
Edited by Sebastián Ventura,
José María Luna and José María Moyano

The solution to many real-world problems lies in optimizing processes, parameters,
or techniques, which requires dealing with immense search spaces. As such, finding
solutions involves exhaustive methods to evaluate all possible solutions in the search

for a global optimum. Some of these methods include evolutionary algorithms and
genetic algorithms, both of which have proven to effectively deal with complex search
spaces. This book focuses on genetic algorithms and their applications in various fields,

including engineering and architecture.

Published in London, UK

© 2022 IntechOpen
© Kalawin / iStock

ISBN 978-1-80355-177-7

G
enetic A

lgorithm
s

Genetic Algorithms
Edited by Sebastián Ventura,

José María Luna and José María Moyano

Genetic Algorithms
Edited by Sebastián Ventura,

José María Luna and José María Moyano

Published in London, United Kingdom

Genetic Algorithms
http://dx.doi.org/10.5772/intechopen.94664
Edited by Sebastián Ventura, José María Luna and José María Moyano

Contributors
S. Tamilselvi, PhamThi Ly, Bui Quoc Khanh, Conor Ryan, Michael Tetteh, Jack McEllin, Douglas Mota
Dias, Enrique Naredo, Richard Conway, Tuan-Anh Nguyen, Thi Anh-Nga Nguyen, John Charles Driscoll,
Komla Agbenyo Folly, Severus Panduleni Sheetekela, Tshina Fa Mulumba, Gautam Garai

© The Editor(s) and the Author(s) 2022
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2022 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Genetic Algorithms
Edited by Sebastián Ventura, José María Luna and José María Moyano
p. cm.
Print ISBN 978-1-80355-177-7
Online ISBN 978-1-80355-178-4
eBook (PDF) ISBN 978-1-80355-179-1

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

6,000+
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

148,000+
International authors and editors

185M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

CL
AR

IVATE ANALYTICS

IN D E X E D

Meet the editors

Sebastian Ventura is a full professor at the University of Cór-
doba, Spain, where he heads the Knowledge Discovery and In-
telligent Systems Research Laboratory. He received his Ph.D. in
Chemistry from the same university in 1996. He has published
more than 300 papers in journals and scientific conferences and
edited three books and several special issues of journals. He has
participated in sixteen research projects (serving as coordinator

of eight of them) supported by the Spanish and Andalusian governments and the
European Union. His research interests are soft computing, machine learning, and
data mining.

Jose M. Luna received a Ph.D. in Computer Science from the
University of Granada, Spain, in 2014. He is currently an
associate professor in the Department of Computer Science
and Numerical Analysis, University of Cordoba, Spain. He has
published two books, two book chapters, and more than thirty
articles in journals and international scientific conferences. He
has also been involved in four national and regional research

projects as well as three international projects. His research is focused on evolu-
tionary computation and pattern mining.

Jose M. Moyano obtained his Ph.D. in Computer Science from
the University of Córdoba, Spain, and Virginia Commonwealth
University, USA in 2020. He also received his BSc and MSc in
Computer Science from the University of Córdoba in 2014 and
2016, respectively. Currently, he is an assistant professor at the
University of Córdoba and a member of its Knowledge Discov-
ery and Intelligent Systems Research Laboratory. To date, he has

published eighteen articles in indexed journals and international scientific confer-
ences. He has also participated in five national and regional research projects. His
research interests include ensemble methods for multi-label classification.

Preface IX

Section 1
Introduction 1

Chapter 1 3
Introduction to Evolutionary Algorithms
by S. Tamilselvi

Chapter 2 19
Application of Genetic Algorithm in Numerous Scientific Fields
by Gautam Garai

Section 2
Engineering Applications 47

Chapter 3 49
Power System Small-Signal Stability Enhancement Using Damping
Controllers Designed Based on Evolutionary Algorithms
by Komla Agbenyo Folly, Severus Panduleni Sheetekela
and Tshina Fa Mulumba

Chapter 4 71
ADDC: Automatic Design of Digital Circuit
by Conor Ryan, Michael Tetteh, Jack McEllin, Douglas Mota-Dias,
Richard Conway and Enrique Naredo

Chapter 5 95
Genetic Algorithms for Chemical Engineering Optimization Problems
by Thi Anh-Nga Nguyen and Tuan-Anh Nguyen

Chapter 6 119
Using Genetic Algorithm to Optimize Controllers of Thermal Load
System in Thermal Power Plant
by PhamThi Ly and Bui Quoc Khanh

Contents

II

Section 3
Other Applications 145

Chapter 7 147
Towards a Precise and Mathematical Fractalesque Architecture
by John Charles Driscoll

X

Preface

The solution to many real-world problems lies in optimizing processes, parameters, or
techniques. However, these optimizations usually mean dealing with immense search
spaces and thus require exhaustive methods to evaluate all possible solutions in the
search for a global optimum. In addition, many local optima may exist in the search
space, so simple techniques may get stuck in them. Evolutionary algorithms and more
concrete genetic algorithms are metaheuristic techniques inspired by Darwin’s theory of
natural selection to solve search-based optimization problems. These algorithms have
been demonstrated to effectively deal with complex search spaces. Genetic algorithms
employ a population of individuals, each representing a full or partial solution to the
problem, bred and reproduced looking for optimal individuals. These individuals are
evaluated according to a fitness function, which determines how a given individual
adapts to the problem at hand.

In recent years, genetic algorithms have advanced by proposing novel algorithmic flows,
representations, or specific techniques inside the main structure of the algorithm. As
a result, genetic algorithms have been successfully applied to solve many real-world
problems (engineering, smart cities, and energy). They have also helped to improve
many machine learning (classification, regression, or hyperparameter optimization)
and data mining (data preprocessing, pattern mining, or feature selection) techniques.

This book provides a comprehensive overview of the current state of the art and
advances in genetic algorithms and examines the fields in which they have been applied
throughout the years. It is divided into several sections, including an introduction to
genetic algorithms and a summary of their applications in numerous scientific fields. An
additional section includes chapters related to engineering applications, covering fields
such as power systems signal stability, design of digital circuits, chemical optimization,
and controller systems. This book also describes the use of genetic algorithms in
architecture.

Sebastián Ventura, José María Luna and José María Moyano
University of Cordoba,

Cordoba, Spain

Section 1

Introduction

1

Section 1

Introduction

1

Chapter 1

Introduction to Evolutionary
Algorithms
S. Tamilselvi

Abstract

Real-world has many optimization scenarios with multiple constraints and
objective functions that are discontinuous, nonlinear, non-convex, and multi-modal
in nature. Also, the optimization problems are multi-dimensional with mixed types of
variables like integer, real, discrete, binary, and having a different range of values
which demands normalization. Hence, the search space of the problem cannot be
smooth. Evolutionary algorithms have started gaining attention and have been
employed for computational processes to solve complex engineering problems.
Because it has become an instrument for research scientists and engineers who need to
apply the supremacy of the theory of evolution to shape any optimization-based
research problems and articles. In this chapter, there is a comprehensive introduction
to the optimization field with the state-of-the-art in evolutionary computation.
Though many books have described such areas of optimization in any form as evolu-
tion strategies, genetic programming, genetic algorithms, and evolutionary program-
ming, evolutionary algorithms, that is, evolutionary computation is remarkable for
considering it to discuss in detail as a general class.

Keywords: evolutionary algorithms, genetic operators, non-convex, multi-modal,
optimization process

1. Introduction

Darwin’s principle of evolution says that the existence of any creature is based on
the law “strongest creature survives.” Before computers have entered the human
world, in the 50s, knowledge to apply Darwinian principles for automated problem
solving was invented. Darwin also proved that the survival of any organism can be
maintained with genetic inheritance, such as reproduction, crossover, and mutation.
Thus, Darwin’s evolution theory was deployed by computational optimization
algorithm to search for a solution to any real-world optimization problem in a natural
way [1].

In the 60s, three various interpretations of this idea were introduced at different
places. Evolutionary programming was developed by Lawrence J. Fogel in the USA
when John Henry at Holland started his methodology as a genetic algorithm,

3

stimulated by Darwin’s evolutionary concepts. Similarly, Ingo Rechenberg and Hans-
Paul Schwefel have invented evolution strategies in Germany. Following this fourth
one had emerged as genetic programming, in the early 90s. These four different
terminologies are seen as different representatives of one technology called evolu-
tionary algorithms (EAs), which denote the whole field by considering evolutionary
programming, evolution strategies, genetic algorithms, and genetic programming as
sub-areas and is well depicted in Figure 1 [1, 2].

2. Need for evolutionary algorithms

Real-world has many optimization scenarios. Optimization, by definition, is a
methodology of making the decision as fully perfect as possible to achieve the maxi-
mum possible goal, in an engineering system. Nature is a very good optimizer. An
optimization problem can be stated as follows [2, 3].

Figure 1.
Evolutionary algorithms and their subtypes.

4

Genetic Algorithms

Find x ¼ x1, x2, … xnf g, which

Minimize=Maximize f xð Þ
Subject to

g j xð Þ≤0, j ¼ 1, 2, … ,m

h j xð Þ ¼ 0, j ¼ 1, 2, … , p

Any engineering system can be represented with a set of quantities. Certain quan-
tities are usually fixed called as pre-assigned constants. Remaining quantities can be
treated as decision variables in the optimization process, xi = {x1, x2, … xn}. ‘f(x)’ is
the objective function or goal to be attained, ‘gj(x)’ represent ‘m’ the count of
inequality constraints and ‘hj(x)’ represent ‘p’ count of equality constraints to be
satisfied for attaining feasibility [3].

In real-world engineering problems, the objective function is discontinuous,
nonlinear, non-convex, and multi-modal. Also, the problems are multi-dimensional as
the number of design variables are more and they are mixed in type like integer, real,
discrete, binary. Hence, the search space is not smooth. It may require accessing look-
up table data for objective function evaluation. The constraint functions are very
complex and the amount of violation of each constraint does not cover the same
range, which requires normalization [4].

In general, the optimization problems are categorized based on the existence of
constraints, nature of the decision variables, permissible values of the design vari-
ables, nature of the equations involved, deterministic nature of the variables, separa-
bility of the functions, number of objective functions, etc. Some of them are static
optimization problem, dynamic optimization problem, linear programming problem,
convex programming problem, nonlinear programming problem, geometric pro-
gramming, quadratic programming problem, separable programming problem, multi-
objective optimization problem, single-variate optimization problem, multi-variate
optimization problem [5].

Two different techniques to find the solution for optimization problems are
mathematical programming techniques and meta-heuristic techniques. When
derivative-based mathematical programming methods are applied in solving
nonlinear programming problems, there are several shortcomings. Traditional
optimization methods:

• Yields results that are caught at premature convergence, that is, local optima
often, due to the search space with multi-modality.

• Requires mathematically well-defined objective and constraint functions.

• Requires existence of derivatives for objective function and constraint functions.

• Find difficulty to handle mixed variables.

For a real-world optimization problem, the surface plot obtained even for opti-
mizing two design variables gives greater number of local minima/maxima. Figure 2
depicts the surface plot obtained for the design optimization of the distribution trans-
former problem with two decision variables, width of the core leg, height of the core
window, by minimizing the transformer lifetime cost (TLTC) of the transformer. It is

5

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

very clear from Figure 2 that the real-world problem is very complex with its multi-
modal search space [3].

Of course, when it is a multi-dimensional engineering problem, which requires opti-
mization of more decision variables, the multi-modality cannot be imagined. So, the
conventional derivative-basedmathematical programming technique cannot handle such
complex nature of the optimization problem, accurately. It may yield a feasible design;
however, it will not be an optimal solution. If there is no knowledge or little knowledge
about the behavior of the objective function related to the presence of local minima,
location of feasible region, infeasible region in themulti-dimensional parameter space, it
is advisable to start the meta-heuristic technique, which is a stochastic strategy [2, 3].

Of all the meta-heuristic techniques, evolutionary algorithms (EAs) are especially
effective in the solution of high-complexity, non-convex, nonlinear, multi-
dimensional, mixed variable, multi-objective, constrained optimization problems, for
which a traditional mathematical model is difficult to build, where the nature of the
input/output relationship is neither well defined nor easily computable. The stages of
EAs have not yet been investigated in detail steps with illustration, despite their
performances are better in terms of convergence, consistency in obtaining the solu-
tion, and computational speed in solving any multi-modal problems.

Hence, this chapter discusses in detail the step-by-step evolutionary process that
happens behind the optimization algorithm. It highly helps to find solution for any
multi-modal real-world engineering optimization problem, by optimizing design
objective, while satisfying simultaneously various constraints imposed by interna-
tional standards and user specifications.

3. Known optimization problems

Evolutionary optimization algorithms minimize or maximize an objective function
and they are search algorithms. The algorithm checks all the way through a large

Figure 2.
Search space for minimization of TLTC objective optimizing two decision variables.

6

Genetic Algorithms

search space of possible solution set for the optimal best solution. In day-to-day
practical life as well as professional life, there are numerous activities that seek opti-
mization. Some of the common well-known real-world optimization problems are the
traveling salesman problem, classification problem, economic power dispatch, base
station location problem, antenna design, scheduling problem, etc.

In traveling salesman problem, a salesman wants to visit all the towns, with
information of list of towns and distances between all the towns. The constraint is that
each town has to be visited only once. The optimization problem statement is
searching for the optimum shortest distance/route that the salesman travel and visits
each town exactly only once and returns to the place where he started [6].

Base station location problem is setting radio and optimizing maximum coverage.
Given a set of spots for installing base stations, feasible configurations for every base
station, antenna tilt, maximum power, antenna height, sectors orientation, etc. along
with the information of traffic and strength of the signal propagation, the optimiza-
tion algorithm is to choose the right location and appropriate configuration of the base
station such that the installation cost is minimum while meeting the traffic demand
simultaneously [7].

The job of optimal generator maintenance scheduling problem is to find out the
optimum period for which, the generator units must be taken offline for maintenance
over the stipulated time horizon, so that the operating costs involved are minimized,
meeting the maintenance constraints during the considered time period such as load
demand, maintenance window, maintenance duration and manpower availability [8].

Previous research works have applied only machine learning techniques for the
prediction and classification of any disease/tumor. However, nowadays due to the
capability of evolutionary algorithms, such classification problems have been stated as
an optimization problem and solved using the integrated machine learning-
optimization technique. Thus, optimal classification problem aims to select optimum
elite features from intelligent liver and kidney cancer diagnostic systems of huge data
sets, by filtering the redundant features, minimizing the error rate, in order to
improve the quality of heart disease classification [9].

Economic power dispatch is a vital optimization problem in power system plan-
ning. The aim of the economic dispatch is to schedule the optimum power output for
the available generator units of the power system such that the production cost is
minimum and power demand is met [10].

4. Optimization process of simple evolutionary algorithm

EA handles a population of possible random solutions. Each solution is represented
through a chromosome. The fitness of each chromosome is calculated to call for a com-
petition among the chromosomes. Competition results in the selection of those better
chromosomes/solutions (with high fitness value) that are suited for the environment. The
process of the first level of filtration based on the fitness value is called parent selection
[3]. The selected individuals, that is, parents act as seeds for creating children through
genetic inheritance, that is, recombination and mutation. These genetic operators aid the
necessary diversity. Few pairs of chromosomes from the parent pool are chosen based on
the random probability to undergo crossover for forming offspring. The resulted off-
spring individuals obtained after crossover are allowed to take up mutation randomly.
Different regions of the search space are explored for identifying possible optimal indi-
viduals through “recombination and mutation” operation known as “exploration.” The

7

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

new individuals/children thus formed have their fitness evaluated to compete for survival
in the next generation. As an end to an iteration, in a replacement stage, 80%worst
solutions of the initial random population are substituted by the best offspring children
filtered after survival selection process based on the evaluated fitness value. Over time
and several iterations, “natural selection” operation, which is called exploitation leads to
the identification of an individual in the population as global optimum. The complete
working of the evolutionary algorithm is pictured in Figure 3 [11]. The major steps
involved in the process of optimization in an evolutionary algorithm are as follows [1, 3].

• Solution representation

• Random population generation

• Fitness function evaluation

• Parent selection

• Reproduction—(crossover, mutation)

• Survival selection

• Replacement

• Stopping criteria

5. Iterative process behind evolutionary algorithms

To define problem statement:
Consider an equality function, x + 2y + 3z + 4u = 30. We shall apply the evolution-

ary algorithm to find the appropriate values for x, y, z, u, such that the equity equation
gets satisfied [12].

5.1 Formulation of optimization problem

a. Formulate objective function: f(k)

Figure 3.
Working of evolutionary algorithms.

8

Genetic Algorithms

The objective/aim is to Minimize f(k) = [(x + 2y + 3z + 4u) � 30].

b. Identify decision variables/type: In this equity problem, there are four decision
variables [x, y, z, u]. Variables that possess a larger influence on the objective
function and constraint functions are appropriate ones to be chosen as decision
variables.

c. Find problem dimension:

Total number of decision variables is the problem dimension = 4.

d. Representation:

A solution generated by an evolutionary algorithm is called a chromosome/
individual, which is made up of genes [1]. After selecting the decision variables,
and problem dimension, choice of suitable type for these variables is another
important task. The nature of the decision variables is completely problem
dependent and thus in this example, [x, y, z, u]—they are integers. However, the
genes can be mixed like binary, real, integer, discrete variables, etc., depending
upon the need of the problem under consideration. Chromosome/solution is
thus represented as an integer variable as under:

e. Impose boundary constraint:

This range selection for setting the search space is more often done on a trial
basis, in case the problem dimension is high. On contrary, if the objective
function is very simple, clear, and possesses straight relationship (mathematical
equation) with lesser number of decision variables, then the search space can be
decided by inspection [2]. For this example, it is very clear that the integer
values of decision variables [x, y, z, u] can be restricted to vary between 1 and
30, in order to speed up the computational search.

5.2 Different stages in optimization process

To illustrate solving a minimization type optimization problem using EA, integer
type for decision variables, six for population size, single-point method for crossover,
and roulette wheel for selection are assumed. The various stages involved in the
process of optimization are given for one iteration in this section [13–15].

Stage 1: Population generation: Initial solution set
Four genes [x, y, z, u] are generated randomly satisfying the lower and upper limits

of the boundary constraint. A chromosome thus generated is a vector comprising of
four genes. Chromosome refers to the solution/individual of the formulated optimi-
zation problem, while the collection of such chromosomes is referred to as a popula-
tion. For example, Solution [1] = [x; y; z; u] = [12, 05, 23, 08]. Then, the initial
population will have an array of sizes [population size, problem dimension]. That is,
[(6, 4)] as shown in Table 1.

Stage 2: Function evaluation: Feval
All the chromosomes of random population will then go through a process known

as fitness evaluation to measure the quality of the solution created by EA. Evaluation

x y z U

9

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

of fitness value of chromosome/solution is carried out by calculating the objective
function value as Feval = Modulus[f(k)].

f kð Þ ¼ xþ 2yþ 3zþ 4uð Þ � 30½ �:
For Solution 1½ �, Feval 1½ � ¼ Modulus f Solution 1½ �ð Þ½ �

¼ mod 12þ 2 x 5þ 3 x 23þ 4 x 8ð Þ � 30½ �

Feval [1] = mod [(12 + 10 + 69 + 32) � 30] = 93. Similarly, the solutions of entire
population can be calculated and tabulated as under in Table 1. It is found that
Chromosome 4 has the least objective function value 46.

Stage 3: Parent selection
The chromosomes are selected from the initial population to act as parent for

reproduction, based on the fitness of the solution/individual. The selection procedure
tells how to choose individuals in the population that will create offspring for the next
generation. The fittest solution will have a higher probability to be selected as a
parent. Two-step selection process is discussed as follows [13, 15].

A.To compute the probability of selection: Prob[i]

Prob i½ � ¼ Fit i½ �P6
i¼1Fit i½ �

where,

Fit i½ � ¼ 1
1þ Feval i½ �ð Þ

(to avoid undefined divide by zero error, which may encounter for the optimal
solution, it is advisable to add 1 with Feval).

Fit [1] = 1/(1 + Feval [1]) = 1/94 = 0.0106 and so on, till i = 6.

Total fitness = 0.0845 (refer Table 2).

Prob [1] = 0.0106/0.0845 = 0.1254

B. To select the parent pool: Roulette-wheel (RW) selection process:

Parent selection is vital for the convergence of optimization algorithm as efficient
parents force solutions/individuals to optimality. There are different methods in the

Initial random population Feval [k] Remarks

Solution [1] 12 05 23 08 93

Solution [2] 02 21 18 03 80

Solution [3] 10 04 13 14 83

Solution [4] 20 01 10 06 46 Best Solution

Solution [5] 01 04 13 19 94

Solution [6] 20 05 17 01 55

Table 1.
Functional evaluation of initial population.

10

Genetic Algorithms

process of selecting parents such as stochastic universal sampling, fitness proportion-
ate selection, tournament selection, rank selection, and random selection. In this
chapter, roulette wheel selection has been implemented for identifying the right
parent pool.

Consider a wheel that is split into ‘6’ pies. Pie refers to the individual in the
population. Each solution occupies a portion of the wheel, proportional to its fitness
value. It is clear that a fitter solution takes a larger pie on the wheel and has larger
probability chance of being selected as a parent when the wheel is made to spin ‘6’
times. Hence, the probability of choosing a chromosome depends on its fitness only.
The steps involved in the roulette wheel selection process are:

• Compute cumulative probability values for all the solutions—Cum[i].

• Allot pie in sequence for all the ‘6’ individuals, based on the cumulative
probability. That is, Chromosome 1 has occupied light blue pie with cumulative
probability ranging between [0–0.1254]. Chromosome 4 which has the highest
fitness value ‘0.0213’ has the highest probability ‘0.2521’ among all the solutions
of the population. Naturally, it will take larger sized pie, which is yellow in color
on the wheel. It is clearly explained in Figure 4, and Tables 3 and 4.

• To arrange the order of chromosomes (6) in the parent pool, equivalent to
spinning the wheel ‘6’ times, generate random number ‘6’ times, ‘rand[i]’ < 1,
six.

rand [place 1] = 0.2; rand [place 2] = 0.285; rand [place 3] = 0.098;

rand [place 4] = 0.812; rand [place 5] = 0.397; rand [place 6] = 0.50.

• Fit the random number of each place in the respective range of cumulative
probabilities and fetch the color of the pie. For example, rand [place 2] = 0.285,
which is between Cum [2] and Cum [3]. So, the gray pie which is individual/
chromosome [3] will occur in place2 of the parent/mating pool.

Stage 4: Crossover
The crossover operation involves three steps: (A) selecting mating chromosomes,

(B) determining cut point for crossover, and (C) updating the population.

Initial population Feval [i] Fit [i] Prob [i] Cum [i]

12 05 23 08 93 0.0106 0.1254 0.1254

02 21 18 03 80 0.0123 0.1456 0.2710

10 04 13 14 83 0.0119 0.1408 0.4118

20 01 10 06 46 0.0213 0.2521 0.6639

01 04 13 19 94 0.0105 0.1243 0.7882

20 05 17 01 55 0.0179 0.2118 1

Total fitness 0.0845

Table 2.
Selection probability computation.

11

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

In this operation pairs of parents are chosen and many children/off-springs are
generated using the information available in the gene of the parents. Usually, cross-
over operation is deployed in EA with high probability(pc). Some of the commonly
used crossover operators are whole arithmetic recombination, one point crossover,
uniform crossover, multi-point crossover, Davis’ order crossover, etc. In the equity
problem chosen for illustration, one-point crossover has been used for offspring
creation. In one-point crossover, a randomly point of crossover has been chosen and
the tail ends of the parent pairs are swapped to produce new children. The process is
evident in Table 5.

A.To select chromosome:

Parent chromosome from parent pool that undergoes the mating process is ran-
domly selected and the number of mate solutions is decided using crossover rate, pc.
Solution ‘i’ will become a parent, if random number, rand[i]falls below the crossover
rate. Let us assume the pc = 25% for solving the problem. Generate number randomly
‘6’ times (population size) below 1.

Figure 4.
Roulette wheel—Parent selection process.

Position Chromosome Initial population

Place 1 I Solution [1] 12 05 23 08

Place 2 II Solution [2] 02 21 18 03

Place 3 III Solution [3] 10 04 13 14

Place 4 IV Solution [4] 20 01 10 06

Place 5 V Solution [5] 01 04 13 19

Place 6 VI Solution [6] 20 05 17 01

Table 3.
Place and position of solution—Before RW selection process.

12

Genetic Algorithms

rand [1] = 0.19; rand [2] = 0.249; rand [3] = 0.750; rand [4] = 0.005
rand [5] = 0.149; rand [6] = 0.320

Thus, for the generated random numbers, three chromosomes/solutions [1, 4, 5]
are selected for crossover operation. Hence, the number of crossovers becomes 3, that
is, 3 pairs.

Solution [1] >< Solution [4] — First Crossover
Solution [4] >< Solution [5] — Second Crossover
Solution [5] >< Solution [1] — Third Crossover

B. To determine cut point:

Followed by mating chromosome selection, the next phase is to determine the
position of the crossover point. The steps involved are:

• Generate random numbers between 1 to (Problem dimension—1) in order to get
the crossover point. That is, between 1 and 3. Assume, Cut [1] = 1; Cut [2] = 1;
Cut [3] = 2

• Parent individuals get cut at the crossover point and their genes are interchanged.
For first, second, and third crossovers, parents’ genes are cut at positions 1, 1, and
2, respectively.

Position Chromosome Population after selection

Place 1 II 02 21 18 03

Place 2 III 10 04 13 14

Place 3 I 12 05 23 08

Place 4 VI 20 05 17 01

Place 5 III 10 04 13 14

Place 6 IV 20 01 10 06

Table 4.
Chromosomes in the MATING POOL after RW selection process.

Population after selection Population after crossover

02 21 18 03 02 05 17 01

10 04 13 14 10 04 13 14

12 05 23 08 12 05 23 08

20 05 17 01 20 04 13 14

10 04 13 14 10 04 18 03

20 01 10 06 20 01 10 06

Table 5.
Population after and before crossover operation.

13

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

First Crossover: New Chromosome [1] = Solution [1] >< Solution [4]

Second Crossover: New Chromosome [4] = Solution [4] >< Solution [5]

Third Crossover: New Chromosome [5] = Solution [5] >< Solution [1]

C. To update the population after crossover:

Stage 5: Mutation
Mutation operation is a small random sharp change in the chromosome necessary

to obtain a new solution. Mutation is used to sustain population diversity and it
generally has a low probability, pm. Mutation in EA refers “exploration” of search
space. It has been proven that mutation operation is crucial for the convergence of the
algorithm, however, crossover operation is not so. Some of the commonly used muta-
tion operators are bit flip mutation, swap mutation, scramble mutation, random
resetting, inversion mutation, etc. Like the crossover operators, this is not an exten-
sive list since EA designer may deploy a hybrid approach as a combination of these
operators or prefer problem-specific mutation operators as more practical.

• Calculate the total number of genes in the population = 24 genes.

• Calculate number of mutable genes.

Number of solutions that undergo mutations in a population is decided by mutation
rate pm. Let, ρm = 10%; Number of mutations = 0.1 � 24 = 2.4 = 2.

• Calculate gene positions.

Generate two random numbers below 24, say 12 and 18. Mutable genes and
chromosomes are Chromosome [3]-gene 4 and Chromosome [5]-gene 2. This process
is seen in Table 6.

• The value of mutable genes at the mutation point is substituted with random
number, satisfying the boundary constraint of decision variables/genes. That is,
between 0 and 30; Say 02, 05.

Stage 6: Survival selection and replacement mechanism
After mutation operation one iteration/generation of EA is over. Functional evalu-

ation is again performed on the offspring for survival selection. From the functional
evaluation of population after mutation, it is evident that the objective function value

14

Genetic Algorithms

of the best solution is reducing—37 in comparison with the minimum objective value
—47 of initial random population, as shown in the table. Hence the minimization
objective, f(k) = [(x + 2y + 3z + 4u) � 30] is met. This means that the solutions
obtained by EA at the end of the first iteration is better than the solutions of random
population.

To execute the iteration process continuously, population is to be revised at the
end of each iteration, as a final process, which is referred to as replacement mecha-
nism. In each iteration end, 80–90% of best solutions from offspring population (4–5
best children) and 20–10% best solutions from the initial population (2–1 random
solution) are selected to form new population for next generation [15]. Chromosomes
of the next generation will then become as shown in Tables 7 and 8.

Population after selection Population after crossover Population after mutation

02 21 18 03 02 05 17 01 02 05 17 01

10 04 13 14 10 04 13 14 10 04 13 14

12 05 23 08 12 05 23 08 12 05 23 02

20 05 17 01 20 04 13 14 20 04 13 14

10 04 13 14 10 04 18 03 10 05 18 03

20 01 10 06 20 01 10 06 20 01 10 06

Table 6.
Population after and before mutation operation.

Population after mutation Feval Remarks

02 05 17 01 37 Best Solution and survive in the next generation

10 04 13 14 77 Survive in next generation

12 05 23 02 47 Survive in next generation

20 04 13 14 93 Rejected solution

10 05 18 03 56 Survive in next generation

20 01 10 06 46 Survive in next generation

Table 7.
Survival selection.

Population after mutation Next generation initial population Feval Remarks

02 05 17 01 02 05 17 01 37

10 04 13 14 10 04 13 14 77

12 05 23 02 12 05 23 02 47

20 04 13 14 20 01 10 06 47 Replaced solution

10 05 18 03 10 05 18 03 56

20 01 10 06 20 01 10 06 46

Table 8.
Replacement-population for the next iteration.

15

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

Stage 7: Stopping the iteration
The optimization process is repeated until when objective function value or deci-

sion variables values become stagnant, that is, have no/very little change for a greater
number of iterations. Thus, over period, the solution will get converge to the final best
minimum optimal solution and the optimization process will be stopped, based on any
stopping criteria such as the maximum number of iterations, or maximum number of
functional evaluations, etc.

6. Conclusion

The basic processes that occur behind an evolutionary algorithm have been
explained and illustrated in this chapter with steps covering solution representation,
population generation, functional evaluation, parent selection, genetic operations,
offspring evaluations, survival selection, and stopping criteria for a simple optimiza-
tion problem. This knowledge can be extended very well by researchers across any
discipline, working in the field of optimization and for applying evolutionary algo-
rithms to solve any complex engineering problem using computers. Although the
process behind EA may appear to be simple, the details of the optimization process
form the base and are very much necessary in applying the learned concepts for
modifying the existing evolutionary concepts and evolving into better optimization
methods in the research level.

Author details

S. Tamilselvi
Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

*Address all correspondence to: tamilselvis@ssn.edu.in

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

16

Genetic Algorithms

References

[1] Michalewicz Z. Genetic Algorithms +
Data Structures = Evolution Programs. 3rd
ed. Berlin, Heidelberg: Springer; 1996.
p. 387. DOI: 10.1007/978-3-662-03315-9

[2] Gen M, Cheng R. GA & Engineering
Design. Hoboken, New Jersey, United
States: John Willey & Sons, Inc.; 1997

[3] Tamilselvi S, Baskar S,
Anandapadmanaban L, Kadhar K,
Varshini PR. Chaos-assisted
multiobjective evolutionary algorithm to
the design of transformer. Soft
Computing. 2017;21(19):5675-5692. DOI:
10.1007/s00500-016-2145-7

[4] Tamilselvi S, Baskar S,
Anandapadmanaban L, Karthikeyan V,
Rajasekar S. Multi objective evolutionary
algorithm for designing energy efficient
distribution transformers. Swarm and
Evolutionary Computation. 2018;1(42):
109-124

[5] Tamilselvi S, Baskar S, Sivakumar T,
Anandapadmanaban L. Evolutionary
algorithm-based design optimization for
right choice of transformer conductor
material and stepped core. Electrical
Engineering. 2019;101(1):259-277

[6] Agatz N, Bouman P, Schmidt M.
Optimization approaches for the
traveling salesman problem with drone.
Transportation Science. 2018;4(52):
965-981

[7] Lakshminarasimman N, Baskar S,
Alphones A, Willjuice Iruthayarajan M.
Evolutionary multiobjective
optimization of cellular base station
locations using modified NSGA-II.
Wireless Networks. 2011;17(3):597-609

[8] Tamil Selvi S, Baskar S, Rajasekar S.
An Intelligent Approach Based on
Metaheuristic for Generator

Maintenance Scheduling—Classical and
Recent Aspects of Power System
Optimization. 1st ed. Cambridge,
Massachusetts, United States: Academic
Press; 2018. pp. 99-136

[9] Gunasundari S, Janakiraman S,
Meenambal S. Multiswarm
heterogeneous binary PSO using Win-
Win approach for improved feature
selection in liver and kidney disease
diagnosis. Computerized Medical
Imaging and Graphics. 2018;70:135-154

[10] Bhattacharya A, Chattopadhyay PK.
Solving complex economic load dispatch
problems using biogeography-based
optimization. Expert Systems with
Applications. 2010;37(5):3605-3615

[11] De Jong KA. Evolutionary
Computation—A Unified Approach. 1st
ed. Berlin/Heidelberg, Germany:
Springer; 2017. p. 268

[12] Hermawanto D. Genetic Algorithm
for Solving Simple Mathematical
Equality Problem. 2013 [arXiv preprint
arXiv:1308.4675]

[13] Available from: https://www.tutoria
lspoint.com/genetic_algorithms/gene
tic_algorithms_parent_selection.htm

[14] Goldberg DE. Genetic Algorithms in
Search, Optimization, and Machine
Learning. 13th ed. Boston,
Massachusetts, United States: Addison
Wesley; 1989. p. 432

[15] Hancock PJ. An empirical
comparison of selection methods in
evolutionary algorithms. In: AISB
Workshop on Evolutionary Computing
1994 Apr 11. Berlin, Heidelberg:
Springer; 1994. pp. 80-94

17

Introduction to Evolutionary Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.104198

Chapter 2

Application of Genetic Algorithm
in Numerous Scientific Fields
Gautam Garai

Abstract

The genetic algorithm (GA) and its variants have been used in a wide variety of
fields by the scientists efficiently for solving problems. From the pool of evolutionary
algorithms, the GA is chosen by the researchers and has been popular as a useful and
effective optimizer. It has several advantages and disadvantages. However, it provides
solutions for various kinds of problems such as space research, economics, market
study, geography, remote sensing, agriculture, data mining, cancer detection, and
many more. This chapter discusses the utilization of the GA in some of these fields
with a few experimental results such as data clustering, pattern identification and
matching, and shape detection. The results are illustrated and explained with reasons
for better understanding of the GA application in the scientific fields. Other than
these, the GA in bioinformatics for biological sequence alignment is discussed with
examples.

Keywords: genetic algorithm, optimization, application, scientific field, stochastic
search

1. Introduction

In the designing process of scientific problems, the primary goal of the researchers
is to develop a system to provide an efficient low-cost solution. In this endeavor, they
need a good optimizer to reach their target. Several optimizers are available, which
work efficiently for various kinds of problems. Among these, genetic algorithm (GA)
is chosen as a functional tool for good and useful optimizer. The algorithm has proven
to be a class of effective optimization techniques for many applications in engineering,
economics, manufacturing, artificial intelligence, operations research, space science,
agriculture, physics, chemistry, bioinformatics, medical science, and many more.
However, there are advantages and disadvantages of using genetic algorithms as an
optimizer such as other optimization tools. The amount of a priori knowledge required
to use genetic algorithms is minimal. One can apply an “off the shelf” genetic algo-
rithm to an optimization problem by mapping all of the function inputs to a pre-
specified representation, such as binary strings. However, one often specializes a
genetic algorithm to a specific problem domain by using additional heuristics, spe-
cialized representation, and/or operators, which constitute the a priori information for
obtaining superior performance. If one opts to use a genetic algorithm without

19

expending effort to customize it to the problem at hand, the trade-off is typically that
the non-specialized genetic algorithm may produce poor results, which may include
computationally inefficient optimization resulting to converge to a suboptimal solu-
tion. The scientists have incorporated customization in the conventional GA according
to the need and specification of their research problems.

This chapter discusses the utilization of GA in various fields with examples and
illustrations. It is shown how the GA recognizes a specific pattern from a group of
patterns. Genetic-algorithm-based clustering technique is then described for identify-
ing similar group of items among several homogeneous or heterogeneous groups. The
discussion is also done on the biological sequence alignment with the GA in achieving
accurate alignment.

The rest of the chapter is organized as follows. Section 2 describes briefly the history
of evolutionary algorithm along with the GA. A survey on genetic algorithm is narrated
in Section 3. The next three sections elaborate several utilizations of the GA in various
scientific fields. Section 4 identifies a pattern among a group of patterns. Genetically
guided clustering technique is elaborated in Section 5. Section 6 describes the applica-
tion of genetic algorithm for detection of polygonal shape of a dot pattern. The biolog-
ical sequence alignment is discussed in Section 7. Section 8 concludes the chapter.

2. A brief history of evolutionary computation

In the literatures, three primary search methods are identified, namely calculus-
based, enumerative, and random [1] search. Calculus-based methods are further
subdivided into two classes—indirect and direct. Indirect search method seeks the local
extrema by solving a set of equations resulting from the derivative of objective func-
tion. On the other hand, direct search method seeks the local optima by hopping on
the function and moving in a direction related to the local gradient. This is basically
the notion of hill-climbing. Enumerative scheme has been considered in many shapes
and sizes. Here, the search algorithm finds the objective function value at every point
within a finite or a discrete infinite space. Random search is the most popular among
the researchers since the shortcomings of other two techniques are rectified here. The
genetic algorithm is an example of a search procedure of this category [1].

