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Preface

Neurotoxicity refers to negative changes in the normal activity of the nervous
system by endogenous and exogenous toxic substances. Many different chemical 
compounds or biological neurotoxins can cause neurotoxicity, including chemo-
therapy drugs, heavy metals, pesticides, and more. Studies on the neurotoxicity
of substances are limited and the toxicity of many different substances is not
fully known. For this reason, there is a need for neurotoxicologists specialized in
this developing field as well as new prevention and treatment approaches against
emerging toxicity.

Perturbations can come and go quickly, evolve slowly over days or weeks and 
regress over months or years, or result in chronic deficiencies. Although there may
be a long delay between exposure and the emergence of neurotoxic consequences, 
neurotoxicity is usually self-limiting after exposure ends and rarely progressive in
the absence of ongoing exposure.

Neurotoxicity - New Advances is an important and valuable resource for clinicians, 
toxicologists, and specialists in the field. It provides up-to-date information on
neurotoxicity, behavior of neurotoxic agents, and prevention and treatment
approaches.

Dr. Suna Sabuncuoglu
Associate Professor,

Faculty of Pharmacy,
Department of Toxicology,

Hacettepe University,
Sıhhiye, Ankara
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Chapter 1

In-Utero Neurotoxicity of 
Nanoparticles
Nikhat J. Siddiqi, Sabiha Fatima, Bechan Sharma  
and Mohamed Samir Elrobh

Abstract

The unique physicochemical properties of nanoparticles (NPs) make them 
widely used in cosmetics, medicines, food additives, and antibacterial and antiviral 
compounds. NPs are also used in therapy and diagnostic applications. Depending 
on their origin, the NPs are commonly classified as naturally occurring and syn-
thetic or anthropogenic NPs. Naturally occurring nanoparticles can be formed by 
many physical, chemical, and biological processes occurring in all spheres of the 
earth. However, synthetic NPs are specifically designed or unintentionally pro-
duced by different human activities. Owing to their nano size and special proper-
ties, the engineered NPs can enter the human body through different routes such as 
dermal penetration, intravenous injection and inhalation. NPs may accumulate in 
various tissues and organs including the brain. Indiscriminate use of NP is a matter 
concern due to the dangers of NP exposure to living organisms. It is possible for NPs 
to cross the placental barrier, and adversely affect the developing fetus, posing a 
health hazard in them by causing neurodevelopmental toxicity. Thus, NP-induced 
neurotoxicity is a topic that demands attention at the maternal-fetal interface. This 
chapter summarizes the routes by which NPs circumvent the blood-brain barrier, 
including recent investigations about NPs’ neurotoxicity as well as possible mecha-
nisms involved in neural fetotoxicity.

Keywords: nanoparticle, neurotoxicity, placental barrier, blood-brain barrier

1. Introduction

The term nanoparticle (NP) refers to particles with at least one dimension less 
than 100 nanometers [1]. NPs are an essential part of earth’s biogeochemical sys-
tem, produced by many physical and chemical processes including different natural 
and human activities. They are commonly classified as naturally occurring and syn-
thetic or anthropogenic NPs, depending on their origin. Synthetic or anthropogenic 
NPs can be further categorized into two types: incidental and engineered nanopar-
ticles [2]. Naturally occurring nanoparticles can be formed by chemical, photo-
chemical, mechanical, thermal, and biological processes occurring in all spheres of 
the Earth. NPs such as alumina, iron oxide, gold, sulfur manganese oxide, and so on 
derived from natural sources can be found in volcanic ash, fine sand, ocean spray, 
and even some biological matter [1]. Incidental nanoparticles are unintentionally 
produced as a byproduct of human day-to-day activities involving combustion 
process such as running diesel engines, large-scale mining, and even starting a fire. 
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On the other hand, the engineered or manufactured NPs such as silver, gold, zinc, 
metal oxides like manganese dioxide (MnO2), aluminum oxide Al2O3, titanium 
oxide (TiO2) of controlled shape, sizes, and compositions are specifically designed 
and deliberately synthesized by human beings [3]. Engineered NP include nonmet-
als like carbon nanotubes and quantum dots, polymers like chitosan, alginate, 
lipids like stearic acid, and metal sulfide like CuS, AgS, ZnS and so on [4]. Another 
classification of NP is their grouping into organic nanoparticles and inorganic 
nanoparticles. Organic nanoparticles include liposomes, dendrimers, micelles and 
so on. Examples of some of inorganic NP include metallic NP like gold, iron, silver, 
aluminum, titanium oxide (TiO2), and zinc oxide (ZnO). Nanomaterials can also 
be classified based on their size for example zero-dimension, one dimension, two 
dimension, and three dimensions [5]. Silver, gold, copper, and platinum are some of 
the most commonly used metals NP. Metal-based NPs can be easily conjugated with 
various functional groups, like polylysine, polyethylene glycol (PEG) or bovine 
serum albumin [6, 7].

The technological advancements of human society as well as progress in the field 
of nanotechnology have shown a sharp rise in consumer products that deliberately 
include synthetic nanoparticles [8]. This has resulted in high levels of exposure to 
many types of synthetic NPs, and it is likely that this trend will continue in future. 
The easiest place to find these nano-enabled products in our own homes is in health 
care products, cosmetics, and food additives. In the past decade, many companies 
have used ZnO and TiO2 NPs as sun block materials because these materials are 
very effective at absorbing UV radiation [9]. Some commonly used nanomateri-
als as food additives include silver, silicon dioxide (SiO2), titanium TiO2, and iron 
oxide (Fe2O3) [10]. Silver NPs are also commonly used as antibacterial and antiviral 
agents, while gold NPs are used for drug delivery, photothermal therapy and 
diagnostic applications, and polymeric NPs are used for controlled and targeted 
drug delivery [11].

Extensive use of engineered NP poses risk to human health. The health hazards 
are cause of concern in pregnant women and their unborn children. Therefore, it is 
important to study the toxic effect of NP on developing fetuses. In this chapter, we 
summarize the developmental toxicity of NP on the nervous system.

2. Factors affecting the toxicity of nanoparticles

The embryonic toxicity of nanoparticles depends on their bioaccumulation, 
which in turn depends on the following [12]:

• Chemical composition, particle size, shape, surface modification, and degree 
of agglomeration. Smaller NPs have been shown to induce more pronounced 
blood brain barrier (BBB) breakdown, brain edema and neuronal injuries, 
glial fibrillary acidic protein upregulation, and myelin vesiculation in young 
animals [13]. Similarly, different shapes of the same NP have been shown to 
induce different cellular responses by nonspecific uptake into cells [14]. In 
vivo animal studies have demonstrated that administration of higher doses 
of smaller particles NP caused their increased accumulation in placental and 
embryonic/fetal tissues [15].

• Type of coating, concentration of particles, surface charge of the particles, 
zeta potential, and crystal form. Unmodified fullerene NPs can generate 
reactive oxygen species (ROS) to damage cells, whereas surface-modified 
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fullerene NPs have been demonstrated to enter cerebral microvessel endothe-
lial cells and protect these cells by attenuating ROS-induced cellular damage, 
such as F-actin depolymerization [16].

• Other factors include the pH of the solution, salt concentration and the 
temperature [17], “protein corona,” chemical characteristics, metal impurities, 
and degradation properties [18].

• Particle dissolution also alters the particle presence [15].

• Routes of exposure in in vivo studies. Inhalation is the main route of exposure 
in occupational and environmental settings. Experimental studies commonly 
use intravenous and intra peritoneal routes [15].

• The anatomical and functional state of the placenta [19, 20] and the critical 
period of exposure during gestation [15].

• Zeta potential of the NP. The charges on the NP determine their interactions 
with the biological system. Also, the zeta potential determines the stability of 
the NP in colloidal systems [21].

3. Entry of nanoparticles

The exogenous entry of engineered NP is mainly from hand-to-mouth contact 
in the workplaces. Nanoparticles enter the body through food, drinking water, 
drugs, or exposure during medical procedures. Inhalation of airborne nanopar-
ticles is also an important point of entry into the body [22]. Larger particles are 
trapped in the nasopharyngeal region (5–30 μm), while the smaller particles 
(1–5 μm) get deposited in the tracheobronchial region. These particles can be 
removed by mucociliary clearance. Finally, the remaining submicron particles  
(< 1 μm) and nanoparticles (< 100 nm) with the smallest size distribution penetrate 
deeply into the alveolar region, where removal mechanisms may be insufficient. 
Nanosized particles can reach the alveolar region of the lungs where they get in 
contact with the alveolar epithelium. From the alveolar epithelium these par-
ticles can cross the blood-air-tissue barrier and enter the bloodstream to reach 
various organs [22]. Inhaled ultrafine particles may get deposited in the olfactory 
mucosa from where they can translocate in the central nervous system (CNS), 
which in turn might cause neurotoxicity. Studies have shown that the CNS  
may be a crucial target for nanoparticle inhalation or intranasal installation 
exposure [23, 24]. The third route of entry of NP into the body is through dermal 
penetration [22, 25].

The NPs enter the CNS through three main routes: (1) Transport through the 
lymphatic and circulatory system; (2) Activity of the mucocilliary escalator fol-
lowed by oral exposure; and (3) Transport through the olfactory and trigeminal 
nerves [18, 26]. This pathway involves the passage of nanoparticles through 
the olfactory epithelium and the neurons associated with it to the brain [18]. 
Carbonaceous nanomaterials have been reported to show increased access to the 
brain via the facilitation of olfactory mucosa and olfactory nerve [23]. After uptake, 
NPs can permeate into other parts of the brain by simple diffusion and then travel 
along the direction of the convection of the interstitial fluid and the cerebrospinal 
fluid flow [27].
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4. Barriers that restrict the entry of substances into the brain

4.1 Blood: Brain barrier (BBB)

The blood-brain barrier (BBB) is a term used to describe the unique properties 
of the microvasculature of the central nervous system (CNS). CNS is made of 
continuous and non-fenestrated vessels. These blood vessels function to regulate 
the movement of molecules, ions, and cells between the blood and the CNS  
[28, 29]. The central nervous system of vertebrates is isolated from the rest of the 
body by BBB. Normal functioning of BBB is essential for homeostasis. The BBB 
is made of two main types of cells, that is, endothelial cells (EC) and mural cells. 
ECs function to regulate the movement of ions, molecules, and cells between the 
blood and the brain. ECs are held together by tight junctions (TJs), which greatly 
restrict the paracellular movement of solutes [30]. The tight junctions hold CNS 
ECs in place forming a paracellular barrier to molecules and ions [30].

Mural cells are the cells surrounding the large vessels and pericytes, which are 
present on the abluminal surface of the endothelium [31]. Pericytes and astrocytes 
are considered the key cell types involved in BBB regulation through their interac-
tions with brain endothelial cells. Astrocytes interact with brain endothelium and 
are thought to be involved in the maintenance of BBB endothelial cell properties 
[32] and regulate BBB permeability [33]. The BBB restricts the movement of 
molecules by forming a physical barrier, which is represented by tight junctions 
between the endothelial cells. The endothelial cells express two main types of trans-
porters: the efflux transporters, which transport lipophilic substances toward the 
blood [34] and nutrient transporters, which transport nutrients into the CNS and 
remove waste products from the CNS to the blood [35]. The EC cells of the CNS are 
characterized by a higher number of mitochondria [36]. These mitochondria supply 
the BBB with Adenosine triphosphate to carry out their transport processes.

Other cell types of the BBB are astrocytes and immune cells, mainly macrophages 
and microglial cells [30]. Pericytes, astrocyte end-feet, and a discontinuous basal 
membrane support the functions of the BBB. The highly selective functionality of the 
BBB is due to endothelial tight junctions that are assisted by astrocytes and pericytes. 
The tight influx control is complemented by the efflux transport system, which rapidly 
eliminates classic xenobiotics and NMs buildup in the brain [37]. However, nanomate-
rials have been reported to cross the BBB via a transcytosis-mediated route [38].

4.2 Metabolic barrier

A second barrier observed in the nervous system is the metabolic barrier. 
The metabolic barrier is composed of enzymes and transport systems [39]. The 
metabolism of endothelial cells plays an important role in the function of BBB. 
L-Dihydroxyphenylalanine is the precursor of dopamine which enters the brain 
through the neutral amino acid-transport system. However, its entry is restricted 
due to L-Dihydroxyphenylalanine decarboxylase and monoamine oxidase inside 
the endothelial cells of the brain capillaries. This “enzymatic blood-brain barrier” 
limits the passage of L-Dihydroxyphenylalanine into the brain (https://nba.uth.tmc.
edu/neuroscience/m/s4/chapter11.html). The brain capillaries contain enzymes that 
metabolize neurotransmitters. These enzymes include endopeptidases, cholinester-
ases, aminopeptidases, and Gamma-Aminobutyric acidtransaminases. The brain 
capillaries also contain drug and toxin-metabolizing enzymes found in the liver [40].

The endothelium of the BBB lacks pinocytic vesicles. This limits pinocytosis 
by the cells of BBB. The cells of BBB express many enzymes on the intra and 
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extracellular surfaces, which restrict the movement of substances through the BBB. 
P-glycoproteins, and similar substances present on the endothelial cells also help 
to eliminate various endogenous and exogenous toxins [18]. P-glycoproteins cause 
multi-drug-resistant cancer cells to pump out the drugs. The endothelial cells have 
P-proteins, which help to pump some hydrophobic substances like cyclosporin A, 
domperidone, digoxin and so on into the blood.

4.3 Blood-Cerebrospinal fluid barrier

A third barrier represented by the blood-Cerebrospinal fluid barrier also serves 
to prevent indiscriminate entry of substances in the CNS [41]. This barrier is made 
up of choroid plexus epithelial cells. The blood-Cerebrospinal fluid barrier is 
made up of choroid plexus epithelial cells, which have smaller tight junctions than 
the BBB endothelia. The blood-Cerebrospinal fluid barrier prevents the entry of 
macromolecules into the Cerebrospinal fluid. The active transport systems of the 
BBB actively remove therapeutic organic acids from the Cerebrospinal fluid [42].

5. Circumvention of the blood-brain barrier by NPs

Some of the ways by which NP can circumvent the blood brain barrier include 
the following (Figure 1):

• Transcellular diffusion—Low molecular weight solid lipid nanoparticles [43].

• Paracellular diffusion—this route is taken by silica and reduced graphene oxide 
NP [44, 45].

• Receptor-mediated transcytosis—Engineered nanomaterials with ligands such 
as transferrin, insulin, ApoE can avoid the BBB by this route [46].

Figure 1. 
Possible pathways through which nanoparticles cross the blood-brain barrier (BBB) and damage the neurons. 
Engineered nanomaterials with specific physicochemical properties can cross the BBB through various transport 
pathways such as (A) transcellular diffusion; (B) paracellular diffusion; (C) receptor-mediated transcytosis; 
(D) adsorptive-mediated transcytosis; and (E) cell mediated transcytosis. Nanoparticles interact directly with 
neuronal cells and cause neurotoxicity.
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• Adsorptive-mediated transcytosis—Cationic albumin-conjugated pegylated 
NPs enter the brain by adsorptive-mediated transcytosis [47].

• Cell mediated transcytosis—Macrophages take up engineered nanomaterials 
and release them into the CNS [48].

6. Translocation of nanoparticles through the placenta

Exposure of pregnant mice to different NPs has been reported to induce preg-
nancy complications or damage to the fetus. Placenta is the maternal-fetal interface, 
which is formed of both maternal and fetal tissues that protects the embryo from 
harmful substances in the maternal blood. Placenta functions to exchange oxygen, 
nutrients, metabolic waste, and other molecules between the maternal and fetal 
bloodstream [49]. Factors that control the transfer of substances between maternal 
and fetal circulation include membrane surface area and thickness, blood flow, 
hydrostatic pressure in the intervillous chamber and the difference between fetal 
and maternal osmotic pressure [50]. Beside the placenta, amnion, chorion and 
parietal decidua also surround the fetus. These membranes are impervious to most 
of the xenobiotics in the maternal blood [51].

The brains from the fetuses of rats and mice have shown the presence of NP 
when the pregnant mothers were exposed to NP [52, 53]. Nano-silica and nano-
TiO2 have been reported to accumulate in the placenta, fetal liver, and fetal brain 
when injected to pregnant mice [54]. The extent of transfer of nanoparticle across 
the placenta depends on the characteristics and functionalization of the particles 
[55, 56]. NPs with diameters 1–100 nm have been shown to transverse the placental 
barrier and were detected in the brain of the offspring [57, 58]. Gestational age is 
an important factor affecting the toxicity of NP on the fetus [50]. Fennell et al. [59] 
have demonstrated that AgNP administered through oral and IV route on gestational 
day 18 resulted in placental accumulation after 48 h. Campagnolo et al. [60] demon-
strated that inhalation of Ag NP during the first gestational day until the fifteenth 
gestational day in female rats caused fetal resorption. This was accompanied with an 
increased expression of pregnancy-relevant inflammatory cytokines in the placentas. 
Zhang et al. [19] have shown that maternal exposure of mice to TiO2 NP decreased in 
angiogenesis in placental tissue and activated apoptotic pathways through caspase-3 
in placental tissue.

Studies have demonstrated that various NPs can cross the BBB and placental 
barrier [61, 62]. Titanium dioxide nanomaterials (nTiO2) have been reported 
to cross the placental barrier in pregnant mice and cause neurotoxicity in their 
offspring. Toxicity to the brain cells was reported to be caused due to necrosis 
(Figure 2) [63].

6.1 Mammalian embryonic model

Rodents, primarily mice and rats have been commonly used for gestational 
translocation of NPs [15]. Mice have been commonly used for mammalian embryo 
toxicity studies [64–66]. Although rabbits have been used in fewer studies, rabbit 
placentae bear closer resemblance to human placentae than that of other rodents. 
Therefore, rabbits should be the preferable animal model to study gestational 
particle exposure [15]. Other nonmammalian species like drosophila and zebrafish 
have also been used in in vivo studies [67].
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6.2 Effects of nanoparticles on fetal brain

The developing brain is highly vulnerable to nanomaterials [18] due to the 
incomplete development of BBB in the fetus [68]. The CNS shows considerable 
plasticity in the early stages of development and therefore highly susceptible to 
the toxic effects of NP [69]. The placenta is a multifunctional organ forming a 
barrier between maternal and fetal tissues. In utero exposure to NPs is one of 
main routes of exposure during the development of the nervous system [70]. 
Neurodevelopmental studies have shown that both male and female offspring show 
differential phenotypes after prenatal insults by NPs [18].

Among various NPs, many studies have been reported on the neurotoxicity of 
TiO2 NP. Injection of TiO2 NP into pregnant mice resulted in altered expression of 
genes associated with brain development and function of the central nervous system 
in embryos [71]. The effects of TiO2 seem to continue on the developing brain even 
during lactation [72]. The effects of titanium dioxide nanomaterials in pregnant 
mice include reduced size of the placenta and disrupted anatomical structure of 
the fetal brain and liver. Toxicity to the brain cells was reported to be caused due 
to necrosis [63]. One study showed that TiO2 NPs administered subcutaneously to 
pregnant mice resulted in an increased number of apoptotic cells in the olfactory 
bulb of the brain and damage to cranial nerves [58]. A subsequent study showed that 

Figure 2. 
Maternal exposure of nanoparticles (NPs) results in neural fetotoxicity and developmental abnormalities. 
Direct translocation of NPs from maternal circulation across the placental barrier into growing fetus has been 
recognized as the major factor involved in NP-induced fetotoxicity. Accumulation of NPs in the fetus can cause 
structural and functional abnormalities in various fetal tissues, including the central nervous system (CNS) 
which is the main target of metallic NPs. Oxidative stress, induction of inflammatory responses, alterations in 
gene expression, DNA damage, necrosis, and apoptosis are the mechanisms associated with NP-induced neural 
fetotoxicity.
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the mice fetuses that were exposed to TiO2 NPs prenatally exhibited an increased 
level of dopamine and its metabolites in the prefrontal cortex and neostriatum. 
This demonstrates that prenatal exposure to TiO2 NPs might affect the development 
of the central dopaminergic system in mouse offspring [73]. In utero exposure of 
mice to TiO2, NP has been shown to cause changes in the genes associated with the 
brain development and functions of central nervous system in the embryo [71]. 
Accumulation of TiO2 NP in the placenta may interfere with the development of 
nervous system of the fetus by impairing the transport of nutrients to the fetus [74].

Injection of silica (Si) NPs to pregnant mice resulted in their accumulation 
in the brain of the embryo [54]. Other studies have reported that ZnO and TiO2 
NPs causes neurotoxic effects in fetus after passing through the placenta [71, 75]. 
Injection of cobalt-chrome (CoCr) NPs into pregnant mice has been reported to 
cause neurodevelopmental abnormalities, like reactive astrogliosis and increased 
DNA damage in the fetal hippocampus [76].

6.3 Effects of prenatal exposure to NP on the offspring

Here, we briefly enumerate some of the effects of NPs in offspring associated with 
prenatal exposure. The effects of prenatal exposure to nanoparticles include neurobe-
havioral alterations in the offspring [77]. Other effects of prenatal exposure include 
accumulation of NP in the hippocampus [58, 78, 79]. These NPs in the fetal brain 
cause disturbances in the CNS homeostasis. The accumulated NP has been reported 
to cause psychiatric disorders such as autism, schizophrenia, and depression in 
offspring [80]. Exposure of pregnant mice to aluminum NP has been shown to induce 
neurodevelopmental changes which persisted during adulthood. This was accompa-
nied by an anxiety-like behavior and impairment of cognitive function in offspring 
exposed to aluminum nanoparticles during in utero life [20]. Prenatal exposure to 
TiO2 NPs has been shown to impair the antioxidant status, cause oxidative damage to 
nucleic acids and lipids in the brain of newborn pups and enhanced the depressive-
like behaviors during adulthood. Prenatal exposure to TiO2 NP has been associated 
with depressive behavior in adults [81]. In the case of ZnO NP, the depressive behav-
ior has been attributed to their neurotoxic effects on neural development [82].

Pups from mice exposed to Al2O3 before and during pregnancy have been 
shown to have higher levels of Al accumulation in the hippocampus [20]. Similarly, 
in the case of Sprague Dawley rats the pups of dams exposed to silver NP showed 
the accumulation of silver in the brain, lung, liver, and kidneys [78]. Subcutaneous 
injection of TiO2 NP to CD-1 pregnant mice caused the accumulation of TiO2 NPs in 
the brain and testis of offspring [58]. However, exposure of Sprague Dawley rats to 
Zn NPs before mating and during lactation caused no accumulation of these NPs in 
the brain of offspring [83]. Prenatal exposure of mice to TiO2 NPs causes anatomi-
cal alterations in cerebral cortex, olfactory bulb and regions associated with the 
dopamine systems in the offspring [84].

Studies of Mohammadipour et al. [85] and Gao et al. [72] showed that in 
pregnant rats treated with TiO2 NPs significantly decreased hippocampal cell 
proliferation, impaired learning, and memory, and affected synaptic plasticity in 
the hippocampal dentate gyrus area in newborn rats. Similarly, the study of Zhou 
and his collogues [86] showed that maternal exposure to TiO2 NP results in inhibi-
tion of hippocampal and dysfunction of the rho/NMDAR signaling pathway in 
offspring. Maternal CB-NP exposure induced the long-term activation of astrocytes 
resulting in reactive astrogliosis in the brains of young mice [87]. TiO2 NP injection 
to pregnant mice has been reported to cause symptoms akin to autism spectrum dis-
order (ASD) and neurodevelopment disorders in neonates, without the detectable 
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presence of NP in the placenta [88]. Another study indicated that nano-TiO2 can 
cross the blood-fetal barrier and placental barrier, thereby delaying the develop-
ment of fetal mice and inducing skeletal malformation [89].

7. Mechanisms of nanoparticle toxicity

Various hypothesizes have been proposed from time to time regarding the toxic-
ity of NP. Nanoparticles can directly cross the placenta and cause damage to the 
fetus because of their high surface reactivity. Because of their small size, NPs can 
easily reach the brain and are taken up by the brain cells, such as neurons and glia. 
Mechanisms of NP uptake by cells include pinocytosis, endocytosis dependent on 
caveolae and lipid raft composition, clathrin-dependent endocytosis, and phago-
cytosis [90]. Due to their high surface reactivity, the nanoparticles can cause the 
generation of reactive oxygen species [91] and inflammation [92]. The metal ions 
of the NP have been proposed to contribute to their toxicity [93, 94]. The neuro-
toxic effects can either result in the direct alteration of the structure or activity of 
the neural system or lead to subsequent effects due to glial activations and glial-
neuronal interactions [95]. The nanoparticles may also exert their toxic effects due 
to their limited elimination/excretion from the brain.

Oxidative stress has been implicated as one of the major mechanisms of NP 
toxicity. Consequences of oxidative stress include mitochondrial membrane damage 
and dysfunction, which in turn leads to cell death [96]. Inflammation caused by the 
production of cytokines appear to be a second mechanism by which the NP exerts 
their cytotoxic effects [97]. ZnO NPs have been shown to induce the production of 
pro-inflammatory cytokines in the brain of mice, accompanied by an impairment 
of cAMP/CREB signaling pathway. The degree of inflammation correlated with the 
age of the mice [56]. NPs interact with enzymes, potential apoptotic, or necrotic 
factors and induces inflammatory processes [12]. NP show properties similar to that 
of viruses and cause damage to DNA affecting cell proliferation [90]. NP can reduce 
mitochondrial function [98] and generate cellular morphological abnormalities [99] 
Cui et al. [81] postulated that prenatal exposure to NP resulted in an impairment of 
antioxidant capabilities in the brain of newborn pups.

Accumulation of NPs along the endosomal pathway may affect the morphology 
and functioning of the BBB. The interaction of the NP with biological macro-
molecules like DNA, lipids, and proteins may lead to the generation of oxidative 
stress, conformational changes in the macromolecules, mutations, alterations in 
membrane permeability, activation of various signaling pathways, alterations in 
the functions of enzymes, and exposure of new protein epitopes [100]. Genotoxic 
effects of NP include chromosomal aberrations, DNA strand breaks, oxidative DNA 
damage, DNA adducts, and micronucleus formation [101, 102]. Interactions of NP 
with microglia and astrocyte may activate NF-κB signaling and result in the release 
of mediators of inflammation and apoptosis [103]. On the other hand, oxidative 
stress induced mitochondrial DNA damage results in Nod-like receptor protein 3 
(NLRP3) inflammasome activation, which subsequently regulates inflammatory 
responses by activating caspase-1 and interleukin-1β (IL-1β) release [104].

Most of the resulting damage of the nervous tissue is usually irreversible 
[18]. NPs have been reported to disrupt the cytoskeleton of cells of the CNS and 
thus cause cell death. NPs been shown to regulate the expression of neuronal 
channels and other proteins involved in excitability and neurotransmission [105]. 
Microglia, account for ~20% of the glial cells in the brain. They are a type of 
glial cells, which are the resident innate immune cells in the brain and regulate 
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neuroinflammation [106]. Choi et al. [107] demonstrated that low levels of SiNPs 
can alter microglial function by changing the expression of proinflammatory genes 
and cytokine release. Excessively activated or uncontrollable microglia can cause 
nerve toxicity by inducing proinflammatory factors, such as interleukin-1β, tumor 
necrosis factor (TNF)-α, prostaglandin E2, and interferon-γ (Figure 3) [18].

Autophagy (autophagic flux) is a highly regulated cellular process which by 
eliminating long-lived proteins and damaged organelle components through the 
lysosomal mechanism maintains cellular homeostasis [18]. NPs have been demon-
strated to be autophagic inducers [108]. Autophagy has been found to be correlated 
with increased DNA strand breaks and other defensive mechanisms [109]. NPs have 
been reported to induce autophagy through the generation of ROS and lysosomal-
dependent mechanism [18]. Autophagy induced by NPs can have protective or 
detrimental effect on cells. During intracellular oxidative stress, imbalance and 
excessive ROS generation decline in autophagy-lysosome degradation function 
results in autophagic flux impairment, which leads to significant accumulation of 
the substrate of autophagy within the cell and may even trigger cell death through 
mitochondrial pathway [110].

Figure 3. 
Mechanism of nanoparticles (NPs)-induced neurotoxicity. Supraphysiological levels of reactive oxygen 
species (ROS) induce oxidative damage to the cellular macromolecules such as lipids, protein, and both 
mitochondrial and nuclear DNA. ROS-induced protein peroxidation may result in loss of catalytic activity of 
many enzymes including the antioxidant enzymes. NPs-mediated genotoxic stress in turn, can drive apoptosis 
mainly through the intrinsic mitochondrial apoptotic cell death pathway in neuronal cells. Mitochondrial 
dysfunction activates inflammasomes, which triggers the release of proinflammatory cytokines IL-1β and IL-18 
via caspase-1 activation. Moreover, ROS-induced activation of nuclear factor kappa B (NF-κB) pathway may 
trigger proinflammatory responses, which is one of the key factors associated with NPs-induced neurological 
inflammation.
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8. Conclusion

The brain has a limited capacity to excrete NPs [111]. Therefore, NPs that bypass 
the blood brain barrier and reach the fetal brain during embryonic development 
result in neurodevelopmental toxicity in growing fetus and psychiatric disorders 
in offspring. Compelling evidence from animal studies on nanotoxicity during 
pregnancy shows that cautions must be taken by pregnant women when using 
NP-based products or medicine. Deeper understanding of interaction of NPS with 
the biological system and the underlying mechanism on neurotoxicity will help in 
the development of safety guidelines on the use of engineered NPs in medicine and 
commercial products without health hazard. However, there is a need to study the 
effects of long-term exposure to NP with realistic routes and levels of exposure to 
identify the chronic effects of NP to fetal nervous system.
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Chapter 2

Impact of Silver Nanoparticles 
on Neurodevelopment and 
Neurodegeneration
Yiling Hong

Abstract

Silver nanoparticles (AgNPs) are one of the most highly commercialized 
nanoparticles, having been used extensively as an antimicrobial agent in cosmetics, 
textiles, foods, and the treatment of diseases. However, the impact of AgNPs on 
human mental health has not yet been well characterized. Using the human plu-
ripotent stem cell (hPSC) neuronal differentiation cellular model to assess AgNPs 
neurotoxicity has several benefits. First, hPSCs neuronal differentiation process can 
faithfully recapitulate stages of neural development from neuronal progenitors to 
mature neurons which can provide an excellent platform for neurodevelopment and 
neurodegeneration toxicity testing. Furthermore, it can limit the amount of ani-
mal use for toxicity studies. With this cellular model, we examined citrate-coated 
AgNPs (AgSCs) and Polyvinylpyrrolidone-coated (AgSP) mediated neurotoxicity. 
Our results suggested that AgNP induced neurotoxicity exhibited a coating and 
dose-dependent manner. AgSC had high neurotoxicity compared with AgSP. AgSC 
significantly up-graduated Metallothionein (1F, 1E, 2A) proteins, a metal-binding 
protein that plays an essential role in metal homeostasis, heavy metal detoxifica-
tion, and cellular anti-oxidative defense. Transcriptome analysis indicated that 
AgSC inhibited neurogenesis and axon guidance, promoted gliogenesis and neuro-
nal apoptosis through oxidative stress. Supplementation with ascorbic acid can act 
as an antioxidant to attenuate AgNP-mediated neurotoxicity.

Keywords: silver nanoparticles (AgNP), human pluripotent stem cell-derived 
neuronal network, transcriptome analysis, oxidative stress, neurogenesis  
and gliogenesis, neurodegeneration

1. Introduction

Engineered nanomaterials (ENMs) are ultra-fine materials (ranging from 
1 to 100 nm in length or diameter) that are currently being developed for diverse 
applications due to their unique optical, electrical, and thermal properties [1–3]. 
Among them, silver nanoparticles (AgNPs) are one of the most widely used in 
medical and commercial products for their unique antibacterial functions [4–10]. 
The AgNP market is expected to reach USD 2.45 billion by 2022 (Globe Newswire, 
San Francisco, 2015). Furthermore, over the next decade, Nanotechnological 
approaches will continue to play a vital role in neuroscience, not just in the develop-
ment of highly specific and sensitive imaging probes and biosensor interfaces, but 
also potential tools for treatment strategies [11, 12]. For example, molecules will be 
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nano-engineered to cross the blood-brain barrier to target specific cell or signaling 
systems or act as vehicles for gene delivery [13, 14].

Although the translation of nanotechnology into the treatment of human 
neurological disorders is very promising, the biocompatibility of these materials 
is still a primary concern [8]. A wealth of data demonstrates that ENMs have the 
potential to induce inflammation, oxidative stress, and DNA damage, which point 
towards potential health risks for humans, including cardiovascular diseases, 
pulmonary diseases, impairment of brain function, and developmental toxicity 
[15–17]. Recently, researchers have begun to explore the potential neurotoxicity of 
ENMs such as AgNPs in cellular and animal models [18–21]. These studies showed 
that AgNPs can accumulate in the central nervous system (CNS) through the upper 
respiratory tract via the olfactory bulb or through crossing the blood-brain barrier, 
and thus induce neurodegeneration [10, 22, 23]. Furthermore, studies showed that 
AgNP exposure impairs neurodevelopment in PC12 cells and stem cell-derived 
neuronal networks and alters the expression of genes involved in neuronal function 
that are distinct from those of Ag+ alone, depending on size and coating [24–26].

So far, there has been limited information regarding the impact of AgNPs on 
neuronal development and neurodegeneration both in vivo and in vitro. hPSCs neu-
ronal differentiation protocol evaluates the impact of AgNPs on multiple stages of 
differentiation ranging from neuronal progenitors to mature neuron and astrocyte 
networks [24, 25, 27]. This cellular model will help us to understand the mecha-
nisms behind AgNP-mediated neuronal toxicity and identify the molecular markers 
to assess mental health risks associated with products containing EMNs. This book 
chapter is a summary of our recent studies regarding AgNP mediated neurotoxicity.

2. The impact of AgNP on neurogenesis

Neurogenesis is a series of developmental events leading to the formation of 
new neurons and astrocyte support cells. Neurogenesis is not only the most active 
process during the pre-natal stage but also happens in certain regions of the brain, 
such as the subgranular layer of the hippocampal dentate gyrus throughout life 
in mammals. Studies found that adult brains are more plasticity than previously 
thought. The process of neurogenesis is tightly regulated and influenced by both 
intrinsic genetic factors and extrinsic environmental factors. The process involves 
transitions from proliferation to differentiation, accompanied sequentially by the 
expression of the transcriptional factors such as Pax6, Tbr2, NeuroD, and Tbr1 [28]. 
If these gene expressions are altered, the neurogenesis events will be disrupted, 
which can lead to neuropsychiatric diseases such as anxiety, learning and memory, 
and Alzheimer’s disease (AD) [29, 30].

