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Preface

Cancer Bioinformatics is organized around examples of the use of bioinformatics in 
precision oncology. It contains seven chapters.

Chapter 1 is an introductory chapter in which the editors introduce cancer as a 
complex and multifactorial disease and bioinformatics multiomics approaches that 
can be applied and used to study the disease.

Chapter 2, “Urologic Cancer Molecular Biology”, focuses on molecular mechanisms 
underlying the urological carcinogenic processes, the molecular pathways involved in 
this process, and the biomarkers useful for diagnosis, predictability, and treatment to 
improve the outcomes of cancer patients.

Chapter 3, “Control of Cytoskeletal Dynamics in Cancer through a Combination of 
Cytoskeletal Components”, investigates the molecular mechanism behind S100A4 
function in epithelial-mesenchymal transition, demonstrating its participation 
in myosin dynamics modulation. Understanding the signaling pathways involved 
provides a better understanding of the changes that occur during metastasis leading 
to the identification of proteins that can be targeted for treatment, resulting in lower 
mortality.

Chapter 4, “Identification of Biomarkers Associated with Cancer Using Integrated 
Bioinformatic Analysis”, reports various types of biomarkers associated with different 
types of cancer and their identification using integrated bioinformatic analysis. It also 
provides insight into integrated bioinformatics analysis tools and databases for cancer 
biomarkers prediction.

Chapter 5, “The Clinical Usefulness of Prostate Cancer Biomarkers: Current and 
Future Directions”, reports emerging molecular biomarkers such as exosomal miRNAs 
and proteins that provide precise indications for cancer diagnostics, prognostics, and 
prediction and can be used in monitoring therapeutic response.

Chapter 6, “The Role of Registration in Cancer Control and Prevention”, examines 
the importance of cancer registries that play an essential role in estimations of 
the burden of cancer for different geographic areas and in cancer control and 
prevention.

Chapter 7, “Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets”, 
describes an approach to making cancer registry data FAIR (findable, accessible, 
interoperable, and reusable) using ontologies with practical examples of how the 
validation rules can be modelled with description logic.
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Chapter 1

Introductory Chapter: Application 
of Bioinformatics Tools in Cancer 
Prevention, Screening, and 
Diagnosis
Ghedira Kais and Yosr Hamdi

1. Introduction

Cancer is a leading cause of death worldwide, with nearly 10 million deaths in 
2020, accounting for one in six deaths. Breast, lung, colon rectum, and prostate are 
considered the most common cancer types [1]. Around one-third of deaths from 
cancer are due to environmental factors and lifestyle habits, such as tobacco use, high 
body mass index, alcohol consumption, low fruit and vegetable intake, and lack of 
physical activity [2]. In addition, 10% of cancer cases are due to genetic factors and 
around 10% of cancer-causing infections, such as human papillomavirus (HPV) 
and hepatitis, are responsible for approximately 30% of cancer cases in low- and 
lower-middle-income countries [3]. Indeed, HPV infection is the main cause of 
cervical cancer, cancer that can be cured if detected early and treated effectively 
[4]. The multifactorial character of the disease with the huge amount of data that 
has been generated during the last decades covering all risk factors behind cancer 
disease allowed bioinformatics to play an essential role in Cancer research and made 
oncology a success story in translating and using OMICs data, including genomics, 
 transcriptomics and proteomics data, in clinical settings [5].

2. Use of bioinformatics integrative approaches in oncology

Numerous research groups worldwide have attempted to develop strategies to 
identify novel diagnostic and prognostic markers for different cancer types based on 
computational integrative analyzes and tools. One of the most powerful computa-
tional approaches is meta-analysis, where multiple studies interrogating a common 
hypothesis are analyzed together [6]. Several studies have applied meta-analysis 
methods to cancer microarray data in order to identify differentially expressed 
genes (DEGs) between cancer patients and controls. These methods can be applied 
to identify robust gene-expression signatures in a single cancer type and/or to look 
for common expression patterns across different types of cancer. In 2004, Rhodes 
and co-workers investigated and analyzed 40 published cancer microarray data sets, 
comprising 38 million gene expression measurements from >3700 cancer samples 
[7]. With the advent of high throughput sequencing technology, known as NGS, 
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RNA sequencing (RNASeq) has been used in several aspects of cancer research 
and therapy including the discovery of biomarkers, the characterization of cancer 
heterogeneity and evolution, cancer immunotherapy, and the investigation of drug 
resistance [8]. High throughput sequencing technology has the advantage of fast-
speed sequencing at low cost and with high accuracy compared to the former Sanger 
technology. Compared to microarray, RNASeq can also detect unknown gene expres-
sion sequences [9]. Gene expression profiling often generates large gene-expression 
signatures that need to be functionally analyzed to identify a handful of genes of 
interest that are selected for experimental validation. Several methods have been 
developed allowing systematic functional analysis of gene expression signatures 
including Gene Ontology (GO) [10, 11], KEGG [12], TransPath [13], and GenMAPP 
[14]. Finally, to better understand complex biological processes, such as cancer initia-
tion and progression, it is important to consider the integration of transcriptomic 
data in the context of complex molecular networks. This implies the mapping of 
interactomes involving protein-protein interaction with the gene expression signature 
to identify induced or repressed interactome subnetworks on the basis of known and 
predicted  protein-protein interactions [15].

3. Data science in oncology

In the past decade, Artificial intelligence (AI), particularly, machine learning 
(ML) has grown rapidly in the context of data analysis and computing allowing appli-
cations and platforms to function in an intelligent manner (https://pubmed.ncbi.nlm.
nih.gov/34278328/). ML is a field that refers to a broad range of learning algorithms 
that perform intelligent predictions based on learning from a subset of data [16]. AI 
has recently altered the landscape of cancer research and medical oncology using 
traditional ML algorithms and cutting-edge Deep Learning (DL) approaches [17]. 
Indeed, ML algorithms including Random Forest (RF), Gradient Boosting Machine 
(GBM), and Neural Network (NN) have been used to optimize cancer classification 
[18]. Furthermore, DL-based algorithms have been widely applied in medical imaging 
to accurately diagnose breast cancer [19], colorectal cancer [20], lung cancer [21], and 
others [22]. Moreover, AI systems have been developed and used to diagnose early 
gastric cancer (EGC) from 4667 magnifying image-enhanced endoscopy images, 
including 1950 EGC images from 1042 cases and 2717 noncancerous images from 769 
cases [23].

4. Tools and databases

Several publicly accessible databases containing cancer related data, and integrat-
ing tools for delivering and analyzing information and data, as well as specialized 
databases dedicated to specific types of cancer, have been developed during the 
last decades. Most commonly used and prominent ones include the International 
Cancer Genome Consortium (ICGC) [24] and The Cancer Genome Atlas (TCGA) 
[25]. A detailed list of publicly available databases and their descriptions has been 
reported by Pavlopoulou and co-workers [26]. Recently, a novel database integrat-
ing RNA-seq, DNA methylation, and related clinical data from over 10,000 cancer 
patients in the TCGA study as well as from normal tissues in the GTEx study has been 
developed and made freely available through [27, 28]. Concerning bioinformatics 
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and computational tools for cancer risk prediction, numerous resources have been 
developed including the International Breast Cancer Intervention Study (IBIS) 
[29], the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation 
Algorithm (BOADICEA) [30], the BRCAPRO [31] and the Breast Cancer Surveillance 
Consortium (BCSC) risk model [32]. A comprehensive list of web tools and web serv-
ers for cancer genomic study and cancer prognosis analysis has been provided by Yang 
and coworkers [33] and Zheng and colleagues [34].

5. Precision oncology application

Molecular and genetic profiling of tumors play an increasingly important role not 
only in cancer research but also in the clinical management of cancer patients [35]. 
Multi-omics approaches hold the promise of improving diagnostics, prognostics, and 
personalized treatment using highly reproducible and robust bioinformatics methods 
of complex data management and integration to go from the primary analysis of raw 
molecular profiling data to the automatic generation of a clinical report and its deliv-
ery to decision-making clinical oncologists [36]. The initial results coming out from 
these efforts are promising, but it has also become explicit that the exploitation of 
the full potential of precision oncology faces many challenges. One major bottleneck 
resides in the efficient and precise annotation of variants [37]. This challenge requires 
the use of databases containing well-curated variants as well as their interactions with 
potential drugs. The second challenge is the rapid development of molecular profiling 
techniques coming with novel challenges in terms of the development of new bioin-
formatics tools, pipelines, and workflows adapted to each of these new techniques 
[38]. Moreover, multi-omics approaches are providing more insights into dysregu-
lated pathways, increasing the level of confidence in reporting actionable variants 
when they can be confirmed by RNA, protein, or epigenetic profiling. However, the 
availability of diverse multi-omics data is currently posing new bioinformatics chal-
lenges to integrate multiple data sets and identifying potentially efficient treatments 
[39]. Finally, interpreting the clinical significance of genomic variants and transcrip-
tional changes is a laborious task that cannot be fully automated in a reliable way 
and therefore needs a multidisciplinary team to apply clinical interpretation to select 
relevant variants and to recommend targeted, personalized therapies [40]. That being 
said, bioinformatics still holds the hope to make the intersection of cancer research 
and medical applications for better clinical management of patients.
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Abstract

An adequate understanding of the molecular mechanisms of the most common 
urological cancers is necessary for a correct approach to diagnosis, precise treatment, 
but also for the follow-up of these patients. It is necessary to understand the molecu-
lar mechanisms underlying the carcinogenic processes, the molecular pathways 
involved in this process, and also to describe the biomarkers useful for diagnosis 
but also for predictability, treatment, and natural history. In addition, it would be 
useful to describe a list of useful molecules currently under investigation as possible 
 biomarkers to improve the income of cancer patients.

Keywords: prostate cancer, urothelial cancer, kidney cancer, biomarkers, 
bioinformatics

1. Introduction

Over the past decades, the treatment of localized cancers was mostly focused on 
surgery and radiotherapy and advanced neoplasia was treated using nonspecific cyto-
toxic agents. Despite the increasing 5-year survival rate, there is also still a large num-
ber of nonresponsive patients, mostly due to the diversity of genetic profiles among 
the worldwide population, also the heterogeneity within the tumor itself [1–3].

Neoplasia develops under a various number of molecular and genetic malfunctions 
that regulate cell division, cell differentiation, and programmed cell death [4, 5]. 
Tumor suppressor genes and proteins encoded by these genes play a major role in 
cellular growth regulation, cell signaling, and DNA repair. Oncogenes are mutated 
forms of normal genes and are associated with cellular proliferation.

Molecular biology focuses on the study of physiological and pathological changes 
in the body. It helps to develop tools for early diagnosis of these changes and ways to 
reverse them. In recent years, considerable efforts have been made to elucidate the 
molecular mechanisms of malignant transformation that have the role of personalized 
medicine (especially oncology) in order to maximize the effectiveness of the thera-
peutic response but also to minimize side effects. In this sense, understanding the 
process of carcinogenesis helps to diagnose at an early stage, an accurate diagnosis but 
also of the different behavior of tumor subtypes, in order to establish the appropriate 
therapy [6–11].
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BCG (Calmette-Guérin bacillus) immunological therapy in the treatment of 
bladder cancer is an excellent starting point for the usefulness of molecular studies on 
immunotherapy in genitourinary cancers. Being a nonspecific agent, there are many 
gaps regarding its mechanism of action but it paved the way for a different approach, 
that of inducing an immune response against cancer via cancer vaccines. Prostate and 
kidney cancer are also considered for this kind of treatment [11].

From a clinical point of view, the most obvious mechanism is the limitation of the 
specific antigen immune response by CD4 and CD8 (tumor-infiltrating lymphocytes) 
with significant importance in limiting the antitumor response thus preventing a 
significant proportion the clinical remission of tumors. Thus, a therapeutic line has 
been developed that targets an immune checkpoint blockade in order to bypass the 
mechanisms that limit the response, and which in the case of bladder tumors, in com-
bination with conventional chemotherapy, or VEGF inhibition (vascular endothelial 
growth factor) in kidney cancer and last but not least, in prostate cancer—hormone 
therapy, increase the effectiveness of treatment [11].

In this chapter, we discuss the most significant urological cancers including 
prostate cancer, urothelial carcinoma, and renal highlighting their molecular mecha-
nisms and the related studied biomarkers for precision diagnosis and therapeutic 
management.

1.1 Bioinformatics in urologic cancers

Cancer is one of the most complex diseases to understand. It is characterized by 
the rapid growth and spread of its cells, its resistance to conventional treatments, and 
its ability to invade and displace normal tissue. Malignant cells, regardless of type, 
usually share some common features—reprogrammed energy metabolism, sustained 
cell growth signals, evasion of growth suppressors, resistance to apoptosis, facilita-
tion of replicative immortality, induction of angiogenesis, resistance to destruction by 
the immune system, and promotion of cell invasion and metastasis. These recognized 
characteristics have led to a deeper understanding of this disease. However, the reality 
is that our overall ability to cure cancer has not yet improved significantly, especially 
for adult cancers, which account for 99% of all cancers [12–14].

The major challenges facing clinical oncologists include not only the  considerable 
heterogeneity and different genetic backgrounds even within the same type of 
cancer, but also the fact that effective drugs lose their efficacy due to the ability of 
cancer to evolve rapidly, especially with regard to the emergence of drug-resistant 
 subpopulations [12–14].

One of the many reasons why our knowledge is so sparse is the lack of molecular-
level data, the full analysis, and interpretation of which can reveal the full complexity 
of developing cancer. Although large amounts of genomic, epigenomic, transcrip-
tomic, metabolomic, and proteomic data have been obtained for a variety of cancers, 
few cancer studies are designed to fully exploit all the information that can be derived 
from the available omic data [12–14]. Integrative analyses of multiple data types may 
prove to be essential to gain a full and systems-level understanding of cancer’s evolu-
tion dynamics, including the elucidation of its true drivers as well as key facilitators 
at different developmental stages of cancer. We anticipate that only when all of the 
key information hidden in omic data can be fully derived and utilized can we expect a 
meaningful breakthrough in our understanding of cancer [12–14].

The understanding of the human genome combined with technologies such as 
DNA and protein arrays or mass spectrometry has improved the simultaneous study 
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of numerous genes and proteins in single experiments and has rekindled interest in 
the search for novel biomarkers for cancers such as but not limited to, renal, urothe-
lial, and prostate cancers [15–21]. Modern technology allows for parallel studies as 
compared to the serial analyses used in older methods. This allows the identification 
of distinct patterns for cancer diagnosis and classification, as well as for prediction 
of therapeutic response. In addition, these technologies enable the discovery of 
new individual tumor markers through the use of acceptable hypotheses and novel 
analytical methods [15–21]. Although new technologies and tactics often fail in the 
discovery of established cancer biomarkers and focus on identifying high-incidence 
compounds, they have the potential to revolutionize biomarker discovery. It is now 
critical to focus on thorough validation studies to discover the most effective tech-
niques and biomarkers and bring them to the clinic as quickly as possible [15–21].

Bioinformatics and computational techniques have been well applied in the 
studies of various tumors (urologic, digestive gynecologic, etc.), and confirmed to 
be efficient and reliable in identifying novel tumor markers for cancer diagnosis and 
targeted treatments [22].

The very large pool of publicly available cancer-omic data, which includes tran-
scriptomic, genomic, metabolomic, and epigenomic data, contains a considerable 
amount of information about the activities of individual biochemical pathways, their 
dynamics, and the complex relationships between them, as well as information about 
various microenvironmental factors. When the right questions are asked, powerful 
statistical analysis techniques can be very helpful in uncovering such information. 
Such targeted questions provide a framework for hypothesis-driven data analysis and 
evaluation that can be used to test the validity of the formulated hypothesis and to 
formulate new questions that may lead to the discovery of specific pathways or even 
possible causal relationships between the activities of different pathways. More effec-
tive analysis methods for different omic data formats are definitely needed to answer 
more difficult and in-depth questions about the data, such as deconvolution of gene 
expression data obtained from tissue samples with different cell types and inference 
of causal relationships. Effective data mining and information discovery require 
integrative analysis of various forms of omic and computational data [14, 15, 17–21].

1.2 Prostate cancer (PCa)

It is considered the second most prevalent cancer among male subjects. Around 
one in eight men will get diagnosed with the illness during their lifetime. In 2012, 
around 1.1 million men were diagnosed with prostate cancer globally. Around one in 
40 of them will die due to this disease [23–25].

With the discovery and introduction of PSA-based screening tests, the incidence of 
prostate cancer has increased dramatically. However, given the advances in molecular 
biology, we realize that a purely PSA-based test does not provide sufficient accuracy. 
To find an answer, we need to consider other possible screening methods by elucidat-
ing the molecular basis of cancer development and more specific biomarkers [23–25].

The complexity of the diagnostic process in prostate cancer is reflected in the vari-
ous interactions that occur during the course of the disease itself. The initial changes 
that lead to cancer are usually caused by chronic inflammation and dietary habits. 
They eventually lead to severe damage to the DNA of the prostate cells. Early genetic 
events that can promote disease progression include fusions or mutations of vari-
ous genes and oncogenes (Figure 1), as well as malfunctions of molecular signaling 
pathways [23–25].
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The primary androgen of the prostate is dihydrotestosterone (DHT), and expo-
sure to this androgen is considered to be a precipitating factor in the development of 
primary prostatic neoplasia. The androgen receptor (AR) plays a central role in the 
development and progression of prostate cancer. Although the relationship between 
androgen exposure and cancer is not yet clear, exposure to very high or low concen-
trations of this substance may be protective against PCa (prostate cancer). The effects 
of androgen on long-term male survival are still unknown. The interaction of vitamin 
D with its receptor may influence the aggressiveness of the disease and its risk factors, 
but the mechanism underlying this event is not yet fully understood [23–25].

The prostate develops just caudal to the bladder neck by the proliferation of 
epithelial buds growing from the urogenital sinus epithelium. Epithelial budding is 
strictly androgen-dependent and represents the first identifiable events in prostate 
development. Budding of the prostate requires complicated epithelial-mesenchymal 
interactions [26, 27].

High testosterone levels in male embryos promote prostate development. 
Testosterone is converted to DHT by 5α-reductase, an interaction that activates AR. 
High testosterone levels during early development led to prostate growth regardless of 
genetic sex, suggesting a primary role for androgens in prostate induction [26, 27].

The upregulation of Sox9 (sex-determining region Y-box 9), a transcription factor 
induced by the FGF pathway, is the earliest event that appears to occur in the epi-
thelium during prostate development. This mechanism is followed by the increased 
expression of Nkx3.1 (NK homeobox transcription family member), which influences 
the degree of branching in the mature mouse prostate, where it may also act as a 
tumor suppressor [26, 27].

The FGF family of secreted peptides promotes cell growth by binding to cell 
surface proteins and activating multiple signaling cascades demonstrated for prostate, 
mammary and salivary glands, or lung. Fgf-7 (keratinocyte growth factor) and Fgf-10 
are considered specific for the prostate [28, 29]. Fgf-7 (keratinocyte growth factor) 
and Fgf-10 are considered specific for the prostate. FGFR2 is expressed in developing 
prostatic epithelial cells (PrECs) and through interaction with Frs-2α. Both molecules 
are secreted by the mesenchyme of the prostate. This mechanism led to the hypothesis 

Figure 1. 
Alterations that occur in the malignancy of prostatic tissue. PIA - proliferative inflammatory atrophy,  
PIN - prostatic intraepithelial neoplasia.
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that they act as andromedins since they are associated with androgen-independent 
growth factors. Due to the absence of Fgf-10, the mice also showed prostatic 
 hypoplasia [28, 29].

Wnt signaling plays a crucial role in the development of various organs, including 
the prostate. Essentially, it regulates proliferation and differentiation through a series 
of Wnt ligands expressed during prostate bud formation. Canonical Wnt targets, such 
as Lef1 and Axin2, are upregulated in prostate bud epithelium [30–32].

Prostate cancer is one of the few malignancies for which there is a clinically 
meaningful serum biomarker. From its discovery in 1979 to its clinical application in 
the late 1980s to 1990s, PSA has become an invaluable tool for detecting, grading, and 
monitoring prostate cancer in men.

There is also considerable overlap in serum PSA levels between men with cancer 
and those with the noncancerous disease. The presence of prostatic hyperplasia or 
inflammation may also explain the elevated serum PSA levels [33, 34]. To this end, 
the use of PSA derivatives such as PSA density, PSA velocity, age-adjusted values, and 
more recently molecular derivatives can be used to improve clinical decisions com-
pared to the isolated use of PSA.

Several molecular approaches have been pursued in the search for the optimal 
biomarker for prostate cancer. An overview of basic cellular processes begins with a 
DNA sequence (gene) that is transcribed into mRNA (transcript) and then translated 
into a protein that can then perform a specific cellular function. A major goal of 
biomarker development is to identify the differences in the molecular structure of 
prostate cancer cells compared to their benign counterparts and also to distinguish the 
more aggressive phenotypes from the others. The identification and quantification of 
these molecular differences in tissues and body fluids form the basis for the discovery 
of biomarkers for prostate cancer.

PSMA (glycoprotein prostate-specific membrane antigen), a folate hydrolase, has 
been studied as a potential biomarker for prostate cancer in tissue, serum, or urine. It 
is found in the membrane of all prostate epithelial cells. It is a type II transmembrane 
protein with an extracellular C-terminus that exists as a dimer and binds glutamate 
and glutamate-like structures [35, 36]. Nowadays, PSMA is mainly used in targeted 
imaging and theranostics [37, 38]. In particular, 68Gallium positron emission tomog-
raphy of prostate-specific membrane antigen (68Ga-PSMA PET) is increasingly used 
as a diagnostic tool in biochemical recurrence after primary therapy [39].

Human kallikrein peptidase 2 (hK2) shares many important properties with PSA 
and has demonstrated its potential as another tumor marker for prostate cancer. 
Among many other similarities, hK2 and PSA share 80% amino acid homology, show 
similar specificity for prostate tissue, and are hormonally regulated by androgens. 
One of the major functions of hK2 is to activate the zymogen (proPSA) to active PSA 
by cleaving the amino acid presequence. Critical to its utility as a biomarker is that 
hK2 expression varies independently of tissue and serum PSA expression. In BPH, 
PSA expression is highly expressed compared to the minimal immunoreactivity of 
hK2, but hK2 is also overexpressed in PCa compared to PSA. Furthermore, tissue 
expression of hK2 appears to correlate with more aggressive pathological features, 
including Gleason grade [40, 41].

Circulating tumor cells (CTCs) have long been touted as potential prognostic 
biomarkers and indicators of treatment response. Subsequent CTC research in 
prostate cancer has employed a wide range of methods utilizing characteristics such 
as size, surface marker expression, and cellular plasticity that distinguish CTCs 
from circulating blood mononuclear cells [42, 43]. Typically, CTCs are defined as 
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CD45 and positive for an epithelial marker such as epithelial cell adhesion molecule 
(EpCAM) and/or cytokeratin. Although the development of CTCs as biomarkers for 
prostate cancer has been relatively slow, there has been considerable recent progress 
in the field and a growing number of clinical trials. Currently, there is only one FDA-
approved method for identifying CTCs: CellSearch, which uses antibodies to EpCAM 
for CTC detection and then stains with antibodies to CD45 and cytokeratins 8, 18, 
and 19 (positive) to identify individual CTCs. Using this system, a CTC count of five 
or more cells per 7.5 mL of blood at any time during disease progression has been 
associated with poor prognosis in the prostate, breast, and colorectal cancers [42, 43].

The ease of collection of urine and the excretion of prostate cells have long made it 
a potential biomarker source for the early detection of prostate cancer [44]. However, 
only recently have urine biomarkers for prostate cancer come into clinical use. The 
first of these biomarkers, described in 1999, prostate cancer antigen 3 (PCA3), is 
not expressed outside the prostate. Studies show that PCA3 levels in prostate cancer 
are far higher than those in BPH, but the function of the antigen is still unknown 
[45, 46]. Recent studies used RT-PCR to detect PCA3 in urine and showed that PCA3 
performs better than PSA in diagnosing PCa [47, 48].

Annexin A3 is a protein that is being studied as a possible biomarker for prostate 
cancer in urine. It belongs to a family of proteins known as phospholipid-binding 
proteins and shows altered expression in PCa [49].

