stored at room tem-
perature allowing gelation to occur, forming a three-dimensional gel [87]. Studies 
have shown that bacteria have been kept viable, demonstrating a promising effect 
of the use of carrageenan [94–96].

4.4 Gellan gum

This polysaccharide comes from the bacterium Sphingomonas elodea. It is com-
posed of glucose (60%), rhamnose (20%), and gluconic acid (20%). These micro-
bial polysaccharides are considered water-soluble polymers and are commonly used 
as solidifying, gelling, or stabilizing agents [97]. Other microbial polysaccharides, 
such as arabic gum, jamilam, and xanthan gum, when associated with gelam gum, 
become very promising for the encapsulation of probiotics [98].

4.5 Cellulose acetate phthalate (CAP)

They are polysaccharides derived from plants that have important char-
acteristics, such as insolubility at pH below 5 and solubility at pH above 6. 
Thus, it can be used effectively to enable encapsulated probiotics to reach the 
intestine and be released gradually without being altered by stomach pH [99]. 
CAP does not form a gel, therefore, it is used as a coating agent for other biomaterials.

4.6 Starches

Another polysaccharide extracted from plants. Resistance to degradation by 
pancreatic enzymes present in the small intestine is an interesting characteristic 
that justifies its use as a probiotic delivery agent, guaranteeing the viability of 
bacteria when reaching the large intestine [86, 100]. It is commonly associated with 
alginate or carrageenan to form resistant capsules or gels [87, 101].
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4.7 Synthetic polymers

The use of synthetic material for encapsulating probiotics requires that it must 
be a biodegradable material and provide bacterial viability. An example of these 
polymers is PVA - poly (vinyl alcohol), characterized by being soluble in water, 
chemically stable, and of low cost. Studies have shown that its use the use of this 
material alone [102] or associated with other biomaterials [103] is satisfactory while 
maintaining the viability of probiotic microorganisms. Poly(lactic acid) (PLA), 
poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene 
glycol) (PEG), poly(ethylene oxide) (PEO), and poly(vinyl pyrrolidone) (PVP) are 
other synthetic polymers used for encapsulation of probiotics synthetic polymers 
used for encapsulation of probiotics [84]. The use of these polymers is linked to the 
technique of producing fibers through electrospinning.

All of these alternatives mentioned aim to encapsulate probiotics for intestinal 
delivery. Although they can be applied to other tissues of the body, the data in the 
literature are incipient and need to be better analyzed for application in the treat-
ment of other infections, such as those discussed in the next topic.

5. Prevention and treatment of infection with probiotics

The resistance of pathogenic microorganisms to synthetic antimicrobials and, 
consequently, the ineffectiveness of conventional therapies and recurrence of 
infections reflects the need to seek alternative and/or supplementary methods in 
the treatment protocols [104]. Probiotics are one of the methods and are considered 
promising, as they provide satisfactory results when facing infections of a bacte-
rial, fungal and viral nature, whether in the intestinal, urinary, respiratory, female 
genital tracts, and in the oral cavity. In addition, it is safe and does not promote 
adverse effects on the human body [105, 106]. Figure 1 schematizes the delivery 
of microencapsulated probiotic microorganisms in an epithelium colonized by 
pathogenic microorganisms for the treatment of an infection.

One indication of probiotics refers to the treatment of Helicobacter pylori 
infection, which is one of the most common chronic bacterial infections in 
humans, with approximately 4.4 billion infected individuals worldwide in  
2015 [107]. H. pylori infection is associated with the development of gastric 
cancer, which represents one of the main global causes of cancer-related deaths 
[108, 109]. The treatment of H. pylori infection is based on its eradication, with 
the use of antibiotics, such as amoxicillin, clarithromycin, and metronidazole. 
However, antibiotic therapy promotes an imbalance in the intestinal microbiota 
and increased levels of resistant bacteria [110], as well as species associated with 
persistent gastric inflammation and gastric carcinogenesis [111]. This situation 
justifies probiotic supplementation, aiming to reduce undesirable changes in the 
intestinal microbiota, promote the eradication of H. pylori [108, 112], produce 
significant improvements in gastrointestinal symptoms, and, consequently, in 
the quality of life of individuals [108, 109]. The combination of probiotics with 
antibiotic therapy for the eradication of H. pylori was suggested in the Thailand 
Consensus, held in 2015 [110].

Probiotics, in addition to reducing the density of H. pylori, promote immune 
responses with reduced inflammatory status [112–115], significantly reduce adverse 
events related to antibiotic treatment, and improve patient compliance [109, 116]. 
Despite this evidence, it was highlighted in the Thailand Consensus, that most 
studies that evaluated the effects of probiotics on the eradication of H. pylori are of 
poor quality, compromising general recommendations. It has been suggested that 
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further studies should be carried out to determine the best strain, the ideal dose, the 
duration of treatment, effectiveness, contraindications, and cost–benefit [110].

Probiotics are also indicated to reduce or prevent diarrhea associated with 
antibiotics and infections by Clostridium difficile, common in hospitalized patients 
[117, 118] and the elderly [119]. In children, its effectiveness in preventing antibi-
otic-associated diarrhea [120] and in treatment for acute gastroenteritis has not 
been confirmed, despite reducing the duration of hospitalization [121]. The use of 
probiotics in the treatment of infections by Enterobacteriaceae producing extended-
spectrum β-lactamase has also been discussed. However, the results are incipient to 
indicate its use in eradication therapy in patients with prolonged intestinal trans-
port of Enterobacteriaceae [122].

Some studies have suggested that supplementation with probiotics can improve 
the host’s innate and acquired immune response, promoting a protective effect 
against respiratory infections [46, 123, 124]. The increase in the population of T 
cells, more precisely CD4 and CD8, is one of the most important mechanisms of 
the anti-infection effect of probiotics [125, 126]. Oral probiotics, when used in 
children, in addition to improving intestinal microecological balance can reduce the 
frequency of respiratory tract infections [89], mostly caused by viruses, such as the 
coronavirus [127], influenza [128], and bacteria, such as Streptococcus pneumoniae) 
[129]. Several studies have found that probiotics reduce episodes of acute respira-
tory tract infections in children, adults, the elderly, and athletes [89, 125, 126, 130, 
131], proving its beneficial effect in these populations, with no reports of adverse 
effects in children [131].

The high recurrence of urinary tract infections in children [132] and the 
possibility of developing microbial resistance to drugs used against this disease 
have justified research with non-antibiotic alternatives, such as the use of 
probiotics for the prevention of recurrent urinary infections in this population 

Figure 1. 
Microencapsulated probiotics being delivered for the treatment of infection in epithelial tissue. Note that after 
the exit of the microorganisms from the micelle there is the colonization of the region and release of bacteriocins 
that in addition to acting as antimicrobials, stimulate the host’s immune system.
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[133]. Probiotics appear to prevent recurrent urinary infections by contributing 
to the recovery and maintenance of microbiomes, by reducing the adherence, 
growth, and colonization of infectious pathogens in the urinary tract, in addition 
to improving host defenses, and attenuating or eliminating inflammation [105, 
134–144]. Unlike the beneficial role of the use of probiotics in preventing urinary 
infections in children [132], it appears to have no protective effect in adults with 
severe spinal injuries, who have recurrent urinary infections [145], as well as in 
healthy young women [146].

Regarding the genital tract, the administration of probiotics, alone or as adjunc-
tive therapy to the use of conventional antimicrobials, demonstrates success in the 
treatment of infections such as bacterial vaginosis and vulvovaginal candidiasis, 
common and recurrent infections in women of reproductive age. These infections 
that produce abnormal vaginal discharge, itching, vulvar odor, are associated with 
important health complications, such as the increased transmission of sexual infec-
tions, risk of premature birth, and pelvic inflammation, with negative impacts on 
quality of life [138, 147–149].

In infections that affect the mouth, candidiasis is also one of the most prevalent 
diseases, especially when local factors are predisposing the installation of the infec-
tion. Probiotics have been suggested for the treatment of oral candidiasis because 
they reduce the population of Candida ssp. [150], the course of treatment with 
conventional antifungal therapies [151], and the severity of clinical manifestations 
of the infection associated with prosthetic stomatitis [152, 153], including asymp-
tomatic [62]. Besides, the immunological and antimicrobial potential of probiotics 
also can be used in the treatment of periodontal disease killing periodontopatho-
gens, as Porphyromona gingivalis, and promoting the expression of some favorable 
immunoregulatory effects [154]. In summary, probiotics favor oral health, increas-
ing fluids in the mucosa, reducing the accumulation of dental biofilm and gingival 
inflammation, improving the clinical signs characteristic of periodontal infection, 
such as redness and swelling [63, 155, 156].

Studies show beneficial effects of the combination of probiotics in the treatment 
regimen for different infections, with improvements in the clinical condition and 
patient adherence to treatment. Although, researchers warn of the need for further 
studies to define the best treatment protocol, including the determination of effects, 
contraindications, and cost–benefit [110].

6. Concluding remarks

Today’s society is experiencing a public health problem related to an exponential 
increase in microbial resistance, compared to the slow evolution of new drug devel-
opment. The human organism is attacked daily by countless pathogenic microor-
ganisms, many of which cause lethal infections. The use of alternative therapies, 
alone or as an adjunct to antibiotics, is a reality. Concerning the use of probiotics, its 
effectiveness in modifying the microbial is unquestionable, either by the produc-
tion of antimicrobial bacteriocins or by the modulation of the immune system. 
Nonetheless, there is no consensus or standardization for the clinical use of probiot-
ics for the treatment of infectious diseases, except its use for the recomposition of 
the intestinal microbiota. Moreover, two important challenges need to be overcome: 
the standardization of carriers to deliver these microorganisms effectively to the 
treatment site and the definition of important factors, such as the mechanism of 
action, standardization of inoculum, and therapeutic protocols, based clinical 
trials. Thus, although promising, widespread antimicrobial therapy with probiotics 
is not yet a reality for clinical practice.
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Abstract

The field of probiotics is up-and-coming, especially in management of microbial 
pathogens. Probiotics confer nutritional benefits, reduce inflammation and infec-
tion. Probiotics have also shown to be helpful in the management of microbial 
pathogens, which include bacteria, fungi, and viruses. To ernes this potential 
maximumly, there is a need for an elaborate screening system for new isolates. This 
entails; rigorous screening methods and thorough confirmatory systems. There 
is need also to come up with standard methods used to evaluate the probiotics 
mechanism of action both in vivo and in vitro. In summary, there is a need for a 
standard screening process for probiotic microorganisms that is reproducible. The 
aim is to ensure that, the candidate microbial cultures are not written off without 
proper investigations. This will also fasten the screening process and save time and 
resources wasted in pre-screening experiments.

Keywords: probiotics, screening methods, confirmatory methods, postbiotics, 
animal model, coculture

1. Introduction

Fermentation is one of the oldest technologies used for food preservation. 
It involves converting carbohydrates to alcohol, carbon dioxide, and organic 
acids using microorganisms under anaerobic conditions. The fermentation pro-
cess improves food by developing diverse flavors, aromas, and textures in food 
substrates. Also, it enriches food substrates with protein, essential amino acids, 
essential fatty acids, and vitamins. The primary mechanism of the preservation 
of foods is the production of acid, which lowers the pH to a level at which most of 
the spoilage-causing microorganisms cannot grow, hence prolonging the shelf life 
of such foods [1]. At present, various fermented foods are produced worldwide at 
household and industrial levels, in both small-scale and large commercial enter-
prises. Associated with fermentation are beneficial microorganisms known as 
probiotics. The vast majority of the probiotics are lactic acid microorganisms [2] to 
produce fermented dairy products.

Among the beneficial effects of probiotics include improved intestinal health, 
enhancement of the immune response, reduction of serum cholesterol, and cancer 
prevention [3–5]. There is also substantial evidence to support probiotic use in 



Prebiotics and Probiotics - From Food to Health

84

treating acute diarrhoeal diseases, prevention of antibiotic-associated diarrhea, 
and improvement of lactose metabolism [6]. The range of food products contain-
ing probiotic strains is vast and still growing. And so is the list of beneficial effects. 
More so, with an increasing desire for quality life, preference for minimal use of 
chemicals, and the rising cost of healthcare. Natural products like probiotics is a 
promising alternative. Related to probiotics are prebiotics. Biogenics involves the 
use of beneficial bioactive substances produced by probiotic bacteria whose activi-
ties are independent of the viability of probiotic bacteria.

This book chapter focuses on the use of probiotics in the management of micro-
bial pathogens, emphasizing the need to have a reproducible standard screening 
process both in vivo and in vitro. This will highlight areas in the used technologies 
that need harmonization, technologies for investigation and confirmation of the 
antimicrobial activities of probiotics, and finally, the future prospects of probiotics 
and antimicrobial agents.

1.1 Mechanism of action of probiotics

WHO/FAO defines probiotics as “live microorganisms that, when administered 
in adequate amounts, confer a health benefit on the host” [7, 8]. Prebiotics refer 
to the substrates that are selectively utilized by host microorganisms that result in 
conferring a health benefit to the host [8–11]. Furthermore, postbiotics entails the 
use of beneficial bioactive compounds produced by probiotic bacteria. The activity 
of postbiotics is independent of probiotic bacteria’s viability [11]. The term synbiot-
ics is where both prebiotics and probiotics are utilized simultaneously [11, 12].

The probiotics have myriad of mechanisms in which it protects against infection. 
These include; (1) they lower pH, (2) pathogen antagonism by producing antimi-
crobial compounds for example, bacteriocins and or other metabolic products, (3) 
competitive exclusion with the pathogen for binding sites and receptors sites, (4) 
competition for substrates that is, nutrients and growth factors, therefore, limit-
ing resources, (5) stimulate immunomodulatory cells, (6) production of enzymes 
example, enzymes that neutralize toxins produced by pathogens (7) improve the 
barrier function of the intestinal mucosa, (8) modulate inflammatory responses, 
(9) aggregate with pathogens, (10) produce hydrogen peroxide (H2O2) a strong 
oxidizing agent that damage nucleic acids and proteins, (11) produce organic acids 
like lactic acid, acetic acid among others (12) produce CO2 thus creating anaerobic 
microenvironment (Figure 1) [3, 4, 13–16].

The probiotics are generally regarded as safe [17]. The few results obtained when 
probiotics are administered together with conventional drugs clinically are promis-
ing and include synergy with the drug, half dose of conventional drug needed, and 
faster healing [18–21]. Further research is needed in this area.

1.2 Probiotics as antimicrobial agents

Besides the health-improving benefits, the antimicrobial activity of probiotics 
has been well documented, with promising results against microbial pathogens. 
Probiotics have been deemed as the following most crucial immune defense systems 
according to WHO [7]. This is due to increasing antibiotic resistance to commonly 
prescribed antibiotics [22, 23]. There is a need, therefore, to come up with repro-
ducible screening protocols for in vitro, in vivo, and clinical studies. Therefore, this 
book chapter will highlight protocols used in screening probiotics and postbiotics, 
cite their strengths and drawbacks, and point areas that need harmonization.
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2. Areas in the used technology that need harmonization

To obtain reproducible and conclusive results of probiotic antimicrobial activity, 
standardization of protocols is essential. This section reviews the essential areas that 
will inform on the choice of indicator pathogen, probiotic microorganism, inocu-
lum size, incubation time and conditions, and technique of production of postbiot-
ics (also referred to as cell-free supernatant (CFS)/ Biogenic/spent media) used in 
previous research and the need for harmonization.

2.1 The selection of experimental indicator pathogen

The choice has relied on the target disease that the probiotic is thought to treat. 
Thus, for vulvovaginal candidiasis C. albicans, the predominant pathogen has been 
chosen [24, 25], even though Candida glabrata has also been screened [26, 27]. 
Enterotoxigenic E. coli and Salmonella typhimurium is the choice for studying 
gastrointestinal infection [28]. However, while screening new probiotic microor-
ganisms for general antimicrobial activity, major classes of pathogens of medical 
importance should be representatively tested [29]. For example, studies on fungal 
pathogens should include at least a dermatophyte, non-dermatophyte, and yeast. 
Antibacterial should consist of a Gram-positive and a Gram-negative bacterial 
pathogen. Furthermore, clinical, typed microorganism and drug-resistant strains 
should be included due to emerging resistance [10].

Figure 1. 
Mechanisms in which probiotics protect against infection.
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2.2 The choice of probiotic microorganism and postbiotics

The WHO/FAO has listed the criteria for evaluation of probiotic microorgan-
ism, which include; the ability of the microorganism to adhere to epithelial cells, 
bile salts, resist stomach acid and enzymes, persistence within the system, produce 
antimicrobial compounds, antibiotic resistance profile inability to confer resistance 
or genome stability and ability to stabilize the normal microbiota among others 
[7, 15, 30]. Probiotic antimicrobial activity is strain-specific; therefore, the species 
level and strain of the selected probiotic should be identified.

2.3 Inoculum size

The actual number of viable indicator pathogens in the inoculum size directly 
influences the outcome. Too little may lead to false-positive results, while too heavy 
inoculum may give a false negative result [29, 31]. A foundation for the inoculum 
size can be suggested by CLSI [32]. Researchers have used different inoculum size, 
incubation temperature, and time for both probiotic and indicator pathogen in in 
vitro, in vivo and clinical studies [9]. We propose that the viability and dose of pro-
biotic microorganisms used (also in the production of postbiotics) be established by 
dose-dependent experiments. This should be indicated in experimental reports.

2.4 The experimental conditions and incubation time

Lactic acid bacteria and Bifidobacteria are fastidious; subsequently, the media 
chosen should have a specific nutrient requirement, for example, growth factors. 
MRS, which is an appropriate media for the growth of probiotic microorganisms, 
is widely used. MRS is both a selective and an enriched media for the growth and 
isolation of only lactic acid bacteria and other bacteria. Therefore, if this medium 
cannot support the indicator pathogen, for example, dermatophytes (J. [33]), 
probiotic growth factors can be incorporated in any media of choice such as potato 
dextrose agar (PDA), sabouraud dextrose agar (SDA) and nutrient agar (NA) to 
favor the growth of both the indicator pathogen and the probiotic microorganism. 
Proper choice of media and specific modifications is key to a successful experiment 
[33, 34]. Therefore, media supplemented with growth factors should be screened 
for the ability to grow both probiotic microorganisms and indicator pathogen. We 
propose that the specific incubation conditions such as time and oxygen require-
ments for both probiotic microorganisms and indicator pathogen be optimized 
before the experiment and confirmed by the growth curve of individual microor-
ganisms (Figure 2). Furthermore, fresh media should always be prepared and used 
for reproductive results, especially in the case of disc diffusion results.

2.5 The technique of production of postbiotics

The postbiotics is also referred to as cell-free supernatant (CFS) or biogenics 
or spent media. The preparation of postbiotics is varied and attests to the need to 
harmonize the methods. The process entails the following steps; the probiotic micro-
organism is inoculated in broth media and incubated in an incushaker [35]. Cells are 
then removed by centrifuging to obtain the CFS ([36]; J. [33, 35, 37]). The supernatant 
obtained can then be screened for antimicrobial activity [35], or the supernatant is 
further filter-sterilized [35, 36]. The CFS is then used to screen for the microbial activ-
ity or concentrated to obtain concentrated CFS (cCFS) [36, 38] or freeze-dried [36].

The advantage of using postbiotics is that the properties of the active compo-
nent can be deduced. To ascertain if the active ingredient is proteinaceous, heat 
treatment and enzymes are used. If the activity is reduced or is lost compared 
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to non-treated postbiotic, it infers that the antimicrobial agent is proteinaceous 
[33, 38]. To ascertain if the antimicrobial activity is pH-related, the postbiotic is 
neutralized and buffered [30].

Figure 2. 
Detailed proposed method for conclusively screening probiotic antimicrobial activity. Step 1 entails choice of 
optimal media and growth conditions, step 2 is the preliminary screening on agar and step 3 is the confirmation 
of probiotic antimicrobial activity in liquid cocultures.
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3.  Technology for investigation and confirmation of the antimicrobial 
activity of probiotics

3.1  Experiments for investigation of antimicrobial potential of probiotics In vitro

Included in this section are the In vitro antagonism methods on agar plates and 
liquid coculture for checking probiotic antimicrobial activity with their strengths and 
drawbacks. In antagonism on agar plate’s methods, probiotic and indicator microor-
ganism is introduced in the same plate. The difference is the sequence and manner of 
the inoculation of either indicator pathogen or probiotic microorganisms. After incu-
bation, the diameter zone of inhibition which is the clear zones around the inoculated 
area, is then read in millimeters or reported or arbitrary units (AU) (Figures 2 and 3).

3.1.1 Antagonism on agar plate methods

3.1.1.1 Simple spot-on lawn assay

To screen postbiotics or probiotic microorganism using this method, the indi-
cator pathogen is first inoculated, then probiotic microorganisms are spotted at 
specific points on solid media [37]. Modification to the method entails spotting 
probiotic microorganisms as parallel lines [33]. Its strength includes (a) media can 
be modified [33, 34], (b) it has an option of different incubation conditions, i.e., 
probiotic microorganism incubation conditions are first optimized, followed by 
optimizations for indicator pathogen.

3.1.1.2 Spot on agar assay

Probiotic microorganisms are first spotted on agar media and then incubated 
[39]. An indicator pathogen is added, and soft agar at around 45–50°C is poured to 

Figure 3. 
Abridgement of methods involved in screening probiotic microorganisms both In vitro and In vivo.  
(a) In vitro preliminary screening experiments on agar. (b) In vitro confirmatory experiments. (c) In vivo 
animal confirmatory experiment. (d) In vivo clinical confirmatory experiment.
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the previously prepared plate spotted with a probiotic microorganism [25, 35]. The 
advantage of the Agar spot test is that two different media can be used, one for spot-
ting and the other as overlaid soft agar. Indicator and probiotic microorganisms can 
be grown at different times, meaning incubation conditions can be adjusted for each 
microorganism. The disadvantage is the high temperature of soft agar, i.e., between 
45°C and 50°C, killing heat-labile indicator microorganisms. The strict aerobes may 
not grow well due to the pour plate method.

3.1.1.3  Spot on lawn assay with wells also referred to as Agar well diffusion assay 
or as conventional whole plate method

The wells are dug and indicator pathogen inoculated. Then postbiotic/Probiotic 
is dispensed [37, 40]. Unlike the simple spot-on lawn assay method, the probiotic 
microorganism can be allowed to grow first before introducing the indicator micro-
organisms or vice versa.

3.1.1.4 Paper disc assay

The postbiotic/probiotic is dispensed on the paper discs and placed on the 
inoculated media. The inoculation of both indicator pathogen and probiotic micro-
organism is simultaneous. The disadvantage of this method is that the results are 
not reproducible [41]. This is mainly attributed to the production of non-diffusible 
antimicrobials.

3.1.1.5 Cross streak on agar assay

Entails streaking the probiotic microorganism as parallel lines on media. A 
perpendicular line of indicator pathogen is then streaked. Growth inhibition is 
determined at the interception point [40].

3.1.1.6 The radial streak on agar assay

The probiotic microorganism is inoculated as a circle in the middle of the agar 
plate. The indicator pathogen is then streaked as radial lines from the edge of the 
petri dish to the center, and growth inhibition is examined [42]. Another method 
closely related to this method is cutting the media with the probiotic microorgan-
isms and placing it on top of the indicator pathogen inoculated plate.

3.1.2 Liquid coculture method

The probiotic and indicator pathogens are both introduced to optimized broth 
culture media, then incubated. Samples are intermittently collected, and viability 
(cfu/ml) of indicator pathogen is established. It is used to determine if the probiotic 
effect is static or cidal [13, 24]. It may also be used to reveal the mechanism by which 
the probiotic bacteria exert their antimicrobial activity [35]. Microtitre assay is used 
to screen minimum inhibitory concentration (MIC) of postbiotics using microdilu-
tion method, macro serial dilution, or conventional kill time assay [35, 43]. Liquid 
coculture assay is recommended as a confirmatory test (Figures 2 and 3).

3.1.3 Summary of antagonism assay

Antagonism assay on agar plates has the advantage of being fast and straight-
forward. The disadvantage is that it does not directly interact with the probiotic 
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microorganism or postbiotics and indicator pathogen. Consequently, the probiotic 
microorganism should produce sufficient antimicrobial agent that should have the 
potential to diffuse through solid media in terms of size and spatial centrifugation 
[44]. Accordingly, it is not prudent to use these methods solely to ascertain antimi-
crobial activity of probiotic microorganisms. Hence, it is recommended to combine 
antagonism on agar plates and liquid coculture to establish the antimicrobial activ-
ity of probiotic microorganisms and postbiotics (Figures 2 and 3).

3.1.4 Cell culture and tissues

To closely mimic human infection, human cell cultures are infected with indica-
tor pathogen, then treated with probiotic cultures or postbiotics [41].

3.2 Experiments for the discovery of antimicrobial mechanisms of probiotics

The methods used to ascertain probiotic microorganism mechanisms of antimi-
crobial activity include; the ability to inhibit virulence factors and cell death.

3.2.1 Ability to inhibit virulence factors

The virulence factors of pathogenic microorganisms vary from one microorgan-
ism to the other. For example, the virulence factor in bacteria includes adhesion, 
immunoevasion and immunosuppression, exo-enzymes, and exotoxin, among 
others [45]. The virulent factors in Candida include secretion of hydrolases, yeast to 
hypha transition, contact sensing, thigmotropism, biofilm formation, phenotypic 
switching, and range of fitness attributes [27, 37]. The following methods can be 
used to examine the ability of the probiotic microorganism to inhibit the virulence 
factors;

3.2.1.1 Gene expression levels

The expression levels of specific genes controlling one or more of these virulence 
factors can be ascertained when checking for probiotic activity [14, 25, 35, 36, 
46–48]. The methods used include microarray analysis, RT-PCR techniques, and 
western blot [49].

3.2.1.2 Aggregation and coaggregation assay

Aggregation assay using spectrophotometric autoaggregation and coaggrega-
tion is used to ascertain the antimicrobial activity of probiotics [26, 38, 50]. The 
morphological transition of C. albicans that is, germ tube formation contributes 
to adherence and invasion to the host tissue and increases virulence [51, 52]. 
Lactobacilli build aggregates and co-aggregates with Candida cells, and this process 
neutralizes germ tube growth [53]. In addition, the coaggregation protects access 
of pathogens to a cell receptor and, as a result, inhibit pathogen adhesion which 
is a prerequisite step for colonization and the subsequent development of disease 
[26, 44, 50, 54].

3.2.1.3 Antibiofilm Assay

Biofilm produced by pathogens serves as a physical barrier and increases viru-
lence. Antibiofilm assay includes (a) static systems like microtiter plate, Molony 
biofilm, Calgary biofilm device, biofilm ring test (b) open systems such as Kadouri 



91

Probiotics and Postbiotics from Food to Health: Antimicrobial Experimental Confirmation
DOI: http://dx.doi.org/10.5772/intechopen.99675

system, flow cell, perfused (membrane) biofilm fermenter, microfermentors, 
Modified Robbins Device, sorbarod devices (SBF), drip flow reactor, constant 
depth film fermenter, microfluidic biochips, rotating disc reactor, BioFlux device, 
annular reactors, CDC biofilm reactors (c) microcosm example airway epithelial 
cell model, reconstituted human epithelia (RHE), endothelial cells under flow 
model, Zürich oral biofilm-model, microfluidic coculture model, Zürich burn 
biofilm-model, multiple Sorbarod devices (MSD) (d) ex-vivo which include; 
candidiasis in the vaginal mucosa, RWV bioreactor, cardiac valve ex vivo model, 
root canal biofilms [55]. Viable colonies can also be used. While fluorescent labeling 
of biofilm coupled with mathematical labeling is used [41].

3.2.1.4 Exo-enzymes

The indicator microorganisms are treated with probiotics or CFS. The indicator 
microorganism is then examined for the ability to produce exo-enzymes on agar 
plate assays. The agar plate contains a suitable substrate specific to each enzyme 
activity [56].

3.2.1.5 Electron microscopy

Scanning electron microscopy and Transmission electron microscope are used to 
examine cell integrity which includes morphological adherence, distortion, biofilm, 
or apoptosis [27, 50, 57].

3.2.1.6 Germ tube and hyphal growth inhibition

The pelleted spores of dermatophytes and dimorphic pathogenic fungus are 
allowed to develop germ tubes and hyphae. Probiotic or CFS is then added and incu-
bated. Growth is determined by examining germ tubes and hyphae [36, 58].

3.2.1.7 Spore germination inhibition assay

The pelleted mycelia and probiotic or CFS are added to media and incubated. 
Samples are withdrawn and microscopically examined. Percentage spore germina-
tion is calculated by the following formula [33, 36, 58]:

% spore germination = [Numbers of germinated spores /Numbers of total 
spores] × 100

3.2.1.8 Fluorescent metabolic dyes and Confocal laser scanning microscopy

The indicator microorganisms are treated with probiotic cultures or CFS then 
stained with fluorescent dyes according to the manufacturer’s instructions. The live 
or dead cells are counted, and their metabolic activity is ascertained [26, 27]. Live/
dead cells can also be confirmed by viable counts (cfu/ml).

3.2.2 Ability to induce cell death

A sequence of unique morphological changes outlines apoptosis. These 
include; visible cell shrinkage, extensive plasma membrane blebbing, chromatin 
condensation, nuclear fragmentation, formation of apoptotic bodies, which later 
undergoes decomposition within the phagosome and finally terminates with 
complete recycling of the components [59, 60]. Accumulation of reactive oxy-
gen species (ROS) decreased membrane potential, biochemical and cytological 
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responses well known in programmed cell death (PCD), for instance, apoptosis 
[60]. Very high ROS concentrations induce necrosis [61]. These changes can be 
used to determine cell integrity. Of the biochemical and cytological methods used 
to check pathogen cell integrity after treatment with probiotics include but are not 
limited to; nuclear fragmentation using DAPI/Tunnel [62–67]; in situ ligation assay 
[65]; DNA laddering [65, 66]; externalization of Annexin V/PI by cell membrane 
[62, 64, 67–70]; mitochondrial and cytosolic calcium [66, 67, 69, 71]; depolariza-
tion of the mitochondria using mitochondria membrane potential detection kits 
for instance, JC fluorescent probes [62, 63, 66–71]; reactive oxygen species (ROS) 
accumulation [66, 67, 69–71]; detecting cytochrome c in cytoplasm using western 
blotting or color metric kits [63, 66–69, 71, 72]; cytosol / mitochondria intracel-
lular glutathione [67, 69]lipid peroxidation [67, 69]; potassium release [67] and 
metacaspace activation detection using kits like CaspACE FITC-VAD-FMK in situ 
Marker [63, 67–69]. The antimicrobial activity of a probiotic microorganism can be 
assessed using a combination of a number of these methods, which can corroborate 
the integrity of the indicator pathogen. Careful choice of positive (example, antimi-
crobial drug) and negative (untreated) controls are important for interpreting the 
results.

3.3 Experiments that confirm the antimicrobial activity of probiotics in vivo

The in vitro studies offer required information about antimicrobial agents on 
susceptibility responses [73], exposure times, and optimal concentrations [74]. 
However, these studies have their limitations, for instance, the bulk of antimicrobial 
agents that are active in vitro lack significant antimicrobial activity in vivo, and 
vice versa sometimes occurs [73]. The strength of animal models in determin-
ing antimicrobial efficacy is that the study can be ascertained at specific body 
sites, for example, skin, thigh, lung, peritoneum, meninges, and endocardia [74]. 
Furthermore, antimicrobial agents are altered by host factors such as metabolism 
and the immune system in an animal model [74]. Consequently, animal models 
bridge the gap between in vitro and clinical trials [73] and are indispensable for 
authentication of probiotic antimicrobial activity. In brief, in vivo animal models 
and clinical studies are an absolute requirement to provide proof of beneficial 
activities of probiotic antimicrobial activity. To achieve this, appropriate infectious 
models for the two groups are critical. One infected with indicator pathogen and 
treated with probiotic cultures, and the other group infected with indicator patho-
gen only (negative control).