For several years since 1950, many computer researchers studied evolutionary
systems independently with an idea that in future evolution could be used as an
important and essential optimization tool for solving various problems in engineering.
The idea was to develop a system with a population of candidate solutions to a given
problem with operators influenced by both natural selection and natural genetic
variation. Rechenberg [2] introduced “evolution strategies” (Evolutionsstrategie in the
original German), a method used to optimize real-valued parameters for devices such
as air foils. This idea was further developed by Schwefel [3]. Fogel et al. [4] developed
a technique called “evolutionary programming” where the candidate solutions to the
given tasks were represented as finite-state machines, which were evolved by ran-
domly mutating their state-transition diagrams and selecting the fittest among them.
The evolution strategies, evolutionary programming and genetic algorithms together
form the backbone of evolutionary computation. Several other researchers developed
evolution-inspired algorithms for optimization and machine learning. Box [5],
Friedman [6], Bremermann [7], and Reed et al. [8] worked in this area though their
studies had little impact on the field. Evolutionary biologists also used computers to
simulate evolution for the controlled experiments [9–11].

20

Genetic Algorithms

Finally, in 1960s and 1970s, at the University of Michigan, Holland first invented
the genetic algorithms and later on improved by himself along with his colleagues [1].
Unlike the previous evolution strategies, Holland’s intention was to formally study the
phenomenon of adaptation, which occurs in nature instead of designing algorithms
for solving specific problems. He also developed ways by importing the natural adap-
tation mechanisms in computer systems. The genetic algorithm was presented by
Holland as an abstraction of the biological evolution and also gave a theoretical
framework for adaptation. His GA was a method for moving from one population of
“chromosome” (string of 1’s and 0’s) to a new population with a kind of “natural
selection” along with the genetic operators, namely crossover, mutation, and inver-
sion. Each chromosome was a combination of “genes” (bits), and each gene was a
particular “allele” (either 0 or 1). In the population the useful chromosomes for
reproduction were chosen by the selection operator. The fitter chromosomes thus
produced more off-springs compared with less fit ones. In the process of crossover,
the subparts of two chromosomes were exchanged. This basically mimicked the bio-
logical recombination between two single-chromosome (haploid) organisms. The
allele values of some locations of the chromosome were randomly changed and
reversed by mutation and inversion processes, respectively.

For last several years, the researchers had been studying and interacting widely on
different evolutionary computation methods and ultimately it had broken down to
some extent the boundaries between GAs, evolutionary programming, evolution
strategies, and other evolutionary approaches. Today the term “genetic algorithm” is
used by the researchers to describe something very far from the original conception of
Holland. There are at least three overlapping meanings of search in genetic algorithms
and other search procedures, as discussed below. Search for stored data – Here the
problem is to efficiently retrieve information stored in the computer memory. Sup-
pose in a large database of names and addresses stored in some ordered way we want
to search for a record corresponding to a given last name using Binary search proce-
dure. Search for paths to goal – Here the problem efficiently searches to find a set of
actions that will reach a given goal starting from a given initial state. This form of
search is central to many techniques in artificial intelligence. Figure 1 illustrates a
simple example of 8-puzzle. A set of tiles numbered 1–8 are placed in a square, leaving
one space empty. Sliding one of the adjacent tiles into the blank space is termed a
move. Typical algorithms are branch and bound search, depth-first search, etc. Search for
solutions – This is rather a general class of search compared with search for paths to goal.
Here, the concept is to efficiently search a final solution to a problem in a huge space
of candidate solutions. Among these solutions, one may or may not be the goal and the
solution may or may not be improved with the progress of the search. These are the
kinds of search problems for where the genetic algorithms are used.

Figure 1.
Eight-puzzle problem with the initial state and the final state.

21

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

Although the genetic algorithm is directed to search for paths to goal or search for
solutions, it cannot be guaranteed that it will always reach the goal. This is due to its
stochastic or random search nature. On the other hand, this characteristic enables
the rapid determination of a solution. With the advancement of the search process,
GAs follow certain specific steps, which are not similar to the traditional search
procedures.

3. A survey on genetic algorithms

The GAs have been employed in a wide variety of problems. Some of the studies
involving medical image registration, image segmentation, and contour recognition
are available in [12–14]. In addition, the classification of endothelial cells in tissue
section, normalization of Chinese handwriting, and evaluation of earthquake risk for
geological structures are examples of some practical applications [15–17]. GAs have
also been used in optimization of feature extraction chain, error-correcting graph
isomorphism, and dot pattern matching [18–20]. Moreover, the techniques to gener-
ate fuzzy rules for target tracking, constrained placement problems, process planning
for job shop matching and blind channel identification with higher-order cumulation
fitting have employed GA [21–24]. In the field of information retrieval, GA is used to
retrieve the dynamic web-based contents [25]. Raidl et al. worked with biased muta-
tion in evolutionary algorithm for solving subset-selection problems on complete
graphs [26].

Although the simple genetic algorithm has been used for solving various problems,
researchers have always tried to enhance the performance of GA by modifying the
algorithm. Among several approaches for the improvement of performance, in 1970,
Cavicchio developed a technique to conserve the best individuals by substituting the
inferior parents if the offspring’s fitness exceeded that of the inferior parent [27]. The
crowding scheme of De Jong [28] intended to retain the diversity and the best individ-
uals in the population by exchanging the maximally similar strings. Fogel [29] as well
as Back and Schwefel [30] tested some optimizing functions for their algorithms and
showed how the evolutionary method with self-adaptive mutation performs better
than the method without self-adaptive mutation. Other than simple genetic
approaches, Davis suggested that hybridizing genetic algorithms with the most suc-
cessful optimization methods for particular problems provided the best performance
[31]. The hybrid genetic scheme is aimed to hill-climbing from several points
scattered in the search space. In case of multimodal objective function, it is obvious
that some chromosomes/strings (offspring) will be in the basin of attraction of the
global solution, where hill-climbing is an effective and fast form of search. However, a
hybrid approach spoils hyperplane sampling, but does not destroy it entirely.

Some more variants of GA are also found in the literature [1, 32–35]. However, the
implementation of modified genetic algorithm often increases the computation time
for solving various complex problems, and the researchers have tried to increase the
speed of the algorithm using parallel/distributed GA when the computation time is
large for a particular problem. Various parallel implementations of GAs are discussed
in [36, 37]. Multiobjective optimization problem is also solved by parallel genetic
algorithm. The major parallel multiobjective genetic algorithms are discussed and
some observations are included in [38]. Furthermore, two approaches of parallel GAs,
namely the inland model and the diffusion model, are discussed in [39, 40], respec-
tively. In the inland model, the population is divided into a number of smaller

22

Genetic Algorithms

populations. Among the subpopulations, the migration of individuals happens occa-
sionally during the progress of search process. However, the selection of individuals
for migration and the frequency of migration are significant debatable problems [36].
On the contrary, each individual in the diffusion model is related to a spatial location
on a low-dimensional grid. The entire population is regarded as a group of active
individuals, which interact only with the neighbors. Another important utilization of
distributed GA is noticed in the performance-driven VLSI routing problem, which can
handle both electrical and topological constraints of the problem [41].

Other than these, the well-known NP-hard Traveling Salesman problem on a
cluster of nodes is also solved by the application of parallel genetic algorithm [42]. A
master-slave technique is implemented in the parallel/distributed genetic approach for
obtaining the optimal and/or suboptimal traveling path(s). Moreover, the distributed
genetic algorithm is employed in the labor scheduling problems to ascertain the
number of employees and their work schedule. The objective is to minimize the labor
expenses and expected opportunity costs [43].

The researchers have also successfully employed GAs in solving various kinds of
problems in other scientific fields. Notredome and Higgins [44] developed a popular
software for aligning sequences with two objective functions. Several GA-based
approaches were developed for solving multisequence alignment [45–49]. In chemis-
try, GAs were incorporated in studying water oxidation [50], magnetic storage [51],
catalysis [52], stability of boron wheels [53]. Sathya et al. developed a genetic-based
algorithm to classify genes for identification of biomaker genes to suggest an individ-
ualized treatment [54]. As a robust heuristic search method, the GA helped for mining
information from the large datasets. It was applied to discover interesting and useful
relations between data elements with abstraction in the domain of association rules
[55]. Another GA-based classification technique was used to improve the feature
selection with support vector machine (SVM) classifier. Feature selection was used to
classify a breast cancer dataset with 699 instances into two classes, namely benign and
malignant, each with 11 attributes [56]. A genetic approach was also applied in
machine learning for selecting the proper and the best move in playing of chess. The
technique helped in deciding the effective move by classifying the set of rules for a
particular solution [57]. In addition, several GAs and hybrid GAs were proposed by
the medical practitioners as well as the scientists to detect cancer by different
approaches such as feature selection, categorization, and classification, registering
temperature difference, and many more [58]. A hybrid genetic approach was devel-
oped for early diagnosis of breast cancer using thermography. This technique mea-
sured the temperature difference between cancerous and healthy tissues with a high
success rate [59].

In the following sections, some applications of genetic algorithm with several
illustrations are discussed. The parameters of experimental setup are provided to help
implementation of the GAs in solving similar or different kinds of problems. Some
exceptional results are also elaborated with illustrations to understand the strength of
GA for finding solution in numerous scientific fields.

4. Dot pattern matching identification

In a 2-D or 3-D feature space, a dot pattern represents some physical objects or
class of objects with a set of dots or points. Such dot patterns are used in geographic
and cartographic data, spatial information system, astronomy and astrophysics,

23

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

remote sensing, image texture analysis, biomedical imaging, and some other areas
[60–63]. The involvement of such studies with dot patterns includes the set estima-
tion and shape identification, identification of point process parameter, and clustering
and classification.

The dot pattern matching problem is defined as follows. T is a given test dot
pattern, which is to be identified in an unknown scene of dot patterns S (a set of dot
patterns or objects). Now, to find the position of best match in S,T should be trans-
lated and rotated. So a reference point (the centroid of the coordinates of the dots of
T) is required to translate T. Let this centroid be O. In the space S, the translation of
dot pattern to a point P indicates that their centroid is translated to P. Similarly, its
rotation by θ is the rotation of pattern(s) with respect to O as origin.

The matching score is now evaluated as follows for two dot patterns S and T. Once
T is transformed and rotated with respect to the origin O, the distance d ti, sj

� �
between

a point ti of T and each of the points sj of S is calculated and the minimum distance is
considered. If the number of points of T is α, then the sum of the minimum distances
Dmin for all α points is as follows.

Dmin ¼
Xα
i¼1

Min d ti, sj
� �� �

j¼1,2,… ,β (1)

where s1, s2, … sβ and t1, t2, … tα are the points of S and T, respectively, and α≤ β.
Dmin indicates the best matching score of two dot patterns or objects.

In pattern recognition problem, the performance of CGA (conventional genetic
algorithm) [1] has been tested with the sequential and distribution of two GA-based
modified methods, namely, cascaded genetic algorithm (CAGA) [64] and distributed
CAGA (DCAGA) [65].

In dot pattern or object matching problem, S is a set of dot patterns of different
shapes as depicted in Figures 2 and 3, and we have taken one of them as a test pattern
T and matched it with S. The scores for matching between T and S for the genetic
methods are shown in Tables 1–3. Here the score for successful matching is denoted
by a ratio of two numbers. One of them is the number of times the solution has been
reached and the total number of trials in percentage. Two types of matching, namely

Figure 2.
A scene of multiple dot patterns in 2-D space [64].

24

Genetic Algorithms

Figure 3.
A scene of multiple objects with edge map in 2-D space [64].

Dot
pattern

CAGA CGA

Successful
matching

Unsuccessful
matching

Successful
matching

Unsuccessful
matching

Perfectly
matched

Visually
matched

Not
matched

Perfectly
matched

Visually
matched

Not
matched

DP1 22% 53% 25% 0% 10% 90%

DP2 30% 40% 30% 0% 7% 93%

DP3 73% 23% 4% 3% 53% 44%

DP4 17% 80% 3% 0% 50% 50%

Table 1.
Matching results of CAGA and CGA on the dot patterns in Figure 2. The following data have been summarized
over 50 runs for each DP.

Dot
pattern

DCAGA DCGA

Successful
matching

Unsuccessful
matching

Successful
matching

Unsuccessful
matching

Perfectly
matched

Visually
matched

Not
matched

Perfectly
matched

Visually
matched

Not
matched

DP1 57% 43% 0% 14% 73% 13%

DP2 40% 60% 0% 10% 70% 20%

DP3 83% 17% 0% 10% 67% 23%

DP4 40% 60% 0% 10% 90% 0%

Table 2.
Matching results of DCAGA and DCGA on the dot patterns in Figure 2. The following data have been
summarized over 50 runs for each DP.

25

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

perfect matching and imperfect but visual matching, are considered. In case of visually
matched patterns, it is observed that T is superimposed over S without any visible
error, but the matching error is not negligible. On the contrary, the calculated error of
matching between T and S is close to zero in perfectly matched situation. Naturally, the
pattern or object is termed as visually matched.

The dot/point patterns depicted in Figure 3 are basically the gray-tone digital
images. The pattern recognition experiment performed over these patterns is matching
of edge maps. In Figure 3, the gray-tone digital image is a combination of four different
objects of 512X512 pixels with 256 possible gray levels. The Sobel Operator is used to
convert the digital image (Figure 3) into a two-tone edge map [66]. The edge map is
usually considered as a discrete dot pattern with a dot represented digitally by 1 and a
blank (white space) digitally by 0. In Figure 3, the object (P2) is separated from other
three objects (P1, P3, and P4), which are very close and touched each other.

We consider the results of GAs for Figure 2 in the experiment. From Table 1, the
success rate of CAGA for the best case is 96% for DP3 where 73% of times the pattern
is perfectly matched and 23% of times it is visually matched. The success rate of
CAGA for DP4 is 97%, but in this case the pattern is perfectly matched for only 17% of
times. The performance of CAGA is worst for DP2 with failure rate of 30%. On the
other hand, the best performance of CGA is achieved for DP3 where the pattern is
perfectly matched for 3% of times and visually matched for 53% of times. In CGA, the
successful matching score of DP2 is only 7% (visually matched), which is worst among
all four patterns.

From Table 2, it is noted that for the DCAGA, the success rate is 100% for all four
patterns considering perfect and visual matching. The DCAGA achieves the best
performance for DP3. On the contrary, in the worst case, the failure rate of the DCGA
is at most 23%. However, for matching of the pattern DP4, a success rate of 100% is
reached by the DCGA.

Table 3 tabulates the experimental results of object matching for the GA-based
distributed approaches. It is observed that the DCAGA cannot always achieve the
success rate of 100% as noticed for the earlier experiment of dot pattern matching in
Table 2. The success rate of the DCAGA is 100% for P1 and P2, and the failure rate is a
maximum 6% for P3 and P4. It is noted that both techniques perform best for the
isolated object P2. The DCGA does not perform well for the objects, which are close to
each other.

Dot
pattern

DCAGA DCGA

Successful
matching

Unsuccessful
matching

Successful
matching

Unsuccessful
matching

Perfectly
matched

Visually
matched

Not
matched

Perfectly
matched

Visually
matched

Not
matched

P1 33% 67% 0% 0% 30% 70%

P2 76% 24% 0% 10% 63% 27%

P3 27% 67% 6% 3% 10% 87%

P4 17% 80% 3% 0% 27% 73%

Table 3.
Matching results of DCAGA and DCGA on the objects with edge map in Figure 3. The following data have been
summarized over 50 runs for each DP.

26

Genetic Algorithms

5. Genetically guided clustering algorithm

In general, the clustering problem can be presented as follows:
For the set of n data X ¼ x1,x2, … ,xnf g to be clustered, each xi ∈ℛp is an

attribute vector consisting of p real measurement describing the i-th object. The
objects corresponding to the data are to be clustered into non-overlapping groups
C ¼ C1,C2, … ,Ckf g where k is number of clusters, C1∪C2∪…∪Ck ¼ X , Ci 6¼ ϕ, and
Ci∩Cj ¼ ϕ for i 6¼ j. The objects within each group should be more similar to each
other than the objects in any other group, and the value of k may or may not be
known.

Clustering approaches are semi-optimal ways of arriving at the grouping
problem. The number of ways of sorting n objects into k groups is enormous, which is
given as

N n, kð Þ ¼ 1
k!

Xk
i¼0

�1ð Þi k
i

� �
k� ið Þn (2)

For 25 objects with five clusters, this is in the order of 1016. Clearly, it is impractical
to exhaustively search the solution space and obtain the optimal solution.

5.1 Measures of similarity

Since similarity is fundamental to the definition of a cluster, a measure of similar-
ity between two objects/patterns/entities drawn from the same feature space is essen-
tial to most clustering procedures. The proximity of individuals (i.e., objects) is
usually expressed as a distance during the clustering of data units. The clustering of
variables generally involves a correlation or other such measure of association. The
smaller the distance between the objects, the higher is the similarity. Because of the
variety of feature types and scales, the distance measure (or measures) must be
chosen carefully. Several distance measures are employed for clustering [67, 68]. The
most popular and commonly used one is the Euclidean distance,

d Xi,Xj
� � ¼

ffi
Xi � Xj
� �0 Xi � Xj

� �q
¼

Xp

l¼1

xil � xjl
� �2

" #1=2
(3)

which is the line of sight distance between two points representing the objects.

5.2 Genetic-algorithm-based clustering

Let us consider a set consisting of n vectors X ¼ x1,x2, … ,xnf g, which will be
clustered into k groups of homogeneous data. Each xi ∈Rd is a vector in a feature space
of d real-valued measurements for defining the object features denoted by xi. The
features can be color, breath, length, etc.

We have discussed data clustering with a GA-based algorithm. This algorithm is
dependent on the splitting and merging techniques [69]. Initially the data are split into
several sub-clusters, and in the next step those sub-clusters are merged to find out the
required clusters. We have considered various types of datasets to show how the data
are grouped to isolate properly the required number of clusters.

27

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

5.2.1 Cluster partitioning in R2 feature space

We have studied seven datasets in R2 feature space depicted in Figures 4–10.
Among them, both Figures 4 and 6 consist of three clusters, although the nature of
clusters is different. In both figures, two clusters are located close to each other,
whereas the third one is placed far from those two clusters. However, in Figure 4, the
density of closely placed clusters is nonuniform. On the other hand, the third one is
three times in size compared with other two clusters. The data points are more dense
at the cluster center. The density gradually gets reduced toward the boundary.
Figure 4(a) shows the original dataset, and Figure 4(b) illustrates how the clusters
are isolated after using the genetically guided method.

The dataset in Figure 5(a) comprises five clusters. All of them are denser near the
center and lighter toward the boundary. Three clusters are equal in size, and two of
them are close to each other. The five clusters have been correctly isolated using the
algorithm, as shown in Figure 5(b).

Figure 4.
(a) The original dataset with three clusters before the application of GA-based algorithm. (b) Isolated three
clusters after completion of the algorithm [69].

Figure 5.
(a) The original dataset with five clusters before the application of algorithm. (b) Isolated five clusters after the
completion of algorithm [69].

28

Genetic Algorithms

On the contrary, Figure 6 consists of two closely located clusters of different
densities. One cluster has uniformly dense data and the other has density tapering
away from the center. The data density of the third cluster is also uniform. However,
all of them are equal in size. Figure 6(a) and (b) illustrate the scenario, respectively,
before and after the application of algorithm. All three clusters are properly isolated.

Figure 7 depicts two almost overlapping clusters of equal size and density. The
data points distribution of both the clusters is interesting since they follow Gaussian
distribution in R2 space. The clusters are so closely placed that they seem to be visually
a single cluster. However, the genetic algorithm can correctly identify the clusters, as
illustrated in Figure 7(b).

The dataset of Figure 8 is different and interesting from previous four datasets.
Here, one cluster is completely enclosed by the other. The data point density of both
clusters is almost uniform. In the dataset, a special feature of the algorithm is used. It

Figure 6.
(a) The original dataset with three clusters before the application of algorithm. (b) Isolated three clusters after the
completion of algorithm [69].

Figure 7.
(a) The original dataset with two clusters before the application of algorithm. (b) Isolated two clusters after the
completion of algorithm [69].

29

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

is to check the adjacency condition of sub-clusters, which are to be merged to isolate
the clusters ultimately as depicted in 8(b).

Figures 9 and 10 consist of special type of clusters. Figure 9(a) is a combination of
six clusters, which are different in density as well as size. Among six clusters, two are
identical with elliptical shape and both are connected with a string of highly dense
data points. They appear visually as a single cluster although they are disjoint. The set
of clusters are shape-wise three in numbers and have been identified as three clusters.
Here, the string of points is defined as a third cluster, and it connects those two
elliptical shaped clusters. In Figure 9(a), two of the remaining three clusters are
almost equal in shape and density. The largest cluster in Figure 9(a) has lesser density
compared with other two clusters. However, all six clusters including the string of
points are correctly isolated after application of the genetic algorithm as shown in
Figure 9(b).

Figure 8.
(a) The original dataset with two clusters before the application of algorithm. (b) Isolated two clusters after the
completion of algorithm [69].

Figure 9.
(a) The original dataset with six clusters before the application of algorithm. (b) Isolated six clusters after the
completion of algorithm [69].

30

Genetic Algorithms

The data shown in Figure 10(a) are quite different from all other datasets. It is also
a special dataset in nature because it consists of two identical shaped clusters with
different density in the presence of random noise scattered all over the 2-D feature
space. Two clusters are perfectly identified and also the noise, which is identified as
the third cluster as shown in Figure 10(b). After application of the algorithm it is seen
that the noise is clustered locally in smaller arbitrary shape in the space due to
inherent characteristics of the random noise. The third cluster is then formed by
merging all smaller clusters of noisy data as depicted in Figure 10(b).

5.2.2 Cluster separation in Rn feature space

We have now discussed the cluster identification of a dataset of more than two
features. Iris data is a set of four features [70], which is one of the most popular
databases in the pattern recognition literature. The dataset contains three classes
named as Iris Setosa (Class A), Iris Versicolor (Class B), and Iris Virginica (Class C).
Each class has 50 instances and refers to a kind of Iris plant. The four feature attributes
of the data are Petal length, Petal width, Sepal length, and Sepal width. Among the three
classes, two are not linearly separable from each other, whereas the third one is
identified separately from other two classes.

One cluster has been separated clearly from other two after invoking the algo-
rithm. However, other two clusters are not perfectly separable (see Table 4).

Figure 10.
(a) The original dataset with two clusters and noise before the application of algorithm. (b) Isolated two genuine
clusters and separated noise after the completion of algorithm [69].

Classified as class A Classified as class B Classified as class C

Actual class A 50 0 0

Actual class B 0 40 10

Actual class C 0 0 50

Table 4.
Confusion matrix for Iris flower classification.

31

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

6. Shape recognition with genetic algorithm

The processing of dot patterns (DPs) or point sets in a plane is useful and impor-
tant in pattern recognition problems. Dot patterns are encountered in various prob-
lems including points in feature space [71], pixels in digital image [72], physical
objects such as stars in the galaxy [73], or spatial data [74–76].

An attribute of dot patterns is the visual shape generated by it. One simple way of
defining the external shape is the convex hull [77]. But in most cases, the underlying
shape from which the points emerge is not convex. To detect the nonconvex shape,
the GA-based split and merge procedure [78] starts with the initial convex hull
polygon. The Splitting process first divides the sides of the polygon. Consider a side AB
and evaluate the average distance of r neighboring points of A and B. Now, if the
average distance is smaller than the length of AB, the side AB is considered as a
candidate for splitting. Eventually such development takes care of the concavity of the
DP by generating a zigzag polygonal border as depicted in Figure 11(a). The merging
algorithm is then applied for having a smoother border. Splitting results in inclusion of
additional edges while merging does just the opposite, making the border looks less
zigzag as in Figure 11(b).

A DPmay also be the union of more than one disjoint smaller DP region as shown in
Figure 11(c). The isolation process separates such regions by removing two lines of the
resulting polygon simultaneously, which act as the bridge between two disjoint regions.
The removal of lines is possible if the region within the lines does not contain any dot.

Now, consider a set S that contains n points in the plane and the convex hull
consists of the points of S. In that case, the underlying shape of the pattern is the
convex hull if the dot pattern does not contain any concavity, else the splitting of

Figure 11.
(a) Edge (represented by dashed line) marked for splitting process (edge AB before splitting; edges AC and BC
created by splitting). (b) Edge marked for merging process over region XYZ and region PQRS). (c) Edges
(represented by dashed lines) marked for isolation process [78].

32

Genetic Algorithms

edges is required. Figure 11 shows the splitting and merging of the edge/regions and
the region for isolation.

6.1 Polygonal shape detection of dot pattern

The algorithm is studied on different dot pattern sets in R2 space. The datasets are
largely classified into three groups. Among these groups one consists of dot patterns
with almost uniform density, as in Figures 12 and 13. Figure 14 represents a dot
pattern of variable density data points, and the data pooled from Gaussian distribution
is shown in Figure 15. A special dot pattern with multiple distinct components is
illustrated in Figure 16.

In the group of datasets with nearly uniform density data points, Figures 12 and 13
show a DP with a concavity of spiral shape and a star-shaped DP, respectively. In
Figure 12, the splitting process starts with the convex hull of 35 edges and ends with a

Figure 12.
(a) A spiral shaped DP and its convex hull. (b) Resulting perceptual border of the DP [78].

Figure 13.
(a) A star-shaped DP and its convex hull. (b) Resulting perceptual border of the DP with the GA-based merging
process [78].

33

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

zigzag border polygon of 187 sides. After the splitting process, the merging algorithm
is applied on the polygon since the DP does not contain any isolated component.
Finally, a polygon of 68 edges is generated with a smooth border, as in Figure 12(b).
Figure 13(a) shows a polygon consisting of five concavities and the splitting process is
executed on each side of the five-side convex hull. The resulting polygon of 181 edges
is formed with a zigzag border. The GA-based procedure is applied on this polygon to
produce a polygon (of 26 sides) with a star-like perceptual border as in Figure 13(b).

The dot patterns of Figures 14 and 15 are chosen to show the performance of the
algorithm on variable density data points. Each DP consists of two concavities. In
Figure 14, the upper half of the DP (the denser region) has one concavity and the
other one is in the lower half of the DP (the lesser density region). The density of dots

Figure 14.
(a) A DP with nonuniform density and its convex hull. (b) Resulting perceptual border of the DP [78].

Figure 15.
(a) A DP with two Gaussian distributions and its convex hull. (b) Resulting perceptual border of the DP applying
GA-based merging process [78].

34

Genetic Algorithms

in the dot pattern is gradually reduced toward the lower half. The DP of Figure 15 also
contains two concavities located in the middle region and opposite to each other. Its
density decreases gradually from the center of each half toward the boundary portion.
We have employed the GA-based merging technique on this dataset at the end of the
splitting process. In Figure 14, the splitting procedure is started with a convex hull
polygon of 24 sides (see Figure 14(a)) and a polygon of 102 sides is generated. Next,
the merging process is executed over it and a 52-edge polygon with a smoother border
is obtained as in Figure 14(b). In Figure 15(a), the splitting process starts on a 22-side
convex hull polygon to create a polygon of 40 edges. The application of merging
process finally generates a 32-side smother border polygon as shown in Figure 15(b).

The ultimate polygons with smother border as in Figure 17(b) and (c) are gener-
ated from the starting polygon of Figure 17(a) if the user specifies the number of
sides. Figure 17(a) shows a C-shape DP with its convex hull. In both cases, the
splitting process is continued as long as there is no violation of the density-length
condition. Now, the ultimate polygonal shape as in Figure 17(b) is obtained
depending on the user’s input of a 36-side polygon (say). Similarly, the polygon of
Figure 17(c) is produced from Figure 17(a) when the user specifies 23 as the number
of sides of polygon (say).

Figure 16 is a special dot pattern of three components where each one contains
nearly uniformly dense data points. The convex hull of the DP is a 17-side polygon.
The splitting process followed by the isolation process separates the DP into three
distinct regions with zigzag polygonal boundaries. Finally, for each isolated polygon,
the merging process generates three separated polygons with a smoother border as in
Figure 16(b).

7. Biological sequence alignment with genetic algorithm

An alignment at sequence level represents the primary structure of biological mac-
romolecules, which is represented as a linear sequential chain of residues. Residues are
the building blocks of macromolecules in which DNAs and RNAs are made of nucleo-
tide residues and proteins are of amino acid residues. The building blocks encode the

Figure 16.
(a) A multicomponent chromosome-like dot pattern and its convex hull. (b) Resulting perceptual border of the
components [78].

35

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

history of molecular evolution. During the process of evolution, residues accumulate
many random changes and diverge over time. Some of the changes are accepted and
selected by natural selections, and some of them are not. Residues, which are involved
in important functional and/or structural roles, tend to be preserved by natural selec-
tion and do not accumulate random changes [79]. These parts of sequences help to infer
the evolutionary history and identify the common ancestor of two or more related
sequences. Therefore, the sequences that share the common evolutionary origin are
called homologous sequences. Homology is the conclusion that can be drawn by looking
at the degree of similarities between two or more sequences of different species.

7.1 Scoring schemes in sequence alignment

The similarity between two or multiple sequences is quantified by measuring the
alignment score. To choose the best alignment among a set of sequences, quantifica-
tion of alignment is required. It identifies the evolutionary distances between two or
multiple sequences. The best alignment always associated with the maximum shared

Figure 17.
(a) A C-shaped DP and its convex hull. (b) Perceptual border of the DP with 36 edges (user specified). (c)
Perceptual border of the DP with 23 edges (user-specified) [78].

36

Genetic Algorithms

similarity or identity and the lowest number of mutational events between the
sequences. Therefore, the scoring systems always score positive when there are iden-
tical or similar residues in the alignment.

On the other hand, the mutational events are always associated with zero or
negative scores. Different scoring schemes are used in sequence alignment to know
the level of identity or similarity. The process of score evaluation for a pairwise
sequence alignment is more straightforward and simple compared with scoring the
alignment of multiple sequences together. In two aligned sequences, the total number
of identical residues yields a percentage identity between them. This identity count is
used mostly for nucleotide sequence alignment, as the nucleotides A, T/U, G, and C
play equivalent roles in the structure and function of the DNA or RNA molecule.
Therefore, the nucleotides are either identical, which is a match in alignment, or
nonidentical, which is a mismatch in an alignment. In contrast, for protein sequences,
a similarity score is calculated along with the identity score denoting the amino acids
having similar physicochemical properties. The substitution matrices are normally
consulted for protein sequence alignment.

7.2 Sequence alignment scheme without gaps

The GA-based sequence alignment [80] is a simple method to align a pair of
sequences (a query sequence and a known database sequence) without gaps for
finding similarity. When a biological sequence (DNA/RNA/protein), called the query
sequence is given, one usually performs a similarity measure within the databases that
consist of all available genomic sequences and the known protein sequences. Eventu-
ally, the search yields many sequences with varying degree of similarities. It then
depends on the user to identify those that are associated with the higher scores and
homologous. In the alignment technique, we consider one sequence as a database
sequence denoted by D and the other as a query sequence denoted by Q.

In the initialization step, an initial population of size N is randomly generated
as the probable alignment solutions for the input Q. Each individual
Pi,∀i∈ 1, 2, … ,Nf g or a chromosome is a string of bits such that Pi ¼ b1b2:… bL where
L is the length of each individual/chromosome, which is equal to the given Q, and
each bj is 0, 1f g, ∀j∈ 1, 2, … ,Lf g. The 1’s in the chromosome represent the presence of
the residues in the corresponding positions and the 0’s indicate the absence of the
residues in Q.

In this approach, all three operators of the conventional GA, namely tournament
selection, one-point crossover, and bit-flip mutation are used [1]. In each iteration, the
algorithm advances the search toward a better solution by producing a better popula-
tion. After random selection of two chromosomes from the population pool, the
crossover and the mutation operations are performed on them.

The fitness score of a chromosome is evaluated by the following fitness function F.

W ¼
Xn
i¼1

Wi (4)

where n is the total number of residues to be aligned, and w is the weight of the
alignment score.

For protein sequence alignment, the BLOSUM62 matrix is consulted and for DNA
sequence, an identical match gets +1 score, and a mismatch gets 0. The fitness score

37

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

determines the similarity or identity level between two sequences D and Q. The fitness
score is now calculated for pairwise alignment between two sequences D and Q. It is
evaluated in three ways. The scoring is for the straight alignment and the alignments
with a left or right shift.

For a straight alignment, let us consider the following two nucleotide sequences, D
and Q.

D ¼ A T G C T T A G T C
Q ¼ A C G C A T A G A C

Let us now consider the following binary coded chromosome from the population
of an intermediate generation as a probable solution of query sequence Qp.

Qp ¼ 0 1 1 0 1 0 1 1 0 1

The equivalent decoded value of Qp by replacing 1 with the corresponding residue
of Q will be as follows.

Qp ¼ _C G_A_A G_C

where “_” denotes the presence of 0 in Qp.
Therefore, the alignment score or the fitness of the chromosome would be 4 and

the alignment structure looks like:

D ¼ A T G C T T A G T C

Qp ¼ _C G_A_A G_C

However, the alignment by shifting is necessary for a different representation of Q
to achieve the best alignment score. For example, if Q is ACTTAGTAAC, then the
shifting to the right is required to obtain the optimum alignment with alignment score
6, which is illustrated below,

D ¼ A T G C T T A G T C

Q ¼ A C T T A G T A A C

Similarly, for Q: GCGTTGCTTAGA, the left shift alignment is necessary to obtain
the best alignment with score 7, which is shown below,

D ¼ A T G C T T A G T C

Q ¼ G C G T T G C T T A G A

For the evaluation of the final fitness score of an individual, the scores of all three
alignments (straight, shift right, and shift left) techniques are considered. However,
the selection of position to start alignment depends on the randomly chosen position
number. Since minimum 30% matching between two sequences is necessary to eval-
uate the homologous relationship [81, 82], the random numbers between 1 and 70% of
the length of the sequence is generated. For example, if a sequence length is of 100

38

Genetic Algorithms

residues, we shall identify a position randomly between 1st and 70th residues of D or Q
depending on the alignment type. The length of D is considered for the straight as well
as the right shift alignments. The length of D is also considered for the left shift
alignment if it is smaller than or equal to Q. However, the length of Q is taken when D
is larger than Q. The total number of times for choosing the position numbers for
these three types of alignments depends on the average length ofD and Q. In this case,
it is 30% of the average length. For example, if the average length of D and Q is 200,
the alignment techniques will be continued 60 times with different random starting
position values. Now the best matching score is extracted from 60 results given by
three alignment techniques.

8. Conclusions

This chapter describes the application of genetic algorithm in various scientific
fields as a reliable optimizer. It is narrated how the simple/conventional genetic
algorithm has been advanced with time. Apart from these some real applications of
the modified genetic algorithm with illustrations have been elaborated in brief (refer-
ences are provided for detailed description) on the synthetic data. It is shown how the
GA identifies a pattern (in single/multiple dot(s) or edge map(s) scene) in 2-D space.
The reasoning is given to explain the differences in results of matching scores of two
genetic sequential and distributed schemes (CGA and CAGA or DCGA and DCAGA).
A genetic-based clustering approach with results provides the efficient use of GA for
grouping synthetic as well as real data. The function of GA in complex shape detection
and biological sequence alignment on synthetic data further shows the application of
GA as a useful and essential optimizer.