α-Methylacyl coenzyme A racemase (AMACR) is an enzyme responsible for 
beta-oxidation of branched-chain fatty acids found in a diet consisting of beef and 
dairy products. Recent studies have shown that 88% of prostate carcinomas, as well 
as untreated metastases and hormone-refractory PCa, overexpress AMACR [50]. 
Immunohistochemical studies have shown that expression of AMACR in prostate 
tissue has a sensitivity of 97% and a specificity of 100% for the detection of PCa. In 
conjunction with other markers such as the tumor protein p63, which helps to iden-
tify basal cells that are absent in prostate cancer, measuring the expression level of 
AMACR also can be used for the detection of prostate cancer [51].

Detection at an early stage not only improves the outcome but also reduces mortal-
ity in PCa. Although the discovery and use of PSA have revolutionized current PCa 
detection and treatment, it is not enough. Due to this stage, various molecular modifi-
cations or genetic alterations have overtaken the current maximum use of this tumor 
marker. The use of different PSA derivatives, the discovery of molecular derivatives 
of PSA, new kallikrein markers, PCA3, and gene rearrangements are leading to a 
significant improvement in the efficiency of PCa management [24, 25].

1.3 Urothelial cancer (UCa)

The urothelium extends from the renal pelvis to the urethra of the prostate. 
Urothelial carcinomas (UCa) represent the vast majority of cancers arising in the 
bladder, and approximately 75% of them are noninvasive within the muscular layer. 
However, despite the treatment options, there is a high rate of recurrence and, in 
high-grade tumors, progression to muscle-invasive disease (Figure 2). The incidence 
of UCa increases with age. Most of them are diagnosed in patients over 65 years of 
age, and it is four times higher in men than in women. One of the reasons for this 
could be tobacco use, which is known to be a risk factor and is most common in men, 
although other factors such as the androgen receptor could also play a role [52, 53].

UCa can present a noninvasive phenotype, in which the malignant cells are con-
fined to the urothelial layer, and an invasive phenotype, in which the tumor cells can 
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break through the basement membrane and invade the subepithelial connective tissue 
and underlying muscle. There are two types of noninvasive UCa. Exophytic papillary 
(Ta) tumors are prone to local recurrence but rarely break through the basement 
membrane or spread. CIS, on the other hand, is a flat lesion with a high susceptibility 
to invasion and metastasis. Patients who have only CIS lesions in their urinary system 
are more likely to develop synchronous and/or metachronous malignancies [54]. Ta 
tumors are caused by molecular abnormalities that are usually separate from CIS and 
invasive carcinomas, despite the fact that these pathways are not mutually exclusive 
[55]. The receptor tyrosine kinase-Ras pathway is frequently constitutively active in 
low-grade papillary carcinomas, with activating mutations in HRAS and FGFR3 [56]. 
Homozygous deletion of p16INK4a is a common feature in high-grade Ta tumors [57]. 
TP53 and retinoblastoma (RB) genes and pathways are commonly altered in CIS and 
invasive malignancies [58]. Although chromosomal-9 deletions can be observed in 
both dysplastic urothelium and CIS lesions, loss of chromosome 9q heterozygosity is 
more common in low-grade Ta tumors [59]. When a papillary tumor develops into an 
invasive phenotype, it is mainly due to the accumulation of additional mutations in 
the p53 pathway. Invasive cancers have also been shown to have p16 mutations. Matrix 
metalloproteinases (MMPs), cadherins, TSP-1 (thrombospondin-1), and vascular 
endothelial growth factors (VEGFs), mutations that alter the extracellular matrix and 
induce tumor angiogenesis are more common in muscle-invasive cancers and also 
play a role in nodal metastasis [60].

The most intensively studied aspects of UCa are changes in signaling pathways 
that affect cell cycle progression. The p53 and Rb signaling pathways, which interact 
with apoptosis and intracellular signaling mediators, are primarily responsible for cell 
cycle control. The tumor suppressor gene TP53 is located on chromosome 17p13.1 and 
encodes the p53 protein. By activating p21WAF1/CIP1, the protein blocks cell cycle pro-
gression at the G1-S transition. Inactivation of TP53 and loss of its tumor-suppressive 
activity may be caused by mutations in the 17p allele [61, 62]. In invasive UCa, loss of 

Figure 2. 
UCa localization.
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heterozygosity on chromosome 17 is associated with aggressive behavior. Mutations 
in the TP53 gene result in a protein that is resistant to ubiquitin-mediated degrada-
tion. Immunohistochemistry can detect increased intranuclear p53 accumulation as a 
consequence [63]. Multiple retrospective studies have found that accumulation of p53 
in the nucleus is associated with poor prognosis in patients with UCa, particularly in 
those who have undergone radical cystectomy. From normal urothelium to superficial 
UCa, muscle-invasive cancer and metastatic lymph nodes, altered p53 expression has 
been observed to occur [64, 65]. Despite this evidence, the predictive function of p53 in 
the development and progression of bladder cancer is still debated, but what is certain 
is that a link between the accumulation of p53 in the nucleus and TP53 mutations has 
been demonstrated [66].

Mdm2 interacts with p53 in an autoregulatory feedback loop that regulates its 
activity. Increased p53 levels transactivate the promoter of MDM2, causing the 
translated protein to facilitate the destruction of p53 by the proteasome. MDM2 levels 
decrease when p53 levels decrease. In UCa, MDM2 amplification has been found to 
increase in frequency with tumor stage and grade [67, 68]. p14 inhibits the transcrip-
tion of MDM2. p14ARF, one of two splice variants derived from the CDKN2A locus on 
chromosome 9p21, encodes the protein. Because the E2F transcription factor induces 
p14ARF, it serves as a link between the Rb and p53 pathways. The E2F transcription 
factor is sequestered by dephosphorylated Rb. E2F is produced when Rb is phosphor-
ylated by cyclin-dependent kinases, leading to the transcription of genes important 
for DNA synthesis [69, 70].

In UCa, a decrease in Rb protein expression has been highlighted. Rb has been 
shown to be a predictive factor when combined with other cell cycle regulatory 
proteins. Cyclin/cyclin-dependent kinase complexes help phosphorylate Rb. CDKIs 
such as p21, p16, and p27, which act as tumor suppressors, cause negative control of 
cyclin-dependent kinases. Low levels of p27 have been associated with advanced-
stage bladder adenocarcinomas [69–71]. In bladder UCa, p27 mutations have also been 
associated with poor disease-free and overall survival. In UCa patients treated with 
radical cystectomy, a combined assessment of p53, p21, Rb, cyclin E1, and p27 has 
been shown to improve accuracy against each individual molecular marker, thereby 
improving risk stratification [69–71].

Apoptosis is a tightly controlled process involving a series of events that occur 
during normal development and in response to a series of stimuli, all leading to 
programmed cell death. Apoptosis can be triggered in two ways. The internal process 
is mediated by mitochondria, while the extrinsic system involves the activation of 
death receptors on the cell surface. Both pathways activate caspases that cleave cel-
lular substrates and allow apoptosis. In urothelial carcinoma cell lines, tumor-specific 
expression of caspase-8 has been shown to induce apoptosis in vitro [71].

The Bcl-2 protein family comprises both antiapoptotic and proapoptotic members, 
such as Bcl-2, Bax, and Bad, and is involved in the intrinsic apoptotic process. In UCa 
patients treated with radiotherapy or synchronous chemoradiotherapy, increased 
Bcl-2 expression has been associated with poor outcomes. In patients with advanced 
UCa undergoing radiotherapy who might benefit from neoadjuvant chemotherapy, 
Bcl-2 could serve as a marker [72, 73]. Expression of Bcl-2 has been associated with a 
lower tumor-free survival rate in high-grade T1 tumors, and in combination with p53, 
it may be a strong prognostic indication in non-muscle-invasive UCa. In addition, a 
prognostic index based on Mdm2, p53, and Bcl-2 was developed, with abnormalities in 
all three markers corresponding to the lowest probability of survival in UCa [74, 75]. 
Bax expression, on the other hand, is an independent predictor of better prognosis 
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in invasive UCa. The proapoptotic function of Bax is mediated by the activation of 
Apaf-1. In UCa patients, lower Apaf-1 expression has been associated with a higher 
mortality rate [76, 77].

Multiple cell-surface receptors modify signals from the environment and transmit 
them to the nucleus of urothelial cells via transduction pathways. Uncontrolled cellu-
lar proliferation and tumor growth may result from alterations in these receptors and/
or the signals sent. Activating mutations of FGFR3 are the best-studied alterations in 
UCa in the FGFR family. FGFR3 mutations are found in nearly 60–70% of low-grade 
papillary Ta tumors [78].

ErbB-1 and ErbB-2 (Her2/neu), members of the epidermal growth factor receptor 
(EGFR) family, are overexpressed in invasive UCa. Overexpression of ErbB-1 has 
been associated with an increased risk of progression and mortality [79]. Increased 
ErbB-2 expression has also been associated with aggressive UCa as well as poor 
disease-specific survival. In contrast, other studies have found that ErbB-2 expression 
is not related to prognosis. While it has been suggested that the combined expression 
profile of ErbB-1 and ErbB-2 is a stronger predictor of prognosis than either marker 
alone, this finding remains to be confirmed [80–82].

JAK (Janus kinase) is a tyrosine kinase that is activated by cytokines and growth 
receptors and regulates a variety of signaling pathways. JAK signaling is thought to be 
increased by overexpressed preoperative plasma levels of interleukin-6, a ligand for 
the corresponding cytokine receptor, and is an independent predictor of UCa recur-
rence and survival [83]. The activation of the STAT (signal transducer and activator 
of transcription) pathway, which controls transcription of several key genes, is the 
most studied molecular event after JAK activation. STAT1 inhibits Bcl-2 expression, 
whereas STAT3 has the reverse effect. In UCa patients, STAT3 expression in combina-
tion with other markers can predict the likelihood of recurrence and survival [84].

Angiogenesis is the process of cancer cells producing substances that interact with 
stromal components to recruit endothelial cells to the site of cancer and generate a vas-
cular supply that gives cancer cells with the nutrients they need to proliferate [85, 86].

VEGFs are signaling proteins that stimulate angiogenesis by interacting with 
VEGF receptors and stimulating cellular responses (VEGFRs). The majority of known 
cellular responses to VEGF are mediated by VEGFR2. Advanced UCa and muscle 
invasion are linked to VEGFR2 expression. In UCa patients, VEGFR2 expression is 
also a key determinant of nodal metastasis. VEGF boosts nitric oxide synthase, which 
boosts nitric oxide production and tumor vascularization. In nonmuscle-invasive UCa, 
VEGF overexpression is linked to early recurrence and progression [87, 88]. VEGFs 
are signaling molecules that promote angiogenesis by interacting with VEGF recep-
tors and stimulating cellular responses (VEGFRs). The majority of known cellular 
responses to VEGF are mediated by VEGFR2. Advanced UCa and muscle invasion are 
linked to VEGFR2 expression. In UCa patients, VEGFR2 expression is also the main 
predictor of nodal metastasis. VEGF boosts nitric oxide synthase, which boosts nitric 
oxide production and tumor vascularization. In nonmuscle-invasive UCa, VEGF 
overexpression is linked to early recurrence and progression [89, 90].

The ability of urothelial cancer cells to invade blood vessels and lymphatics is 
essential to their ability to spread to nearby structures and form distant metastases. 
Cadherins are intercellular adhesion mediators that have been identified in a variety 
of tissues. E-cadherin is the most known member of the cadherin family and is 
essential for epithelial cell adhesion. In UCa, lower E-cadherin expression has been 
linked to an increased risk of tumor recurrence and progression and shorter survival 
[91, 92]. The action of various protease families, including uPAs and MMPs, enhances 



Cancer Bioinformatics

20

the ability of a tumor to degrade the matrix and infiltrate the basement membrane. 
Thymidine phosphorylase (TYMP), an enzyme that increases MMP synthesis, is 
overexpressed in advanced UCa compared with superficial tumors or normal blad-
der tissue [93]. Increased thymidine phosphorylase nuclear reactivity has been 
associated with an increased prevalence of superficial UCa recurrence. MMP-2 and 
MMP-9 expression levels have been shown to be associated with the stage and grade 
of urothelial tumors. Increased MMP-2 expression may also indicate a poor prognosis 
for recurrence-free and disease-specific survival. In UCa patients, the ratio between 
MMP-9 and E-cadherin is a predictive factor for disease-specific survival [94, 95].

Integrins are transmembrane glycoproteins that can promote tumor development, 
invasion, and metastasis when their function is disrupted. They are protein recep-
tors for adhesion molecules and collagen. The immunoglobulin superfamily member 
intercellular adhesion molecule 1 (ICAM1) interacts with particular integrin classes. 
ICAM1 expression is linked to an infiltrative histological phenotype, according to 
immunohistochemical investigations. The presence, grade, and size of bladder tumors 
have all been linked to serum ICAM1 levels [96].

In patients with UCa of the bladder, ICAM1 is part of a multimarker model that 
can predict nodal status. The α6β4 integrin is tightly connected to collagen VII in 
normal urothelial cells and inhibits cell migration. Superficial UCa has shown loss 
of polarity of α6β4 expression, and invasive tumors reveal either loss of α6β4 and/or 
collagen VII expression or lack of colocalization of either protein. Patients who have 
malignancies with weak α6β4 immunoreactivity have a better prognosis than those 
who have tumors with no or significant overexpression. Overall, molecular invasion 
indicators are relatively accurate predictors of outcome in UCa patients [97].

Circulating tumor cells are the most basic blood-based biomarker. The pres-
ence of tumor cells in the blood has been associated with advanced disease stages in 
various solid organ cancers. In a recent study, the predictive value of the amount of 
circulating tumor cells obtained with CellSearch technology was investigated in 100 
UCa patients who had undergone cystectomy. About 25% of clinically localized Uca 
patients had circulating tumor cells, the researchers found, and they associated the 
results with a worse outcome for these patients [98].

Ki-67 is a nuclear protein that is synthesized by proliferating cells that is used to 
determine the percentage of cell growth fraction. In patients with superficial UCa, the 
cell proliferative index is associated with prognosis, and the Ki-67 antigen is a strong 
predictor of progression, recurrence, and treatment response. This result was con-
firmed in patients receiving cystectomy who had muscle-invasive UCa [99, 100].

Survivin is also an apoptosis inhibitor that can bind caspases after their activation 
and prevent them from cleaving their substrates. Survivin expression has been shown 
to be associated with bladder cancer progression and mortality, and its function as a 
prognostic indicator has been externally validated. In a multiplex panel including other 
apoptosis-regulating genes, survivin has been shown to predict tumor recurrence after 
cystectomy and mortality more accurately than clinicopathological factors alone [101].

COX-2 is an enzyme known primarily for being a target for nonsteroidal anti-
inflammatory drugs. Increased levels of COX-2 have been studied in both the upper 
and lower urinary tract as a marker of UCa angiogenesis and tumor aggressiveness. 
COX-2 was increased not only in upper urinary tract carcinomas but also in nearby 
nontumor cells (stromal cells), suggesting an association between more aggressive 
upper urinary tract malignancies and worse prognosis [102, 103].

IGF (insulin growth factor) and IGFBP-3 (insulin growth factor binding 
protein-3) are circulating proteins that function as growth signal mediators and 
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mitogens, respectively. IGF and IGFBP-3 levels were measured preoperatively in 
individuals having cystectomy to see if they may be used as blood-based predictors 
of UCa outcome. Although individual marker levels were not efficient, an association 
between the two of them (low IGF-adjusted IGFBP-3 levels) was a predictor of distant 
metastases and poor survival [104].

Periplakin is a protein that is found in normal cellular desmosomes and is encoded 
by the PPL gene. In a cohort study of UCa patients, serum circulating periplakin was 
investigated and compared to 30 healthy subjects. While UCa patients had consider-
ably lower serum periplakin levels than controls, this difference was diminished in 
patients with invasive tumors [105].

Bladder cancer is being more recognized as a disease that cannot be treated 
merely based on pathologic staging; instead, therapeutic efforts must focus on 
molecular abnormalities in particular tumors. The formation and course of urothelial 
malignancies have been better understood, thanks to the availability of advanced 
molecular profiling and computational methods. Future Uca treatment will rely on 
consensus marker panels to provide accurate prognosis and therapeutic response 
predictions in individual patients. The disease will be effectively treated if patients 
are stratified based on risk factors and tumor expression signatures, followed by 
optimum surgical treatment and disruption of important signaling pathways through 
the use of  therapies targeting several molecular pathways [106].

1.4 Kidney cancer

Kidney cancer is the fourteenth most prevalent cancer in the world, with men 
having the ninth most common case and women having the fourteenth most common 
incidence [107, 108].

Renal cancers in adults include malignant tumors of the renal parenchyma and 
pelvis, but benign tumors and inflammatory causes should also be considered in the 
differential diagnosis of a renal mass. The majority of tumors arising from the renal 
pelvis are urothelial tumors, which account for less than 10% of all renal carcinomas. 
Renal cell carcinoma (RCC), also known as renal adenocarcinoma, is far more com-
mon than benign tumors or other malignancies and accounts for 90% of all kidney 
cancers. RCC can be divided into several histological subgroups, each with its own 
clinical features and evolution [109].

The clear cell type of renal cell carcinoma is the most common, accounting 
for 75% of new cases, followed by the papillary, chromophobe, medullary, and 
collecting duct subtypes, which account for 10%, 5%, 1%, and 1% of new cases, 
 respectively [107].

Von Hippel and Lindau characterized a vascularized developmental pattern 
of the retina that was later identified as part of an autosomal dominant disease. 
Hemangioblastomas, pheochromocytomas, and clear cell renal carcinomas were 
also common in these patients. Up to 90% of sporadic RCCs have somatic mutations, 
promoter methylation, or loss of heterozygosity of VHL. The VHL protein is known to 
function as a substrate recognition component of an E3 ligase and for ubiquitination 
and degradation of HIF (hypoxia-inducible factors) [110–112].

The alpha subunit of HIF heterodimerizes with HIFβ under hypoxic conditions 
or in the absence/inactivation of the VHL protein, translocates to the nucleus, and 
transcribes a variety of genes, including VEGF, PDGF, and TGF. In most spontane-
ous RCCs, inappropriate activation of this system is a major cause of angiogenesis, 
 invasion, and metastasis [113].
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In metastatic or unresectable RCC, targeting the VEGF pathway has been a 
cornerstone of treatment. In metastatic RCC, small molecule TKI (tyrosine kinase 
inhibitors) have proven successful in interrupting VEGF signaling, resulting in longer 
patient survival. Endothelial cells can be stimulated to proliferate and migrate by 
VEGF and PDGF [113].

The development of an increased blood supply can promote the development 
of metastatic niches and lead to the spread of the tumor. Because of this significant 
metastatic potential, no neoadjuvant systemic treatment is currently accepted for 
RCC with targeted therapies such as sunitinib or pazopanib. These agents are also not 
approved for adjuvant treatment after nephrectomy. Several studies have failed to 
demonstrate that adjuvant TKIs or immunotherapies improve survival after definitive 
surgery, underscoring the need for early intervention with surgery upfront. The most 
common genetic mutation in RCC is the loss of chromosome 3p. This region contains 
the PBRM1 gene in addition to VHL (3p21) [114].

PBRM1 is a “gatekeeper” gene that helps in DNA repair, replication, and transcrip-
tion. Somatic mutations have been detected in 41% of clear cell renal carcinomas, 
with estimates ranging from 40 to 50%. Loss of PBRM1 is associated with advanced 
disease stages, a higher grade cancer, and poorer treatment outcomes [115–117].

Mutations on chromosome 3p could indicate an important genetic event, whether 
inherited or acquired, that drives early carcinogenesis. RCC features a number of 
genomic changes, including an increase in 5q with TGFB1 and CSF1R, as well as a 14q 
deletion with the tumor suppressor candidate NRXN3. Loss of 14q has been related to 
a progression of the disease and a reduced life expectancy [118, 119].

mTOR is a serine/threonine kinase that forms two different complexes with adap-
tor proteins—mTORC1 and mTORC2. mTORC1 activity was found in more than half 
of all RCCs. HIF-1α has been demonstrated to promote the expression of REDD1, a 
proven mTORC1 inhibitor. Stabilization of HIF1 levels under hypoxic environments 
causes mTOR signaling to be inhibited [120].

Mutations in TSC1 and PTEN may prevent the HIF-1 signaling axis from inhib-
iting mTOR, resulting in a second, independent mechanism of carcinogenesis. 
Everolimus as shown in Figure 3, suppresses the activity of mTORC1 via binding to 
FKBP-12 [121, 122].

Figure 3. 
Current therapeutic management of RCC.
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Over the past two decades, research has focused on molecular events that can 
uncover the biological heterogeneity underlying the diverse clinical behavior of RCC, 
with the expectation of identifying accurate markers that can personalize prognosis 
and risk-stratified clinical management, as well as predict response to existing 
therapeutic approaches [123].

Molecular biomarkers are associated with clinical and/or pathologic characteristics 
of RCC and have an effect on progression-free survival, OS, cancer-specific mortality, 
and prognosis [124].

In addition, new research has recently been published on PBRM1 (polybromo 1), 
BAP1 (BRCA1-associated protein 1), and SETD2 (SET domain-containing protein 2). 
Although these biomarkers are targeted by a variety of RCC treatments, their prognos-
tic and predictive value has yet to be confirmed internally and externally. All tyrosine 
kinase inhibitors, such as bevacizumab, target VEGF, while some others, such as 
cabozantinib, target a larger variety of receptors, including AXL and the protooncogene 
c-met [123].

As explained earlier, VHL is responsible for the degradation of HIF-α. As a result, 
changes in VHL proteins lead to HIF-α accumulation in addition to hypoxic cell condi-
tions. HIF-α is a key player in cancer pathogenesis, activating approximately 30 genes 
involved in tumor proliferation and angiogenesis, including the overexpression of 
VEGF. When ccRCC (clear cell renal cancer) is compared with papillary or chromo-
phobe forms of RCC, HIF-α expression is significantly higher. In both clear cell and 
papillary RCC, studies have reported no difference in survival between patients with 
low or high HIF-α expression, while other studies have found a worse prognosis with 
increased HIF-α in cancer cells [123].

VEGF is a dimeric glycoprotein that promotes tumor growth and metastasis by 
influencing angiogenesis in both normal and pathological situations. Due to HIF-α 
dysregulation and hypoxia caused by an inadequate blood supply in larger tumors, 
VEGF production is increased in ccRCC. RCC patients with VHL gene mutations 
and advanced tumor grade have higher VEGF levels and secretion. VEGF expression 
correlates with tumor necrosis, microvessel invasion, tumor stage, and Fuhrman 
grade in ccRCC, in addition to tumor grade and size. In studies, increased VEGF 
levels have been observed to decrease progression-free and overall survival rates of 
RCC [123, 125].

The additional value of VEGF, despite its promising properties, has yet to be 
confirmed and externally validated. C-met is a receptor tyrosine kinase and a proto-
oncogene. Angiogenesis, tissue regeneration, cell proliferation, and differentiation 
are controlled by this protein. Mutations in the c-met signaling pathways have been 
linked to a variety of tumors, including all forms of RCC [123, 125]. The upregulation 
of c-met has been linked to the VHL mutation in ccRCC. It has been found that c-met 
expression is particularly high in tumors with papillary and sarcomatoid differen-
tiation. In recent studies, increased c-met expression was found to reduce cancer-
specific mortality. Further research is required to fully understand the role of c-met in 
the etiology of RCC [126, 127].

Transmembrane protein CAIX is linked to tumor development, poor prognosis, 
and aggressive phenotype. CAIX is thought to be involved in the regulation of the 
tumor microenvironment, particularly the fluctuations in intracellular and extra-
cellular pH in response to hypoxia in the tumor, and is regulated by HIF. CAIX is 
expressed in more than 80% of RCC samples and 90% of ccRCC samples and can 
therefore be used to confirm the diagnosis of RCC. CAIX expression has been associ-
ated with better prognosis and survival in patients with localized RCC and mRCC, 
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and with an inverse relationship with metastatic spread. In contrast, low CAIX 
expression was not associated with renal cancer mortality [128].

CAIX may be more useful in identifying small renal tumors. With the advance-
ment of technology, three genes have been discovered to be altered in more than 
10% of sporadic clear cell RCC: BAP1, PBRM1, and SETD2. We can assume that 
these genes play an important role in renal cell carcinoma because, as in VHL, they 
are tumor suppressor genes with two hits found on the short arm of chromosome 
3p [129].