Our study indicates that when citrate-coated AgNP (AgSC) were administered 
to the media during stem cell neuronal differentiation, neuronal progenitor rosettes 
were immunostained with neuronal progenitor markers: sex-determining region 
Y-box 2 (SOX2) and VI intermediate filament protein (Nestin). The results showed 
that AgSC exposure disrupted neuronal tube-like rosette formation and reduced 
neuronal progenitor population (Figure 1A). Quantification of SOX2 and Nestin 
relative fluorescence intensity showed that AgSC reduced SOX2 expression and 
increased Nestin expression in a concentration-dependent manner (Figure 1B). The 
alternation of the expression level of Sox2 and Nestin will change the neural pro-
genitor fate. Furthermore, flow cytometric analysis for the population of neuronal 
progenitors with SOX2 and Nestin markers indicated that the percentage of SOX2+ 
and Nestin+ neuronal progenitors decreased from 54.3.3% to 20.9%, while SOX2− 
and Nestin− cells which would be unable to differentiate into neurons increased 
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from 20.19% to 47.7% at 1.0 μg/mL AgSC exposure compared to untreated sample. 
In contrast, SOX2− and Nestin+ progenitors, which potentially could develop into 
astrocytes, increased from 23.3% to 26.1% with the same treatment (Figure 2A). 
The ratio of Nestin+/SOX2− and Nestin+ elevated to 1.45 at 1.0 μg/mL AgSC expo-
sure, while the control group is 0.43. Those data support our hypothesis that AgSC 

Figure 1. 
AgSC inhibited neurogenesis and promoted gliogenesis. A. AgSC inhibited neuronal rosette formation. Scale 
bar = 100 μm. B. Quantification of SOX2 and nestin relative intensities (fold of control), ratio of intensity 
between SOX2 and nestin from immunofluorescent staining images. C. BDAccuri C6 flow cytometer analysis 
the neuronal progenitor population. D. Ratio of nestin+/SOX2− and nestin+ from flow cytometry result. Data is 
presented as mean ± SEM, *p < 0.05, or **p < 0.01 vs. control.
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inhibited neurogenesis and promoted gliagenesis. Lower concentrations of AgSC 
(0.1 μg/mL) slightly reduced SOX2 and Nestin expression, but the impact is insig-
nificant. Supplements of AA partially reduced the effects (Figure 1C).

To further understand the molecular mechanisms of AgSC neuronal toxicity, a 
transcriptome analysis was performed., Total RNA was extracted from 3 replicates 
of 1.0 μg/ml AgSC exposure groups and untreated control groups to make libraries 
for sequencing. Significant differential expression (SDE) was cut off by padj <0.05 
and |log2foldChange| > = 1. Among 322 SDE genes, 134 were up-regulated and 188 
were down-regulated upon AgSC exposure (Figure 2A). The topmost up-regulated 

Figure 2. 
AgSC significantly altered gene expression A. Total DEGenes of 1.0 μg/mL AgSCs treated group compared with 
control group. The significant genes (P ≤ 0.05) were labeled with red color. B. Quantitative real-time PCR to 
examine selected genes. FOXG1, NeuroD6 and NTS were significantly down-regulated. MT1E was significantly 
up-regulated. Data is presented as mean ± SEM, *p < 0.05, or **p < 0.01 vs. control. C. The clustered by GO 
biological processes. Result was shown as –log10(P) value. D. KEGG pathway and colored with –log10 (P) 
value. Min overlap ≥3, p-value ≤0.01 and min enrichment ≥1.5 were used for significant enrichments [25].
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genes Metallothioneins 1F; Metallothioneins 1E; Metallothioneins 2A (45, 52, and 
24 times), and frizzled class receptor 10 (FZD10) (Table 1). There are four main 
isoforms of cysteine-rich proteins Metallothioneins (MTs) which have the capacity 
to bind heavy metals such as zinc, copper, selenium, cadmium, mercury, silver, 
through the thiol group of its cysteine residues. MTs play important roles in metal 
homeostasis and protect against heavy metal toxicity, DNA damage, and oxida-
tive stress. The other up-graduated gene is FZD10, a key regulator of the WNT 
signaling pathway. FZD10 plays acritical role in the neuronal pattern specification 
process, gliagenesis, and neurite outgrowth [31]. In addition, transcriptional factors 
NeuroD6, FOXG1, and NTS are among the top 20 significantly down-regulated 
genes (Table 2). Those genes play an important role in regulating neuronal differ-
entiation, synaptogenesis, and axon extension during brain development [32]. The 
selected genes MT1E, NeuroD6, FOXG1, and NTS mRNA expression levels were 
examined with qPCR, respectively, and confirmed by RNA-seq data (Figure 2B).

These significantly differentially expressed genes were analyzed by metascape 
(http://metascape.org) for functional annotation clustering. Based on gene ontol-
ogy analysis, in response to AgSC exposure, the most significant impact on the 

Gene NAME log2FoldChange

Metallothionein 1F (MT1F) 5.733703827

Frizzled class receptor 10 (FZD10) 5.63545845

Metallothionein 1E (MT1E) 5.55542047

Vestigial like family member 3 (VGLL3) 5.257650459

Pentraxin 3 (PTX3) 5.249022406

Metallothionein 2A (MT2A) 4.634538775

Cyclin O (CCNO) 4.614228599

FZD10 antisense RNA 1 (head to head) (FZD10-AS1) 3.906526795

Canopy FGF signaling regulator 1 (CNPY1) 3.102452269

NAD(P)H quinone dehydrogenase 1 (NQO1) 2.932494502

Sodium voltage-gated channel beta subunit 4 (SCN4B) 2.863730164

Transcription factor AP-2 beta (TFAP2B) 2.822828878

Zic family member 1 (ZIC1) 2.792907219

Actin, alpha 2, smooth muscle, aorta (ACTA2) 2.779703608

Actin, gamma 2, smooth muscle, enteric (ACTG2) 2.726196918

Alpha-2-macroglobulin (A2M) 2.584555887

Crumbs 2, cell polarity complex component (CRB2) 2.561792956

Zic family member 4 (ZIC4) 2.479236853

Neuronal pentraxin 2 (NPTX2) 2.443739583

Protein tyrosine kinase 2 beta (PTK2B) 2.421852257

Vasoactive intestinal peptide receptor 2 (VIPR2) 2.404813991

Collagen type I alpha 2 chain (COL1A2) 2.330235258

Zinc finger DHHC-type containing 22 (ZDHHC22) 2.286038754

Iroquois homeobox 1 (IRX1) 2.283963197

EF-hand and coiled-coil domain containing 1 (EFCC1) 2.280818988

Table 1. 
AgSC mediated up-graduated differential expressed genes.
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biological processes were regulation of neuron differentiation, brain development, 
synapse organization, pattern specification processes, gliogenesis, and cholesterol 
biosynthetic processes (Figure 2B). The KEGG analysis results showed that the 
affected genes were enriched in C5 isoprenoid biosynthesis, axon guidance, neuron 
apoptotic progress lysosomes, MAPK, WNT, Hedgehog, and Notch signaling path-
ways (Figure 2D). In conclusion, our data suggest that AgSCs interfere with metal 
homeostasis and cholesterol biosynthesis which induces oxidative stress, reduces 
neurogenesis and axon guidance and promotes gliogenesis and apoptosis.

3. Impact of AgNPs on neurodegeneration

Neurodegeneration is the progressive loss of structure or function of neurons 
due to aging, diseases, and environmental factors. Free radicals or oxidative stress 
may damage lipids, nucleic acids, and proteins. The brain is particularly vulnerable 
to oxidative stress because of its high level of protein and lipid content and low 

Gene name log2FoldChange

CREBATF bZIPtranscription factor (CREBZF) −3.554019527

LIM domain 7 (LMO7) −3.064914689

SRSF protein kinase 2 (SRPK2) −2.924926145

Myocyte enhancer factor 2C (MEF2C) −2.81151306

Transmembrane protease, serine 13 (TMPRSS13) −2.794313859

Neuritin1 (NRN1) −2.770934839

Ring finger protein 175 (RNF175) −2.724670035

G1 to S phase transition 2 (GSPT2) −2.674801389

Methylsterol monooxygenase 1 (MSMO1) −2.634382164

Coiled-coil domain containing 171 (CCDC171) −2.583794397

Meis homeobox 2 (MEIS2) −2.540498698

Gamma-aminobutyric acid type A receptor gamma2 subunit (GABRG2) −2.503960528

Src-like-adaptor (SLA) −2.478947195

calcium binding protein 1 (CABP1) −2.341485603

semaphorin 3F (SEMA3F) −2.336576641

fatty acid binding protein 6 (FABP6) −2.333357057

B-cell CLLlymphoma 11A (BCL11A) −2.268903493

neuronal differentiation 6 (NEUROD6) −2.2525029

neurotensin (NTS) −2.251646035

DLG associated protein 1 (DLGAP1) −2.233930932

zinc finger CCCH-type containing 15 (ZC3H15) −2.227494717

cerebellar degeneration related protein 1 (CDR1) −2.217658748

neurotensinreceptor 1 (NTSR1) −2.214928804

forkheadbox G1 (FOXG1) −2.185129942

chromosome 12 open reading frame 65 (C12orf65) −2.176721998

Table 2. 
AgSC-mediated down-graduated differential expressed genes.
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level of antioxidants [33]. Reactive oxygen species (ROS) such as superoxide (O2
−) 

and hydrogen peroxide (H2O2) are typically categorized as neurotoxic molecules 
associated with decreased synaptic plasticity performances in cognitive function 
and cell death. ROS can initiate excitotoxicity effects by inducing an intracellular 
calcium influx that leads to the activation of glutamate receptors and apoptosis 
[24]. To investigate the molecular mechanisms underlying AgNP-induced neuro-
degeneration, mature glutamatergic neuronal networks containing astrocytes were 
generated from iPSC. ROS production were examined with 20 nm citrate-coated 
AgNPs (AgSCs) and polyvinylpyrrolidone-coated AgNPs (AgSPs) exposure. Our 
results showed AgNPs-induced ROS production was coating and dose-dependent 
(Figure 3A). AgSCs-treated neurons produced more ROS compared to the AgSPs-
treated samples.

We examined our hypothesis, stating that AgNPs-induced ROS will promote 
astrocyte activation and neuronal cell death. Astrocytes are the most numerous 
neuroglial cells in the central nervous system (CNS). Astrocyte vital functions 
include blood-brain barrier formation, providing structural and metabolic support, 
and regulating synaptic transmission and water transport [34, 35]. Astrocytes are 

Figure 3. 
AgNP promoted ROS production, induced astrocyte activation and synapse protein loss. A. ROS was generated in a 
dose-dependent manner in (A–C) AgSP-treated neurons. (E–G) AgSC-treated neurons produced a higher amount 
of ROS compared to (D) the untreated neurons (ctrl). (H) the inset image of hGNs treated with 5 mg/ml AgSC 
showed the interneuronal accumulation of ROS. Scale bar 100 mM. B. Immunofluorescent staining images showed 
AgSC promoted astrocyte activation. C. Effect of AgSC on the excitatory synaptic protein, vGlu1 and PSD95 
expression. The co-localization of vGlut1(red) and PSD95 (green) in the controls. Exposure to AgSC (5 mg/ml) 
significantly diminished the vGlut1and PSD95 expression and co-localization [24, 27].
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sensitive to environmental changes. Under the chronic stress condition, astrocytes 
will undergo significant structural remodeling which reduces process length, 
branching, and density length [36]. Our results indicated that 0.1 μg/ml dose 
AgSC exposure increased the number of GFAP positive astrocytes for neuronal 
protection. At high doses, 5.0 μg/ml AgSC exposure altered astrocyte morphology 

Figure 4. 
The molecular mechanisms of the AgNP induced neurotoxicity. A. Immunoblotting of glutamate receptors 
NR2A/B, phosphorylated GSK-3α/β and Tau46 after espousing the AgNPs at three different concentrations for 
72 h. β-Actin was used as a loading control. B. Immunostaining with Tau46/Map2 indicated that the effect of 
AgNPs on microtubule assembly proteins expression and axon outgrowth. C. Potential molecular mechanisms 
underlying AgNP induced neurotoxicity [24].
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and induced astrocyte activation. Furthermore, we examined how AgSCs affect 
synaptic structural and functional components. Neurons were double-stained for 
the presynaptic vesicle membrane protein Synaptophin (Syn) and the postsynaptic 
marker PSD-95 (Figure 3B). Untreated control neurons showed extensive neuritis 
processes co-localized between Syn and PSD-95 (Figure 3B). Exposure with AgSCs 
at 1.0 and 5.0 μg/mL drastically reduced Syn and PSD-95 expression and their 
co-localization.

We further investigated the signaling cascade involved in AgNP mediated neu-
rodegeneration with different coatings. Glutamate receptor N-methyl-D-aspartate 
receptor (NMDAR) plays a key role in synaptic plasticity, which is linked to a form 
of long-term depression (LTD) as well as neuron survival. The dysregulation of 
NMDAR in neurons will trigger an apoptosis-associated increase in caspase-3 activ-
ity. The immunoblotting results showed that AgSCs reduced the expression levels 
of the post-glutamate receptor subunits NR2A and NR2B and increased the phos-
phorylation of GSK3α/βTyr216/279, whereas AgSPs had similar effects, but only at 
a higher concentration (5 μg/ml) (Figure 4A). GSK3 α/β phosphorylation has been 
shown to be associated with neural apoptosis in many neurodegenerative disorders. 
An increase in GSK-3β activity via GSK3α/βTyr216/279 phosphorylation can lead to 
Tau phosphorylation (pTau) [37, 38]. Our immunoblotting results confirmed that 
the AgNPs can increase GSK3 α/β phosphorylation and increase Tau phosphoryla-
tion at serine 396 in a dose-dependent manner, whereas AgSPs had no effect on Tau 
phosphorylation (Figure 4A). Tau is involved in the loss of neuronal dendrites and 
the axonal network by disrupting microtubule assembly. The result of Tau46/MAP2 
double immunostaining showed that AgSC treatment caused the reduction of both 
protein expression and axon outgrowth (Figure 4B). Figure 4D presents a model of 
molecular mechanisms for AgNPs induced neurodegeneration. We suggested that 
phosphorylation of GSK3a/bTyr216/279could be the potential biomarker for AgNPs 
neurotoxicity testing.

4. Conclusion

In our study, neuronal progenitors, mature glutamatergic neurons, and astro-
cytes were derived from hPSC which were used for testing AgNPs toxicity. The 
results indicated that citrate-coated AgSCs significantly affected neuronal progeni-
tor proliferation, gliagenesis, neuronal neuritis outgrowth, and cell viability due 
to up-graduated Metallothionein (1F, 1E, 2A) gene expression and increased ROS 
production. AgSPs had similar effects but only exhibited the toxicities at higher 
concentration exposure. In this context, the proper coating can prevent or limit the 
neurotoxicity associated with the AgNPs exposure. Our study indicates that stem 
cell-derived neuronal differentiation is an excellent cellular platform for investigat-
ing the impact of AgNPs on neuronal development and neurodegeneration and 
identifying biomarkers for risky assessment. In addition, this cellular model could 
also be used for different types of nanoparticles such as carbon-based nanopar-
ticles, ceramic nanoparticles, metal nanoparticles, semiconductor nanoparticles, 
and lipid-based nanoparticles neuronal toxicity assessment in the future.
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Chapter 3

Neurotoxic Agents and Peripheral 
Neuropathy
Neslihan Eskut and Asli Koskderelioglu

Abstract

Neurotoxicity may develop with exposure to various substances such as  
antibiotics, chemotherapeutics, heavy metals, and solvents. Some plants and fungi 
are also known to be neurotoxic. Neurotoxicity can develop acutely within hours, or 
it can develop as a result of exposure for years. Neurotoxicity can be presented with 
central or peripheral nervous system findings such as neurobehavioral symptoms, 
extrapyramidal signs, peripheral neuropathy. Peripheral nerve fibers are affected in 
different ways by neurotoxicant injury. The pattern of injury depends on the target 
structure involved. The focus of this chapter includes signs, symptoms, pathophysi-
ology, and treatment options of neurotoxicity.

Keywords: neurodegeneration, neuropathy, neurotoxic, mechanisms of 
neurotoxicity, chemicals

1. Introduction

The direct or indirect effects of chemical or physical agents that disrupt the 
function or structure of the nervous system of humans or animals are called  
neurotoxicants [1]. Neurotoxicity can be presented with central or peripheral 
nervous system findings such as neurobehavioral symptoms, extrapyramidal 
signs, and peripheral neuropathy. Peripheral nerve fibers are affected distinctly 
by neurotoxicant injury. Mild or severe polyneuropathy involves the peripheral 
nerves, affecting the myelinated, thinly myelinated, and unmyelinated fibers. A 
wide variety of etiological factors can cause polyneuropathy. In addition to frequent 
causes such as diabetes mellitus, alcohol abuse, the peripheral nervous system is 
vulnerable to several rare conditions [2]. Toxic peripheral neuropathies are caused 
by various chemicals, a basic form of acquired polyneuropathy [3]. Neurotoxicity 
may develop when exposed to heavy metals, solvents chemotherapeutics, mono-
mers, gases and pesticides. The focus of this chapter includes signs, symptoms, 
pathophysiology, and treatment options of several neurotoxic agents that cause 
peripheral neuropathy.

2. Heavy metals

Heavy metals are naturally occurring elements with a high weight and a density 
at least five times greater than water [4]. In other words, any toxic metal can be 
defined as heavy metal, regardless of its atomic weight or density [5]. The industrial 
activities of the modern world have caused a massive rise in human exposure to 
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heavy metals, and heavy metals have harmful effects on human health [6]. Heavy 
metals’ contamination of water and air is an environmental threat, and hundreds of 
millions of people are being exposed worldwide. The concentration of heavy metals 
in water supplies, air, and food is evaluated in this respect [7, 8].

Heavy metals such as arsenic (As), lead (Pb), mercury (Hg), aluminum (Al), 
and cadmium (Cd) do not have any particular role in an organism and can be toxic 
even at low levels [9]. On the contrary, it has been reported that some of these heavy 
metals such as iron, magnesium, selenium, copper, zinc, cobalt, nickel, molybde-
num, chromium, and manganese are essential nutrients that have functional roles for 
various diverse biochemical and physiological functions in the body [10]. However, 
in over adequate amounts, they may cause toxicities. Acute and chronic toxic effects 
of heavy metals have an impact on different organs of the human body. In addition to 
the nervous system disorders, gastrointestinal and kidney dysfunction, skin lesions, 
vascular damage, immune system dysfunction, birth malformations, and cancer are 
examples of the complications of heavy metals toxic effects [8, 11, 12].

2.1 Lead

Lead is a toxic heavy metal in different sources such as contaminated drinking 
water, battery manufacture, cosmetics, leaded gasoline, lead-based paint, cans, 
glazed ceramics, traditional herbal medicine products, water pipes, jewelry, tobacco 
smoke, and electronic cigarettes, and toys. Lead exposure can be considered a public 
health concern, especially in early childhood, because children have increased 
hand-to-mouth activity, so they are more at risk [13, 14]. While the half-life of Pb 
in the bloodstream is about 35 days, it is stored in bones for approximately 30 years 
[15, 16]. Oxidative stress, alterations in membrane biophysics, dysregulation of cell 
signaling, and the impairment of neurotransmission are considered the complex 
underlying mechanisms of lead-induced neurotoxicity [17].

One of the most critical endpoints of Pb toxication is neurological effects. Pb 
toxication frequently causes neuropathy in adults, while encephalopathy is mainly 
seen in children. Exposure to high Pb levels causes encephalopathy with signs such 
as hyperirritability, cerebellar findings, seizures, unconsciousness, and coma. It is 
reported that exposure to low Pb levels has been associated with impaired cogni-
tive and intellectual function in children [18, 19]. In occupational exposure, it is 
reported that neurological signs and symptoms include weakness, forgetfulness, 
irritability, headache, impotence, decreased libido, vertiginous symptoms, and 
paresthesia in Pb exposure workers. Moreover, increased prevalence and severity 
of white matter lesions, changes in nerve conduction velocity, and alterations of 
somatosensory evoked potentials were documented [18, 19].

In lead toxicity, motor-predominant polyneuropathy, which causes the develop-
ment of wrist-drop, may present. Additionally, because of secondary to autonomic 
nerve involvement, constipation may accompany [20]. After forbidden the usage 
of leaded gasoline, changes in lead mining practices, and the abandonment of 
lead-based paint, human exposure to the primary sources of Pb decreased. So the 
incidence of overt lead toxicity induced polyneuropathy decreased [21].

2.2 Arcenic (As)

Arsenic is an environmental toxin, and this heavy metal is widely distributed to 
the earth. Hundreds of millions of people consume inorganic contaminated tube 
well water [22, 23]. Burning the charcoal and metal foundry activities are known to 
cause atmospheric deposition of As. Excessive pesticides and fertilizers and mining 
use cause soil contamination with As [24, 25]. While As often exists in the world 
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crust in the trivalent atomic state (inorganic) with other heavy metals such as Pd, 
iron, copper, it is generally oxidized to pentavalent form in the soil and water. It is 
reduced to in trivalent atomic state in low oxygen situations, such as deep seawater 
[26]. Inorganic As is more potent and has been implicated in neurotoxic effects. The 
inorganic form should be distinguished from the non-neurotoxic organic As found 
in some fish and shellfish [21].

It is reported that traditional folk medicines can be the other sources of As [27, 28]. 
Some herbal medicines commercially available have been reported to contain heavy 
metals such as lead, mercury, and arsenic. Using these products may cause heavy 
metal toxicity and secondary peripheral neuropathy [26]. As causes various adverse 
effects on human health such as carcinogenic and non-carcinogenic [26].

The exact metabolic pathways of As are yet to be proved. However, oxidative 
methylation and glutathione conjugation are the primary pathways suggested [29]. 
The primary mechanism in As-induced neurological pathologies has been suggested 
oxidative stress with Vitro and in vivo studies [9]. While exposure to high levels of 
As induces primarily central nervous system findings, exposure to low levels causes 
primarily peripheral nervous system findings [18].

Single high dose exposure to As may lead to severe gastrointestinal and systemic 
symptoms such as nausea, diarrhea, vomiting, pain, dehydration, and weakness. 
It is usually the result of suicide- homicide or accidental poisoning. If the patient 
survives acute poisoning with As, neurological symptoms such as light-headedness, 
weakness, delirium, encephalopathy, and peripheral neuropathy develop [30].

Chronic neurological symptoms of As exposure are delirium, encephalopathy, 
and also peripheral neuropathy. In neuropsychological tests, while psychomotor 
speed and attentive processes were mildly impaired, verbal learning and memory 
were severely impaired [31, 32]. It is known that peripheral neuropathy may last 
for several years or even life-long, but on the other hand, in severe cases, diffuse 
sensorimotor polyradiculoneuropathy may be seen, similar to the Guillan–Barré 
syndrome. At the same time, chronic As exposure can cause painless sensory-
predominant peripheral neuropathy [32].

The diagnosis of arsenic toxicity can be made by demonstrating high urinary 
and increased arsenic levels in the nails and hairs. Serum arsenic level estimation 
is not recommended because of the rapid clearance of arsenic. There is no gold 
standard specific treatment for chronic arsenic toxicity. For acute arsenic toxicity 
treatment, chelating agents such as BAL, D-penicillamine, and meso-2,3-dimercap-
tosuccinic acid are mainly used [33].

2.3 Mercury (Hg)

Mercury is heavy metal in the air, water, and soil in three chemical forms;  
metallic/elemental, inorganic, and organic Hg (methyl mercury and ethyl mercury). 
The elemental Hg is liquid at room temperature and can evaporate quickly. The 
vapor form of Hg is more dangerous and can is readily absorbed from the lungs 
(80%) and distributed throughout the body [8]. A wide variety of fields in that Hg 
have been used, such as gold mining, fluorescent light bulbs production, ingre-
dients of antiaging creams, fungicides to protect plants against infections, and 
protection in multidose vials of vaccines [34, 35].

In the middle of the 1950s, around 200.000 people have affected by the  
consumption of organic Hg-contaminated fish in Minamata Bay, Japan. Because 
of chronic Hg toxicity, neurological signs and symptoms occurred, such as ataxia, 
weakness, numbness, disturbance in speech, chewing, and swallowing. Infants 
born with severe developmental disabilities from the poisoned pregnant women 
were reported. After that, the illness was called Minamata disease [36].
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It is reported that organic mercury influences the dorsal root and trigeminal 
ganglia and causes paresthesia, usually just before causing widespread CNS 
dysfunction [20]. In nerve conduction studies, motor abnormalities were much 
more frequently reported than sensory abnormalities. Most frequently, findings 
were prolonged latencies and reduced amplitudes in both motor and sensory 
nerves. Nevertheless, interestingly, those abnormalities were shown more often in 
upper extremities, not lower extremities, a finding that differs from expectations 
[37]. Electromyography (EMG) was less frequently performed in the studies but 
reported results were always abnormal. The most frequently reported EMG find-
ings (fibrillations, positive waves) were suggestive of active denervation and also 
reinnervation (prolonged motor unit potential duration, polyphasic motor unit 
potential durations) [38]. Electromyography (EMG) was less frequently performed 
in the studies but reported results were always abnormal. The most frequently 
reported EMG findings (fibrillations, positive waves) were suggestive of active 
denervation and also reinnervation (prolonged motor unit potential duration, 
polyphasic motor unit potential durations) [20].

2.4 Cadmium (Cd)

Cadmium is a highly toxic heavy metal. According to Agency for Toxic Substance 
and Disease Registry, Cd is the 7th most toxic heavy metal. The biological half-life 
of Cd is about 20–30 years in humans [39]. Cd exists naturally in unrefined rocks. 
Several sources of human exposure to Cd include mining works, contaminated 
groundwater use, commercial products (batteries, color pigments, several alloys, 
and Polyvinyl chloride, phosphate fertilizer) [40].

Exposure to Cd can be occurred by inhalation and also ingestion. It can accumu-
late into the lungs, olfactory bulb, and kidney [40]. Suggested mechanisms of Cd 
neurotoxicity include increased lipid peroxidation associated with oxidative stress 
and causing injury to the microvasculature of the brain. Experimental studies show 
that rats exposed to Cd, accumulation in choroid plexus, and Cadmium-related 
lipid peroxidation were demonstrated in brain areas such as the cerebellum and 
cerebral cortex [41, 42]. Cd neurotoxicity might be caused by defective neurogen-
esis, lead notably reduced neuronal differentiation and axonogenesis, leading to 
neuronal cell death [43].

Exposure to Cd causes very different neurological signs and symptoms of both 
the peripheral and central nervous systems. These are mental retardation, learn-
ing disabilities, behavioral pathologies [44]. Moreover, there is growing evidence 
about Cd-dependent neurotoxicity being one of the possible etiological factors of 
neurodegenerative diseases such as Alzheimer’s, Parkinson’s diseases, and sporadic 
amyotrophic lateral sclerosis [45, 46]. However, Little is known about the influence 
of cadmium on the peripheral nervous system. Experimental studies have shown 
that Cd can be a potent neurotoxicant for the peripheral nervous system. Viaene 
et al. investigated the influence of Cd on polyneuropathy in 13 retired, long-term 
Cd-exposed workers. They performed the neurological clinical examination, nerve 
conduction studies, and needle EMG were performed in the study. 54% of the 
retired Cd workers were diagnosed with polyneuropathy. The authors concluded 
that increased Cd body burden promotes PNP development at older age [47].

There is no consensus in the literature regarding the treatment of Cd toxicity. 
While clinical treatment protocols exist for the use of Ethylene Diamine Tetra 
Acetic Acid (EDTA), 2,3-Dimercapto-1-propane sulfonic acid (DMPS), and meso-
2, 3-dimercaptosuccinic acid (DMSA), there are limited human studies. EDTA 
is the agent most widely accepted for clinical use. It should be noted that these 
chelation treatments applied during acute poisoning may aggravate damage to the 
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renal tubules. EDTA, which has a long history of safe use, is approved by the FDA to 
chelation heavy metals. It should not be given faster than one gram per hour nor in 
dosage greater than three grams per session. Cd is also significantly present in sweat 
during sauna, which appears to be a moderately successful modality for reducing 
the body burden of Cd without risk of tubular damage [48–50].

2.5 Tallium (T.I.)

Thallium is one of the heavy metals found in the earth’s crust. Tl is colorless, 
odorless, and tasteless, and it has been used as a pesticide and rodenticide. Although 
the use of T.I. in this field has been abandoned in most western countries, there 
are still countries where it continues to be used. Thallium has been used in a wide 
variety of industries fields such as electronics, lamps, jewelry, pigmentation [51].

Thallium can contaminate by skin contact, inhalation of contaminated air, or 
food consumption from contaminated soil or water. Suggested mechanisms of T.I. 
neurotoxicity include lipid peroxidation and lysosomal enzyme beta-galactosidase 
in brain regions [52].

Toxication of T.I. causes neurological and non-neurological disorders. Anorexia, 
vomiting, gastrointestinal bleeding, abdominal pain, alopecia, cardiac arrhythmias 
are the best-known disorders. In a dose-dependent manner, neuropsychiatric signs 
have been reported as following; coma, delirium, seizure, hallucination, fatigue, 
emotional changes, ataxia, and loss of sensation, cranial neuropathy, and polyneu-
ropathy [51, 53, 54]. Thallium-related polyneuropathy can become evident within 
1–2 days. It is reported that a painful sensory-motor polyneuropathy mimicking 
Guillain-Barre’s syndrome occurs. In delayed admission, patients are more prone to 
severe polyneuropathy and other neurological disorders [51, 55].

Treatment for thallium intoxication consists of termination from exposure,  
supportive care, and enhanced elimination. Prussian blue is approved as an oral agent 
to prevent absorption of thallium. It is reported that hemodialysis combined with the 
usage of Prussian blue helps treat patients even delayed admission [51, 55, 56].

3. Solvents

Solvents used in industry as degreasing agents, adjuvants, thinners, and  
cleaners are widespread. N-Hexane, carbon disulfide, ethylene oxide are widely 
used solvents [57]. Adhesives containing n-hexane are also widely used in the 
manufacture of leather goods [58]. Repeated occupational exposure of solvents can 
be both inhalation and skin contact. While the hexane concentration limit of organ 
damage through prolonged or repeated exposure is suggested as 5%, the organic 
solvents used in the adhesives may contain a higher percentage of n-hexane [59]. 
The toxic effects of organic solvents can be considered a public health problem 
even though regulations have been made that reduce usage limits [60]. The organic 
solvent syndrome is the mildest form of chronic exposure. Irritability, fatigue, and 
reversible difficulty to concentrate are the related symptoms [61]. The neurotoxicity 
of solvents may occur in both the peripheral nervous system and central nervous 
system [62].

3.1 N-hexane

The molecular mechanisms of peripheral neuropathy induced by hexane 
exposure have been investigated in several studies. ɣ-diketone 2,5-hexanedione, 
which is a neurotoxin, is the metabolite of n-hexane. ɣ-diketone 2,5-hexanedione is 
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the cause of sensory or sensory-motor peripheral neuropathy [63–66]. According 
to the suggested mechanism, the accused metabolite reacts with amino groups of 
proteins, including neuroproteins. Lysine-rich neuroproteins are especially vulner-
able, including microtubule-associated proteins required for axonal transport. 
Disruption of axonal transport causes consecutive degenerative changes resulting in 
localized demyelination and remyelination, with initial changes in the most exten-
sive and most prolonged axons in peripheral nerves and the spinal cord, with simi-
lar changes in shorter nerve fibers at a later stage. It results in distal symmetrical 
sensorimotor neuropathy supported by central-peripheral distal axonopathy [63].

Detailed neurological and neuropsychological examinations are recommended 
to confirming the clinical findings of central and peripheral nervous system 
dysfunctions in case of suspicion of toxication. Sensory abnormalities such as 
insensitivity to pinprick and touch, impaired two-point discrimination, changes 
in sensation to position, vibration, or temperature, diminished deep tendon 
reflexes are common neurological findings. Peripheral neuropathy is characterized 
by symmetrical progressive distal sensory and motor impairment [61, 62, 64]. 
Nerve conduction studies and electromyography should be performed to confirm 
peripheral neuropathy. It is reported that severe exposure and affected patients 
may develop muscle atrophy and foot drop [62]. Typical electrophysiological 
findings increase in distal latencies, slowing of nerve conduction velocities, 
conduction block with temporal dispersion, and the slowing down of transmission 
in electromyography in subjects with severe neuropathy [58, 62]. Neuroimaging 
Cranial magnetic resonance imaging (MRI) should be performed to detect the 
atrophic changes in the frontal lobes and cerebellum and white-matter lesions 
described after exposure to certain solvents [67, 68]. It is reported that acute, low-
dose exposures might be related to specific changes in test performance, which 
improve after withdrawal from exposure. However, chronic exposure can also be 
associated with permanent cognitive changes [67].

3.2 Carbon disulfide

Carbon disulfide (CS2) is an organic solvent used for various industrial purposes, 
such as an insecticide, fresh fruit conservation, disinfectant against insects [69]. CS2 
is a significant metabolite of the drug disulfiram used as a dissuasive for alcohol abuse. 
The occupational CS2 exposure can be by inhalation and skin contact. It is known 
that the highest degree of exposure is in the viscose rayon industry [70]. Exposure to 
carbon disulfide is likely to occur for the general population by inhaling contaminated 
ambient air, eating vegetables and fruits, or other food products containing carbon 
disulfide [69]. Since carbon disulfide has lipophilic nature, the distribution of C.S. 2 
is easily in organs such as the brain and liver. C.S. 2 is metabolized to thiocarbamates 
in these organs, and it is considered that dithiocarbamates can take part in neurotoxic 
effects [71].

According to acute or sub-acute high-level exposures of CS2 can lead to uncon-
sciousness, hallucinations, emotional lability, extrapyramidal signs, and polyneu-
ropathy [69, 70]. It is reported that exposure of 200 to 500 ppm may cause death 
[69]. Peripheral neuropathy and extrapyramidal signs have been reported following 
chronic occupational low-level exposures. In low level (10 to 40 ppm) exposure, 
peripheral neuropathy may be asymptomatic and detected only electrophysiologi-
cally. As the concentration of CS 2 increases (20 to 60 ppm), a progressive senso-
rimotor distal asymmetrical polyneuropathy appears [72].