3.3.1 In vivo experiments on animal models

The infection route of dermatophytes is strictly dependent on the goal of the 
study, indicator fungus, and animal disease model of interest. Examples, to study 
geophilic and anthrophilic dermatophytes; Microsporum gypseum and Trichophyton 
rubrum that is difficult to establish infections in laboratory animals’, zoophilic 
dermatophytes especially Trichophyton metangrophytes var. mentagrophtes, var. 
quinckeanum and var. granulae, Trichophyton verrucosum, and Microsporum canis are 
used instead. The most recommended animal model for dermatophytoses is hairless 
guinea pigs as the infection resembles infections in humans, and topical treatment 
is applicable. Mouse, rat, hamster, and dog are disadvantaged for dermatophytoses 
animal model since they defecate, lick, and bite itching or irritating lesions inten-
sively [75].
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C. albicans and Candida tropicalis have high virulence in systemically induced 
mice model [76–79]. Pregnant mice [75], zebrafish [80] and Caenorhabditis 
elegans [46] have also been utilized in disseminated systemic infection models. 
Candida metapsilosis is virulent in the vaginal mouse model [81]. Furthermore, 
oophectomised rats are used for chronic vaginitis [47, 75]. However, C. parapsilosis, 
C. glabrata, and C. krusei do not induce mice mortality [77]. Further, C. albicans 
[82], Ctropicalis, C. parapsilosis complex (C. parapsilosis, C. orthopsilosis, and C. 
metapsilosis), are virulent in the invertebrate Galleria monella model [77]. Induced 
immunosuppressed mice in murine oral candidiasis model of choice. To cause the 
immunosuppressed condition, administration of prednisolone 100 mg per kg [83] 
or ketamine: xylazine 90-100 mg/kg and 10 mg/kg respectively [84] of body weight 
administered by injected subcutaneously 24 h before inoculation with Candida 
orally is given. Additionally, avian and rats species can be used as oral candidiasis 
models [75, 84]; a summary of these in vivo models is given in Table 1.

Disease Animal Route of infection Target organ Reference

Dermatomycosis

Dermatomycosis Guinea pig Skin abrasion Skin localized 
infection

[75]

Dermatomycosis Guinea pig Intravenous cutaneous 
disseminated 
infection

[75]

Candidosis

Bacterial and fungal 
systemic infection

Caenorhabditis 
elegans (Round 
worm)

Skin media [46]

Bacterial and fungal 
systemic infection

Pregnant mice Intravascular placenta [75]

Bacterial and fungal 
systemic infection

Galleria mellonella 
(Wax moth 
caterpillar)

Injection systemic [20, 85]

Bacterial and fungal 
systemic infection

Zebra fish (Danio 
rerio)

Microinjection disseminated 
infection

[80]

Chronic vaginitis Rats; 
oophectomised and 
kept permanently 
in pseudoestrous-
weekly injection of 
estrogen

Intravaginal with 
blastospores

Vaginal swabs [47, 75]

Localized oral 
candidosis (thrush)

Rats and several 
avian species

Peroral challenge 
with blastospores; 
favored by 
carbohydrate rich 
diet, antibiotic 
treatment and use of 
germ free or specific 
pathogen free 
animals

Mouth swabs [75, 84]

Table 1. 
Précis of in vivo animal models for dermatomycosis, candidiasis and bacterial infections.
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3.3.2 Clinical trials

Clinical trials are conducted after promising in vitro and in vivo animal model 
experiments. The randomized placebo-controlled clinical trial is the most recom-
mended method [10]. The number of clinical researches conducted on probiotics 
is about 1000, with Lactobacillus rhamnosus GG and B. animalis sp. Lactis being the 
most studied [41, 86]. The majority of these studies are on gastrointestinal diseases 
and the digestive system [86]. However, currently, there is a shift to metabolic 
disorders, communicable and infection [86]. The primary concerns in these clinical 
studies that need to be addressed for harmonization of probiotic clinical research 
include:

1. The probiotic dosage administered; only 42% of the clinical studies reported 
dosage correctly. It is recommended that the probiotic dosage is reported in 
colony-forming unit (CFU). Some clinical studies reported the number of 
drops, grams, or not indicated at all [86].

2. The amount of probiotic administered should be adequate [7, 87]; however, the 
amount used varied from 107 to 9 × 1011 per day [86].

3. The description of how the probiotic was prepared was incomplete in many 
studies [86].

4. Viability, which is the overall health of cells. It is crucial to check the viability 
of probiotics before administration and after a given duration since storage, 
transportation, and handling condition could kill some microorganisms.

5. It is essential to describe probiotic microorganisms not only to the species level 
but also to strain. This is because the diversity of probiotic microorganisms is 
enormous. Further, the probiotic activity is species and strain-specific  
[88–90]. This is incomplete in the majority of the clinical studies done. Only 
49% of the studies conducted complete strain identification.

6. Route, frequency, and duration [91] of probiotic administration should always 
be reported. Many studies omit this vital aspect.

7. Sample size affects the power of the study to draw a conclusion and the preci-
sion of estimates. Therefore, the sample size should be big enough to reduce 
bias, especially when some patients discontinue the study.

It is important to note that, these details including probiotic dosage used in clini-
cal studies, should be extrapolated from in vitro and in vivo models. Therefore, this 
emphasizes the importance of prior quality research.

Few clinical trials on confirmation of the antimicrobial effect of probiotics 
have been reported so far, yet they have been considered the final confirmative 
experiment. Probiotics are regarded as safe [13, 17]; thus, many researchers skip 
this critical step. This is the case in which many commercially marketed probiotics 
have pending clinical studies [92]. Probiotics clinical studies on the management of 
oral pathogens [9, 21, 93–95], urogenital infections [20, 96–99] and gastrointestinal 
systems [100] had promising results thus, supporting some probiotics as potential 
antimicrobial agents [10].

In conclusion, clinical studies are essential. Successful clinical studies require 
thorough in vitro and in vivo experiments, especially estimating the dosage, 
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duration, and frequency of probiotic administration. Areas that need urgent 
reporting and harmonization in clinical studies include probiotic viability, probiotic 
species and strain, dosage (CFU), duration, frequency of administration, and route 
of probiotics administration.

4. Summary and future prospects of probiotics as antimicrobial agents

The probiotics are offering a ray of hope to solve dwindling antibiotic efficacy. 
Further, the number of immunocompromised persons, number of microbial 
infections and drug resistance, and probiotics could come in handy to solve these 
problems. Therefore, there is a need for detailed conclusive research on in vitro, in 
vivo, and clinical trials of probiotic microorganisms, prebiotics, and postbiotics 
administration including, the benefits and side effects. The choice of probiotics, 
methods, and experimental designs need to be emphasized. Research has demon-
strated that probiotics of a particular strain may have antimicrobial activity against 
one pathogen and not another [9, 10, 14]. This has been attributed to the great 
diversity of virulence factors expressed by these pathogens. Some pathogens can 
produce exoenzymes, encode resistance genes, form biofilms, and induce inflam-
matory responses, among others [37, 101, 102]. The probiotic dosage, duration, 
frequency, formulation, viability, species-level, and strain, among others, should 
always be reported for conclusive studies. Otherwise, it would be pretty challeng-
ing to compare these experiments and draw a definite conclusion. Some particular 
probiotics do not show any antimicrobial activity in vitro but present significant 
activity in vivo and vice versa. Hence, there is a need for meticulous screening of 
probiotic microorganisms before the antimicrobial activity is or is not confirmed.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 6

Single Strain Probiotic 
Bifidobacteria Approach in Health 
and Non-Health Fields
Hüseyin Sancar Bozkurt and Havva Bozkurt

Abstract

Single strain probiotic bifidobacteria approach is promising for the future in 
health and non-health fields. Recent studies show that intestinal lumen microbial 
content and tissue microbial content are different, so the personalized microbi-
ome approach with the 16S rRNA analysis comes to the fore with the single strain 
probiotic bifidobacteria (BB-12,Infantis) approach. In addition to their immune 
modulation effect, they have beneficial effects such as preventing pathogens from 
binding to the intestinal mucosa via the biofilm layer they produce, and also their 
electrophysical properties in various atmospheric conditions, They have the ability 
to be used in non-health areas such as microplastic biodegradition, nanostructures, 
food and agriculture fields. The availability of single strain probiotic bifidobacteria 
in health, ecological and food systems are signs that progress in the single strain 
probiotic bacteria approach will be more accurate.

Keywords: probiotic, bifidobacteria, health, ecology

1. Introduction

Probiotic bifidobacteria are living microorganisms that have beneficial immu-
nomodulatory effects on human health and have fermentation properties. They 
can play a role in the management of dysbiosis-related intestinal disorders such as 
colon cancer, IBD, Celiac, IBS, as well as virological disorders such as SARS-Cov-2 
and neurologic disorders. Although there are many scientific studies on the effects 
of single strain of probiotic bifidobacteria on human health, there are very few 
publications on their behavior and interactions in various atmospheric conditions 
other than the human body. In this section, we present the effects of single strain of 
probiotic bifidobacteria approach in the field of health, as well as the electrophysi-
ological behaviors and interactions in various atmospheric conditions with different 
materials.

1.1 Single strain of probiotic Bifidobacteria approach in the field of health

1.1.1 Single strain of probiotic Bifidobacteria in gastrointestinal disorders

As we discussed in detail in our previous work [1], the human intestinal micro-
biota includes commensal, symbiotic, and pathogenic bacteria species [2, 3]. It 
was demonstrated that intestinal microbiota have anti-inflammatory features and 
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contribute to the immune, neuroendocrine, and metabolic homeostasis of the host 
[4, 5]. The genus Bifidobacterium in gut microbiota is Gram-positive, non-motile, 
often branched anaerobic bacteria and it belongs to the phylum Actinobacteria [1]. 
Bifidobacteria are one of the dominant species in the human gut microbiota and are 
frequently used as probiotics [6]. B. animalis subsp. lactis exerts the highest level 
of intracellular hydrogen peroxide resistance among Bifidobacteria and provide 
protection against reactive cellular oxygen species [7]. Reduced bifidobacteria levels 
are associated with inflammatory bowel disease (IBD) [8, 9]. B. infantis 35624 has 
been shown that reduced plasma pro-inflammatory biomarkers in IBD and extra-
intestinal inflammatory disorders [10].

Also, the administration of B. infantis 35624 was associated with a significant 
reduction in plasma pro-inflammatory biomarkers in patients with psoriatic dis-
order and oral administration of B. infantis 35624 modulates the cytokine across 
both gastrointestinal and non-gastrointestinal inflammatory disorders and 
healthy subjects. In our previous study [11], endoscopic single Bifidobacterium 
animalis subsp. lactis and xyloglucan administration was found effective in the 
mucosal healing and resolution of colonic symptoms in ulcerative colitis patients 
(Figures 1 and 2) [11].

Figure 1. 
Mucosal healing (upper) within one month after a single intracolonic application of 200 billion colony forming 
units (CFUs) of Bifidobacterium animalis sp. Lactis and 4 gr Xyloglucan combination in unresponsive 
ulcerative colitis (below) [11].
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The use of single strain probiotic bifidobacteria such as BB-12 and Infantis in 
effective and appropriate doses can be considered an effective treatment method for 
intestinal and extraintestinal disorders.

Another aspect of the single strain probiotic bifidobacteria is that they are 
suitable candidates for the next generation probiotic. As we discussed in detail our 
previous study [1], With the Open Reading Frame (ORF) method, these species can 
be guided by genetic coding for postbiotic production [12]. Mycosporin amino acids 
are a viable target for this situation. Mycosporin-like amino acids (MAAs) are low 
molecular weight amino acids. MAAs act as absorbers of ultraviolet (UV) light and 
as photo protectants which are unique components of red seaweeds [13]. Seaweed 
products are used as nutritional supplements in the management of bowel diseases. 

Figure 2. 
Mucosal healing (below) within one month after a single intracolonic application of 200 billion colony forming 
units (CFUs) of Bifidobacterium animalis sp. Lactis and 4 gr Xyloglucan combination in unresponsive 
ulcerative proctosigmoid colitis (upper) [11].



Prebiotics and Probiotics - From Food to Health

108

MAAs also play a key role in protecting against sunlight damage by acting as 
antioxidant molecules scavenging toxic oxygen radicals. MAAs have been described 
to affect the intestinal mucosa, enhancing villus structure, as well as the intestinal 
microbiota, increasing the abundance of Bifidobacterium and, importantly, reduc-
ing the prevalence of Clostridium species in animal models [14]. Also, modulation 
of NF-κB and tryptophan metabolism via MAAs has a beneficial effect on the gut 
immune system. Besides these features, MAAs also inhibit thiobarbituric acid reac-
tive oxygen species which are increased in colon cancer.

In this context, MAA-producing single strain Bifidobacteria species via ORF 
could result in a bacterium that is more potent in the prevention of dysbiosis associ-
ated disorders such as IBD, CRC, Chronic inflammation. Also, MAAs produced via 
ORF might be used not only as a probiotic but also as a pharmacological agent in 
intestinal disorders.

1.1.2 Single strain probiotic Bifidobacteria in Sars-Cov-2 management

As we reported in our previous study [15], Sars-Cov-2 is a pandemic virus that 
manifests itself with respiratory distress as well as leading to symptoms and signs 
associated with the gastrointestinal tract. Sars-Cov-2 is especially manifested 
by the disturbed adaptive immune status in lung and intestinal tissues which is 
called ‘cytokine storm’. During their cellular replication, viral pathogens such 
as Sars-Cov-2 increase endoplasmic reticulum stress and exert their autophagy 
inducing effects through the adaptive TH17 / IL17 system and this leads to an 
uncontrolled immune response [15]. The cytokine storm can be modulated through 
immune effects of strain specific probiotic bifidobacteria. In our previous study, 
Bifidobacterium animalis sp. Lactis-BB12 led to rapid mucosal healing in ulcerative 
colitis patients [11] and this effect was related to the IL-17 inhibitory effect of 
the BB-12 strain. IL-6 promotes the generation of Th17 cells and that IL-6 and 
IL-17 synergistically promote viral replication and B. infantis 35624 could reduce 
the systemic inflammatory biomarkers such as IL-6,CRP, TNF alpha [15]. Also, 
Bifidobacterium infantis reduced the duration of acute respiratory infections illness 
in children and adults [16]. The administration of booster of an appropriate strain 
of bifidobacterium (such as BB-12, or infantis) especially in patients with gastroin-
testinal symptoms (diarrhea, abdominal pain, vomiting), may be postulated to have 
a role in the management of coronavirus infected patients (Figure 3).

1.1.3 Single strain probiotic Bifidobacteria in vaccine development

Gut dysbiosis might play a role in the failure to respond to vaccines. In this 
regard, gut microbiota could affect intestinal immune responses by acting as 

Figure 3. 
Rapid radiologic enhancement of high dose oral Bifidobacterium BB-12 administration in severe  
Sars-Cov-2 [15].
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immune modulators as well as natural vaccine adjuvants [17]. The administration of 
the probiotic strain Bifidobacterium BB-12 significantly increased antigen-specific 
immune responses in healthy individuals receiving influenza vaccination [18]. 
Also, Exopolysaccharide produced by B. longum 35624 played an essential role in 
the anti-inflammatory effects of this bacterium and removal of exopolysaccharide 
(EPS) resulted, not only in loss of these anti-inflammatory effects, but to a trans-
formation to become an inducer of local TH17 responses [19]. In some experiments, 
EPS- protein conjugate vaccines could enhance immunogenity [20]. Our studies 
revealed that the maintenance of the unique electrophysiological properties of 
BB-12,Infantis in an aerobic environment for up to 6 months could be attributed to 
the integrity of their unique EPS structure [21]. Hence, the single strain probiotic 
bifidbacterial polysaccharide cell structure can be considered as a lipopeptide based 
vaccines.

Since the relationship between viral replication and gastrointestinal immunity is 
very close, an appropriate approach over probiotic bifid bacteria can play an impor-
tant role in reducing viral replication. New approaches to the single strain probiotic 
bacteria can be promising, both in terms of vaccination and treatment models.

2. Single strain probiotic Bifidobacteria in non-health fields

2.1 Electrophysiological properties of Bifidobacterium BB12 and infantis

2.1.1 Bifidobacterium BB-12

As we cited in our previous study [1], BB-12 is technologically well suited, 
expressing fermentation activity, high aerotolerance, good stability and a high acid 
and bile tolerance. Because of high redox potential in the colon microbiota ecosys-
tem, BB-12 is highly resistant bacteria in distress condition. The BB-12 cell envelope 
is an electrical and physical barrier that that consist of redox proteins. Bacterial 
cellular electron transfer systems (CET) are defined microbial bioelectrochemical 
processes in which electrons are transferred from the cytosol to the membrane of 
the cell [22, 23]. Charge transport behavior and the effect of the Relative Humidity 
(RH) level on it in the BB-12 film have been investigated by means of I-V measure-
ments. Within aqua moisture environment, electrical conductivity of the BB-12 
increased more than six decades while under N environment conductivity returns 
to the initial current value (Figure 4).

This behavior in conductivity modulation was reversible at least in the three 
cycle [21].

As we stated in our study [21], this experimental findings showed us that there 
was no structural transformation under relative humidity. On the other side, 
increase in the conductivity was interpreted by the increase in the population of 
charge carries, supplied by the interaction BB-12 with the water moisture, monitored 
by amine and carboxyl group through FTIR and Zeta potential measurements. The 
type of surface charge of Bifidobacterium animalis subsp. lactis BB-12 was found to 
be negative by zeta potential measurements, claiming that electrons were the charge 
carriers. Overall, obtained result in this study indicated that Bifidobacterium BB-12 
has a great potential for humidity sensing device at room temperature.

2.1.2 Bifidobacterium Infantis

B. infantis 35624 is probiotic commensal bacteria that dominates the intestinal 
microbiota of breastfed babies and by accelerating and balancing the maturation of 
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the system and that improves intestinal barrier function and also benefits the host 
by increasing acetate production (Figure 5).

Interaction of aqua molecules with the surface of the Bifidobacterium infantis film 
leads to an increase. Increase in sensor current to a nearly constant value within a few 
minutes. Increase in sensor current, with aqua molecules, the interaction between 
bifidobacteria and aqua is highly dependent on the molecular structure of the assays.

Sensor sensitivity increases with the increase in relative humidity, aqua on the 
film surface reveals that adsorption of molecules is a multilayer process. Room 
linear increase in sensitivity with relative humidity, sensors 0–90% relative humid-
ity indicates that it can be used for practical applications in the sensing range 
(Figure 6).

Figure 5. 
Bifidobacterium Infantis.

Figure 4. 
I–V characteristics of the film of Bifidobacterium animalis subsp. lactis BB-12 at various RH levels.
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3. Future approaches with single strain probiotic Bifidobacteria

Infection of medical equipment is one of the most common problems in the 
healthcare field, medical equipment infection can be prevented by probiotic bifido-
bacterial adhesion (Figure 7). Also, depending on the electrophysiological proper-
ties of these single strain probiotic bifidobacteria species, which have antimicrobial, 

Figure 6. 
Response-recovery behavior of Bifidobacterium infantis-based sensor for various RH levels.

Figure 7. 
Single strain probiotic bifidobacteria adhesion on medical orthopedic implant on scanning electron microscope 
(SEM) appearance.
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immunomodulatory and beneficial effects on human health, they have paved 
the way for a new era in many areas such as agriculture, food, biodegradation of 
microplastics (Figure 8) and a healthy ecological system.

4. Conclusion

Single strain probiotic bifidbacteria approach is a promising approach in cases 
such as inflammatory bowel diseases, bowel disorders, virological disorders and 
colon cancer. Beside these, single strain probiotic bifidobacteria approach is promis-
ing for a healthy ecosystem depending on its behavior in atmospheric conditions.
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Abstract

Propionibacterium freudenreichii is a Gram-positive dairy probiotic bacterial 
species that has been used as a ripening starter in the production of Swiss-type 
cheese for a long time. It has been exploited for the optimization of cheese produc-
tion, including ripening capacities and aroma compounds production, but also for 
the production of vitamin B12 and organic acids. Furthermore, it has emerged in 
the probiotics landscape owing to several beneficial traits, including tolerance to 
stress in the gastrointestinal tract, adhesion to host cells, anti-pathogenic activity, 
anticancer potential and immunomodulatory properties. These beneficial proper-
ties have been confirmed with in vitro and in vivo investigations, using several omics 
approaches that allowed the identification of important molecular actors, such 
as surface proteins, short-chain fatty acids and bifidogenic factors. The diversity 
within the species was shown to be an important aspect to take into consideration, 
since many of these properties were strain-dependent. New studies should dive 
further into the molecular mechanisms related to the beneficial properties of this 
species and of its products, while considering the complexities of strain diversity 
and the interactions with the host and its microbiota. This chapter reviews current 
knowledge on the possible impact of P. freudenreichii on human health.

Keywords: Propionibacterium freudenreichii, propionibacteria, probiotics, 
immunomodulation, food microbiology

1. Introduction

The denomination “probiotics” comprises living microorganisms, includ-
ing bacteria and yeasts, with health-promoting properties and suitable for safe 
consumption, as confirmed by their dietary uses for thousands of years of human 
history [1–3]. Lactic acid bacteria and bifidobacteria comprise traditional probi-
otic bacteria species, widely documented and commercialized [3, 4]. However, 
different species have emerged in the probiotics landscape, such as the dairy 
species Propionibacterium freudenreichii [4, 5], which is phylogenetically related to 
bifidobacteria (Figure 1) [4].
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The former Propionibacterium genus encompassed a group of microorganisms 
with importance in industry and health, due to the production of valuable metabo-
lites, food, cosmetic and pharmacological products [6]. Previously, this genus 
included classic dairy propionibacteria species and skin-associated pathogenic 
propionibacteria [7]. However, a genome-based taxonomy reevaluation suggested 
the reclassification of cutaneous bacteria into the Cutibacterium genus, together 
with the inclusion of two other new genera for formerly classic propionibacteria, 
Acidipropionibacterium and Pseudopropionibacterium [7]. P. freudenreichii, which is 
one of the most notable dairy propionibacteria species, kept its former taxonomic 
classification [4, 7].

P. freudenreichii is a Gram-positive, high GC-content, mesophilic, aerotoler-
ant, non-motile, non-spore forming bacterium, that shows low nutritional 
requirements and survives in harsh environments [5, 8, 9]. Regarding morphol-
ogy, it is a pleomorphic rod microorganism, with aggregation tendency, form-
ing clusters that resemble Chinese characters [5] (Figure 2). This bacterium, 
isolated from samples of Emmental cheese, was first described by Orla Jensen 
and von Freudenreich in 1906 [10]. Recently, P. freudenreichii strains have been 
identified in fecal samples from a discrete cohort of human preterm breast-
fed infants, suggesting that it could be a component of the healthy human gut 
microbiota [11].

P. freudenreichii is able to use several carbon sources (e.g., glycerol, erythriol, 
L-arabinose, adonitol, galactose, D-glucose, D-fructose, D-manose, inositol, arbu-
tine, esculine, lactose, lactate and gluconate) in the fermentation process to produce 
propionate, together with acetate, succinate and carbon dioxide (CO2) [9, 12, 13]. 
Unlike other species, P. freudenreichii is able to reduce pyruvate into propionate via 
the transcarboxylase cycle (also referred to as Wood–Werkman cycle), which is a 
cyclic process coupled to oxidative phosphorylation, that allows a higher ATP yield 
than in other propionate-producing bacteria [9]. In its turn, pyruvate is a metabolic 
node molecule, which may be used either for the NADH-generating synthesis of 
acetate, or for the NADH-consuming synthesis of propionate [14]. In a strain-
dependent manner, the bacterium modulates the proportions of pyruvate that are 
reduced into propionate or oxidized into acetate and CO2, thus maintaining the 

Figure 1. 
Phylogenetic tree showing genomic similarity between health-promoting P. freudenreichii species, other 
probiotic or closely-related species.
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redox equilibrium [9]. Therefore, this species encompasses biochemically versatile 
strains, that find different applications in several contexts [5].

2. Technological importance

P. freudenreichii is widely used for the production of Swiss-type cheeses, such as 
Emmental [5, 15] (Figure 3). In such dairy matrices, the CO2 gas that is produced 
during fermentation forms bubbles that diffuse slowly, creating characteristic 
holes, or “eyes”, in cheese architecture [9, 12]. Cheese flavor is related to propionate 
and acetate, as well as the products of amino acids catabolism and fat hydrolysis by 
propionibacteria [16, 17]. Importantly, these dairy products containing P. freud-
enreichii displayed anti-inflammatory properties in vivo [18–20], increasing the 
recognition of this bacterium and of its products as health-promoting. Therefore, 
dairy propionibacteria are considered 2-in-1 bacteria, with both fermentative 
and probiotic properties, which makes them ideal for the development of health-
promoting fermented food [5, 18].

This bacterium is also well recognized to encompass a pathway for vitamin 
B12 (cobalamin) synthesis [8, 9]. Vitamin B12 is a water-soluble vitamin, which 
plays a key role in the functioning of the brain, of the nervous system and in the 

Figure 2. 
Optical microscopy image showing the morphological aspect of a P. freudenreichii CIRM-BIA129 culture, with 
typical aggregates resembling Chinese characters.

Figure 3. 
Emmental cheese produced using P. freudenreichii CIRM-BIA129, in conjunction with Streptococcus 
thermophilus and Lactobacillus delbrueckii.
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production of blood [21]. It is also a co-factor of methylmalonyl-CoA mutase, 
which catalyzes a crucial step in the fermentative route to produce propionate [22]. 
Therefore, the growth conditions of P. freudenreichii have been optimized for the 
production of vitamin B12, using substrates such as cereal matrices [23, 24], waste 
frying sunflower oil [25], tofu wastewater [26] and soybean agroindustry residue 
[27]. Moreover, P. freudenreichii has been genetically engineered to enhance vitamin 
B12 and propionate production [6, 28].

The production of vitamin B12, organic acids, trehalose and other metabolites, 
together with the safe use as cheese ripening starter and probiotic characteristics, 
make this bacterium attractive for several biotechnological and industrial applica-
tions [5, 6, 29, 30]. A wide range of genetic and environmental optimizations have 
been conducted to improve these properties [6, 29]. Moreover, some optimizations 
of the growth and processing conditions allowed the improvement of resistance 
towards storage and towards several industrial processes, such as freeze-drying and 
spray-drying [30–33].

3. Strain variability

The interesting properties of this bacterium, such as health-promoting features, 
and participation to industrial vitamin B12 and cheese production, were shown 
to be strain-dependent, suggesting the need for analysis that account for that 
variability [9]. As an example, some strains presented differences in nitrogen and 
sugar degradation, which had a genetic origin, probably resulting from horizontal 
transfers, duplications, transpositions and other mutations [13]. This strain diver-
sity was confirmed at the genomic level by another study and attributed to trans-
posable elements, in such a way that genome plasticity enabled bacterial adaptation 
to several environments [34].

In view of this strain-related variability, there have been efforts to specify 
criteria for the selection of probiotic strains. These criteria include tolerance to 
stresses encountered within the gastrointestinal tract, adhesion to host cells, anti-
pathogenic activity, anticancer potential, immunomodulatory properties, industrial 
requirements and molecular characterization using omics methodologies [3]. 
Mounting evidence shows that P. freudenreichii fulfills these criteria [5].

4. Stress tolerance

Regarding stress tolerance and adaptation to the gastrointestinal tract (GIT), 
some P. freudenreichii strains presented adaptations, including morphological and 
proteomic modifications [35–37]. For example, those modifications were veri-
fied during the acid tolerance response in the strain P. freudenreichii SI41, which 
was investigated using a kinetic study of stress proteins production during acid 
adaptation [35]. As a result, biotin carboxyl carrier and proteins involved in DNA 
synthesis and repair were associated to early acid stress response, whereas chap-
eronins GroEL and GroES were associated to late acid stress response [35]. Analysis 
with the same strain showed that bile salts (a mixture of cholate and deoxycholate) 
triggered drastic morphological changes and induced proteins related to signal 
sensing and transduction, general stress and an alternative sigma factor [36]. The 
same strain was used in a follow-up comprehensive study that included heat, acid, 
and bile salts conditions to study P. freudenreichii tolerance. As a result, each form 
of stress induced specific proteins, but six of them were common to all stresses, 
including chaperones and proteins involved in energetic metabolism and oxidative 
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stress remediation [37]. An in vitro study that involved 13 strains of P. freudenreichii 
showed that most of them had high capacity of tolerance to simulated gastric juices 
with varying pH and small intestine conditions [38].

Moreover, this resistance was also evidenced in vivo. The mRNA of P. freud-
enreichii methylmalonyl-transcarboxylase was detected in human fecal samples 
using real time reverse transcriptase polymerase chain reaction (RT-PCR) [39]. 
Methylmalonyl-transcarboxylase is a key enzyme of the transcarboxylase cycle, 
only expressed when propionic fermentation is active, therefore its detection in 
fecal samples indicated that the bacterium survived and remained metabolically 
active, transcribing genes within the human digestive tract [39]. A multi-strain 
study using human microbiota-associated rats monitored intestinal microbiota 
composition and short-chain fatty acids production, confirming that P. freuden-
reichii stress tolerance in the GIT is also strain-dependent [40]. P. freudenreichii 
CIRM-BIA1 was shown to adapt metabolically and physiologically to the colon 
environment of pigs, with changes in carbohydrate metabolism, down-regulation 
of stress genes and up-regulation of cell division genes [41]. Furthermore, the use 
of food vehicles for P. freudenreichii delivery, such as cheese and fermented milk, 
improved its resistance towards the GIT stressing environment [15, 18, 19, 42, 43].

Other aspects of P. freudenreichii resistance to stress conditions have also been 
studied, such as long-term nutritional shortage [44, 45]. A screening was per-
formed with eight P. freudenreichii strains, which were incubated for several days 
after the beginning of the stationary phase, without further supplementation of 
nutrients. They displayed high survival rates and no lysis, indicating that these 
strains adapt to long-term nutritional shortage, using a viable, yet nonculturable 
state [45]. The strain P. freudenreichii CIRM-BIA138 was further studied in these 
conditions of incubation, and it was shown that a high population was maintained, 
even after exhaustion of lactate, the preferred carbon source. RNA-seq analysis 
showed that several metabolic and information processing pathways were down-
regulated [44].

Another important feature of P. freudenreichii during stress response is the 
accumulation of trehalose. A study that investigated this bacterium during adapta-
tion to osmotic, oxidative and acid stress, showed that the trehalose-6-phosphate 
synthase/phosphatase (OtsA–OtsB) pathway, related to trehalose synthesis, was 
enhanced in these conditions [46]. Another study focused in stress response to low 
temperature (4°C), a condition that mimicked cheese ripening conditions. As a 
result, seven P. freudenreichii strains displayed a slowed-down cell machinery, cold 
stress response and the accumulation of trehalose and glycogen [47]. P. freuden-
reichii also accumulated glycine betaine, glycogen, trehalose and polyphosphates 
when cultured in hyperconcentrated media [48]. The accumulation of trehalose, 
together with glycine betaine, was further verified in a technological context, when 
bacterial viability was increased during spray drying and storage, through the opti-
mization of the growth medium composition and thermal adaptation [31]. The ratio 
of the concentrations of these intracellular osmoprotectants, trehalose and glycine 
betaine, was further shown to modulate the stress tolerance during the technologi-
cal processes of freeze-drying and of spray-drying [32].

5. Adhesion properties

Adhesion to host cells is another important feature of probiotics, which favors 
their local beneficial action. Early studies revealed the ability of several probiotic 
bacteria, including P. freudenreichii, to adhere to glycoproteins and mucus from 
human intestinal tract [49, 50]. In the case of P. freudenreichii, the adhesion of some 
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strains to pig ileum cells (IPEC-J2) was between 25 and 35%, and that proportion 
was higher with the addition of CaCl2 [51]. In the case of human host, several bacte-
rial strains were tested for adhesion to HT-29 colon cells in vitro; the most adhesive 
strain was P. freudenreichii CIRM-BIA129 and surface layer protein B (slpB) key role 
in adhesion was demonstrated by using gene inactivation [52, 53]. Another study 
demonstrated that bacterial adhesion to immobilized mucus could be synergisti-
cally improved by administration of strains combinations, such as P. freudenreichii 
ssp. shermanii JS in combination with Bifidobacterium breve or Lactobacillus rhamno-
sus strains [54].

6. Anti-pathogenic activity

There are also several evidences of an anti-pathogenic activity in this species. 
P. freudenreichii JS reduced by 39% the adhesion of S. aureus to human intestinal 
mucus and by 27% its viability, probably due to the production of organic acids 
[55]. P. freudenreichii PTCC 1674 was reported to secrete a lipopeptide biosurfactant 
with antimicrobial activity mainly against Rhodococcus erythropolis, and anti-adhe-
sive activity mainly against Pseudomonas aeruginosa [56]. Moreover, P. freudenreichii 
DSM 20270 significantly inhibited E. coli O157:H7 growth in vitro [51].

P. freudenreichii also showed anti-pathogenic properties in animals. P. freuden-
reichii B-3523 and B-4327 impacted Salmonella strains multiplication, motility and 
adhesion to avian epithelial cells in vitro [57]. The follow up study indicated that the 
cell-free culture supernatants of the same probiotic strains were bactericidal against 
multidrug-resistant Salmonella enterica serovar Heidelberg [58]. In vivo assays fur-
ther showed that the probiotic strains reduced the pathogen cecal colonization and 
dissemination to the liver in turkey poults [58]. P. freudenreichii consumption was 
furthermore shown to limit and to delay colonization of the mice intestinal tract by 
the pathogen Citrobacter rodentium [59].