Abbreviations

GA Genetic Algorithm
SVM Support Vector Machine
CGA Conventional Genetic Algorithm
CAGA CAscaded Genetic Algorithm
DCAGA Distributed CAscaded Genetic Algorithm
2-D Two-Dimensional
3-D Three-Dimensional
R2 Two-Dimensional space
DP Dot Pattern
DNA Deoxyribonucleic acid
RNA Ribonucleic acid

39

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

Author details

Gautam Garai
Saha Institute of Nuclear Physics, Kolkata, India

*Address all correspondence to: gautam.garai.16@gmail.com

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

40

Genetic Algorithms

References

[1] Goldberg DE. Genetic Algorithms in
Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley
Publishing; 1989

[2] Rechenberg I. Cybernetic solution
path of an experimental problem. Royal
Aircraft Establishment (U.K.): Ministry
of Aviation; 1965

[3] Schwefel HP. Evolutions Strategie
and Numerische Optimierung. Ph.D.
Thesis. Berlin: Technische University;
1975

[4] Fogel LJ, Owens AJ, Walsh MJ.
Artificial Intelligence Through Simulated
Evolution. New York: John Wiley; 1966

[5] Box GEP. Evolutionary operation: A
method for increasing industrial
productivity. Journal of the Royal
Statistical Society, Vol. C. 1957;6(2):
81-101

[6] Friedman GJ. Digital simulation of an
evolutionary process. General Systems
Yearbook. 1959;4:171-184

[7] Bremermann HJ. Optimization
through evolution and recombination.
In: Yovits MC, Jacobi GT, Goldstein GD,
editors. Self-Organizing Systems.
Washington D. C.: Spartan Books; 1962

[8] Reed J, Toombs R, Barricelli NA.
Simulation of biological evolution and
machine learning. Journal of Theoretical
Biology. 1967;17:319-342

[9] Baricelli NA. Numerical testing of
evolution theories. Acta Biotheoretica.
1962;16:69-126

[10] Fraser AS. Simulation of genetic
systems by automatic digital computers:
I introduction. Australian Journal of
Biological Sciences. 1957;10:484-491

[11] Martin GG, Cockerham CC. High
speed selection studies. In:
Kempthorne O, editor. Biometrical
Genetics. USA: Pergamon; 1960

[12] Hill A, Taylor CJ. Model-based image
interpretation using genetic algorithm.
Image and Vision Computing. 1992;10:
295-300

[13] Roth G, Levine MD. Geometric
primitive extraction using a genetic
algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 1994;
16(9):901-905

[14] Toet A, Hajema WP. Genetic
contour matching. Pattern Recognition
Letters. 1995;16:849-856

[15] Lin DS, Leou JJ. A genetic algorithm
approach to Chinese handwriting
normalization. IEEE Trans. Systems,
Man and Cybernetics-Part B. 1997;27(6):
999-1007

[16] Yamany SM, Khiani KJ, Farag AA.
Application of neural networks and
genetic algorithms in the classification of
endothelial cells. Pattern Recognition
Letters. 1997;18:1205-1210

[17] Giacinto G, Paolucci P, Roli F.
Application of neural networks and
statistical pattern recognition algorithms
to earthquake risk evaluation. Pattern
Recognition Letters. 1997;18:1353-1362

[18] Wang YK, Fan KC, Horng JT.
Genetic-based search for error-
correcting graph isomorphism. IEEE
Transactions on Systems, Man and
Cybernetics-Part B. 1997b;27(4):588-596

[19] Ansari N, Chen MH and Hou ESH.
Point pattern matching by a Genetic
Algorithm. In: Proc. of the 16th Annual

41

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

Conf. of IEEE Industrial Electronic
Society (IECON’90), Vol. II. Pacific
Grove: 1990. pp. 1233-1238

[20] Mirmehdi M, Palmer PL, Kittler J.
Genetic optimization of the image
feature extraction process. Pattern
Recognition Letters. 1997;18:355-365

[21] Chan KCC, Lee V, Leung H.
Generating fuzzy rules for target tracking
using a steady-state genetic algorithm.
IEEE Transactions on Evolutionary
Computing. 1997;1(3):189-200

[22] Schnecke V, Vornberger O. Hybrid
genetic algorithms for constrained
placement problems. IEEE Transactions
Evolutionary Computing. 1997;1(4):
266-277

[23] Zhang F, Zhang YF, Nee AYC. Using
genetic algorithms in process planning
for job shop machining. IEEE
Transactions on Evolutionary
Computing. 1997;1(4):278-289

[24] Chen S, Wu Y, McLanghlin S.
Genetic algorithm optimization for blind
channel identification with higher order
cumulant fitting. IEEE Transactions on
Evolutionary Computing. 1997;1(4):
259-265

[25] Kushchu I. Web-based evolutionary
and adaptive information retrieval. IEEE
Transactions on Evolutionary
Computation. 2005;9(2):117-125

[26] Raidl GR, Koller G, Julstrom BA.
Biased mutation operators for subgraph-
selection problem. IEEE Transactions on
Evolutionary Computation. 2006;10(2):
145-156

[27] Cavicchio DJ. Adaptive Search using
Simulated Evolution. Ph.D. dissertation.
Ann Arbor, Michigan: University of
Michigan; 1970

[28] De Jong KA. An Analysis of Behavior
of a Class of Genetic Adaptive System.
Doctoral dissertation. Michigan:
University of Michigan; 1975

[29] Fogel DB. Evolutionary Computation:
Toward a New Philosophy of Machine
Intelligence. Piscataway, NJ: IEEE Press;
1995

[30] Back T, Schwefel HP. An overview
of evolutionary algorithm for parameter
optimization. Evolutionary
Computation. 1993;1:1-23

[31] Davis LD. Handbook of Genetic
Algorithms. New York: Van Nostrand
Reinhold; 1991

[32] Harp SA, Samad T. Genetic synthesis
of neural network architecture. In:
Davis L, editor. Handbook of Genetic
Algorithms. New York: University of
Chicago Press; 1992. pp. 202-221

[33] Rizzi S. Genetic operators for
hierarchical graph clustering. Pattern
Recognition Letters. 1998;19:1293-1300

[34] Kim D, Ahu S. A MS-GS VQ
codebook design for wireless image
communication using genetic algorithms.
IEEE Transactions on Evolutionary
Computation. 1999;3(1):35-52

[35]Maniezzo V. Genetic evolution of the
topology and weight distribution of
neural networks. IEEE Transactions on
Neural Networks. 1994;5:39-53

[36] Cantú-Paz E. A summary of research
on parallel genetic algorithms. Illinois
Genetic Algorithm Lab., Univ. Urbana,
IL: Illinois Genetic Algorithm Lab., Univ.
Illinois Urbana-Champaign; 1995. p.
950076. Tech. Rep

[37] Tomassini M. Parallel and
distributed evolutionary algorithms: A
review. In: Miettinen K, Mkel M,

42

Genetic Algorithms

Neittaanmki P, Periaux J, editors.
Evolutionary Algorithms in Engineering
and Computer Science. New York:
Wiley; 1999. pp. 113-133

[38] Veldhuize DAV, Zydallis JB,
Lamont GB. Considerations in
engineering parallel multiobjective
evolutionary algorithms. IEEE
Transactions on Evolutionary
Computation. 2003;7:144-173

[39] Hao JK, Dome R. A new population-
based method for satisfiability problems.
In: Proc. of the 11th European
Conference on Artificial Intelligence.
New York: Wiley; 1994. pp. 135-139

[40] Holland JH. Adaptation in Natural
and Artificial Systems. Ann Arbor, MI:
Univ Michigan Press; 1975

[41] Lienig J. A parallel genetic algorithm
for performance-driven VLSI routing.
IEEE Transactions on Evolutionary
Computation. 1997;1:29-39

[42] Sena GA, Megherlu D, Isern G.
Implementation of a parallel genetic
algorithm on a cluster of workstations:
Traveling salesman problem, a case
study. Future Generation Computer
Systems. 2001;17:477-488

[43] Easton FF, Mansour N. A distributed
genetic algorithm for deterministic and
stochastic labor scheduling problems.
European Journal of Operational
Research. 1999;118:505-523

[44] Notredame C, Higgins DG. SAGA:
Sequence alignment by genetic
algorithm. Nucleic Acids Research. 1996;
24(8):1515-1524

[45] Arenas DE, Ochoterena H,
Rodriguez VK. Multiple sequence
alignment using a genetic algorithm and
GLOCSA. Journal of Artificial

Evolution and Applications. 2009;2009:
963150

[46] Naznin F, Sarker R, Essam D.
Vertical decomposition with genetic
algorithm for multiple sequence
alignment. BMC Bioinformatics. 2011;12:
353

[47] Shyu C, Foster J. Evolving
Consensus Sequence for Multiple
Sequence Alignment with a Genetic
Algorithm. In: Cantú-Paz E et al., editors.
Proc. Conf. Genet. and Evol. Comp.
(GECCO’03), vol. 2724. Berlin
Heidelberg, Chicago, IL, USA: LNCS,
Springer-Verlag; 2003. pp. 2313-2324

[48] Michalewicz Z, Fogel DB. How to
solve it: modern heuristics. 2nd rev. and
extended. ed. Berlin; London: Springer;
2004

[49] Narimani Z, Beigy H, Abolhassani H.
A new genetic algorithm for multiple
sequence alignment. International
Journal of Computational Intelligence
and Applications. 2012;11(04):1250023

[50] Zhao S, Jin R, Abroshan H, Zeng C,
Zhang H, House SD. Gold nanoclusters
promote electrocatalytic water oxidation
at the nanocluster/cose2 interface.
Journal of the American Chemical
Society. 2017;139:1077-1080.
DOI: 10.1021/jacs.6b12529

[51] Bader SD. Colloquium:
Opportunities in nanomagnetism.
Reviews of Modern Physics. 2006;78:
1-15. DOI: 10.1103/RevModPhys.78.1

[52] Pelegrini M, Parreira RLT,
Ferrão LFA, Caramori GF, Ortolan AO,
Silva EH. Hydrazine decomposition on a
small platinum cluster: The role of n2h5
intermediate. Theoretical Chemistry
Accounts. 2016;135:58. DOI: 10.1007/
s00214-016-1816-x

43

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

[53] Islas R, Heine T, Ito K, Schleyer P,
v. R., and Merino G. Boron rings
enclosing planar hypercoordinate
group 14 elements. Journal of the
American Chemical Society. 2007;
129:14767-14774. DOI: 10.1021/ja07
4956m

[54] Sathya M, Jayaselvi M, Joshi S,
Pandy E, Pareek PK, Jamal SS, et al.
Cancer categorization using genetic
algorithm to identify biomaker genes.
Journal of Healthcare Engineering. 2022;
ID:5821938

[55] Xu Y, Zeng M, Liu Q, Wang X. A
genetic algorithm based multilevel
association rules mining for big datasets.
Mathematical Problems in Engineering.
2014;2014:867149

[56] Devaraj N. Feature Selection using
Genetic Algorithm to Improve SVM
Classifier. USA: LAP LAMBERT
Academic Publishing; 2019

[57] Bhasin H, Bhatia S. Application of
genetic algorithms in machine learning.
Intl. Journal of Computer Science and
Information Technologies. 2011;2(5):
2412-2415 0975-9646

[58] Manszoori TK, Suman A, Mishra AK.
Application of genetic algorithm for cancer
diagnosis by feature selection. Intl. Journal
of Engineering Research and Technology.
2014;3(8):1295-1301 2278-0181

[59] Resmini R, Silva L, Aranjo AS,
Medeiros P, Muchaluat-Saade D, and
Conci A. Combining genetic algorithms
and SVM for breast cancer diagnosis
using infrared thermography. Sensors.
2021;21:4802

[60] Griffin PM, Alexopoulos C. Point
pattern matching using centroid
bounding. IEEE Transactions on
Systems, Man, and Cybernetics. 1989;
19(5):1274-1276

[61] Lavine D, Lambird BA, Kanal LN.
Recognition of spatial point patterns.
Pattern Recognition. 1983;16(3):289-295

[62] Sprinzak J, Werman M. Affine point
matching. Pattern Recognition Letters.
1994;15(4):337-339

[63] Zhang L, Xu W. Point-pattern
matching using irreducible matrix
and relative invariant. Tsinghua
Science and Technology. 1999;4(4):
1602-1605

[64] Garai G, Chaudhuri BB. A cascaded
genetic algorithm for efficient
optimization and pattern matching.
Image and Vision Computing. 2002;20:
265-277

[65] Garai G, Chaudhuri BB. A
distributed hierarchical genetic
algorithm for efficient optimization and
pattern matching. Pattern Recognition.
2007;40:212-228

[66] Jain AK. Fundamentals of Digital
Image Processing. Englewood Cliffs, N.J:
Prentice-Hall; 1989

[67] Everitt BS. Cluster Analysis. London:
Edward Arnold; 1993

[68] Johnson RA, Wichern DW. Applied
Multivariate Statistical Analysis. New
Jersey: Prentice Hall; 1992

[69] Garai G, Chaudhuri BB. A novel
genetic algorithm for automatic
clustering. Pattern Recognition Letters.
2003;25:173-187

[70] Newman DJ, Hettich S, Blake CL and
Merz CJ. UCI Repository of machine
learning databases, 1998. Univ. of
California, Irvine: Dept. of Information
and Computer Sciences; 1998. Available
from: http://www.ics.uci.edu/�mlearn/
MLRepository.html

44

Genetic Algorithms

[71] Duda RO, Hart PE. Pattern
Classification and Scene Analysis. New
York: John Wiley & Sons, Inc.; 1973

[72] Faugeras O. Three-Dimensional
Computer Vision: A geometric Viewpoint.
Cambridge: The MIT Press; 1993

[73] Ogawa H. Labeled pattern matching
by Delaunay triangulation and maximal
cliques. Pattern Recognition. 1986;19:
35-40

[74] Taylor PJ. Quantitative Methods in
Geography: An Introduction to Spatial
Analysis. Boston: Houghton Mifflin
Company; 1977

[75] Laurini R. and Thompson D.
Fundamental of Spatial Information
Systems. The A.P.I.C. Series, No. 37.
London: Academic Press; 1992

[76] Okabe A, Boots B, Sugihara K.
Spatial tessellations: Concepts and
Applications of Voronoi Diagrams. New
Jersey: John Wiley and Sons; 1992

[77] Ronse C. A bibliography on digital
and computational convexity
(1961-1988). IEEE Transactions on
Pattern Analysis and Machine
Intelligence. 1989;11:181-190

[78] Garai G, Chaudhuri BB. A split and
merge procedure for polygonal border
detection of dot pattern. Image and
Vision Computing. 1999;17:75-82

[79] Xiong J. Essential bioinformatics.
NY: Cambridge University Press; 2006

[80] Garai G, Chowdhury B. A novel
genetic approach for optimized
biological sequence alignment. Journal of
Biophysical Chemistry. 2012;3:201-205

[81] Sander C, Schneider R. Database of
homology-derived protein structures
and the structural meaning of sequence
alignment. Proteins. 1991;9(1):56-68

[82] Rost B. Twilight zone of protein
sequence alignments. Protein
Engineering. 1999;12(2):85-94

45

Application of Genetic Algorithm in Numerous Scientific Fields
DOI: http://dx.doi.org/10.5772/intechopen.105740

Section 2

Engineering Applications

47

Chapter 3

Power System Small-Signal
Stability Enhancement Using
Damping Controllers Designed
Based on Evolutionary Algorithms
Komla Agbenyo Folly, Severus Panduleni Sheetekela and
Tshina Fa Mulumba

Abstract

This chapter is concerned with the stability enhancement of a power system using
power system stabilizers (PSSs) designed based on four evolutionary algorithms
(EAs), namely, genetic algorithms (GAs), breeder genetic algorithm (BGA),
population-based incremental learning (PBIL), and differential evolution (DE). GAs
have been widely applied in many fields of engineering and science and have shown to
be a robust and powerful adaptive search algorithm. However, GAs are known to have
several limitations. To deal with these limitations, many variant forms of GAs have
been suggested often tailored to specific problems. In this research, we investigated
the performances of GA-PSS and three other EAs-based PSSs (i.e., BGA-PSS and
PBIL-PSS and DE-PSS) in improving the small-signal stability of a power system.
These EAs have been selected on the basis of their simplicity, efficiency, and
effectiveness in solving the optimization problem at hand. Frequency domain and
time-domain simulation results show that DE-PSS, PBIL-PSS, and BGA-PSS
performed better than GA-PSS. Time domain simulations suggest that overall, DE-PSS
performs better than PBIL-PSS and BGA-PSS in terms of undershoot and subsequent
swings, albeit with a relatively large first swing overshoot. The performances of
BGA-PSS and PBIL-PSS are similar. On the other hand, GA-PSS gives a better
response than the conventional PSS (CPSS).

Keywords: breeder genetic algorithm, damping ratio, genetic algorithms, differential
evolution, low-frequency oscillations, power-system stabilizer, population-based
incremental learning

1. Introduction

Over the past decades, low-frequency oscillatory modes have been a major concern
to power system engineers [1]. These oscillatory modes ranging from 0.1 to 3 Hz tend
to be poorly damped especially in moderately to heavily loaded systems that are

49

equipped with high gain, fast-acting automatic voltage regulators (AVRs) [2, 3]. Gen-
erally, we distinguish two main oscillation modes: local and inter-area modes. Local
modes (0.8–2 Hz) involve local generators oscillating against each other. On the other
hand, inter-area modes are caused by groups of generators in one part of the system
swinging against other groups in the interconnected power system having frequencies
ranging from 0.1 Hz to 0.8 Hz. Compared to local modes, inter-area modes are
generally the most critical modes that need to be damped [4, 5]. These modes are
found in almost all interconnected power stems. If they are not adequately damped,
the oscillations may sustain and grow, and this may lead to system blackout. Power
system stabilizers (PSSs) have been proposed to modulate low-frequency oscillations
and increase the damping of electromechanical modes [1, 2]. Tuning the PSS param-
eters is not a trivial task. Power utilities have preferred using conventional PSSs
(CPSSs) designed around a nominal operating condition. The design of the CPSS is
generally based on conventional control approaches such as root locus, phase com-
pensation, and pole placement techniques [1–5]. However, since these approaches are
not robust, the designed CPSS tends to deviate from optimal operation when the
system experiences a range of changes away from the nominal operating conditions.
Therefore, new design approaches are required to design a PSS that can operate
optimally under a wide range of operating conditions [3, 6]. Evolutionary algo-
rithms (EAs) such as genetic algorithms (GAs) [7–12], differential evolution (DE)
and its variants [13, 14], particle swarm optimization (PSO) [15], population-based
incremental learning (PBIL) [16–19], and breeder genetic algorithms (BGA)
[11, 20–24] are efficient heuristic search methods that are capable of solving com-
plex optimization problems. They do not require the objective function to have
properties such as continuity, smoothness, and differentiability. They have many
advantages over traditional optimization methods and have attracted considerable
attention in recent years. Many of these methods have been applied to power
system damping controller design with encouraging results. In particular, GAs have
been extensively used to solve global optimization problems in academia and are
now being accepted by some industries [9]. DE, PBIL, and BGA are easy to imple-
ment yet efficient and robust in solving optimization problems. Therefore, they are
considered in this work.

GAs are biologically motivated adaptive systems based on natural selection and
genetics. GAs are generally used to solve optimization problems by the exploitation of
a random search [7, 8]. Although GAs are seen to be robust and powerful adaptive
search mechanisms, they have several drawbacks [9]. One of these drawbacks is
related to “genetic drift.” This phenomenon prevents GAs from maintaining diversity
in their population. Other issues include the nonexistence of theoretical guidance for
selecting optimal GA parameters such as population size, crossover, and mutation
rates. Moreover, the natural selection approach used by GAs is not immune from
failure [22]. Breeder genetic algorithm (BGA) has been proposed to cope with some of
these drawbacks. It applies almost the same ideas as in GA, except that it is based on
artificial selection as practiced in animal breeding rather than using natural selection
based on Darwinian evolution [23, 24]. Artificial selection (selective breeding) refers
to the intentional breeding for certain qualities or a combination of qualities [23]. This
is in contrast with the natural selection that is the process whereby organisms survive
and produce offspring by naturally adapting to their environment. Generally, indi-
viduals in BGA are represented as real numbers instead of binary or integers. The
main advantage of using BGA over GA is its simplicity in the selection method and the
fewer parameters. The major limitation of this algorithm is that there is a likelihood of

50

Genetic Algorithms

premature convergence that could lead BGA to converge to the local optimum rather
than the global one. To deal with the problem of premature convergence, an adaptive
mutation is used [23, 24]. In this case, the mutation rate is not fixed but varies
according to the convergence and performance of the population. This is the type of
BGA that will be discussed later in this chapter.

Population-based incremental learning (PBIL) is a combination of GA and com-
petitive learning. It extends the features of the evolutionary genetic algorithm (EGA)
through the reexamination of the performance of the GA in terms of competitive
learning [16–19]. It was originally proposed by Baluja [18, 19]. In PBIL, the crossover
operator is removed, and the role of the population is redefined. PBIL works on
probabilistic vectors (PVs), which control the random bit strings generated by PBIL.
The PVs are used to create other vectors through competitive learning. The PV is then
updated to increase the likelihood of producing solutions corresponding to the current
best individual. It has been shown that PBIL is simpler than GA and in many cases
performs better than GA and has less overhead [11, 16–19].

Differential evolution (DE) is a powerful stochastic optimizer whose search mech-
anism involves a differential mutation technique [12, 13, 25]. The algorithm is both
simple and robust, with several variants exhibiting different tradeoffs between
convergence speed and robustness. Most often DE outperforms its counterparts in
efficiency and robustness [12–14, 25].

This chapter discusses the optimal design of power system stabilizers (PSSs) using
four evolutionary algorithm (EAs) techniques, namely, genetic algorithms (GAs),
breeder genetic algorithm (BGA) with adaptive mutation, population-based incre-
mental learning (PBIL), and differential evolution (DE). For comparison purposes, the
conventional PSS (CPSS) is also included in this work. The performance and effec-
tiveness of the PSSs in damping the electromechanical modes are investigated using
both frequency-domain analysis and time-domain simulations. Simulation results
show that all the EA-based PSSs (GA-PSS, BGA-PSS, PBIL-PSS, and DE-PSS) perform
better than the CPSS for all the operating conditions considered. Frequency domain
simulation suggests that DE-PSS, PBIL-PSS, and BGA-PSS have similar performances
in terms of the damping ratios that they provided. Time-domain simulations however
suggest that overall, DE-PSS performs slightly better than PBIL-PSS and BGA-PSS in
terms of undershoot and subsequent swings, albeit with a slightly large 1st swing
overshoot. GA-PSS is shown to give the worst performance amount to the EAs. The
chapter is organized as follows: Sections 2–4 present the overview of BGA, PBIL, and
DE, respectively; Section 5 discusses the system model; Section 6 is concerned with the
objective function; Section 7 presents the design of the PSSs; Section 8 discusses the
simulation results; and the conclusions are presented in Section 9.

2. Overview of breeder genetic algorithm

As discussed previously, breeder genetic algorithm (BGA) is similar to genetic
algorithms (GAs), with the exception that it uses artificial selection and has fewer
genetic parameters. Also, BGA uses real-valued representation as opposed to GAs that
mainly use binary and sometimes floating or integer representation. BGA is a versatile
and effective function optimizer. It has the advantage of being simpler than GA. To
deal with the issue of premature convergence that is common with BGA, a modified
version of BGA called adaptive mutation BGA is used in this work [11, 20, 23]. In the
truncation selection method that has been adopted, the T% of the fittest individuals is

51

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

selected from the current population ofN individuals and goes through recombination
and mutation to form the next generation. The rest of the individuals are discarded. In
the truncation method, the fittest individual in the population is automatically part of
the next generation. The other top T%-1 goes through recombination and mutation to
form the rest of the individuals in the next generation. The process is repeated until an
optimal solution is obtained or the maximum number of iterations has been reached.

2.1 Recombination

Recombination is similar to a crossover in GAs. The adaptive mutation BGA pro-
posed in this work allows various possible recombination methods to be used, each of
them searching the space with a particular bias. Because we do not have prior knowl-
edge as to which bias is likely to suit the optimization task, it is better to include
several recombination methods and allow selection to do the elimination. Two
recombination methods were used in this work: volume and line recombination [11].

In volume recombination, a random vector ri equal to the parents’ length is
generated and the child ci is produced by the following expression:

ci ¼ riai þ 1� rið Þbi (1)

Where ci is a component of the child, ai and bi are the two respective parent
components, and ri is a random vector component.

The child can be said to be located at a point inside the hyper box defined by the
parents as shown in Figure 1.

In line recombination, a single uniformly random number r is generated between 0
and 1, and the child is obtained as shown below [23].

ci ¼ rai þ 1� rð Þbi (2)

Where ci, ai, and bi are defined as in Eq. (1).

2.2 Adaptive mutation

As mentioned before, one of the main concerns in GA has been the issue of
premature convergence. This issue is also encountered in the classical BGA. This
problem can be reduced in BGA by using an adaptive mutation [11, 21, 23]. The

Figure 1.
Volume recombination.

52

Genetic Algorithms

diversity in the population is preserved by adding small, normally distributed zero-
mean random numbers to each child before inserting it into the population. The
random numbers have a certain standard deviation R [18]. The value of R should be
selected carefully because it is critical in determining the convergence of the optimi-
zation. If the value of R is too small, the solution might result in premature conver-
gence, while a high value of R might be detrimental to the optimal convergence of the
algorithm [11, 23]. The adaptive mutation method proposed here allows us to deter-
mine the appropriate value of R. To achieve this, the population is divided into two
halves, P1 and P2. P1 is assigned a mutation rate of double R (2R), while P2 is assigned
a mutation rate of half R (R/2). The mutation rate R is adjusted depending on the
performance of each half of the population (P1 or P2). If P1 gives better and fitter
individuals, the mutation rate is increased by a certain percentage (10% in this case);
similarly, if P2 produces better and fitter individuals, then the mutation rate gets
reduced by a similar percentage. The pseudo code for BGA with adaptive learning can
be found in [11, 23].

3. Overview of population-based incremental learning algorithm

Population-based incremental learning (PBIL) is a combination of competitive
learning derived from artificial neural networks and genetic algorithms [18, 19].
There is no crossover operator in PBIL, instead, the probability vector is updated
using a solution with the highest fitness values [18]. The values of the probability
vector are initially set to 0.5 to ensure that the probability of generating 0 or 1 is
equal. As the search progresses, these values are moved away from 0.5, toward either
0.0 or 1.0.

3.1 Learning rate

Learning in PBIL is based on using the current probability distribution to create N
individuals. The probability vector is updated using the best individual so far, thereby
increasing the probability of producing solutions similar to the current best solutions.
Learning rate is required to update the probability vector. The selection of the learning
rate value should be made with care as it determines how fast or slow the prototype
vector is shifted toward the best individuals. A larger rate speeds up convergence, but
it reduces the function space to be searched, while a smaller rate will slow down the
convergence, even though it increases the exploration of a bigger search space,
thereby increasing the likelihood of better optimal solutions. The (positive) update
rule of the probability vector is given as:

PVi ¼ 1� LRð ÞPVi þ LRð ÞBi (3)

where PV is the probability vector, LR ∈ [0 1] is the learning rate, B is the best
solution, and i denotes each locus (i = 1, 2, … l) where l is the binary encoding length.

3.2 Mutation

Like in GA, the mutation is used in PBIL to maintain diversity in the population.
Mutation in PBIL can be performed in two ways: either on the sample solutions

53

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

generated or on the PV. In this study, the mutation is performed on the PV; a
forgetting factor is used to relax the probability vector toward a neutral value of 0.5
[11, 16, 17] as shown in the equation below.

PVi ¼ PVi � FF PVi � 0:5ð Þ (4)

where FF is the forgetting factor that was chosen to be 0.005.
The pseudo code for PBIL can be found in [17–19].

4. Overview of differential evolution

Differential evolution (DE) can be defined as a parallel direct search method that
uses a population of points to search for a global minimum or maximum of a function
over a wide search space [13]. It is a simple and efficient adaptive scheme for global
optimization over continuous space. DE is designed to efficiently solve non-
differentiable and nonlinear functions and yet retains its simplicity and good conver-
gence to a global optimum [12]. Similar to most EAs, DE explores the search space by
maintaining a population of candidate solutions and by using Darwinian evolution
theory to direct its search toward prospective areas. The candidates with better fitness
values survive and enter the next generation [12–14, 25]. The process continues until
the termination criterion is satisfied. It should be mentioned that DE has proved to be
one of the best among EAs. It was able to secure competitive rankings in CEC compe-
titions [25]. One of the main advantages of DE over GA is the mutation scheme and
the selection process. Unlike GAs where the best solutions are selected for the next
generation, in DE, all solutions have an equal chance of being selected as parents
independently of their fitness values.

4.1 Mutation

In the context of DE, “mutation” is defined as a process of taking a small random
sample of vectors from the current population and combining them algebraically to
form a new vector, which is referred to as a mutant vector [12, 13]. In the so-called
classical version of DE, the mutant vector is formed as follows:

Vi,g ¼ Xr1,g þ F Xr2,g � Xr3,g
� �

(5)

where i, r1, r2, and r3 are all distinct indices in the interval [1, Np]. The mutation
scale factor F is a positive real number between 0 and 2 that controls the rate at which
the population evolves [13]. The vector Xr1 is the base vector, while Xr2 � Xr3 is the
difference vector, g = 0, 1, … gmax are the generations and Np is the population.

The above process is repeated Np-times to constitute a mutant population. In the
classical version, each base vector is used only once per generation, in order to
preserve diversity in the population. The classical version described above is desig-
nated as “DE/rand/1” and is widely used, although it has the drawback of relatively
slow convergence [12]. Some alternative mutation strategies to the classical version
are given below [12–14, 25]:

DE/best/1: This strategy resembles DE/rand/1, except that all mutants use the best
vector in the current generation as the base vector:

54

Genetic Algorithms

Vi,g ¼ Xbest,g þ F Xr1,g � Xr2,g
� �

(6)

where Xr1 and Xr2 are distinct random vectors and Xbest is the best individual in the
current population.

This strategy has faster convergence than DE/rand/1, but often fails to reach the
global optimum [12].

DE/best/2: This strategy uses two mutation differences to create a mutant vector:

Vi,g ¼ Xbest,g þ F Xr1,g � Xr2,g
� �þ F Xr3,g � Xr4,g

� �
(7)

where Xr1,Xr2,Xr3, and Xr4 are distinct random vectors and Xbest is the best indi-
vidual in the current population. This strategy attempts to balance between conver-
gence speed and robustness. However, it may still converge to a local but non-global
optimum due to the fact that the base vector Xbest draws the population toward
itself [13].

DE/local-to-best/2: This strategy resembles DE/best/2 in that two mutation differ-
ences are used, but the base vector is randomly sampled and the “best” vector is used
in one of the scaled differences:

Vi,g ¼ Xr1,g þ F Xbest,g � Xr2,g
� �þ F Xr3,g � Xr4,g

� �
(8)

This approach has similar convergence properties to DE/best/2 [13].
DE/rand/2: This strategy samples 5 random vectors in the current generation to

form two random differences that are scaled and added to the base vector:

Vi,g ¼ Xr1,g þ F Xr2,g � Xr3,g
� �þ F Xr4,g � Xr5,g

� �
(9)

where, r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5. This approach converges more slowly but is very
robust [13].

DE/rand/2 has been used in this work due to our objective to appropriately tune
the PSS with optimal time constants values for a robust performance.

4.2 Crossover

In DE, “crossover” refers to the process of creating a new vector (called the trial
vector) by combining a mutant vector with a target vector [13]. The target vector for the
mutant vector Vi,g is Xi,g. The trial vector Ui ¼ u1,i, u2,i … , uD,i½ �, is then obtained as
follows:

uj,i,g ¼
vj,i,g if randj 0, 1ð Þ≤CR or j ¼ jrand

� �
, j ¼ 1, 2, … ,D

xj,i,g otherwise

(
(10)

where CR∈ 0, 1½ � is the crossover probability, and CR is the fraction of the parameter
values that are copied from the mutant vector, and 1-CR is the fraction of parameter
values copied from the trial vector. To determine whether the parameter to be copied
is from the mutant or trial vector, a uniformly-distributed random number, randj
between [0, 1] is generated and compared to the predefined value of CR. In addition, a
random index jrand ∈ 1,Np

� �
is chosen and the corresponding mutant parameter is

copied to ensure that the trial vector is not a duplicate of the target vector.

55

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

4.3 Selection

This process consists of choosing the individuals that will enter the next genera-
tion. DE employs a “one-to-one survivor selection,” which consists of comparing each
trial vector to its corresponding target vector. Mathematically, the vector Xi,g + 1 in the
g + 1’th generation is obtained from the trial vector Ui,g and target vector Xi,g as
follows in the case of a minimization problem:

Xi,gþ1 ¼
Ui,gif f Ui,g

� �
≤ f Xi,g

� �

Xi,g otherwise

(
(11)

This process ensures that the best vector at each index is retained. Furthermore,
this also guarantees that the very best-so-far solution is kept. Once the selection is
performed for all target vectors in the current generation g, the processes of mutation,
crossover, and selection are repeated with theNp vectors in the g + 1st generation. This
process is iterated until a termination criterion is satisfied.

5. System model

The power system considered in this paper is the two-area four-machine power
system as shown in Figure 2 [1]. Each machine is represented by the detailed six-
order differential equations. The machines are equipped with simple exciter systems
of first-order differential equations as given in the Appendix [11]. The system con-
sists of two similar areas connected by a tie-line. Each area consists of two coupled
conventional generator units, each generator is rated 900 MVA and 20 kV. The
generator parameters can be found in [1, 11]. The dynamics of the system are
described by a set of nonlinear differential equations. However, for the purpose of
controller design, these equations are linearized around the nominal operating condi-
tions. The linearized equation of the system is given by:

x ¼ Aoxþ Bou
y ¼ CoxþDou

(12)

Figure 2.
Two-area system model.

56

Genetic Algorithms

where, x is the state variable, y is the system output, and u is the control input. A0,
Bo, Co, and Do are constant matrices of appropriate dimensions.

Several operating conditions have been considered during the design stage of the
controller. However, only three operating conditions are listed in Table 1 for simplic-
ity. Case 1 is the nominal operating condition. At the nominal operating condition,
approximately 146 MW is transferred from area 1 to area 2 via the two tie lines, with
each line carrying half of the total power. Under these conditions, the load on bus 4
was 1137 MW, while the load on bus 14 was 1367 MW. Case 2 is the moderate load
condition, where about 409 MW of real power is transferred from area 1 to area 2. For
this case, the load on bus 4 was 967 MW, while the load on bus 14 was 1767 MW. case
3 is the heavy load condition (worst case scenario) where approximately 512 MW of
power is transferred from area 1 to area 2. For this case, the load on bus 4 was
876 MW, while the load on bus 14 was 1876 MW. It should be mentioned that the
system exhibits inter-area oscillatory modes due to the flow of power between the two
areas that causes the two areas to oscillate against each other. In addition, two local
area modes were also observed, one in each area. However, in this chapter, we will
concentrate only on the inter-area modes since they are the most critical and difficult
to control. Table 2 shows the open-loop eigenvalues of the inter-area modes. It can be
seen that without PSSs, the inter-area modes were stable but poorly damped for case
1, with a damping ratio of 0.011. However, the system became unstable for case 2 and
the instability became more pronounced for case 3 with damping ratios of �0.0057
and � 0.0130, respectively. This suggests that with the increase in active power
transfer between the two areas, the oscillations have now increased making the system
unstable. The frequency of oscillations of the inter-area modes ranges from 0.588 Hz
to 0.634 Hz.

Therefore, a supplementary controller known as a power system stabilizer (PSS)
will be required to damp the system’s oscillations. The block diagram of the PSS is
shown in Figure A.1 in the Appendix.

6. Objective function

The objective is to optimize the parameters of the PSSs simultaneously such that
the controllers can stabilize the system over a wide range of operating conditions. The
parameters that were to be optimized are K (gain of the PSS) as well as the lead-lag
time constants T1, T2, T3, and T4. The objective function used was to maximize the
lowest damped ratio over a wide range of operating conditions. This objective func-
tion was used for GA, BGA, PBIL, and DE. The objective function is given as:

Case Active power transfer
from area 1 to area 2

[MW]

Number of tie-line
between areas 1 and 2

Load’s active
power at bus 4

[MW]

Load’s active
power at bus 14

[MW]

1 146 2 1137 1367

2 409 2 967 1767

3 512 2 876 1876

Table 1.
Selected operating conditions.

57

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

val ¼ max min ςij
� �� �

(13)

where
i = 1,2, … n, j = 1, 2, … .m

ςij ¼
�σijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ij þ ω2

ij

q (14)

where ζij ¼ �σiffiffiffiffiffiffiffiffiffiffi
σ2iþω2

i

p j is the damping ratio of the ith eigenvalue of the jth operating

conditions. The number of the eigenvalues is n, and m is the number of operating
conditions. σij and ωij are the real part and the imaginary part (frequency) of the
eigenvalue, respectively.

7. Design of the PSSs

In total 10 PSSs parameters were optimized (i.e., 5 parameters for each area) for
generators 1–4. The parameters that were optimized are K, T1, T2, T3, and T4. The
washout time constant (Tw) was set at 10 seconds and was not optimized since Tw is
not critical to the design. The following parameter domain constraints were consid-
ered when designing the PSSs.

0<K≤ 20

0:001 Ti ≤ 5

where K and Ti (i = 1, 2, 3, 4) denote the controller gain and the lead–lag time
constants, respectively.

For comparison purposes, a CPSS was also designed using the phase compensation
technique. Details can be found in [1, 2].

7.1 Parameters of GAs, BGA, PBIL, and DE

The parameters used in the optimization for GAs, BGA, PBIL, and DE are shown in
Table 3.

An observation of the parameters given below inTable 3 shows that PBIL uses few
parameters. There is no crossover or selection in PBIL compared to BGA, GA, and DE. In
addition, 500 generations were used in the PBIL optimization to allow for adequate
learning to take placewithin the optimization. This is because PBIL thatworks by learning
from the previous best and trying to find the very best individual takes time to explore the

Case Inter-area mode Damping ratio (%) Frequency of oscillations (Hz)

1 �0.044 � j3.98 1.10 0.634

2 0.022 � j3.78 �0.57 0.602

3 0.048 � j3.69 �1.30 0.588

Table 2.
Open-loop eigenvalues of the inter-area modes for selected operating conditions.

58

Genetic Algorithms

search space. Another difference is theway inwhich the initial population is generated. In
GA, BGA, andDE, the initial population is selected randomly,while in PBIL the role of the
population is redefined using probability vectors (PV). It should bementioned that a
population size of 50was also tested in PBIL and it was found that it yielded similar results
to the population size of 100. However, in this work a population of 100was used.

7.2 Conventional PSS

The parameters of the conventional PSS (CPSS) were tuned at the nominal oper-
ating condition using the phase compensation method and trial and error approach.
Details of this approach can be found in [1–3].

8. Simulation results

8.1 Fitness values

Figures 3–6 show the fitness value (minimum damping ratio) of the system when
GA, BGA, PBIL, and DE are used in the optimization. The final value obtained from
the GA optimization is 0.1867 as compared to 0.205, 0.2095, and 0.227 for BGA, PBIL,
and DE, respectively. As discussed previously, GA and BGA were run for 120 gener-
ations, DE for 180 generations, while the PBIL was run for 500 generations. Since a
smaller population was used for DE, it was decided to increase its generations. The
reason for using 500 generations in PBIL is that it starts to settle only around 300
generations and therefore there is a need for a longer simulation period.

8.2 Eigenvalue analysis

Table 4 shows the inter-area modes for the system with the PSSs. It can be seen
that with the PSSs, the inter-area modes are very well damped as compared to the
open-loop system in Table 2. CPSS performs adequately for the nominal operating
condition. The damping ratios provided by the CPSS under the three cases 1, 2, and 3,
are 0.1666, 0.1442, and 0.1339, respectively. BGA-PSS provides a damping ratio of
0.2321, 0.2393, and 0.2412 for cases 1, 2, and 3, respectively. On the other hand, the

Parameters GA BGA PBIL DE

Population 100 100 100 50

Generation 120 120 500 180

Selection Normal
geometric

Truncation selection — Greedy

Crossover/
Recombination

Arithmetic Line and volume — Binomial
(CR: 0.95)

Mutation Nonuniform Adaptive random (initial
Rnom: 0.01)

Forgetting Factor
(FF:0.005)

DE/rand/2
(F: 0.95)

Learning rate (LR) — — 0.1 —

Table 3.
Parameters used in GA, BGA, PBIL, and DE.