In neurological examination, findings include; paresthesia and dysesthesia tend 
to occur in a ‘stocking and glove’ distribution, loss of ankle and patellar reflexes, 
and diminished pain, touch, and vibration sensation in the distal lower limbs. In 
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some cases, recovery may be slow and incomplete, possibly because of residual 
axonal damage [73].

There is no typical clinical profile and routine laboratory tests, including 
cerebrospinal fluid (CSF) examination. Nevertheless, CSF should be performed for 
differential diagnosis. Nerve conduction studies and electromyography should be 
performed to confirm peripheral neuropathy. It is reported that long-term exposure 
and a cumulative dose of CS2 exposure are related to electrophysiological findings 
[74]. In the electrophysiological examination, reduced motor and sensory ampli-
tudes, slightly slowed motor conduction velocities prolonged distal latencies are 
reported in exposed patients with neuropathy symptoms. In the same patient group, 
needle EMG revealed chronic, length-dependent denervation with decreased 
recruitment, large motor units, and fibrillation potentials [75].

3.3 Ethylene oxide (EO)

Ethylene oxide is a powerful sterilizer for medical materials and antiseptic for 
furs and some foods. It is a gas at room temperature. The occupational EO exposure 
can be by inhalation. Since EO is a water-soluble substance, it can quickly spread to 
all organs shortly after inhalation exposure [72]. EO is a potent alkylating agent and 
can interact with all cellular components, including DNA [76].

The principal neurotoxicant effect of EO is polyneuropathy. EO-related distal 
symmetrical axonal polyneuropathy has been reported in several cases reports in 
the 1980s, and Ohnishi et al. established an experimental model of EO neuropathy 
[77–80]. Kuzuhara et al. showed axonal degeneration with mild changes of the 
myelin sheath in sural nerve biopsies [79]. Neurotoxic effects may develop in both 
intermittent high doses and chronic prolonged low-dose exposure [72]. Gross et 
al. reported four cases who had occupational EO exposure. One of the cases had 
encephalopathy syndrome, and three of them had polyneuropathy [80]. In clini-
cally symptomatic cases, distal extremity numbness and weakness, diminished 
sensation in the feet and hands can be initial symptoms. However, some of the 
cases can be asymptomatic. The electrophysiological examination reported reduced 
motor and sensory amplitudes and mildly slowed motor and sensory nerve conduc-
tion velocities [80, 81]. Gradual improvement of neurotoxicant effects was found 
associated with withdrawal from exposure [81].

4. Medications and peripheral nervous system toxicity

Antineoplastic drugs’ most frequent and sometimes serious complication is 
chemotherapy-induced peripheral neuropathy (CIPN). The estimated prevalence of 
CIPN is 19–85% [82]. Compared to other peripheral neuropathies, such as painful 
diabetic polyneuropathy, patients with CIPN are likely to develop more severe symp-
toms, suffering from pain affecting both feet and hands, with faster progression. 
The high prevalence of CIPN among patients with cancer poses a serious problem for 
both patients and doctors administering the treatment. Due to the CIPN and related 
symptoms, sometimes it may be necessary to interrupt, stop, or reduce the dose of 
drugs, limiting the treatment’s efficacy [83].

Platinum analogs (Cisplatin, oxaliplatin), taxanes (Paclitaxel), vinca alka-
loids, and proteasome inhibitors (bortezomib) are the most commonly preferred 
antineoplastic medications. These are successfully used as first-line treatment for 
several solid and blood cancers, such as breast, lung, colorectal, gastric cancers, 
and multiple myeloma [84]. Although these antineoplastic medications have 
different chemical structures and mechanisms, chemotherapy-induced peripheral 



Neurotoxicity - New Advances

46

neurotoxicity (CIPN) is one of their common side effects. The occurrence of CIPN 
varies according to the chemotherapeutic drugs, dose, duration of exposure, and 
method of assessment [85]. The highest rate of CIPN is reported in platinum 
analogs (70–100%), taxanes (11–87%), thalidomide, and its analogs (20–60%), and 
ixabepilone (60–65%) [86].

4.1 Platinum analogs; cisplatin, carboplatin, oxaliplatin

Platinum analogs interact with DNA, forming platinum-DNA compounds and 
cause apoptotic cell death. Most platinum analogs cause some degree of neurotoxic-
ity. Dorsal root ganglion (Drg) is considered to be the primary target of neurotoxic-
ity. It has been shown that platinum analogs cause apoptosis in dorsal root ganglia 
and morphological changes in the nucleus in-vitro [84]. Because of the lack of 
blood–brain barrier protection and be vascularized by fenestrated capillaries, the 
nuclei of Drg neurons are vulnerable to chemically-induced damages [87]. Platinum 
analogs induced peripheral neuropathy is a sensory neuronopathy caused by direct 
damage to Drg neurons, leading to an anterograde axonal degeneration. According 
to sensory neuronopathy, altered touch sensation, paresthesia in the distal extremi-
ties, tingling, altered touch sensation, proprioceptive loss, areflexia, and sensory 
ataxia occur. Patients frequently experience painful sensations, including spontane-
ous burning, electric shock-like pain, along with mechanical or thermal allodynia 
or hyperalgesia. Neuropathic pain symptoms have been reported, often even after 
treatment discontinuation [88, 89].

Since the 1980s, Cisplatin has been used to treat testicular, ovarian, and small 
cell lung cancers. Cisplatin administration induced severe toxicity, especially to the 
kidneys and nervous system [90]. Cisplatin causes primarily sensory neuropathy, 
characterized by distal parenthesis, progressing to proprioceptive loss, areflexia, 
and sensory ataxia [88]. Symptoms arise after cumulative doses above 300 mg/
m2. Severe symptoms related to neuropathy have been reported to occur three to 
six months post-treatment cessation [91]. Electrophysiological studies have typi-
cally shown marked reduction in sensory action potential amplitudes with relative 
preservation of conduction velocity, indicative of axonal loss [84, 91]. Motor and 
autonomic symptoms and signs are infrequent but may occur in severe cases. 
Treatment with platinum analogs has been rarely associated with acute inflamma-
tory demyelinating polyradiculoneuritis in patients with solid tumors [92].

Carboplatin is known to be less toxic, with neuropathy observed in 13–42% of 
patients. At the same time, carboplatin may induce mild neurotoxicity in quarter 
patients, with moderate to severe neurotoxicity in 5% of patients [93]. Peripheric 
neurotoxic side effects are common with high doses (800–1600 mg/m2) [94]. 
Electrophysiological studies reveal a reduction in compound sensory and motor 
amplitudes. Experimental studies have reported that at very high doses (10–15 mg/kg), 
carboplatin induces neurotoxicity and associated platinum deposition in the dorsal 
root ganglion, similar to Cisplatin [84].

Oxaliplatin has been effectively used as a first-line therapy against colorectal 
cancer. Its neurotoxicity may develop both acute and chronic. Acute and rapidly 
reversible peripheral neuropathy occurs in approximately 65–98% of patients 
within hours of drug infusion at a dose ranging 85–130 mg/m2 and may last up 
to one week. In 12 cycles of chemotherapy received, symptoms may persist up 
to 21 days or longer. Myelotoxicity and enteric and peripheral neuropathy may 
be induced by chemotherapy with oxaliplatin [95]. Cold-induced neuropathic 
symptoms are the most important difference in the clinical presentation between 
oxaliplatin and cisplatin-induced neuropathy [96]. Chronic peripheral neuropathy 
occurs in approximately 50–70% of patients, described as a pure sensory, axonal 
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neuropathy [95]. Patients frequently experience distal paresthesia, sensory ataxia, 
jaw pain, leg cramps. Electrophysiological studies of oxaliplatin-induced peripheral 
neuropathy reduce the sensory action potentials with preserved motor amplitudes 
and conduction velocities. However, spontaneous activity can be obvious, suggest-
ing an immediate effect of the drug on the axonal excitability rather than structural 
damage [84, 97].

4.2 Taxanes; paclitaxel

Paclitaxel, docetaxel, cabazitaxel are the class of taxanes that act on microtu-
bules, interfering with the normal cycling of microtubule depolymerization and 
polymerization. The incidence of CIPN according to taxanes may be very high 
(11 to 87%), and the highest rates are reported for Paclitaxel [98]. Neuropathy 
caused by taxanes usually emerges as a dominant sensory neuropathy with the 
stocking-and-glove distribution. The manifestations are paresthesias, dysesthesias, 
numbness, altered proprioception, and loss of dexterity predominantly in the toes 
and fingers. Motor and autonomic involvement are infrequent [99]. Neurological 
symptoms and findings are dose-dependent and tend to improve after stopping 
the treatment. However, some patients experience symptoms up to 1–3 years and 
sometimes lifelong after the therapy [100]. Microtubule disruption, mitochondrial 
dysfunction, axonal degeneration, altered calcium homeostasis, altered expression 
and function of ion channels, production of pro-inflammatory cytokines are the 
suggested underlying mechanisms of CIPN [101, 102].

Paclitaxel is a microtubule-binding antineoplastic drug commonly used to treat 
various solid tumors like lung, breast, and ovarian cancer. Paclitaxel is highly potent 
against proliferating neoplastic cells, but neurons not dividing cells are vulnerable to 
Paclitaxel. The treatment with paclitaxel affects the peripheral nervous system and 
primarily causes sensory axonal polyneuropathy [103]. Peripheral nerves biopsies 
have revealed a pathology of axonal degeneration, secondary demyelination, and, in 
cases of severe neuropathy, nerve fiber loss has also been observed [104].

4.3 Vinca alkaloids; vincristine

Vinca Alkaloids are developed from the Madagascar periwinkle plant, including 
vincristine, vinblastine, vinorelbine, and vindesine. These drugs are commonly 
prescribed to treat various tumors, such as Hodgkin and non–Hodgkin lymphoma, 
testicular cancer, and non–small cell lung cancer [102]. Vinca alkaloids have well-
documented effects on microtubules – including binding to tubulin and inhibiting 
microtubule Dynamics [105].

Vincristine was approved in July 1963 by the United States Food and Drug 
Administration (FDA). It is one of the most common anticancer drugs used in 
pediatrics oncology. However, its clinical use is accompanied by severe side effects, 
such as peripheral neuropathy and neuropathic pain leading to treatment discon-
tinuation. Both sensory and motor dysfunctions characterize peripheral neuropathy 
related to vincristine [106]. The duration and therapeutic doses received by patients 
directly affect the severity of symptoms. Besides sensory symptoms, patients also 
experienced muscle weakness and cramping. Changes in axonal transport and 
dorsal root ganglia resulting in Wallerian degeneration, altered ion channels activity 
and hyperexcitability of peripheral neurons, production of pro-inflammatory cyto-
kines are the suggested underlying mechanisms of vincristine-induced peripheral 
neuropathy [101].

Vincristine use in Charcot–Marie–Tooth disease (CMT) patients has a black box 
warning added by the FDA. The CMT patients with the ERG2 gene mutation and 
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polymorphism in the CEP72 gene are associated with increased risk and severity of 
drug-induced neuropathy [107, 108].

There is no specific treatment for vinca alkaloid-induced peripheral neuropathy. 
Pyridoxine or pyridostigmine can be having a certain efficacy in vincristine-
induced neuropathy. A topical capsaicin cream was demonstrated to give benefit 
in peripheral neuropathy. In neuropathic pain, carbamazepine, imipramine, or 
lignocaine can be used [101].

4.4 Proteasome inhibitors; bortezomib

Bortezomib is a reversible proteasome inhibitor antineoplastic drug that is 
successfully used against multiple myeloma and some types of solid tumors. It was 
first described as an inflammation inhibitor, but with its cytotoxic effects, it began 
to be used in cancer therapy. Bortezomib was approved in 2003 by FDA as a single 
agent against advanced myeloma but is now mostly used in combination therapies 
[109]. Although bortezomib is generally well tolerated, the most frequent limiting 
factor for its clinical use is a painful peripheral neuropathy side effect. Bortezomib-
induced peripheral neuropathy is attributed to paresthesias, dysaesthesias, burning 
sensations, numbness, sensory loss, reduced proprioception, and vibratory sensa-
tion. Besides these symptoms and signs, demyelinating neuropathy may also be 
present. Deep tendon reflexes and autonomic innervation of the skin are reduced in 
patients treated with bortezomib [110]. Chronic, distal, and symmetrical sensory 
peripheral neuropathy is typical neuropathy induced by bortezomib.

Neuropathic pain symptoms have been reported to continue for weeks, months, 
or even years after treatment discontinuation.

Bortezomib-induced peripheral neuropathy is reported in approximately 
one-third of the patients [111]. Suggested mechanisms of bortezomib-induced 
peripheral neuropathy are increased sphingolipid metabolism in astrocytes, inflam-
mation related to TNFa and IL-1, mitochondrial damage, reactive oxygen radical 
production, and alteration in Ca++ signaling [101].

5. Others

5.1 Acrylamide

Monomeric acrylamide is a potent neurotoxin used in different industrial and 
laboratory processes. Acrylamide is readily absorbed by inhalation, ingestion, 
or dermal contact. The acrylamide exposure affects the central nervous system 
(CNS) and peripheral nervous system (PNS). Chronic and high-level exposure to 
this water-soluble chemical mostly causes peripheral neuropathy. The peripheral 
neuropathy causes impairment in the arms and legs of exposed workers. Several 
studies reported that short-term occupational exposure to acrylamide resulted in 
weakness of lower extremities, loss of deep tendon reflexes and sensations in distal 
limbs, and numbness preceded by skin peeling from the hands [112–114]. Moreover, 
it has been shown that longer exposure involved more severe symptoms, including 
cerebellar dysfunction followed by peripheral neuropathy. Based on numerous 
investigations and risk assessments, acrylamide is generated in food preparation 
processes involving high temperatures [115, 116]. Different pathogenetic mecha-
nisms were hypothesized; however, the exact mechanism of action is not completely 
elucidated. Like other toxic neuropathies, the prognosis of neuropathy is associ-
ated with the degree of central axonal degeneration. Three important hypotheses 
currently considering acrylamide neurotoxicity include inhibition of kinesin-based 
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fast axonal transport, alteration of neurotransmitter levels, and direct inhibition of 
neurotransmission [117].

5.2 Styrene

Styrene is a colorless solvent found in paints, plastics, and resins. It is one of the 
essential monomers usually used in plastic production. This compound can cause 
intoxication when inhaled in high concentrations for longer periods. There are 
few case reports regarding styrene-induced peripheral neuropathies. Early studies 
demonstrated abnormal neurological findings in humans exposed to styrene in low 
doses [118]. Styrene-induced peripheral neuropathy is characterized by neuropathic 
symptoms that start within a few days after significant exposure to styrene. Goba 
et al. reported that two workers presented with styrene-induced neuropathy. The 
workers had sensory-motor peripheral neuropathy of a demyelinating type [119].

5.3 Organophosphates

Organophosphates (OP) are chemical substances involved in the main  
components of herbicides, pesticides, and insecticides. Acute or chronic exposure 
to organophosphates causes several toxic effects in humans and animals. The expo-
sure to organophosphates might be accidental or intentional. The organophosphate 
intoxication may occur after exposure to pesticides, either through occupational 
contact or suicide attempts. Acute toxic effects and delayed toxic neuropathy are 
related to central and peripheral nervous system involvement. The main effect 
of OP exposure is poisoning; however, peripheral neuropathy has been linked to 
chronic exposure. Several recent cases were reported associated with organophos-
phate-induced delayed neuropathy (OPIDN) after ingestion of organophosphate 
insecticides. The peripheral neuropathy associated with organophosphate intoxica-
tion may be seen with mild exposure. The mechanism of OPIDN is explained by 
loss of function of both motor and sensory axons located distally and ascending 
and descending tracts of the spinal cord [120, 121]. Organophosphate-induced 
delayed neuropathy is an uncommon clinical condition characterized by a distal 
paresis in the lower limbs and sensory symptoms. Electrophysiological findings 
show motor axonal neuropathy. The delayed onset of peripheral neuropathy and 
axonal motor involvement without a progressive course is needed for the diagnosis. 
Organophosphates can irreversibly bind to acetylcholine esterase (AChE) and 
prevent the breakdown of acetylcholine (ACh). The liberation of ACh overstimu-
lates the muscarinic and nicotinic receptors. The main mechanism of OPIDN 
development is related to the inhibition of neuropathy target esterase (NTE) via 
phosphorylation. Neuropathy target esterase is an essential integrated membrane 
protein in neurons that takes part in axonal maintenance [122]. Its activity plays a 
crucial role in axonal maintenance since it facilitates the transport of macromol-
ecules to the end of axons [120].

The symptoms are attributed to the effects on sensory and motor nerves with 
a typical axonal length-associated pattern. Lower extremities are predominantly 
affected. However, upper extremities are affected at higher OP exposure. The 
prognosis of peripheral neuropathy varies due to clinical involvement. It is primar-
ily associated with the age of the individual (a younger age is associated with mild 
neuropathy), type of organophosphate, the persistence of myelopathic features, 
pyramidal involvement, degree of CNS involvement to peripheral nerve dysfunc-
tion [120, 123, 124]. There is no treatment approved for OPIDN, and the recovery 
is slow and partial. Thivakaran et al. reported a 15-year-old female who developed 
OPIDN with a smaller dose of chlorpyrifos [124]. Akçay et al. reported a similar 
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case diagnosed with organophosphate-induced delayed neuropathy (OPIDN) 
complicated with central nervous system findings. They observed partial improve-
ment in muscle strength despite motor axonal polyneuropathy [125]. In addition, 
Moretto et al. reported electrophysiological findings in 11 patients with acute OP 
poisoning [126]. Three of these patients developed OPIDN, mainly sensory-motor 
polyneuropathy. The diagnostic approach should be made carefully in peripheral 
neuropathy patients, excluding other possible causes, especially those who did not 
display cholinergic toxicity before the onset of neuropathy. Early recognition of OP 
poisoning and a professional approach to intoxication can be life-saving.

6. Conclusion

Chemicals have toxic effects on the human body. Neurotoxicity demonstrates 
acute and chronic manifestations. A toxic chemical can produce an acute toxic 
response, besides prolonged exposure of a toxin may result in slowly developing 
chronic disease. In many cases, the putative neurotoxic damage present many years 
after initial exposure to the toxin. Therefore, the clinical signs elicited and symp-
toms expressed should be interpreted carefully. The neurotoxicity level and the 
circumstances of the exposure determine clinical presentation. The clinical signs 
and symptoms due to neurotoxicity may be expressed in central and peripheral 
nervous systems. Moreover, toxic agents disrupt cellular processes and result in 
epigenetic changes. While several heavy metals cause DNA damage which leads to 
carcinogenesis, the peripheral nervous system is also vulnerable to toxin-induced 
damage. A peripheral neuropathy may have its origin in the neurone, axon, myelin 
sheath or either Schwann cells. Patients may present with length-dependent senso-
rimotor peripheral neuropathy as well as mononeuropathy or radicular pathology. 
Organophosphates and acrylamide have been associated with severe damage to 
the motor nerve terminal. Many chemicals have the ability to cause axon damage 
including acrylamide, arsenic, carbon disulfide, n-hexane, lead, organic mercury, 
perhexilene, and thallium. Hexachlorophene and perhexilene have been involved in 
myelin disruption. Also, methyl mercury is well-known neurotoxin cause neu-
ronopathy. Here, we discuss the peripheral nervous system manifestations of heavy 
metals, solvents, chemotherapeutics, monomers, gases and pesticides in detail.
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Abstract

Insecticides are pesticides used to control insects in agriculture, ornamental 
gardens, homes, and veterinary medicine. Although the toxic effects on the envi-
ronment and the health of living beings are not fully understood, these pesticides 
have become the first options for crop protection in agriculture. After herbicides, 
insecticides are the most extensively used pesticides in agriculture, with large 
quantities consumed on every continent, primarily in America. Chlorpyrifos, 
carbaryl, and imidacloprid are among the top ten most used insecticides. Amidst 
organophosphates, chlorpyrifos has been reported to be used in over fifty food 
crops. Carbaryl is a carbamate employed as an insecticide, fungicide, herbicide, and 
nematicide. Similarly, neonicotinoids are the most used insecticide on a global scale. 
Neonicotinoids include imidacloprid, the second most frequently used pesticide, 
surpassed only by glyphosate. It is used because it is less toxic to humans. However, 
insects appear to be less resistant to its compounds. Evidence suggests that these 
insecticides persist in soils for a long time and have neurotoxic effects in animal  
species not intended to receive its consequences. Thus, this chapter’s aim is to 
describe these three pesticides effects and contrast them with the most recent  
findings regarding their neurotoxic effects in various animal species.

Keywords: insecticides, chlorpyrifos, carbaryl, imidacloprid, neurotoxicity

1. Introduction

Pesticides are substances that exist in our daily lives. Their most widespread 
use is in agriculture, where they are used to protect crops from pests caused by 
plants and animals. They are also used to prevent diseases caused by ectoparasites 
in farm animals and pets. These substances are used in gardening and brought 
into our homes to protect us from mosquitoes and other insects. Pesticides come 
into intimate touch with all forms of life through drinking water and eating food. 
However, the use of these substances is so widespread and poorly controlled that 
environmental contamination is inevitable.
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Pesticide exposure occurs in a variety of ways. Not all living organisms are 
exposed to the same periods or the same dose, or not even to a single type of 
pesticide or to the same mixtures. The above may have yet unknown, synergistic, or 
potentiating effects on organisms.

Insecticides are a class of pesticides used to kill or control insects. It is not only 
used in agriculture, but also in ornamental gardens, homes, and veterinary medicine. 
Although the hazardous effects on the environment and the health of living beings 
are not yet fully understood, they have become one of the primary solutions for crop 
protection in agriculture. Regardless of the fact that pesticides come in a wide variety 
of families, the major goal of this chapter is to highlight the effects of imidacloprid 
(neonicotinoid), chlorpyrifos (organophosphate), and carbaryl (carbamate), insec-
ticides widely used in agriculture, despite recent findings of their neurotoxic effects 
on several animal species.

2. Worldwide use of insecticides

After herbicides, insecticides are the most extensively used pesticides in 
agriculture [1]. The principal insecticide consumers by continent were America 
(44.9%), Asia (29%), Europe (16%), Africa (6.4), and Oceania (3.7%), with the 
United States being the country with the highest insecticide consumption world-
wide (Figure 1) [2]. Recently collected data, dating from 1998 to 2014, indicates 
that chlorpyrifos was the third most used organophosphate pesticide in the United 
States, only for corn cultivation, with a total of 1,122kg/ha. In the same country, 
the most widely used carbamate was carbaryl with a total of 1,024 kg/ha; while 
imidacloprid was the most used neonicotinoid, with 0.057 kg/ha. During the same 
time period, chlorpyrifos, carbaryl, and imidacloprid were among the top 10 most 
widely used insecticides in the United States [3]. Currently, these same pesticides 
are used in agriculture and are included among the principal insecticides for each 
insecticide family aforementioned [4–6].

Furthermore, organophosphate insecticides account for roughly half of all 
insecticides used worldwide, and chlorpyrifos is one of the most widely used. This 
insecticide is approved for use on more than 50 food crops in both developed and 

Figure 1. 
Highest to lowest insecticide use by continent.
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developing countries [7]. About 50 chemicals belong to the carbamate family, 
which are utilized as fungicides, herbicides, and nematicides in addition to having 
insecticidal properties. Carbaryl was the first carbamate to be commercialized, and 
it is now more widely used than all other carbamates combined [8]. Neonicotinoids, 
on the other hand, appear to be the most widely employed insecticides world-
wide, according to the literature. In fact, imidacloprid is the world’s second most 
widely used pesticide, after only the controversial herbicide glyphosate [9, 10]. 
Neonicotinoids have largely replaced carbamates and organophosphates because 
they are considered less toxic to humans and insects, and they appear to be less 
resistant to neonicotinoids compared to other conventional insecticide classes [11].

3. Of the molecule, its structure, and mechanism of action

3.1 Chlorpyrifos

Organophosphates are compounds of organic nature that contain phosphorus. 
Chlorpyrifos (O, O-diethyl-O-3,5,6-trichloropyridin-2-yl phosphorothioate) is 
an organic thiophosphate of the chloropyridine class [12]. The latter is one of the 
most widely used organophosphate insecticides in agriculture, primarily used on 
corn, soy, fruit trees, walnut trees, brussels sprouts, blueberries, broccoli, and 
cauliflower, among others. This pesticide is also used on golf courses, on ornamen-
tal plants, for treating wood, and in homes to combat mosquitoes, cockroaches, 
and ants [13]. Chlorpyrifos act by irreversibly inhibiting the acetylcholinesterase 
enzyme activity, which causes acetylcholine accumulation in the synaptic cleft, 
causing overstimulation of postsynaptic receptors and the consequent signs of 
intoxication [14].

3.2 Imidacloprid

Imidacloprid [1-[(6-chloropyridin-3-yl) methyl] imidazolidin-2-ylidene] nitra-
mide is a neonicotinoid of the chloropyridinyl class [15], which like the insecticides 
of the same family, acts as an agonist of nicotinic cholinergic receptors (nAChRs) of 
insects and mammals [16, 17]. IImidacloprid is used in agriculture for corn, cotton, 
soybean, potato, wheat, and some vegetable seeds, as well as for soil treatment 
and foliar application on crops like orange, potato, and cotton. It is also utilized in 
the treatment of decorative plants and residential areas, industrial vegetation and 
forestry management [18]. Additionally, it is used as veterinary medicine in presen-
tations such as pipettes or collars for direct application on dogs and cats to prevent 
infestations by internal and external parasites [19].

3.3 Carbaryl

Carbaryl (1-naphthyl methylcarbamate) is a carbamate-based pesticide. It’s 
a carbamate ester made up of 1-naphthol and methylcarbamic acid. On plants, 
this pesticide is insecticidal, acaricidal, and even growth retardant when used in 
plants. It is currently used to treat corn, soybean, cotton, nuts, fruit, and vegetable 
crops in agriculture [20]. It is mostly used on apple, nut, and soybean crops in 
the United States. However, it is found in more than 40 crops around the world, 
including asparagus, squash, and potatoes. Its non-agricultural uses include orna-
mental plants, lawns, grass, roads, and buildings [21]. Carbaryl acts by inhibiting 
acetylcholinesterase. Nevertheless, unlike organophosphates, carbamates do it 
reversibly [22].
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4. Persistence in soil and water

When pesticides are manually or aerially sprayed on seeds, soil, or even directly 
on plants, they can last for days, months, or even years. They might also filter 
through the soil into surface and deep waterways, polluting food and water sources 
for living beings by coming into contact with animal and plant life. Table 1 illustrates 
the soil-water partition coefficients (Koc) and octanol–water partition coefficients 
(Kow), which are used to characterize the mobility and bioaccumulation properties 
of pesticides, respectively. While these coefficients are not the only indicators used to 
determine pesticide behavior in the environment and in organisms, they do serve as 
referents for pesticide toxicity.

The Koc is a coefficient that is used to determine the pesticide concentration 
“attached” to soil particles as well as the phase present in the solution, i.e.,  
dissolved in the same soil’s water. As a result, the lower the temperature, the higher 
the Koc of the pesticide in solution, and the greater the likelihood of it leach-
ing into groundwater. The Kow is a coefficient that is used to calculate pesticide 
concentrations in octanol and water. Pesticides having a high Kow, which are more 
soluble in octanol and less soluble in water, have been found to accumulate in 
organisms [23]. Chlorpyrifos accumulates greater in organisms than carbaryl and 
imidacloprid, as shown in Table 1. It does, however, have a lesser tendency to leak 
into the soil as compared to them. In this sense, imidacloprid would pose a greater 
risk as a groundwater pollutant.

To estimate a substance’s environmental fate in diverse environments, scientists 
must first determine its degradation half-life, or DT50, which is the time it takes for 

Chlorpyrifos Carbaryl Imidacloprid

Structural formula

Chemical name O, O-dietil-O-3,5,6-
trichloropyridin-2-il 

fosforotioato

1-naphthyl 
methylcarbamate

1-[(6-chloropyridin-3-yl)
methyl]imidazolidin-2-

ylidene]nitramide

Color and form White granular crystals Colorless to light tan 
crystals

Colorless crystals

Odor Mild mercaptan Odorless Slight characteristic odor

Melting Point 42 °C 145°C 144°C

Boiling Point Decomposes before 
boiling

Decomposes before 
boiling

Decomposes before boiling

Molecular Weight 350.6 201.22 255.7

Water solubility 
(mg/L)

1.4 110 (at 22°C) 610 (at 20 °C)

Vapor pressure 2.49 x 10−3 mmHg at 
25°C

1,36x10−6 mmHg at 
25° C

3.99 x 10−10 mmHg at 20°C

Octagonal-water 
coefficient (Kow)

4.7 1.59 at 2.3 0.57 at 21°C

Soil sorption 
coefficient (Koc)

360 at 31000 290 249 at 336

Table 1. 
Crucial physicochemical characteristics for insecticides are chlorpyrifos, carbaryl, and imidacloprid.
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50% of a chemical to degrade or disappear from water or soil [7]. For the purposes 
of this review, the three pesticides DT50 examined will be provided below, depend-
ing on their average persistence in soil and water,

Chlorpyrifos can have a long persistence even in arctic regions, where its presence 
has been assessed in samples of ice, snow, a microcosm of water, sediments, air, and 
flora. The persistence of this pesticide (due to its high resistance to hydrolysis) has 
been reported to be greater in aquatic habitats than in soil. However, the LD50 in soil, 
has a wide range of values as reported in the literature, ranging from a few days to 
four years. It is also suggested to be more stable in low-pH soils, dark settings, and 
cold environments [7]. Chlorpyrifos DT50 has been found to last from 1 to 120days 
in the field and up to 180 days in the soil in the absence of light. It is worth noting 
that in organic soils, the half-life is longer than in mineral soils. A DT50 of 150 to 
200 days has been documented in anaerobic pond sediments, while 106 + 54 days has 
been reported in experimental circumstances of wetland and anaerobic sediments. 
Chlorpyrifos has a DT50 of 18.7 days in freshwater and 49.4 days in seawater at 10°C, 
which decreases with increasing temperature [24].

In the case of carbaryl, its DT50 in the soil ranges from 17 to 28 days. It is con-
sidered to have low persistence, where it is degraded mainly by the action of light 
and bacteria. In sandy soil conditions, its half-life is 7 to 14 days, while in clay soil 
it ranges from 14 to 28 days, hydrolyzing itself rapidly in alkaline soils. The DT50 in 
water is highly variable, increased in acidic conditions; for example, in acidic water 
with a pH of 5, degradation is slow and can persist for up to 1500 days [23]. The 
DT50 of carbaryl in soil has recently been reported to be 16 days, while it can reach 
12 and 5.8 days in water and sediments, respectively [25].

Neonicotinoids have a high DT50, which means they can last a long time in  
the soil, with values in the range from 6.7 to 1230 days, while imidacloprid has the 
highest DT50, with a value of 35.9 to 1230 days. Though it should be noted that the 
degradation of neonicotinoids and other pesticides in soil is dependent on pH, 
temperature, humidity, chemical concentration, and even the presence of microor-
ganisms [26]. As evidence, imidacloprid has been found to remain for 42 to 129 days 
in vegetated soils and more than 180 days in soils free of vegetation [27]. The data 
on this insecticide’s water persistence is varied, with half-lives ranging from 1 to 
3 hours, 48 hours, and even 31 to 43 days [28].

5. Neurotoxic effects in different animal species

The lethal dose 50 or LD50, is a measure that in toxicology is used to estimate the 
dose of a test substance that produces 50% of death in a certain animal species. It is 
used as a reference to determine how toxic it is to humans [29]. The LC50 or lethal 
concentration 50, corresponds to the concentration of a chemical substance in the 

Class LD50 for rat (mg / kg body weigth)

Oral Dermal

Ia Extremely dangerous <5 <50

Ib Highly dangerous 5–50 5–200

II Moderately dangerous 50–2000 200–2000

III Slightly dangerous >2000 >2000

U Acute hazard unlikely 5000 or more

Table 2. 
Toxicological classification for pesticides with moderate toxic effects.
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air or in the water that causes half of the exposed animals to die [30]. According 
to the WHO toxicological classification for pesticides (Table 2) [31], both imida-
cloprid and carbaryl are in class II, which includes those pesticides with moderate 
toxic effects, while chlorpyrifos is located in class 1b since its LD50 is below 200 mg. 
Therefore, it is considered highly dangerous. In Table 3, the LD50 or LC50 for chlor-
pyrifos, carbaryl, and imidacloprid in different animal species are illustrated.

6. Neurotoxic effects of chlorpyrifos, carbaryl, and imidacloprid

Although insecticides are substances designed to kill some kinds of insects that 
cause pests, for decades it has been documented that they can also kill insects that 
should not be the target of their toxic effects and that overall, are essential for life on 
planet Earth. The most documented case is the decrease in pollinator populations 
and its possible association with insecticides utilization. In recent reviews, informa-
tion supporting that insecticides can interfere with localization capacity, alteration 
of foraging and motor behavior, olfactory learning, and flight ability has been 
gathered. Additionally, they negatively impact the immune system and increase the 
death rate, among other toxic effects in bees [32–35], bumblebees [36–38], but-
terflies and moths [39–42], ants [43, 44], earthworms [39, 45] and various aquatic 
invertebrates [46–48]. They have also been associated with neuronal and colony 
performance alterations in bumblebees [32]. Insecticides such as dichlorvos, imida-
cloprid, and malathion, among others, can harm butterfly populations, resulting in 
decreased survival and changes in feeding and oviposition patterns [49].

Therefore, the effects on non-target insects have received special attention. 
According to studies on these species, an environmental emergency has been 
declared due to the decline in their populations. It is worth noting that insecticides 
have effects not confined to insects, which exacerbates the existing problem 
because all living beings are exposed to varying degrees of insecticides, making 
humans vulnerable to their toxic effects. Following, there is a brief overview of the 
effects identified in the last five years for each of the insecticides that have been the 
subject of this chapter, grouped into three different types of effects: behavioral, 
neurochemical, and cellular (Tables 4–6). However, for more detailed information, 
consider the present bibliography.

