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Preface

Statistics is one of the most widely applied branches of mathematics in science. 
Among the advances in complex statistical methods through which statisticians can 
provide a greater understanding of complex processes and mechanisms are applica-
tions in medical sciences and health sciences, including generalized linear models, 
structural equation models, spatial statistical models, statistical methods for clinical 
trials, Copula models, multi-state models for the analysis of time-to-event data, 
and multilevel models.

This book is divided into three sections: biostatistical modeling, spatial statistics, 
and clinical trials. Section 1, ‘Biostatistical Modelling’, contains five contributions. 
Chapter 1 proposes the use of binary and ordinal logistic regression techniques to 
calculate the risk probability for different disabilities (visual, hearing, physical, and 
intellectual). The author uses criteria such as Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) to perform a selection of variables and 
selected models. Chapter 2 is a detailed introduction to structural equation models 
in medicine and health sciences and provides an example of their use in the ‘red 
code’ process. Chapter 3 illustrates the use of the empirical transition matrix and 
multi-state modeling to develop advanced optimal infusion controllers and to help 
nurses encode agitation-sedation scores. Chapter 4 introduces Copula models to 
capture non-linear dependence and establish the presence of lower- and/or upper-
tail dependence between the nurse’s agitation-sedation rating and the automated 
sedation dose. Chapter 5 discusses the use of multilevel models in dental research 
when the response variable is numerical and shows how the bottom-up strategy can 
be adapted to specify a multilevel model in the Bayesian approach.

Section 2, ‘Spatial Statistics’, consists of two chapters. Chapter 6 presents spatial 
models used in epidemiology to predict infectious and non-infectious diseases 
occurring in a region: generalized linear spatial models, spatial survival models and 
spatial generalized extreme value models. Chapter 7 demonstrates the application 
of spatial statistics with the implementation of a generalized linear spatial model 
for the prediction of dengue disease in the state of Chiapas.

Section 3, ‘Clinical Trials’ contains two chapters. Chapter 8 discusses practical and 
near-optimal designs for clinical trials and reviews the strategy of incorporating 
multiple objectives while advocating a regression-type estimation approach via 
the generalized estimating equations method. The authors show that the adaptive 
allocation scheme successfully constructs designs of the desired efficiency, illustrated 
by practical two- and three-period designs. Chapter 9 reviews fundamental ideas, 
models, and the construction of optimal designs for N-of-1 trials, and discusses how 
they may be aggregated to estimate treatment effects for the average patient.
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Chapter 1

Logistic Regression: Risk Question
for Disabled People
Paulo Tadeu Meira e Silva de Oliveira

Abstract

All over the world, since ancient times, disabled people have always had worse
health, education, economical participation, and higher poverty rate compared to
non-disabled people. For disabled people to achieve better and more lasting prospects,
these people must be empowered and seek to eliminate barriers that prevent them
from participating and being included in the community, having access to quality
education, finding decent work, and having their voices heard. In statistical terms, a
useful alternative that can serve as support and monitoring of public policies in this
area is to propose, for continuous use, the risk index called risk index for disabled
people (long-term physical, hearing, intellectual, or sensory), which consists of eval-
uating which factors are associated with this risk, as well its intensity and direction of
each of these factors, generating a final score that can be ordered or classified,
according to non-disabled person probability became disabled person. In the Brazilian
case, we propose the use of binary and ordinal logistic regression techniques to select
the most significant factors using criteria such as AIC and BIC and calculate the risk
probability for different disabilities (visual, hearing, physical, and intellectual) for the
dataset. Sample composed of 20,800,804 respondents to the 2010 IBGE Census
Complete Questionnaire.

Keywords: disabled people, disability risk, variable selection, model selection,
stereotype ordinal logistic regression

1. Introduction

According to the World Health Organization (WHO) in 2010, it is estimated
that more than one billion people from all over the world, representing about
15% of the world population and in the case of Brazil, according to the Geography
Brazilian Institute (IBGE) in 2010, it is estimated that 45.6 million people,
equivalent to approximately 23.9% of the Brazilian population, live with some type
of disability. In general, disabled people have worse health prospects, educational,
economical participation, and a higher rate of poverty compared to non-disabled
people.

Disabled people make up a group of excluded people who have always aroused
feelings that range from repulsion to extreme pity and have even been considered less
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human or lacking in humanity. Currently, within the scope of social and educational
inclusion policies, they have become the target of affirmative actions, which seek to
guarantee their rights in various aspects of life in society [1, 2].

It is believed that the low working conditions of disabled people are due to situa-
tions such as: difficulty in accessing education, inadequate infrastructure, prejudice,
little knowledge, and better accessibility conditions on the part of schools and com-
panies that make these people have a lower education, which makes it difficult to
enter the formal job market [3].

In order for disabled people to achieve better and more lasting prospects, it is
necessary to empower them and remove barriers that prevent them from participating
in the community, accessing quality education, finding decent work, and having their
voices heard [4].

To better assess the needs of disabled people, it is necessary to describe this group
of people to know the answers to questions such as: How many are there? Where they
live? How do you live? What implications does disability have on these people’s access
to all the different human services in an autonomous and comprehensive way? In
short, how can disability influence the life quality of these people?

In statistical terms, it shows the existence of few formal studies, among which
the data obtained through censuses stand out, allowing questions such as: How
are disabled people distributed across the country? How to assess the access of
disabled people to the different services mentioned earlier? How is the evolution
of disabled people when comparing them with those without disabilities? What
would be the variables that most contribute to cases of disability? How do disabled
people compare to people without disabilities? Answering these and other ques-
tions can contribute to better support for these people so that they can be better
assisted and resources to be better managed and optimized by public policy actions
in this area.

Statistically, a useful alternative to assist in the monitoring of public policies in this
area is the risk index, which consists of evaluating which factors are most impacting
for this risk, as well as its intensity and direction, generating a score that can be
ordered or classified according to the probability of people becoming disabled. In the
case of this work, we propose the use of techniques such as binary and ordinal logistic
regression to select the most significant factors by applying criteria such as binary and
ordinal logistic regression to select the most significant factors by applying criteria
such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
and Deviation Information Criterion (DIC) and calculate the risk probability for the
different disabilities (vision, hearing, movement, and intellectual) for the sample
dataset composed of 20,800,804 respondents of the Complete Questionnaire of the
IBGE 2010 Census by state, region, and country.

In a previous work [1], we considered as response variable, the different disabil-
ities, and the existence of at least one disability as binary variable, that is, whether a
given individual is or is not a disability person. In this work, we are considering the
different deficiencies, incorporating their different degrees of severity and number of
deficiencies as ordinal response variable, which allows better quality in terms of
information and fit in the model.

In Section 2, we present an introduction to the problem, we establish and charac-
terize the variables to be used, the stereotyped ordinal logistic model, selection of
variables such as the Wald test, and models using the AIC, BIC, and DIC criteria, and
we define the risk of disability for different degrees of severity “cannot at all,” “can,
but with great difficulty” and “can, but with a little difficulty” for visual, hearing and
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physical disability, and, in the case of intellectual disability, it was proposed the
following levels the use of the risk “has” or “does not have” intellectual disability. In
Section 3, we present results and discussions; and, in Section 4, we present conclu-
sions and suggestions for future work.

2. Materials and methods

2.1 Motivation

For better inclusion of disabled people, it is important to know what are the factors
that most impact the conditions of these people. In this work, we propose the adjust-
ment of stereotyped ordinal logistic models to incorporate the most significant factors
using AIC, BIC, and DIC as selection criteria, creation and determination of the risk of
deficiency for a set of sample data of the respondents of the Complete Questionnaire
of the 2010 IBGE Census.

2.2 Data description

The variables were obtained directly from the questionnaire applied to the dataset
of the sample that responded to the Complete Questionnaire and can be found on the
website www.ibge.gov.br in the 2010 Census, sample, and microdata with more
details about its description in Oliveira [1].

2.3 Ordinal logistic regression

A good number of the variables used in the social sciences and humanities are
ordinal. Often, the dependent variable takes discrete values, or sortable categories, but
the distance between them is neither known nor constant. For example, in epidemio-
logical studies, the level of severity of visual, hearing, or physical is set out in the 2010
Demographic Census Sample Questionnaire, which can be classified as ¨can not at
all,¨ ¨he succeeds, but with great difficulty,¨ ¨can, but with a little difficulty,¨ and, finally,
“no problem” to hear, see, or get around. In the case of intellectual disability, it is
divided into ¨has¨ or ¨has not.¨

Among possible adjustment models for ordinal logistic regression, the following
ones stand out: proportional probability model, more suitable for interpretation when
the response variable is continuous and has been categorized; continuous ratio model,
suitable in situations where there is specific interest in a particular category of the
response variable; partial proportional probability model that allows to moderate
covariates with the assumption of proportional probabilities, and for other variables in
which this assumption is not satisfied, specific parameters that vary for the different
categories compared and an extension of the proportional probability model are
included in the model; and finally, stereotype model, proposed by [5–7]) used in
situations where the response variable is ordinal, which is not a discrete version of
some continuous variable that was considered in this research.

For this work, we have response variables: visual, hearing, physical, and intellec-
tual disabilities, which are ordinal variables. In view of this, we adopted the stereo-
typed model in this work.
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2.3.1 Stereotype model specification

Imagine that the dependent variable consists of J categories (m = 1, … , J) and
consider K predictors (J = 1, … ,K). The stereotype ordinal model is defined at an early
stage with the multinomial regression model to which the condition is added βm Jj �
φmβ̂, where J is the reference category, that is, we have that the multinomial regres-
sion model is given by:

Prob y ¼ m xj� � ¼
exp β0m Jj x

� �

PJ
j¼1 exp β0m Jj x

� � , with m ¼ 1, … , J (1)

Replacing βm Jj ¼ φm
~β in Eq. (1) results in the stereotype model that can be written

mathematically.

Prob y ¼ m
�� ��x� � ¼

exp φm
~β0x

� �

PJ
j¼1 exp φ1

~β0x
� � ¼ exp φm

~β0 þ φm
~β1x1 þ … þ φm

~βkxk
� �

PJ
j¼1 exp φm

~β0 þ φm
~β1x1 þ … þ φm

~βkxk
� � ,

with m ¼ 1, … , J
(2)

For some parameters of Eq. (2) that are not identifiable, we consider as constraints
φm

~β0 � θm m ¼ 1, … , Jð Þ, where ϕJ = 0; and φm
~βj � �θmβj m ¼ 1, … , J e j ¼ 1, … , kð Þ,

where φJ ¼ 0 e φ ¼ 1: Thus, from Eq. (2), the stereotype model can be written as
follows:

Prob y ¼ m xj� � ¼ exp θm � φmβ
0xð ÞPJ

j¼1 exp φ1β
0xð Þ , (3)

with m = 1, … , J where θJ = 0, φJ ¼ 0 where φ ¼ 1.

2.3.2 Interpretation of estimated coefficients

Applying logarithm in function (3) to any two categories, we get:

log
p Y ¼ q=xð Þ
p Y ¼ r=xð Þ
� �

¼ θq � θr
� �� φq � φr

� �
β0x: (4)

Applying the exponential function to the exponential function to Eq. (4), it
follows

Ωq=r ¼ p Y ¼ q=xð Þ
p Y ¼ r=xð Þ ¼ exp θq � θr

� �� φq � φr

� �
β0x

n o
: (5)

Eq. (5) allows us to evaluate the odds ratio before and after we add a unit to the
variable xj, that is,
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Ωq=r x, xk þ 1ð Þ
Ωq=r x, xkð Þ ¼ exp φr � φq

� �
βx

n o
: (6)

The value obtained in expression (6) can be interpreted as adding a unit to the

variable xk, the odds ratio of category r varies exp φr � φq

� �
βk

n o
, keeping all other

variables constant.

2.3.3 Estimation of estimated coefficients

The parameters of the stereotype model are estimated by the maximum likelihood
method, in which the estimators are obtained by the system of equations given in (7)
as follows:

pi ¼

Prob yi ¼ 1 xi,φ, θj� �
if yi ¼ 1

⋮
Prob yi ¼ m xi,φ, θj� �

if yi ¼ m
⋮

Prob yi ¼ J xi,φ, θj Þ if yi ¼ J
�

8>>>>>><
>>>>>>:

(7)

where pi is the probability of observing any value of y, and the Prob yi ¼ 1 xi,φ, θj� �
was defined in expression (3). Assuming that the sample is independent and identi-
cally distributed, the likelihood function is given by the following expression (8):

L β,φ, θ y, xjð Þ ¼
YN
i¼1

pi ¼
YJ

m¼1

Y
y¼m

Prob y ¼ m x,φ, θj� �
(8)

on what
Q
y¼j

indicates the multiplications over all cases where y = m (m = 1, … ,J).

Applying logarithm to the likelihood function obtained in (8), we obtain the logarithm
of the likelihood function given in (9) as follows:

log L β,φ, θ y, xjð Þð Þ ¼
XJ

m¼1

X
y¼m

log Prob y ¼ m x,φ, θj� �� �
: (9)

The parameters ϕ’s and θ’s of Eq. (9) are estimated by the Newton–Raphson
method.

The odds ratio formed will have an upward trend, as the weights can be produced
by sorting. Thus, the effect of covariates on the first odds ratio is smaller than the
effect on the second, and so on.

These weights can be done a priori, being estimated by a pilot study or by a set of
properly chosen values.

In the case of this work, the number of disabilities that a person may have can vary
from 0 to 4, and there may be five response options.

In order to assess the goodness of fit for ordinal models, it can be done using tests
such as Pearson’s or deviation. These tests involve creating a contingency table in
which the rows consist of all possible configurations of the model’s covariates and the
columns are the ordinal response categories [8]. The expected counts (Elj) from this

7

Logistic Regression: Risk Question for Disabled People
DOI: http://dx.doi.org/10.5772/intechopen.106212



table are expressed by Elj ¼
PNL

l¼1p̂ij, on where NL is the total number of individuals
classified in the row l and p̂ij represents the probability of an individual in line l having
the answer j calculated from the adopted model.

Pearson’s test to assess the adequacy of fit compares these expected counts with
those observed by the formula:

χ2 ¼
XL

l¼1

Xk
j¼1

Olj � Elj
� �2

Elj
(10)

The deviance stat also compares observed (Olj) and expected counts, but using the
formula:

D2 ¼ 2
XL

l¼1

Xk
j¼1

Olj log
Olj

Elj
(11)

The tests to assess the goodness of fit of the model are given by approximations of
statistics (10) and (11) for chi-square distribution with (L – 1)(k – 1)p degrees of
freedom, where L and k are as defined earlier and p is the number of model covariates.
Significant differences lead to the conclusion that the model does not fit the data
studied.

As an alternative, we will use the Wald test which is given by:

W ¼ p̂� p̂0
� �0V̂�1

p p̂� p̂0
� �

(12)

on where V̂p is the consistent estimator of the variance-covariance matrix of the
estimator p̂ of the proportion vector p̂. An estimator V̂p can be obtained by lineariza-
tion method.

2.3.4 Significance test for the model

The Wald test for the parameters considered individually can be obtained by

comparing the estimate of maximum likelihood of a given coefficient β̂j

� �
with the

estimate of its standard error (based on the asymptotic distribution of the maximum
likelihood estimators). Thus, the null hypothesis and the alternative hypothesis of the
test are respectively:

H0 : β̂j ¼ β ∗
j vs H1 : β̂j 6¼ β ∗

j j ¼ 2, … , kð Þ, (13)

the respective statistic under the null hypothesis:

T ¼ β̂j � β ∗
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var β̂j

� �r � N 0, 1ð Þ (14)

By rejecting H0, for a significance α, we conclude that the estimated parameter is
statistically different from β ∗

j . Generally, use β
∗
j ¼ 0 which, under these conditions,
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we conclude that the parameter is relevant to explain the behavior of the dependent
variable.

2.3.5 Selection of variables

Selecting variables means choosing a subset that retains the most important pre-
dictor variables in such a way that we seek to avoid problems such as multicollinearity
and that this subset fits as well as the complete model and contains the most important
predictor variables.

Among different procedures that can be used to select variables, we highlight for-
ward stepwise and backward stepwise. Forward stepwise starts with the constant β0 and
sequentially adds the predictor Xi most correlated with Y to the model so that it
improves the fit according to the evaluation of the F statistic and the introduction of
variables when it fails to produce an F statistic greater than the 90th or 95th percentile of
the distribution, F1, N – k – 2, where N is the sample size and k is the number of variables.

On the other hand, the backward stepwise selection strategy starts with the model
with all independent variables, and sequentially, excludes variables using the F statis-
tic to choose the predictors to be eliminated. The predictor that has the smallest F
statistic is eliminated, and the process stops when each predictor eliminated from the
model has an F value greater than the 90th or 95th percentile of the distribution, F1, N –

k – 2. For this work, forward backward and the Wald statistic were chosen.
In ordinal logistic regression, the TRV (likelihood ratio test) ensures the signifi-

cance of the fit. Thus, at each stage of the process, the most important variable, in
statistical terms, is one that produces the greatest change in the logarithm of the
likelihood in relation to the model without the variable [9].

After estimating the parameters, the next step is to verify if the covariates used for
modeling are statistically significant for the modeled event, for example, condition of
an individual becoming a disability person.

To test the significance of the coefficient of a covariate, it is sufficient to compare
the observed values of the response variable with the predicted values obtained by the
models with and without the variable of interest [10].

The comparison between observed and predicted values is made using the likeli-
hood ratio test, which is widely applicable by the maximum likelihood estimation.

For test H0 : θ∈Θ0 versus Ha : θ∈Θc
0, we calculated the statistics [11]:

λ xð Þ ¼ supθ0
L θ=xð Þ

supθL θ=xð Þ :For n ! ∞, � 2 ln λ xð Þ ! χ2v: (15)

where ν is obtained through the difference between the number of parameters
existing in the tested model and the number of parameters existing in the saturated
model [12].

To verify the quality of the adjusted model, it is sufficient to compare the observed
and predicted values for the response variable (in this case, one of the different
deficiencies already mentioned).

When choosing a particular model, it means that we must include as many inde-
pendent variables as possible to improve the forecast; simultaneously, we want to
include a smaller number of variables for reasons of cost and simplicity [10].

According to Draper and Smith [13], to select the best model is to reconcile two
objectives (incorporating a certain number of variables that can improve the
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predictability of the model, at the same time, discarding variables that are not signif-
icant as a way of simplifying the model to reduce costs). This selection involves a dose
of subjectivity, and the result may be different if the procedure is used for selection
changes.

2.3.6 Model selection

Selecting a model means, after the formulation and adjustment of different plau-
sible models, to select the model that ¨best¨ fits the data of a certain experiment
according to a certain criterion adopted [14].

In statistics, there is a vast literature relevant to the selection of models [15–17]. An
alternative for model selection is the use of methods based on the likelihood function
that provides several statistical measures that help in the comparison between differ-
ent models. The most common of these measures are as follows: Akaike Information
Criterion (AIC) proposed by Paulino et al. [18] and Sakamoto et al. [19] with penalty
given discounting the value of twice the difference between the number of parameters
between the two models; Bayesian Information Criterion (BIC) discussed by Paulino
et al. [18] and having as a penalty the value of double the number of parameters
between the two models multiplied by the Naperian logarithm of the sample size; and,
finally, Deviation Information Criterion (DIC) also discussed by Paulino et al. [18]
and the penalty is given by the sum of the difference value between the number of
parameters between the two models.

In this text, for each of the AIC, BIC, and DIC criteria, the model with the lowest
value for each one of them is chosen.

2.4 Epidemiology

According to the International Epidemiology Association (IEA), epidemiology is
defined as the study of the different factors involved in the spread and propagation of
diseases, frequency, their mode of distribution, their evolution, and the placement of
the necessary means for their prevention in human communities.

According to Suser [20], epidemiology is essentially a population science, which is
based on the social sciences for the understanding of social structure and dynamics, on
mathematics for statistical, probability, inference, and estimation notions, and, on the
biological sciences, the knowledge of the environment organic substrate where the
observed manifestations will find individual expression.

A single and precise definition of epidemiology as a scientific field ends up not
being possible due to the increasing complexity and scope of its current practice:

Science that studies the health-disease process in society, analyzing population
distribution and determining factors of risk, diseases, injuries, and events associated
with health, proposing specific measures for the prevention, control, or eradication of
diseases, damages, or health and protection problems, promotion or recovery of
individual and collective health, producing information and knowledge to support
decision-making in the planning, administration, and evaluation of health systems,
programs, services, and actions [21].

Epidemiology is a basic discipline of public health aimed at understanding the
health-disease process within populations, an aspect that differentiates it from clinical
practice, which aims to study this same process, but in individual terms and that
studies the different factors that intervene in the spread and propagation of diseases,
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their frequency, their mode of distribution, their evolution, and the placement of the
necessary means for their prevention.

In scientific terms, epidemiology is based on causal reasoning; as a public health
discipline, focusing on the development of a sequence of actions aimed at protecting
and promoting the health of the community.

Epidemiology is also an important tool for policy development in the health sector.
Its application in this case must be taken into account the available knowledge,
adapting it to local realities.

Among the possibilities of applications of epidemiology, we highlight: the analysis
of the health situation; identify profiles and risk factors; carry out epidemiological
assessment of services; study and understand the causality of health problems;
describe the clinical spectrum of diseases and their natural history; assess the perfor-
mance of health services in responding to the problems and needs of populations; test
the efficacy, effectiveness, and impact of intervention strategies, as well as the quality,
access, and availability of health services to control, prevent, and treat health prob-
lems in the community; identify risk factors for a disease and groups of individuals
who are at greater risk of being affected by a particular disease; define modes of
transmission; identify and explain patterns of geographic distribution of diseases;
establish methods and strategies to control health problems; establish preventive
measures; assist in the planning and development of health services; and, finally,
establish criteria for health surveillance.

In the discussion about disabilities, epidemiological views on social points of view,
accessibility, assistive technology, among others, were used in these researches, and,
physicians, from the perspective of prevention, treatment, and control.

2.5 Disability risk

According to the WHO:

• The prevalence of disabled people is high;

• The number of disabled people increases due to the aging of the population and
the global improvement in chronic health conditions associated with disability
such as diabetes, cardiovascular disease, and mental illness;

• Diverse experiences in which disability resulting from the interaction between
health conditions, personal, and environmental factors vary widely; and finally,

• Factors such as prevalence, purchasing power, working conditions, and
education are considered risks for people to become disabled. Causes like these
that can aggravate this situation in vulnerable populations.

Given this scenario, reasons have emerged that justify the need to assess the well-
being or disabled people life quality, we propose the creation of the risk index for
disabled people, composed of the weighting of the responses of the different variables
obtained from the microdata of the IBGE Census and selected as significant after
applying backward stepwise methodology in an ordinal logistic regression adjustment
of the stereotype type for each disability studied. This methodology gradually
emerged from simpler techniques to more complex techniques such as multivariate as
factor analysis.
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2.6 Epidemiological risk

In the area of health, several studies on risk are located in the epidemiological area.
Briefly, epidemiological risk can be summarized as the probability of the occurrence
of a health-related event, estimated from the occurrence of an event that occurred in
the recent past. In this way, this risk can be computed by quantifying of times the
event occurred divided by the potential number of events that could have happened.
In this way, the risk of becoming a disability person in a given population or group of
people is the amount of disabilities persons that occurred in the previous period by the
number of people existing in that period, since any person or all can potentially
become a disabled person.

The definition of the epidemiological risk concept and the method incorporated by
the medical area end up defining lifestyles producing meanings that guide behaviors;
thus, a form of individual surveillance is articulated in a pulverized, internalized, and
less visible way, translated into self-control [22].

In this work, we are considering the risk of a given person becoming a disability
person, including a set of health and social factors.

3. Results and discussions

For this work, we used ordinal logistic regression analysis for each of the following
response variables:

• Disabilities, which represent the number of disabilities that each person has and
can assume a value between 0 and 4 disabilities;

• Disability to see, hear, and move considering the categories: 0, ¨for those who
cannot at all,¨ 1, ¨for those who can, but with great difficulty,¨ 2, ¨for those who can,
but with a little difficulty, ¨ and, 3, ¨for those who do not have a problem¨;

• Intellectual disability, considering the categories ¨have¨ or ¨have not,¨ and
finally;

• For statistical analysis, the following programs were used SPSS, Statistica, R, and
Excel.7

For this study, the variables were divided into blocks such as: identification of
respondents, education, family, and work. For each of these blocks, the models were
adjusted considering the variables considered significant were applied:

a. Selection of variables using the backward stepwise procedure, excluding
variables that are not significant by the Wald test at each step;

b. Repeat step a) until there are no more variables to be deleted;

c. For each of these adjustments, calculate AIC, BIC, and DIC model selection
criteria;
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d. Select the best model among the different final models for each of the different
deficiencies and number of deficiencies for the criteria: AIC, BIC, and DIC, and
finally;

e. Calculate for each individual the risk of being a disability person for different
degrees of severity, disability, and number of disabilities.

Figures 1–8 present in item (a) the risk graphs of being a person with one
(represented by p1 in blue dots), two (represented by p2 in red dots), three
(represented by p3 in green dots), four disabilities (represented by p4 in purple dots),
and at least one disability (represented by pt in black dots) and in item b) of being a
visually disabled person for each different degrees of severity: “total blind”
(represented by p1 in blue dots); “low vision” (represented by p2 in red dots); “lighter
visual” (represented by p3 in green dots); and, finally “visually disability person”
(represented by pt in purple dots) for the variables: region in Figure 1, sex in Figure 2,
age in Figure 3, race in Figure 4, education in Figure 5, main job in Figure 6, income
categorized in Figure 7, and number of children in Figure 8.

In Figure 1, the following regions were considered: 1 – “north,” 2 – “northeast,” 3 –
“southeast,” 4 – “south,” and 5 – “central west.”

Starting from the graphs in Figure 1 for the region, we see that the highest
incidence risks in item a) of disability and in item b) of visual disability are found in
the northeast region for all different degrees of disability and all different severity
degree. In contrast, the lowest incidence rates in a) number of disabilities are found in
the Midwest region and b) the lowest incidence of risk of visual disability is found in
the South region.

Figure 1.
Graphs of probability of occurrence: (a) of a certain number of disabilities and (b) of visual disability according to
their degrees of severity for variable region.

Figure 2.
Graphs of probability of occurrence: (a) of a certain number of disabilities and (b) of visual disability according to
their degrees of severity for variable sex.
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Figure 2 shows (a) the risks of being a disabled person, and (b) the risk of
incidence of visually disabled person considering genders 1 – male and 2 – female.

From the graphs in Figure 2, it can be seen that in all cases, the highest risk of
incidence of: (a) disability and (b) visual disability is higher for females.

On the other hand, Figure 3 presents the risks of incidence of: (a) disability and
(b) visual disability as a function of age.

In Figure 3, it is possible to notice that the risks of disability in (a) and visual
disability in (b) increase as the age of the people interviewed increases.

Figure 3.
Graphs of probability of occurrence (a) of a certain number of disabilities and (b) of visual disability according to
their degrees of severity for age variable.

Figure 4.
Graphs of probability of occurrence (a) of a certain number of disabilities and (b) of visual disability according to
their severity degrees for race variable.

Figure 5.
Graphs of probability of occurrence (a) of a certain number of disabilities and (b) of visual disability according to
their severity degrees for education.
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It is also noted in Figure 3 that, from a certain age, starting at 80 years old, the
points begin to be randomized, and this type of occurrence is believed to be due to a
smaller number of people in these older age groups.

Foe the races in Figure 4, the races were defined as: 1 – White, 2 – Black,
3 – Yellow, 4 – Brown, and 5 – Indigenous.

As for the results of Figure 4, we note that the highest probability of occurrence of
disability and visual disability is found in the Yellow race and lower in the Indigenous
race.

Next, for Figure 5, we considered for education: 1 – “between no education and
incomplete elementary,” 2 – “between complete elementary and incomplete high
school,” 3 – “between complete high school and incomplete higher education,” and,
finally, 4 – “complete higher or more.”

Figure 6.
Graphs of probability of occurrence (a) of a certain number of disabilities and (b) of visual disability according to
their severity degree for main work.

Figure 7.
Graphs of probability of occurrence (a) of a certain number of disabilities and (b) of visual disability according to
their degrees of severity for income.

Figure 8.
Graphs of probability of occurrence (a) of a certain number of disabilities and (b) of visual disability according to
their degrees of severity for number of children.
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Continuing, examining Figure 5, we found that the highest occurrence of new
cases of risk of disability and risk of visual disability is found in 1, “among no
schooling and incomplete elementary school,” while the lowest incidence of these
risks is found in 3, “between high school complete and incomplete elementary higher
education” in all situations.

For the main job in Figure 6, we consider the following levels: 1 – “employees with
a formal contract,” 2 – “military and statutory civil servants,” 3 – “employees without
a formal contract,” 4 – “own account,” 5 – “employers,” 6 – “unpaid,” 7 – “workers in
production for their own consumption,” and, finally, 8 – “total.”

Observing the graphs in Figure 6 for the type of main job, we see that the highest
risk of incidence of disability and visual impairment are found in 6, “workers in
production for own consumption” and the lowest risk of incidence in both cases was
found in 2, “employees with a formal contract.”

Continuing in Figure 7 with income, we adopted as criterion: 1 – “between 0 and 1
minimum wage,” 2 –“between 1 and 3 minimum wages,” 3 – “between 3 and 7
minimum wages,” 4 – “between 7 and 15 minimum wages,” and, finally, 5 – “15
minimum wages or more.”

From the results obtained in the graphs in Figure 7, we can see that the highest risk
of incidence of disability and visual disability was found in 1, “between 0 and 1
minimum wage,” and it is noted that this risk decreases as income increases of the
person interviewed.

Finally, in Figure 8, a scatter plot was made for the risk of incidence of disability
and visual disability as a function of the number of children.

As for Figure 8, it is possible to verify that the risk of disability and visual
impairment increases as the number of children increases.

This result may reflect situations such as: a greater number of children can mean a
greater number of accidents and less parental attention to each child in social and
economic terms.

Tables 1–5 shows results for the analyses: stereotype ordinal logistic
regression; selection criteria for AIC, BIC, and DIC models and for point and interval
estimates of the parameters considering as response variable for the adjustments having
as a response variable the deficiencies: number of disabilities (Table 1),
visual (Table 2), hearing (Table 3), physical (Table 4), and intellectual (Table 5)
marked in bold, as well as the explanatory variables included in the final model for each
of the adjustments for significant variables according to the backward stepwise method.

For variable number of disabilities, we obtain the following predictor variables as
significant as an adjustment for each different block:

Identification: domicile, categorized age, birthplace, nationality, and region; Edu-
cation: reading and writing, day care, other graduation, and education; Family: union
nature, marital status, and number of children; Work: income, secondary work, main
work, travel, and return time; and finally; Combined model (Table 1 – made up of all
predictor variables considered significant in each of the blocks): region, place of birth,
reading and writing, day care, employment status, education, union nature, marital
status, number of children, income, return, and main job. For model selection, we get
�7232 for AIC, �8791,418 for BIC, and � 6917,953 for DIC.

As for visual disability, the following variables were selected: Identification:
region, domicile, sex, birthplace, and nationality; Education: reading and writing, day
care, other graduation, and education; Family: union nature, marital status, and num-
ber of children; Work: income, time, condition, situation, and secondary work, and
finally; Combined model (Table 2) initialized with all explanatory variables that were
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Variables Estimatives Standard
errors

Wald df p-value Confidence interval
95%

Lower
limit

Upper
limit

Disabilities 0 �.210 .075 7.786 1 .005 �.358 �.063

1 1.922 .075 650.417 1 .000 1.774 2.070

2 3.938 .077 2636.890 1 .000 3.787 4.088

3 7.034 .104 4562.783 1 .000 6.830 7.238

Region 1 .250 .013 365.872 1 .000 .225 .276

2 .295 .011 714.216 1 .000 .273 .317

3 �.071 .010 51.179 1 .000 �.090 �.051

4 �.181 .011 281.285 1 .000 �.202 �.160

5 0 0

Naturalness 1 �.060 .006 97.127 1 .000 �.072 �.048

2 .076 .014 31.279 1 .000 .049 .103

3 0 0

Read and write 1 �.428 .015 869.893 1 .000 �.456 �.399

2 0 0

Childcare 1 �.022 .023 .953 1 .329 �.066 .022

2 �.114 .024 21.574 1 .000 �.162 �.066

3 �.012 .019 .412 1 .521 �.050 .025

4 0 0

Occupation
condition

1 .086 .059 2.130 1 .144 �.029 .201

2 �.205 .059 12.091 1 .001 �.320 �.089

3 �.405 .059 47.319 1 .000 �.520 �.289

4 �.486 .059 67.149 1 .000 �.602 �.370

5 0a 0

Instruction level 1 .037 .014 7.143 1 .008 .010 .063

2 �.060 .014 17.007 1 .000 �.088 �.031

3 �.006 .017 .118 1 .731 �.039 .028

4 0 0

Union nature 1 .297 .014 473.400 1 .000 .270 .324

2 .480 .024 411.506 1 .000 .434 .527

3 .561 .016 1209.135 1 .000 .529 .592

4 .819 .023 1244.424 1 .000 .773 .864

5 0 0

Marital status 1 �1.055 .015 5009.257 1 .000 �1.084 �1.026

2 �.909 .013 5024.643 1 .000 �.934 �.884

3 �.509 .013 1621.905 1 .000 �.534 �.485

4 0 0
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considered significant for each of the different blocks and were selected: region,
birthplace, read and write, day care, education, union nature, number of children,
return, condition, and situation. For model selection, we get �2549,708 for AIC,
�3291,833 for BIC, and finally �2399,707 for DIC.

Next, for hearing disability, the following variables were selected for each of the
different blocks: Identification: region, domicile, sex, race, and birthplace; Education:
reading and writing, day care, other graduation, and education; Family: union nature,
marital status, and number of children; Work: income, time, condition, situation,
main work, and secondary work; and finally, Joint model (Table 3): region, birthplace,
reading and writing, education, marital status, number of children, condition, and
situation. For model selection, we get �2921.348 for AIC, �3331.401 for BIC, and
�2865.348 for DIC.

For physical disability, the following variables were selected: Identification: region,
age, and birthplace; Education: reading and writing, day care, other graduation, and
education; Family: union nature, marital status, and number of children; Work:
income, return, time, condition, situation, main work, and secondary work; and
finally, Joint model (Table 4): region, birthplace, reading and writing, day care,
education, marital status, number of children, return, time, condition, situation, and
main job. For model selection, we get AIC = �1258.613, BIC = �2119.480, and
DIC = �1084.013.

Finally, in the case of Table 5, the following variables were selected as significant:
gender, age, birthplace, knowing how to read and write, and education. Totally, there
are five variables.

Variables Estimatives Standard
errors

Wald df p-value Confidence interval
95%

Lower
limit

Upper
limit

Income 1 .304 .032 89.934 1 .000 .241 .367

2 .171 .032 29.101 1 .000 .109 .233

3 .170 .032 28.047 1 .000 .107 .233

4 .133 .035 14.378 1 .000 .064 .202

5 0 0

Return 1 �.221 .017 174.562 1 .000 �.254 �.188

2 0 0

Main job 1 �.209 .023 79.698 1 .000 �.255 �.163

2 �.460 .135 11.602 1 .001 �.724 �.195

3 .066 .025 7.006 1 .008 .017 .114

4 �.131 .023 31.478 1 .000 �.176 �.085

5 �.066 .024 7.620 1 .006 �.113 �.019

6 �.428 .032 180.577 1 .000 �.491 �.366

7 0 0

Table 1.
Point and interval estimates of the parameters of the logistic model considering the number of deficiencies
(deficiencies) as the response variable.
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Variables Estimatives Standard errors Wald df p-value Confidence interval 95%

Lower limit Upper limit

Visual disability 1 �5.190 .072 5147.165 1 .000 �5.332 �5.048

2 �2.012 .066 935.571 1 .000 �2.141 �1.883

3 .177 .066 7.310 1 .007 .049 .306

4 10.966 .140 6174.537 1 .000 10.692 11.239

Region 1 �.272 .013 421.476 1 .000 �.298 �.246

2 �.262 .011 544.896 1 .000 �.284 �.240

3 .141 .010 193.114 1 .000 .121 .161

4 .275 .011 609.290 1 .000 .253 .297

5 0 0

Naturalness 1 .051 .006 67.199 1 .000 .039 .064

2 �.077 .014 30.191 1 .000 �.105 �.050

3 0 0

Read and write 1 .369 .014 710.297 1 .000 .342 .396

2 0 0

Childcare 1 �.041 .022 3.940 1 .049 �.084 .002

2 .043 .024 3.098 1 .078 �.005 .091

3 �.018 .019 .931 1 .335 �.054 .018

4 0 0

Instruction level 1 �.062 .060 1.064 1 .302 �.181 .056

2 .226 .060 14.015 1 .000 .108 .345

3 .425 .060 49.529 1 .000 .307 .544

4 .460 .061 57.577 1 .000 .341 .579

5 0 0

Union nature 1 �.223 .007 1108.625 1 .000 �.236 �.210

2 �.135 .008 260.276 1 .000 �.151 �.118

3 �.067 .016 17.005 1 .000 �.099 �.035

4 0 0

Children 1 1.101 .015 5656.802 1 .000 1.072 1.130

2 .922 .012 5599.102 1 .000 .898 .946

3 .498 .012 1696.917 1 .000 .474 .522

4 0 0

Return 1 .213 .016 166.427 1 .000 .180 .245

2 0 0

Condition 1 0 0

Situation 1 0 0

Table 2.
Point and interval estimates of the logistic model parameters considering visual disability as the response variable.
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Variables Estimatives Standard
errors

Wald df p-value Confidence interval
95%

Lower
limit

Upper
limit

Hearing
disability

1 �6.251 .081 5885.079 1 .000 �6.410 �6.091

2 �4.350 .079 3058.665 1 .000 �4.504 �4.196

3 �2.495 .078 1017.060 1 .000 �2.648 �2.342

4 12.767 .288 1962.330 1 .000 12.202 13.332

Region 1 �.098 .018 29.749 1 .000 �.133 �.063

2 �.299 .015 401.518 1 .000 �.329 �.270

3 �.015 .014 1.204 1 .273 �.043 .012

4 .005 .015 .131 1 .718 �.024 .035

5 0 0

Naturalness 1 .039 .008 22.219 1 .000 .023 .055

2 �.110 .018 38.663 1 .000 �.145 �.075

3 0 0

Read and write 1 .449 .012 1302.286 1 .000 .424 .473

2 0 0

Instruction level 1 �.445 .075 35.178 1 .000 �.592 �.298

2 �.119 .075 2.475 1 .116 �.266 .029

3 .123 .075 2.688 1 .101 �.024 .271

4 .292 .076 14.760 1 .000 .143 .441

5 0 0

Marital status 1 �.122 .009 177.545 1 .000 �.139 �.104

2 �.395 .021 352.262 1 .000 �.436 �.354

3 �.468 .016 824.993 1 .000 �.500 �.436

4 �.816 .014 3433.926 1 .000 �.843 �.789

5 0 0

Children 1 .826 .016 2645.864 1 .000 .795 .858

2 .709 .013 2870.222 1 .000 .683 .735

3 .432 .012 1207.655 1 .000 .407 .456

4 0 0

Condition 1 .042 .014 9.356 1 .002 .015 .068

2 0 0

Situation 1 0 0

2 0 0

Table 3.
Point and interval estimates of the parameters of the logistic model considering hearing disability as the response
variable.
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Variables Estimatives Standard
errors

Wald df p-value Confidence Interval
95%

Lower
limit

Upper
limit

Walk disability 1 �5.591 .125 1987.299 1 .000 �5.837 �5.345

2 �2.726 .120 512.061 1 .000 �2.962 �2.490

3 �1.146 .120 90.832 1 .000 �1.382 �.911

4 13.027 .234 3110.980 1 .000 12.569 13.485

Region 1 �.182 .022 71.172 1 .000 �.224 �.139

2 �.370 .018 436.802 1 .000 �.404 �.335

3 �.086 .016 28.375 1 .000 �.118 �.055

4 �.047 .018 7.112 1 .008 �.082 �.013

5 0 0

Naturalness 1 .012 .010 1.576 1 .209 �.007 .031

2 �.157 .020 60.058 1 .000 �.197 �.117

3 0 0

Read and write 1 .577 .017 1171.179 1 .000 .544 .610

2 0 0

Childcare 1 .333 .029 133.621 1 .000 .277 .390

2 .586 .039 220.779 1 .000 .509 .664

3 �.025 .022 1.311 1 .252 �.068 .018

4 0 0

Instruction
level

1 �.569 .109 27.157 1 .000 �.783 �.355

2 �.104 .109 .908 1 .341 �.319 .110

3 .267 0.109 5.963 1 .015 .053 .482

4 .538 0.11 23.881 1 .000 .322 .754

5 0 0

Marital status 1 �.125 .010 142.810 1 .000 �.146 �.105

2 �.530 .022 585.604 1 .000 �.572 �.487

3 �.621 .017 1326.137 1 .000 �.654 �.588

4 �.933 .016 3244.635 1 .000 �.965 �.901

5 0 0

Children 1 1.009 .020 2554.328 1 .000 .970 1.049

2 .794 .016 2471.085 1 .000 .763 .825

3 .382 .015 639.566 1 .000 .352 .411

4 0 0

Return 1 0 0
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In intellectual ability, the following variables were selected: Identification: region,
sex, age, race, and birthplace; Education: reading and writing, day care, other gradua-
tion, and education; Family: union nature, marital status, and number of children;
Work: income, time, return, condition, situation, and secondary work; and finally,
Joint model: gender, age, birthplace, reading and writing, and education. For model
selection, we get AIC = �14,548. BIC = �14,711, and DIC = �14,515.

Making a comparative study between the models given in Tables 1–5, we noticed
that the model that included a smaller number of variables was the logistic model
adjusted for intellectual disability, while the model that required the largest number of
independent variables was for the number of deficiencies.

The adjustment by stereotype ordinal logistic regression was compared with binary
logistic regression [1] and multinomial logistic regression [23], and visual, hearing,
physical, intellectual, and multiple disabilities were considered.

It was found that, for all the different disabilities, the one that had the highest
number of independent variables considered significant was for the regression meth-
odology, binary logistic followed by the stereotype ordinal logistic regression meth-
odology, and this can be motivated by the following facts:

To enable the use of dummy variables, the response variable had to be transformed
to determine whether or not it has a disability, which increased the sensitivity of the
analysis, making differences more easily detected.

The stereotype logistic regression methodology performed better in relation to the
multinomial logistic regression methodology, as it took into account that the response
categories were ordinal, contrary to what happened when the multinomial logistic

Variables Estimatives Standard
errors

Wald df p-value Confidence Interval
95%

Lower
limit

Upper
limit

Time 1 .691 .031 506.529 1 .000 .631 .751

2 .673 .029 524.780 1 .000 .615 .73

3 .508 .030 283.211 1 .000 .449 .568

4 .284 .032 80.361 1 .000 .222 .346

5 0 0

Condition 1 0 0

Situation 1 0 0

Main job 1 .542 .033 266.774 1 .000 .477 .607

2 .497 .241 4.229 1 .040 .023 .970

3 �.010 .036 .076 1 .783 �.080 .060

4 .415 .033 158.503 1 .000 .351 .480

5 .216 .034 40.930 1 .000 .150 .283

6 .623 .053 139.555 1 .000 .520 .727

7 0 0

Table 4.
Point and interval estimates of the parameters of the logistic model considering physical disability as response
variable.

22

Recent Advances in Medical Statistics



regression model was applied, and this probably caused that the multinomial logistic
regression methodology has little sensitivity and presents a smaller number of selected
variables in the composition of its models [24].