The mTOR pathway regulates cell proliferation, protein degradation, and angio-
genesis as part of the biological response to environmental stress. PTEN (phosphatase 
and tensin homolog) is an upstream molecule in this process, while phosphorylated 
S6 ribosomal protein is a downstream molecule. The use of temsirolimus, an mTOR 
inhibitor, as a first-line treatment for low-risk patients is recommended in recent treat-
ment guidelines. In addition, recent studies have shown that altering regulators of the 
mTOR pathway improves the accuracy of prognostic models as well as the ability to 
predict recurrence in ccRCC patients who had undergone nephrectomy [130, 131].

pS6 (ribosomal protein S6) is a downstream mTOR target that has been associ-
ated with the activation of the mTOR pathway. Due to phosphorylated pS6 activity, 
it exhibits S6 kinase activity that affects mRNA translation. PS6 is overexpressed 
in clear cell mRCC and could be used to predict survival in both localized and non-
localized mRCC. pAkt (protein kinase B) regulates both growth and survival mecha-
nisms by phosphorylating substrates in the cytoplasm and nucleus. Elevated pAkt is 
associated with lower RCC-specific survival, higher grade, and faster progression of 
metastasis [123, 132]. Overexpressed pAkt, on the other hand, was linked to a better 
prognosis in localized RCC. According to recent studies, the localization of pAkt may 
be essential in defining tumor behavior and thus prognostic value. They discovered a 
higher level of nuclear pAkt in localized RCC tissue than in mRCC tissue [123, 133].

The tumor suppressor protein PTEN is encoded by the tumor suppressor gene 
PTEN and is located upstream of mTOR. Via PI3K, PTEN inhibits the phosphoryla-
tion of pAkt. PTEN mutation is uncommon in renal cancer and is linked to a high 
mortality rate. PTEN expression is observed in cancers with a lower T stage and a 
nonclear cell histological subtype and increases survival [123, 133].

CAF (cytokine and angiogenic factors), survivin, caveolin-1, p53, vimentin, 
insulin-like growth factor II mRNA-binding protein 3, matrix metalloproteinases, 
fascin, ki-67, tumor necrosis, and c-reactive protein are examples of other biomark-
ers. Survivin is a member of the family of apoptosis inhibitors that are active in both 
the intrinsic and extrinsic caspase pathways [132]. It regulates mitotic progression 
and promotes alterations in gene expression associated with tumor cell invasiveness. 
Survivin mRNA is typically expressed during embryonic and fetal development and 
then disappears in most differentiated adult tissues. Survivin is overexpressed in a 
variety of malignancies, including all forms of RCC [123].

Given the importance of deregulation of apoptosis in carcinogenesis, it is not 
surprising that high expression of survivin is associated with poor differentiation, 
aggressiveness, and lower survival in ccRCC. The p53 protein is a DNA-binding 
molecule involved in transcription and the regulation of cell growth. When DNA 
damage occurs, p53 initiates apoptosis and causes cell cycle arrest. Overexpression of 
p53 has been found in all forms of RCC, especially papillary RCC. Although p53 has 
been shown to be an independent predictor of metastasis-free survival in patients 
with localized clear cell RCC, its prognostic significance in RCC is still debated [123].
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MMPs are overexpressed in all forms of RCC cancer, especially in nonclear cell 
RCC tumors, and are associated with aggressive behavior, tumor grade, and survival. 
Batimastat (synthetic) and bryostatins (natural) are MMP inhibitors that may help to 
treat and prevent MMP-overexpressing malignancies [123].

IMP3 (insulin-like growth factor II mRNA-binding protein 3) is an RNA-binding 
protein found in oncofetal tissues. Insulin-like growth factor II mRNA transcription 
is regulated by it. IMP3 is expressed during embryogenesis in a variety of developing 
tissues, including epithelium, muscle, and the placenta. In adult tissues, however, it 
is expressed at low or undetectable levels. In several malignancies, including RCC, 
IMP3 is associated with cell proliferation and invasion. Stage, grade, sarcomatoid 
differentiation, regional lymph node involvement, distant metastasis, and cancer-
specific mortality are all associated with IMP3. The inclusion of IMP3 expression in 
the tumor stage increases metastatic progression prediction of metastatic progression 
and the predictive value of IMP3 in ccRCC was externally validated by researchers 
[123, 134, 135].

Ki-67 is a cell proliferation marker that has been linked to higher recurrence rates, 
a more aggressive phenotype of ccRCC, and a poor prognosis. The combination of 
Ki-67 and CAIX improves the predictive power of nuclear grade in assessing cancer-
specific mortality. Complementary studies are needed to evaluate its significance as a 
prognostic factor [123].

Caveolin-1 is a structural component of caveolae, microdomains of the plasma 
membrane that regulate cell adhesion, growth, and survival through intracellular 
signaling. Caveolin-1 is detected in 86% of ccRCCs and 5% of chromophobe and 
papillary RCCs. The caveolin-1 expression has been linked to a poor clinical outcome 
in a variety of cancers [123].

One of the components of the scoring algorithm of Leibovich et al. is tumor 
necrosis. The importance of this component in the prognosis of RCC has led to some 
debate. When typical clinical and/or pathological tumor features were considered, 
several studies found that tumor necrosis had no additional value. In contrast, Lam et 
al. found that tumor necrosis improved survival prediction in patients with localized 
RCC [136, 137].

The inflammatory marker C-reactive protein has been shown to be a significant 
predictor of metastasis and overall mortality after nephrectomy for localized renal 
cell carcinoma. It improved the predictive accuracy of a number of known clinical 
and pathological predictors by up to 10%. Karakiewicz et al. studied and stated CRP 
as an independent predictor of mortality in RCC [138].

They also discovered that CRP improved the accuracy of the UISS prediction 
model. According to Michigan et al., elevated CRP was associated with increased 
mortality in patients undergoing nephrectomy. Erythrocyte sedimentation rate 
(ESR), another inflammatory marker, was also associated with higher all-cause 
mortality. Because they are affordable and readily available, these markers are very 
promising [123, 127].

Vimentin is a cytoplasmic intermediate filament that should not normally be 
detected in epithelial cells. Its overexpression has been observed in up to 51% of 
ccRCC and 61% of papillary RCC, and it has been associated with poor outcomes, 
regardless of T stage or grade [123].

Fascin is a globular actin cross-link protein that plays a role in cell motility and 
adhesion. Its overexpression has been associated with sarcomatoid tumors, their 
stage, grade, size, and metastatic ability [123].
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CTLA-4 is a protein described on the surface of cytotoxic T lymphocytes. It is 
thought to reduce inflammation by preventing tumor-infiltrating lymphocytes (TILs) 
and T cell activation by preventing tumor cell B71 from binding to CD28. The pres-
ence of CTLA-4 has been associated with higher tumor grade in RCC. Lymphocytes 
also have a cell surface receptor, PD-1. It belongs to the immunoglobulin family and 
binds to the ligands PD-L1 and PD-L2, which are found on almost all cells, includ-
ing tumor cells. They are thought to promote apoptosis by decreasing the activity of 
cytotoxic T cells [139]. In addition, tumor cells are thought to express PD-L1/B7-H1 to 
prevent tissue destruction by an activated immune system [123, 127].

PD-1 inhibitors, particularly nivolumab, have been the subject of numerous 
studies, all of which have yielded promising results. The FDA approved nivolumab as 
second-line therapy for RCC in 2015, based on the results of a study that OS showed 
benefit, good tolerability, and improved health-related quality of life with nivolumab 
treatment. It is worth noting that ongoing trials using a mix of targeted treatments, 
such as anti-VEGFs, and nivolumab are showing promising results [122, 123].
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Chapter 3

Control of Cytoskeletal Dynamics 
in Cancer through a Combination 
of Cytoskeletal Components
Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, 
Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim

Abstract

The dynamic alterations in the cytoskeletal components actin and intermediate, 
etc. filaments are required for cell invasion and migration. The actin cytoskeleton is 
a highly dynamic structure that is governed by a delicate balance of actin filament 
formation and disassembly. To controlling the activities of key components of the 
epithelial mesenchymal transition (EMT) could be a viable solution to metastasis. 
Bioinformatics technologies also allow researchers to investigate the consequences of 
synthetic mutations or naturally occurring variations of these cytoskeletal proteins. 
S100A4 is S100 protein family member that interact with a variety of biological tar-
get. In study has shown that S100A4 interacts with the tumor suppressor protein p53, 
indicating that S100A4 may have additional roles in tumor development. The S100A4 
and p53 interaction increases after inhibition of MDM2-dependent p53 degradation 
using Nutlin-3A. The main goal of this research was control of cytoskeletal dynamics 
in cancer through a combination of, actin and S100A4 protein. The investigate the 
molecular mechanism behind S100A4 function in (EMT) and indicating that S100A4 
is promoting p53 degradation. Understanding the signaling pathways involved 
would provide a better understanding of the changes that occur during metastasis, 
which will eventually lead to the identification of proteins that can be targeted for 
 treatment, resulting in lower mortality.

Keywords: cytoskeleton dynamics, actin, cancer, S100A4 protein and p53, 
bioinformatics

1. Introduction

A highly coordinated multistep process involving the stroma, blood vessels, and 
cytoskeleton is the leading cause of death in cancer. Invasion, migration, extravasa-
tion, and angiogenesis are all important factors in successful metastasis. Invasion is 
a limited process that occurs at the tumor-host interface, where tumor and stromal 
cells exchange enzymes and cytokines that modify local ECM and promote cell 
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movement [1]. The ability of cells to move and divide is controlled by dynamic 
changes. Most cancers are characterized by changes in the expression levels of 
 numerous protein kinases. As a result, most cancer cells show dynamic alterations in 
cytoskeletal proteins. The capacity of cancer cells to divide, infiltrate, and generate 
distal metastases is complicated by their migratory nature, the plasticity of cell migra-
tion, and these dynamic alterations. The importance of dynamic alterations in the 
modulation of the function of various cytoskeletal polymers in cancer cells is high-
lighted in this work. Actin (which generates MF), myosin (mini-filaments), tubulin 
(MT), and several IF protein families, such as keratins, desmins, peripherin, vimen-
tin, internexins, and others, are among these monomers [2]. The mesenchymal-to-
epithelial transition (MET) theory was established to explain these phenomena when 
histological examinations revealed that macrometastases have epithelial phenotypes 
rather than mesenchymal phenotypes [3]. DTCs undergo MET to transition from a 
mesenchymal to an epithelial form, allowing them to multiply at the metastatic site 
and develop into macrometastases, according to this view. The involvement of the 
actin cytoskeleton, microtubules, and intermediate filaments in EMT is explored in 
this paper, as well as how these cytoskeleton proteins can be exploited as a possible 
biomarker. The S100 family is a subgroup of calcium-binding proteins with EF-hands 
that regulate a number of cellular processes by interacting with a variety of protein 
targets. S100A4 expression has been found in fibroblasts, blood cells, and endothelial 
cells, and it is thought to be one of the mesenchymal cell markers involved in the 
epithelial-mesenchymal transition (EMT) [4, 5]. The capacity to migrate efficiently in 
cell motility experiments is a characteristic trait of S100A4-positive cells, but ectopic 
production of S100A4 in S100A4-negative cells increases migration [6]. Monomers 
of folded 10S and unfolded extended 6S versions of Nom-muscle myosin (NM IIA) 
protein exist. The latter has the ability to form filaments [7]. In cancer, genetic 
changes that impact protein kinases are quite common [8, 9]. Mutations or deletions 
that induce loss of function or enhanced catalysis are the most common. Activating 
mutations might have unanticipated consequences for several cytoskeletal systems. 
Mutations in the small GTPase RhoA, for example, may result in enhanced activation 
of proteins that regulate minifilament production [10].

These events result in abnormal molecular activities in cancer cells, such as 
enhanced cell motility, invasion, division, and mechanosensing. The occurrence of 
many isoforms of these proteins, some of which have non-overlapping activities, 
complicates the investigation of these alterations. Actin, tubulin, and myosin are all 
isoforms, and IF comes in a variety of forms and variations. One of the main goals 
of this project is to present a broad, although incomplete, view of the field. Finding 
possible areas that could be targeted specifically to treat a variety of cancers in human 
cancer A431 cells, we show that S100A4 expression is increased during EMT medi-
ated by the transcription factor ZEB2. In addition, we show the interaction between 
endogenous S100A4 and p53 in cells and that the interaction takes place within the cell 
nucleus. We also show that knockdown of S100A4 results in stabilization of p53 at the 
protein level. Further, knockdown of S100A4 is shown to increase the transcriptional 
activity of p53, resulting in p53-dependent growth arrest [11]. Transgelin (TAGLN) 
has been shown to have a role in the genesis of proteinuria, although the mechanism 
by which it does so is unclear. The goal of this research was to look at the involvement 
of TAGLN in the development of proteinuria. The study’s distinctive feature is that it 
provides an updated, birds-eye view of the global changes in the cytoskeleton, which 
includes changes in tubulin and intermediate filaments as well as actin and actin 
binding proteins.
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2. The cellular cytoskeleton’s role in EMT

The cytoskeleton provides the mechanical strength and integrity that allows cells 
to maintain their shape and movement. Figure 1 depicts the situation. As seen in the 
first step, epithelial cancer cells undergo EMT, losing their cell-cell connections and 
gaining the potential to penetrate the surrounding tissue parenchyma. These EMT-
induced cells can subsequently intravasate into the systemic circulation and survive 
in the circulation before reaching the target site in the third stage. The cells must then 
extravasate into the tissue parenchyma in the fourth phase before going into dor-
mancy or becoming micro metastases. MET activation in the fifth phase is required 
for subsequent improvement and potentially life-threatening mega metastases.

The epithelial cytoskeleton is remodeled during EMT, resulting in cell polarity loss 
and extracellular matrix remodeling (ECM). The cells then become motile and have 
the ability to invade [12]. The cytoskeleton’s critical function in the EMT process is 
described in the following sections:

2.1 Cytoskeleton of actin

Actin filament remodeling is linked to EMT [13], and it is one of the most impor-
tant components of the cytoskeleton. G-actin (globular actin) is a monomeric unit, 

Figure 1. 
The metastatic cascade is represented by the EMT-MET model.
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while F-actin (fibrous actin) is a polymeric filament. G-actin is distributed uniformly 
throughout the cytoplasm and nucleus. With the simultaneous hydrolysis of ATP, 
G-actin rapidly polymerizes to create F-actin under specific physiological conditions. 
Actomyosin mediates cell spreading and adherence to the ECM by producing conspic-
uous bundles of F-actin known as stress fibers. Stress fibers attach to focal adhesions 
and have a function in cell adhesion and morphogenesis as a result. Within the leading 
cell edge, actin filaments engage with actin-binding proteins and myosin II to deliver 
F-actin. For cell migration, this is a crucial process. Through its ATP-dependent motor 
activity, myosin II is thought to play a key role in the construction and disassembly 
of the actin cytoskeleton [14]. Different biological activities such as cell motility, cell 
shape, and so on rely on actin organization [15]. Gene expression, post-translational 
protein modification, and cytoskeleton remodeling all play a role in the EMT process 
[16]. Recent research has discovered that cells in intermediate phases of EMT have 
increased tumor-cell spreading ability. E-cadherin complexes have also been demon-
strated to be connected to the dynamic actin framework via -catenin and stabilized by 
inhibiting RhoA activity and activating Rac and cdc42 [13, 17]. Cell-surface receptors, 
such as integrins, bind to ECM components and play a vital role in altering cell attach-
ment, which is necessary for motility and invasion. A multi-protein complex binds to 
the actin cytoskeleton and achieves integrin-mediated cell-matrix adhesion.

2.1.1 Proteins that bind to actin

The actin cytoskeleton is made up of actin microfilaments and a large number of 
actin-binding proteins (ABPs). ABPs are proteins that regulate the formation and 
disassembly of actin microfilaments. This is important for cell motility, division, and 
cancer growth, all of which require coordinated actin filament turnover and remodel-
ing [18]. Actin filaments are grouped in a loosely ordered meshwork in lamellipodia, 
which is referred to as dendritic networks [19], whereas actin filaments are arranged 
in parallel bundles in filopodia [20]. The action of specific actin-organizing proteins 
is required for these two types of organizations. During migration, the depolymeriza-
tion of actin and debranching allows for the dynamic remodeling of the actin network 
as well as the cyclic extension and retraction of lamellipodia, which generates the 
pushing force that propels the cell forward. The cell body follows the orientation of 
the front lamellipodia due to the contraction of actin filaments. Filopodia are made up 
of closely packed parallel actin filaments with tapered ends facing the plasma mem-
brane. Small crosslinking actin-binding proteins like fascin are principally responsible 
for bundling filopodia filaments [13, 21].

Cells are thought to be able to penetrate the tissue barrier by forming invadopodia, 
which are F-actin protrusions that breakdown the ECM, allowing cell penetration 
[22]. Invadopodia are actin-rich protrusions that are engaged in cell penetration 
and are related with ECM degradation via local deposition of proteases. The Arp2/3 
(actin-related protein2/3) complex is a seven-subunit protein that is regulated by the 
WAVE and WASP families of WH2 domain-containing proteins (WAVE1, 2, and 3, 
WASP, and N-WASP), which bind both the Arp2/3 complex and actin monomers [23]. 
Arp2/3 is a protein complex that aids in the polymerization of actin filaments. Arp2/3 
is typically overexpressed in cancers such as breast and liver carcinomas, implying a 
link between dynamic actin rearrangement and cancer progression [24]. Cortactin, 
an actin-binding protein, also binds to Arp2/3, allowing active Arp2/3 complexes to 
be located on the sidewalls of existing actin filaments, resulting in branched arrays 
of F-actin. Cortactin overexpression has been discovered during metastasis [25, 26]. 
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Facin, an actin-binding protein that stimulates the development of invadopodia and 
filopodia, is increased during migration [27]. Gelsolin is essential for the formation 
of lamellipodia and podosomes, both of which are critical protrusions for motile cells 
[28]. The actin nucleating proteins that regulate cell mobility and organization are 
known as formins. EMT has been shown to upregulate formin expression at the lead-
ing edge in mesenchymal-transformed cells [29]. The gene coding for ABPs has been 
found to have altered transcription or translation in several cancer types, according to 
studies. Because ABP expressions vary throughout cancer types, changes in the actin 
cytoskeleton are a common characteristic of tumor cells. In breast cancer tissues, 
ARPC2 (actin-related protein2/3 complex) expression is greater and ARPC2 expres-
sion is associated with EMT and metastasis [13, 30]. Filamin deficiency has been 
found to be prevalent in carcinomas such as colon, prostate, and breast cancer [31]. 
As a result, migration is boosted, which is linked to a bad prognosis [32]. Higher levels 
of-actinin (actin filament cross-linker) are linked to a bad prognosis in breast cancer, 
as well as the degree of clinical progression and lymph node status [33].

2.2 Rho GTPases

Rho GTPases play a role in a range of cellular activities, including cell migration, 
cell polarity, and cell cycle progression, by controlling actin, MT dynamics, and 
regulating cytoskeleton and cell adhesion dynamics. It has been established that 
increased expression of Rho GTPases genes associated with a metastatic phenotype in 
a variety of cancer types, and are tightly related to the actomyosin cytoskeleton’s over-
all control [34]. Rac1, RhoA, and Cdc42 are members of the Rho family of GTPases, 
which regulate actin cytoskeleton organization such as cytoskeletal dynamics, 
cell-cell junction assembly/disassembly, and integrin-matrix adhesion. Controlling 
the activities of Rho GTPases is critical during the growth-factor-induced EMT. Rho 
signaling activity is controlled by guanine nucleotide exchange factors (GEFs) which 
catalyze the exchange of GDP to GTP. During growth factor-induced EMT, control-
ling the activities of Rho GTPases is crucial. Guanine nucleotide exchange factors 
(GEFs), which catalyze the conversion of GDP to GTP, regulate Rho signaling activity. 
GTPase-activating proteins (GAPs) facilitate intrinsic GTPase activity to re-form the 
GDP bound state, which inactivates Rho action. Finally, the inactive GTPase domains 
and their covalently linked lipid groups engage with the guanine nucleotide dis-
sociation inhibitors (GDIs). As show in Figure 2, the GDIs prevent GDP from being 
dissociated from Rho GTPases, which could inhibit spontaneous activation [35].

Rho GTPase activity in cells is regulated by Rho-dependent factors, as shown in this 
diagram. GEFs can stimulate Rho-GTPases to engage with downstream actomyosin-
regulating effectors by activating the exchange of GDP for GTP, whereas GAPs bind 
to the GTPase and boost the intrinsic GTPase activity by switching bound GTP to 
GDP. The GDIs interact with the GDP-bound version of the molecule, preventing GTP 
binding and thus activation. This illustration is based on Raftopoulou and Hall [36]. 
Rho GTPases function as molecular switches that cycle between a GDP-bound inactive 
form and a GTP-bound active form to govern signal transduction pathways [13, 36].

Rho governs cytoskeleton alterations and stimulates actin stress fiber production, 
impacting cell-cell or cell-matrix adhesion. Rho signaling is important in the regula-
tion of actin-myosin contraction because it stimulates actin reorganization, which 
leads to the formation of stress fibers. Many of these regulatory mechanisms become 
unregulated in cancer cells, which contributes to invasive behavior during metastasis, 
according to recent research [37].
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2.3 Microtubule (MT)

In EMT, all aspects of the actin cytoskeleton and intermediate filaments are well 
identified, but the function of microtubules (MT) is still being explored. MTs are an 
important part of the cytoskeleton and play an important role in movement, intracel-
lular transport and supporting cell shape [38]. MTs are composed of α and β-tubulin 
dimers, which mostly grow and shrink from the positive end and produce dynamic 
instability [39]. The function of MTs depends on their assembly and stability, which 
are regulated by post-translational modifications and interactions with various stable 
and destabilizing proteins [40]. Calmodulin regulated spectrin associated protein 
(CAMSAP3) is an MT-binding protein required to maintain MT tissue. It has been 
shown that the loss of CAMSAP3 promotes Akt dependent EMT through tubulin 
acetylation [41]. Studies have shown that the microtubule-interacting protein EB1 
(end-binding protein) is located in one location and interacts with the microtubules. 
EB1 is a negative regulator of microtubule stability and promotes the migration of 
tumor cells. It modulates the dynamics of MT both in vitro and in vivo [42, 43]. 
Stathmin is an MT regulatory protein that depolymerizes MT and strengthens and 
regulates MT dynamics. MT destabilization is related to the phosphorylation of 
stathmin at its four serine residues [44]. In some human cancers, such as Wilms’ 
sarcomas and tumors, stathmin levels have been elevated and have been associated 
with more aggressive metastases [45]. During EMT, MT plays a significant role in cell 
migration. Anti-MT drugs act on the one hand by inhibiting cell division, but also 
by inhibiting cell migration by stopping the formation of projections of MT-based 
membranes [46, 47]. Stability variability in MT regulates cortical F-actin by activat-
ing or inhibiting various Rho GTPases [13, 48]. Aside from their roles in cell division 
and migration, MT is also important for cell polarization. The creation of a polarized 
MT required for morphogenesis and cell migration is thought to be aided by corti-
cal control of MT. Although MT indirectly contributes to cell-cell adhesion through 

Figure 2. 
The diagram depicted Rho GTPase cycle.
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dynamic remodeling of the actin network, the role of MT in regulating migration or 
EMT by interacting with cell-cell adhesion is currently being investigated. Reveal that 
the MT-interacting protein stathmin is important in cell migration and metastasis 
via MT-actin cytoskeleton crosstalk [49]. Novel pharmaceutical techniques could be 
created using this relationship, in which the actin cytoskeleton is targeted via MT, to 
overcome the toxic effects associated with some actin-based medicines.