6.1 Chlorpyrifos

The recent literature regarding chlorpyrifos toxic effects in different species is 
extensive. However, this chapter has focused on those that are associated with effects 

Insecticide Class Nerve 
target

LD50 or LC50 in different species Toxicological 
classification 

(WHO)Rat Honey bee Fish Bird

Acute oral 
LD50  

(mg/kg)

Acute 
contact 

LD50  
(mg/bee)

Acute 
exposure 

LC50 
(mg/L)

Acute 
oral LD50 
(mg/kg)

Chlorpyrifos Organophosphate AChE 182 0.072 108 27.36 Ia

Carbaryl Carbamate AChE 230 0.84 3470 1870.5 II

Imidacloprid Neonicotinoid nAChR 439.8 0.061 229,100 35.36 II

Table 3. 
Effect of LD50 or LC50: chlorpyrifos, carbaryl, and imidacloprid in different animal species.
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Effects on the cellular level

Chlorpyrifos Carbaryl Imidacloprid

Insects No recent studies for 
the review period in the 
literature.

No recent studies for 
the review period in the 
literature.

Induction of apoptosis 
by increased levels of 
caspase-3 and caspase-1 
mRNA in the bee Apis 
mellifera [124].
Apoptosis and autophagy 
in neurons of the  
brain of the bee Apis  
mellifera [124].
Decreased density of 
synaptic units in the 
fungal bodies of the bee 
Apis mellifera [125].
Decreased driving speed 
in locusta migratoria [60].

Aquatics 
organisms

Increased expression of 
BNDF and c-fos in brain 
tissues of the zebrafish 
Danio rerio [126].
Degeneration and 
vacuolization in neurons 
of the dorsal pars 
medialis in the catfish 
Heteropneustes  
fossilis [64].

No recent studies for 
the review period in the 
literature.

Increased expression of 
BDNF and c-fos in brain 
tissues of the zebrafish 
Danio rerio [126].

Birds Necrosis and 
degeneration in the brain 
of broilers [77].
Neurodegeneration, 
infiltration of 
mononuclear cells  
in the brain, and 
congestion of blood 
vessels of the meninges 
of broilers [127].
Neurodegeneration, 
liquefactive necrosis, 
vacuolar degeneration, 
glia cell enlargement, and 
satellitosis in the broiler 
brain [128].

No recent studies for 
the review period in the 
literature.

Pyknosis, karyolysis, 
perineuronal edema, 
reactive astrocytosis, 
among other 
histopathological findings 
in the white Leghorn hen 
embryos cerebellum [129].
Neurodegeneration, 
axonal degeneration 
with demyelination, 
congestion, perivascular 
edema, neuronal 
vacuolization in the 
Columba livia domestica 
pigeon [130].

No humans 
vertebrates

Histological alterations in 
the brain and cerebellum 
of Sprague Dawley  
rats [85].
Lewy body formation 
and neurodegeneration 
in the substantia nigra of 
Swiss albino mice [131].
Gliosis and Purkinje cell 
degeneration in male 
Wistar rats [132].

Alterations in normal brain 
development due to changes 
in important protein levels 
during neonatal exposure in 
NMRI mice [90].
Alterations in the 
electroencephalogram  
of the visual and frontal 
cortex of the male Long  
Evans rat [133].
Neuroinflammation in 
the hippocampus of male 
Wistar rats exposed during 
pregnancy and  
lactation [134].

Neurodegeneration 
and increased GFAP 
expression in the brain 
of male Sprague–Dawley 
rats [94].
Absence of the cellular 
band of the hippocampal 
formation in mice [135].
Decreased proteins 
related to echolocation 
in different brain regions 
of the bat Hipposideros 
armiger terasensis [95].
DNA damage of 
male Wistar rat brain 
cells [136].
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on the nervous system. For example, in non-target insects, such as bees, it has been 
observed that it can have adverse effects on caste differentiation [50], as well as on 
olfactory learning and memory retention [51, 53]; in cockroaches [52] and mosquito 
larvae [54] has been associated with locomotor alterations (Table 4) [143]. It has 
also been documented that chlorpyrifos can cause alterations in acetylcholinesterase 
activity and induce oxidative stress in different insects [52, 54, 103] and annelids 
(Table 5). On the other hand, in aquatic organisms such as mollusks, crustaceans, 
amphibians, and fish, it has been reported that it can cause alterations in locomotor 
activity [61, 63, 64, 144], inhibit acolinesterase in shrimp [62, 144], copepods [145], 
common carp [106], tadpoles [63] and snails [61, 107], as well as causing neuronal 
degeneration in catfish [64]. In toxicity studies carried out in broilers, it has been 
described that it can cause nervous signs such as salivation, tearing, panting, fre-
quent defecation, tremors, and seizures [77], in sparrows, it can alter the migratory 
orientation [78] and inhibit acetylcholinesterase activity in broilers [77] and quail 
(Tables 4 and 5) [113]. Regarding its cellular effects, in repeated studies, chlorpyri-
fos has been reported to be associated with neurodegeneration in broilers [127, 128]. 
The neurotoxic effects of chlorpyrifos scale to small mammal species. In fact, in 
rodents under experimental conditions, it has been seen that it can have anxiogenic 
effects [83, 86] and cause alterations in the memory of recognition [84] and refer-
ence [86] in locomotor activity [85, 87], in social behavior (Table 4) [84, 89].

While, acute poisonings are associated with signs of piloerection, tremors, sei-
zures, and hypoactivity, among other neurological manifestations [88]. Regarding 
brain neurochemistry in experimental rodents, it has been reported that chlorpyri-
fos can alter the activity of acetylcholinesterase. It participates in the downregula-
tion of genes related to Parkinson’s disease, causes oxidative stress and decreases 
dopamine and serotonin levels [86, 87, 117, 118]. Overall, it has also been associated 
with neurodegeneration in rodents for experimentation [85, 131, 132]. In humans, it 
has been reported that chlorpyrifos can alter social and motor function in children 
(Table 5) [96, 97]. As well as having fallout related to neurobehavioral deficits in 
workers exposed to the insecticide [98]. At the neurochemical level, in an in vitro 
study with human cells, it was shown that it can decrease intracellular levels of ATP 
and cause mitochondrial dysfunction [121]. Finally, at the cellular level, it has been 
reported to cause inhibition of activated calcium channels by voltage [137], alter 

Effects on the cellular level

Chlorpyrifos Carbaryl Imidacloprid

Humans Inhibition of voltage-
gated calcium channels in 
human PC12 cells [137].
Inhibition of neurite 
length, number of 
neurites, and branch 
points per neuron in 
human neural progenitor 
cells [138].
Apoptotic cell death in 
human neural stem  
cells [139].
Alterations in the 
morphology of different 
brain regions in exposed 
children [140].

Associated with 
meningiomas in people 
involved in agriculture [141].

Brain edema after acute 
poisoning [101].
Cell death in neurons of
SH-SY5Y human 
neuroblastoma [142].

Table 6. 
Effects on the cellular level of chlorpyrifos, carbaryl and imidacloprid on five animal species.
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morphology [138], and induce apoptosis in vitro [139]. In human cells exposed to 
chlorpyrifos, a recently published study reported that it may be associated with 
alterations in the morphology of different brain regions in children exposed to the 
substance (Table 6) [140].

6.2 Carbaryl

Recent studies on the neurotoxic effects associated with carbaryl are scarce. 
However, it has been reported that in bees, it can inhibit carbonic anhydrase 
[104] and decrease acetylcholinesterase levels [103], as well as its negative effect 
on isopod growth and survival (Table 5) [146]. In aquatic organisms, it has been 
discovered that carbaryl can cause embryonic deformities and growth inhibition 
in crustaceans [147], affect hatching speed in shrimp [62], locomotives alterations 
in blue crabs [66], mussels [68], and zebrafish [69]. Besides, in this same species, 
it has been associated with alterations in exploratory, social, and feeding behavior 
[67]. Likewise, in tadpoles, it causes hypoactivity, reduction in escape swimming, 
and feeding behavior (Table 4) [65]. Regarding the effects on brain chemistry, 
it has been reported that carbaryl may be related to the decrease in the levels of 
acetylcholine, GABA, choline, tryptophan, and phenylalanine in zebrafish [108]. 
Additionally, it inhibits acetylcholinesterase in shrimp [62], in some species of 
tropical fish [109], and also in mollusks (Table 5) [107]. On the other hand, it has 
been documented that in broilers, acute poisoning can cause walking difficulty, 
weakness in the legs, dizziness, frequent defecation, less food consumption, and a 
decrease in aggressive behavior (Table 4) [79]. Overall, acetylcholinesterase inhibi-
tion has been reported, particularly in the vulture [114]. Simultaneously, in experi-
mental rodents, it has been associated with deficits in memory and learning. As well 
as alterations in habitual behavior [90] and hypoactivity [91]. Furthermore, in a 
supposed carbaryl poisoning in bats, signs such as hypersalivation, miotic pupils, 
lethargy, and coma were reported [92]. This substance can also inhibit acetylcho-
linesterase in Norwegian gray rats [91] and in experimental rodents. The above has 
been related to neurodevelopmental alterations [90], as depicted in the visual and 
frontal cortex electroencephalogram [133] and hippocampal neuroinflammation 
[134]. In humans, it has been linked to a semi-conscious state and acetylcholin-
esterase inhibition after acute poisoning in a 3-year-old child, without further 
details on other associated neurological signs (Table 4) [99]. Moreover, in an in 
vitro study, it was observed that carbaryl could bind to human melatonin receptors 
[122]. Carbaryl was recently associated with meningiomas in people agriculturally 
involved in an epidemiological investigation [141].

While, acute poisonings are associated with signs of piloerection, tremors, 
seizures, and hypoactivity, among other neurological manifestations [88]. Regarding 
brain neurochemistry in experimental rodents, it has been reported that chlorpyrifos 
can alter the activity of acetylcholinesterase [86, 87, 117, 118]. It participates in the 
downregulation of genes related to Parkinson’s disease [117], causes oxidative stress 
[86] and decreases dopamine and serotonin levels [87, 118]. Overall, it has also been 
associated with neurodegeneration in rodents for experimentation [131, 132]. In 
humans, it has been reported that chlorpyrifos can alter social and motor function 
in children [96, 97]. As well as having fallout related to neurobehavioral deficits in 
workers exposed to the insecticide [98]. At the neurochemical level, in an in vitro 
study with human cells, it was shown that it can decrease intracellular levels of ATP 
and cause mitochondrial dysfunction [121]. Finally, at the cellular level, it has been 
reported to cause inhibition of activated calcium channels by voltage [137], alter 
morphology [138], and induce apoptosis in vitro [139]. In human cells exposed to 
chlorpyrifos, a recently published study reported that it may be associated with 
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alterations in the morphology of different brain regions in children exposed to the 
substance (Table 6) [140].

6.3 Imidacloprid

Despite being considered harmless for most living organisms, neonicotinoid 
insecticide have been the focus of extensive investigation, as their toxicity has 
been proven to extend beyond insects [148], to humans. Imidacloprid poisoning in 
bees has been associated to neurological symptoms such as paralysis and tremors 
[56], and fire ant exposure has been linked to decreased consumption, foraging, 
and digging behavior, as well as parasitic wasps with alterations in host-seeking 
behavior (Table 4) [57, 58]. Reduced visual mobility and degradation in in-flight 
behavior in lobsters, in addition to influencing queen selection behavior in sting-
less bees have been other reported consequences of the exposure to this insecticide 
[59, 60]. Imidacloprid has been linked to a decrease in the density of synaptic units 
in fungiform bodies [125] and a decrease in driving speed in lobsters [103]. It can 
also increase acetylcholinesterase levels [103] and induce apoptosis and neuronal 
autophagy [60, 124]. In edaphic invertebrates, imidacloprid causes diverse effects 
on the survival, growth, and reproduction of earthworms, springtails, mites, and 
isopods based on LC50, EC50, and EC20 toxicity tests [149]. In aquatic organisms, a 
decrease in acetylcholinesterase levels in mollusks has been reported [150], as well 
as varied effects on exploratory behavior, swimming activity, and sensorimotor 
response to startling stimuli in zebrafish (Tables 4 and 5) [70].

Moreover, exposure to imidacloprid has been associated with alterations in 
swimming behavior in tadpoles [71] and shrimp [73], decreased response to preda-
tors in frogs [72], and locomotor alterations in crabs [74], zebrafish [75] and tadpoles 
(Table 4) [76]. At the neurochemical level, it has been proposed that imidacloprid 
can alter acetylcholinesterase activity and cause oxidative stress in fish [75, 105, 
110]. It also inhibits brachial acetylcholinesterase in oysters [111] and in fish muscles 
(Table 5) [112]. At the cellular level, it has been documented that the above may 
be associated with increased expression of BNDF and c-fos in the brain tissues of 
zebrafish (Table 6) [126]. In birds, it has been reported that exposure to imidaclo-
prid can cause hypoactivity, decreased flight behavior, spasms, drooping wings, 
ataxia, and prostration in pigeons [80]. It has also been stated that it can alter the 
migratory orientation and delay the time of starting migration in the white-crowned 
sparrow [151]. In one of the most recently published studies, it was reported that 
in chickens, it can generate neurological signs such as muscle tremors, ataxia and 
depression (Table 4) [82]; in quail, it can increase monoamine levels in the cerebral 
cortex [115] and alter the activity of acetylcholinesterase in the muscles and brain of 
the gray laurel wing bird (Table 5) [116]. At the cellular level, it has been associated 
with neurodegeneration in chicken embryos’ cerebellum [129] and pigeons [130]. In 
experimentation rodents, it has been associated with hypoactivity, increased groom-
ing behavior, and conduct associated with anxiety and depression [93, 94]. While 
in bats, it may be associated with alterations in the vocal, auditory, orientation, and 
memory systems (Table 4) [95]. Also, in rodents, it can increase acetylcholinesterase 
activity [119], adrenaline, norepinephrine, and cortisone levels [93], and reduce 
serotonin, GABA, dopamine, and glutathione (Table 5) [120, 152]. Regarding the 
cellular effects, exposure to imidacloprid can also cause neurodegeneration, an 
increase in the expression of GFAP [152], and DNA damage in neurons [136]. In bats, 
it has been related to a decrease in proteins related to echolocation in different brain 
regions [95]. Moreover, in humans, acute imidacloprid poisonings have been associ-
ated with neurological signs such as dyspnea, coma, sweating, drowsiness, confu-
sion, incoherence, lack of orientation, and miotic pupils, among others [100–102]. 
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In an in vitro study with LUHMES and SH-SY5Y cells, an increase in intracellular 
calcium levels was found [123] (Table 5) On the other hand, after acute poisoning, 
cerebral edema has been reported as a necropsy finding [101], while in an in vitro 
study it was revealed that it can cause the death of SH-SY5Y cells [135].

On the other hand, acute poisonings are linked to piloerection, tremors, seizures, 
and hypoactivity, among other neurological manifestations. Regarding brain neuro-
chemistry in experimental rodents, it has been reported that chlorpyrifos can alter 
the activity of acetylcholinesterase [86, 87, 117, 118]. It participates in the downregu-
lation of genes related to Parkinson’s disease [117], causes oxidative stress [86] and 
decreases dopamine and serotonin levels [87, 118]. Overall, it has also been associ-
ated with neurodegeneration in rodents for experimentation [85, 132]. In humans, it 
has been reported that chlorpyrifos can alter social and motor function in children 
[96, 97]. As well as having fallout related to neurobehavioral deficits in workers 
exposed to the insecticide [98]. At the neurochemical level, in an in vitro study with 
human cells, it was shown that it can decrease intracellular levels of ATP and cause 
mitochondrial dysfunction [121]. Finally, at the cellular level, it has been reported 
to cause inhibition of activated calcium channels by voltage [137], alter morphology 
[138], and induce apoptosis in vitro [139]. In human cells exposed to chlorpyrifos, 
a recently published study reported that it may be associated with alterations in the 
morphology of different brain regions in children exposed to the substance [140].

7. Conclusions and perspectives

Insecticides are pesticides commonly associated with neurotoxic effects [153] 
and although the general population is exposed on a daily basis to low doses through 
water and food [154–156] the highest risk is presented by agricultural workers, their 
families and people who live in the areas surrounding the fields, unfortunately, these 
people are the most exposed and also the least informed about the toxic effects, 
which leads to bad practices of use, handling and disposal of these substances, which 
put wildlife and the environment at risk. Since the effects that cause the greatest 
impact are usually those that directly affect human health, in conclusion some neu-
rotoxic effects associated with the use of insecticides are revealed. In epidemiological 
studies in humans, organophosphates have been linked to effects such as cholinergic 
syndrome, polyneuropathy and neuropsychiatric disorders such as cognitive deficits, 
anxiety, depression, peripheral neuropathy, extrapyramidal symptoms such as dys-
tonia, tremor at rest, bradykinesia, postural instability and rigidity of facial muscles, 
among others, and have even been associated with neurodegenerative diseases such 
as Parkinson’s and Alzheimer’s disease [157, 158]; neonicotinoids have been linked 
to developmental diseases such as autism and anencephaly and in acute poisonings 
with neurological signs such as memory loss, finger tremors, muscle spasms, coma 
and dilated pupils [159–161]; On the other hand, with regard to epidemiological 
studies on neurotoxicity of carbamates in humans, the literature is limited, however, 
in the most recently published article, it has been reported that after acute poison-
ing, these pesticides can cause signs such as coma, drowsiness, seizures, disorienta-
tion, tremors and fasciculations, among others [157]. However, although there 
are epidemiological studies in which the possible relationship between exposure 
to pesticides and neurological disorders has been determined, to date they remain 
limited and in fact most of the toxic effects of many pesticides used in the field are 
unknown. agriculture and therefore it is difficult to determine how we can protect 
ourselves from them, although there are studies in which the neuroprotective 
effect of various substances has been experimentally demonstrated, which could 
counteract the neurotoxic effects of pesticides, for example in the case of pesticides. 
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Organophosphates it has been documented that the flavonoid kaempferol may have 
protective effects on chlorpyrifos-induced neurotoxicity [162] and that crocin and 
citric acid may also have the same effect on malathion-induced toxicity [163, 164]; 
in the case of neonicotinoids, reduced glutathione, curcumin, resveratrol, ascorbic 
acid, and aqueous ginger extract have been shown to act as neuroprotectors against 
imidacloprid-induced toxicity [165–168], as well as curcumin and N-acetylcysteine 
can protect against acetamiprid-induced neurotoxicity [169, 170]; In the case of 
carbamates, it has been described that naringenin can combat oxidative stress 
induced by exposure to carbaryl [171]. Previous studies offer alternatives as possible 
neuroprotectors, therefore, it is necessary to continue investigating the mechanisms 
of toxicity and target species of pesticides that exist on the market, before thinking 
of creating new, more powerful and, of course, more toxic pesticides ; In addition to 
banning those that pose a high risk to living beings and the environment and making 
strict policies to control their distribution and sale, since it is clear that it is difficult 
to live without pesticides, however, it is our duty to use them responsibly.
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Abstract

Vanadium (V), a widely distributed transition metal, has been considered toxic, 
which depends on the valence of the compound. V pentoxide (V2O5) is considered 
the most harmful. Its long-term exposure produces neurotoxicity. Mice exposed to 
inhaled V2O5 displayed less tubulin+ in testicular cells and dendritic spines loss, cell 
death, and CA1 neuropil modifications, considered as the result of V interaction 
with the cytoskeleton, which made us suppose that V2O5 inhalation could initiate 
CA1 cell alterations comparable to what happen in the brains of Alzheimer disease 
(AD) patients. This study intends to demonstrate pyramidal CA1 cytoskeletal 
changes in rats which inhaled V2O5. Twenty rats were exposed to V2O5 0.02 M 
one hour, three times a week for several months. Our findings showed that V2O5-
exposed rats had cell death that reached 56,57% after six months; we also observed 
collapsed strong argyrophilic nuclei and characteristic flame-shaped somas in all 
V2O5-exposed animals hippocampus CA1 compared to controls. We also found 
somatodendritic deformations. Neurite’s cytoskeleton exhibited visible thickening 
and nodosities and prominent dendritic spine loss. Our results demonstrate that 
V2O5 induces AD-like cell death with evident cytoskeletal and synaptic alterations.

Keywords: Vanadium pentoxide, Cell death, Bielschowsky silver stain, inhalation, 
dendritic spines, hippocampus

1. Introduction

Vanadium (V) is a transition metal abundant in nature; its atomic number is 23. 
Andres Manuel Del Rio was the first who reported it in 1801. But it was actually 
discovered in 1830 by a Swedish chemist named Nils Sefstrom [1]. V is a bright 
silver-white, soft and malleable metal and the 22nd most abundant element in the 
earth’s crust, and it has become a matter of concern among nutritionists since vari-
ous marine species contain this metal as an trace element [2]. Environmental air V 
acts as the primary source for the general population [3].
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Although V is extensively dispersed in air, its role as human nutrient is not 
yet confirmed. Humans are exposed to V generally through the polluted atmo-
sphere from combustion products of vanadium-bearing fuel oils, fumes, and 
dust. Food contains insignificant V concentrations, frequently below 1 ng/g. 
V enters the organism by inhalation, skin, and gastrointestinal tract and accu-
mulates mainly in the kidney, liver, bones, spleen, lungs and brain, accumulate 
fewer V concentrations [3–5].

Neurotoxic effects of V are not well recognized yet. Still, it is known that acute 
exposure in animals by ingestion or inhalation leads to nervous system alterations, 
paralysis of legs, respiratory failure, convulsions, bloody diarrhea, and death [6]. 
V disrupts the blood–brain barrier [7] and alters some neurotransmitters concen-
trations such as serotonin, norepinephrine, and dopamine, and an inhibitory effect 
on the uptake and release of norepinephrine were observed in the rat brain during 
V poisoning [8–10].

The V oxidation states of biological importance are vanadate (V5+) and vana-
dyl (V4+) and are considered harmful to mammals depending on their levels. 
Workers occupationally exposed to vanadium pentoxide (V2O5) had presented 
cardiovascular alterations and a variety of symptoms involving the central nervous 
system (CNS), gastrointestinal and respiratory systems [11]. Moreover, it has been 
suggested that raised tissue levels of V may be of etiological importance in manic-
depressive syndrome since V reduces serotonin concentration. Blood V levels in 
depressed patients were greater than non-V-exposed controls [11]. Besides, reduced 
cognitive abilities in humans chronically exposed to this metal were found [12].

2. Vanadium sources

Metallic V is not found in nature. The most common in mining is carnotite and 
vanadinite. V is also found in phosphate rock, iron ores, and some crude oils in 
organic complexes and in small percentages of meteorites [3]. The presence of V is 
related to other minerals; among them is iron, aluminum, uranium, and titanium, 
and is frequently used as alloy steel, in combination with nickel, boron, or manga-
nese. Extraction of V from coal or fossil fuels, such as Vanadium-rich coal tars and 
oil, explains the high V concentrations registered in the atmosphere [11].

V is generally employed in metallurgy in alloy with steel. And, as nonferrous 
metal V is considered fundamental for aircraft’s manufacture, atomic and space 
industries. In the chemical industry, V2O5 and metavanadates are remarkably 
important for plastics and sulfuric acid production. Emissions of V may be high 
near producing steel alloys industries. V is also released into the air: during the re-
smelting of scrap steel and the transformation of titaniferous and vanadic magne-
tite iron ores into steel; from the roasting of V slags; from V2O5 smelting furnaces; 
and from electric furnaces in which ferrovanadium is smelted [11, 13].

2.1 Vanadium in the environment

As a profuse element in the earth’s crust, the V average varies from 159 g/t to 
0.14 mg kg. The standard concentration of 135 mg/kg in soil positions V in 5th 
place, among all transitional metals [11, 13]. V recycling includes its release from 
anthropogenic and natural bases to the water, soil, and air [13–15]. Frequently, the 
places such as fuel plants and refineries showed the highest level of V [16, 17].

V geochemical characteristics depend on the oxidation state and pH. The 
moderately immobile V (III) prevails. Typically, V compounds with high oxida-
tion states are more soluble [14]. The average concentration of V in different soils 
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fluctuates from 10 to 220 mg kg dry mass depending on the soil types and chemical 
characteristics [18, 19]. The soils directly under humans’ use include a much higher 
V concentration [17, 18]. On the other hand, what most pollutes the soil and water 
is the mining V-derived [20]. Vanadium is the most profuse transition metal in the 
aqua sphere, with an average content similar to zinc [21]. Persian Gulf sediments 
have very high V concentrations [22].

It seems that over the last decades, V levels in the biosphere have been signifi-
cantly growing, a fact that will be of concern in the future [23]. The primary sources 
are mining, fossil fuel combustion, atmospheric wet and dry accumulation, etc. 
[24]. V remains in the water, soil, and air for long periods and may react with other 
elements [2, 21]. Recently, it has been shown that atmosphere V levels are increasing 
every day, mainly due to fossil fuel burning [11, 14, 18]. For that reason, more than 
60 thousand tons of V may be released into the big cities air [14, 25].

Apparently, V concentrations in ambient air fluctuate significantly; in rural 
areas, V levels are under 0.001 μg /m3, however, in areas where there is a high degree 
of fossil fuel burning, as in large cities, the average annual concentration goes from 
0.02 μg/m3 to 0.3 μg/m3. It has been determined that near industrial zones, its level 
can reach 1 μg/m3 [26]. Fortoul et al. [26] reported that V has increased over time in 
lung parenchyma from Mexico City inhabitants since it has been demonstrated that 
Mexican petroleum has high V concentrations.

V concentration in plants and food is very low, from less than 0.001 to 0.005 mg 
[14]. Some foods, including oysters, parsley, and spinach, had a relatively higher 
amount of V than all other foods [27].

V occupational exposure. V levels near metallurgical industries usually average 
about 1 mg V/m3, whereas ambient air near industries, which produce V metal or 
compounds, contain a few mg V/m3 [11]. Very high levels of V result from boiler-
cleaning procedures due to the high concentration (approximately 10–25%) of V 
oxides in the dust. During these procedures, 50–100 mg V/m3 are frequent, with 
concentrations ranging from 500 mg V/m3 [3].

The most critical V compounds are ferrovanadium, V2O5, vanadium trioxide, 
V carbide, and salts, such as ammonium and sodium vanadate. The salts and 
oxides are used in powder form. It has been reported that the metallurgical indus-
try includes the production of vapor containing V2O5, which condenses to form 
breathable aerosols. Also, residual fuels combustion with high V content have V2O5 
aerosols [11].

2.2 Vanadium absorption, distribution and excretion

It appears that only 10% of ingested V is absorbed from the gastrointestinal tract 
[28]. This report suggests that most of the ingested V is transformed into the cat-
ionic vanadyl form in the stomach before being absorbed in the duodenum through 
an unknown mechanism [29]. In its anionic vanadate form, V is absorbed in much 
higher quantities (about five times more than vanadyl form) through an anionic 
transport system [29]. Multivalent existence of V in nature and living systems put 
forth the chemical complexity of this element. This multifaceted chemical char-
acter of V, in turn, echoes in its biological and biochemical properties, especially 
in metabolism and absorption. Again vanadate, after reaching the bloodstream, is 
converted into vanadyl ion, although the vanadate form also exists. Thus, vanadate 
(by transferrin) and vanadyl (by albumin and transferrin) are rapidly transported 
by blood proteins to various tissues [30]. Blood parameters showed little or no 
reflection of toxicity after a long-term supplementation of V compounds [31], 
which might be due to the transport of V from blood to the tissues. Upon supple-
mentation, V is incorporated in various organs and tissues, including the liver, 
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kidney, brain, heart, muscles, and bone. The kidney, spleen, bone, and liver tissues 
of rats have been shown to accumulate distinctly high amounts of V in chronically 
treated animals through oral administration [32].

The effects of V persist even after it has been withdrawn for several days 
[33]. Unabsorbed V is excreted in feces. When V was administrated through the 
parenteral route, 10% of the V was found in the feces of humans and rats [3]. V is 
excreted through bile and urine [34]. It is, thus, the bile route through which a 
significant amount of V may be eliminated through feces. Moreover, it may be sug-
gested that V content in feces does not reflect V absorbed or unabsorbed (1).

The toxicity of V depends on various factors, including the administration route 
and the V compound toxicity. In general, the toxicity of V is low, and its toxicity is 
least following ingestion and greatest following parenteral administration. Inhalation 
is a route of exposure that produces intermediate toxicity [3, 11]. The toxicity of V 
increases with higher valences, and the pentavalent compounds (as V pentoxide) are 
usually the most toxic [3].

2.3 Vanadium effects in the nervous system

V crosses the blood–brain barrier [7], and its compounds can induce neurologic 
alterations through different routes of administration [3, 11]. It has been reported 
that V-exposed lactating rat pups developed neurological deficits [35]; other authors 
described neurological alterations and increased brain V concentration after sodium 
metavanadate intraperitoneal administration [36–38]. Also, our group [7, 8] reported 
neuroinflammation in the brain of mice that inhale V2O5. We found a seven-fold 
peak increase in V brain concentration after one week of inhalation and remained 
constant (0.10–0.12 mg/g dry weight tissue) during eight weeks of V2O5 inhalation. 
The inhalation route seems to induce neurotoxicity [6], which is epidemiologically 
relevant since this is the main route to the brain during occupational and environ-
mental exposure.

One of the first studies on the V neurological effects was made by Done [39], 
who found that humans exposed to V displayed tremor and depression. Other 
researchers demonstrated that occupationally exposed people present alterations in 
cognitive ability tasks [40]. Despite the route, duration, and compound, V exposure 
has affected nerve cells and glia. In a study of chronic intraperitoneal exposure 
at 3 mg/kg in mice, Folarin et al. [36] reported that the brain accumulates large 
amounts of V, mainly in the brain stem, cerebellum, and olfactory bulb. This study 
described disruption of the layering pattern in the prefrontal cortex with nuclear 
pyknosis, loss of pyramidal neurons and reduced apical dendrites in the hippocam-
pal CA1, and loss of cerebellar Purkinje cells. These morphological alterations were 
accompanied by astrogliosis and microgliosis.

Demyelination has also been reported after drinking milk from mothers 
exposed to sodium metavanadate [41]. Our group also described that in male CD-1 
mice exposed by inhalation to 0.02 M V2O5 2 h twice a week for four weeks, Golgi 
staining revealed a severe loss in dendritic spines in the striatum compared to the 
controls, showing that the inhalation of V2O5 causes severe neuronal damage in this 
nucleus [8]. We observed fewer dendritic spines in the olfactory bulb granule cells 
after three months of exposure using the same inhalation protocol, and electron 
microcopy alterations consisted in swelled mitochondria and endoplasmic reticu-
lum, and neuronal death that can be correlated with the olfactory dysfunction 
[42]. In the hippocampus, we found a decrease in dendritic spines and necrosis of 
the pyramidal CA1 neurons, modifications that could be associated with spatial 
memory impairment [43].
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2.4 Mechanisms of vanadium neurotoxicity

It has been reported that V induces reactive oxygen species (ROS) production, 
which several authors have proposed as a reasonable basis for its neurotoxicity  
[6, 44, 45]. V, as other catalytic transition metals, participate in the Fenton reac-
tion [46]. V in body fluids exists mainly in the 5+ oxidation state as V pentoxide 
(V2O5) [47]. V enters the cell as vanadate via anion channels while as vanadyl ions 
by passive diffusion and endocytosis bound to transferrin [48]. When entering the 
cell, vanadate is reduced by intracellular antioxidants to vanadyl, with subsequent 
production of ROS [49]. H2O2 then oxidizes vanadyl into vanadate in a Fenton-like 
reaction with the consequent hydroxyl radical production [50]. With higher V lev-
els, these reactions result in oxidative stress and toxic effects on lipids, proteins, and 
nucleic acids. With its high lipid content, the brain is vulnerable to oxidant-induced 
lipid peroxidation [51], and as such, V neurotoxicity is related to myelin deficits 
[45]. Moreover, as we mentioned above, earlier results from our group revealed 
substantia nigra tyrosine hydroxylase cell loss, and therefore, dendritic spine loss 
in the striatum medium-size spiny neurons [8], blood–brain barrier disruption [7], 
and hippocampal cells alterations [43].

Besides oxidative stress, it has been demonstrated that the cytoskeleton is an 
important target of V toxicity because of its ability to compete with phosphatases; 
due to this, V inhibits actin polymerization through the tyrosine phosphatases 
inhibition [52, 53], which, in consequence, by decreasing gamma-tubulin disturbs 
microtubules function and formation [54]. It is also well known that actin polym-
erization establishes the morphology of dendrites and dendritic spines [55]. These 
facts make us consider the possibility that V2O5 inhalation might induce hippocam-
pus cell death similar to that seen in Alzheimer disease (AD).

2.5 Alzheimer disease

Today, aging human populations worldwide face an epidemic of AD, with an 
increasing number of cases to nearly 106 million by 2050 [56]. Several factors have 
been described to participate in the AD etiology including, aging, genetics [57], 
head injury [58], and exposure to certain chemicals and compounds [59].

AD is a neurodegenerative disease that represents the most common cause of 
dementia. Symptoms associated with dementia vary from difficulties with orienta-
tion, language, and problem-solving to memory alterations and other cognitive skill 
deficits that affect a person’s ability to perform daily life activities [60]. The most 
noticeable symptoms at the beginning of the disease are disorientation and episodic 
and spatial memory loss [61]. The medial temporal lobe region, consisting of the 
hippocampal formation and related cortices, are essential for the adequate func-
tioning of spatial and declarative memory systems [62, 63] and are the first areas 
affected in the progression of the disease [64].

Synaptic failure has been suggested as the leading cause of AD pathology [65]. 
The principal neuropathological hallmarks of the disease are the neurofibrillary 
tangles (NFTs) associated with abnormal phosphorylated tau protein and the accu-
mulation of aberrant amyloid-β, features also found in the brains of old patients 
without cognitive impairments or AD [66]. Nonetheless, directly or indirectly, 
these proteins induce synapsis alterations by changing dendritic spines morphology 
or causing their loss and neuronal degeneration [67, 68].

The development of intraneuronal lesions at selectively vulnerable brain struc-
tures is central to the pathological process in AD [69–71]. The lesions consist mainly 
of hyperphosphorylated tau protein. They include tangle material, NFTs in cell 
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bodies, neuropil threads (NTs) in neuronal processes, and material in dystrophic 
nerve cell processes of neuritic plaques (NPs) [72–74].