Among the advantages of using multinomial logistic regression, we can mention
the fact of not making assumptions about the probabilistic behavior of the indepen-
dent variables, possibility of testing the significance of a large number of independent
variables, and, finally, possibility of direct estimation of the probability of an obser-
vation belonging to a certain class [25, 26].

4. Conclusions

The adjusted model with the lowest number of explanatory variables was the
intellectual one with 5, while the one that needed the highest number was disability
with 13 variables.

In this work, using the ordinal stereotype ordinal logistic model, it was possible to
improve the quality of the fit when compared to the fit of the binary logistic model
proposed in Oliveira [1]. When using the ordinal response, the disability risk was
incorporated for different severity degrees and disabilities number.

Variables Estimatives Standard
errors

Wald df p-value Confidence interval
95%

Lower
limit

Upper
limit

Intellectual
disability

1 �3.795 .087 1923.902 1 .000 �3.964 �3.625

2 10.498 .096 11945.597 1 .000 10.310 10.686

Sex 1 �.103 .006 284.656 1 .000 �.115 �.091

2 0 0

Age 1 .664 .013 2719.203 1 .000 .639 .689

2 .073 .008 84.007 1 .000 .057 .089

3 0 0

Naturalness 1 �.139 .007 454.576 1 .000 �.152 �.126

2 �.251 .015 274.087 1 .000 �.281 �.221

3 0 0

Read and write 1 1.486 .007 46829.311 1 .000 1.473 1.500

2 0 0

Instruction level 1 �.943 .086 120.203 1 .000 �1.112 �.775

2 �.303 .087 12.254 1 .000 �.473 �.133

3 .116 .087 1.802 1 .179 �.054 .286

4 .362 .089 16.647 1 .000 .188 .535

5 0 0

Table 5.
Point and interval estimates of the parameters of the logistic model considering as the answer variable intellectual
disability.

23

Logistic Regression: Risk Question for Disabled People
DOI: http://dx.doi.org/10.5772/intechopen.106212



The different deficiencies are not homogeneous, as for different predictor variables.
The incidence risks of being a disability person and being a visual disability person

are probably greater in situations such as residing in the northeast region, female
gender, aged over 80 years, Yellow race, incomplete elementary education, working
in production for their own consumption, and high number of children.

The lower incidence risks are observed in situations such as residing in the south-
ern region, male gender, aged 15 years or less, Indigenous race, schooling between
complete high school and incomplete higher education, and worker with a formal
contract and without children.

Next, for Figures 1–8, we proceed to establish possible justifications and sugges-
tions for work or research that may or may not accept the considered hypotheses.

• Figure 1. These results may be occurring due to the low effective investment in
terms of health and infrastructure, smaller in the northeast and north regions,
and larger in regions like the southeast and south.

To evaluate this hypothesis, an alternative is to carry out a survey of the effective
volume spent on health, accessibility, and infrastructure that favor disabled people
between the different regions, counting the number of people who were effectively
benefited and make a comparative assessment between the different regions;

• Figure 2: These are most likely results that reflect women’s greater exposure to
domestic accidents and the double shift of modern women who work outside the
home and take care of the home.

To better assess this point, the proposal can be a comparative study by sampling
between the times of work at home and outside the home between men and women;

• Figure 3: These results show that with the aging of the population over the years,
with greater life expectancy and more subject to diseases of advanced age and a
greater incidence of becoming disabled people.

In this case, it is possible to suggest studies that simultaneously prove the increase
in life expectancy of the population and the emergence of diseases that occur at more
advanced ages. This point can be easily confirmed by the data from the 2010 IBGE
Census Sample;

• Figure 4: These results show cultural and dietary conditions of Eastern and
Indigenous peoples.

For a better understanding of this result, we suggest a research study on the life
habits of Yellow and Indigenous people races, considering their possibilities of
becoming disabled people;

• Figure 5: It is believed that a low education can mean less knowledge of
information, low purchasing power, and greater dependence on government aid.

In order to prove it, research can be carried out that can establish relationships
between level of education and income;
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• Figure 6: Most likely, the different types of professions reflect the education
obtained by different workers, since being military or statutory depends on
passing a public tender that requires better preparation and study, while I
work for my own consumption or without pay, in general, it is made up of
people who work in the countryside, are unemployed and have lower purchasing
power.

In order to better evaluate this possibility, the proposal is to carry out research that
can establish the average remuneration for different professions by disability, sex,
education, and other demographic variables;

• Figure 7: The higher incidence of risk can be justified as it tends to be higher
when the population’s purchasing power or income is lower.

In this case, we suggest a study in which a survey is carried out on disabled people
and without disabilities and then, visual disabled people and without visual disability,
and that we make a comparison between different income levels; and finally;

• Figure 8: This result may reflect situations such as a greater number of children
can mean an increase in the number of accidents and less attention paid to each
child by the parents in social and economic terms.

In this case, to show this result, it suggests the establishment of a survey that can
compare life quality among families with different numbers of children and evaluate
their respective risk.

For Figures 1–8, the results were similar for the amount of disabilities and visual
disability.

The conclusions of this work verify, in addition, the importance of other studies,
researches, and analyses, because, when talking about risk, there are several
methods to assess this risk, whether using regression coefficients, whether using
regression analysis, factor scores, weighting of the disability risk considering the
weighting of the risk for each of the different explanatory variables. For example,
disability risk is known to increase as age increases, so does the number of children,
and so on. Among various alternatives for future work, we can mention the
following ones:

1.Beta regression model, factor analysis, structural equation modeling, and the
BART algorithm as a way to improve the goodness of fit and its reliability in
determining the deficiency index.

2.Repeat the analysis including variables related to housing conditions and
possession of other assets.

3.Among several questions that need to be answered are questions about how
disabled people live and what situation they find themselves in when buying
them from people without disabilities.

4. In situations like this, a risk index with good reliability and adjustment quality is
interesting to facilitate the monitoring of this situation, in the same way as with
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the Human Development Index (HDI), although this is a more general index,
still does not take into account the issue of disabled people.

5.Evaluate the accessibility of the surroundings of the houses of disabled people,
considering the locations in a georeferenced way, evaluating the conditions of
the infrastructure proposing a geostatistical model.

6.The difficulty in estimating the risk index is to obtain a method that is efficient
and reliable and that manages to reduce its discrepancy. Due to this problem, it
ends up becoming of interest on the part of researchers, making the use of
several methods to be able to estimate this risk considered and evaluated in this
study.

7.The advantage of having an index that can be compared is that it can be used as
a parameter to see if its value has increased or decreased, in such a way that the
higher this index should reflect the greater need for intervention by public
authorities to reduce the existing barriers in terms of access to different human
rights and accessibility around the homes of disabled people.

8.Propose improvements in the census questionnaire, for example, if a respondent
answered that he is a disability person, also ask at what age it occurred, because,
according to the existing literature [3], it is known that the older the age people
become disabled people, the greater the difficulties for that person to adapt.

9.In statistical terms, improve national statistics on disability, using an efficient
and low-cost approach to obtain more comprehensive data and add disability
questions, cross-reference between different datasets, collect longitudinal data,
add disability issues to allow monitoring, improve data comparability, develop
adequate tools, fill gaps between investigations and, finally, strengthen and
support the different investigations considering the creation of instruments that
can measure and monitor life quality and the well-being of these people on a
continuous and periodic basis.

10.Also include issues related to health conditions, housing, work, education,
accessibility, and leisure.

11.Repeat the analysis by region, state, and municipalities.

12. It is hoped that results such as this research can contribute to the action of public
managers with better support in meeting the needs of disabled people.
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Chapter 2

The Basics of Structural Equations
in Medicine and Health Sciences
Ramón Reyes-Carreto, Flaviano Godinez-Jaimes
and María Guzmán-Martínez

Abstract

Structural Equation Models (SEM) are very useful and, with a wide range of
practical applications in many fields of science, in medicine and health sciences,
have increased interest in their usefulness. This chapter is divided into three
sections. The first includes concepts, notation, and theoretical aspects of SEM, such
as path diagrams, measurement model, confirmatory factor analysis, structural
regression, and identification model. In addition, it includes some simple examples
applied to health sciences. The second section deals with the estimation and evaluation
of the model. On the first topic, the methods of Maximum Likelihood (ML),
Generalized Least Squares, Unweighted Least Squares, and ML with robust standard
errors are addressed, as well as alternative methods to the problem of violations of
the multivariate normality assumption. On the second topic, some goodness of fit
statistics of the estimated model are defined, such as the chi-square statistic, Root
Mean Square Error of Approximation, Tucker-Lewis Index, Comparative Fit Index,
Standardized Root Mean Square Residual, and Goodness of Fit Index. The last
section deals with SEM example and its implementation using the lavaan library of
R software.

Keywords: causal effects, path diagram, measurement model, confirmatory factor
analysis, structural regression

1. Introduction

SEM is a multivariate method whose use has grown exponentially in medicine and
health sciences. The SEM is a statistical method considered as a causal model that
includes, among other techniques, the Linear Regression Model (LRM), Factor Anal-
ysis (FA), Confirmatory Factor Analysis (CFA), and Path Analysis. This statistical
model can help the researcher to test or confirm theoretical models or hypotheses and
validate causal relations between variables, which can be latent and observed, or only
between observed variables.

When a researcher is interested in investigating the causal relationships between a
grouping of variables that define a factor or latent variable, he is interested in proving
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or confirming (or discontinuing) that his hypothetical model is appropriate for the
data analyzed.

As a result, the researcher has the following options: a) when the hypothetical
model is confirmed by the analyzed data, he can include new elements to the original
model and then analyze that new structure; b) when the hypothetical model is not
appropriate for the analyzed data, the original model can be modified or a new model
can be tested.

Pearl cited by Kline [1] defines SEM as a causal method that considers as input (a)
a set of qualitative causal hypotheses based on theory or the results of empirical
studies represented by a set of equations, (b) a set of questions about the causal
relationship between factors or latent variables of interest. Many SEM applications
focus on non-experimental or observational designs and data from quasi-experimental
or experimental designs.

2. Variables and path diagram in health and medicine

2.1 Causality

SEM models assume probabilistic causality. This allows changes in the results to
occur with a probability between 0 and 1.0. The estimation of effects using the data is
founded on probability distribution assumptions; thus, causality is understood as a
functional relationship between two quantitative variables, effects change a probabil-
ity distribution. Causality assumptions for a researcher in Medicine and Health are
done through a synthesis of logic, theory, and prior knowledge, in this way the causal
relationship between observed and latent variables is conceptually hypothesized with
expert clinical judgment [2].

The SEM includes observed or manifest variables, latent variables, errors or
disturbances, and parameters. There are two main ways to communicate and
understand the equations that the SEM represents: through simultaneous equations
or by a path diagram. A path diagram is a visualization of the conceptual model, and
a conceptual model is an idea of the relationship under study. Behind the ideas of
causal inference are Bayesian networks and causal graphs; for example, a causal
directed graph can include, common causes, whether measured or unmeasured
variables.

2.2 Observed, latent variables, disturbances, and effects

Observed variables are measured and recorded in the data (e.g. sex, age, height,
weight, systolic blood pressure, diastolic blood pressure, body mass index). In a path
diagram, these variables are represented by rectangles or a box. A standardized vari-
able is a variable that has a mean zero and a variance one. Latent variables or latent
constructs are variables that are not directly measured (e.g. depression, metabolic
syndrome, obesity, and anxiety). In a path diagram, they are described by circles or
ovals. Observed or latent variables can be exogenous or endogenous. Exogenous vari-
ables are variables that are not influenced (not caused) by others variables in a model.
This variable is the cause or effect of one or more variables in the model. Endogenous
variables are those variables that are influenced by other variables. An endogenous
variable can affect another variable of the same type.

32

Recent Advances in Medical Statistics



Disturbances are the unspecified causes of the effect variable. Each endogenous
variable is assigned a disturbance, and this is considered as a latent variable.

Effects can be direct, indirect, and totals. These effects can be represented by
directed lines. The direct effect (!) is the causal effect of an independent variable on
another called dependent, that is, the direct influence of one variable on another. Any
variable can be strictly independent (exogenous) or a dependent variable or endogenous.

Indirect effect is a causal effect of an independent variable on a dependent through
the pathway of a third variable. This effect is synonymous with the mediation effect.
The total effect is the sum of all possible effects of one independent variable on
another dependent. All the effects are estimated by various techniques from the
sample data.

2.3 Path diagram

It is a graphical description of an SEM that includes a measurement model and a
structural model, where measured or observed variables are represented by rectan-
gles, latent variables by circles, and curved lines represent unanalyzed associations.
The covariances or correlations between exogenous variables are described by a
curved line with two arrowheads. The variance is represented by two-headed curved
arrows on the same variable observed or latent. Here, the latent variables are treated
as continuous in what we shall refer to as conventional SEM (or what is sometimes
called first-generation SEM). Hypothesized causal effects or direct effects, on endog-
enous variables, are represented by a line with a single arrowhead.

Kline [1] on parameters of SEM, when means are not included, suggests defining
parameters in words that are parallel to three symbols utilized in Reticular Action
Model (RAM) symbolis a direct effect, on endogenous variables, is represented by a
line with a single arrowhead; double-headed curved arrows that go out and re-enter
the same variable, represent the variance of an exogenous variable; and the double-
headed curved arrows entering one variable and leaving another variable to represent
the covariance.

In medicine and health sciences, it is common to assess a latent variable by several
observed variables, for example, obesity can be indirectly measured by the observed
variables percentage of fat (FAT), body mass index (BMI), and abdominal circum-
ference (AC) (Figure 1).

Figure 1.
A path diagram representing the latent variable obesity measured by three observed variables: Percentage of FAT
(FAT), body mass index (BMI), and abdominal circumference (AC).
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3. Measurement and structural models

In medicine and health sciences, it is common to use one of the four types of SEM
that exist in the literature. Next, each one is briefly described.

Path analysis models: This method of SEM only includes observed variables, simi-
lar that multiple regression models (MRM), but it has the advantage that a variable can
be a dependent variable and an independent variable at the same time, in addition,
there can be several dependent variables, and the indirect and direct effects can be
measured (Figure 2). In Figure 2 (below), the Socioeconomic Status (SES) and Disease,
both exogenous variables, represent direct effects on the endogenous variable obesity.

Confirmatory Factor Analysis models (CFA): The CFA, like the measurement
model, analyzes the relation among latent and observed variables, emphasizing that
the theoretical factorial structure predetermined by the researcher is confirmed by the
data; that is, it must be predetermined to which factor the observed variables will be
loaded and the CFA will be useful to confirm or not the default structure.

Structural Regression Model: This method of SEM is a regression model between
latent variables. The idea consists on to combine the techniques of CFA and MRM,
further include the measurement errors.

The causal relationships between latent variables are represented by the directional
arrows according to the hypothetical model. Typically, model fit indices are examined
first, followed by hypothesis tests. The latent growth curve model is a statistical tech-
nique of longitudinal analysis that estimates or explains the growth over a period of time.

In this chapter, we will only address the Structural Regression Model.

3.1 Measurement model

This part of the path diagram is necessary to analyze all the items or observed
variables that are “loaded” in the latent variable, their variances, and errors, as well as
the relation between the observed variables.

The measurement model quantifies linkages among the latent variables and
observed variables that characterize the hypothetical model.

The latent variables are representations of the concepts of interest. Previously the
concept is selected, Bollen [4] recommends for the measurement process: (1) Deter-
mine its meaning, (2) Represent it with latent variables, (3) Form measures, and (4)
Establish the relation among latent variables and measures variables.

The measurement model analyzes the relation between the measure and latent
variables. The latent variable is the representation of a concept. This relation can be
described or represented by an equation or in a path diagram (Figure 3).

The CFA is a method for evaluating a measurement model. Klein [1] mentioning
Bollen suggests applying some rules to ensure the identification of the measurement
model re specifying it as a CFA. When it comes to a CFA, a factor must have at least
three observed variables, when there are two or more factors or latent variables each
factor must have at least two observed variables.

Figure 2.
The path diagram above represents the indirect effect between FAT and LV diastolic dysfunction, and the path
diagram below shows the direct effects of socioeconomic status and obesity, and between disease and obesity [3].
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3.2 Structural regression model

The path diagram of structural regression (SR) includes the set of latent variables
and their relationships. Unlike the measurement model (CFA) where all the factors or
latent variables are exogenous and can be assumed to covary or have a dependency,
the causal effects between latent variables are described only in the SR. Causal infer-
ence in latent variable modeling is more laborious than measurement model analysis.
In SR models the effects between latent variables can also be direct or indirect.
Similarly, the structural component can also be recursive or non-recursive. A recur-
sive SR is a model in which causation is directed in one single direction, while a non-
recursive structural model has causality going in both directions on some variables.

3.3 Identification of SR model

Identification of the SR model is analogous to the identification of the measure-
ment model. However, before validating the SR, the measurement model needs to be
identified (i.e., valid) and then evaluate the fully SEM model. The only valid identifi-
cation of the CFA does not guarantee the identification of the SR.

Therefore, the analysis of a fully SEM must include the variances and covariances
between the factors or latent variables A fully SR model is identified by [4]: (1) In the
first, the researcher must analyze themeasurement model as a CFA, that is, ignore in the
analysis the relations among the latent variables of the SR model. After reformulating
the model, discover if the model is identified. If identification is obtained, apply it to the
second step; (2) in the second step, you must analyze the equation or equations that
contain the relation among the latent variables of the SR model must be analyzed and

Figure 3.
A path diagram of the CFA model on Matsuda index with 11 observed variables: Percentage of FAT (FAT), body
mass index (BMI), abdominal circumference (AC), arginine (ARG), glycine (GLY), leucine (LEU),
phenylalanine (PHE), valine (VAL), liver ultrasound (USG), alanine aminotransferase (ALT), aspartate
aminotransferase (AST); and 3 latent variables: Amino acids (AA1), fatty liver, and obesity [5].
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then determine if the SR model is identified, assuming that the latent variables are
observed variables. If in step 1 it is proved that the measurement parameters are
identified and in step 2 that the parameters of the SR are also identified, both conditions
are sufficient to fully identify the SR model. Figure 4 shows a path diagram of a
complete SEM, which includes 9 observed variables and two latent variables. The
objective is to analyze the relationship among central obesity (FAT), systemic inflam-
mation (Inflammation), and left ventricular diastolic dysfunction (LV diastolic). This
figure does not show the variances or the disturbances or errors.

4. Equations and model estimation

4.1 The equations

The basic goal of SEM is to generalize the CFA to assess relationships between
latent variables [7]. A classic form of SEM representation is the LISREL model
which involves a measurement model and a structural model. The measurement

Figure 4.
SEM to analyze relationships between adiposity, inflammatory responses, LV diastolic dysfunction. Fasting plasma
glucose (FPG); high-density lipoprotein (HDL); homeostasis model of insulin resistance (HOMA); high sensitivity
C-reactive protein (hsCRP); peritoneum fat area (Peri fat); retroperitoneum fat area (retro fat); subcutaneous fat
area (sub fat); triglyceride (TG). The latent variable FAT directly influences the inflammation variable and
indirectly on the observed variable LV diastolic [6].
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model defines the relationship between the latent variables and their indicators or
observed variables, and the structural model defines the relationship between the
latent variables. In this section, we will address the linear SEM model and the
nonlinear case.

The measurement equations are:

x ¼ Λxξþ δ (1)

y ¼ Λyηþ ε (2)

In Eq. (1), x is the vector of observed exogenous variables, ξ is the vector of
exogenous latent variables, δ is the vector of errors and Λx the matrix of coefficients
that relates x to ξ. In Eq. (2), y is vector of observed variables referred to as
endogenous, η is the vector of latent variables also endogenous; ε is the vector of
errors for the endogenous variables, and Λy the matrix of coefficients relating y to η.
In addition, connected with the two previous equations we have the covariance
matrices: Θδ and Θε are the matrix of covariances among errors δ and ε, respectively.

In summary, the object of the measurement model is to analyze the relation of the
latent variables in ξ and η with the observed variables in x and y, respectively. One
problem in formulating these equations is to specify the factorial loading matrix Λ,
based on a priori information on the observed and latent variables considered in
the study.

The structural equation for linear SEMs is:

η ¼ Γ ξþ ζ (3)

The structural equation for nonlinear SEMs is:

η ¼ Bηþ Γ ξþ ζ (4)

where η is the vector of endogenous variables, ξ is the vector of exogenous vari-
ables, and ζ explain the latent errors of endogenous variables; and B is the matrix of
coefficients that explain the relation among endogenous latent variables, Γ explain the
linear effects of exogenous variables on endogenous, and ζ include of errors of
endogenous variables. Related to Eq. (4) we have the following matrices: Φ and Ψ are
the covariance matrix of latent exogenous variables and the matrix of covariances
among errors of endogenous variables, respectively.

4.2 Assumptions and limitations

Normality: The most important assumption in SEM is the multivariate normal
distribution (MVN), particularly when the maximum likelihood (ML) method is used
to estimate the model parameters. When discrete variables have used the assumption
of normality is violated. The violation or omission of the assumption of the MVN of
the observed variables leads to a high value of χ2M=dfM and to an affectation of the
significance of the test. In this scenario, it is suggested to apply other methods such as
Generalized Least Squared (GLS).

When the complexity of the SEM increases, the sample size must also increase, and
when the data depart from the normal distribution it is essential to increase the
number of observations [1]. The non-normality assumption can be detected by
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univariate tests, multivariate tests, and skewness and kurtosis statistics. The skewness
and kurtosis can be measured, separately or together in the same variable. In the
context of SEM, the kurtosis is more problematic than skewness in terms of the effects
on inference. If the absolute value of the skewness exceeds 2 and kurtosis exceeds 4,
then the distribution is non-normal [8].

No correlation between errors: The errors are assumed to be independent, that
is, there is no correlation between the errors δ, ε and ζ.

Multicollinearity: It is assumed that there is no strong relationship among the
independent variables.

Linearity: It is assumed that exists linear relation among the variables.
Outliers: The presence of outliers in the data affects the significant results of themodel.
Sample size: Generally, the number of observations in the sample affects the

results of the fit indices in SEM. [9] suggest a minimum sample size of 150; [10]
suggest at least 10 times the number of parameters in the model: [11] recommends
should be at least 200, and Hair et al. mentioned by Thakkar [12] provides an inter-
esting list. However, if the number of observations is small, it is reasonable and
recommendable to use the Bayesian approach of SEM.

Limitations: Prior to analysis, and since the SEM model is a statistical method of
confirmation, the researcher must establish a hypothetical model, analyze the model
based on the sample and the latent, and observed variables. Additionally, one must
know how many parameters you need to estimate, adding variances, covariances, and
path coefficients. Of course, one must know all the relationships that he/she intends to
specify in the model.

4.3 Estimation

Let Σ ¼ Σ θð Þ be the covariance matrix of the model, where Σ is the population
matrix corresponding to the observed variables, θ is a vector of (unknown) parame-
ters, and Σ θð Þ is a matrix as a function of θ, which is estimated by minimizing the
discrepancy among a sample covariance matrix S and Σ θð Þ. The estimation methods
minimize different discrepancy functions F between S and Σ θð Þ, so that

F ¼ min S,Σð Þ (5)

where the matrix Σ θð Þ is given by

Σ θð Þ ¼
E yyT
� �

E yxT
� �

E xyT
� �

E xxT
� �

2
4

3
5 ¼

Σyy θð Þ Σyx θð Þ
Σxy θð Þ Σxx θð Þ

" #

¼
ΛyC ΓΦΓT þΨ

� �
CTΛy

T þ Θε ΛyCΓΛΛx
T

ΛxΦΓTCTΛy
T ΛxΦΛx

T þ Θδ

2
4

3
5

(6)

Note that this matrix does not depend on observed or latent variables but on the
matrices of unknown parameters Θδ,Θε,Φ,Ψ,Λx,Λy,Γ and B, where C ¼ I � Bð Þ�1.

ML estimation: In this method, function (7) is the logarithm of the likelihood, the
loglikelihood. Maximization is accomplished by deriving the loglikelihood with
respect to the parameters, equating each derivative to zero, and solving the equations
system. This procedure requires that the endogenous variables have an MVN
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distribution, S Wishart distribution, that the observations are distributed indepen-
dently and identically, and that the matrices Σ and S are positive definite.

FML ¼ log Σ θð Þj j þ tr SΣ θð Þ�1
� �

� log Sj j � tr SS�1� � (7)

where log ðÞ is the natural logarithm function, �j j is the determinant and trðÞ is the
trace function.

The ML estimator has among others the following advantages: is asymptotically
consistent, unbiased, efficient, and the model fit statistic TML is asymptotically
distributed as χ2 with df ¼ p pþ1ð Þ

2 � t, where t is the number of model parameters
estimated.

Two other estimation methods that consider endogenous variables with MVN
distributions are generalized least squares (GLS) and unweighted least squares (ULS),
which are described below.

GLS estimator: This method is a member of a family known as fully weighted least
squares (WLS) estimation, which is suggested to be applied when the data is consid-
ered severely non-normal; in addition, it has the property of being asymptotically
MVN distributed. The function to minimize is given by

FGLS ¼ 1
2
tr I � Σ θð ÞS�1� �2n o

(8)

ULS estimator: The method consists of minimizing the sum of squares of the
differences among the sample covariance matrix and the predicted covariance matrix.
This method can generate unbiased estimates but is not as good as the ML method
[13]. The function to minimize is

FULS ¼ 1
2
tr S� Σ θð Þ2
n o

(9)

In general, the ML estimator is preferred over both GLS and ULS, especially when
the number of observations is large.

GLS estimator requires well-specified models but allows small sample sizes to do
an acceptable job in terms of theoretical and empirical fit. WLS estimator also requires
well-specified models, but in contrast to GLS and ML, it also requires large sample
sizes to perform well [14]. In general, the ML estimator is preferred over both GLS
and ULS, especially when the number of observations is large.

4.4 Model assessment

The SEM tests a hypothetical theoretical model about the relation among latent and
observed variables, the goal of model evaluation consists in test the causal relation-
ships of a model. There are several criteria for evaluating the fit of an SEM, so it is
difficult to adopt a single specific model fit criterion. The researcher generally uses
three criteria to assess the statistical significance and the substantive significance of a
hypothesized model [15]:

1.The non-significance of the chi-square test indicates that the proposed model fits
the data.
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2.The statistical significance of individual parameter estimates is applied as a t or z
value, and are compared to a t or normal distributions.

3.The magnitude and direction are positive or negative of the parameter estimates.

Kline [1], Schumacker and Lomax [15], Thakkar [12] and Douglas [2] provided
indices and criteria for evaluating the fit of the model. This chapter only presents
some indices: A statistical test and four basic fit statistics criteria.

a. Chi-square χ2M with its degrees of freedom dfM and p value.

This statistic is based on a function of the fitting function FML (7) and is given by

χ2M ¼ n� 1ð ÞFML (10)

where n is sample size and χ2M has a central chi-square distribution with degrees
of freedom dfM ¼ p ∗ � t, where p ∗ ¼ p pþ 1ð Þ=2 is the total number of
variances and covariance terms, p is the number of observed variables, and t is
the total number of free parameters. Among the problems that this statistic
presents are that its value can be affected by the sample size, non-normality,
correlation, and unique variance. To decrease the sensitivity of the χ2M to sample
size, it is common to divide this statistic by its expected value, that is to say
χ2M=dfM, change that reduces the value of this ratio for dfM > 1 compared with
χ2M. This statistic is used to test the absolute model fit. The null hypothesis of
equal fit is that there is no difference between the proposed model and the data.
A large value of statistics χ2M with a respective small p value imply that model
does not fit the data well.

b. Root Mean Square Error of Approximation (RMSEA) and its 90%
confidence interval.

The RMSEA is a function of χ2M statistics defined by

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ̂M
dfM n� 1ð Þ

s
(11)

where δ̂M ¼ max 0, χ2M � df
� �

is the estimated noncentrality parameter and χ2M
is defined in (10).

c. The Comparative Fit Index (CFI).

Let I be the null (independence) model and its χ2I statistic which is
approximately central chi-square distributed with degrees of freedom df I. The
CFI can be obtained using the ML estimator. This index is given by:

CFI ¼ 1� χ2M � dfM
χ2I � df I

(12)

d. Goodness of Fit Index (GFI)
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GFI is the amount of variances and covariances jointly accounted for by the
model. It is given by:

GFI ¼ 1�
tr Σ θð Þ�1S� I
� �2

tr Σ θð Þ�1S
� �2 (13)

GFI varies from 0 to 1.0.

e. Standardized Root Mean Square Residual (SRMR).

SRMR is an absolute fit index that is a badness-of-fit statistic that consists of
standardizing the Root Mean Square Residual (RMR). It is a measure of the
mean absolute covariance residual. An SRMR = 0 means an ideal model fit, and
increasingly higher values indicate a worse fit [1].

In Table 1 a summary is given about the interpretation of the most important
goodness of fit indices.

5. SEM example

5.1 Database

To illustrate the application of the packages lavaan of the R software, data from a
study carried out in a Public Maternal Hospital in the state of Guerrero, Mexico, are
used. The database corresponds to a cross-sectional study of pregnant women who
presented to the emergency department of the Maternal Hospital with a clinical
picture compatible with an obstetric emergency [16]. Two groups of patients were
constituted, one group was treated from January 2009 to December 2011, which
corresponds to the period before the implementation of a process called Red Code
(Before RC), which is aimed at pregnant women with obstetric emergency situations;
and another group of patients treated from September 2013 to December 2015, in
which the Red Code (RC) procedure was implemented. The observed variables are the
same for both cases, and the number of observations for the RC period is 106 and 230
for Before RC. The code and analysis presented below correspond to data from the CR
period. For the Before CR case, it is a similar way. Since these are two different data

Model fit value Rule of Thumb Guidelines

Absolute fit indices Excellent Acceptable

Chi-square p≥0:05 Smaller values

CFI ≥0:95 ≥0:90

RMSEA ≤0:05 ≤0:08

SRMR ≤0:05 ≤0:08

Table 1.
Guidelines in SEM for select model fit statistics and indices [2].
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sets, it is not possible to apply an analysis of variance. Therefore, to compare the
results of the studied models, only the fit indices and the coefficients of factor loadings
and regression are compared.

SEM is based on the variance/covariance matrix of the observed variables. How-
ever, when the observed variables present very different variances, it is suggested to
use the correlation matrix. The R software is available on GNU GPL (General Public
License) on the CRAN website (Comprehensive R Archive Network) https://CRAN.-
R-project.org [17]. To implement SEM using the lavaan [18] package, you first need to
install it using the instructions:

install.packages(“lavaan”).
library(lavaan).

In this data set, the opinions of the expert medical personnel assigned to the
Maternal Hospital are considered to determine the following latent variables and
observed variables: First Hemodynamic State (FHS) is made up of the variables
observed: Temperature (Tm1), heart rate (HR1), blood pressure (BP1), respiratory
rate (BF1) and the number of seizures (NC). The latent variable Second Hemody-
namic State (SHS) is made up of the observed variables: Temperature (Tm2), heart
rate (HR2), blood pressure (BP2), respiratory rate (BF2). Gyneco-obstetric back-
ground (OGH) is measured by the variables number of abortions (NumAb), number
of cesarean sections (NumCa), weight of the pregnant woman (PW), and number of
vaginal deliveries (NVD). Treatment (Treat) formed by Plasma (PLAS), platelets
(PLAT), and erythrocyte concentrates (EC).

Results of the Emergency Obstetric Care (Remoc) that measure the
consequences of the actions carried out in the RC process, which are the number of
sequelae (NumS), the weight of the newborn (NW) in kilograms, and the weeks of
gestation (GW).

5.2 Model specification

In this example, it applies the function SEM of library lavaan, which uses the
correlation matrix, Cor.RC, and the number of observations N.RC. The fit.RC object is
created, where lavaan stores the results of our SEM.

### Model especification.
Sm.RC<-’.
FHS =� BP1 + BF1 + HR1 + Tm1 + NC.
SHS =� HR2 + Tm2 + BP2 + BF2.
OGH =� PW + NVD + NumAb + NumCa.
Treat =� PLAT + PLAS + EC.
Remoc =� NumS + NW + GW.
#### Structural model.
FHS � OGH.
SHS � FHS.
Treat � OGH + FHS + SHS.
Remoc � Treat + OGH + FHS + SHS.
’

fit.RC<-sem(Sm.RC, sample.cov= Cor.RC, sample.nobs = N.RC).
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5.3 Model assessment

The estimation method used in this example is the maximum likelihood method.
To obtain results, it is common to use the function summary that provides the results
of the chi-square test, the indices for the adjustment of the model (RMSEA, CFI,
AGFI, among others), the estimations of the factor loads, the coefficients of regres-
sion, standard errors, Z values, and p values for each estimated coefficient. In this
example, only the estimates for both periods are included, since we are interested in
identifying the change or effect in each parameter estimate.

summary(fit.RC, fit.measures= TRUE).
It is common that before interpreting the results of the fitted model, it is necessary

to verify that the fit is suitable. Table 2 presents the results of chi-square, degrees of
freedom, p-value and some fit indices to make decisions about evaluating the fit of the
model for Before RC and RC case.

The chi-square results for the case of RD period are better than those of Before RD.
Because the chi-square statistic is sensitive to sample size, correlation size, and non-
normality, it is suggested that other adjustment indices be used. However, since there
is no consensus on which goodness of fit index is the best to use, several of the indices
available in the lavaan library of the R software are used here. The results of the
goodness of fit indices: (a) CFI: 0.915 for RD is greater than 0.803 for Before RD, and
is greater than the reference value (≥0:90); (b) the value of RMSEA for RD (0.029) is
less than Before RD (0.068), and is even less than the reference value (0.05–0.08);
and (c) the SRMR value for Before RD is less than for the RD case, both results very
close to the reference value (≤0:08).

Finally, the values of AGFI for both periods Before RD and RD are close to the
reference value of 0.90. In summary, according to the General Rules Guidelines in the
SEM literature for selecting indices and model fit statistics, cited by [1, 2], these
results indicate a good fit of both models, in particular, for the RD case.

5.4 Model interpretation

The interpretation for FHS is as follows: in the Before RC period, when the FHS
increases by one unit, then BP1, BF1, HR1, Tm1, and NC increase by 1.0, 1.41, 1.73,
1.33, and 0.55, respectively. While for the RC period, when FHS increases by one unit,
then BP1, HR1, and Tm1 increase by 1.0, 4.4, and 0.10, respectively, but BF1 and NC

Before RC RC Reference

Chi-square 295.5 156.0

p-value = 0.00 p-value = 0.216

CFI 0.803 0.915 ≥ 0.90

RMSEA 0.068 (0.057–0.079) 0.029 (0.000–0.056) 0.05–0.08

p-value = 0.004 p-value = 0.887

SRMR 0.078 0.087 ≤ 0.08

AGFI 0.852 0.827

Table 2.
Goodness of fit indices for the two SEMs.
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decrease by 1.76 and 1.98, respectively. The interpretation of the other latent variables
is done in a similar way.

The observed variables that have the greatest impact or effect on each latent
variable in the measurement model are: (a) In FHS: BF1 in both periods Before RC and
RC (1.41 and � 1.76, respectively) and HR1 for Before RC (1.73) and for RC (4.40).

Additionally, all the factor loadings for Before RC are Significant, while for the RC
period are Not Significant; (b) In SHS: All factor loadings have similar effects in both
periods and also resulted in NS; (c) In OGH: the effect of NVD increased from 2.58 for
the Before RC period to 30.96 for the RC period. In contrast, the effect of NumAb
decreased from0.84 for Before RC to�6.99 for period RC. However, all loads resulted in
NS in both periods; (d) In Treat: The effect of the PLAS variable increased from 0.95 of
the Before RC period to 1.48 of the RC period. In this latent variable, all factor loadings
were significant in both periods; and (e) In Remoc: the effects of the observed variables
NW and GW increased from the Before RC period to the RC period from �13.85 to 5.65
and from �18.22 to 5.14, respectively; however, all factor loadings were NS.

Although the results presented in Table 3, for the structural model, in both
periods, are not significant, it can be said that: (a) when OGH increases one unit, then
FHS increases 0.11 units in the Before RC period, but decreases by 1.27 units in the RC

Measurement model Structural model

LV Before RC RC LV Before RC RC

FHS = FHS

BP1 1.000 1.000 OGH 0.111 NS �1.270 NS

BF1 1.410 *** �1.755 NS SHS

HR1 1.729 *** 4.401 NS FHS 1.224 *** �0.248 NS

Tm1 1.333 *** 0.103 NS Treat

NC 0.548 *** �1.978 NS OGH 1.194 NS �8.185 NS

SHS = FHS �0.182 NS �0.174 NS

HR2 1.000 1.000 SHS 0.354 NS �0.251 NS

Tm2 0.491 *** 0.497 NS Remoc

BP2 0.803 *** 0.201 NS Treat 0.010 NS 0.087 NS

BF2 0.563 *** 0.650 NS OGH �0.042 NS 0.478 NS

OGH = FHS �0.062 NS �0.054 NS

PW 1.000 1.000 SHS 0.017 NS 0.010 NS

NVD 2.579 NS 30.956 NS

NumAb 0.838 NS �6.993 NS

NumCa �0.978 NS 0.381 NS

Treat =

PLAT 1.000 1.000

PLAS 0.949 *** 1.483 ***

EC 0.407 *** 0.531 ***

Remoc =

NumS 1.000 1.000
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period; (b) When FHS increases by one unit, then SHS increases by 1.23 units in the
Before RC period, but decreases by 0.25 units in the RC period. In a similar way, the
other interpretations of the results of the structural model are made in both periods.

Finally, it is convenient to say that although the number of observations
corresponding to the Before RC (230) is greater than the total number of observations
to the RC period (106), the results of the fit indices are better for the RC case.

5.5 Results in a path diagram

It is quite common and useful to display the SEM results in a route diagram, for
which the following semPlot package function can be used.

Measurement model Structural model

LV Before RC RC LV Before RC RC

NW �13.848 NS 5.654 NS

GW �18.224 NS 5.138 NS

LV: Latent variable model, NS: Non significant.
*** : P(> |Z|) < 0.05. That is, a value of statistical significance less than 0.05.

Table 3.
Estimates of the measurement model and structural model for both models.

Figure 5.
Diagram path of SEM for RC period.
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semPaths(fit_RD, “par”, edge.label.cex = 1.2, fade = FALSE,
style=“lisrel”, layout = “tree”).

Figure 5 corresponds to the case of the RC period, it shows the final diagram of the
model established in the model specification section, as well as the values of the
estimates. Negative effects are shown in red and positive effects in green.

6. Conclusions

In summary, it can be concluded that there was a positive effect on the health
status of patients treated with the RC process compared to patients who were not
treated. The results of this study can provide information that allows the design of
hospital management strategies for pregnant women with high morbidity to improve
the quality of service, but in a particular way, for the Hospital de la Madre y el Nio
Guerrense they can help in the care of their service. Finally, the contribution of this
proposed SEM, in addition to helping to understand the management and interpreta-
tion of the model, can help to evaluate the effects of emergency obstetric care, using
some observed and latent variables.
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Chapter 3

Modelling Agitation-Sedation (A-S)
in ICU: An Empirical Transition
and Time to Event Analysis of Poor
and Good Tracking between Nurses
Scores and Automated A-S
Measures
Irene Hudson

Abstract

Sedation in the intensive care unit (ICU) is challenging, as both over- and
under-sedation are detrimental. Optimal sedation and analgesic strategies, are a
challenge in ICU and nurses play a major role in assessing a patient’s agitation levels.
Assessing the severity of agitation is a difficult clinical problem as variability related to
drug metabolism for each patient. Multi-state models provide a framework for
modelling complex event histories. Quantities of interest are mainly the transition
probabilities e.g. between states, that can be estimated by the empirical transition
matrix (ETM). Such multi-state models have had wide applications for modelling
complex courses of a disease. In this chapter the ETM of multi-state and counting
process (survival analytic) models which use the times for ICU patients to transition
to varying states of violations (a violation being a carer’s agitation rating outside so-
called wavelet-probability bands (WPB)) confirm the utility of defining so-called
trackers and non-trackers according to WPB-based control limits and rules. ETM and
multi-state modelling demonstrate that these control-limit scoring approaches are
suitable for developing more advanced optimal infusion controllers and coding of
nurses A-S scores. These offer significant clinical potential of improved agitation
management and reduced length of stay in critical care.

Keywords: agitation-sedation (A-S) control, nurses scores, empirical transition
matrix (ETM), transition states, wavelet probability band (WPB)

1. Introduction

Pain management is increasingly recognised as a formal medical subspecialty
worldwide [1]. Optimal sedation and analgesic strategies, combined with delirium
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management, are a challenge when caring for critically ill patients. Sedation in ICU
aims to provide patient pain reflief, comfort and safety. For sedation monitoring, the
most extensively used tools are RASS (Richmond Agitation and Sedation Scale) [2]
and SAS (Sedation Agitation Scale) [3]. Despite extensive improvements in analgesia
medication there are still barriers to nurses’ assessment, management, documenta-
tion, and reassessment of pain [4–6].

Pain is the most common reason that patients come to the emergency department.
Emergency nurses have an indispensable role in the management of this pain [7, 8].
Sedation in the intensive care unit (ICU) is challenging, as both over- and under-
sedation are detrimental. Current methods of assessment, such as the Richmond
Agitation Sedation Scale (RASS), are measured intermittently and invariable
depend on patients’ behavioural response to stimulation, as such may interrupt sleep
and rest. A non-stimulating method for continuous sedation monitoring may be
beneficial and allow more frequent assessment., noting that appropriate sedation
cycling has to accommodate patients’ oscillations between states of agitation and
over-sedation, which are detrimental to patient health and increases hospital length
of stay [9–14].

As such there also have been recent studies exploring the impact of augmenting
sedation assessment with physiologic monitors [15] and studying the correlation
between observational scales of sedation and bispectral index scores [16]. Recently the
feasibility of continuous sedation monitoring of ICU patients using the NeuroSENSE
was studied and suggested that such a non-stimulating method for continuous seda-
tion monitoring may benefit patient care and allow increased A-S assessment [17]. The
authors advocated use of incorporating some degree of automation into sedative drug
administration, e.g. closed-loop control based on feedback from a processed EEG
monitor, and various studies have suggested the limitations of RASS as a stand-alone
measure of sedation levels, and pointed to benefit of adjunct continuous e.g., brain
monitoring [17].

Earlier, Rudge, Chase, Shaw, Lee [12] discussed target controlled infusion (TCI)
systems to deliver drugs to maintain target plasma concentrations, using a pharmaco-
kinetic model, shown to be feasible when anaesthesia is given over short periods of
reduced consciousness and well-known pharmacology is invoked. Infusion systems
that regulate the infusion rate to maintain target agitation levels, to regulate the
primary metric for longterm sedation, are one approach to improving care in the
ICU. The data analysed in this chapter pertains to the scenario and data type studied
earlier by [9–14].

Assessing the severity of agitation is a challenging clinical problem as variability
related to drug metabolism for each individual is often subjective. A multitude of
previous studies suggest that the assessment accuracy of the sedation quality
conducted by nurses tend to suffer from subjectivity and lead to sub-optimal sedation
[14, 15, 18]. For example, [19] strongly recommend lighter than deeper levels of
sedations. Moreover, [20, 21] argue that sedation should be reviewed and adjusted
regularly. Whilst agitation management methods frequently rely on subjective agita-
tion assessment [2, 3] the carers then select an appropriate infusion rate based upon
their evaluation of these scales, experience, and intuition [21]. This approach usually
leads to largely continuous infusions which lack a bolus-focused approach, commonly
resulting in over or under-sedation. The work of [11–13] aimed to enhance feedback
protocols for medical decision support systems and eventually automated sedation
administration. A minimal differential equation model to predict or simulate each
patient’s agitation-sedation status over time was presented in [12] for 37 ICU patients
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and was shown to capture patient A-S dynamics. The use of quantitative modelling to
enhance understanding of the agitation-sedation (A-S) system and provision of an A-S
simulation platform are one of the key tools in this area of patient critical care. A more
refined A-S model, which utilised regression with an Epanechnikov kernel was for-
mulated by [12]. A Bayesian approach using densities and wavelet shrinkage methods
was later suggested by [9] to assess a previously derived deterministic, parametric A-S
model [10–14], thus successfully challenging the practice of sedating ICU patients
using continuous infusions. Wavelets approaches [9, 10] were shown to provide
reliable diagnostics and visualisation tools to assess A-S models, giving alternative
metrics of A-S control to assess validity of the earlier A-S deterministic models
(Table 1 in [10]).