In line with the synergies observed in terms of adhesion, probiotic combina-
tions were proposed to improve anti-pathogenic activity, such as a combination of 
P. freudenreichii JS, L. rhamnosus GG and LC705, and B. breve 99, which promoted 
the inhibition, displacement and competition with several pathogenic species, 
such as S. enterica, Listeria monocytogenes and Clostridium difficile [60]. In another 
study, P. freudenreichii JS decreased the adhesion of Helicobacter pylori to Caco-2 
intestinal cells when used individually, but also inhibited membrane leakage, 
improved epithelial barrier function and modulated inflammatory cytokines when 
used in combination with L. rhamnosus and B. breve strains [61].

7. Anticancer potential

Promising results, in the context of intestinal carcinogenesis, were also 
reported in this species. A pioneer study showed that P. freudenreichii ITGP18 
and P. freudenreichii SI41 could induce apoptosis of cultured human colorectal 
carcinoma cell lines in vitro and this effect was mediated by short-chain fatty 
acids (SCFAs), such as propionate and acetate, acting on cancer cells mitochon-
dria [62]. Following up, it was further clarified that the effect of SCFAs was 
modulated by extracellular pH shifts; and in acidic pH, cell death mode changed 
from apoptosis to necrosis in human colon HT-29 cells [63]. These effects were 
confirmed in vivo, with P. freudenreichii TL133 inducing the apoptosis of colon 
cells in human microbiota-associated rats treated with 1,2-dimethylhydrazine, 
yet not in healthy rats [64].
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Another strain, P. freudenreichii ITG P9, was also employed for the development 
of a fermented milk with anti-oncogenic potential, since it induced apoptosis in 
cultured HGT-1 human gastric cancer cells in vitro [43]. Next, this fermented milk 
was proposed as an adjuvant in colorectal cancer therapy based on TNF-related 
apoptosis-inducing ligand (TRAIL), due to possible synergistic effect between the 
bacterium and TRAIL, which was confirmed with the enhancement of cytotoxic 
activity in HT-29 cells [65]. Another study investigated the crosstalk between 
bacterium and cancer cells: the latters produce lactate as a result of the metabolic 
shift referred as “aerobic” glycolysis or “Warburg effect”; lactate may then be used 
by this bacterium as a carbon source, stimulating its production of SCFAs [66].

8. Modulation of microbiota composition

Regarding the modulation of microbiota composition, consumption of dairy 
propionibacteria was shown to enhance intestinal populations of bifidobacteria 
in humans [67, 68]. In line with this, the stimulation of bifidogenic growth was 
observed in cell-free filtrate and cellular methanol extract derived from P. freud-
enreichii 7025 cultures [69]. Following analysis with the same strain allowed the 
purification of a bifidogenic growth stimulator component, the identification of 
its chemical structure (2-amino-3-carboxy-1,4-naphthoquinone, ACNQ ) and the 
demonstration of its bifidogenic activity in the concentration of 0.1 ng/mL [70]. 
Another strain, P. freudenreichii ET-3 was reported to produce 1,4-dihydroxy-
2-naphthoic acid (DHNA) in concentrations of 10 μg/mL, which also stimulated the 
growth of bifidobacteria [71]. The beneficial effect of DHNA was later confirmed 
in vivo, using mice with colitis induced by 2.0% dextran sodium sulphate (DSS). 
DHNA attenuated inflammation, through the modulation of intestinal bacterial 
microbiota and suppression of lymphocyte infiltration [72].

The bifidogenic growth stimulator derived from P. freudenreichii was also orally 
administrated to human patients in a pilot study, being promising for the treat-
ment of ulcerative colitis [73]. Subsequent studies included optimizations of the 
production of bifidogenic growth stimulators, including an increased production 
by switching to aerobic growth conditions [74] and the use of lactic acid as a carbon 
source in a bioreactor system with a filtration device [75].

9. Immunomodulatory properties

There is mounting evidence, both in vitro and in vivo, that P. freudenreichii exerts 
immunomodulatory effects by several mechanisms, in a strain-dependent manner. 
For example, a screening for IL-10 induction in human peripheral blood mono-
nuclear cells (PBMCs) was performed in 10 strains of P. freudenreichii, resulting 
in the selection of the two most anti-inflammatory strains: P. freudenreichii ITG 
P20 (equivalent to CIRM-BIA129) and SI48 [59]. In the same study, the strain P. 
freudenreichii SI48 was further tested in vivo, in mice with acute colitis induced by 
trinitrobenzenesulphonic acid (TNBS), lowering significantly inflammatory and 
histological markers of colitis [59]. Other studies also showed that the immunomod-
ulatory properties were strain-dependent within the species P. freudenreichii [76]. 
An integrative strategy encompassing comparative genomics, surface proteomics, 
transcriptomics, assays of cytokines induction and genes inactivation, identified 
relevant proteins and strains specificities in immunomodulation [77]. Remarkably, 
surface proteins of the S-layer type were shown to be crucial in immunomodula-
tion, but the immunomodulatory properties varied among strains, due to complex 
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combinations of molecular features [77]. The strain-specific export of surface 
proteins, adhesins and moonlighting proteins was confirmed in a different subset of 
P. freudenreichii strains [78]. Additionally, acute colitis induced by dextran sodium 
sulfate (DSS) in rats was ameliorated by P. freudenreichii KCTC 1063, which stimu-
lated in intestinal cells the expression of MUC2, a main component of mucus [79].

The roles of P. freudenreichii in the modulation of host immunological 
response became even more relevant when a human commensal strain was 
identified. P. freudenreichii UF1 was demonstrated to be a component of the 
gut microbiota of preterm infants that were fed with human breast milk and to 
mitigate intestinal inflammatory diseases [11]. Moreover, this strain modulated 
the intestinal immunity of mice against pathogen challenge, specifically against 
systemic L. monocytogenes infection, by regulating Th17 cells [80]. This beneficial 
effect was confirmed in newborn mice, which were susceptible to intestinal 
pathogenic infection, but had their defense enhanced by this strain, particularly 
by the increase in protective Th17 cells and regulatory T cells [81].

Regarding the bacterial factors involved in immunomodulation, evidence points 
out mainly to surface proteins (Table 1). The strain P. freudenreichii CIRM-BIA129 
had its proteome investigated, with the identification of surface-exposed proteins 
and their role in induction of IL-10 and IL-6 release by PBMCs [82]. Among the 
identified proteins, there were cell wall-remodeling proteins, transport proteins, 
moonlighting proteins and other proteins involved in interactions with the host 
[82]. The multi-strain and multi-omics study conducted by Deutsch et al. [77] 
clarified that cytoplasmic proteins might also be relevant in immunomodula-
tion, but confirmed the key role of surface-layer proteins B (SlpB) and E (SlpE), 
particularly in strain P. freudenreichii CIRM-BIA129. SlpB was then shown to be 
crucial for bacterial adhesion to epithelial intestinal cells [52], and a mutation in 
its gene had pleiotropic effects, suggesting this protein could have a central role in 
cellular processes [53]. Additionally, in vivo assays that were conducted in mice with 
mucositis induced by 5-Flourouracil (5-FU), showed that SlpB protein is crucial for 
the cytokine modulation triggered by P. freudenreichii CIRM-BIA129 [83]. Moreover, 
the glycosylated large surface layer protein A (LspA) of the commensal strain P. 
freudenreichii UF1 was shown to regulate the interaction with SIGNR1 receptor, 
which regulates dendritic cells and counteracts pathogenic-driven inflammation, 
maintaining gut homeostasis [84]. Interestingly, some of these immunomodula-
tory proteins, including SlpB and SlpE, were recently identified in association with 
extracellular vesicles produced by the strain P. freudenreichii CIRM-BIA129, which 
serve as an alternative export system [85].

In addition to surface proteins, DHNA was also associated to immunomodula-
tion. Beside its bifidogenic properties, DHNA inhibited the production of proin-
flammatory cytokines in intestinal macrophages of IL-10(−/−) mice treated with 
piroxicam [86]. Moreover, DHNA was also described as an activator of aryl hydro-
carbon receptor (AhR), which is involved in the detoxification of xenobiotics and 
inflammation regulation [87, 88].

10. Functional foods

Importantly, the immunomodulatory properties of P. freudenreichii were pre-
served when food matrices were used as delivery vectors, including cheese [18, 
19, 42, 89] and fermented milk [90–92], indicating a great potential for develop-
ing probiotic-based functional foods with immunomodulatory properties. As an 
example, a dairy product fermented by strain CIRM-BIA129 reduced the secretion of 
pro-inflammatory cytokines by colonic mucosa, improved food intake and growth of 
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piglets [92]. P. freudenreichii CIRM-BIA129 was also employed in the production of an 
immunomodulatory single-strain cheese, whose consumption by mice ameliorated 
colitis induced by TNBS, restoring the expression of tight-junction proteins and 
reducing the expression of markers of inflammation and of oxidative stress [89]. 
Similar protection, in the same colitis model, was observed using a two-strain model 
cheese containing P. freudenreichii and L. delbrueckii [20]. An industrial Emmental 
cheese was then produced using S. thermophilus, P. freudenreichii and L. delbrueckii 
[18] (Figure 3). Its consumption protected mice against colitis induced by DSS [18]. 
In healthy piglets, the consumption of the same CIRM-BIA129 strain associated to a 
cheese matrix was crucial in the preservation or enhancement of the immunomodula-
tory properties of the bacterium, including the induction of Th2 and Treg phenotypes 
[19]. The importance of the cheese matrix was also related to the protection of immu-
nomodulatory protein SlpB against proteolysis in simulated gastrointestinal tract 
conditions [42]. These examples unveiled how appropriate food matrices protected or 
enhanced the beneficial properties of these traditional dairy propionibacteria, while 
establishing perspectives for the design of novel functional foods [91].

11. Safety assessments

The long history of safe production of fermented food, such as Emmental 
cheese, and the bacterium status of “generally recognized as safe” (GRAS) and 
“qualified presumption of safety” (QPS) assure the safety of P. freudenreichii con-
sumption [5, 93]. However, additional assessments need to be conducted in differ-
ent matrices and contexts. Probiotics included in humans trials are most frequently 
from genus Lactobacillus or Bifidobacterium; nevertheless, propionibacteria have 
also been tested [93]. For example, two clinical studies evaluated P. freudenreichii 
ET-3 culture medium safety in human adult subjects, the first one reported no 
differences in gastrointestinal symptoms between the groups and the other one 
reported differences in hematological parameters, although within the normal 
ranges [94]. P. freudenreichii strains SI 26 and SI 41 were given to adult healthy 
human volunteers without adverse effects, while a modulation of fecal bifidobacte-
ria and of segmental colonic transit was observed [67]. In another study, P. freud-
enreichii strain SI 41 was given in capsules at the same dose to human volunteers 
without adverse effects, while an increase in fecal propionibacteria, concomitant 
with enhanced short chain fatty acids, was observed [95].

Moreover, several clinical trials tested multispecies probiotic supplementation 
containing propionibacteria. A complex formula that included P. freudenreichii 
JS, together with L. rhamnosus GG, L. rhamnosus Lc705, B. breve 99, and galacto-
oligosaccharides prebiotics has been tested in several randomized, double-blind, 
placebo-controlled setups. The probiotic intervention was conducted in pregnant 
women and newborn infants, being safe and effective in the prevention of atopic 
eczema in children [96], increased children resistance to respiratory infections 
[97], protected Cesarean-delivered children from IgE-associated allergic disease 
[98], restored microbiota composition in children treated with antibiotics or 
born by cesarean procedure [99] and protected Cesarean-delivered children from 
allergic disease in a 13-year follow-up [100]. Finally, an integrative study analyzed 
adverse events associated with this probiotic combination in some of these trials, 
concluding that there was no association with adverse events in young and elderly 
subjects [101].

Importantly, probiotics supplementation is not recommended in cases of immu-
nosuppression, such as during anticancer treatment [93]. Moreover, their beneficial 
effects and safety are conditioned to a complex interplay between peculiarities 



125

Propionibacterium freudenreichii: General Characteristics and Probiotic Traits
DOI: http://dx.doi.org/10.5772/intechopen.97560

of the host and of the probiotic strain or strains, which both encourages further 
research and suggests caution in some of its applications [93].

12. Postbiotics and beyond

As previously detailed, P. freurenreichii probiotic effect has been associated to 
several factors, including cytoplasmic and surface-exposed proteins [52, 77, 82, 83], 
short chain fatty acids [62, 63], metabolites [71, 72, 75] and culture supernatants 
[58, 94] (Figure 4). These probiotic-derived factors, which exert a beneficial effect 
on the host, have been referred as postbiotics [102]. “Postbiotic” is an emerging 
denomination that encompasses probiotic-derived cell-free metabolic products 
with health-promoting properties, including proteins, lipids, organic acids, vita-
mins, supernatants, among others [102–104]. The advantages of postbiotics over 
probiotics include purity, easy production and storage, industrial scalability, higher 
specificity in the mechanism of action and less adverse effects [102, 103].

In the case of P. freudenreichii, a remarkable example of postbiotic is SlpB 
protein, which was purified and exerted an immunomodulatory effect, i.e. induc-
tion of IL-10, in cultured human intestinal epithelial cells [83]. Another example 
that would fit into postbiotics definition is extracellular vesicles, which are mem-
branous spherical nanostructures that transport molecules between cells [105, 106]. 
In probiotic bacteria, such as several Lactobacillus and Bifidobacteriaum strains, 
extracellular vesicles have been reported as immunomodulatory [107]. In the case of 
P. freudenreichii, we recently described their production by the strain CIRM-BIA129, 
which has been the first report with physicochemical, proteomic and functional 
characterization of extracellular vesicles in the species [85]. We identified relevant 
proteins in their cargo, including SlpB, and demonstrated their anti-inflammatory 
activity via the modulation of NF-κB pathway in cultured human intestinal epithe-
lial cells [85].

Postbiotics hold promising perspectives for developing novel probiotic-
derived products with enhanced safety and functionality [107]. Moreover, yield 
and cargo loading optimization are promising for modulating their properties, 
enhancing their beneficial effect and biotechnological applications [108]. 
Finally, clinical trials should be conducted in the near future to assure the 

Figure 4. 
Schematic summary of P. freudenreichii probiotic traits at the molecular level.
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suitability of postbiotics and probiotics for therapy and prophylaxis, since they 
might exert a great impact in human health [93, 107, 109].

13. Conclusion

Overall, research on P. freudenreichii is consolidating its role as a probiotic, due 
to several outstanding features, such as the tolerance to stresses encountered in 
the gastrointestinal tract, adhesion to host cells, the anti-pathogenic activity, the 
anticancer potential and the immunomodulatory properties. Moreover, this species 
holds technological importance, due to long-established applications in the produc-
tion of food, vitamin B12 and organic acids. Therefore, this is a promising 2-in-1 
bacterium, with both fermentative and probiotic properties. New research on P. 
freudenreichii should allow the development of novel health-promoting fermented 
foods and should dive further into the characterization of strain diversity and 
of corresponding properties, as well as employ omics approaches to dissect the 
molecular mechanisms of its beneficial properties. Studies on this species hold a 
great potential for the development of novel technological approaches and thera-
peutic products directly impacting human health.
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Probiotics from Fermented Fish
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Abstract

The term ‘Probiotics’ is used to describe live microorganisms, which, when 
administered in adequate quantities, confer health benefits. The term probiotics 
was first introduced in 1965 by Lilly and Stillwell, who defined it to be microorgan-
isms acting as growth promoters for other microorganisms. These microorganisms 
may include Lactobacillus, Streptococcus, Bifidobacterium, Saccharomyces, Aspergillus, 
Enterococcus etc., as well as a mixture of other microorganisms. The chapter focuses 
on providing a comprehensive and up-to-date review of probiotics that have been 
isolated from fermented fish-based products.

Keywords: probiotics, lactobacillus, fermented food, fermented fish

1. Introduction

The term ‘Probiotics’ conventionally refers to the substances produced by 
microorganisms that stimulated the growth of others. With the advancement of 
knowledge in the subject, the use of the term was later extended to describe the  
tissue extracts that stimulated microbial growth. This definition was further evolved 
to animal feed supplements which exerted a beneficial effect by contributing to 
intestinal flora [1]. With further advancement of knowledge in the field, the term 
prebiotics [2] was introduced to describe food supplements that were non-digestible 
by the host but were able to exert beneficial effects by selective stimulation of 
growth or activity of intestinal microorganisms. A combination of the two, probiot-
ics and prebiotics, was referred to as conbiotics by certain authors while synbiotics by 
others [2, 3]. However, due to limited research in this field, the health benefits of 
prebiotics are yet to be verified. Over the recent years, functional foods have gained 
popularity due to their beneficial health effects, which have partly been attributed 
to their probiotic components [4]. Over the decades, the definition of probiotics has 
been refined by several workers. Vergin [5] suggested the action of the probiotic diet 
towards the intestinal microbiota in describing “the microbial balance of the body” 
[5]. Parker [6], defined probiotics as: “organisms and substances which contribute to 
intestinal microbial balance”. This was the first time that probiotics were mentioned 
in the context of gut health. In 1989, Fuller [7] further refined the definition to “live 
microbial feed supplement which beneficially affects the host animal by improving 
its intestinal microbial balance”. In the following years, the definition was extended 
to include mono- or mixed cultures of microorganisms that beneficially affected the 
host by improving the properties of the indigenous microbiota [8].

However, the widely accepted and currently in use definition is the one put forth 
by the World Health Organization:

“Probiotics are live microorganisms which, when administered in adequate 
amounts confer a health benefit on the host.”
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To summarize:

Prebiotic: A prebiotic is a non-viable food component that confers a health benefit 
by modulation of the gut microbiota.

Probiotics: These are live microorganisms, they confer health benefits to the host 
when administered in adequate doses.

Synbiotic: A product that contains both probiotics and prebiotics.

2. Probiotics: a brief history

Fermented dairy and other food products were produced and utilized for nutri-
tional and therapeutic purposes long before the discovery of microorganisms. The 
discovery of fermentation was itself an incidence of serendipity. However, with the 
discovery of Lactic acid-producing bacteria by Pasteur in 1857, it was Pasteur and 
his successors who had a significant impact on the understanding of the micro-
biology involved in the process of fermentation [9]. The idea of using beneficial 
bacteria attracted interest along with the advances in microbiology and biotechnol-
ogy in the following decades.

Research on the application of probiotic microorganisms in aquaculture started 
over two decades ago. Microorganisms, especially lactic acid bacteria (LAB), have 
long been associated with food fermentation. Dating back to 3200 BC, when the 
Egyptians produced fermented milk and dairy products during the Pharaonic 
period [10, 11]. Applications of probiotics in the field of animal husbandry 
gained popularity in the 1960s. In the 1980s, the most common probiotics for 
animal feeds belonged to three bacterial and one yeast genera: Lactobacillus, 
Streptococcus, Bacillus, and Saccharomyces spp. Lactobacillus sp. is recognized 
to produce potent antimicrobial compounds in order to establish their preserva-
tive and probiotic effects [12, 13] and have been consumed in the form of diverse 
food supplements through thousands of years and are “generally regarded as safe” 
(GRAS) [14, 15].

3. Probiotics: qualifying characteristics

Probiotics are an innate component of a healthy intestinal microbiota in humans 
and other animals. These colonize the gut through the diet or other non-dietary 
sources that are consumed by the organism. Novel species and strains of probiotic 
bacteria are being constantly identified with the exploration of previously unex-
plored sources. However, prior to incorporating such potential probiotic strains into 
products, their efficacy has to be carefully assessed based on a battery of criteria 
(Figure 1).

Foremost among such criteria is the safety of the host. Most of the probiotics in 
use today have been isolated from natural sources with a long history of safe use. 
Acid and bile salt stability of such strains are self-evident properties as these were 
able to colonize the intestinal tract. The development of probiotic products requires 
that the strains should also have antimicrobial activity and antibiotic resistance to 
the commonly administered drugs. Adhesion to intestinal cells and colonization of 
the gut are among the other primary requisites [3–5, 7, 16–19].

Acidic conditions (pH < 3.0) in the stomach act as a natural barrier to microor-
ganisms and prevents most of them from passing into the intestine. Acid tolerance 



139

Probiotics from Fermented Fish
DOI: http://dx.doi.org/10.5772/intechopen.101590

is, hence, a preliminary character for any strain that is expected to have probiotic 
effects [16, 20]. Resistance to pH 3.0 for 2 h is one standard test to determine the 
low pH tolerance of potential probiotic isolates [21]. The exact mechanism of toler-
ance to low pH conditions is not yet known. The next barrier for a potential probi-
otic to survive is the bile salt in the intestine, the normal level of which is around 
0.3%, but may range up to the extreme 2.0% during the first hour of digestion. In 
conjunction with acid tolerance, it has been used widely as a selection criterion of 
potential probiotics [22]. Bile resistance of potential probiotic strains is related to 
the activity of the enzyme- bile salt hydrolase (BSH) which catalyzes the hydrolysis 
of conjugated bile, hence reducing its toxic effects [23]. In addition, according to 
Ganzle et al. [24] bile resistance can be increased due to the protective effect of 
some food components.

The potential of lactic acid bacteria and probiotic yeast to inhibit the growth 
of other microorganisms in the intestine is a valuable feature for considering their 
application in the development of functional foods. The antagonistic property of 
the probiotic strains against pathogenic bacteria may be exerted by either competi-
tive exclusion, a decrease of redox potential, inter-bacterial aggregation, or produc-
tion of antimicrobial substances including organic acids, other inhibitory primary 
metabolites such as hydrogen peroxide, and special compounds like bacteriocins 
and antibiotics [25, 26]. This property enables the probiotics to alter the resident 
intestinal flora and modify it for the benefit of the host [27].

The ability of probiotic strains to endure and survive in the presence of antibiot-
ics ensures the maintenance of healthy intestinal microbiota during the treatment 
of microbial infections. LAB has been shown to exhibit susceptibility to a broad 
spectrum of antibiotics. Although isolates of lactobacilli with strong resistance to 
penicillin, cephalosporins, and bacitracin have been recovered from the human 
gastro-intestinal tract and dairy products, in most of these cases, this resistance is 
not transmissible and represents an intrinsic characteristic of the organism [17, 28].

4. Probiotics: health benefits

The health benefits of probiotics were proposed over a century ago by Eli 
Metchnikoff when he postulated that manipulating the intestinal microbiome could 
enhance health and delay senescence [29]. There is now sufficient scientific evidence 
supporting the incorporation of probiotics in the diet for health benefits. The best 
documented benefits include- relief from bowel disorders such as lactose intoler-
ance, antibiotic-associated diarrhea, and infectious diarrhea, and allergy. Emerging 
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Figure 1. 
Probiotics: Characteristic criteria.
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evidence has indicated the potential role of probiotics in managing different kinds 
of cancers as well. Multiple in vivo studies have indicated that the administration 
of specific strains of lactic acid bacteria could prevent the establishment, growth, 
and metastasis of transplantable and chemically induced tumors [30]. In human 
subjects, probiotic therapy has been suggested to reduce the risk of colon cancer 
through the inhibition of transformation of procarcinogen to active carcinogens, 
binding/inactivating mutagenic compounds, producing antimutagenic compounds, 
suppressing the growth of pro-carcinogenic bacteria, reducing the absorption of 
mutagens from the intestine, and enhancing immune function [31, 32]. However, 
evidence is still lacking to establish a basis for probiotic therapy in cancer prevention.

Probiotics are known to exert their effects by influencing the intestinal micro-
flora and protecting against infections, alleviating lactose intolerance, reducing 
blood cholesterol levels, improving weight gain and feed conversion ratio, and also 
stimulating the immune system [33]. Lactic acid bacteria (LAB) are a part of nor-
mal gut microflora in humans and some other animals and are known to produce 
lactic acid, hydrogen peroxide, diacetyl, acetaldehyde, and bacteriocins which are 
able to inhibit the growth of harmful microorganisms [34, 35].

Probiotics are mostly administered as live supplements in diet and exert diverse 
effects on the host. These influence the intestinal luminal environment and the 
innate and adaptive immune response systems [34, 36].

The use of probiotics for enhancing bio-growth parameters and in improv-
ing disease resistance ability has been well documented in aquaculture of fish for 
human consumption [37–41] but research on the effect of feeding probiotics in 
ornamental fishes is still an under-explored research territory.

Although most probiotics known so far are Gram-positive, with lactobacillus and 
bifidobacterium being the main species used for treatments of intestinal dysfunc-
tions [42], some Gram-negative bacteria, such as Escherichia coli Nissle 1917 (EcN) 
[43], also known as “Mutaflor,” have also been reported to function as probiotics. 
Mutaflor has been used in Germany for many years in the treatment of chronic 
constipation [44] and colitis [45]. Probiotic bacteria have been shown to modulate 
intestinal microbiota through the modulation of luminal pH and the production of 
antimicrobial compounds [46, 47]. In addition to the foregoing, probiotics have also 
been reported to enhance the intestinal barrier function [48]. These effects collec-
tively contribute to the management of inflammatory bowel disease [46].

There is strong evidence that the administration of probiotics is able to down-
regulate over-expressed immune responses in subjects with autoimmune/immune-
inflammatory disorders and enhance specific aspects of immune function in 
healthy subjects. Schiffrin and colleagues reported enhanced phagocytic capacity of 
peripheral blood leucocytes (polymorphonuclear and monocytes) in healthy human 
adults administered with specific strains of probiotics [49–52]. The effectiveness of 
probiotics in enhancing the immunogenicity of mucosal and systemic vaccines has 
also been reported. It has been reported that probiotic administration could induce 
antibody responses to completely unrelated antigens and to themselves [53, 54].

5. Probiotics from fermented fish

Probiotics have been obtained from a wide variety of traditionally fermented 
and preserved products that include dairy-based items like fermented milk, cheese, 
buttermilk, milk powder, and yogurt [55, 56]. Non-dairy food sources like soy-
based products, cereals, and a variety of fermented juices have also proved to be 
promising [57, 58]. With more and more sources being explored, new strains and 
species of probiotics are being added to the list.
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Fish and their products have emerged to be a potential source of novel probiotics that 
can be utilized to enhance the value of human nutrition [59]. Fish gut confers a con-
genial environment for colonization of bacteria abundant in the aquatic environment. 
Most of the probiotic bacteria isolated from the fish gut are either aerobes or facultative 
anaerobes. Worldwide, fishes have been consumed in diverse formats. Among some 
ethnic groups, there has been a tradition to preserve fish by drying and fermenting 
for enhanced shelf-life. In the North-eastern states of India, freshwater fish have been 
fermented by traditional practices into products such as Utonga-kupsu, Hentak, and 
Ngari. Workers have studied the bacterial communities in these products and isolated 
Lactococcus lactis subsp. cremoris, L. plantarum, Enterococcus faecium, Lactobacillus fructo-
sus, Lactobacillus amylophilus, Lactobacillus coryniformis, Bacillus subtilis and B. pumilus, 
B. cereus, Staphylococcus aureus and Enterobacteriaceae population. Most of these have 
been characterized as probiotics [60, 61]. Similar explorations have reported several 
strains of probiotics from a variety of other fishes. The table in the following section 
(Table 1) summarizes various such sources and probiotic strains isolated from them.

Country/state/
region

Fish species Bacteria isolated Accession 
No.

References

Manipur 
(India)

Puntius sophore Lactococcus plantarum [60, 62]

Lactobacillus fructosus

Lactobacillus amylophilus

Enterococcus faecium JX 847611

Lactobacillus coryniformis 
subsp. torquens

Lactobacillus lactis subsp. 
cremoris

L.brevis KU945827 [63]

Bacillus coagulans JX847608 [64]

Bacillus subtilis KX953135 [65]

Meghalaya 
(India)

Danio spp. Lactobacillus rossiae isolate 
LS6

JN680708 [66]

L. plantarum isolate LS5 JN680707

L. rossiae isolate LS4 JN680706

Lactobacillus pentosus isolate 
LS3

JN680705

Lactobacillus pobuzihii 
isolate TTp4

HQ141620

L. pobuzihii isolate TTp6 HQ141621

L. pobuzihii isolate TTp12 H Q141622

L. pobuzihii isolate TTp13 H Q141623

L. pobuzihii isolate TTp14 HQ141624

Assam (India) Puntius spp. Staphylococcus sp. KR706310 [67]

NE India Puntius sp. Staphylococcus 
piscifermentans

[68]

Staphylococcus arlettae

S. condiment

Staphylococcus sciuri

Staphylococcus warneri

S. nepalensis

Staphylococcus hominis
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The processes like fermentation, salting, drying, and smoking are the popularly 
followed traditional methods of preservation of fish [72, 73]. As evident from the 
list (Table 1) lactic acid bacteria have been found to be predominant in most of 
the fermented fish products. However, the microbial diversity of these products 
also encompasses some species of Micrococcus, Lactococcus, Enterococcus, Bacillus, 
Staphylococcus, and Enterobacteriaceae. Conventionally, culture-based methods 
have been employed to identify LAB in food samples, and isolates are evaluated for 
probiotic properties under controlled conditions. With the advances in molecular 
techniques, the isolation and identification of microorganisms missed by culture-
dependent methods have now been achieved. Consequently, as new microbial 
metabolites, such as bacteriocins, defensins, and other antimicrobial compounds 
are being reported, an extensive database for identification and comparison of 
potential novel products is now available [71]. Several strains of probiotic bacteria 
were isolated from various fish species (African catfish, European eel, Bream, 
Perch, Rudd) and most of these were reported to be Lactobacillus isolates which 
were able to inhibit pathogens by acid productions [75]. Various probiotic strains 
of Bacillus subtilis have been reported from the gastrointestinal tract of carps [75], 
coastal fishes [76], bivalves [77], shrimp culture ponds [78], and shrimp larvae-
rearing medium [79]. Multiple studies supported that B. subtilis could reduce 

Country/state/
region

Fish species Bacteria isolated Accession 
No.

References

Malaysia Parastromateus 
niger BLOCH

Pediococcus pentosaceus [69]

Lactobacillus plantarum

L. pentosus

Stolephorus spp. Lactobacillus casei [8]

Lactobacillus plantarum

Lactobacillus paracasei

Thailand Chitala ornata Lactobacillus plantarum [7]

Channa 
micropeltes

L. pentosus

Staphylococcus simulans MG798679.1 [70]

Phillipines Chanos chanos Leuconostoc mesenteroides [71]

P.cerevisiae

Enterococcus faecalis

P.acidilactici

Leu.paramesenteroides

L. plantarum

Loriculus 
philippensis

P. pentosaceus

Streptococcus equinus

Leuconostoc sp.

Lactobacillus sp.

Eleutheronema 
tetradactylum

P. halophilus.

Table 1. 
Probiotics isolated from fish.
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pathogenic bacteria in aquaculture. The Lactobacillus species associated with the 
traditionally fermented fish product—Tungtap (a fermented product of ethnic 
tribes of the state of Meghalaya in India) were found to possess many health-
promoting probiotic properties [66]. Alcaligenes sp. isolated from the gastrointes-
tinal tract of Tor tambroides, function as an important probiotic that promote gut 
microbiota composition, improve gut health including bacterial nutritional enzyme 
activity, volatile short-chain fatty acids (VSCFA) production and gut morphology, 
and enhance production performance of Malaysian Mahseer (T. tambroides) [80].

The fish gut microbiota embodies diverse enzyme-producing microorganisms 
capable of producing multiple hydrolytic enzymes that aid in the digestion of 
carbohydrates, proteins, and lipids [81, 82]. Bacillus spp. has been reported from 
Utonga-kupsu, Hentak, and Ngari (traditional fermented fish of Manipur, North-
East India) alongside Staphylococcus. These have also been reported from other 
fermented fish products such as Namplaa and Kapi (from Thailand) and have been 
shown to exhibit amylase, protease, and cellulase activities that can improve the 
quantity, availability, and digestibility of dietary nutrients in the body in addition to 
other probiotic effects [65, 83]. S. simulans PMRS35 isolated from budu, a traditional 
Thai salt-fermented fish-based product, possessed high lipase and protease activi-
ties and a vast array of desirable probiotic characteristics [70]. In any fermented 
food, the diverse microorganisms are capable of producing many useful enzymes 
like oxidase, β-galactosidase, amylase, etc. which are essential for aesculin hydroly-
sis, starch hydrolysis, nitrate to nitrite reduction, and other important biochemical 
conversions and can hence be useful in bioremediation as well [84].

Although the above list is not comprehensive, it represents the potential of fish 
and their products as a source of novel probiotics. The knowledge of the health 
benefits of fermented fish products has been utilized by many cultures worldwide 
and this information can be utilized for the development of probiotic products for 
human consumption.

6. Future prospects

The incorporation of probiotics from fish and fish products into the develop-
ment of functional foods containing known probiotic strains can provide alterna-
tives in therapeutics and ensure food security. Isolation and standardization of 
bacteriocins and other metabolites from probiotics can lead to the development of 
functional foods for individuals surviving on a vegan diet.