2.6 Alzheimer’s disease experimental models

Experimental models are crucial in understanding AD pathogenesis for 
implementing novel therapeutics. So far, AD experimental models consist almost 
exclusively of transgenic mammals that express the human genes that result in 
the formation of amyloid plaques (by expression of human APP alone or in com-
bination with human PSEN1) and NFTs (by the expression of human MAPT) 
[75–78]. Other experimental models have used invertebrates such as C. elegans 
and Drosophila melanogaster and vertebrates such as zebrafish; nevertheless, these 
models are very different from human physiology and less extensively used [79]. 
Nevertheless, some issues have been raised about this model’s validity, mainly 
because the efficacy in clinical trials has been very low [80, 81]. Facts that make 
us wonder if the animals in the experimental models actually have AD, consider-
ing only the specific pathological features. Most animal models develop only the 
amyloid accumulation that defines AD. This often gives rise to specific memory-
associated cognitive alterations. However, these models normally preset the absence 
of the main AD pathological features, including cell death and, most importantly, 
NFTs development [79]. The lack of NFTs could partly explain the failure between 
pre-clinical and clinical trials [80].

Therefore, in this chapter, we intend to demonstrate that the inhalation of V2O5 
produces cellular alterations like those observed in AD, with synaptic alterations 
(shown by the loss of dendritic spines) and by the presence of NFTs, due to V 
directly interacts with the cytoskeletal components, and is a potent inhibitor of 
tyrosine phosphatases.

3. Experimental procedures

The experiments were accomplished in 24 male Wistar rats weighing 180–200 g 
at the beginning of the study. The rats were individually placed in plastic cages with 
controlled light conditions (12 h light/12 h dark) and fed with Purina Rat Chow and 
water ad libitum. Body weight was recorded daily. The experimental protocol was 
carried out following the Animal Act of 1986 for Scientific Procedures and the Rules 
for Research in Health Matters (Mexico). We made efforts to minimize the number 
of animals used and their suffering.

3.1 Vanadium pentoxide inhalation

V2O5 inhalations were performed as described by our group [8]. As part of our 
experiment with V, a pilot study was implemented with 0.005 and 0.01 M V2O5, and 
we found no changes using light microscopy in lung tissue; therefore, a higher dose 
was utilized, 0.02 M, realizing that V half-life about 48 h [11] we designed a three 
times a week exposure protocol.

Twelve rats were placed in an acrylic chamber inhaling 0.02 M V2O5 (Sigma, St. 
Louis, MO, USA) (Sigma Aldrich, Co. Mexico) 1 h three times a week for two and 
six months. Twelve control rats inhaled only the vehicle—deionized water—for 
the same time. Inhalations were performed in closed acrylic boxes (40 cm wide x 
70 cm long and 25 cm high) attached to an ultra-nebulizer (Shinmed, Taiwan), 
with 10 l/min continuous flux. The ultra-nebulizer is designed to produce droplets 
in a 0.5–5 μm range. A trap for the vapor was located on the opposite side with a 
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solution of sodium bicarbonate to precipitate the remaining metal. During the 
inhalation, animals were constantly monitored for respiration rate, depth, and 
regularity. The exposure system was monitored for temperature, oxygen level, and 
V concentration.

After two or six months, rats were sacrificed under sodium pentobarbital anes-
thesia (lethal dose) and perfused via the aorta with a saline solution followed by the 
fixative containing 10% formaldehyde in 0.2 M-phosphate buffer. The brains were 
removed and placed in the fixative solution for one hour.

3.2 Bielschowsky silver impregnation

After the routine paraffin processing, serial coronal brain sections were cut at 
8 μm thickness in a sliding microtome (Leica SM2010 R, Germany). Brain sections 
were deparaffinized in xylene and alcohol before being disposed into 20% silver 
nitrate solution for 20 min at 37°C. After washing with distilled water, slides were 
submerged in 20% silver nitrate solution titrated with fresh sodium hydroxide and 
evaporated ammonia. After 15 min, slides were washed with ammonia before being 
individually revealed with 100 ml of a developer (20 ml of formaldehyde, 100 ml 
distilled water, 20 μl concentrated nitric acid, and 0.5 g citric acid) and then added 
to 50 ml of titrated silver nitrate solution. Slides were then rinsed in tap water, fixed 
in 5% sodium thiosulfate, and dehydrated through alcohols and xylene [82]. The 
hippocampus CA1 pyramidal cells were evaluated under a light Optiphot 2 micro-
scope (Nikon, Japan).

3.3 Golgi stain

Brain tissue from the hippocampus CA1 was cut into 90 mm- thick sections and 
processed for the rapid Golgi method [83]. The histological analysis consisted in 
counting the number of dendritic spines in a 10 mm-long area from five secondary 
dendrites from 20 CA1 pyramidal neurons from each rat [8, 84].

Means from each group were compared for statistical differences by one-way 
ANOVA test (p < 0.05) followed by posthoc comparisons with Tukey test. The 
statistical analyses were conducted with GraphPad Prism 9 for Mac Software.

4. Results

The animals that inhaled V2O5 did not show changes in their weight or clinical 
alterations compared to the control group.

4.1 Dendritic spines

Brain sections were treated with the Golgi stain to determine if V2O5 inhalation 
induces synaptic alterations in the hippocampus CA1. The synaptic damage resulted 
in significant CA1 pyramidal neurons dendritic spine loss of exposed rats compared 
to controls (Figures 1 and 2B, C). As it is shown in Figure 1, spine loss was more 
evident with longer inhalation time.

4.2 Hippocampus CA1 neuronal alterations

With the Bielschowsky method, we found that rats exposed to V2O5 after two 
months have substantial CA1 pyramidal cell death (25%) (Figures 3 and 5), and 
after six months, the cell death reached 56.57%, being statistically different vs. 
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two months and control groups (Figures 3 and 4); we observed that in all V2O5-
exposed rats the pyramidal hippocampus CA1 cells displayed strong argyrophilic 
and collapsed somas compared to control rats, the somas also revealed the typical 
flame-shaped (Figures 4–6). Also, somatodendritic deformations were identified. 
Axons and dendrites exhibited thick dark bands resembling thickening nodosi-
ties and fibrillary cytoskeleton proteins linear traces. The neurofibrils were fused, 
disordered, thickened, and crowded together into broadband, and the neurites were 
deeply stained; we also noticed curly fibers. Some neurites displayed neurofibril-
lary-type tangles (Figure 6).

Figure 1. 
The number of pyramidal CA1 neurons dendritic spines, contrasting control and exposed rats after two and six 
months of V2O5 inhalation. One way ANOVA, *p < 0.05 vs. control group.

Figure 2. 
Dendritic spine density. Representative Golgi-stained pyramidal CA1 neurons of the control group (A), two 
months (B), and six months of V2O5 inhalation (C). Both exposure times provoked a significant decrease in the 
total number of spines, mainly after six months. (magnification 40X).
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5. Discussion

Our results show significant alterations in the cytoskeleton and synaptic activity, 
demonstrated by the loss of dendritic spines and Alzheimer-like fibrillary tangles.

It is essential to stand out that V concentrations in the environment vary sub-
stantially; in rural areas, V concentrations are below 0.001 μg/m3, in big cities, 
where there are high levels of fossil fuel burning, the average V concentration range 
from 0.02 μg/m3 to 0.3 μg/m3. It has been shown that near industrial zones, its con-
centrations can reach 1 μg/m3. In this experiment, V concentrations in the inhala-
tion chamber was 1436 μg/m3 [54], exceeding the highest concentration reported in 
ambient air (1 μg/m3). In this regard, we know that the concentrations used here are 
higher than those subjects with occupational exposure, but animal models permit 
amplifying the impact that V has on the nervous system.

Our results demonstrated that V2O5 inhalation generates a significant loss of 
pyramidal CA1 neurons dendritic spines and notorious cytoskeleton distortions 
resulting in the alteration of the synaptic transmission and, therefore, possibly in 

Figure 3. 
Damaged pyramidal hippocampus CA1 neurons percentage after two or six months of V2O5 inhalation. 
*P < 0.05 vs. two months group.

Figure 4. 
Representative photomicrographs of Hippocampus CA1 control group stained with the Bielschowsky method. 
As can be seen in B (white oval), the pyramidal neurons of the hippocampus CA1 are healthy, in terms of size 
and shape. Figure C depicts the detail of B white oval. A 10X, B 40X and C 100X.
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memory disturbances. It is well known that many neurological conditions lead to a 
decreased number of dendritic spines [85], for instance, epilepsy, alcoholism, and 
others disorders, imply that the decline in the number and availability of axo-
spinous synapses are the consequence of the dendritic spines loss (85). Previously, 
our group informed significant dendritic spine loss after ozone inhalation in the 

Figure 5. 
Representative photomicrographs of Hippocampus CA1 Bielschowsky staining from the experimental group 
after two months of V2O5 inhalation. Neuronal soma deformation is observed (arrows). The axons displayed 
thicker and darker bands (arrowhead); A (10x), B (40x), and C (100x) 

Figure 6. 
Hippocampus CA1 representative photomicrographs of Bielschowsky staining from the experimental group 
after six months of V2O5 inhalation. It can be observed strong argyrophilic nuclei (white oval in a and B; 
arrows in C) typical flame-shaped and intensely stained neurites (white oval in a, B and C), forming similar 
structures to neurofibrillary tangles (arrowhead); A (10x), B (40x), and C (100x).
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hippocampus, correlated with memory alterations [84], also, dendritic spines loss 
in the corpus striatum and cerebral cortex with motor impairments [86] as well as 
olfactory bulb modifications [87]. Furthermore, we found dendritic spine loss in 
the corpus striatum after V2O5 inhalation [8]. Since V interacts with the cytoskel-
eton, this interaction may be the cause of dendritic spine loss since it seems that 
actin is a critical element for dendritic spine architecture preservation. It orches-
trates the spine’s morphology and number [88]. In this context, Pelucchi and cols. 
[88] mention that Rho activation is essential for the dendritic spine functionality, 
cofilin phosphorylation, and, consequently, spine actin stabilization. According to 
Wang et al. [89], cofilin phosphorylation prevents binding to the F- and G-actin 
binding, and only a dephosphorylated cofilin can initiate the actin-binding. 
Consequently, their activity is synchronized by phosphorylation/dephosphoryla-
tion. It is important to mention again that V is practically a structural and electronic 
phosphate analog and a phosphatase inhibitor [90]. In humans, the resemblance 
between phosphate and V explains V and phosphate-dependent enzymes interplay. 
Therefore, V may achieve a regulatory function in phosphate-depending metabolic 
processes [90].

It is well known that V neurotoxic properties have been predominantly 
attributed to its capacity to induce oxidative stress by the generation of ROS, 
which in turn initiates the peroxidative decomposition of the cellular membranes 

Figure 7. 
When vanadium enters the body, it enters as a tetravalent ((vanadyl) or as a pentavalent (V5+) [3]; then, 
it is transported via the blood by albumin and transferrin (1). V with these two valences enters cells through 
anionic channels. These two forms arrive the cells through anionic channels; once in the cell, V5+ reacts with 
some antioxidant enzymes such as superoxide dismutase (SOD)(2) [12], producing H2O2 through Fenton-like 
reaction, where the mitochondrion initiates the cytochrome C pathway inducing the apoptosis route through the 
activation of caspases 3 and 9 (3) [95], then, vanadate generates free radicals (OH+ OH-) by reacting with 
GSH and CAT enzymes (4) [94], stimulating oxidative stress triggering lipids, proteins, and DNA alterations. 
V5+ reduces to vanadyl through NADPH-oxidase (5), which in turn, forms pervanadate, oxidized by H2O2, that 
will permanently inhibit protein tyrosine phosphatases (PTP) [96] (6), which will aggregate the phosphorylated 
protein tyrosine kinase (PTK) activating intracellular signaling pathways (7) [1], triggering the inflammation 
mechanisms through phospholipase-A2 (PLA-A2) and COX-2 formation, activating the gliosis process (8) [97], 
similarly DNA, cell death, demyelination and damage to proteins through lipid peroxidation. Finally, the PTP is 
inactivated by vanadate (9) [98], which results in the activation of intracellular death signaling pathways.
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phospholipids [6, 44, 45] and neuron inflammation [91]. It is also associated with 
hypomyelination correlated with oxidative stress [92] and a decrease in myelin 
essential protein [93]. It has also been reported that V produces DNA cleavage, 
apoptosis and induces iron-mediated oxidative stress in brain cell cultures [94] 
and hippocampus neuronal death [36]. Likewise, it has been reported that V 
inactivates protein-tyrosine-phosphatases (PTP) because it binds to the cysteine 
catalytic residue, which leads to an increase in phosphorylation of PTP, increasing 
the phosphorylation of the MAPK pathways, which probably causes tau protein 
hyperphosphorylation, to generate or induce neurofibrillary tangles (NFTs) [94]. 
Thus, according to our findings and the revised literature, V neurotoxic effects are 
summarized in Figure 7.

Likewise, an increased body of evidence implicates oxidative stress as involved 
in at least the propagation of cellular injury, which leads to neuropathology in vari-
ous conditions, such as AD. Moreover, oxidative stress is intimately linked with an 
integrated series of cellular phenomena, which all seem to contribute to neuronal 
death [51, 99].

The facts mentioned above provide evidence that V2O5 disrupts critical neuronal 
processes and leads to alterations that include ROS generation, producing cell death. 
Further work should be done to answer questions, such as identifying the signaling 
pathways that induced the changes reported here.

Furthermore, as formerly reported, V2O5 modifies cytoskeletal proteins such 
as ץ-tubulin [54], inducing actin alterations [52]. Some studies have demonstrated 
the interaction between V with actin. V has a high affinity for cytoskeletal actin-
binding sites. G- and F- actin interact with oxovanadium (IV), with 4:1 and 1:1 stoi-
chiometries, respectively, and it has been demonstrated that G-actin-V interaction 
might occur close to the actin adenosine triphosphate binding position [100–102]. 
Likewise, decavanadate can modify actin’s structure by oxidizing its cysteines in its 
polymerized form [103].

Remarkably, earlier results demonstrate that V induces Tau hyperphosphoryla-
tion [104, 105], ROS, and neuronal inflammation [106], occasioning AD-like 
damage. Moreover, the substantial hippocampal CA1 cell damage might result from 
the affinity of G-actin for V, and its association with the metal, since neurons have 
a particularly dynamic cytoskeleton, which requires continuous polymerization of 
actin filaments [107].

6. Conclusion

Our results show that vanadium pentoxide, when inhaled, produces important 
synaptic alterations, manifested in this case, by the significant loss of dendritic 
spines of CA1 pyramidal neurons and by the presence of Alzheimer-type fibril-
lar tangles, an aspect considered to be the main neuropathological feature in AD 
[107], related to the evident alterations of the cytoskeleton. Therefore, more 
research is needed to establish the relationship between V2O5 and Tau hyperphos-
phorylation, not only in the hippocampus but also in the amygdala, neocortex, 
and entorhinal, structures involved in AD [108, 109], and whether spatial memory 
is altered.

Moreover, these data must encourage research efforts towards environmental 
health effects, with the final purpose of intervening in decrease metals atmospheric 
pollution such as V. We have to promote viable schemes to safeguard the CNS from 
toxicants, which have redoubled in the atmosphere during the last decades and 
represent an important health challenge since metal pollution has been related to 
neurodegenerative diseases.
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Chapter 6

Chemotherapy-Induced Peripheral 
Neuropathy: Mechanisms and 
Clinical Assessment
Jordi Casanova-Mollà

Abstract

Antineoplastic drugs may be neurotoxic and the clinical features frequently 
include distal sensory loss and neuropathic pain. This is related to a direct damage 
in sensory neurons and non-selective degeneration of sensory nerve fibers. Due to 
different mechanisms, there are agents that affects also motor or autonomic nerves. 
In the case of immune checkpoint inhibitors, an inflammatory response attacks the 
muscle, motor neurons or neuromuscular transmission. We present an easy-to-read 
article to understand first symptoms of chemotherapy-induced neuropathy (CIN) 
with describing each agent and the course of neuropathy as well as the clinical 
assessment with neurophysiological techniques. In addition, skin biopsy allows us to 
examine histological changes such as reinnervation. Neuroprotection with antioxi-
dant therapy is possible but more effort in this field is needed.

Keywords: chemotherapy-induced neuropathy, oxaliplatin-induced neuropathy, 
neurotoxicity, polyneuropathy, toxic neuropathy

1. Introduction

Currently the chemotherapeutic drugs are part of cancer treatment. Among 
their side effects, neurotoxicity at peripheral nervous system is a well recognize 
dose-limiting side effect. It is relevant because it causes persistent pain and sensory 
loss in cancer survivors. The prevalence of chemotherapy-induced peripheral neu-
ropathy (CIPN) has been reported around 30% of patients at 6 months after treat-
ment. It reaches up to 40% when patients are also examined with nerve conduction 
studies [1]. It is important to note that neurotoxicity could be subclinical, it means 
that it may start before patient starts to be symptomatic.

The clinical picture at presentation of CIPN is a length-dependent sensory 
polyneuropathy despite other combination of sensory, motor and autonomic nerve 
dysfunction are possible. It is important to recognize different types of sensory 
nerve fibers which are specific to different sensory modalities (touch, vibration, 
temperature and pain). All of these neurons have their cell bodies in the dorsal 
root ganglion (DRG). The thin-myelinated Aδ fibers and unmyelinated C fibers are 
known as small nerve fibers carrying thermal and painful stimulus to the brain. We 
need selective neurophysiological and histological techniques to evaluate them as 
well as to examine the function of the autonomic nervous system [2].
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Drug Main mechanism of 
action

Mechanism of 
neurotoxicity

Tumor

Platinum salts 
(oxaliplatin, 
carboplatin, 
cisplatin)

Alkylation of DNA Ion channels 
hyperexcitability, 
neuronal DNA damage, 
loss of axonal transport, 
mitochondrial dysfunction, 
neuroinflammation

digestive 
tract tumors, 
pulmonary, 
ovarian, 
testicular, 
uterine, SCLC

Taxanes (paclitaxel, 
docetaxel)

Microtubule stabilizer Loss of axonal transport, 
neuroinflammation, damage 
of mitochondrial DNA, ion 
channel hyperexcitability

breast, 
gynecologic, 
gastric, NSCLC 
prostate, 
sarcomas

Vincristine, 
Vinblastine

Microtubule stabilizer Loss of axonal transport, 
neuroinflammation

lymphoma, 
testicular, 
NSCLC

Bortezomib Proteasome inhibitor; 
microtubule stabilizer

Mitochondrial damage, 
accumulation of aggregates, 
DNA damage, increase 
sphingolipid metabolism

multiple 
myeloma, 
lymphomas

Thalidomide, 
Lenalidomide,

Immunomodulator and 
antiangiogenic effect

Oxidative stress, 
downregulation of TNF-α, 
inhibits NF-κB

multiple 
myeloma

Brentuximab Immunomodulator 
(anti-CD30)

Loss of axonal transport lymphomas

Check-point 
inhibitors 
(ipilimumab, 
pembrolizumab, 
avelumab)

Immunomodulator 
effect against cytotoxic 
T-lymphocyte

Immune-related 
neuropathies; 
vasculitic neuropathy 
(pembrolizumab)

melanoma

Methotrexate 
or Cytarabine 
intrathecal

Dihydrofolate reductase 
inhibitor

Spinal cord and proximal 
roots demyelination

leukemia and 
lymphomas

SCLC = small-cell lung cancer; NSCLC: non-small cell lung cancer.

Table 1. 
Classification of commonly used chemotherapy drugs related to elevated risk of CIPN.

Figure 1. 
Different targets to produce neurotoxicity by chemotherapy.
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The most neurotoxic families of chemotherapeutic drugs are the platinum 
derivates (e.g. oxaliplatin, carboplatin or cisplatin), taxanes (e.g. paclitaxel and 
docetaxel), vinca alkaloids (e.g. vincristine), proteasome inhibitors (e.g. bortezomib) 
and immunomodulators (e.g. thalidomide and checkpoint inhibitors). Others, as 
methotrexate or arsenic salts are less frequently used. See Figure 1 a general schema 
with different targets on the peripheral nervous system and in Table 1 a list of them 
with their mechanism of neurotoxicity.

2. Acute neurotoxicity

There are drugs that can produce acute neurotoxicity, a side effect commonly 
seen with oxaliplatin. It is characterized by transient paresthesia, dysesthesia and 
muscle cramps induced by cold exposure, a phenomenon often called cold allodynia 
that typically appears during or immediately after infusion of the treatment. It 
usually resolves within a few hours or days before the next oxaliplatin cycle [3]. 
Symptoms reported by patients include tingling paresthesia in the hands (100%), 
feet (42%) and orofacial area (50%) and also, pharyngeal or laryngeal regions, all 
of them triggered by cold (especially when drinking). More infrequently, patients 
report fasciculations (29%), jaw spasms (26%), cramps (20%), difficulty of 
swallowing (18%) and neuromyotonia-like syndrome. All these phenomena reveal 
an increase in sensory and motor nerve excitability related to the impairment of 
voltage-gated sodium channels induced by oxaliplatin [4]. A functional study 
demonstrated that oxaliplatin induces reversible slowing of sodium channel inac-
tivation [5]. We know that it does not require discontinuation of treatment or dose 
reduction, but prolonging the time of infusion from 2 h to 4 or 6 h is recommended 
[6]. Some authors have found a relationship to later develop of chronic neuropathy 
[7, 8]. In particular when cold allodynia persists for days or weeks after infusion. 
Even some patients, continued to report residual symptoms in subsequent doses 
of oxaliplatin [9]. Another symptom that patients frequently ask is the Lhermitte’s 
sign, a sudden lightening sensation radiate out into both arms or feet when neck 
flexion is forced. The mechanism to produce it at cervical spinal cord is unknown 
but usually self-limited despite in some exceptional cases it could appear lately and 
be persistent during months [10, 11].

It has been described in addition acute sensitization of nociceptors with pacli-
taxel, the paclitaxel-associate acute pain syndrome. It consists of aching or other 
pain sensations mainly at lower legs peaked on day 4 after paclitaxel initiation. This 
is related to fast infusion of treatment (3 hours) but also, indicates more risk to 
sensory neuropathy after 12 weeks of therapy [12].

3. Targets of neurotoxicity at peripheral nerves

Even when all body is exposed to chemotherapy, there are tissues more vulner-
able to chemotherapy than others. This is the case of sensory neurons located at dor-
sal root ganglion (DRG) which are outside the protection of the blood–brain barrier. 
They are the principal targets of platinum derivates such us oxaliplatin, cisplatin 
or other platinum agents. Thus, neurons are damaged directly at DRG producing 
a progressive sensory neuronopathy. However, neurotoxicity also causes multiple 
lesions within the axons both for platinum agents and for other drugs as taxanes 
generating distal axonopathy. This will have different consequences for patients.

On one hand, the myelinated sensory nerve fibers lose their function. This is 
noted by many patients in a “glove and stocking” pattern of sensory loss involving 
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hands and feet. They frequently refer reduced precision to make fine movements 
with tip of the fingers which is noted by having less ability to cross buttons when 
dressing or when typing the computer. Also, gait disturbances affect their daily 
activities because of instability when walking in irregular ground or for descend-
ing stairs. On the other hand, thin myelinated (Aδ fibers) and unmyelinated 
(C fibers) carrying the information of temperature and pain are also damaged. 
A combination of negative and positive symptoms (see Figure 2) contributes 
to sensory disturbances. The unpleasant dysesthesias and neuropathic pain are 
consequence of the gain of function in damaged sensory nerve fibers that increases 
their excitability by producing spontaneous burning sensation or electric shock-
like pain.

This clinical picture is common for all chemotherapy agents despite the mecha-
nisms may differ among them. Also, it may determine the severity of axonal loss 
and its recovery since regeneration is expected to occur if the axon is affected 
distally whereas poor should be assumed in a neuronopathy. In general, we use 
the term sensory polyneuropathy for CINP when symptoms have a characteristic 
distance-dependent pattern even when we know that it is combined with sensory 
neuronopathy which has been demonstrated for oxaliplatin and cisplatin [13, 14].

There are other drugs such as vincristine, bortezomib or arsenic salts with ability 
to produce a more generalized axonal damage in all nerves. In this case, sensory 
deficits are accompanied by frequent muscular cramps, predominantly at night in 
both legs as well as distal weakness in upper and lower extremities because of motor 
neuropathy. Moreover, the failure in autonomic nerves leads to chronic constipa-
tion, reduced distal sweating and dizziness when standing (orthostatic hypoten-
sion) due to autonomic neuropathy or dysautonomia.

More recently, the introduction of the checkpoint inhibitors as a treatment for 
advance melanoma have opened the possibility of different immune-mediated 
neuromuscular manifestations reported as complication of the treatment in 75% of 

Figure 2. 
Comparison of positive and negative symptoms in CIPN.
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patients [15]. In this case acute demyelinating polyneuropathy (Guillain-Barré syn-
drome), demyelinating sensorimotor neuropathy, myositis or myasthenic syndrome 
have to be considered.

The combination of peripheral and central neurotoxicity at spinal cord should 
be considered in intrathecal infusion of chemotherapy. This is necessary for patients 
with acute leukemia treated with methotrexate. It has been described also after 
vincristine treatment. In this case, proximal motor roots can be unexpectedly block 
with a variable extension of myelitis at the level of lumbar infusion producing a 
complete paresis in lower limbs (paraparesis) with a lower abdomen level of sensory 
loss together with urinary dysfunction. This is a devastating situation that has been 
reported in few cases with poor prognosis for recovery [16, 17].

4. Risks and other conditionings for CIPN

It is difficult to establish in humans exactly the timing of changes on peripheral 
nerves after a pharmacological insult. Even though we know the day chemotherapy 
starts, there are different risk factors than makes neuropathy more probable in one 
patient than another. In Table 2 are listed the most known of them. In particular, 
one of such factors is the cumulative dose, especially for platinum agents. It was 
demonstrated that high-dose cisplatin was intrinsically more neurotoxic [23]. There 
is a range between 300 and 400 mg/m2 from which sensory symptoms starts to be 
persistent and from 540 to 850 mg/m2 from which the CIPN is generally stablished 
with high risk to be a long-term condition. However, we know now that there is no 
specific dose to be secure and probable neurotoxicity starts from first dose with a 
cumulative effect within sensory neurons.

Factors associated to higher 
risk of CIPN

Evidence Type of study Reference

Age Low Retrospective [18]

Type of cancer No evidence Observational [10]

Smoker No evidence Observational [10]

Alcoholic No evidence Observational [10]

Pre-chemotherapy neuropathy

Diabetes High if diabetic 
neuropathy

Retrospective [6, 18]

Hereditary 
neuropathy

High Retrospective vincristine [19]

Cancer-induced 
neuropathy

High Observational [10, 20–22]

Dose of chemotherapy Very High Observational
Experimental

[13, 14, 23]

Acute cold allodynia High Retrospective
Observational

[7, 8, 9]

Repeated chemotherapy Moderate Observational oxaliplatin [24]

Association with other 
chemotherapy

Very High cisplatin+vincristine [18]
cisplatin+paclitaxel [25]
bortezomib-thalidomide [26]

Table 2. 
General risk factors for CIPN.
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One phenomenon that usually appears with platinum agents (cisplatin and 
oxaliplatin) is the coasting effect. It refers to the further progression of neuro-
toxicity during 3 to 6 months after stopping the treatment that results from its 
capacity to accumulate in DRG for a long time. It was described first for cisplatin 
[18, 27, 28] and later for oxaliplatin [9, 29, 30]. This surprises the patient who 
frequently ask worried because of deterioration of their sensory deficits after 
treatment was stopped.

5. Clinical assessment for early detection of CIPN

A good complement for clinical examination is the use of validated scales. It 
allows systematic data acquisition which is comparable in the follow-up of patients 
and also, their inclusion in research studies. There are different types of scales, ones 
are self-administered, others are based on clinical examination or they include a 
combination of clinical and results of complementary tests. We will comment two 
of the most used scales for CIPN and one self-administered scale.

The National Cancer Institute-Common Terminology Criteria for Adverse 
Events (NCI-CTCAE) includes a scale based on the degree of impact of peripheral 
sensory neuropathy which is the most widely used scale used by oncologists [31]. 
It grades from 1 to 5 patient’s functionality disturbance due to sensory symptoms 
of neuropathy. There are different versions which are updated by the Division of 
Cancer Treatments and Diagnosis. The version 4.03 published in 2009 is currently 
the most referenced in last publications. The 5 grades are: 1) asymptomatic (weak-
ness or loss of tendon reflex on examination) or paresthesia not interfering with 
function; 2) symptomatic or sensory alterations interfering with function but 
not with daily activities; 3) weakness or sensory alterations interfering with daily 
activities; 4) life threatening disabling; 5) death.

0 1 2 3 5

Sensory 
symptoms

None Symptoms 
limited to 
fingers or 

toes

Symptoms 
extends to 
ankle or 

wrist

Symptoms 
extends to 

knee or elbow

Symptoms above 
knees or elbows, 
or functionally 

disabling

Motor 
symptoms

None Slight 
difficulty

Moderate 
difficulty

Require help/
assistance

Paralysis

Autonomic 
symptoms

0 1 2 3 4 or 5

Pin 
sensibility

Normal Reduced in 
fingers or 

toes

Reduced 
up to wrist/

ankle

Reduced up to 
elbow/knee

Reduced above 
elbow/knee

Vibration 
sensibility

Normal Reduced 
fingers or 

toes

Reduced 
up to writs/

ankle

Reduced up to 
elbow/knee

Reduced above 
elbow/knee

Strenght Normal Mild 
weakness

Moderate 
weakness

Severe Paralysis

Tendon 
reflex

Normal Ankle reflex 
reduced

Ankle reflex 
abset

Only All reflexes absent

Note: Ranged from 0 to 28. CINP is significant if score > 5 points [32].

Table 3. 
TNS clinical (TNSc) scale useful for the follow-up of patients.
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The second most used scale for CIPN is the total neuropathy score (TNS). Its 
complete version was originally developed and validated for diabetic neuropathy. 
It combines clinical information obtained from grading symptoms and signs with 
neurophysiological parameters as nerve conduction studies and quantitative evalua-
tion of sensory modalities. The clinical version (TNSc) includes the first 7 items (range 
0 to 28) which are based only on clinical examination. It is showed in Table 3. A good 
correlation was reported between both, TNSc vs. NCI-CTCAE [32] even when TNSc is 
more sensitive in detecting mild sensory damage [33].

However, assessment of CIPN needs to involve subjective and objective 
information as well as the impact of the symptoms on functional activity. With 
this purpose, the European Organization for Research and Treatment of Cancer 
(EORTC) developed the self-administered scale QLQ-CIPN20. It includes 20 items 
in the form of auto-administered questions consisting of 3 scales (sensory, motor 
and autonomic). Each item range 1 (not at all) to 4 (very much) and a higher score 
is equivalent to worse or more symptoms during the past week. It should provide 
valuable information on CIPN-related symptoms and functional limitations of 
patients at risk [34].

6. Neurophysiological assessment for early detection of CIPN

There are different non-invasive techniques that provide information regarding 
the type of nerves (motor, sensory or autonomic) involved in CIPN. This is impor-
tant to confirm the diagnosis but also to identify early markers of axonal damage 
and additionally, it may help to establish the prognosis for recovery.

6.1 Nerve conduction studies (NCS)

Peripheral nerves usually can be easily stimulated by electrical stimulus and 
brought to action potential. It can be applied to sensory or motor nerves. We mea-
sure the amplitude which reflects the amount of excitable axons, and the latency of 
the response to calculate the velocity conduction. It is essential to note that both, 
latency and velocity conduction reflect only the fastest conducting fibers. On the 
other hand, low amplitude of the sensory nerve potential indicates severe axonal 
loss [35]. In Figure 3 there are examples of sensory nerve action potentials from a 
patient with sensory polyneuropathy after treatment with oxaliplatin.

The reduced amplitudes at sensory nerves with no significative changes in 
velocity conduction and motor responses are the common finding after treatment 
with platinum agents and taxanes. It affects distally sensory nerves at both sides in 
feet and hands. The sural nerve measured at ankle shows higher changes that other 
nerves such us radial or cubital nerves [36]. However, it is possible that the ampli-
tude for sural nerve will fall within normal reference values, especially after treat-
ment with oxaliplatin and taxanes in which sensory damage is limited to fingers or 
sole of the foot. The recording of the dorsal sural nerve is also recommendable to 
demonstrate low amplitudes in sensory distal polyneuropathy [37] (see Figure 3a). 
Nevertheless, not having normative values for such a distal nerve and the absence 
of response expected in the majority of the patients with CIPN makes results in 
amplitude necessary to be interpreted in relation to those obtained proximally at 
sural nerve in the same patient. If sensory symptoms are limited to hands, median 
entrapment neuropathy should be also rule out. Long-term follow up of patients 
after oxaliplatin showed persistent low amplitudes at sensory nerves 3 year after 
treatment [38].
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Other chemotherapy agents such us bortezomib or thalidomide produce a severe 
sensorimotor polyneuropathy with low amplitudes to all tested nerves. Despite axo-
nopathy is the most frequent finding, in some cases a demyelinating pattern with 
reduced conduction velocities and prolonged proximal motor response (F-wave) 
may be possible (i.e., for example, 3 of 26 patients reported by Chaundhry [26]). 
The presence of signs of denervation in distal muscles at lower limbs is expected on 
EMG as well as atrophy of muscles together with weakness and instability to walk 
due to sensory deficits at feet.

6.2 Quantitative sensory testing (QST)

The measurement of sensory thresholds to thermal, vibration or mechanical 
stimulus indicates the loss or gain of function to each sensory modality. Commonly, 
temperature (cold and warm) detection and pain thresholds are evaluated distally 
in the dorsum of the hands and feet. At this sites, skin thickness-dependent delay 
and attenuation of temperature is reduced for contact heating (thermode) in 
comparison to glabrous skin [39]. Through QST examination we obtain functional 
information from small and large nerve fibers depending of the sensory modality 
examined.

One of the most common findings in QST is cold allodynia, that means early 
pain sensation at low temperatures (range from 10° to 25°C) frequently seen in 
oxaliplatin treated patients. Moreover, signs of sensory loss are present early in 
CIPN at hands and feet in comparison to other proximal sites (see an example  
in Figure 3b). Patients show high thresholds for warm and cold detection as 
well as for hot pain revealing deficient function of small nerve fibers [8, 10, 40]. 