This suite of wavelet metrics based on the discrete wavelet transform (DWT) were
able to establish the value of earlier deterministic agitation-sedation (A-S) models
against empirical (recorded) dynamic A-S infusion profiles, providing robust perfor-
mance metrics of A-S control and excellent tools, as based on the classification of
patients into poor and good trackers based on Wavelet Probability Bands (WPBs).
Importantly, the WPBs were shown as a useful patient-specific method by which to
identify and detect regions in the patient’s A-S profile i.e., times whilst in ICU, where
the simulated infusion rate performs poorly, thus providing visual and quantified
ways to help improve and distil the deterministic A-S model and in practice be a guage
to alert carers.

In this chapter Empirical Transition Matrix (ETM) approach of multi-state
counting process (survival analytic) models of Allignol and coauthors [22, 23], aligned
with the counting process/event history work in [24–26], which use the times patients
transition to varying states of violations (a violation being an A-S measure outside the
90% WPB bands), confirm the utility of defining trackers and non-trackers according
to these control limits and wavelet diagnostic rules of Kang et al., [9, 10]. In this
chapter ETM and multi-state modelling are found to be valuable for developing
advanced optimal infusion controllers and also to assist coding of nurses A-S scores,
which potentially offer significant clinical potential of improved agitation manage-
ment and reduced length of stay, as an augmented approach to also using RASS and
SAS. Establishing patient-specific thresholds of poor A-S management and control has
significant implications for the effective administration of sedatives, as improved
management of A-S states will allow clinicians to improve the efficacy of care and
reduce healthcare costs [27–29].

2. Data and methods

This chapter models the agitation-sedation profiles of Agitation and Sedation (A-S)
profiles of 37 patients were collected at the Christchurch Hospital, Christchurch

V1 V2 V3 Total V’s Time in ICU WPB%

P18/Good 2 24 26 20 64 93.8%

P28/Poor 1 5 12 114 203 50.8%

Table 1.
Time to the patient-specific 1st violation V1, second violation V2 and third violation V3, total number of
violations, total ICU time and WPB% values.
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School of Medicine and Health Sciences, NZ. Two measures were recorded for each
patient: (1) the nurses’ ratings of a patient’s agitation level and (2) an automated
sedation dose (see Figure 1). Infusion data were recorded using an electronic drug
infusion device for all admitted ICU patients during a nine-month observation period
and required more than 24 hours of sedation. Infusion data containing less than
48 hours of continuous data, or data from patients whose sedation requirements were
extreme, such as those with severe head injuries, were excluded [9, 10]. A total of 37
ICU patients met these requirements and were enrolled in the study. Classification of
patients into poor and good trackers, as based on the Wavelet Probability Bands
(WPB) are given in Table 2. The so-called good tracker delineates the scenario where
the nurse’s rating scores remains within the (time based) 90% coverage of wavelet
probability band (WPB) based on the simulated dose profiles [9, 10]. Poor tracking
delineates the scenario where the nurses rating scores remain outside the (time based)
90% coverage of wavelet probability band (WPB) for a significant portion of time
based on the simulated dose profiles [13, 14].

By way of illustration we consider four patients from the pool of 37 patients.
Tables 1 and 3 summarise each of these four patients’ WPB tracker status, time to
first, second and third violation outside the WPB bands [9], their total number of
violations over ICU stay and patient’s time in ICU, along with their specific WPB%
value. Display of their line profiles of nurses’ rating of A-S in relation to drug
infusion dose over time, for each of the 4 patients (P8, P27, P18, P28) are given in
Figures 2–4.

The first patient (patient 8) in Table 3 is a good WPB tracker and the second a
poor WPB tracker (patient 27), studied in depth in [28], for which upper tail thresh-
olds of the nurses’ scores using copulas were established. We also refer the reader also
to Hudson & Tursunalieva’s chapter in this book entitled “Copula thresholds and
modelling Agitation-Sedation (A-S) in ICU: analysis of nurses scores of A-S and
automated drug infusions by protocol” [27]. The corresponding WPB% values for
patient 8 and patient 27 are 87.5% and 43.7%, respectively (Table 3). Overall, the
minimum, median and maximum WPB% values for the 24 good trackers is (58.8%,
87.5%, 96.9%) and (47.3%, 64.8%, 77.3%) for the 13 poor trackers (Table 2). Note-
worthy also is that the A-S time series of these two patients examined (P8 and P27)
were of disparate lengths - patient eight had 10,561 time points and patient 27, 13,441
time points. The full 37 patients studied had a range of [3001–25,261] time points.

Figure 1.
Diagram of the feedback loop employing nursing staff’s feedback of subjectively assessed patient agitation through
the infusion controller (diagram is sourced from Chase et al. [14]).
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Patient 18 (good tracker) with a WPB% of 93.8% and patient 28 (poor tracker)
with WPB% of 50.8% (Table 1) were studied in detail in [28], for which both upper
and lower tails/thresholds of over or under-estimation of agitation levels by the nurses
rating were established using copula dependence analytics [29], refer also to [27].

Patients vary according to their length of stay in ICU and consequently differ in
their opportunity for violations to occur. The good trackers generally have shorter
ICU time and thus less chance to exibit an increased total number of violations. An
indication of how the strata (good versus poor tracker), the patient’s total number of
violations and a patient’s time in ICU interact, can be visualied in Figure 5. The total
number of WPB based violations is clearly greater for the poor trackers than for the

WPB [9] WCORR [10] Chase et al. [14] Rudge et al. [11]

2 2 — —

4 4 — —

— — 6 —

7 7 7 7

9 9 9

10 10 — 10

11 11 — 11

— — 12 —

— — — 13

— — 17 —

21 21 21 —

22 22 — 22

27 27 27 27

28 28 — 28

— 29 — 29

32 32 — —

33 33 — 33

34 34 34 —

— 35 — 35

Total: N1 = 13 Total: N2 = 15 Total: N3 = 8 Total: N4 = 10

Table 2.
Patient numbers of the poor trackers according to the criteria of 4 studies. Developed earlier in [11–14]. Low
WPB 90% indicates a poor tracker by Kang’s WPB diagnostics [9, 10].

V1 V2 V3 Total V’s Time in ICU WPB%

P8/Good 1 2 3 46 128 87.5%

P27/Poor 1 4 5 89 225 43.7%

Table 3.
Time to the patient-specific 1st violation V1, second violation V2 and third violation V3, total number of
violations, total ICU time and WPB% values.
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good trackers, and it is the poor trackers that tend to have longer ICU times. Also
from the scatterplot in Figure 5 there seems to be three approximate categories of
patient ICU time: 50–64, 113–128 and 205–256. The majority of patients (28 (76%))
have ≤40 violations (RHS of Figure 5), 19 (51%) patients have an ICU time of ≤64
(Table 4).

Accordingly, for ICU time categorised and coded as: 0 = [50,64], 1 = [113,128], and
2 = [205,256], the total violations profile according to tracking status, displayed in
Figure 6, shows that the total number of violations is significantly higher for the poor
trackers, particularly when ICU time > 205. Noteworthy, is that the majority of
patients 28 (76%) have ≤40 violations (RHS of Figure 6), whereas 19 (51%) patients
have an ICU time ≤ 64 (Table 4). Figure 7 displays the histogram of the number of
violations where a violation is defined as a nurse’s A-S rating outside the patient’s WPB
control band. We note that the majority of the time, in excess of >75% of the 370
violation counts are below a count of five violations (Figure 7).

Figure 2.
Line plot of nurses’ rating of patient agitation and the automated sedation dose for patient 8 (good tracker).

Figure 3.
Line plot of nurses’ rating of patient agitation and the automated sedation dose for patient 27 (good tracker).

Figure 4.
Line plot and WPB% band for patient 18 (LHS) and 28 (RHS, poor tracker).
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For the state-space analysis described in Section 3 each patient’s total ICU time is
broken into 10 bins, where each bin represents 10% of the patients’ total time in ICU;
i.e., Bin 1: 0–10%, Bin 2: 11–20% etc. For the 37 patients, we thus have 370 bins, i.e.
370 counts of violations. The 10% interval approach is used due to the large variation
in time in ICU between the WPB-based good versus poor strata [9] - noting that
some poor trackers have times up to 256, whereas good trackers are mostly limited to
64–128. Given these bins, patients’ A-S states can then be defined in terms of the total
number of violations or jumps outside the WPB bands that occur during each 10%
interval of a patient’s total ICU time. The randon, outcome event of A-S status is then
the number of violations that over time.

3. Empirical transition matrix state-space & commenges’ test approach

3.1 Mathematical formulation

Multi-state models are known to provide a relevant framework for modelling
complex event histories. Quantities of interest are mainly the transition probabilities

ICU category

WPB tracker 0 1 2

Good 15 7 2

Poor 4 4 5

Table 4.
Patient tracker status by ICU time: 0 = 50–64, 1 = 113–128, 2 = 205–256.

Figure 5.
Total number of violations by WPB tracking status [9] and ICU time.

Figure 6.
Total number of violations by 3 levels of ICU time (LHS) and boxplot of poor good tracker time to 3rd violation by
ICU time: 0 = [50,64], 1 = [113,128], 2 = [205,256].
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that can be estimated by the empirical transition matrix, that is also referred to as the
Aalen-Johansen estimator [30, 31]. Such multi-state models have had a wide range of
applications for modelling complex courses of a disease over the course of time and
across applications in medical research (Beyersmann et al. [32], Munoz-Price et al.
[33], Andersen & Keiding [34]). We now utilise the Empirical Transition Matrix
(etm) approach to model multi-state models of [22] and derive inference tests for
such models using the approach of Commenges [25, 35, 36] with a particular focus on
Commenges’ test derived in earlier work [25].

Define patient states as follows, any state can transition into any other state
(Figure 8).

• State 1: 0 or 1 violations
• State 2: 2 or 3 violations
• State 3: > 3 violations

A number of different approaches (etm on ICU time, etm on bin time, and
log-rank type tests as in Commenges [25], will be used to investigate the difference
between good and poor trackers in terms of a devised a 3 state transition formulation
as defined below. Differences between transition probabilities between states for the
good and poor trackers will be evaluated using Commenges’ [25] chi square test.

The mathematics is well described in the work of Allignol [22], adapted to
more complex scenarios in [23]; and in Commenges’ approach [25, 35, 36]. The
mathematical formulation of the ETM state-space approach and Commenges’ test are
given for general frameworks as follows.

Consider a stochastic process Xtð Þ with finite state space S ¼ 1, … ,Kf g where
sample paths are right-continuous, and the stochastic process is assumed to be

Figure 8.
State-space system.

Figure 7.
Violation counts in bins across all patients.
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time-inhomogeneous Markov. The transition hazard from state i to state j, i 6¼ j is
defined as

αij tð Þdt ¼ P Xtþdt ¼ jj Xt ¼ ið Þ:

The cumulative hazard transitions are defined as,

Aij tð Þ ¼
ðt
0
αij tð Þdt

Aii tð Þ ¼ �P
j6¼i
Aij tð Þ:

Define

Pij s, tð Þ ¼ P Xt ¼ jjXs ¼ ið Þ, for i, j∈ S, s≤ t

as the probability that an individual who is in state i at time s is in state j at time t.
The (K + 1)x(K + 1) probability transition matrix with elements Pij s, tð Þ can then be

obtained from the transition hazards through product integration. Let Nij tð Þ be the
number of observed direct transitions from state I to state j up to time t and let Yi tð Þ be
the number of individuals under observation in state I just before time t. The Nelson-
Aalen estimator is used to estimate the non-diagonal elements of the matrix of cumu-
lative hazards as follows,

Âij tð Þ ¼
ðt
0

dNij uð Þ
Yi uð Þ , i 6¼ j

and the diagonal elements Âii tð Þ are obtained as above. The product integration
relationship below leads to an estimate of the probability transition matrix as follows,

P̂ s, tð Þ ¼
Y

s< tk ≤ t
I þ ΔÂ tkð Þ
� �

,

where the product is taken over all possible transition times in time interval (s,t].
An estimator for the covariance of the empirical transition matrix is given by,

dcov P̂ s, tð Þ� � ¼
ðt
s
P̂ u, tð ÞT ⨂ P̂ s, u�ð Þdcov dÂ uð Þ

� �
P̂ u, tð Þ⨂ P̂ s, u�ð Þ, T

which is a (K + 1)2 x (K + 1)2 matrix, with number or rows and columns equal
(K + 1)2.

3.2 Commenges’ test formulation

We now utilise the framework of the generalised Cochran–Mantel–Haenszel (CMH)
test for (I x J x K) tables. The CMH test is based on the hypergeometric distribution. The
CMH and the test of Commenges’ for the specific case here, where we have three states
(of violations) and two strata (good versus poor trackers) is now described.

In our application then we have 2� 3� 3 tables. For each k = 1, 2, 3 we have a 2� 3
table, where the elements are counts nijk (k denotes the departure state j, so the rows,
I, are the WPB strata, the columns, J, are the entry states I and the slices, K, are the
departure states j), as tabulated below.
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I = 0 I = 1 I = 2 Row total

Good n11k n12k n13k n1 + k

Poor n21k n22k n23k n2 + k

Total n+1k n+2k n+3k n++k

Assume that the row and column marginals are fixed. This implies that there are
(I-1) by (J-1) values that are free to vary. For the cell nijk the expected value is then
given by ni + k x n+jk. We are able to express all cell counts by the vector nk and express
all expected cell counts by uk. The covariance matrix, denoted by Vk then has
elements,

cov nijk, ni0j0k
� �

¼
niþk δii0nþþk � ni0þkð Þnþjk δjj0nþþk � nþj0k

� �

n2þþk nþþk � 1ð Þ ,

where δab ¼ 1 when a = b, and 0 otherwise. Assuming rows and columns are
unordered we sum over the K strata to obtain,

n ¼
X

nk, u ¼
X

uk, V ¼
X

Vk:

The generalised CMH statistic is then given by,

X2 ¼ n� uð Þ0V�1

n� uð Þ,

which follows a chi square distribution with (I-1) by (J-1) degrees of freedom. This
test is implemented in R via the mantelhaen.test function. Commenges [25] adapts
this concept, with a test which differs to the generalised CMH test in that it does not
sum over the K strata, before calculating the relevant chi squared test statistic.

Commenges’ test [25] is as follows,

X2
k ¼ nk � ukð Þ0V�1

nk � ukð Þ,

where X2
k is chi-square with (I-1) by (J-1) degrees of freedom.

The required total chi squared statistic is then simply obtained by taking X2 ¼P
X2

k which is itself disctributed as a chi square distribution with K(I-1) by (J-1)
degrees of freedom.

3.3 Results of the ETM analysis and Commenges’ test on transition states

Conditionally on the number of patients in each state at each step we have 3 x
9 = 27 independent contingency tables (i.e., number of departure states j by the
number of time points k–1, recall we have 10, 10% bins for a patient’s time in ICU)
and each of these tables has dimension 2 � 3 (good/poor tracker by the number of
states i).

The corresponding three specific strata tables are given in Tables 5–7. For exam-
ple, for departure state j = 0 and time point k = 2 we have a two by three contingency
table with an overall total of 7ϕ violations (labelled ϕ in Table 5); the latter informs
that, at time k = 2 there are 5ϕ good WPB based trackers that depart from state j = 0
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and enter state 0. Similarly there are two (2ϕ) WPB based poor trackers that depart
state j = 0 and enter state 1 (Table 5).

Three 2 x 3 contingency tables (one for each departure state j) are thus created.
Estimated transition probabilities for the 3 state process are then plotted using the

‘xyplot’ function from the lattice package in R. In the resultant plots (Figures 9–11),
the vertical y-axis represents the transition probability value, which is represented
by the solid line in each plot region. The numbers in the coloured bar above each
plot defines the transition (e.g., 1 2 means transition probability from state 1 to state
2). The dotted lines around the solid line represent the confidence bands based on the
covariance as calculated by the etm function. The horizontal x-axis shows the the

Strata I = 0 I = 1 I = 2 Total

k = 2 Good 5ϕ 0 0 5

Poor 0 2ϕ 0 2

Total 5 2 0 7ϕ

k = 3 Good 10 5 1 16

Poor 0 1 0 1

Total 10 6 1 17

k = 4 Good 10 1 0 11

Poor 2 0 0 2

Total 12 1 0 13

k = 5 Good 9 2 2 13

Poor 0 3 1 4

Total 9 5 3 17

k = 6 Good 9 3 2 14

Poor 0 0 0 0

Total 9 3 2 14

k = 7 Good 9 2 2 13

Poor 1 1 0 2

Total 10 3 2 15

k = 8 Good 5 4 2 11

Poor 2 0 2 4

Total 7 4 4 15

k = 9 Good 5 2 0 7

Poor 3 0 0 3

Total 8 2 0 10

k = 10 Good 9 1 1 11

Poor 2 1 2 5

Total 11 2 3 16

Table 5.
Departure state j = 0: WPB strata [9].
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time i.e., 10% bins (i.e. 2–10, because no transitions occur at time one being the
initial state). For each tracker status and possible piairs of state transitions there are
three plots, given in the following order, good trackers, poor trackers. Figure 11
displays the probability of being in each of the 3 states (0, 1, 2) given the initial state
is state 0.

Our procedure results in three 2 x 3 contingency tables (one for each departure
state j), see Tables 8–10. The chi squared statistic as derived in [25] can now be
calculated in that for the Commenges test the same chi squared calculation is made for
each state specific table separately (i.e., without summing over k). The results in this
case are χ2(1) = 6.046, χ2 (2) = 2.269 and χ2(3) = 9.280. Each of these follows a chi

Strata I = 0 I = 1 I = 2 Total

k = 2 Good 6 1 1 8

Poor 1 1 0 2

Total 7 2 1 10

k = 3 Good 1 2 0 3

Poor 2 2 2 6

Total 3 4 2 9

k = 4 Good 2 2 3 7

Poor 2 2 0 4

Total 4 4 3 11

k = 5 Good 3 1 1 5

Poor 0 1 2 3

Total 3 2 3 8

k = 6 Good 3 1 0 4

Poor 1 3 1 5

Total 4 4 1 9

k = 7 Good 2 3 1 6

Poor 3 2 0 5

Total 5 5 1 11

k = 8 Good 2 2 3 7

Poor 1 1 2 4

Total 3 3 5 11

k = 9 Good 4 3 2 9

Poor 0 1 0 1

Total 4 4 2 10

k = 10 Good 4 1 2 7

Poor 1 1 0 2

Total 5 2 2 9

Table 6.
Departure state j = 1: WPB strata [9].
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square distribution with 2 degrees of freedom with associated p-values of 0.049, 0.322
and 0.010 (Table 11). Kang WPB (2013) [9].

Summing these threeχ 2 (j), j = 1,2,3 statistics gives a value of χ2 =17.59 with 6
degrees of freedom and an associated p-value of 0.007 (Table 11). The underlying
null hypothesis is that the two nominal variables (strata: good or poor tracker and
entry state: 0, 1, or 2) are conditionally independent in each stratum (departure state j;
0, 1 or 2), assuming no three-way interaction. The low p-value of 0.007 suggests that
this hypothesis be rejected, i.e., the two variables are not conditionally independent.
Thus the Commenges test shows that there is a statistically significant difference
between the good versus poor tracker WPB strata, and that this difference is mainly

Strata I = 0 I = 1 I = 2 Total

k = 2 Good 5 2 4 11

Poor 0 3 6 9

Total 5 5 10 20

k = 3 Good 0 0 5 5

Poor 0 1 5 6

Total 0 1 10 11

k = 4 Good 1 2 3 6

Poor 0 1 6 7

Total 1 3 9 13

k = 5 Good 2 1 3 6

Poor 0 1 5 6

Total 2 2 8 12

k = 6 Good 1 2 3 6

Poor 1 2 5 8

Total 2 4 8 14

k = 7 Good 0 2 3 5

Poor 0 1 5 6

Total 0 3 8 11

k = 8 Good 0 3 3 6

Poor 0 0 5 5

Total 0 3 8 11

k = 9 Good 2 2 4 8

Poor 2 1 6 9

Total 4 3 10 17

k = 10 Good 2 1 3 6

Poor 1 0 5 6

Total 3 1 8 12

Table 7.
Departure state j = 2: WPB strata [9].
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due to transitions out of states 0 and 2, which agrees with the trends based on a
graphical inspection of Figures 9–11.

The same procedure and related Commenges’ test is then applied to each of the 3
remaining good/poor tracker definitions of Kang [10, 11, 14] for the three-state
context studied in this chapter. These results are reported in Table 12.

Kang et al., WCORR [10].
Chase et al. [14].

State χ2 p-value

J = 0 5.669 0.059

J = 1 6.406 0.041*

J = 2 3.097 0.213

Total 15.172 0.019**

Rudge et al. [11].

Time
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Figure 9.
Transition probability profiles for WPB good trackers.
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State χ2 p-value

J = 0 0.367 0.832

J = 1 2.951 0.229

J = 2 5.466 0.065*

Total 8.784 0.186

Transition probability profiles of being in each state as time progresses, given start
state 0, for the remaining 3 studies of [10, 14, 11] are given in Figures 12–14. In
summary, Figures 9–14 illustrate the trend that good trackers tend to have higher
probability of transitioning into state 0 than poor trackers, and the good trackers tend
to have lower probability of transitioning into state two than poor trackers, where
state two indicates that more violations (>3 violations) are occurring, and state 0
indicates few violations are occurring.

Notably also, the probability of transitioning into state 2 overall appears to increase
as ICU time increases. This is most likely because poor tracking patients tend to have
longer ICU times, and so, as time goes on, it is only poor trackers transitions that are
being estimated. By categorising patients according to total ICU time (≤64, >64) as
discussed earlier (Figures 5 and 6, Table 4) some of this could be accounted for.
The results obtained are still consistent, as shown in the etm profiles using ICU time
(≤64, >64) in Figures 15 and 16, respectively. The corresponding ETM probabilities
are determined according to etm in R [21] and associated state and strata specific plots
given in Figures 15 and 16.

Figure 10.
Transition probability profiles for WPB poor trackers.
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3.4 Conclusion regarding the ETM based analysis

The different approaches in Section 3 led to the sasimilar conclusions that there is a
difference in the way good trackers and poor trackers transition between states. Most

Figure 11.
Probability of being in each state as time progresses given start state 0. Top is good trackers, bottom is poor trackers:
WPB based.

Tracker strata I = 0 I = 1 I = 2 Total

Good 71 20 10 101

Poor 10 8 5 23

Total 81 28 15 124

Table 8.
Departure state j = 0 summed over all time points k, k = 2, … ,10.

Tracker strata I = 0 I = 1 I = 2 Total

Good 27 16 13 56

Poor 11 14 7 32

Total 38 30 20 88

Table 9.
Departure state j = 1 summed over all time points k, k = 2, … ,10.
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of this difference occurs in states 0 and states 2, as defined. Good trackers tend to have
higher probability of transitioning into state 0 than poor trackers, and good trackers
tend to have lower probability of transitioning into state 2 than poor trackers, noting
that state 2 indicates more violations are occurring, and state 0 indicates fewer
violations. The probability of transitioning into state 2 overall appears to increase as
ICU time increases. This is most likely due to the fact that poor tracking patients have
longer ICU times, and so, as time goes on, it is only the poor trackers’ transitions that
are being estimated.

By categorising patients according to their total ICU time (≤64, >64) similar
trends were found. The Commenges’ test established a statistically significant differ-
ence between the two tracking strata (p = 0.007), and that this difference was mainly
due to transitions out of states 0 and 2. For the tracking metric of Chase et al. [14], the
Commenges test demonstrated a statistically significant difference between the two
good versus poor strata (p = 0.019), with this difference mainly due to transitions out
of states 0 and 1. Overall, the WCORR [10] and Rudge [11] classifications of tracking/
strata, the transision probability profiles for the 3 state process, good and poor
trackers are not significantly different, but exhibited some difference mainly due to
transitions out of state 2.

State χ2 p-value

J = 0 6.046 0.049*

J = 1 2.269 0.322

J = 2 9.280 0.010**

Total 17.59 0.007***

Table 11.
Computation of Commenges’ test for the WPB strata [9].

State χ2 p-value

J = 0 1.724 0.422

J = 1 0.911 0.634

J = 2 7.123 0.028**

Total 9.758 0.135

Table 12.
Computation of Commenges’ test for the remaining A-S studies.

Tracker strata I = 0 I = 1 I = 2 Total

Good 13 15 31 59

Poor 4 10 48 62

Total 17 25 79 121

Table 10.
Departure state j = 2 summed over all time points k, k = 2, … ,10.
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4. Time-to-response bias as a counting process mult state model

4.1 Mathematical formulation

In this section we analyse the WPB violation data and investigate the times to the
third violation given times to second violation for both poor trackers and good trackers
where tracking status is defined by WPB diagnostics. The process can be thought to
have three states. State 1 corresponds to less than two violations, state 2 means two
violations and if a patient is in state 3 then three violations have occurred. This is a
sequential three state process shown schematically in Figure 17. Events of interest are a
transition from state 2 to state 3, i.e. the occurrence of a third violation.

Time one is the patient’s entry time into state 2 and time two is the patients exit
time from state 2 (i.e., entry time to state 3, so-called ‘death’ state). Time one is the
patient’s entry time into state 2 and time two is the patient’s exit time from state 2 (i.e.,
entry time to state 3, so-called ‘death’ state).

In the case of multiple events of interest, the process can be treated as a Markov
chain. Let Nij (t) be the process counting the number of observed transitions from
state i to state j in the interval [0, t]. The transition intensity from state i to state j at
time t is then λij (t) and gives the instantaneous risk of transition from state i to j.

Nij (t) has intensity process of the form λij(t)Ni(t) where Yi(t) is the number of
individuals in state i just before time t. This is the setup of Simon and Makuch [37]
who considered 4 states and two transitions of interest.

Figure 12.
Probability of being in each state as time progresses given start state 0. Top is good trackers; bottom is poor trackers:
WCORR of [10].
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The concept of time in our ICU application represents time on-study (i.e. time at
ICU) rather than calendar time. In the case of our 3 state process (Figure 8) the
hazard functions of the two transitions of interest are λ13(t) and λ23(t) and the number
of individuals in the states just before t are N1(t) and N2 (t), respectively. A chi
squared test is conducted to test for independence between response and non-
response as in the development formulated in [37].

This same test can be conducted to assess the association between strata and
hazard rate. If λ23(0)(t) is the hazard rate (from state 2 to 3) for the good trackers and
λ23(1) is the hazard rate (from state 2 to 3) for the poor tackers. Since the focus here is
to test the effect of response (prior 2nd violation) on the hazard function, the null
hypothesis of interest is H0: λ23(0) (t) = λ23(1). The hypothesis is tested via a log-rank
type test following [37] which tests for the time-to-response bias. Now the equivalent
of Table 2 in Simon and Makuch [37] can be constructed for both the good trackers
and the poor trackers. Let N1(t) be the number of patients in state 1 at time t, and let
N2 (t) denote the number of patients in state 2 at time t in Table 13.

Table 13 presents theWPB data as state-specific patient counts for each event time
t. Events are a transition from state 2 to state 3, i.e. the occurrence of the event of interest
i.e. a third violation. Time represents time to third violation (so-called end-state/death
in terms of a counting process). Note that dij (t) are the so-called end-state “deaths”
i.e., third violations. The hazard function for transfers between states i and j at time t
is denoted by λi j (t) and here time represents time on study at ICU. Also Tij denotes

Figure 13.
Probability of being in each state as time progresses given start state 0. Top is good trackers; bottom is poor trackers
according to Chase et al. [14].
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Figure 15.
Transition probability profiles for patients with ICU time ≤ 64. Top panel are the WPB good trackers, and bottom
panel the poor trackers.

Figure 14.
Probability of being in each state as time progresses given start state 0. Top is good trackers; bottom is poor trackers
according to Rudge et al. [11].
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the set of times at which a transition from state i to state j occurs and Ni(t) is the
number of patients in state i just before time t, or in other words, Ni(t) is the number
of patients at risk of a transfer out of state i at time t. (Note our Ni (t) is equivalent to
Yi(t) in the Aalen’s notation). The symbol λij (t) denotes the intensity, or hazard
function, for a transfer from state i to state j at time t.

Mathematically the cumulative hazard function is conventionally estimated
instead of the hazard function λ(t), as the latter is difficult to estimate. The cumula-
tive hazard function and survival function is then given as,

Âij x, tð Þ ¼
X

� log 1� dij uð Þ=Ni uð Þ� �

Ŝij x, tð Þ ¼
Y

1� dij uð Þ=Ni uð Þ� �

¼ exp �Âij x, tð Þ
� �

Note that dij(u) above are the so-called end-state “deaths” i.e., third violations, the
number of transitions from state i to state j in time interval [x, t]. The estimated
survival and cumulative hazard curves are shown as in Figure 18.

Survival curves and cumulative hazard functions were calculated according to
Simon and Makuch’s method [37]. In essence, this counting process formulation keeps
track of the number of patients in state 1 and 2 and event times (i.e., transitions into
state 3). The survival package is used for estimation, where two times are used. Time

Figure 16.
Transition probability profiles for patients with ICU time > 64. Top panel are the WPB good trackers, and bottom
panel the poor trackers.
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Figure 17.
States of a patient’s agitation (violations) defined by certain levels of violations or jumps outside of the patient’s
WPB bands - a 3 state process.

Time N1 N2 Events

3 12 12 7

4 7 10 5

6 6 6 2

9 5 5 1

12 4 5 1

18 2 6 1

19 2 5 1

26 0 6 1

27 0 5 1

28 0 4 1

33 0 3 1

36 0 2 1

43 0 1 1

(a) Good trackers.

Time N1 N2 Events

3 9 4 3

4 8 2 1

5 5 4 2

6 3 4 2

8 1 4 2

9 1 2 1

12 1 1 1

23 0 1 1

(b) Poor trackers

Table 13.
Simon and Makuch’s [37] represeantation and formulation of the WPB data.
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one is the patients entry time into state 2 and time two is the patients exit time from
state 2 (i.e. entry time to state 3, ‘death’).

The log rank test for H0: λ23(0) (t) = λ23(1), based on the counting process which
utilises the number of individuals in the states just before t, these are, N1(t) and N2

(t), was performed. Accordingly, it is shown that the good tracker and poor tracker
hazard rates/ (survival curves) time to the 3rd violation, given a 2nd violation has
occurred, are statistically significantly different (p-value = 0.044), see left hand side
of Figure 18. Notably, the hazard rate for the poor trackers is 2.1 times that of good
trackers, 95% confidence interval (CI) [1.01, 4.38].

Further interpretation of the hazard function can be made by assessing the slope
of the cumulative hazard function. Figure 18 (RHS), shows that the cumulative
hazard increases faster for the poor trackers than the good trackers indicated by a
much steeper slope. This suggests it takes less time for the poor trackers to reach
their third violation than for the good trackers, this is also confirmed by the 95%
confidence bands for the survival curves shown in Figure 19 for the good tracker and
poor trackers. Note that the interpretation of Kaplan–Meier curves here is not as
straight-forward as for conventional survival analysis. In our ICU A-S process
formulation the curves do not correspond to fixed cohorts, as patients can contribute
to different states/curves at different times (Table 13). Thereby the curves may be

Figure 18.
Survival function of time to 3rd violation given the 2nd violation for good tracker and poor (non-)trackers (LHS)
and cumulative hazard functions (RHS).

Figure 19.
Survival curves (95% CIs) for good (left) and poor (right) (non-)trackers.
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considered to represent hypothetical cohorts whose values remain constant after
follow-up [38, 39].

A Cox proportional hazards model (CPHM) was then fitted with tracking status
and a patient’s number of violations as covariates. The general CPHM hazard
function is,

λ tjXð Þ ¼ λ0exp β1X1 þ … þ βpXp

� �
(13)

In our application we model two covariates: X1 (0 for a good tracker, 1 for a poor
tracker), and X2 being the patient’s total number of violations in the CPHM. The log
rank test associated with the CPHM confirmed that the good tracker and poor tracker
hazard rates, and the survival curves were significantly different (p-value = 0.0496),
with the hazard rate for the poor trackers being 2.1 times that of good trackers, with a
95% confidence interval of [1.01, 4.38]. The associated hazard rate for poor trackers is
shown to be 1.87 times that of good trackers, with a 95% confidence interval [0.75,
4.70]. By inclusion of the total number of second time violations the effect of tracking
status has only reduced slightly, and it remains significant (1.87 versus 2.1).

4.2 Asseement of times to different violation counts and patient’s last jump

Log-rank tests were likewise conducted to assess times to different violation
counts. Let VX denote the violation times for the Xth violation and the DX’s the
associated event indicators (0 censored, 1 event of interest). Log rank tests for the two
WPB tracking strata for selected violation times (X = 5, 10, 15, 20, 25, 30) showed
significant differences between good and poor WPB trackers regarding the time to the
patient’s time to 10th violation (p = 0.027), their 15th (p = 0.025) and their 25th
violation (p = 0.011). Likewise, significance at the 10% level was demonstrated for
times to the patient’s 5th, 20th and 30th violation (non-violatory lifetimes). All sur-
vival curves (not shown here) are significantly different or are close to being signifi-
cant at the 5% level of significance. This confirms that the difference in time to
violations between the good and poor trackers are consistently different, for these
varying number of violations (VX, for X = 5, 10, 15, 20, 25, 30).

The time to a patient’s last violation event was also investigated using log-rank tests
and Kaplan–Meier curves. We examined nine levels of the effect of the following
covariate, which categorises the counts the patient levels of violations as follows: 0–5
violations, 5–10, 10–15, 15–20, 20–25, 25–30, 30–40, 40–50 and >50 violations. A
histogram of the time to a patient’s last violation with boxplots of the times for each of
these nine levels of categorisation shown is given in Figure 20 (the number above the
boxplots gives the number of patients in each of the nine categories).

Using the patient’s time to their final violation/jump, as the event of interest, and
implementing log-rank based tests using this covariate adjustment, the log rank test
demonstrated a statistically significant difference between the survival curves of time
to last violation (p-value <0.000001) across the above nine different total number of
violation levels, {0–5, 5–10, 10–15, 15–20, 20–25, 25–30, 30–40, 40–50, >50
violations}.

Notably, the levels that most contribute to the difference between trackers and
non-trackers are those patients who have a total number of violations between 10 and
15, between 20 and 25 and >50, in that order. A log rank test on time to last violation
(time of last jump outside the WPB bands) as the outcome of interest by tracking
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status, also establishes that there is a difference between the two survival curves
(p-value = 0.045) (Figure 21). Clearly the WPB-based poor trackers tend to take
longer to reach their last violation than good trackers. Corresponding Kaplan–Meier
estimated curves are given in Figure 21. We note that up to ICU time 64 (≤64), 40%
of the good versus 70% of the poor trackers are still violating, whereas after time
point, 130, the corresponding percentages violating are 15% versus 40%, of the good
versus poor trackers (Figure 21).

5. Conclusion

A log-rank test from the counting process formulation [37–39] established a sig-
nificant difference between the hazard curves of the WPB-based good and poor
trackers (p-value = 0.044). Similarly log-rank tests performed for a variety of viola-
tion numbers to test for differences between good and poor trackers times to their 5th,
10th, 15th, 20th, 25th and 30th violation, showed evidence of a significant difference

Figure 20.
Histogram and boxplots of time to last violation. The numbers above the boxplot (RHS) specify the number of
patients in each violation level.

Figure 21.
Estimated survival curves for time to last violation by tracking status.
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between good and poor trackers for a selection of these violation times (namely
patient’s time to their 10th, 15th and 25th violation). In regard to analysing the
patients time to their last recorded violation, log-rank tests and Kaplan–Meier curves
showed that poor trackers tend to have a higher probability of still violating as time
progresses in ICU compared to good trackers (p-value = 0.045).
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Chapter 4

Copula Modelling of
Agitation-Sedation (A-S) in ICU:
Threshold Analysis of Nurses’
Scores of A-S and Automated Drug
Infusions by Protocol
Irene Hudson, Ainura Tursunalieva and J. Geoffrey Chase

Abstract

Pain management is increasingly recognised as a formal medical subspecialty
worldwide. Empirical distributions of the nurses’ ratings of a patient’s pain and/or
agitation levels and the administered dose of sedative are often positively skewed, and
if the joint distribution is non-elliptical, then high nurses’ ratings of a patient’s agita-
tion levels may not correspond to the true occurrences of patient’s agitation-sedation
(A-S). Copulas are used to capture such nonlinear dependence between skewed dis-
tributions and check for the presence of lower (LT) and/or upper tail (UT) depen-
dence between the nurses’ A-S rating and the automated sedation dose, thus finding
thresholds and regions of mismatch between the nurse’s scores and automated seda-
tion dose, thereby suggesting a possible way forward for an improved alerting system
for over- or under-sedation. We find for LT dependence nurses tend to underestimate
the patient’s agitation in the moderate agitation zone. In the mild agitation zone,
nurses tend to assign a rating, that is, on average, 0.30 to 0.45 points lower than
expected for the patient’s given agitation severity. For UT dependence in the moderate
agitation zone, nurses tend to either moderately or strongly underestimate patient’s
agitation, but in periods of severe agitation, nurses tend to overestimate a patient’s
agitation. Our approach lends credence to augmenting conventional RASS and SAS
agitation measures with semi-automated systems and identifying thresholds and
regions of deviance for alerting increased risk.

Keywords: copula dependence, K-plots, agitation-sedation (A-S) control, thresholds,
nurses’ scores

1. Introduction

Pain management is becoming increasingly recognised as a formal medical
subspecialty worldwide. Pain is the most common reason that patients come to the
emergency department. Emergency nurses have an indispensable role in the
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management of this pain [1]. Sedation in the intensive care unit (ICU) is
challenging, as both over- and under-sedation are detrimental [2]. Optimal sedation
and analgesic strategies, combined with delirium management, are difficult when
caring for critically ill patients. For sedation monitoring, the most widely used tools
are the Richmond Agitation and Sedation Scale (RASS) [3] and Sedation Agitation
Scale (SAS) [4]. Assessments using RASS and SAS are undertaken intermittently and
traditionally rely on patients’ behavioural response to stimulation, which perturbs rest
and sleep [5–8]. Various studies have suggested that a non-stimulating method for
“continuous” sedation monitoring may be beneficial and allow for more frequent
assessment.

Indeed earlier, Rudge, Chase, and Shaw [9] discussed target-controlled infusion
(TCI) systems to deliver drugs to maintain target plasma concentrations, using a
pharmacokinetic model, shown to be feasible when anaesthesia is given over short
periods of reduced consciousness and well-known pharmacology is invoked. Infusion
systems that regulate the infusion rate to maintain target agitation levels, to regulate
the primary metric for long-term sedation, are one approach to improving care in the
ICU. The data analysed in this chapter pertains to the scenario and data type studied
earlier by Hudson, Rudge and colleagues [9–14].

These authors have suggested that assessing the severity of agitation is a challeng-
ing clinical problem as variability related to drug metabolism for each individual is
often subjective. A multitude of previous studies also suggest assessment accuracy of
the sedation quality conducted by nurses tend to suffer from subjectivity and lead to
sub-optimal sedation [9–14]. For example, it has been recommended by some authors
to use lighter than deeper levels of sedation. And that sedation should be reviewed and
adjusted regularly [5–8]. Agitation management methods frequently rely on subjective
agitation assessment the carers then select an appropriate infusion rate based upon
their evaluation of these scales, experience, and intuition [3–5]. This approach usually
leads to largely continuous infusions which lack a bolus-focused approach, commonly
resulting in over or under-sedation.

The work of [9–14] aimed to enhance feedback protocols for medical decision
support systems and eventually automated sedation administration. A minimal dif-
ferential equation model to predict or simulate each patient’s agitation-sedation status
over time was presented in [9] for our ICU patients and was shown to capture patient
agitation-sedation (A-S) dynamics. The use of quantitative modelling to enhance
understanding of the agitation-sedation (A-S) system and the provision of an A-S
simulation platform is one of the key tools in this area of patient critical care. A more
refined A-S model, which utilised regression with an Epanechnikov kernel was for-
mulated by [9]. A Bayesian approach using densities and wavelet shrinkage methods
was later suggested by [10] to assess a previously derived deterministic, parametric A-
S model [11], thus successfully challenging the practice of sedating ICU patients using
continuous infusions.

Wavelets approaches [10, 11] were shown to provide reliable diagnostics and
visualisation tools to assess A-S models, giving alternative metrics of A-S control to
assess the validity of the earlier A-S deterministic models (Table 3 in [10]). This suite
of wavelet metrics based on the discrete wavelet transform (DWT) established the
value of earlier deterministic agitation-sedation (A-S) models against empirical
(recorded) dynamic A-S infusion profiles, providing robust performance metrics of
A-S control and excellent tools, based on the classification of patients into poor and
good trackers based on Wavelet Probability Bands (WPBs). Importantly, the WPBs
were shown to be a useful patient-specific method by which to identify and detect
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regions in the patient’s A-S profile i.e., times whilst in ICU, where the simulated
infusion rate performs poorly, thus providing visual and quantified ways to help
improve and distil the deterministic A-S model and in practice be a gauge to
alert carers.

The aim of this chapter is to identify regions of poor and good control using
copulas. Copulas are functions that join or connect multivariate distribution func-
tions to their one-dimensional marginal distribution functions. Copulas have had
applications in fields such as finance [15, 16], public health and medicine [17], and
actuarial science [18, 19]. Empirical distributions of the nurses’ ratings of a patient’s
pain and/or agitation levels and the administered dose of sedative are often posi-
tively skewed and if the joint distribution is non-elliptical, then high nurses’ ratings
of a patient’s agitation levels may not correspond to the occurrences of patient’s A-S
profile with large infusion dose. Copulas are used as they measure nonlinear depen-
dencies capturing the dependence between skewed distributions. Copulas are widely
applied in diverse fields, including health services research and medical studies,
quantitative risk management, econometric modelling, environmental studies,
finance, and hydrology.

Advantages of using copulas in modelling are: (i) capacity to model both linear
and non-linear dependence; (ii) allowing an arbitrary choice of a marginal distribu-
tion; and (iii) capability of modelling extreme endpoints. Copulas are functions that
“couple together” the marginal cumulative distribution functions (CDFs) of a ran-
dom vector to form its joint CDF. When used in statistical modelling, copulas can
estimate multivariate distributions of data involving two or more outcome variables
for mixed type, complex data. We determine the best-fit copula type for all patients
with a focus on differences between poor and good trackers, where classification of
patients into poor and good trackers was based on Wavelet Probability Bands
(WPB) [10, 11].

This chapter builds on the earlier pilot work of Tursunalieva et al. [20, 21]] to
address the gap in the methodology by integrating non-elliptical dependence structure
between nurses’ rating of a patient’s agitation level and the automated sedation dose.
In an earlier pilot work discussed by Hudson [22], the tail thresholds of two (2) test
patients were determined manually, whereas in [21] the dynamic programming algo-
rithm of Bai and Perron [23] was used to establish the lower and upper tail threshold.
Copula mathematics allows us to determine and identify lower and/or upper tail
thresholds when they exist for all 36 intensive care unit patients’ agitation-sedation
profiles collected at Christchurch Hospital, School of Medicine and Health Sciences,
NZ and analysed earlier in [9–14]. Infusion data were recorded using an electronic
drug infusion device for all admitted ICU patients during a nine-month observation
period and required more than 24 hours of sedation.