2.4 Intermediate filament (IF)

Intermediate filaments (IF) are important cytoskeletal components that provide 
structural support and mechanical strength. One of the largest gene families in the 
human genome encodes more than 50 different IF proteins, and this family contains 
five different IF classes. Types I-IV are located in the cytoplasm and include vimentin, 
which is a classic marker of EMT, and its expression is related to the aggressive phe-
notype of epithelial cancer. Compared with actin cytoskeleton and MT, IF also shows 
a different tissue expression pattern. Type I IF keratin is epithelial-specific and is essen-
tial for the mechanical stability of epithelial cells. During EMT, the reduction of keratin 
is generally considered to be the histological and biochemical characteristics of cancer 
cells [50, 51]. Type III IF, vimentin, is a typical marker of EMT. Vimentin expression 
is up-regulated during EMT of epithelial cells, and it has been reported to increase 
vimentin expression in various cancer cell lines. It is used as an indicator of poor 
prognosis [52]. During EMT, vimentin helps determine and maintain cell shape. Recent 
studies have shown that the expression of vimentin is related to active prostate cancer 
cell lines, and its knockdown significantly reduces the activity and invasiveness of 
tumor cells [13, 53]. It shows that vimentin is significantly increased in polyploid giant 
cancer cells (PGCCs). Vimentin intermediate filaments are responsible for expand-
ing morphology and increasing migration [54]. In general, vimentin expression has 
significant characteristics during EMT, including tumor cell migration and invasion.

3. Materials and methods

The materials and methods are described in the following steps:

3.1 Evaluation of S100A4 and p53 interaction in cells

S100A4 interacts with p53 in the nucleus S100 family proteins have no known 
enzymatic activity, and therefore it is generally believed that S100 proteins function 
through interaction with other proteins to regulate their functions. Nuclear colocaliza-
tion between S100A4 and p53 was however apparent both in untreated and cisplatin-
treated A549 cells [11]. Therefore, to investigate the suggested interaction between 
S100A4 and p53. IP of endogenous S100A4 in A549 cells resulted in coprecipitation 
of endogenous p53 in untreated cells. In addition, the amount of coprecipitated p53 
increased after treatment of the cells with the p53-stabilizing drug Nutlin-3A Figure 3. 
To validate the interaction between S100A4 and p53 and to retrieve information about 
the subcellular location of the interaction, using antibodies targeting S100A4 and p53 
Figure 3. The results from PLA supported the interaction between S100A4 and p53 
in cells, and also underscored the dramatic increase in the interaction after treatment 
with Nutlin-3A. In addition, in situ PLA clearly showed that the subcellular location of 
the interaction between S100A4 and p53 was in the nucleus Figure 3.
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3.2 Cytoskeleton protein transgelin developing proteinuria by bioinformatics

The cytoskeleton protein transgelin is designated in the following phases:

3.2.1  Immunity and TAGLN-related transcription factors (TFs) correlation analysis

For stratification of the immune milieu based on function and activity, a group of 
important immune-related genes that have been widely researched in carcinogenicity 
were discovered. A scatter plot was used to display statistically significant genes in 
each category, as well as all relationships within each categorization.

3.2.2  Analysis of the relationship between TAGLN and well-known genes involved in 
cell viability and apoptosis

According to their function and activity, a group of well-known cancer genes that 
have been widely examined in carcinogenicity were gathered and divided into cell 
cycle-related and apoptosis-related pathways. The apoptosis-related star genes were 
divided into two groups: G0-G1 and G2-M. The expression profile data for each class 
was used to determine the associations between TAGLN and the star genes.

Differentially expressed genes (DEGs) were identified using Gene Expression 
Omnibus microarray expression profiling datasets and processed using the short time 
series expression miner to cluster DEGs in proteinuria progression and build a gene 
interaction network [55].

3.3 Western blotting

Western blotting dry was used to determine the quantity of extracted P53. In one 
input, the total protein extracted from cells was displayed, whereas flow-through 
indicated unbound protein (4-A) [11]. This method was chosen to avoid the presence 
of antibodies, which could cause more P53 aggregation. To conduct the negative stain-
ing experiment, recombinant S100A4 protein was purified under natural conditions. 
Luciferase IIA immunoprecipitated from A431/ZEB2-WT cells was analyzed using 
Western blotting [11]. Elution displays the amount of protein that separated from the 
immunocomplex, while beads reflect the immunocomplex. To see if p53 stabilization 

Figure 3. 
Immunoblot analysis of p53 and S100A4 protein levels in A549 cells in response to Nutlin-3A treatment at 
indicated time-points.
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alone has an effect on cellular S100A4 levels. Nutlin-3A prevents p53 from interact-
ing with MDM2, the ubiquitin E3 ligase that ubiquitinates p53 and sends it to the 
proteasome for destruction. We were unable to identify any changes in the messenger 
RNA (mRNA) level of S100A4, indicating that the increase in S100A4 in response to 
Nutlin-3A was due to protein stabilization. Knockdown of S100A4 results in increased 
cisplatin-induced apoptosis S100A4 knockdown by itself did not induce apoptosis, 
but still the increased p53 levels could prime the cells for apoptosis activation.

3.4 Microscopy with immunofluorescence

Cells were cultured on 9 mm glass coverslips (VWR), fixed with 4% paraformal-
dehyde (VWR), and permeabilized with 0.5% Triton X-100 (Sigma). Primary and 
secondary Alexa Fluor conjugated antibodies (Life Technologies) were used for 1 hour 
of staining. Nuclear staining was done with DAPI (Sigma). An inverted Nikon Eclipse 
Ti microscope and a custom-built prism-based TIRF microscope with 60× objectives 
were used for confocal and TIRF microscopy [56]. Samples were analyzed with the 
help of sample.

4. Result

4.1 In the nucleus S100A4 and p53 interaction

S100A4 interacts with p53 in the nucleus because S100 family members have no 
known enzymatic activity, it is usually assumed that they control their activities via 
interacting with other proteins [11]. Non-muscle myosin IIA and p53 have already 
been identified as possible S100A4-interacting proteins. As a result, we started to 
look into the possible relationship between S100A4 and p53. In untreated cells, IP of 
endogenous S100A4 resulted in coprecipitation of endogenous p53.

In addition, as shown in Figure 4, the amount of coprecipitated p53 increased 
after the cells were treated with the p53-stabilizing medication Nutlin-3A. We used 

Figure 4. 
S100A4 interacts with p53 in the nucleus.
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antibodies targeting S100A4 and p53 to perform in situ PLA35 to confirm the interac-
tion between S100A4 and p53 and to acquire information regarding the subcellular 
location of the interaction. PLA findings confirmed the contact between S100A4 and 
p53 in cells, as well as the substantial increase in the interaction following Nutlin-3A 
therapy. Furthermore, in situ PLA clearly demonstrated that the subcellular location 
of the interaction between S100A4 and p53 was in the nucleus as shown in Figure 4.

To utilizing cisplatin, a cytotoxic agent that promotes apoptosis in p53-dependent 
cells, to see if this was the case. We found higher cisplatin sensitivity in S100A4 
shRNA cells relative to control cells using both a short-term cell viability assay and a 
clonogenic survival experiment as shown in Figure 5. We employed different assays 
to analyze cell mortality after S100A4 knockdown to learn more about the cisplatin 
response. S100A4 is significantly silenced as shown in Figure 5.

4.2  The actin cytoskeleton in EMT: clinical evidence and therapeutic implications

Recent research has revealed that scientists are concentrating their efforts on 
combination therapies that target numerous molecules in the same signaling path-
way, multiple pathways in the same tumor, or both cancer cells and immune cells 
[57, 58]. Combination medicines are still being studied, and they will help us better 
understand drug resistance processes in the future. As a result, recent theories 
propose that targeting EMT and cytoskeletal proteins could be a unique way to battle 
cancer medication resistance. Normal cell physiology requires actin. As a result, 
despite their promise in vitro and in vivo, prospective actin-specific chemotherapeu-
tics have yet to be tested. Due to their non-specific targeting of normal tissues, which 
causes cardiotoxicity and renal difficulties, they have not been successful [59, 60]. 
Increasing data suggests that the commencement of the EMT process and metastasis 
causes an increase in the number of EMT-related actin-binding proteins (ABPs) 
involved with actin cytoskeleton remodeling. As a result, controlling ABP expression 
may aid in preventing cancer cells from migrating and increasing their sensitivity to 

Figure 5. 
Knockdown of S100A4 results in increased cisplatin sensitivity.
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therapeutic therapies. Arp2/3, cortactin, formins, and fascin have all been studied 
extensively. Other ABPs, which could be potential targets in carcinogenesis, are, 
however, understudied. The actin cytoskeleton and ABPs are difficult to target for 
anti-cancer therapy, because ABPs are involved in the creation of contractile struc-
tures in cardiac and skeletal muscles [13, 61]. The intermediate filaments vimentin 
and nestin are linked to several cancers. When it comes to EMT, vimentin is a marker 
for mesenchymal cells. Anti-tumor medications have been discovered to change 
microtubule dynamics, which affect mitosis and apoptosis [62]. Microtubules have 
a big role in tumor migration and invasion during EMT. These anti-tumor medica-
tions stop cancer cells from dividing and forming membrane protrusions caused 
by network-based microtubules, which cause cell migration and invasion. Eribulin 
is a MI depolymerization medication that is used to treat metastatic breast cancer 
patients. In breast cancer, this medication suppresses angiogenesis, vascular remod-
eling, and EMT [63, 64]. The anti-tumor medication diaryloxazole PC-046 has a 
high oral bioavailability. It is a synthetically produced small molecule microtubule 
destabilizing agent. When compared to other microtubule destabilizing agents, this 
medication is reported to have a lower rate of MDR cross-resistance. Drug resistance 
in cancer cells is influenced by many signaling pathways involved in EMT and 
cytoskeletal proteins [65].

Anti-apoptotic effects and drug efflux pumps are increased in EMT cells. As a 
result, recent theories imply that focusing on EMT and cytoskeletal proteins could 
be a unique way to battle cancer treatment resistance. Chemotherapy is commonly 
used in the treatment of cancer, either alone or in combination with radiotherapy or 
surgery. Multiple breakthroughs in cancer treatment have been made in recent years, 
while medication resistance, which has been one of the leading causes of cancer 
death, has increased [66, 67]. In a drug-filled environment, EMT cells are thought 
to have the ability to develop selectively. While some studies imply that EMT may 
not totally contribute to cancer metastasis, others reveal that EMT is strongly linked 
to treatment resistance in cancer cells. Anti-microtubule drug resistance is thought 
to be caused by changes in the drug target, such as altered microtubule dynamics, 
tubulin mutations, modified tubulin isotype expression, and altered microtubule 
regulatory proteins, according to a large body of research. Other cytoskeletal proteins 
that can regulate microtubule regulation via signaling or structural links have also 
been discovered may be essential factors of anti-microtubule resistance [68, 69]. 
ADCs (antibody-drug conjugates) are a new type of targeted anticancer therapy that 
has been shown to be effective in MDR cancer. When a high-affinity antibody (Ab) 
binds with the drug and pushes a targeted drug delivery into the cell, this ADC causes 
apoptosis in tumor cells. In Figure 6, aside from producing a cytotoxic load paired 
with tumor cell death, this Ab-drug combination also blocks the cells’ pro-survival 
receptor. The discovery of ADC could lead to the development of other combination 
medicines, such as immunotherapy. A lot of work is being done right now to improve 
the efficacy and targetability of ADCs in the treatment of cancers.

In Figure 6, (i) high-affinity antibody binds to the drug. ADC is formed when an 
antibody binds to a drug and enters the cell’s double lipid-membrane layer, causing 
cell death. (ii) ADC attaches to a cancer cell’s pro-survival receptor, blocking its func-
tion and triggering apoptosis. (iii) ADC binds to both the cancer cell’s membrane-
surface antigen and an immune system effector cell, causing cancer cells to be lysed 
by cellular cytotoxicity.
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5. Conclusions

It was necessary to conduct research. The plasticity of the cytoskeleton, motility, 
multi-drug resistance, and immunosuppressive properties have revealed a great deal 
about the plasticity of the cytoskeleton, motility, and immunosuppressive properties 
during the transformation of an epithelial cell to a mesenchymal cell. The cell’s signal-
ing systems, and how it adapts in order to live although there has recently been an 
emphasis on finding new cytoskeletal markers that can be used to detect cancer. Recent 
research suggests that cytoskeleton dynamics and EMT have a strong association, which 
can be used to find possible biomarkers. Epithelial cells lose their apical-basolateral 
polarity and adopt a fibroblast-like motility characteristic during EMT. S100A4 is a 
mesenchymal marker that is essential for improved mesenchymal cell motility. We 
chose to study the interactions between NMIIA and S100A4 in a cellular model of EMT 
because both proteins are expected to work together to generate the mesenchymal cell 
phenotype. There is less evidence for an S100A4-NMIIA complex in vivo. In this study, 
we report on control of cytoskeletal dynamics in cancer through a combination of actin 
and S100A4 protin. The interaction between S100A4 and p53 in the nucleus, and also 
that S100A4 negatively affects cellular p53 protein levels. In situ PLA was utilized to 
look at the interaction between p53 and S100A4. We were able to confirm not just the 
connection between S100A4 and wt p53, but also that it occurs in the cell nucleus, using 
this method. The difficulties in identifying the connection between p53 and S100A4 
might be explained if the interaction between S100A4 and p53 represents a stage in 
the biological processes that leads to p53 ubiquitination and destruction. Our findings 
imply that S100A4 is involved in MDM2-dependent p53 ubiquitination and degrada-
tion, given the nucleus localization of the interaction between S100A4 and p53 and the 
fact that lower S100A4 levels result in enhanced p53 stability.

The findings provided here are particularly significant because p53 is one of the 
most well-known tumor suppressor proteins. An abundance of evidence suggests 

Figure 6. 
Diagram depicting the antibody-drug conjugate (ADC) mode of action in a cancer cell.
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that p53 inactivation is essentially required for tumor growth. S100A4, a protein that 
is commonly overexpressed in malignancies and has been linked to poor prognosis, 
may contribute to p53 degradation through its interaction with p53, according to the 
findings. These findings clearly indicate why high S100A4 expression is advantageous 
to tumor development, and they also explain why S100A4 has a poor prognostic 
impact in clinical trials. Taken together, the findings imply that, in addition to raising 
the risk of metastasis as previously demonstrated, increased S100A4 expression 
in malignancies has the ability to suppress p53 activity. This research also suggests 
that S100A4 expression in clinical samples should be investigated in connection to 
cisplatin sensitivity to see if S100A4 may be used as a predictor of cisplatin therapy 
response. Also TAGLN mediated regulatory network implicated in proteinuria devel-
opment was used. These findings add to our understanding of the molecular pathways 
driving proteinuria etiology. Recent study has uncovered a significant feature of the 
protein that makes it a promising candidate for further investigation as a therapeutic 
target: its specific control of activity levels and expression in cancer cell lines. In both 
epithelial and mesenchymal cells, the Rho family GTPases play an important role 
in directing the dynamics of the actin cytoskeleton. There is strong evidence that 
EMT is linked to the production of the vimentin protein, which is phosphorylated 
and reoriented in cells, regulating cell contraction and focal adhesion assembly and 
disassembly. During metastasis, there is also crosstalk between distinct components 
of the cytoskeleton. The use of actin-binding proteins as new therapeutic targets has 
a lot of promise for the creation of specific cancer medicines, according to research-
ers also when employing phenotypic screening to get positive results, there are a lot 
of procedural concerns to keep in mind. In conclusion, in addition to the crucial role 
of the RLC phosphorylation in driving the myosin IIA’s conformations. These novel 
findings and analyses are attracting a lot of attention because they have the potential 
to lead to ground-breaking outcomes in our fight against cancer and drug-resistant 
cancer cells by combining traditional cancer therapy with EMT-related mechanisms. 
The findings imply that the mix of cytoskeletal components plays a critical role in the 
modulation of cytoskeletal dynamics in cancer.



Cancer Bioinformatics

50

Author details

Ban Hussein Alwash1, Rawan Asaad Jaber Al-Rubaye2, Mustafa Mohammad Alaaraj3 
and Anwar Yahya Ebrahim4*

1 Faculty of Dentistry, Department of Microbiology, Babylon University, Babylon, 
Iraq

2 Uclan Medical School, University of Central Lancashire, Uclan, UK

3 Alexandria University, Faculty of Medicine, Alexandria, Egypt

4 University of Babylon, Babylon, Iraq

*Address all correspondence to: anwaralawady@gmail.com

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



51

Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components
DOI: http://dx.doi.org/10.5772/intechopen.101624

[1] Fares J, Fares MY, Khachfe HH, 
Salhab HA, Fares Y. Molecular principles 
of metastasis: A hallmark of cancer 
revisited. Signal Transduction and 
Targeted Therapy. 2020;5:28

[2] Herrmann H, Bar H, Kreplak L, 
Strelkov SV, Aebi U. Intermediate 
filaments: From cell architecture to 
nanomechanics. Nature Reviews. 
Molecular Cell Biology. 2007;8: 
562-573

[3] Banyard J, Bielenberg DR. The role of 
EMT and MET in cancer dissemination. 
Connective Tissue Research. 2015;56: 
403-413

[4] Cabezon T et al. Expression of S100A4 
by a variety of cell types present in the 
tumor microenvironment of human 
breast cancer. International Journal of 
Cancer. 2007;121:1433-1444

[5] Andersen K et al. The metastasis-
promoting protein S100A4 regulates 
mammary branching morphogenesis. 
Developmental Biology. 2011;352: 
181-190

[6] Tarabykina S et al. Metastasis-
associated protein S100A4: Spotlight on 
its role in cell migration. Current Cancer 
Drug Targets. 2007;7:217-228

[7] Kiboku T, Katoh T, Nakamura A, 
Kitamura A, Kinjo M, Murakami Y, et al. 
Nonmuscle myosin II folds into a 10S 
form via two portions of tail for dynamic 
subcellular localization. Genes to Cells. 
2013;18:90-109

[8] Mertins P, Mani DR, Ruggles KV, 
Gillette MA, Clauser KR, Wang P, et al. 
Proteogenomics connects somatic 
mutations to signalling in breast cancer. 
Nature. 2016;534:55-62

[9] Ebrahim AY. Detection of breast 
cancer in mammograms through a new 
features technique. In: Tejedor L, 
Modet SG, Manchev L, Parikesit AA. 
Breast Cancer and Breast Reconstruction. 
2019; IntechOpen. DOI:10.5772/
intechopen.89062. Available from: 
https://www.intechopen.com/
chapters/69808 [Accessed: 29 
October 2019]

[10] Izdebska M, Zielinska W, Grzanka D, 
Gagat M. The role of actin dynamics and 
actin-binding proteins expression in 
epithelial-to-mesenchymal transition 
and its association with cancer 
progression and evaluation of possible 
therapeutic targets. BioMed Research 
International. 2018;2018:4578373

[11] Orre LM et al. S100A4 interacts with 
p53 in the nucleus and promotes p53 
degradation. Oncogene. 2013;32(49): 
5531-5540

[12] Dongre A, Weinberg RA. New 
insights into the mechanisms of 
epithelial-mesenchymal transition and 
implications for cancer. Nature Reviews. 
Molecular Cell Biology. 2019;20:69-84

[13] Datta A, Deng S, Gopal V, Yap KCH, 
Halim CE, Lye ML, et al. Cytoskeletal 
dynamics in epithelial-mesenchymal 
transition: Insights into therapeutic 
targets for cancer metastasis. Cancers. 
2021;13:1882. DOI: 10.3390/
ancers13081882

[14] Anderson TW, Vaughan AN, 
Cramer LP. Retrograde flow and myosin 
II activity within the leading cell edge 
deliver F-actin to the lamella to seed the 
formation of graded polarity actomyosin 
II filament bundles in migrating 
fibroblasts. Molecular Biology of the Cell. 
2008;19:5006-5018

References



Cancer Bioinformatics

52

[15] Grzanka D, Gagat M, Izdebska M. 
Involvement of the SATB1/F-actin 
complex in chromatin reorganization 
during active cell death. International 
Journal of Molecular Medicine. 
2014;33:1441-1450

[16] Morris HT, Machesky LM. Actin 
cytoskeletal control during epithelial to 
mesenchymal transition: Focus on the 
pancreas and intestinal tract. British 
Journal of Cancer. 2015;112:613-620

[17] Noren NK, Niessen CM, 
Gumbiner BM, Burridge K. Cadherin 
engagement regulates Rho family 
GTPases. The Journal of Biological 
Chemistry. 2001;276:33305-33308

[18] Ashrafizadeh M, Hushmandi K, 
Hashemi M, Akbari ME, Kubatka P, 
Raei M, et al. Role of microRNA/
epithelial-to-mesenchymal transition 
axis in the metastasis of bladder cancer. 
Biomolecules. 2020;10(8):1159

[19] Ashrafizadeh M, Najafi M, Ang HL, 
Moghadam ER, Mahabady MK, 
Zabolian A, et al. PTEN, a barrier for 
proliferation and metastasis of gastric 
cancer cells: From molecular pathways to 
targeting and regulation. Biomedicine. 
2020;8(8):264

[20] Derynck R, Weinberg RA. EMT and 
cancer: More than meets the eye. 
Developmental Cell. 2019;49:313-316

[21] Hwang ST, Yang MH, Kumar AP, 
Sethi G, Ahn KS. Corilagin represses 
epithelial to mesenchymal transition 
process through modulating Wnt/
beta-catenin signaling cascade. 
Biomolecules. 2020;10(10):1406

[22] Shin EM, Hay HS, Lee MH, Goh JN, 
Tan TZ, Sen YP, et al. DEAD-box helicase 
DP103 defines metastatic potential of 
human breast cancers. The Journal of 
Clinical Investigation. 2014;124:3807-3824

[23] Takenawa T, Suetsugu S. The WASP-
WAVE protein network: Connecting the 
membrane to the cytoskeleton. Nature 
Reviews. Molecular Cell Biology. 
2007;8:37-48

[24] Sun BO, Fang Y, Li Z, Chen Z, 
Xiang J. Role of cellular cytoskeleton in 
epithelial-mesenchymal transition 
process during cancer progression. 
Biomedical Reports. 2015;3:603-610

[25] Han SP, Gambin Y, Gomez GA, 
Verma S, Giles N, Michael M, et al. 
Cortactin scaffolds Arp2/3 and WAVE2 at 
the epithelial zonula adherens. The 
Journal of Biological Chemistry. 
2014;289:7764-7775

[26] Helgeson LA, Prendergast JG, 
Wagner AR, Rodnick-Smith M, Nolen BJ. 
Interactions with actin monomers, actin 
filaments, and Arp2/3 complex define the 
roles of WASP family proteins and 
cortactin in coordinately regulating 
branched actin networks. The Journal of 
Biological Chemistry. 2014;289: 
28856-28869

[27] Adams JC. Fascin-1 as a biomarker 
and prospective therapeutic target in 
colorectal cancer. Expert Review of 
Molecular Diagnostics. 2015;15:41-48

[28] Chellaiah M, Kizer N, Silva M, 
Alvarez U, Kwiatkowski D, Hruska KA. 
Gelsolin deficiency blocks podosome 
assembly and produces increased bone 
mass and strength. The Journal of Cell 
Biology. 2000;148:665-678

[29] Jaiswal R, Breitsprecher D, Collins A, 
Correa IR Jr, Xu MQ, Goode BL. The 
formin Daam1 and fascin directly 
collaborate to promote filopodia 
formation. Current Biology. 
2013;23:1373-1379

[30] Cheng Z, Wei W, Wu Z, Wang J, 
Ding X, Sheng Y, et al. ARPC2 promotes 



53

Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components
DOI: http://dx.doi.org/10.5772/intechopen.101624

breast cancer proliferation and 
metastasis. Oncology Reports. 2019;41: 
3189-3200

[31] Savoy RM, Ghosh PM. The dual role 
of filamin A in cancer: Can’t live with 
(too much of) it, can’t live without it. 
Endocrine-Related Cancer. 2013;20: 
R341-R356

[32] Zhou H, Zhang Y, Wu L, Xie W, Li L, 
Yuan Y, et al. Elevated transgelin/TNS1 
expression is a potential biomarker in 
human colorectal cancer. Oncotarget. 
2018;9:1107-1113

[33] Kovac B, Makela TP, Vallenius T. 
Increased alpha-actinin-1 destabilizes 
E-cadherin-based adhesions and 
associates with poor prognosis in  
basal-like breast cancer. PLoS One. 
2018;13:e0196986

[34] Hodge RG, Ridley AJ. Regulating Rho 
GTPases and their regulators. Nature 
Reviews Molecular Cell Biology. 
2016;17(8):496-510

[35] Jaffe AB, Hall A. Rho GTPases: 
Biochemistry and biology. Annual 
Review of Cell and Developmental 
Biology. 2005;21:247-269

[36] Raftopoulou M, Hall A. Cell 
migration: Rho GTPases lead the way. 
Developmental Biology. 2004;265:23-32

[37] Ridley AJ. Rho GTPase signalling in 
cell migration. Current Opinion in Cell 
Biology. 2015;36:103-112