Figure 3. 
Different techniques for diagnose CIPN. This figure shows two of the most common techniques (nerve 
conduction studies and thermotest) at evaluating the sensory function in suspected CIPN. a) the conventional 
sural nerve response, which is within normal limits (above) is compared with the more distal recording of the 
sural dorsal (below), which is clearly diminished; b) the thermode is applied at dorsum of the foot to test warm 
detection threshold (1–4 stimuli) and hot pain threshold (5–6 stimuli). Horizontal red line indicates normal 
values. The recording shows high thresholds to both, warm and pain. Note that detection of warm is near pain 
sensation because of the loss of function in C-fibers.
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In addition, the higher vibration and mechanical detection thresholds at upper 
and lower limbs reported by different authors indicates the coexistence with distal 
damage at large myelinated sensory fibers [38, 41, 42]. In fact, vibration detection 
threshold at tip of the big toe was found abnormal earlier than thermal QST [43]. 
However, QST has also important limitations that should be considered. First, it 
needs patient’s cooperation. Second, a trained examiner should repeat stimuli to 
ensure consistency of responses. Finally, abnormal thresholds have been reported 
and considered a subclinical deficit for warm and cold sensations before receiving 
chemotherapy (at baseline) which makes difficult to detect a significant change 
related with starting of CIPN [10, 20, 21, 44].

6.3 Study of the autonomic nervous system

To evaluate the presence of dysautonomia, which is a failure of the sympathetic 
and/or parasympathetic nervous system, it may be possible to record the palmar 
and plantar sudomotor skin response. This is a change in the voltage measured 
from the surface of the skin which occurs after emotional or noxious stimuli, or 
following deep inspiration. The absence of response has been associated to axonal 
unmyelinated peripheral neuropathies [45]. More recently, the measurement of 
electrochemical skin conductance (Sudoscan) is an easy-use alternative that could 
have its role in future studies on CINP [46]. Parasympathetic function is assessed by 
measuring the variability of the R-R interval of heart’s beat by different maneuvers 
(normal breathing, Valsalva, stand up). It requires more complex neurophysiologi-
cal setting and the clinical relevance in CINP is still to be investigated.

7. Other non-neurophysiological techniques for early detection of CIPN

Skin biopsy allow us to examine directly under microscopy the free sensory 
nerve endings at skin. This is a well-recognize technique to quantify axonal damage 
occurring in sensory fibers with a minimal invasive punch biopsy. It provides sup-
port for diagnosing small fiber neuropathy [47] and is considered an early marker 
of more generalized (large and small) sensory polyneuropathy such us diabetic 
polyneuropathy. It makes skin biopsy presumably useful for early detection and 
monitoring patients receiving chemotherapy. Although a significant reduction in 
intraepidermal nerve fiber density has been reported by some authors after receiv-
ing oxaliplatin [42, 48], others have found cutaneous innervation more preserved 
[49]. In our experience, even when many patients show functional loss of small 
fibers (higher warm and cold detection thresholds at feet), the intraepidermal nerve 
fibers density seems to be partially preserved. Indeed, the rationale to less vulner-
ability of small neurons at DRG or higher capability to reinnervate the terminal 
small nerve fibers in contrast to myelinated receptors and fibers is still open.

Neuroimage is becoming available in different ways for providing signs of 
neurotoxicity in CIPN. Information by using these techniques is limited to few 
studies so far. Nerve high resolution ultrasound served to identify an increase in 
the cross-sectional area meaning a nerve enlargement at upper and lower limbs in 
patients receiving oxaliplatin [50] and taxanes [51]. By using magnetic resonance 
neurography has been also reported a significant hypertrophy of DRG [52] whereas 
other nerves, sciatic nerve, remain normal. In addition, changes at central nervous 
system, in dorsal columns at spinal cord, has been reported in patients affected by 
thalidomide-induced CIPN [53, 54].

Molecular biomarkers may also have a role in early detection of CIPN. They 
are in different categories, from pharmacogenomics to surrogate markers of 
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neurotoxicity. Unfortunately, none has been established in clinical practice because 
of lack of large-scale and validation studies. The majority of genetic variants 
which has been candidates to indicate higher susceptibility of neurotoxicity 
showed controversial results (for example, see recent reviews [55, 56]. More is 
known about other molecules reflecting nerve damage which are available at blood 
analysis such us neurofilaments. Neurofilament light chain (NfL) is a cytoskeletal 
neuron-specific protein which has found increased after receiving vincristine and 
oxaliplatin [57]. Nerve Growth Factor (NGF) levels were also find higher in painful 
CIPN whereas they remained stable in patients with painless or absent CIPN [49]. 
Other metabolic parameters such us low hemoglobin or vitamin D levels or higher 
gamma-glutamyl transferase (GGT) have been identified as independent predictors 
associated to CIPN [58].

8. When CIPN is supposed to be resolved? Indicators of recovery

This is the main question in patient’s mind which is difficult to answer. It 
depends on many factors, specially the severity of axonal loss at maximum of the 
neurotoxic effect of the drug. Complete recovery is calculated in about 40% of 
patients at 8–12 months after discontinuation of oxaliplatin whereas in almost 35% 
of patients is estimated to be persistent more than 5 years [59, 60]. Lower incidence 
has been reported for cisplatin which is estimated in 20% of patients at 12 months 
after therapy [27]. Patients treated with taxanes experience symptomatic sensory 
neuropathy distally at fingertips in hands and feet. It has been estimated in more 
than 70% of patients, being persistent in most of them longer than 5 years in some 
series [61]. Vincristine-induced neuropathy in pediatric population combines 
sensory and motor symptoms that are persistent in 27% of patients 2 years after 
treatment [62]. No correlation has been established between time until recovery 
and any clinical or neurophysiological parameter as far as I know. However, it 
is possible to said that low amplitudes at sensory nerve action potentials make 
prognosis for recovery very poor despite intraepidermal nerve fibers are partially 
preserved (personal observation).

9. Neuroprotection and other recommendations

Neuroprotectants have limited beneficial effects for preventing CIPN. The first 
step is to modify the chemotherapy regimen, such as dose reduction and longer 
interval between cycles, especially platinum agents like oxaliplatin or cisplatin and 
vincristine [63]. This is necessary in approximately 40% of patients based on aver-
age from different reports [64].

The intend to reduce oxidative-stress and the up-regulation of pro-inflam-
matory cytokines due to chemotherapy have led many authors to test antioxidant 
therapy. This is the case of vitamin B6, vitamin E and alpha-lipoic acid among 
others. Despite of contradictory results reported until now in different trials (see 
a recent review, [65]), the easiness to acquire these products for patients and their 
natural origin, most of them nutritional supplements, makes them a good choice in 
poor symptomatic CIPN or intermittent therapy between cycles of chemotherapy. 
Other pharmacological products such as the amifostine, glutathione, calcium/mag-
nesium, minocycline or mangafodipir need further research.

Symptomatic treatment with antiepileptic drugs (pregabalin, gabapentin, oxcar-
bazepine) or antidepressants (duloxetine, amitriptyline) is recommended at low dose 
with a progressive increase until partial or total alleviation of sensory symptoms.



123

Chemotherapy-Induced Peripheral Neuropathy: Mechanisms and Clinical Assessment
DOI: http://dx.doi.org/10.5772/intechopen.100495

Regular exercise and lifestyle interventions help to prevent inactivity and 
improve body mass index [66]. Regular aerobic exercise training (30 minutes/day or 
4 hours/week) and daily walking activity between 8000 to 10000 steps/day during 
5 days/week are recommended (see https://www.foundationforpn.org). Indeed, 
they contribute to sensory and motor rehabilitation, improve self-confidence to 
walk previously diminished because of sensory loss in CIPN. Sensory feet stimula-
tion with a rubber carpet of different textures as well as hand manipulation of soft 
tissue or lentils could be a form of manual therapy for neurorehabilitation after 
receiving chemotherapy treatment. An interdisciplinary team is also recommended 
to attend needs of persons with CIPN in every oncologic center [67].

10. Conclusion

This chapter reports on clinical assessment of CIPN in such a way to be easily 
understandable. The number of cancer survivors has been fortunately growing, 
so complications of neurotoxicity after chemotherapy has become a first order 
problem for clinicians that are searching a better quality of life for their patients. 
Mechanisms to produce CIPN are diverse depending of the drug and most of them 
converge on the same targets. The present manuscript emphasizes a comparison 
of different type of nerve fibers that lead to a wide spectrum of symptoms, mainly 
sensory, which are related to axonal damage at different type of nerve fibers. 
Selective techniques are necessary to detect sensory disfunction which seems to 
affect early distal vibration and warm perception. No indicators have found to pre-
dict patient’s recovery so we have to assume that this process is possible, although 
perhaps partially, in all cases. The future will come to reduce toxic damage by per-
sonalized drug plans as well as multidisciplinary professional care to our patients.
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Abstract

Many neurotoxic substances produce toxic effects on the nervous system. 
Given the neurotoxic substances found in the human body, certain people have 
been regarded as having a propensity to epileptic seizures. In many situations, the 
neurotransmission processes of these toxins are similar to the physiopathology of 
epilepsy. Epileptic models have been developed to induce seizures in animals, allow-
ing researchers to study convulsive seizure mechanisms. Pentylenetetrazol, kainic 
acid, pilocarpine, penicillin, aluminum, bicuculline, picrotoxine, 4-aminopyridine, 
strictine, domoic acid, and other compounds fall under this category. However, 
there are some drugs used in clinical practice that can cause neurotoxicity as well. 
In this chapter, the predominant substances and drugs involved in epileptogenesis 
through neurotoxicity effects are reviewed. Throughout this chapter, we attempt to 
describe the mechanisms documented in the literature, in which epileptic seizures 
cause neurotoxicity in the brain by themselves, as shown with excitotoxicity medi-
ated by glutamate and ions involved.

Keywords: Epilepsy, Epileptogenesis, Neurotoxic substances, Seizures

1. Introduction

The concept of toxicity refers to any substance capable of producing harm on 
livings organism. Hence, this chapter emphasizes on those compounds that harm 
the nervous system, particularly those capable of generating seizures. Within the 
pathophysiology of epilepsy, multiple mechanisms favor epileptogenesis, one of 
which is neurotoxicity. These excitotoxic mechanisms can exert their action through 
the glutamate receptors N-methyl-D-aspartate (NMDA); 𝜶𝜶-amino-2-3-dihydro-5-
methyl-3-oxo-4-isoxazolepropionic acid (AMPA) and kainate, opening ionic chan-
nels permeable to calcium (Ca2+), sodium ions (Na+), that participate significantly 
in the neuronal damage derived from the excitotoxic effects. Though there are 
spontaneous inducers of epilepsy, different models that replicate seizures have been 
created to better understand the mechanisms underlying epileptic seizures. These 
models promote neurotoxicity in the brain and are triggered by certain substances, 
primarily agonists or antagonists of neurotransmitters involved in epileptic activ-
ity. In this review we aim to illustrate the neurotoxic potency of numerous agents 
administered in the brain with neurotoxic qualities, including medications used in 
clinical practice that can generate neurotoxicity.

Epileptic seizures, according to the World Health Organization, are defined as a 
neurological, chronic, recurrent, and repetitive condition of paroxysmal phenomena 
caused by an excessive abnormal discharge of groups of neurons, which can occur 
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in different parts of the brain [1]. It is the result of synchronous electrical discharge 
from a group of hyper-excitable neurons, that when repeated consequently leads to 
neurotoxicity This hyperexcitability is due to an imbalance between the inhibitory 
processes given mainly by gamma-aminobutyric acid (GABA) and the excitatory 
ones of glutamate, which consequently modifies the function of ion channels 
regulated by Ca2+, Na+, and potassium (K+) mainly, which finally play a crucial 
role between the timing and propagation of abnormal discharges, contributing to 
the epileptic process [2]. Glutamate release activates NMDA ionotropic receptors, 
causing a rapid entry of Na+ and a slow entry of Ca2+. In epileptic seizures, with this 
massive entry of Ca2+, there is an increase of mitochondrial Ca2+ producing, among 
other effects an excitotoxic effect, in addition to free radicals production, proteases 
activation, and synthesis of nitric oxide which, by acting as a retrograde messenger, 
enhances the excitotoxic effect on the cell by also increasing glutamate release from 
the presynaptic terminals [3]. This glutamate release also activates the AMPA recep-
tors associated with non-voltage-dependent channels, responsible for depolarizing 
currents, due to the Na+ input. AMPA receptor antagonists are known to have been 
shown to markedly reduce or decrease epileptic activity [4].

Kainic acid (KA) glutamate agonist acts on glutamatergic receptors with a high 
affinity for KA which is associated with a Na+ ion channel, this depolarization 
in turn causes Na+ channels opening, which leads to Ca2+ channels aperture that 
further increases neuron excitability. Na+ channels’ participation in epileptogenesis 
and their mutations in many epileptic disorders has been long studied. The Na+ 
channels classified as type Nav 1.1 and Nav 1.6 are over-expressed in mice admin-
istered NMDA, which leads to hyperexcitability. However, when these animals are 
given phenytoin Na+ channel blocker, electrographic excitability decreases. Ion 
involvement has been described as vital in seizures [5]. The neurotoxic effect of 
KA appears to exert its action on non-NMDA receptors, located in the postsynaptic 
region at the dendrites of neurons level or by acting on presynaptic ionotropic 
glutamate receptors (NMDA, AMPA, and kainate) [6, 7]. Other glutamate receptors 
are also activated, predominantly found in the membrane of neurons, performing 
an excitatory response to the cell that presents them. When acting on the cell, there 
are even injuries to the cytoplasmic membrane, cytoplasmic vacuolization, and 
edema in the mitochondria, which finally cause cell death [8]. Kainate Glutamate 
stimulates postsynaptic AMPA receptors. This depolarization is immediately 
reduced by the GABA receptor recurrent inhibition [9].

Activation of AMPA receptors, particularly NMDA receptors, triggers intracel-
lular Ca2+ cascades. Ca2+ permeability studies indicate that there is also a low perme-
ability of this ion through kainate receptors [10, 11]. Excessive Ca2+ intake, derived 
from a pathological condition such as epilepsy, contributes to an excitotoxic effect 
and subsequent neuronal death [12].

In epileptic seizures, glutamate elevation and GABA release are observed from 
the presynaptic terminals within the synaptic cleft. Astrocytes recapture these 
abnormally released neurotransmitters during the seizure, protecting neurons from 
excitotoxicity and eliminating excess glutamate. It is known that, derived from the 
epileptic processes, there is hypertrophy and significant changes in the ramifica-
tions and volume of the astrocyte soma. These changes undoubtedly impact the 
reuptake of neurotransmitters such as glutamate, allowing an excess of this in the 
synaptic space [13, 14].

It is worth noting that epilepsy research is so broad that despite not managing to 
control the neuropathology, some authors have claimed that studying the disease 
has allowed neuroscience to investigate more than just seizure disorders, but the 
brain regions not directly implicated in epilepsy, as well. This chapter, however, will 
concentrate only on epilepsy-related neurotoxicity.
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2. Calcium channels and epilepsy

When Ca2+ enters, it produces hyperexcitability in the excitable neuron through 
voltage-dependent Ca2+ channels (VDCCs). Intracellular processes are initiated 
when Ca2+ enters the cell, such as membrane excitability regulation, which permits 
neurotransmitters to be released. The biophysical and pharmacological proper-
ties of six types of Ca2+ channels (T, L, N, P, Q, and R) have been characterized. 
Low-threshold channels have been classed as T-type channels, while the rest have 
been classified as high-threshold channels. The number of depolarizations required 
for their activation has led to this classification. All channels have four subunits 
referred to as I through IV, each of which is made up of six transmembrane seg-
ments referred to as S1, S2, S3, S4, S5, and S6. The N, P and Q type channels are 
particularly crucial in controlling the release of neurotransmitters like glutamate 
and GABA, which, as previously stated, play a key role in epilepsy. The fact that a 
decrease in extracellular Ca2+ concentration can cause hyperexcitability in neurons 
is evidence that VDCCs play a major role in the epileptic activity [15]. In epilepsy, 
this correlates with paroxysmal depolarizations. Which correlates with paroxysmal 
depolarizations in epilepsy. This phenomenon has been observed in the hippocam-
pus’s neurons and dendrites, particularly in the CA1 and CA3 neuroanatomical, 
critical regions in epileptic seizures. Ca2+ currents have been demonstrated to pro-
mote the development of epileptic seizures; this is thought to be due to an increase 
in postsynaptic responses triggered by excessive excitement, which then initiates an 
epileptic seizure. However, this type of activity also leads to neuronal death.

Epileptic activity can also be triggered by the input of extracellular Ca2+ into the 
neuron, which promotes neuronal membrane depolarization and action potential 
production, resulting in abnormal discharges and seizures. The rise in intracellular 
Ca2+ in the postsynaptic neuron has been linked to various factors that produce 
epileptogenesis, including persistent depolarization, inducing neurotoxicity. Animal 
models in mice (tottering, du-du, or stargazer) in which genes coding for Ca2+ channel 
subunits formation have been altered and made it possible to illustrate the role of Ca2+ 
in epileptogenesis, implying that channelopathies may be part of the substrate for 
abnormal activity. Because Ca2+ plays such a role in abnormal epileptic activity, drugs 
like ethosuximide have been developed to block T-type Ca2+ channels by reducing Ca2+ 
entry. Hence, neurotransmitter release is implicated in neuronal excitability [16–19].

3. Molecular signaling pathways for epileptogenesis

This chapter proposes several molecular signaling pathways that are involved 
in epileptogenesis. We described the most representative pathways in the epi-
leptogenesis study. Until now, the complicated epileptogenesis pathophysiology 
and molecular processes that lead to seizures have remained a mystery. However, 
various anatomical pathways mechanisms, pathological pathways, and molecular 
interactions are known and have been explored based on the research available. 
Inhibitory and excitatory neurotransmission abnormalities have a big impact on 
neuron stability. Neuroinflammation and oxidative stress, for example, encourage 
the emergence of epileptic seizures and can potentially intensify them [20].

It has been claimed that the inflammatory state, and the elevation of its media-
tors, including IL-1ß, IL-6, high mobility group box TNF-α8, and cyclooxygenase-2. 
TNF-α produces endocytosis of GABA receptors through AMPA. Therefore, 
hyperexcitability in the hippocampus is boosted, resulting in seizures. Several 
studies have linked neuroinflammation to oxidative stress at the same time. The 
involvement of oxidative stress as a seizure generator is owing to an imbalance in 
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the generation of reactive oxygen and nitrogen species, resulting in a deficiency in 
antioxidant mechanisms. The mitochondria are the body’s principal generator of 
oxygen radicals [21]. Other free radicals, including nicotinamide adenine dinucleo-
tide phosphate oxidase and xanthine oxidase, have been shown to act through 
glutamate receptors. The activation of the NMDA receptor is linked to epileptic 
activity [22].

Another pathway described in the study of epileptogenesis is the Wnt / 
β-Catenin pathway. Wnt/β-catenin is implicated in temporal lobe epilepsy. This 
pathway modulates, among other events, neuronal circuit formation and synaptic 
assemblages. Brain areas involved in epileptogenesis also play a key role in neuronal 
excitability modulation and neurotransmitter secretion. Wnt proteins dock with 
membrane receptors to initiate one of two major signal pathways: the canonical 
β-catenin pathway or the non-canonical pathway. β-catenin pathway manages 
transcriptional activity regulation and gene activation through the T-cell factor/
lymphoid enhancing factor pathway (TCF / LEF), that dictates cell determination, 
proliferation, and differentiation. Wnt1, Wnt3a, Wnt7a, and Wnt8 are most com-
monly found in β-catenin-dependent signaling. When one of these proteins binds 
to lipoprotein-related protein receptors, they lead to selective activation of the 
canonical pathway. Therefore, β-catenin dissociates from the degradation complex 
composed of axin, adenomatous polyposis coli protein (APC), casein kinase 1 
(CK1), and glycogen synthase kinase 3 β (GSK3β). This promotes the accumulation 
of β-catenin in the cytosol, which is then translocated to the nucleus and associated 
with transcription factors of the TCF/LEF family to regulate Wnt-dependent gene 
expression. In the absence of the Fzd receptor by Wnt, the Axin and APC proteins 
boost phosphorylation of β-catenin through the kinases CK1 and GSK3-β. These 
proteins promote the ubiquitination and subsequent degradation of β-catenin by 
the proteasome [23].

Notoginsenoside R1 (NGR1, was recently discovered to upregulate mRNA 
levels of the proteins β-catenin, Dvl, and Fzd, as well as promote the proliferation 
of cultured cortical neurons. NGR1 has also been discovered to reduce persistent 
K+ currents in hippocampus neurons, resulting in a reduced peak threshold. 
Treatment with a Wnt3a ligand, which activates the FZD receptor, caused K+ 
channel internalization and enhanced β-catenin expression, according to a recent 
study. GSK-3β inhibition caused by Wnt/β-catenin activation resulted in a lack of 
phosphorylation of GSK on the surface of K+ channels, resulting in internalization. 
This action lowers the current density of K+ channels, preventing them from acting 
as hyperexcitability regulators. The non-canonical route refers to pathways that do 
not rely on β-catenin-TCF/LEF and instead rely on alternative downstream effectors 
to produce a transcription response. The Wnt /PCP (planar cell polarity) pathway, 
via Wnt-cGMP/Ca2+, via Wnt/Via Ror, via Wnt-RYK, and via Wnt-mTOR are some 
of these pathways. Epileptogenesis has been linked to the mTOR signaling pathway. 
Wnt7a, a Wnt family ligand, is expressed in cerebellar granule cells and operates as 
a particular canonical signaling activator. Wnt7a is expressed in the developing hip-
pocampus as well, particularly in the dentate gyrus and CA1 regions, as indicated by 
an increase in active β-catenin immunofluorescence after recombinant Wnt7a was 
applied. Other studies have shown that Wnt7a has a role in synapse formation, with 
an increase in the number of vesicular glutamate transporters puncta per dendritic 
area after hippocampal neurons were treated with recombinant Wnt7a, resulting 
in an increase in excitatory neurotransmitter. Wnt8a is also involved in synaptic 
terminal excitability modulation. Additionally, it is also involved in the regulation 
of synaptic terminal excitability. These findings show that Wnt impacts synaptic 
regions important in excitatory neurotransmitter release control and regulation and 
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ligand-gated ion channels in the postsynaptic membrane via canonical activation. 
These physiological changes on the synaptic terminal of hippocampus neurons may 
play a role in the temporal lobe epilepsy pathophysiological pathway. The aforemen-
tioned is attributed to synaptic transmission imbalances between inhibitory and 
excitatory synapses [24].

In a previous study, a significant increase in β-catenin signaling in the cerebellar 
cortex of rats after kindling-induced generalized seizures was observed. β-catenin 
activation induces apoptosis through the expression of cMyc upregulation, a protein 
that negatively regulates anti-apoptotic proteins such as Bcl-2. This leads to a loss of 
mitochondria, membrane potential, releasing cytochrome-c and promoting activa-
tion of caspases 3 and 9, leading to neuronal death. The Wnt/β-catenin pathway 
participates not only in neuronal synchrony regulation. But also in NMDA receptor 
modulation, which, as previously described, plays an important role not only in 
epilepsy but also in epileptogenesis [25, 26].

4. Toxic substances that cause seizures

Exposure to toxins can trigger seizures due to their damaging effect on the 
nervous system through different mechanisms (Table 1). The ability of organo-
phosphate insecticides to induce epileptic seizures is known through the inhibi-
tion of acetylcholinesterase due to its chemical structure that contain the groups 
carbamoyl and thiocarbamoyl, due to its capacity to phosphorylate and inactivate 
acetylcholinesterase and in addition to stimulating cholinergic receptors, these 
pesticides include parathion, chlorpyrifos, aldicarb, and carbaryl. Certain toxins 
present a dual mechanism for epileptic seizures production through the facilitation 
of the activation and the inhibition of voltage-gated Na+ channels, how is the case 
for chemical and biological warfare agents like sarin and soman, as well as toxins 
such as scorpion venom and ciguatoxin that can lead to seizures by modulating 
ion flow through Na+ channels. In other instance, anatoxin is a potent agent that 
causes seizures by the nicotinic receptor activation. The imbalance in inhibitory and 
excitatory neurotransmission is one of the mechanisms by which seizures occur. Par 
excellence GABA is the inhibitory neurotransmitter and glutamate is the excitatory 
neurotransmitter in the CNS, seizures are triggered by the activation of glutamate 
receptors by kainic acid and domoic acid, cyanide and azide both display the same 
process after cellular damage. Interference with the inhibition produced by GABA 
can trigger epileptic events, GABA receptor inhibition is caused by lindane, picro-
toxin, strychnine, and tetramethylenedisulfotetramine [27–29].

Toxic substance Mechanism

Parathion, chlorpyrifos, aldicarb, and 
carbaryl

Inhibiting acetylcholinesterase and hyperstimulation of 
cholinergic receptors

Sarin, soman, scorpion venom and 
ciguatoxin

Modulating ion flow through voltage-gated sodium channels

Anatoxin Nicotinic receptor activation

Kainic acid and domoic acid Activation of glutamate receptors

Lindane, picrotoxin and strychnine GABA receptor inhibition

Table 1. 
Toxic substances that can trigger seizures and their exerting mechanism.
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5. Drugs associated with seizures

The administration of different drugs used therapeutically can predispose to 
epileptic seizures presence either by lowering the epileptogenic threshold, intoxica-
tion, or overdose of these. The main groups of antimicrobials that can cause seizures 
are beta-lactams, anti-tuberculous, and antimalarials. The pro epileptogenic effect 
of beta-lactams is related to high doses or their toxicity. Seizures related to drugs 
used to treat tuberculosis are mainly due to vitamin B6 deficiency. Mefloquine and 
chloroquine are reported antimalarial drugs that can lead to seizures. The procon-
vulsive effect of methylxanthines is thought to be due to A1 adenosine receptor 
inhibition. Paradoxically, it is known that carbamazepine can worsen generalized-
onset seizures. As well as the withdrawal effect of benzodiazepines, which in some 
cases can lower the seizure threshold [30–34]. Table 2 summarizes the main drugs 
associated with seizures. The following part reviews some of the toxic effects of the 
main antiepileptic drugs used in clinical practice.

5.1 Valproic acid

Since 1978, valproic acid or Na+ valproate has been characterized as an antiepilep-
tic drug that suppresses the neuronal excitation of different types of epilepsy, such 
as partial seizures and generalized seizures [35]. It appears that valproic acid exerts 
its inhibition by blocking the reuptake of the neurotransmitter GABA, the main 
inhibitory neurotransmitter. It also lowers glutamate levels and modifies K+ con-
ductance [36], exerting an inhibition through the voltage-dependent Na+ channels. 
In this way, it reduces the excitement caused by epileptic seizures [37]. Once this 
drug reaches the central nervous system (CNS), it binds to plasma proteins and is 
distributed throughout the extracellular space [38]. It is metabolized in the liver and 
discharged through the urine. Although it is also eliminated with expirations in the 
form of CO2 [39]. However, this drug is known to have frequent toxic effects derived 
from the therapeutic dose in patients with toxic plasma levels greater than 120 μg/
ml [40]. After an overdose, the patient may be lethargic and coma, most likely due 

Category Drugs associated with seizures

Sympathomimetics Phenylephrine, pseudoephedrine, and anorexiants

Analgesics Opioids

Anticancer drugs Interferon alfa, methotrexate, mitoxantrone, nelarabine, platinum-based, 
cisplatin, vinblastine, vincristine, busulfan, chlorambucil, cytarabine, 
doxorubicin, etoposide, and fluorouracil

Antimicrobials Carbapenems, cephalosporins, fluoroquinolones, isoniazid, and penicillin

Hypoglycemics Any antidiabetic that causes hypoglycemia

Immunosuppressants Cyclosporine, mycophenolate, tacrolimus, and azathioprine

Psychopharmaceuticals Monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, 
serotonin-norepinephrine reuptake inhibitors, serotonin modulators, 
tricyclic antidepressants, antipsychotics, atomoxetine, bupropion, 
buspirone, and lithium

Stimulants Amphetamines and methylphenidate

Xanthine Aminophylline and theophylline

Antiepileptics Carbamazepine and benzodiazepines

Table 2. 
Main drugs associated with drugs.
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to inhibition produced in the CNS [41]. Another adverse situation that derives from 
the consumption of this antiepileptic drug is cerebral edema, probably caused by the 
overstimulation of the stimulation of NMDA receptors [42]. Cardiovascular altera-
tions such as hypotension with tachycardia, gastric alterations such as pancreatitis, 
and hepatotoxicity have manifested with elevated transaminases, jaundice, and 
abdominal pain with inflammation, among others, may also occur [43].

5.2 Phenobarbital

Phenobarbital belongs to the family of barbiturates. These are characterized by 
providing the central nervous system with a depressant effect depending on the 
administered dose [44]. Its anticonvulsant mechanism is based on increasing the 
inhibitory activity of GABA, binding to the GABA receptor, and facilitating even 
more inhibitory neurotransmission. This inhibition reduces ATP levels, which 
causes the opening of Ca2+ channels associated with the NMDA receptor, coupled 
with the fact that a prolonged opening of these Ca2+ would lead to excitotoxic 
neuronal death [45]. The anticonvulsant dose ranges between 10 and 40 μg/
ml. The administration of these doses and higher ones generates toxicity that is 
generally due to the increase in Ca2+ entry into the neuron [46]. Mitochondria 
are an intracellular target of barbiturates since they depolarize the mitochondrial 
membrane by inhibiting complex one of the electron transports chains and, 
furthermore, they could have an uncoupling effect on oxidative phosphorylation 
[47]. Its absorption of phenobarbital is gastric, which generates a decrease in 
peristaltic tone. Although it is metabolized in the liver and discharged through 
the kidneys and urine, it has a great fat solubility that crosses cell membranes, 
producing several alterations [48].

5.3 Carbamazepine

Carbamazepine is a mainly antiepileptic psychotropic drug whose mechanism of 
action is based on reducing glutamate release, reducing the permeability of neuronal 
membranes to Na+ and K+ ions, stabilizing neuronal membranes, and depressing 
dopamine and norepinephrine turnover, though an inhibitory effect on muscarinic 
and nicotinic receptors is also known [49]. When its therapeutic plasma concentra-
tions are higher than 10 μg/ml, it produces toxic effects initially characterized by 
tachycardia, hypotension and hypertension, lethargy, ataxia, dysarthria, and nystag-
mus can occur, there are also gastric alterations such as vomiting and nausea. When 
intoxication is severe, it could even cause a coma [50]. Carbamazepine absorption 
is digestive, metabolized in the liver where it can cause liver dysfunction and, as its 
elimination is via the kidneys, adverse effects can also occur in this way [51].

5.4 Phenytoin

Phenytoin has been the most commonly used antiepileptic drug for patients 
with focal and generalized epilepsies since 1938 [52]. Its mechanism of action 
is exerted by inactivating voltage-gated Na+ channels. It also acts by inhibiting 
the flow of Ca2+ through neuronal membranes, such as it is to be expected at the 
cardiac level, it also inhibits Na+ channels, which is why it has toxic effects on the 
myocardium [53]. Phenytoin is bound to plasma proteins, such as albumin, which 
is metabolized in the liver, so it can cause liver diseases. Toxic effects are present 
even if the patient has adequate therapeutic levels, like at concentrations lower than 
20 mg/Kg [54, 55]. Among the clinical toxic effects, patients may present nystag-
mus, ataxia, and numbness [56]. With more severe intoxications, in addition to the 
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above: dysarthria, ataxia, the patient might not be able to walk, and may present 
hyperreflexia, besides consciousness usually being inhibited [57]. With higher 
doses, patients may even display a coma [58].

5.5 Lamotrigine

Lamotrigine is an antiepileptic drug principally used for generalized and partial 
seizures; it is also used in the adjunctive treatment of refractory crises [59]. Its 
action mechanism at the cellular level is based on blocking excitatory neurotrans-
mitters, especially glutamate, through its NMDA receptors, as well as inhibiting 
voltage-dependent Na+ currents [60]. The toxic effects on patients who take this 
drug above 600 mg are characterized primarily at the CNS level by difficulty in 
concentration, showing dysarthria, nystagmus, and blurred or double vision. 
Patients may even present a loss of balance or coordination [61]. Its absorption 
is intestinal, its elimination in the urine, metabolized in the liver. Thus, there is 
idiosyncratic hepatotoxicity that commonly requires liver transplantation [62].

5.6 Oxcarbazepine

Oxcarbazepine is a derivative of carbamazepine, approved as an antiepileptic 
drug in America in 2000 [63]. This drug is used in the treatment of any type of 
epileptic seizure. The cellular mechanism by which it exerts its antiepileptic effects 
is based on the fact that it blocks voltage-gated Na+ channels, modulates the activ-
ity of Ca2+ channels, and increases K+ conductance, which consequently produces 
a stabilization of hyperexcited neuronal membranes for epileptic seizures [64]. 
Oxcarbazepine is a drug that is metabolized like other antiepileptic drugs by the 
liver and excreted by the kidney [65]. Toxic effects when daily doses are above 
30 mg/kg are basically characterized by gastric alterations: mainly nausea and 
vomiting. The alterations in the CNS are identified by headache, fatigue, drowsi-
ness, and ataxia. It has also been reported that some patients may have vertigo and 
hyponatremia [66].

5.7 Ethosuximide

Ethosuximide is an anticonvulsant used to reduce the frequency of absence-type 
seizures. It exerts its mechanism by reducing Ca2+ currents antagonized by the T-type 
Ca2+ channels. Furthermore, linked to this drug, modulation of the function of volt-
age-activated Na+ channels and Na+/K+ dendritic hyperpolarization-activated cyclic 
nucleotide-gated channel 1 channels has been suggested. It also reduces neuronal 
excitability by inhibiting the Na+/K+ pump [67]. However, ethosuximide is almost 
entirely absorbed in the digestive tract and metabolized in the liver, which can cause 
liver disease. The toxic effects of patients who consume above 25 mg/kg comprise 
gastric issues, nausea, vomiting, constipation, a state of sedation, headache, 
decreased alertness, drowsiness, and even comas have been reported at the CNS level 
[68]. Other adverse effects may include weight loss, as well as leukopenia [69].