In this chapter, our novel and general formulation of the equation relating each
patient’s nurses’ score to the automated infusion dose is given by the following
expression nurses’ score = intercept+α*Dose–β*Dose*LT region+ γ*Dose*UT region.
This formulation accounts for the non-linear relationships between the nurses’ A-S
rating and the automated sedation dose, and permits identification of thresholds and
regions of mismatch between the nurse’s scores and sedation dose, thereby suggesting
a possible way forward for an improved alerting system for over/under-sedation.

Establishing the presence of tail dependence and patient-specific thresholds for
areas with different agitation intensities has significant implications for the effective
administration of sedatives. Better management of A-S states will allow clinicians to
improve the efficacy of care and reduce healthcare costs. Our approach lends credence
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to augmenting conventional RASS and SAS agitation measures with semi-automated
systems [24–26] and identifying thresholds and regions of deviance for alerting
increased risk. Better management of A-S states will allow clinicians to improve the
efficacy of care and reduce healthcare costs.

1.1 Data and methods

This chapter models the agitation-sedation profiles of 36 patients collected at the
Christchurch Hospital, Christchurch School of Medicine and Health Sciences, NZ.
Two measures were recorded for each patient: (1) the nurses’ ratings/scores of a
patient’s agitation level, and (2) an automated sedation dose (see Figure 1). Infusion
data were recorded using an electronic drug infusion device for all admitted ICU
patients during a nine-month observation period and required more than 24 hours of
sedation. Infusion data containing less than 48 hours of continuous data, or data from
patients whose sedation requirements were extreme, such as those with severe head
injuries, were excluded [9, 10].

A total of 36 ICU patients met these requirements and were enrolled in the study.
Classification of patients into poor and good trackers, based on the Wavelet Probabil-
ity Bands (WPB), is given in Table 1. The so-called good tracker delineates the
scenario where the nurse’s rating scores remains within the (time-based) 90% cover-
age of wavelet probability band (WPB) based on the simulated dose profiles [10, 11].
Poor tracking delineates the scenario where the nurses’ rating scores remain outside
the (time based) 90% coverage of wavelet probability band (WPB) for a significant
portion of time based on the simulated dose profiles [11].

By way of illustration, we carefully examine four patients from the pool of 36
patients. Tables 2 and 3 summarise each of these 4 patients’WPB tracker status, time
to first, second and third violation outside the WPB bands, their total number of
violations over ICU stay, and patient’s time in ICU, along with their specific WPB%
value. Display of their line profiles of nurses’ rating of A-S in relation to drug infusion
dose over time, for each of the 4 patients (P8, P27, P18, P28) are given in Figures 2–4.

Figure 1.
Diagram of the feedback loop employing nursing staff’s feedback of subjectively assessed patient agitation through
the infusion controller (diagram is sourced from Chase et al.) [12, 14].
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Note that a violation event occurs when the nurses observed agitation score or rating
is outside either the lower or upper limits of the 90%WPB bands associated with the
patient’s automated infusion dose trajectory over time in ICU.

WPB [11] WCORR [10] Chase et al. [14] Rudge et al. [9]

2 2 — —

4 4 — —

— — 6 —

7 7 7 7

10 10 — 10

11 11 — 11

— — 12 —

— — — 13

— — 17 —

21 21 21 —

22 22 — 22

27 27 27 27

28 28 — 28

— 29 — 29

32 32 — —

33 33 — 33

34 34 34 —

— 35 — 35

Total: N1 = 12 Total: N2 = 14 Total: N3 = 7 Total: N4 = 10

Low WPB 90% values under 70% indicate a poor tracker by Kang’s WPB diagnostics [11].

Table 1.
Patient numbers of the poor trackers according to the criteria of 4 studies, developed earlier in [11].

V1 V2 V3 Total V’s Time in ICU WPB%

P8/Good 1 2 3 46 128 87.5%

P27/Poor 1 4 5 89 225 43.7%

Table 2.
Time to the patient-specific, 1st violation denoted by V1, second violation V2 and third violation V3, total
number of violations, total ICU time and WPB% values.

V1 V2 V3 Total V’s Time in ICU WPB%

P18/Good 2 24 26 20 64 93.8%

P28/Poor 1 5 12 114 203 50.8%

Table 3.
Time to the patient-specific, 1st violation V1, second violation V2, and third violation V3, total number of
violations, total ICU time and WPB% values.
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Figure 2.
Line plot of nurses’ rating of patient agitation and the automated sedation dose for patient 8 (WPB-based good
tracker).

Figure 3.
Line plot of nurses’ rating of patient agitation and the automated sedation dose for patient 27 (WPB-based poor
tracker).

Figure 4.
Line plot (WPB% bands), patient 18 (LHS, good) and 28 (RHS, poor tracker).
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The first patient (patient 8) in Table 2 is a good WPB tracker and the second
(patient 27) a poor WPB tracker both studied in [20, 21], for which the upper tail
thresholds of the nurses’scores using copulas were established, in a pilot study of these
2 patients using copula mathematics. We also refer the reader to Hudson’s chapter in
this book “Modelling Agitation-Sedation (A-S) in ICU: an Empirical Transition and
Time to event analysis of poor and good tracking between nurses scores and auto-
mated A-S measures” [22].

The corresponding WPB% values for patient 8 and patient 27 are 87.5% and
43.7%, respectively (Table 2). Overall, the minimum, median and maximum WPB
% values for the 24 good trackers is (58.8%, 87.5%, 96.9%) and (47.3%, 64.8%,
77.3%) for the 12 poor trackers (Table 1). Noteworthy also is that the A-S time
series of these two patients examined (P8 and P27) were of disparate lengths -
patient 8 had 10,561 time points and patient 27, had 13,441 time points. The full set
of patients studied had a range of [3001-25,261] time points of automated dose
assessments.

Patient 18 (good tracker) with a WPB% of 93.8% and patient 28 (poor tracker)
with WPB% of 50.8% (Table 3) were studied in detail in [20, 21], for which both
upper and lower tails/thresholds of over or under-estimation of agitation levels by the
nurses’ rating were established using copula dependence analytics (see also [27–29]).

Patients vary according to their length of stay in ICU and consequently differ in
their opportunity for violations to occur. The good trackers generally have shorter
ICU time and thus less chance to exhibit an increased total number of violations.

The total number of WPB-based violations is greater for the poor trackers than for
the good trackers, and it is the poor trackers that tend to have longer ICU times. There
are three approximate categories of patient ICU time: 50�64, 113�128, and 205–256,
and 19 of the 36 patients have an ICU time of ≤64.

2. Methodology

2.1 Copula formulation

In our study, the copula models aim to capture the dependence between the
observed/recorded nurses’ rating and the automated sedation dose for each patient.
We test for and utilise the so-called best fitting copula found. This section acts as a
guide to decide if there exists a tail relationship between the nurses’ rating of patient
agitation A-S score and automated sedation dose.

Analytically and contextually, the lower tail region corresponds to the patient
specific mild agitation range and the upper tail region corresponds to the severe
agitation range, with the non-tail middle region capturing the patient’s moderate
agitation range. Clearly patient’s transition between these so-called mild,
moderate and severe ranges or states over time in ICU. In our context, if the
two distributions that is of nurses’ (observed) rating and that of the automated
sedation dose are independent univariate Gaussians, then we can define the mul-
tivariate Gaussian distribution as the best fit. Let X and Y be independent Gauss-
ian (with arbitrary means and variances), then Zj ¼ aj1X þ aj2Y is univariate
Gaussian for j = 1, 2, … , n and aj1, aj2 are real constants, and Z is multivariate
Gaussian.
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Let Z ¼
Z1

⋮
Zn

0
B@

1
CA ¼ A

X
Y

� �
be constructed based on the n� n matrix A where X

and Y.
are independent and identically distributed (i.i.d.) N(0,1) random variables. Then

Zþ μ is multivariate Gaussian with mean vector μ and covariance matrix ¼ AAT.
From the Central Limit Theorem, the Gaussian distribution arises as a limit of a scaled
sum of weakly dependent random variables [27, 28].

Parametric copula families are conventionally constructed to satisfy different
combinations of bivariate dependence structures with tail behaviours [28]. The
general definition of Archimedean copulas is given by Boateng [29]. It is noteworthy
that the Clayton, Gumbel, and Frank copulas are examples of existing Archimedean
copulas. A discussion about the Clayton, Gumbel, and Frank copulas, and tail
dependence of a bivariate copula, Kendall’s tau representations, and copula models of
the Clayton, Frank, and Gumbel copulas are also defined in [29]. The Clayton
copula, for example, accommodates only lower tail dependence [30], the Frank copula
allows dependence around the mode [31], and the Gumbel is relevant only when
upper tail dependence exists [32]. The difference between the Clayton and Gumbel
copulas is: (i) for the Clayton copula, correlations on the extreme left sides of distri-
butions are more concentrated (i.e., higher correlations) than those in the extreme
right sides of the distributions, and (ii) for the Gumbel copula, the correlations on the
extreme right sides of distributions are more concentrated (i.e., higher correlations)
than those in the extreme left sides of the distributions. The visuals in Section 3 of this
chapter illustrate these trends. We refer the reader to Boeting [29] and below give the
bivariate Gaussian formulation and bivariate Frank and Gumbel copula, as three
examples.

Bivariate Gaussian copula
The copula cdf is:

C u, υ, ρð Þ ¼ Φ2 Φ�1 uð Þ,Φ�1 υð Þ; ρ� �
,0<u, υ< 1: (1)

Bivariate Frank
For �∞< δ<∞, the copula cdf is:

C u, υ, δð Þ ¼ �δ�1 log
1� e�δ � 1� e�δu

� �
1� e�δυ
� �

1� e�δ

� �
,0<u, υ< 1: (2)

Bivariate Gumbel copula

The copula cdf is: C u, υ, δð Þ ¼ exp � � log u
� �δ þ � log υ

� �δ� �1=δ� �
,

0≤u, υ≤ 1, 1≤ δ≤∞: Upper tail dependence function for Gumbel copula is:

bU w1w2; δð Þ ¼ w1 þw2 � wδ
1 þwδ

2

� �1=δ
: (3)

2.2 Kendall K-plot construction

The best fitting copula was selected by maximum likelihood estimation, except
for the t-copula, for which the degrees of freedom parameter is found by a crude
profile likelihood optimisation over the interval (2, 10]. We use the Kendall plot
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(K-plot) [33] to determine the bivariate patient-specific thresholds in the cases
where the best fitting copula has tails. The K-plot splits the data into two regions
with significantly different strengths of dependence between nurses’ rating and
the automated sedation dose, namely: (1) the main region with an approximately
linear relationship; and (2) the tail regions with a non-linear relationship. Recently
the K-plot has gained popularity with regard to its association with the receiver
operating characteristic (ROC) curve, a pivotal biostatistical graphical tool tradi-
tionally used for testing the ability of biomarkers to discriminate between
populations [34].

The K-plot adopts the familiar probability plot (Q-Q plot) to detect depen-
dence. A lack of linearity of the standard Q-Q plot is an indication of non-
normality of the distribution of a random variable. Similarly, in the absence of
association between two variables, the K-plot is close to a straight line, while the
amount of curvature in the K-plot is characteristic of the degree of dependence in
the data, and is related, in a definite way, to the underlying copula. This method is
closely related to Kendall’s tau statistic [35] from which it takes the name. For more
details refer to [27, 33].

To construct a K-plot, we need to compute Hi defined for a given pair (Xi,YiÞwith
1≤ i≤ n as follows: Hi ¼ # j 6¼ i : Xj ≤Xi,Yj ≤Yi

� �
= n� 1ð Þ. Next, we need to order the

variable Hi, H 1ð Þ ≤ … ≤H nð Þ and plot the pairs W1:n,H ið Þ
� �

, 1≤ i≤ n, where W_(1,n) is
the expectation of the ith order statistic in a random sample of size n from the
distribution K0 of the Hi under the null hypothesis of independence. Using the
definition of the density of an order statistic, we define the form of K0 under the null
hypothesis of the independence, as follows:

W1:n ¼ n
n� 1

i� 1

� �ð1
0
ω K0 ωð Þf gi�1 � 1� K0 ωð Þf gn�1dK0 ωð Þ, 1≤ i≤ n: (4)

2.3 Multiple threshold identification via dynamic programming algorithm

To identify a patient-specific threshold, we apply the dynamic programming algo-
rithm discussed in Section 3.3 of [23] to use the dependence measure Hi. This algo-
rithm captures multiple thresholds; however, to be consistent with the objective of
this paper, we focus on determining the lower and upper tail thresholds. In our study,
the lower tail threshold corresponds to the lowest (lower) threshold and the upper tail
threshold corresponds to the highest (upper) threshold, respectively for either dose or
the nurses’ score profiles.

2.4 Prediction equation of nurses’ score with respect to dose allowing for tails

Below we detail, as an illustration to the novel method that accommodates lower
and upper thresholds beyond conventional correlational analysis using Kendall tau
and copulas, the resultant equations specific to two patients, Patient 20 and Patient 8,
which are both good trackers. P20 has no tails and P8 a lower tail. All the patients’
equations and their details are tabulated in the Appendix A.

The general formulation of the equation relating each patient’s nurses’ score to the
automated infusion dose is given by either of the following expressions:

• Score ¼ interceptþ α ∗Dose–β Dose ∗LTþ γ Dose ∗UT
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•
Score ¼ interceptþ slopeðDoseÞ– slope : Lower regionð Þ Dose

þ slope dose : Upper regionð Þ:

Patient 20: The recorded or so-called nurses’ observed A-S score and the auto-
mated sedation dose for patient 20 are independent univariate Gaussians, therefore,
their joint distribution is Gaussian (Tables 4 and 5 and LHS of Figure 5). This gives a
bivariate Gaussian copula, with neither lower nor upper tails (RHS of Figure 5). Thus,
the relationship between P20’s nurses’ score and infusion dose is estimated using a
simple linear regression (SLR) equation, score = intercept + α*dose, with intercept and
slope parameters � 0.31 and α = 1.16, respectively (Table 6 and RHS of Figure 5).

Patient 8: In contrast to patient 20, for patient 8 (good tracker) the nurses’ recorded
score and the automated sedation dose are skewed distributions (Figure 6), with the joint
distribution being Survival Gumbel with a lower tail dependence. (lower tail tau = 0.70)

Patient 20 – good, no tails Estimate Standard Error t value P value

Intercept �0.311 0.22 �1.41 0.16 NS

Dose 1.156 0.104 11.06 <2e-16 ***

Adjusted R-squared: 0.49, Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.

Table 4.
Patient 20 equation components and p-values, good tracker, no tails.

Patient 8 - good, lower tail Estimate Standard Error t value P value

Dose 1.012 0.0848 14.3 <2e-16 ***

Dose*LT �0.2849 0.0966 �2.95 0.0045 **

Adjusted R-squared: 0.766, Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.

Table 5.
Patient 8 (P8) equation components - good tracker, lower tail tau = 0.70.

Figure 5.
Bivariate plots (LHS), copula type, and relevant tau (RHS) relating P 20’s nurses’ A-S score with dose, good
tracker, no tails. SLR line is not shown.

90

Recent Advances in Medical Statistics



(see Table 7 and Figure 6, top panel). Hence, the relationship between P8’s nurses’score
and the dose is estimated by our novel prediction equation, as follows.

Score = 1.01Dose-0.29Dose*LT: The corresponding slope and lower tail
parameters are α = 1.01 and β = �0.29 (Table 7). The highly significant slope of 1.01
(p < 0.00001) indicates that in this patient’s moderate agitation zone nurses tend to
estimate agitation severity quite accurately. However, in the mild agitation zone,
nurses tend to assign a rating that is, on average, 0.29 points lower than expected for
the patient’s given (by automated dose) agitation severity (p = 0.0045) (RHS of
bottom panel of Figure 6). There are 33 (out of a total of 127) such occurrences
indicating that in approximately one in every four ratings, nurses tend to underesti-
mate this patients’ agitation severity, LT dose threshold = 3.02 and LT score thresh-
old = 2.57.

The Kendall-plot is then used to identify the lower tail threshold which occurs at
the 26th percentile in the patient’s bivariate (dose, score) trajectory (Table A.1
Appendix), estimated by the algorithm of Bai and Perron [23]. For patient 8, the LT
infusion dose threshold is 3.02 and LT nurse’s score threshold is 2.57 (see percentiles in
Table A.1) and the full set of equations in Table A.2 in Appendix.

3. Results

3.1 Copula types across WPB status and tails status, and copula taus

Table 4 Gives the summary of copulas distributions selected as optimal for the
total 36 patients stratified by WPB tracking status, copula type, number and type of
tail(s), as gleaned from the more detailed Table 5, which gives each patient’s WPB
status, number of time points captured over ICU stay, patient’s copula type, in

Copula types Tail No. of
copulas

WPB good trackers
(Patient no.)

WPB poor trackers
(Patient no.)

Clayton Lower 2 P3, P19

Rotated Tawn type 1,
180 degrees

Lower 1 P35

Survival Gumbel Lower 7 P1, P5, P6, P8, P14 P2, P7

Survival Joe Lower 2 P15 P28

BB8 No tails 2 P30, P36

Frank No tails 5 P13 P10, P11, P27, P33

Gaussian No tails 5 P12, P17, P20, P29 P21

Survival BB8 No tails 7 P16, P18, P24, P26, P31 P22, P34

Survival BB7 Two tails 1 P32

t copula Two Tails 1 P25

Gumbel Upper 2 P23 P4

Joe Upper 1 P37

Table 6.
List of copulas selected as optimal for the 36 patients (13 poor trackers). Shaded rows indicate the poor trackers.
PX denotes patient number X.
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Figure 6.
P8 bivariate plots (LHS), copula type and main region tau (upper panel) and K-plot and lower tail (LT)
tau = 0.70, with fit lines (bottom panel) relating P8’s score with dose. P8 is a good tracker with lower tail
thresholds for dose and nurses’ score: LT dose threshold = 3.02 and LT nurses’ score threshold = 2.57.

Patient no. WPB status Time Copula tau (τ)

n Copula type Tail Main region Lower tail Upper tail

1 59 Survival Gumbel Lower 0.56 0.67

2 Poor 63 Survival Gumbel Lower 0.53 0.64

3 63 Clayton Lower 0.49 0.66

4 Poor 63 Gumbel Upper 0.61 0.69

5 48 Survival Gumbel Lower 0.44 0.55

6 63 Survival Gumbel Lower 0.48 0.57

7 Poor 63 Survival Gumbel Lower 0.82 0.85

8 127 Survival Gumbel Lower 0.63 0.70

10 Poor 255 Frank 0.67

11 Poor 111 Frank 0.71

12 127 Gaussian 0.56

13 63 Frank 0.74
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addition to the values for copula tau (τ) for the main region, the lower or upper
regions, as applicable for the patients’ (nurses’ score, dose) bivariate profiles.

In regards to the distribution of copula types by WPB (good versus poor) tracking
status, there are four Frank copula types of the 13 poor trackers, in comparison to 1
good tracker being a Frank copula type. Of the 23 good trackers, the majority are
either Survival Gumbel (5 of these), Survival BB8 (5 such), or Gaussian (4) copula
types (Table 4).

Furthermore, of the 23 good trackers, eight patients (35%) have bivariate depen-
dence with a lower tail, 12 patients (52%) with no tails, 1 patient P32 (4.3%) with both
upper and lower tails, and 2 (8.7%) (P23 and 27) with an upper tail. In comparison of

Patient no. WPB status Time Copula tau (τ)

n Copula type Tail Main region Lower tail Upper tail

14 49 Survival Gumbel Lower 0.65 0.72

15 63 Survival Joe Lower 0.53 0.74

16 127 Survival BB8 0.67

17 63 Gaussian 0.52

18 63 Survival BB8 0.69

19 127 Clayton Lower 0.54 0.69

20 127 Gaussian 0.58

21 Poor 61 Gaussian 0.57

22 Poor 127 Survival BB8 0.64

23 57 Gumbel Upper 0.61 0.68

24 127 Survival BB8 0.64

25 63 t copula Both 0.57 0.06 0.06

26 63 Survival BB8 0.64

27 Poor 223 Frank 0.70

28 Poor 203 Survival Joe Lower 0.59 0.79

29 53 Gaussian 0.68

30 60 BB8 0.46

31 255 Survival BB8 0.68

32 Poor 252 Survival BB7 Both 0.58 0.73 0.40

33 Poor 255 Frank 0.67

34 Poor 127 Survival BB8 0.60

35 Poor 211 Rot Tawn 1180 0 Lower 0.67 0.74

36 57 BB8 0.61

37 123 Joe Upper 0.56 0.77

Shaded rows indicate the poor trackers.

Table 7.
List of optimal copulas for the 36 patients with each patient’s WPB status, number of time points over ICU stay,
copula type, values for copula tau (τ) for the main region, the lower or upper regions taus for the patient’s (score,
dose) bivariate profiles.
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the 13 poor trackers, there are four patients (31%) with a lower tail, seven (54%) with
no tails, one patient P25 (7.7%) with both tails, and one patient 4 (7.7%) with an upper
tail (Table 4).

Copulas that are unique to the poor trackers are the Survival BB7 (P32 with upper
and lower tails, a poor tracker, displayed in Figure 7 and the Rotated Tawn type 1,
1800 (P35 with an upper tail, a poor tracker displayed in Figure 8). Unique copula
types found only for the good trackers are the Clayton (P3 and P19, each have lower
tails), the BB8 (P30 and P36 both with no tails), the t copula (P25 with upper and
lower tails) shown in Figure 9 and the Joe copula (P37, upper tail) displayed in
Figure 10.

3.2 Visuals, tail dependence, taus, dose/score thresholds of 10 patients

Details of equations, copulas and visualisations will focus on the following list of 10
patients given in Tables 8 and 9. Visualisations comprise patients’score and dose trajec-
tories with associated 95%WPB bands, copula plots, K-plots, along with associated
equations, relevant tau for tails and a clear delineation dose and nurses’score thresholds
related to upper and lower tails, when they exist. Specifically lower and upper tail tau (τ)
values, their percentile positions in the patient bivariate trajectories of length in ICU,
associated lower and/or upper tail thresholds for the infusion dose and nurse’s score
threshold are given in Table 8. Table 9 gives the associated equation parameters
contrasting linear correlation (r) with our novel copula-tail based approach. Figures 11
and 12 display the bivariate trajectories and 90%WPB bands of the patients. Full set of
equations and tail thresholds are given in Tables A.1 and A.2 in the Appendix.

Figure 7.
P32 a poor tracker with 2 tails - copula plot, main tau, K- plot and tail taus (upper panel); best fit line(s) (lower
panel). LT tau = 0.73, UT tau = 0.40, (LT, UT) dose threshold = (3.90, 7.02), (LT, UT) score threshold = (3.62,
7.63).
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Figure 9.
P25 good tracker with 2 tails - copula plot, main region tau K-plot, and tail taus (upper panel); best fit line(s)
(lower panel) LT tau = 0.06, UT tau = 0.06, and (LT, UT) dose threshold = (2.68, 4.43), with (LT, UT) score
threshold = (2.41, 3.94).

Figure 8.
P28 poor tracker with a lower tail - copula plot, main tau, K- plot and tail tau (upper panel); best fit line(s)
(lower panel) relating P28 nurses’ score with dose. LT tail tau = 0.79, LT dose threshold = 1.70 and LT score
threshold = 1.20.
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3.3 Prediction equation of score in relation to dose allowing tail dependence

In this subsection, we focus on 7 of the 10 selected patients reported in Table 8.
Specifically, two patients with both lower and upper tails (P32 and P35), three

Figure 10.
P37 good tracker with upper tail - copula plot, main tau, K- plot and tail tau (upper panel); best fit line(s)
(lower panel) relating P37 nurses’ A-S score with dose. UT tau = 0.77, UT dose threshold = 2.53, and UT nurse
score threshold = 2.99.

Lower Tail tau (τ) Upper Tail tau (τ) Dose threshold Score threshold

P no. Tails n n Per centile n Per centile Lower Upper Lower Upper

2 Lower 63 28 44.44 0.96 0.83

4 Upper 63 15 76.19 2.82 2.75

15 Lower 63 22 34.92 3.47 3.05

23 Upper 57 10 82.46 1.77 1.97

25 Both tails 63 14 33.33 15 68.25 2.68 4.43 2.41 3.94

27 No tails 223

28 Lower 203 59 29.06 1.70 1.20

32 Both tails 252 44 20.64 38 74.60 3.90 7.02 3.62 7.63

35 Lower 211 42 19.91 0.72 0.66

37 Upper 123 17 86.18 2.53 2.99

Shaded rows are the poor trackers.

Table 8.
Upper and/or lower tail positions (percentiles) and associated lower/upper thresholds for dose and nurses’ A-S
score.
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patients with only upper tails (P4, P23, P37), and two patients with only lower tails
(P2 and P15). For each of these seven patients, our novel equation relating each
patient’s nurses’ agitation severity rank score versus the patient’s infusion dose with
parameter estimates and p-values is reported below. In addition, interpretation of the
equations in regard to regions where the nurses’ score either under or overestimates
the patient’s agitation with respect to so-called ground truth, this being the patient’s
automated infusion dose is reported per patient.

Patient 32 poor tracker, 2 tails, R2 squared (non adj, adjusted) = (0.60, 0.67).
Score = 3.23 + 0.43Dose-0.75Dose*LT + 0.33Dose*UT (Table 10): The intercept

of 3.23 indicates that the patient is experiencing severe “chronic” background
agitation. The slope of 0.43 indicates that in the moderate agitation zone nurses tend
to strongly underestimate the patient’s agitation severity. In mild agitation zone,
nurses tend to still underestimate the agitation severity. In severe agitation zone,
nurses tend to overestimate the patient’s agitation severity on average 0.33 points
higher (Figures 7 and 11). For P32 LT tau = 0.73, UT tau = 0.40, and its bivariate
(LT, UT) dose thresholds are (3.90, 7.02), with (LT, UT) nurses’ score thresholds of
(3.62, 7.63).

Patient 25 – good tracker, 2 tails, R2 squared (non adj, adjusted) = (0.60, 0.70).
Score = 1.55 + 0.46Dose-0.35Dose*LT + 0.34Dose*UT (Table 10): The intercept of

1.55 indicates that the patient is experiencing “chronic” background agitation. The slope
of 0.46 indicates that in the moderate agitation zone nurses tend to strongly underesti-
mate the patient’s agitation severity. In severe agitation zone, nurses tend to
overestimate the agitation severity. In the mild agitation zone, nurses tend to assign a
rating that is, on average, 0.35 points lower than expected for the patient’s given
agitation severity. In the severe agitation zone, nurses tend to overestimate the agitation
severity on average, 0.34 points higher than expected for the patient’s given agitation
severity (Figure 9, see also Figure 11). For P25 LT tau = 0.06, UT tau = 0.06, and its
(LT, UT) dose threshold = (2.68, 4.43), (LT, UT) score threshold of (2.41, 3.94).

Linear correlation (r) Novel Regression (estimates) adj R2 quare

P
no.

Tail
status

Main
region

Lower
tail

Upper
tail

Intercept Dose
Slope

Dose
Slope
Lower

Dose
Slope
Upper

Simple
LR R2

Novel
method

R2

2 Lower 0.39 0.77 0.27 0.85 �0.37 0.42 0.44

4 Upper 0.38 0.66 0.79 0.52 0.45 0.57 0.61

15 Lower 0.28 0.75 0.86 0.83 �0.34 0.45 0.47

23 Upper 0.51 0.62 0.34 0.58 0.52 0.64 0.68

25 Both 0.44 0.41 0.00 1.55 0.46 �0.35 0.34 0.60 0.70

27 None 0.84 �0.36 1.06 0.71

28 Lower 0.46 0.84 0.008 0.97 �0.35 0.57 0.59

32 Both 0.26 0.55 0.61 3.23 0.43 �0.75 0.33 0.60 0.67

35 Lower 0.72 0.77 0.23 0.91 �0.79 0.63 0.64

37 Upper 0.54 0.75 0.17 0.78 0.32 0.74 0.75

Table 9.
Upper and/or lower tail dose relationships, equations, and associated change in adjusted R2 for simple LR vs our
novel approach. Shaded rows indicate the poor trackers.
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Figure 11.
Line plots of nurses’ score (observed, red) and dose (black line), with 95% WPB bands for P32, P25 (both tails);
P4, P23 (upper tail); P2, P15 (lower tail).
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Figure 12.
Line plots of nurses’ score (observed, red) vs. dose (black line), with 90% WPB bands for P37 good tracker.

Patient 32 - poor,
2 tails Adjusted
R-squared: 0.66

Estimate Standard
Error

t value P value

Intercept 3.2342 0.5162 6.27 1.60E�09 ***

Dose 0.4285 0.0828 5.18 4.70E�07 ***

Dose*LT �0.7506 0.1503 �4.99 1.10E�06 ***

Dose*UT 0.3309 0.0497 6.65 1.80E�10 ***

Patient 25 -
good, 2 tails
Adjusted
R-squared: 0.70

Estimate Standard
Error

t value P value

Intercept 1.5481 0.5503 2.81 0.0067 **

Dose 0.4603 0.1543 2.98 0.0042 **

Dose*LT �0.3475 0.1719 �2.02 0.0477 *

Dose*UT 0.3424 0.0788 4.34 5.60E-05 ***

Linear correlation (r) Novel Regression (estimates) adj R2 quare

P
no.

Tail
status

Main
region

Lower
tail

Upper
tail

Intercept Dose
Slope

Dose
Slope
Lower

Dose
Slope
Upper

Simple
LR R2

Novel
method

R2

32 Both 0.26 0.55 0.61 3.23 0.43 �0.75 0.33 0.60 0.67

25 Both 0.44 0.41 0.00 1.55 0.46 �0.35 0.34 0.60 0.70

Patient 4 poor tracker, UT R2 squared (non adj, adjusted) = (0.57, 0.61).

Table 10.
P32 equation, poor tracker with 2 tails and LT tau = 0.73, UT tau = 0.40. P25 equation, poor tracker with 2
tails and LT tau = 0.06, UT tau = 0.06.
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Score = 0.79 + 0.52Dose+0.45Dose*UT (Table 11): The slope of 0.52 indicates
that in the moderate agitation zone nurses tend to strongly underestimate the
patient’sagitation severity. In the severe agitation zone, nurses tend to overestimate
the agitation severity. There are 14 (out of a total of 63) such occurrences indicating
that approximately only one in every four ratings, nurses tend to overestimate
patients’ agitation severity (Figure 13, see also Figure 11). For P4 UT tau = 0.69, and
its UT dose threshold = 2.82 and UT nurses’ score threshold = 2.75.

Patient 23 good tracker, UT R2 squared (non adj, adjusted) = (0.64, 0.68).
Score = 0.34 + 0.58Dose+0.52Dose*UT (Table 11): The slope of 0.58 indicates that

in the moderate agitation zone nurses tend to strongly underestimate the patient’s
agitation severity. In periods of severe agitation, nurses tend to overestimate the
agitation severity. There are 10 (out of a total of 57) such occurrences indicating that
approximately only one in every five ratings, nurses tend to overestimate patient 23’s
agitation (Figure 14, see also Figure 11). For P23 UT tau = 0.68, and its UT dose
threshold = 1.77 and UT nurses’ score threshold = 1.97.

Patient 37 good tracker, UT R2 squared (non adj, adjusted) = (0.74, 0.75).
Patient 4 - poor, Upper Tail Score = 0.17+ 0.78Dose+0.32Dose*UT (Table 11): The

slope of 0.78 indicates that in the moderate agitation zone nurses tend to moderately

Patient 4 - poor, Upper Tail
Adjusted R-squared: 0.61

Estimate Standard
Error

t value P value

Intercept 0.79 0.446 1.77 0.082 .

Dose 0.521 0.238 2.19 0.032 *

Dose*UT 0.445 0.189 2.35 0.022 *

Patient 23 - good,
Upper Tail
Adjusted R-squared: 0.68

Estimate Standard
Error

t value P value

Intercept 0.343 0.257 1.34 0.187 NS

Dose 0.576 0.24 2.4 0.0199 *

Dose*UT 0.524 0.196 2.68 0.0098 **

Patient 37 - good,
Upper Tail
Adjusted R-squared: 0.75

Estimate Standard
Error

t value P value

Intercept 0.165 0.273 0.61 0.546 NS

Dose 0.778 0.186 4.18 5.60E�05 ***

Dose*UT 0.318 0.143 2.23 0.028 *

Linear correlation (r) Novel Regression (estimates) adj R2 quare

P
no.

Tail
status

Main
region

Lower
tail

Upper
tail

Intercept Dose
Slope

Dose
Slope
Lower

Dose
Slope
Upper

Simple
LR R2

Novel
method

R2

4 Upper 0.38 0.66 0.79 0.52 0.45 0.57 0.61

23 Upper 0.51 0.62 0.34 0.58 0.52 0.64 0.68

37 Upper 0.54 0.75 0.17 0.78 0.32 0.74 0.75

Table 11.
P4 equation, poor tracker with upper tail and UT tau = 0.69. P23 equation, poor tracker with upper tail and UT
tau = 0.68.
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Figure 13.
P4 poor tracker with upper tail - copula plot, main tau, K- plot and tail tau (upper panel); best fit line(s) (lower
panel) relating P4 nurses’ A-S score with dose. UT tau = 0.69, UT dose threshold = 2.82 and UT nurse score
threshold = 2.75.

Figure 14.
P23 good tracker with upper tail - copula plot, main tau, K- plot and tail tau (upper panel); best fit line(s)
(lower panel) relating P23 nurses’ A-S score with dose. UT tau = 0.68, UT dose threshold = 1.77 and UT nurse
score threshold = 1.97.
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underestimate the patient’s agitation severity. In the patient’s severe agitation zone,
nurses tend to overestimate agitation severity. There are 25 (out of a total of 123) such
occurrences indicating that approximately only in one in every five ratings, nurses tend to
overestimate patients’ agitation severity accurately. (Figure 10, see also Figure 12). For
P37 UT tau = 0.77, and its UT dose threshold = 2.53 and UT nurses’score threshold = 2.99.

P37 equation, good tracker with upper tail and UT tau = 0.77.
Patient 2 poor tracker, LT R2 squared (non adj, adjusted) = (0.42, 0.44).
Score = 0.27 + 0.85Dose - 0.37Dose*LT (Table 12): The slope of 0.85 indicates that in

the moderate agitation zone nurses tend to underestimate the patient’s agitation sever-
ity. In the mild agitation zone, nurses tend to assign a rating that is, on average, 0.37
points lower than expected for the patient’s given agitation severity. There are 28 out of
a total of 63 such occurrences indicating that in around one in every two ratings, nurses
tend to underestimate agitation severity (Figure 15, also Figure 11).

Patient 15 good tracker, LT R2 squared (non adj, adjusted) = (0.45, 0.47).
Score = 0.86 + 0.83Dose - 0.34Dose*LT (Table 12): The slope of 0.83 indicates that

in the moderate agitation zone nurses tend to underestimate the patient’s agitation
severity accurately. In the mild agitation zone, nurses tend to underestimate the
patient’s agitation severity even more. There are 22 (out of a total of 43) such occur-
rences indicating that approximately one in every three ratings, nurses tend to strongly
underestimate the patients’ agitation severity (Figure 16, see also Figure 11).

Patient 28 poor tracker, LT R2 squared (non adj, adjusted) = (0.57, 0.59)
Score = 0.01 + 0.97Dose-0.35Dose*LT (Table 13).

The slope of 0.97 indicates that in the moderate agitation zone nurses tend to estimate
the patient’s agitation severity fairly accurately. In the mild agitation zone, however,

Patient 2 - poor,
Lower Tail
Adjusted R-
squared: 0.44

Estimate Standard
Error

t value P value

Intercept 0.269 0.208 1.29 0.201 NS

Dose 0.85 0.158 5.36 1.40E�06 ***

Dose*LT �0.367 0.184 �1.99 0.052 .

Patient 15 - good,
Lower Tail
Adjusted
R-squared: 0.47

Estimate Standard
Error

t value P value

Intercept 0.861 0.962 0.9 0.37412 NS

Dose 0.834 0.206 4.05 0.00015 ***

Dose*LT �0.344 0.177 �1.94 0.05664 .

Linear correlation (r) Novel Regression (estimates) adj R2 quare

P
no.

Tail
status

Main
region

Lower
tail

Upper
tail

Intercept Dose
Slope

Dose Slope
Lower

Dose Slope
Upper

Simple
LR R2

Novel method
R2

2 Lower 0.39 0.77 0.27 0.85 �0.37 0.42 0.44

15 Lower 0.28 0.75 0.86 0.83 �0.34 0.45 0.47

Table 12.
P2 equation, poor tracker with lower tail and LT tau = 0.64. P15 equation, good tracker with lower tail and LT
tau = 0.74.
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Figure 15.
P2 poor tracker with lower tail - copula plot, main tau, K- plot and tail tau (upper panel); best fit line(s) (lower
panel) relating P2 nurses’ A-S score with dose. LT tau = 0.64, with LT dose threshold = 0.96 and LT nurses’ score
threshold = 0.83.

Figure 16.
P15 good tracker with lower tail - copula plot, main tau, K- plot and tail tau (upper panel); best fit line(s) (lower
panel) relating P15 nurses’ A-S score with dose. LT tail tau = 0.74, LT dose threshold = 3.47 and LT score
threshold = 3.05.
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nurses tend to underestimate patient 28’s agitation severity more. There are 29 (out of a
total of 203) such occurrences indicating that one in every seven ratings, nurses tend to
strongly underestimate patients’ agitation severity (Figure 17, see also Figure 18).

Patient 28 – poor,
Lower Tail

Estimate Standard
Error

t-
value

P-value adj R2 = 0.64

Intercept 0.00876 0.17549 0.05 0.96023

Dose 0.96582 0.07356 13.13 < 2e�16 ***

Dose*LT �0.345 0.1014 �3.4 0.00081 ***

Patient 35 – poor,
Lower Tail

Estimate Std. Error t t
value

P value adj R2 = 0.644

Intercept 0.2322 0.1128 2.06 0.04084 *

Dose 0.9097 0.0597 15.24 < 2e�16 ***

Dose*LT �0.7898 0.2253 �3.51 0.00056 ***

Patient 27 – poor, no
tails

Estimate Std. Error t t
value

P value adj R2 = 0.71

Intercept �0.3644 0.2062 �1.77 0.079 .

Dose 1.061 0.0453 23.4 <2e-16 ***

Linear correlation (r) Novel Regression (estimates) adj R2 quare

P
no.

Tail
status

Main
region

Lower
tail

Upper
tail

Intercept Dose
Slope

Dose
Slope
Lower

Dose
Slope
Upper

Simple
LR R2

Novel
method

R2

28 Lower 0.46 0.84 0.00 0.97 �0.35 0.57 0.59

35 Lower 0.72 0.77 0.23 0.91 �0.79 0.63 0.64

27 None 0.84 �0.36 1.06 0.71

Table 13.
P28 equation, poor tracker with lower tail LT tau = 0.79. P35 equation, poor tracker with lower tail LT
tau = 0.74. P27 equation, poor tracker no tails., tau = 0.78 (Figures 18 and 19).

Figure 17.
Line plots of nurses’ score (observed, red) vs. dose (black line), with 95% WPB bands for P27 and P35 poor
trackers with and P27 poor tracker with no tails.
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Patient 35 poor tracker, LT R2 squared (non adj, adjusted) = (0.63, 0.64)
Score = 0.23 + 0.91Dose-0.79Dose*LT (Table 13): The intercept of 0.23 indicates that
the patient is experiencing mild “chronic” background agitation. The slope of 0.91
indicates that in the moderate agitation zone nurses tend to slightly underestimate the
patient’s agitation severity. In the mild agitation zone, nurses tend to strongly under-
estimate the patient’s agitation severity even more. There are 42 (out of a total of 211)
such occurrences indicating that approximately one in every five ratings, nurses tend
to underestimate patients’ agitation severity (Figures 8 and 18).

4. Conclusions

Copulas were successfully implemented to capture non-linear dependence, and
establish the presence of lower (LT) and/or upper tail (UT) dependence between the
nurses’ A-S rating and the automated sedation dose (Figure 20). Establishing the
presence of tail dependence and patient-specific lower and/or upper thresholds for
areas with different agitation intensities has significant implications for effective
administration of sedatives. Copulas unique to the poor trackers were the Survival BB7
and Rotated Tawn type 1, 180. Unique copula types of the good trackers were Clayton,
BB8, and t copula. To the best fit copulas, we established for each patients’ bivariate
score and dose trajectories regions of mild, moderate, and severe agitation and their
lower and upper tail thresholds, if any, in the dependence, relationship via K-plots and
our novel equation relating patient’s nurses’score to dose. We found that for lower tail
dependence, nurses tend to underestimate the patient’s agitation in the moderate
agitation zone. In the mild agitation zone, nurses tend to assign a rating that is, on
average, 0.30 to 0.45 points lower than expected for the patient’s given agitation. For
upper tail dependence nurses tend to either moderately or strongly underestimate
patient’s agitation in the moderate agitation zone; but in periods of severe agitation,
tend to overestimate a patient’s agitation. When both lower and upper tails exist,
nurses tend to strongly underestimate agitation in the moderate zone and then tend to
still underestimate agitation in mild agitation periods; but in the severe zone nurses
tend to overestimate agitation on average by 0.34 points. We also determined the

Figure 18.
Line plots of nurses’ score (observed, red) vs. dose (black line), with 95% WPB bands for P28 and P35 both poor
trackers with lower tails.

105

Copula Modelling of Agitation-Sedation (A-S) in ICU: Threshold Analysis of Nurses’…
DOI: http://dx.doi.org/10.5772/intechopen.105753



Figure 19.
P35 poor tracker with a lower tail - copula plot, main tau, K- plot and tail tau (upper panel); best fit line(s)
(lower panel) relating P35 nurses’ score with dose. LT tail tau = 0.74, LT dose threshold = 0.72 and LT score
threshold = 0.66.

Figure 20.
P27 poor tracker with no tails- copula plot, main tau = 0.70, K- plot and tail tau (upper panel); best fit line
(lower panel) relating P27 nurses’ score with dose.
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number of occurrences over the patient’s total ICU stay, where nurses tend to under/
over- estimate agitation. Finding thresholds and regions of mismatch between the
nurses’ scores and sedation dose potentially provides a way to improved alerting
systems for over/under-sedation. Our approach lends credence to augmenting con-
ventional RASS and SAS agitation measures with semi-automated systems and identi-
fying thresholds and regions of deviance for alerting increased risk.

A. Appendix

Lower Tail tau
(τ)

Upper Tail tau (τ) Dose threshold Nurses’ Score
threshold

P no. Tails n n Per centile n Per centile Lower Upper Lower Upper

1 Lower 59 19 32.20 0.52 0.38

2 Lower 63 28 44.44 0.96 0.83

3 Lower 63 22.22 1.35 1.31

4 Upper 63 15 76.19 2.82 2.75

5 Lower 48 17 35.40 1.25 1.06

6 Lower 63 23 36.51 1.38 1.23

7 Lower 63 8 12.70 0.44 0.15

8 Lower 127 33 25.98 3.02 2.57

10 255

11 111

12 127

13 63

14 Lower 49 20 40.82 0.96 0.82

15 Lower 63 22 34.92 3.47 3.05

16 127

17 63

18 63

19 Lower 127 28 22.04 6.46 5.23

20 127

21 61

22 127

23 Upper 57 10 82.46 1.77 1.97

24 127

25 Both 63 14 33.33 15 68.25 2.68 4.43 2.41 3.94

26 63

27 223

28 Lower 203 59 29.06 1.70 1.20

29 53
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Lower Tail tau
(τ)

Upper Tail tau (τ) Dose threshold Nurses’ Score
threshold

P no. Tails n n Per centile n Per centile Lower Upper Lower Upper

30 60

31 255

32 Both 252 44 20.64 38 74.60 3.90 7.02 3.62 7.63

33 255

34 127

35 Lower 211 42 19.91 0.72 0.66

36 57

37 Upper 123 17 86.18 2.53 2.99

Shaded rows are the poor trackers.