7. Conclusions

The host- probiotic relationship can be regarded as evolutionarily one of the 
most primitive associations. It represents a dynamic relationship that is influenced 
by dietary and other intrinsic and extrinsic factors. The kind of diet consumed by 
the host plays an important role in the maintenance of the probiotic microbiome in 
the body. On the other hand, a healthy probiotic microbiome in the host ascertains 
good growth and health of the host. The various health benefits and the potential 
role of probiotics in various human diseases have been highlighted in this chapter. 
As the kind of diet consumed influences the gut microbiome significantly, it, there-
fore, becomes essential to explore this intricate food-host-probiotic relationship in 
order to understand human health and diseases. The traditional food- preparation 
practices evolved through close observation of the effect of food on human and 
animal health. Hence, exploration of such traditionally prepared foods can reveal 
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some novel probiotics with potential therapeutic applications. In this chapter, some 
of such sources of probiotics have been listed. However, there is an urgent need to 
study these in detail as most of them have not been completely characterized to the 
extent of their utilization for human applications.
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Chapter 9

Food Health with Increased 
Probiotic Survival During Storage
Fatemeh Shoaei

Abstract

In recent years, due to the increasing concern of consumers about their food 
health. Pay attention to foods not only as a source of nutrients but also as promoters 
of health and wellness-hence the increase in demand for foods that have active or 
functional ingredients (especially natural ingredients). They increase nutritional 
value and nutritional health. Changes in food consumption, disorder the intestinal 
microbial system. Maintaining the health benefits of consuming beneficial bacteria 
that are present in the intestinal system. Probiotics are essential for improving 
intestinal microbial homeostasis. Probiotics are living microorganisms that, if 
recommended in sufficient quantities, can have positive effects on human health. 
Lowers cholesterol, improves lactose intolerance, increases nutritional value and 
prevents cancer. Probiotics are unstable during storage and the gastrointestinal tract 
(pH and bile salts). For this reason, the survival of probiotic cells and the absence 
of changes in the sensory properties of the product during storage are of have 
fundamental importance. Encapsulation and co-encapsulation with prebiotics are 
often a good way to increase the resistance of probiotic bacteria to difficult condi-
tions and their survival. This leads to improved production of probiotic products 
and increased food health in the world.

Keywords: probiotic, encapsulation, survival, functional foods, intestine

1. Introduction

Probiotics are living microbes that must be in the number of 106 log Cfu/gr at 
the time of entering the intestinal environment to have their beneficial effects on 
human health [1]. Probiotics are usually one or mixture of several microorganisms, 
when consumed by humans or animals, they have many beneficial effects on the 
body. Therefore, researchers are trying to add it to food the survival of probiotics. 
Since dairy products are Suitable for the transmission and survival of probiotic 
bacteria, most probiotic bacteria enter dairy products such as yogurt, Dough 
and various dairy desserts [2]. Due to the presence of animal cholesterol, lactose 
intolerance and sensitivity of some people to dairy products, it is necessary to study 
probiotic products with new flavors and non-dairy products, especially herbal [2]. 
Researchers are always looking for ways to improve the survival of probiotic bacte-
ria to increase the survival of probiotics in Unfavorable environmental conditions, 
including during the production and storage of food products, as well as acidic and 
biliary conditions in the gastrointestinal tract [3, 4]. it is recommended that pro-
biotic foods contain at least 108 log Cfu / gr at the time of consumption [1]. One of 
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the newest methods that has had significant effects in this regard is the microencap-
sulation of bacteria in different ways by different coatings. From a microbiological 
point of view, microencapsulation is the monopoly of bacterial cells with hydrocol-
loid coatings that are used to separate and protect it from the external environment. 
The main purpose of microencapsulation is to increase the survival of bacterial 
cells during storage, passage and release in the gastrointestinal tract [5]. Symbiotic, 
on the other hand, are a mixture of probiotics and prebiotics that affect the health 
of the host, selectively stimulating probiotic growth. And activate, metabolize 
beneficial intestinal bacteria, thus improving beneficial effects on the host [5]. By 
adhering to intestinal epithelial cells, probiotics can improve micro biota and diges-
tion. Provides protection against pathogens and carcinogenic properties [1]. In this 
chapter, a brief description of probiotics and their increase in survival in different 
ways are depicted.

2. Definition and role of probiotics

The word probiotic, meaning to live, is derived from the Greece language. For 
more than 4,000 years, lactic acid bacteria have been used to increase the shelf 
life of various foods through fermentation processes. In 1857, Pasteur discovered 
that microorganisms were responsible for fermenting milk and play role in the 
production of lactic acid, which was eliminated by boiling milk. The Clinton 
Processing Company (USA), for first in 1881, produced lactic acid by fermenta-
tion Process. The idea of   using one-way primer cultures in the decades 1940 and 
1950 consisting of lactic acid bacteria was evolving and becoming commercially 
available [3]. Researchers have observed widespread in the decades 1980, use 
of lactic acid bacteria in biomedicine, food preservation, food processing, and 
fermentation and animal husbandry [3]. In 2002, the World Health Organization 
provided a comprehensive definition of probiotics: Probiotics are living micro-
organisms that, if taken in sufficient amounts, have beneficial effects on host 
health [6, 7].

The gastrointestinal tract contains millions of bacteria, the balance of which 
is very important for the gastrointestinal tract and the functioning of the 
immune system. During the day, the intestinal microflora is exposed to various 
stresses (use of antibiotics, anxiety and food poisoning). Which can create an 
imbalance between the so-called (good) and (bad) bacteria. However, eating 
foods that contain extra probiotics can increase the level of healthy or “good” 
bacteria in the gut which can change the microbial balance in this way [8]. 
Probiotics are classified as “safe” bacteria because their metabolism is saccha-
rolytic. Probiotics are classified as “safe” bacteria because their metabolism is 
saccharolytic, (That is, they break down carbohydrates in the large intestine to 
produce short-chain fatty acids). This process is also known as fermentation and 
is beneficial to the host [8].

3. Selection criteria and requirements for probiotic strains

In the process of selecting probiotic strains for consumption, it must be 
approved by the WHO, FAO and the European Food Safety Authority (EFSA) 
for their safe status (GRAS) and (QPS) [4]. Recommended properties for a pro-
biotic bacterium that have shown good and prominent effects on human health 
include [9]:
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3.1 Having a safe status, probiotic bacteria

Bacterial lactic acid has been used to produce commercial probiotic products 
such as Lactobacillus casei and L. plantarum isolated from cheese and has shown 
good and prominent effects on human health [3].

3.2 Survive and have resistance to low pH and bile salts

Grosu-Tudor et al observed in Species (L. citreum, L. brevis, Leuconostoc mesen-
teroides, L. plantarum) isolated from fermented vegetables. have acceptable resis-
tance in the presence of stomach acid and bile salts [3]. with the viability rates of 
105 .108 CFU/ml after 24 hours of incubation [3].

3.3 Ability to adhere to and colonize the gastrointestinal tract (GIT)

Adherence to intestinal surfaces is one of the most important criteria for select-
ing strong probiotic isolates. Some probiotic strains are isolated from fermented 
foods that have significant adhesion by producing intestinal mucosa. Such as 
Lactococcus lactis IS.16183, L. plantarum and Lactobacillus rhamnosus IS.7257 and 
inhibits the binding of Escherichia coli [3].

3.4 Ability to survival during storage and fermentation process in food

Probiotic products are usually recommended for storage in 4 to 5°C and should 
be used before the expiration date [3]. The criteria and requirements of probiotic 
strains are listed in detail in the Table 1 below:

Criteria Required specifications

Immunomodulatory effects • Animal or human origin.

• Isolated from the gastrointestinal tract of healthy individuals.

• Accurate identification and matching (phenotype and genotype traits).

• Lack of relevant information related to infectious diseases.

• No side effects.

Function • Competing with intestinal bacteria.

• Ability to survive and maintain metabolic growth activity at the site.

• Resistant to bile salts and enzymes.

• Resistance to bile salt and low pH environment

•  Antagonistic activity against pathogens
(For example: Helicobacter pylori, Salmonella sp., Listeria monocytogenes, 
Clostridium

Technological capability • Easy production at high inoculation rates
•  vSurvival and stability of probiotic bacteria during the process (freezing 

and freeze-drying under vacuum
• Preparation and distribution of probiotic products.
• Increase survival in final products (in aerobic and aerobic conditions)
• Ensure the optimal sensory properties of the final products
• Resistance to bacteriophages

Table 1. 
Criteria for selection of probiotic species.
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4.  Strategies to improve the survival of probiotics in food products and 
the digestive system

Probiotics are now recognized as the top pragmatic food products, and these 
health benefits are enhanced by prebiotics and short-chain oligosaccharides; because 
these substances help increase the growth of beneficial bacteria in the intestinal tract 
[5]. Processing conditions in food products such as oxidation and temperature are 
important for the preservation and survival of bacterial cells. High temperatures dur-
ing the survival process are harmful to microorganisms. Reduction of oxygen during 
fermentation plays an important role in the elimination of aerobic microorganisms. 
Storage conditions such as packaging such as moisture, oxygen, temperature should 
be appropriate. Microencapsulation techniques to protect bacterial cells cause high 

Food product Compound added Research Findings References

Semi- hard 
cheese

Fructo- oligosaccharide viability of probiotic 
strains

Langa el al., 2019

Wheat bread Microbial 
polysaacharide- Pullalan

digestibility and 
fermentation of wheat 
bread samples

Nithyabalasundari  
et al., 2019

Yogurt Chitoologosaccharide

Orange juice Xylooligosaccharide Preservation of chemical 
stability in ultrasound 
treatment

Eric et al., 2019

Edible starch 
film

Nystose growth of probiotic 
organisms and formation 
of organic acids

Gabrielly et al., 2019

Fermented 
milk

Inulin Improves the growth of 
lactic acid bacteria and 
improves sensory and 
physical properties

Ozturkuglu et al., 2019

Apple 
by-product

homogalacturonan and 
rhamnogalacturonan

Consumption of carbon 
source by probiotics and 
production of short chain 
fatty acids and increase the 
level of HDL in rats.

Inmaculada et al., 2020

Whole wheat 
grain flour

Arabinoxylan increase the growth of 
intestinal microbiota 
and reduce the growth of 
pathogenic organisms

Candela et al., 2020

Stirred bio 
yogurt

Chickpea flour Improves bacterial 
growth and our sensory, 
antioxidant and tissue 
properties

Hend et al., 2020

The Human 
Body

arabinoxylan 
and arabinoxylan 
oligosaccharides

Effected in adiposity 
reduction

Kerry et al., 2018

Green coffee 
spent

Mono- oligosaccharide 
with mannose and 
galactose

Stimulates the growth 
of Lactobacillus casei 
andLactobacillus 
fermentum, Resistance to 
stomach environment

Nivas et al., 2019

Table 2. 
The effect of prebiotics on food.
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survival of these microorganisms in food products as well as in the gastrointestinal 
tract (low pH in gastric salt and bile in the small intestine) (Table 2) [5].

5. Prebiotic

Probiotics are indigestible foods that are by beneficial bacteria and promote 
the growth and activity of probiotics in the gut, therefore probiotics can be used 
as functional foods. Prebiotics increase the body’s immune system by increasing 
intestinal microbial activity and the production of short-chain fatty acids [10]. The 
presence of prebiotics in the large intestine causes energy to be created by some 
bacteria during sugar consumption and fermentation. The most common hosts 
for prebiotics are Bifidobacterium bacteria and Lactobacillus. Which improves the 
growth of these two bacterial species and leads to the production of bacteriocins, 
which are a potential inhibitor of the growth of pathogenic bacteria [11]. Some of 
the prebiotics available in the inulin market are fructoo oligosaccharides (FOS) and 
galacto oligosaccharides (GOS), arabinoxylan [11]. Prebiotics can be obtained natu-
rally from sources such as vegetables, fruits and grains. Prebiotics can reduce the 
incidence and duration of diarrhea, relieve inflammation, prevent colon cancer, and 
absorb minerals [11]. In a study by Anirban et al., Prebiotics such as fructoligosac 
(FOS) and inulin were used for stimulate the growth of Bifidobacterium in food [6]. 
The combination of probiotics and prebiotics leads to the formation of synbiotics. 
They increase the life and efficiency of probiotic bacteria in the intestine. Research 
has shown the effect of synbiotics on human health.

6. Effective level of probiotic microorganisms

In order of probiotic to survive, in the gastrointestinal tract, they must be able 
to tolerate low pH, gastric pepsin, bile salts, pancreatic, and the ability to attach 
to the intestinal mucosa [7, 8]. Probiotic survival in product is affected by various 
factors such as pH, acidity, hydrogen peroxide and storage temperature [12, 13]
The efficiency of probiotic bacteria in the product depends on the dose, and their 
survival during storage, its survival in the intestinal environment [14]. Therefore, 
bacteria cannot survive due to unfavorable conditions during food processing and 
storage [15]. If probiotics survive, they will change the taste of the final product 
during storage [16]. Survival means the presence of at least a sufficient number of 
viable probiotic cells at the time of food consumption [17]. The general agreement 
on the recommended levels for the amount of probiotics in the product at the time 
of consumption should contain at least 108 (CFU) / ml or gr [18]. The International 
Dairy Federation recommends that the minimum concentration of probiotics be 
around 106.107 CFU / ml at the end of the shelf life [10].

7. Common genera and species of probiotic microorganisms

Probiotic products may contain one or more selected microbial strains. 
Human probiotic microorganisms mostly belong to the genera Lactobacillus, 
Bifidobacterium, Lactococcus, Streptococcus and Enterococcus. In addition, gram-
positive bacteria belonging to the genus Bacillus and some yeast species belonging 
to the genus Saccharomyces are commonly used in probiotic products. The largest 
group of lactic acid bacteria belongs to the genus Lactobacillus, which includes 
more than 50 different species. Lactic acid bacteria are gram-positive, spore-free, 
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anaerobic fermentative bacteria that grow anaerobically and they are traditionally 
used in preserving a variety of fermented foods. Inoculated in the food industry as a 
fermente. Because they play a role in preserving the taste and texture of fermented 
foods. While the conversion of fermented sugars in raw materials to lactic acid is 
their main function, the production of antimicrobial peptides, exopolysaccharides 
and other metabolites is another important feature [9].

8. Functional foods

In many countries today, the role of food in human health and nutrition is very 
important. So that most of the importance of food, instead of the primary role of food 
as a source of energy and growth has changed to the biological role of food on func-
tional food. The food production and consumption market has shifted more towards 
the production of healthy foods. Functional foods are foods that, in addition to their 
normal nutritional properties, have health benefits for the consumer. They have medici-
nal value beyond nutritional value and have positive effects on human health. Demand 
for healthy food products is growing rapidly due to increasing consumer awareness of 
the benefits of these products. Functional foods include a wide range of dietary supple-
ments, special foods for children, foods enriched with vitamins and minerals, probiotic 
products, foods containing antioxidants, fiber, protein and soy [8].

8.1 Property of functional foods

The amount of food consumed is important to achieve the beneficial effect of 
the added nutrient. Identify quality components in the food composition and opti-
mal intake of nutrients in the diet; they reduced diseases and increased the level of 
health in the human body. In order to achieve the benefits of a healthy food, it must 
be possible to use it as part of a balanced diet [8]. The gut microflora can face daily 
challenges such as poor diet, antibiotic use, stress, or food poisoning, leading to an 
imbalance between “good” and “bad” bacteria. However, eating foods containing 
probiotics can increase the amount of healthy bacteria in the gut [8]. Probiotics are 
a group of beneficial microorganisms that, if consumed in sufficient doses of 106 
log Cfu/gr, can lead to health.promoting properties in humans [8]. The majority 
of probiotics belong to the genera Lactobacillus, Bifidobacterium and Lactococcus, 
which are the natural inhabitants of the large intestine [7, 19]. Their beneficial 
effects have been extensively studied [4, 20]. Probiotic bacteria can be used in pure 
culture (as found in supplements) or added to dairy products or other foods. Due 
to the special conditions that probiotic bacteria need to grow, their survival in most 
foods will face many problems. One of the methods that can increase the survival 
of these bacteria and protect them against adverse conditions is the use of encap-
sulation techniques [13, 21, 22]. This technology refers to a physical and chemical 
process that inserts the desired bacteria into a coating to produce particles with 
diameters ranging from a few nanometers to a few micrometers [5]. The purpose 
of microencapsulation is to create a small environment in which bacteria survive 
during production and storage and are released in appropriate places (such as the 
small intestine) in the gastrointestinal tract [21].

9. Microencapsulation of probiotic bacteria

Microencapsulation technologies can be used in many applications in the 
food industry, such as controlling the oxidative reaction, coating flavors, colors 
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and odors, stable and controlled release of the desired substance, extending the 
useful life, etc. [5]. Techniques to reduce the lethal effects of the gastrointestinal 
tract on probiotic microorganisms have been developed and evaluated. Among 
these, the microencapsulation technique is one of the most appropriate solutions. 
Microencapsulation is a physicochemical or mechanical process for trapping 
probiotic bacteria in an emulsion to produce particles with a diameter of a few 
nanometers to a few millimeters [5].

Technology The microencapsulation of living probiotic cells is covered by other 
preservatives or mixtures thereof in different techniques [23].  Protection of micro-
capsules when passing through the stomach can be increased by the use of insoluble 
wall materials [23]. Microencapsulation protects bacterial cells from environmental 
pressures such as oxygen, high acidity, and gastric conditions and can be used to pass 
through the stomach with little damage [24]. In recent years, many studies have been 
conducted on the preservation of probiotic microorganisms by microencapsulation 
during food processing and storage [23]. The purpose of microencapsulation is to cre-
ate an environment in which bacteria survive during processing and storage and are 
released into, Suitable places the gastrointestinal tract  (eg the small intestine) [23].

10. Structure and characteristics of microencapsulation

The first and foremost step in all microencapsulation methods is to select a suit-
able material as a wall or membrane for the stability and properties of the particles 
produced in the microencapsulation [25]. These materials are used alone or in com-
bination to form a layer. Covering microencapsulation with a double membrane can 
act as a barrier against external conditions [26]. The most important choice for the 
coating material is the Yield of the coatings. The finely coated probiotic in the final 
product must be degradable and create a boundary between the internal phase and 
the environment (permeability) and also be evaluation in opinion of cost [4]. The 
properties of the coating materials and their placement are the main determinants 
of the functional properties of the microencapsulation [26]. The materials used 
as coatings for bead can contain two or more layers of base materials [5, 26]. The 
properties of the coating materials and their shape are the main determinants of 
the functional properties of the coatings [5]. Microencapsulation must be soluble in 
water to maintain the coherence of their structure in the food matrix and the diges-
tive tract [5]. Therefore, the materials used as coatings in the microencapsulation 
should have the following properties. Chemically with the main substance. Ability 
to form membranes around bacterial cells. Be able to protect bacterial cells against 
adverse environmental conditions. Be stable and economically viable [26]. To date, 
there has been no ideal coverage that fits all goals. Therefore, obtaining suitable 
coatings to create a balance point between the optimal properties, such as protec-
tion against moisture, acidity, high temperature, gas exchange (oxygen and carbon 
dioxide) [26]. The encapsulating agent should not be toxic, as it can directly affect 
the morphology, diameter and permeability of the particles. Selecting the right 
material for probiotic microencapsulation is essential for the stability and proper-
ties of the particles produced [25]. There is a wide range of natural or synthetic 
polymers, including: proteins (such as zein, soy protein, collagen, and gelatin), 
polysaccharides (such as cellulose, starch, alginate, and chitosan), and fats [26].

10.1 Polysaccharide

Polysaccharides are biopolymers composed of monosaccharaides. They have 
hydroxyl groups that may be intramolecular hydrogen bonded with water or other 
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molecules. They are also influenced by the nature of the monomers of their sub-
stituent groups, which alter the molecular and functional properties [26].

10.1.1 Anionic polysaccharides

Alginate, gum Arabic, carrageenan, xanthan, carboxymethylcellulose, gelan 
are natural anionic polysaccharides that tend to be negative at pH values   above 
pKa. And when they are lower than pKa, they are neutralized [26]. Ionic chemical 
elements such as Ca + 2 change the electrical charge properties of all ions. Such as 
alginate gel, which interacts with opposing groups on the polymer chain [27].

10.1.1.1 Alginate

Alginates are natural marine polysaccharides that are extracted from seaweed 
[28]. The most important applications of alginate are its stabilizing, gelling and water 
retaining properties [28]. Alginates are natural polymer chains consisting of 100.3000 
monomer units in a chain rigid and somewhat flexible [26]. The ability to connect 
polymer alginate chains with polyatomic ions such as Ca + 2, Ba + 2, Sr. + 2 is through elec-
trostatic bonding and hydrogel formation [26]. When a cation such as Ca + 2 participates 
in an interchain bond. It creates a three-dimensional network of gel and micro-and 
Nano-sized hydrogel bead in the microencapsulation of materials. Which has received 
much attention in recent studies [26]. One of the benefits of alginate is the formation 
of gels around bacterial cells. It is also safe and inexpensive. Some of the disadvantages 
attributed to alginate beads. The resulting beads are highly porous, which reduces the 
protection of bacterial cells in adverse environmental conditions. Another disadvantage 
of alginate bead is that it is sensitive to the effects of acid and is not compatible with 
the resistance of bead in gastric conditions [29, 30]. However, defects can be remedied 
by combining alginate with other polymer compounds, coating the bead with another 
compound, or structural modification of alginate using various additives [31].

10.1.1.2 Gum Arabic

Acacia trees are the main source of Gum Arabic. The chemical composition of Gum 
Arabic is complex and consists of a group of macromolecules composed of a large 
proportion of carbohydrates (97%) [32]. Gum Arabic (GA) is highly soluble in water 
and also has a relatively low viscosity compared to other gums [26]. The functional 
properties of gum Arabic are closely related to its structure, for example, solubility, 
viscosity, interaction with water and oil in an emulsion, determine the ability of fine 
coating in Gum Arabic [32]. Some researchers tested Gum Arabic as an indigestible 
polysaccharide, finding that Gum Arabic reached the large intestine without digestion 
in the small intestine [33]; Gum Arabic is gradually fermented by the bacterial flora 
of the large intestine, which produces short-chain fatty acids [34]. Therefore, it can be 
taken in large daily doses without side effects. Daily consumption of 25 and 30 grams 
of Gum Arabic for 21 to 30 days reduces total cholesterol by 6 and 10.4%, respectively 
[32]. Arabic gum is used as a stabilizer, emulsifier and as a coating in the food industry 
[33]. Solubility and properties of low viscosity emulsions by Gum Arabic enables the 
ability to retain and transfer the Trapped material in fine encapsulation. Gum Arabic 
with maltodextrin is a good choice for coating in microencapsulation [35].

10.1.1.3 Carrageenan

Carrageenans are extracted from red seaweed (Rhodophyta) and are com-
posed of various mixtures of sulfated polysaccharides. Carrageenan is a neutral 
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polysaccharide polymer that requires high temperatures to dissolve in large quanti-
ties. Potassium chloride is used to preserve and stabilize Carrageenan is a suitable 
coating material in encapsulation that contain flavorings and aromatic compounds. 
Forms a brittle, hard gel that melts when heated to low temperatures, forming soft, 
elastic gels in cold water while carrageenan is soluble. At present, carrageenan has 
not been widely studied for use in probiotic encapsulation [36, 37]. The properties 
of carrageenan gel are improved by mixing it with other coating materials such as 
vegetable oils, calcium alginate, and gums such as xanthan, gelan and locust bean 
gums by emulsion method [26].

10.1.1.4 Xanthan

Xanthan gum is a microbial exo polysaccharide with a cellulosic structure and a 
chain of two mannose and a glucuronic acid. They are produced from plant patho-
gens Sphingomonas elodea and Xanthomonas campestris. Despite its high molecular 
weight, it dissolves easily in hot and cold water and even in small amounts, it 
produces a very concentrated solution. as a result of stirring, its viscosity decreases. 
XG has been shown to be an excellent coating for probiotic microencapsulation, 
protecting probiotic cells against simulated digestive conditions and high tempera-
tures [26]. Also, XG was successful when used with other coatings such as alginate, 
chitosan, gelan and cyclodextrin to improve the coating properties of probiotics 
microencapsulation and increased the viability of microencapsulated probiotics in 
simulated gastric conditions and intestinal bile salts [26]. Therefore, the addition 
of chitosan to the alginate-xanthan complex improved the viability of microencap-
sulation L. plantarum at high temperature and low pH [38]. Other studies using XG 
in combination with other substances such as protein and alginate improved the 
survival of Lactobacillus acidophilus in microencapsulation added to yogurt [39].

10.1.1.5 Carboxymethylcellulase

Carboxymethyl cellulose are also called semi-synthetic anionic polysaccharides. 
The properties of carboxymethylcellulose include; Concentration, adhesion, 
strength building, water retaining agent, colloidal state, stabilizer, emulsion and 
layer formation. Due to their diverse properties, they are widely used in the food 
industry, among them is their use as a coating material in encapsulation of pro-
biotics. In one study, CMC and chitosan were used as coatings for L. acidophilus 
microencapsulation. They found that the ability of the probiotic to survive during 
transmission from the simulated gastrointestinal tract was improved [40].

10.1.2 Cationic polysaccharides

Cationic polysaccharides are those that tend to be positive below their pKa value, 
while remaining much higher than the neutral pKa value. Chitosan is the only 
naturally Extracted cationic polysaccharide [27]. Other synthetic cationic polysac-
charides have been previously described, for example, cation hydroxyethylcellulose 
and cation hydroxypropyl, that have cosmetic applications [26]. However, despite 
their potential and benefits as cationic materials, none of them have yet been 
reported as a coating material for probiotic microencapsulation.

10.1.2.1 Chitosan

Chitosan is a semi-synthetic polymer. Due to its low cost, non-toxicity and adhe-
sion to the outer surface of the particle, it increases the stability of the particles. Which 
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is often used for probiotic microencapsulation [25]. In addition, it provides resistance 
to the gastrointestinal tract simulator. It has an electrostatic interaction with sodium 
alginate [10]. The use of chitosan as a capsule for probiotic bacteria can have disadvan-
tages. Because this polysaccharide has an inhibitory effect against microorganisms [25], 
including lactic acid bacteria [25], Despite the antimicrobial properties of chitosan, it 
has been used in combination with other encapsulating agents to microencapsulated 
probiotics [41]. Chitosan coating improves the survival of encapsulated Bifidobacterium 
longum in the gastrointestinal tract and high temperature [42]. Also, L. rhamnosus ASCC 
290 and L. casei ATCC 334 were microencapsulated by alginate-chitosan using extrusion 
method was observed, 76% microencapsulation efficiency [25].

10.1.3 Non-ionic polysaccharides

Non-ionic polysaccharides are macromolecules that have no formal charge. 
However, other neighboring species and / or environmental conditions may affect 
their loading characteristics Natural, non-ionic polysaccharides such as starch, 
maltodextrins, cyclodextrins and guar gum have been used as coatings for probiotic 
microencapsulation [43].

10.1.3.1 Starch

Starch is produced by plants and is mostly composed of two different polysac-
charides of D-glucose: linear and spiral amylose and highly branched amylopectin. 
Starch due to its high amylose leads to the formation of flexible and strong coatings. 
Corn starch is also known as resistant starch (RS) due to its high amylose content, 
which is the most common type of starch [44]. Starch films are: odorless, tasteless, 
colorless, non-toxic and semi-permeable to carbon dioxide, moisture, oxygen as 
well as fat and flavoring components [44]. Modified starch such as (actinyl-succi-
nate starch) is a food additive. It was successfully optimized as a coating material 
for microencapsulation of Bifidobacterium by spray drying method. Actinyl-
succinate starch is preferred because it is suitable for spray drying.

10.1.3.2 Maltodextrin

Maltodextrins H2o {(c6H10o5) n} starch is hydrolyzed. It is a natural, non-ionic 
polysaccharide that binds glucose units together mainly by glycoside bonds (4 → 1). 
Its macromolecules do not have a specific charge [26]. Unlike starch, they have high 
solubility and low viscosity in the formation of encapsulation, moisture control, 
reduced wall permeability to oxygen, reduced adhesion problems, easy digestibility 
and easy drying are the properties of gel formation in maltodextrin [26]. Equivalent 
dextrose (DE) indicates the reduced number of aldehyde groups relative to pure 
glucose (constant concentration), so that high DE indicates lower weight, higher 
solubility. Due to having a hydrophilic group, it increases the moisture in the final 
product. Due to their low cost, neutral flavor and aroma, as well as their role in pro-
tecting bacterial cells, resistant to thermal degradation during drying, maltodextrins 
are used as Coating material in encapsulation [26, 45]. In general, in maltodextrins, 
the solubility and stability dependence of the high molecular mass and the viscosity, 
adhesion, and crystallization depend on the low molecular weight [35].

10.1.3.3 Guar gum

Guar gum is structurally a type of polysaccharide whose main chain is mannose 
and the sidelong groups attached to it are galactose. This substance is extracted from 
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Guar plant and in combination with water, creates a concentrated solution, and due 
to this property has many applications in the food industry. According to the US 
Food and Drug Administration, the use of appropriate amounts of guar gum in vari-
ous food products is safe. It has recently been described as a coating agent for probiotic 
encapsulation. Amita et al. [46] found that a mixture of fructooligosaccharide and 
guar gum improved the viability of microencapsulation probiotics in a simulated 
gastrointestinal tract during heat treatment. In another study by Muzzafar et al. On 
the bacteria L. acidophilus, L. rhamnosus and B. longum with guar gum and xanthan 
gum, they observed an improvement in probiotic survival in the preparation of cream 
biscuits [47]. Recent studies have found that microencapsulation of Lactobacillus by 
alginate and guar gum coatings increased the viability of chocolate milk, and that 
microencapsulation had no effect on the flavor of the final product.

10.1.3.4 Cyclodextrin

Cyclodextrins are annular oligosaccharides containing glucose units with 
alpha 1 and 4 glucopyranose bonds. Cyclodextrins are produced through starch 
by enzymatic conversion. The spatial structure of cyclodextrin forms a hydro-
philic surface and a hydrophobic cavity. Its benefits include the ability to remove 
cholesterol from many foods (eg eggs and dairy); inhibits the increase of plasma 
cholesterol and triacylglycerol [26]. Cyclodextrin coatings are also used more for 
controlled release in drugs [48]. Therefore, not many studies have been per-
formed on encapsulation of probiotics. In recent studies, microencapsulation of 
Saccharomyces boulardii, L. acidophilus, and Bifidobacterium bifidum by cyclodex-
trin and gum arabic increased survival in gastric and intestinal cloning conditions 
and thermal resistance compared to free cells [26].

10.2 Lipids

Lipids are made up of fats, fatty acids, waxes and phospholipids. Lipids are used 
as coatings in microencapsulation. Due to their relatively low polarity, they prevent 
moisture transfer. The hydrophobicity of lipids makes the microencapsulation coat-
ings brittle [49]. Therefore, lipids are combined with other coatings such as proteins 
and polysaccharides to improve the microencapsulation properties. In previous 
reports, polysaccharide coatings and proteins have been found to cause structural 
cohesion and selective permeability to gases (so2, o2) [50]. The addition of fat 
also made the coatings resistant to water vapor. Most lipid coatings are fats: their 
source-dependent fats include vegetable and animal fats. The chemical structure of 
fats is composed of fatty acids and glycerol. Hence, their properties largely depend 
on the composition of fatty acids. Vegetable fats are widely used as concurrent 
encapsulation materials in microencapsulation of probiotics by method emulsifi-
cation or by spry drying [26]. Silva et al., On the other hand, microencapsulated 
probiotics using vegetable oil as a coating alone or covered with gum Arabic and 
gelatin. Microencapsulated bacteria showed greater protection than free bacteria in 
simulated gastrointestinal conditions (eg, pH, temperature, sodium chloride, and 
sucrose) [51].

Waxes are GRAS materials and have been widely used in the food industry, 
for example as food additives or as a protective coating for fruits, vegetables and 
cheese. Nevertheless, waxes are less commonly used as coatings for microencapsu-
lation probiotics. For example, Mandal et al. [52] reported the use of wax, stearic 
acid, or poly-L-lysine as the outer coating of probiotic microcapsules prepared with 
resistant starch and alginate, that wax and stearic acid showed improved survival 
of L. casei encapsulated probiotic cells under simulated gastrointestinal conditions. 
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In particular, stearic acid coatings provide better protection. Contrary to the results 
of the previous study, Rao et al. [53], evaluated the use of wax or stearic acid as the 
outer coating of probiotic microcapsules prepared with cellulose acetate phthalate 
(CAP). They found that wax-coated microcapsules the highest survival rate of 
Bifidobacterium pseudolongum in simulated gastric juice.

Phospholipids are a large group of lipids commonly used in the food industry 
and have the ability to form emulsions, micelles and liposomes. These lipids contain 
phosphorus and play an important role in the construction and metabolism of 
living cells. Phospholipids are more complex than simple lipids (fats and waxes). 
Examples of phospholipids are phosphatidic acid (phosphatidate) (PA), phospha-
tidyl ethanolamine (cephalin) (PE), phosphatidylcholine (PC) and phosphatidyl-
serine (PS). In this regard, phospholipids are the main components of liposomes. 
When phospholipids are dispersed in water, the molecules come together to form 
a distinct bilayer. Such interactions cause the formation of vesicles, also called 
liposomes [53]. Liposomes have been used extensively as systems to transport active 
compounds such as drugs, vitamins, enzymes, and so on.