5.8 Gabapentin

Gabapentin acts mainly by inhibiting partial and generalized seizures. Its 
mechanism of action is based on enhancing the inhibitory action of GABA [70]. A 
dose above 1,500 mg of gabapentin can cause hepatotoxicity, additionally, coupling 
various toxic effects like headaches, diplopia, nystagmus, diplopia, even involun-
tary movements have been described at the CNS level [71].
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5.9 Topiramate

Topiramate is a drug used as an antiepileptic drug that acts by inhibiting partial 
and generalized seizures. Its action mechanism is exerted by blocking Na+ chan-
nels. As an AMPA receptor antagonist, it reduces excitatory neurotransmission, 
in addition to enhancing the inhibitory action of GABA [72]. Topiramate taken at 
a dose above 50 mg produces toxic effects, including dizziness. At the CNS level, 
patients have headaches, drowsiness, decreased concentration, and even confusion. 
Nevertheless, other anomalies have also been reported [73].

6. Experimental models of epilepsy and neurotoxicity

As noted, before the development of epilepsy, experimental models have been 
crucial in the further research of a neurological disorder affecting approximately 
1% of the worldwide population. Some drugs cause structural and metabolic altera-
tions in the nervous system as demonstrated by experimental epileptic models, 
culminating in seizure generation [74]. Antiepileptic drugs that are conventionally 
used in clinical practice have been successfully tested in many of these models, even 
though certain models have neurotoxic consequences, as we will discuss below.

With the aluminum model, focal seizures are studied by directly applying 
the substance to the cerebral cortex of the animal under study, where it has been 
observed that this substance generates dendritic loss, gliosis, loss of GABAergic 
neurons, and a decrease in glutamate decarboxylase [75, 76]. This model has been 
used to study antiepileptic drugs including diphenylhydantoin and pentobarbital, 
both of which have shown positive outcomes in reducing epileptic seizures fre-
quency [77].

Focal seizures have been researched using cobalt powder, which has been 
applied to the research animal’s cortex or thalamus for epileptogenesis as part of the 
model development. This has reported GABA and glutamate decarboxylase enzyme 
production decreased, whereas neuronal death has been observed in the hippocam-
pus. This cobalt model has also been suggested to interfere with Ca2+ signaling at 
NMDA glutamate receptors [78–80].

Similarly, using Zinc as an epilepsy model has been associated to neuronal 
death in the hippocampus, interference with GABAA receptors, and changes in the 
synapses of mossy fibers when there is a high concentration of this metal. It has 
also been observed to interfere with the responses of various receptors, including 
GABA, NMDA, and AMPA [81, 82]. While kainic acid, as an epileptic model, func-
tions similarly to glutamate. The hippocampus is the most sensitive structure to this 
agent, with the highest number of receptors reported in the CA3 layer. This epilepsy 
model is used to examine focal seizures, with the hippocampus being the most sen-
sitive structure to this substance. Changes in neuropeptide Y levels, hippocampus 
mossy fiber formation and a decrease in GABAB receptors are reported [83–85].

Pentylenetetrazol is used as an epileptic model to research generalized seizures. 
Shifts in the CA3 layer of the hippocampus, increased voltage in voltage-responsive 
K+ receptors, and interactions with GABAA and NMDA receptors have all been 
documented [86, 87]. The model has been shown to be suppressed by phenytoin 
and pentobarbital [88, 89]. Flurothyl gas, on the other hand, can cause status 
epilepticus in laboratory animals. Although this gas has long been utilized to inves-
tigate generalized seizures, the exact mechanism through which it causes seizures 
is yet uncertain. However, alterations in the lipidic membranes of hippocampus, 
amygdala, and cerebral cortex cells have been reported. A decrease in GABA 
synthesis and activation of the c-Fos gene have also been reported [90–92].



Neurotoxicity - New Advances

140

On the other hand, penicillin, like cobalt, has been utilized as a model for focal 
seizures in epilepsy research, causing myoclonic seizures. The loss of GABAergic 
neurons, neuronal death, and an increase in mossy fibers in the hippocampus are 
the key abnormalities seen in this model [93–95]. While bicuculline is classified as a 
GABA antagonist, it causes generalized seizures when used. Edema has been found 
in the astrocytes of the cerebral cortex, where it interacts with Ca2+ and K+ channels 
[96, 97]. Tetanus toxin has also been employed as a model of epilepsy because of its 
effect on seizure induction. There are interactions with inhibitory neurotransmis-
sion, synapse formation, exocytosis blocking, and a decrease in GABAergic signal-
ing threshold with this substance [98, 99].

Additionally, pilocarpine affects the muscarinic acetylcholine receptors. The 
increase in activation of these receptors in the hippocampus characterizes its 
epileptogenic effect. In experimental animals, it can even cause status epilepticus. 
Significant damage to nervous system structures has been observed, particularly 
the entorhinal and piriform cortex, olfactory bulb, amygdala, hippocampus, and 
thalamus, as well as abnormalities in the function of Na+/K+ ATPase and NMDA 
receptors [100–103].

7. Conclusion

The described above has enabled us to identify the excitotoxic effect induced 
by epileptic seizures, whether clinical or experimental. Likewise, it illustrated 
some of the toxic effects of antiepileptic drugs. From what has been illustrated, it 
is necessary to conduct research that allows offering other therapeutic alternatives 
to reduce the toxic effects of seizures and pharmacological therapy. The proposal 
of alternative treatments to treat seizures is essential to boost anti-toxic defense 
mechanisms. It can be suggested to propose therapies that minimize neuronal death 
or treatments with substances that activate antiepileptic protein activity, such as the 
extrinsic and intrinsic Wnt pathway stimulation, or molecules that interact with the 
proteins involved in inflammatory and oxidative processes. The above mentioned 
could overall help reduce the interactions between the epileptic and pharmacologi-
cal processes that ulteriorly lead to toxic effects on epileptic patients.

Appendices and nomenclature

NMDA  Glutamate receptors N-methyl-D-aspartate
AMPA  𝜶𝜶-amino-2-3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid
GABA  Gamma-aminobutyric acid
Ca2+  Calcium
Na+  Sodium ions
K+  Potassium
CNS  Central nervous system
TCF/LEF T-cell factor / lymphoid enhancing factor pathway
APC  Adenomatous polyposis coli protein
CK1  Casein kinase 1
GSK3β  Glycogen synthase kinase 3 β
NGR1  Notoginsenoside R1
NGR1  Notoginsenoside R1
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Abstract

Astrocytes are critical for the metabolic, structural and functional modulatory 
support of the brain. Lipotoxicity or high levels of saturated fatty acid as Palmitate 
(PA) has been associated with neurotoxicity, the loss or change of astrocytic func-
tionality, and the etiology and progression of neurodegenerative diseases such as 
Parkinson or Alzheimer. Several molecular mechanisms of PA’s effect in astrocytes 
have been described, yet the role of epigenetic regulation and chromatin architecture 
have not been fully explored. In this study, we developed a multi-omic epigenetic-
based model to identify the molecular mechanisms of lipotoxic PA activity in 
astrocytes. We used data from nine histone modifications, location of Topological 
Associated Domains (TADs) and transcriptional CTCF regions, where we identified 
the basal astrocyte epigenetic landscape. Moreover, we integrated transcriptomic data 
of astrocytic cellular response to PA with the epigenetic multi-omic model to identify 
lipotoxic-induced molecular mechanisms. The multi-omic model showed that chro-
matin conformation in astrocytes treated with PA have response genes located within 
shared topological domains, in which most of them also showed either repressive or 
enhancing marks in the Chip-Seq enrichment, reinforcing the idea that epigenetic 
regulation has a huge impact on the lipotoxic mechanisms of PA in the brain.

Keywords: epigenetic landscape, lipotoxicity, inflammation, astrocyte-neuron 
interaction, neurodegeneration

1. Introduction

Obesity is referred to as the excessive accumulation of body fat. It has become a 
worldwide public health issue which several studies have linked hormonal impairment 
to other diseases like coronary pathologies, diabetes, hypertension, atherosclerosis, and 
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certain types of cancer among others [1, 2]. Studies using insulin growth factor-1 (IGF-1)  
receptor, insulin receptor substrate-1 (IRS-1), insulin receptor substrate-4 (IRS-4), glial 
fibrillary acidic protein, as well as an increase in β-actin protein have been associated 
with fatty acid excess in the brain [3]. Additionally, recent evidence has linked adiposity 
and high fatty acid concentrations to significant brain region-specific dysfunction, atro-
phy, inflammation, and cognitive decline [2, 4, 5], as well as an increased risk in develop-
ing the accumulation of amyloid β and Tau associated with Alzheimer’s disease [3].

Astrocytes are the most versatile glial cells in the central nervous system (CNS) 
constituting from 20 to 40% of neuroglia, protecting the brain through so many 
signaling [6], demonstrating that these cells effectively engulf dead cells, synapses 
and protein aggregates of amyloid β (Aβ) and ɑ-synuclein, typical of Alzheimer’s 
disease (AD) and Parkinson’s disease (PD), respectively. Additionally, astrocytes 
have been shown to regulate K+ levels [7] and prevent excitotoxicity in Huntington’s 
disease (HD) [8–10]. Nonetheless, evidence suggests that elevated concentrations of 
fatty acids can trigger a pro-inflammatory response altering the correct functioning 
of astrocytes [11–13]. Recently, authors have proved that metabolic insults produced 
by fatty acids can trigger a pro-inflammatory response in astrocytes, due to their high 
recruitment and metabolic capacity. Among them is PA, a long-chain saturated fatty 
acid, that can trigger an increase in inflammatory cytokines [5] such as Interleukin 
(IL)-1B, IL-6 and tumor necrosis factor alpha (TNFα), leading to accelerated cogni-
tive decline, decreased cell viability, increased endoplasmic reticulum stress, inhibi-
tion of autophagy, finally compromising the Blood–Brain Barrier (BBB) integrity and 
promoting dementia-like progression in humans and animal models [5, 7, 14, 15].

Recent evidence supports epigenetic responses in astrocytes followed by 
PA-lipotoxic exposure [10, 16]. Epigenetic transcriptional regulation such as 
chromatin accessibility by histone modifications and chromatin architecture 
modulate euchromatin/heterochromatin equilibrium has shown the great potential 
of providing groundbreaking insight into the effects of neurotoxic compounds 
such as PA [4, 17, 18]. Additionally, the epigenetic modulation in astrocytes 
produced by lipotoxic compounds like PA can trigger inflammation, neurotoxic-
ity, astrocyte reactivity, and cell fate determination in the CNS [16, 19]. In this 
case, the epigenetic landscape regulatory role and its response in the PA-induced 
astrocyte lipotoxicity are both the key to comprehend the loss of cellular function. 
Furthermore, several authors have also demonstrated that multi-omic models have 
proved to be more efficient than conventional astrocytic models in the evaluation 
of non-linearity in chromatin regulation considering regulatory mechanisms such 
as enhancers, isolators, epigenetic marks, and non-coding RNA [20–22].

It has been demonstrated that epigenetic data such as Chip-Seq and Hi-C with 
transcriptomics allows the detailed identification of specific molecular mechanisms 
associated with impairment conditions. In the present study, we report a multi-
omic model to describe the epigenetic baseline of astrocytes as well as the astrocytic 
response to PA-lipotoxicity over specific astrocytic processes such as inflammation, 
autophagy, endoplasmic reticulum stress, energetic metabolism, mitochondrial 
dysfunction, and astrocyte-neuron interaction pathways, herein described here as 
astrocytic PA response (APAR) mechanisms.

2. Materials and methods

2.1 Hi-C, ChiP-Seq and transcriptomics datasets acquisition

Hi-C has been adopted as a method to measure pairwise contacts between pairs 
of genomic loci and allows a mapping of the three-dimensional conformation of 
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chromatin within a population of cells, as well as to detect the structural variation 
and corrects assembly of chromosomal missed junctions [23]. Chip-Seq data also 
allows the analysis of histone marks interaction with DNA in an activation/repres-
sion mechanism. In this study, we analyzed nine treatments which were controls, 
H3K36me3, H3K27me3, H3K9ac, H3K9me3, H3K79me2, H4K20me1, H3K4me1 and 
CTCF (entry: GSM733678, GSM733751, GSM733729, GSM1003534, GSM1003491, 
GSM1003490, GSM1003525, GSM733710 and GSM733765 respectively). Tissue-
specific datasets for astrocyte Hi-C from cerebellum and spinal cord were 
downloaded from the Encyclopedia of DNA Elements (ENCODE), as part of the 
ENCODE project consortium with ID numbers 200105194 and 200105957, respec-
tively [24–26]. From ChiP-Seq data we obtained nine astrocyte datasets from NHA 
cells culture from the ENCODE database. Moreover, the whole human genome 
GRC version hg19 was obtained from ENSEMBL (https://www.ensembl.org/index.
html) to map and enrich all the datasets. Transcriptomic data was experimentally 
obtained in the laboratory of Experimental and Computational Biochemistry of the 
Pontificia Universidad Javeriana, Bogotá D.C, Colombia.

2.2 Transcriptomic data

We used Normal Human Astrocytes (NHA; Lonza, CC-2565) divided in three 
different batches (#0000612736, #00005656712, #0000514417), which were 
cultured according to the manufacturer’s specifications. All batches were cultured 
in a supplemented medium with SingleQuots supplements. In order to induce PA 
toxicity, NHA cells were seeded in 48, 24, 12, and 6-well plates and incubated in 
a humidified incubator for 12 days at 37°C and 5% CO2. Then the NHA cells were 
washed with PBS 1x and starved in medium with serum-free DMEM without 
phenol red, L- and supplements (Lonza, Basel, Switzerland) for 6 h.

RNA extraction was performed using mini kit RNeasy (Qiagen, USA). The RNA 
quantification of the preparations was performed with NanoDrop (Thermo Fisher 
Scientific, Waltham, Ma, 174 USA). To remove possible DNA contamination, RNA 
was treated with DNase I. The RNA integrity (RIN) and 28S/18S ratio were determined 
with the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent 
Technologies, CA, USA). Transcriptomic datasets were obtained for NHA astrocytes 
treated in DMEM medium. RNA-seq libraries were prepared using the TruSeq Stranded 
mRNA library prep kit following the manufacturer’s protocol (Illumina, Cat# RS-122-
2101) [27, 28]. The RNA-seq libraries were sequenced in HiSeq platform (Illumina) using 
protocol 2x150bp paired-end configuration, single index per lane. Scores and nucleo-
tide composition were assessed with FastQ to evaluate accuracy using the Nextflow 
(V18.10.1) pipeline QUARS (https://github.com/TainVelasco-Luquez/QUARS).

Salmon package was used for mapping and quantifying the expression level 
(https://combine-lab.github.io/salmon/, V0.13.1) on the genome assembly GRCh38 
(patch 12) from the NCBI without ALT regions using Gencode [26, 29]. NOISeq 
was used to import data into R (V3.6.1) and assessed sequence plot quality diagnosis 
[5]. Gene level Ensembl IDs were used with tximport function to create the count 
matrix. We used DESeq2 for modeling the average expression in function of the 
treatments correcting for sex (design formula: ~ sex + condition) [30]. Moreover, 
DESeq2 was used for normalization by size, variance shrinkage, outliers filtering, 
and hypothesis testing. The Wald test was used for assessing genes differentially 
expressed above |LFC| > = 0.5 with an alpha cutoff at 0.05.

The overlap analysis was performed using Fisher’s exact test using alpha at 0.05 
implemented in the package GeneOverlap. To correct for multiple testing, p-values 
were adjusted using the Benjamini-Hochberg method [31]. Additionally, we lever-
aged the GeneOverlap’s Odds Ratio and Jaccard Index as measures of the strength of 
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association and the similarity, respectively. Odds ratio equal to or less than 1 means 
no associations and greater than 1 represents strong associations. Jaccard Index 
is a measure of similarity that varies between 0, no similarity, and 1, completely 
identical lists. The package WGCNA from the platform iDEP (V0.90) was used to 
perform the co-expression analysis, employing the 1000 more variable genes across 
all samples, with a soft threshold of 16 and minimum module size of 20 [32]. The 
Pearson’s correlation was used on the count matrix, normalized and regularized 
using the log transformation of the DESeq2 library.

2.3 Epigenetics data analysis

To create the multi-layer model, first we obtained the ChIP-Seq data of an 
astrocyte in homeostatic conditions from the ENCODE database, then re-analyzed 
the BED/BAM files using ChIP-Seq model-based analysis implemented in MACS2. 
We integrated H3K4me3, H3K27ac, H3K27me3, H3K9ac, H3K4me1, H4K20me1, 
H3K36me3, and H3K79me2 to the human genome, in order to identify the core active 
regulatory and repressed genes in astrocyte, H3K27me3, H4K20me1 and H3K9me3. 
The active genes were also identified by the integration of H3K4me3, H3K4me1, 
H3K79me, 2H3K9ac, H3K27me3, and H3K27ac [33] to the same genome (hg19) and 
those who shared both repressing and enhancing modifications were identified as 
bivalent genes. All the individual samples, the core activation, repression and biva-
lent samples were enriched using the cutoff p-value set at 0.01 for both molecular 
function and biological process excluding redundant gene ontology (GO) terms.

Hi-C data was obtained from the ENCODE database. In this database, it can be 
found up to 80% of the annotated genome, in which for the interest of the investiga-
tion cerebellum and spinal cord data with ID numbers 200105194 and 200105957 
respectively [24]. Hi-C data of spinal cord and cerebellum were compared to identify 
the potential tissue-specific differences in astrocyte functioning. All the individual 
samples, the core activation, repression, and bivalent samples were enriched using the 
cutoff p value set at 0.01. Molecular enrichment was performed using ShinyGO [34].

2.4 Data integration

In order to identify euchromatin and heterochromatin regions in astrocyte, we 
overlapped all activation/repression specific histone modifications covering regions. 
With this approach, it was possible to identify activation, repression and bivalent core 
genomic regions. Thus, both the omic and epigenetic integrations were performed 
through the adjudication of the data described above into a multi-omic model. The 
model consisted in three different layers of the Chip-seq and Hi-C of an astrocyte 
under homeostatic conditions and the transcriptomic data of an astrocyte under the 
lipotoxic effects of PA, where these three layers were used to make an inference about 
the possible epigenetic effects of PA in an astrocyte. Considering that there are no 
Hi-C or Chip-Seq data for astrocytes under the effects of PA, the integration of the 
transcriptomic data allows the identification and analysis of genes associated with PA 
response. Accordingly, the identification of changes in the epigenetic regulation of 
genes was performed as follows: first the differentially expressed genes in the tran-
scriptome presented within the TADs of euchromatin and with the groups of genes 
were identified. Then, the proteomic data was sought to identify whether gene expres-
sion patterns are correlated with histone modification data sets [35–37]. Also, both the 
core regions and the specific histone marks with the Hi-C were overlapped with the 
TADs of an astrocyte in order to identify patterns between chromatin architecture and 
modulation of histone expression [37, 38]. Later, the Chip-Seq core regions integrated 
with TADs were compared with gene expression and proteomic data.
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To identify the role of chromatin conformation in the expression and the effect 
of TADs in PA activity, gene expression and gene localization were associated with 
each other. This approach allowed us to identify additional epigenetic regulatory 
events related with TAD genes [39]. Subsequently non-coding regions such as 
enhancers and promoter regions were identified to be able to explain the patterns of 
expression of PA lipotoxicity. All data analysis was developed using R-Bioconductor 
suite (https://www.bioconductor.org/) as well as publicly available databases to 
ensure reproducibility and robustness. All the resulting sets of genes were enriched 
for molecular processes and biological functions.

3. Results

3.1 Chromatin/Histone expression regulation

Considering the functional importance of histone modifications in the cellular 
behavior [40], we identified a set of 34852 genes with known activation roles across 
the seven ChiP-Seq samples. Histone marks H3K4me3, H3K27ac, H3K9ac, H3K4me1, 
H4K20me1, H3K36me3, and H3K79me2 and the number of genes per activation mark 
were 2432, 3034, 3773, 5133, 8228, 6766 and 5486, respectively, with a non-homoge-
nous pattern. We obtained a set of 11214 genes enhanced between the 7 studied active 
histone modifications with at least each gene included in two or more of the samples. 
Moreover, samples H3K27me3 and H3K9me3 showed 6276 and 6747 repressed genes, 
respectively. We identified a set of 9796 genes repressed in astrocytes based on 
H3K27me3 and H3K9me3 data with the condition that each gene should be present 
in at least one of the ChiP samples. Considering that a bivalent region is due to the 
presence of a repressor and an enhancer in the modifications of histones H3K4me3 
and H3K27me3, we identified 7608 genes in bivalent sites. Moreover, shared genes for 
both activation and repression were identified as coding regions present in at least 
one of the mark datasets in each group for the specific markers [33].

In general, we performed a functional enrichment of the dataset where it was 
possible to identify the biological process and molecular functions associated 
with GO terms. As a result, 30 biological processes relevant to APAR biological 
mechanisms were presented (Table 1). Among these biological processes identified 
for the activation of ChIP-Seq datasets, glutamate-cysteine ligase activity, CD4 
receptor binding, ion channel binding, and extracellular matrix binding were the 
top-enriched functions. Besides, functional groups associated with the homeostatic 
astrocytic activity were identified as highlighting transferase activity, carbohydrate 
derivative binding, hydrolase activity, DNA-binding transcription factor activity, 
molecular function regulator, transporter activity, oxidoreductase activity, enzyme 
regulator activity, transmembrane transporter activity, signaling receptor activ-
ity, extracellular matrix structural constituent, lipid binding, extracellular matrix 
binding, electron transfer activity, and lyase/ligase activity. The genes that encode 
the molecular functions mentioned above, are associated with metabolic support in 
astrocytic activity and neural functionality present in euchromatin regions.

It was also possible to identify active coding regions tightly regulated for cellular 
ion maintenance and response to stimuli that are essential for astrocytes well-
functioning [7]. Additionally, we were able to associate the presence of constant 
euchromatin regions with genes that encode for metabolic and cellular exchange 
mechanisms necessary for astrocyte function [41]. Therefore, the model demon-
strated that the presence of genes in regular euchromatin regions are often associated 
with many regulatory elements such as promoters, enhancers, insulators and silenc-
ers, all related with cell adhesion, support and exchange processes [42, 43].
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In the case of bivalent expression regions, 30 biological processes were identi-
fied corresponding with APAR mechanisms, highlighting transcription regulation, 
sequence-specific DNA binding, RNA polymerase II/III distal enhancer, regulatory 
region, and proximal promoter sequence-specific DNA binding, gamma-amino-
butyric acid transmembrane transporter activity, nerve growth factor binding, 
ubiquitin-protein transferase activator activity, mannosyl-transferase activity and 
cofactor, corepressor and coactivator transcription binding (Table 2). Additionally, 
these same genes that were also associated with specific functional groups such 
as macromolecule binding (i.e., carbohydrates, sulfurates, lipids, amides), DNA-
binding transcription factor activity, cofactor binding, extracellular matrix struc-
tural constituent, structural constituent of ribosome, structural constituent of 
cytoskeleton, extracellular matrix binding, neurotransmitter binding and structural 
constituent of myelin sheath and activity of hydrolase, transferase, peroxidase, oxi-
doreductase, isomerase, lyase/ligase signaling, transmembrane transporters, 
enzyme regulation, antioxidant, electron transfer, neurotransmitter transport, 
cytochrome-c oxidase, MAPKK, and glutathione dehydrogenase functionality.

Further, we identified all the specific genes associated with the APAR mecha-
nisms in astrocytes under homeostatic conditions (Figure 1). It was possible to 
clarify the epigenetic basal response of astrocytes and identify the gene activation/
expression profiling under homeostatic conditions of these cells to elucidate the 

Category Process Gene number

Function Regulation of biological quality 4319

Homeostatic processes 2004

Ion homeostasis 836

Response to nutrients 730

Regulation of membrane potential 450

Apoptotic mitochondrial changes 130

Membrane depolarization 88

Regulation of membrane depolarization 44

Mitochondrial depolarization 24

Regulation of mitochondrial depolarization 21

Non-ribosomal peptide biosynthetic process 19

Glutathione biosynthetic process 17

Group Immune response 45

Regulation of biological quality 32

Response to stress 23

Regulation of response to stimulus 20

Regulation of molecular function 20

Response to external stimulus 17

Regulation of signaling 15

Cell adhesion 11

Catabolic processes 11

Table 1. 
Top biological processes associated with the core activation dataset from the histone markers H3K4me3, 
H3K27ac, H3K9ac, H3K4me1, H4K20me1, H3K36me3, and H3K79me2. Accordingly, biological processes were 
separated into functions and groups, in terms associated with GO for a more detailed analysis.
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potential response to PA detrimental conditions. Both activation and bivalent pro-
cesses and functions made it possible to understand the expression and regulatory 
mechanisms associated with an epigenetic chromatin landscape in astrocytes [4]. 
For both activation and bivalent datasets, the biological processes and functions 
were consistent with the basal astrocytic activity (Tables 1 and 2).

Category Process Gene number

Function Positive regulation of biosynthetic process 4091

Positive regulation of nucleic acid-templated transcription 3293

Positive regulation of cellular biosynthetic process 2082

Positive regulation of RNA metabolic process 1789

Positive regulation of RNA biosynthetic process 1695

Extracellular matrix assembly 28

Negative regulation of autophagy of mitochondrion 9

Interleukin-23-mediated signaling pathway 9

Positive regulation of axon extension involved in axon guidance 7

Group Regulation of response to stimulus 1409

Regulation of biological quality 1360

Response to stress 1312

Regulation of signaling 1242

Immune system process 973

Catabolic process 863

Response to external stimulus 793

Cell proliferation 708

Table 2. 
Biological processes associated with histone markers H3K4me3 and H3K27me3 were separated between 
functions and groups. All the terms were associated with GO terms for further analysis [33].

Figure 1. 
Graphical representation of activation, repression, and bivalent genes present in every APAR categories. 
Specifically, AN interaction has 42%, 25% and 31%; autophagy has 42%, 20% and 37%; ER Stress has 
33%, 23% and 43%; inflammation has 39%, 28% and 31% all for activation, bivalent and repression genes 
respectively. Note: the colors correspond to Green-Activation, Orange-Bivalent, and Purple-Repression.
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3.2 Chromatin architecture involvement in APAR

Overexpressed genes in NHA astrocytes exposed to lipotoxic PA concentrations 
were fully integrated to ChIP-Seq data, APAR-related data and the chromatin con-
formation in order to identify co-regulated genomic regions in astrocytes [44]. We 
identified 328 molecular processes that were found overexpressed when astrocytes 
are exposed to PA, of which 27 molecular APAR associated processes were selected 
based on the role and significance (Table 3).

Although comparing specific TAD regions from Hi-C experiments and differen-
tially expressed genes associated with APAR mechanisms in astrocytes, we identified 
clusters sharing the same TAD (Table A1). In this regard, we identified 3039 and 
3048 TAD regions for spinal cord and cerebellum astrocytes, respectively. We focused 
on differentially expressed genes present among the APAR gene sets, located in the 
corresponding TAD regions to identify co-regulated genes or regulatory profiles. 
Moreover, due to the CTCF role in the conformation of chromatin folding architecture, 

Molecular process Adjusted 
p-value

Negative log10 
adjusted p-value

Gene 
number

Inflammatory response 1.0487E-16 15.979344 53

Response to external stimulus 9.8873E-13 12.0049202 101

Response to lipid 1.8892E-11 10.7237215 51

Response to stress 8.5056E-11 10.070294 121

Response to stimulus 3.438E-09 8.46369645 205

Regulation of lipid metabolic process 4.1334E-08 7.38369637 29

Cellular response to stimulus 1.0314E-05 4.98659017 169

Regulation of biological quality 1.8704E-05 4.72806228 107

Regulation of immune response 0.0001047 3.98004731 43

Regulation of cell activation 0.00018219 3.73947057 30

Positive regulation of inflammatory response 0.00029935 3.52381953 14

Regulation of inflammatory response 0.00057697 3.23884686 22

Regulation of response to stress 0.00213314 2.67098006 50

Cellular lipid metabolic process 0.00528208 2.27719528 38

Positive regulation of biological process 0.00848563 2.07131588 136

Neuroinflammatory response 0.0114169 1.94245175 9

Regulation of ERK1 and ERK2 cascade 0.01342102 1.8722145 17

Glial cell activation 0.01563567 1.8058835 8

Interleukin-1 secretion 0.01762805 1.75379577 8

Positive regulation of metabolic process 0.01849939 1.7328425 89

Regulation of response to stimulus 0.02555143 1.59258475 101

ERK1 and ERK2 cascade 0.0278352 1.55540561 17

Positive regulation of immune response 0.03214889 1.49283399 32

Hippocampal neuron apoptotic process 0.0381717 1.41825855 3

Regulation of hippocampal neuron apoptotic 
process

0.0381717 1.41825855 3

Negative regulation of transport 0.04292557 1.36728396 23

Synapse pruning 0.04548992 1.34208479 4

Table 3. 
Differentially expressed biological processes associated with the APAR mechanisms of PA-lipotoxicity in 
astrocytes. All considered processes have p > 0.05 as a threshold value of significance.
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TAD regions were overlapped with CTCF in order to identify true TAD regions. In this 
sense, these results elucidated some of the potential role of epigenetic modulation in 
the APAR molecular mechanisms in astrocytes in response to PA-lipotoxicity [45–47].

4. Discussion

In the present study, our model showed that astrocytes regulate enzymatic and 
protein activity from the genomic to the protein level, considering the protein func-
tional modulation at different molecular levels. Additionally, during normal condi-
tions, the enzymatic activity of hydrolase, transferase, peroxidase, oxidoreductase, 
isomerase and lyase/ligase were identified as constantly regulated due to elevated 
metabolic rates and plasticity in astrocytes [48, 49]. In this case, metabolic main-
tenance and support are not permanently regulated by epigenetic processes due to 
a dynamic environmental-dependent mechanism in astrocytes. Nevertheless, the 
presence of metabolic processes in bivalent regions implies the presence of highly 
active metabolic processes that change across time due to the fact that a genomic 
region can present both marks and become active or repressed [43, 50]. In terms 
of astrocyte-neuron interaction, we identified the presence of antioxidant activity 
associated with glutathione biosynthetic processes, reductase activity, as well as the 
activity of structural constituents of myelin sheath [51, 52]. Relationship between 
astrocytes and neurons in the context of antioxidant defense to ensuring neuronal 
well-being during pathological conditions play a significant role in metabolic 
support by neuroprotective capacity from oxidative stress, supply of glutathione to 
neurons, modulation of the extracellular matrix assembly, among others [52, 53].

To examine the molecular response to PA or APAR mechanism in astrocytes, we 
integrated the epigenetic data with the transcriptomic data from NHA to elucidate 
the potential damaging conditions by the PA activity in the brain. The shared TAD 
regions from both cerebellum and spinal cord astrocyte Hi-C data were compared to 
each other in order to establish the differences and possible considerations associ-
ated with tissue-specific stimuli. Thus, our multi-omic model showed that during 
PA lipotoxicity in astrocytes, inflammatory and stress responses are overexpressed. 
Our results also indicated that lipid droplets are epigenetically regulated in order to 
respond to free fatty acid concentrations in homeostatic conditions by the presence 
of apolipoprotein-E (APOE) gene in euchromatin regions [4, 40]. For instance, 
recent evidence has shown that maintenance of the homeostasis between astrocytes 
and neurons mitigate the lipotoxic effects of fatty acids as well as modulating 
APOE-lipid particles becomes of vital importance [54].

The presence of PA is associated with the overexpression of biological processes 
such as response to cellular lipid metabolism, which can lead to disease [5, 55]. 
Moreover, high concentrations of PA induce the expression of markers involved in 
pro-inflammatory response where the secretion of IL-1 activates endothelial cells 
and astrocytes to propagate the inflammatory signals in CNS [56, 57]. Overall, IL-1 
is a typical biomarker associated with lipotoxicity and inflammation in astrocytes, as 
LC3-II, p62, or TLR2 have been directly linked to the astrocytic response to PA [5, 11, 
58]. Likewise, IL-1 supports mechanisms as extracellular matrix binding modulation 
and regulation obtained in experimental studies that are essential for the response to 
mechanical stimuli in astrocytes [41]. In this sense, our results support the involve-
ment of epigenetic regulation over cellular functional determinants in astrocytes 
during neurodegeneration but are necessary to develop more precise algorithms 
associated with gene screening [4].

Moreover, our model shows and support evidence from experimental studies, 
highlighting the expression and regulation of transporters such as the glutamate and 
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lactate shuttle, redox stress reduction, transfer mitochondrial, among others, which 
are associated with the APAR mechanisms. Many of these biological functions asso-
ciated with the response of astrocytes seem to be regulated by some of the tested 
histone modifications. Also, the response to external stimulus can be associated 
with the presence of neurotransmitter receptors, evidencing the neuron-astrocyte 
interaction beyond the metabolic support. Interestingly, we also report the presence 
of genes involved in the biosynthetic process of glutathione in the euchromatin 
regions, meaning a recurrent antioxidant activity process in astrocytes. Glutathione 
biosynthesis and release have been associated as a strategy for the balance and 
detoxify of the neural activity mediated by mitochondrial reactive oxygen species 
(ROS) in neurons linked to neurotransmission, neuroinflammation, neural disease 
etiology and progression [59, 60]. Glutathione biosynthesis is related to astrocytes 
antioxidant defense activity during pathological and non-pathological conditions.

Transcriptomic data, epigenetic landscape of TDAs, and histone modification 
regions data allowed the identification of APAR genes in the transcriptomic dataset 
and their localization (bivalent activation) [61]. TNFRSF1B, IL1R2, IL18RAP, IL1A, 
IL5RA, CXCL10, IL5, PIK3CG, IL10RA, and CCL8 genes were identified and associ-
ated with APAR mechanisms in astrocytes. Recently it has been demonstrated that 
during non-stimulating conditions, astrocytes secrete cytokines such as GM-CSF, 
CXCL1, CCL2, CXCL8, IL-6, and IL-8, all of those displayed at different levels [22, 37]. 
Moreover, administration of IL-1B and TNF activates astrocytes response with the pro-
duction of cytokines IL-1B, IL-1RA, TNFA, CXCL10, CCL3, CCL5 and IL6 [62–64], 
being IL-6 response more efficient at higher concentration [65, 66].