Table A.1.
List of copulas and upper and/or lower tail positions (percentiles) and associated lower/upper thresholds for dose
and nurses’ A-S score.

Linear correlation (r) Novel Regression (estimates) adj R2

P
no.

Tail
status

Main
region

Lower
tail

Upper
tail

Intercept Dose
Slope

Dose
Slope
Lower

Dose
Slope
Upper

Simple
LR R2

Novel
method

R2

1 Lower 0.44 0.81 0.152 0.84 �0.46 0.49 0.53

2 Lower 0.39 0.77 0.27 0.85 �0.37 0.42 0.44

3 Lower 0.36 0.65 0.91 0.58 �0.50 0.30 0.34

4 Upper 0.38 0.66 0.79 0.52 0.45 0.57 0.61

5 Lower 0.21 0.75 0.49 0.75 �0.45 0.33 0.39

6 Lower 0.37 0.56 0.66 0.68 �0.36 0.36 0.41

7 Lower 0.85 0.99 �0.22 1.17 �0.45 0.77 0.77

8 Lower 0.64 0.76 0.01 1.01 �0.29 0.62 0.63

10 0.82 �0.51 1.19 0.67

11 0.83 �0.19 1.21 0.68

12 0.68 0.18 0.94 0.46

13 0.87 �0.43 1.12 0.75

14 Lower 0.50 0.70 0.11 0.95 �0.40 0.61 0.64

15 Lower 0.28 0.75 0.86 0.83 �0.34 0.45 0.47

16 0.81 �0.17 1.03 0.66

17 0.71 0.19 0.90 0.50

18 0.77 0.01 1.06 0.58

19 Lower 0.47 0.55 0.80 0.94 �0.34 0.48 0.50

20 0.70 �0.31 1.16 0.49

21 0.74 �0.10 1.08 0.55
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Linear correlation (r) Novel Regression (estimates) adj R2

P
no.

Tail
status

Main
region

Lower
tail

Upper
tail

Intercept Dose
Slope

Dose
Slope
Lower

Dose
Slope
Upper

Simple
LR R2

Novel
method

R2

22 0.77 �0.58 1.16 0.59

23 Upper 0.51 0.62 0.34 0.58 0.52 0.64 0.68

24 0.78 �0.50 1.14 0.60

25 Both 0.44 0.41 0.00 1.55 0.46 �0.35 0.34 0.60 0.70

26 0.78 �0.07 1.08 0.61

27 0.84 �0.36 1.06 0.71

28 Lower 0.46 0.84 0.008 0.97 �0.35 0.57 0.59

29 0.86 0.24 0.89 0.73

30 0.55 �0.04 1.04 0.29

31 0.79 1.00 1.16 0.63

32 Both 0.26 0.55 0.61 3.23 0.43 �0.75 0.33 0.60 0.67

33 0.83 �0.98 1.23 0.68

34 0.74 �9.23 1.06 0.55

35 Lower 0.72 0.77 0.23 0.91 �0.79 0.63 0.64

36 0.86 �0.45 1.11 0.28 0.73

37 Upper 0.54 0.75 0.17 0.78 0.32 0.74 0.75

Shaded rows indicate the poor trackers. Boxes regarding indicate largest differences between R2 equation fit.

Table A.2.
Upper and/or lower tail dose relationships, equations, and associated change in adjusted R2 for simple LR vs our
novel approach.
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Chapter 5

Bayesian Multilevel Modeling in
Dental Research
Edilberta Tino-Salgado, Flaviano Godínez-Jaimes,
Cruz Vargas-De-León, Norma Samanta Romero-Castro,
Salvador Reyes-Fernández and Victor Othon Serna-Radilla

Abstract

Clinical designs in dentistry collect measurements of the teeth of each subject,
forming complex data structures; however, standard statistical methods (Student’s
t-test, ANOVA, and regression models) do not treat the data as a grouped data type;
that is, the measurements are treated as independent despite not being the case. A
disadvantage of not considering the dependence on multilevel data is that if there is a
significant correlation between the observations, it is ignored by the researcher and
consequently finds statistically significant results when in fact they are not. Bayesian
methods have the advantage of not assuming normality, unlike maximum likelihood
estimation, and Bayesian methods are appropriate when you have small samples. We
showed the minimum statistical theory for the use of multilevel models in dental
research when the response variable is numerical. In this regard, it was proposed to
carry out a Bayesian multilevel analysis to determine the clinical factors associated
with the depth of periodontal probing. We adapted the bottom-up strategy to specify
a multilevel model in the frequentist approach to the Bayesian approach. We checked
the adequacy of the fit of the postulated model using posterior predictive density.

Keywords: periodontal probing depth, dental research, nested data structures,
Bayesian multilevel modeling, bottom-up methodology

1. Introduction

The most widely used statistical methods in dental research are t-test, ANOVA
(one, two and three factors), non-parametric tests, and regression models [1]. These
methods assume that the observations of the studied variables are independent.
Nested data structures are frequently found in dental research. An example is an
experimental design in which multiple measurements are performed on the same
individual. If, in addition to performing multiple measurements in an individual, we
perform multiple measurements in each tooth, we will obtain a nested data structure.
This nesting of the data results in grouped data. Typically, for clinical and dental data,
contextual variables are measured in each individual (i.e., socioeconomic level,
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educational level, etc.), and these characteristics can form another group of data.
Considering the detection of bacterial plaque in each tooth of individuals who have a
home with a high marginality index, two nested groups are distinguished, namely,
teeth nested in individuals and individuals nested at group. The word “nested” can be
understood as “within” or “contained in.” It is to be expected that items from the same
group may be more similar to each other than items from a different group; that is,
measurements from one individual are expected to be more similar to each other in
comparison with measurements from other individuals. This fact indicates that the
assumption of independence does not apply to nested data. Multilevel models take
into account the non-independence of the observations. One consequence of ignoring
the dependence of observations is that the results of some tests may be statistically
significant when, actually, they are not. Under the classical approach, the estimation
of the parameters of a multilevel model is performed using maximum likelihood,
which has optimal properties in many scenarios; however, problems such as non-
compliance with model assumptions or lack of convergence of iterative methods can
occur. The Bayesian approach has some advantages over the classical approach.

The purpose of this chapter is to show the minimum statistical theory for the use of
multilevel models in dental research when the response variable is numerical. For this,
we will remember the definitions of multilevel models and multilevel generalized
linear models (MGLM), in addition to the main Bayesian concepts and their applica-
tion to MGLM. We will use an adaptation of the bottom-up strategy to specify a
multilevel model. Our adaptation proposal tries to use the Bayesian leave-one-out
cross-validation (LOO-CV) between the different steps for the comparison of models.
We will check the adequacy of the fit of the postulated model using posterior predic-
tive density. Finally, we will provide an example of this model applied to a numerical
response variable, such as periodontal probing.

2. Multilevel models

Multilevel models partition the variance of the dependent variable at different
levels of data grouping. At least two types of variance are distinguished: intra-group
variance σ2w, or individual-level variance (level one), and between-group variance σ2b,
which defines the variation at the group level (level two).

The dependency of the observations in the same group is measured with the
intraclass correlation coefficient (ICC). Shrout and Fleiss in 1979 defined the ICC as the
ratio of the between-group variance and the total variance (the sum of the variances
between groups and in intra-groups):

ICC ¼ σ2b
σ2b þ σ2w

(1)

The ICC varies between 0 and 1, since the variance cannot be negative. Before
using a multilevel model, it is necessary to determine whether the ICC is significant at
each level of the data. To that end, using the null model (defined in the next section),
we determine whether the variance of the residuals of each level is significant. If that
occurs, the ICC is also significant, and this means that at the individual level, the
observations are dependent, and therefore, it is necessary to use a multilevel model
instead of an ordinary multiple regression model [2].
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2.1 Two-level models

Let yij be the dependent variable measured in the i-th individual in the j-th level-
two unit (e.g., the j-th group); i ¼ 1,… ,N, where N is the total sample size, and j ¼
1,… ,J for J level-two units.

The simplest two-level model is the null model (intercept-only model, unconditional
means model, or one-way random-effects analysis of the variance). The model is defined
by two equations:

yij ¼ β0j þ eij
β0j ¼ γ00 þ u0j

(2)

β0j is the mean of y in the group j that varies across groups; eij is the individual
variation around this mean; γ00 is the overall intercept, that is, the grand mean of y;
and u0j is the deviation of β0j with respect to γ00.

Substitution of β0j in yij produces the single-equation model:

yij ¼ γ00 þ u0j þ eij (3)

Eq. (3) is composed of a fixed part, γ00, and a random part corresponding to two
random effects, u0j and eij. Assuming that eij � N 0, σ2ð Þ and u0j � N 0, σ2u0

� �
and that

eij and u0j are independent, the variance of yij in Eq. (3) is

var yij
� �

¼ var γ00 þ u0j þ eij
� �

¼ σ2u0 þ σ2
(4)

where σ2u0 ¼ σ2b is the variance between groups, and σ2 ¼ σ2w is the variance within
groups in Eq. (1) to calculate the ICC.

Now, let us consider a two-level model with two level-one independent variables,
x1 with a fixed effect α1, which does not vary between groups, and x2 with a random
effect β2j, which does vary between groups.

This model is defined by

yij ¼ β0j þ α1x1ij þ β2jx2ij þ eij
β0j ¼ γ00 þ γ01w1j þ u0j
β2j ¼ γ10 þ γ11w1j þ u1j

(5)

In the above equation, both β0j and β2j depend on a level-two independent vari-
able; w1 and uqj are the deviation of the effect of the variable w1 on yij in the group j
with respect to the average effect γq0.

Substitution of β0j and β2j in yij produces the single-equation model:

yij ¼ γ00 þ α1x1ij þ γ01w1j þ γ10x2ij þ γ11w1jx2ij þ u0j þ u1jx2ij þ eij
� �

(6)

Generalizing the above two-level model to the case where level one includes P
independent variables xp that have a fixed effect, Q, independent variables xq that
have a random effect, and M level-two independent variables wm, which also have a
fixed effect, we have:
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yij ¼ γ00 þ
XM
m¼1

γ0mwmj þ
XP
p¼1

αpxpij þ
XPþQ

q¼Pþ1

γq0xqij þ
XPþQ

q¼Pþ1

XM
m¼1

γqmwmjxqij

þ u0j þ
XPþQ

q¼Pþ1

xqijuqj þ eij

 ! (7)

Model 7 is composed of fixed effects (the coefficients γ and α) and random effects (all
terms in parentheses). Two-level models can also be expressed in a matrix form by

Y ¼ Xβ þWuþ e (8)

where Y is the vector of measurements of the dependent variable, X is the design
matrix of the fixed effect parameter vector β (containing the overall mean, main
effects, and interactions), W is the design matrix of the random effects given by the
vector U, and e is the vector of level-one residual errors.

2.2 Three-level models

Let i, j, and k indicate the observation units of levels 1, 2, and 3, respectively. In
addition, level 3 has K units, each level-three unit has Jk level-two units, and the jth
level-two unit in the kth level-three unit has nijk level-oneunits. The null model is

yijk ¼ β0jk þ eijk
β0jk ¼ γ00k þ u0jk
γ00k ¼ ξ000 þ ν00k

(9)

In the first equation, β0jk is the level-one random intercept that varies between the
groups of level two, and eijk is the residual variance at level one with respect to β0jk. In
the second equation, γ00k is the level-two random intercept that varies between the
level-three units, and u0jk is the residual variation of the group jwith respect to γ00k. In
the third equation, ξ000 is the general intercept, that is, the grand mean of y, and ν00k
is the variation between the means of the level-three groups (i.e., the deviation of the
mean of group k with respect to the grand mean).

Substituting γ00k in β0jk and then β0jk in yijk yields

yijk ¼ ξ000 þ ν00k þ u0jk þ eijk (10)

Assuming that eijk � N 0, σ2ð Þ, u0jk � N 0, σ2u0
� �

, and ν00k � N 0, σ2ν0
� �

and that

eijk, u0jk, and ν00k are independent, the variance of yij in Eq. (10) is

var yijk
� �

¼ σ2ν0 þ σ2u0 þ σ2 (11)

One way to define the ICC at levels two and three, attributed to Davis and Scott [3], is

ρlevel 3 ¼
σ2ν0

σ2ν0 þ σ2u0 þ σ2
(12)

ρlevel 2¼
σ2u0

σ2ν0 þ σ2u0 þ σ2
, (13)
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Now, we consider a three-level multilevel model with two level-one independent
variables, x1 and x2; the former has a fixed effect and the latter a random effect:

yijk ¼ β0jk þ α1x1ijk þ β2jkx2ijk þ eijk (14)

Let suppose that the random coefficients β0jk and β2jk are explained by a second-
level variable, w1, by the relationships

β0jk ¼ γ00k þ γ01kw1jk þ u0jk
β2jk ¼ γ10k þ γ11kw1jk þ u1jk

(15)

And the random coefficients in Eq. (15) are explained by a third-level variable, z1,
by the equations

γ00k ¼ ξ000 þ ξ001z1k þ ν00k

γ01k ¼ ξ010 þ ξ011z1k þ ν01k

γ10k ¼ ξ100 þ ξ101z1k þ ν10k

γ11k ¼ ξ110 þ ξ111z1k þ ν11k

(16)

Substituting Eqs. (16) in (15) and then in Eq. (14), we have the three-level
multilevel model:

yijk ¼ ξ000 þ α1x1ijk þ ξ001z1k þ ξ010w1jk þ ξ100x2ijk þ ξ011z1kw1jk

þξ101z1kx2ijk þ ξ110w1jkx2ijk þ ξ111z1kw1jkx2ijk
þ u0jk þ ν00k þ ν10kx2ijk þ u1jkx2ijk þ ν01kw1jk þ ν11kw1jkx2ijk þ eijk
� � (17)

where the regression coefficients ξ and α are the fixed part of the model, and the
residual terms of each level contained in parentheses are the random part.

We can generalize the three-level model of Eq. (17). Suppose level one contains P
independent variables xp that have a fixed effect, αp, and Q independent variables
xq q ¼ Pþ 1,… ,Pþ Q . Level two contains M variables wmm ¼ 1,… ,M. Level three
contains L independent variables zl l ¼ 1,… ,L.

yijk ¼ ξ000 þ
XP
p¼1

αpxpijk þ
XPþQ

q¼Pþ1

ξq00xqijk þ
XM
m¼1

ξ0m0wmjk þ
XL

l¼1

ξ00lzlk

þ
XM
m¼1

XL

l¼1

ξ0mlzlkwmjk þ
XPþQ

q¼Pþ1

XL

l¼1

ξq0lzlkxqijk þ
XPþQ

q¼Pþ1

XM
m¼1

ξqm0wmjkxqijk

þ
XPþQ

q¼Pþ1

XM
m¼1

XL

l¼1

ξqmlzlkwmjkxqijk þ ν00k þ u0jk þ
XPþQ

q¼Pþ1

ν10kxqijk

 

þ
XPþQ

q¼Pþ1

uqjkxqijk þ
XM
m¼1

ν0mkwmjk þ
XPþQ

q¼Pþ1

XM
m¼1

νqmkwmjkxqijk þ eijk

!
:

(18)

When the three-level model includes a random slope of level one and a random
slope of level two, the model easily includes many parameters (interaction and a
residual effect by each random slope coefficient) that easily cause convergence

117

Bayesian Multilevel Modeling in Dental Research
DOI: http://dx.doi.org/10.5772/intechopen.108442



problems, except for sufficiently large data sets. Therefore, most three-level models
have few random slope coefficients.

The equivalent matrix model for a three-level model is

Y ¼ Xβ þWuþ Zνþ e (19)

Again, X is the design matrix of the fixed effect parameter vector β (containing the
overall mean, main effects, and interactions), W is the design matrix of the random
effects given by the vector u, Z is the design matrix of the random effects given by the
vector ν, and e is the vector of level-one residual errors.

2.3 Assumptions of multilevel models

Statistical assumptions such as normal distribution, variance at each level, and
independence between errors at different levels have been mentioned in the definition
of the null multilevel model. They are explicitly defined in this section.

The dimension of the vector u depends on the number of random coefficients in
the level-one equation; for example, in Eq. (14), the dimension is two. Similarly, the
dimension of the vector ν depends on the number of random coefficients in the level-
two equation; for example, in Eq. (15), the dimension is four. Let e ¼ e111112⋯ð ÞT,
u ¼ u0jk u1jk⋯usjk

� �T, and ν ¼ ν00k⋯ν0tk⋯νt0k⋯νttkð ÞT with dimensions N, s, and t2,
respectively.

Multilevel models’ assumptions are:

ν

u
e

0
B@

1
CA � N

0
0
0

0
B@

1
CA,

D 0 0
0 G 0
0 0 R

0
B@

1
CA

0
B@

1
CA (20)

where 0 is the vector of zeros with the appropriate dimension and

D ¼

σ2ν0 σν01 … σν0t

σν01 σ2ν1 … σν1t

⋯
σν0t σν1t … σ2νt

0
BBB@

1
CCCA, G ¼

σ2u0 σu01 … σu0s

σu01 σ2u1 … σu1s

⋯
σu0s σu1s … σ2us

0
BBB@

1
CCCA, R ¼ σ2I (21)

Eq. (20) says:

1.Level-one errors, e, are independent, identically normal distributed with mean
zero and variance σ2.

2.Level-two errors, u, follow a multivariate normal distribution with mean 0 and
covariance G.

3.Level-three errors, ν, follow a multivariate normal distribution with mean 0 and
covariance D.

4.Level-one and level-two errors are independent Cov e, uð Þ ¼ 0.
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5.Level-one and level-three errors are independent Cov e, νð Þ ¼ 0.

6.Level-two and level-three errors are independent Cov u, νð Þ ¼ 0.

2.4 Multilevel model estimation

The estimation of a multilevel model is complex because, in addition to the resid-
uals at the individual level in the model, there are more residual terms of random
intercepts and/or slopes of higher levels. Simultaneously, three types of parameters
need to be estimated: the fixed effects, the random effects, and the residual variance/
covariance components in matrices D, G, and R. Statistical theory and estimation
algorithms for multilevel modeling are beyond the scope of this chapter, but some
ideas are given.

When matrices D, G, and R are known, they can be used to estimate the combined
model using generalized least square (GLS). The variance of y, given that the matrices
D and G are known, is

V̂ ¼ WDW 0 þ ZGZ0 þ R (22)

The inverse of the V̂ matrix can be used as a weight; the regression coefficients of
the model can be estimated using GLS. However, the matrices D and G are unknown.

The maximum likelihood estimation method is the most used for estimating
multilevel models. It consists of maximizing the likelihood function that generally
involves an iterative process that takes the parameter estimates as the initial parame-
ter values for the next iteration of parameter estimation. This process is repeated until
the parameter estimates have stabilized from one iteration to the next. The default
tolerance number, which is sometimes defined by the users, is usually a sufficiently
small number, for example, 10�8. The model converges if the tolerance number is
reached between two consecutive iterations. However, sometimes this does not hap-
pen. If the limit of specified iterations is reached and the tolerance number between
two consecutive iterations has not been reached, the method is said to not converge,
and this fact may indicate model specification problems or a small sample size.

Other estimation methods used in multilevel models are generalized estimating
equations, bootstrap methods, and Bayesian methods [3]. When the assumptions of the
multilevel models (Section 2.3) are not met, these methods are adequate.

2.5 Multilevel generalized linear models

Multilevel generalized linear models (MGLM) are an extension of generalized
linear models. What makes both models different is that the former assumes depen-
dence in the observations of the dependent variable and the latter assumes indepen-
dence in the observations.

A three-level MGLM of the dependent variable Y conditioned in the random
effects ν and u is

g E Yjν, uð Þ½ � ¼ η ¼ Xβ þWuþ Zν (23)

where g �ð Þ is the link function, which is a known monotonic, differentiable func-
tion, and η is the linear predictor. As in multilevel models, the random effects are
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assumed to have a normal distribution with zero mean vector and variance/covariance
matrixes D and G, respectively. The multilevel models described in Sections 2.1 and
2.2 are a particular case of MGLM with g, the identity function.

3. Bayesian inference

Bayesian inference is a more attractive alternative to frequentist maximum likeli-
hood estimation when: (1) we have information about the parameters in the model,
(2) the frequentist estimation method does not converge, (3) the sample size is small
at the highest level of the data, or (4) nonlinear functions of the parameters are to be
estimated. With this motivation, let us define some concepts.

The heart of the Bayesian inference is the posterior distribution of θ, p θjyð Þ, which
is defined as the joint probability distribution of the observed data y and the parameter
θ, p y, θð Þ ¼ p yjθð Þp θð Þ, conditioned on the known value of y, p yð Þ ¼ Ð p θð Þp yjθð Þdθ).
Using Bayes’ theorem, we obtain

p θjyð Þ ¼ p θð Þp yjθð Þ
p yð Þ (24)

where p yjθð Þ is the likelihood of the data y, and p θð Þ is the prior distribution of
theta. p yð Þ ¼ Ð p θð Þp yjθð Þdθ with fixed y is a normalization constant not depending on

θ. So, an equivalent equation to (24) is

p θjyð Þ ∝ p θð Þp yjθð Þ (25)

Prior distributions can be informative or non-informative. When the researcher has
a high degree of certainty about θ, the prior distribution will have a small variance and
so will also be informative. If this fact does not happen, that is, the researcher has low
degree of certainty about θ, the prior distribution will have a large variance and so will
be non-informative. Since the prior distribution is a factor in the posterior distribu-
tion, when the prior is informative, it will have a great impact on the posterior, so the
researcher must be careful when an informative prior distribution is used.

Bayesian estimators are only mean or median vector of the posterior distribution,
that is, θ̂ ¼ Ð θ p θð Þp yjθð Þ

p yð Þ dθ. However, if θ has high dimension, this implies to obtain
multiple integrals that usually do not have a closed solution. Sometimes, θ ¼ θa, θbð Þ
and θb are nuisance parameters that must be ignored. The solution is to integrate the
posterior distribution with respect to the nuisance parameters, but again, this multiple
integral may have no closed solution.

The most widely used method is Markov chain Monte Carlo to obtain means,
medians, and quantiles of the posterior distribution.

3.1 Markov chain Monte Carlo

3.1.1 Markov chain

A discrete-timeMarkov chain is a sequence of random variables, Xn,n≥ 1, that take
values in a finite or countable Ω set that satisfies
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p Xnþ1 ¼ jjX0 ¼ i0, … , Xn ¼ inð Þ ¼ p Xnþ1 ¼ jjXn ¼ inð Þ (26)

for all n and any states i0,… ,in, j in Ω. Under regularity conditions, the chain
will gradually forget its initial state i0, and starting from a state t, pt �jX0 ¼ i0ð Þ
will converge to a unique stationary distribution ϕ �ð Þ (invariant) that does not depend
on t or i0.

As the number of sampled points Xtf g increases, they will look more like depen-
dent samples from ϕ �ð Þ. The burn-in of an MCMC is the number of iterations, m, to
eliminate so that the rest show a behavior of dependent samples from the stationary
distribution ϕ �ð Þ [4]. When the number of burn-in samples is m, an estimator of the
expectation of f Xð Þ is

^E f Xð Þ½ � ¼ 1
n�m

Xn
t¼mþ1

f Xtð Þ (27)

3.1.2 Hamiltonian Monte Carlo

The Gibbs sampling and the random walk Metropolis are methods whose distribu-
tions converge to the target distributions; however, complex models with a large
number of parameters may require an unacceptably long time to converge to the
target distribution. This problem is largely caused by inefficient random walks that
estimate the parameters’ space.

The Hamiltonian Monte Carlo (HCM) algorithm or hybrid Monte Carlo algorithm
eliminates random walks using momentum variables that transform the target distri-
bution sampling problem into the Hamiltonian dynamics simulation problem. The
Störmer–Verlet “leapfrog” (jump steps) integrator is used to simulate the time evolu-
tion of this system. Given a sample m, a step size ε, and a number of steps L, the HMC
algorithm consists of resampling the momentum variables rd from a standard multi-
variate normal distribution (it can be considered a Gibbs sampling update) and then
applying L “leapfrog” updates to the position and momentum variables (θ and r) to
generate a pair of proposed position and momentum variables (~θ, ~r), which are
defined as θm ¼ ~θ and rm ¼ ~r, and will be accepted or rejected according to the
Metropolis algorithm. For more details, see [5]. In general, specifying the step size (ε)
and number of steps (L) is quite difficult when the path is too short, too long, or too
straight.

This method for generating MCMC is implemented in the brms package [6] to
perform Bayesian estimation in multilevel models.

3.1.3 MCMC diagnostics

After a large enough number of iterations, the MCMC eventually converges to the
posterior distribution. A diagnostic statistic is needed to determine whether the
MCMC has already converged to the stationary distribution or more iterations are
needed. Several diagnostic statistics have been proposed, but we will use the Gelman
and Rubin and graphical diagnostics.

Gelman and Rubin diagnostic (GR) [7]. This diagnostic uses several chains,
Xi0, … , Xin�1f g, i ¼ 1,… ,m, drawn from an overdispersed density with respect to the

target density π �ð Þ. In 1992, Gelman and Rubin defined two estimators of the variance
of X when X � π θð Þ:
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1.The within-chain variance: W ¼Pm
i¼1
Pn�1

j¼0 Xij � Xi�
� �2

= m n� 1ð Þð Þ and

2.The pooled variance: V̂ ¼ n� 1ð Þ=nð ÞW þ B=n.

where B=n ¼Pm
i¼1 Xi� � X��
� �2

= m� 1ð Þ is the between-chain variance estimate, Xi� is
the mean of the chain i, i ¼ 1,… ,m, and X�� is the overall mean. The potential scale
reduction factor (PSRF) or Rhat is defined by:

R̂ ¼ V̂
W

(28)

The variance in the numerator of R̂ overestimates the target variance, while the
variance in the denominator underestimates it. This fact produces R̂ greater than 1.
One criterion for stopping the MCMC simulation is that R̂≈ 1 or R̂< 1:1. The GR and
ESS diagnostics are implemented in the coda package [8].

Graphical diagnostics. MCMC trace plots are the most widely used diagnostic
plots to determine convergence. They are a time series that shows the behavior of the
Markov chains around their state space and their achievements at each iteration.
When the visible trends show changes in the dispersion of the chain trace, the MCMC
has not reached a stationary state. In contrast, when good mixing is observed, the
MCMC sampling is said to converge to the target distribution.

3.2 Model checking and model comparison

Any Bayesian analysis should include a check of the adequacy of the fit of the
postulated model to the data. The adequacy of the fit of a model is measured by how
well the distribution of the proposed model approximates the distribution of the data;
the better the fit of the postulated model to the data, the better the model. But if the fit
is poor, it does not mean that the model is bad, but rather that it contains deficiencies
that can be improved. This section explains a model assessment method based on the
posterior predictive distribution.

Let us define the replicated data yrep as one that could be observed tomorrow if the
experiment that produced the current data y were replicated tomorrow with the same
model and the same values of θ that produced y. The distribution of yrep given the
current data y is called posterior predictive distribution and defined as [9].

p yrepjyð Þ ¼
ð
p yrepjθð Þp θjyð Þdθ (29)

If the model is accurate, that is, it has a reasonably good fit, the replicated data
should be similar to the observed data.

3.2.1 Log pointwise predictive density

The performance of the fitted model can be measured by the quality of its pre-

dictions in the new data yf . Pointwise predictions are predictions of each element yfi in
yf that are summarized using an appropriate statistic.
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Access to yf is not always easy and sometimes impossible. Instead, performance of
the fitted model can be done using the current data y. This method for calculating
predictive accuracy and to compare models is known as within-sample predictive
accuracy.

The log pointwise predictive density (lppd) of the fitted model to the observed data
and unknown parameter θ is defined as

lppd ¼ log
Yn
i¼1

p θjyi
� � ¼

Xn
i¼1

log
ð
p yijθ
� �

p θjyi
� �

dθ (30)

In general, the expected predictive accuracy of a model fitted to new data is poorer
than the expected predictive accuracy of the same model with the observed data. With
the computed lppd (clppd), we can evaluate the expression using draws from p θjyð Þ
obtained with MCMC, θs, s ¼ 1,… ,S using sufficient draws:

clppd ¼
Xn
i¼1

log
1
S

XS
s¼1

p yijθs
� �

 !
(31)

The clppd of the observed data y is an overestimate of the clppd for future data.
A second method to assess posterior predictive expectation is the adjusted within-

sample predictive accuracy that consists of a bias correction of the lppd estimated using
information criteria such as Akaike information criterion, deviance information crite-
rion, or Watanabe–Akaike information criterion.

A third method to assess posterior predictive expectation is the cross-validation,
which captures the out-of-sample predictive error by fitting the model to the training
data and assessing the predictive fit in the holdout data [9]. In model comparison, the
best model is the one with the lowest predictive error. Let us explain this method in
detail:

Leave-one-out cross-validation (LOO-CV) works with n partitions in which each
holdout set has only one observation, which generates n different inferences, ppost �ið Þ,

obtained through S posterior simulations, θis.
The Bayesian LOO-CV estimate of the predictive fit out of the sample is

lppdloo�cv ¼
Xn
i¼1

log ppost �ið Þ yi
� �

≈
Xn
i¼1

log
1
S

XS
s¼1

p yijθis
� � !

(32)

Each prediction is conditioned in n� 1 data points, which underestimates the
predictive fit. For large n, the difference is insignificant; however, for small n, a
first-order bias correction b ¼ lppd� lppd�i can be used, where

lppd�i ¼
1
n

Xn
i¼1

Xn
j¼1

log ppost �ið Þ yj
� �

≈
1
n

Xn
i¼1

Xn
j¼1

log
1
S

XS
s¼1

p yjjθis
� � !

(33)

The bias-corrected Bayesian LOO-CV is

lppdcloo�cv ¼ lppdloo�cv þ b (34)
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An estimation of the effective number of parameters is

p1oo�cv ¼ ldpp� ldpploo�cv (35)

When comparing two fitted models, we can estimate the difference in their
expected predictive accuracy by the difference in elppdloo�cv. The standard error of the
difference can be computed using a paired estimate to take advantage of the fact that
the same set of n data points is used to fit both models.

Suppose we are comparing models I and II, with corresponding fit measures
elpdIloo�cv and elpdIIloo�cv; then difference and its standard error are

elpd_diff ¼ elpdIloo�cv � elpdIIloo�cv

se_diff ¼ se elpdIloo�cv � elpdIIloo�cv

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nVn

i elpdIloo,i � elpdIIloo,i
� �r (36)

When two models are compared using the LOO-CV statistic, the one with the
lowest value of this statistic is declared the best model. If elpd_diff is used with the
loo_compare function of the brms library [6], the value of the difference is reported
in the best model accompanied by its se_diff. When comparing two models, the value
of the difference is reported in the column of the best model. There is more evidence
of the superiority of one model over another when the elpd_diff is larger than the
se_diff.

4. Multilevel model methodology

To propose a multilevel model, it is necessary to determine which variables will be
in the fixed part, which in the random part, and the cross-level interactions. This task
can be complex, so we need a strategy to build the model.

4.1 Multilevel model building strategy

In this section, we show an adaptation of the bottom-up strategy to specify a three-
level multilevel model. The bottom-up methodology is used in the frequentist
approach [3]. Our adaptation proposal tries to use the Bayesian LOO-CV from Step 2
to Step 7 for model comparison.

Step 1. Fitting the intercept-only model:

yijk ¼ ξ000 þ ν00k þ u0jk þ eijk
� �

(37)

This model gives a basal line to compare with the next models.
Step 2. Add all the level-one independent variables fixed:

yijk ¼ ξ000 þ
XP
p¼1

αpxpijk þ
XPþQ

q¼Pþ1

ξq00xqijk þ ν00k þ u0jk þ eijk
� �

(38)

It must be determined which level-one variable has a significant effect on y. We
will assume that all the P level-one variables are statistically significant. Models 38 and
37 must be compared.
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Step 3. Add the level-two independent variables fixed:

yijk ¼ ξ000 þ
XP
p¼1

αpxpijk þ
XPþQ

q¼Pþ1

ξq00xqijk þ
XM
m¼1

ξ0m0wmjk þ ν00k þ u0jk þ eijk
� �

(39)

It must be determined which level-two variable has a significant effect on y. If the
variables wm explain the variability of y, Model 39 should be superior to Model 38.
Again, we assume that all the M level-two independent variables are statistically
significant.

Step 4. Add the level-three independent variables fixed:

yijk ¼ ξ000 þ
XP
p¼1

αpxpijk þ
XPþQ

q¼Pþ1

ξq00xqijk þ
XM
m¼1

ξ0m0wmjk þ
XL

l¼1

ξ00lzlk

þ ν00k þ u0jk þ eijk
� �

(40)

It must be determined which level-three variable has a significant effect on y. If the
variables zl explain the variability of y, Model 40 should be superior to Model 39.

Steps 1–3 consider the specification of the fixed part of the three-level multilevel
model. Now we will specify the random part of the model.

Step 5. Assessing whether any of the slopes of the independent variables at level
one has a significative variance component between groups at level two or level three.

yijk ¼ ξ000 þ
XP
p¼1

αpxpijk þ
XPþQ

q¼Pþ1

ξq00xqijk þ
XM
m¼1

ξ0m0wmjk þ
XL

l¼1

ξ00lzlk

þ ν00k þ u0jk þ
XPþQ

q¼Pþ1

νq0kxqijk þ
XPþQ

q¼Pþ1

uqjkxqijk þ eijk

 ! (41)

where uqjk are the level-two residuals of the slopes of the level-one independent
variable xq, and ν’s are the level-three residuals of the slopes of the level-two
independent variable wm.

Level-one independent variables that do not have a significant slope may have a
significant random slope. This step and the next should be carefully performed,
because the model can easily become overparameterized and/or have problems such
as non-convergence or extremely slow calculations. It is advisable to assess signifi-
cance of the slopes variable by variable. Next, the model is formulated with all the
variables with significant random slopes. If Model 41 is not better than Model 40, the
procedure for specifying a three-level multilevel model stops.

Step 6. Assessing whether any of the slopes of the level-two independent variable
has a significant variance component among level-three groups.

yijk ¼ ξ000 þ
XP
p¼1

αpxpijk þ
XPþQ

q¼Pþ1

ξq00xqijk þ
XM
m¼1

ξ0m0wmjk þ
XL

l¼1

ξ00lzlk

þ ν00k þ u0jk þ
XPþQ

q¼Pþ1

νq0kxqijk þ
XPþQ

q¼Pþ1

uqjkxqijk þ
XM
m¼1

ν0mkwmjk þ eijk

 ! (42)
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where the ν’s are the level-three residuals of the slopes of the level-two indepen-
dent variable wm.

The assessment of random slopes of the level-two variables should be performed
variable by variable, and then, all these variables should be included into a model to
assess the improvement of the model with respect to Model 41.

Step 7. Adding interactions between level-three independent variables and the
level-one and level-two independent variables that have a significant slope variance in
Steps 5 and 6. This produces the full model:

yijk ¼ ξ000 þ
XP
p¼1

αpxpijk þ
XPþQ

q¼Pþ1

ξq00xqijk þ
XM
m¼1

ξ0m0wmjk þ
XL

l¼1

ξ00lzlk

þ
XM
m¼1

XL

l¼1

ξ0mlzlkwmjk þ
XPþQ

q¼Pþ1

XL

l¼1

ξq0lzlkxqijk þ
XPþQ

q¼Pþ1

XM
m¼1

ξqm0wmjkxqijk

þ
XPþQ

q¼Pþ1

XM
m¼1

XL

l¼1

ξqmlzlkwmjkxqijk þ ν00k þ u0jk þ
XPþQ

q¼Pþ1

νq0kxqijk

 

þ
XPþQ

q¼Pþ1

uqjkxqijk þ
XM
m¼1

ν0mkwmjk þ
XPþQ

q¼Pþ1

XM
m¼1

νqmkwmjkxqijk þ eijk

!
:

(43)

When explaining the variances of the random slopes in terms of contextual vari-
ables, the model automatically includes interaction terms between levels that compose
the fixed part of the model. It is recommended to add variables that explain the
variance of the random slope coefficients one by one and not as shown in this step
(this was done here to avoid specifying more equations).

When it comes to an MGLM, the methodology changes slightly; that is, instead of
defining models in terms of y, models are defined in terms of

g μijk

� �
¼ g E Yijkjν, u

� �� �
, and the residual errors at the individual level are no longer

specified. An example of this methodology for an MGLM is illustrated below.

5. Application: periodontal probing depth

In this section, an example is given in which a multilevel generalized linear model
is used for data from a cross-sectional study conducted by Romero-Castro et al. [10].
This study was carried out among adults who reside in the state of Guerrero, Mexico,
and who went to the external dental clinical service of the Dental School of the
Autonomous University of Guerrero (UAGro) in search of treatment, during the
period from August 2015 to February 2016. The protocol was approved (registration
no. CB005/2015) by the ethic committee at UAGro.

The goal of this multilevel analysis was to determine the clinical factors associated
with the depth of periodontal probing.

Thirty-two teeth were examined in each of the 116 patients. Probing pocket depth
was recorded at six sites in each tooth, that is, mesiobuccal, mid buccal, distobuccal,
mesiolingual, mid lingual, and distolingual locations of each tooth. Pocket depth was
recorded by use of Florida probe in the six sites. The response variable was probing
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depth measured in millimeters; that is, probing depth is a continuous variable and
greater than zero (≥0). The data set consisted of 18,358 observations.

The independent variables, except the age, were all dichotomous: bleeding,
mobility, plaque, calculus, insulin resistance (fasting plasma glucose > 100 mg=dL),
smoking, root remnants, and mismatched restorations, where 0 indicated absence and 1
presence.

Figure 1 and Table 1 show the three levels of the data and the variables at each
level. The first level corresponded to the probing sites where the independent vari-
ables bleeding and furcation and the response variable probing depth were measured.
Level two corresponded to the dental piece, that is, teeth that only had the indepen-
dent variable mobility, and level three corresponded to the patients, measuring the
independent variables age, plaque, calculus, insulin resistance, smoking, root remnants,
and mismatched restorations.

A first data analysis was done using a three-level multilevel model assuming a
normal distribution for the probing depth. The frequentist fit had two problems: the
residuals did not have a normal distribution and the numerical method to obtain the
estimates did not converge.

The minimum of probing depth was 0.2 mm, Q1 was 0.8 mm, Q2 was 1.2 mm, Q3
was 1.8 and the maximum was 9 mm. In addition, its distribution was asymmetric to
the right (skewness = 1.6 and kurtosis = 8.0). Therefore, it was assumed that probing
depth had gamma distribution with mean μ and variance μ2=α:

f yð Þ ¼ α=μð Þα
Γ αð Þ yα�1 exp � αy

μ

� �
(44)

It is well known that gamma regression belongs to the generalized linear model
family. But as the data studied is of hierarchical nature, the appropriate model is the

Levels Variables

Level 3: Patient Age, plaque, calculus, insulin resistance, smoke, root remnants, and
mismatched restorations

Level 2: Tooth Mobility

Level 1: Probing site Bleeding

Table 1.
Independent variables on levels.

Figure 1.
Multilevel structure of the probing depth of 1 tooth out of 32 teeth for each patient.
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multilevel generalized linear model. Given that the response variable is non-negative,
the link function used was the natural logarithm to get expected probing depth greater
than zero.

5.1 Bayesian estimation

Likelihood: It was assumed that probing depth follows a gamma distribution.
Prior distribution: It was defined as a product of marginal prior distributions for

each component of β in Model 23. β is composed by the overall mean, main effects,
and interactions: ξ000, ξq00, ξ0m0, ξ00l, ξ0ml, ξq0l, ξqm0, ξqml, and all of them had
N 0, 102� �

prior. brms function uses a special parameterization for matrices D and G in
Eq. (21). This parameterization is G ¼ F σkð ÞΩkF σkð Þ, where F σkð Þ is a diagonal matrix
with diagonal elements σk [6]. Priors for D and G needed only to specify priors for σk
and Ωk, which were σk � HalfCauchy 10ð Þ and Ωk � CorrLKJ 1ð Þ. Finally, the shape
hyper-parameter was shape � Gamma 0:01,0:01ð Þ.

The analysis of this model was performed with the brms library [6, 11] that uses the
probabilistic programming language Stan [12] in the environment of R Software 4.0.5.

Simulation: All the MCMC had four chains; the number of iterations and burn-in
was not the same for the models studied, but all used a final sample of 4000.

The MCMC of the models (37, 38 and 39), that is, null, with level-one, and with
level-two variables, were obtained using 4000 iterations and a burn-in of 3000.
Model 40 used 5000 iterations and a burn-in of 4000, Model 41 used 7000 iterations
and a burn-in of 6000, and Model 43 used 8000 iterations and a burn-in of 7000.

Bayesian estimators: The mean of the posterior distribution was used as the
Bayesian estimator; this is related with minimizing the squared loss function.

Models studied:We studied a three-level multilevel generalized linear model,
where i represented the level-one units, j the level-two units, and k the level-three
units. Although the values of the Rhats are not shown, all the MCMC of the studied
models converged since all the Rhats were at most 1.01.

Step 1. The null model is

log μijk

� �
¼ ξ000 þ ν00k þ u0jk

� �
(45)

Columns 2 and 3 of Table 2 show the Bayesian estimations of the null model. The
credible intervals did not contain zero, so that the variances at the tooth level and at
the patient level were significant. This supports the use of MGLM.

Step 2. The model with level-one variable, bleeding, is

log μijk

� �
¼ ξ000 þ α1bleeding1ijk þ ν00k þ u0jk

� �
(46)

The Bayesian estimations of the model showed that the bleeding coefficient was
significant (columns 4 and 5 of Table 2). The comparison of Models 45 and 46, using
LOO-CV, indicates that the model including the level-one variables was better (before
the last row and column 5 in Table 2).

Step 3. The model with level-two variable, mobility, is

log μijk

� �
¼ ξ000 þ α1bleeding1ijk þ ξ010mobility1jk þ ν00k þ u0jk

� �
(47)
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Mobility fixed effect was not significant (columns 6 and 7 of Table 2); however, it
was retained in the model because it was the only level-two variable and to get
estimations of the effect of the third-level independent variables adjusted for the
effect of level-two variable. The LOO-CV criterion indicated that this model was
slightly better (before the last row and column 7 in Table 2).

There are seven level-three contextual variables (Table 1); before specifying the
model containing only the significant level-three variables, a forward selection of
variables was performed to avoid having an overparameterized model. Table 3 shows
the variable selection procedure where each model contains the level-one variable,
bleeding, and the level-two variable, mobility. The LOO-CV model comparison indi-
cates that the model that includes calculus and smoking variables is the best model.

Step 4. The model with level-three variables, calculus and smoking, is

log μij∣k

� �
¼ ξ000 þ α1bleeding1ijk þ ξ010mobility1jk

þξ001calculus1k þ ξ002smoking2k þ ν00k þ u0jk
� � (48)

Columns 8 and 9 in Table 2 show that the variable smoking was not significant;
however, the model that contains smoking is better than the others. Model 48 was
better than Model 47 (before the last row and column 9 in Table 2).