[38] Olson MF, Sahai E. The actin 
cytoskeleton in cancer cell motility. 
Clinical & Experimental Metastasis. 
2009;26:273-287

[39] Etienne-Manneville S. Microtubules 
in cell migration. Annual Review of Cell 
and Developmental Biology. 2013;29: 
471-499

[40] Toya M, Takeichi M. Organization of 
non-centrosomal microtubules in 
epithelial cells. Cell Structure and 
Function. 2016;41:127-135

[41] Luduena RF. A hypothesis on the 
origin and evolution of tubulin. 
International Review of Cell and 
Molecular Biology. 2013;302:41-185

[42] Pongrakhananon V, 
Wattanathamsan O, Takeichi M, 
Chetprayoon P, Chanvorachote P. Loss of 
CAMSAP3 promotes EMT via the 
modification of microtubule-Akt 
machinery. Journal of Cell Science. 
2018;131(21):jcs216168

[43] Coquelle FM, Vitre B, Arnal I. 
Structural basis of EB1 effects on 
microtubule dynamics. Biochemical 
Society Transactions. 2009;37:997-1001

[44] Zhang T, Zaal KJ, Sheridan J, 
Mehta A, Gundersen GG, Ralston E. 
Microtubule plus-end binding protein 
EB1 is necessary for muscle cell 
differentiation, elongation and fusion. 
Journal of Cell Science. 2009;122: 
1401-1409

[45] Belmont LD, Mitchison TJ. 
Identification of a protein that interacts 
with tubulin dimers and increases the 
catastrophe rate of microtubules. Cell. 
1996;84:623-631

[46] Baldassarre G, Belletti B, 
Nicoloso MS, Schiappacassi M, 
Vecchione A, Spessotto P, et al. 
p27(Kip1)-stathmin interaction 
influences sarcoma cell migration and 
invasion. Cancer Cell. 2005;7:51-63

[47] Landowski TH, Samulitis BK, 
Dorr RT. The diaryl oxazole PC-046 is a 
tubulin-binding agent with experimental 
anti-tumor efficacy in hematologic 
cancers. Investigational New Drugs. 
2013;31:1616-1625



Cancer Bioinformatics

54

[48] Li WT, Yeh TK, Song JS, Yang YN, 
Chen TW, Lin CH, et al. BPR0C305, an 
orally active microtubule-disrupting 
anticancer agent. Anti-Cancer Drugs. 
2013;24:1047-1057

[49] Etienne-Manneville S, Hall A. 
Integrin-mediated activation of Cdc42 
controls cell polarity in migrating 
astrocytes through PKCzeta. Cell. 
2001;106:489-498

[50] Byrne FL, Yang L, Phillips PA, 
Hansford LM, Fletcher JI, Ormandy CJ, 
et al. RNAi-mediated stathmin 
suppression reduces lung metastasis in an 
orthotopic neuroblastoma mouse model. 
Oncogene. 2014;33:882-890

[51] Kim S, Coulombe PA. Intermediate 
filament scaffolds fulfill mechanical, 
organizational, and signaling functions 
in the cytoplasm. Genes & Development. 
2007;21:1581-1597

[52] Kim S, Kellner J, Lee CH, 
Coulombe PA. Interaction between the 
keratin cytoskeleton and eEF1Bgamma 
affects protein synthesis in epithelial 
cells. Nature Structural & Molecular 
Biology. 2007;14:982-983

[53] Lang SH, Hyde C, Reid IN, 
Hitchcock IS, Hart CA, Bryden AA, et al. 
Enhanced expression of vimentin in 
motile prostate cell lines and in poorly 
differentiated and metastatic prostate 
carcinoma. Prostate. 2002;52:253-263

[54] Zhao Y, Yan Q, Long X, Chen X, 
Wang Y. Vimentin affects the mobility 
and invasiveness of prostate cancer cells. 
Cell Biochemistry and Function. 
2008;26:571-577

[55] Ding Y, Diao Z, Cui H, Yang A, et al. 
Bioinformatics analysis reveals the roles 
of cytoskeleton protein transgelin in 
occurrence and development of 

proteinuria. Translational Pediatrics. 
2021;10(9):2250-2268. DOI: 10.21037/
tp-21-83

[56] Badyal SK, Basran J, Bhanji N, 
Kim JH, Chavda AP, Jung HS, et al. 
Mechanism of the Ca 2+-dependent 
interaction between S100A4 and tail 
fragments of nonmuscle myosin heavy 
chain IIA. Journal of Molecular Biology. 
2011;405:1004-1026

[57] Li F, Shanmugam MK, Chen L, 
Chatterjee S, Basha J, Kumar AP, et al. 
Garcinol, a polyisoprenylated 
benzophenone modulates multiple 
proinflammatory signaling cascades 
leading to the suppression of growth and 
survival of head and neck carcinoma. 
Cancer Prevention Research. 
2013;6:843-854

[58] Shanmugam MK, Ong TH, 
Kumar AP, Lun CK, Ho PC, Wong PT, 
et al. Ursolic acid inhibits the initiation, 
progression of prostate cancer and 
prolongs the survival of TRAMP mice by 
modulating pro-inflammatory pathways. 
PLoS One. 2012;7:e32476

[59] Newman DJ, Cragg GM. Marine 
natural products and related compounds 
in clinical and advanced preclinical trials. 
Journal of Natural Products. 
2004;67:1216-1238

[60] Senderowicz AM, Kaur G, Sainz E, 
Laing C, Inman WD, Rodriguez J, et al. 
Jasplakinolide’s inhibition of the growth 
of prostate carcinoma cells in vitro with 
disruption of the actin cytoskeleton. 
Journal of the National Cancer Institute. 
1995;87:46-51

[61] Izdebska M, Zielinska W, 
Halas-Wisniewska M, Grzanka A. 
Involvement of actin and actin-binding 
proteins in carcinogenesis. Cell. 
2020;9(10):2245.9



55

Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components
DOI: http://dx.doi.org/10.5772/intechopen.101624

[62] Manu KA, Shanmugam MK, Li F, 
Chen L, Siveen KS, Ahn KS, et al. 
Simvastatin sensitizes human gastric 
cancer xenograft in nude mice to 
capecitabine by suppressing nuclear 
factor-kappa B-regulated gene products. 
Journal of Molecular Medicine. 2014;92: 
267-276

[63] Pedersini R, Vassalli L, Claps M, 
Tulla A, Rodella F, Grisanti S, et al. 
Eribulin in heavily pretreated metastatic 
breast cancer patients in the real world: 
A retrospective study. Oncology. 
2018;94(Suppl. S1):10-15

[64] Pizzuti L, Krasniqi E, Barchiesi G, 
Mazzotta M, Barba M, Amodio A, et al. 
Eribulin in triple negative metastatic 
breast cancer: Critic interpretation of 
current evidence and projection for 
future scenarios. Journal of Cancer. 
2019;10:5903-5914

[65] Monisha J, Roy NK, Padmavathi G, 
Banik K, Bordoloi D, Khwairakpam AD, 
et al. NGAL is downregulated in oral 
squamous cell carcinoma and leads to 
increased survival, proliferation, 
migration and chemoresistance. Cancers. 
2018;10(7):228

[66] Manu KA, Shanmugam MK, 
Ramachandran L, Li F, Siveen KS, 
Chinnathambi A, et al. Isorhamnetin 
augments the anti-tumor effect of 
capecitabine through the negative 
regulation of NF-kappaB signaling 
cascade in gastric cancer. Cancer Letters. 
2015;363:28-36

[67] Deng S, Shanmugam MK, Kumar AP, 
Yap CT, Sethi G, Bishayee A. Targeting 
autophagy using natural compounds for 
cancer prevention and therapy. Cancer. 
2019;125:1228-1246

[68] Mishra S, Verma SS, Rai V, 
Awasthee N, Chava S, Hui KM, et al. 

Long non-coding RNAs are emerging 
targets of phytochemicals for cancer and 
other chronic diseases. Cellular and 
Molecular Life Sciences. 2019;76: 
1947-1966

[69] Verrills N, Kavallaris M. Improving 
the targeting of tubulin-binding agents: 
Lessons from drug resistance studies. 
Current Pharmaceutical Design. 
2005;11:1719-1733





57

Chapter 4

Identification of Biomarkers 
Associated with Cancer Using 
Integrated Bioinformatic Analysis
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Abstract

Among the leading cause of death cancer ranked in top position. Early diagnosis 
of cancer holds promise for reduced mortality rate and speedy recovery. The cancer 
associated molecules being altered in terms of under/over expression when compared 
to normal cells and thus could act as biomarkers for therapeutic designing and drug 
repurposing. The information about the known cancer associated biomarkers can 
be exploited for targeting of cancer specifically in terms of selective personalized 
medicine designing. This chapter deals with various types of biomarkers associated 
with different types of cancer and their identification using integrated bioinformatic 
analysis. Besides, a brief insight on integrated bioinformatics analysis tools and 
databases have also been discussed.

Keywords: Cancer, biomarkers, therapy, computational biology, differentially 
expressed genes

1. Introduction

Cancer is the dreadful disease in which cells divide uncontrollably and, at a later 
stage, begin attacking neighboring tissues. Hereditary mutations, toxin exposure, 
radiation exposure, alcohol usage, smoking, and radical lifestyle changes are all 
known to cause cancer. Early detection of cancer results in good therapy. The tradi-
tional diagnostic procedures of X-ray, CT-scan, and tissue biopsy are unable to detect 
it at an early stage, resulting in a delay in treatment that has resulted in the death of 
several people globally due to cancer [1, 2]. Substantial advances in cancer biology 
have resulted in the discovery of various biomolecules that are especially linked to 
cancer progression and development, and therefore referred to as “biomarkers.” 
Biomarkers are basically alterations which are cellular, biochemical, and molecular 
changes that can be used to identify or monitor a normal, abnormal, or just a bio-
logical process. They are utilized to test and evaluate pathogenic processes, normal 
biological processes, and the pharmacological response to a treatment intervention 
objectively. Biomarkers could be classified based on their chemical nature and func-
tionality that can be identified using transcriptomics, metabolomics, genomics and 
proteomics (Figure 1) [3, 4].
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Usually, living cells have a finite life span, and their genome deoxy ribonucleic acid 
(DNA) transcribes into ribonucleic acid (RNA), which upon translation results in the 
creation of proteins that participate in numerous physiological and metabolic pro-
cesses required by the body. Any change in these mechanisms, such as a mutation in 
DNA, causes disruption which leads to a dreadful disease namely, Cancer. The detec-
tion of mutations in DNA can be used to predict Cancer risk [5]. Consequently, mea-
surement of RNA, protein, and metabolite expression levels can provide important 
information about illness progression and profiling. There are more than 200 types 
of cancer reported, however in this chapter, we gathered and presented information 
about various biomarkers associated with top 5 types of cancer in the world, which 
can be exploited in designing of sensitive and effective diagnostic technology for early 
detection of cancer. Basically, various types of biomarkers associated with different 
types of cancer and their identification using integrated bioinformatic analysis will 
be discussed. Besides, a brief insight on integrated bioinformatics analysis tools and 
databases have also been discussed.

2. Biomarkers associated with different types of cancer

Biomarkers have been generally known to play crucial role in the association with 
different cancer resulting in therapeutic aspects. These could be constructed with 
the help of advanced integrated bioinformatics analysis tools which could provide 
an ease to identify biomarkers which could be treated as potential candidates to 
treat diversities of Cancer. We have listed biomarkers associated with various types 
of cancer using integrated bioinformatics approaches in Table 1. The mechanistic 
insight regarding how the databases can be utilized to extract and identify various 
 biomarkers associated with respective cancers have been depicted in Figure 2.

Figure 1. 
Analysis of potential biomarkers using different integrated bioinformatics analysis assay platforms such as DNA 
based from FISH assay platform, RNA based biomarkers from micro arrays, protein based biomarkers from 
proteomic profiles and metabolites based on biomarkers from metabolomics profiles which led to screening of 
various kinds of cancer resulting in identification of potential candidate genes for prognostic therapeutic approach.
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S. No. Type of 
cancer

Biomarkers identified Investigators References

1 Lung Cancer TOP2A, CCNB1, CCNA2, UBE2C, 
KIF20A, and IL-6

Ni et al., 2018 [6]

2 CDC20, ECT2, KIF20A, MKI67, 
TPX2, and TYMS

Dai et al., 2020 [7]

3 DDX5, DDX11, DDX55 and DDX56 Cui et al., 2021 [8]

4 NDC80, BUB1B, PLK1, CDC20, and 
MAD2L1

Liao et al., 2019 [9]

5 UBE2T, UNF2, CDKN3, ANLN, 
CCNB2, and CKAP2L

Tu et al., 2019 [10]

6 UBE2C, AURKA, CCNA2, CDC20, 
CCNB1, TOP2A, ASPM, MAD2L1, 
and KIF11

Liu et al., 2020 [11]

7 Gastric 
Cancer

CST2, AADAC, SERPINE1, 
COL8A1, SMPD3, ASPN, ITGBL1, 
MAP7D2, and PLEKHS1

Liu et al., 2018 [12]

8 FN1, COL1A1, INHBA, and CST1 Wang et al., 2020 [13]

9 COL1A2 Rong et al., 2018 [14]

10 LINC01018, LOC553137, MIR4435-
2HG, and TTTY14

Miao et al., 2017 [15]

11 UCA1, HOTTIP, and HMGA1P4 Zang et al., 2019 [16]

12 Liver Cancer PBK, ASPM, NDC80, AURKA, 
TPX2, KIF2C, and centromere 
protein F

Ji et al., 2020 [17]

13 miR1055p, miR7675p, miR12665p, 
miR47465p, miR500a3p, miR11803p, 
and miR1395p

Shen et al., 2020 [18]

14 BUB1, CCNB2, CDC20, CDK1, 
KIF20A, KIF2C, RACGAP1 and 
CEP55

Li et al., 2017 [19]

15 Breast Cancer TXN, ANXA2, TPM4, LOXL2, 
TPRN, ADCY6, TUBA1C, and CMIP

Wang et al., 2019 [20]

16 ADH1A, IGSF10, and the 14 
microRNAs

Wu et al., 2021 [21]

17 TPX2, KIF2C, CDCA8, BUB1B, and 
CCNA2

Cai et al., 2019 [22]

18 CDC45, PLK1, BUB1B, CDC20, 
AURKA and MAD2L1

Wu et al., 2020 [23]

19 Colorectal 
Cancer

SLC4A4, NFE2L3, GLDN, 
PCOLCE2, TIMP1, CCL28, 
SCGB2A1, AXIN2, and MMP1

Chen et al., 2019 [24]

20 BLACAT1 Dai et al., 2017 [25]

21 HMMR, PAICS, ETFDH, and SCG2 Sun et al., 2021 [26]

22 hsa-miR-183-5p, hsa-miR-21-5p, 
hsa-miR-195-5p and hsa-miR-497-5p

Falzone et al., 2018 [27]

Table 1. 
Biomarkers identified by using integrated bioinformatics tools, associated with various types of cancer such as lung 
cancer, gastric cancer, colorectal cancer.
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2.1 Lung cancer

Lung cancer is the most common cancer-related death around the globe. Despite 
great attempts to enhance treatment approaches in previous decades, the clinical 
outcome of traditional therapies such as surgery, radiation, and chemotherapy 
remains poor when compared to other major forms of cancer such as colon, pros-
tate, and breast cancers. The challenges in making an early-stage diagnosis of lung 
cancer and the high recurrence rate after curative treatments are the main reasons 
for the lack of improvement in prognosis [28]. To improve the clinical result of lung 
cancer treatments, it is critical to identify and validate diagnostic and prognostic 
biomarkers. Therefore, here in this section of chapter we have reviewed studies led by 
certain researchers for identification of the lung cancer biomarkers using integrated 
bioinformatics analysis. There are mainly 2 types of the lung cancer. In 80–85% cases, 
the type of lung cancer is non-small cell lung cancer (NSCLC). The main subtypes 
of which are adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. 
These subtypes generally begin from different types of the lung cells that are grouped 
together as NSCLC and their treatment and prognoses are almost similar. The other 
type is small cell lung cancer (SCLC) and around 10–15% of all lung cancers are SCLC 
and it is sometimes called oat cell cancer. SCLC grows and spread faster than NSCLC.

In a study by Ni et al., four GEO datasets GSE18842, GSE19804, GSE43458, and 
GSE62113, were extracted form Gene Expression Omnibus (GEO) database into 
which the limma package was used to assess differentially expressed genes (DEGs) 
between NSCLC and normal samples, and the RobustRankAggreg (RRA) pro-
gramme was used to undertake gene integration. Furthermore, they established the 
protein–protein interaction (PPI) network of these DEGs using the Search Tool for 
the Retrieval of Interacting Genes database (STRING), Cytoscape, and Molecular 
Complex Detection (MCODE). Funrich (http://www.funrich.org)and OmicShare 
(https://www.omicshare.com/tools/)were also conducted to ensure functional 

Figure 2. 
The schematic representation of extraction of datasets from the GEO database then the identification of DEGs 
followed by its functional analysis and subsequent qPCR validation leading to identification of small molecule 
known as biomarker for treating Cancer.
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enrichment and pathway enrichment analysis for DEGs. Besides this, they used the 
gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan Meier-plotter 
(KM) online datasets to analyze the expressions and prognostic values of top genes. 
Hence, it led to the identification of a total of 249 DEGs including 113 upregulated 
and 136 downregulated after gene integration. Followed by this, they established a 
PPI network with 166 nodes and 1784 protein pairings resulting in TOP2A, CCNB1, 
CCNA2, UBE2C, KIF20A, and IL-6 to be considered as possible important genes, 
whereas they further added, the mitotic cell cycle pathway to play a crucial role in 
NSCLC advancement resulting in its employment as a novel biomarker for NSCLC 
diagnosis and to guide synthesis medication [6].

In another study by Dai et al., 6 key biomarkers associated with non- small cell 
lung cancer in which GEO2R were analyzed to examine three microarray datasets 
from the Gene Expression Omnibus collection along with the enrichment analysis 
which was performed using Gene Ontology and the Kyoto Encyclopedia of Genes and 
Genomes. Further, the String database, Cytoscape, and the MCODE plug-in were 
then used to build a PPI network and screen hub genes using the String database, 
Cytoscape, and the MCODE plug-in. Kaplan–Meier curves were used to examine 
overall and disease-free survival of hub genes, as well as the association between 
target gene expression patterns and tumor grades. To verify enrichment pathways and 
diagnostic effectiveness of hub genes, researchers performed gene set enrichment 
analysis and receiver operating characteristic curves. A total of 293 differentially 
expressed genes were discovered, with cell cycle, ECM–receptor interaction, and 
malaria being the most prevalent. The PPI network identified 36 hub genes, six of 
which were reported to have important roles in NSCLC (non- small cell lung cancer) 
carcinogenesis: CDC20, ECT2, KIF20A, MKI67, TPX2, and TYMS. The target genes 
discovered can be employed as potential biomarkers to identify and diagnose non- 
small cell lung cancer as per their investigations [7].

Similarly, in another study by Cui et al., they used integrated bioinformatic 
analysis of multivariate large-scale databases to assess the potential of DEAD/H box 
helicases as prognostic indicators and therapeutic targets in lung cancer. They were 
able to discover four biomarkers with the most significant changes after analyzing the 
survival and differential expression of these helicases. The unfavorable prognostic 
factors DDX11, DDX55, and DDX56, as well as the good prognosis factor DDX5, 
were discovered. MYC signaling is adversely linked with DDX5 gene expression, but 
favorably associated with DDX11, DDX55, and DDX56 gene expression, according to 
pathway enrichment analysis led by them. Low mutation levels of TP53 and MUC16, 
the two most frequently mutated genes in lung cancer, are related with high expres-
sion levels of the DDX5 gene. High levels of DDX11, DDX55, and DDX56 gene expres-
sion, on the other hand, were linked to high levels of TP53 and MUC16 mutation. The 
levels of DDX5 gene expression in tumor-infiltrated CD8 + T and B cells are posi-
tively correlated, but the other three DEAD box helicases are negatively correlated. 
Furthermore, while each DDX has a unique miRNA signature, the DDX5-associated 
miRNA profile is distinct from the miRNA profiles of DDX11, DDX55, and DDX56. 
The discovery of these four DDX helicases as biomarkers could be considered useful 
for lung cancer prognostication and targeted treatment development [8].

In another study by Liao et al., they have identified candidate genes associated 
with the pathogenesis of small cell lung cancer analyzed using integrated bioinfor-
matics tools. GSE60052, GSE43346, GSE15240, and GSE6044 were the four datasets 
that they downloaded from the Gene Expression Omnibus. R software was used to 
examine the differentially expressed genes (DEGs) between the SCLC and normal 



Cancer Bioinformatics

62

samples. For each dataset, the limma software was utilized. The DEGs from the four 
datasets were combined using the RobustRankAggreg package. FunRich software and 
R software were used to conduct functional and route enrichment analyses using the 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, accord-
ingly. The DEGs’ protein–protein interaction (PPI) network was also built using 
the STRING database and the Cytoscape software. Molecular Complex Detection in 
Cytoscape software was used to find hub genes and important modules. Ultimately, 
the Oncomine online database was used to assess the expression values of hub genes. 
Following the integration of the four datasets, 412 DEGs were discovered, compris-
ing 146 upregulated genes and 266 downregulated genes. The increased DEGs were 
mostly involved in cell division, cell cycle, and microtubule binding. The complement 
and coagulation cascades, the cytokine-mediated signaling pathway, and protein 
binding were all heavily represented among the downregulated DEGs. Based on a 
subset of the PPI network, eight hub genes and one major module connected to the 
cell cycle pathway were discovered. Eventually, in comparison to normal tissue, five 
hub genes were shown to be substantially expressed in SCLC tissue. The cell cycle 
route may be the one that is most closely linked to SCLC pathophysiology. As a result, 
follow-up studies in the diagnosis and therapy of SCLC should focus on NDC80, 
BUB1B, PLK1, CDC20, and MAD2L1 [9].

In another similar study by Tu et al., GEO2R was used to search the mRNA micro-
array datasets GSE19188, GSE33532, and GSE44077 for differentially expressed genes 
(DEGs). The DEGs were analyzed for functional and pathway enrichment using the 
DAVID database. STRING was used to create a protein–protein interaction (PPI) 
network, which was then displayed in Cytoscape. MCODE was used to analyze the 
PPI network’s modules. The Kaplan Meier-plotter was used to analyze the overall sur-
vival (OS) of genes from MCODE. Total of 221 DEGs were found, with words linked 
to cell division, cell proliferation, and signal transduction being the most abundant. 
A PPI network with 221 nodes and 739 edges was created. The PPI network revealed 
a substantial module containing 27 genes. UBE2T, UNF2, CDKN3, ANLN, CCNB2, 
and CKAP2L all have high expression levels and have been linked to a poor prognosis 
in NSCLC patients. Protein binding, ATP binding, cell cycle, and the p53 signaling 
pathway were among the enriched functions and pathways. DEGs in non- small cell 
lung cancer (NSCLC) have the potential to be useful targets for diagnosing and  
treating the disease [10].

In another study by Liu et al., in this prospective investigation, which included 
46 tumors and 45 controls, the gene expression profile GSE18842 was acquired from 
the Gene Expression Omnibus database. They used functional enrichment analysis 
and KEGG analysis using upregulated differentially expressed genes (uDEGs) and 
downregulated differentially expressed genes (dDEGs), respectively, after screen-
ing differentially expressed genes (DEGs). The STRING database was used to create 
protein–protein interaction (PPI) networks between DEGs and their corresponding 
coding protein complexes, which were then examined using Cytoscape. The Kaplan–
Meier approach was used to confirm the survival of hub genes. In the TCGA database, 
the gene expression level heat map of hub genes between NSCLC and neighboring 
lung tissues was plotted using the GEPIA webserver. After gene integration, they 
found 368 DEGs (168 uDEGs and 200 dDEGs) in NSCLC samples compared to con-
trol samples. They built a PPI network for the DEGs with 249 nodes and 1472 protein 
pairings on the edges. Survival study confirmed that ten undefined hub genes with 
the highest connectivity degree (CDK1, UBE2C, AURKA, CCNA2, CDC20, CCNB1, 
TOP2A, ASPM, MAD2L1, and KIF11) were related with lower overall survival in 
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NSCLC. The GEPIA web tool was used to verify the expression dependability of 
hub genes. The findings suggested that UBE2C, AURKA, CCNA2, CDC20, CCNB1, 
TOP2A, ASPM, MAD2L1, and KIF11 are inherent critical biomarkers for diagnosis 
and prognosis, and that the mitotic cell cycle pathway is a likely signaling pathway 
contributing to NSCLC progression, according to KEGG analysis. Such genes could be 
useful diagnostic biomarkers, as well as a new strategy to designing targeted NSCLC 
treatments [11].