Although liposomes have shown great potential for controlled encapsulation and 
release of nutrients, their use in food has not yet been fully utilized [26]. Despite 
the high potential of liposomes for encapsulation and controlled release of nutri-
ents, their use in food has not yet been fully utilized [26]. For example, up to now, 
microencapsulation of probiotics by liposomes has not been reported, which may be 
due to the cost of the process and materials as well as the large size of the probiotic 
microorganisms [54]. However, the resistance of liposomes to the gastrointestinal 
tract as well as the survival of probiotics in the intestinal there are issues that need 
to be review.

10.3 Protein

Proteins are excellent materials for microencapsulation of probiotics; however, 
they are often used in combination with other coating agents. To date, few proteins 
have been used as coatings [26]. Due to their properties, many proteins are used as 
a good barrier against O2 permeability and CO2 as a coating agent. Each protein 
has a unique set of physicochemical properties [55]. Proteins used as coating agents 
for probiotic microcapsules, on their nature, can be classified as plant or animal 
proteins based. Examples of animal origin proteins include gelatin, casein, whey 
protein concentrate (WPC), whey protein isolate (WPI), egg whites, and casein-
ates. Examples of plant origin proteins, on the other hand, include corn (saddle), 
pea, wheat, and soy. Gelatin is one of the oldest and most widely used proteins in the 
food industry, as an ideal coating material in the preparation of microencapsulation 
in probiotics [56]. Recent studies have shown that gelatin provides a suitable coating 
by interacting with a wide range of polysaccharides in a variety of ways [26].

Some of the other proteins used in probiotic microencapsulation are egg white 
(albumin), soy protein and whey protein. These proteins have good emulsifying 
and gelling properties that are considered as ideal materials for microencapsulation 
[26]. In the study, soy protein isolates and alginate were used as a coating material 
for microencapsulation of L. plantarum and L. acidophilus by spray drying. Also in 
the study, Pitigraisorn et al. Used egg albumin coatings and stearic acid to protect 
L. acidophilus by electro spraying and fluidized bed drying [57]. Soy plant protein 
isolate is suitable in the microencapsulation of probiotics, for vegetarians and Milk 
sensitive people, which is a source of high quality proteins [58]. The synergistic 
effects of soy protein isolate with other nutrients enhance the final properties 
of microcapsule coatings. In addition, previous studies have found that the jelly 
properties of soy protein isolate are deformed in the presence of CaSO4, MgCl2 or 
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MgSO4. And can be useful for future applications in the food industry, including 
the microencapsulation process [26]. Sodium caseinate (SC) is the most common 
form of casein, which is used as a suitable coating material in microencapsulation 
due to its physicochemical properties, increased denaturation and heat resistance.

Whey proteins in concentrate (WPC) and isolated (WPI) contain 35%. 85% 
and > 95% protein, respectively. WPCs are low in fat and cholesterol and high in 
lactose and total fats, while WPIs are high in protein and low in lactose and fat [59]. 
Whey proteins, in its various forms, have recently been studied as coatings for 
microencapsulation of probiotics [26]. In some studies, it has been shown that the 
ability and elasticity and strength of the gel increase in the presence of the main 
components of whey protein (beta-lactoglobin and alpha-lactoalbumin).

Sweet whey (SW) is an example of a product that contains casein and whey 
proteins. In recent studies, sweet whey was used to microencapsulation B. lactis 
with spray dryer method [60].

11. Microencapsulation of methods

Microencapsulation methods for encapsulate bioactive compounds have been 
proposed in several ways. To increase their ability release and stability under condi-
tions product process and storage [26]. The attention of the food industry to the 
low cost of the method used is also worth considering. However, the final quality of 
the product should not be affected. The method used in forming the beads affects 
indicators such as the diameter and moisture of the beads [26]. Successful methods 
used in microencapsulating such as spray drying, spray freeze drying, electro spray-
ing, fluidized bed drying; extrusion, Emulsification and coacervation [26].

11.1 Fluidized bed drying

Fluidized bed technology was patented by Dr. Wurster et al. And developed 
between 1957 and 1966 [5]. Proper air circulation in the atomic nozzle ensures that 
all particles in the fluidized bed achieve a uniform coating. This nozzle atomizes 
the selected coating (an aqueous solution) at low temperature by evaporating the 
solid solvent [5]. Air turbulence allows the coated particles to be suspended and 
coated evenly. The wall materials used in this method include cellulose derivatives, 
dextrin, emulsifiers, lipids, protein derivatives and starch which is used dissolved in 
an evaporative solvent. Fluidized bed technology is suitable for microencapsulation 
probiotic bacteria using cell layering with various preservatives such as glucose, 
maltodextrin, trehalose or sucrose, preferably skim milk to improve bacterial dehy-
dration [5]. Recent studies have shown the effectiveness of fluidized bed drying for 
probiotic microencapsulation [25, 26].

11.2 Freeze drying

This method of drying is called lyophilization. In this method, probiotics are 
frozen in the presence of a coating material. It works by reducing the ambient pres-
sure and creating a vacuum at low temperatures to sublimate frozen water directly. 
The most common uses of wall materials include proteins, maltodextrins, disaccha-
rides, and gums. One of the most important benefits of freeze drying is water phase 
conversion and prevention of oxidation. It has the highest survival rate after drying 
and the lowest loss during storage. In any case, freeze-drying is a very expensive 
technology. Therefore, in further studies, spray drying [61], is used to dry probiot-
ics. The freeze drying process provides maximum stability during storage. For this 
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reason, this technique is used as a second method during microencapsulation. In 
this way, the stability of probiotic bacteria can be improved in the gastrointestinal 
tract and the beneficial effect of probiotic [45].

11.3 Spray drying

Spray drying is a common method for producing microencapsulation in food 
because it has been proven to be suitable for large-scale industrial applications [62]. 
The first spray dryer was made in 1878 and is therefore a relatively old method 
compared to rival technologies [62]. This is probably the most economical and 
effective drying method in the industry, first used to preserve a flavor in the decade 
of 1930. However, the industrial production of encapsulated probiotics using hot air 
dryers is not very useful in food, due to the reduced viability when bacteria dry and 
the reduced stability during storage. The bacterial cell is transferred to an emulsion 
that acts as a microencapsulation. The encapsulate is usually a hydrocolloid such as 
gelatin, vegetable gum, modified starch, dextrin or non-gelling protein. The resulting 
solution dries and acts as a barrier to oxygen and aggressive substances. In the spray 
drying process, a liquid mixture in a container with a single-fluid nozzle, a two-liquid 
nozzle is atomized, and the solvent is evaporated by contact with hot air [62].

11.4 Extrusion

It is a physical method of trapping probiotic living cells and uses hydrocolloids 
(alginates and carrageenan) as encapsulates. Tiny droplets from inside a nozzle 
device under air pressure or a syringe, dropped out inside a hardening solution 
such as calcium. Extrusion is a simple and inexpensive method that uses a gentle 
operation. It does not damage probiotic cells and increases the survival of probi-
otic bacteria. This technology does not contain harmful solvents and can be done 
under aerobic and anaerobic conditions. The most important disadvantage of 
this method is that due to the slow formation of bead, it is very difficult to use in 
industry [63]. Gel granules can be added to a second polymer solution as a coating. 
The second layer is used to protect the cell or improve the organoleptic properties 
of the cell [63].

11.5 Emulsion

It is a chemical technique for trapping probiotic cells. Most hydrocolloids 
(alginate, carrageenan and pectin) are used as encapsulates. An emulsifier and 
a surfactant are needed to form the bead. A hardening solution such as calcium 
chloride is then added to the emulsion [63]. Its main disadvantage is the large 
diameter of the bead.

11.6 Electro spraying

The electrospray technology used for microencapsulation is based on the prin-
ciple of electro-hydrodynamics. This process includes a high voltage electric field. 
Which enters capillary liquid containing the main substance and is sprayed where 
the spherical droplets precipitates. Freezing occurs through various methods, for 
example by chemical hardening or by solvent evaporation. This method is com-
bined with other microencapsulation techniques to increase the microencapsulation 
efficiency. So far, the electrospray extrusion technique has been used successfully 
for probiotic microencapsulation [64].



165

Food Health with Increased Probiotic Survival During Storage
DOI: http://dx.doi.org/10.5772/intechopen.99382

11.7 Coacervation

Drops are rich in organic matter that are formed through the separation of the 
liquid phase. It is mainly due to the association of oppositely charged molecules 
(polyelectrolytes, polysaccharides) or hydrophobic proteins (elastin polypep-
tides) [65]. A phenomenon produced by the accumulation of colloidal droplets 
that causes the simultaneous separation of two liquid phases. A dense phase is 
rich in polymer and a very dilute phase. Particle diameters range from 1 to 100 
micrometers [65].

12. Application of microencapsulation bacteria

The efficiency of microencapsulated bacteria can be evaluated from different 
angles. Such as increasing the survival of probiotics, increasing the resistance of 
microcapsules to bacteriophage invasion, increasing their resistance to toxic and 
lethal chemical agents, as well as the ability to produce probiotic foods by improv-
ing the survival and stability of probiotic cells during production, storage and 
passage of the digestive system-Finally, it preserves the sensory properties of the 
product, which contains microencapsulation bacteria [23, 66].

13. Adding probiotic microencapsulation to food products

Dairy products have traditionally been the best producer of probiotics. They 
showed excellent conditions for the survival of probiotic bacteria. Because 
milk has a physicochemical composition rich in protein and with a significant 
amount of lipids. As a result, it creates a protective matrix for probiotics [23]. 
Microencapsulation is important to increase probiotic The addition of bead should 
not affect the sensory properties of food products. The addition of bead should not 
affect the sensory properties of food products [63]. Most of the research has been 
done and the products that are marketed in the food industry as probiotics. Dairy 
products are probiotics. Due to the problems of lactose intolerance in some people 
in the community (about 70% in Asia), sensitivity to milk proteins and the preva-
lence of high cholesterol require foods other than dairy that are good carriers for 
probiotic bacteria. Non-dairy foods provide a variety of substrates of antioxidants, 
dietary fiber, minerals, and vitamins [23]. The development of non-dairy probiotic 
products such as fruits, vegetables and grains has been shown to be one of the best 
choices and has increased the demand for non-dairy probiotics [23]. Properties 
and structural compounds (nutrients such as minerals, vitamins, dietary fiber and 
antioxidants, including the right amount of sugar) Fruits, vegetables and grains 
are suitable and ideal substrates for probiotic microbes [67]. Various factors such 
as protein concentration, sugar, fat and pH level in the food product can affect the 
growth and survival of probiotics [63].

14. Release of probiotic bacteria from microencapsulation

Scientific sources related to the probiotic microencapsulation emphasize on its 
destruction, in the large intestine. The microencapsulated bacteria can resist acidic 
conditions in the stomach. Depending on the processing conditions and the type 
of coated material used, it regulates the release rate of microencapsulation bacteria 
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in the presence of bile salts [5]. In this way, probiotic bacteria are protected and as 
a result, high concentrations of living cells can be achieved [5]. The finely coated 
must have selective permeability to support the environmental conditions that 
keep cells live, so that it can be designed to release probiotic cells in a specific area 
of   the body [5].

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

Natural probiotics are functional foods with several biological properties and 
nutritional value inherent to their chemical composition and can play a potentially 
beneficial role in reducing the risk of chronic degenerative diseases. In order to 
improve the stability of these compounds, increase the encapsulating power, 
delay oxidation, increase their effectiveness, control their release and improve the 
bioavailability of their combination with nanomaterials is a potential tool in the 
food area enabling the development of new products with functional and nutraceu-
tical characteristics. In addition, the study of nanomaterials in natural probiotics 
is rarely reported in the literature, being an area of paramount importance in the 
development of new functional foods. Therefore, in this chapter, a review of nano-
materials’ use in natural probiotics will be addressed to specify their advantages and 
methodologies of preparation and characterization.

Keywords: natural probiotics, nanomaterials, new functional foods, nutraceutical 
characteristics, nanobiotecnology

1. Introduction

The consumer’s interest in a healthier lifestyle has led to the development of 
foods that meet nutritional and health needs and that at the same time are attrac-
tive, tasty, and with good acceptance in the market. Products that support positive 
health effects or ingredients with these characteristics, claimed or proven, are called 
“emitted foods” [1].

The relationship between food and health is one of the keys to disease preven-
tion and well-being promotion. As a result, industries have started to enrich foods 
with specific ingredients, differentiating them about the benefits offered to health 
compared to foods in their traditional forms [2–4].

In the present century, the scientific literature reports functional foods as allies 
in the treatment of obesity [5], prevention of cardiovascular diseases [1], plasma 
cholesterol balance [6], and cancer prevention [7]. Among functional foods, the 
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literature reports prebiotics (added with non-digestible fibers), fortified (with 
vitamins, omega-3), altered (removing harmful components), and probiotics [8].

According to Resolution No. 19, of April 30, 1999, on the claim of functional 
property of food, it is that related to the metabolic or physiological role that the 
nutrient or non-nutrient has in the growth, development, maintenance, and other 
normal functions of the human organism [9]. Among the functional compounds 
most investigated by science, we have probiotics, which according to RDC n° 241, 
of July 26, 2018, are defined as live microorganisms that confer benefits to the 
individual’s health [10, 11].

The word probiotic has a Greek derivation in which it means “for the sake of 
life”, that term was first introduced by Lilly; Stillwel in 1965 to describe substances 
secreted by a microorganism, which stimulates the growth of another [12–14]. 
Fuller (1989) defined probiotics as a supplement composed of live microorgan-
isms that benefit the host’s health through the balance of the intestinal microbiota. 
The term probiotic can be complemented as a pure culture or composed of living 
microorganisms that supplied to man or animals benefit the host by stimulating the 
properties existing in the natural microbiota [15].

Probiotics, after ingested, must be able to survive the stress conditions present in 
the gastrointestinal tract, such as gastric juice, the presence of bile salts, and diges-
tive enzymes, and maintain their viability and metabolic activity in the intestine 
to exert beneficial effects on the hosts. As for the technological challenges for the 
industrial production of cells, they must remain stable and viable at satisfactory 
levels throughout the product’s validity period [16–18]. Based on this assumption, 
there is a recent and growing scientific interest in improving the stability, bioavail-
ability, and shelf life of products with probiotic sources using nanotechnology as 
an enhancement technique, since nanostructured systems may be able to control 
stability, improve solubility, bioavailability, and controlling the release of bioactive 
compounds [19–21].

The reduction of materials to the nanoscale leads to new and exciting properties 
and the increase of the surface volume ratio, increasing its reactivity. This charac-
teristic of nanoparticles has attracted commercial interest in the manufacture of 
nano-ingredients, supplements, and nutraceuticals. Several types of nanoparticles 
can be found in the literature, such as metallic, semiconductor, carbon-based, 
metallic, and polymeric oxides, which can be applied in various sectors, predomi-
nantly personal care, health care, and cosmetics. The benefits of nanotechnology 
in the food sector go through the entire food chain, starting from production to 
processing, transportation, security, storage, and delivery [22, 23]. Based on the 
above, we will cover in this chapter a review on the use of natural probiotics and 
nanomaterials, aiming to specify their advantages and methodologies of prepara-
tion and characterization.

2. Natural probiotics

Probiotics can be defined as food supplements that contain live microorganisms 
or microbial components that, when ingested in a certain number, have a beneficial 
effect on the health and well-being of the host [17].

Among these benefits include antimicrobial activity; control of pathogenic 
microorganisms [24]; lactose hydrolysis; modulation of constipation; antimu-
tagenic and anticarcinogenic activity [25, 26]; reduction of blood cholesterol, 
improvement of patients with type 2 diabetes (insulin resistance) and obesity 
[27–29]; modulation of the immune system; improvement in inflammatory bowel 
disease; and suppression of Helicobacter pylori infection [30–32]. Some of these 
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benefits are already well established, such as constipation and lactose hydrolysis 
modulation, while other benefits have shown promising results in animal models, 
requiring further clinical studies [33].

Probiotics can be incorporated into a wide variety of food products, mainly in 
dairy products, such as milk, ice cream, yogurt, and cheese. Its application has also 
grown in other types of foods, such as soy milk, mayonnaise, pates, meats, baby 
food, confectionery, sweets, cakes, and chewing gum [34–37].

The selection of probiotic bacteria is based on the following criteria: gender, 
origin (which must be human), stability against stomach acid and bile salts, the 
ability to adhere to the intestinal mucosa, the ability to colonize, at least temporar-
ily, the human gastrointestinal tract, the ability to produce antimicrobial com-
pounds and metabolic activity in the intestine [38–40].

In order for the microorganism to be able to promote the aforementioned 
beneficial effects, a minimum intake of 108–109 colony-forming units (UFC) per 
day is recommended [41]. In addition, the minimum concentration of live bacteria 
should not be less than 10 CFU/g of food since many cells die during passage 
through the gastrointestinal tract (TGI) [1, 42].

2.1 Types of probiotics

Specific probiotic strains give the benefits transmitted to health, and not by 
specific species or genus. However, that each strain is related to a specific benefit. 
In this way, no strain will provide all of the proposed benefits. For example, 
Lactobacillus casei lineage Shirota, in which evidence supports the view that its oral 
administration can assist in the digestion and absorption of nutrients and restore 
the normal balance of the intestinal microbiota [43]. Other relevant factors are the 
addition of mixtures of probiotic cultures instead of individual strains [44] and the 
number of viable cells of these microorganisms in the marketed product.

In a healthy adult intestine, the predominant microbiota is composed of health-
promoting microorganisms (Table 1), mostly belonging to the genera Lactobacillus 
and Bifidobacterium [45]. Other lactic acid bacteria with probiotic properties are: 

Lactobacilli Bifidobacteria Other bacteria Fungus

Lactobacillus 
acidophillus sp

Bifidobacteirum 
bifidum

Enterococcus faecium Saccharomyces 
boulardii

L. acidophilus LA-1* B. lactis Bb-12 Enterococcus faecalis Saccharomyces 
cerevisiae

L. casei sp.* B. breve Escherichia coli Nissle 1917

L. rhamnosus GG* B. infantis Streptococcus salivarius subsp. 
Termophilus

L. reuteri* B. longum Sporolactobacillus inulinus

L. delbrueckii subs.* 
bulgaricus

L. plantarum sp

L. plantarum 299 V

L. fermentum KLD

L. johnsonii

*Strains that have been used in the prevention and treatment of allergic diseases [45].

Table 1. 
Main microorganisms used for their probiotic properties, in the form of drugs or added to foods.
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Ent. faecalis, Ent. faecium, and Sporolactobacillus inulinus, while the microorgan-
isms Bacillus cereus, Escherichia coli Nissle, Propionibacterium freudenreichii, and 
Saccharomyces cerevisiae have been cited as non-lactic microorganisms associated 
with probiotic activities mainly for pharmaceutical or animal use [32, 33, 46].

Some individuals may experience little of the side effects related to the ingestion 
of probiotics due to the death of pathogens in the intestinal environment since they 
release toxic cellular products, a reaction called a “die-off reaction”. In such cases, 
the use of probiotics should be persisted in order to improve symptoms. There is a 
slight increase in gas production, abdominal discomfort, and even diarrhea, which 
resolves over time [12].

2.2 Mechanism of action

Three possible mechanisms of action are attributed to probiotics: the suppres-
sion of the number of viable cells through the production of compounds with anti-
microbial activity, competition for nutrients, and competition for adhesion sites. 
The second of these mechanisms would be the alteration of microbial metabolism 
by increasing or decreasing enzyme activity. The third would be to stimulate the 
host’s immunity by increasing the levels of antibodies and increasing the activity of 
macrophages. The spectrum of activity of probiotics can be divided into nutritional, 
physiological, and antimicrobial effects [47, 48]. The direct modulation of the 
immune system may be secondary to the induction of anti-inflammatory cytokines 
or by the increase in the production of secretory IgA [45].

Despite the scientific evidence regarding the mechanisms of action of probiot-
ics, there is still a lack in the literature on biochemical and molecular pathways 
that fully explain these effects, such as, for example, increasing the function of 
the intestinal barrier. Despite the scientific evidence regarding the mechanisms of 
action of probiotics, there is still a lack in the literature on biochemical and molecu-
lar pathways that fully explain these effects, such as, for example, increasing the 
function of the intestinal barrier [49].

Currently, the mechanisms of action of probiotics for anticarcinogenic effects 
have been studied. These are believed to occur through (1) inhibition of bacteria 
responsible for converting pre-carcinogenic substances (such as polycyclic aromatic 
hydrocarbons and nitrosamines) into carcinogens; (2) direct inhibition in the 
formation of tumor cells; and (3) the ability to bind and/or inactivate carcinogenic 
substances [25]. Several mechanisms of action have been suggested, including the 
stimulation of the host’s immune response (by increasing phagocytic activity, IgA 
synthesis, and the activation of T and B lymphocytes), the binding and degradation 
of compounds with carcinogenic potential, qualitative changes and/or quantita-
tive in the intestinal microbiota involved in the production of carcinogens and 
promoters (ex: bile acid degradation), production of antitumor or antimutagenic 
compounds in the colon (such as butyrate), alteration of the metabolic activity of 
the intestinal microbiota, alteration of the physical- colon chemicals with decreased 
pH and effects on host physiology [33, 50].

The use of probiotics represents a promising and rapidly growing area for the 
development of functional foods. Probiotic cultures are successfully applied to dif-
ferent food matrices. However, the development of non-dairy products represents 
a challenge for the industry, as each food matrix has unique characteristics, and it is 
necessary to optimize and standardize each type of product [51].

In this context, nanomaterials have been widely studied as a technique to 
improve the stability of these microorganisms and functional foods, protecting 
them from unfavorable environments, improving the uptake, absorption, and 
bioavailability of nutrients for the body (Table 2) [19].
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3. Nanomaterials

Technological advances aimed at developing imaging equipment and tech-
niques for characterization make it possible to develop and characterize systems 
on a nanoscale through scanning electron microscopy and transmission electron 
microscopy. Nanotechnology in the food area is designed to encapsulate, carry, 
and release bioactive ingredients to incorporate and modify the food structure. In 
addition, they make it possible to study the structures in detail, make it possible to 
understand their properties and facilitate their handling to obtain new, high-quality 
and safe foods [52].

Nanotechnology involves the characterization, fabrication and/or manipulation 
of structures, devices, or materials that have at least a dimension of about 1–100 nm 
in length [53, 54] and has emerged as one of the most promising scientific areas of 
research. Numerous companies are currently specialized in the manufacture of new 
forms of materials (nanometric size) with typical applications in medical therapy, 
diagnostics, energy production, molecular computing, and structural materials 
[55]. This technology in food introduces new opportunities for innovation in the 
food industry with immense speed. Thus, some of the applications result in the 
presence of nanoparticles or nanostructured materials in the food. This innovation 
can be applied to the macroscale characteristics of foods, such as texture, taste, 

Documented effects on humans and/or animals Possible immunomodulation mechanism

Local effects

Mucous barrier Maintenance and repair of the 
intestinal barrier and intercellular 
junctions

Reduced permeability and decreased 
systemic absorption of allergens/antigens

Enterocytes Increased production of TGF-β and 
prostaglandin E2 responsible for 
promoting tolerance of antigen-
presenting cells

Reduction of local inflammation and 
promotion of tolerance

Receivers 
enterocytes 
(toll-like)

Anti-inflammatory effects of 
probiotics mediated by toll-like 
receptors 9

Inhibition of allergic responses, type Th2: 
mechanism not yet clarified

Cells presenting 
antigens 
(dendritic cells)

Increased activity of dendritic cells 
in the intestine

Promotion of tolerogenic effect by dendritic 
cells

Auxiliary (or 
effector) T cells

Increased Th1-type response Inhibition of Th2 response differentiation

Regulatory T cells Production of Il-10 and TGF-β 
associated with oral tolerance. 
Increased TGF-β (Th3)

TGF-β produced locally (including by 
enterocytes) promotes tolerogenic effect 
by dendritic cells, local IgA, and increased 
Treg activity

B cells and 
antibodies

Colonization: enlarged lymphoid 
tissue

Promotion of a tolerogenic environment

Systemic effects

T cells Increased Th1 differentiation Secondary to the effects of T cells in the 
gastrointestinal tract

B/IGA cells Increased production of IgA in 
other tissues (respiratory tract)

Secondary to the effects of B cells in the 
tract gastrointestinal

Adapted from Souza et al. [45].

Table 2. 
Immune mechanisms of action associated with probiotics.
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other sensory attributes, color intensity, processability, and stability during shelf 
life, leading to many new products. In addition, nanoencapsulation technology can 
also improve water solubility, thermal stability, and oral bioavailability of bioactive 
compounds [14, 56].

One of the biggest focuses of nanotechnology in the food industry is encapsula-
tion systems and the controlled release of nutrients. The use of nanomaterials 
has shown improved properties for the encapsulation of probiotics. Due to their 
unique physical and chemical properties, nanostructured encapsulating materials 
show great promise of protecting microorganisms from acidic stomach conditions, 
increasing absorption and, therefore, allowing the successful release of probiotic 
cells trapped in the intestinal lumen with natural pH [57, 58].

The clinical efficacy of oral administration of probiotic bacteria is still dimin-
ished due to loss of viability during the gastrointestinal passage, resulting in poor 
intestinal distribution. Microencapsulation technology using nanomaterials is a 
successful strategy to solve this problem, maintaining the viability of probiotics, 
thus improving their effectiveness after oral administration [58]. In recent years, 
the production of probiotic and functional foods using nanotechnology represents 
one of the main current challenges [59].

The most basic nanomaterials used are nanoparticles. These can be presented 
in different forms, such as spherical nanoparticles (three nanometric dimen-
sions); nanotubes and nanofibers (elongated structures with two dimensions on a 
nanoscale), and nanoplates (only have the nanometric thickness). Several examples 
of nanoparticles are cited in the literature, such as nano-clay, silver (Ag), titanium 
dioxide (TiO2), and zinc oxide (ZnO) nanoparticles [22].

Different types of nanoformulations can be used, which requires the adequate 
formulation and timely processing conditions. Among them, polymeric nanopar-
ticles, nanocomposites, solid lipid nanoparticles (NLS), liposomes, and nanoemul-
sions are suitable for food applications [57, 60].

3.1 Types of systems for encapsulation of bioactive compounds

Nanoparticles (NPs) and nanostructured materials (NSMs) represent an active 
area of research with application in several domains. They are exciting nanoscale 
systems due to the ease with which they can be produced in different ways. NPs and 
NSMs arouse interest due to their adjustable physicochemical characteristics, such 
as melting point, wettability, electrical and thermal conductivity, catalytic activity, 
light absorption, and dispersion, resulting in improved performance compared to 
their mass counterparts [61]. NPs and nanosystems are broadly divided into several 
categories, depending on their morphology, size, and chemical properties [62]. 
Currently, some of the most studied nanostructured delivery systems are nano-
emulsions, nanoliposomes, nanohydrogels, lipid nanoparticles, and coacervates 
with application in food (Figure 1) [63].

3.1.1 Polymeric nanoparticles

Polymeric nanoparticles are formed by a polymeric matrix (nanospheres) or 
a reservoir system in which the main content is hydrophobic or oily surrounded 
by a polymeric wall (nanocapsule) [64]. They are among the delivery systems for 
bioactive compounds most accepted and approved by GRAS [65]. In addition, they 
gained considerable attention in nanomedicine due to the potential for surface 
modification, pharmacokinetic control, suitability for targeted delivery of therapies 
[66], mechanical properties [67], and design flexibility. More specifically, size, 
surface morphology, chemistry and charge, porosity and diffusivity of the drug, 
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and encapsulation efficiency are properties that push polymeric nanoparticles to 
the forefront of nanomedicine applications [68] and may behave similarly when 
incorporated into food.

The chemical and biocompatibility properties of polymeric nanoparticles have 
been studied extensively in recent years and allow these nanometric delivery sys-
tems formed by natural or synthetic polymers to be helpful in the controlled release 
of natural bioactive compounds, hormones, genes, and anticancer drugs with 
greater effectiveness than micrometric systems such as microparticles [69]. Due to a 
high surface contact area occur an intense interaction between the matrix in which 
they are inserted and the nanoparticles [70].

Currently, the most used polymers for the formation of the nanometric system 
are poly (lactic acid) (PLA), poly (glycolic acid) (PGA), poly (lactic-co-glycolic 
acid) - (PLGA), and polycaprolactone (PCL). Nanoparticles and microparticles can 
be obtained through different techniques that can be classified into four categories. 
Category 1: a traditional method based on the formation of an emulsion consist-
ing of single emulsion, double emulsion, and multiple emulsions, followed by 
evaporation of the solvent. Category 2: methods based on nanoprecipitation, the 
rapid expansion of supercritical fluid in liquid, salting, and dialysis. Category 3: 
direct composition methods, such as fusion technique, spray-drying, supercritical 
fluid. Category 4: new approaches, including microfluidic and mold/mold-based 
techniques [65, 69].

The main active substances used for encapsulation by the methods of obtaining 
nanoparticles are isolated substances. However, some authors, such as Nascimento 
et al. [71] and Azevedo et al. [65], developed polymeric nanoparticles of Brazilian 
red propolis extract contributing to the development of nanostructured technolo-
gies for natural products.

3.1.2 Nanoliposomes

Nanoliposomes are defined as spherical lipid bilayer vesicles, resemble the lipid 
bilayer of cell membranes, and maintain nanometric or submicronic bands dur-
ing storage and applications [72–74]. Its bilayer structure, formed by one-half of 
the lipid bilayer, contains a hydrophilic head and a lipophilic acyl chain. Thus, its 
amphipathic nature allows it to encapsulate hydrophilic and hydrophobic com-
pounds individually or simultaneously due to its bifunctional physicochemical 

Figure 1. 
Types of nanoparticles. Inorganic nanoparticles, polymeric nanoparticles, solid lipid nanoparticles, nanosomes, 
nanocrystals or quantum dots, carbon nanotubes, and dendrimers.



Prebiotics and Probiotics - From Food to Health

180

properties and, consequently, it presents interaction with a wide range and variety 
of molecules [75]. Nanosystems are drug-carrying structures with potential for 
application in the medical field and food industry. However, they have low robust-
ness regarding physical and thermal stability and pH variations, being considered 
significant challenges for their intended commercialization [76].

The most common method used for the production of nanoliposomes is to 
obtain a double emulsion followed by a microfluidization process at room tempera-
ture after the previous removal of the solvent. It is possible to produce nanolipo-
somes using low-cost natural ingredients (for example, soy, egg yolk, sunflower, 
milk), optimizing the cost-effectiveness of the final product [72]. The literature 
reports several clinical trials using nanoliposomes, and studies reveal that they are 
excellent candidates for various distribution systems, such as anticancer, antifun-
gal and antibiotic drugs, administration of genetic drugs, and administration of 
anesthetics and anti-inflammatory drugs [77]. Similarly, it will have application in 
the food area, allowing the incorporation and simultaneous release of two or more 
bioactive compounds with different solubilities, as is the case of medium-chain 
liposomes and vitamin C, enhancing food functionality [74].

3.1.3 Solid lipid nanoparticles

Lipid nanoparticles are similar to nanoemulsions in which the oil phase was 
totally or partially solidified [56]. It is a colloidal carrier system that makes it possible 
to encapsulate, protect and distribute functional lipophilic components, such as 
bioactive lipids and drugs [70]. The size and structure of the lipid nanoparticles are 
similar to nanoemulsions, with a size that usually ranges from 50 to 1000 nm. The 
lipid nucleus in nanoemulsions is liquid, but the lipid nucleus is in a solid-state [78].

Solid lipid nanoparticles can be classified as solid lipid nanoparticles (SLNs) and 
nanostructured lipid transporters (NLCs). In general, homogenization techniques 
of cold or hot high pressure and double emulsions are currently being used more 
to produce SLNs and NLCs to encapsulate bioactive oils [79]. The composition of 
SLNs is usually lipids such as triglycerides (tristearin), partial glycerides (glyceryl 
monostearate), fatty acids (stearic acid), sterols (cholesterol), and waxes (cetyl 
palmitate) [70].

There is a great difficulty associated with lipophilic bioactive agents in food 
matrices in the food industry, one of the main problems for manufacturers in the 
development of nutraceutical and functional foods [80]. Thus, SLNs and NLCs aim 
to assist as a nanoparticle carrier of bioactive compounds with a lipophilic char-
acter. SLNs are nanometric lipid matrices between 50 nm and 1 mm in diameter, 
and these nanostructured systems are capable of effectively encapsulating active, 
sensitive molecules that must be protected from different environmental condi-
tions, such as light, moisture, and oxidation. In addition, the solid matrix allows a 
controlled release and a high capacity to reach the target organ [79]. NLCs, whose 
matrix consists of a mixture of lipids with different physicochemical properties 
instead of just one type of lipid, were initially synthesized to avoid SLN problems 
with loading. They can form physical lipid mixtures through the mixture of solid 
and liquid lipids (oil), but without crystallization, presenting a more unstructured 
(entropic) matrix that allows the control of the molecular load [74, 79].