Step 5. The model with a random slope for the variable bleeding.
In Eq. (49), a random slope for the variable bleeding is added that varies at patient

and teeth levels; that is, the relationship between probing depth and bleeding varied
between patients and between teeth.

log μij∣k

� �
¼ ξ000 þ α1bleeding1ijk þ ξ010mobility1jk
þξ001calculus1k þ ξ002smoking2k
þν10kbleeding1ijk þ u1jkbleeding1ijk þ ν00k þ u0jk

� � (49)

Finally, in the next model interaction, terms were added based on signs that occur
in periodontal disease.

Columns 10 and 11 of Table 2 show that the random slope of bleeding was
significant at patient and teeth levels. Again, this model was compared with Model 48
using the LOO-CV criterion, and the best model was Model 48, which contained
random slopes (before the last row and column 11 in Table 2).

Step 7. The model with cross-level interactions is

log μij∣k

� �
¼ ξ000 þ α1bleeding1ijk þ ξ010mobility1jk
þξ001calculus1k þ ξ002smoking2k þ ξ101bleeding1ijkcalculus1k

þν10kbleeding1ijk þ u1jkbleeding1ijk þ ν00k þ u0jk
� �

(50)

Eq. (50) has an interaction between the level-three variable calculus with the level-
one variable bleeding. Columns 12 and 13 of Table 2 show that the interaction was not
significant (its credible interval contained zero). Finally, the comparison of models
indicated that the best model was Model 49 corresponding to the bleeding random
slope model (the last row and column 13 in Table 2). So, this model is interpreted.

Figure 2 shows the posterior predictive fit of Model 49 to the data. The replicated
data are plotted in a light color, and the observed data are plotted in black. As both
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curves agree very well, the posterior predictive density fits very well with the distri-
bution of the probing depth. Both distributions are clearly not symmetric, and they
seem to follow a gamma distribution. Definitely, normal distribution was not an
appropriate assumption for probing depth. In conclusion, the random slope
model (49) had a good fit.

Model elpd_diff se_diff

Comparison of models with one level-three independent variable.

ξ001calculus1k 0.0 0.0

ξ003insulin resistance3k �0.1 1.6

ξ004root remnants4k �0.8 1.5

ξ005plaque5k �1.5 1.6

ξ002smoking2k �1.7 1.6

ξ006age6k �1.8 1.5

ξ007mismatched restorations7k �2.5 1.5

Comparison of models with two level-three independent variables.

ξ001calculus1k þ ξ002smoking2k 0.0 0.0

ξ001calculus1k þ ξ003insulin resistance3k �2.1 1.5

ξ001calculus1k þ ξ006age6k �2.6 1.5

ξ001calculus1k þ ξ005plaque5k �2.9 1.5

ξ001calculus1k þ ξ007mismatched restorations7k �4.4 1.5

ξ001calculus1k þ ξ004root remnants4k �5.2 1.5

Comparison of the best models with one and two level-three independent variables

ξ001calculus1k þ ξ002smoking2k 0.0 0.0

ξ001calculus1k �2.6 1.5

Comparison of models with three level-three independent variables

ξ001calculus1k þ ξ002smoking2k þ ξ004rootremnants4k 0.0 0.0

ξ001calculus1k þ ξ002smoking2k þ ξ006age6k �0.2 1.6

ξ001calculus1k þ ξ002smoking2k þ ξ003insulin resistance3k �0.6 1.5

ξ001calculus1k þ ξ002smoking2k þ ξ005plaque5k �1.2 1.6

ξ001calculus1k þ ξ002smoking2k þ ξ007mismatchedrestorations7k �1.6 1.5

Comparison of the best models with two and three level-three independent variables

ξ001calculus1k þ ξ002smoking2k 0.0 0.0

ξ001calculus1k þ ξ002smoking2k þ ξ004root remnants4k �2.9 1.5

*All the models have the structure: log μij∣k

� �
¼ ξ000 þ α1bleeding1ijk þ ξ010mobility1jk þ var1

þvar2þ var3þ ν00k þ u0jk
� �

, where var1 is the independent variable that produces the best fit among all the seven
models with one independent variable. Similarly, var2 is the second independent variable that produces the best fit among
all the six models, having var1 in common, with two independent variables, and so on for var3.

Table 3.
Forward variable selection for the level-three variables*.
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Figure 3 shows the histograms of the empirical posterior distributions of the
parameters. Finally, the MCMC of Model 49 converged since all the Rhats were at
most 1.01, and the trace plots of Figure 3 show that the chains mix well.

5.2 Discussion

In this example of probing depth, the variance at the tooth level (1.59) and the
variance at the patient level (1.49) were significant (Table 2); that is, the mean of
the dependent variable varied between teeth nested in patients, and the ICC at the
tooth level (0.45) was higher than that at the patient level (0.42); that is, there was
greater dependence between the measurements of the probing sites of different
teeth than between measurements of the probing sites of different patients. This
finding probes that using a multilevel model for these probing depth data was better
than using a single-level model, and the former produced more accurate estimates
and credible intervals. In addition, the random slope of bleeding was significant
between teeth; that is, there was a positive relationship between probing depth and
bleeding that varied between teeth in the patients (probing depth between teeth
increased by an average of 1.28 mm if the site was bleeding). On the other hand,

Figure 2.
Posterior predictive density of Model 49 with a random slope for bleeding between teeth and patient.
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Figure 3.
Posterior distribution of parameters of Model 49 and time series plots showing the MCMC output.
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calculus is a form of hardened dental plaque. In the random slope model (Eq. (49)),
bleeding and calculus were significant parameters that estimated that, on average,
the depth of bleeding probing sites was 1.14 mm greater than the sites that did not
exhibit bleeding. On average, the probing depth of patients who had calculus on any
of the teeth was 1.11 mm greater than of patients who did not have calculus. The
plausible intervals for bleeding and calculus were 1:07,1:22ð Þ and 1:03,1:20ð Þ,
respectively.

In the random slope model, mobility and smoking were not significantly
associated with probing depth, but if we decide to give them an interpretation, we
can say that, on average, the probing depth of patients who presented dental mobil-
ity was 1.03 mm greater than the probing depth of patients who did not have dental
mobility. Similarly, smoking patients had, on average, a probing depth 0.98 mm
greater than that in non-smoking patients. Different results and interpretations
could be obtained from measuring the independent variables at levels other than
those given in this example. Specifically, the variable calculus could have been
measured at the tooth level. Before fitting the Bayesian multilevel model, we tried to
estimate the multilevel model using restricted maximum likelihood; however, the
numerical method did not converge. More practical examples using the R Software
can be found at [13].

6. Conclusions

In certain clinical research designs, the data have a nested structure (in other
words, a hierarchical structure). The data that make up a nested structure are
modeled using multilevel models because they simultaneously estimate the effects of
the variables at the individual level and the effects of the contextual variables or
variables at the group level. A significant ICC determines whether it is necessary to
use a multilevel model. If the ICC is not significant, an ordinary regression model is
sufficient to model the nested data. A disadvantage of multilevel models is that they
easily contain a large number of parameters to be estimated. On the other hand,
modeling the data levels separately incurs a large type 1 error even when the ICC is
small. This fact causes the inferences to be incorrect. The maximum likelihood
estimation of the parameters of a multilevel model requires that the assumptions of
the distribution are satisfied. More general methods such as Bayesian estimation
make it possible to estimate the parameters without requiring that the assumptions
of the multilevel models be satisfied. In addition, the Bayesian estimation is robust to
a small sample size, a situation that is more likely to occur in higher level observa-
tions, and in general, it is able to deal with technical problems such as multicol-
linearity of the data.

In this chapter, we adapted the bottom-up strategy to specify a multilevel
model in the frequentist approach to the Bayesian approach. Our proposal was to
use the Bayesian LOO-CV between the different steps for the comparison of
models. Deviance information criterion (DIC) could also be used instead of Bayesian
LOO-CV.

Two factors had a significant association with probing depth. Bleeding (site-level
covariate) and dental calculus (patient-level covariate). At the tooth level, a factor
associated with the probing depth was not found.

The methodology set out in this chapter can be applied to other areas of the health
sciences with data with a hierarchical structure and numerical response variable.
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Chapter 6

Spatial Modeling in Epidemiology
María Guzmán Martínez, Eduardo Pérez-Castro,
Ramón Reyes-Carreto and Rocio Acosta-Pech

Abstract

The objective of this chapter is to present the methodology of some of the models
used in the area of epidemiology, which are used to study, understand, model and
predict diseases (infectious and non-infectious) occurring in a given region. These
models, which belong to the area of geostatistics, are usually composed of a fixed part
and a random part. The fixed part includes the explanatory variables of the model and
the random part includes, in addition to the error term, a random term that generally
has a multivariate Gaussian distribution. Based on the random effect, the spatial
correlation (or covariance) structure of the data will be explained. In this way, the
spatial variability of the data in the region of interest is accounted for, thus avoiding
that this information is added to the model error term. The chapter begins by intro-
ducing Gaussian processes, and then looks at their inclusion in generalized spatial
linear models, spatial survival analysis and finally in the generalized extreme value
distribution for spatial data. The review also mentions some of the main packages that
exist in the R statistical software and that help with the implementation of the men-
tioned spatial models.

Keywords: Geostatistic, gaussian process, spatial GLM, spatial survival analysis,
spatial extremes

1. Introduction

The term spatial statistics is used to describe a wide range of statistical models and
methods for the analysis of geo-referenced data [1]. Its rapid use has been increasing
in various fields of science, such as biology, image processing, environmental and
earth sciences, ecology, epidemiology, agronomy, forestry, among others [2]. In epi-
demiology, spatial statistics are used to study the occurrence of health-disease events
or deaths in a region of interest. It is now known that several public health problems
tend to exhibit spatial dependence (spatial autocorrelation, spatial variability), and
that sometimes these problems are related to climatic factors that are generally of a
spatially continuous nature or with factors specific to the study region. The use of
classical statistical techniques to model spatial data generally leads to an
overestimation of model parameters [1]; and although they may eventually help, these
models, lacking adequate structure, will not be able to model the spatial variability of
the data; valuable information that will be sent to model error and cannot be used to
explain the nature of the phenomenon under study.
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Recent studies have shown that spatial models can help identify spatial patterns in
infectious and non-infectious diseases. These models also help determine the factors
that favor them, such as sociodemographic, environmental, etc.; as well as generate
maps to visualize the distribution of morbidity or mortality of infectious and non-
infectious diseases, and identify critical points in the spatial distribution [3, 4].

Generalized linear spatial models (GLSM), which are a particular class of
multilevel or hierarchical models, have been used for the study of certain diseases
(infectious and non-infectious). The estimation of GLSM parameters can be done
under the frequentist or Bayesian approach [1], some examples are given below. A
spatial Poisson regression model, where parameter estimation was performed under
the frequentist approach, was used to study esophageal cancer incidence rates [5] and
the sociodemographic risk factors for diabetes [6]. Under the Bayesian approach,
these models have been used to study the relationship between Visceral Leishmaniasis
incidence rates and climatological variables [7], as well as to identify risk factors
associated with nontuberculous mycobacterial infections [8]. Spatial Binomial regres-
sion models, under the Bayesian approach, have been used to describe patterns of
occurrence of dengue and chikungunya [9], and filariasis [10]. Under the classical
approach, spatial binomial regression models have been used to investigate environ-
mental and sociodemographic factors associated with leptoserosis disease [11]; are also
used to study risk factors associated with HIV infection among drug users [12].

On the other hand, survival analysis under the spatial approach has also received
great attention in recent years, because geographic location can play a relevant role in
predicting disease survival [13]. Fragility models (spatial survival models) can be an
option to analyze the heterogeneity of the data when it cannot be explained by the
covariates in a classical survival model. In spatial survival models, in addition to
covariates, a random effect known as frailty is added, which modifies the hazard
function of an individual, or of spatially correlated individuals [14]. Generally, the
random factor, which is assigned a multivariate normal distribution, plays an impor-
tant role in modeling survival times; since in this term the differences that exist in the
socioeconomic level, access to medical care, population density, weather conditions,
among others, can be taken into account. It is worth mentioning that spatial survival
models have been applied in studies such as: recovery time in patients with COVID-19
[15], hospitalization time in dengue patients [16], HIV/AIDS survival [17] and breast
cancer [18] to name a few. In all these works, the estimation of the model parameters
was under the Bayesian approach.

Extreme events in public health (for example, the saturation of hospitals) are gen-
erally analyzed through measures of central tendency or time series, however, these
approaches are not the most appropriate to understand extreme events (unusual
events); that when they occur they strongly impact the health care network, thus often
collapsing the system [19]. The extreme value theory (EVT) aims to study the proba-
bility of occurrence of extreme events (values) of a phenomenon of interest over time,
generally these values only occur when they exceed a threshold. Although the applica-
tions of EVT in public health are scarce, if they exist at all; an application was presented
when predicting extreme events of annual seasonal influenza mortality and the number
of emergency department visits in a network of hospitals [20], another application was
presented when modeling elevated cholesterol levels using the spikes-over-threshold
model [21]. In both cases, the parameters were estimated under the frequentist
approach. Given the advantages they have with the application of a spatial model, it
would be convenient to study the extreme events of the health sector in space, for
which there is already a methodology known as spatial modeling of extreme values [22].
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The objective of this work is to provide a general review of the theoretical frame-
work of spatial statistical models developed in the area of geostatistics, which have
been used in the area of epidemiology to analyze, model and predict the phenomena
of interest. Some of the packages that exist in the statistical software R [23] to carry
out said spatial analyzes are also mentioned.

2. Gaussian processes

A stochastic processW tð Þ, t∈T is a collection of random variables. That is, for each
t∈T,W tð Þ is a random variable [24]; if the stochastic process is indexed by a coordinate
space s∈A⊂d, then the stochastic process is called a random field [25]. A realization
of the random field,W sð Þ, s∈A, is given by W s1ð Þ ¼ y s1ð Þ, … ,W snð Þ ¼ y snð Þð Þ.
Generally from the sample y s1ð Þ, … , y snð Þ one tries to know the characteristics of the
processW in si, i ¼ 1, … , n; and with this information to make inference of the process
W sð Þ on allA⊂d, a convex set where s varies continuously. To the geo-referenced data
y s1ð Þ, … , y snð Þ is often referred to as geocoded, geostatistical data or point-referenced
data. The study of this type of data is known as geostatistics, which is a part of spatial
statistics that studies phenomena with continuous variation in space, a convex region
denoted A [26].

A process W is second order stationary if it has finite variance, constant mean and
its covariance function depends only on distance. Having second-order stationarity in
a stochastic process implies having intrinsic stationarity, i.e., second-order stationarity
is stronger than intrinsic stationarity. On the other hand, weak stationarity and
second-order stationarity are equivalent in the space [27]. The following defines what
is known as a Gaussian process (field).

Definition 1. A stochastic process W sð Þ : s∈A⊂2� �
, where s varies continuously

on a fixed subset A content in 2, is a Gaussian process if for any collection of
locations s1, … , sn with si ∈A, the joint distribution of W s1ð Þ, … ,W snð Þð Þ is
multivariate Gaussian [1].

What is known as a stationary Gaussian process is defined below.
Definition 2. A Gaussian process W sð Þ : s∈A⊂2� �

, is stationary if ∀s∈A:

E W sð Þð Þ ¼ 0, (1)

Var W sð Þð Þ ¼ σ2, (2)

and its correlation function depends only on the distance, i.e.

Corr W sð Þ,W s0ð Þð Þ ¼ ρ hð Þ, (3)

where h ¼ s� s0k k is the Euclidean distance that exists between s and s0.
That is, the mean and variance of W sð Þ are constant and its correlation function

only depends on the distance, so that

W � N 0, σ2ρ hð Þ� �
(4)

Given W ¼ W1, … ,Wnð Þ, where Wi ¼ W sið Þ, the distribution of W is normal
multivariate NMð Þ, i.e.
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W � NM 0, σ2R
� �

, (5)

where the i, jð Þ element of R is given by Rð Þij ¼ Corr W sið Þ,W s j
� �� � ¼ ρ hij

� �
, hij ¼

si � s j
�� �� is the Euclidean distance between si and s j. Note that the covariance of the
Gaussian process is given by Cov Wð Þ ¼ σ2R.

In this way, the correlation structure of a stationary Gaussian process can be
studied through the ρ hð Þ function. Several parametric expressions for this function are
shown in the Table 1. In these correlation functions, ϕ>0 is a range parameter
controlling the spatial decay over distance; h ¼ s� s0k k is the Euclidean distance
between s and s0 and h≥0; Γ �ð Þ denotes the gamma function. κ>0, in theory of spatial
extremes Jκ �ð Þ and Kκ �ð Þ are the Bessel and modified Bessel function of the third kind
of order κ [28], while in the spatial survival analysis and generalized linear models
Kκ �ð Þ is the modified Bessel function of the second kind of order κ [29]; κ is a shape
parameter that determines the analytic smoothness of the underlying process W [1].
In the powered exponential correlation function 0< κ≤ 2 and in the Bessel correlation
function κ≥0.

3. Gaussian spatial model

Generally from process W sð Þ : s∈A⊂2� �
, there is a noisy version, i.e., a set of

observation y s1ð Þ, … , y snð Þ of the random variables Y s1ð Þ, … ,Y snð Þ, si ∈A. In this way
Y sð Þ is a measurement process of W sð Þ, s∈A [1, 26].

Family Correlation function

Exponential ρ h,ϕð Þ ¼ exp � h
ϕ

� �

Gaussian ρ h,ϕð Þ ¼ exp � h2

ϕ2

� �

Spherical
ρ h,ϕð Þ ¼ 1� 1:5 h

ϕ

� �
þ 0:5 h

ϕ

� �3

Circular ρ h,ϕð Þ ¼ 1� 2
π a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
þ sin �1 ffiffiffi

a
p� �

Cubic
ρ h,ϕð Þ ¼ 1� 7 h

ϕ

� �2
� 35

4
h
ϕ

� �3
þ 7

2
h
ϕ

� �5
� 3

4
h
ϕ

� �7� �

Wave ρ h,ϕð Þ ¼ ϕ
h sin h

ϕ

� �

Matérn ρ h,ϕ, κð Þ ¼ 1
2κ�1Γ κð Þ

h
ϕ

� �κ
Kκ

h
ϕ

� �

Powered exponential ρ h,ϕ, κð Þ ¼ exp � h
ϕ

� �κh i

Cauchy
ρ h,ϕ, κð Þ ¼ 1þ h

ϕ

� �2� ��κ

Stable ρ h,ϕ, κð Þ ¼ exp � h
ϕ

� �

Bessel ρ h,ϕ, κð Þ ¼ 2ϕ
h

� �κ
Γ κ þ 1ð ÞJκ h

ϕ

� �

Table 1.
Models for the spatial correlation structure of a spatial process.
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The Gaussian geostatistical model, in the absence of independent variables, is
given by

Y sð Þ ¼ μþW sð Þ þ Z sð Þ, s∈A, (6)

where μ is a constant mean effect,W sð Þ is a stationary Gaussian process (1) and Z sð Þ
is the error term in the model with Z sð Þ � N 0, τ2ð Þ; τ2 is the nugget effect variance. Z sð Þ
is known as measurement error, micro-scale variation or a non-identifiable combination
of the two [22, 26].

Thus for a realization of a stationaryGaussian spatial process,Y sð Þ ¼ Y s1ð Þ, … ,Y snð Þð Þ,
si ∈A and i ¼ 1, … , nwith

Y sið Þ ¼ μþW sið Þ þ Z sið Þ, (7)

where

• W sið Þ � N 0, σ2ð Þ.

• Z sið Þ are mutually independent and identically distributed, Z sið Þ � N 0, τ2ð Þ, i ¼
1, … , n.

• Z sið Þ are independent of the process W �ð Þ [26].

• Conditional on W �ð Þ, random variables Y sið Þ, i ¼ 1, … , n, are mutually
independent with normal distribution,

Y sið Þ∣W �ð Þ � N μþW sið Þ, τ2� �
: (8)

The joint distribution of Y sð Þ is normal multivariate given by

Y sð Þ � NM μ1, σ2R ϕð Þ þ τ2I
� �

, (9)

where

• μ is the mean of the Gaussian process W �ð Þ and 1 is a vector of dimension n� 1.

• σ2 is the variance of the process W �ð Þ.

• R ϕð Þ is a matrix of correlations of dimension n� n, whose elements given by

R ϕð Þð Þij ¼ ρY hij,ϕ
� �

, (10)

where hij ¼ si � s j
�� �� is the euclidean distance that exists between si and s j that are

in A, and ϕ is a spatial scale parameter.

• τ2 is the variance of Z and I is the identity matrix of dimension n� n.

• Note that the covariance of the Y sð Þ is given by Cov Y sð Þð Þ ¼ σ2R ϕð Þ þ τ2I.

When Y sð Þ can be explained by a set of covariates that also depend on the location,
X sð Þ ¼ X1 sð Þ, :… ,Xp sð Þ� �

, then the model is given by

145

Spatial Modeling in Epidemiology
DOI: http://dx.doi.org/10.5772/intechopen.104693



Y sð Þ ¼ X sð Þβ þW sð Þ þ Z sð Þ, s∈A, (11)

with

Y sð Þ � NM X sð Þβ, σ2R ϕð Þ þ τ2I
� �

, (12)

where β ¼ β0, … , βp
� �

is a vector of unknown regression parameters; in this case

also Cov Y sð Þð Þ ¼ σ2R ϕð Þ þ τ2I. The unknown parameters in this model are β, σ2, τ2 and
ϕ. The parameters of the Models (4) y (5) can be estimated under the classical approach
(maximum likelihood or maximum restricted likelihood) and under the Bayesian sta-
tistical approach [1, 30]. Among the most important points in geostatistics is the
modeling of the covariance structure of the spatial process and the identification of the
interpolation method that will be used to perform the prediction of the process in the
non sampled points in A. Regarding the last point, [31] made a compilation of the most
used criteria for assessing the performance of the spatial interpolation method.

The geoR package contains the likfit function that allows to estimate, under
Maximum likelihood (ML) or restricted maximum likelihood (REML), the
parameters of a Gaussian process [32]. The function likfit estimates the coefficients of
the models (4) y (5).

The function krige.cov of the same package helps to perform the spatial prediction
of a Gaussian process using simple kriging (SK), ordinary kriging (OK), external
trend kriging (KTE) and universal kriging (UK) [33]. The package glmmfields allows
to fit Gaussian models [34] under the Bayesian approach.

On the other hand, with the function glmmfields of the package glmmfields, the
coefficients of the models (4) and (5) can be estimated under the Bayesian approach.
The function glmmfields reports the posterior median of the parameters with their
respective 95% credible intervals; this function, also reports the values of the Gelman
and Rubin statistic [35], where values less than 1:20would indicate convergence of the
chain.

4. Generalized linear spatial models

Generalized linear models (GLM) [36, 37] are very useful when the response
variable does not follow a normal distribution. The assumptions of GLMs are

1.1. Yi, i ¼ 1, … , n are mutually independent with expectations μi.

2.The μi are specified by g μið Þ ¼ ηi, where g �ð Þ is a known link function.

3.The linear predictor is given by ηi ¼ x0iβ, where xi is a vector of explanatory
variables associated with the response Yi, and β is a vector of unknown
parameters.

The Yi follow a common distributional family, indexed by their expectations μi,
and possibly by additional parameters common to all n responses.

An important extension of this basic class of models is the generalized linear mixed
model (GLMM) [38], in which Y1, … ,Yn are mutually independent conditional on the
realized values of a set latent random variables (random effects) U1, … ,Un and the
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conditional expectations are given by g μið Þ ¼ Ui þ x0iβ. A generalized linear spatial
model is a GLMM in which the U1, … ,Un are derived from spatial process. Diggle and
Ribeiro in 2007 [1], refers to these models as generalized linear geostatistical model
(GLGM). In accordance with Diggle et al. [39], the assumptions of the generalized
linear spatial models are as follows

1.W is a stationary Gaussian process, W � N 0, σ2ρ hð Þð Þ, (Eq. (1)).

2.Conditionally an W, the random variables Yi, i ¼ 1, … , n are mutually
independent, with distributions f i yjW sið Þð Þ ¼ f y;Mið Þ, specified by the values of
the conditional expectations Mi ¼ E YijW sið Þ½ �.

3.g Mið Þ ¼ x0
iβ þW sið Þ for some known link function g and explanatory variable

xi ¼ x sið Þ.

Then Mi ¼ g�1 x0
iβ þW sið Þ� �

, where the linear predictor would be given by ηi ¼
x0
iβ þW sið Þ.
Taking Diggle and Tawn as a precedent (1998) [39]; Jing and De Oliveira in 2015

[40] state the GLSM as follows

Yi∣Wi � p �jμið Þ: (13)

where

W � NM Xβ, σ2R
� �

(14)

R is of the same form as the Gaussian process (2)

• Y sið Þ : i ¼ 1, … , n are conditionally independent givenWwith pdfs or pmfs p �jμið Þ.

• E YijWið Þ ¼ μi and g �ð Þ is a known one-to-one link function.

• X ¼ 1,x1, … ,xp
� �

is a known n� pþ 1ð Þ design matrix assumed of full-rank,

with 1 a vector of n� 1 of ones and x j ¼ x j s1ð Þ, :… , x j snð Þ� �0, where x j sið Þ is the
value of the j-th covariate of the i-th sampling location, and β ¼ β0, β1, … , βp

� �
is

the vector of unknown regression parameters.

Since g is the link function then g μið Þ ¼ ηi and μi ¼ g�1 ηið Þ, i ¼ 1, … , n, where the
linear predictor is given by ηi ¼ Wi, then μi ¼ g�1 Wið Þ. The unknown parameters in
GLSM are β, σ2 and ϕ.

The two most widely used GLSM for spatial count data are the Poisson and
Binomial spatial models [39, 41].

The geoCount [40] package implements the GLSM; the function runMCMC is used
to generate posterior samples of the Gaussian process and the GLSM parameters, with
which the parameter estimates and their credibility intervals can be obtained.

In the package geoRglm [42, 43], the functions glsm.krige, pois.krige and binom.krige
implement the GLSMs, in this case, parameter estimation is performed under the
frequentist approach. While the functions krige.bayes, pois.krige.bayes and binom.krige.
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bayes, which also implement the GLSMs, estimate the parameters under the Bayesian
approach. These functions report estimates of β, σ2 and ϕ.

The glmmfields package implements the Gamma, Poisson, Negative Binomial,
Binomial and Lognormal models using the function glmmfields [34], parameter esti-
mation is performed under the Bayesian approach. The function glmmfields reports the
parameter estimates using the posterior median with their respective 95% percentile
credible intervals; it also reports the Gelman and Rubin diagnostic values.

5. Spatial survival models

Generally, survival analysis models are specified through their hazard function,
h tð Þ, whose intuitive interpretation is that h tð Þδt is the conditional probability that a
patient will die in the interval t, tþ δtð Þ, given tat they have survived until time t. The
most widely used approach to modeling h tð Þ, at least in medical applications, is to use
a semi-parametric formulation [44]. In this approach, the hazard for the i-th patient is
modeled as

h tið Þ ¼ h0 tið Þ exp x0iβ
� �

, (15)

where xi is a vector of explanatory variables for patient i and h0 tð Þ is an unspecified
baseline hazard function. This is known as a proportional hazards (PH) model,
because for any two patients i and j, h tið Þ=h t j

� �
does not change over time [1].

Another key idea in survival analysis is frailty, this corresponds to the random
effects term used; time-to-event data will be group into strata, such as clinical sites,
geographic regions, etc. This gives rise to mixed models, which include a random
effect (the frailty) that correspond to a stratum’s overall health status [30]. To illus-
trate, let tij be the time to death or censoring for subject j in stratum i, j ¼ 1, … , ni,
i ¼ 1, … ,m. Let xij be a vector of individual specific covariates, then

h tij, xij
� � ¼ h0 tij

� �
exp x0

ijβ þWi

� �
, (16)

where Wi es the stratum-specific frailty term, designed to capture differences
among strata; strata are typically denoted by si, i ¼ 1, … ,m, so si denotes the location
of the i-th patient and Wi ¼ W sið Þ. It can be assumed that the Wi are independent
identical distribution (iid), i.e.

Wi � N 0, σ2
� �

: (17)

But it can also be assumed that Wi arises from a Gaussian process, i.e. if
W ¼ W1, … ,Wmð Þ, then

W � NM 0, σ2R ϕð Þ� �
: (18)

This way, suppose subjects are observed at m distinct spatial locations s1, … , sm ∈A.
Let tij be a random event time associated with the j-th subject in si, assume the survival
time tij lies in the interval aij, bij

� �
, i ¼ 1, … ,m, j ¼ 1, … , ni; and xij be a related p-

dimensional vector of covariates, then are defined proportional hazard (PH) frailty
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models, accelerated failure time (AFT) frailty models and proportional odds (PO)
frailty models.

PH frailty models are the extensions of the population hazards model which is best
known as the Cox model [44] a widely pursued model in survival analysis. PH frailty
models extends the Cox model such that the hazard of an individual depends in
addition on an unobserved random variable W, then introducing an additive frailty
term Wi for each individual in the exponent of the hazard function as follows

h tij,xij
� � ¼ h0 tij

� �
ex

0
ijβþWi : (19)

The corresponding survival function and the density are given by

S tij,xij
� � ¼ S0 tij

� �ex0ijβþWi

,

f tij,xij
� � ¼ ex

0
ijβþWiS0 tij

� �ex0ijβþWi�1 f 0 tij
� �

,

(20)

where S0 �ð Þ, f 0 �ð Þ and h0 �ð Þ are the baseline survival function, baseline density and
baseline hazard function assumed to be unique for all individual in the study popula-
tion respectively.

Accelerated failure time frailty model extends the AFT model such that the hazard
of an individual depends in addition on an unobserved random variable W [45–47].
Introducing an additive frailty term Wi for each individual in the exponent of the
hazard function it becomes:

h tij,xij
� � ¼ h0 ex

0
ijβþWitij

� �
ex

0
ijβþWi : (21)

The survival function and density are given by

S tij,xij
� � ¼ S0 ex

0
ijβþWitij

� �
,

f tij,xij
� � ¼ ex

0
ijβþWi f 0 ex

0
ijβþWitij

� �
,

(22)

where S0 �ð Þ, f 0 �ð Þ and h0 �ð Þ are the baseline survival function, baseline density and
baseline hazard function assumed to be unique for all individual in the study popula-
tion respectively.

Finally, proportional odds frailty model is given by

h tij,xij
� � ¼ h0

1

1þ e�x0
ijβ�Wi � 1

h i
S0 tij
� � : (23)

The survival function and density are given by

S tij,xij
� � ¼ S0 tij

� �
e�x0

ijβ�Wi

1þ e�x0ijβ�Wi � 1
� �

S0 tij
� � ,

f tij,xij
� � ¼ f 0 tij

� �
e�x0ijβ�Wi

1þ e�x0
ijβ�Wi � 1

� �
S0 tij
� �h i2 ,

(24)
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where S0 �ð Þ, f 0 �ð Þ and h0 �ð Þ are the baseline survival function, baseline density and
baseline hazard function assumed to be unique for all individual in the study popula-
tion respectively.

In the frailty models, it is possible to deal with left, right and interval censoring of
the data. Among the packages that exist in the R statistical software to perform spatial
survival analysis is the spBayesSurv package [48]; the function survregbayes estimates
the parameters of the PH, AFT and PO spatial models under the classical and Bayesian
approach; also reports the posterior mean and median of the regression coefficients
and of the parameters of the covariance function of the Gaussian process, σ2 and ϕ,
with their 95% credible intervals. The spBayesSurv package uses the powered expo-
nential function (Table 0) to model the spatial correlation of the data.

Also in R, there is the spatsurv package [49], which implements the function survspat
that fits parametric PH spatial survival models. This function reports the estimates and
posterior median of the parameters β, σ2 and ϕ with the respective credibility intervals.

6. Spatial generalized extreme value model

According to Coles (2001) [50], given Y1, … ,Yn a sequence of independent ran-
dom variables with a common distribution function F with Mn ¼ max Y1, … ,Ynf g, if
there a sequences of constants an >0 and bn such that

P Mn � bnð Þ=an ≤ zð Þ ! G zð Þ, (25)

when n ! ∞, for a non-degenerative distribution function G, then G is a member
of the generalized extreme value (GEV) distribution family

G y; η, τ, ξð Þ ¼ exp � 1þ ξ
y� η

τ

� �h i�1
ξ

� �
, (26)

defined on z : 1þ ξ z� ηð Þ=τ>0f g, where �∞< η<∞, τ>0 and �∞< ξ<∞.
Davison et al. in 2012 [51], describe spatial GVE as follows. For each s in 2, suppose

that Y sð Þ is GEV distributed whose parameters μ sð Þ, σ sð Þ and ξ sð Þ vary smoothly for s in
2 according to a stochastic process W sð Þ. We assume that the processes for each GEV
parameters are mutually independent Gaussian processes [52]. Then

η sð Þ ¼ f η s; βη
� �þWη s; ση,ϕη, κη

� �
,

τ sð Þ ¼ f τ s; βτð Þ þWτ s; στ,ϕτ, κτð Þ,
ξ sð Þ ¼ f ξ s; βξ

� �þWξ s; σξ,ϕξ; κξ
� �

,
(27)

where f η, f τ and f xi are deterministic functions depending on a regression
parameters βη, βτ and βξ respectively. While Wη, Wτ and Wξ are a zero mean
stationary Gaussian process with correlation function ρ h,ϕη, κη

� �
, ρ h,ϕτ, κτð Þ and

ρ h,ϕξ, κξ
� �

respectively, i.e.

Wη � N 0, σ2ηρ h,ϕη, κη
� �

,
�

Wτ � N 0, σ2τρ h,ϕτ, κτð Þ,�

Wξ � N 0, σ2ξρ h,ϕξ, κξ
� �

:
� (28)
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Then conditional on the values of the tree Gaussian process at the sites s1, … , skð Þ,
the maxima are assumed to follow GEV distributions

Ysi ∣η s j
� �

, τ s j
� �

, ξ s j
� � � GEV η s j

� �
, τ s j
� �

, ξ s j
� �� �

(29)

z independently for each location s1, … , sk, j ¼ 1, … , k and i ¼ 1, … , n.
Davison et al. in 2012 [51], proposed the construction of Bayesian hierarchical

models for spatial extremes.
The SpatialExtremes package [53] allows modeling spatial extremes, through max-

stable processes with the function fitmaxstab, which reports the values of the param-
eter estimates with their respective standard errors.

To implement hierarchical Bayesian models, the function latent is used, this
reports the posterior median of the scale, shape and location parameters with their
respective credible intervals.

Another package in the literature to model spatial extremes is glmmfields [34], with
the function glmmfields, parameter estimation is performed under the Bayesian
approach. The function glmmfields also allows modeling spatial extreme events incor-
porating temporally, that is, time, these models are known as spatio-temporal models.

7. Conclusions

The main characteristic of spatial data is that observations close in space tend to be
correlated, and in spatial modeling this correlation is used to understand the behavior
of the phenomenon under study in a region of interest.

Omitting the spatial dependence of the data can generate a bias of the information
and, consequently, lead to an incorrect inference. Therefore, adequately describing
the spatial pattern of an event can provide sufficient elements to elaborate possible
hypotheses of its cause. As we have seen, the spatial variability of georeferenced data
can be studied with the spatial models developed in geostatistics. The usefulness of
these models has been demonstrated in several applications related to the identifica-
tion of social structures, disease patterns, occupational patterns, as well as in the
identification of populations (or subgroups) that are at greater or lesser risk of an
event. As we have seen, in statistics, all correctly processed information helps in
correct decision making. In this sense, this paper aims to introduce the reader to the
use of spatial models in geostatistics.

If the response or variable of interest is the cases (counts) of sick people in a given
region, or the new cases of a disease in a given period of time (incidence), then
Poisson GLSMs can be useful to know the spread of the disease in the population of
interest, predict new cases, and identify the variables that influence the occurrence of
the disease. On the other hand, when the response variable is a binary or ratio
variable, such as mortality rates or infection rates, then binomial GLSMs can be
helpful. These models have been used to study the prevalence of dengue and to
identify the variables associated with the event.
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Abbreviations

AFT Accelerated failure time
EVT Extreme value theory.
GEV generalized extreme value.
GLSM Generalized Linear Spatial Models.
GLM Generalized linear models.
GLMM generalized linear mixed model
GLGM generalized linear geostatistical model
iid Independent identical distribution
NM Normal multivariate.
PH Proportional hazards.
PO Proportional odds.
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Chapter 7

Spatial Statistics in Vector-Borne
Diseases
Manuel Solís-Navarro, Susana Guadalupe Guzmán-Aquino,
María Guzmán-Martínez and Jazmín García-Machorro

Abstract

Vector-borne diseases are those caused by the bite of an infected arthropod,
such as the Aedes aegypti mosquito, which can infect humans with dengue or Zika.
Spatial statistics is an interesting tool that is currently implemented to predict and
analyze the behavior of biological systems or natural phenomena. In this chapter,
fundamental characteristics of spatial statistics are presented and its application in
epidemiology is exemplified by presenting a study on the prediction of the
dispersion of dengue disease in Chiapas, Mexico. A total of 573 confirmed dengue
cases (CDCs) were studied over the period of January–August 2019. As part of the
spatial modeling, the existence of spatial correlation in CDCs was verified with the
Moran index (MI) and subsequently the spatial correlation structure was identified
with the mean squarer normalized error (MSNE) criterion. A Generalized Linear
Spatial Model (GLSM) was used to model the CDCs. CDCs were found to be spatially
correlated, and this can be explained by a Matérn covariance function. Finally, the
explanatory variables were maximum environmental temperature, altitude, average
monthly rainfall, and patient age. The prediction model shows the importance of
considering these variables for the prevention of future CDCs in vulnerable areas of
Chiapas.

Keywords: vector-borne diseases, Gaussian process, generalized spatial linear models,
georeferenced data, spatial correlation

1. Introduction

Vector-borne diseases are infections caused by viruses, bacteria, or parasites that
are transmitted to humans by the bite of infected arthropod species, these can be
diseases transmitted by mosquitoes (dengue fever, West Nile fever, chikungunya,
malaria, Zika, etc.), by sandflies (leishmaniasis), by ticks (encephalitis, Lyme
Borreliosis, Crimean-Congo hemorrhagic fever, Human Granulocytic Anaplasmosis)
by triatomines (Chagas disease), among others. These diseases account for more than
17% of all infectious diseases and cause more than 700, 000 deaths per year [1, 2].
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Vectors are living organisms that can transmit infectious pathogens between
humans or from animals to humans. Many of these vectors are insects that ingest
disease-causing microorganisms during a blood meal from an infected host and then
transmit it to a new host after the pathogen has replicated. Another characteristic of
arthropod vectors is that they are cold-blooded (ectothermic) and therefore very
sensitive to climatic factors, although the climate is only one of many factors that
influence vector distribution, as there are also geographic and sociodemographic
factors [1].

In order to interpret the behavior of vector-borne diseases in the most accurate and
simplified way possible, statistical models are used. A statistical model is a simplified
representation of a phenomenon of interest [3, 4]. With their help, it is possible to
model, predict and make inferences about natural phenomenons, biological systems,
epidemiological studies, and others [5]. One of the most widely used statistical models
is linear regression models, which predict a continuous target based on linear rela-
tionships between the target and one or more predictors. But there is another type of
model that extends the general linear model, so that the dependent variable is linearly
related to the factors and covariates by means of a certain link function, which is
known as a generalized linear model [6].

Generalized Linear Models (GLMs) provide a collection of linear regression
models including the exponential family, such as the Binomial and Poisson, which are
distributions for counting data. The GLMs were introduced by Nelder in 1972 [7], in
1989 they were studied in greater depth by McCullagh [8] and over time more authors
were integrated [9–13].

There are three components in GLMs: A response variable distribution, a linear
predictor, and a link function. A response variable Y is assumed Y1,Y2, … ,Ynð Þ,
where Y1,Y2, … ,Yn are independent of each other; its expected value is related
to a linear predictor E Y½ � ¼ g�1 d0β

� �
, where β∈ℜp is a vector of regression parame-

ters, d are known explanatory variables and g is a known function called a link
function, which allows to define the relationship between the systematic and random
components [14].

GLMs can help in numerous areas such as epidemiology, mining engineering,
Earth and environmental sciences, ecology, biology, geography, economics, agron-
omy, forestry, image processing, and more [15, 16]. For epidemiology in particular, as
it is about understanding diseases that affect a population, the most usual thing is to
find a binary variable that represents the presence or absence of a disease or to count
the events of a disease for certain areas.

Such is the case of a study conducted by Hashizume et al. [17] in Bangladesh, 2012.
They used a Generalized Linear Poisson Regression Model to examine weekly dengue
hospitalizations in relation to river levels, during the years 2005 to 2009, and the
climatic variables daily precipitation and average temperature. The models were
adjusted according to seasonal variation and temperature. They found evidence of a
6:9% increase in dengue with high river levels, but a 29:6% increase in disease when
rivers were very low.

An important extension of the GLMs is the Generalized Linear Mixed Models
(GLMMs) [18]. GLMMs provide a range of analyses for those data that are correlated
in space and belong to the exponential family (Gamma, Poisson, Binomial, among
others) [19]. Generalized Linear Spatial Models (GLSMs) are basically GLMMs, since
latent variables are derived from a spatial process. In recent years, there has been a
growing interest in the analysis of spatial data in epidemiology, in order to predict the
incidence of vector-borne diseases.
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Using techniques available to epidemiologists and other health professionals, the
potential of remote sensing, Geographic Information Systems (GIS), and spatial
analysis of epidemiological data has been demonstrated by some authors such as those
mentioned below; however, there are still few studies that adequately prove the
potential of these tools, since they are still being exploited in the fight against
diseases [20].

For instance, a Colombian paper published in 2012, Sanchez et al. [21] estimated
Generalized Linear Spatial Regression Models with a Poisson response to explain the
behavior of malaria and dengue in different years. Health determinants were
identified in the occurrence of these diseases and risk maps were obtained. Finally, it
demonstrated the need to link spatial effects in the models and the explanatory
variables considered, to explain the number of reported cases of the disease in the
years analyzed.

Another example is the work of Estallo et al. [22] in 2021, which evaluated the
species responsible for the transmission of Leishmaniasis (phlebotom-Phlebotominae)
during the period 2012� 2014 in northern Argentina. Through Generalized Linear
Mixed Models, the implications of vectors in disease transmission were evaluated,
using meteorological and teledetection environmental factors. It was observed that the
species Lutzomyia longipalpis was the most abundant in urban areas. The findings
allowed detecting of high-risk areas and the developing of predictive models to
optimize resources and prevent leishmaniasis transmission in the area.

As can be seen, spatial analysis is a powerful tool for the analysis of georeferenced
data, as it can give health research a broader perspective of the occurrence of health
events and diseases. Spatial statistical models are useful because they estimate the
spatial variance inherent in the data, and can also be used to perform statistical
inference throughout the study area. Spatial prediction can be made based entirely on
a stochastic model or in combination with a deterministic trend [20, 23].

The aim of this chapter is to show an example of the application of spatial statistics,
implementing a Generalized Linear Spatial Model for the prediction of dengue disease
in the state of Chiapas. For this, there are considered patient age and the next infor-
mation of each municipality: garbage disposal service, maximum environmental tem-
perature, average monthly rainfall, and altitude as covariates. For the study of the
disease in the 118 municipalities of Chiapas, the cases observed in 36 municipalities in
the state of Chiapas and the information in the aforementioned explanatory variables
were considered.

2. Spatial statistical models

Space models have a simple structure, flexible enough to handle a variety of prob-
lems. The data may be continuous or discrete, present spatial aggregations, or be point
observations in space. As for the spatial locations can be regular or irregular. A spatial
model is usually used to predict sites where the study phenom was not observed.