59

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

PBIL-PSS and DE-PSS provide a damping ratio of 0.2341 and 0.2377, respectively, for
case 1; 0.2387 and 0.2321, respectively, for case 2; 0.2385 and 0.23, respectively, for
case 3.

It is observed that PBIL-PSS, DE-PSS, and BGA-PSS provide similar damping
ratios to the system for operating condition considered. In case 1, DE provides the best
damping ratio, whereas BGA provides the best damping ratios for cases 2 and 3.
Among the evolutionary algorithm-based PSSs, GA-PSS provides the lowest damping
ratios of 0.2029, 0.2013, and 0.1993 for cases 1, 2, and 3, respectively.

Figure 7 shows the spread of the eigenvalues for the system equipped with the
different PSSs. CPSS is the lowest compared to the damping provided by all the other
EA-based PSSs. It is observed that among the EA-based PSSs, GA-PSS provides the
least damping. The damping provided by the PBIL-PSS, BGA-PSS, and DE-PSS is very
similar and higher than that provided by GA-PSS.

Figure 3.
Fitness value curve from the GA optimization.

Figure 4.
Fitness value curve from the BGA optimization.

60

Genetic Algorithms

8.3 Small disturbance

To investigate the performance of the PSSs under small disturbance, a small dis-
turbance of 5% step response is applied to the reference voltage of generator 2 in area
1. The responses of the active power output of generators 2 and 3 are are shown in

Figure 5.
Fitness value curve from the PBIL optimization.

Figure 6.
Fitness value curve from DE optimization.

Case CPSS GA-PSS BGA-PSS PBIL-PSS DE-PSS

1 �0.62 � j3.67
(0.1666)

�0.80 � j3.86
(0.2029)

�0.89 � j3.73
(0.2321)

�0.91 � j3.78
(0.2341)

�0.94 � j3.84
(0.2377)

2 �0.50 � j3.43
(0.1442)

�0.75 � j3.65
(0.2013)

�0. 86 � j3.49
(0.2393)

�0.87 � j3.54
(0.2387)

�0.89 � j3.73
(0.2321)

3 �0.45 � j3.33
(0.1339)

�0.72 � j3.54
(0.1993)

�0. 84 � j3.38
(0.2412)

�0.84 � j3.42
(0.2385)

�0.87 � j3.68
(0.2300)

Table 4.
Inter-area modes and the respective damping ratios in brackets.

61

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

Figures 8–13 for cases 1, 2, and 3, respectively. It can be seen that the system is well-
damped across all three operating conditions when it is equipped with DE-PSS, BGA-
PSS, GA-PSS, and PBIL-PSS. The CPSS is seen to give the worst performance.

Figures 8 and 9 show the active power output responses of generators 2 and 3,
respectively, for case 1. The system equipped with GA-PSS, BGA-PSS, DE-PSS, and

Figure 7.
Spread of the eigenvalues for the different PSSs-nominal condition.

Figure 8.
Response of G2 under the 5% step change in Vref of G2 – Case 1.

62

Genetic Algorithms

PBIL-PSS has a similar settling time of approximately 4 sec., whereas the system
equipped with CPSS has a longer settling time of around 6 sec. DE-PSS is seen to give
the best performance in terms of undershoot and the amplitude of subsequent swings,

Figure 9.
Response of G3 under the 5% step change in Vref of G2 – Case 1.

Figure 10.
Response of G2 under the 5% step change in Vref of G2 – Case 2.

63

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

albeit with a relatively large 1st swing overshoot as seen in Figure 8. It is observed that
DE-PSS gives a large 1st swing overshoot in Figure 8. The relatively large 1st swing
overshoot can be attributed to the high gain of the controller. Note that DE-PSS’s gain
has almost reached the allowable maximum value [20]. The performance of BGA-PSS
is comparable to that of PBIL-PSS. Compared with other EA-based PSS, GA-PSS gives
the worst performance. However, it performed better than the CPSS. In Figure 9,
BGA-PSS is seen to give a slightly high 1st swing overshoot but the subsequent swings
are well-damped. Overall, CPSS is seen to give the worst performance.

Figures 10 and 11 show the active power responses of generators 2 and 3, respec-
tively, for case 2. It can be seen that the CPSS has a longer settling time of around
7 sec. Compared to a settling time of around 4 sec. for the EA-based PSSs. This
suggests that the oscillations have increased in case 2 compared to case 1. The EA-
based PSSs are able to damp the oscillations adequately when compared to the CPSS.
In terms of undershoot and subsequent swings, DE-PSS is seen to give the best
responses albeit with a relatively large 1st swing overshoot as seen in Figure 10. The
performances of BGA-PSS and PBIL-PSS are similar. Overall, CPSS gives the worst
performance followed by GA-PSS.

Figures 12 and 13 show the active power responses of generators 2 and 3, respec-
tively, for case 3. It can be seen that the system response is similar to case 2 except that
the oscillations have now increased as can be seen in the system’s responses. The
system equipped with the CPSS settled around 10 sec. (see Figure 13). It can be seen
that the performance of the CPSS has now deteriorated significantly. On the other
hand, the performances of GA-PSS, BGA-PSS, PBIL-PSS, and DE-PSS have deterio-
rated only slightly. This means that the EA-based PSSs are more robust. In terms of
settling time, the EA-based PSSs have similar settling times of approximately 6.5 sec.,
which is comparable to case 2. Although DE-PSS has a larger 1st swing overshoot as
seen in Figure 12, it gave the best responses in terms of undershoot and subsequent
swing amplitudes, followed by BGA-PSS and PBIL-PSS. The performance of GA-PSS
although better than that of CPSS is not as good as the other EA-based PSS.

Figure 11.
Response of G3 under the 5% step change in Vref of G2 – Case 2.

64

Genetic Algorithms

8.4 Large disturbance

A large disturbance was considered by applying a three-phase fault to the system at
bus 3. The fault was cleared by removing one of the transmission lines between bus 3
and bus 13. The fault was applied for 0.1 seconds. After the fault was cleared, the faulted
line was removed and the system settled to a different operating condition with only
one tie line transmitting power from area 1 to area 2. This means the system is weaker
after the fault was cleared compared to its state before the fault. Figures 14 and 15 show

Figure 12.
Response of G2 under the 5% step change in Vref of G2 – Case 3.

Figure 13.
Response of G3 under the 5% step change in Vref of G2 – Case 3.

65

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

the electric power output for generator 3 for case 1 and case 2, respectively. The
responses for case 3 are not shown because the system was unable to survive this large
disturbance after the fault was removed. It can be seen from Figure 14 (case 1) that the
output power of generator 3 has a high overshoot in the first swing after the fault was
cleared but settled down quickly after a few seconds, with all the PSSs providing
adequate damping to stabilize the system. However, when the power that was trans-
ferred from area 1 to area 2 increased,the CPSS was unable to maintain the stability of
the system as seen in Figure 15 (case 2). On the other hand, all the EA-based PSSs were
able to stabilize the system, which suggests that they are more robust than the CPSS.

Figure 14.
Electric power output of generator 3 following a three-phase fault on bus 3 for case 1.

Figure 15.
Electric power output of generator 3 following a three-phase fault on bus 3 for case 2.

66

Genetic Algorithms

9. Conclusions

An optimal PSS design for small signal stability improvement of a multi-machine
power system using four evolutionary algorithms (GA, BGA, PBIL, and DE) has been
presented. Frequency-domain and time-domain simulations have been presented to
show the effectiveness of the EA-based PSSs in damping low-frequency oscillations. It
is shown that in the frequency domain, the performances of BGA-PSS, PBIL-PSS, and
DE-PSS are comparable and better than that of the GA-PSS for all cases investigated.
However, time-domain simulations show that DE-PSS performs better than BGA-PSS
and PBIL-PSS in terms of undershoot and subsequent swings albeit with a relatively
large 1st swing overshoot. This overshoot could be attributed to the high gain of the
controller. One way to deal with this overshoot is to reduce the gain of the controller;
however, this could also affect the damping. GA-PSS is shown to give the worst
performance among the EA-based PSSs, but it performed better than the CPSS. In
designing the PBIL-PSS, more generations were required compared to GA-PSS, BGA-
PSS, and DE-PSS. Since PBIL works by learning from the previous best individual, it
takes time for the algorithm to explore the search space. Compared to the EA-based
PSS, the CPSS that was designed using the conventional method has been shown to
perform poorly and is not robust. Further research will be done in the direction of
improving the EAs algorithms by self-adapting the genetic parameters and using
multi-objective functions in the optimization.

Acknowledgements

This research was funded in part by the National Research Foundation (NRF) of
South Africa, Grant UID 118550.

Appendix

Generator and automatic voltage regulator (AVR) equations

d
dt

Efd ¼ KA

TA
Vref � Vt
� �� Efd

TA

where KA and TA are the gain and time constant of the AVR. Vt is the terminal
voltage of the generator. In this work, KA = 200 and TA = 0.05 sec.

PSS block diagram

where K is the gain of the PSS, T1 to T4 are lead/lag time constants, and Tw is the
washout time constant. T1 and T2 form the first lead/lag block, while T3 and T4 form
the second lead/lag block of the PSS.

67

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

Author details

Komla Agbenyo Folly*, Severus Panduleni Sheetekela and Tshina Fa Mulumba
University of Cape Town, South Africa

*Address all correspondence to: komla.folly@uct.ac.za

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

Figure A.1.
PSS block diagram.

68

Genetic Algorithms

References

[1] Kundur P. Power System Stability and
Control. USA: Prentice-Hall; 1994

[2] Klein M, Rogers GJ, Kundur P. A
fundamental study of inter-area
oscillations in power systems. IEEE
Transactions on Power Systems. 1991;
6(3):914-921

[3] Chen L. A Novel Method for Power
System Stabilizer Design. Cape Town,
South Africa: University of Cape Town;
2003

[4] Du W, Dong W, Wang Y, Wang H. A
method to design power system
stabilizers in a multi-machine power
system based on single-machine infinite-
bus model. IEEE Transaction on Power
Systems. 2021;36(4):3475-3486. DOI:
10.1109/TPWRS.2020.3041037

[5] Chow JH, Sanchez-Gasca JJ. Power
system stabilizers. In: Power System
Modeling, Computation and Control.
2020. pp. 265-294. DOI: 10.1002/
9781119546924.ch10

[6] Folly KA, Yorino N, Sasaki H.
Improving the robustness of H∞-PSSs
using the polynomial approach. IEEE
Transactions on Power Systems. 1998;
13(4):1359-1364

[7] Holland JH. Adaptation in Nature and
Artificial Systems. Ann Arbor:
University of Michigan Press; 1975

[8] Goldberg DE. Genetic Algorithms in
Search, Optimization & Machine
Learning. USA: Addison-Wesley; 1989

[9] Mitchell M. An Introduction
to Genetic Algorithms. Cambridge
MA, United States: The MIT Press;
1996

[10] Alkhatib H, Duveau J. Robust design
of power system stabilizers using

adaptive genetic algorithms. In:
Proceeding of the Word Academy of
Science, Engineering, and Technology.
2010. pp. 267-272

[11] Sheetekela S. Design of Power System
Stabilizer using Evolutionary Algorithms.
Cape Town, South Africa: University of
Cape Town; 2010

[12] Mulumba TF, Folly KA. Application
of evolutionary algorithms to power
system stabilizer design. In: Subair S,
Thron C, editors. Implementation and
Application of Machine Learning.
Studies in Computational Intelligent (SC
782). 2020. pp. 29-62

[13] Price K, Storn R, Lampinen J.
Differential Evolution—A Practical
Approach to Global Optimization.
Berlin, Germany: Springer; 2005

[14] Ahmad MF, Isa NAM, Lim WH,
Ang KM. Differential evolution: A recent
review based on state-of-the-art works.
Alexandria England Journal. 2022;61:
3831-3872

[15] Verdejo H, Pino V, Kliemann W,
Becker C, Delpiano J. Implementation of
particle swarm optimization (PSO)
algorithm for tuning power system
stabilizers in multi-machine electric
power systems. Energies. 2020;13(8):
2093. DOI: 10.3390/en13082093

[16] Folly KA. Performance of power
system stabilizers based on population-
based incremental learning (PBIL)
algorithm. International Journal of
Electrical Power and Energy System.
2011;33(7):1279-1287

[17] Folly KA. Parallel PBIL applied to
power system controller design. Journal
of Artificial Intelligence and Soft

69

Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based…
DOI: http://dx.doi.org/10.5772/intechopen.105591

Computing Research. 2013;3(3):
215-223. DOI: 10.2478/jaiscr-
2014-0015

[18] Baluja S. Population-Based
Incremental Learning: A method for
integrating Genetic Search Based
Function Optimization and Competitive
Learning. Technical Report CMU-CS-
49-163, 1994

[19] Baluja S, Caruana R. Removing the
genetics from the standard genetic
algorithm. In: Proceedings of the
12th International Conference on
Machine Learning, Lake Tahoe,
CA; 1995

[20] Sheetekela S, Folly KA.
Multimachine power system stabilizer
design based on evolutionary algorithm.
In: Proceedings of the 44th International
Universities’ Power Engineering
Conference. 2009

[21] Sheetekela S, Folly KA.: Breeder
genetic algorithm for power system
stabilizer design. In: Proceedings of 2010
IEEE Congress on Evolutionary
Computation (CEC), Barcelona, Spain;
2010

[22] Mühlenbein H, Schlierkamp-Voosen
D. Predictive models for the Breeder
Genetic Algorithm, I. continuous
parameter optimization. Evolutionary
Computation. 1993;1(1):25-49

[23] Greene J. The Basic Idea behind the
Breeder Genetic Algorithm. Cape Town,
South Africa: University of Cape Town;
2005

[24] Folly KA, Sheetekela SP. Optimal
design of power system controller using
breeder genetic algorithm. In: Gao S,
editor. Bio-Inspired Computational
Algorithms and Their Applications.
InTech-open science; 2012. pp. 303-316.
DOI: 10.5772/38447

[25] Das S, Suganthan PN. Differential
evolution: A survey of the state-of-the-
art. IEEE Transaction on Evolutionary.
Computation. 2011;15(1):4-31

70

Genetic Algorithms

Chapter 4

ADDC: Automatic Design of Digital
Circuit
Conor Ryan, Michael Tetteh, Jack McEllin, Douglas Mota-Dias,
Richard Conway and Enrique Naredo

Abstract

Digital circuits are one of the most important enabling technologies in the world
today. Powerful tools, such as Hardware Description Languages (HDLs) have evolved
over the past number of decades to allow designers to operate at high levels of
abstraction and expressiveness, rather than at the gate level, which circuits are actu-
ally constructed from. Similarly, highly accurate digital circuit simulators permit
designers to test their circuits before committing them to silicon. This is still a highly
complex and generally manual task, however, with complex circuits taking months or
even years to go from planning to silicon. We show how Grammatical Evolution (GE)
can harness the standard tools of silicon design and be used to create a fully automatic
circuit design system. Specifically, we use a HDL known as SystemVerilog and Icarus,
a free, but powerful simulator, to generate circuits from high level descriptions. We
apply our system to several well known digital circuit literature benchmarks and
demonstrate that GE can successfully evolve functional circuits, including several
which have been subsequently rendered in Field Programmable Gate Arrays (FPGAs).

Keywords: digital design, VLSI design, microelectronics design, evolvable hardware,
HDL, verilog, grammatical evolution

1. Introduction

This chapter describes the application of Evolutionary Computation to the task of
digital circuit design. Although many Electronic Design Automation (EDA) tools exist
to aid designers, digital circuit design remains a time consuming and expensive task
that requires skilled engineers.

The cost of errors in silicon is enormous and this has led to extremely powerful and
accurate simulators that designers use to verify their designs before committing them
to silicon. These simulators provide a huge opportunity for Evolutionary Computation
as they can be used to test individuals.

This chapter gives an overview about how digital integrated circuits are designed
and how the tools used to develop them have evolved over the past few decades. These
tools, when linked together with GE produce a system we call the Automatic Design of
Digital Circuits (ADDC), which can evolve circuits using massive levels of abstraction
rather than simple logic gates.

71

We demonstrate the system on three real-world problems, including one with 220

test cases, showing that ADDC successfully evolves solutions in all cases.

2. Background

Digital circuit design began in the 1960’s with the arrival of semiconductor tran-
sistor based circuits and the Integrated Circuit (IC). Up until the 2010’s, Moore’s Law
has successfully predicted the shrinking in size of manufacturing technologies
allowing for lower cost, faster speeds and lower power consumption. However in the
last decade, this shrinking has slowed due to the difficulties involved in the fabrication
process. Integrated circuits are extremely common in many products today and their
use is not always obvious.

Integrated circuits come in three different varieties; Digital, Analogue or Mixed-
Signal. Digital integrated circuits process digital information, often represented using
bits, bytes or words. Many of these circuits employ the use of one or more processors
(often referred to as a core) with support logic, memories and I/O interfaces. The
microprocessor is a famous example of a digital circuit. Analogue integrated circuits
are used for handling continuous-time signals and to perform operations such as
amplification, analogue filtering and power management. Mixed-Signal integrated
circuits contain both analogue and digital circuitry in the same package and use ADC
(Analogue to Digital Converters) and DACs (Digital to Analogue Converters) to share
information between both domains.

In modern circuit design, signal processing tends to be performed in the digital
domain instead of the analogue domain. This is due to the reliability of digital circuitry
and the existence of advanced digital algorithms with performance that cannot be
obtained with analog circuitry alone [1]. This move towards using digital designs for
signal processing has required the use of circuit representations like Hardware
Description Languages (HDLs) to be used to describe these extremely complex cir-
cuits. New devices such as Complex Programmable Logic Devices (CPLDs) and Field
Programmable Gate Arrays (FPGAs) are increasingly being used due to their ability to
replicate the behaviour of these circuits without requiring the fabrication of new
chips. The following sections will go more in-depth into HDLs, the differences
between CPLD and FPGA devices and an overview of the Digital Design Flow.

2.1 Hardware description languages

The first modern HDL, Very High Speed Integrated Circuit Hardware Description
Language (VHSIC-HDL), more commonly known as VHDL, was created in 1983.
VHDL was developed for the US Department of Defense as part of the VHSIC project.
The project was launched in 1980 [2], while the first version of VHDL was launched in
1983 by Intermetrics Inc., Texas Instruments and IBM [3, 4]. VHDL is a verbose and
strongly-typed language. It grew steadily in popularity, resulting in both logic simu-
lators and logic synthesis tools being developed for it. IEEE Standard VHDL was
standardised in 1986 [5] with the adoption of VHDL version 7.2 and was finalised in
1987 in the IEEE Standard 1076-1987 [5]. VHDL would become the first HDL language
that would gain widespread adoption, and is still in use today.

Another modern HDL developed around this time was Verilog, created by Phil
Moorby in 1983 [6] while working for Gateway Design Automation, who were

72

Genetic Algorithms

acquired by Cadence Design Systems in 1989 [7]. In comparison to VHDL, Verilog is less
verbose and is a weakly-typed language. Originally it was designed only for logic simula-
tion, but later had logic synthesis features added after the language gained widespread
popularity. Verilog-XL, a Verilog simulator owned by Cadence, became the de facto
Verilog simulator throughout the 1990’s. Due to the increasing popularity of VHDL,
Cadence created the the Open Verilog International (OVI, now known as Accellera)
organisation and transferred the rights of Verilog into the public domain [8]. Verilog was
eventually standardised in IEEE Standard 1364-1995 [6]. Verilog would be superseded by
SystemVerilog in IEEE Standard 1800-2005 [9], adding features for design verification.
SystemVerilog is more popular than VHDL today due to the language being less verbose
and having a similar structure to the C programming language. Table 1 provides a
comparision between VHDL and SystemVerilog hardware description languages.

With the introduction of Hardware Description Languages for digital circuit
design, two discrete time based simulation methods came into prominence. Both
cycle-driven and event-driven simulation methods were orders of magnitude faster
than the traditional continuous time based simulation method “SPICE”. One limita-
tion of the cycle-driven simulation method is that the output is only updated on each
clock edge This means it can only be used for synchronous digital designs, but is much
faster than event-driven simulation. It also cannot detect glitches and doesn’t take the
timing of the design into consideration.

Event-driven simulation updates the output on any input event meaning it can be
used for both synchronous and asynchronous designs. Although still quicker than
SPICE methods, it is much slower than cycle-driven simulation. Modern circuit
designs utilise techniques such as clock and power gating, allowing parts of a design to
be “turned off”. This can help reduce the simulation time of an event-driven simula-
tion, bringing it closer to cycle-driven simulation while providing a more accurate
simulation. Table 2 provides a comparison between cycle-driven and event-driven
simulation methods. Practically all commercial and open-source simulation tools
today utilise one of these methods.

2.2 CPLD vs FPGA devices

As digital designs grew in complexity, early Programmable Logic Devices (PLD)
such as Programmable Array Logic (PAL) became obsolete as they could only repli-
cate the behaviour of a few hundred logic gates. To address this shortcoming, PALs
were soon replaced by Complex Programmable Logic Devices (CPLD). Modern
CPLDs are able to replicate the behaviour of hundreds of thousands of logic gates.

VHDL SystemVerilog

Standardised in 1987 Standardised in 1995 (Verilog) and 2005
(SystemVerilog)

More Verbose Less Verbose

ADA-like C-like

Case Insensitive Case Sensitive

Support for Digital, Analog and Mixed-Signal
Designs

Support for Digital Designs only

Table 1.
A comparison between VHDL and verilog hardware description languages.

73

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

One advantage of CPLD devices is that they use non-volatile memory to store their
configuration. As a result, their logic is already configured at power-up. This makes
them ideal devices for systems where the logic is required to be ready for initialisation,
such as glue logic for circuits.

Figure 1 shows the internal structure of a CPLD. These logic blocks consist of
programmable PAL blocks. The inputs can be connected together to different AND
gates using programmable fuses. The OR gate connections are fixed and cannot be
reconfigured. Although less configurable than a PLA (which contains both program-
mable AND and OR planes), this reduction in complexity makes PAL blocks cheaper
to manufacture. In order for PAL blocks to be able to implement sequential designs, a
D flip-flop can be used to store the state of the output. CPLDs can connect multiple
logic blocks together using the programmable interconnection matrix in order to
implement more complex designs.

While CPLD devices are still used for specific tasks, the most common PLD in use
today is the Field Programmable Gate Array (FPGA). These devices are quite similar
in structure to the mask-programmed gate array (MPGA) [10] which was one of the
first commercial programmable PLDs available. One benefit of using FPGAs is that
they can be electronically reconfigured, whereas the previous MPGAs configuration
was specified at the time of manufacture. The first FPGA, the Xilinx XC2064 was
invented by Ross Freeman and Bernard Vonderschmitt in 1985 [11]. Early FPGAs
were mainly used in the telecommunications and networking sectors as they were
often cheaper than manufacturing custom silicon for these tasks.

Cycle-driven simulation Event-driven simulation

Evaluation every clock cycle Evaluation at minimum time-step or greater

Synchronous Designs only Synchronous and Asynchronous Designs

Behavioural Simulation only Behavioural, Functional and Timing Simulations

Faster Simulation Speed Slower Simulation Speed

Table 2.
A comparison between cycle-driven simulation and event-driven simulation.

Figure 1.
Structure of a Complex Programmable Logic Device (CPLD) and Programmable Array Logic (PAL) block. The
programmable AND plane and the fixed OR plane are shown on the right.

74

Genetic Algorithms

Figure 2 shows the internal structure of the FPGA. Similarities can be seen between
FPGA and CPLD devices where a programmable interconnect is used to connect pro-
grammable logic blocks. In an FPGA, the Configurable Logic Blocks (CLB) consist of
Look Up Tables (LUTs). The output of these programmable memories are defined by
their input signals. The multiplexer then selects either the output of the LUT or the D flip
flop to allow for combinational or sequential logic, similar to PAL blocks in CPLDs. These
blocks can then be connected together using the Switching Blocks (SB). Modern FPGAs
are able to replicate the behaviour of tens of millions of logic gates and contain logic like
RAM and multipliers. Today, they are often used in high-performance computing appli-
cations due to their performance and efficiency over processor-based algorithms.

2.3 Digital design flow

In digital design, it is often not practical to use gate-level descriptions. Instead, a
representation called Register Transfer Level (RTL) is used. RTL allows for a high-
level model of the design to be represented without having to think about the low-
level logic structures required to implement the functionality [12]. This abstraction
uses constructs like logic statements, arithmetic operations and control flow. Similar-
ities can be drawn between programming using mnemonics in Assembly Language
compared to functional programming in C. Using RTL allows the designer to focus on
the functionality of the design rather than on the implementation. Figure 3 presents
the different stages a digital design must goes through in order to convert a RTL
representation into an implementable design.

When a high level language is used for programming, the code written by the pro-
grammer must first go through a process called compilation before the code is executed.
Similarly with digital hardware, a design specified using RTL (often using a HDL like
VHDL or SystemVerilog) must go through a process called logic synthesis. This process
analyses the given RTL and converts it into a set of primitives that is functionally
equivalent. Primitives are the basic building blocks of any logic design and consists of
both combinational and sequential blocks. Examples include boolean logic (NOT/AND/
OR/XOR etc.), multiplexers and flip-flops. This output is stored in a file called a net-list,
which contains a list of all the primitive blocks and the nets that connect them together.

Figure 2.
Structure of a Field Programmable Gate Array (FPGA). The Complex Logic Block (CLB) consists of a
programmable memory called a Look Up Table (LUT), a D flip flop to store state and a multiplexer to select the
output signal. The programmable Switching Block (SB) is used to connect the CLBs together.

75

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

The net-list generated from the logic synthesis is not optimized and must go
through a process known as logic minimization. There can be many parameters to
optimize for, such as area usage, power consumption and timing delay. There are
many different methods that can be used to perform this optimization. Some early
algorithmic methods include Karnaugh maps [13] and the Quine–McCluskey algo-
rithm [14]. However as designs have become increasing complex, these algorithmic
methods are not computationally feasible. This has lead to the use of heuristic opti-
mizers such as ESPRESSO [15] and BOOM [16]. When using heuristic optimizers, it
cannot be guaranteed that the minimized design is the global minimum. However in
practice, these methods are sufficient and are widely used in logic synthesis tools
today.

Following the logic minimization process, the optimized net-list is in an interme-
diate representation. A process called Technology Mapping must be performed before
the design can be implemented in silicon or on a PLD. For silicon, this intermediate
representation is compared against a library of available “building blocks” called leaf-
level cells. The mapper then selects and connects these leaf-level cells, rebuilding the
circuit. Further optimization may be performed here as the available leaf cells may be
able to replace multiple blocks in the intermediate representation. For PLDs, the
process is similar. The PAL blocks in CPLDs and the LUTs in FPGAs can be configured
to replace one or multiple blocks. These are then connected together using the pro-
grammable interconnects. In comparison to logic minimization, the optimizations
performed here are much simpler. After the technology mapping process is complete,
the designer now has an implementable design. This is often in the GDSII/OASIS
format for silicon manufacturing and in a bitstream format for PLDs. The top EDA
companies for ASIC digital design tools include Cadence Design Systems, Siemens and
Synopsys, with Xilinx and Intel providing FPGA tools.

2.4 Grammatical evolution and circuit design

Grammatical Evolution (GE), the tool used in this chapter and described in detail
in the next section, has been used to evolve Verilog circuits, such as the one-bit adder
and D-type latch at the gate level [17]. Notably, the one-bit adder is frequently used as
a case study to evolve combinational circuits at the gate-level through GE [18–20].
However, gate-level evolution is less likely to scale to highly complex circuits from
scratch [21]. In response to scalability issues inherent in gate level evolution, [22]

Figure 3.
A flowchart showing the different stages of the logic synthesis/digital design process.

76

Genetic Algorithms

proposed functional level evolution through Genetic Algorithms, which uses higher-
level functions such as multiplexers, adders, subtractors instead of primitive gates to
help reduce the search space. Similarly, [23] evolved a 3-bit multiplier using only
binary multiplexers. 9- and 25-Median approximate circuits have also been designed
at the functional level through Cartesian GP [24]. We address the scalability concern
by performing circuit evolution through GE at a more abstract level – RTL modeling,
where the focus is on describing the circuit’s behavior [25, 26].

3. Grammatical evolution

Biological evolution has been a source of inspiration for many techniques that formed
the field of evolutionary computation (EC), and has been used to address a wide range of
problem domains ranging from the small to the huge, solving molecular to astronomical
related problems. One of the most successful evolutionary techniques is GP, introduced
by John R. Koza in his book “Genetic Programming—On the programming of Computers
by Means of Natural Selection” [27], which mimics natural selection in an iterative way
to find an optimal (best) solution. Algorithm 1 details the steps required to implement a
standard GP. A survey of the different GP techniques current available in the literature is
out of the scope of this work, the interested reader can find in [28] a comprehensive
review of various aspects and techniques of GP and their categorization.

Grammatical evolution (GE) is an evolutionary computation and, more specifi-
cally, a genetic programming (GP) technique [29] that addresses the closure issue of
Koza-style GP, which effectively confines GP to single-type problems. This is
achieved through the use of a grammar, generally in Backus-Naur Form (BNF)
[29, 30], or Attribute Grammar (AG) [31–34].

The GE system shown in Figure 4 automatically generates programs using three
main components: (i) grammar; (ii) cost function; and (iii) search engine. The gram-
mar describes the program’s syntax, the cost function evaluates the quality of each
program, and the search engine, typically a GA, searches within the program space
defined by the grammar.

In GE, a typical representation for an individual is a binary string grouped into
codons (e.g. 8 bits). The linear representation of the genome allows the application of
genetic operators such as crossover and mutation in the manner of a typical GA,
unlike tree-based GP.

77

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

3.1 Initialisation

In GP, the standard initialisation is the ramped-half-and-half (RHH) technique,
introduced in [27]. In order to ensure diversity in the population, GP individuals
typically represented as trees are created with different depths. The RHH technique
uses two methods to create a tree: full and grow. Typically there is a probability of 0.5
to select either method for a particular individual. The full method creates trees with
full branches at the maximum specified depth, whereas the grow method creates trees
with different length of branches and different depth size up to the maximum
allowed.

Sensible Initialisation is an adaptation of ramped-half-and-half initialisation routine
in GP [35]. SI requires the grammar to labelled— whether a production rule is recur-
sive or non-recursive and the minimum derivation tree depth to fully expand a
production rule. SI requires a maximum tree depth to be specified prior. Similar to
ramped-half-and-half in GP, SI applies both the grow and full method. When apply-
ing the grow method any production can be selected while the full method chooses
only recursive productions. Both grow and full methods are subject to the constraints
of not exceeding the maximum specified tree depth and the availability of enough tree
depth budget to fully expand all non-terminals to terminals.

3.2 GE operators

Generally, GE uses a one-point crossover as it has been shown to be effective [36].
In crossover, two individuals are selected as parents and a single crossover point
within each parent’s genome is randomly chosen, dividing the genome into two halves:
left and right sub-genomes. The right sub-genomes of both parents are swapped to
create two offspring. However, crossover points that lie within non-coding regions
(unused codon(s) from the mapping step) may not be so useful. As a result, a variant
of one-point crossover known as effective crossover, which constrains the selection of
the crossover point to be within the effective length of an individual’s genome is
preferred. Point mutation is a commonly used mutation operator in GE. Each bit
within the binary string genome is mutated or flipped using the specified mutation
probability. However, neutral mutations can occur whereby mutated codons select the
same productions as the original codon; as a result, the corresponding phenotype
remains the same.

Figure 4.
The GE system uses a search engine (typically a GA) to generate solutions for a given problem, by recombining the
genetic material (genotype) and mapped onto programs (phenotype) according to a language specification
(interpreter/compiler).

78

Genetic Algorithms

3.3 GE example

To illustrate the application of GE, we first explain the evolutionary process using a
mathematical optimisation problem as study case.

GE begins with the start symbol of the grammar, then the codons are used to select
and apply the grammar production rules to finally build a program. This mapping
process is illustrated in Figure 5 with a simple example, where the production rules in
the grammar contains a set of user-defined functions: max a, bð Þ, min a, bð Þ,
addition a, bð Þ, subtraction a, bð Þ, multiplication a, bð Þ, division a, bð Þ, const, and X, which
is a value (or a vector) sampled from the independent variable.

The production rules for each non-terminal are indexed starting from 0 and, when
selecting a production rule (starting with the left-most non-terminal of the developing
program) the next codon value in the genome is read and interpreted using the
formula: p ¼ c % r, where c represents the current codon value, % represents the
modulus operator, and r is the number of production rules for the left-most non-
terminal.

Figure 5.
Example of a GE genotype-phenotype mapping process for the Iris dataset, where the binary genotype is grouped
into codons (e.g. 8 bits; red & blue), transcribed into an integer string, then used to select production rules from a
predefined grammar (BNF-Grammar), and finally translated into a sequence of rules to build a solution
(phenotype).

79

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

To prevent reaching the end of the genome without consuming all the available
codons, then a wrapping process is used to continuing reading from the beginning of
the genome. This mapping process stops when all of the non-terminal symbols have
been replaced, in order to get a valid program. An exemption to this process is in the
case when it fails to replace all of the non-terminal symbols after a maximum number
of iterations, then it is considered an invalid individual and it is penalized with the
lowest possible fitness.

4. ADDC

ADDC is an evolutionary HDL circuit design framework mainly driven by GE.
ADDC requires a grammar and a testbench as inputs for circuit evolution and verifi-
cation respectively. The designed grammar must be BNF compliant and must satisfy
the grammar sufficiency property. Thus, the grammar must contain all the necessary
building blocks required to potentially evolve an optimal circuit. ADDC is technology
agnostic and easily configurable as the choice of HDL and simulator are left to the user
to choose. Illustrated in Figure 6 is ADDC’s design flow for functional evolution of
circuits.

During the initial phase of the circuit design process, ADDC creates an initial
population of circuit designs using a suitable GE initialisation routine such as sensible

Figure 6.
ADDC Functional Circuit Evolution Overview.

80

Genetic Algorithms

initialisation. These individuals then undergo fitness evaluation. The fitness evalua-
tion phase entails a number of steps. First, the genotype (genome) of each individual
is translated to a HDL (SystemVerilog in this work) circuit design (phenotype) by the
GE mapper, using the grammar designed for the circuit. Functional simulation of each
circuit takes place, assuming all circuit designs are valid. For these experiments, Icarus
Verilog, a lightweight and open-source Verilog simulator is used. The simulator uses a
testbench which must be provided by the user for circuit verification. A testbench is a
verification description written in the same HDL as the circuit that ensures the device
under test (DUT) or evolved circuit meets functional and timing requirements. A
typical testbench uses a test vector(s) which contains circuit inputs and their respec-
tive expected outputs. For example, test vector(s) for combinational circuits are
usually created from their truth table. The simulator drives these input(s) through the
DUT and verifies if the circuit output is the desired output. The sum of the number of
passed cases out of the total number of cases represents the fitness value of the circuit.
After all circuits have been evaluated, ADDC makes available the best circuit design if
the specified termination criterion is satisfied, otherwise the circuit design evolution
continues.

The next phase is reproduction, where usually individuals with either good overall
fitness score or individuals that perform best on certain cases are selected for cross-
over and mutation to create a new population of circuit designs. Lexicase selection
performs well on circuit design benchmarks [25, 26], hence selected as the choice of
selection routine. Also, depending on the genetic algorithm (GA) of choice, for
example steady state, generational GAs etc., events like replacement or elitism may
take place in creating the new population. The new population undergoes fitness
evaluation in similar manner as described in the previous section. The process con-
tinues until the termination criterion is satisfied and the best circuit design returned as
solution.

5. Experiments

Three circuit benchmark problems are considered, namely: Hamming Code (7,4)
Encoder (corresponding decoder evolved in [25]), Seven Segment Display [25, 37] and
16-to-4 Multiplexer [25, 38, 39]. These problems are not only standard benchmarks in
circuit design literature, but are used in real world applications. For example,
hamming codes, seven segment displays and multiplexers are used in satellite
communication, digital calculators and telephone networks respectively.

5.1 Benchmark problems

5.1.1 Hamming code (7,4) encoder

Hamming codes are a linear error-correcting codes capable of detecting a single
error and at most two errors, but are only capable of correcting a single error. They
belong to a category of codes referred to as Linear Block Codes. A Hamming Code
(7,4) Encoder encodes a 4-bit data word into a 7-bit code word prior to data trans-
mission by generating and adding three parity bits to the data word.

The structure of the code words generated by hamming codes can be classified into
two categories: systematic and non-systematic encodings. The structure of systematic
encoding separates the data word and code word while the data word and parity bits

81

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

are interspersed in non-systematic encoding. We adopt systematic encoding as it is
easier to separate the data word from the parity bits.

The grammar designed for evolving the Hamming Code (7,4) Encoder is shown in
Figure 7. The circuit’s interface is defined using the begin‐moduleh i rule. The grammar
uses four bitwise operators and a bitwise negation operator in Verilog defined using
bitwise‐oph i and bitwise‐negh i rules respectively. Hamming Code (7,4) Encoder gener-
ates three redundant bits stated earlier and these have been defined using parity‐bit‐1� �

,
parity‐bit‐2� �

and parity‐bit‐3� �
rules. The expr rule is use by the parity‐bit‐ ∗� �

rules to
evolve variable length expressions that generate the correct parity bit. The grammar
also features an important Verilog construct, the always procedural block, defined
using always‐block� �

which behaves similarly to an infinite loop and which is triggered
by a change in any signal (indicated with ∗) to evaluate the statements within its scope.