Chromatin conformation in astrocytes has shown that PA response genes were 
located within shared TADs. During inflammation interleukin-1 receptor type II 
(IL1R2) has been described as a key receptor of which the expression reduces IL1A 
and IL1B activity [9]. On the other hand, the interleukin 18 receptor accessory 
protein (IL18RAP) that is associated with the pro-inflammatory response of IL18 
by intracellular signaling was located in the same TAD region, suggesting that they 
share the same regulatory response when inflammatory processes occur in astrocyte 
[67]. Additionally, this TAD region also contains IL1R1 which is a key molecular 
mechanism associated with astrocytic response to inflammation by interaction with 
IL1A, IL1B and IL1R-agonists. Likewise, the TAD contains IL1RL2, and IL18R1, both 
interleukin receptors related to inflammatory cellular processes [5, 68, 69].

The coregulation of certain gene groups can also be associated with either 
master regulatory regions in TADs or architecture proximity regulation in the 
nucleus [70]. It is plausible that PA-lipotoxic responses in regulation of astrocytes 
by activating TAD regions depends upon extracellular signaling. This is possible 
because of the proximity of TAD to nucleus for cooperative organized regulation of 
genomic regions [44, 71]. Our results finally suggest that epigenetic modulation has 
an important role in the regulation of APAR mechanisms, yet further experiments 
are necessary to explore the TAD proximity involved in APAR regulation.

5. Conclusions

We present the first comprehensive data integration of epigenetic involvement 
in the astrocytic response to PA through the analysis from Hi-C, ChIP-Seq, and 
transcriptomic data in a multi-omic level. We described the role of epigenetics 
as a key mechanism of astrocytic PA response within which we found histones 
markers with bivalent capacity associated with repression of genomic activity 
(H3K4me3 and H3K27me3). This finding determines the adaptability and response 
to environmental stress, provided through complex astrocyte metabolic plasticity 
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networks. In addition, our results showed that markers as H3K4me3, H3K27ac, 
H3K9ac, H3K4me1, H4K20me1, H3K36me3 and H3K79me2 have regions associated 
with homeostatic processes linked to exchange processes, regulation of the extracel-
lular matrix, protein maintenance and ion channels regulation. These processes 
were found in euchromatin regions, highlighting that it is associated with essential 
basal functions in astrocytes. Likewise, signaling pathways modulation (i.e., PI3K/
AKT), antioxidant activity (a recurrent mechanism in astrocytes), among others, 
were associated with glutathione biosynthesis processes, glutamate transport and 
glutamatergic neuronal support, identified as active basal coding regions.

APAR mechanisms proved to be highly regulated by histone modifications 
along the genome which is essential for the response to PA. Additionally, our results 
revealed the presence of highly regulatory regions in the TADs associated with 
IL1R2 and IL18RAP. Moreover, the location of genes encoding to interleukins in the 
genome and chromatin conformation revealed the putative epigenetic regulation 
of the inflammatory response. In this sense, our results support the involvement 
of APAR mechanisms on the lipotoxic effect of PA in astrocytes. While integrating 
transcriptomics with epigenetics data was possible to identify associated genes with 
APAR mechanisms and genes in response to PA located inside the topologically asso-
ciated, genes found in the TAD region that shared the regulator responses linked to 
inflammatory processes were likely modulated by lipotoxicity actions. Additionally, 
it is possible to suggest that additional epigenetic mechanisms such as lncRNA, 
miRNA and extracellular signaling could be involved in the astrocytic response to 
PA. Considering that deterministic mechanisms of expression are still unknown for 
astrocytes in lipotoxic conditions, we suggest that epigenetic modulation is essential 
for an efficient and dynamic cellular response. This work is a novel approach that 
involves epigenetic regulation in the cellular response to PA-lipotoxicity in astro-
cytes. Therefore, it should be emphasized that it is recommended the development 
of new methodologies and algorithms for more accurate analysis associated espe-
cially to genetic encryption. Finally, an accurate investigation of this new multi-
omic epigenetic-based model by integrating multiple underlying data sources about 
the cellular mechanisms of the response to PA-lipotoxicity in astrocytes, might help 
in the future to detect shared genetic patterns found in the TAD region among the 
neurodegenerative diseases, identifying biomarkers for differentiating disease states 
and thereby facilitating the decision-making process and treatment management.
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Appendix

Gene (Regulation) Location TAD region Genes in TAD

TNFRSF1B chr1 
12,166,949-
12,209,228 
[+Strand]

11,920,000-
14,360,002

KIAA2013, PRAMEF13, KAZN, PLOD1, HNRNPCL2, 
AADACL3, PRAMEF5, MFN2, DHRS3, PRDM2, 
C1orf158, PRAMEF17, PRAMEF12, PRAMEF20, 
PRAMEF1, PRAMEF14, TNFRSF8, LRRC38, 
PRAMEF11, PDPN, HNRNPCL1, PRAMEF2, 
PRAMEF4, PRAMEF10, PRAMEF6, VPS13D, 
PRAMEF7, AADACL4, PRAMEF18, PRAMEF27, 
HNRNPCL3, PRAMEF25, PRAMEF26, HNRNPCL4, 
PRAMEF9, PRAMEF8, PRAMEF33, PRAMEF15

IL1R2 chr2 
101,991,816-
102,028,544 
[+Strand]

101,880,002-
102,560,000

SLC9A4, IL1R1, IL1RL1, IL1RL2, IL18RAP, IL18R1

IL18RAP chr2 
102,418,558-
102,452,568 
[+Strand]

101,880,002-
102,560,000

SLC9A4, IL1R1, IL1RL1, IL1RL2, IL1R2, IL18R1

IL1A chr2 
112,773,915-
112,785,394 
[-Strand]

112,600,002-
113,400,000

POLR1B, IL36G, PSD4, IL37, IL1F10, CHCHD5, 
IL36A, SLC20A1, IL36B, NT5DC4, IL36RN, 
CKAP2L, IL1B, IL1RN, PAX-AS1, PAX8

IL5RA chr3 
3,066,324-
3,126,613 
[-Strand]

2,360,002-
3,160,000

CNTN4, TRNT1, CRBN

CXCL10 chr4 
76,021,116-
76,023,536 
[-Strand]

75,760,002-
76,440,000

USO1, NAAA, SCARB2, NUP54STBD1, PPEF2, 
CXCL11, SDAD1, FAM47E, CXCL9, FAM47E-
STBD1, ART3, CCDC158

IL5 chr5 
132,541,444-
132,556,890 
[-Strand]

132,440,002-
133,360,000

IRF1-AS1, IL13, SOWAHA, CCNI2, KIF3AUQCRQ, 
FSTL4, SHROOM1, HSPA4, IRF1, GDF9, IL4, 
RAD50, SEPTIN8, LEAP2, AFF4, ZCCHC10

PIK3CG chr7 
106,865,278-
106,908,980 
[+Strand]

106,840,002-
107,600,000

PRKAR2B, HBP1, COG5, GPR22, BCAP29, DUS4L

IL10RA chr11 
117,857,063-
117,872,198 
[+Strand]

117,240,002-
118,320,000

DSCAML1, FXYD2, FYD6, CEP164, SMIM35, 
RNF214, PCSK7, PAFAH1B2, SIDT2, TAGLN, 
BACE1, TMPRSS13, TMPRSS4, SCN4B, SCN2B, 
JAML, MPZL3

CCL8 chr17 
34,319,047-
34,321,402 
[+Strand]

33,520,002-
35,720,000

ASIC2, CCL2, TMEM132E, FNDC8, CCL7, CCL11, 
CCT6B, PEX12, LIG3, CCL13, CCL1, ZNF830, 
NLE1, C17orf102, RFFL, AP2B1, RAD51D, 
UNC45B, SLC35G3, SLFN12L, SLFN5, SLFN13, 
SLFN11, SLFN14, SLFN12

Table A1. 
Topological architecture of the differentially expressed genes associated with APAR mechanisms in astrocytes. 
All gene regions have been obtained from ENSEMBL (GRCh37/hg19). All the TAD described contained 
promoters, enhancers and promoter flanks.
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Chapter 9

Neurotoxicity, Types, Clinical 
Manifestations, Diagnosis and 
Treatment
Serap Bilge

Abstract

Neurotoxicity is a term that refers to the condition in which the nervous system is 
exposed to dangerous substances (neurotoxicants) either naturally occurring or cre-
ated, impairing the nervous system’s normal function. Few of these neurotoxins act 
directly on neural cells, whereas others impair metabolic processes heavily reliant on 
the neurological system. Neurotoxicity can occur as a side effect of chemotherapy, 
radiation therapy, drug therapies, organ transplantation, and vulnerability to heavy 
metals such as mercury and lead, certain foods, pesticides, industrial products, and 
solvents used in cleaning cosmetics, and pharmaceutical products. Additionally, 
there are a few naturally occurring compounds. Symptoms of intoxication may 
begin to develop immediately upon exposure or may take time to manifest. These 
symptoms may include encephalopathy, limb weakness or numbness, cognitive 
and behavioral impairments. Following the elimination or decrease of exposure to 
hazardous chemicals, symptomatic and supportive therapy is provided. The progno-
sis is highly variable and depends on the duration and depth of vulnerability and the 
degree of the neurological impairment. Neurotoxicant vulnerability can be lethal in 
rare instances. Patients may survive in some cases despite their failure to heal com-
pletely. In other cases, many individuals recover completely following treatment.

Keywords: neurotoxicity, neurotoxicants, nervous system

1. Introduction

Understanding brain and nerve poisons have been a long-standing tradition 
dating back to ancient times. By the turn of the twentieth century, contemporary 
physiological and biochemical investigations had elucidated a few of these poisons’ 
mechanisms of action. Neurotoxicity is defined as any unfavorable effect on the 
central or peripheral nervous systems’ chemistry, structure, or function induced 
by chemical or physical agents either at maturity or during development. Any 
impairment of normal function or adaptability to the surrounding environment is 
regarded as a side effect. Thus, even if functional and structural changes are mini-
mal or reversible, the most prevalent morphological abnormalities, such as neurons, 
axonopathy, or myelinopathy, may be unfavorable [1].

Additionally, neurochemical alterations should be regarded as harmful even 
if they are reversible and transient and cause dysfunction. Neurotoxicity can also 
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arise due to indirect effects, such as harm to the cardiovascular or hepatic systems 
or changes in the endocrine system. Numerous compounds function in various ways 
and can directly or indirectly affect the neurological system [2].

The nervous tissue present in the brain, spinal cord, and periphery includes 
an extraordinarily complex biological system that generally describes many of the 
original traits of individuals. However, as with any profoundly complex system, 
even minor disturbances to its environment can result in significant functional 
disturbances. Factors leading to the vulnerability of nervous tissue include a large 
surface area of neurons, a high lipid content that retains lipophilic toxins, high blood 
flow to the brain inducing increased effective toxin exposure, and persistence of 
neurons through an individual’s lifetime, leading to the compounding of damages.

As the nervous system is more vulnerable to toxins, several mechanisms are 
designed to protect it from internal and external hazards, including the blood–brain 
barrier. The blood–brain barrier (BBB) and choroid plexus that provide a layer of 
protection against toxin absorption in the brain. The choroid plexuses are vascular-
ized layers of tissue found in the brain’s third, fourth, and lateral ventricles, which 
through the function of their ependymal cells, are responsible for the synthesis of 
cerebrospinal fluid (CSF). Importantly, through the selective passage of ions and 
nutrients and trapping heavy metals such as lead [1–3].

2. Mechanism of action in neurotoxicity

Many neurotoxicants function by inhibiting the GABAA receptor, resulting in 
prolonged closure of the chloride channel and excess nerve excitation (Figure 1). 
Cyclodiene, the organochlorine insecticide lindane, and some pyrethroid insecticides 
prove acute neurotoxicity, at least partly through this mechanism. Symptoms of 
GABA inhibition include dizziness, headache, nausea, vomiting, tremors, convul-
sions, and death. Other some acts via Na channel inhibitors (tetrodotoxin),  
K channel inhibitors (tetraethylammonium), Cl channel inhibitors (chlorotoxin), 
Ca channel inhibitors (conotoxin), inhibitors of synaptic vesicle release (botulinum 
toxin, tetanus toxin), receptor inhibitors (bungarotoxin), blood–brain barrier inhibi-
tors (aluminum mercury), Ca-mediated cytotoxicity (lead), and toxins with multiple 
effects (ethanol). In some cases, the hemostasis of energy can be affected [2].

Figure 1. 
The neurotoxins block the receptors, thus preventing the maintenance of proper physiological function.
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3. Types of toxins and intoxications

Chemicals that disrupt the mammalian nervous system can occur naturally 
(neurotoxins) or be produced (neurotoxicants). While the term “neurotoxins” 
refers to substances with neurotoxic potential, this is not an inherent quality of 
the chemicals but rather a description of the effect that may occur when the tis-
sue concentration surpasses a certain threshold. Neurotoxic biological substances 
usually demonstrate a high level of target selectivity and toxicity. Microorganisms, 
reptiles, and vertebrates exhibit direct or indirect neurotoxic effects that are well-
understood mechanistically (Table 1) [3, 4].

Other naturally occurring compounds with less strong qualities have been 
shown to cause neurotoxicity when administered in high concentrations for a 
sustained length of time. Metals (arsenic, lead, and mercury) and other elements 
and compounds, such as selenium and vitamin B6, come into this category. While 
these chemicals are neurotoxic in high concentrations, they are required in trace 
levels to maintain proper physiological function, particularly in the nervous system. 
Natural enzymes (thiaminase) that metabolize necessary chemicals (thiamine) are 
also associated with neurological disorders in both animals and humans. Synthetic 
chemicals with neurotoxic potential are most frequently obtained through a 

Life form Substances with neurotoxic potential

Bacterium Diphtheria, a toxin

Fungus 3-Nitropropionic acid

Plant L-BOAA

Insect Apamin

Reptile Dendrotoxin

Bird Batrachotoxin

Table 1. 
Natural mammalian neurotoxic potential substances [3, 4].

Substance Primary neurotoxic effects

Organophosphorus compounds 
(pesticides and warfare agents)

Cholinergic syndrome (certain compounds), peripheral neuropathy 
(certain compounds only), acetylcholinesterase İnhibition

Lead, inorganic Peripheral neuropathy acute encephalopathy

Arsenic Acute encephalopathy peripheral neuropathy

Mercury, inorganic Cerebellar syndrome and psychological reactions (anxiety, 
personality changes, memory loss)

Methanol Optic neuropathy extrapyramidal syndrome, retinopathy

Carbon monoxide Encephalopathy/ parkinsonism(delayed), neuronal and tissue 
necrosis secondary to hypoxia

Phenytoin Fetal phenytoin syndrome, cerebellar syndrome, chronic 
encephalopathy (cognitive dysfunction), extrapyramidal syndrome 
(chorea, dyskinesia), peripheral neuropathy

Arsenic Acute severe encephalopathy, peripheral neuropathy

Tricyclic antidepressants Seizure disorder (myoclonus), psychobiological reaction (serotonin 
syndrome, anticholinergic syndrome), tremor, extrapyramidal 
syndrome (dyskinesia)

Table 2. 
Potentially neurotoxic heavy metals and synthetic substances [3, 4].
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prescription (vincristine, ethambutol, isoniazid) and over-the-counter (bismuth 
preparations) pharmaceutical aisles; (pyridethione) products used in antidandruff 
shampoos; (2,6-dinitro-3-methoxy-4-tet-butyltoluene) fragrance raw materials; 
and (acrylamide) pyrolysis products used in broiled, baked. Others are associated 
with particular applications, such as chemical warfare in military and civilian 
settings (sarin). Directly neurotoxic substances are supplemented by medications 
that change neurological function due to their effects on another organ system on 
which the brain relies for proper operation. This class of medications includes those 
that target the lung, kidney, and liver particularly, as well as drugs that disrupt the 
nervous system’s constant supply of oxygen (cyanide, azide) and glucose (glucose) 
(6-chloro-6-deoxyglucose). Chronic liver failure and manganese toxicity are 
associated with increased signal abnormalities in the basal ganglia on T1-weighted 
magnetic resonance images, implying that the metal accumulates due to the liver’s 
general inability to eliminate it (Table 2) [3, 4].

4. Clinical manifestations of neurotoxicity

These manifestations include signs and symptoms in multiple parts of the 
central nervous system, including the central, peripheral, and autonomic nervous 
systems and skeletal muscle. They are typically accompanied by discomfort, altered 
sensations, such as taste and smell, decreased visual acuity, and hearing loss [5, 6].

4.1 Encephalopathy

Acute encephalopathies are a common occurrence. The majority are insignificant 
and dissipate within a few days. Headache, weariness, disorientation, loss of atten-
tion and short-term memory, lack of motor coordination, and the resulting gait 
irregularity, nausea, and dizziness are the most common indications and symptoms. 
Schaumburg identified several compounds (about 100) as possible causative factors, 
including aluminum, cannabis, cocaine, domoic acid, lead, organic solvents, and 
trimethyltin. While acute symptoms commonly resolve rapidly, chronic issues can 
significantly debilitating influence on job performance and productivity. There is 
a significant need for long-term follow-up and mental and psychological disorders 
assessment. Acute (moderate) encephalopathy rarely progresses to chronic (severe) 
encephalopathy with progressive cognitive and psychomotor impairment [5–7].

4.2 Movement disturbance

Cerebellar dysfunction, manifested by ataxia, intention tremor, and lack of 
coordination, is well documented due to chronic mercury exposure; however, 
overdose with various potentially lethal medications and substances, including 
5-fluorouracil, lithium, and acrylamide, has also been reported. Cerebellar dysfunc-
tion is notoriously challenging to diagnose. Extrapyramidal syndromes such as 
parkinsonism, dystonias, dyskinesias, and tics are relatively well-defined toxic syn-
dromes. While the destructive processes are unknown, they are frequently revers-
ible, although symptoms can return years after the condition begins. Parkinsonism 
is arguably the most well-known form of Parkinson’s disease, owing to an epidemic 
involving people exposed to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-
idine), a contaminant found in certain illicit substances. Most syndromes are 
induced by excessive medication use, particularly phenothiazines, rather than by 
exposure to non-therapeutic drugs [6–9].
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4.3 Particular sensibilities

Loss of taste and smell and changes in smell and taste are common complaints 
that are difficult to quantify accurately, and quantitative procedures are not always 
practical. Despite the frequent involvement of organic solvents, this illness lacks a 
well-defined pathophysiological basis. Among the problems inherent in quantify-
ing taste is that olfaction plays a significant role in detecting food’s “flavor” and 
“perfume,” even though many of us would categorize these as tastes. Changes in 
taste perception are frequently connected with administering a variety of thera-
peutic medicines. However, they are typically reversible. Although hearing loss has 
been associated with using organic solvents, particularly toluene, it is more usually 
associated with well-known ototoxic drugs such as aminoglycosides [6, 7].

4.4 Visual symptoms

Typically, vision loss occurs as a direct result of a toxic or corrosive material 
striking the cornea and conjunctiva or because the lens loses its transparency due 
to cataract formation. Direct attacks on the neuronal components of the visual 
system are less common than indirect attacks. Mydriasis and miosis are two distinct 
symptoms caused by exposure to or use of parasympathomimetic medications, 
anticholinesterase inhibitors, and parasympatholytics such as atropine. Nystagmus 
can develop as a side effect of certain medications, including phenytoin and antibi-
otics (aminoglycoside). Neurotoxic exposure is rarely associated with direct retinal 
injury despite a possible association with specific therapeutic medications. Both 
toluene (which induces demyelination) and hexachlorophene can cause optic nerve 
injury (leading to deformation of myelin). Alcohol addiction (methanol or ethanol) 
is also associated with widespread damage of the neuronal components of the visual 
system. Nonetheless, the etiology is suspected to be compounded by many chronic 
alcoholics’ nutritional deficiencies [6, 7].

4.5 Peripheral nervous system neuropathies

These are frequently mistaken with axonopathies. However, the terms do not 
refer to the same thing. Peripheral neuropathy can develop within the neuron, 
resulting in the death or dysfunction of cells (in which case we call a neuronopathy). 
Axon degeneration (axonopathy) or loss of neuronal or axonal function may occur 
when the myelin sheath is disrupted. Channelopathy may develop from a change 
in the function of ion channels, or the toxin may target nerve terminals (leading to 
a neuromuscular transmission syndrome). Neuronopathies are easily recognized 
since they are much more likely to be sensory in origin and affect areas supplied by 
the injured neurons. The mechanisms by which they cause harm are not well under-
stood. Methyl mercury is the neurotoxin most frequently connected with this illness. 
Proprioception may be compromised before or more severely than subsequent pain, 
whereas nerve conduction velocity and muscular strength are preserved. Healing 
is unpredictable, as neurons may survive or perish as a result of the toxic insult. 
Demyelinating neuropathies affect the peripheral nervous system when the Schwann 
cell or internode’s myelin sheath is damaged. Diphtheria toxin can cause segmental 
demyelination by damaging the Schwann cell. Hexachlorophene and perhexiline 
have also been associated with myelin disturbance. Recovery is dependant upon the 
activation and replication of surviving Schwann cells. Regenerated internodes are 
slightly shorter than typical in length, myelin sheaths are thinner, and nodes can be 
somewhat longer than usual. Remyelinated axons conduct at a slower pace in gen-
eral. Axonopathies are lesions of the peripheral nervous system produced by axon 
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destruction. The presenting signs and symptoms typically manifest gradually and 
initially impact the long axons and distant locations. Sensory symptoms predomi-
nate over motor problems, and ankle reflexes degrade fast. The signs and symptoms 
then spread proximally for the duration of the axon’s “regeneration.” Healing occurs 
as a result of damaged axon regrowth. Recovery is often slow due to the 0.5–3.0 mm 
per day rate of axonal development. Numerous industrial chemicals, such as acryl-
amide, arsenic, carbon disulfide, n-hexane, lead, organic mercury, and thallium, 
have been shown to cause axon damage. While recovery is often uncomplicated, 
chronic ataxia, stiffness, and hyperreflexia can occur following severe poisoning. 
Axonal channelopathies are caused by aberrant ion channel activity and manifest as 
faulty axonal conduction. These are typically made up of natural toxins. The motor 
nerve terminal is a major target for a range of natural neurotoxins (clostridial toxins, 
cone snail toxins, snake, spider, and scorpion venoms), all of which induce harm to 
the nerve terminal. What is unknown is the involvement of the nerve terminal in 
the expression of toxic insult induced by a variety of harmful substances, including 
organophosphates and acrylamide, both of which have been shown to cause con-
siderable nerve terminal damage. It is unsurprising that most axonopathies that die 
back originate at the nerve terminal [6, 7, 9].

4.6 Skeletal muscle

Skeletal muscle injury is rather infrequent. The bulk of toxicological problems in 
skeletal muscle is the result of genuine denervation. Several myotoxic substances, 
including clofibrate and related compounds such as insecticides and organophos-
phates, can cause substantial muscle loss by rhabdomyolysis. Diazacholesterols and 
herbicides containing chlorophenoxyisobutyric acid stimulate myotonic activity, 
whereas licorice, diuretics, and excessive alcohol use induce hypokalemic paralysis. 
Skeletal muscle regenerates rapidly following the removal of the causative factor. 
Rhabdomyolysis’s most important acute clinical consequence is a significant risk of 
acute renal failure [6–9].

4.7 Psychiatric and Behavioral disorders

Depression is the most frequently reported symptom of neurotoxic diseases in 
patients. These individuals frequently express feelings of depression, anxiety, and 
forgetfulness. While the psychological signs of aluminum toxicity are normally 
mild, they can progress to severe dementia and parkinsonism/dementia syndrome. 
Lithium overdose with lysergic acid diethylamide may result in cerebellar ataxia, 
dementia, and severe psychotic illnesses (LSD). Due to widespread disdain for 
psychiatric/psychological disorders, there is a dearth of reliable knowledge regard-
ing the diagnosis, management, and prognosis of mental health complaints associ-
ated with such intoxication. Additional study on the acute and chronic effects of 
neurotoxic drugs on cognitive function is necessary [6, 7].

5. Tests to detect neurotoxicity/Neurotoxicology screenings

While substances that lead to neurotoxic effects can be found by routine toxic-
ity screening testings (e.g., chronic, acute, developmental/reproductive toxicity), 
specific standards exist to further evaluate compounds’ potential neurotoxicity. 
The requirements established by the USEPA (the United States Environmental 
Protection Agency) are based on a functional observational battery, motor 
health assessments, and neuropathological examinations. Similarly, the OECD 
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(Organization for Economic Cooperation and Development) criteria emphasize 
clinical results, practical test findings (e.g., motor activity, sensory response to 
stimuli), and neuropathology. These batteries are intended to provide a Tier 1 
screening for neurotoxicity, with positive findings necessitating additional testing 
(Tier 2), which may involve specialized behavioral tests in addition to electro-
physiological and neurochemical data. Examples include memory and learning 
tests, nerve conduction velocity measurements, and biochemical tests linked to 
neurotransmission or indices of cell integrity or function. Specific recommenda-
tions for developmental neurotoxicity (DNT) testing have also been created in 
the United States of America and Europe. The mother is exposed to the test drugs 
from prenatal day 6 to postnatal day 10 or 21, ensuring exposure both in utero and 
via maternal milk. The examinations cover developmental milestones and reflexes, 
motor activity, hearing testing, learning and memory tests, and neuropathol-
ogy. DNT has been demonstrated to be exceedingly practical and beneficial in 
detecting substances and agents that have the potential to cause developmental 
neurotoxicity during neurotoxicity testing. However, additional effort is needed 
to improve these tests, either because they are susceptible and generate a signifi-
cant proportion of false positives or because they are insufficiently sensitive and 
thorough [8–11].

Additionally, concerns have been expressed about historical control data, 
toxicokinetic parameters, toxicity mediated by the mother versus direct effects, 
test selection, and their analysis and interpretation. Toxicologists have increasingly 
recognized the need for acceptable and accurate alternatives to conventional animal 
testing in recent years, highlighting the issues associated with rising costs and time 
requirements for toxicity assessment tests, the growing number of chemicals being 
developed, and commercializing the demand in response to recent legislation and 
efforts to reduce the number of animals used in toxicity testing. This, combined 
with efforts in the field of developmental neurotoxicity, has resulted in the develop-
ment of alternative models, either using mammalian cells in vitro or nonmammalian 
model systems (using zebrafish), that may serve as valuable tools for neurotoxicity 
and developmental neurotoxicity testing, particularly for screening. These alterna-
tive tests should be utilized as Tier 1 testing for drugs and agents with an uncertain 
DNT potential. Given the complexity of the nervous system and the range of possi-
ble neurotoxic outcomes, developing a single test that covers the entire spectrum of 
neurotoxicity is challenging. Rather than that, a battery of tests should be explored 
that includes some in vitro experiments with mammalian cells and one or two tests 
using nonmammalian models. This can be augmented by applying computational 
approaches and procedures to develop a quantitative structure–activity relationship. 
Additionally, novel methodologies that are a component of “omics” technology can 
be applied in these endeavors. Alternative models for DNT must strive to reproduce 
a large number of events that occur in vivo, and given the complexity of the central 
nervous system (CNS), the approach for DNT is significantly more extensive than 
for other toxicity target organs [11–15].

6. Long-term effects of neurotoxicity/developmental neurotoxicity

Neurotoxic effects linked with developmental exposure during pregnancy, 
 nursing, early childhood, and adolescence are frequently documented following 
a brief period of exposure. Nonetheless, evidence indicates that the insalubri-
ous effects of toxicants may take months, if not years, to manifest clinically. The 
“silent” phase refers to the time period during which an individual may display no 
signs or symptoms of poisoning. Silent toxicity is a term that refers to continuing 
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morphological or biochemical damage that is clinically undetected unless concealed 
by special  techniques. Silent toxicity is comparable to carcinogenesis, in which cel-
lular and molecular damage develop years, if not decades before clinical symptoms 
show. This area contains numerous instances of silent poisoning. Parkinsonism-
dementia, frequently referred to as Guam’s disease, is the most widespread kind, with 
a latency of several decades between supposed yet-undefined exposures and clinical 
manifestations. Another case of bovine spongiform encephalopathy (mad cow 
disease) is a form of Creutzfeld–Jacob disease with a documented latency of decades 
[8, 15–19]. The time interval between the onset of clinical symptoms and exposure 
to a neurotoxic event can be explained by a number of factors. For example, while a 
specific population of neurons may be injured, the brain’s plasticity may compensate 
for this loss temporarily. Exogenous stressors (stress, illness, chemical exposure) 
or the normal aging process, on the other hand, may disclose the silent toxicity. 
Alternatively, an organism may be capable of compensating for a specific defect. 
Nevertheless, persistent loss of function may eventually exhaust the brain’s func-
tional reserve and plasticity. The likelihood of such a latent period occurring between 
exposure and clinical manifestation occurring throughout the development stage is 
significantly greater. David Barker was a pioneer in establishing the possibility that 
many adult disorders have fetal origins. The “Barker hypothesis” is the name given to 
this concept. Toxic substance exposure has the potential to directly destroy or modify 
developmental programming, resulting in later-life functional impairments [8, 9, 
19–22]. Diethylstilbestrol is the most prominent example, which may contribute to an 
increase in vaginal adenocarcinoma around puberty as a result of in utero exposure. 
Perinatal exposure of rats to the Gram (−) bacteriotoxin lipopolysaccharide causes 
a 30% loss in dopaminergic neurons in the substantia nigra and persistent injury to 
the dopaminergic system, implying that, in humans, prenatal infections occurring 
at a specific gestational age may result in the birth of an individual with significantly 
fewer dopaminergic neurons. This could be an example of developmental neurotox-
icity. This may seem minor, given that Parkinson’s disease does not manifest clinically 
until around 80% of dopaminergic neurons are lost completely. When the aging pro-
cess culminates in the typical progressive loss of dopaminergic neurons, this early-life 
lesion may play a substantial role in an individual’s development of Parkinson’s 
disease. Exposure to some pesticides during development, such as the herbicide 
paraquat and the fungicide maneb, both of which act on dopaminergic neurons, has 
also been related to the development of Parkinson’s disease later in life. Similarly, 
developmental exposure to the now-banned organochlorine insecticide dieldrin has 
been found to cause significant and long-lasting alterations in the dopaminergic sys-
tem, as well as a silent dopaminergic dysfunction. Rarely, modest and mild injuries 
may worsen as an individual develops and ages. In this manner, the neurotoxic effects 
of embryonic MeHg exposure do not manifest themselves for years. Microencephaly 
produced by uterine exposure to methyl azoxy methanol resulted in an early loss of 
cognitive abilities, and the neurotoxic consequences of neonatal exposure to trieth-
yltin, a glial neurotoxicant, were increased with age. This cannot be the case in all 
other situations. Nonetheless, developmental exposure appears to have irreversible 
neurotoxic effects, and even if they do not deteriorate with age, they have long-term 
ramifications, as evidenced by perinatal lead exposure [23–28].

7. Treatment and Prognosis

The treatment of neurotoxicity involves terminating, eliminating, or reduc-
ing dangerous chemicals and commencing therapy to reduce symptoms and offer 
necessary support [2, 3].
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The difficulty is that if biotoxicity or neurotoxicity is the underlying cause of 
the pain or sickness and the treatment plan does not include a detoxification regi-
men, the overall recovery will almost certainly be incomplete and take longer than 
 necessary [2, 3].

Biotoxicity/neurotoxicity treatment protocol can also include acupuncture, herbal 
remedies & nutritional supplements, nutritional counseling, and prescription of 
medication. For example, the key factors in the initial management of acute arsenic 
intoxication are gut decontamination and hemodynamic stabilization in patients 
with suspected acute arsenic poisoning. Generally, in such neurotoxicity, rapid 
stabilization with fluid and electrolyte replacement in an intensive care setting is very 
important. Aggressive intravenous fluid replacement therapy maybe even life-saving 
in serious poisoning. Gastric lavage may also be useful soon after acute ingestion to 
prevent any further absorption. The efficacy of activated charcoal is controversial, 
but its administration together with a cathartic (such as sorbitol) is frequently 
recommended, but if profound diarrhea is present, cathartics must be withheld. 
Hemodialysis may be beneficial in a patient with concomitant renal failure. Chelating 
agents administered within hours of arsenic absorption can successfully prevent the 
full effects of arsenic toxicity. If patients are treated within several hours after arsenic 
ingestion, chelation is likely to be beneficial. Therefore, even if arsenic ingestion is 
only suspected but not confirmed, consultation with a clinical specialist with exper-
tise in the treatment and management of arsenic poisoning is essential [29].

Generally, neurotoxicity has a prognosis and outcome that are determined by the 
extent and duration of toxic substance exposure and the extent of brain damage. In 
some cases, individuals die due to neurotoxins exposure, while others live but do not 
fully recover. The patient may recover entirely following the necessary treatment [2].

8. Innovations in the future

The potential threats to human health posed by hazardous chemicals in the 
surrounding environment have become a significant public health concern. It is 
critical to have the necessary abilities, tools, and facilities to study neurotoxicity 
in an individual. Treatment for patients exposed to environmental neurotoxins is 
not yet defined, and multidisciplinary teams will be necessary to manage the most 
severe cases. Diagnostic indicators for neurotoxic diseases based on rapid-response 
biomarkers should be identified and developed more efficiently to be used by all 
centers. Two essential variables should be considered—the severe effect on the 
developing fetus and newborn, the long-term health consequences of chronic 
exposure to low levels of environmental neurotoxins, and the long-term health 
consequences of severe acute poisoning in patients.

Additionally, a conclusive study is needed to address the frequent allegation that 
putative neurotoxins lack a “safe” limit, owing to our inadequate understanding of 
the lethal synergy that can occur when multiple toxins are exposed concurrently. 
Additionally, significant progress is anticipated in elucidating the relationship of 
harmful environmental chemicals and susceptibility risk factors in progressive neu-
rodegenerative diseases such as motor neurons, Parkinson’s disease, and Alzheimer’s 
disease [2–4].

9. Conclusion

Neurotoxicity refers to the direct or indirect effect of chemicals that disrupt the 
nervous system. Neurotoxins can be found naturally in the environment, and they 
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could be synthetic. Some neurotoxins act directly on neural cells; others interfere 
with metabolic processes on which the nervous system is primarily dependent— 
The effects of neurotoxicity can appear and disappear rapidly, evolve slowly 
over days or weeks, regress over months or years, or cause permanent deficits. 
Neurotoxicity is usually self-limiting after exposure ceases and rarely progressive 
in the absence of continued exposure. The treatment is terminating the toxins 
 exposure and providing symptomatic treatment.
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