Let x∈A⊂ℝd and S xð Þ the data observed at the x location, this results in a
stochastic process

S xð Þ : x∈A (1)

Structure 1, allows to differentiate and talk about problems with continuous spatial
indexes, lattice, and point patterns giving rise to three types of data: geospatial, lattice
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data, and point patterns. In geospatial data, A is a fixed set in ℝd containing a d-
dimensional rectangular with positive volume; S xð Þ is a random vector in the location
x∈A. These data arise in areas such as atmospheric sciences, mining, and public
health. In point patterns A is a point process in ℝd or a subset of ℝd; S xð Þ is a random
vector in the location x∈A. In its most general form, it results in a spatial point
process marked when S xð Þ ¼ 1, for all x∈A. Point patterns arise when the variable to
be analyzed is a location of “events”.

Finally, the entangled data or also known as area data, A is a regular or irregular
fixed set (with additional information from the surrounding neighborhood) of ℝd;
S xð Þ is a random vector in location x∈A. When locations are in regular meshes it is
the closest analogy to time series observed at equally spaced time points. In the
entangled data, based on the general spatial process 1, it is assumed that A is an
accounting collection of space sites, in which the data are observed. The most com-
mon entangled data models are the Conditional Autoregressive Model (CAR) and the
Simultaneous Autoregressive Model (SAR). CAR models form the basis of Markovian
Gaussian random fields and Integrated Nested Laplace Approximation (INLA)
methods. SAR models are popular in geographic information systems. Other models
are the spatial autoregressive moving average (ARMA) [24, 25].

2.1 Gaussian spatial processes

Knowing the type of variables with which they are working and taking into
account their spatial dependence, helps to determine the regression technique that
best fits the characteristics of the data [21]. For the study of spatial data Gaussian
processes can be used, which are stochastic processes, a collection of variables. This
allows any subset of finite random variables to have a multivariate Gaussian distribu-
tion. Gaussian processes can thus be thought of as distributions of random vectors or
random functions [26]. Gaussian processes began to be studied in the 1940s, but until
the 1970s they were used in geostatistics and meteorology; In the 1990s Cressie [24]
began to implement them in spatial statistics. In fact, the term “model-based
geostatistics” was first used to describe an approach to geostatistical problems based
on formal statistical models and inference procedures [27].

Gaussian stochastic processes are widely used as models for geostatic data. If a
transformation of the original response variable is used, the scope of the Gaussian
models can be amplified, and so with this extra flexibility the model provides a good
empirical fit to the data.

A Gaussian process, {S xð Þ : x∈ℝ2}, is a stochastic process with the property that
for any collection of locations x1, … , xn, xi ∈ℝ2, the joint distribution of S ¼
S x1ð Þ, … , S xnð Þf g is multivariate Gaussian.
Any such process is fully specified by the average function μ xð Þ ¼ E S xð Þ½ � and the

covariance function Cov S xð Þ, S x0ð Þf g. As given x1, … , xn an arbitrary set of locations
with μ ¼ μ x1ð Þ, … , μ xnð Þð Þ and G an n� n matrix with elements Gij ¼
Cov S xið Þ, S x j

� �� �
; then S has a multivariate normal distribution (MN).

S � MN μ,Gð Þ (2)

A spatial Gaussian process is stationary if μ xð Þ is constant, μ xð Þ ¼ μ, for all x and
Cov S xð Þ, S x0ð Þð Þ ¼ Cov uð Þ; where u ¼ ∥x� x0∥ is the Euclidean distance. A stationary
process is isotropic if the covariance between the values of S xð Þ at any two locations
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depends only on the distance between them. The term stationary is often used as the
equivalence of stationary and isotropic. A process for which S xð Þ � μ xð Þ is stationary is
called covariance stationary. Processes of this type are widely used in practice as
models for geostatistical data [28].

Among the parametric functions for the covariance function [29] are the following:
Exponential:

Cov uð Þ ¼ σ2 exp
�u
ϕ

� �� �
(3)

Gaussian:

Cov uð Þ ¼ σ2 exp � u
ϕ

� �2
" #

(4)

Matérn:

Cov uð Þ ¼ σ2
2

2κ�1Γ κð Þ
u
ϕ

� �κ

Kκ
u
ϕ

� �� �
(5)

In these covariance functions (Eqs. (3)–(5)) u>0, ϕ>0, y κ>0; function Kκ

denotes the modified Bessel function of order κ and Γ �ð Þ denotes the gamma function.

2.2 Criteria for evaluating the covariance structure of the Gaussian process

There are several criteria in the literature to validate the covariance structure of a
Gaussian process Eq. (2). Among the most used are: Mean Error (ME), Mean Square
Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
Mean Square Normalized Error (MSNE) (Table 1). ME and MSE should tend to zero
when the covariance structure of the Gaussian process was correctly estimated. The
MAE and RMSE criteria are considered as the most efficient criteria to validate the
covariance structure of the Gaussian process. The RMSE is expected to be small like
MAE, while the MSNE is expected to be close to 1 [29, 30].

Measurement Definition

Mean error ME=1
n

Pn
i¼1 Y sið Þ � Ŷ sið Þ� �

Mean square error MSE=1
n

Pn
i¼1 Y sið Þ � Ŷ sið Þ� �2

Mean absolute error MAE=1
n

Pn
i¼1 jY sið Þ � Ŷ sið Þj� �

Root mean square error
RMSE= 1

n

Pn
i¼1 Y sið Þ � Ŷ sið Þ� �2h i1

2

Mean square normalized error
MSNE =1

n

Pn
i¼1

Y sið Þ�Ŷ sið Þð Þ2
σ̂2ok sið Þ

σ̂2ok is a variance estimated by the ordinary kriging interpolation method [29].

Table 1.
Criteria for evaluating the covariance structure of the Gaussian process.

161

Spatial Statistics in Vector-Borne Diseases
DOI: http://dx.doi.org/10.5772/intechopen.104953



2.3 Generalized linear spatial models

Spatial Generalized Linear Models were introduced by Diggle et al. in 1998 [31]; if
the variable response Y has Poisson distribution, then

Yi∣S �ð Þ � Poisson μið Þ (6)

Where

S � MN Dβ,Gð Þ

It is assumed that Yi : i ¼ 1, … , nf g conditioned in S are independent, E YijS �ð Þ½ � ¼
μi, gs a known link function such that g μið Þ ¼ ηi then μi ¼ g�1 ηið Þ, i ¼ 1, … , n. D ¼
1,d1, … ,dp
� �

is a design matrix of n� pþ 1ð Þ of full range, 1 a vector n� 1 of ones

and d j ¼ d j x1ð Þ, … , d j xnð Þ� �0, where d j xið Þ is the value of the covariate j-th of the i-th

location; β ¼ β0, β1, … , βp
� �

the regression parameters.

2.4 Moran’s index for spatial autocorrelation

To prove the existence of spatial dependence on a variable Y, the Moran index
[32, 33], given by

IM ¼ n
Pn

i
Pn

i wij Yi � Y
� �

Yi � Y
� �

Pn
i 6¼jwij

Pn
i Yi � Y
� �2 (7)

Where W is the weights matrix that defines the relationships between the regions
of the study. In this case wij ¼ 1 denotes areas with a common border and wij ¼ 0 in
another case. Yi and Y j would be the values observed in regions i and j respectively,
while Y is the average incidence of the districts studied, n is the total number of
localities.

2.5 Statistical software packages R for spatial data

Several packages are available in statistical software R [34] to perform spatial
modeling.

The geoR package is used for performing geostatistical data analysis and spatial
prediction, which expands the set of methods and tools presently available for spatial
data analysis in R. The package executes methods for Gaussian and Gaussian models
transformed, incorporates functions and methods for reading and preparing the data,
exploratory analysis, inference on model parameters and spatial interpolation, and it
also contains functions for parameter estimation under Bayesian methods [35].

The geoRglm package is used to implement Generalized Linear Spatial Model. The
subsequent and predictive inference is based on Markov Chains Monte Carlo
(MCMC) methods. This package, which is an extension of the geoR package, help with
GLSM conditional simulation and prediction, and with Bayesian inference for the
models Poisson (pois.krige) and Binomial (binom.krige) [35, 36]. A Langevin-Hastings
algorithm is used to obtain MCMC simulations. In the pois.krige and binom.krige
functions, the user can provide a value for the variation of the proposal S.scale, a value
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initial, S.start, the thinning, thin, the length of the burn, burn.in, and the number of
iterations, n.iter [35].

2.5.1 Inference for the generalized linear spatial model

The geostatistical model assumes the response variable to be Gaussian, which may
be an unrealistic assumption for some data sets. The GLSM provides a framework for
analyzing Binomial and Poisson distributed data. The likelihood for such a model, in
general, cannot be represented in closed form, since it is a high-dimensional integral

L β, σ2,ϕ
� � ¼

ðYn
i¼1

f yi; g
�1 sið Þ� �

p s; β, σ2,ϕ
� �

ds (8)

where f y; μð Þ denotes the density of the distribution with mean μ, p s; β, σ2,ϕð Þ is
the multivariate Gaussian density for the vector s of random effects at the data
locations and g �ð Þ is the link function. In practice, the high dimensionality of this
integral precludes direct computation, so the inference is based on MCMC.

3. Description of data

This section shows the application of a spatial model taking into account the social,
climatic, and geographical characteristics of the municipalities of the state of Chiapas
in relation to dengue virus infections registered from January to August of the year
2019.

3.1 Study area

Dengue disease is endemic to the state of Chiapas with scattered case reports, this
is due to the different geographic characteristics of the state, such as the altitude of its
municipalities and its border condition with the country of Guatemala. It is known
that at different altitudes, in the regions, the climatic conditions tend to vary and this
can favor the reproduction of the vector. The state of Chiapas is divided into 118
municipalities, each with different sociodemographic and climatic conditions. The
population density, according to the INEGI, is around 5, 544million inhabitants; being
the state capital, Tuxtla Gutiérrez, the municipality with the highest population den-
sity; for the year 2019, 604, 147 inhabitants were registered [37].

3.2 Data collection

The data, which were collected at the municipal level, being 36 the municipalities
that registered positive cases of dengue and were considered for the analysis, were
obtained from different sources that are mentioned below.

3.2.1 Dengue cases

The database with dengue cases registered in the state of Chiapas, during the
period January–August 2019, was obtained from the Secretary of Health of the state of
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Chiapas, in collaboration with the area of vector-borne diseases. This database is
updated week by week, fulfilling 52 Epidemiological Weeks (EW) reports per year.

3.2.2 Climatic data

The climatic data were obtained from the World Meteorological Organization
(WMO) [38], for each municipality of residence where the dengue cases were regis-
tered, working with the daily reports of average environmental temperature, maxi-
mum and minimum environmental temperature and average monthly rainfall. The
climatic data were taken into account for the analysis, 6 days before the onset of
symptoms for each case, this was done considering the intrinsic incubation period in
order to obtain an approximate date of infection and capture the daily climatic data
for each municipality [39]. With respect to the rainfall variable, it was decided to
work with the monthly average, since there were days in which there were no records.

3.2.3 Non-climatic data

Other factors related to infection were also considered in the analysis. Data on the
population density and altitude of each municipality of residence per observed case
were obtained from the INEGI, the other variables such as garbage disposal, contact
with the mosquito, drinking water service, patient age, and sex were obtained
from the original database of registered dengue cases provided by the secretary of
health [37].

3.3 Georeferencing

For the georeferencing of dengue cases registered in the period January–August
2019, the postal code and the world geographic coordinate system, WGS84, were
used. With the pois.krige function from the geoRglm package, in R software version
4:0:3 [34] and the projection of the cases was carried out on a map of Chiapas.

4. Results

The database that is made up of 573 dengue cases, reported in the state of Chiapas,
Mexico, during the period January–August of the year 2019; being the state capital,
(Tuxtla Gutiérrez) the municipality with the highest number of CDCs, with 49:04%,
the rest of the cases were scattered in other 35 municipalities of the State. The average
age of the cases was 14 years, with the female sex being the most affected with 53%, in
the same way, 15% indicated not having the drinking water service.

4.1 Spacial location

The spatial distribution of the 573 dengue cases is heterogeneous in 36 municipal-
ities in the state of Chiapas (blue points in Figure 1).

4.2 Moran’s index

The Moran’s Index obtained, with the number of CDCs in the 36 municipalities of
Chiapas, was 0:115, which indicates that there is a spatial relationship in the number
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of cases observed in the municipalities (p� value ¼ 0:001). Therefore, it is conve-
nient to study the CDCs with a spatial model, since it is a counting variable, a
Generalized Linear Spatial Model was used.

4.3 Evaluation of the covariance structure of georeferenced data

After selecting the spatial model and the variables, we proceeded to estimate the
covariance structure of the Gaussian process. For this, the Exponential, Gaussian, and
Matérn covariance functions were tested, taking CDCs as the response variable, and
measures of central tendency of the explanatory variables maximum environmental
temperature, altitude, patient age, and average monthly rainfall were taken. Of the
three functions, the Matérn covariance function generated the best value for ME ¼
�1:185 and MSNE ¼ 0:885, that is, ME tends to 0 and MSNE tends to 1, therefore a
covariance function Matérn can be assumed for the fitted spatial model.

4.4 Parameter estimation

For the simulation and conditional prediction of the process Eq. (6) MCMC was
used, since this provides a solution to the impediment of direct calculation of the

Figure 1.
Georeferencing of cases 573 DCs registered in Chiapas.
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predictive distribution due to the high dimensionality of the integral Eq. (8) [36]. For
this, 505000 simulations were performed, with a burn-in period of 5000 data and a
thinning of chains of 100 data. Ordinary kriging was used for data interpolation.
The initial values for the GLSM parameters were σ2 ¼ 3, ϕ ¼ 0:5 and β ¼
0:1, 0:1, 0:1, 0:1ð Þ. The estimation of β was carried out under the classical approach.
Confidence intervals at 95% were obtained using 1000 Monte Carlo simulated
samples [40].

For modeling the number of registered dengue cases in the 36 municipalities of
Chiapas, Yi, i ¼ 1, … , 36. As for the 13 covariates considered, only the variables
maximum environmental temperature, altitude above sea level in the municipality,
average monthly rainfall, and patient age showed a relationship with the number of
confirmed dengue cases. It was verified that the problem of multicollinearity did
not exist in those included in the model: altitude and maximum environmental
temperature (r ¼ �0:2231, p� value ¼ 0:191), average monthly rainfall and
maximum temperature (r ¼ 0:243, p� value ¼ 0:1534), average monthly rainfall
and altitude (r ¼ 0:1724, p� value ¼ 0:3147).

In Table 2, it is observed that the variables that have an effect on the cases of
dengue observed are maximum environmental temperature, altitude of the munici-
palities, average monthly rainfall, and patient age. High temperatures and altitudes
favor the presence of the disease, while young people will be preferred factors by
the vector, as well as low rainfall because in seasons where there is no continuous
flow of water in the rivers, stagnation causes an increase in the proliferation of Aedes
mosquitoes.

4.5 Prediction of the model to the Chiapas map

The projection of the model was carried out on a map of the state of Chiapas which
was made based on the municipalities where the cases were registered, as can be seen
in Figure 2, the prediction is divided by zones in shades of green to yellow with a
contour delimited by contour lines that show the area in which the model predicts the
number of cases for that area. As we can see, most of the predicted cases occur within
the metropolitan area where the state capital Tuxtla Gutiérrez and the municipalities
of Chiapa de Corzo, Berriozábal and Suchiapa are located, this corresponds to the
observed data, since most of the cases occurred in the same area. On the other hand, it
is observed that the prediction power is diminished in areas where no dengue cases
were registered.

Parameter Estimation coeff. 95% Confidence intervals

Intercept (β0) 1:88952 1:88178, 1:96555ð Þ
Maximum temp. (β1) 0:00740 0:00523, 0:00763ð Þ
Altitude (β2) 0:00028 0:00026, 0:00028ð Þ
Rainfall (β3) �0:02549 �0:02607,�0:02423ð Þ
Age (β4) �0:05356 �0:05444,�0:05275ð Þ

Table 2.
Estimation of parameters and their confidence intervals of the selected model.
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5. Discussion

The purpose of this chapter is to present and expand the use of spatial statistics to
contribute to public health and the epidemiology of vector-borne diseases, and for this
reason, the example of the use of a GLSM was proposed to model the distribution of
dengue in Chiapas, since this is one of the endemic diseases that cause numerous
infections per year. Climatological, geographic, and sociodemographic variables were
used for the modeling, where it was found that the maximum environmental temper-
ature, altitude, patient age, and average monthly rainfall are the variables that best
predict the spread of dengue.

Maximum environmental temperature is shown to have a significant effect on
dengue cases, as it is an environmental risk factor for dengue transmission, higher
temperatures increase viral replication in the vector in a shorter time and thus
increase the potential for transmission of dengue viruses. This is described by a study
on the extrinsic incubation period. Liu et al. [41] found that the virus remained in the
midgut of the vector at 18∘C, but could spread and invade the salivary glands at
temperatures between 23∘C and 32∘C, thus demonstrating that higher temperatures
create a shorter extrinsic incubation period and greater transmission potential.

The altitude above sea level of each municipality was also an important variable in
the study, which is consistent with the findings of the systematic review by Aswi [42],
where this variable was used in different statistical models in order to describe the
behavior of the disease, since the spread of the Aedes aegypti mosquitoes is limited by

Figure 2.
Prediction of confirmed dengue cases.
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climatic conditions and this will be governed by the location of the geographical area
and its altitude. The study of Reinhold et al. [43] alludes that Aedes Aegytpi cannot
regulate its body temperature because it is an endothermic arthropod, and that is why
its temperature is defined by the climatic conditions of its environment. Thus, geo-
graphic location and altitude are important variables for dengue disease.

On the other hand, we have average monthly rainfall, where we see a negative
association, since the less rainfall, the more cases of dengue. This coincides with the
results of the work of Hashizume et al. [17], where they indicate that dengue cases
increase by 29:6% in the months when the rivers have low flow, and this is under-
standable, since, in those seasons of the year when rainfall is scarce, the rivers do not
have a continuous flow of water, which produces stagnation and these, in turn,
become ideal breeding grounds for mosquitoes, causing an increase in the prolifera-
tion of Aedes.

Finally, we have the variable patient age, as can be seen in the results, the correla-
tion was negative too, due to the young population being preferred by the vector,
since there is a greater number of cases at an average age of 14 years. As demonstrated
by Phanitchat et al. [44] in their work, where it was reported that the age range of
dengue cases was between 5 and 14 years in northeastern Thailand.

6. Conclusions

Vector-borne diseases (VBD) are an important public health issue worldwide. The
distribution of these diseases as well as their transmission and seasonality are known
to be largely determined by environmental, geographic, and socio-demographic fac-
tors. GLSMs allow robust analysis of the complex and diverse factors that influence
the occurrence of VBD, incorporating spatial dimensions. They can also be a valuable
tool for targeting interventions in surveillance and control programs for VBD at the
global or regional level. These analytical approaches have recently been used in the
field of public health, but in Mexico there are still very few studies that contribute to
this knowledge. For this reason, this chapter presents an example of the application of
GLSM with a study of dengue, one of the most common VBD in Mexico, finding that
the maximum temperature, altitude, and average monthly rainfall of each municipal-
ity, as well as patient age, are the factors that best predicted the presence of dengue
cases in the state of Chiapas in the period from January to August 2019.
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Chapter 8

Practical and Optimal Crossover
Designs for Clinical Trials
Su Hwan Kim and Keumhee Chough Carriere

Abstract

Crossover designs have received great attention in clinical trials, as they allow sub-
jects to serve as their own controls and gain such advantage as higher efficiency and
smaller sample size over parallel designs, because the within-subject variability is in
general smaller than between-subject variability. Response-adaptive crossover designs
allow clinical trials to adapt and respond to the information acquired during the trials
to achieve various objectives. Adaptive designs have been considered to allocate more
subjects to superior treatments, improve statistical efficiency, reduce the sample size
for cost savings, increase the sample size to maintain prespecified statistical power, or
include auxiliary information. We focus on an adaptive allocation scheme to maximize
the benefits from superior treatments, while maintaining a sufficiently high level of
statistical efficiency, controlled by a suitable weight parameter. We review and discuss
the strategy of incorporating multiple objectives, while advocating a regression type
estimation approach via the Generalized Estimating Equations method. We show that
the multiple objectives can be successfully incorporated to construct a spectrum of
designs, ranging over various efficiencies and trial outcomes of success. Moreover, the
adaptive allocation scheme successfully constructs designs with a desired efficiency, as
illustrated by practical two- and three-period designs.

Keywords: crossover design, response adaptive allocation, optimal design, multiple
objective function

1. Introduction

Crossover designs have enjoyed advantages over parallel designs, such as
completely randomized design in terms of statistical efficiencies. Equal or balanced
allocations play an important role in the construction of optimal designs under various
model assumptions. However, equal allocations may pose ethical dilemma when
researchers start to suspect that one treatment may be superior to the other. All trials
start with the null hypothesis that the effects of a new treatment being tested are the
same as comparators before we could prove its superiority. At some point in the trial,
one may find an evidence indicating that the effects of treatments are notably differ-
ent. Then, one may wonder whether to equally allocate remaining subjects to the
treatments as per the protocol or to adapt to the findings and alter the allocation
scheme to reflect the trial phenomena. Connor et al. [1] studied HIV treatment drug
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named AZT. Among 477 pregnant mothers with HIV, 239 were assigned to a placebo,
and 238 were assigned to the AZT. The trial resulted in 60 infants diagnosed with HIV
from the placebo group and 20 infants diagnosed with HIV from the AZT group. A
decade later, Tymofyeyev et al. [2] suggested that use of 50–50 allocation was ethically
improper given the seriousness of the outcome of the study and recommended to use a
response-adaptive allocation. Tymofyeyev et al. [2] utilized the Play the Winner Rule
(PWR) allocation [3, 4] and simulated the trial in a way that 360 and 117 pregnant
mothers were adaptively allocated to the AZT or the placebo, respectively. The results
of simulation showed that 60 infants were expected to be diagnosed with HIV in two
groups combined as opposed to 80 infants in 1994, which revealed some of the
benefits of the adaptive allocations.

Response-adaptive designs may have several other goals. Many authors [3–6] aimed
at allocating more subjects to a better treatment. Armitage [7] aimed at reducing the
sample size, andWang [8] aimed at increasing the sample size based on the prespecified
statistical power and the data acquired. Furthermore, Bandyopadhyay and Biswas [9]
introduced covariates in response-adaptive designs. Sorkness et al. [10] proposed
designs that were adaptive to the prevalence of events, in which the sample size
recalculation was done to remedy the loss of statistical power arising from the imbal-
ance of the prevalence. However, these studies utilized the acquired information using
only a single objective. Many authors proposed a multiple objective adaptive design for
continuous responses where they defined an objective function with two components,
controlled by a weight parameter [11–13].

Binary responses are modeled differently from continuous responses in a way that the
information is a function of the outcome. Standard logistic regression assumes that the
responses are independent although crossover trial data are dependent on each subject.
We use the Generalized Estimating Equations (GEEs) method, which can incorporate a
desired covariance structure of responses. Liang and Zeger [14] proposed the GEE,
which takes into account for the time dependencies of the data by allowing correlations.
The GEE method estimates parameters by solving the system of equations based on the
Quasi-Likelihood function. The advantage of Quasi-Likelihood method is that it does not
need to provide joint distribution of the data and only requires the marginal distribution
and its mean and variance. GEE estimates are proven consistent under a mild regularity
conditions [14]. Valois [15] utilized GEE in the analysis of crossover designs.

This chapter demonstrates how to construct multiple objective response-adaptive
designs for two treatments with binary outcomes using the GEE. We first review the
theoretical grounds for crossover designs with binary outcome and the GEE method.
Adaptive designs are constructed using simulations, and some two- and three-period
practical designs will be built for various weights of multiple objective functions. We
also compare the GEE methods to the other approaches done by Li [13]. Lastly, we
develop a new strategy for maximizing the success outcome, while maintaining
certain level of prefixed desired statistical efficiency.

2. Multiple objective response-adaptive designs with GEE

2.1 Model and information matrix

Agresti [16] discussed the Generalized Linear Model (GLM) for an exponential
family of distributions. Suppose Y follows a distribution in an exponential family with
parameters θ,ϕð Þ: Then the pdf of Y can be written as:
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f yjθ,ϕð Þ ¼ exp yθ � b θð Þð Þ=a ϕð Þ þ c y,ϕð ÞÞ: (1)

Consider that the Yijk denotes the binary response of ith period of jth subject in kth
treatment sequence, distributed as Bernoulli (pijk), and X is a design matrix for an
overall mean effect (μ), period effects (αi), direct treatment effects (τd i, j,kð Þ), and
carryover effects (γd i�1, j,kð Þ) with the corresponding vector of parameters β. By defin-
ing the relation θ ¼ h ηð Þ, η ¼ x0β and with a logit link function gðÞ, we can entertain
the following model:

ηijk ¼ g E Yijk
� �� � ¼ g P Yijk ¼ 1

� � ¼ logit P Yijk ¼ 1
� �� ��

(2)

¼ log
P Yijk ¼ 1
� �

1� P Yijk ¼ 1
� �

 !
¼ μþ αi þ τd i, j,kð Þ þ γd i�1, j,kð Þ ¼ X0

ijkβijk: (3)

It is easy to see that the mean and variance of Yijk are defined as

E Yijk
� � ¼ μijk ¼ b0 βijk

� �
¼

exp X0
ijkβijk

� �

1� exp X0
ijkβijk

� � , (4)

Var Yijk
� � ¼ σijk ¼ b00 βijk

� �
¼

exp X0
ijkβijk

� �

1� exp X0
ijkβijk

� �� �2 : (5)

2.2 Generalized estimating equations

We use Generalized Estimating Equations to estimate the parameters of GLM with
unknown correlation structure using the mean μijk and unknown variance structure

V�1
j . The estimating equations can be shown as

Xn
j¼1

∂μ0j
∂β

V�1
j Y j � μ j

� �
¼ 0, (6)

where μ j and Y j are vector of means and responses for periods 1 to p.
The above estimating equation resembles that of GLM but does not require an

exponential distribution assumption for Y, which is the strength of GEE. McCullaugh
[17] showed that under the correct specification of mean and variance functions, the
quasi-likelihood estimators demonstrate characteristics similar to MLE. The
covariance matrix then can be written as:

Var βð Þ ¼
Xn
j¼1

∂μ0j
∂β

V�1
j

∂μ j

∂β

" #�1

(7)

Then, Bose and Dey [18] showed that the covariance matrix for parameters β can
be defined with respect to k treatment sequences as follows:
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Var β̂
� � ¼

X
k∈Ω

nk
∂μk

0

∂β
V�1

k
∂μk
∂β

 !�1

, (8)

where nk denotes number of subjects allocated to kth sequence and the design
matrices being identical for subjects in the same treatment sequence. However, when
the specified covariance matrix V is not identical to the observed covariance matrix
Var(Y), then the sandwich variance estimator is suggested:

Var βð Þ ¼ A
X
k∈Ω

nk
∂μ0j
∂β

V�1
k Var Ykð ÞV�1

k

∂μ j

∂β

 !
A, (9)

where A is the variance in Eq.(8). This sandwich variance estimator is shown to be
consistent [14].

2.3 Multiple objective function

Liang and Carriere [11] proposed the following multiple objective function for the
continuous responses:

Φ j,k ¼ λ
Δ Î

k
jþ1 βð Þ

� �

Δ Î
k0

jþ1 βð Þ
� �þ 1� λð Þ

f j,k

f j,k0 0
, (10)

where Î
k
jþ1 βð Þ is the Fisher’s Information matrix for subject jþ 1 allocated to

treatment sequence k with Δ being an optimality criterion of choice and f j,k is an
evaluation function for treatment sequence k based on the first j subjects in the trial.

In this function, treatment sequence k0 refers to the sequence with maximum Î
k
jþ1 βð Þ,

and k00 refers to the sequence with maximum f j,k, which may not necessarily be
identical. Among the two terms in the objective function, the first term of the function
investigates the efficiency of design with respect to the Fisher’s information matrix
given that subject jþ 1ð Þ is allocated to treatment sequence k. This is represented as a
ratio over the sequence with maximum information so that the component may take
value in 0, 1½ �. The second term of the function is called the evaluation function that
evaluates the total efficacy of treatment sequences based on the estimated treatment
effects. When λ ¼ 0, the objective function considers only the efficiency of the design
and ignores any superiority/inferiority of the treatments being tested. On the other
hand, the objective function with λ ¼ 1 would construct adaptive designs based solely
on the positive effects of treatments being tested.

Liang et al. [12] and Li [13] extended their multiple objective function to binary
responses and derived the information matrix for estimated success probabilities for
binary responses. The observed number of successes for each treatment sequence was
used for the evaluation function f . As the analysis of crossover trials mainly focuses
on direct treatment effects, we choose the inverse of the variance of estimated treat-
ment effects, 1=var τ̂ð Þ, as the criterion for comparing the efficiency of various treat-
ment sequences. McCullagh [19] showed that quasi-likelihood estimates are invariant
under a linear transformation. That is, μ̂k maximizes the quasi-likelihood function.
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Throughout this chapter, we will refer to the Eq. (10) as the multiple objective

function and choose the first term Δ Î
k
jþ1 βð Þ

� �
as the variance of the estimated treat-

ment effects, var τ̂ jþ1,k
� �

. The data acquired from the first j subjects are modeled using
the GEE approach, and predictions for subject jþ 1 are made for all of the K treatment
sequences. Then, we include the predicted responses of subject jþ 1 into the model
and obtain the variance of an estimated treatment effects of each treatment sequence.
Then, we evaluate the efficacy of each treatment sequence by using Σp

i¼1η̂i, j,k. The η
0s

take any values in IR where large values correspond to a better treatment sequence.
We transform these values to positive numbers so that a larger value indicates a better
sequence and the ratios could be easily implemented. For this reason, we choose

f j,k ¼ logit Σp
i¼1η̂i, j,k

� �
, which falls in 0, 1ð Þ over all p periods.

3. Practical and nearly optimal designs

We apply the allocation method to construct some popular practical designs in
clnical trials, two-treatment two-period designs and two-treatment three-period
designs based on the parameter settings from Li [13], which are shown in Table 1with
a slight modification on the values to incorporate the GEE modeling approach. Ini-
tially, one subject is assigned to each treatment sequence. Afterward, new subjects are
introduced sequentially and are assigned to the treatment sequence with the highest
Eq. (10). When all subjects are assigned, the variance of the estimated treatment
effects, var τ̂Nð Þ, is computed and compared with the variance obtained from the
optimal fixed designs suggested by Mukhopadhyay [20]. Mukhopadhyay [20]
conducted simulation study for the optimal fixed crossover design with binary out-
comes using the GEE method and showed that AA=AB=BB=BA is optimal for p = 2 and

P Parameters Treatment sequences Success probabilities Expected success per period

2 μ = �0.22 AA 0:60, 0:70ð Þ 0:65

.α2 = 0.018 AB 0:60, 0:40ð Þ 0:50

.τ = 0.63 BA 0:30, 0:50ð Þ 0:40

.γ = 0.42 BB 0:30, 0:22ð Þ 0:26

3 μ = �0.22 AAA 0:60, 0:70, 0:65ð Þ 0:65

.α2 = 0.018 AAB 0:60, 0:70, 0:35ð Þ 0:55

.α3 = �0.21 ABA 0:60, 0:40, 0:44ð Þ 0:48

.τ = 0.63 ABB 0:60, 0:40, 0:19ð Þ 0:40

.γ = 0.4 BAA 0:30, 0:50, 0:65ð Þ 0:48

BAB 0:30, 0:50, 0:35ð Þ 0:38

BBA 0:30, 0:22, 0:44ð Þ 0:32

BBB 0:30, 0:22, 0:19ð Þ 0:23

Table 1.
Parameter values for simulation in construction of multiple-objective response-adaptive crossover design with
binary outcomes.
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ABB=AAB=BAA=BBA is optimal for p = 3 under the compound symmetric covariance
structure with binary outcomes.

3.1 Two-period design

There are four possible treatment sequences for two-treatment two-period cross-
over trials. Carriere and Reinsel [21] showed that an equal allocation on all sequences
AA=BB=AB=BA, denoted as dopt,p2, is universally optimal for a continuous response,
and Mukhopadhyay [20] confirmed that it is also numerically optimal even when
responses are binary. We assign a subject to each of the four sequences and allocate
the rest based on the objective function in Eq. (10). The following tables show the
allocations of the adaptive designs, their efficiency compared with the fixed optimal
design, and their success outcome ratio for various values of λ and N.

When λ ¼ 0, the resulting allocation focuses on the treatment sequence AA with
very few assigned to the rest of the sequences due to randomness during the initial
stage of the trial. We can see that the allocation to the sequence AA decreases as λ
increases. The allocations move toward a dual balanced design dopt,p2, which assigns
equal allocations to all four sequences. The relative efficiency, which is defined as the
ratio of variance of estimated treatment effects of dopt,p2 over the proposed multiple
objective adaptive design, is low for λ ¼ 0 and approaches 1 as λ increases to 1. The
success ratio is close to the expected success shown in Table 1 when λ ¼ 0 and
decreases as λ increases. Therefore, we must find a reasonable compromise between
efficiency and a success ratio. For n ¼ 40, λ∈ 0:85, 0:9ð Þ would construct an efficient
design (efficiency > 0.8) with a sufficiently higher success ratio (5–8% increased)
than λ ¼ 1. For n ¼ 80, λ∈ 0:9, 0:95ð Þ would construct a similar design
(efficiency > 0.8 and success ratio improved by 5–8%). For n ¼ 100, we note a drastic
result around λ∈ 0:9, 0:95ð Þ where efficiency changes from 0.8957 to 0.7096, while
the success ratio changes from 0.5168 to 0.5638, showing that the choice of suitable λ
may vary significantly by the sample size n.

The consistent estimates for the above terms can be obtained by replacing the
parameters with their GEE estimates. Also, the variance of the estimated β’s can easily
be computed using the sandwich covariance matrix from GEE. The treatment
sequences with a smaller variance do not necessarily improve efficiency in this case,
and the efficiency depends on the covariance matrix of the estimates of parameters.
This covariance matrix, in turn, does not have a closed form, unlike in the continuous
response case.

3.2 Three-period design

Three-period two-treatment crossover designs constructed from the multiple
objective response-adaptive approach behave similarly as the two-period
two-treatment designs. When λ ¼ 0, the majority of the subjects are allocated to the
treatment sequence AAA, which has the highest success ratio per period. For small
sample size, n ¼ 40, the efficiencies remain high and the success ratios are
improved for any values of λ< 1. This is largely due to the conditions of the design,
where 3�8 = 24 subjects out of 40 are assigned evenly to all eight sequences and thus
only 16 subjects are allocated based on the multiple objective response-adaptive
schemes. Therefore, the relative efficiency, which is computed based on the optimal
design [20], remains high and the success ratio is improved only to a degree.
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However, in the case of n ¼ 80, the success ratio increases from 0:4323 to 0:5647
and the efficiency decreases from 1:0370 to 0:5793 as λ changes from 1 to 0. It is
notable that the relative efficiencies of multiple objective response-adaptive designs
for λ ¼ 1 are greater than 1, indicating that these designs are slightly better than the
optimal design [20] for the given set of parameters. The design with λ ¼ 0:95 is as
efficient as the optimal design, with a relative efficiency of 1:0055, and yet shows a
higher success ratio (0:4708 compared with 0:4323), with an expected success ratio of
0:4696 (compared with 0:4375). In the case of λ ¼ 0:9, the relative efficiency
decreases to 0:9220 while the success ratio increases to 0:5050 from 0:4323. Looking
at the design with λ ¼ 0:85, we see that the relative efficiency decreases to 0:8133
while the success ratio increases to 0:5290. These two designs with λ ¼ 0:9 and λ ¼
0:85 indicate that we could improve the success ratio of the design by 7–10% at the
cost of relative efficiency between 0:1 and 0:2.

When n ¼ 100, the designs show a similar performance to the case of n ¼ 80 with
respect to efficiency and the success ratio, except that efficiencies drop sharply, as we
give attention to beneficial treatment effects with λ< 1.

In summary, the above tables show that adaptive schemes could benefit more
subjects without much loss of efficiency for the given set of parameters. But it is
important to find an appropriate λ to improve the success ratios while maintaining a
sufficient level of statistical efficiency. In this case, λ ∈ 0:85, 0:9ð Þ is recommended
for both n ¼ 80 and n ¼ 100. However, we can see that the decrease in efficiency is
more evident for n ¼ 100 than that of n ¼ 80, indicating that sample size N is another
player determining the balance parameter λ. The resulting designs would have success
ratios increased by 9–12% when compared with the optimal fixed design (λ ¼ 1).
Taking a smaller value of λ can benefit further, but the gain in success ratio decreases
marginally as the λ decreases.

4. Comparison with other approaches

Bandyopadhyay [22] utilized an example of a three-period crossover trial of two
treatments for hypertension. In this trial, 68 subjects were equally assigned to the
treatment sequences ABB=BAA=ABA=BAB. Li [13] used the last two periods of this
trial to obtain a crossover design with AA=BB=AB=BA. The response variable was
continuous measurements of systolic blood pressure. Binary response variables were
computed by dichotomizing the blood pressures at “135 or more” and “140 or more”
and denoting the responses as failures. Two corresponding sets of success probabilities
were estimated from this data. v̂A1, v̂A2, v̂B1, v̂B2ð Þ ¼ 0:24, 0:24, 0:24, 0:35ð Þ and
v̂A1, v̂A2, v̂B1, v̂B2ð Þ= 0:35, 0:5,ð 0:35, 0:53Þ where v is the probability of success with the
letters denoting treatments and numbers denoting periods.

These estimated probabilities were considered as actual success probabilities, and
the multiple objective response-adaptive technique was applied with λ ¼ 1 and λ ¼ 0:9.
A comparison of allocations, efficiencies, and success ratios of the three methods
(B, L, K proposed by [13, 20, 23], respectively) is provided below. We included fixed
group effects, βk, to the model in Eq. (2) to incorporate success probabilities. The
parameters and other settings are provided inTable 2, and the results of simulations are
found in Tables 3 and 4.

The efficiencies inTable 3were computed against the equal allocation design, which
are nonadaptive but optimal for two-period and two-treatment designs. First, we
examine multiple objective response-adaptive designs with λ ¼ 1. We see that when the
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difference of the expected success probabilities between the sequences is small
(0.425 vs. 0.44, second example in Table 2), [13]‘s strategy allocates an extensive
number of the subjects to the treatment sequences AB=BB and results in a
substantial loss of efficiency. Moreover, the gain in the expected success over an
equal allocation design is minimal (0.4352 vs. 0.4325). The simulations confirm this
observation, and d8 has relative efficiency of 0.8376 without much gain as a result.
On the other hand, d10 adapts to the small differences in the sequences in a careful
manner, and it assigns about three more subjects to better treatment sequences AB=BB
without losing efficiency (0:9970). d10 allocates fewer subjects to AB=BB compared
with d7, d8, and d9.

It is noticeable that the pattern is not the same when there is some difference in the
expected success probabilities between the treatment sequences (0.24 vs. 0.295).
Design d2 allocates 41.83 subjects to better sequences AB=BB, whereas d4 allocates 42.7

Probabilities Parameters Treatment
sequences

Success
probabilities

Expected success per
period

v̂A1 ¼ 0:24 μ ¼ �1:89, β1 ¼ 1 AA 0:24, 0:24ð Þ 0:240
v̂A2 ¼ 0:24 α2 ¼ 0:27, β2 ¼ 1 AB 0:24, 0:35ð Þ 0:295
v̂B1 ¼ 0:24 τ ¼ �0:27, β3 ¼ 0:47 BA 0:24, 0:24ð Þ 0:240
v̂B2 ¼ 0:35 γ ¼ �0:27, β4 ¼ 0:47 BB 0:24, 0:35ð Þ 0:295

v̂A1 ¼ 0:35 μ ¼ �1:56, β1 ¼ 1 AA 0:35, 0:50ð Þ 0:425
v̂A2 ¼ 0:5 α2 ¼ 0:68, β2 ¼ 1 AB 0:35, 0:53ð Þ 0:440
v̂B1 ¼ 0:35 τ ¼ �0:06, β3 ¼ 0:88 BA 0:35, 0:50ð Þ 0:425
v̂B2 ¼ 0:53 γ ¼ �0:06, β4 ¼ 0:88 BB 0:35, 0:53ð Þ 0:440

Table 2.
Parameter values and expected success probabilities based on the crossover trial of [22].

Parameters Design λ AA AB BA BB Efficiency Expected success

v̂A1, v̂A2, v̂B1, v̂B2ð Þ
0:24, 0:24, 0:24, 0:35ð Þ

dB1 15.75 16.92 17.01 18.32 0.9912 0.2685

dL2 1 13.13 21.03 13.03 20.80 0.9143 0.2738

dL3 0.1 14.69 19.06 13.64 20.62 0.9522 0.2729

dK4 1 12.81 20.85 12.49 21.85 0.8913 0.2745

dK5 0.1 15.22 19.58 14.19 19.01 0.9829 0.2713

dE6 17.00 17.00 17.00 17.00 1.0000 0.2675

0:35, 0:50, 0:35, 0:53ð Þ dB7 13.00 16.42 16.46 22.12 0.9769 0.4335

dL8 1 7.32 16.35 14.88 29.46 0.8376 0.4352

dL9 0.1 12.38 16.71 15.80 23.11 0.9627 0.4338

dK10 1 16.22 17.89 15.40 18.49 0.9970 0.4330

dK11 0.1 16.76 17.53 16.80 16.91 0.9983 0.4326

dE6 17.00 17.00 17.00 17.00 1.0000 0.4325

B½ � [22]; L½ � [13]; K½ � [23]; E½ � Equal allocation design.

Table 3.
Allocation, efficiency, and success ratio for two-period designs.
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subjects. The designs allocate more subjects to better treatment sequences than d1
while maintaining a high level of efficiency.

The designs constructed using the multiple objective response-adaptive method
with GEE are more responsive to the differences in treatments better than
Bandyopadhyay [22] and Li [13], while maintaining a high level of efficiency when
there is a large difference in the treatment effects. The method by Kim [23] assigns
more subjects to the better treatment sequence when the treatment differences are
large. Moreover, the resulting designs are close to the optimal design with an equal
allocations on all four sequences, when the treatment differences are negligible. This
assures that even if the treatment difference is not as large as expected, the multiple
objective response-adaptive method is robust and creates an efficient design.

5. Implementing the adaptive allocations

In Tables 5 and 6, we observed that the decrease in efficiency following the
decrease in λ is not consistent for differing sample sizes. That is, if we wish to
maintain some level of relative efficiency with respect to a known fixed optimal
design while applying the multiple objective adaptive allocation scheme, we must
fully understand the behaviors of this adaptive allocation scheme and find the suitable
λ, which is determined by the true parameters as well as the sample size. The simula-
tions on this scheme may help suggest some λ’s, but is limited to the specific scenarios
being studied. Therefore, we implement a sensible strategy of the multiple-objective-
based allocation scheme without having to precisely know which λ to use.