5.1.2 Seven segment display

A Seven Segment Display is an electronic device used for the display of decimal
numerals. It is also capable of displaying letters, though some letters such as K, X, Z etc.
are difficult to recognise on the device. The specification for Seven Segment Display
considered in this work supports decimal numerals (0-9) and A-F letter representa-
tions. These numbers and characters are encoded as a 4-bit binary number (0000–
1111) referred to as binary coded decimal (BCD) which are sent as inputs to the Seven
Segment Display. The 4-bit binary numbers starting from 0000 to 1001 are used to
encode decimal numbers 0 to 9 respectively; while 1010 to 1111 are used to encode
letters A-F. Upon receipt, the Seven Segment generates a 7-bit binary number (each
bit corresponding an ON/OFF state of a segment) to turn on the appropriate LEDs to

Figure 7.
Hamming code (7,4) encoder grammar.

82

Genetic Algorithms

display the digit/letter. Figure 8 shows the grammar designed to evolve the seven
segment display. The BCD and the 7-bit binary numbers are defined by the bcdh i and
seven‐segmenth i rules respectively. The grammar uses switch-case construct defined
using the switch‐caseh i as well as the always procedural block (always

� �
).

begin�moduleh i defines the circuit interface of the Seven Segment Display.

5.1.3 16-to-4 multiplexer

A multiplexer is a multiple-input single-output device that accepts data (data
lines) and an address (select lines) as inputs and uses the address to select the
corresponding data line to be transmitted. The 16-to-4 multiplexer has 16 data lines
and 4 select lines.

Figure 9 shows the grammar designed to evolve the multiplexer. Similar to the
Seven Segment Display Grammar, the 16-to-4 Multiplexer Grammar also uses the
always procedural block. However, here an if-else (if‐elseh i) construct is used,
although the switch-case construct is also suitable in this context. The addresses used
to select a data line as output are defined using the addressh i rule. The addressh i is
used to generate a conditional statement (condh i) by the if‐elseh i rule to determine
the data line to select. The data‐indexh i defines the indexes of the 16-bit data which is
used by the data‐bit ruleh i to select data line. begin‐moduleh i defines the circuit
interface of the 16-to-4 Multiplexer.

5.2 Evolutionary parameters

Experimental parameters used for running the experiments are shown in Table 3.
The generation number and population size were selected based on preliminary

Figure 8.
Seven segment display grammar.

83

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

experiments. The generation sizes used for the preliminary experiments were 50, 100
and 200; the population sizes were 100, 200, 500, 1000 and 2000. For each problem,
5 independent runs were conducted. The choice of generation number and population
size for the actual experiments were based on setups with majority of the runs with
mean best fitness of the final generation within the fourth quartile of the maximum
fitness. The other parameters used remain the same as used in [25, 26].

50 generations were used for evolving the Hamming Code (7,4) Encoder, while
100 generations was used for each of the Seven Segment Display and 16-to-4
Multiplexer designs as preliminary results revealed these problems were relatively

Figure 9.
16-to-4 multiplexer grammar.

Parameter Value

Initialization Sensible Initialization

No of generations 50 for Hamming Code (7,4) Encoder for Seven Segment Display & 16-to-4
Multiplexer

Mutation rate 0:01

Crossover rate 0:8

Replacement rate 0:5

No of independent runs 50

Population 1,000

Selection Lexicase Parent Selection

Table 3.
Experimental run parameters.

84

Genetic Algorithms

challenging to evolve compared to the Hamming Code (7,4) Encoder. All other
parameters remain the same for all benchmark problems.

5.3 Training and testing

The number of training and testing cases are tabulated in Table 4.
Each of the Hamming Code (7,4) Encoder and Seven Segment Display have only

16 cases. However, for the Hamming Code (7,4) Encoder every correct bit in each bit
position in the codeword is counted as part of the total fitness score for a candidate
circuit, giving a total of 112 (7 � 16) cases. Given that Hamming Code (7,4) and Seven
Segment Display have so few cases, it is feasible to perform exhaustive testing during
training, leaving no cases for testing as shown in Table 4.

On the other hand, the 16-to-4 Multiplexer has 220 cases making exhaustive testing
infeasible. As a result we uniformly sample 4,100 and 5,000 cases for training and
testing respectively as shown in Table 4.

5.4 Results and discussions

Results obtained from experiments conducted demonstrate ADDC is ideal for
evolving digital circuit designs due to the use GE and a HDL which permits designs to
be done at a more abstract level. The evolutionary performance for the experiments
conducted for Hamming Code (7,4) Encoder, Seven Segment Display and 16-to-4
Multiplexer described in Section 5.1 are visualized in Figures 10–12 respectively. The
success rate per benchmark problem is tabulated in Table 5. A representative solution
per each circuit benchmark problem is shown in Figures 13–15 in the Appendix. The
advantages and disadvantages of the proposed approach is discussed in Section 5.7.

5.5 Success rate

A successful run is a single independent evolutionary run that evolved an optimal
circuit for the target problem. Fifty independent runs were conducted for all three
benchmark problems. The success rate is the number of successful runs divided by the
total number of evolutionary runs (i.e. 50) as tabulated in Table 5. A 100% success
rate was attained for the Hamming Code (7,4) Encoder. The Seven Segment Display
and 16-to-4 Multiplexer obtained 60 and 86% success rates, respectively.

5.6 Evolutionary performance

Visualization of the evolutionary performance as evolution progressed for
Hamming Code (7,4) Encoder, Seven Segment Display and 16-to-4 Multiplexer are
shown in Figures 10–12 respectively.

Benchmark problem No of training cases No of testing cases

Hamming Code (7,4) Encoder 112 —

Seven Segment Display (with A-F letter representations) 16 —

16-to-4 Multiplexer 4100 5000

Table 4.
Number of training and testing cases.

85

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

Figure 10.
Mean best and mean average across runs for hamming code (7,4) encoder.

Figure 11.
Mean best and mean average across runs for seven segment display.

Figure 12.
Mean best and mean average across runs for 16-to-4 multiplexer.

86

Genetic Algorithms

The red line represents the mean best fitness per generations across the 50 inde-
pendent runs conducted, while the black line represents the mean average fitness.
Also plotted are error bars representing the standard error. The error bars are short to
non-existent indicating small variability between the fitnesses of individuals. Fur-
thermore, all three plots reveal a steady and progressive increase in fitness as the
evolution progressed indicating the evolutionary search is continuously searching
regions of the solutions where fitter individuals are located. Hamming Code (7,4)
Encoder and 16-to-4 Multiplexer problems discover individual(s) that solve more that
50% of the test cases from the initial generations while the Seven Segment Display
evolves individual(s) that solve 25% of the test cases on average.

5.7 Advantages and disadvantages of proposed approach

First, evolved circuit designs are quite interpretable compared to gate-level
designs. This is due to the high level of abstraction at which these designs are
performed which focuses on evolving circuit behaviours as opposed to evolving gate-
level designs. Gate-level design approaches are challenging to scale to complex circuits
[40]. The use of constructs such as if-else, switch-case, always procedural blocks,
bitwise operators etc., makes it easier for humans to understand the behaviour of a
circuit and if required effect manual modifications. Second, verification of circuits is
easier as the circuit behaviour are easier to interpret enabling robust testbenches to be
written.

Third, like any other methodology, there exist few disadvantages. The use of HDL
requires the user to have technical knowledge about the HDL of choice— how to
design grammars free of syntax errors and modelling errors. Syntax errors are easier to
find and fix as most simulators will report such errors at the functional simulation
phase. Modelling errors are a bit more challenging to fix, as they are only noticeable
during synthesis (conversion of RTL or high level designs to gate-level representation)
phase of the circuit design when designed grammars do not adhere to the guidelines of
the HDL of choice. For example, fully functional representative solutions for the
16-to-4 Multiplexer and Seven Segment Display shown in Figures 13 and 14 respec-
tively may not be directly synthesizable (depending on the synthesis tool), as the case
statements and if conditions are not mutually exclusive. Some of these errors can be
fixed by defining new rules, modifying existing rules, the use of attribute grammars in
order to impose the necessary constraints etc. The redundant logic can be gotten rid of
by via a number of approaches: manually by hardware designer, design of
SystemVerilog/Verilog redundant logic removal algorithm, use unique case
statements (for switch case constructs) etc.

The choice of operators to use for evolving circuits is key as it has been shown to
increase simulation time of circuits if inappropriate operators are chosen [26].

Benchmark problem Success rate

Hamming Code (7,4) Encoder 50=50

Seven Segment Display (with A-F letter representations) 30=50

16-to-4 Multiplexer 43=50

Table 5.
Success rate for benchmark problems.

87

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

Furthermore, some circuit designs may contain redundant block of code which
impede interpretability as observed in representative best solutions for 16-to-4
Multiplexer and Seven Segment Display shown in Figures 13 and 14 respectively in
Appendix. Only 16 of the if conditions and case statements are valid for the 16-to-4
Multiplexer and Seven Segment Display representation circuit designs respectively.

6. Conclusions and future directions

We have presented a system for the automated design of digital circuits, ADDC.
ADDC is the next logical step in the evolution of Electronic Design Automation and
this chapter has described how the history of integrated circuits has led to the conflu-
ence of GE, circuit simulators and HDLs. ADDC has been demonstrated on three
difficult, real-world problems and was successful on all three of them, including one
with 220 possible inputs.

The HDLs employed here are hugely powerful and expressive. Digital designers
often operate at very high levels of abstraction using IP blocks, which is somewhat
similar to using libraries when programming software. IP blocks are typically very
powerful and can have complexities equivalent to tens of thousands of gates. Making
some of these blocks available to ADDC will dramatically increase its scalability and
doing so will simply involve expanding the grammar.

As the problems scale up, the number of test cases can become astronomical, as
was the case in this chapter. While in this case we randomly sampled the training and
test cases, it is also possible to use a more intelligent approach. Recent work [41] has
investigated using clustering to select a representative set of test cases. This will
permit us to operate at greater scales with confidence.

A circuit that functions correctly on a simulator is not guaranteed to be fit for
purpose when rendered in silicon. This is because there are often other considerations,
such as silicon area, power dissipation and delay. Future work will use multi-objective
optimisation to include pressure on individuals to adhere to these constraints too.

While some of our automatically generated circuits have successfully been
implemented in silicon on a Xilinx Artix-7 FPGA, e.g., an 8-to-1 multiplexer [25],
ADDC does not yet include that step in its toolchain; to be fully automated it will need
to include this.

Acknowledgements

The authors are supported by Research Grants 13/RC/2094 and 16/IA/4605 from
the Science Foundation Ireland and by Lero, the Irish Software Engineering Research
Centre (www.lero.ie). The third is partially financed by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES), Finance Code 001,
and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Conflict of interest

The authors declare no conflict of interest.

88

Genetic Algorithms

Appendix

Figure 13.
16-to-4 multiplexer representative solution.

89

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

Figure 14.
Seven segment display representative solution.

90

Genetic Algorithms

Author details

Conor Ryan1*†, Michael Tetteh1†, Jack McEllin1†, Douglas Mota-Dias1,2†,
Richard Conway1† and Enrique Naredo1†

1 University of Limerick, Limerick, Ireland

2 Rio de Janeiro State University, Rio de Janeiro, Brazil

*Address all correspondence to: conor.ryan@ul.ie

†These authors contributed equally.

© 2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

Figure 15.
Hamming code (7,3) encoder representative solution.

91

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

References

[1] Conway T, Conway R, Mulvaney K,
Mahony SO, Billon C, Khan MK, et al.
Low power application specific
processor for ISM band transceiver. In:
IET Irish Signals and Systems
Conference (ISSC 2010). Cork, Ireland:
IET; 2010. pp. 272-277. Available from:
https://digital-library.theiet.org/content/
conferences/10.1049/cp.2010.0525

[2] Barbe DF. VHSIC Systems and
Technology. Computer. 1981;14(2):13-22

[3] Dewey A. VHSIC Hardware
Description (VHDL) Development
Program. In: 20th Design Automation
Conference Proceedings. Miami Beach
(FL): IEEE Press; 1983. pp. 625-628

[4] Dewey A, Gadient A. VHDL
Motivation. IEEE Design Test of
Computers. 1986;3(2):12-16

[5] IEEE Standard VHDL Language
Reference Manual. IEEE Std 1076-1987;
1988

[6] IEEE Standard Hardware Description
Language Based on the Verilog(R)
Hardware Description Language. IEEE
Std 1364-1995. 1996

[7] Ap. COMPANY NEWS; Cadence to
Buy Gateway Design. The New York
Times. 1989. Available from: https://
www.nytimes.com/1989/10/05/business/
company-news-cadence-to-buy-gateway-
design.html [Accessed: January 10, 2022]

[8] Verilog Hardware Description
Language Reference Manual (LRM).
Version 1.0. Open Verilog International
(OVI); 1991

[9] IEEE Standard for SystemVerilog:
Unified Hardware Design, Specification
and Verification Language. IEEE Std
1800-2005. 2005

[10] Section 8—XC157. In: The Integrated
Circuit Data Book. Motorola
Semiconductor Products Inc.; 1968. p. 3

[11] Freeman R. Xilinx Inc. Configurable
Electrical Circuit Having Configurable
Logic Elements and Configurable
Interconnects. US4870302; 1989

[12] De la Guia Solaz M, Conway R. Razor
based programmable truncated multiply
and accumulate, energy-reduction for
efficient digital signal processing. IEEE
Transactions on Very Large Scale
Integration (VLSI) Systems. 2014;23(1):
189-193

[13] Karnaugh M. The Map Method for
Synthesis of Combinational Logic
Circuits. Transactions of the American
Institute of Electrical Engineers, Part I:
Communication and Electronics. 1953;
72(5):593-599

[14] McCluskey EJ. Minimization of
Boolean Functions. The Bell System
Technical Journal. 1956;35(6):1417-1444

[15] Brayton R, Hachtel G, Hemachandra
L, Newton A, Sangiovanni-Vincentelli A.
A Comparison of Logic Minimization
Strategies Using ESPRESSO: An APL
Program Package for Partitioned Logic
Minimization. In: Proceedings of the
International Symposium on Circuits
and Systems. New York (NY): IEEE
Press; 1982. pp. 42-48

[16] Hlavicka J, Fiser P. BOOMa—A
heuristic boolean minimizer. In: IEEE/
ACM International Conference on
Computer Aided Design. ICCAD 2001.
IEEE/ACM Digest of Technical Papers
(Cat. No.01CH37281). San Jose, CA,
USA: IEEE; 2001. pp. 439-442

[17] Cullen J. Evolving Digital Circuits in
an Industry Standard Hardware

92

Genetic Algorithms

Description Language. In: Li X, Kirley M,
Zhang M, Green D, Ciesielski V, Abbass
H, et al., editors. Simulated Evolution
and Learning. Berlin, Heidelberg:
Springer; 2008. pp. 514-523

[18] Youssef A, Majeed B, Ryan C.
Optimizing combinational logic circuits
using Grammatical Evolution. In: 2021
3rd Novel Intelligent and Leading
Emerging Sciences Conference (NILES);
2021. pp. 87-92

[19] KarpuzcuUR. Automatic verilog code
generation through grammatical evolution.
In: Proceedings of the 7th Annual
Workshop onGenetic and Evolutionary
Computation. GECCO ’05. NewYork, NY,
USA: Association for Computing
Machinery; 2005. pp. 394-397. DOI:
10.1145/1102256.1102346

[20] Kratochvil O, Osmera P, Popelka O.
Parallel grammatical evolution for circuit
optimization. In: Ao SI, Douglas C,
Grundfest WS, Burgstone J, editors.
Proceedings of the World Congress on
Engineering and Computer Science,
WCECS ’09. vol. II. International
Association of Engineers. San Francisco,
USA: Newswood Limited; 2009. pp.
1032–1037. Available from: http://www.
iaeng.org/publication/WCECS2009/
WCECS2009_pp1032-1037.pdf

[21] Vassilev VK, Miller JE. Scalability
problems of digital circuit evolution
evolvability and efficient designs. In:
Proceedings. The Second NASA/DoD
Workshop on Evolvable Hardware;
2000. pp. 55-64

[22] Murakawa M, Yoshizawa S, Kajitani
I, Furuya T, Iwata M, Higuchi T.
Hardware evolution at function level. In:
Voigt HM, Ebeling W, Rechenberg I,
Schwefel HP, editors. Parallel Problem
Solving from Nature — PPSN IV.
Springer: Berlin, Heidelberg; 1996.
pp. 62-71

[23] Vassilev VK, Miller JF. Embedding
landscape neutrality to build a bridge
from the conventional to a more efficient
three-bit multiplier circuit. In:
Proceedings of Genetic and Evolutionary
Computation Conference. Morgan
Kaufmann; 2000

[24] Vasicek Z, Sekanina L. Evolutionary
approach to approximate digital circuits
design. IEEE Transactions on
Evolutionary Computation. 2015;19(3):
432-444

[25] Ryan C, Tetteh M, Dias D.
Behavioural Modelling of Digital Circuits
in System Verilog using Grammatical
Evolution. In: Proceedings of the 12th
International Joint Conference on
Computational Intelligence—ECTA,.
INSTICC. SciTePress; 2020. pp. 28-39

[26] Tetteh MK, Mota Dias D, Ryan C.
Evolution of complex combinational
logic circuits using grammatical
evolution with systemverilog. In: Hu T,
Lourenço N, Medvet E, editors. Genetic
Programming. Cham: Springer
International Publishing; 2021.
pp. 146-161

[27] Koza JR. Genetic Programming—On
the programming of Computers by
Means of Natural Selection. Complex
Adaptive Systems. Cambridge (MA):
MIT Press; 1992

[28] Eiben SJ, Agoston E. From
evolutionary computation to the
evolution of things. Nature. 2015;521
(7553):476-482. DOI: 10.1038/
nature14544

[29] Ryan C, Collins JJ, O’Neill M.
Grammatical evolution: Evolving
programs for an arbitrary language. In:
Banzhaf W, Poli R, Schoenauer M,
Fogarty TC, editors. EuroGP. vol. 1391 of
Lecture Notes in Computer Science.
Berlin: Springer; 1998. pp. 83-96

93

ADDC: Automatic Design of Digital Circuit
DOI: http://dx.doi.org/10.5772/intechopen.104410

[30] O’Neill M, Ryan C. Grammatical
evolution. IEEE Trans Evolutionary
Computation. 2001;5(4):349-358

[31] Patten JV, Ryan C. Attributed
grammatical evolution using shared
memory spaces and dynamically typed
semantic function specification. In:
Genetic Programming—18th European
Conference, EuroGP 2015, Copenhagen,
Denmark, April 8-10, 2015, Proceedings.
2015. pp. 105-112. DOI: 10.1007/978-3-
319-16501-1_9

[32] Karim MR, Ryan C. On improving
grammatical evolution performance in
symbolic regression with attribute
grammar. In: Genetic and Evolutionary
Computation Conference, GECCO ’14,
Vancouver, BC, Canada, July 12-16,
2014, Companion Material Proceedings.
2014. pp. 139-140. DOI: 10.1145/
2598394.2598488

[33] Karim MR, Ryan C. A new approach
to solving 0-1 multiconstraint knapsack
problems using attribute grammar with
lookahead. In: Genetic Programming—
14th European Conference, EuroGP
2011, Torino, Italy, April 27-29, 2011.
Proceedings. 2011. pp. 250-261

[34] Karim MR, Ryan C. Degeneracy
reduction or duplicate elimination? an
analysis on the performance of
attributed grammatical evolution with
lookahead to solve the multiple knapsack
problem. In: Nature Inspired
Cooperative Strategies for Optimization,
NICSO 2011, Cluj-Napoca, Romania,
2011. Vol. 387. Berlin: Springer. Studies
in computational intelligence; 2011.
pp. 247-266. DOI: 10.1007/978-3-642-
24094-2_18

[35] Ryan C, Azad R. Sensible
initialisation in grammatical evolution.
In: GECCO 2003: Proceedings Of The
Bird Of A Feather Workshops, Genetic
And Evolutionary Computation

Conference. Chigaco (IL): AAAI; 2003.
pp. 142-145

[36] O’Neill M, Ryan C, Keijzer M,
Cattolico M. Crossover in Grammatical
Evolution. The Search Continues.
Genetic Programming. 2001:337-347

[37] Miller J. Cartesian Genetic
Programming. Cartesian Genetic
Programming. 2011. pp. 17-34. DOI:
10.1007/978-3-642-17310-3_2

[38] Kruse R, Borgelt C, Klawonn F,
Moewes C, Steinbrecher M, Held P.
Fundamental evolutionary algorithms.
Computational Intelligence: A
Methodological Introduction. London
(UK): Springer London; 2013. pp. 227-
274. DOI: 10.1007/978-1-4471-5013-8_13

[39] Fredivianus N, Prothmann H,
Schmeck H. XCS revisited: A novel
discovery component for the extended
classifier system. Simulated Evolution
and Learning. Berlin, Heidelberg:
Springer Berlin Heidelberg. Lecture
Notes in Computer Science. 2010;6457:
289-298. DOI: 10.1007/978-3-642-17298-
4_30

[40] Zdenek, V. Bridging the Gap
Between Evolvable Hardware and
Industry Using Cartesian Genetic
Programming. 2018. DOI: 10.1007/978-
3-319-67997-6_2

[41] Ryan C, Kshirsagar M, Gupt K,
Rosenbauer L, Sullivan J. Hierarchical
clustering driven test case selection in
digital circuits. In: Proceedings of the
16th International Conference on
Software Technologies—ICSOFT,.
INSTICC. SciTePress; 2021. pp. 589-596

94

Genetic Algorithms

Chapter 5

Genetic Algorithms for Chemical
Engineering Optimization
Problems
Thi Anh-Nga Nguyen and Tuan-Anh Nguyen

Abstract

Chemical engineering processes are frequently composed of multiple complex
phenomena. These systems can be represented by a set of several equations, which are
referred to as mathematical model of the process. Optimization in chemical engineer-
ing utilizes specialized techniques to determine the values of the decision variables at
which the performance of the process, measured as the objective function(s), is
minimum or maximum. The profitability of the process improves remarkably as a
result of this selection. This benefit has encouraged the broad application of optimi-
zation for important industrial challenges. However, many problems in chemical
engineering processes are hard to find the optimum using gradient-based algorithms.
For example, the cases when the objective functions of the processes are multimodal,
discontinuous, or implicit. Genetic algorithms (GAs) are a kind of metaheuristic
searching optimization methods, which are inspired by nature, the mechanics of
natural evolution and genetics. Genetic algorithms have received significant attention
due to their remarkable advantages over classical algorithms. Compared with tradi-
tional optimization approaches, GAs are straightforward, robust, capable of handling
the non-differentiable, discontinuous, or multimodal problems. The purpose of this
paper is to give several case studies using genetic algorithms in chemical engineering
optimization problems.

Keywords: optimization, genetic algorithm, chemical engineering, modeling

1. Introduction

Chemical engineering processes are frequently composed of multiple complex
phenomena. These systems can be represented by a set of several equations, such as
z = f(d; x; p), where z is the vector state of the system. The system of equations is
referred to as the mathematical model of the process. The performance of the process
is predicted by the model from the assigned data of several “input” variables, d and x,
and a group of parameters, p. Among the input variables, some, referred as x, can be
changed and are known as design variables, while others, referred as d, are
predetermined. The performance of the process can be evaluated through a set of
output variables, y = g (z), referred as the function of state of the system. Optimiza-
tion in chemical engineering utilizes specialized techniques to determine the values of

95

the decision variables, x, at which the performance of the process, measured as the
objective function(s), I(x), is minimum or maximum. The profitability of the process
improves remarkably as a result of this selection of input/operating/decision variables.
This benefit has encouraged the broad application of optimization for important
industrial challenges. However, many problems in chemical engineering processes are
hard to find the optimum using gradient-based algorithms. For example, the cases
when the objective functions of the processes are multimodal, discontinuous, or
implicit. Genetic algorithms (GAs) are a kind of metaheuristic searching optimization
methods, which are inspired by nature, the mechanics of natural evolution, and
genetics [1]. Genetic algorithms have received significant attention due to their
remarkable advantages over classical algorithms. Compared with traditional optimi-
zation approaches, GAs are straightforward, robust, capable of handling the non-
differentiable, discontinuous, or multimodal problems. GAs have been effectively
employed in a wide range of various engineering, manufacturing, and management
applications [2]. The purpose of this chapter is to give several case studies using
genetic algorithms in chemical engineering optimization problems. The case studies
include the optimization of an autothermal ammonia synthesis reactor, a separation
module using membrane technology, and data-driven modeling optimizations of solid
oxide fuel cells.

2. Optimization of an autothermal ammonia synthesis reactor

In the chemical process industries, ammonia is one of the most widely manufactured
inorganic compounds [3]. The majority of ammonia produced commercially is con-
sumed in fertilizers, with the rest going into plastics, synthetic fibers and resins, phar-
maceuticals, explosives, papers, and refrigeration [4]. As a result, modeling and
optimization of ammonia synthesis process have received a significant attention from
both the academia and industry. Ammonia is produced predominantly from the com-
bination of elements such as nitrogen and hydrogen in a catalytic process using a
promoted iron catalyst firstly established by Haber and Bosch as the reaction [4]:

N2 þ 3H2 ⇌ 2NH3 (1)

The reaction is reversible and exothermic, releasing a significant amount of heat.
In order to achieve a high conversion, the heat of the reaction should be removed.
Therefore, the process is typically carried out in an autothermal synthesis reactor, in
which the heat of reaction is utilized to preheat the feed gas and ensure the suitable
temperature inside. The production of ammonia depends on several factors such as
the reactor length, the operating pressure, temperature of the feed and reacted gas,
the flow rate, and composition of the gas mixture. The optimization problem of the
process is to maximize the economic return. Many studies discussing the modeling,
simulation, and optimization of an autothermal ammonia synthesis reactor can be
found in literature. Some of them can be mentioned here as in Babu et al. [5], Babu
and Angira [6], Carvalho et al. [7], Edgar et al. [8], Ksasy et al. [9], Murase et al. [10],
Upreti and Deb [11], Yusup et al. [12]. However, the model discussed in the studies of
Edgar et al. [8], Murase et al. [10] has some minor errors and has been corrected in
Upreti and Deb [11]. Moreover, the studies primarily focus on optimizing reactor
length for a specific reactor top temperature, usually 694 K [6, 7, 12], or for a limited
set of temperatures [9, 11]. However, as reported in some studies [11, 12], the

96

Genetic Algorithms

economic return is determined by the top temperature and also the reactor length (the
temperature of feed gas entering to the reaction zone). As a result, rather than a single
variable problem of reactor length, the optimization problem should be viewed as a
multivariable problem.

In the study [13], both the reactor length and the reactor top temperature are
considered in the design variables for maximizing the profit return of the process. In
order to solve the multivariate optimization problem, the cyclic coordinate search
technique was employed. This method alters the value of one decision variable at a
time, and for each coordinate direction, the golden section search was utilized to solve
the single variable optimum problem. However, this traditional searching approach is
prone to get caught in local optima. Therefore, the genetic algorithm has higher
chance to obtain the global optimum profit of the process.

2.1 Problem formulation of ammonia synthesis reactor

The system discussed here is an autothermal synthesis reactor, which is described
in [10] and contains the correction of the objective function reported in [6, 11]. The
feed gas contains 21.75 mole% nitrogen, 65.25 mole% hydrogen, 5.0 mole% ammonia,
4.0 mole% methane, and 4.0 mole% argon. In an autothermal reactor, the feed gas
mixture enters from the bottom of the reactor, flows upward, enters the catalyst zone
from the top, and moves downward. In the catalyst zone, the reaction takes place at
around 500°C and 200 atm of pressure. The heat generated by the reaction is utilized
to preheat the feed gas mixture in counter current flow. Figure 1 shows the schematic
diagram of an autothermal ammonia synthesis reactor. The considered factors affect-
ing the synthesis process are the temperature of feed gas at the entrance of the
reaction zone (top temperature) and the reactor length. The goal of the optimal design
is to determine the conditions that will give the highest economic return from the
reactor operation.

2.1.1 Objective function

The return of the process, which is calculated from the value of the product gas
(heating value and ammonia value), subtract the cost of feed gas (as a source of heat

Figure 1.
Schematic diagram of an autothermal ammonia reactor [10].

97

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

only) and minus the amortization of reactor capital expenses, is the objective function
for maximization (F). Other operating costs are not considered [11].

F ¼ 1:3356� 107 � 1:708� 104NN2 þ 704:09 Tg � T0
� �� 699:27 T f � T0

� �

� 3:4566� 107 þ 1:9837 � 109L
� �1

2
(2)

in which,
Tf is the temperature of the feed gas.
Tg is the temperature of the reacting gas (the gas in the catalyst zone).
T0 is the top temperature or temperature at the inlet of the catalyst zone.
NN2 is the flow rate of nitrogen.
L is the length of the reactor.

2.1.2 Equality constraints

The heat balance for the feed gas and the reacting gas and the mass balance for the
nitrogen flow along the catalyst zone, respectively, give the mathematical model for
the system:

dT f

dx
¼ � US1

WCpf
Tg � T f
� �

(3)

dTg

dx
¼ � US1

WCpg
Tg � T f
� �þ �ΔHð ÞS2

WCpg
� dN2

dx

� �
(4)

dNN2

dx
¼ �f k1

pN2
p1:5H2

pNH3

� k2
pNH3

p1:5H2

 !
(5)

in which

k1 ¼ 1:78954� 104 exp
�20800
RTg

� �
(6)

k2 ¼ 2:5714� 1016 exp
�47400
RTg

� �
(7)

pH2
¼ 3pN2

(8)

pN2
¼ 286NN2

2:598N0
N2

þ 2NN
(9)

pNH3
¼ 286 2:23N0

N � 2NN2

� �

2:598N0
N þ 2NN

(10)

The differential equations are valid in the interval [0, L], in which L is the reactor
length (or the length of the catalyst zone).

The notations T0
f , T

0
g , and N0

N2
denote the initial value at x = 0 (at the inlet of the

catalyst zone) for Tf,Tg, and NN2 , respectively, and are given by

T0
f ¼ T0

g ¼ T0, N0
N2

¼ 701:2kmol=hm2 (11)

98

Genetic Algorithms

Other notations of the system are summarized in Table 1.

2.1.3 Box constraints

The variables are subjected to the following physical constraints, as is typical in
industries [10]:

0<L≤ 10, 400≤T f ≤ 800, 0≤NN2 ≤ 3220 (12)

The length of the reactor and the top temperature are chosen as the design vari-
ables. The remaining variables (Tf,Tg, and NN2) can be calculated from the model by
three differential Eqs. (3), (4), and (5). Then, the objective function is determined by
Eq. (2). Due to the constraints of temperatures, the variable T0 is also set to be within
400 and 800.

The optimal design problem is summarized as follows:

maximize F ¼ F x,T0ð Þ

s:t:

dT f

dx
¼ � US1

WCpf
Tg � T f
� �

dT f

dx
¼ � US1

WCpg
Tg � T f
� �þ �ΔHð ÞS2

WCpg
� dN2

dx

� �

dN2

dx
¼ �f k1

pN2
p1:5H2

pNH3

� k2
pNH3

p1:5H2

 !

T0
f ¼ T0

g ¼ T0, N0
N2

¼ 701:2

400≤T f ≤ 800, 0≤NN2 ≤ 3220

0<L≤ 10, 400≤T0 ≤ 800

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(13)

Notation

Cpf Heat capacity of the feed gas

Cpg Heat capacity of the reacting gas

f Catalyst activity

ΔH Heat of reaction

N Mass flow of component designed by subscript

k Reaction rate constant

p Partial pressure of component designated by subscript

R Universal gas constant

S1 Surface area of catalyst tubes per unit length of reactor

S2 Cross-sectional area of catalyst zone

U Overall heat transfer coefficient

W Total mass transfer flow rate

Table 1.
Notation of the synthesis system.

99

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

2.2 Optimization strategy

The system of ordinary differential Eqs. (3), (4), and (5) with initial conditions
(11) was solved by Runge–Kutta fourth-order method. The system is well defined
when the top temperature (T0) and the interval of integration (the reactor length L)
are assigned. After that, the economic return is clearly evaluated, and it can be
considered as two-variable function of the top temperature and reactor length. The
genetic algorithm is employed to find the optimal solution. In order to handle the
constraints, a penalty or barrier is defined to the objective function whenever any of
variable limits is violated. The proposed strategy is detailed as follows.

2.2.1 Genetic algorithm for optimization problem

The range of the design variables is 0< x≤ 10, 400≤T0 ≤ 800. The parameters of
GA such as population size, crossover probability, mutation probability values were
set to be 50, 1.0, and 0.30, respectively. The selection was chosen as roulette wheel
selection with elitism. The number of generations was set to be 500.

2.2.2 Barrier method for constrained optimization

In barrier or penalty methods, the objective function will receive an undesired
value when one of the constraints is violated. Therefore, the solution will be kept in
the feasible region. The objective function has been modified as

F ¼ F if 400≤T f ≤ 800, 0≤NN2 ≤ 3220

0 otherwise

�
(14)

2.2.3 Parameters

The parameters were obtained from the literature [7, 10] and summarized in
Table 2.

Parameter Value Unit

Cpf 0.707 kcal/kg K

Cpg 0.719 kcal/kg K

f 1.0

ΔH �26,000 kcal/kmol

R 1.987 kcal/kmol K

S1 10 M

S2 0.78 m2

U 500 kcal/h m2 K

W 26,400 kg/h

Table 2.
Model parameters [7].

100

Genetic Algorithms

2.3 Optimization results

Figure 2 shows the fitness values as a function of generation. As can be observed,
the fitness function value achieved the highest after roughly 20 generations and then
stayed unchanged. After 100 generations, it was obtained that the reactor length
should be 6.772 m, and the top temperature should be 707.09 K. The process produces
a profit of 5.018� 106 $ per year. The other parameters of the process are summarized
in Table 3 and compared with the findings of a cyclic coordinate search [13]. The
profit value is slightly higher than those reported in the literature, which focused
solely on reactor length optimization. From the results, the temperature at the
entrance of the catalyst zone should be slightly higher, and that the reactor length
should also be slightly longer than previously reported.

3. Economic optimization of membrane module for ultrafiltration of
protein solution

The behavior of permeate flux has a significant impact on the performance of
cross-flow ultrafiltration. Many factors cause flux declination, such as solution

Figure 2.
Fitness value versus generations.

Variables Interval Cyclic coordinate [13] Genetic algorithm

x (m) [0,10] 6.724 6.772

T0 (K) [600,800] 700.27 707.09

Tf (K) [400,800] 400.00 401.09

Tg (K) 629.94 631.12

NN2 [0,3220] 490.68 490.68

F (106$/year) 5.018 5.018

Table 3.
Maximization results.

101

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

properties, membrane properties, and operation conditions. The majority of current
research has centered on increasing membrane performance in terms of permeability
and selectivity [14, 15]. Just a few studies have paid attention to the configuration and
operation of the membrane module [16].

Various factors determine the decision of membrane module geometry for a given
application, including fabrication method, power consumption, and fouling potential
[17]. Manufacturers frequently recommend the membrane module design from the
fabrication standpoint [17]. There is virtually no evidence that their approach priori-
tizes the energy efficiency. Currently, with a growing in energy concern and a falling
in membrane cost, the membrane module design should place a higher attention on
energy efficiency. As a result, it is necessary to propose a module design methodology
that takes into account the energy factor.

Furthermore, membrane operating conditions are usually decided by user
experience, a handbook, or a manual from the membrane supplier. However,
the permeate flux equation governing the performance of the membrane system
varies greatly between different situations. In this aspect, for any specific
application, a general methodology for the design and operation conditions should
be studied.

In cross-flow ultrafiltration of protein solution, Nguyen et al. [18] proposed a
simple combined model, which simultaneously considers pore blockage and cake
filtration, to describe the flux declination. Then, in the study [19], the correlation
between the steady-state permeate flux and operation parameters was reported. From
the steady-state operation equation, optimal design and operation conditions for each
particular application could be established.

However, just a few reports on the optimization of membrane processes and cost
estimation have been published, or the cost estimation is too general. For example,
Wiley et al. [17] optimized the membrane module configurations for brackish water
desalination. However, the operation mode is single-pass and only the membrane cost
and energy cost were taken into account. Sethi and Wiesner [20] developed the cost
model for the removal of natural organic matter, but the study has not conducted the
optimization. In membrane technology, the feed and bleed operation mode, which
combines the batch and the single-pass configurations, is commonly utilized for
continuous full-scale filtration [21, 22]. Therefore, the optimization of a membrane
module operated in feed and bleed mode for protein ultrafiltration is considered. The
membrane geometry dimensions and operating conditions are design variables in the
problem. The system is represented by a set of ordinary differential equations. The
objective function is the annual cost, which consists of various types of capital invest-
ments and an operating expense. The capital investments are classified into several
categories, which are individually correlated to plant scale, particularly the membrane
area. The operating expense is the power consumption.

3.1 Process configuration and model calculation

3.1.1 Membrane plant configuration

The configuration of filtration system is continuous feed and bleed, which is
shown schematically in Figure 3. The notations are summarized in Table 4. There are
two main pumps in this operation: the feed pump provides the necessary trans-
membrane pressure, while the recirculation pump maintains the cross-flow rate

102

Genetic Algorithms

through the modules. The concentrate is continually withdrawn from the system at a
flow rate (R).

3.1.2 Modeling of membrane modules

The material balance for total mass and protein give:

Figure 3.
Schematic configuration of feed-and-bleed mode membrane system.

Notation Name and units

F Feed flow rate [m3/hr]

R Retentate (concentrate) flow rate [m3/hr]

Q Recirculation flow rate [m3/hr]

Flow Flow rate in membrane module [m3/hr]

P Permeation flow rate [m3/hr]

PF Pressure at outlet of feed pump [kPa]

Pi Pressure at the inlet of membrane module [kPa]

Po Pressure at the inlet of membrane module [kPa]

EP Energy consumed by the feed pump [kW]

EQ Energy consumed by the recirculation pump [kW]

ϕ0 Initial concentration of protein solution [m3/m3]

ϕ i Inlet concentration of protein solution [m3/m3]

ϕ f Final concentration of protein solution [m3/m3]

ϕ P Concentration of protein in permeate flux [m3/m3]

u Fluid flow velocity [m/s]

ρ Fluid density [kg/m3]

μ Fluid viscosity [kg/(m�s)]
w, h, L, dh Width, height, length, hydraulic diameter of the membrane module

Table 4.
Summary of system configuration notations.