2.2 Gastric cancer

Despite a substantial drop in incidence and death in North America and most 
Western European countries in recent decades, gastric cancer (GC) remains the 
fifth most prevalent malignancy worldwide and poses a serious medical burden, 
particularly in Eastern Asia [29, 30]. The fact that most patients are discovered at an 
advanced stage, even with metastatic illnesses, and thus miss out on the potential for 
a curative resection, accounts for the poor 5-year survival in GC [31, 32]. Substantial 
progress has been made in comprehending the epidemiology, pathophysiology, and 
molecular mechanisms of GC, as well as in implementing new therapy alternatives 
like as targeted and immune-based therapies, not all patients react to molecularly 
targeted medications developed for specific biomarkers [32, 33]. Hence, due to 
molecular complexity, poor prognosis, and significant reoccurrence of GC, new 
diagnostic and prognostic biomarkers are urgently needed [34, 35]. Microarray and 
high-throughput sequencing technologies have advanced in recent years, allowing 
researchers to decipher important genetic or epigenetic changes in carcinogenesis and 
discover promising biomarkers for cancer diagnosis, treatment, and prognosis [36]. 
Nevertheless, integrated bioinformatics methods have been used in cancer research 
to overcome limited or inconsistent results due to the use of different technology 
platforms or a small sample size, and a large range of valuable biological information 
has been revealed [37–39].

Hence, here we have reviewed a few studies to ensure the role of biomarker iden-
tification associated to gastric cancer using integrated bioinformatics analysis tools. 
In a study by Liu et al., they have considered TOP2A, COL1A1, COL1A2, NDC80, 
COL3A1, CDKN3, CEP55, TPX2, and TIMP1 which are nine hub genes that may be 
linked to the etiology of GC. Hence, CST2, AADAC, SERPINE1, COL8A1, SMPD3, 
ASPN, ITGBL1, MAP7D2, and PLEKHS1 were used to construct a prognostic gene 
signature that performed well in predicting overall survival. An integrated analysis 
of several gene expression profile datasets was used by them to find differentially 
expressed genes between GC and normal gastric tissue samples. Furthermore, 
protein–protein interaction network and Cox proportional hazards model studies 
were used to identify key genes related to the pathophysiology and prognosis of GC 
resulting in their constructed gene signature to be considered as a potential candidate 
for the biomarker to facilitate the molecular targeting therapy of GC [12].

In a study by Wang et al., they discovered promising biomarkers that could be 
used to diagnose GC patients. Four Gene Expression Omnibus (GEO) datasets were 
obtained and examined for differentially expressed genes to look for possible treat-
ment targets for GC (DEGs). The function and pathway enrichment of the discovered 
DEGs were then investigated using Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses. A network of protein–protein interactions (PPI) 
was created. The degree of connection of proteins in the PPI network was calculated 
using the CytoHubba plugin of Cytoscape, and the two genes with the highest degree 
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of connectivity were chosen for further investigation. The two DEGs with the highest 
and lowest log Fold Change values were also chosen. Oncomine and the KaplanMeier 
plotter platform were used to investigate these six important genes further. A total of 
99 genes that were upregulated and 172 genes that were downregulated across all four 
GEO datasets were examined. The Biological Process phrases ‘extracellular matrix 
organization,’ ‘collagen catabolic process,’ and ‘cell adhesion’ were primarily enriched 
in the DEGs. The categories ‘ECMreceptor interaction,’ ‘protein digestion and absorp-
tion,’ and ‘focal adhesion’ were considerably enriched in these three KEGG pathways. 
According to Oncomine, ATP4A and ATP4B expression were downregulated in GC, 
while all other genes were increased. Upregulated expression of the identified impor-
tant genes was substantially associated with worse overall survival of GC patients, 
according to the KaplanMeier plotter platform. The current findings imply that FN1, 
COL1A1, INHBA, and CST1 could be used as gastric cancer biomarkers and treatment 
targets. Additional research is needed to determine the role of ATP4A and ATP4B in 
the treatment of gastric cancer [13].

In another study by Rong et al., their research outlines an integrated bioinformat-
ics approach to identifying molecular biomarkers for stomach cancer in cancer tissues 
of patients. In large gastric cancer cohorts, they reported distinct expression genes 
from Gene Expression Ominus (GEO). Their findings found that 433 genes in human 
stomach cancer have significantly distinct expression patterns. Bioinformatic studies 
and co-expression network design were used to confirm the different gene expression 
profiles in gastric cancer. They identified collagen type I alpha 2 (COL1A2), which 
encodes the pro-alpha2 chain of type I collagen whose triple helix comprises two 
alpha1 chains and one alpha2 chain, as the key gene in a 37-gene network that modu-
lates cell motility by interacting with the cytoskeleton, based on the co-expression 
network and top-ranked genes. Immunohistochemistry on human gastric cancer 
tissue was also used to investigate the predictive function of COL1A2. When com-
pared to normal gastric tissues, COL1A2 was substantially expressed in human gastric 
cancer. The level of COL1A2 expression was found to be substantially related to 
histological type and lymph node status after statistical analysis. There were no links 
found between COL1A2 expression and age, lymph node count, tumor size, or clinical 
stage. Finally, the unique bioinformatics used in this study led to the discovery of 
improved diagnostic biomarkers for human stomach cancer, which could aid future 
research into the crucial change that occurs during the disease’s course [14].

In another study, the goal of their research is to find an lncRNA-related signature 
that can be used to assess the overall survival of 379 GC patients from The Cancer 
Genome Atlas (TCGA) database. The univariate and multivariate Cox proportional 
hazards regression models were used to assess the correlations between survival out-
come and the expression of lncRNAs. Overall survival was found to be substantially 
linked with four lncRNAs (LINC01018, LOC553137, MIR4435-2HG, and TTTY14). 
These four lncRNAs were combined to form a prognostic signature. There was a 
strong favorable link between overall survival and GC patients with low-risk scores 
(P = 0.001). Subsequent research found that the predictive usefulness of this four-
lncRNA pattern was unaffected by clinical characteristics. These four lncRNAs were 
linked to many tumor molecular pathways, according to gene set enrichment analysis. 
Based on bioinformatics analysis, their research suggests that this unique lncRNA 
expression pattern could be a helpful diagnostic of prognosis for GC patients [15].

The researchers wanted to see if there were any long noncoding RNAs (lncRNAs) 
that were linked to the pathophysiology and prognosis of GC. The Gene Expression 
Omnibus (GEO) database was used to retrieve raw noncoding RNA microarray 
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data (GSE53137, GSE70880, and GSE99417). After gene reannotation and batch 
 normalization, an integrated analysis of various gene expression profiles was used to 
screen for differentially expressed genes between GC and neighboring normal stom-
ach tissue samples. The Cancer Genome Atlas (TCGA) database validated the pres-
ence of differentially expressed genes. To identify hub lncRNAs and explore possible 
biomarkers related to GC diagnosis and prognosis, researchers used a competitive 
endogenous RNA (ceRNA) network, Gene Ontology term, and Kyoto Encyclopedia 
of Genes and Genomes pathway, as well as survival analysis. After intersections of 
differential genes between the GEO and TCGA databases, a total of 246 integrated 
differential genes were identified, including 15 lncRNAs and 241 messenger RNAs 
(mRNAs). Three lncRNAs (UCA1, HOTTIP, and HMGA1P4), 26 microRNAs (miRNAs), 
and 72 mRNAs make up the ceRNA network. Three lncRNAs controlled the cell 
cycle and cellular senescence, according to functional analyses. The survival rate of 
HMGA1P4 was statistically connected to the total survival rate, according to a sur-
vival analysis. They discovered that HMGA1P4, a miR-301b/miR-508 target, regulates 
CCNA2 in the GC and is implicated in cell cycle and senescence. Ultimately, three 
lncRNAs’ expression levels were shown to be elevated in GC tissues. As a result, three 
lncRNAs, UCA1, HOTTIP, and HMGA1P4, may play a role in GC development, and 
their possible functions may be linked to GC prognosis [16].

2.3 Liver cancer

Liver cancer is among the most frequent malignancies in the world, and it is 
the second largest cause of cancer death [40, 41]. Due to advances in detection and 
therapy, people with liver cancer still have a terrible prognosis. Most patients are 
already in severe stages of symptoms and miss the opportunity to undertake radi-
cal resection due to the lack of distinct clinical signs in the early stages. As a result, 
understanding the pathophysiology of liver cancer aids in early detection, treatment 
selection, scheduling of follow-up appointments, and prognosis evaluation, all of 
which can help patients with liver cancer live longer [42]. MicroRNAs (miRNAs) 
are improperly expressed in a range of tumors and are linked to the pathogenesis of 
cancers, including liver cancer, according to growing evidence. As tumor suppres-
sor genes or oncogenes, miRNAs play a role in the development of liver cancer. As a 
result, more research into miRNA expression patterns and consequences could lead 
to the discovery of new diagnostic or therapeutic targets for liver cancer. Hence, here 
in this subsection of this chapter we have reviewed certain researches which provide 
a potential aspect toward identification of biomarkers associated with cancer in 
relevance to liver utilizing integrated bioinformatics analysis.

Hepatitis B virus (HBV) infection has long been known as a major risk factor 
for hepatocellular carcinoma (HCC), accounting for at least half of all HCC cases 
worldwide. Yet, the underlying molecular mechanism of HBV-associated HCC is still 
unknown. Hence, in an investigation led by Ji et al., they retrieved three microarray 
datasets from the Gene Expression Omnibus (GEO) collection, including 170 tumoral 
samples and 181 adjacent normal tissues from the liver of patients with HBV-related 
HCC which were subjected to integrated analysis of differentially expressed genes 
(DEGs). Following that, the protein–protein interaction network (PPI) and func-
tion and pathway enrichment analyses were carried out. The expression profiles and 
survival analyses of the ten hub genes selected from the PPI network were carried 
out. Overall, 329 DEGs were discovered in which 67 were upregulated and 262 
were downregulated. PDZ-binding kinase (PBK), abnormal spindle microtubule 
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assembly (ASPM), nuclear division cycle 80 (NDC80), aurora kinase A (AURKA), 
targeting protein for xenopus kinesin-like protein 2 (TPX2), kinesin family member 
2C (KIF2C), and centromere protein F were among the ten DEGs with the highest 
degree of connectivity (CENPF). Overexpression levels of KIF2C and TPX2 were 
linked to both poor overall survival and relapse-free survival in a Kaplan–Meier 
study. Therefore, the hub genes identified in this investigation could be useful in 
the diagnosis, prognosis, and treatment of HBV-related HCC. Furthermore, their 
research identifies a number of important biological components (e.g., extracellular 
exosomes) and signaling pathways that are involved in the progression of HCC caused 
by HBV, providing a more thorough understanding of the mechanisms underlying 
HBV-related HCC [17].

In another study by Shen et al., they created nine co-expression modules and 
discovered that in liver cancer, miR1055p, miR7675p, miR12665p, miR47465p, 
miR500a3p, miR11803p, and miR1395p were differentially expressed. These miR-
NAs were found to have a strong link to the prognosis of patients with liver cancer. 
MiR1055p and miR1395p may be considered separate prognostic variables among 
them. As a result, seven miRNAs could be used as predictive indicators in the case of 
liver cancer [18].

In another study by Li et al., The GSE19665, GSE33006, and GSE41804 microar-
ray datasets were obtained from the Gene Expression Omnibus (GEO) database. 
Differentially expressed genes (DEGs) were found and function enrichment analyses 
were carried out. STRING and Cytoscape were used to create the protein–protein 
interaction network (PPI) and perform module analysis. There were a total of 273 
DEGs found, with 189 downregulated genes and 84 upregulated genes. Protein acti-
vation, complement activation, carbohydrate binding, complement and coagulation 
cascades, mitotic cell cycle, and oocyte meiosis are among the DEGs’ enhanced activi-
ties and pathways. A biological process study found that these genes were primarily 
abundant in cell division, cell cycle, and nuclear division. BUB1, CDC20, KIF20A, 
RACGAP1 and CEP55 were found to be involved in the carcinogenesis, invasion, and 
recurrence of HCC in a survival analysis. Finally, the DEGs and hub genes discovered 
in this work contribute to our understanding of the molecular pathways underlying 
HCC carcinogenesis and development, as well as providing candidate targets for HCC 
diagnosis and treatment [19].

2.4 Breast cancer

Breast cancer is becoming more common over the world, and it is now considered 
a serious disease among women. Asia has recently emerged as a high-risk location 
for breast cancer, ranking first among female malignant tumors [43, 44]. Breast 
cancer therapy has improved recently as a result of constant efforts and advances in 
contemporary medicine, and the death rate of breast cancer has decreased dramati-
cally. Recurrence and metastasis of breast cancer, on the other hand, have remained 
unaddressed and have become the most difficult clinical difficulties [43, 45]. To better 
understand the functions of tumor-related genes and the roles of tumor cell signaling 
pathways, researchers are turning to genetic studies. Together bioinformatics and 
system biology are strong multidisciplinary topics that combine biological information 
collecting, storage, processing, and distribution, summarize life sciences and computer 
science, and collect and analyze genetic data [46, 47]. Hence, here in this chapter we 
have reviewed a few studies led by researchers to identify most prevalent biomarkers 
associated with breast cancer utilizing integrated bioinformatics approaches.



67

Identification of Biomarkers Associated with Cancer Using Integrated Bioinformatic Analysis
DOI: http://dx.doi.org/10.5772/intechopen.101432

In an investigation by Wang et al. they have analyzed gene expression profiles of 
GSE48213 using Gene Expression Omnibus database. Further, validation was done 
using RNA-seq data and clinical information on breast cancer from The Cancer 
Genome Atlas. In their study, they identified the gene co- expression network which 
revealed four modules, one of which was found to be strongly linked with patient 
survival time. They found that the black module which was found to be basal, was 
made up of 28 genes; the dark red module which was found to be claudin-low, was 
made up of 18 genes; the brown module which was found to be luminal, was made up 
of nine genes; and the midnight blue module was made up of seven genes which was 
investigated to be nonmalignant. Due to a considerable difference in survival time 
between the two groups, these modules were clustered into two groups. Hence, TXN 
and ANXA2 in the nonmalignant module, TPM4 and LOXL2 in the luminal module, 
TPRN and ADCY6 in the claudin-low module, and TUBA1C and CMIP in the basal 
module were identified by them as the genes with the highest betweenness, implying 
that they play a central role in information transfer in the network. Therefore, TXN, 
ANXA2, TPM4, LOXL2, TPRN, ADCY6, TUBA1C, and CMIP are eight hub genes that 
have been identified and validated by them as being linked to breast cancer progres-
sion and poor prognosis to be considered [20].

In another study by Wu et al., Differentially expressed genes (DEGs) in breast 
cancer were discovered using three data sets from the GEO database. The functional 
roles of the DEGs were determined using Gene Ontology (GO) enrichment and 
Kyoto Encyclopedia of Genes and Genomes pathway studies. They also used the 
Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine, Human Protein 
Atlas, and Kaplan Meier plotter tool databases to look at the translational and protein 
expression levels, as well as survival statistics, of DEGs in patients with breast cancer. 
Using miRWalk and TargetScan, the corresponding change in the expression level of 
microRNAs in DEGs was predicted, and the expression profiles were evaluated using 
OncomiR. Finally, RT-qPCR was used to confirm the expression of new DEGs in 
Chinese breast cancer tissues. ADH1A, IGSF10, and the 14 microRNAs have all been 
identified as promising new biomarkers for breast cancer diagnosis, therapy, and 
prognosis [21].

In another study by Cai et al., the Gene Expression Omnibus (GEO) database was 
used to obtain GSE102484 gene expression profiles. The most potent gene modules 
related with the metastatic risk of breast cancer were found using weighted gene 
co-expression network analysis (WGCNA), which yielded a total of 12 modules. 
21 network hub genes (MM > 0.90) were kept for further analysis in the most 
significant module (R2 = 0.68). The biomarkers with the greatest interactions in 
gene modules were then investigated further using protein–protein interaction 
(PPI) networks. Five hub genes (TPX2, KIF2C, CDCA8, BUB1B, and CCNA2) were 
identified as important genes associated with breast cancer progression by the PPI 
networks. Furthermore, using data from The Cancer Genome Atlas (TCGA) and 
the Kaplan–Meier (KM) Plotter, the predictive value and differential expression of 
these genes were confirmed. The mRNA expression levels of these five hub genes 
have excellent diagnostic value for breast cancer and surrounding tissues, according 
to a Receiver Operating Characteristic (ROC) curve study. Furthermore, KM Plotter 
revealed that these five hub genes were substantially related with lower distant 
metastasis-free survival (DMFS) in the patient group. Five hub genes (TPX2, KIF2C, 
CDCA8, BUB1B, and CCNA2) linked to the likelihood of distant metastasis were 
extracted for future study and could be employed as biomarkers to predict breast 
cancer distant metastasis [22].



Cancer Bioinformatics

68

In another study by Wu et al., there were a total of 215 DEGs found, with 105 
upregulated genes and 110 downregulated genes. The enriched keywords and pathways 
were primarily linked to cell cycle, proliferation, drug metabolism, and oncogenesis, 
according to GO and KEGG analyses. Cell Division Cycle 45 (CDC45), Polo Like Kinase 
1 (PLK1), BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B), Cell Division 
Cycle 20 (CDC20), Aurora Kinase A (AURKA), and Mitotic Arrest Deficient 2 Like 
1 were identified as hub genes from the PPI network (MAD2L1). These hub genes’ 
resilience was confirmed by survival analysis and expression  validation tests [23].

2.5 Colorectal cancer

CRC (colorectal cancer) is one of the top causes of death among cancer patients 
around the world. Older age, male sex, lifestyle, inflammatory bowel illness, and a 
previous personal history of CRC are all risk factors for the disease. A positive family 
history is also substantially linked to a higher lifetime relative risk of CRC diagnosis. 
CRC, on the other hand, is an indolent disease in its early stages, becoming symp-
tomatic only when it evolves to more advanced stages. Numerous attempts have been 
made to develop adequate screening technologies, but they remain intrusive even 
now, resulting in reduced attainment rates among large community [48]. Recent 
breakthroughs in our understanding of the molecular underpinnings and cellular 
mechanisms of CRC have resulted in the widespread use of particular molecular 
diagnostics in clinical practice. The patient’s risk is stratified and therapy is decided 
based on the test results. Conversely, current research into biomarkers associated with 
colorectal cancer could usher in a new age in diagnosis, risk prediction, and treatment 
selection. Here, we have reviewed a few investigations led to ensure its attainment 
using integrated bioinformatics analysis [49].

In an investigation led by Chen et al., they analyzed 207 common DEGs in 
colorectal cancer using the integrated GEO and TCGA databases into which they 
constructed a PPI network consists of 70 nodes and 170 edges and identified 10 top 
hub genes. A prognostic gene signature which includes SLC4A4, NFE2L3, GLDN, 
PCOLCE2, TIMP1, CCL28, SCGB2A1, AXIN2, and MMP1 was constructed by them 
which revealed overall survival in patients suffering from CRC. Hence, it could be 
considered as a good potential candidate for further treatments [24].

In a study by Dai et al., they discovered nine differentially expressed lncRNAs 
and their putative mRNA targets using integrated data mining. They evaluated key 
pathways and GO words that are associated to the up-regulated and down-regulated 
transcripts, respectively, after a series of bioinformatics investigations. Meanwhile, 
qRT-PCR was used to validate the nine lncRNAs in 30 matched tissues and cell lines, 
and the results were largely compatible with the microarray data. They also looked 
for nine lncRNAs in the blood of 30 CRC patients with tissue matching, 30 non-
cancer patients, and 30 healthy people. Finally, they discovered that BLACAT1 was 
important for CRC diagnosis. Between CRC patients and healthy controls, the area 
under the curve (AUC), sensitivity, and specificity were 0.858 (95% CI: 0.765–0.951), 
83.3%, and 76.7%, respectively. Furthermore, BLACAT1 exhibited a particular utility 
in distinguishing CRC from non-cancer disorders. The findings suggest that signifi-
cantly elevated lncRNAs as well as associated potential target transcripts could be 
used as therapeutic targets in CRC patients. Conversely, the lncRNA BLACAT1 could 
be a new supplemental biomarker for CRC detection [25].

In another study by Sun et al., The Gene Expression Omnibus (GEO) mRNA 
microarray datasets GSE113513, GSE21510, GSE44076, and GSE32323 were collected 
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and processed with bioinformatics to discover hub genes in CRC development. The 
GEO2R tool was used to look for differentially expressed genes (DEGs). The DAVID 
database was used to conduct gene ontology (GO) and KEGG studies. To build a 
protein–protein interaction (PPI) network and identify essential modules and hub 
genes, researchers employed the STRING database and Cytoscape software. The 
DEGs’ survival studies were done using the GEPIA database. Potential medications 
were screened using the Connectivity Map database. There were a total of 865 DEGs 
found, with 374 upregulated and 491 downregulated genes. These DEGs were mostly 
linked to metabolic pathways, cancer pathways, cell cycle pathways, and so on. With 
863 nodes and 5817 edges, the PPI network was discovered. HMMR, PAICS, ETFDH, 
and SCG2 were found to be strongly linked with overall survival of CRC patients in a 
survival analysis. Blebbistatin and sulconazole have also been discovered as potential 
treatments [26].

Falzone et al. used the mirDIP gene target analysis in a sample of 19 differentially 
expressed miRNAs to determine the interaction between miRNAs and the most 
changed genes in CRC. DIANA-mirPath prediction analysis was used to identify 
miRNAs that can activate or inhibit genes and pathways involved in colorectal cancer 
development. As a whole, these studies found that the up-regulated hsa-miR-183-5p 
and hsa-miR-21-5p, as well as the down-regulated hsa-miR-195-5p and hsa-miR-
497-5p, were linked to colorectal cancer development via interactions with the 
Mismatch Repair pathway and the Wnt, RAS, MAPK, PI3K, TGF-, and p53 signaling 
pathways [27].

3. Integrated bioinformatics analysis tools and databases

Various integrated bioinformatics databases have been utilized for the identifica-
tion of prognostic biomarkers in the treatment of various kinds of cancer. Some 
of which have been enlisted in Table 2 along with database links. The biomarkers 
associated with different types of Cancers identified with the help of integrated 
bioinformatics tools depicted in Figure 3.

3.1 Microarray and RNASeq data collection

The microarray data collection is done using the GEO database which refers to 
Gene Expression Omnibus. It could be easily accessed via online medium using 
http://www.ncbi.nlm.nih.gov/geo/link. The GEO database is basically being used 
to obtain high-throughput gene expression profiles of PTC (Papillary thyroid carci-
noma) and normal thyroid tissues. Independent datasets are chosen, and they are all 
based on the specified platforms, including the relevant tissues. As per our review of 
various studies which are aforementioned in this chapter, various microarray datasets 
have been collected using the GEO database and then processed with bioinformatics 
to discover hub genes. Several new technologies have emerged for the analysis of 
gene expression and for the identification of cancer biomarkers. One such technol-
ogy is RNASeq technology which is nowadays considered to be the most up to date 
technology to analyze gene expression. Into this technology, with the use of NGS 
(Next generation genome sequencer) the gene expression profile analysis carried out. 
The first stage in the process is to convert the population of RNA to be sequenced 
into complementary DNA (cDNA) fragments which is present in biological sample 
(a cDNA library). This is accomplished using reverse transcription, allowing the RNA 
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Figure 3. 
Mechanistic insight of extraction, construction and identification of biomarkers associated with different kinds of 
cancers with the help of integrated bioinformatics tools.