Themultiple-objective function as in Eq. (10) is now split into two objective functions:

H1, j,k ¼
Δ Î

k
jþ1 βð Þ

� �

Δ Î
k0

jþ1 βð Þ
� � , (11)

N Designs AA AB BA BB Efficiency Success ratio

40 d 0:8ð Þ 22.22 7.60 5.63 4.55 0.7615 0.5420

d 0:9ð Þ 16.63 9.49 7.28 6.60 0.9152 0.5042

d 1ð Þ 10.20 10.01 9.66 10.13 1.0141 0.4534

dAdaptive 21.75 6.11 6.21 5.94 0.8465 0.5319

80 d 0:9ð Þ 45.08 16.64 10.56 7.72 0.7582 0.5507

d 0:95ð Þ 33.68 18.98 13.95 13.39 0.9368 0.5048

d 1ð Þ 20.35 19.81 18.96 20.88 1.0076 0.4532

dAdaptive 43.58 12.35 12.24 11.83 0.8430 0.5309

100 d 0:9ð Þ 61.75 19.36 11.01 7.89 0.7096 0.5638

d 0:95ð Þ 45.77 23.49 16.30 14.44 0.8957 0.5168

d 1ð Þ 25.41 24.40 23.66 26.54 1.0258 0.4525

dAdaptive 57.09 14.42 14.12 14.37 0.7972 0.5391

Table 4.
Comparison of new revised response-adaptive two-period design with the results from Table 5.
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H2, j,k ¼
f j,k

f j,k0 0
, (12)

which are the first and second terms of the Eq. (10). The allocation scheme takes
the following steps.

1.Determine a desirable relative efficiency r ∗ , e.g., 80%.

2.Acquire a small number of subjects to each sequence and obtain the
quasi-likelihood estimates of the parameters, μ, πi’s, τ, γ from a logistic model.

3.Generate another set of data with the same number of total subjects as the
current dataset with allocations according to the optimal design dopt,p2. Obtain
estimates of the parameters and sandwich covariance matrices of the estimated
parameters from the new data and compare the efficiencies of two designs, r ¼
var τ̂opt
� �

=var τ̂Adaptive
� �

.

4. If r< r ∗ , then use H1, j,k as the allocation function for subject jþ 1, otherwise use
H2, j,k as the allocation function for subject jþ 1.

5.Return to step 2 until all subjects are allocated.

N λ AA AB BA BB Efficiency Success ratio

40 0 26.97 4.37 4.51 4.15 0.5679 0.5635

0.3 26.46 4.40 4.94 4.20 0.5696 0.5596

0.7 25.42 5.46 4.89 4.23 0.6378 0.5576

0.8 22.22 7.60 5.63 4.55 0.7615 0.5420

0.9 16.63 9.49 7.28 6.60 0.9152 0.5042

1 10.20 10.01 9.66 10.13 1.0141 0.4534

80 0 65.81 4.53 5.46 4.20 0.2998 0.6046

0.3 66.05 4.65 5.13 4.17 0.3012 0.6055

0.7 64.37 5.95 5.43 4.26 0.3554 0.6020

0.8 59.16 9.95 6.28 4.60 0.4844 0.5896

0.9 45.08 16.64 10.56 7.72 0.7582 0.5507

0.95 33.68 18.98 13.95 13.39 0.9368 0.5048

1 20.35 19.81 18.96 20.88 1.0076 0.4532

100 0 85.14 4.71 5.85 4.31 0.2859 0.6126

0.3 85.84 4.56 5.45 4.15 0.2773 0.6136

0.7 84.57 6.03 5.25 4.16 0.3184 0.6114

0.9 61.75 19.36 11.01 7.89 0.7096 0.5638

0.95 45.77 23.49 16.30 14.44 0.8957 0.5168

1 25.41 24.40 23.66 26.54 1.0258 0.4525

Table 5.
Allocation, efficiency, and success ratio for two-period designs using the multiple objective criteria in Eq. (10).
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To illustrate, we apply the above strategy to the parameters in Table 1with the aim
of constructing a response-adaptive design with a relative efficiency around r ∗ >0:8.
First, we construct two-period two-treatment response-adaptive designs with n ¼ 40,
80, and 100. We present the results for three-period two-treatment designs with n ¼
80 and 100. The case for n ¼ 40 was excluded as all adaptive designs constructed
using Eq. (10) with any λ have relative efficiencies >0:9.

From Table 4, we can see that the designs constructed using the adaptive
allocation method by Kim [23], denoted as dAdaptive, have relative efficiencies close to
0.8 or slightly larger than that while the success ratios are increased by 9% compared
with the designs for λ ¼ 1. For n ¼ 40, the adaptive design follows the pattern of
changes in the allocations, efficiency, and success ratio so that we can find one
between d 0:8ð Þ and d 0:9ð Þ. For example, the allocation to the treatment sequence AA is
21.75 (dAdaptive), which is between 16.63 (d 0:8ð Þ) and 22.22 (d 0:9ð Þ). This pattern is also
the case for all other columns in the table for n ¼ 80 and 100. Our adaptive designs
appear to be constructed in a similar manner as the multiple objective response-
adaptive designs as if they were constructed with the λ in the suggested range of

N λ AAA AAB ABA ABB BAA BAB BBA BBB Efficiency Success ratio

40 0 11.98 4.00 4.01 4.00 4.00 4.00 4.01 4.00 0.9603 0.4797

0.3 11.95 4.02 4.00 4.00 4.01 4.00 4.02 4.00 0.9631 0.4785

0.7 10.97 4.77 4.12 4.12 4.11 4.01 4.00 4.00 0.9891 0.4767

0.8 9.24 5.62 4.73 4.56 5.01 4.55 4.36 4.23 0.9931 0.4678

0.9 6.94 5.62 4.73 4.56 5.01 4.55 4.36 4.23 1.0075 0.4566

1 5.04 5.03 4.73 4.96 4.98 4.93 4.97 5.36 1.0302 0.4377

80 0 51.98 4.01 4.00 4.00 4.00 4.00 4.01 4.00 0.5793 0.5647

0.3 51.95 4.00 4.01 4.00 4.01 4.00 4.00 4.00 0.5848 0.5656

0.7 49.58 5.91 4.24 4.01 4.23 4.01 4.02 4.00 0.6043 0.5619

0.8 41.09 10.41 6.07 4.24 5.89 4.24 4.06 4.00 0.7223 0.5458

0.85 33.85 12.40 7.48 5.14 7.47 5.20 4.39 4.07 0.8133 0.5290

0.9 25.20 13.16 8.67 6.74 9.10 6.94 5.63 4.56 0.9220 0.5050

0.95 16.76 12.06 9.02 8.48 10.27 8.61 7.94 6.86 1.0055 0.4708

1 10.09 9.97 8.58 9.95 9.83 9.75 9.91 11.92 1.0370 0.4323

100 0 71.97 4.01 4.00 4.00 4.00 4.00 4.02 4.00 0.4972 0.5817

0.3 71.98 4.01 4.00 4.00 4.01 4.00 4.00 4.01 0.5081 0.5805

0.7 69.41 6.03 4.28 4.02 4.25 4.01 4.00 4.00 0.5379 0.5812

0.8 57.12 6.09 5.56 6.20 6.01 5.95 6.18 6.90 0.6345 0.5445

0.85 54.13 12.65 7.646 4.94 7.32 5.00 4.28 4.05 0.6951 0.5553

0.9 37.37 16.65 10.20 7.39 10.46 7.62 5.80 4.50 0.8696 0.5231

0.95 23.93 15.91 10.85 10.17 12.35 10.44 9.17 7.19 0.9858 0.4794

1 12.45 12.50 10.38 12.57 12.10 12.18 12.49 15.32 1.0435 0.4315

Table 6.
Allocation, efficiency, and success ratio for three-period design using the multiple objective criteria in Eq. (10).
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0:8, 0:9ð Þ. Similarly, the dAdaptive designs for n ¼ 80 and n ¼ 100 fall right in between
d 0:9ð Þ and d 0:95ð Þ.

From Table 7, the relative efficiencies of our adaptive three-period designs are
0.7999 and 0.7854 for n ¼ 80 and n ¼ 100, respectively. These efficiencies are very
close to our target r ∗ ¼ 0:8 while the success ratios are improved by approximately
9%. We can see that the allocation for treatment sequence AAA, relative efficiency,
and the success ratio for the new adaptive designs dAdaptive follow the same pattern as
the multiple objective response-adaptive designs. The allocations to the other
sequences are relatively small and do not seem to affect the efficiency much as long as
the allocation to AAA is well controlled. The above strategy successfully leads us to
obtain desired success ratios and maintain efficiency to a prespecified level without
having to determine what the ideal λ is.

6. Conclusion

This chapter discussed practical and nearly optimal designs for clinical trials. One
of the major concerns is that response-adaptive designs have so much potential to
complement the traditional experimental designs. The use of the data acquired during
the trial may benefit the trial in numerous ways such as improving the statistical
power, reducing the cost of the trial by recalculating the required sample size,
assigning more subjects to a better treatment or treatment sequences, or utilizing the
information acquired from the covariates to improve efficiency. The multiple objec-
tive criteria may incorporate more components or select various other sets of compo-
nents such as cost efficiency versus statistical efficiency and many others.

To achieve any efficiency in trials with binary responses, we start by recognizing
that they have distinct properties that are different from continuous responses in that
their means and variances are functions of the outcomes. As a result, binary response
designs are response-dependent. Due to this characteristic, the construction of

N Designs AAA AAB ABA ABB BAA BAB BBA BBB Efficiency Success ratio

80 d 0:8ð Þ 41.09 10.41 6.07 4.24 5.89 4.24 4.06 4.00 0.7223 0.5458

d 0:9ð Þ 25.20 13.16 8.67 6.74 9.10 6.94 5.63 4.56 0.9220 0.5050

d 0:95ð Þ 16.76 12.06 9.02 8.48 10.27 8.61 7.94 6.86 1.0055 0.4708

d 1ð Þ 10.09 9.97 8.58 9.95 9.83 9.75 9.91 11.92 1.0370 0.4323

dAdaptive 39.49 5.25 7.35 5.42 4.98 5.02 6.88 5.61 0.7999 0.5267

100 d 0:7ð Þ 69.41 6.03 4.28 4.02 4.25 4.01 4.00 4.00 0.5379 0.5812

d 0:8ð Þ 57.12 6.09 5.56 6.20 6.01 5.95 6.18 6.90 0.6345 0.5445

d 0:9ð Þ 37.37 16.65 10.20 7.39 10.46 7.62 5.80 4.50 0.8696 0.5231

d 0:95ð Þ 23.93 15.91 10.85 10.17 12.35 10.44 9.17 7.19 0.9858 0.4794

d 1ð Þ 12.45 12.50 10.38 12.57 12.10 12.18 12.49 15.32 1.0435 0.4315

dAdaptive 50.48 5.93 9.52 6.45 5.65 5.78 9.11 7.08 0.7854 0.5278

Table 7.
Comparison of our new revised response-adaptive three-period design with the results from Table 6.
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optimal designs for binary responses requires special attention. Due in part to these
difficulty, there are limited studies on response-adaptive designs and optimal designs
in the literature for binary outcome data. In this chapter, we compared approaches of
constructing response-adaptive designs. Also, we conducted a simulation study based
on an actual data example to investigate the performance of the multiple objective
response-adaptive designs using the GEE over the other two methods.

We demonstrated by constructing response-adaptive designs using an objective
function, namely the multiple objective function. The designs constructed using the
multiple objective function were highly efficient, successful with respect to desirable
or beneficial treatment outcomes. In Tables 5 and 6, we observed that the choice of λ
for an efficient and successful design would depend on the sample size and the true
values of μ, π0is, τ, and γ. The efficiencies drop significantly when n increases or λ
decreases. These designs may have significantly higher success ratios but may also
have significantly low efficiency (<0.6), which is undesirable.

We then compared the approach by Kim [23] to other multiple objective adaptive
designs using the GEE to the response-adaptive design by Mukhopadhyay [20] and
multiple objective adaptive designs using binary probability modeling approach by Li
[13] for two-period two-treatment crossover designs. The proposed designs
responded to the differences in the treatment effects in a rather robust manner. When
the treatment difference is very small, the proposed designs were very close to the
optimal design with an equal allocation on four treatment sequences, AA=AB=BA=BB,
as expected. On the other hand, the other two methods assign too large a proportion of
subjects to treatment sequences BB and lose efficiencies for very small gain in suc-
cessful outcome ratios. When the treatment difference is large, the design with λ ¼ 1
assigns more subjects to a better treatment sequences compared with the other two
designs considered by Bandyopadhyay et al. [5] and Li [13].

We observed that the choice of λ was very important in finding a balance between
the relative efficiency and a success ratio. One may suggest some appropriate range of
λ, but it is valid for only a certain set of parameters and sample size, and the true
parameters are usually unknown. To overcome this challenge, Kim [23] devised a
multiple objective response-adaptive scheme, which utilizes all of the two compo-
nents of Eq. (10), not simultaneously but in a sequential manner. The simulation
results show that this adaptive scheme can construct designs with desired relative
ratios without having to select the weight parameter λ. The scheme by Kim [23] allows
researchers to run an adaptive trial knowing that their design would find the balance
between two important components of the trial—statistically efficiency and higher
allocation to a beneficial treatment.
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Chapter 9

Optimal N-of-1 Clinical Trials for
Individualized Patient Care and
Aggregated N-of-1 Designs
Yin Li, Weng Kee Wong and Keumhee Chough Carriere

Abstract

Precision medicine typically refers to the use of genomic signatures of patients to
assign more effective therapies to treat patients, or, for improved diagnosis of the
early onset of a disease so that interventions can be delivered to prevent or delay the
disease progression. Because the aim is to provide individualized patient treatment,
such single-person trials are called N-of-1 trials. This chapter reviews fundamental
ideas, models, and construction of optimal designs for N-of-1 trials, which are invari-
ably constructed from crossover trials, where each patient receives a random sequence
of trial treatments over time. We construct examples of universally optimal N-of-1
designs for comparing two treatments under various correlation structure assump-
tions and discuss how N-of-1 trials may be combined to form optimal aggregated
N-of-1 trials for assessing average treatment effects for two or more treatments.

Keywords: crossover design, individualized care, N-of-1 trials, precision medicine,
universally optimal designs

1. Introduction

N-of-1 trials or single-patient trials focus on one patient and their main goal is to
evaluate whether the treatment is effective for the individual. The main motivation
for such trials is that each patient serves as his or her own control, and another is that
each patient is different from another and there is no average patient. This is in
contrast to conventional clinical trials where the aim is to optimize treatment for the
average patients. Consequently, their aims are different, and conventional clinical
trials are not appropriate for N-of-1 trials. These trials may appear new but they are
not, except that they probably were given short shrift and not well publicized. In the
last decade or so, there is increasing interest in N-of-1 trials. Duan et al. [1] raised
awareness among clinicians and epidemiologists that N-of-1 trials are potentially
useful for informing personalized treatment decisions for patients with chronic con-
ditions. A monograph on this topic in healthcare is [2], where their applications to
behavioral sciences and many medical settings are discussed, including the economics,
ethics, statistical analysis of running such trials, and how to report results to profes-
sional audiences. Scuffham et al. [3] showed how N-of-1 trials can improve patient
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management and save costs and Kravitz and Duan [4] provided a user’s handbook on
implementing such trials. A systematic review of the use of N-of-1 trials in the medical
literature is given in [5]. There are many ways to analyze and compare results from N-
of-1 trials; see for example, [6].

Interestingly, and perhaps, not unexpectedly, results from N-of-1 trials can be
combined to generate group mean effects, as [7, 8] demonstrated how it can be done
using systematic reviews and meta-analyses on the effects of amphetamine and meth-
ylphenidate for attention-deficit hyperactivity disorder. Li et al. [9] provided a system-
atic review of quality N-of-1 trials published between 1985 and 2013 in the medical
literature based on the CONSORT extension for N-of-1 Trials (CENT) where they
examined factors that influence reporting quality in these trials. In palliative care,
Senior et al. [10] designed a N-of-1 trial of a psychostimulant, methylphenidate hydro-
chloride (MPH) (5 mg bd), compared to placebo as a treatment for fatigue, with a
population estimate of the benefit by the aggregation of multiple SPTs. Forty patients
who had advanced cancer was enrolled through specialist palliative care services in
Australia.

Multi-crossover single-patient trials are often employed when the focus is to make
the best possible treatment decision for an individual patient [2, 11, 12]. From a clinician’s
perspective, having clear evidence of the value of one treatment over another (or no
treatment) is more useful than knowing the average response. The average response
gives the clinician the probability that a treatment will be effective, whereas N-of-1 trials
givemore certainty about whether the treatment for a particular patient will work or not.

In what is to follow, we assume that there are predetermined p periods in the
crossover study, and in each period only one of the treatments is administrated. The
same treatment may be used in other periods. We first discuss the case when there are
two treatments and two periods for N-of-1 trials before extending them to aggregated
N-of-1 trials to evaluate the effects of treatments for the average patients. Treatment
groups are generically denoted by A, B, C, and so on.

Many researchers studied the optimality of crossover designs [13–18]. Optimal
designs have been constructed under a variety of statistical models to provide the
most accurate inference of the treatment effects. It is known that the two-treatment
design AB, AA and their duals BA, BB are found to be universally optimal for two-
period experiments, with the duality defined as the sequence that switches A and B
with the same effect. Similarly, it is known that the two-sequence design ABB and its
dual BAA and the four-sequence design ABBA, AABB and their duals BAAB, BBAA
are optimal for three- and four-period experiments, respectively [19] and [20].

A direct application of this two-treatment optimal design results from the literature
with A replaced as AB and B as BA would suggest that optimal N-of-1 trials can use the
four-sequence design with ABBA, ABAB or their duals for two within-patient compar-
isons. Similarly, the two-sequence design with ABBABA or its dual may be optimal for
three within-patient comparisons, and the four-sequence design with ABBABAAB,
ABABBABA or any of their duals may be optimal for four within-patient comparisons.

However, design issues are not always as straightforward to address. For example,
Carriere and Li [21] showed that constructing N-of-1 trials for individualized care from
sequences in these repeated measurement designs is not always optimal for estimating
individual-based treatment effects. Likewise, Guyatt et al. [22] showed that aggregat-
ing a series of N-of-1 trials that are optimal for individual patients can also provide an
optimal estimate of the treatment effects for the average patient. For example, in a
multi-clinic setting in three AB pair six-period N-of-1 studies, all eight possible
sequences (26=2 ¼ 8) have been used, i.e., ABABAB, ABABBA, ABBAAB, ABBABA and
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their duals to estimate both individual-based and average treatment effects. However,
we show how these do not lead to optimal aggregated N-of-1 trials for estimating the
treatment effects for the average patient.

2. Models and information matrix

The traditional crossover design model assumes that the carryover effects last
for only one period. The patient effects are considered fixed in the model. The
traditional model assumes no carryover effects for the observations in the first
period. An alternative model which has carryover effects in the first period as well
is built by giving patients a pre-period or baseline period [23, 24]. More complex
models have also been considered. Some models incorporate higher-order carryover
effects [25]; some consider carryover effects are proportional to the treatment effects
[26], some include the interaction effects between the treatment effects and carryover
effects [27], and others have random patient effects [28–30].

We first focus on the traditional model, frequently used to analyze repeated
measures crossover data:

Yij ¼ μþ αi þ βj þ τd i,jð Þ þ γd i�1,jð Þ þ εij, (1)

i ¼ 1, ⋯, p and j ¼ 1, ⋯, N. Here Yij is the outcome in the ith period from the jth

patient; αi is the ith period effect and βj is the j
th patient effect. Further, d i, jð Þ

represents the treatment assigned to the patient in period i of patient j, and τd i,jð Þ and
γd i�1,jð Þ are, respectively, the treatment effect of the treatment in the ith period and the

carryover effect of the treatment in the i� 1ð Þth period.
The model assumes that the carryover effects only depend on the treatment

assigned in the previous period but not on the treatment in the current period, which
may be unrealistic. Taking the interaction into account without introducing too many
parameters, Kunert and Stufken [17] presented a model with self and mixed carryover
effects. The self carryover effect occurs when the treatments administered in the
current and the previous periods are the same; otherwise, we have a mixed carryover
effect. The model with the self and mixed carryover effects is given by

Yij ¼
μþ αi þ βj þ τd i,jð Þ þ γs,d i�1,jð Þ þ εij, if d i, jð Þ ¼ d i‐1, jð Þ

μþ αi þ βj þ τd i,jð Þ þ γm,d i�1,jð Þ þ εij, if d i, jð Þ 6¼ d i‐1, jð Þ

8<
: , (2)

where αi, βj, d i, jð Þ and τd i,jð Þ, are defined as in model (1). The parameters γs,d i�1,jð Þ
and γm,d i�1,jð Þ represent the self and mixed carryover effects of the treatment assigned

in the i� 1ð Þth period, respectively.
In an N-of-1 trial with N ¼ 1, the j index can be omitted. Further, with one patient

and p responses in total, the period effects and patient effects cannot be accommo-
dated. Therefore, we need to reduce the models for the case when N ¼ 1.

For models (1) and (2), we define the contrast of the direct treatment effects by
τ ¼ τA � τBð Þ=2, the contrast of the first-order carryover effects by γ ¼ γA � γBð Þ=2,
the contrast of the self carryover effects by γs ¼ γs,A � γs,B

� �
=2 and the contrast of the

mixed carryover effects by γm ¼ γm,A � γm,B
� �

=2.
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To construct a model-based optimal design, we commonly use design criteria such
as A-, D-, and E-optimality. The A-, D-, and E-optimal design maximizes the trace,
the determinant, or the eigenvalue of the information matrix among a class of all
competing designs. The information matrix measures the amount of information
about the unknown model parameters. Formally, given the model and the design, the
elements in the information matrix are found by first taking the expectation of the
second derivatives of the complete log-likelihood function with respect to the
parameters and multiplying them by �1. In practice, not all model parameters are of
interest. In this case, we would first partition the information matrix and work with
the submatrix corresponding to the parameters of interest.

Specifically, we first partition the design matrix X ¼ X1, X2½ �, where X1 contains
the columns of the design matrix pertaining to nuisance parameters and X2 contains
columns corresponding to the parameters of interest. The vector of model parameters
θ is likewise partitioned as θ = (τ,γ)0 or (τ, γs, γm)0, representing the direct treatment
effects and carryover effects. Then, with Σ denoting the covariance matrix, the
information matrix can be written as

Id θð Þ ¼ X0
2Σ

�1X2 � X0
2Σ

�1X1 X0
1Σ

�1X1
� ��1

X0
1Σ

�1X2: (3)

Following [13], a design is universally optimal if (i) its information matrix is
completely symmetric, and (ii) it maximizes the trace of the information matrix. To
study the universal optimality of treatment effects in the t treatments N-of-1 designs,
we obtain the information matrix for the parameters of interest under the traditional
model. Then the universally optimal designs could be constructed as long as the
conditions given by [13] are satisfied.

2.1 Cycles and sequences

We first discuss how to find N-of-1 designs for comparing two treatments by
minimizing the variance of the estimated direct treatment effect contrast, τ. To this
end, it is helpful to define sequence feature parameters and show the association
between them and the sequences in N-of-1 designs is useful for finding optimal N-of-1
trials for model (1) and (2) .

For N-of-1 trials involving two treatments, the design sequences consist of crossover
pairs, AB and BA. Within each crossover pair, the two treatments are distinct. For two
consecutive crossover pairs, the treatments assigned to the second period in the previ-
ous pair and the first period in the latter pair can be different or the same.

Further, if an AB pair is followed by a BA pair, as in ABBA (or BAAB), we define
the design as having alternating pairs in the sequence. The performance of an N-of-1
trial sequence is related to how the pairs AB and BA alternate. The following feature
parameters define how AB and BA alternate in a sequence.

• s: the number of subsequences of AA and BB;

• m: the number of subsequences of AB and BA;

• h ¼ s�m: the indicator of how often treatments crossed between subsequences .

When we define s and m, the subsequences can be constructed by either the
treatments from a crossover pair, or be the treatments assigned to the second period in

194

Recent Advances in Medical Statistics



the previous pair and the first period in the latter pair. Therefore, in a p-period
sequence, there are p� 1 such subsequences with a length of 2. By the definition of
feature parameters, we have sþm ¼ p� 1. Determined by how a sequence is
constructed, the value of h is negative and takes on possible values in �1, �3, ⋯,
� p� 1ð Þ. Table 1 displays the relationship among h, s and m.

For a particular h, we calculate s and m by setting s ¼ p� 1þ hð Þ=2 and m ¼
p� 1� hð Þ=2. Further, for any given p, the N-of-1 designs can be classified by h. As an
example, for p ¼ 8, Table 2 shows the relationship between the design sequences and
the feature parameters.

In the next section, we show that the information matrix of the parameters of
interest are only dependent on the feature parameters. That is, sequences with the
same h values have the same information matrix. For instance, when h ¼ �3, the three
sequences ABABBAAB, ABBAABAB, ABBABAAB and their dual sequences share the
same information matrix. If this h is the optimum value, the 8 period N-of-1 trials can
use any of these three sequences and their duals.

3. Optimal 2-treatment N-of-1 designs

Let xτ, xγ, xs and xm be the design vectors corresponding to the parameters τ, γ, γs
and γm, respectively. Under the traditional model, the design matrix is [1p, xτ, xγ] for
the parameters [μ, τ, γ] with X1 ¼ 1p and X2=[xτ, xγ]. Under the self and mixed effect

h s m

� p� 1ð Þ 0 p-1

� p� 3ð Þ 1 p-2

� p� 5ð Þ 2 p-3

⋮ ⋮ ⋮

�1 p
2 � 1 p

2

Table 1.
Feature parameters of a sequence in a 2-treatment N-of-1 design.

h Sequence Alternation s m

�7 ABABABAB 0 0 7

�5 ABABABBA 1 1 6

ABABBABA 1 6

ABBABABA 1 6

�3 ABABBAAB 2 2 5

ABBAABAB 2 5

ABBABAAB 2 5

�1 ABBAABBA 3 3 4

Note: s ¼ the number of AA and BB;m ¼ the number of AB and BA in a treatment sequence, and h ¼ s�m.

Table 2.
Sequences for p ¼ 8 with corresponding design parameter values.
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model, we have [1p xτ, xs, xm] for the parameters [μ, τ, γs, γm] with X1 ¼ 1p and X2=
[xτ, xs, xm].

In 2-treatment N-of-1 trials, the Id τ, γð Þ is a function of the quantities:

x0τxτ ¼ p, x0γxγ ¼ p� 1, x0τxγ ¼ h (4)

under model (1) for θ ¼ τ, γð Þ0, or

x0τxs ¼ s, x0sxs ¼ s, x0mxs ¼ 0, x0τxm ¼ �m, x0mxm ¼ m (5)

under model (2) for θ ¼ τ, γs, γmð Þ0. Hence, the information matrix can be
expressed in terms of p, s, m and h.

Since the information matrices can be further simply expressed in terms of h and p
only, for a given p, the optimal p�period N-of-1 trial is completely determined by h,
and much simpler to construct than previously. We proceed by defining Id τð Þ appro-
priately to find designs that maximize the information below.

Under an equi-correlated error assumption, the optimal N-of-1 trial for τ and γ is
the one sequence design that consists of pairs of AB and BA appearing alternatively.
Hence, the optimal N-of-1 trials for 4, 6, and 8 periods are the one sequence design,
ABBA, ABBAAB and ABBAABBA, respectively. One could switch A and B to obtain a
dual sequence with the same effect.

Under the equi-correlated errors, the optimal N-of-1 trial for estimating the
direct treatment contrast is the sequence with only AB (BA) pairs with no
alternation, such as BABABA and ABABABAB. A closed form for the optimal h is
complicated for autoregressive errors, and selected numerical results are found
when h ¼ 1� p.

To summarize, the optimal N-of-1 trials for estimating direct treatment effects are
determined by the three feature parameters h, s, and m. However, specifying one of
these along with p determines the design sequence, as illustrated in Table 2. We used
h to summarize the optimal designs under both the traditional and self and mixed
models for 4, 6, 8, 10, and 12-period N-of-1 trials.

It can be shown that under the traditional model, the optimal trial for the direct
treatment effect uses the sequence with h ¼ �1 for all covariance structures. There-
fore, the optimal N-of-1 trial for estimating the direct treatment effect is to alternate
between AB and BA pairs. In case that the carryover effect is of interest, it can be
easily shown that these designs are also optimal for estimating the carryover effect,
which can be obtained using the same technique for optimal designs in treatment
effects. Under the self and mixed effects model, the optimal N-of-1 trial for the direct
treatment effect uses a sequence with h ¼ � p� 1ð Þ for both uncorrelated and equal-
correlated covariances. Therefore, the optimal N-of-1 trial is to use only AB pairs
throughout. Under the auto-regressive covariance structure, however, the optimal
designs depend on the value of p and the auto-regressive correlation ρ. Generally, the
optimal design uses AB and BA pairs alternately, but as ρ or p increases, some
abnormalities are observed.

4. Optimal aggregated N-of-1 trial designs with N> 1

In addition to the interest in the patient-based evidence of a treatment contrast,
it may also be desirable to obtain a population average effect of treatments.
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Aggregating the series of N-of-1 trials can give such an estimate of the average
effect [7]. Using the one sequence that was found optimal for N-of-1 trial to all
patients seems to be an obvious choice. However, it might not optimize the trial for
estimating the effects on the average patient and therefore, using the one sequence
that is optimal for a single individual patient to all patients might not serve this
purpose.

The optimal designs for aggregated N-of-1 trials can also be derived from the
information matrices we obtained, similarly as for N-of-1 trials for one patient, by
allowing j ¼ 1, … , N with N > 1. We approached the problem in two steps; first, we
optimize single N-of-1 trials, as the primary goal is to optimize estimating the effects
for each patient. Next, we optimize the overall N-of-1 trials in aggregation.

To find the optimal design, we typically choose Nk for k ¼ 1, … , s to allocate
patients to a sequence s. The sufficient condition on Nk was given by [20] for a design
to be optimal. The condition is called a duality in the design matrices, as defined
earlier. Among other things, it permits simplification of the search for the optimal
choice for Nk (see also [16]).

As noted earlier for Table 1, designs with the same value of h perform equally
in estimation precision. Although all or only one of those with an equally optimal
h can be used in a trial, practical consideration will lead to using the least
necessary number of sequences for ease of treatment administration. Further, we
found that there is a unique N-of-1 trial sequence in all p-period experiments.
Since the designation of A and B is arbitrary, the optimal N-of-1 trial can be obtained
by reversing the order of treatment administration. For example, the optimal
6-period N-of-1 trial is ABBAAB under the traditional model for N ¼ 1. Its dual,
BAABBA also has the same value of h ¼ �1 and is optimal. Hence, when N ¼ 1,
either of these two sequences will provide the maximum amount of information.
When N > 1 and a multiple of 2, we can adopt both of these sequences, as they
maximize the information, and this approach also simplifies the search for the
optimal design for estimating the treatment effect for the average patients, satisfy-
ing the duality condition in [20]. Based on this rationale, we make the following two
propositions.

Proposition 1: The optimal design for aggregated N-of-1 trials under the tradi-
tional model is to allocate the same number of patients to the optimal sequence with
AB and BA alternating and its dual.

For example, the optimal design for aggregated six-period N-of-1 trials is the two-
sequence design using sequences ABBAAB and BAABBA, allocating the same number
of patients to each. For a balanced design, N must be a multiple of 2.

Proposition 2: The optimal design for aggregated N-of-1 trials under the self
and mixed model is to allocate the same number of patients to the optimal sequence
with no alternation between AB and BA pairs and its dual. However, under the
autocorrelation errors, the optimal design is to allocate the same number of patients
to the optimal sequence that alternates between AB and BA pairs subsequently and
its dual.

For example, the optimal aggregated 6-period N-of-1 trials for multi-clinic setting
is to use the two-sequence design ABABAB and BABABA under the equal or
uncorrelated errors, and to use the two-sequence design ABBAAB and BAABBA under
the autocorrelated errors, allocating the same number of patients to each sequence.

From each sequence, we obtain individual patient specific treatment effects and by
aggregating these one sequence of N-of-1 trials, we can quantify the average treat-
ment effects.
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4.1 Numerical comparisons

To appreciate the practical performance of the optimal N-of-1 trials we
constructed, we compare the efficiencies of selected designs for estimating the treat-
ment and carryover effects under the two models. We also investigate their perfor-
mances in some aggregation for estimating the average treatment effect. We limit the
comparison to the models with independent and equi-correlation errors. In our com-
parisons, we also reference many designs, labeled with an A or S at the beginning, like
A65 and S83, that were investigated in [31].

Recall that the optimal N-of-1 trials are either to alternate between AB and BA
pairs or simply to repeat the AB pair in a sequence. Under the traditional model, the
optimal N-of-1 trial uses ABBAAB and ABBAABBA for 6 and 8 period experiments,
respectively. We refer them to S63 and S83. Under the self and mixed effects model,
the optimal N-of-1 trial is to use ABABAB and ABABABAB for 6 and 8 period
experiments, respectively, which we refer to S61 and S81. Table 3 considers other
mixtures and shows that the optimal individual-based N-of-1 trials are S63 and S81
under the respective models, as expected. We also observe from the table that (i)
there are no real practical differences among various N-of-1 trials under the self and
mixed model, and (ii) designs S61 and S81 cannot estimate self carryover effects,
making S63 and S83 preferable. Therefore, we recommend using a sequence that
alternates between AB and BA pairs, such as S63 and S83, as robust and optimal N-of-
1 trials for all models.

Based on these single sequence trials, we also consider aggregated N-of-1 trials to
numerically justify Propositions 1 and 2. We constructed 5 aggregated N-of-1 trials for
p ¼ 6 and p ¼ 8 with N ¼ 32 and compare their efficiencies for estimating the average
treatment effects as follows.

• A61. ABABAB and its dual with 16 patients in each sequence

• A62. ABABBA and its dual with 16 patients in each sequence

• A63. ABBAAB and its dual with 16 patients in each sequence

• A64. ABBAAB, ABABBA and their duals with 8 patients in each sequence

• A65. All 8 sequences, S61–S64 and their duals with 4 patients in each sequence

• A81. ABABABAB and its dual with 16 patients in each sequence

• A82. ABABBABA and its dual with 16 patients in each sequence

• A83. ABBAABBA and its dual with 16 patients in each sequence

• A84. ABABBABA, ABBABAAB and their duals with 8 patients in each sequence

• A85. All 8 sequences, S81–S84 and their duals with 4 patients in each sequence

The design A63 uses the optimal sequence S63 under the traditional model; the
design A61 uses the optimal sequence S61 under the self and mixed model although
the self carryover effect is not estimable; the design A62 is a slight rearrangement of
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designs A61 and A63; the design A64 is a combination of designs A62 and A63; the
design A65 contains all 8 possible sequences of a 6-period design. Designs A81–A85 are
also similarly constructed from various N-of-1 trials. We compare these designs under
the traditional model and the self and mixed model. Table 3 displays the comparison
results under the two models and reports the variances of the estimated τ, γ, γs and γm
after they are divided by their leading constants σ2=N (when errors are independent)
or by σ2 1� ρð Þ=N (when errors equi-correlated).

Table 3 shows that under the traditional model, the design A63 with the optimal
sequence ABBAAB and its dual provides the best precision for estimating both the
direct treatment effect and the carryover effect for the average patients. Each of the
sequences optimally estimates the individual-based treatment effect. The least effi-
cient choice would be the design A61. Design A65, which has been used in a recent
multi-clinical trial [7], is rather inefficient as well, not to mention the unnecessarily
lengthy administration time and cost required to manage many treatment groups,
which requires the number of patients to be a multiple of 8.

Design h Traditional model Self and mixed model

var τ̂ð Þ var γ̂ð Þ var τ̂ð Þ var γ̂sð Þ var γ̂mð Þ
S61: ABABAB �5 1.208 1.500 1.208 NE 1.500

S62: ABABBA �3 0.242 0.300 1.250 3.000 1.500

S63: ABBAAB �1 0.173 0.214 1.214 1.714 1.714

S64: ABBABA �3 0.242 0.300 1.250 3.000 1.500

A61 = S61 + dual 1.208 1.500 1.208 NE 1.500

A62 = S62 + dual 0.242 0.300 1.250 3.000 1.500

A63 = S63 + dual 0.173 0.214 1.214 1.714 1.714

A64 = S63 + S62 + duals 0.193 0.240 1.210 2.063 1.563

A65 = S61:S64 + duals 0.242 0.300 1.214 2.535 1.521

S81: ABABABAB �7 1.146 1.333 1.146 NE 1.333

S82: ABABBABA �5 0.229 0.267 1.167 2.667 1.333

S83: ABBAABBA �1 0.127 0.148 1.150 1.600 1.400

S84: ABBABAAB �3 0.150 0.174 1.147 1.647 1.412

A81 = S81 + dual 1.146 1.333 1.146 NE 1.333

A82 = S82 + dual 0.229 0.267 1.167 2.667 1.333

A83 = S83 + dual 0.127 0.148 1.150 1.600 1.400

A84 = S82 + S84 + dual 0.176 0.205 1.147 1.945 1.358

A85 = S81:84 + dual 0.176 0.205 1.147 1.945 1.358

Note: NE means “Not Estimable.” For N ¼ 1, a six-period N-of-1 trial may consider any one of S61,⋯, S64. For N > 1,
aggregated six-period N-of-1 trials may use a combination of these, A61,⋯, A65. Similarly, an eight-period N-of-1 trial
may consider any one of S81,⋯, S84. For N > 1, aggregated six-period N-of-1 trials may use a combination of these,
A81,⋯, A85. The variances reported are divided by σ2ε=N (under an independence error) or σ2ε 1� ρð Þ=N (under an
equi-correlated error).

Table 3.
Variances of the estimators of treatment and carryover effects in six- and eight-period designs.

199

Optimal N-of-1 Clinical Trials for Individualized Patient Care and Aggregated N-of-1…
DOI: http://dx.doi.org/10.5772/intechopen.106352



When using the self and mixed effects model, Design A61 provides the best
precision for estimating the direct treatment effect and the mixed carryover effect.
However, the self carryover effect is not estimable. Overall, A63 is the optimal choice
even in this case. However, all designs performed rather similar with over 95%
relative efficiency under the self and mixed effects model, as observed earlier for
single N-of-1 trials.

A similar observation is possible for 8-period designs and their sequences. In
summary, it appears that there is no discernable advantage to distinguish among the
two models and various error structures.

Overall, S63 and S83 for single N-of-1 trials or designs A63 and A83 in aggregation
of S63, S83 and their duals seem to be the best under both models. They are optimal
for estimating direct treatment and mixed carryover effects. Further, they are optimal
for estimating both the treatment and carryover effects under the traditional model.
Hence, we conclude that the optimal six-period aggregated N-of-1 trials is ABBAAB
and its dual BAABBA, while the optimal eight-period aggregated N-of-1 trials is
ABBAABBA and its dual BAABBAAB. For an N-of-1 trial, using one of these sequences
will optimize the treatment for an individual patient.

We close this section with a summary note. Our numerical work suggests that
alternating AB and BA pairs in sequence is likely to result in an optimal or nearly
optimal p�period design for all the models we have considered for estimating both
individual effects in N-of-1 trials and average effects in aggregated N-of-1 trials.

5. Universally optimal N-of-1 designs for more than two treatments

Oftentimes, N-of-1 trials deal with comparing t> 2 treatments and we briefly
discuss selected universal optimal N-of-1 trials for such a situation. In N-of-1 trials
with t> 2 treatments, we can consider a sequence consisting of treatments in blocks of
a size t. Every block within the sequence contains each of the t treatments exactly
once. It follows that N-of-1 designs constructed in this way can ensure treatments are
compared fairly, and poor balance can be prevented when the study is terminated
prematurely. For example, in a 3-treatment N-of-1 trial, a six-period design could be
ABC∣BCA, where the sign ∣ divides them into blocks. Li [31] denoted such a class of N-
of-1 trial designs by No1(t,t), where the first t in the notation represents the number
of treatments in the study and the second t denotes that the treatments are to be
administered to be in blocks of size t. Therefore, a six-period design in the above
example is No1(3,3).

Li [31] showed that Kiefer’s conditions could not be satisfied with designs in the
class No1(t,t). However, if we consider a slightly different class of designs, then
universally optimal designs can be obtained. Li [31] used No1(t,t+) to denote the new
class of designs, which consist of designs with one extra treatment to the last period in
No1(t,t). For instance, a design in No1(3,3+) could be ABC∣BCA∣A, ABC∣BCA∣B, or
ABC∣BCA∣C. Similarly, some examples from the class No1(2,2+) are AB∣BA∣A,
AB∣BA∣B, etc.

One disadvantage of the universally optimal designs for t> 2 treatments is that the
length of the sequence can be unmanageable, leading to drop-outs and non-
compliances before the end of the trials. As discussed in [3], a universally optimal
design in No1(t,t+) requires the length of the sequence equal to t� 1ð Þ!t2 þ 1, which is
5 for t ¼ 2, 19 for t ¼ 3, and 97 for t ¼ 4. It may be infeasible in practice because the
longer the period of the experiment, the more expensive the experiment and the
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higher the risk of drop-outs. To shorten the length of the experiment without losing
the balance in the comparison of treatments, Li [31] introduced a class of designs in
No1(t,s) or No1(t,s+) for some s< t, especially when s ¼ 2. To do so, the restriction
that the block size must be equal to the number of the treatments can be relaxed [31].
By allowing the block size to be smaller than t, universally optimal designs can be
manageable in practice, thereby reducing the risk of early dropouts and the burden of
treatment administration.

Li [31] showed some practical universally optimal designs for three-, four- and
five-treatment in blocks of size 2. In each block, two different treatments are
assigned such as a crossover pair. For t-treatment designs, there are t t� 1ð Þ
different kinds of crossover pairs. To construct the universally optimal design,
the crossover pairs are selected such that each subsequence of AiAj, 1≤ i, j≤ t,
appears only once. Therefore, for universally optimal designs, the number of periods
is p ¼ t2 þ 1. For example, p is 10 for three-treatment designs, 17 for four-treatment
designs and 26 for five-treatment designs. We close by giving examples of universally
optimal designs in selected situations. Omitting details, which are available in [31],
they are:

• No1(3,2) with t ¼ 3:

ABBCCAACBAf g or BCABBAACCBf g,

• No1(4,2+) for t ¼ 4:

ABBCCDDACBDCADBAAf g or BCCDDAABBDCADBACBf g

and

• No1(5,2) for t ¼ 5:

ABBCCDDEEAACBDCEDAEBADBECAf g or

CDDEEAABBCCEBDACBEDBAECADCf g:

6. Concluding remarks

In this Chapter, we discussed and reviewed construction of universally optimal N-
of-1 designs and how they may be aggregated to estimate treatment effects for the
average patients. Originally, Kiefer [13] proposed the concept of universal optimality
with zero row and column sums in the information matrices. We examined conditions
when such universally optimal designs exist with special application to N-of-1 trial
designs that will make them optimal no matter what criteria are applied. In particular,
we first presented a sufficient condition that ensures N-of-1 designs are universally
optimal for the traditional model that accommodates the carryover effects. Addition-
ally, we discussed extensions of our work to finding optimal aggregated N-of-1
designs. Using numerical results from our simulation for comparing the estimated
precision of several six- and eight-period designs, we were able to obtain realistic
guidelines for the practitioners.
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Overall, there are three key conclusions from this chapter. The first is that alter-
nating between AB and BA pairs in sequence will result in an optimal or nearly
optimal N-of-1 trial for a single patient for models considered in this chapter. In
particular, our work suggests that alternating between AB and BA pairs in a single trial
is quite robust to mis-specification in the error structures considered in the chapter.
Consequently, there is less need to guess or conduct a pilot study to verify model
assumptions and the error structures.

Another take home message is that when an experiment has been carried out with
the optimal N-of-1 trial and additional patients are accrued in the trial, we can
aggregate these N-of-1 trials optimally by allocating the same number of patients to its
dual sequence, thereby optimizing the trial for both the individual and average
patients.

Lastly, we also provided a strategy for finding N-of-1 trials with more than 2
treatments. By restricting the class of designs and utilizing each subsequence, we
constructed universally optimal N-of-1 trial designs when there are t ¼ 3, 4, or 5
treatments.
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