103

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

F ¼ Rþ P

Fϕ0 ¼ Rϕf þ Pϕp

Fϕ0 þ Qϕf ¼ F þQð Þϕi

(15)

The viscosity and density of protein solution correlate to its concentration [23]:

μm ¼ 8:94� 10�4 exp 13:5482ϕmð Þ

ρm ¼ 1000 1� ϕmð Þ þ 1360ϕm

(16)

in which, μm, ϕm are the viscosity and concentration of the mixture (solution),
respectively. ρm is the density of protein solution, 1000 kg/m3 is the density of water,
and 1360 kg/m3 is the density of dry protein powder.

The permeate flux through the membrane is [19].

J
u
¼ 3:66� 10�7 P

ρmu2

� �0:27 ρmudh
μm

� �0:52

(17)

in which P is the trans-membrane pressure, u is the cross-flow velocity, dh is the
hydraulic diameter of the flow channel.

The equation for permeate flux can be rewritten as:

J ¼ 5:124� 10�9 P
ρmu2

� �0:27 ρmudh
μm

� �0:52 u
dh

� �
(18)

or in terms of shear rate _γ ¼ 6u
h ¼ 12u

dh
, where h is the channel height:

J ¼ 4:27 � 10�10 P
ρmu2

� �0:27 ρmudh
μm

� �0:52

_γ (19)

The flow rate/velocity drop and channel length change are calculated from the
total mass balance and component balance within the control volume dz across the
channel. Protein is assumed to be fully rejected by the membrane:

d Flow� ϕmð Þ ¼ 0 (20)

d Flowð Þ ¼ �J � d wzð Þ ¼ �J wdz (21)

The pressure loss is estimated by the Darcy-Weisbach Equation [24, 25].

dP ¼ �4fρm
dz
dh

u2

2
(22)

in which f is the friction factor.
The set of ordinary equations that describes the membrane module system was

established as follows [26].

104

Genetic Algorithms

d Flowð Þ
dϕm

¼ � Flow
ϕm

dz
dϕm

¼ Flow
ϕmwJ

dP
dϕm

¼ �4fρm
1
dh

u2

2
Flow
ϕm

1
wJ

μm ¼ 8:94� 10�4 exp 13:5482ϕmð Þ
ρm ¼ 1000 1� ϕmð Þ þ 1360ϕm

J ¼ 5:124� 10�9 P
ρmu2

� �0:27
ρmudh
μm

� �0:52 u
dh

� �

u ¼ Flow
h� w

f ¼ 24
Re

if Re < 2000

f ¼ 0:079
Re 0:25 if Re > 2000

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(23)

in the range of concentration [ϕi, ϕf] and the initial condition

Flow ϕið Þ ¼ F þ Q
z ϕið Þ ¼ 0

P ϕið Þ ¼ Pi

8><
>:

(24)

The system of the ordinary equations can be solved numerically by Runge–Kutta
fourth-order method [27] to obtain the flow rate, the length, and the pressure. From
that, the two important factors determining the total cost, membrane area, and total
energy were calculated:

Amembrane ¼ w� L (25)

Epumps ¼ EP þ EQ

¼ F � Pi þQ � ΔPdrop
(26)

In this equation,
EP, EQ are the power supplied by the feed pump and recirculation pump,

respectively.
PF, Pi, Po are the pressure at the outlet of the feed pump, at the inlet and outlet of

the membrane module, respectively.
ΔPdrop is the pressure drop in the membrane module.

3.1.3 Cost estimation

3.1.3.1 Operating cost

The operating cost consists of power consumption of the pumps and membrane
replacement. The annual energy expense of the pumps is calculated as

105

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

Cenergy ¼
Epumps

η
� 8000� 3600

1000
� electricity price $=year

� �
(27)

Epumps is from Eq. (26). The system is assumed to work 8000 hr./year (24 hr./day
and 333 days/year). η is the efficiency of the pumps, which is set to be 0.7. The
electricity price is supposed to be 0.08 $/kWh, which is the price for the industrial
sector in the United States [28].

The membrane replacement cost is calculated as

Cmembrane ¼ Amembrane � cmembrane � A
P

� �
$=year
� �

(28)

where Cmembrane [$/m
2/year] is the membrane replacement cost calculated per

year.
cmembrane [$] is the membrane price per unit area,
A
P

� �
is the amortization factor, which presents the time value of money [29] and is

calculated as a function of interest rate i and the membrane life.
The membrane price is usually about 200 $/m2 [9], and membrane life is

12–18 months. Therefore, the membrane replacement cost per year is roughly
estimated as 200 $/m2/year for the interest of i = 8%.

3.1.3.2 Capital cost

It is widely observed that capital costs are correlated to the size in the power-law
form [30]:

cost ¼ k sizeð Þn (29)

In order to achieve higher accuracy, rather than simply predicting the whole
capital cost of the membrane plant to capacity, Sethi and Wiesner [20] divided the
capital investment into several major categories, which was correlated to the size
independently. The major categories include pumps and other manufactured
equipment.

a. Pump capital cost

The pumps capital cost can be estimated as (Perry et al. [31]):

C ∗
pump ¼ I � f 1 � f 2 � CL � 81:27 � Q � Pð Þ0:4 (30)

in which.

I: a cost index ratio for updating the cost to the recent year.

f1: an adjust factor for pump construction material.

f2: an adjust factor for suction pressure range.

CL: a factor used to incorporate labor costs.

Q: flow capacity of the pump [m3/h].

P: pressure outlet of the pump [kPa].

106

Genetic Algorithms

The cost index, I in Eq. (30), can be referred to as the chemical engineering (CE)
index to update the cost. It can be obtained from [32], and the value of 2.4 is used.
CL = 1.4 with the assumption that 40% of the cost is required to install the
equipment [33]. The factors f1 and f2 can be found in [31]. f1 = 1.5 when the
material is stainless steel. f2 = 1.0 when the pump pressure is below 10 bar
(1 MPa).

The pump size (Q � P in Eq. (30)) of the two pumps (feed and recirculation
pump) is

pump size ¼ F þ Qð Þ � Pi (31)

b. Capital cost of other equipment

In membrane application, the membrane area is the key parameter, which
determines the plant capacity [34]. Thus, the membrane area is chosen as the
basic for the estimation of various components in the capital costs.

Non-membrane equipment and facilities, excluding the pumps, were grouped
into four main categories: (1) pipes and valves; (2) instruments and controls; (3)
tanks and frames; and (4) miscellaneous. The capital cost of each is correlated to
the membrane area as follows (Sethi and Wiesner [20])

1.Pipes and valves

C ∗
PV ¼ 6000 Amembraneð Þ0:42 $½ � (32)

2.Instruments and controls

C ∗
IC ¼ 1500 Amembraneð Þ0:66 $½ � (33)

3.Tanks and frames

C ∗
TF ¼ 3100 Amembraneð Þ0:53 $½ � (34)

4.Miscellaneous

C ∗
MI ¼ 8000 Amembraneð Þ0:57 $½ � (35)

c. Annual capital cost

The capital cost can be annualized using the amortization factor as

Ccapital cost ¼ C ∗
capital � A

P

� �
$=year
� �

(36)

For the plant design year of 20 years and the interest rate 8%, the amortization
factor will be about 0.1.

107

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

3.2 Formulizations of the problem

3.2.1 Fix parameters and design variables

In the problem, some variables, called input variables, are fixed due to the
requirement of the design. In membrane design, these are feed flow F, inlet concen-
tration ϕ0, and outlet concentration ϕf. The protein is assumed to be entirely rejected
by the membrane (ϕp = 0).

The design variables were: channel geometry (width � length � height), the inlet
pressure (Pi), and recirculation flow rate (Q).

3.2.2 Objective function

The objective function is the sum of capital cost and operating cost, which were
annualized:

minimum f xð Þ ¼ annual total cost ¼ annual capital costþ annual operating cost

¼ Cenergy þ Cmembrane þ Ccapital pumpsþotherð Þ
(37)

3.2.3 Constraints

The pressure at the outlet point should be positive. This constraint is satisfied by
assigning a high value to the objective function if the outlet pressure is negative.

The decision variables are frequently limited on a finite range

xl ≤x≤xu (38)

in which x is the vector of decision variables x = (Pi,Q ,w,h), subscripts l and u
indicate the lower and upper bound.

Parameters Value

Feed flow rate (m3/hr) 0.02–200

Inlet pressure (kPa) 200–1000

Recirculation flow rate (m3/hr) 0–50

Initial solid fraction (m3/m3) 0.1

Final solid fraction (m3/m3) 0.4

Plant design year (year) 20

Interest rate (%) 8

Energy price ($/kWh) 0.08

Efficiency of pumps (%) 70

Operating temperature (°C) 25

Module height (mm) 0–100

Module width (m) 0–30

Table 5.
System parameters and variables.

108

Genetic Algorithms

The system parameters and variables are summarized in Table 5.

3.2.4 Optimization by genetic algorithm

The parameters of GA such as population size, crossover probability, mutation
probability values were set to be, 100, 1.0, and 0.30, respectively. The selection was
based on roulette wheel with elitism, which means the most fit individual is guaranteed
a place in the next generation. The number of generations was assigned to be 500.
Because the problem is to minimize the cost, the fitness function was defined as:

fitness ¼ 0 if f xð Þ> 5� 105

5� 105 � f xð Þ otherwise

(
(39)

3.3 Optimum design

For the demonstration of this method, optimum designs of several feed flow rates
have been carried out. The lower limit of the membrane width is 0.1 m, the lower limit
for the module height is 0.5 mm. The designs are shown in Table 6.

Feed [m3/
hr]

ϕ0

[�]
ϕf

[�]
Pressure
[kPa]

Recirculation
[m3/hr]

width
[m]

height
[mm]

total cost
[$/yr]

0.02 0.1 0.4 523 2.8 0.1 5.0 1.29 � 103

0.2 0.1 0.4 1000 4.9 0.1 8.9 4.30 � 103

2 0.1 0.4 1000 0.2 0.1 6.9 1.18 � 104

20 0.1 0.4 987 0.2 1.3 5.0 5.60 � 104

200 0.1 0.4 1000 0.8 11.1 5.0 3.65 � 105

Table 6.
Optimum designs of membrane module.

Figure 4.
The behavior of cost per unit flow rate design in optimum condition with plant capacity.

109

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

Figure 4 presents the optimum total cost per unit of feed flow. The cost per unit of
feed flow decreases with an increase in plant capacity. It reflects the economies of
scale.

The results also suggest that the membrane module dimensions and operation
condition will change greatly depending on the process requirements, such as the
required feed capacity. It is challenging to predict the direction. It might be concluded
that the permeate flux also greatly affects the geometric design and operation strategy
in membrane separation processes. It is difficult to find a general rule for the design,
for each specific system, the correlation between the permeate flux and operating
conditions and membrane geometry should be investigated.

4. Modeling and optimization of the BSCF-based single-chamber solid
oxide fuel cell by artificial neural network and genetic algorithm

Fuel cells that are highly effective and green technology for converting chemical
energy stored in fuel to useable power are currently regarded as one of the most
promising approaches for future energy requirements [35]. The solid oxide fuel cell
(SOFC) has demonstrated an exceptional integration of advantages, such as high
efficiency, fuel flexibility, wide contamination acceptance, and low pollution [36, 37].
Modeling and simulation are valuable tools for determining the impact of various
design factors and operating conditions on cell performance, as well as for improving
fuel cells [38–40]. Plenty of models have been reported to add to the understanding of
fuel cells. Modeling approaches can be categorized into two types: theoretical and
empirical one [39, 41, 42]. In the theoretical approach, the spatial dimensions of the
models range from simple 0 (0-D) [43, 44] and 1 (1-D) [42, 45–47], to more compli-
cated 2 (2-D) [48–51] and 3 (3-D) [52–54], all with various characteristics and
directed at different objectives. The mathematical models, which are based on con-
servation principles, require a lot of data on parameters and properties of fuel cell, as
well as complicated equations and time-consuming calculation.

Empirical or data-driven approach may be more feasible for fuel cell users since
the behavior can be quickly and simply deduced without a comprehensive under-
standing of the internal components, just based on the experimental data [39, 41].
Least squares support vector machine (LS-SVM) [55], Hammerstein model [56, 57]
are examples of these approaches. In this approach, artificial neural network (ANN)
shows several advantages, including high nonlinearity, rapid computation, a low
degree of error in matching experimental data. Using ANNs to model SOFCs appears
to be a very promising method.

In this section, an ANN was used to model the performance of the BSCF/GDC-
based cathode SOFC. The cell voltage was predicted from cathode sintering tempera-
ture, cell operating temperature, and cell current. Several network architectures were
examined to find the best structure, and the network was trained using back-
propagation methods. The data for training, validation, and testing were taken from
our study [58]. The genetic algorithm and the developed ANN were then used to find
the best conditions for achieving maximum power.

4.1 Artificial neural network models

Artificial neural networks (ANNs), which were analogous to biological nervous
systems, consist of interconnected nodes known as neurons to receive and transfer

110

Genetic Algorithms

data [59]. The most basic form, feed-forward architecture, is made up of an input
layer, one hidden layers, and an output layer. The input and output layers have the
same number of neurons as the number of inputs and outputs in the system to be
modeled. Weighted connections connect each neuron to every other neuron in the
next layer. In any layer except the input, the weighted sum of data from the previous
layer is the input of a neuron. The neuron then activates the data using a function and
transfers the response to all neurons in the next layer. The size of the hidden layers is a
significant factor that affects the estimation precision because it can make the net-
work become insufficient or overfitting [60]. The number of neurons in hidden layer
is generally determined through trials. Figure 5 illustrates a 3–5-1 feed forward artifi-
cial neural network with operating temperature, sintering temperature, and current as
inputs.

The activation function employed in this model is the logistic
sigmoidf xð Þ ¼ 1= 1þ e�xð Þ.

The input data (xi) are scaled to normalized value (xnorm) to enhance the perfor-
mance of the network:

xnorm ¼ 0:8
x� xminð Þ

xmax � xmin
þ 0:1 (40)

in which xmax and xmin are the bounded interval of the experimental data.
To assess the performance of ANN, the mean squared error (MSE) and coefficient

of determination (R2) are usually used [61].
Various factors affect the performance of fuel cells such as cathode and anode

structure, electrolyte material and thickness, cell temperature, inlet and outlet gas
compositions. Two important factors, cathode sintered temperature and cell operating
temperature, were considered in this model. The sintered temperature is from 1000–
1050°C, whereas the operating temperature ranges from 625–700°C. The sintered
temperature affects the structure of the obtained cathode as reported in [58]. The
explanation of the range for the investigated parameters can be found in [62].

An ANN with one input layer, one hidden layer, and one single output layer was
proposed. Current density, sintered temperature of the cathode, and cell operating
temperature are the inputs. Back-propagation algorithm [63] was used to train the
network. The maximum number of iteration and minimum performance gradient
were set to 400 and 10�5, respectively, to stop the training. The proper network
structure is determined through a series of trial tests. The data were split into three
subsets at random: training, validation, and test, each containing 70, 20, 10% of the

Figure 5.
Artificial neural network (3–5-1) structure.

111

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

total samples, respectively. The validation and test sets are necessary for evaluating
the validation and power of the networks.

The parameters of the neural network were saved and utilized in the next stage to
optimize the power density using genetic algorithms.

4.2 Optimization by genetic algorithm

The objective function is the power density of the fuel cell

P ¼ I � V (41)

where P is the power density (mW.cm�2), I is the current density (mA.cm�2) and
is the input to the ANN model, and V is the cell voltage (V), which is calculated from
the model.

The design variables and their corresponding ranges are summarized as follows:

• sintered temperature of the cathode, [1000–1050] (°C).

• operating temperature of the cell, [625–700] (°C).

• electric current of the cell, [0–1500] (mA.cm�2)

The parameters of GA as population size, mutation probability values were set to
be 100 and 0.10, respectively. The survival of the individuals was decided by roulette
wheel with elitism. The number of generations was 500.

4.3 Optimization results

Figure 6 depicts the fitness values (maximum and mean) of the population versus
generation. As indicated in the figure, after about 20 generations, the value of fitness
function attained to a maximum value and then remained unchanged. After 100

Figure 6.
The fitness values versus generation.

112

Genetic Algorithms

generations, the maximum fuel cell power density of 451.64 mW/cm2 could be
achieved at the sintered temperature of 1005°C, operating temperature of 668°C, and
current density of 777 mA/cm2.

5. Conclusions

The application of genetic algorithm in chemical engineering processes has been
illustrated by three case studies. The results suggest that the optimum conditions of
complex chemical problems can be easily obtained using genetic algorithm. The suc-
cesses of genetic algorithm for the challenging problems reported herein, the devel-
opment of many faster and flexible versions of GA, the improvement of computing
ability all suggest the continually increasing impact of metaheuristic methods in
chemical engineering systems.

Author details

Thi Anh-Nga Nguyen1 and Tuan-Anh Nguyen2*

1 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

2 Faculty of Chemical Engineering, Ho Chi Minh City University of Technology,
VNU-HCM, Vietnam

*Address all correspondence to: anh.nguyen@hcmut.edu.vn

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

113

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

References

[1] Goldberg DE. Genetic Algorithms in
Search, Optimization, and Machine
Learning. Boston, MA, United States:
Addison-Wesley; 1989

[2] Deb K. Introduction to genetic
algorithms for engineering optimization.
In: Onwubolu GC, Babu BV, editors.
New Optimization Techniques in
Engineering. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2004.
pp. 13-51

[3] Nielsen A, Aika K, Christiansen LJ,
Dybkjaer I, Hansen JB, Nielsen PEH,
et al. Ammonia: Catalysis and
Manufacture. Berlin Heidelberg:
Springer; 1995

[4] Ammonia AM. Priciples & Industrial
Practice. Weinheim, Germany: Wiley;
1999

[5] Babu B, Angira R, Nilekar A.
Optimal design of an auto-thermal
ammonia synthesis reactor using
differential evolution. In: Proceedings
of the Eighth World Multi-Conference
on Systemics, Cybernetics and
Informatics (SCI-2004).
Orlando, Florida, USA: International
Institute of Informatics and Systemics;
2004

[6] Babu BV, Angira R. Optimal design of
an auto-thermal ammonia synthesis
reactor. Computers & Chemical
Engineering. 2005;29(5):1041-1045.
DOI: 10.1016/j.compchemeng.
2004.11.010

[7] Carvalho EP, Borges C, Andrade D,
Yuan JY, Ravagnani MASS. Modeling
and optimization of an ammonia reactor
using a penalty-like method. Applied
Mathematics and Computation. 2014;
237:330-339. DOI: 10.1016/j.
amc.2014.03.099

[8] Edgar TF, Himmelblau DM,
Lasdon LS. Optimization of Chemical
Processes. New York, NY, USA:
McGraw-Hill; 2001

[9] Ksasy M, Areed F, Saraya S,
Khalik MA. Optimal reactor length of
an auto-thermal ammonia synthesis
reactor. IJECS: International Journal of
Electrical and Computer Sciences.
2010;10(3):6-11

[10] Murase A, Roberts HL,
Converse AO. Optimal thermal Design of
an Autothermal Ammonia Synthesis
Reactor. Industrial & Engineering
Chemistry Process Design and
Development. 1970;9(4):503-513. DOI:
10.1021/i260036a003

[11] Upreti SR, Deb K. Optimal design of
an ammonia synthesis reactor using
genetic algorithms. Computers &
Chemical Engineering. 1997;21(1):87-92.
DOI: 10.1016/0098-1354(95)00251-0

[12] Yusup S, Zabiri H, Yusoff N,
Yew YC. Modeling and Optimization of
Ammonia Reactor Using Shooting
Methods. Bucharest, Romania:
Proceedings of the 5th WSEAS
international conference on Data
networks, communications and
computers, World Scientific and
Engineering Academy and Society
(WSEAS); 2006. pp. 258-268

[13] Nguyen TAN, Nguyen TA, Vu TD,
Nguyen KT, Dao TKT, Huynh KPH.
Optimization of an auto-thermal
ammonia synthesis reactor using cyclic
coordinate method. IOP Conference
Series: Materials Science and
Engineering. 2017;206:012059.
DOI: 10.1088/1757-899x/206/1/012059

[14] Mores PL, Arias AM, Scenna NJ,
Caballero JA, Mussati SF, Mussati MC.

114

Genetic Algorithms

Membrane-based processes:
Optimization of hydrogen separation by
minimization of power, membrane area,
and cost. Processes. 2018;6(11):221. DOI:
10.3390/pr6110221

[15] Ramírez-Santos ÁA, Bozorg M,
Addis B, Piccialli V, Castel C, Favre E.
Optimization of multistage membrane
gas separation processes. Example of
application to CO2 capture from blast
furnace gas. Journal of Membrane
Science. 2018;566:346-366.
DOI: 10.1016/j.memsci.2018.08.024

[16] Ohs B, Lohaus J, Wessling M.
Optimization of membrane based
nitrogen removal from natural gas.
Journal of Membrane Science. 2016;498:
291-301. DOI: 10.1016/j.memsci.
2015.10.007

[17] Wiley DE, Fell CJD, Fane AG.
Optimisation of membrane module
design for brackish water desalination.
Desalination. 1985;52(3):249-265.
DOI: 10.1016/0011-9164(85)80036-9

[18] Nguyen T-A, Yoshikawa S,
Karasu K, Ookawara S. A simple
combination model for filtrate flux in
cross-flow ultrafiltration of protein
suspension. Journal of Membrane
Science. 2012;403-404:84-93.
DOI: 10.1016/j.memsci.2012.02.026

[19] Nguyen T-A, Yoshikawa S,
Ookawara S. Steady state permeate
flux estimation in cross-flow
ultrafiltration of protein solution.
Separation Science and Technology.
2014;49(10):1469-1478. DOI: 10.1080/
01496395.2014.893533

[20] Sethi S, Wiesner MR. Performance
and cost modeling of ultrafiltration.
Journal of Environmental Engineering.
1995;121(12):874-883. DOI: 10.1061/
(ASCE)0733-9372(1995)121:12(874)

[21] Cheryan M. Ultrafiltration and
Microfiltration Handbook. Boca Raton,
FL, USA: Taylor & Francis; 1998

[22] Zeman LJ, Zydney AL.
Microfiltration and Ultrafiltration:
Principles and Applications. New York,
NY, USA: CRC Press; 1996

[23] Karasu K. A Study on Permeation
Phenomena in Cross-Flow Ultrafiltration
Producing a Compressible Cake Layer.
Tokyo, Japan: Tokyo Institute of
Technology; 2010

[24] White FM. Fluid Mechanics. 8th ed.
New York, NY, USA: McGraw-Hill
Education; 2016

[25] Fox RW, McDonald AT,
Mitchell JW. Fox and McDonald's
Introduction to Fluid Mechanics.
Hoboken, NJ, USA:Wiley; 2020

[26] Nguyen T-A, Yoshikawa S. Modeling
and economic optimization of the
membrane module for ultrafiltration of
protein solution using a genetic
algorithm. Processes. 2020;8(1):4. DOI:
10.3390/pr8010004

[27] Dorfman KD, Daoutidis P.
Numerical Methods with Chemical
Engineering Applications. Cambridge,
United Kingdom: Cambridge University
Press; 2017

[28] U.S. Energy Information
Administration. Average Retail Price of
Electricity to Ultimate Customers Total
End-Use Sector. U.S., USA: Department
of Energy; 2019

[29] Park CS. Fundamentals of
Engineering Economics. London, United
Kingdom: Pearson Education; 2013

[30] Turton R, Bailie RC, Whiting WB,
Shaeiwitz JA. Analysis, Synthesis and
Design of Chemical Processes. London,

115

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

United Kingdom: Pearson Education;
2008

[31] Perry RH, Perry RH, Chilton CH,
Perry JH. Chemical Engineers'
Handbook. 5th ed. New York, NY, USA:
McGraw-Hill; 1973

[32] Green DW, Perry RH. Perry's
Chemical Engineers' Handbook. Eighth
ed. New York, NY, USA: McGraw-Hill
Education; 2007

[33] Holland FA, Wilkinson JK. Process
economics. In: Perry RH, Green DW,
editors. Perry’s Chemical Engineers’
Handbook. 7th ed. New York, NY, USA:
McGraw-Hill; 1997

[34]Mir L, Michaels SL, Goel V, Kaiser R.
Crossflow Microfiltration: Applications,
Design, and Cost. In: Ho WSW,
Sirkar KK, editors. Membrane handbook:
Newyork, NY, USA: Springer; 1992.
pp. 571-594

[35] Wachsman ED, Marlowe CA,
Lee KT. Role of solid oxide fuel cells in a
balanced energy strategy. Energy &
Environmental Science. 2012;5(2):
5498-5509. DOI: 10.1039/C1EE02445K

[36] Ghezel-Ayagh H, Borglum BP.
(invited) review of Progress in solid
oxide fuel cell at FuelCell energy. ECS
Transactions. 2017;80(9):47-56.
DOI: 10.1149/08009.0047ecst

[37] Minh N, Mizusaki J, Singhal SC.
Advances in solid oxide fuel cells:
Review of Progress through three
decades of the international symposia on
solid oxide fuel cells. ECS Transactions.
2017;78(1):63-73. DOI: 10.1149/
07801.0063ecst

[38] Kakaç S, Pramuanjaroenkij A,
Zhou XY. A review of numerical
modeling of solid oxide fuel cells.
International Journal of Hydrogen

Energy. 2007;32(7):761-786. DOI:
10.1016/j.ijhydene.2006.11.028

[39] Hajimolana SA, Hussain MA,
Daud WMAW, Soroush M, Shamiri A.
Mathematical modeling of solid oxide
fuel cells: A review. Renewable and
Sustainable Energy Reviews. 2011;15(4):
1893-1917. DOI: 10.1016/j.
rser.2010.12.011

[40] Ma L, Ingham DB,
Pourkashanian M, Carcadea E. Review of
the computational fluid dynamics
modeling of fuel cells. Journal of Fuel
Cell Science and Technology. 2005;2(4):
246-257. DOI: 10.1115/1.2039958

[41] Wang K, Hissel D, Péra MC,
Steiner N, Marra D, Sorrentino M, et al.
A review on solid oxide fuel cell models.
International Journal of Hydrogen
Energy. 2011;36(12):7212-7228.
DOI: 10.1016/j.ijhydene.2011.03.051

[42] Karcz M. From 0D to 1D modeling
of tubular solid oxide fuel cell. Energy
Conversion and Management. 2009;
50(9):2307-2315. DOI: 10.1016/j.
enconman.2009.05.007

[43] Costamagna P, Magistri L,
Massardo AF. Design and part-load
performance of a hybrid system based on
a solid oxide fuel cell reactor and a micro
gas turbine. Journal of Power Sources.
2001;96(2):352-368. DOI: 10.1016/
S0378-7753(00)00668-6

[44] Zabihian F, Fung AS. Macro-level
modeling of solid oxide fuel cells,
approaches, and assumptions revisited.
Journal of Renewable and Sustainable
Energy. 2017;9(5):054301. DOI: 10.1063/
1.5006909

[45] Ota T, Koyama M, Wen C-j,
Yamada K, Takahashi H. Object-based
modeling of SOFC system: Dynamic
behavior of micro-tube SOFC. Journal of

116

Genetic Algorithms

Power Sources. 2003;118(1):430-439.
DOI: 10.1016/S0378-7753(03)00109-5

[46] Li P-W, Suzuki K. Numerical
modeling and performance study of a
tubular SOFC. Journal of The
Electrochemical Society. 2004;151(4):
A548. DOI: 10.1149/1.1647569

[47] Bove R, Lunghi P, M. Sammes N.
SOFC mathematic model for systems
simulations—Part 2: Definition of an
analytical model. International Journal
of Hydrogen Energy. 2005;30(2):
189-200. DOI: 10.1016/j.ijhydene.
2004.04.018

[48] Ma R, Gao F, Breaz E, Huangfu Y,
Briois P. Multidimensional reversible
solid oxide fuel cell modeling for
embedded applications. IEEE
Transactions on Energy Conversion.
2018;33(2):692-701. DOI: 10.1109/
TEC.2017.2762962

[49] Ni M. 2D thermal-fluid modeling
and parametric analysis of a planar
solid oxide fuel cell. Energy
Conversion and Management. 2010;
51(4):714-721. DOI: 10.1016/j.
enconman.2009.10.028

[50] Geisler H, Dierickx S, Weber A,
Ivers-Tiffee E. A 2D stationary FEM
model for hydrocarbon Fuelled SOFC
stack layers. ECS Transactions. 2015;
68(1):2151-2158. DOI: 10.1149/
06801.2151ecst

[51] Luo XJ, Fong KF. Development of 2D
dynamic model for hydrogen-fed and
methane-fed solid oxide fuel cells.
Journal of Power Sources. 2016;328:
91-104. DOI: 10.1016/j.jpowsour.
2016.08.005

[52] Nikooyeh K, Jeje AA, Hill JM. 3D
modeling of anode-supported planar
SOFC with internal reforming of
methane. Journal of Power Sources.

2007;171(2):601-609. DOI: 10.1016/j.
jpowsour.2007.07.003

[53] Andersson M, Paradis H, Yuan J,
Sundén B. Three dimensional modeling
of an solid oxide fuel cell coupling charge
transfer phenomena with transport
processes and heat generation.
Electrochimica Acta. 2013;109:881-893.
DOI: 10.1016/j.electacta.2013.08.018

[54] Yang C, Yang G, Yue D, Yuan J,
Sunden B. Computational fluid dynamics
model development on transport
phenomena coupling with reactions in
intermediate temperature solid oxide
fuel cells. Journal of Renewable and
Sustainable Energy. 2013;5(2):021420.
DOI: 10.1063/1.4798789

[55] Huo H-B, Zhu X-J, Cao G-Y.
Nonlinear modeling of a SOFC stack
based on a least squares support vector
machine. Journal of Power Sources.
2006;162(2):1220-1225. DOI: 10.1016/j.
jpowsour.2006.07.031

[56] Huo H-B, Zhong Z-D, Zhu X-J,
Tu H-Y. Nonlinear dynamic modeling
for a SOFC stack by using a
Hammerstein model. Journal of Power
Sources. 2008;175(1):441-446.
DOI: 10.1016/j.jpowsour.2007.09.059

[57] Jurado F. A method for the
identification of solid oxide fuel cells
using a Hammerstein model. Journal of
Power Sources. 2006;154(1):145-152.
DOI: 10.1016/j.jpowsour.2005.04.005

[58] Le M-V, Tsai D-S, Nguyen T-A.
BSCF/GDC as a refined cathode to the
single-chamber solid oxide fuel cell
based on a LAMOX electrolyte.
Ceramics International. 2018;44(2):
1726-1730. DOI: 10.1016/j.ceramint.
2017.10.103

[59] Baughman DR, Liu YA. Neural
Networks in Bioprocessing and Chemical

117

Genetic Algorithms for Chemical Engineering Optimization Problems
DOI: http://dx.doi.org/10.5772/intechopen.104884

Engineering. Amsterdam, Netherlands:
Elsevier Science; 1995

[60] Sheela KG, Deepa SN. Review on
methods to fix number of hidden
neurons in neural networks.
Mathematical Problems in Engineering.
2013;2013:425740. DOI: 10.1155/2013/
425740

[61] Himmelblau DM. Accounts of
experiences in the application of
artificial neural networks in chemical
engineering. Industrial & Engineering
Chemistry Research. 2008;47(16):
5782-5796. DOI: 10.1021/ie800076s

[62] Le M-V, Nguyen T-A, Nguyen
TA-N. Modeling and optimization of the
BSCF-based single-chamber solid oxide
fuel cell by artificial neural network and
genetic algorithm. Journal of Chemistry.
2019;2019:7828019. DOI: 10.1155/2019/
7828019

[63] Wythoff BJ. Backpropagation neural
networks: A tutorial. Chemometrics and
Intelligent Laboratory Systems. 1993;
18(2):115-155. DOI: 10.1016/0169-7439
(93)80052-J

118

Genetic Algorithms

Chapter 6

Using Genetic Algorithm to
Optimize Controllers of Thermal
Load System in Thermal Power
Plant
PhamThi Ly and Bui Quoc Khanh

Abstract

This chapter presents the sequence of implementing the genetic algorithms using
the programming language in the Mfile application of MATLAB Simulink software to
optimize the two controller parameters of the coordinated control system structure of
the thermal load system in coal-fired thermal power plants: electric power controller
and steam pressure controller. Optimal standards are determined to be fast-tracking
and fuel-saving. Operational data at a thermal power plant in Vietnam have been used
to simulate the operation of a thermal load control system with a coordinated control
structure in a thermal power plant to test controller parameters found from the
genetic solution. To clarify the superiority of the genetic algorithm method in control
of the thermal load system of a thermal power plant, the authors give an evaluation of
the original control system compared to the control system using the parameters
found from the genetic algorithm method. The results show that the thermal load
control system in the thermal power plant using controller parameters found from the
genetic algorithm method is much more optimal in terms of fuel consumption and the
ability to follow the set amount.

Keywords: genetic algorithm, coordinated control system, thermal power plant,
thermal load control system, optimization

1. Introduction

Genetic algorithms are general algorithms that can successfully solve difficult
problems in many fields, which cannot be solved by other methods [1–6]. The appli-
cation scope of genetic algorithms is confronted with problems that are impossible or
ineffective to solve.

In recent years, the applications of genetic algorithms have increased greatly in
many fields such as engineering (engine design, aircraft design, etc.), optimization,
robot operation, product classification system, machine learning system, pattern
recognition, neural network training, fuzzy system tuning, planning, adaptive
control, game programming, transportation problems, tourism problems, etc. [1–3].

119

The control system’s design involves many issues, such as, system stability, transient
and steady-state quality, etc. Each problem depends a lot on the structure and parameters
of the control system. However, this dependence may not be expressed mathematically.
In addition, when designing, it is necessary to ensure that conflicts among the quality
criteria are adequately resolved. The lack of systematic methods for selecting values for
many controller parameters is a major obstacle to satisfying control requirements. To
solve these problems using genetic algorithms, we encode the structure and parameters of
the controller into a chromosomal sequence and define a fitness function as a function of
the quality requirements. Accordingly, we can convert the design problem into the prob-
lem of minimizing an objective function according to the controller parameters. Since
genetic algorithms only use the fitness function in the optimization process, they can
perform this search. The innovative combination of existing control methods with genetic
algorithms can create a powerful tool to solve real control problems.

The field of control of coal-fired power plants is complicated and contains many
difficult processes to solve, especially the thermal load control system of coal-fired power
plants [7–9]. Currently, many authors have used genetic algorithms in their research to
solve problems in production and control activities at coal-fired power plants. The
studies [10–15] all have a thermal load system model described by a first-order differen-
tial equation or a system of nonlinear equations. These control models have ignored the
physical effects of the boiler base loops in the thermal load system in the thermal power
plant: the fuel control loop, the gas and air control loop, the water supply control loop,
superheat steam, and spray control loop. The use of genetic algorithms in these studies is
mainly using the GA toolbox in MATLAB Simulink with different goals: [10–12] inter-
ested in reducing fuel consumption in the production of each MW of electricity, fast-
tracking the setpoint; [16] interested in minimizing the influence of turbine valve
adjustment and combustion speed on the power generator; [13, 17] investigated all the
objectives which are related to each parameter in the operation of thermal power plants:
coal flow, smoke flow, ID fan, FD fan, heat reduction spray flow of the process of
superheating and spray, etc. while [14] gives the target of the fastest action time for the
control parameters of the fuel valve, steam valve, and water supply valve.

In principle, the parameters of a PID controller in a control system can be easily
designed using classical methods such as root locus or bode plots, etc. However, in the
industry, most parameters of the PID controller are experimentally adjusted by the
errors test method because there are no mathematical models of the object. The
adjustment process in many cases is very difficult and time-consuming. A proposed
solution to solve the above-mentioned difficulties is to use a genetic algorithm to
automatically adjust the parameters of the PID controller so that the control systems
reach the minimum value of criterion.

In this chapter, a genetic algorithm is used to optimize the parameters of twomain PID
controllers in the thermal load control system with a new coordinated structure which is
proposed by the authors (GCN power controller and GCP steam pressure controller). This
new coordinated control structure built by the authors is based on a method that com-
bines the description of dynamic processes with data collection and operating parameters
of a real thermal power plant. This is a complicated model, including many linear and
nonlinear processes with mutual and interleaving influence. The goal is used to find
solutions for optimal parameters of power controller and pressure controller using genetic
algorithms is to optimize the operation: fast-tracking the setpoint and saving the fuel (kg
of coal/kWh). Because the model is so large and complicated that no equation can fully
describe its characteristics, it is impossible to use the GA toolbox as the other authors do to
apply genetic algorithms in finding the optimal parameters for the controllers of the

120

Genetic Algorithms

thermal load system. The present authors build a program on MATLAB Simulink’s Mfile
with all the properties and characteristics of a genetic algorithm. This program will find
out the optimal parameters of the controllers in the thermal load system by affecting the
model built on Simulink to find the optimal parameters for the controllers.

Achieve expected results:

• A software program will be written for a genetic algorithm is applied to find
optimal parameters for the controllers of a model with a complicated structure.

• New optimal parameters are better for the controllers of the thermal load system
in thermal power plants.

• The consumption of fuel is reduced during the production of electricity (at least
1 g coal per kW power).