3.1.4 Nanohydrogels

Nanohydrogels are defined as an infinite network of hydrophilic three-dimensional 
polymers swollen by water without losing their interconnected porous structure, 
expanding, and disintegrating [81–83]. For application in food, they must be composed 
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of non-toxic, biodegradable, and biocompatible biopolymers to deliver bioactive 
compounds in / or through the mucosa of the gastrointestinal tract. Nanohydrogels are 
soft materials widely used by the food and nutraceutical industries [83].

Generally, hydrogels are formed by chemical or physical cross-linking polymers. 
They are basically formed by three integral parts: monomer, initiator, and cross-
linker [84]. Different techniques can be adapted to obtain the nanohydrogels such 
as mass polymerization, solution, and suspension, taking into account that the 
impurities, including unreacted monomer, initiators, crosslinkers, and unwanted 
products generated, need to be removed after their preparation [81].

Nanohydrogels formed by biopolymeric proteins or polysaccharides are the best 
alternatives for application in food since they can offer improved functional proper-
ties compared to native proteins. The size, structure, load, permeability, porosity, 
and stability to environmental and solution conditions are essential and fundamen-
tal characteristics for nanohydrogels and depend in general on the physicochemical 
properties of the biopolymers chosen to obtain the gel. [85]. The proper adjustment 
of these variables allows the functional compounds to be loaded and then released 
from the polymeric matrix [86]. The choice of the type of polymeric matrix must 
be adequate considering that hydrophilic compounds can be released from a protein 
matrix by diffusion, while lipophilic compounds are released mainly by enzymatic 
degradation of the protein matrix in the GI tract [21, 81, 85].

3.1.5 Nanoemulsion

The definition of nanoemulsion consists of an excellent dispersion composed of 
an oily phase (triglycerides or hydrocarbons) and an aqueous phase (water or water 
with some electrolyte or polyol), which appears as spherical drops with a diameter 
less than 100 nm [70]. The nanoemulsion droplets most often have a core of lipo-
philic material, which one or more non-polar components may form. The surround-
ing contents of the nucleus are formed by the material of opposite polarity [81].

There is a wide variety of methods for making stable nanoemulsion. The 
nanoemulsion preparation is divided according to the energy level adopted in the 
system as the high and low energy method [87]. The main methods used to obtain 
a nanoemulsion include high-pressure homogenizers and ultrasound generators 
representing the high energy method, including microfluidization [88]. Low-
energy emulsification methods are cost-effective, in which nanoemulsions with tiny 
droplets are prepared using low amounts of energy, which stand out the methods 
of spontaneous emulsification, reverse phase technique, membrane emulsification 
method, and solvent displacement method [89].

Nanoemulsions offer a wide range of applications due to their composition 
flexibility in several fields, including food, beverage, and pharmaceutical industries 
for product storage and delivery. Currently, it can be used to encapsulate lipophilic 
components, such as vitamins, substances that impart flavors, colors, preservatives, 
nutraceuticals, and medicines. In addition, it can be applied to preserve food and 
bioactive compounds, increasing bioavailability and shelf life. Another essential 
application aimed at the food industry is the possibility of masking unpleasant 
odors and flavors and protecting bioactive molecules from oxidation and hydrolysis 
by the action of air and water, respectively [89].

4. Conclusion

Nanotechnology is a potential new technology in food, being one of the primary 
resources for development and innovation. Reducing the particle size of bioactive 
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compounds can improve bioavailability, release control, delivery targeting, and 
solubility. The choice of the preparation technique for the nanostructured systems 
depends on the characteristics of the bioactive compound, such as hydrophilic or 
lipophilic, solubility, stability, and the desired properties for the product, such as 
particle size and bioavailability, among others. Thus, it is possible to verify some of 
the nanoencapsulation techniques that can be used in bioactive compounds, and 
many undesirable characteristics can be circumvented with nanotechnology.
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Prebiotics, Probiotics and 
Synbiotic for Bone Health
Bolaji Lilian Ilesanmi-Oyelere and Marlena Cathorina Kruger

Abstract

Prebiotics, probiotics and synbiotics has been shown to enhance calcium 
absorption, gut and bone health. Probiotics are also known to ferment prebiotics to 
produce the fermentative substrates such as short chain fatty acids (SCFAs), mainly 
acetate, butyrate and propionate with the help of beneficial micro-organisms in the 
gut. The expression of these SCFAs has been associated with the inhibition of osteo-
clast differentiation and bone resorption both in vitro and in vivo. In this review, we 
discuss the benefits of SCFAs and ways in which prebiotics and probiotics affect 
bone health by the reduction of inflammation in the gut and the bone.

Keywords: prebiotic, probiotic, synbiotic, gut microbiota, bone metabolism

1. Introduction

Prebiotics and probiotics have been proven to confer multiple health benefits 
to animals and humans alike when consumed either singly or in combination. 
Consumption of prebiotics and probiotics modulates the gut microbiota and the 
colonization of the gastrointestinal tract which is now known as the second gene 
pool of the human body. Evidence shows the health benefits of synbiotic intake in 
many aspects of human health including metabolic functions, gastrointestinal dis-
eases, and bone health. Some of these documented evidence-based benefits include 
their immunomodulatory effect [1], improvement of diarrhea, lactose metabolism, 
digestive health and metabolic syndrome [2], antidiabetic and hypocholestrolemic 
[3], anticarcinogenic [4] and hypotensive attributes/features [5]. In a short review 
that we conducted, the importance of prebiotics, probiotics and synbiotics was 
expressed to be important across human lifespan from childhood to adulthood and 
the elderly [6].

2. The significance of prebiotics and probiotics

Probiotics in the presence of prebiotics undergo different biochemical pathways/
messenger systems to inhibit pathogens and boost the immunity of the host, these 
includes

a. Presence of probiotics in the gut leads to competition for nutrients with 
pathogens which can then lead to starvation and reduction of these unwanted 
bacteria.
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b. Probiotics tend to compete for space via the adhesion effect to the mucosal lining 
by directly decreasing the adhesion of the pathogens and their toxins; this has 
been confirmed by in vitro studies demonstrating that probiotics possess lectin-
like adhesion properties capable of binding carbohydrates from the receptors of 
glycoconjugate of epithelial cell surface [7] which blocks pathogen binding to 
the epithelial cell surface. Some probiotic strains of the Lactobacillus genus have 
shown some features and ability to bind to the enterocyte surface in vitro [8].

c. Probiotics are responsible for the synthesis of bacteriocins such as lantibiotics 
(class I) and class II bacteriocins by the probiotics, and this mainly by lactic 
acid bacteria (LAB) can help prevent the growth, colonization, and establish-
ment of pathogens in the gut environments. These bacteriocins present a better 
activity on the pathogens than antibiotics due to their narrow-spectrum activ-
ity on foreign unwanted bacteria. Bacteriocins from Gram-positive bacteria are 
composed of membrane peptides capable of targeting and causing apoptosis of 
the cell membrane; however, most antibiotics inhibit enzymes and biosynthe-
sis pathway in cells such as DNA, RNA, protein and cell-wall synthesis [9].

Probiotic microorganisms may also be able to produce enzymes, such as lipase, 
esterase, and co-enzymes A, Q, NAD, and NADP [10]. Likewise, some of the 
by-products of probiotics’ metabolism may exhibit antibiotic properties and these 
include bacitracin, lactacin and acidophiline [11].

d. The bio-metabolization of prebiotics into lactate and short chain fatty acids 
(SCFAs) such as acetate, mainly produced by Bifidobacteria, Lactobacilli and 
Akkermansia muciniphilia through fermentation by probiotics has significant 
beneficial role to the health. Acetate is the most abundant in the human colon. 
Butyrate is produced by Faecalibacterium prausnitzii, Eubacterium rectale and 
Roseburia spp. and mainly by Lachnospiraceae and Ruminococcaceae and propi-
onate which is produced by Propionibacteria,, Firmicutes, Lachnospiraceae and 
Bacteroidetes [12]. The release of these SCFAs by the prebiotic fermentation 
reduces the intestinal pH level and also reduces the production of putrefactive 
compounds such as ammonia, phenol, as well as indole and branched-chain 
fatty acids (BCFAs) [13]. SCFA synthesis are mainly by anaerobic saccharolytic 
fermentation of carbohydrates that have not been digested or absorbed in the 
small intestine. Acetate is metabolized in the muscles, kidney, brain and heart, 
butyrate acts mainly in the colon while propionate and butyrate are cleared by 
the liver. SCFAs may also regulate fat and glucose metabolism as reported in 
rat adipocytes [14]. In chronic inflammatory diseases such as IBD, it has been 
shown that fecal butyrate levels are significantly reduced while high levels of 
lactic acid are observed [15].

The production of butyrate is mainly from complex carbohydrates through the 
pyruvate and acetyl-coenzyme A (CoA) pathway; however, it can also be produced 
from amino acids via the glutarate, 4-aminobutyrate and lysine pathways in the 
gut [13]. Butyrate acts epigenetically as histone deacetylase (HDAC) inhibitors and 
the research into HDAC may be capable of providing cancer chemoprevention and 
therapies [16]. There are different functions of butyrate in the colon; it is the main 
source of energy for colonocytes. Furthermore, butyrate has been documented to 
inhibit proinflammatory cytokines such as tumor necrosis α (TNF-α) in monocytes 
[17], interferon-α (IFN-α) and IL-2 in rat mesenteric lymph nodes [18], chemokine 
CXCL-8 (IL-8) in Caco-2 cells [19].
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e. Intake of prebiotics and probiotics has been linked to the development of 
immunomodulatory capacity by decreasing inflammation, antibody response 
and phagocytosis. Probiotics may be involved in the prevention of cytokine-
induced epithelial damage. Lactobacillus rhamnosus GG (LGG) promoted the 
survival and enrichment of epithelial cells by the activation of antiapoptotic 
and inhibition of proapoptopic pathways [20].

f. Probiotic and prebiotic intake results in the improvement of the epithelial 
barrier integrity by the secretion of mucin [21] and defensins [22] including 
antimicrobial proteins (AMPs). Probiotics enhance the mucosal integrity also 
by inducing cytoprotective substance production by enterocytes such as heat 
shock proteins [23]. In an in vitro study, Bifidobacterium infantis enhanced 
the intestinal mucosal barrier (T84 human epithelial cells) [24]. Similarly, 
Lactobacillus plantarum is responsible for acting on the tight junctions via 
increasing the expression of occludins and zonula occludens proteins [25].

g. Prebiotics and probiotics are capable of the stimulation and production of 
antioxidant-related enzymes, systemic hormones, and neurochemicals such as 
serotonin, gamma-aminobutyric acid (GABA) and cortisol, as well as produc-
tion of bile salt hydrolase. Consumption of probiotics and prebiotics has also 
been reported to be able to reduce cholesterol levels. Prebiotic fibers increased 
levels of satiety hormones (glucagon-like peptide-1, proglucagon and peptide 
YY mRNA) and decreased levels of ghrelin O-acyltransferase mRNA in rats 
[26]. Furthermore, prebiotic fermentation in the gut likewise improved sati-
etogenic and incretin gut peptide production, thereby increasing the plasma 
glucagon-like peptide 1 and peptide YY concentrations in humans [27].

h. Prebiotics and probiotics are responsible for the synthesis of antigens via 
production of anti-inflammatory cytokine such as IL-10 which inhibits the 
T-helper cells (1, 2, 7 and 17) and transforming growth factor-β responsible for 
the production of immunoglobulin A [28].

The concept and use of prebiotics has been argued to be more important when 
compared to probiotics due to the vulnerability and susceptibility of probiotics 
to environmental stresses, manufacturing process (such as heat) and endangered 
conditions during storage [29].

3. Prebiotics and human health

Glenn Gibson and Marcel Roberfroid launched the prebiotic concept in 1995 
as ‘a nondigestible food ingredient that beneficially affects the host by selectively 
stimulating the growth and/or activity of one or a limited number of bacteria in the 
colon, and thus improves host health’ [30]. This definition has however been modi-
fied several times, but the initial main features have been retained. Prebiotics tend to 
stimulate the growth of the gut bacteria endogenously. The pH of the gut environ-
ment plays a major role in determining bacterial interspecies competition outcome.

Food sources of prebiotics consist of edible plants such as fruits, vegetables, 
cereal component which provides the body with carbohydrate. Specific potential 
sources are artichokes, tomatoes, bananas, asparagus, garlic, berries, kiwi fruit, 
onions, chicory, green leafy vegetables, legumes as well as linseed, barley, oats, 
and wheat.
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Even though various molecules can be prebiotics, the great majority are dietary 
fibers which are oligosaccharides such as inulin (mainly from chicory), GOS 
(obtained from lactose using β-galactosidase), Fructooligosaccharides (FOS) (from 
chicory by partial enzymatic hydrolysis), soybean oligosaccharides (SOS), and 
xylooligosaccharides (XOS). Inulin, GOS and FOS have been widely studied. The 
list of prebiotics also includes compounds such as resistant starches, arabinoxylan, 
pectin, whole grains as well as non-carbohydrate complex such as polyphenols 
[13]. Absence of dietary fiber in the colon causes anaerobic bacteria to obtain their 
energy from protein fermentation, and this metabolism leads to the production of 
potentially toxic and carcinogenic compounds such as ammoniac and phenolic com-
pounds [31]. In contrast, carbohydrate fermentation (for example dietary fiber) 
will produce non-toxic SCFAs which can serve as fuel for the epithelial cells. The 
production of volatile fatty acids, including, SCFAs and BCFAs, play a role in energy 
homeostasis maintenance as well as in the regulation of functionality in peripheral 
tissues [32]. Prebiotics are also mainly active in the large intestine/colon.

Different strains of bacterial genus or species would prefer different substrates 
for fermentation in the colon. Generally, the strains of Bifidobacterium and 
Lactobacillus genera have been reported to prefer fructans as substrate, as opposed 
to glucose while other bacteria such as Clostridia and Bacteroides have been reported 
to thrive on fructans [33, 34].

The use of prebiotics has been shown to be efficient and effective against a few 
human health disorders such as Type 2 diabetes mellitus and inflammatory bowel 
diseases which has been termed the “Western” chronic diseases and colorectal can-
cer. This is accomplished by the modulation of the intestinal gut microbiota which 
confer a protective, metabolic, and trophic benefits to the host [13].

4. Probiotics and human health

The history of probiotics spans back to the 20th century when Mechnicoff 
(1907) revealed the virtues associated with the consumption of fermented dairy 
products, he hypothesized that the aging process resulted from the putrefaction of 
the large intestine. Almost simultaneously, another scientist Tissier indicated that 
the main component of the gut flora of breast-fed infants were bifidobacterial [35]. 
Even earlier, biblical recommendations have pointed out yoghurt as important/
significant for the treatment of some ailments [36]. Furthermore, the indication 
has been that probiotics is more beneficial when consumed with food as opposed to 
supplement due to the available nutrient and energy sources. Probiotics are mainly 
active in the small and large intestine.

Organizations such as FAO, WHO and the European Food Safety Authority have 
indicated probiotic strains must meet both safety and effectiveness criteria for their 
selection process. The regulations require that safety and absence of risks is para-
mount for human and animal health. The human probiotic products usually belong 
to the Lactobacillus, Bifidobacterium, Lactococus, Streptococcus and Enterococcus 
genus. In addition, there are some Gram-positive bacteria of genus Bacillus and 
some yeast of Saccharomyces genus which are also used as probiotics.

Probiotic use has been postulated to be potent against human disorders such 
as inflammatory enteral diseases such as Crohn’s disease, colitis, and non-specific 
ileitis. Intake of probiotics has also been assessed by various studies as capable of 
treating lactose intolerance, irritable bowel syndrome [37] and in the prevention of 
peptic ulcers and colorectal cancer [38]. Beneficial effects of probiotics have been 
observed in the process of digestion, food allergies treatment [39], dental caries 
[40], and candidoses [41]. The beneficial effects of probiotics observed by the host 
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through augmentation of the epithelial wall, intestinal mucosal and competitive 
elimination of pathogens has been reported to aid inflammatory bowel disease 
(determined by cytokine-induced harm to the epithelial cell walls). Probiotics 
is capable of repressing gut inflammation via the downregulation of Toll-like 
Receptors’ expression, the prevention of TNF-α entrance into the mononuclear cell 
in blood and the suppression of enterocyte’s NF-kB (Nuclear Factor kappa-light-
chain-enhancer of activated B cells) signaling pathway [42].

5. Synbiotics and human health

Synbiotics are a combination of prebiotics and probiotics. The consumption and 
intake of the combination of prebiotics and probiotics has been reported to stimu-
late, modulate, and alter the gut microbiota by lowering the colonic secretion of 
pro-inflammatory and immunoregulatory cytokines such as TNF-α, IL-1β and IL-6. 
Synbiotics can be used to help improve the beneficial microbes as well as increase 
the number of specific beneficial strains in the gastrointestinal tract [11].

Immunomodulatory effects of prebiotics and probiotics on human health.
One the putative ways by which prebiotics and probiotics affect the health 

is altering the immune system. There are two categories of the immune system: 
either the innate immunity or the adaptive immune system. The immune system is 
responsible for protecting the host against pathogens. The type of effective immune 
response which recognizes and mounts reactions to eliminate the pathogen is deter-
mined by the site and type of pathogen present. Prebiotics and probiotics modulate 
the gut immune system thereby also having effects on bone health.

Further studies are needed to investigate the benefits of synbiotics on bone 
health both in human and animal model.

6. Probiotics and bone health

Bone loss/osteoporosis is a major health problem that is associated with the 
imbalance between bone formation and bone resorption; often resulting in osteo-
porotic fractures. In addition, the estimation is that one in two women and one in 
four men over the age of 50 years will break a bone due to osteoporosis in their life 
time [43]. Postmenopausal osteoporosis is largely attributed to estrogen deficiency 
in women age 50 years and above due to ablation of the ovarian function which 
stimulates bone resorption resulting in bone loss. Risk factors leading to bone 
diseases include internal (genetic and aging) and external modifiable factors (e.g., 
diet, exercise, environment, medication etc). In osteoporosis treatment, different 
approaches have been used but lately due to the safety, low adverse effect and lack 
of major side effects, probiotics and prebiotics have been introduced. Treatment 
of bone diseases including osteoporosis and fracture has been mainly through 
hormone replacement therapy (HRT) as well as others such as bisphosphonates 
and more recently low-dose parathyroid hormone. However, there are side effects 
reported with this such as tumorigenesis, mood swings, fluid retention and bleed-
ing as well as low compliance of daily injections [44].

7. The role probiotics in inflammatory homeostasis

Probiotics may aid the modulation of the hosts’ inflammatory status by reducing 
the cytokine secretion levels. The downregulation of proinflammatory cytokines 
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such as IL-6 [45] and TNF-α [46, 47] by probiotics has been reported on several 
occasions. Studies have shown that some peptides such as p40 and p75 secreted 
by Lactobaccillus rhamnosus GG (LGG) may prevent cytokine-induced apoptosis, 
increase heat-shock proteins, and could lead to the activation of mitogen-activated 
protein kinase (MAPK) [48]. Furthermore, TNF (as well as IL-1 and RANKL) 
has been described as the major physiological inducer of NF-kappa B, one of the 
transcription factors responsible for the regulation of normal cell functions and the 
development of inflammatory osteolysis [49].

The role of the intestinal microbiota has been implicated in influencing bone 
health. A way by which the intestinal tract aids bone is by the regulation of the 
absorption of minerals such as calcium, phosphorus, and magnesium. This can also 
be accomplished by endocrine and gut-derived factors such as incretins and sero-
tonins which may influence bone remodeling. Evidence from using germ-free mice 
indicated the effect of the intestinal microbiome on bone physiology. These studies 
observed higher bone mass in germ-free mice as compared to the conventional 
mice. In addition, a decrease in the number of osteoclasts per bone surface and a 
reduction in CD4+ T cells and osteoclasts precursors were observed in the bone 
marrow of the mice [50].

The RANKL/RANK/OPG pathway is one of the mechanisms that influence 
bone turnover/remodeling. Osteoclast’s formation and activities are controlled by 
the RANKL/RANK pathway. They are also an essential pathological process of the 
bone remodeling. Concomitantly, OPG (decoy receptor of RANKL) acts as a bone 
protector by binding to RANKL and preventing further resorption [42]. Probiotics 
(beneficial microbes) have been postulated to reduce inflammation [51] and 
increase OPG expression in bone [52].

8. Studies emphasizing the importance of probiotics for bone health

8.1 Animal studies

Studies have shown that various strains of Lactobacillus [52–54] and 
Bifidobacterium [55, 56] possess the ability to prevent and restore estrogen 
deficiency-related bone loss in animal models. However, not many studies have 
been conducted in humans. The study by Ohlsson et al. showed that C-terminal 
telopeptides (resorption markers) levels were not increased in probiotic treated 
mice as compared to the vehicle treated mice. Furthermore, there was a reduction in 
expression of two proinflammatory cytokines (TNF-α and IL-1β), and an increase 
in the expression of OPG in the cortical bone of ovariectomised mice [52].

Lactobacillus reuteri ATCC PTA 6475 has been used in two animal studies to 
modulate bone outcomes. Findings from the first study showed increase in femoral 
trabecular BV/TV, BMD, BMC, trabecular number, spacing, and thickness as well 
as suppression of the basal TNF-α mRNA expression in the ileum and jejunum in 
14-week-old C57Bl/6 J male mice [51]. Meanwhile, the second study showed similar 
positive bone effects in Ovx Balb/c mice when treated with Lactobacillus reuteri for 
four weeks and changes in the gut microbiota composition was observed revealing 
an increase in Clostridiales and a decrease in Bacteroidales in the ileum and jejunum 
[57]. Furthermore, a study by Collins et al. showed that supplementation with 
Lactobaccillus reuteri 6475 could influence inflammatory status and bone formation 
after the inflammatory state of female mice were mildly induced. This was achieved 
via a dorsal surgical incision (DSI) and then administration of the probiotic. The 
findings indicated that the probiotic supplementation increased bone density, the 
DSI-treated female mice showed higher trabecular number and mineral apposition 
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rate when compared to the non-treated mice. Although L. reuteri treatment had no 
effect on CD4+ T cell numbers, it led to a decrease in IL-1β and TGFβ expression in 
the non-surgery cohort [58].

Probiotics are known to aid mineral absorption for the purpose of bone health 
maintenance. A study showed that supplementation of growing rats with L. 
rhamnosus HN001 enhanced calcium and magnesium absorption [59]. In addition, 
rats treated with yoghurt with a mix of Lactobacillus casei, L. reuteri and L. gas-
seri presented higher calcium absorption which resulted in an increased BMC in 
comparison to the control as well as production of SCFAs [60].

Narva et al. demonstrated the effect a bioactive peptide (valylprolyl-proline) 
and Lactobacillus helveticus LBK-16H fermented milk on bone loss in ovariecto-
mized rats. Their findings showed that L. helveticus fermented milk decreased bone 
turnover and increased BMD in growing rats [61], ovariectomised rats [62] and 
increased serum calcium while reduced serum PTH was observed in postmeno-
pausal women [63].

Studies have also shown that supplementation with Bifidobacterium longum-fer-
mented broccoli suppressed TRAP-positive osteoclast differentiation on the alveolar 
bone surface in rats [64]. Similarly, administration of yacon flour as prebiotics with 
B. longum as probiotics resulted in significant retention of minerals (such as Ca, Mg 
and P) in bones of Wistar rats [56]. B. longum also increased the BMD of ovariect-
omised rats by increasing the expression of Sparc and Bmp-2 genes [55].

In a study, male senescence-accelerated mice prone to developing osteoporosis 
with aging were orally administered heat-killed and living (viable) Lactococcus lactis 
subsp. cremoris H61 (strain H61). The protective effect of the heat-killed bacterium 
included reduction in loss of bone density, reduction in incidence of skin ulcer and 
reduction in hair loss of the aged SAMP6 [65]. On the other hand, reduction of bone 
density loss was not observed for the administration of the viable bacterium which 
may suggest the role of membrane-bound protein, inactivated microbial cells or cell 
fractions from the cellular death, that is, paraprobiotic and/or postbiotic effect.

The growth of bone as an extra-intestinal organ is suppressed by undernutrition 
in children. The study by Schwarzer et al. indicated that L. plantarum promoted 
juvenile growth in a strain-dependent manner using mono-colonized mouse model 
[66]. Supplementation with the bacterium increased the levels of insulin growth 
factor (IGF-1) and IGF-1 binding protein-3 (IGFBP- 3), the endocrine determi-
nants of somatic growth to wild type levels [66].

Furthermore, the effects of probiotics have also been reported in dysbiosis-
induced bone loss observed in the periodontal model [67, 68], Type-1 diabetes-
induced bone loss [69] and IBD-induced bone loss [70, 71].

8.2 Human studies

A human study conducted in Denmark evaluated the combined effects of 
bioavailable isoflavones and probiotics on bone health and estrogen metabolism 
using a randomized controlled trial in postmenopausal women. Their findings 
showed that administration red clover extract (isoflavones) and probiotic attenu-
ated BMD at the lumbar spine and femoral neck, reduced plasma concentrations of 
C-terminal telopeptide of type I collagen (CTX-1) as well as increased the urinary 
2-hydroxyestrone (2-OH) to 16α-hydroxyestrone (16α-OH) ratio (the equol pro-
ducer status) [72].

The use of probiotics however needs to be administered with caution since 
although the potential beneficial effect in the treatment of inflammatory and 
auto-immune gastrointestinal diseases for the modulation of immune response is 
well recognized, individuals with weaker immune systems may still be at risk of 



Prebiotics and Probiotics - From Food to Health

196

viable bacterial cells; in which case the administration the use of killed/inactivated 
bacteria might be more beneficial [73].

9. Prebiotics and bone health

Prebiotics are non-digestible short-chain carbohydrates also known as oligosac-
charides (and maybe polysaccharides) which selectively improves the function and 
activities of specific types of beneficial microbes. The chemical compounds are 
neither hydrolyzed by the human digestive system nor absorbed in the upper gas-
trointestinal tract. Prebiotics have been termed ‘colonic foods’ due to the ability of 
these types of foods to move through the colon serving as a substrate to endogenous 
bacteria while benefitting the host by providing energy and essential nutrients [74].

9.1 Animal studies

Some varieties of benefits have been attributed to the consumption of prebiotics. 
These include the ability of prebiotics to increase the absorption of minerals such 
as calcium, magnesium, and phosphorus [75–78] as well as iron [79] as reported 
quite recently. The absorption of these minerals has consequently been observed to 
improve bone mineralization and density [80], trabecular structure and increase 
equol production [81] which is known to reduce bone loss.

9.2 Human studies

FOS supplementation has been administered to both Korean [82] and Chinese 
[83] postmenopausal women to investigate its effect in the prevention of osteoporo-
sis, modulation of bone biomarkers and mineral absorption. Their findings indicate 
that there is potential for prebiotics to play a pivotal role in the above mentioned. 
The study by van den Heuvel et al. reported the benefit of intake of both GOS and 
inulin in increasing calcium absorption in postmenopausal women [84] and oligo-
fructose stimulating calcium absorption in adolescents [85]. Intake of oligofructose-
enriched inulin resulted in improved mineral absorption and impacted the bone 
turnover markers in postmenopausal women [86]. Other studies also looked into 
the effect of prebiotics in infants as was recorded with GOS, polydextrose [87] and 
inulin [88]. Some of these studies have also been conducted in animal models as has 
been shown in a recent review [89].

10. Other clinical benefits of prebiotics

Due to the effect of the change in metabolism from protein fermentation caus-
ing the release of ammonia that leads to an increase in pH to more carbohydrate 
fermentation resulting in the release of acids, a reduction in the intestinal pH is 
observed. Low intestinal pH tends to increase bowel movement while protecting 
against pathogens. Diseases such as inflammatory bowel disease (IBD), irritable 
bowel syndrome (IBS) and Crohn’s diseases are characterized by high pH levels 
[90]. Prebiotics are therefore able to reduce the symptoms and severity of these 
diseases. In addition, they are able to restore intestinal bacterial imbalance created 
by antibiotics, diarrhea, stress and sometimes medication and drugs intake [74].

Prebiotics are also known to help relief constipation. Most carbohydrates are 
able to increase water retention of the intestine and the acids’ production thereby 
increasing intestinal motility [91]. Furthermore, prebiotics have been used as 
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bioactive functional foods to modulate blood lipid levels [92] and it also been 
effective in weight loss and metabolic syndrome [93]. The anti-carcinogenic effects 
of both prebiotics and probiotics have been reported in the inhibition of aberrant 
crypt foci (ACF) which is a biomarker of colon cancer [94–96].

Recently, prebiotic food and Bidobacterium spp. have been reported to improve 
bone resorption and reduce serum TRACP-5b levels of Japanese female athletes 
[97]. Application of the combination of probiotic and prebiotic has been reported 
to confer a synergistical effect on the host due to the combined benefits of the two. 
This has been backed with the study by Scholz-Ahrens et al. which showed that 
probiotics supports the growth of other habitual microbiota strains and prebiotics 
chain length impacts the composition colonic, caecal, and fecal microflora. The 
combined administration of oligofructose and Lactobacillus acidophilus reduced the 
pH in the intestinal segments including the caecum, stimulated the colonic absorp-
tion as is indicated by increase in the colon weight [98].

11. Conclusion

The study of the effect of synbiotics on gut microbiota and bone health profile 
is now growing rapidly. Probiotic strains have differing genotype and phenotype 
and may therefore show different metabolic and immunological functions. The 
mechanisms however still need further investigation to look into the effect of synbi-
otics on the gut for the regulation of bone metabolism via the process of mineral 
absorption, the immune, endocrine system. Further studies are needed to elucidate 
the importance and mechanisms by which prebiotics and probiotics modulates the 
microbiota-gut-bone axis in order to get the full benefit of the long-term safety and 
efficacy of consumption of these functional bioactive products.
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Chapter 12

The Domino Effects of Synbiotic: 
From Feed to Health
Flávia Pelá

Abstract

Around of 60,000 tons per year of antibiotics are consumed to produce our food 
through subtherapeutic dosage usage which aim is improve healthy and perfor-
mance of animal in intensive system production. If the use of antibiotics allowed 
greater access to food, on the other hand, it allowed a selective pressure of anti-
microbial resistant strains, the superbugs. Considered a worldwide public health 
problem, this ultimately led to the prohibition of antibiotics as growth enhancers 
in animal production and the synbiotic, prebiotic and probiotic, is claimed to be 
effective alternative to withdraw of antibiotics in poultry farm. Hence, in this 
chapter, an antimicrobial resistance, animal health regulatory affairs and synbiotic 
influences will be summarized. The results of scientific assays and field trials from 
our synbiotics commercial formulations will be described to concerning the effect 
of zootechnical performance and sanitary control in the poultry production.

Keywords: synbiotics additive, antimicrobial resistance, poultry production,  
quality food, human health

1. Introduction

The human health is intrinsically associated from health and nutrition to animal 
and plants. This direct proportionality stems from the fact of that animals and 
plant, as food, can be by a direct source of contamination by pathogens, is been a 
common strain or an antimicrobial resistance strain [1].

The constant growth of human population rise the food demand which imply in 
a better intensive animal productivity. The intensive system has several challenges 
to produce eggs, meat, milk, fish and others, with high productivity, low costs and 
a quality and safety standard conditions. One of the most practices to improve 
the animal production is a use of subtherapeutic dosages of antibiotics for animal 
growth performance and sanitary control [1].

However, since 1970, the international agencies like as World Health 
Organization (WHO), Food and Agriculture Organization of the United Nations 
(FAO), U.S. Food and Drug Administration (FDA), World Organization for Animal 
Health (OIE) are doing severe appointments through by global public campaign for 
limit and/or ban the use of antibiotics as feed additive, because, this subtherapeutic 
practical for growth performance is one of the causes that triggers antimicrobial 
resistance from the selective pressure carried out by antibiotics [2–4].

Antimicrobial resistance, nowadays, is one of public health problem in the 
world. Each year it causes the death of more than 700,000 people worldwide, which 
the most common serotypes of infections are being Salmonella ssp., followed by 
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Escherichia coli and Staphylococcus aureus. Spending on patient care is high, reaching 
costs of around $29,000 per patient in the United States.

Efforts to substitute the antibiotics are occurring and the synbiotics additive 
has been one of potential alternative feed additives for the banned antibiotic-based 
stimulators [2–4].