S. No. Name of database Link/URL

1 Gene Expression 
Omnibus (GEO)

http://www.ncbi.nlm.nih.gov/geo/

2 GEO2R http://www.ncbi.nlm.nih.gov/geo/geo2r/

3 DAVID http://david.abcc.ncifcrf.gov/

4 STRING http://www.bork.embl-heidelberg.de/STRING/

5 Cytoscape http://www.cytoscape.org/

6 GEPIA http://gepia2021.cancer-pku.cn/

7 TGCA https://tcga-data.nci.nih.gov/tcga/

8 Kaplan–Meier (KM) 
Plotter

http://kmplot.com/analysis/

9 DIANA-mirPath http://www.microrna.gr/miRPathv3

10 mirDIP http://ophid.utoronto.ca/mirDIP

11 GOplot http://cran.r-project.org/web/packages/GOplot

12 clueGO http://apps.cytoscape.org/apps/cluego

13 MCODE http://baderlab.org/Software/MCODE

14 GTEx https://gtexportal.org

15 Oncomine http://www.oncomine.org/resource/login.html

16 Human Protein Atlas www.proteinatlas.org

17 miRWalk http://mirwalk.uni-hd.de/

18 TargetScan www.targetscan.org

19 OncomiR http://www.oncomir.org/oncomir/search_target_miR.html

Table 2. 
List of databases used for data mining.
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to be used in an NGS procedure. After that, the cDNA is fragmented, and  adapters 
are attached to each fragment’s end. The functional elements present on adopters 
which allowed sequencing. The cDNA library is evaluated by NGS after amplifica-
tion, size selection, clean-up, and quality verification, yielding short sequences that 
correspond to all or part of the fragment from which it was formed. The extent to 
which the library is sequenced is determined by the intended use of the output data. 
Sequencing can be done in one of two ways: single-end or paired-end. Single-read 
sequencing is a less expensive and faster method of sequencing cDNA fragments from 
only one end (approximately 1% of the cost of Sanger sequencing). While paired-end 
approaches are more expensive since they sequence from both ends, but they pro-
vide advantages in post-sequencing data reconstruction. After completing the RNA 
sequencing technology workflow, the data can be matched to a reference genome if 
one is available, or built from scratch to provide an RNA sequence map that encom-
passes the transcriptome. A bioinformatics workflow is developed to discover various 
alternative biomarkers via LC- MS/MS technique (liquid chromatography coupled 
tandem mass spectrometry). Further, open Mass spectrometry Search Algorithm is 
used against the customized alternative splicing database along with the preferred 
cancer plasma proteome for the identification of respective biomarker [50, 51].

3.2 Screening of DEGs

The GEO2R program which could be easily accessed via http://www.ncbi.nlm.nih.
gov/geo/geo2r/link, is used for the detection of these differentially expressed genes 
which are known as DEGs. Further, R package Limma is been utilized to screen out 
these DEGs.

3.3 Enrichment analysis via GO and KEGG pathway

Followed by the screening of DEGs, the enrichment analysis using GO and KEGG 
pathway is performed using the database for Annotation, Visualization and Integrated 
Discovery, commonly known as DAVID database (http://david.abcc.ncifcrf.gov/). 
This process includes biological processes, cellular components, molecular function 
and KEGG pathway analysis. Further, the GOplot package of R could be used to 
display the results of analysis and the pathway analysis results can also be analyzed 
using the clueGO plug-ins of cytoscape software 3.7.2. [52].

3.4 Construction of the PPI network and analysis of the module

After the enrichment analysis, the PPI network is being built upon using the 
STRING (http://www.bork.embl-heidelberg.de/STRING/) database which refers to 
Search Tool for the Retrieval of Interacting Genes/Proteins, to uncover DEG associa-
tions based on minimum prescribed interaction scores. Followed by this, using the 
Cytoscape (http://www.cytoscape.org/) database, the PPI network is then analyzed 
and visualized. Additionally, MCODE is also one such bioinformatics tool utilized to 
screen the PPI network’s main module.

3.5 Survival analysis and validation of hub gene expression

At last. The Cancer Genome Atlas (https://tcga-data.nci.nih.gov/tcga/), was 
utilized to examine the association between important gene expression and survival 
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of patients with PTC (Papillary thyroid carcinoma). RNA expression data from 
hundreds of samples from the TCGA and GTEx projects was analyzed using the Gene 
Expression Profiling Interactive Analysis tool (GEPIA) (http://gepia2021.cancer-pku.
cn/). Additionally Oncomine, Human Protein Atlas, and Kaplan Meier plotter tool 
databases could also be used to look at the translational and protein expression levels, 
as well as survival statistics, of DEGs. Apart from this, miRWalk and TargetScan, 
were used to predict the corresponding change in the expression level of microRNAs 
in DEGs and the expression profiles were evaluated using OncomiR. Finally, RT-qPCR 
has been used to confirm the expression of new DEGs. Hence, the constructed 
biomarkers could be treated as potential candidates for various kinds of Cancers.

4. Challenges and future outlook

The development of biomarkers for early detection cancer screening and therapy 
monitoring has biological as well as financial hurdles. The majority of existing cancer 
detection tools only detect late stage or fully grown cancer, not premalignant or early 
abnormalities that can be resected and treated. Despite the fact that a screening test 
may detect cancer just at preclinical stage, it is not suitable for follow-up, and hence 
may miss micro metastases, limiting the benefits of early identification and treatment 
[53]. Additional barrier to the development of cancer biomarkers is the fact that cancer 
is a diverse illness, with several biologically distinct phenotypes that respond differ-
ently to treatments. Between cells of a single macroscopic tumor, the nature of its het-
erogeneity can be found. Biomarker development may be hampered by this variability. 
As a result, developing biomarkers using genomic and proteomic methods could 
help to solve the variability challenges [3]. An even more issue is that pre-neoplastic 
lesions are far more common than aggressive malignancies in several organs, such as 
the prostate and colon [54]. This addresses the possibility of whether any screening 
strategy should focus solely on early lesions or should additionally consider the tumor’s 
behavior. In the last two decades, detailed and comprehensive knowledge of cancer 
at the cellular and molecular levels has increased dramatically and exponentially, 
resulting in significant improvements in the characterization of human tumors, which 
has catalyzed a shift toward the development of targeted therapies, the foundation of 
molecular diagnostics [55, 56]. Omics technology may serve as the foundation for the 
development of novel cancer biomarker and/or panels that have significant advantages 
over currently utilized biomarkers. Omics has enhanced the number of potential 
biomarkers such as DNA, RNA, and other protein biomolecules that may be studied. 
The previous idea of single biomarker discovery has lately been supplanted by multi-
biomarker discovery of a panel of genes or proteins, raising the question of whether 
heterogeneous and complex cancers can have a single fingerprint.

Biomarkers in association with cancer are used in oncology and clinical practice 
for risk assessment, screening, and diagnosis in combination with other diagnostic 
methods, and most importantly for determining prognosis and treatment response 
and/or recurrence. Cancer biomarkers can also help with cancer diagnosis at the 
molecular level. Clinicians and researchers must have a thorough understanding of 
the molecular aspects, clinical utility, and reliability of biomarkers in order to deter-
mine whether or not a biomarker is clinically useful for patient care and whether or 
not additional evaluation is required before integration into routine care. Biomarkers, 
through simplifying the integration of therapies and diagnostics, have the potential to 
play a key role in the development of customized medicine.
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5. Conclusions

Research in the field of cancer-specific biomarkers have provided a promising 
source of novel diagnostic tools. Various groups have reported that altered cancer-
associated biomarkers can be exploited to diagnose and monitor various cancers with 
greater sensitivity and specificity. Assessment of genomic and transcriptomic bio-
markers found to be potentially very sensitive approaches for discriminating between 
cancerous non-cancerous (benign) conditions. Besides, this one could detect cancers 
at a much earlier stage by quantitative analysis of potential biomarker associated with 
specific cancer. Given the possible diagnostic power of genomic, transcriptomic, 
proteomic, and metabolomic biomarkers, these are currently one of the most promis-
ing areas of research in the field of development of cancer prognostic and diagnostics 
devices.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
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Abstract

Worldwide, prostate cancer (PCa) is the leading cause of morbidity and 
 cancer-related mortality in men. The pathogenesis of PCa is complex and involves 
abnormal genetic changes, abrogation of cell growth with heterogeneous progression 
and predictive subgroups. In the last two decades there have been the exploration 
and development of molecular and genetic biomarkers for PCa due to limitations of 
traditional serum biomarkers such as prostate specific antigen (PSA) in screening and 
diagnosis. These biomarkers could possibly differentiate between PCa and benign 
prostatic hyperplasia (BPH) patients, and healthy controls as well as assist with 
prognosis, risk stratification and clinical decision-making. Such molecular biomark-
ers include serum (PHI and 4K score), urine (PCA3 and SelectMDx), and tumor 
tissue (Oncoytype DX, Decipher and Prolarix). microRNAs (miRNAs) deregulation 
where there is increased or decreased expression levels, constitute prospective non-
invasive molecular biomarkers for the diagnosis and prognosis of PCa. There are also 
other emerging molecular biomarkers such as exosomal miRNAs and proteins that 
are in various stages of development and clinical research. This review is intended 
to provide a wide-ranging appraisal of the literature on current and emerging PCa 
biomarkers with robust evidence to afford their application in clinical research and by 
extension routine clinical practice.

Keywords: prostate, cancer, biomarkers, diagnosis, prognosis, molecular, emerging, 
clinical

1. Introduction

Prostate cancer (PCa) is a complex condition characterized by varying  
clinical behaviors ranging from indolence to metastatic disease states. Globally, PCa was 
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the second most prevalent cancer and the fifth major cause of cancer-related deaths 
among men in 2020. Strikingly, about 1.4 million new cancer cases and 375,000 deaths 
were attributable to PCa in 2020 [1]. Approximately one in nine men will be diagnosed 
with PCa in their lifetime [2]. Increased widespread screening using prostate specific 
antigen (PSA) mirrors the epidemic rise of PCa with geographic variability. However, 
since the advent of PSA screening, mortality rates have significantly declined [3]. 
The incidence of PCa in countries with low Human Development Index (HDI) was 
about three times lower than those with high HDI, 11.3 vs. 37.5 per 100,000 persons 
respectively [1]. The highest incidences were reported in the Caribbean, Northern and 
Western Europe, Australia/New Zealand, Southern Africa and North American regions 
[1]. The Caribbean and Sub-Saharan Africa accounted for the highest mortality rates 
[1]. There is mounting evidence that PCa disproportionately affects men of African 
ancestry. In the United States, African American men are 58% more likely to be affected 
by PCa with a 144% higher risk of PCa-specific mortality than their Caucasian coun-
terparts [4]. The established risk factors of the disease include: increasing age, race and 
family history of PCa [5]. PSA is currently the most widely used screening tool for PCa 
indication, but a number of studies have highlighted its failure to discriminate between 
indolence and more aggressive forms of the disease. The low positive predictive value 
(PPV) of PSA has led to over-diagnosis of low-grade cancer and complications from 
unnecessary biopsies [6] as no cancer is detected on approximately 50% of biopsies [7].

Total prostate specific antigen (tPSA) is not very sensitive in detecting early PCa, 
and being cancer-specific as there are elevated levels in prostatitis, urogenital infec-
tions, BPH and transurethral manipulations. False positive results leads to increased 
rate of over-diagnosis, further expensive diagnostic evaluations and invasive pro-
cedures, and possibly over-treatment [8]. There are also false negatives particularly 
in the ‘gray zone’ (with tPSA values 4–10 ng/mL) resulting in undiagnosed PCa [9]. 
Furthermore, there is the absence of a linear correlation between serum tPSA and 
metastatic PCa as well as staging [10].

In order to increase the diagnostic utility of PSA for PCa, new biomarker such as 
Prostate Health Index (PHI), four K (4K) score and prostate cancer antigen 3 (PCA3) 
have become available. These tests decrease the number of needless prostate biopsies, 
provide valuable information on tumor aggressiveness and aid in the selection of 
PCa patients for radical therapy or active surveillance [11]. Genomic techniques have 
permitted the accessibility of novel genetic biomarkers such as transmembrane serine 
protease 2 (TMPRSS2:ERG fusion gene), Oncotype DX, Decipher and ProMark which 
stratify the risk of aggressive PCa and aid decision-making by providing information 
on diagnosis, prognosis and treatment [12].

This article seeks to review current advances in the development and availability 
of PCa biomarkers and their precise indications for diagnostic, prognostic, predictive 
and use in monitoring therapeutic response. Current and emerging biomarkers are 
appraised including their possible integration into medical practice and enhancing 
the clinical management of PCa.

2. Method of article selection

2.1 Study eligibility criteria

A literature search and review of recent publications in PubMed, Google Scholar, 
Embase and Cochrane library relating to the clinical utility of PCa biomarkers were 
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conducted. The search examined all relevant published studies up to January 20, 2022. 
The studies included in this review were published in peer-reviewed journals, written 
in English, and reported medical as well as scientific findings. Also, pertinent data 
that were extracted from published studies include: authors, year of publication and 
study design and population. Information from the articles concerning molecular 
biomarkers of PCa used for screening, diagnosis, prognosis, risk stratification and 
therapeutic tools were reviewed and documented.

3. Results

3.1 Blood-based prostate cancer biomarkers

3.1.1 Prostate specific antigen

Currently, the diagnosis of PCa is based on the results of digital rectal examination 
(DRE), trans-rectal ultrasound guided biopsy and PSA assay [13]. The aim of utilizing 
the least invasive methods has led to increased use of PSA as a biomarker. However, 
the use of PSA is limited by its low specificity, which in turn results in over-diagnosis 
of PCa followed by unnecessary biopsies and associated potential complications [14]. 
In the detection of PCa, serum total PSA (tPSA) > 4.0 ng/mL has a 94% sensitivity 
but only a 20% specificity, which makes the test unsuitable for screening [15]. There 
are also several limitations to PSA testing in the detection of high-grade PCa, with 
data from the Prostate Cancer Prevention Trial (PCPT) indicating that in order to 
achieve a sensitivity of 83.4%, a tPSA threshold of 1.1 ng/mL is required. However, the 
corresponding specificity was only 39.9% [16]. Since tPSA may be elevated in condi-
tions other than PCa, only about 25% of men with elevated tPSA will be diagnosed, 
while there is still a 10% chance of patients with tPSA <1.0 ng/mL developing the 
disease [17]. In light of these limitations, several variations to the PSA assay have been 
implemented to increase specificity of the test. These includes: free PSA (fPSA), PSA 
velocity, free-to-total PSA (fPSA/tPSA) ratio and PSA density (PSAD). In addition to 
these PSA variation tests, prostate specific antibodies may also be useful in selecting 
men for biopsies especially since localized PCa may not present with symptoms [18].

PSA is typically found in the bound or free form. Bound PSA refers to PSA found 
complexed to protease inhibitors like alpha-1-antichymotrypsin, while fPSA which is 
found unbound is mostly inactive and associated with BPH as opposed to PCa [19]. A 
fraction of fPSA can however be active as such tPSA, refers to any of the active or inactive 
forms found in serum [20]. In light of these variations in PSA, specific assays targeting 
precise fractions have been developed. Bound or complexed PSA is found to be elevated 
in malignancies while the calculation of fPSA/tPSA ratio gives values that are normally 
lower in men with PCa [21, 22]. The fPSA/tPSA ratio is indicative of %fPSA and has been 
shown to increase the accuracy of PSA use in detection of PCa [23] (Table 1).

3.1.1.1 PSA use in detection of prostate cancer

Initial studies indicated that PCa was more likely with <25% fPSA at a sensitivity 
of 95%. However, subsequent similar studies have yielded unreliable results owing 
to the instability of fPSA making it a somewhat an unreliable marker on its own  
[54, 55]. This could be as a result of storage conditions as subsequent studies 
indicated that the stability of tPSA and fPSA levels in serum did not depreciate 



Cancer Bioinformatics

82

significantly after 10 years storage at −80°C [29]. Other studies on tPSA and %fPSA 
have shown conflicting data as seen in the case of a 2009 study by Omar et al. [24]. 
Here, %fPSA values were high in patients diagnosed with PCa compared with 
BPH, while tPSA was found to be a better serum marker for diagnosing PCa in that 
cohort. However, a Chinese study highlighted that for men in the PSA gray zone, the 
inclusion of %fPSA will improve the diagnostic accuracy for PCa, and high grade 
PCa compared with only tPSA [25].

Clinical usefulness of PSA variations appears to be age-specific as a study comprising 
patients over 60 years old showed that tPSA outperformed %fPSA and therefore had 
the higher predictive value for detecting high grade carcinoma [20]. Moreover, an Asian 
study suggested that age-specific ranges for tPSA, fPSA and %fPSA could be considered 
in the diagnostic workup of PCa. Results from that study highlighted that there was a 
gradual increase in reference interval for tPSA and fPSA peaking at 7.73 and 2.41 ng/
mL respectively for those over 80 years old. The researchers also reported that reference 
intervals for %fPSA were ≥16.0 for 21–50 years and ≥13.0 for males over 50 years old 
[56]. In a South American study of over 17,000 men, %fPSA value of <15 as an indication 
for biopsy was shown to increase the rate of PCa detection in patients with normal DRE 
results and serum tPSA of 2.5–4.0 ng/mL [17].

Although the results vary with different studies, the PSA parameters mentioned 
seem to have significant predictive values in PCa screening and should be utilized 
based on the cohort along with other clinical factors in assessing PCa. This is in 
line with the conclusion by some researchers that especially within the gray zone, a 

Biomarker tests Molecular markers Specimen Outcome References

Prostate specific 
antigen (PSA)

tPSA, fPSA, %fPSA Serum/
plasma

Screening, diagnosis [13, 20, 24, 25]

Prostate Cancer 
Antigen-3 gene 
(PCA3)

Ratio PCA3 mRNA/
PSA mRNA × 1000

Urine Diagnosis, prognosis [13, 26–28]

Select MDx HOXC6, DLX1, tPSA, 
clinical parameters

Urine Diagnosis, prognosis, 
risk stratification

[29, 30]

K score tPSA, fPSA, intact 
PSA, human 

kallikrein-related 
peptidase 2

Serum/
plasma

Diagnosis, prediction [31, 32]

The Decipher 22 RNA genes Biopsy 
tissue

Risk stratification, 
therapy decision 

making

[33–44]

Oncotype DX 
Genomic Prostate 
Score (GPS)

12 cancer related 
genes, & 5 reference 

genes

Biopsy 
tissue

Prediction, risk 
stratification, therapy 

decision making

[41, 43–48]

ConfirmMDX DNA methylation 
of GSTP1, APC, & 

RASSF1 gene

Biopsy 
prostate 

cores

Prediction (repeat 
biopsies)

[49–51]

The ProMark 8 proteomic 
biomarkers

Biopsy 
tissue

Prediction, risk 
assessment

[52, 53]

Table 1. 
Summary of currently available biomarkers for use in prostate cancer screening, diagnosis, detection or 
stratification.
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multivariate model is a useful tool in diagnosing PCa, and clinically significant PCa 
while reducing unnecessary biopsies in the process [18].

3.1.2 Prostate cancer antigen-3 gene

The thrust to discovering other biomarkers of PCa is based on the limitations that 
exist with regard to utilization of PSA or other invasive investigatory methods. Given 
the complications associated with PCa detection and treatment, the ultimate goal 
from a clinical perspective appears to be discovery of biomarkers that more accurately 
predict PCa and clinically significant disease prior to biopsy in an attempt to reduce 
the number of unnecessary biopsy requests [57].

Over time, some molecular biomarkers have been developed with emphasis 
placed on those that are capable of predicting disease aggressiveness that will lead to 
improved guidance for treatment modalities. Some of these markers are serum while 
others are urine-based.

To date, the most commonly used urinary biomarker of PCa is PCA3 otherwise 
referred to as Differential Display clone 3 (DD3). It is conventionally assessed in urine 
post prostate massage to derive the maximum number of prostatic cells, and was the first 
urinary RNA biomarker approved by the Food and Drug Administration (FDA) in 2012 
[58]. Discovered around 1995 by researchers in the USA and The Netherlands, PCA3 is 
non-coding messenger RNA from chromosome 9q21-22, consisting of four exons and 
three introns and is over-expressed in most tested PCa tissues [59–61]. Additionally, PCA3 
is over-expressed in prostate tumor tissue compared with other benign prostate disorders 
[13, 26]. It therefore aids in improving the accuracy of PSA with regards to management 
of early PCa and as such, approval was granted by some developed countries for its use 
as a molecular marker in the diagnostic workup of PCa owing to improved specificity for 
PCa over PSA [62, 63]. In fact, the use of PCA3 in tandem with other molecular markers 
including transmembrane serine protease 2 (TMPRSS2)-ERG, human kallikrein 2, and 
miRNA-141 was found to have significant clinical utility by way of increasing specificity, 
and in predicting PCa especially in the PSA gray area of 4–10 ng/mL [13].

Assessment of urinary PCA3 can be done by way of the quantitative real-time 
PCR (qRT-PCR) reaction followed by generation of a PCA3 score utilizing the ratio of 
PCA3 to tPSA [64, 65]. In utilizing this method, a negative biopsy result is 4.5 times 
more likely in men with a score of <25 compared with those with a score >25 [66]. 
Importantly, low-volume and low-grade disease are seen in men with low PCA3 scores 
[67]. A study on 407 high risk PCa patients indicated that PCA3 has clinical useful-
ness as a formidable prognostic indicator of tumor aggressiveness and was associated 
with higher PCA3 scores [27]. A high PCA3 score was also shown to be a good predic-
tor of a positive PCa diagnosis and displayed greater accuracy than fPSA and tPSA in 
this regard (Table 1) [27, 28]. These results are in contrast to other studies indicating 
that the PPV of tPSA for diagnosing PCa was only 25% which directly increases the 
chances of obtaining false positive results in a quarter of cases and consequently a 
high chance of unnecessary biopsy in 75% of cases [57, 68, 69].

3.1.3 Prostate health index

The prostate health index (PHI) is a modern test that utilized PSA in accelerating 
the diagnosis of PCa. This particular biomarker has been sanctioned and approved 
in the United States, Europe and Australia. Studies conducted globally have depicted 
the reliably of PHI as a biomarker that outclasses its individual components for the 
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prognostication of overall and high-grade PCa on biopsy [70]. This represent PCa 
with Gleason score (GS) that is ≥7 [71].

In utilizing PHI as a biomarker, it allows for the combination of the tPSA, fPSA 
and [−2]proPSA (p2PSA) into a formula to produce a single result that can be used 
to assist in clinical decision-making of PCa. Such PHI formula computation is ([−2]
proPSA/fPSA) × √PSA and demonstrates the possibility of clinically significant PCa 
in men with elevated tPSA and p2PSA while the fPSA is lower [70].

In men that possesses a tPSA between 4 and 10 ng/mL, PHI may be useful in 
establishing PCa in conjunction with a prostate biopsy. Interestingly, a low possibility 
of PCa outcome on biopsy is supplementary to small PHI results, while an elevated 
possibility of PCa outcome on biopsy is directly related to elevated PHI. Different 
medical considerations or family history of PCa are dominant factors in the manage-
ment process as it relates to the appropriate PHI value [70, 72, 73].

A huge study was conducted in the USA in 2011 by Catalona et al. The study aimed 
to demonstrate the diagnostic capability of PHI for PCa recognition in a populace 
of 892 men with normal DRE, tPSA levels between 2 and 10 ng/mL and a prostate 
biopsy [73]. Interestingly, based on the PHI reference intervals, a value of 49 was 
obtained for prostate biopsies that were positive, while 34 was obtained for biopsies 
that were considered negative. This demonstrates a superior sensitivity and specific-
ity in the diagnosis of PCa, and also differentiating PCa on biopsy compared with 
tPSA. Although the PHI test has been approved by the FDA only in the tPSA range of 
4–10 ng/mL, PHI performed well in the 2–10 ng/mL range [74].

A large multicenter research involving approximately 5543 participants using 
the bivariate mixed-effect model was conducted by Zhang et al. from 2011 to 2019 
to assess the medical significance of PHI in detecting PCa. The results obtained 
showed the likely sensitivity of PHI for diagnosing PCa of 0.75 and a specificity of 
0.69. A value of 0.78 was obtained for the pooled area under the curve (AUC) and the 
diagnostic odds ratio (OR) was 6.73. The researchers also found that the diagnostic 
accurateness of PHI for PCa was greater in Asian compared with Caucasian popula-
tions (0.83 vs. 0.76). Based on the overall results the authors suggested that PHI has a 
modest diagnostic accurateness for detecting PCa [75].