2. New coordinated control structure

2.1 New coordinated control structure of thermal load control system in thermal
power plant

The thermal load control system according to the new coordinated structure
proposed by this chapter’s authors in Figure 1:

pointPower set -

Steam Capacity

Fuel supply control

Pressure Set-
point

Feed water control

Superheat Steam
Control

Air and Gas Control

System
Furnace Pressure

Turbine- Generator

Required heat
capacity

Required
electrical power

*N

dN

_

fCWG

FNG

Nu

FNuPu

f hW

fV , .h h hP T W

hN

_

fW

O*%
2

bdp*

hqnT *

bdH *

CNG

_

_

*
fW

pu
CPG

()g P

(,)g N f
f

P

hP*

hP

F N *()

Figure 1.
The new coordinated control structure.

121

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

On the new coordinated control structure, the setpoint of power Ne* (MW) is
used as the setpoint for both the steam power control system (boiler) and the
generating capacity control system (turbine-generator). In the steam power control
system, the variables to be controlled are steam temperature and steam pressure. To
meet the control requirements of this control system, it is necessary to adjust the basic
control loops so that these control loops work well, meeting the operating require-
ments: fuel control loop, gas and air control loop (control of residual oxygen concen-
tration and control of negative pressure in the combustion), water supply control
loop, superheated steam and spray control loop. A pressure regulating limiter is
designed to be placed at the outlet of the GCP pressure controller. This setting is to
avoid the amount of fuel being too large or zero to cause fluctuations in the amount of
fuel set.

On the power generation control system with GCN power controller, the variable
that needs to be controlled is the electrical power Ne (MW), and the actuation
variable is the turbine regulating valve which is to bring the standard steam flow into
the turbine to rotate the machine generate electricity. At the control system side of the
turbine-generator cluster, it is designed to feedforward the power setpoint GFN in the
turbine control part to increase the ability to fast track the power setpoint. This
structure has a signal that compensates for pressure acting on the turbine valve
opening signal to eliminate the channeling between the steam capacity and electrical
power control systems.

Because fuel often changes the chemical composition and calorific value of coal
varies with the type of coal. The determination of variation is usually done by the
chemistry lab at the plants that experiment and test these fuels and then set the
operating requirements for that coal. In this new coordinated control mechanism, we
proposed to add fuel characteristics g (N, f) to actively change the fuel setpoint
according to the change of the power setpoint corresponding to each coal with differ-
ent calorific values, reducing adjustment time and contributing to fuel economy. The
characteristic G (N, f) function tested when changing the calorific value of coal affects
electrical power and vapor pressure is shown in Figure 2.

Due to the large inertia of the boiler, the steam pressure control system responds
more slowly to the turbine-generator output steam power requirements to meet the

Figure 2.
The G (N, f) characteristic of the new coordination control structure.

122

Genetic Algorithms

capacity electrical requirements. Thus, an inter-channel signal is required between the
two vapor pressure control systems and the power control systems. Therefore, in the
structure of Figure 1, we have introduced a static nonlinear function g(ΔP) [18] to
compensate for the interleaving between the two steam pressure control systems GCP

and the power control system GCN to ensure that the pressure is slightly more stable
and the transmitter power responses faster. This static nonlinear compensation
function g(ΔP) is developed from the structure of Flynn [18].

2.2 Simulation of the operation of a thermal load control system with a
coordinated control structure

MATLAB Simulink software is used to simulate the control operation of the
coordinated control structure in Figure 1.

2.2.1 Simulation parameters

Simulation parameters are taken at the stable working time (load from 230 to
300 MW) of a unit with a capacity of 300 MW of the Hai Phong thermal power
plant [7, 8].

The volume of the furnace: 8485 m3.

• Temperature of smoke exiting from the furnace: 1047°C.

• Smoke fan speed: 620 RPM.

• Total flow of air supplied to the boiler: 295.486 kg/s.

• Specific heat capacity of wind: 1005 J/kg.K.

• Coal flow rate: 28.3 kg/s.

• Specific heat of fuel: 1260 J/kg.K.

• Smoke/wind ratio: 1.1.

• Ratio of fuel inlet and slag out: 0.2.

• Coal and wind temperature level 1: 228°C.

• Wind temperature level 2: 341°C.

• Specific heat capacity of water: 4200 J/kg.K.

• Water supply pump speed: 4842 RPM.

• Saturated steam specific heat: 1840 J/kg.K.

• Main steam flow: 191 kg/s.

• Saturated steam pressure: 14.2 MPa.

123

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

• Saturated steam temperature: 340°C.

• Main steam temperature: 541°C.

• Water supply flow: 176 kg/s.

• Feedwater temperature: 280°C.

• Water flow to reduce temperature: 18 kg/s.

• Water spray valve opening to reduce heat: 29.42%.

• Water temperature reduced: 25°C.

• Valve opening: 75%.

2.2.2 Simulation model

After building a simulation model of the control loops in the control systems: the
boiler control system and the turbine-generator combination control system. The new
coordinated control structure of the thermal load control system is shown in Figure 1,
using experimental data experience and operation collected from Hai Phong thermal
power plant [7] to build a simulation model on MATLAB Simulink in Figure 3.

Figure 4 shows the coordinated control structure in the thermal load control
system:

2.2.3 Simulation results of the control system without changing the coal calorific value

Simulation scenario: The system is operating stably at the balanced point at the
generating capacity of 230 MW. There is a request to increase capacity from 230 to
300 MW at 1000 s. At 9000 s, there is a request to reduce the generating capacity
from 300 to 230 MW. Load increase and decrease rate is 3 MW/min, steam pressure is
set according to sliding pressure characteristic, at 1000 s start to increase from 14.2 to
16.7 MPa (68 ÷ 80%, respectively) and at the time of 9000 s start to decrease from
16.7 to 14.2 MPa.

Figure 5 illustrates the responses of power (Ne), steam pressure (Ph), steam flow
(Wh), coal fuel flow (Wf), boiler water level (H), superheated steam temperature (Th),

Figure 3.
The model of a thermal load control system in MATLAB Simulink.

124

Genetic Algorithms

combustion chamber negative pressure (Pbd), residual %O2 concentration (residual O2)
when no change is simulated in the calorific value of coal.

The criteria to evaluate the power and pressure response in Figure 5 are transient
time (Tqd), power error, maximum pressure difference (emax (%)) during load
increase, decrease time, and static error. We have the following quality rating as
shown in Table 1.

Thus, it shows that: the power and pressure responses have a fast transition time
during both load increase and decrease. The error in the process of increasing and

Figure 4.
Coordinated control structure of thermal load system in MATLAB Simulink.

Figure 5.
Simulated application response mode control combinations.

125

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

decreasing the load is small. There is no over-adjustment or oscillation. The real power
line (Ne) follows the setpoint power line (Ne*), the real pressure line (Ph) follows the
setpoint pressure line (Ph*).

The characteristics of fuel flow and steam flow have been met according to control
requirements. The four basic control loops in the boiler were working true. The
oscillations of the responses around the preset point are within the allowable range.
The level of water in the boiler fluctuates in the range of �65 ÷ 88 (mm), the
concentration of residual %O2 fluctuates in the range of �0.02 ÷ 0.01 (%), the
negative pressure of the combustion chamber fluctuates in the range of �67.7 ÷ 72.3
(Pa), superheated steam temperature ranges �0.34 ÷ 0.22 (°C).

In summary, the four control loops in the boiler control are working true. The
coordinated control structure has also shown good quality when ensuring fast
response of pressure control and power control to load requirements, eliminating the
inter-channel effect between boiler and turbine-generator.

2.2.4 Simulation results of the control system when the coal calorific value changed

Figure 6 shows the responses of the calorific value of coal (Hthan), fuel flow
control loop (Wf), power error (ErrNe), pressure error (ErrPh), residual %O2 con-
centration (residual O2) control loop, and the combustion chamber negative pressure
control loop (Pbd).

Coal calorific value is changed when the system is stable at 100% load capacity. At
the time 4000 s start to change the calorific value as shown in Figure 6. There are two
stages of heating value increase: the heating phase increases from 100% up to 109.5%
compared to the average calorific value, and the period of reducing the calorific value
to 95.2% compared with the average calorific value.

It can be seen that the fuel response changes immediately as soon as the calorific
value of the coal changes. As the calorific value of coal increases, the fuel flow is
reduced by 1.15% of the maximum required fuel flow. As the calorific value of coal
decreases, the fuel flow increases to 0.66% of the maximum fuel flow.

Power and pressure errors are small when the coal calorific value
changes. This error value is so small that it can be ignored. The response of the
control loops the residual %O2 concentration, and the combustion chamber
negative pressure also fluctuates slightly around the preset value. It shows that
these control loops operate stably, not affected by the interference of temperature
change.

Summarizing this section, the combined control structure gives good control
quality and works well when there is a change in coal calorific value, which affects
the new coordinated control system proposed by the authors. It has eliminated the
inter-channel effect between the boiler and the turbine generator.

Control loops Tqd (s) emax (%)

Increase load Reduce load Increase load Reduce load

Power response 822 1155 8.06 4.94

Pressure response 812 2250 0.392 0.18

Table 1.
Power and pressure response control quality assessment.

126

Genetic Algorithms

3. Using genetic algorithm to optimize parameters of two controllers of
the new coordinated control structure

Although the pressure controller GCP and the power controller GCN have met
the control requirements for the thermal load control system of the thermal
power plant. However, those controllers only use the IMC-PID method and PID
self-tuner tool on MATLAB Simulink. The parameters of the pressure controller
and power controller in the new coordinated control structure of the thermal
load control system are not the most optimal. Therefore, to improve production
efficiency and optimize operation (fast-tracking the setpoints and saving fuel),
the chapter’s authors continue to research and design a software program
using genetic algorithms to find out the optimized parameters of PI and
PID controllers of steam pressure control system GCP and power control
system GCN.

For the objective of power tracking control, absolute value integral standard is
applied with minimal power error as shown in Eq. (1):

JN ¼ 1
t� t0

ðt
t0
e%N
�� ��dt ! min (1)

For the target of reducing fuel costs for electricity production (kg coal/kWh), it is
calculated as in Eq. (2):

Figure 6.
Simulation response when the coal calorific value changed.

127

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

J f ¼

ðt

t0

W f tð Þdt

ðt

t0

Ne tð Þdt
! min (2)

The objective function of refining GCN and GCP controllers using genetic algo-
rithms in this contents are:

J ¼ JN þ Jf (3)

The purpose of the applied GA algorithm is to find the optimal values {Kp1_out,
KI1_out, Kp2_out, KI2_out, Kd2_out} of the controller GCN and GCP of the new
coordinate system, where the functions JN and Jf reaches the minimum value. In other
words, the objective function of the GA algorithm is min (J).

To limit the search space of the genetic algorithm, it is assumed that the
optimal values {Kp1_out, KI1_out, Kp2_out, KI2_out, Kd2_out} are located around
the value {Kp1, Ki1, Kp2, Ki2, Kd2} of two controllers GCN and GCP.We know that these
parameters {Kp1, Ki1, Kp2, Ki2, Kd2} are obtained from using the PID Turner tool
of MATLAB Simulink and the IMC_PID method. The search limits for those five
parameters of the PID controller are as shown in Eq. (4) as follows:

αKp1 ≤Kp1�out ≤ βKp1

αKi1 ≤Ki1�out ≤ βKi1

αKp2 ≤Kp2�out ≤ βKp2

αKi2 ≤Ki2�out ≤ βKi2

αKd2 ≤Kd2�out ≤ βKd2

(4)

In which, the coefficients α, β are chosen so that the search space is large enough to
accommodate the desired optimal value. Simulation results on the thermal load sys-
tem with the new coordinated control structure, ά = 0 and β = 300 are satisfied.

The genetic algorithm is used as a tool to solve the optimization problem, to obtain
the values {Kp1_out, KI1_out, Kp2_out, KI2_out, Kd2_out} satisfying the objective
functions on Eq. (3) with space search is limited by Eq. (4). Algorithm flowchart of
genetic algorithm to determine PID parameters of two GCN power controllers and GCP

pressure controllers in the new coordinated control system in Figure 7:
The steps to search for optimal parameters for two controllers GCP and GCN according

to the algorithm flowchart of the genetic algorithmmethod in Figure 7 are as follows.

3.1 Startup

Individuals in the origin natural population Kp1, Ki1, Kp2, Ki2, Kd2 of the two
controllers GCP and GCN are randomly startup so that at the time of initialization they
can exist for a long time in the environment. The initial parameters for the startup
process are as follows:

• Number of individuals in the initial population: 25

128

Genetic Algorithms

• Each individual has five chromosomes. Each of these individuals is equivalent to a
power controller parameter (Kp1, Ki1) and pressure controller parameters (Kp2,
Ki2, Kd2) with a limit of parameters Kp1, Ki1, Kp2, Ki2 from 0 to 10 and Kd2
parameter from 0 to 300. The subroutine of the startup process is as follows:

function par = Init(N,d,range)
% input variables:
% N: population size
% d: Number of parameters of the function to find the extreme
% range: two-dimensional array [2xd] stores the value domain of the parameters
% output variables:
% par: two-dimensional array [Nxd]store randomly initialized population
for pop_index = 1:N

for par_index = 1:d,
par(pop_index,par_index) = …

(rand-0.5)*(range(2,par_index)-
range(1,par_index))+

0.5*(range(2,par_index) + range(1,par_index));
end

end

Figure 7.
Process flow chart of genetic algorithm determining PID parameters of two power and pressure controllers in a new
coordinated control system.

129

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

3.2 Evaluate

To evaluate individuals, a fitness function must be defined. A fitness function is
usually a function that needs to find an extreme or an equivalent transformation of the
function. The fitness function is calculated from the objective function (Eq. (5)) as
follows:

J ¼ Ne ∗ �Neð Þ2 þ Ph ∗ � Phð Þ2 þ w f

uT

� �2

! min (5)

The fitness function is the inverse of the objective function (J):

fitness ¼ 1
J þ C

(6)

Where C is added to ensure that the fitness function is always positive.
To find the solution of the objective function, we take the parameters Kp1, Ki1,

Kp2, Ki2, Kd2 of the two controllers GCP and GCN through the initial start-up process,
and put them into the simulation on Simulink, which has built this condition control
of the new coordinated control structure. If the PID parameter satisfies the stable
system, then GA calculates J. Otherwise, if the system is unstable, stop the simulation
and find another PID parameter. Because we use the order of fitness of chromosomes
ascending (GA is looking for the max value), we must inverse the objective function
to find the max value (if J finds the min). Then the best instance (with the smallest J)
is stored in the bestchrom memory cell. The program implemented for the evaluation
process is as follows:

% Calculate the fitness of the initial population
for pop_index = 1:N,

Kp1 = par(pop_index,1);
Ki1 = par(pop_index,2);
Kp2 = par(pop_index,3);
Ki2 = par(pop_index,4);
Kd2 = par(pop_index,5);
sim(‘newcoordinated.slx’);% Simulation of the

% coordinated control
% system in figures 3 and 4

if length(e1) > 79500
Kp1;
Ki1;
Kp2;
Ki2;
Kd2;

J = (e10*e1) + (e20*e2) + (e30*e3);
fitness(pop_index) = 1/(J + eps);

else
J = 10^100;
fitness(pop_index) = 1/(J + eps); % GA to find the

% maximum of the

130

Genetic Algorithms

% adaptive function
end
end;
[bestfit,bestchrom] = max(fitness)

Thus, after the startup and evaluation of the genetic algorithm, 25 individuals were
initially randomly selected to exist in the habitat. These individuals are taken to the
next evolutionary process.

3.3 Encode

To apply the genetic algorithm to the optimization problem, it is necessary to
encode the solution of the problem into a chromosome sequence. In this problem, we
need to find five parameters Kp1, Ki1, Kp2, Ki2, and Kd2. Each solution consisting of
five parameters is called an individual containing a sequence of chromosomes. Each
parameter is a gene segment on the chromosome. There are three ways commonly
used to encode: binary, decimal, and real number encoding. In this problem, the
encoding is a decimal encoding.

The genome used to encode the solution in this decimal encoding method consists
of 10 symbols {0,1,2,3,4,5,6,7,8,9}. This decimal encoding has the advantage that the
NST string length is significantly shortened compared to the binary encoding, thus
making the algorithm run faster. It is possible to directly apply the familiar genetic
operations given to binary encoding. The implementation program for the decimal
encoding process is as follows:

% Endcode_Decimal.m: Decimal encoding subroutine
% Programmer: Pham Thi Lý, UTC, HaNoi, VietNam
function pop = Encode_Decimal(par,sig,dec)
% input variables:
% par: two-dimensional array [Nxd]stores the parameters to be encoded
% N: Population size, d is the number of parameters
% sig: row vector [1xd] stores the number of significant digits equivalent to
each parameter
% dec: row vector [1xd] saves decimal point position
% output variables:
% pop: two-dimensional array [NxL] save population after decimal encoding
% each row of pop is an instance (L is the length of the chromosomal string)
function pop = Encode_Decimal(par,sig,dec)
if (nargin <3)

error([‘missing arguments. syntax: pop = Encode_Decimal(par,sig,dec)’]);
end;
if size(sig) � =size(dec),

error([‘The sig and dec arguments don’t match’]);
end;
[N,d] = size(par); % Determine population size
for pop_index = 1:N, % Scan from the beginning to the end of the

131

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

% population
gene_index = 1;
for par_index = 1:d, % scan parameters
% The first gene encodes the sign of the parameter
if par(pop_index,par_index) < 0,

pop(pop_index,gene_index) = 0;
else

pop(pop_index,gene_index) = 9;
end

gene_index = gene_index+1;
% Subsequent Genes are significant digits temp(par_index) = abs(par
(pop_index,par_index))/10^dec(par_index);
for count = 1:sig(par_index),

temp(par_index) = temp(par_index)*10;
pop(pop_index,gene_index) = temp(par_index)-

rem(temp(par_index),1);
temp(par_index) = temp(par_index)-

pop(pop_index,gene_index);
gene_index = gene_index+1;

end
end
end

3.4 Selective

The basic principle of selection is that the more adaptive the chromosome, the
greater the probability of selection. The selection not only determines which individ-
uals are allowed to exist but also determines the number of possible offspring.

The best individual has a higher probability of selection than the less fit individual.
This selection is so strong that the genes of the highly-adapted individual can prevail.
In the opposite case, this selection also occurs, the genes of the low-adapted individual
will be suppressed or low-dominance. This causes a local solution or premature con-
vergence. If the selection is weaker, the less well-adapted individuals have a chance to
reproduce. This will increase the probability of finding a global solution but slow
down the evolution.

There are many selection methods such as proportional selection, round selection,
linear ranking selection, and exponential ranking selection. In the content of this
chapter, we use linear ranking selectivity. Linear rank selection is to arrange individ-
uals in ascending order of fitness and assign the best individual class N, the worst
individual class 1. The probability of selection of each individual is linearly
proportional to its rank:

pk ¼
1
N

ηþ 2 1� ηð Þ k� 1
N � 1

� �
(7)

where 0< η< 1 the selection probabilities of the best and worst individuals
are η=N and 2� ηð Þ=N. The program of the linear ranking selection process is as
follows:

132

Genetic Algorithms

function parent = Select_Linear_Ranking(pop,fitness,eta,elitism,bestchrom)
% Linear selection
% input variables:
% pop: two-dimensional array [NxL], population before selection
% N is the population size, L is the length of the chromosomal chain
% fitness: column vector [Nx1], the fitness of individuals in a population
% elitism: The flag holds the superior individual in the process of evolution
% bestchrom: variable used to save the best individual in evolution
% eta: Parameters of linear rank selection
% Biên ra:
% Parent: two-dimensional array [NxL], population after selection
if (nargin<5), error(‘missing arguments’);
end;
N = length(fitness); % population size
[fitness,order] = sort(fitness); % Arrange chromosomes in
% ascending order of
% fitness
% Calculate the probability of selection of chromosomes after sorting
according to formula (7)
for k = 1:N,

p(k) = (eta+(2-eta)*(k-1)/(N-1))/N;
end
s = zeros(1,N + 1);
for k = 1:N,

s(k + 1) = s(k) + p(k);
end;
for k = 1:N,

if elitism ==1 & order(k) == bestchrom,
% If elitism = 1 and the chromosome in use is the best chromosome, then that
chromosome is selected

parent(order(k),:) = pop(order(k),:);
else
% if elitism = 0 or the chromosome in use is not the best one
% then that chromosome will be selected with a probability
% proportional to its rank

r = rand*s(N + 1);
index = find(s < r);j = index(end);
parent(order(k),:) = pop(order(j),:);

end
end

3.5 Crossbreed

The more adaptive an individual is, the more likely it is to survive. Through the
process of crossbreeding, the good traits of the previous generation are passed on to
the next generation. Hybridization is a method of sharing information between chro-
mosomes. This operation combines the characteristics of two parental chromosomes
to produce two offspring with the prospect that a good parent will produce better

133

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

offspring. Inbreeding usually does not affect all chromosomes but on the contrary,
only occurs between two-parent chromosomes selected at random with a probability
of hybridization. The principle of crossbreeding is to randomly pair two chromosomes
in a population after having passed the selection step to create two daughter chromo-
somes, each child chromosome inherits a part of the parent’s genes.

There are many different breeding methods such as single point crossbreeding,
multiple point crossbreeding, and regular crossbreeding. Two-point crossbreeding
means dividing each parent’s chromosome into four random parts. When creating two
son chromosomes, each son chromosome contains four parts including two parts of
the father’s chromosome and two parts of the mother’s chromosome. The program of
the breeding process is as follows:

function child = Cross_Twopoint(parent,Pc,elitism,bestchrom)
% Input Variables:
% parent: Two-dimensional array [NxL], population before
% hybridization
%N is the population size, L is chromosome length
%Pc: Probability of hybridization
% elitism: Flag that holds the superior individual in evolution
% bestchrom: The variable used to save the best individual in
% evolution
% Output Variables:
% child: two-dimensional array [NxL], population after
% hybridization
if(nargin <4),

error([have not enough arguments’]);
end;
[N,L] = size(parent);
for p1 = 1:N, % parent individual 1
% if elitism = 1 and p1 is a superior individual, do not cross
% (to preserve the best genes)

if (elitism==1)&(p1==bestchrom)
child(p1,:) = parent(p1,:);

else
if Pc > rand % hybridization occurs with

% probability Pc
p2 = p1; % Randomly select individual

% parent 2 that is defferent
% from individual parent 1

while p2==p1,
p2 = rand*N;
p2 = p2-rem(p2,1) + 1;

end
k1 = rand*(L-1); % random selection of

% hybrid point 1
k1 = k1-rem(k1,1) + 1;
k2 = k1;

while k2==k1, % randomly select

134

Genetic Algorithms

% hybrid point 2
% defferent from
% hybrid point 1

k2 = rand*(L-1);
k2 = k2-rem(k2,1) + 1;

end;
if k1 > k2, t = k2;k2 = k1;k1 = t; end;
% if k2 < k1 then convert k1 to k2 to ensure that k1 < k2
% Children inherit genes from their parents

child(p1,1:k1) = parent(p1,1:k1);
child(p1,k1 + 1:k2) = parent(p2,k1 + 1:k2);
child(p1,k2 + 1:L) = parent(p1,k2 + 1:L);

else
child(p1,:) = parent(p1,:);

end
end
end

3.6 Gene mutation

The offspring born through the process of natural selection and crossbreeding will
carry the good qualities of the parent’s generation. However, because the initial ini-
tialization generation is not rich and not suitable, the individuals cannot evenly spread
the entire solution space. This makes it difficult to find the optimal solution. The
mutation operation changes one or more genes of an individual to increase the diver-
sity of the population structure. This helps to prevent the genetic algorithm from
prematurely converging and the locally optimal solution. However, mutations should
occur with low probability, otherwise, they can cause disturbance and loss of selected
and highly adaptive individuals.

Mutation has many methods such as single point mutation, two-point mutation,
and regular mutation. In this problem used uniform mutation. The program of the
mutation process is as follows:

function newpop = Mutate_Uniform(pop,Pm,elitism,bestchrom)
% Input Variables:
% pop: Two-dimensional array [NxL], population before mutation
%N is population size, L is chromosome length
% Pm: Probability of mutation
% elitism: Flag used to preserve the superior individual in the process of
evolution
% bestchrom: The variable used to save the best instance in evolution
% Output variable:
% newpop: two-dimensional array [NxL], population after mutation
if(nargin<4),

error([‘missing arguments’]);
end;

[N,L] = size(pop);

135

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

newpop = pop;
for pop_index = 1:N,
if(elitism==0)||(elitism==1&& pop_index� = bestchrom),
for gene_index = 1:L,

if Pm > rand,% The mutation occurs with the
% probability that Pm generates
% a random gene different from
% the gene under consideration

rand_gene = rand*10;
while(pop(pop_index,gene_index)==

rand_gene-rem(rand_gene,1)||rand_gene==10),
rand_gene = rand*10;

end
newpop(pop_index,gene_index)=

rand_gene-rem(rand_gene,1);
end
end
end

end

3.7 Convergence

If the preset number of generations is reached, stop breeding new generations
and output an individual with the best chromosome sequence stored in the
bestchrom memory cell. In this content, it is necessary to create five chromosomes,
Kp1, Ki1, Kp2, Ki2, and Kd2. In case the previous generation objective function
value is equal to the next generation objective function value in a preset
number of generations, then also stop breeding and output the individual with
the best chromosome sequence. The program of the convergence process is as
follows:

% generation: variable that counts the number of generations
% terminal = 1: flag indicating the end of this algorithm
% stall_generation: variable that counts the number of generations of
adaptive functions
% check stop condition
if generation == max_generation

Terminal = 1;
elseif generation >1,

if abs(bestfit(generation)-bestfit(generation-1)) < epsilon,
stall_generation = stall_generation+1;
if stall_generation == max_stall_generation, Terminal =1;
end
else

stall_generation =0; % variable count the

% number of generations

136

Genetic Algorithms

% of fitness function
% unchanged

end;
end;

end;

4. The results of running the genetic algorithm to find the optimal
solution

4.1 Parameters of the genetic algorithm

• The number of individuals in the initial population is 25.

• The maximum number of generations is 30.

• The number of generations with the same objective function result is 20.

• The number of chromosomes contained in each individual is 5 corresponding to
two power controller parameters (GCN) and using PI structure KP1, KI1, and
three pressure controller parameters (GCP) using PID structure are KP2, KI2,
KD2.

• Initialization limit for parameters KP1, KI1, KP2, KI2, KD2 from 0 to 300.

• The objective function (J) includes the optimal parameters of the squared
deviation of the signal of the setpoint transmit power and the actual transmitted
power. Plus, the coal saving criterion is the squared ratio of the fuel flow to the
actual generating capacity.

J ¼ Ne ∗ �Neð Þ2 þ w f

Ne

� �2
! min (8)

• Probability of hybridization: 90%.

• Probability of mutation: 10%.

4.2 Results of the genetic algorithm after 30 generations of searching

The program that follows the algorithm of the genetic algorithm on MATLAB
Simulink has been presented in Section 3. The value of the objective function in 30
generations is shown in Figure 8.

The value of the objective function reduce from 91.226 to 7911 after 30 genera-
tions, and the parameters of the two power and pressure controllers are found as
follows:

• The GCN power controller’s parameter is Kp1_out = 4.3; Ki1_out = 0.017

• The GCP pressure controller parameter is Kp2_out = 41; Ki2_out = 0.05; Kd2_out = 169

137

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

While the old parameters of the controllers are as follows:

• The GCN power controller’s parameter is Kp1 = 0.093; Ki1 = 0.0053

• The GCP pressure controller parameter is Kp2 = 1.18; Ki2 = 0.085; Kd2 = 98.1

We use new parameters that are found by genetic algorithm for two controllers
GCN and GCP into the thermal load control system model with a new coordinated
control structure on MATLAB Simulink. Then evaluate and compare the model with
these new parameters with the model when the controllers have not been optimized
parameters by genetic algorithm. The results are made as in Section 5 of this chapter.

5. Simulation and evaluation

To demonstrate that the parameters of the steam pressure controllers GCP and
power controller GCN are optimal. In this content, the chapter’s authors study, test,
and compare a new coordinated control structure that has parameters optimized by
genetic algorithms with a new coordinated control structure using IMC_PID and PID
self-tuner methods on MATLAB Simulink to find controller parameters. The simula-
tion scenario is kept the same as when simulating the new coordinated control struc-
ture designed in Section 2 of this chapter and considering the case of the working
system without interference. Figure 9 is the simulation result of the combined control
mode when using GA, including power response Ne (%), pressure response Ph (%),
fuel flow response Wf (%), meet steam flow rate Wh (%), response to steam envelope
water level H (m), respond to residual O2 concentration (%), respond to combustion
chamber pressure Pbd (Pa), respond to superheated steam temperature Th (°C).

5.1 Simulation results

The simulation scenario here is kept the same as when the simulation for the new
coordinated control structure is designed in Section 2 of this chapter and considers the
case of the working system without interference. Figure 9 shows the simulation
results of the combined control system when using GA, including power response
Ne (%), pressure response Ph (%), fuel flow response Wf (%), response steam flow

Figure 8.
Target J function decreases over 30 generations of the genetic algorithm.

138

Genetic Algorithms

response Wh (%), response to steam envelope water level H (m), response to residual
O2 concentration (%), response to combustion chamber pressure Pbd (Pa), response
to superheated steam temperature Th (°C).

We found that when reconfiguring the controllers according to GA, the responses
of the four control loops in the boiler still ensure quality and stability.

We compare the response of the system using GA with the new coordinated
control model designed by us and not using GA. Evaluation of the standard of tran-
sient time (Tqd), overshoot (%), maximum power deviation (eN max (%)), maxi-
mum pressure difference (eP max (%)) in load rise and fall time. Table 2 gives a
comparison of the power response:

Both cases are compared without overshoot. The coordinated control model using
GA has better power response quality than this architecture without using GA. The
results show that the response of the structure using GA in terms of transient time
when increasing/decreasing the load and the maximum power difference is smaller
(Table 3).

Figure 9.
Simulation responses of control mode using GA.

New coordinated control
structure

Tqd (s) emax(%)

Increasing
load

Decreasing
load

Increasing
load

Decreasing
load

Not using GA 822 1155 8.06 4.94

Using GA 668 692 1.76 1.62

Table 2.
Evaluate the quality of power response.

139

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

Similar to the power response, the pressure response of the two cases to be com-
pared has no overshoot. The combined control mode using GA has better pressure
response quality in terms of transient times when the load is increased.

5.2 Evaluation with optimal operating standard

As mentioned above, this chapter only focuses on two objectives: fast-tracking the
power setpoint (JN) and saving fuel (Jf). Therefore, we compared these two criteria
for the new coordinated control structure and this new coordinated control structure
when using GA to optimize the controller parameters GCN and GCP, the results shown
in Table 4:

From the results obtained in Table 4, it can be seen that the power tracking of the
new coordinated control structure when GA is used is much smaller than that struc-
ture when GA is not used. This shows that the real power follows the setpoint when
GA is used. The coal saving standard when using GA is smaller and saves 1.9 g/kWh.
Thus, it is estimated that with a thermal power plant generating a capacity of 300 MW
running 6000 hours/year with an output of 1.8 billion kWh, the coal saving amount of
1.9 g/kWh could have great economic value. The obtained results show that these
parameters have been optimized by using the genetic algorithm GA.

6. Conclusions

The chapter has shown the advantages of using genetic algorithms in finding the
optimal parameters of the controller in the thermal load control system in a coal-fired
power plant. In this chapter, a genetic algorithm is designed for a new coordinated
control structure with the goal of fast-tracking the set-point and fuel saving.
Simulation modeling for these structures has been performed on MATLAB Simulink
software. The structures evaluated which is the new coordination control structure
proposed by the authors, the other optimized by using GA. The results show that all

New coordinated control structure JN (%) Jf (kg/kWh)

Not using GA 2.83 0.4119

Using GA 2.63 0.41

Table 4.
Value of targets JN (%), Jf (kg (coal)/kWh) from the simulation results.

New coordinated control
structure

Tqd (s) emax(%)

Increasing
load

Decreasing
load

Increasing
load

Decreasing
load

Not using GA 812 2250 0.392 0.18

Using GA 660 2250 0.24 0.05

Table 3.
Evaluate the quality of pressure response.

140

Genetic Algorithms

the three structures have good control quality, stability, and the new coordination
control structure optimized by a genetic algorithm is much better than the other two
structures compared to the targets of tracking the set-point quickly and saving fuel
(the coal saving amount of 1.9 g/kWh).

Author details

PhamThi Ly1* and Bui Quoc Khanh2*

1 University of Transport and Communications, Hanoi, Vietnam

2 Institute for Control Engineering and Automation, Hanoi University of Science
and Technology, Hanoi, Vietnam

*Address all correspondence to: ptlydk@utc.edu.vn and bqkhanh29@gmail.com

©2022TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms of
theCreative CommonsAttribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in anymedium, provided
the originalwork is properly cited.

141

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

References

[1] Ventura S, Luna JM. Pattern Mining
with Evolutionary Algorithms.
Switzerland: Springer International
Publishing; 2016. DOI: 10.1007/978-3-
319-33858-3

[2] Sivanandam SN, Deepa SN.
Introduction to Genetic Algorithms.
Berlin, Heidelberg: Springer-Verlag;
2008. ISBN 978-3-540-73189-4

[3] Voigt H-M, Ebeling W, Rechenberg I,
Schwefel H-P. New Genetic Local Search
Operator for the Traveling Salesman
Problem. University of Siegen; 1996.
DOI: 10.1007/3-540-61723-X_1052

[4] Michalewicz Z. Genetic Algorithms +
Data Structures = Evolution Programs.
Berlin, Heidelberg: Springer-Verlag;
1994. DOI: 10.1007/978-3-662-07418-3

[5] Goldberg DE. Genetic Algorithms in
Search, Optimization, and Machine
Learning. Addison-Wesley Professional;
1989

[6] Garduno-Ramirez R, Lee KY.
Multiobjective optimal power plant
operation scheduling. IEEE Transactions
on Energy Conversion. 2001;16(2):
115-122

[7] Technical Documents of the Hai
Phong Thermal Power Plant. Haiphong
Thermal Power Plant; 2017

[8] Technical Documents of the
Expanded Uong Bi Thermal Power Plant.
Uong Bi Thermal Power Plant; 2001

[9] Technical Documents of the Duyen
Hai Thermal Power Plant. Duyen Hai
Thermal Power Plant; 2018

[10] Jayachitra A, Vinodha R. Genetic
algorithm based PID controller tuning
approach for continuous stirred tank

reactor. Advances in Artificial
Intelligence. 2014;2014:1-8. DOI:
10.1155/2014/791230

[11] Malhotra R, Singh N, Singh Y.
Genetic algorithms: Concepts, design for
optimization of process controllers.
Journal of Computing and Information
Science in Engineering. 2011;4(2):39-54.
DOI: 10.5539/cis.v4n2p39

[12] Saragih R. Parameters optimization
of flexible structure using genetic
algorithm. In: IEEE Int. Conf. Control
Autom. ICCA; 2011. pp. 790-793. DOI:
10.1109/ICCA.2011.6137915

[13] Sanchez-Lopez A, Arroyo-Figueroa
A, Villavicencio-Ramirez G. Intelligent
control algorithm for steam temperature
regulation of thermal power plants.
In: Mex. Int. Conf. Artif. Intell.
Berlin, Heidelberg: Springer; 2004.
pp. 754-763

[14] Garduno-Ramirez R, Lee KY. A
multiobjective-optimal neuro-fuzzy
extension to power plant co-ordinated
control. Transactions of the Institute
of Measurement and Control. 2002;
24(2):129-152. DOI: 10.1191/
0142331202tm056oa

[15] Dhamanda A, Singh Rawat G. GA
technique to solve the load frequency
and tie-line power problem of thermal
generating unit. Advanced Networks.
2019;7(2):51-58. DOI: 10.11648/
j.net.20190702.16

[16] Liu X, Guan P, Chan CW. Nonlinear
multivariable power plant coordinate
control by the constrained predictive
scheme. IEEE Transactions on Control
Systems Technology. 2010;18(5):
1116-1125. DOI: 10.1109/TCST.2009.
2034640

142

Genetic Algorithms

[17] Wang D, Huang B, Meng L, Han P.
Predictive control for the boiler-turbine
unit using ANFIS. In: Proc. Int. Symp.
Test Meas. Vol. 2. 2009. pp. 1-4. DOI:
10.1109/ICTM.2009.5413102

[18] Flynn D, editor. Thermal Power
Plant Simulation and Control. Stevenage,
UK: IEE Press; 2003

143

Using Genetic Algorithm to Optimize Controllers of Thermal Load System in Thermal Power…
DOI: http://dx.doi.org/10.5772/intechopen.103915

145

Section 3

Other Applications

147

Chapter 7

Towards a Precise and Mathematical
Fractalesque Architecture
John Charles Driscoll

Abstract

This paper reviews a design process in the context of algorithmic architecture
design for establishing a scale-invariant and rigorous self-similar motif(s) that can
be applied generally to any design problem. An architect (author) defines a genetic
algorithm (GA) using a population of design variants iterated over multiple genera-
tions. Exemplars are selected based on their fractal dimension (FD) along with
the architect and fit to solve a real-world architectural problem. The algorithm is
coded in Python and Ruby with an interface in SketchUp. The architect is able to
modify exemplars and iterate them as many times as required in the GA until an
acceptable solution is achieved. Solutions are critiqued by a jury of professional
architects regarding their fractal qualities. Results show a fractal motif that is not
strictly self-similar and not strictly scale-invariant. Discussion is focused here on the
philosophical implications of this research in terms of better defining a fractalesque
architecture. The case for a more precise and mathematical fractalesque architecture
is discussed concluding that further development of the algorithmic design process is
necessary to clarify the value of such a tool.