Synbiotic is described by “a mixture comprising live microorganisms and 
substrate(s) selectively utilized by host microorganisms that confers a health 
benefit on the host” [5]. Refers to nutritional supplements combining prebiotic and 
probiotic in complementary or synergism form which will beneficially affect the 
host by improving the implantation of live microbial dietary supplements in gastro-
intestinal (TGI) tract by selectively stimulating the growth and/or by activating the 
metabolism of one on limited number of health promoting bacteria [6, 7].

The mechanisms of synbiotic influence the host is the prebiotic stimulates 
growth of probiotic bacteria or the prebiotic and probiotic act independently 
in the GIT tract, both stimulating the intestinal microbiota. Non-digestible ele-
ments (prebiotics) are fermented in the GIT, while beneficial live microorganisms 
(probiotics) colonize it [5].

In this chapter, an antimicrobial resistance, animal health regulatory affairs and 
synbiotic influences will be summarized. The results of scientific assays and field 
trials from our synbiotics commercial formulations will be described to concern-
ing the effect of zootechnical performance and sanitary control in the poultry 
production.

2. The domino effect

2.1 Antibiotic resistance

Antibiotics are in fact one of the best drugs developed. Initially applied for the 
treatment of infections, these drugs revolutionized modern medicine and changed 
the therapeutic paradigms [8]. Discovered in 1928 by Alexandre Fleming with 
penicillin, successive antimicrobials were developed and applied in the period 
between 1930 and 1960, the golden age [9–11]. However, concurrently with the 
findings, resistance to antibiotics has been identified, with the marked increase in 
patients relapsing to the infection of common bacterial pathogens. The truth is that 
every molecule used in the treatment of bacteria, fungi, parasites, viruses and, still, 
chronic diseases, by biochemical and physiological mechanisms favor the potential 
development of tolerance or resistance to the compound since the first use [10, 11]. 
This resistance associated with factors such as: overpopulation, improved global 
migration, indiscriminate use of antibiotics, as well as, the incorrect use neglect-
ing the prescribed treatment, the intensification of animal production and the 
underdosing used as a zootechnical additive, selective pressure and basic sanitation 
precarious conditions have accentuated antibiotic resistance by living beings, mak-
ing it one of the most important threats to public health in the 21st century, accord-
ing to the WHO [2, 8, 12].

Results of genomic studies indicate the existence of more than 20,000 potential 
resistance genes (r genes) with about 400 different types [10], which mutation, 
horizontal gene transfer, conjugation and transduction are key hypothesis of the 
selective pressure that contributes to the distribution and co-selection of resistance 
and virulence genes. The impact of this selective pressure is reflected in the mecha-
nisms of action of pathogenic strains that, in general, can modify the target site of 
antibiotics on the chromosome, promote the efflux of the molecule and degrade 
or modify the conformation of the compounds through enzymatic actions, thus 
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favoring colonization and invasion of pathogens and, consequently, causing damage 
to the host by expressing clinical picture of infection [9, 12–14].

Li et al. in a metagenomic assay identified profiles of a wide spectrum of mul-
tiresistance genes from different environments. These profiles were correlated and 
grouped according to incidence, and the results showed a higher prevalence of 
multiresistance genes in animal feces and in residual water from farms, followed by 
sewage and human feces, STP effluents, STP ADS and STP AS & BF and, finally, in 
drinking water, rivers, soils and sediments [15].

The result by Li et al. corroborates with the identification of multiresistance 
genes in animal production environments systems from the practice of indicating 
subtherapeutic amounts of antibiotics to animals for the purpose of improving 
performance [8, 9, 15]. In addition to the zootechnical performance, the increase in 
the intensive practice of animal husbandry, with overcrowding of the sheds, absent 
or precarious hygiene and disinfection practices, increased the prophylactic use of 
antibiotics. [8]. It is estimated that 60,000 ton per year are consumed on agricul-
tural farms, and 80% of antibiotics consumed in the USA are used in livestock, with 
around 27 different antimicrobial classes being used in animals [9–11]. Antibiotics 
depending on the drug and the species treated will have an absorption or metabo-
lization range between 10–80%, with the remainder being excreted as active com-
pounds in the urine and feces to the environment. Thus, soils, water, effluents are 
contaminated and the selective pressure on the microbiota of these environments 
is selected, increasing the resistance to antibiotics [9–11]. In the holistic analysis of 
the ecosystem, each environment and living being serves as a regulator or regulated 
agent of selective pressure to multiresistance genes, serving an evolutionary cycle.

Unfortunately, global resistance to antibiotics has no tendency to decline. Data 
show that around 700,000 deaths per year worldwide are due to antimicrobial 
resistance. In Europe this number is 33,000 and the estimative of resistance to 
antibiotics represents a costs of €1.5 billion per year with healthcare expenses and 
productivity losses. In the US, the of deaths is 99,000, estimated cost with patients 
treatment is about $20 billion and the social costs reach $35 billion. In the Americas, 
about 77 million people per year fall ill after consuming contaminated food. Out 
of these, nine thousand die. In Brazil, from 2007 to 2016, 90.5% of the cases of 
foodborne diseases were caused by bacteria, mostly Salmonella spp (7.5%), followed 
by Escherichia coli (7, 2%) and Staphylococcus aureus (5.8%). Therefore, coordinated 
efforts to implement new policies to regulate the use of antibiotics, stimulate the 
research efforts and seek measures to manage the crisis are necessary to maintain 
intensive livestock productivity, animal and human health, and the ecosystem 
balance [2–4].

2.2 Animal health regulatory affairs

As an effort to reduce the antimicrobial resistance promoted by antibiotics used 
asr growth promoter, international agencies are searching to regulate a tolerance 
levels to antibiotics used for animals. The problem has been obtain similar commit-
ments by the WHO, FAO and OIE in which measures of banned or establishment 
of minimum tolerance level of the drug shall be evaluated for mitigated noise and, 
consequently, avoid opportunities to inappropriate use of antimicrobial [16].

Despite the divergences, countries have been establishing regulatory measures 
regarding the use of antibiotics as growth promoters. The Europe (EU), in 2006, 
finished the progressive elimination of antibiotics program, used as growth 
promoters, banning sodium monensin, sodium salinomycin, avilamycin and 
flavophospholipol. These final measures aim to combat the emergence of super-
bugs, due to antibiotics overexploitation or misuse [17–19]. In 2017, the European 
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Commission adopted a “EU AMR Action Plan” which the key objectives are to make 
EU an example practice region; improve the research, development and innovation; 
and, shape the global agenda. Nowadays, since the plan implementation, updates 
have been made in order to further strengthen EU’s response to AMR, such as, 
Pharmaceutical Strategy for Europe, creation of a new EU authority named Health 
Emergency Response Authority (HERA), creation of Commission Implementing 
Decision (EU) 2020/1729 for monitor and report antimicrobial resistance; adop-
tion a tool Farm to Fork Strategy for sustainable food systems, implementation of 
Regulation (EU) 2019/6 on Veterinary Medicinal Products (VMP Regulation) and 
Regulation (EU) 2019/4 on Medicated Feed (MF), an implementation of better 
animal welfare, and others [20, 21].

In United States (USA), the antibiotic reforms were difficult, marked by con-
stant clashes with the industries. Only from 2000, some formal procedures were 
started to withdrawal the antibiotics in animals for growth promoters. In 2013, 
FDA published a guidance for industry to phase out antibiotic growth promotion 
via label changes [22, 23]. In 2017, the completed implementation of guidance 
represented a changed of antimicrobial drugs used in the feed animal production. 
Of the 292 animal drug applications, 84 were banned and 208 remaining applica-
tions were converted from over the counter to prescription status or to veterinary 
feed directive status [23].

In Brazil, the Ministry of Agriculture, Livestock and Supply, through Normative 
Instruction No 45, of November 22, 2016, prohibited the import and manufacture 
of the antimicrobial substance colistin sulfate with a performance-enhancing 
zootechnical additive throughout the territory in animal feeding [24]. Ordinance 
No.195, of July 4, 2018 establishes good management practices in commercial farms, 
in order to obtain sustainable production, preserving health and well-being [25]. 
Furthermore, Ordinance No 171, of December 13, 2018, informed that the use of 
the antimicrobials tylosin, lincomycin, bacitracin and tiamulin is prohibited for the 
purpose of performance-enhancing additives in farm animals [26].

Despite the alarming situation that resistance to antimicrobials has triggered in 
public health worldwide and the repeated appeals to reduce the inclusion of antibiot-
ics in animal production by internationals agencies, many low- and middle-income 
countries do not include these recommendations in their national commitments. 
China is a country example: considered one of the largest consumers of antibiotics 
in livestock animals, elaborated a National Action Plan to Combat Antimicrobial 
Resistance from Animal Resources which regulates the withdraw all antibiotics 
used as feed additive; revised indicative use that antimicrobials are used only for 
prevention or treatment and stablished that new approvals of antimicrobials are only 
indicate for veterinary medicine [27]. South Africa, in 2018, by Africa Centers for 
Disease Control and Prevention (Africa CDC) has also developed a national frame-
work plan which aimed detect to respond the infectious diseases in country [28].

In summary, the overview commitments of the recommendations are: i) imple-
ment a global public campaign to awareness about the importance to reduce anti-
microbial used; ii) improve practical of hygiene and disinfections in daily routine 
either for human health or for animal management; iii) reduce the indiscriminate 
use of antimicrobials; iv) develop new diagnostics tools for rapid and reliable assay, 
including for accuracy monitoring antimicrobial development; v) improve manage-
ment procedures for disease prevention and control; vi) develop sustainable and 
effective substitutes for antibiotics in animal production system [29].

During recent years, efforts focused to develop and work on providing novel 
and alternative supplements for growth performance and therapeutics to prevent 
diseases and enhance animal immunity. One of the potential substitutes evaluate is 
the synbiotic additive.
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2.3 Synbiotic mode of action: an overview

The synbiotic concept is “a mixture comprising live microorganisms and 
substrate(s) selectively utilized by host microorganisms that confers a health 
benefit on the host”. The symbiotic term is a Greek word compound of prefix ‘syn’, 
meaning ‘together’ and the suffix ‘biotic’, meaning ‘pertaining to life’ [5]. The prebi-
otic and probiotic combination product might not have any co- dependent function, 
acting trough by complementary and synergistic mechanisms. Both, independently 
promote an eubiosis, a maintain physiology homeostasis, modulating the digestive 
and immune system, and others functions in the host. The synbiotic product can 
be applied to intestinal or extra-intestinal microbial ecosystems in human, animals 
and agricultural species by regulatory categories, such as, feed additive, foods, non-
foods, nutritional supplements or drugs [5].

The symbiotic formulation performs its function in a gastrointestinal tract, 
where more than 100 trillion (1014) microorganisms inhabit. The resident micro-
bial groups are affected by endogenous factors, such as, temperature, pH, oxygen 
concentration, diet, secretions, and others. Particularly, diets rich in non-digestible 
ingredient can highly modify the composition and function of gut microbiota by 
selectively influence [5, 30].

These non-digestible food ingredient as named prebiotics was described as 
“a non-digestible components of food, fiber or non-carbohydrate digestible, that 
beneficially affects the host by selectively stimulating the growth and/or activity 
of one or a limited number of bacteria in the colon, and thus improves host health” 
[5, 30–32]. The criteria for prebiotic classification are: i) resist acidic pH, digestion 
action and adsorption by their host; ii) should be metabolized or fermented by 
microorganism residing in the TGI tract; iii) should promote a microbiota selec-
tively stimulation, conferring beneficial physiological effect on the host; iv), not 
to all or poorly metabolized by pathogenic organism in gut bowel [5, 30, 31]. Most 
commonly known and characterized prebiotics include inulin, fructooligosaccha-
ride (FOS), glucooligosaccharide (GOS), mannanoligosaccharide (MOS) [5, 30–33].

Prebiotics are considered a specific fuel that indigenous probiotic bacteria can 
utilize to grow. The selective fermentation of prebiotic occurs through correla-
tion between chemical oligosaccharide structure and biochemicals metabolites of 
gut microbiota. The presence of carbon anomeric, the molecular weight and the 
number of branching present in prebiotic structure select microbiome preferences. 
For example, Bifidobacterium sp prefer to ferment low weight molecular of trisac-
charides and tetrasachhrides in a series of oligosaccharides with reduced number 
of branching [30]. Beside this, the prebiotic metabolization by gut microbiome 
are influenced by secretion of a wide range of specific enzymes such as polysac-
charidases, aminopeptidases, proteases, glycosidases, glycanases and others that 
will digest the prebiotics in a monomeric constituent. These parameters influence 
results the microbiome selective fermentation and explain the a non-digestion 
of prebiotic by host enzymes and the non-metabolization of them by pathogens 
strains, such as, Salmonella spp., E. coli, and Clostridial population [30, 32].

Furthermore, the metabolic fermentation results in a lactic acid, short-chain 
fatty acid (SCFA), or some antibacterial substances, such as bacteriocins, leading 
to a reduction of the metabolic activity of potentially harmful bacteria [30–34]. In 
general, the SCFA acts acidifying the luminal pH which suppresses the growth of 
pathogens, influence intestinal motility and acts stimulating enterocytes prolifera-
tion and mucin secretion. The rapidly absorption of SCFA by the enteric mucosa 
contributes to the quickly supply of host’s energy requirements. Furthermore, they 
can be recognized by protein coupled receptors (GPR) expressed on polymor-
phonuclear immune cells, enterocytes and enteroendocrine cells stimulating the 
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chemokine and cytokines expression, such as, pro-inflammatory IL-2 and inter-
feron (IFN)-γ and immuno-regulatory IL-10 production [30, 32, 33].

In addition, to modulating the immune system by SCFA, prebiotics can be direct 
recognized by toll-like receptors (TLRs) and NOD-like receptors (NLRs), both 
a pattern recognition receptor (PRR) present in immune membrane cells. This 
recognition will modulate the innate immune response inducing an overexpression 
of innate immune cells such as epithelial cells, macrophages, mast and dendritic 
cells. Another way of prebiotic action in immune systems is promoting the recogni-
tion of PAMPs signs by PRR, activating innate immune cells and the production of 
cytokines [30, 32, 33].

Finally, new scientific results correlate show that prebiotics also accelerate 
uptake of various micronutrients like iron, zinc, and calcium and significantly 
reduces or prevent the chances of colon-associated cancers, cholesterol, and 
elevated levels of triacylglycerols [30, 32, 33].

For establishment of health microbiota in host, probiotics play an important role 
enhancing the gut balance. Several studies revealed that supplementation of pro-
biotics has positive impacts on TGI tract development and on the immune system 
modulation, consequently, improving the feed efficiency ratio, nutrient absorption, 
growth performance and the animal productivity. Probiotics are defined as “Live 
microorganisms which when administered in adequate amounts confer a health 
benefit on the host” [35].

There are several species with probiotics abilities such as live bacteria, Bacillus 
sp., Lactobacillus sp, Bifidobacterium sp, yeast, Saccharomyces cerevisiae and 
Saccharomyces boulardii, fungi, Aspegillus, which are isolated from fermented 
products and human and animal body like as gut, breast milk, feces and other [36]. 
A good probiotic should have the following characteristics: i) the fermentation 
process should result in a minimum 1x109 CFU culture; ii) the stain should be specie 
specify with high ability to survive and multiply fast in TGI tract host; iii) should be 
stable and safe to the host, GRAS 0, resisting an acid and bile action; iv) should have 
an ability in maintaining the normal physiology of host animals by strong adhesive 
capability in TGI tract, an effective competitive exclusion to reduce pathogenic 
microorganisms, and others; v) should have a durable shelf-life of commercial 
manufacturing, processing and distribution [36, 37].

The mode of action of probiotics in animal includes: i) maintaining normal 
intestinal microflora by competitive exclusion and antagonism; ii) altering metabo-
lism by increasing digestive enzyme activity and decreasing bacterial enzyme 
activity and ammonia production; iii) improving feed intake and digestion; iv) and 
neutralizing enterotoxins and stimulating the immune system [38].

The main major mechanisms triggered by probiotics described are: i) modula-
tion of the physical–chemical environment; ii) synthesis of biologically active mole-
cules with antimicrobial properties; iii) and, modulation of the immune system.

The modulation of the physical–chemical environment of the enzymatic 
activities through the gastrointestinal tract and enzymatic activities catabolism 
stimulate the food’s energy and protein digestibility which favors, the absorp-
tion of nutrients promoting the growth of the probiotic microbiota in detriment 
of the pathogenic one by the establishment of competition between them. This 
dynamic is called competitive exclusion. Concomitant to competitive exclusion, 
probiotics are also able to decrease the gut pH, though fermentation of carbohy-
drates providing an inhospitable environment for pathogenic bacteria, which are 
more susceptible to acidic pH. This is called growth modulation by pH. Still, the 
consumption of lactic acid by lactic bacteria and yeast strains can occur, which 
will result in the buffering of the TGI tract and the production of organic acids 
and vitamins [39–41].
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Regarding the synthesis of biologically active molecules, the production of 
bacteriocins, antibiotics, free fatty acids, hydrogen peroxide is mentioned, among 
others, in particular, when there is the establishment of the probiotic microbiota 
to the gastrointestinal mucosa. These biologically active molecules control the 
proliferation and/or survival of the surrounding microorganisms. For example, 
bacteriocins are cited as peptides or proteins that kill related bacteria by permea-
bilizing their cell membranes or by interfering with the structure of their essential 
enzymes [42–44]. Another benefit comes from the increase in the concentration of 
propionate, succinate, valerate which, as precursors of gluconeogenesis, favor the 
availability of glucose to the animal, favoring the increase production, as well as its 
quality [45].

Concerning the intestinal homeostasis, there are literature describing the com-
mensal intestinal microbiota as the main modulator of host physiology. The pres-
ence of probiotics adhered to the intestinal mucosa forms the so-called intestinal 
barrier capable of reducing the installation of pathogenic microorganisms, interfer-
ing with intestinal permeability, increasing the degradation of enteric antigens, 
as well as altering their immunogenicity. The repercussion of probiotic activity in 
the intestine implies an immunological homeostasis which in adverse contexts will 
favor immunological tolerance through the development of tolerogenic dendritic 
cells, regulatory T cells, Toll-Like Receptors (TLR), production of cytokines, 
according to immunological balance patterns [46–50].

In summary, the ability of synbiotics to do a protective effect on the intestinal 
microbiota may be dependent of multiple factors regulations such as formulation 
composition, indicative use dosage, host’s genetic background, age and health 
status, hygiene and disinfections ambient conditions and treatment condition and 
duration.

2.4  From feed to health: the influence of Synbiotic commercial formulations  
in the poultry farm

In 2019, around of 100 thousand tons of poultry meat were produced in 
worldwide, being the U.S the world production leader followed by China and 
Brazil. The combined production of these countries represents half of the 
world poultry meat production [51]. In the exports, Brazil is a largest exporter 
with 4,200 ton shipped to more than 150 countries [52]. In 2020, this number 
increased on4% in production due to the national consumption increase and due 
to continuity of Chinese demand for animal protein. Also, the consumption of 
eggs increased as well [53].

This rising in the poultry production impacted in increase of 3.6% in feed 
production and, consequently, in a higher consumption of macronutrients and 
micronutrients that compose them. Around 16,494 tons of zootechnical additives 
were consumed in 2020, in which 10,144 tons were enzyme consumption, 4,947 
tons were prebiotics and probiotics and 1403 tons were performance enhancers [53].

Through a comparative analysis of this data to the same parameters rescued from 
2011, it is possible to of almost 50% in the consumption of performance enhancers 
and an increase of 1649% in the consumption of prebiotics and probiotics. In 2011, 
5,628 tons of additives were consumed in poultry production, distributed in 2,434 
tons of enzymes, 2895 tons of antibiotics growth promoter and 300 tons of prebiot-
ics and probiotics [54].

The expressive increase of prebiotics and probiotics consumption is a conse-
quence of the guidelines of the international agencies about antimicrobial resis-
tance, the prohibition of the use of certain antibiotics as a growth promoter, the 
elaboration and execution of the National Action Plan on Antimicrobial Resistance 



Prebiotics and Probiotics - From Food to Health

212

in Agriculture and the adjustments in the production chain in order to comply with 
the requirements of the foreign market.

The significant changes in the growth of commercial poultry have focused on 
intestinal development from two related but different directions. The tremendous 
genetic progress for largely grown poultry at ever decreasing ages turn recognize 
the first week posthatch represent a significant period of avian development and 
have a critical influence for intestinal growth. Immediately posthatch, the small 
intestine has proportional weight as body weight and will increase around 30% at 
3 days. The contents of the residual yolk nutrients can be transferred to blood and 
intestine up 72 h, it represents a faster fed in chicks supplying their energy demand. 
At 7 days-old, the intestine will be twice as heavier weight than at day 1. Significant 
differences in villus height and crypt depth at day 3 from hatch noted, emphasizing 
the importance of intestinal development related to supporting accelerated growth 
and the importance of the intestinal given by histological measurements. A critical 
point in posthatch is the logistics of the chicks to the farm. During this period the 
birds are not feed with specific food, so they are susceptible to the environmental 
microbiota and, as a consequence, to a pathogen colonization [55, 56].

In this scenario of posthatch, in our trial research to evaluation of a commercial 
probiotic product, dispersive powder, composed by 3.5x107 CFU/g Bifidobacterium 
bifidum, 3.5x107 CFU / g Enterococcus faecium, 3, 5x107 CFU/g Lactobacillus acidophi-
lus, 4x107 CFU / g Bacillus subtilis and 4x107 CFU/g Bacillus licheniformis, indicated 
for application via spray, in the hatchery, on the chicks at a final concentration of 
1.23x107 CFU/ml, was applied in commercial layers to evaluate the microbial profile 
also too the product efficacy reduce the vulnerability that can occur by pathogen 
colonization in the gastrointestinal tract. Swabs from intestinal fragment, jejunum 
and ileum junction, were realized at times zero (D0), 7 days (D7) and 32 days (D32) 
and analyzed by next-generation sequencing technique, for evaluated the dynamic 
microbiome during the development of the gastrointestinal tract, also too, the bet-
ter eubiosis establishment when probiotic intake is provided to the hens in the first 
moment of life.

At D0, hours after supplied the hens with probiotic supplement, were identi-
fied 12 bacterial species in the samples of jejunum and ileum junction, which 3189 
reads (121 reads in treated group - SG; 3068 reads in control group - CG). The 
bacteria species identified are Aeromonas hydrophila (10 reads SG; 0 read CG), 
Bacillus foraminis (9 reads SG; 0 read CG), Bacillus persicus (5 reads SG; 0 read CG), 
Brevundimonas bullata (0 read SG; 185 reads CG), Deftia acidovorans (5 reads SG; 
0 read CG), Enterococcus faecalis (82 reads SG; 1959 reads CG), Noviherbaspirilum 
canariense (0 read SG; 137 reads CG), Ochrobactrum anthropi (5 reads SG; 0 read 
CG), Pantoea agglomerans (0 read SG; 288 reads CG), Pseusomonas koreensis (0 read 
SG; 275 reads CG), Pseudomonas putida (5 reads SG; 129 CG), Stenotrophomonas 
maltophilia (0 read SG; 95 reads CG). These microbial profiles had a statistically 
significant difference to the treatment variable (f(1) = 4.56; p-value = 0.0353), and 
to the microbial diversity variable (f(11) = 2.04; p-value = 0.0329); and statistical 
trend for the interaction between the variables treatment and microbial diversity 
(p-value = 0.0765).

In start of feed consumption, at the first day of the birds’ life (D1), hens of 
treated group were supplied with commercial product composed by 5x107 CFU/g 
Bacillus coagulans, 5x108 CFU/g Bacillus subtillis, 5x108 CFU / g Bacillus licheniformis, 
5x107 CFU/g Lactobacillus acidophilus and 2x107 CFU/g of Saccharomyces cerevisae 
and 2 g/kg Mannan oligosaccharides (MOS) was insert into the extruded feed at 
a final concentration of 2.24x105 CFU/g of feed, to continue the gastrointestinal 
and immune system modulation. The analysis of the microbiome profile, at D7, 
had have a quantification of 88989 reads (18360 reads SG; 70629 reads CG) with 
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identification of 17 bacterial strains distributed in Bacillus cereus (5 reads SG; 0 read 
CG), Butyticicoccus pullicaecorum (0 read SG; 385 reads CG); Clostridium beijerinckii 
(9 reads SG; 0 read CG), Clostridium difficile (0 read SG; 25 reads CG), Clostridium 
innocuum (0 read SG; 26 reads CG), Clostridium spiroforme (0 read SG; 243 reads 
CG), Enterococcus faecalis (0 read SG; 157 reads CG), Enterococcus gallinarum (0 
reads SG; 38 reads CG), Erysipelatoclostridium ramosum (0 reads SG; 135 reads CG), 
Kurthia gibsonii (0 reads SG; 27 reads CG), Lactobacillus gasseri (0 read SG; 7293 
reads CG), Lactobacillus helveticus (13869 reads SG; 1526 reads CG), Lactobacillus 
intestinalis (0 reads SG; 2029 reads CG), Lactobacillus johnsonii (0 read SG; 36340 
reads CG), Lactobacillus reuteri (2070 reads SG;4471 reads CG); Lactobacillus 
vaginalis (6 reads SG; 659 reads CG) and Lactobacillus oris (0 read SG; 1076 reads 
CG). These results in a statistical trend for the treatment variable (f(1) = 3.50; 
p-value = 0.0657) and a statistically significant difference for the microbial diversity 
variable (f(16) = 2.42; p-value = 0.0031), and to the interaction of these variables 
(p-value = 0.0071). In addition, at D7, greater intestinal length was observed in the 
hens of the treated group (Χ = 110.77 cm, Min = 100 cm, Max = 123 cm) compared 
to the control group (Χ = 103.5 cm, Min = 91 .5 cm, Max = 115.5 cm) resulting in a 
statistically significant difference, p-value = 0.0168.

At D32, end period of the microbial profile evaluation, there were a total quanti-
fication of 85069 reads (53042 reads SG; 32027 reads CG), with 37 bacterial strains 
identified distribute in Acinetobacter junii (0 read SG; 73 reads CG), Acinetobacter 
ursingii (0 reads SG; 106 reads CG), Brachbacterium articum (18 reads SG; 292 reads 
CG), Brachbacterium faecium (17 reads SG; 106 reads CG), Brevibacterium epider-
midis (985 SG reads; 1557 CG reads), Brevibacterium senegalense (142 SG reads; 
490 CG reads), Brevundimonas diminuta (0 SG reads; 283 CG reads), Clostridium 
ruminantium (18790 SG reads; 4844 CG reads), Comamonas kerstersii (121 SG 
reads; 0 CG reads), Corynebacterium stationis (1035 SG reads; 767 CG reads), 
Corynebacterium casei (997 SG reads; 915 CG reads), Corynebacterium nuruki (24 
SG reads; 0 CG read), Corynebacterium terpenotabidum (0 SG reads); 75 reads CG), 
Corynebacterium variabile (227 reads SG; 382 reads CG), Dietzia maris (549 reads 
SG; 0 read CG), Enterococcus cecorum (506 reads SG; 290 reads CG), Escherichia 
coli (0 read SG; 10248 reads CG), Facklamia tabacinalis (148 reads SG; 0 read CG), 
Fusobacterium mortiferum (62 reads SG; 0 reads CG), Fusobacterium necrogenes (82 
reads SG; 0 read CG), Globicatella sanguinis (35 reads SG; 0 reads CG), Lactobacillus 
agiis (0 read SG; 142 reads CG), Lactobacillus aviarius (611 reads SG; 0 read CG), 
Lactobacillus helveticus (21816 reads SG; 6348 reads CG), Lactobacillus salivaris 
(6061 reads SG; 1852 reads CG), Ochrobactrum pseudogrignonense (0 read SG; 47 
reads CG), Pantoea aeptica (0 read SG; 121 reads CG), Providencia rettgeri (95 
read SG; 0 read CG), Pseudomonas veronii (0 read SG; 41 read CG), Staphylococcus 
gallinarum (170 read SG; 178 read CG), Staphylococcus lentus (216 read SG; 0 read 
CG), Staphylococcus saprophyticus (229 read SG; 899 reads CG), Staphylococcus 
sciuri (18 reads SG; 0 read CG), Streptococcus infantarius (0 read SG; 192 reads CG), 
Streptomyces rectiviolaceus (17 reads SG; 0 reads CG), Subdoligranulum variabile (71 
reads SG; 0 reads CG) and Veillonela magna (0 read SG; 1425 reads CG). There was 
no statistical difference for the treatment variable (f(1) = 0.81; p-value = 0.3692), 
there was statistical difference for microbial diversity variable (f(36) = 2.53; 
p-value < 0.0001), and no difference statistics for the interaction between variables 
(p-value = 0.4220).

As can be seen, immediately after posthatch, colonization of the gastrointestinal 
tract of the bird begins, whose quantitative and qualitative composition presents 
distinct microbial dynamics and profiles according to the influence of the zoogenic 
conditions of the environment, the components of the diet supplied to the animal, 
the interaction of microorganisms the physiology, metabolism and immunology of 
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the host, and the dynamics of interaction between microorganisms to achieve the 
complex and dynamic establishment of the microbiota [57].

When analyzing the results of the microbial profile, at D0, the quantitative 
discrepancy of the microbial load present between the experimental groups is 
observed. Hypothetically, it is suggested that there was competitive exclusion 
between bacterial species: the environmental microbiota and the probiotic multi-
strains supplied through the commercial product. This hypothesis is based on the 
analysis of the microbial distribution profile in the intestinal fragment in which 
an approximate percentage of pathogenic bacteria colonizing both experimental 
groups is observed, but with a lower microbial load in the treated group. As an 
example, there was a prevalence of colonization of Enterococcus faecalis strains (82 
reads SG, 68%; 1959 reads CG, 61%; FC = 23.89) followed by Pseudomonas putida  
(5 reads SG, 4%; 129 reads CG, 4%; FC = 25.8) in both groups, however, in the 
control group the presence of 23.89 more Enterococcus faecalis and 25.8 more 
Pseudomonas putida is observed in relation to the treated group.

These same pathogenic strains prevalent at D0 are suppressed from the micro-
bial profile at D7, at distribution of Enterococcus spp being 0.27% in the control 
group and 0% in the treated group. The genus Pseudomonas spp is absent in both 
experimental groups, which shows the occurrence of competitive exclusion in the 
colonization of the intestinal fragment. Still, at D7, when analyzing the microbial 
profile of the experimental groups, the control group showed the greatest diversity 
and quantity of bacterial strains colonizing the intestinal fragment, with a preva-
lence of 98.53% of lactic strains and the presence of pathogenic strains with 0.41% 
Clostridium spp and 0.27% Enterococcus spp. Meanwhile, the treated group had 
lower microbial diversity, but higher prevalence of lactic strains (99.92%).

This dynamic microbiota in the first life stage of chicken was also reported 
by Śliżewska et al. [58] since the posthatch, in which they observe a prevalence 
of coli, enterococcus and lactic bacteria genera present in the crop, duodenum 
and jejunum. In the first and second weeks of life, they described the prevalence 
of the Lactobacillus spp. genera in the composition of the gastrointestinal tract 
and, in the third week, the microbial constitution was distributed in Lactobacillus 
spp. (70%), Clostridium spp. (11%), Streptococcus spp. (6.5%), Enterobacteriaceae 
family bacteria (6.5%), Enterococcus spp. (6%), corroborating a distribution of 
a microbial profile close to that identified in our results. Another common cor-
relation identified was the significant reduction of potential pathogenic bacteria 
such as Escherichia coli and Clostridium spp when adding the symbiotic in the feed. 
In summary, both results show the beneficial effects of the consumption of the 
synbiotic in favoring sanitary control by establishing the balance of the intestinal 
microbiota.

At D32, the period reported in the literature for the establishment of eubiosis, 
effective bacterial diversity is observed in both experimental groups, and in eubio-
sis the group treated with commercial synbiotic product had a higher and better 
microbial profile. It should be noted that the prevalence of probiotic strains in the 
treated group throughout the experiment, even with a smaller amount of reads 
identified at D0 and D7, favored the establishment of eubiosis with the proliferation 
of other lactic strains that benefited the development and maturation of the treat-
ment. Gastrointestinal tract of birds. While the control group had 26% probiotic 
strains (Lactobacillus agiis, Lactobacillus helveticus and Lactobacillus salivaris), 32% 
Escherichia coli, 4% Staphylococcus spp and other environmental strains, the treated 
group had 54% probiotic strains (Lactobacillus aviarius, Lactobacillus helveticus and 
Lactobacillus salivaris), absence of Escherichia coli, 1% Staphylococcus ssp and other 
environmental strains, showing the impact of consumption of the synbiotic for the 
establishment of eubiosis with a better microbial profile in hens.
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Adhikari [59] described the distribution of lactic strains along the gastrointes-
tinal tract of birds correlated with what was identified in our results. This reports 
the identification of greater abundance of Lactobacillus salivarius and Lactobacillus 
johnsonii in all intestinal fragments analyzed: cecal lumen, cecal mucosa and ileum 
mucosa, with the highest concentration of lactic strains identified in the ileum 
mucosa and cecal lumen followed by the cecal mucosa. Similar colonization profiles 
of lactic strains were described by Ranjitkar et al. [60] and Wang et al. [61].