Keywords: architecture, Genetic algorithm, algorithmic design, fractals, fractal
dimension, box-counting dimension, characteristic complexity, motif, jury, critique

1. Introduction

This paper reviews a design process in the context of algorithmic architecture
design for establishing a scale-invariant and rigorous self-similar motif that can be
applied generally to any design problem. An architect (author) defines a genetic algo-
rithm (GA) using a population of design variants iterated over multiple generations.
Exemplars are selected based on their fractal dimension (FD) along with the architect
and fit to solve a real-world architectural problem. This study diverges from some
precedent in that it positions FD analysis up front from within the creative milieu of
an architect’s process. This study explores the use of FD from within a computational
framework aimed at establishing both a scale-invariant and self-similar pattern as
the organizing principle for the building’s form and parti relative to various features
of the building. These features are primarily plan, section and elevation as well as the
relationship to a contextual building’s relevant elevation. The algorithm is coded in

Genetic Algorithms

148

Python and Ruby with an interface in SketchUp. The framework is directed towards
the creation of fractaleque architecture by incorporating a mathematically rigorous
and iterative evolutionary strategy from within the creative milieu of an architect’s
process. The philosophical implications of the framework are the focus of this paper.
The algorithmic design process consists of 3 steps as follows:

1. A GA is used to iterate a 2-dimensional line composition for a select number
of runs. The GA uses a binary representation for individual lines which can
be traded with other strings through crossover and mutation and inherited by
subsequent generations. From an initial population of individuals exemplars are
chosen based on their FD and tournament selection as well as cloning and used
for creating additional population pools. This process is repeated many times
until the FD of exemplars approaches a pre-selected FD. Line compositions are
extruded into 3-dimensional massing models stochastically.

2. This step is referred to as fitting. GA outputs are imported into SketchUp, a solid
modeling environment, and are available for a designer’s review and selection
relative to the sample problem. The designer is able to modify the exemplars
chosen and use them as seeds for additional GA runs (repeating step 1). The GA
and designer thereby establish a self-similar geometry that is reflected in various
features of the design. Through the use of this tool the designer may potentially
create a building with a similar FD throughout its scale range in terms of its
orthogonal projections. 3 scale levels are used for this case study but the design
process is not limited to a specific number of levels and could reflect a greater
range of scales as the designer prefers but not an infinite range of scale due to
practical limitations.

3. A jury of professional architects engage in a critique of the design at 3 stages
during the process. The stages are referred to as “pin-ups” and consist of presen-
tation images and renderings of both the GA outputs in the form of a timeline
(Figure 1) and the designer’s modifications. Jurors critiques are based in praxis
and personal design philosophy.

Figure 1.
Sample of timeline showing models progressing in order of iteration from left to right and increasing in BCD
(image: Author).

149

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

2. Background

Fractal geometry was, from the beginning, closely related to natural inorganic
and biological morphology [1]. Mandelbrot generalized a basis for what he termed
“fractals” by gathering together the work of mathematicians and topologists
such as Cantor, Gaston Julia, Felix Hausdorff, Jean Perrin and others who prior
to computer technology had not been able to fully visualize the ramifications of
such models [2]. Fractal dimension (FD) is a technique Mandelbrot adopted to
describe an object’s characteristic complexity and is related to its degree of irregu-
larity at multiple scales although it does not explicitly define the object’s geometry
or whether or not it is strictly self-similar or fractal. The term characteristic
complexity does however provide insight into an object’s scale invariance. For
this reason it is helpful in understanding a range of irregular geometries found in
nature and architecture and is considered one of half a dozen or so measures of
complexity [3].

Architecture has been trending towards ever larger buildings. From 2012 to
2018 the average floorspace of buildings has increased by11% in the United States
according to the 2018 Energy Information Administration, Commercial Buildings
Energy Consumption Survey [4]. Unfortunately, As buildings grow the morphology
of buildings often tends to become simplified with less detail and less articulation
(images of big box stores and strip malls come to mind). Larger buildings can be
paradoxically cheaper through modularization and standardization as opposed to
custom – one-off – buildings. With automated strategies on the horizon however it is
increasingly possible to create a more articulate and detail rich architecture that is not
prohibitively expensive.

FD incorporated in general analytic tools has been useful in understanding
a building’s detail in terms of characteristic complexity and have been gaining
traction over the lasts decades. Michael Batty and Carl Bovil introduced FD as a
serious tool in the analysis of architecture and urban form based on its underlying
mathematical structure using box-counting dimension (BCD) to approximate FD
(In this paper FD and BCD are used interchangeably). This tool is used to analyze
2-dimensional urban form and architectural plans and elevations of various
buildings after they have been built [5, 6]. FD has since been adopted by many
researchers to study the dynamics and complexity of cities and urban scaling as
well as urban infrastructure [7–14]. Similar tools are also being used increasingly
in the analysis of the characteristic complexity of architecture. FD is often used
to make correlations between styles of architecture as well as the natural environ-
ment. Such analyses are related to fractal geometry a priori with respect to the
traditional application of the tool, i.e., relating to morphogenesis. For this reason,
architectural styles purporting to be based in nature are often a focus such as the
American School or organic movement developed by Louis Sullivan and Frank
Lloyd Wright [9, 15–23]. Otswald introduces a standardized calibrated model
for the analysis of architecture in 2013 [24]. Lorenz et al. have offered additional
analytic “proportion methods” using BCD offering a potentially more descriptive
approach [25].

Algorithmic design or computational design (CD) uses computer technology to
aid in generating architectural solutions and has developed rapidly over the last
decades. CD approaches differ from simply using computer tools in the design pro-
cess but rather use computation to create designs [26]. Generative design is a subset
of CD and includes evolutionary approaches such as GAs [27–32]. GAs are methods

Genetic Algorithms

150

analogous to biological evolution consisting of autonomous and stochastic search
algorithms. GAs, when used generatively, can produce complex and unpredictable
outcomes [26]. GAs are well suited to complex problems such as those represented
by the multi-variate form and function requirements in architecture [33]. Trends
in research are towards biomimetic approaches combining evolution-based compu-
tational methods with morphogenetic processes inspired by nature, where form is
generated by computer technology, incorporating the rules and constraints of fabri-
cation [34]. GA methods have been developed to help solve a variety of architectural
problems such as geometric (lattice) deformation by Wattabe and sequences of
polygonal operators by McGuire [35]. Latham and Todd developed the PC mutator
system at IBM UK’s Scientific Centre with individual projects as well as commer-
cially available software [35]. Hemberg and the Emergent Design Group (EDG) at
MIT developed Genr8 in 2001 which is a GA plug-in for the modeling and anima-
tion software Maya [36–38]. Galapagos is an evolutionary plug-in for Grasshopper
[39, 40] which is used as a visual programming aid for architects within the BIM
software Rhino. Grasshopper has been widely used for parametric modeling appli-
cations including a method for constructing islamic ornament [41] Galapagos has
been used to optimize spatial adjacencies for complicated building programs [42],
daylighting and shading studies [43] as well as to find novel solutions to structural
problems [44]. Galapagos has also been used to generate new fractal forms for
urban environments using cellular automata [45]. Chouchoulas et al. discuss Shape
Grammars using GAs which have been explored with a prototype tool called Shape
Evolution to design hypothetical buildings ([46], pp. 26–34). Shape grammars and
parametric design has been applied to the architecture of Frank Lloyd Wright [33]
Generative design, fractal geometry and stereotomic algorithms as well as the use of
automated manufacturing processes have been influential to Joris Laarman and his
designs for furniture and bridges [47]. Generative design incorporating FD has been
developed as a method for designing efficient and robust structural forms [48–50].
Specifically related to this paper, generative design and FD has also been used to
analyze and create neighborhood plans as well as individual schematic designs of
residences [51].

3. Methodology

The case study was an architectural project in Ithaca, NY as defined by a
request for proposals (RFP) issued by the city in the Spring of 2018 (https://www.
cityofithaca.org/DocumentCenter/View/7614/Green-St-Garage-Redevelopment-
IURA-RFP-Revised-5718). The project program consisted of a mixed use residential
and retail building in an urban zone along Green Street to the south and with access to
a pedestrian commons to the north. The case study focused on the schematic design
phase with a level of completion considered to be adequate for an RFP. The design
process consisted of a GA using BCD as the fitness criteria. The GA was written
in Python and Ruby with a user interface plug-in for the solid modeling software
SketchUp.

The GA started with a number of 2D line compositions representing individuals.
Lines were placed horizontally and vertically on a page in random locations initially.
Individual line compositions consisted of a set number of horizontal and vertical lines
perpendicular or parallel to each other and the edge of the page. The lines are allowed
to go from edge to edge or stop at another line. Each composition was measured with

151

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

BCD to determine its scalar fitness value. The GA used tournament selection to search
exemplar individuals whose value most closely approximated a target BCD. The target
was 1.562 which was the BCD of the facade of the contextual building used in this
study (Figure 2). Tournament selection consisted of randomly selecting 3 individu-
als from the pool with replacement and choosing the one whose value most closely
matched the target. Tournaments were iterated until a new generation of individuals
was created. New individuals were subject to random rates of mutation. Mutations
consisted of altering the locations of lines an amount determined stochastically from
a Poisson distribution. The full code for this research is available at https://github.
com/JohnCDriscoll/Fractalesque-Architecture/new/main?readme=1.

Figure 1 shows a sample of a timeline which is out-put by the GA with the designs
progressing from earlier designs on the left to later designs on the right. Exemplar com-
positions for each generation are shown along the upper-most row for each column.
The images below the exemplar show the same line composition but with a number
of rectangles defined by the lines stochastically selected as “masses”(shown in red).
Masses are allowed to overlap and any number of masses may be set in the correspond-
ing parameter. The row of images below show the masses extruded stochastically to an
elevation along the Z axis. The graphs at the bottom display the exemplar FD for each
run and the mean over successive generations and r-squared of individual designs. The
FD is a measure of only the 2D compositions. Figure 1 is an arbitrary example culled
from preliminary GA runs. An important leverage point offered by a GA is the sheer
number of potential variants a designer may peruse and develop. For this example
the FD for exemplars highlighted are 1.683 and 1.699. As the series progresses to the
right, the BCD increases. The GA presented here is understood as a proof-of-concept
model and as such was explored briefly in terms of its capabilities. For instance, the
runs executed were limited to 10 which was adequate to find a successful composition.
Longer runs were executed with a target FD of 2 (maximum FD) as an experiment.
A higher FD was achieved using 500 runs but the lines tended to bunch up along
the edges of the page. This issue was not resolved in this research. Developing the
GA further would focus on this issue as well as include more complex architectural
elements other than simple 2D line compositions. This potential is discussed more in
the Next Steps section below. As a proof-of-concept study these limitations were not
considered significant. The GA developed in this research was intended to scale up in
future versions and is presented here to demonstrate that an under-the-hood approach
was valuable to the architect for a variety of reasons. A GA mirrors some aspects of the

Figure 2.
BCD at 3 scale levels and adjacent building. Micro (above) = 1.267, mezzo (left) = 1.477, macro (middle) = 1.589,
context (right) = 1.5616.

Genetic Algorithms

152

design process such as iteration and evolution and thereby allows for a more integrated
approach where the architect is in control of the algorithm to a degree and enabled
to visualize options from inception through realization. This is especially valuable in
terms of fractal geometry which shares some of the attributes of the algorithm.

After the GA determined an exemplar composition it was out-pouted to a solid
modeling environment where it was used to generate the design for the building.
The designer made alterations and these designs were flatted to 2D compositions
and used as seeds for the GA a second time. This back and forth happened 2 times
in total. After this the designer modeled the building without the use of the GA. The
completed design was measured for FD. Milestones during the process were presented
to jurors as traditional architectural renderings. These milestones were referred to as
pin-ups. There were 3 pin-ups in total. Comments were collected asynchronously and
salient issues addressed and, in some cases, used to adjust the GA and fitting steps for
subsequent GA and designer iterations leading to the final scheme.

4. Results

Results established a preliminary composition of 30 lines with a FD of 1.477. This
result was somewhat lower than the target 1.562 but was significantly higher than
random compositions which were in the 1.200 range. The composition was acceptable
in terms of its design elements and potential constructibility. The lower FD was not
considered problematic as a small scale element as will be discussed next. Figure 3
shows a 2D image which was then extruded by the GA and modified by the architect.
(Figure 4). This block became a module conceived as a masonry unit as well as the
motif and was subsequently assigned scale-dependent functions and also established
a general organizational strategy. The motif occurred at primarily 3 distinct scale
ranges in the building termed micro, mezzo and macro. The micro level consisted of
the modular element (Figure 4). The mezzo represented larger building systems such
as facade elements and fenestration assemblies (Figure 5). The macro level was at the
scale of the building overall as represented in elevation and plan including the site
plan (Figures 6–9) The BCD of the various elements and scale ranges were coordi-
nated within the architectural context of the site by approximating a similar BCD as
the primary adjacent building at the macro level (Figure 2). The following description

Figure 3.
Selected initial composition FD = 1.477 (image by author).

153

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

refers to Figures 6–9. Figures are shown as dual images with the left image represent-
ing the building element and the right image showing superimposed elements of
composition which are discussed next.

The motif is composed of two intersecting lines (shown in red) with a third line
(shown in blue) which stops at one of the intersecting lines. The main intersection
of the red lines creates a visual focal point or center of interest. This point is then
reinforced with a rectangle (shown in green) further establishing the focus. The inter-
section of the red and blue lines creates a secondary center of interest which is further
established with the addition of the yellow rectangle (Figure 10). The micro level
(Figures 4 and 10) represented a masonry unit and as such was simplified from the
original GA output. The BCD reduced from 1.48 to 1.26. This was a significant reduc-
tion and not preferable. However, the requirements for forming the block outweighed
the reduction in BCD in this instance.

The motif was again expressed at the mezzo level in various ways. A clear expres-
sion of the motif is shown in Figure 5 where the proportions of the original block
were preserved. The function of the element changes. Now, the primary focal point

Figure 4.
Extruding and fitting of composition into a module used as a motif for the project. FD = 1.26 (image by
author).

Figure 5.
Sample timeline of GA output using FD as fitness criterion. Image by author.

Genetic Algorithms

154

Figure 7.
Sample timeline of GA output using FD as fitness criterion. Image by author.

Figure 6.
Sample timeline of GA output using FD as fitness criterion. Image by author.

Figure 9.
Sample timeline of GA output using FD as fitness criterion. Image by author.

Figure 8.
Sample timeline of GA output using FD as fitness criterion. Image by author.

155

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

serves to denote one of the main entrances into the building leading to a primary
circulation component while the secondary focal point serves to denote the entrance
and storefront for a separate retail space. The red and blue lines outline the masses
of the building and provide axes for the building to expand along. The mezzo scale
was also included fenestration assemblies (Figure 2). Here the BCD was modified
in a back and forth between architect and algorithm to increase the BCD back to the
original GA output which was 1.48.

The macro scale was considered in terms of the entire south facade of the building
as well as the site plan. The facade was measured and had a BCD of 1.59. This was higher
than the original output but did compare favorably to the adjacent building which
served as the contextual element for the building. This building had a south facade BCD
of 1.56 which was considered a contextual relationship. Again, the elements of compo-
sition highlighted certain features of the building. These were mainly circulation routes
and established a hierarchical arrangement of space which highlighted programmatic

Figure 10.
Sample timeline of GA output using FD as fitness criterion. Image by author.

Figure 11.
Sample timeline of GA output using FD as fitness criterion. Image by author.

Genetic Algorithms

156

features of the building. The motif here serves to discern commercial from residential
zones as well as demarcating the main access to the pedestrian commons located to
the north. of the site (Figure 6). The site plan (Figure 7) shows this relationship more
clearly where now the motif is superimposed on the ground plane. The access rout to
the commons is well defined as well as the pedestrian strip between the building and
the contextual building to the north. The green rectangles used to enhance the focal
point are important aspects of the program, namely a park pavilion and the residential
tower. The blue line is an important secondary feature of the building denoting a
vehicular access point necessary for loading and delivery as well as egress and fire truck
requirements. The next two images (Figures 8 and 9) are isometrics and show the same
elements of composition and their 3-dimensional expression. Figure 11 is a perspective
rendering of the building and its relationship to the block. A key component of the
building’s program was to allow for views from the 11 story building to the north (con-
textual building) while also helping to balance the various proportions of the city block
which consisted of smaller 4 and 5 story buildings. The inter-relations of scale included
the building’s components as well as the immediate urban fabric (Figure 2).

5. Discussion

As mentioned in the background section, previous studies have often discussed
fractals in architecture within a context of an architectural tradition ascribing to
nature based principles, e.g., the American School or organic architecture as espoused
by Louis Sullivan and Frank Lloyd Wright [5, 15, 17, 18, 20, 52, 53]. This discussion
continues in this tradition in focusing on the philosophical implications from a similar
context of organic architecture with regard to the algorithmic method presented
above.

James Walter Schildroth who was an apprentice of Frank Lloyd Wright’s (see
http://www.schildrotharchitect.net/autobiography.html) as well as a juror for this
study writes in response to Harris’ claims concerning the fractal ontology of Frank
Lloyd Wright’s design for the Palmer house [20]:

“I really don’t see fractals in the Palmer House. Of course there are equilateral
triangles. The unit is made with equilateral triangles. The plan is made by relat-
ing all parts of the plan as it is made to the unit system. The design is not made by
repeatingself-similar triangles. The unit system gives the whole unity. I think this
unity approaches the unity in all of the natural world. What we call beauty.”

A valid criticism from the jury was that the unifying motif is formal and did not
originate from some functional requirement or relation to site but was established a
priori and thereby applied functional requirements to the form, i.e., function fol-
lowed form. This aspect of the process was built into the algorithm at the outset by
limiting the fitness criterion to FD in selecting forms rather than a host of criteria
such as: client’s needs, budget, program, topography, solar attitude, materiality,
tectonic systems, adjacencies, meaning, beauty, etc. This was done to simplify repre-
sentation in the GA and generalize the system towards a parsimonious tool capable of
solving a host of design problems. As the results show, the motif undergoes modifica-
tion at different scales and as different functions are applied to it. The primary scale
ranges employ the motif in different ways that are not exact replicas of each other
although they are proportional as will be discussed. The building is therefore not

157

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

self-similar in a strict sense. The scales range is limited to 3 levels although there is
overlap and compositional unity throughout the building. Therefore, the building is
clearly not scale-invariant, at least in terms of the repeating motif. The building may
be considered as being composed of natural fractal structures in a material sense but
not in so far as they were designed within the architectural concept. The building
can not be said to be a literal representation in the mathematical or natural sense of
fractal geometry in light of these two criteria not being met. The question of whether
the building represents fractal architecture is more difficult to assess because of the
ambiguity around this definition [53]. The following discussion does not argue that
the building is fractal, fractalesque or fractal-like [54] but rather raises issues perti-
nent to this question.

One issue raised in this work and elsewhere in the literature is whether a higher FD
is correlated with more quality design. Some suggest there is a “magic number” that is
more esthetically pleasing or proportionally harmonious ranging from 1.3 to 1.52 [25].
The jury was mixed on this point with no clear indication that compositions with a
specific FD were more compelling visually or had inherent merit architecturally when
divorced from programmatic and functional requirements. Ken Kroeger comments,
“ To address the question about increased FD and improvement of the compositional
quality – I don’t think it specifically improves the composition. It simply is a varia-
tion of line work. Without having any performance/outcome values, I would bet that
if you ask 50 different people which one they preferred, you would get that many
answers.”

This study however did not employ FD as an esthetic device or assume that one
value of FD improved one composition over another but incorporated it from within
an architect’s design process to gauge and thereby relate the various elements within
an overall organizational strategy. FD was considered on multiple levels from orna-
mentation on the facade (masonry blocks) to the distribution of spaces and circulation
systems to the overall parti of the building and relationship to the larger urban fabric.

FD indicates an object’s characteristic complexity but does not reveal the specific
fractal shape. For instance, different fractals may have the same FD if they share the
same characteristic complexity. This limitation however was not problematic in this
study because the self-similar motif was defined by the GA and architect not by its
FD alone. The GA can be thought of as a computational tool that takes over when the
architect can no longer process. Discovering this edge and broadening it is a challenge
for the architect. For this reason, FD used here does not present a conflagration of
irregular objects with fractal objects. FD is not used to define self-similar geometries
or indicate a higher quality design per se but is used compositionally to direct the eye.

A higher characteristic complexity in one element over another is useful in
directing the eye [55]. In this study eye movement was an organizational strategy a
priory and shown to be a convincing device in differentiating and highlighting the
programatic elements as well as creating visual effect. The compositional elements
of the motif established focal points and as such direct the eye towards key features
of the building. The building as a whole is unified through the repetitive use of the
motif and the dynamic quality established in the ensemble. The eye is lead from one
place to another at various scale ranges in the building to discover the whole reflected
in the part and vice versa. A juror, Bret Holverstott, comments, “I think I understand
why our aesthetics seems to dictate that the fractal dimension increase as the scale
increases. It is because the overall massing of a building should strive for a composi-
tion that is compelling if seen from a distance, not overly simple as in a homogenous
skyscraper. I am reminded of how gothic cathedrals evolved to utilize alternating

Genetic Algorithms

158

bays in order to keep your eye from immediately slipping to the end of the hall; good
skyscrapers also break up the composition into something that allows your eye to
linger on elements instead of slipping up to the top of the building.”

In this study, the motif is seen to overlap or nest within itself as it changed scale.
For instance, the primary focal point in Figure 5 becomes the secondary focal point
in Figures 6 and 7. Such nesting characteristics define a proportional relationship
between self-similar objects and are not, as Schildroth observes, simply repeating
shapes at various scales. This type of expression is challenging to understand in terms
of strict affine transformations, such as we see in geometric fractals like the Koch
curve or Sierpinski triangle, but is germane to the overlapping richness in detail we
see in architecture. Christopher Alexander discusses the multiplicity of readings and
overlapping characteristics of architecture and urban planning in, A City is not a Tree
[56] and demonstrates the ambiguity of mapping such characteristics. Therefore,
a more refined definition of fractalesque architecture may deviate from a purely
mathematical description in this regard as a description of natural fractals does, i.e.,
fractals in architecture are not strictly self-similar as they do not continue to iterate
past a certain point and often translate in various ways or vary depending on their
scale or compositional strategy, i.e., overlapping, layering, figure-ground reversal,
etc. Self-similarity as explored here is emblematic of a theme which provides a sense of
unity to the project yet importantly the theme undergoes development and variation.
Although the motif is repeated in a finite way literally (3 levels) the self-similarity
is extended phenomenologically in both directions, e.g., at a smaller scale in terms
of the blocks materiality and at a larger scale in terns of the parti and master plan
relating to the contextual urban fabric. In this way the building is a representation of
fractal structure in two senses, both as a physical instantiation of a kind of limited
self-similarity as well as a metaphysical metaphor representing a fractal structure
extending beyond the building’s spatial limits.

Perhaps in light of this discussion the use of FD in assessing and designing build-
ings is more provocative heuristically as a general tool that can be applied to many
styles and design intentions. The juror Tom Mlynarski comments, “I think the most
compelling thing about your work is this incorporation of fitness criteria rooted in
FD. It seems FD can be used as a fitness criterion for all sorts of a different buildings
with different styles and different programs and you can use the same criteria to rate
them all. That is something fresh. You are no longer bound to rather simple fitness
criteria like plan efficiency or exposure or whatever. So this is the most substantial
part of your work.” Mlynarski goes on to say, “… FD seems interesting in how it can
be used to compare buildings that are very different in style and program. It’s also
interesting as a tool for judging options of the same design as you demonstrated here.”

6. Next steps

As mentioned, an important aspect of this work was the parsimony of the GA/
FD tool. Indeed, a GA was selected as an appropriate tool for its understandability and
simplicity, i.e., it is autonomous and does not require training data. Similar to applying
Occam’s razor to the theory of evolution, GAs reflect a similar elegance and parsimony:
essentially stochasticity within a constrained environment. However, GAs can become
more complicated when multi-variate fitness functions are piled on. This study has
endeavored to keep the fitness criteria simple – essentially one scalar metric – while still
aiming to capture the complexity in architecture. For this reason it is not desirable to

159

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

complicate FD analysis needlessly, however, an extension into a volumetric measure is
a next step. 3-dimensional BCD tools exist in other fields and have been proposed for
fractal analysis in architecture [25, 57–61]. Incorporating such a tool is necessary at
this stage.

7. Conclusion

This paper reviewed an algorithmic design model in the context of architec-
ture incorporating a GA using FD as its fitness criterion and discussed its broader
implications relative to characteristic complexity and a more refined definition of
fractalesque architecture. The GA is presented here to demonstrate that an under-the-
hood approach was valuable to the architect for a variety of reasons. A GA mirrors
some aspects of the design process such as iteration and evolution and thereby allows
for a more integrated approach where the architect is in control of the algorithm to
a degree. This approach enabled the architect to visualize options from inception
within the algorithm through realization in model space. This is especially valuable in
terms of fractal geometry which shares some of the attributes of a GA such as itera-
tion and variation within a set of constraints. The design process developed in this
research established a limited self-similar motif which was employed as an organizing
principle to unify the building at multiple scales in the design. This research is novel
in the sense that the organizing principles incorporate the algorithm as well as the tra-
ditional modes of design. The finished product expresses its making not only in terms
of material, structure and craft but in terms of its code. The motif was not merely the
pattern on the facade but included the organization of algorithmic content as well as
space, structure and master plan.. The philosophical implications of this research sug-
gest that a fractalesque architecture might be better conceptualized as both a partial
instantiation of fractal geometry as well as in the metaphorical sense of a fractal
which phenomenologically scales beyond the physical structure into its digital code
and physical context. Such a design methodology required a facility on the part of the
architect to incorporate the algorithm within a larger vocabulary. In essence internal-
izing it within the design process not unlike a material of sorts – in addition to brick
and mortar – that the architect may sculpt to create a more mathematically rigor-
ous self-similar motif with a consistent FD. The tool and process developed proved
partially successful at approaching this benchmark. Further developing the GA/FD
tool in the third dimension may improve the results.

Genetic Algorithms

160

Author details

John Charles Driscoll
Portland State University, Oregon, USA

*Address all correspondence to: driscoll.john92@gmail.com

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

161

References

[1] Mandelbrot B. How long is the coast
of Britain? Statistical self-similarity
and fractional dimension. Science.
1967;156(3775):636-638

[2] Mandelbrot BB, Mandelbrot BB.
The Fractal Geometry of Nature. Vol. 1.
New York: WH Freeman; 1982

[3] Mitchell M. Complexity: A Guided
Tour. Oxford University Press; 2009

[4] IEA. Buildings energy consumption
survey (CBECS). 2018. Available from:
https://www.eia.gov/consumption/
commercial/

[5] Bovill C. Fractal Geometry in
Architecture and Design. Boston:
Birkhäuser; 1996

[6] Batty M et al. Fractal Cities: A
Geometry of Form and Function.
Academic Press; 1994

[7] Driscoll JC. Fractals as Basis for
Design and Critique. Portland State
University; 2019

[8] Abundo C, Bodnar T, Driscoll J,
Hatton I, Wright J. City population
dynamics and fractal transport networks.
In: Proceedings of the Santa Fe Institute‘s
CSSS2013. 2013

[9] Abdelsalam M, Ibrahim M. Fractal
dimension of islamic architecture: The
case of the Mameluke Madrasas-Al-
Sultan Hassan Madrasa. Gazi University
Journal of Science. 2019;32(1):27-37

[10] Batty M. Cities and Complexity:
Understanding Cities with Cellular
Automata, Agent-Based Models, and
Fractals. The MIT Press; 2007

[11] Bettencourt LMA et al. Growth,
innovation, scaling, and the pace

of life in cities. Proceedings of the
National Academy of Sciences.
2007;104(17):7301-7306

[12] Encarnação S et al. Fractal
cartography of urban areas. Scientific
Reports. 2012;2(1):1-5

[13] Bettencourt LMA. The origins
of scaling in cities. Science.
2013;340(6139):1438-1441

[14] Skrimizea E. Scale: The Universal
Laws of Growth, Innovation,
Sustainability, and the Pace of Life in
Organisms, Cities, Economies, and
Companies. 2021. pp. 184-187

[15] Lorenz WE. Fractal geometry of
architecture. In: Biomimetics--Materials,
Structures and Processes. Berlin,
Heidelberg; 2011. pp. 179-200

[16] Ostwald MJ. “Fractal Architecture”:
Late twentieth century connections
between architecture and fractal geometry.
Nexus Network Journal. 2001;3(1):73-84

[17] Ostwald MJ, Vaughan J. The Fractal
Dimension of Architecture. Vol. 1.
Birkhäuser; 2016

[18] Vaughan J, Ostwald MJ. The
relationship between the fractal
dimension of plans and elevations in
the architecture of Frank Lloyd Wright:
Comparing the Prairie style, textile
block and Usonian Periods. Architecture
Science ArS. 2011;4(Dec):21-44

[19] Harris J. Integrated function systems
and organic architecture from Wright
to Mondrian. Nexus Network Journal.
2007;9(1):93-102

[20] Harris J. Fractal Architecture:
Organic Design Philosophy in Theory
and Practice. UNM Press; 2012

Genetic Algorithms

162

[21] Joye Y. Fractal architecture could be
good for you. Nexus Network Journal.
2007;9(2):311-320

[22] Joye Y. A review of the presence
and use of fractal geometry in
architectural design. Environment
and Planning B: Planning and Design.
2011;38(5):814-828

[23] Vaughan J, Ostwald MJ. Fractal
geometry in architecture. In: Sriraman B,
editor. Handbook of the Mathematics of
the Arts and Sciences. 2018

[24] Ostwald MJ. The fractal analysis
of architecture: Calibrating the
box-counting method using scaling
coefficient and grid disposition variables.
Environment and Planning B: Planning
and Design. 2013;40(4):644-663

[25] Lorenz WE, Andres J, Franck G.
Fractal aesthetics in architecture. Applied
Mathematics & Information Sciences.
2017;11(4):971-981

[26] Caetano I, Santos L, Leitão A.
Computational design in architecture:
Defining parametric, generative,
and algorithmic design. Frontiers
of Architectural Research.
2020;9(2):287-300

[27] Caldas L. Generation of energy-
efficient architecture solutions
applying GENE_ARCH: An evolution-
based generative design system.
Advanced Engineering Informatics.
2008;22(1):59-70

[28] Holland JH. Adaptation in Natural
and Artificial Systems. Ann Arbor:
University of Michigan Press; 1975

[29] Holland JH. Genetic algorithms.
Scientific American. 1992;267(1):66-73

[30] Mitchell M. An Introduction to
Genetic Algorithms. MIT Press; 1998

[31] Coates P, Broughton T, Jackson H.
Exploring three-dimensional design
worlds using lindenmayer systems and
genetic programming. Evolutionary
Design by Computers. 1999:323-341

[32] Coates P, Makris D. Genetic
programming and spatial morphogenesis.
AISB Symposium on Creative
Evolutionary Systems, Edinburgh College
of Art and Division of Informatics
(AISB’99), University of Edinburgh,
March 1999. 1999

[33] Granadeiro V, Pina L, Duarte JP,
Correia JR, Leal VM. A general indirect
representation for optimization
of generative design systems by
genetic algorithms: Application
to a shape grammar-based design
system. Automation in Construction.
2013;35:374-382

[34] Menges A. Biomimetic design
processes in architecture: Morphogenetic
and evolutionary computational
design. Bioinspiration & Biomimetics.
2012;7(1):015003

[35] Romero JJ. The Art of Artificial
Evolution: A Handbook on Evolutionary
Art and Music. Springer Science &
Business Media; 2008

[36] Hemberg M et al. Exploring generative
growth and evolutionary computation for
architectural design. In: Art of Artificial
Evolution, Heidelberg. 2006

[37] Hemberg M et al. Genr8: Architects’
experience with an emergent design
tool. In: The Art of Artificial Evolution.
Heidelberg. 2008. pp. 167-188

[38] Hemberg M, O’Reilly U-M.
Extending grammatical evolution to
evolve digital surfaces with genr8.
In: European Conference on Genetic
Programming. Berlin, Heidelberg:
Springer; 2004

Towards a Precise and Mathematical Fractalesque Architecture
DOI: http://dx.doi.org/10.5772/intechopen.105677

163

[39] Rutten D. Evolutionary Principles
applied to Problem solving using
Galapagos. In: AAG10, Vienna. 2010

[40] Rutten D. Galapagos: On the logic
and limitations of generic solvers.
Architectural Design. 2013;83(2):132-135

[41] Nadyrshine N, Nadyrshine L,
Khafizov R, Ibragimova N, Mkhitarian K.
Parametric methods for constructing
the Islamic ornament. In: E3S Web of
Conferences. Vol. 274. 2021

[42] Boon C et al. Optimizing spatial
adjacencies using evolutionary parametric
tools: Using Grasshopper and Galapagos
to Analyze, Visualize, and Improve
Complex Architectural Programming.
Research Journal. 2015;7:25-37

[43] González J, Fiorito F. Daylight
design of office buildings: Optimisation
of external solar shadings by using
combined simulation methods.
Buildings. 2015;5(2):560-580

[44] Danhaive RA, Mueller CT.
Combining parametric modeling and
interactive optimization for high
performance and creative structural
design. In: Proceedings of the
International Association for Shell and
Spatial Structures (IASS). 2015

[45] Devetaković M et al. Fractal
parametric models of urban spaces.
Tehnički vjesnik. 2015;22(6):1547-1552

[46] Chouchoulas O, Day A. Design
exploration using a shape grammar
with a genetic algorithm Open House
International. 2007;32(2):26-34

[47] Doubrovski Z, Verlinden JC,
Geraedts JMP. Optimal design for
additive manufacturing: Opportunities
and challenges. International Design
Engineering Technical Conferences
and Computers and Information in

Engineering Conference. Vol. 54860.
2011

[48] Rian I Md, Asayama S. Computational
design of a nature-inspired architectural
structure using the concepts of self-
similar and random fractals. Automation
in Construction. 2016;66:43-58

[49] Rian I Md, Sassone M, Asayama S.
From fractal geometry to architecture:
Designing a grid-shell-like structure
using the Takagi–Landsberg surface.
Computer-Aided Design. 2018;98:40-53

[50] Kiani Z, Amiriparyan P. The
structural and spatial analysing of
fractal geometry in organizing of
Iranian traditional architecture.
Procedia-Social and Behavioral Sciences.
2016;216:766-777

[51] Gürbüz E, Çağdaş G, Alaçam S. A
generative design model for Gaziantep’s
traditional pattern. In: Proceedings of
the 28th Conference on Education of
Computer Aided Architectural Design in
Europe. 2010

[52] Ostwald MJ, Vaughan J, Tucker C.
Characteristic visual complexity: Fractal
dimensions in the architecture of Frank
Lloyd Wright and Le Corbusier. In:
Architecture and Mathematics from
Antiquity to the Future. 2015

[53] Ostwald MJ. Fractal architecture: The
philosophical implications of an iterative
design process. Communication and
Cognition. 2003;36:263-296

[54] Lorenz W. Combining Complexity
and Harmony by the Box-Counting
Method – A comparison between
entrance façades of the Pantheon in
Rome and Il Redentore by Palladio. 2013.
DOI: 10.13140/2.1.3100.4487

[55] Lee JH, Ostwald MJ. Fractal
dimension calculation and visual

Genetic Algorithms

164

attention simulation: Assessing the visual
character of an Architectural Façade.
Buildings. 2021;11(4):163

[56] Alexander C. A city is not a tree.
1965. In Architectural Forum (No. 04).
1964

[57] Feranie S, Fauzi U, Bijaksana S. 3D
fractal dimension and flow properties
in the pore structure of geological rocks.
Fractals. 2011;19(03):291-297

[58] Jiménez J, López AM, Cruz J,
Esteban FJ, Navas J, Villoslada P, et al.
A Web platform for the interactive
visualization and analysis of the 3D
fractal dimension of MRI data. Journal of
Biomedical Informatics. 2014;51:176-190

[59] Krohn S, Froeling M, Leemans A,
Ostwald D, Villoslada P, Finke C, et al.
Evaluation of the 3D fractal dimension as
a marker of structural brain complexity
in multiple-acquisition MRI. Human
Brain Mapping. 2019;40(11):3299-3320

[60] de Miras JR, Navas J, Villoslada P,
Esteban FJ. UJA-3DFD: A program to
compute the 3D fractal dimension from
MRI data. Computer Methods
and Programs in Biomedicine.
2011;104(3):452-460

[61] Tang D, Marangoni AG. 3D
fractal dimension of fat crystal
networks. Chemical Physics Letters.
2006;433(1-3):248-252

Edited by Sebastián Ventura,
José María Luna and José María Moyano

The solution to many real-world problems lies in optimizing processes, parameters,
or techniques, which requires dealing with immense search spaces. As such, finding
solutions involves exhaustive methods to evaluate all possible solutions in the search

for a global optimum. Some of these methods include evolutionary algorithms and
genetic algorithms, both of which have proven to effectively deal with complex search
spaces. This book focuses on genetic algorithms and their applications in various fields,

including engineering and architecture.

Published in London, UK

© 2022 IntechOpen
© Kalawin / iStock

ISBN 978-1-80355-177-7

G
enetic A

lgorithm
s

Genetic Algorithms
Edited by Sebastián Ventura,

José María Luna and José María Moyano

ISBN 978-1-80355-179-1

	Genetic Algorithms
	Contents
	Preface
	Section 1 - Introduction
	Chapter 1 - Introduction to EvolutionaryAlgorithms
	Chapter2
Application of Genetic Algorithm in Numerous Scientific Fields

	Section 2
Engineering Applications
	Chapter3
Power System Small-Signal Stability Enhancement Using Damping Controllers Designed Based on Evolutionary Algorithms
	Chapter4
ADDC: Automatic Design of Digital Circuit
	Chapter5
Genetic Algorithms for Chemical Engineering Optimization Problems
	Chapter6
Using Genetic Algorithm to Optimize Controllers of Thermal Load System inThermal Power Plant

	Section 3
Other Applications
	Chapter7
Towards a Precise and Mathematical Fractalesque Architecture