Dunislawska et al. [62] corroborate the benefits of consumption of synbiotics by 
describing effects of consumption of microflora-promoting bioactive compounds, 
even in a single dose of prebiotic or synbiotic in ovo and immediately posthatch, in 
interfering with the dynamics of microbiota colonization as well as across the entire 
spectrum of phenotypic characteristics in the broiler development stages, including 
zootechnical performance, development and modulation of the immune system, 
development and histological composition of the gastrointestinal tract, change in 
molecular expression in cecal tonsils, spleen and liver, change in the composition of 
meat quality.

The reflection of this dynamics of colonization of the gastrointestinal tract 
of birds has repercussions in various field scenarios in the results of zootechni-
cal performance, in sanitary control and in the reduction of antimicrobial pulses 
administered to the birds. To report this scenario of the reality of the field, whose 
management variables are diverse and often distinct from each other, one of our 
field trials is presented. This assay was carried out on a commercial poultry farm 
producing broilers, which houses about 7,000,000 birds per month. Two farms, 
Farm 1 and Farm 2, composed of 15 and 16 sheds respectively, housed Ross lineage 
birds. Farm 1 had in its ambience a cepillo’s bed, dating back to 1st and 2nd, con-
ventional lighting, side plates and an oven per aviary. Farm 2 had a cepillo’s bed, 
dating back to no. 2, dark lighting, side and front plates and two ovens per aviary. As 
for the treatment, the commercial synbiotic product was composed of 5x107 CFU/g 
Bacillus coagulans, 5x108 CFU/g Bacillus subtillis, 5x108 CFU/g Bacillus licheniformis, 
5x107 CFU/g Lactobacillus acidophilus and 2x107 CFU/g of Saccharomyces cerevisae 
and 2 g/kg Mananooligosaccharide was administered on extruded feed mixture at 
a final concentration of 1.02x105 CFU/g feed at farm 1, while poultries from farm 2 
received the probiotic product consisting of 1x108 CFU CFU/g Bifidobacterium ani-
malis, 6x108 CFU CFU/g Enterococcus faecium, 2,5x107 CFU/g Lactobacillus reuteri, 
2,5x107 CFU/g Lactobacillus salivarius, 2,5x108 CFU/g CFU/g Pediococcus acidilactici 
added to the extruded feed with final concentration of 1.00x105 UFC/g of feed. 
Farm 1 will be named as the treated group and farm 2 as the control group.

In terms of zootechnical performance, there were no statistical differences 
between both treatments, at the seventh day (D7), regarding weight gain, 
p-value = 0.966 (control group X = 183.2 g, Min = 159 g, Max = 203 g; treated 
group X = 185.4 g, Min = 167 g, Max = 228 g) and as for intestinal length, 
p-value = 0.977 (control group X = 106.2 cm, Min = 90 cm, Max = 122 cm; 
treated group X = 107.2 cm, Min = 94 cm, Max = 124 cm); at D14, as for weight 
gain, p-value = 0.6111 (control group X = 510.3 g, Min = 400 g, Max = 572 g; 
treated group X = 510.2 g, Min = 473 g, Max =542 g) and as for intestinal length, 
p-value = 0.114 (control group X = 137.9 cm, Min = 115 cm, Max = 166 cm; 
treated group X = 144.1 cm, Min = 125 cm, Max = 174 cm); at D21, as for weight 
gain, p-value = 0.368 (control group X = 1014 g, Min = 969 g, Max = 1118 g; 
treated group X = 1019 g, Min = 878 g, Max = 1145 g) and as for intestinal length, 
p-value = 0.160 (control group X = 164.2 cm, Min = 148 cm, Max = 178 cm; treated 
group X = 169.8 cm, Min = 153 cm, Max = 198 cm); at D28, as for weight gain, 
p-value = 0.989 (control group X = 1596 g, Min = 1435 g, Max = 1702 g; treated 
group X = 1600 g, Min = 1441 g, Max = 1763 g) and as for intestinal length, 
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p-value = 0.808 (control group X = 187.6 cm, Min = 160 cm, Max = 220 cm; treated 
group X = 185.7 cm, Min = 166 cm, Max = 207 cm).

Despite the absence of significant statistics in the above results, at the end of 
the management, the treated group showed better performance in relation to the 
zootechnical results, as they had greater daily weight gain (control group = 68.82 g; 
treated group = 71.34 g), greater corrected slaughter weight (control group = 2573 g; 
treated group = 2853 g), better feed conversion (control group = 1.593; treated 
group = 1.571), consequently, better productivity factor (control group = 413.19; 
treated group = 430. 89). The only zootechnical results of the treated group with 
lower performance than the control group were the mortality parameter (control 
group = 4.27%; treated group = 5.17%) whose established hypothesis refers to the 
ambience, the presence of a single oven in the aviary, and the thermal challenges, 
variations from 8–25°C throughout the day, that the birds in the treated group went 
through in the first week of bird life.

As for sanitary control, it is routine in the management of farms to carry out at 
D21 the evaluation of the identification of the presence/absence of salmonella in 
the sheds using a drag swab, performing both polymerase chain reaction (PCR) 
methodology and the conventional method of microbial cultivation. The results 
for the PCR assay showed 4 positive samples for the control group and 2 positive 
samples for the treated group, while, for the conventional method of microbial 
cultivation, the control group showed 2 positive samples while the treated group 
did not show characteristic culture growth. These results show the best sanitary 
control of the synbiotic product to the sanitary control for salmonella. It is note-
worthy that this drag swab is carried out in the bed of the sheds and does not 
necessarily reflect the presence of salmonella in the cecal content of the poultries. 
Further tests carried out in other poultry farms whose house received the treat-
ment of the synbiotic product, despite showing identification of salmonella in 
the house and outside areas, did not show identification of salmonella in the cecal 
content of poultries.

As for the consumption of antibiotics, there was a significant reduction in the 
consumption of antibiotics in the treated group compared to the control group 
(FC = 0.37). The treated group consumed throughout the management three 
types of antibiotics which total of 33 administration pulses, while the control 
group consumed four types of antibiotics, totaling 89 administration pulses. 
The description of antibiotic consumption in the control group was, at D1, four 
aviaries received pulses of the antibiotic Cipronil for five days; at D7, seven farms 
received Trimoxil pulses for three days; at D9, 1 aviary also received Trimoxil 
for three days; at D13, 3 farms received Farmaxilin pulses for three days; at D20, 
three farms received Cipronil pulses for five days, two farms received Farmaxilin 
pulses for three days; and, at D28, one house received Farmaxilin pulses for three 
days and four houses received Amprol Base pulses for two days. While the birds 
in the treated group, distributed in 15 aviaries, at D7, three aviaries received 
Farmaxilin pulses for three days; at D18, two farms received three Farmaxilin 
pulses; at D26, two aviaries received three pulses of Amprol Base; at D29, one 
aviary received three pulses of Cipronil and three aviaries received three pulses of 
also Amprol Base.

There is an adversity in comparing the results of zootechnical performance 
obtained on the commercial farm with results published in the literature, as the 
indications for use of synbiotic products and the experimental environment 
variables are distinct and extrapolate the behavior of commercial products in the 
development of the gastrointestinal tract of birds. In short, when evaluating the 
results described by Syed et al. [63] whose treatment 4 (T4) used the same com-
mercial synbiotic product present in the control group, but with an indication 
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for use 5.00x105 CFU/g of feed, if the control group had a lower performance in 
body weight gain than reported by the authors, but with a performance similar 
to that observed by the treated group whose inclusion of synbiotic product was 
five times more lower (BWG = 2573 g CG, BWG = 2983.9 g T4 and BWG = 2853 g 
SG). The feed conversion rate also differs in the experimental and field settings, 
in this variable, the corrected feed conversion rate was better in the treated group, 
followed by the control group and treatment 4 (FCR = 1.57 SG, FCR = 1.59 CG 
and FCR = 1.87 T4). Finally, mortality, whose treatment 4 showed better results 
compared to the control group and the treated group (Mortality (%) = 1.11 T4, 
Mortality (%) = 4.27 CG and Mortality (%) = 5.17 SG). In conclusion, the treated 
group prevailed with better results in 2 of the 3 variables compared in zootechnical 
performance. The zootechnical results obtained in both experiments are a reflec-
tion of several variables such as management and ambience protocols, nutritional 
quality of the feed as well as the composition and indication of use of zootechnical 
additives, environment and sanitary challenges. And, these results are reproduced 
and can also be compared to the results described by Śliżewska et al. [58], Abdel-
Wareth et al. [64] and others.

Synbiotic products in sanitary control promote resistance to infections by 
favoring morphological changes to the intestinal mucosa, developing longer villus, 
smaller crypts and better villus/crypt ratios, also by reducing the gastrointestinal 
pH due to higher lactic acids and by mitigating frequency and histopathological 
lesions [64]. Results described by Mora et al. [65] report the sanitary control of 
Salmonella Typhimurium and Clostridium Perfringens when birds are supplemented 
with symbiotics. Shanmugasundaram et al. [66], Markazi et al. [67], Luoma et al. 
[68], Asahara et al. [69], also report a reduction in salmonella proliferation in the 
cecum of birds.

It was not possible to carry out a comparative evaluation of the reduction in the 
consumption of antibiotics in therapeutic dosages, as a result of the use of synbiot-
ics in the animals’ diet and also of different compositions of synbiotics. The results 
presented are unprecedented and effectively report the benefits that the consump-
tion of certain synbiotics influences on the modulation of animal health and reflects 
on the residual reduction of these antimicrobial agents in meat and the environ-
ment, as well as on the operational result of the creation.

It is in this dual scenario between science and the reality of the field that it is 
important to highlight the equalization between basic science and the application 
of development and innovation carried out in research centers, because although 
experimental tests are essential for the development and proof of new products, the 
reality of management on commercial farms presents adverse variables and chal-
lenges, often even unpredictable, that will compromise the zootechnical perfor-
mance of the birds, the final quality of this food and, consequently, the operating 
result of the farm, on the health of the final consumer that consumes the food and 
in the environment that receives the residues from the handling operation.

The complexity of correlating the mode of action of synbiotic effects in poultry 
production demonstrates the wide spectrum of opportunities that science has to 
develop to understand all pathways influenced by prebiotics and probiotics in the 
TGI tract. Scientific results showed a specific interaction with the environment, the 
host and the synbiotic formulation. In addition, it demonstrated that the synbiotic 
participates in metabolic pathways little described in the scientific literature.

In summary, the results of scientific and field tests have shown a beneficial 
effect of all elaborated synbiotics on the balance of the intestinal microbiota, its 
metabolism and the performance of broiler chickens. Supports the ability of com-
mercial synbiotic products to replace the use of antibiotics as a growth performance 
in order to mitigate rising antimicrobial resistance.
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3. Conclusion

Synbiotic formulations are a potential choice to withdraw antibiotic as growth 
promoter. The complementary or synergic action of synbiotic improve the poultry 
production and control infections disease. Further studies should be developed to 
identify target microorganism’s species according to farm management conditions. 
The hope is that, going forward, the prebiotic, probiotic or synbiotic will have 
greater representativeness among feed additive, reducing the use of antibiotics 
and the selective pressure of microorganism. Advances in symbiotic research will 
promote better understanding of interested parties, enabling better communication 
with consumers.
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Chapter 13

Benefits of Probiotics on Aflatoxin 
Infected Birds
Muhammed Jimoh Ibrahim

Abstract

Aflatoxin are transferred from feed to animal products (Eggs, Meats and Milk). 
There is need to find alternative chemicals that is economically friendly to reduce 
the impact of aflatoxins. Probiotics additives especially Lactobacillus and Bacillus 
spp. biodegradation generally decreases aflatoxin residues in milk, egg and meat. 
They are low cost, economically friendly and accessible additives which could 
mitigate aflatoxin formation in feed and food. There is need for aggressive public 
health awareness on the implication of aflatoxin residues and as well as detoxifica-
tion strategy that can reduce toxin absorption into animal feed.

Keywords: Probiotics, birds, aflatoxin, residues, implication

1. Introduction

Food safety is effectively achieved when the food pillars, such as; food avail-
ability, food access, food utilization, and food stability which permit individual at 
any time to have access to affordable, safe and healthy food to meet daily nutrient 
requirement [1]. Weakens of this four pillar pose a treat to food security. Human 
health and animal welfare are influenced by food insecurity and contaminant, 
which reflect on social and economic status of a society. Mycotoxin during pre, 
processing and post-harvest are driving factors of food insecurity since contami-
nation occurs along the food value chain from farm to fork [2]. Poultry products 
are important international food commodity. Economic losses may occur due to 
the presence of natural feed contaminants, such as mycotoxins, which are second-
ary metabolites produced by certain toxigenic aflatoxins [3], poultry-derived 
products such as meat and eggs are carry-over of aflatoxin into the human food 
value chain which serve as potential threat to human health [4–7]. Contaminated 
food and feeds with aflatoxin prohibit trade of international concern [8]. The 
regulations on “acceptable health risk” usually depend on a country’s level of 
economic development, extent of consumption of high-risk crops, and the sus-
ceptibility to contamination of crops to be regulated [9]. Safety limit of aflatoxin 
consumption for human ranges 4–30 mg/kg. European Union has set the strictest 
standards, which establishes that any product for direct human consumption 
cannot be marketed with a concentration of AF-B1 and total AFs greater than 
2 mg/kg and 4 mg/kg, respectively [10–12]. Likewise, US regulations have speci-
fied the maximum acceptable limit for AFs at 20 mg/kg [13–16]. Worldwide 
European Union aflatoxin standard is adopted, meeting this standard Sub-Sahara 
Africa and Asia encounter both economic losses and financial costs. This situation 
requires alternative technologies at pre- and post-harvest levels aimed to minimize 
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contamination of commercial foods and feeds, at least to ensure that AF levels 
remain below safe limits [15, 16].

Physical, chemical and biological approaches have been conducted to degrade 
mycotoxin. Most of these method are unsafe due to losses in the nutritional value, 
cost of equipment, and formation of intermediate metabolite [17]. Biological 
detoxification using microorganisms or enzymatic preparations is promising [18]. 
Probioitcs such as Rhodococcus erythropolis, Armillariella tabescens, and Myxococcus 
fulvu, Rhizopus oryzaes, Pseudomonas sp and Bacillus subtilis, have been reported 
to have different AF-degrading ability [19–21]. Bacillus subtilis applied directly on 
the feedstuffs degrade 81.5% AFB1 and 85% ZEA in naturally contaminated feed 
in vitro [22, 23]. B. subtilis had protective effects against aflatoxicosis in layers and 
broilers fed naturally AF-contaminated diets [24–26]. It is therefore, important to 
identify benefits of probiotics on aflatoxin contaminated poultry products to effec-
tively monitor carry-over of residues to sustain healthy living and socioeconomic 
development.

1.1 Mycotoxin

Mycotoxin refers to harmful secondary metabolites produced by fungi in 
food and feed products that negatively impact animal and human health, by 
themselves or through synergistic interactions with each other [27]. Mycotoxins 
are structurally diverse low-molecular weight secondary metabolites produced 
by fungal growth [27]. Aspergillus, Penicillium, and Fusarium contaminate 
feed and food consumed by animals and humans. Globally, millions of dollars 
are losses annually on mycotoxins, on agricultural products, animal and human 
health [15].

1.2 Aflatoxins

Aflatoxins are polyketide secondary metabolites produced by toxigenic strains of 
Aspergillus, Penicillium, Fusarium and Alternaria fungi [28, 29]. They grow on a variety 
of nutritional substrates like cereals which is the main active ingredient of poultry and 
human food [30]. They are extremely harmful to the health of humans and animals, 
showing changes in biochemical and hematological indices effecting metabolism via 
alteration of enzymatic pathways of starch, proteins, lipids and nucleic acids. Hence, 
serum glutamate pyruvatate transaminase, serum gluatamate oxaloacetate tranferase 
and γ-glutamyl transferase activities are increased, inciting; hepatotoxic, carcino-
genic, mutagenic, teratogenic, immunosuppressive actions and in severe intoxications 
may cause death [31–38]. Acute or chronic aflatoxicosis in poultry results in retarded 
growth, decreased production and egg quality, impaired immune response, increased 
mortality and liver and intestine damage [39, 40]. AF is also known to interfere with 
metabolism of vitamin D, iron and copper and can cause leg weakness. Aflatoxin has 
caused serious destructions in Africa, which has caused significant financial losses in 
agricultural commodities contaminated with toxins and consequently having effects 
on animal and human health point of view [41, 42]. Although most countries of the 
world has been affected by aflatoxin, it is sub-saharan Africa (SSA) that has suffered 
most [43]. Most of SSA agriculture occurs in impoverished rural areas and a lack of 
technical infrastructure in many African countries does not allow for routine quality 
control of even commercially produced commodities, never mind those produced by 
rural population for their own consumption [43]. Ultimately, the transmission of AF 
and its metabolites from feed to animal edible tissues and products, such as liver and 
eggs, becomes a potential hazard for human health.
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1.2.1 Types of aflatoxins

Among the 18 different types of aflatoxins identified, the major members 
are aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2), which are 
produced by Aspergillus flavus and Aspergillus parasiticus A. nomius [44]. M1 
(AFM1) and M2 (AFM2) are metabolites of AFB1 and AFB2 in human and 
animal milk fed on contaminated food. Aflatoxin B1 (AFB1) being the most 
toxic among other species. Additionally other species which produce aflatoxin 
are A. pseudotamarii, A. ochraceoroseus, A. rambellii, A. toxicarius [45]. In addi-
tion other fungi of the genera Aspergillus (e.g. A. ochraceus and A. carbonarius) 
produces another important mycotoxin ochratoxin A (OTA) [38, 46]. A. flavus 
and A. parasiticus varies from highly toxigenic to non-toxigenic forms and are 
produced by AFB1 than AFG1. A. parasiticus are produce by AFB1 and varying 
amounts of AFB2, AFG1 and AFG2 with variable toxigenicity [47]. Aflatoxins B 
occur more frequently as contaminants, and are also believed to be more potent, 
than Aflatoxins G [48].

1.2.2 Chemical structure

Chemically aflatoxin B occur they are difuro-coumorins –cyclopentenone and 
difurocoumaro lactone series which are freely soluble in chloroform and methanol 
[49, 50], Other aflatoxins have different substitutes but share basic coumarine 
structure. The epoxidation of the 8, 9-double bond and cyclopentenone ring of 
B series is responsible for the order of acute and chronic toxicity as compared 
with the six-membered lactone ring of the G series AFB1 > AFG1 > AFB2 > AFG2 
(Figure 1) [49].

1.2.3 Physical structure

Structurally they are dihydrofuran-coumorins moiety containing double bond 
which are freely soluble in chloroform and methanol. They are stable at high 
temperatures but unstable to UV light or polar solvents [49, 51]. Aflatoxins are 
toxic secondary metabolites upon exposure to fluorescence ultra violet (UV) light, 
aflatoxin B appear blue in color and G appear green in color (Table 1) [49, 52].

Figure 1. 
Chemical properties of aflatoxin B and G (A–F). Source: Adapted from Agriopoulou et al. [38].
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1.3 Occurrence of aflatoxin in food and feed

Eggs, milk and meat are sometimes contain residues of aflatoxins because of 
consumption of aflatoxin contaminated feed ingredients such as peanuts, cotton-
seed, nuts, almonds, figs, spices, soybean, rice and maize [53].

1.4 Mode of action

Cytochrome P450 enzymes (phase I metabolisation) convert aflatoxins to a reactive 
8,9-epoxide form, which is essential for the toxicity. In mammals CYP1A2 and CYP3A4 
are the enzymes responsible for conversion [54] in chicken and turkeys, the correspond-
ing enzymes are CYP2A6 and to a lesser extent CYP1A1 orthologs [55, 56]. DNA and 
protein binds to guanine residues of nucleic acids to produced epoxide metabolite 
causing genotoxicity and cytotoxicity [57]. Aflatoxin B1-DNA adducts result in guanine-
cytosine (GC) to thymine-adenine (TA) transversions [48], which leads to irreversible 
DNA damage, therefore results to hepatocellular carcinomas [58]. Gluthatione con-
jugation or hydrolysis detoxified the toxic epoxide metabolite and epoxide hydrolase 
to phase II metabolisation and AFB1–8,9-dihydrodiol (AFB1-dhd) respectively. AFBI 
Metabolisation to less toxic compounds such as aflatoxin M1 (AFM1) or Q1 (AFQ1) 
[54, 56]. AFM1 metabolite possesses carcinogenic properties which are 10 times lower 
than AFB1. These metabolites obtained from cattle milk. The maximum limits in milk 
permissible for human consumption have been established (0.05 μg/kg) [12, 59], 20 ppb 
in grain and 4 ppb in food and agricultural commodities [59].

1.4.1 Carcinogenesis

The International Agency for Research on Cancer [60] classify aflatoxin as class 
1 carcinogen, transversion of G to T occur in guanine codon 249 of tumor suppres-
sor gene p53 of DNA that induce mutagenesis by alkylation of nuclear DNA, leading 
to carcinogenesis and teratogenesis [61]. 8, 9,-epoxide is a potent carcinogen and 
induces chromosomal aberrations, mutation and cell toxicity [62].

1.4.2 Immunesuppression

Immunosuppressive effects on NK cell activity, humoral and cellular immune 
function are impair by aflatoxin through reducing the primary and secondary 

Aflatoxin Molecular formular Molecular weight Melting point °C

B1 C17H12O6 312 268–269

B2 C17H14O6 314 286–289

G1 C17H12O7 328 244–246

G2 C17H14O7 330 237–240

M1 C17H12O7 328 299

M2 C17H14O7 330 293

B2A C17H14O7 330 240

G2A C17H14O8 346 190

Source: International Crop Research Institute for Semi-Arid Tropics.
Adapted from: Reddy et al. [49]

Table 1. 
Physical properties of aflatoxins.
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immune responses [63–66]. AFB1 induces; thymic aplasia, reduce T-lymphocyte 
function, lymphokines, suppress phagocytic and complement activity [67, 68]. 
Aflatoxin suppresses the levels of IL-1, IL-2, IL-6, IFN, TNF alpha, mRNA and 
proinflammatory cytokines [69, 70]. Embryonic chicks exposed to AFB1 showed a 
depressed graft-versus-host response, thymic bursal involution, delayed cutaneous 
hypersensitivity, macrophages function, reduced antibody titers to vaccines for 
Newcastle, Mareks and infectious bursal disease [32, 52, 71, 72].

1.4.3 Nutritional

In poultry a drop in feed conversion efficiency and decreased growth rate is 
observed following a chronic exposure to aflatoxin feed [73]. Aflatoxin modifies 
vitamin A nutrition in poultry halving the serum retinol and Plasma concentration 
of 25-hydroxyvitamin D and 1,25- dihydroxyvitamin D concentrations [48, 74]. 
Bennett and Klich [8], toxin has been a factor modulating the rate of recovery from 
protein malnutrition. Toxin contaminated diet affect zinc and selenium which are 
essential for healthy immune systems [75].

1.4.4 Aflatoxin control

Contamination of feed and food with aflatoxins occur during the preparation 
value chain. Several methods have been adopted in the prevention of aflatoxicosis 
in animal origin. Application of Good Agricultural Practices (GAP) are important 
strategy during pre-harvest. Appropriate GAP includes crop rotation, soil cul-
tivation, irrigation and proper use of chemicals. Crop rotation is important and 
focuses on breaking the chain of infectious material, for example by maize/legume 
rotations. Any crop husbandry that includes destruction, removal or burial of the 
infected crop is seen as good soil cultivation. The deeper the soil is inverted (plow-
ing), [76]. Reducing plant stress by irrigation is also valuable to prevent fungi infes-
tation [77]. Damages caused by insects, birds and rodents increases susceptibility 
of aflatoxin invasion. Successive fungal infection must by controlled by appropriate 
use of critical pest management system and application of fungicides [77]. Climate 
change such as high temperature, relative humidity and drought influenced mold 
infection and mycotoxin production [17].

Mycotoxin are prevented during storage by improving the post-harvest storage 
conditions [78]. Jard et al. [79], reported storage of grain at less than 15% moisture, 
removal of infected grain by insect and visibly damaged this prevent favorable 
condition for mold growth, combination of multiple strategies to reduced moisture 
content of grain and prevent mold formations. Mycotoxin are destroyed, inacti-
vated, or generate non-toxic products which do not altered the nutritional quality 
of the food or feed [79]. There are several decontamination processes which include 
radiation, oxidation, reduction, ammonization, alkalization, acidification and 
deamination [17]. These chemical methods are not allowed in the European Union 
[12] as chemical transformation might lead to toxic derivatives. In the United States, 
only ammonization is licensed for detoxifying aflatoxins.

1.4.5 Detoxifying

Detoxification of agricultural commodities through; radiation, oxidation, 
reduction, ammonization, alkalization, acidification and deamination is restricted 
due to problems associated with incomplete detoxification, cost implication and 
unavailability of equipment. Commonly used method to reduce mycotoxin expo-
sure in the field is the inclusion of mycotoxin detoxifying agent in feed (mycotoxin 
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detoxifiers) which decreases the bioavailability of the toxin [79, 80]. There are two 
different class of detoxifiers, namely mycotoxin binders and mycotoxin modifiers. 
The modes of action differs; mycotoxin binders adsorb the toxin in the gut, result-
ing in the excretion of toxin-binder complex in the feces, whereas mycotoxin modi-
fiers transform the toxin into non-toxic metabolites [34]. Detoxifier are extensively 
use as feed additives for the reduction of contamination of feed by mycotoxin; 
which modify their mode of action, reduce absorption and secretion of metabolites 
[34]. Detoxifier does not mean that animal feed exceeding maximal regulatory 
limits used. Quality of feed can be improve by adding detoxifier making the product 
acceptable in market and providing safety for animal health [80].

1.4.6 Organic binder

Lactic acid bacteria (LAB), are divided into four genera: Lactococcus, 
Lactobacillus, Leuconostoc and Pediococcus. They are Gram-positive, catalase-
negative, non-sporulating, usually non-motile rods, cocci, ferment carbohydrates, 
produced lactic acid [81]. Lactic acid bacteria are used in food processing industry 
for fermentation, preservation and mycotoxin binding abilities [82]. The mechanism 
of interaction involves the peptidoglycan structure (amino acid) which are common 
site for binding. However, different mycotoxin have different binding sites [82].

1.4.7 Probiotics

Application of biotechnological tools to reduced chemical residues and improved 
production efficiency that does not create any harm to poultry as well as consumers 
of the value chain [83]. Recent advancement in biotechnology on poultry feeds, ban-
ning of harmful growth promoters and antibiotics. Globally, probiotics is gaining 
acceptance in feed formulation [83]. Antimicrobial resistance is now a worldwide 
threat [84] with alteration of immune response due to feeding of antibiotic growth 
promoters, Probiotics are considered as an important tool as regard to antimicrobial 
resistance [85]. Chick gut are usually sterile immediately after hatch, colonization 
of microflora on the gut occur on the hatching tray, hatcher, feed and water intake. 
These Microorganisms in the gut could either be beneficial or harmful based on 
their response to the host immune system. The beneficial organisms maintain 
gut equilibrium, improve health and production of the birds. However, harmful 
bacteria like E. coli, Salmonella, Coliform and Campylobacter adjust the gut equilib-
rium to favor spread of infection. Probiotics supplementation mitigate the spread 
of infection on poultry. Commercial probiotics preparation can be administer as 
a single or multi-strain where they positively improved production and egg shell 
quality [86]. Probiotics depends on several factors for their survival on the host, 
this include; dose frequency, type of host animal, strain and stability of organism, 
genetic component of host, nutritional status of host age and physiological levels 
[87, 88]. Research findings showed that use of probiotics in layer diets enhanced egg 
production, improve body weight [89–92], reduced serum low density lipoprotein 
(LDL) cholesterol [93], decrease cholesterol and triglycerides in blood [94, 95]. 
Probiotics improved shell quality hardness and bone strength in laying hens [96]. 
Improvement in the production of darker yolk color Sobczak and Kozłowski [90].

1.4.8 Lactobacillus spp. and Bacillus spp.

Physical and chemical detoxification are associated with some disadvantages 
such as undesirable effects on products, loss of nutritional quality and altered 
organoleptic properties, high cost of production and time consumption [97]. 
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Antibiotic are used in poultry to treat an infection, growth promoter and productiv-
ity thus causes antimicrobial resistance to the health of livestock and consumers 
of the bye products [98]. Multi-drug resistance genes (MDRG) occurs due to 
under administration, overdose, drug residues and extra label use of drugs which 
is emerging in both animal and human due to continuous use of antibiotic in the 
diet of poultry. However, biological methods based on competitive exclusion where 
probiotics colonized adhesive sites on the intestinal epithelium thereby, prevent 
colony formation of pathogenic bacteria, non-toxigenic fungal strains have been 
reported promising method for lessening the formation of mycotoxins and prevent-
ing their absorption animal to human [87, 99]. Lactobacillus, Bifidobacterium, 
Propionibacterium, and Lactococcus are found to be active in terms of binding 
AF-B1 and AF-M1 [97, 100, 101]. Probiotics are alternatives for growth promotion, 
food safety, enhanced nutrient assimilation, improve production and reducing 
harmful bacterial concentration of the gut [87, 102, 103]. Binding of aflatoxin 
depend on several factors such as temperature, incubation time, pH, matrix and 
strain of probiotics [104]. Probiotics act as antagonist against aflatoxin, by alter-
ing metabolism of gastrointestinal tract, production of volatile fatty acid, organic 
acid, antibacterial (lactocidin, acidophillin, bacteriocins and hydrogen peroxide), 
stimulation of essential nutrient for immune responses and inhibiting bacteria 
growth [105, 106]. Absorption of nutrient and digestive activity are increase with 
decreased in ammonia production and bacteria enzyme activity (glucoronidase, 
nitroreductase, azoreductase) produced by pathogenic bacteria. They stimulate 
immune system by higher production of immunoglobulins, macrophages, lym-
phocytes, γ-interferon increase villus height, goblet cells and crypt depth to create 
environment unfavorable to agent [107]. Strain composition and doses determines 
the potentiality of probiotics [86]. Single strain probiotics exact direct mechanism 
of action but for multi-strain, it exact synergistic synergistic action among different 
strains and in such condition, it is supposed that multi-strain probiotics have more 
adhesive power than single strain [108].

1.4.9 Intestine

Intestine and the intestinal epithelial cell layer are selective barrier between 
external and internal environment. The first barrier layer prevent exposure of 
high concentration of foreign antigens, natural toxins, pathogens and mycotoxin 
[109, 110]. Intestine are maintained by well-organized intercellular structures 
including tight junctions, adherence junctions and desmosomes surrounding the 
apical region of epithelial cells [111]. Physical and chemical factors can dynami-
cally alter the structure and function of tight junctions. The trans-epithelial elec-
trical resistance (TEER) of cell monolayers can be considered as a good indicator 
of the epithelial integrity and of the degree of organization of the tight junctions 
over the cell monolayer [112]. The primary function of intestinal cells are to act 
as a physical barrier, separating the contents of a harsh luminal environment 
from the layers of tissue comprising the internal milieu [113]. Intestinal epithelial 
cell studies performed on rats indicate that aflatoxin B1 decreases intestinal cell 
proliferation throughout the intestine [114]. The intestinal epithelial cells barrier 
function as both on innate and adaptive components of immunity [113].

1.5 Immune response

Various mycotoxins affect immune-related organs and cells, and influence host 
defenses against infectious agents and related microbial toxins [115]. Aflatoxins 
suppress immune functions, particularly cell-mediated immune responses [116]. 
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For instance, high levels of aflatoxin B1 (AFB1)-albumin adducts change T-cell 
phenotypes and reduce the percentage of B cells in human immunodeficiency 
virus-positive individuals [117]. In addition to lymphocytes, embryonic exposure 
to AFB1 impairs the functions of phagocytes such as macrophages and neutrophils, 
via the depression of phagocytic potential, inhibition of antiviral activity, and 
reduction in chemotactic responses [118–120]. AFB1 also interferes with the innate 
immunity of macrophages by suppressing tumor necrosis factor-α (TNF- α), 
interleukin (IL)-1, and IL-6, resulting in the disruption of pulmonary and systemic 
host defenses [67, 121].

2. Conclusion

Probiotics significantly counteract the adverse effect of aflatoxins which effec-
tively reduced accumulation of aflatoxin residues in milk, meat and eggs [122]. 
In conclusion, feed and food industry could benefit from the use of probiotics to 
mitigate aflatoxin residues in eggs, milk and meats. Hence, probiotics might be 
promising tools in decreasing economic and health damage caused by aflatoxin in 
poultry industry. The prevalence of aflatoxin residues in poultry products call for 
public health attention of food safety along the value chain, by creating awareness 
on the presence of aflatoxins on poultry products and health implication to both 
animal and human.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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