Moreover, in a small study of 58 Asian patients with tPSA of 4–10 ng/mL who 
undertook transrectal ultrasound-guided prostatic biopsy, 18 cases had PCa and the 
AUC for this biomarker was 0.774. The sensitivity of PHI was 90% with a specificity of 
27.5% which was the highest among the group of biomarkers including tPSA, PSAD and 
%fPSA. The authors suggested that PHI improves the accuracy of predicting PCa and 
decrease avoidable prostate biopsy [76]. These results are in consonance with another 
recent study involving 140 Korean patients that underwent prostate biopsy of which 
there were 63 cases of PCa. The AUC for PHI in the overall group was 0.76 (which was 
higher than tPSA, fPSA, %fPSA) and in the sub-group with GS ≥ 7, a value of 0.87 was 
obtained. PHI was a strong independent prognosticator of PCa particularly for the 
presence and aggressiveness (GS ≥ 7) of the disease, and its application could prevent a 
substantial amount of unnecessary prostate biopsies [77]. Furthermore, there are other 
recent studies that have demonstrated that PHI is more specific than tPSA in PCa detec-
tion [78] and a better predictor than %fPSA in detecting PCa at prostate biopsy [79].

3.1.4 Four K score

4K score test incorporates the measurement of four biomarkers: tPSA, fPSA, intact 
PSA, and human kallikrein-related peptidase 2 combined in an algorithm with the 
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patient’s clinical information such as age, previous biopsy and DRE to generate the 
percentage risk (<1% to >95%) for aggressive metastatic PCa with GS > 7 on biopsy 
[31]. The 4K score test is usually conducted following a previous abnormal DRE 
or tPSA [31] and supports clinical decision making to determine whether a biopsy 
should be done. The 4K score has been found to predict high-grade metastatic PCa 
and estimates an individual’s risk of having the disease that spreads to distant organs 
within 10 years [32]. This was supported by a multi-institutional prospective trial 
conducted in the United States among 144 men which sought to determine the asso-
ciation between previous 4K score, staging and grading of PCa at radical prostatec-
tomy. It found that higher 4K scores were significantly associated with worse grades 
and aggressive histology. There was a higher median 4K score among PCa patients 
with cancer not confined to the prostate when compared with organ-confined cancer 
[36% (IQR 19, 58)] vs. [19% (IQR 9, 35)], (p = 0.002) [80].

In a clinical study involving 611 patients the 4K score test led to a 65% reduction 
in unnecessary biopsies [31]. There was also a strong association between high risk 
4K score and a greater possibility of having a prostate biopsy. Similarly, another study 
with a population of 1012 men reported that the 4K score was useful in identify-
ing candidates for biopsies with GS ≥ 7 and could narrow the gap of unnecessary 
biopsies by 30–58% [7]. However, the researchers highlighted that about 1.3–4.7% 
of men with aggressive disease may experience a delay in diagnosis using the 4K 
score [7]. Moreover, a retrospective study performed on 946 men of different racial 
ethnicities with elevated tPSA levels and a previous biopsy demonstrated that the 
4K score had a higher discriminatory index for high-grade PCa compared with the 
conventional tPSA, DRE, age and PCPT calculator [31]. The researchers showed that 
among African American men, the detection of metastatic PCa using the 4K score 
test was significantly enhanced over the use of tPSA with an AUC of 0.80 versus 0.67. 
Additionally, it was found that the 4K score test would be able to identify 88% of 
aggressive cancers while reducing 42% of unnecessary biopsies [81].

3.2 Urine-based prostate cancer biomarkers

3.2.1 TMPRSS2-ERG fusion and PCA3

In a similar way to PCA3, a transmembrane serine protease 2 (TMPRSS2)-ERG 
fusion gene can be detected in urine post-DRE [82]. Various biomarkers are released 
in urine which may become enriched with prostate material upon manipulation of 
the prostate gland during a DRE [83]. A TMPRSS2-ERG gene fusion score is compa-
rable to PSA mRNA quantity, in which the latter is currently being used as the gold 
standard test for PCa. TMPRSS2-ERG fusion gene is a genetic rearrangement of the 
androgen-regulated trans-membrane protease, serine 2 (TMPRSS2) gene and the 
ERG (erythroblast transformation-specific; ETS)-related gene. ERG is an oncogene 
and is a part of the family of transcription factors. TMPRSS2-ERG gene fusion is 
expressed specifically in PCa and is the most prevalent known type of PCa-specific 
gene alterations [84, 85]. There are two mechanisms by which TMPRSS2-ERG gene 
fusion may occur, either by chromosomal translocation or interstitial deletion; the 
latter being the more predominant mechanism in which approximately 2.8 Mb genetic 
material may be lost due to occurrence of this event [86–89]. A study reported that 
the deletion type fusion was found to be highest among African American patients, 
followed by Caucasians and no significant differences have been seen in Asian popula-
tions regarding either type [89]. Targeted inhibition of the TMPRSS2-ERG fusion 
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gene or its gene fusion transcripts could possibly serve as a treatment strategy in the 
future, thereby resulting in favorable outcomes for PCa patients.

Gene fusion of TMPRSS2 and ERG has been shown to result in an overexpression 
of ERG. ERG has been shown to play a vital role in cell growth, differentiation, and 
apoptosis [90]. It is possible that overexpression of ERG triggers a downstream cas-
cade of events that lead to the onset and progression of PCa. Hence, TMPRSS2-ERG 
gene fusion maybe seen as an early phenomenon that takes place in the development 
of PCa. TMPRSS2-ERG gene fusion has been detected in 40–70% of PCa patients 
[88]. The frequency of TMPRSS2-ERG gene fusion has been reported to be great-
est among Caucasian Americans (50%), followed by African Americans (31%) and 
Asians (18.5%) respectively [89].

TMPRSS2-ERG and PCA3 are two of the most studied urine biomarkers with PCA3 
having received FDA approval. TMPRSS2-ERG and PCA3 in post-DRE urine for the 
detection of PCa at biopsy showed significant improvement over PSA [85, 91, 92]. When 
a Mi-Prostate Score for post-DRE urine, was utilized it was reported that TMPRSS2-ERG 
had a low sensitivity of 24.3–37.0%. However, the fusion gene had a specificity of 93% 
and a PPV of 94%. Combination of TMPRSS2-ERG with serum tPSA (a cut-off value of 
10 ng/mL) and urinary PCA3, greatly improves the accuracy of diagnosing PCa, from a 
study that reported a sensitivity of 80% and a specificity of 90% [93]. TMPRSS2-ERG 
gene fusion test also gives information about a risk assessment for aggressive PCa [94].

It was reported in a study that TMPRSS2-ERG gene fusions showed a significant 
association with a GS ≥7 and PCa-related deaths. When TMPRSS2-ERG and PCA3 
were combined with the PCPT risk calculator, the information provided may aid phy-
sicians in deciding whether a patient with high serum tPSA will need urgent biopsy 
[91, 94]. Analyzing ERG mRNA in post-DRE urine in a study cohort of 237 men, a 
predictive accuracy for AUC of 0.80 was reported for PCa diagnosis in Caucasian 
men having tPSA levels ≤4.0 ng/mL [92]. Studies have supported the combined use 
of TMPRSS2-ERG and PCA3 in clinical practice to help in reducing the number of 
prostate biopsies [95]. With this in mind, Kohaar et al. concluded that the data from 
cumulated studies suggest that when TMPRSS2-ERG and PCA3 are combined along 
with serum tPSA there were improvements in the detection of aggressive PCa (GS ≥7) 
on initial biopsy with a 42% reduction in unwarranted biopsies [85, 91].

3.2.2 SelectMDx (DLX1, HOXC6)

The SelectMDx test is a urine-based gene expression assay. This assay measures the 
mRNA levels of two biomarkers, distal-less homeobox 1 (DLX1) and homeobox C6 
(HOXC6) using qRT-PCR in post DRE urine [96]. Kallikrein serine protease (KLK3) 
gene which codes for PSA is used as an internal control for this assay. The test was 
performed on patients who have risk factors for PCa and were being considered for 
prostate biopsy. DLX1 and HOXC6 are believed to be involved in the onset of PCa and 
are both associated with high grade disease [95]. In a study using PCa cell lines, it was 
found that HOXC6, a transcriptional factor when suppressed, caused a reduction in 
cell viability and induced apoptosis [97, 98]. In another study investigating the role of 
DLX1, a protein coding gene, it was reported that DLX1 promoted growth, migration 
and colony formation of cancer cells [97, 99].

The SelectMDx assay is not a “standalone” test and so incorporates clinical fac-
tors such as age, tPSA, prostate volume and DRE findings to estimate the percent 
likelihood of detecting PCa and high-grade (GS ≥ 7) disease upon prostate biopsy. 
Leyten et al. [30] first identified that a three gene panel of HOXC6, DLX1 and 
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Tudor domain-containing protein 1 (TDRD1) was able to show higher accuracy 
(AUC = 0.77) for the detection of clinically significant PCa (csPCa) compared with 
tPSA (AUC = 0.72) and PCA3 (AUC = 0.68) tests respectively. In follow-up prospec-
tive studies, focus was placed on the urinary mRNA levels of HOXC6 and DLX1 genes. 
Using a large cohort (n = 905), the expression of DLX1 and HOXC6 gave an AUC of 
0.76, a sensitivity of 91%, a specificity 36%, a NPV of 94% and PPV of 27% for the 
prediction of high-grade PCa (Table 1) [100]. It was seen that when SelectMDX was 
combined with clinical factors such as tPSA, PSAD, family history and history of 
prostate biopsy, the risk stratification of high-grade PCa and biopsy decisions maybe 
improved as the AUC was 0.90 in identifying high-grade PCa (GS > 7) [100].

In a more recent validation study by Haese et al. [101], the data showed high 
sensitivity and NPV in detecting csPCa when investigating urinary HOXC6 and 
DLX1 mRNA levels. These results were combined with patient age, DRE and tPSA 
levels less than 10 ng/mL which gave an AUC of 0.82, sensitivity 89%, specificity 53% 
and NPV 95% [102]. Haese et al. [102] concluded that the data supported using the 
SelectMDx test to aid in decision-making around prostate biopsies. Furthermore, 
Govers et al. [101] conducted a study on the healthcare cost using SelectMDx for PCa 
in four European countries. From the results of the study, it was reported that quality-
adjusted life years (QALYS) could be gained and that the use of SelectMDx may 
have favorable economic outcomes for patients at initial PCa diagnosis. Currently, 
SelectMDx is only available through companies that received CLIA (Clinical 
Laboratory Improvement Amendments)-approval [102].

3.3 Tissue-based prostate cancer biomarkers

3.3.1 Oncotype DX Genomic Prostate Score

Oncotype DX Genomic Prostate Score (GPS) is considered a molecular biomarker 
that was established to aid in the prognostication of PCa in men with intermediary 
possibility of the disease. This particular biomarker is based on 17 genes GPS. This can 
be further explained where 12 of the genes referred to as qRT-PCR genes are respon-
sible in identifying growth linked to PCa, while the remaining five genes are respon-
sible for demonstrating stromal response, androgen signaling, cellular organization, 
and proliferation, thereby achieving a computational formula system that resulted in 
the GPS [103]. This particular Oncotype DX GPS assay measures mRNA expression of 
the 17 genes accountable for neoplasm progression and was established and reviewed 
in approximately 4500 patients [104].

A study was conducted to identify and authenticate a biopsy-based 17-gene GPS 
signature by investigating 732 candidate genes in their clinical utility to predict PCa 
mortality, adverse pathology and clinical recurrence. The GPS predicted high-grade 
PCa and clinical recurrence notwithstanding multi-focality and heterogeneity. The 
authors suggested that the GPS test assist patients in making knowledgeable decisions 
concerning immediate therapy or active surveillance [103]. In another study, Cullen 
et al. assessed the association of the 17-gene GPS with clinical recurrence in 431 men 
with clinically low to intermediate risk PCa. GPS results (scale 0–100) were obtained 
for 402 PCa patients and it predicted time to metastases and biochemical recurrence. 
GPS was significantly associated with adverse pathology (OR = 3.3 per 20 GPS) and 
the predictive outcomes were similar for Caucasian and African American men [43]. 
Recently, the same authors performed a multicenter comparison of 17-gene Oncotype 
DX® GPS in Caucasian (n = 1144) and African American (n = 201) men diagnosed 



Cancer Bioinformatics

88

with clinically localized PCa. The GPS scores were the same between the two racial 
groups showing corresponding predictive outcomes, and using a multivariate model, 
biochemical recurrence and adverse pathology was significantly associated with the 
GPS assay (Table 1) [44]. Supporting evidence of Oncotype DX GPS as an indepen-
dent predictor of adverse pathology in the two racial groups was provided by Murphy 
et al. [45] using PCa patients (96 African American and 76 European American men) 
from two multi-institutional observational studies.

There are other studies such as that performed by Kornberg et al. [46] which 
found that higher GPS in PCa patients who undertook radical prostatectomy fol-
lowing active surveillance is associated with greater risk of adverse pathology and 
biochemical recurrence. Lynch et al. [47] reported that GPS testing was a valuable 
tool in risk stratification among PCa patients and those who are low risk are more 
likely to make the decision to adopt active surveillance. Notably, Chang et al. posited 
that the deployment of GPS was worthwhile in guiding decisions regarding therapy in 
patients with early stage PCa compared with active surveillance [48]. The finding that 
the GPS test is associated with long-term outcomes such as PCa-specific mortality and 
distant metastases is also worth mentioning [105]. However, in a recent study there 
was no significant association of the GPS test with adverse pathology after initial 
period of neither active surveillance nor improvement in risk stratification for adverse 
pathology versus the use of only clinical variables [106].

3.3.2 The Decipher

The Decipher, a molecular biomarker is categorized as a genomic assessment,  
established by GenomeDx Biosciences in Vancouver, Canada. This particular test 
evaluates the expression signature of approximately 22 RNA genes that demonstrates 
the prognostication and progression of PCa. Among the various genes group, the 
Decipher in recent time is considered the most powerful method in that it comprises of a 
comprehensive transcriptome investigation of a prostatectomy, biopsy, or transurethral 
resection specimens. Interestingly, the Decipher method for evaluation of PCa prog-
nostication was initially authenticated in radical prostatectomy patients with uncompli-
mentary specimen characteristics inclusive of positive cancer margins and is however 
independent of clinical data [33–35, 107]. A study by Den et al. found that the Decipher 
method demonstrated both biochemical recurrence and cancer spreading in approxi-
mate 139 participants after removal of the prostate in addition to radiotherapy [36].

Several authors have done in-depth assessment and evaluation of the clinical utility 
of the Decipher method in PCa progression. Spratt et al. performed a meta-analysis 
of 5 studies comprising 855 patients in assessing the performance of the Decipher test 
in PCa patients who underwent radical post-prostatectomy. The Decipher test classi-
fied patients as low, intermediate and high risk for developing metastases and was a 
significant predictor of metastasis (HR = 1.30, p < 0.001). The authors posited that the 
Decipher test can increase the prognosis of PCa patients after radical prostatectomy 
including those in the different clinicopathologic and therapy subgroups (Table 1) 
[33]. Similarly, the prognostic potential of the Decipher test was assessed in two high-
risk USA and European case-control studies. The median Decipher scores were higher 
in PCa patients who developed metastases, and multivariate analysis showed that 
there was a greater risk of distant metastases for each 10% increase in Decipher score 
within a 10-year follow-up period. Therefore, the Decipher test predicted metastatic 
recurrence in PCa patients within a follow-up period of 10 years [37]. In a retrospec-
tive multicenter cohort study comprising of 266 PCa patients, the Decipher from 
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prostatectomies from PCa patients with low to intermediate risk predicted the absence 
of adverse pathologic features thus making these individuals suitable for active sur-
veillance [38]. In a later study involving prostatectomies from 2342 PCa patients, the 
Decipher score was positively correlated with baseline tumor characteristics such as 
age, pathologic T-stage and GS [39]. The Decipher score was able to reclassify patients 
according to tumor aggressiveness and may be valuable in assessing postoperative risk 
and decision making [39].

There are other studies that have assessed the clinical usefulness of the Decipher 
test in risk stratification of newly diagnosed PCa patients. In a multicenter prospec-
tive study involving 855 persons who underwent Decipher Biopsy testing, a high-risk 
Decipher score for PCa patients in the active surveillance group was independently 
associated with time to treatment while the same was related to time to failure in the 
radical therapy group [40]. Likewise, in a study of 203 PCa cases, the Decipher score 
enables risk stratification and was significantly associated with time to biochemi-
cal recurrence. The Decipher score could assist PCa patients with treatment deci-
sion as high-risk values were significantly associated with salvage treatment [40]. 
Interestingly, a systematic review conducted recently of 42 studies and 3407 patients 
[localized, post-prostatectomy, metastatic castration resistant PCa (mCRPCa) and 
metastatic hormone sensitive PCa (mHSPCa)], and metastatic hormone sensitive 
PCa (mHSPCa), the Decipher test was robust for intermediate-risk PCa and decision-
making after radical prostatectomy [41].

The Decipher test has been used in risk stratification of early diagnosed PCa 
patients and for treatment making decisions [108]. Dalela et al. investigated the use of 
the Decipher test in a cohort of 512 PCa patients as a valuable risk-stratification tool 
for identifying those persons who would be received maximum benefit from adjuvant 
radiotherapy (ART). The Decipher test was one of the parameters used to develop a 
Multivariable Prediction Model that predicted reduced risk for clinical recurrence. 
Using the Decipher test, the authors suggested that ART might decrease overtreat-
ment and needless adverse effects [34]. Also, supporting evidence was observed in 
the Multicenter Prospective PRO-IMPACT study comprising of 150 PCa patients 
where the Decipher score acts as a guide for making treatment choice, and enhance 
the effectiveness of the decision-making process for PCa patients considering salvage 
radiotherapy (SRT) or ART post-radical prostatectomy [35]. The use of the Decipher 
test has been found to significantly improve therapy decision-making in a study 
published of two prospective registries of PCa patients [42]. Of particular interest is 
a study by Lobo et al. which based on the findings suggests that the Decipher test was 
a cost-effective approach to PCa treatment decisions after radical prostatectomy. This 
should result in improved clinical outcomes and the potential for the application of 
the Decipher test for personalized cancer medicine [109].

3.3.3 ConfirmMDx

ConfirmDx is a tissue based biomarker that is used to determine the likelihood of 
a true negative biopsy versus one that has an occult cancer. The aim of this test is to 
prevent unnecessary repeat biopsies and also to detect those patients with negative 
biopsies who in fact, do require repeat biopsies. Unnecessary biopsies put patients at 
risk for complications from the biopsy procedure and increases morbidity, in addition 
to increasing economic burden.

Prostate biopsies are done when there is an increase in tPSA level and/or abnormal 
prostate DRE. When a prostate biopsy is negative and there is a high suspicion of 
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PCa, the residual tissue from the biopsy can be submitted for the ConfirmMDx test. 
ConfirmMDx is an epigenetic assay that is used to detect DNA hyper-methylation 
changes. Epigenetic changes such as DNA methylation have been implicated in the 
molecular pathogenesis of PCa. These changes occur surrounding the tumor foci, 
called the halo effect. It occurs within a DNA sequence, when a methyl group is added 
to a cytosine nucleotide that is adjacent to a guanine nucleotide [110]. The three 
genes tested for DNA hyper-methylation associated with PCa are: GSTP1, APC, and 
RASSF1 genes [110]. Unlike histopathology of a prostate core biopsy which would 
have missed the diagnosis of epigenetic changes, these 3 genes have the potential to 
expose the presence of tumor activity via the use of ConfirmMDx.

From the methylation analysis to locate occult cancer (MATLOC) study conducted 
in 2013, the rate of false negative results from prostate biopsies was significantly 
lowered with a 90% NPV when compared with histopathology. Specificity and sen-
sitivity were found to be 64% and 68% respectively [111]. Moreover, another study 
to substantiate the MATLOC study was the DOCUMENT (detection of cancer using 
methylated events in negative tissue) trial done in 2013. This resulted in a NPV of 
88% (95% Cl 85–91) [49]. This was significant for repeat biopsies as an independent 
predictor of PCa.

In another study, Waterhouse et al. in 2018 found that ConfirmMDx used for PCa 
detection had a sensitivity and specificity of 74.1% and 60.0% respectively at repeat 
biopsies. The study validated the use of ConfirmMDx in African American men, and 
was significant as most studies were done on a Caucasian population [50]. Further, 
Wojno et al., found that PCa patients who were managed using ConfirmMDx test 
had a <5% rate of repeat prostate biopsies. Compared with previous rates, there was 
a tenfold reduction [51]. ConfirmMDx test has the potential therefore, to reduce 
healthcare costs by avoiding unnecessary repeat biopsies and to also avoid the mor-
bidity associated with prostate biopsies. Notably, ConfirmMDx is not FDA approved.

3.4 Emerging molecular prostate cancer biomarkers

3.4.1 The ProMark

There are challenges in defining the aggressiveness of PCa as well as its outcome 
(particularly lethality) using prostate biopsy as there are sample errors and dispari-
ties in interpretation. Shipitsin et al. documented a proteomic biopsy-based PCa 
prognostic advanced test panel called ProMark that is manufactured and distributed 
by Metamark Genetics Incorporated, USA. They performed and documented a 
result-orientated method that provides an accurate prognosis of PCa aggressiveness 
and lethal outcome irrespective of variation in biopsy sampling [112]. Using a large 
patient cohort, prostatectomy tissue samples were identified and classified as having 
lowest to the highest Gleason grade. Tissue microarrays were produced comprising of 
cores from low as well as high Gleason area from each PCa patient. An assessment of 
160 known protein biomarkers was carried out by means of using a quantitative mul-
tiplex proteomics in situ imaging system and a selection strategy with three types of 
criteria namely biological, technical and performance-based. Analytical performance 
and the application of univariate and multivariate analyses resulted in a final set of 
12 protein biomarkers which provided prognostic accuracy of tumor behavior [113]. 
The same researchers conducted further investigations with the subsequent selection 
of 8 of these 12 protein biomarkers in a prognostic model that offered “risk scores” 
predictive of the final post-prostatectomy pathology.
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The eight proteomic biomarkers that constitute ProMark are: HSPA9, YBX1, 
CUL2, PDSS2, pS6, FUS, DERL1 and SMAD4 [52].

Blume-Jensen et al. performed a multicenter 8-protein biomarker assay model 
investigation involving 381 PCa patient biopsies with corresponding prostatectomy 
specimens. This was followed by a second blinded study of 276 cases which validated 
the 8-protein biomarker assay model’s capacity to differentiate “non-favorable” versus 
“favorable” pathology in a manner that was independent and comparative to D’Amico 
and National Comprehensive Cancer Network (NCCN). The protein biomarker panel 
of ProMark gives a risk score ranging from 0 to 1 and predicts the aggressiveness of 
PCa and lethal outcome in patients with GS of 3 + 4 and 3 + 3 on biopsy. There was a 
false positive rate of 5% that corresponds to a non-favorable protein biomarker assay 
risk score >0.80 and false negative rate of 10% which relates to favorable protein 
biomarker assay risk score <0.33 [52]. The ProMark predictive model gave values for 
favorable pathology (risk score ≤ 0.33) of 87.2% for patients in the low-risk D’Amico 
group, as well as 81.5% and 95.0% for those in the low-risk and very low-risk NCCN 
groups respectively. These predictive values were higher than those of the up-to-date 
risk classification groups (70.6%—low-risk D’Amico group; 63.8%—low-risk NCCN; 
80.3%—very low-risk NCCN respectively). The ProMark predictive model gave a 
value for non-favorable pathology (risk score > 0.80) of 76.9% for all the NCCN and 
D’Amico risk groups. The validation study of the 8-protein biomarker assay predictive 
model was able to distinguish non-favorable from favorable (AUC = 0.68; p < 0.0001; 
OR = 20.9) and GS 3 + 3 versus GS 3 + 4 (AUC = 0.65; p < 0.0001; OR = 12.95) [52]. 
Overall, with increasing ProMark biomarker risk scores there was reduced frequency 
of favorable PCa cases across all the D’Amico and NCCN risk groups [52].

3.4.2 miRNAs

3.4.2.1  Diagnosis, progression, risk stratification and therapeutic potential of serum 
or plasma miRNAs

MicroRNAs (miRNAs) are minute single-stranded as well as non-coding sections 
in RNA comprising of approximately 22 nucleotides that pay a critical role in gene 
regulation [53]. In the past decade a number of studies have investigated the differential 
expression and levels of miRNAs in plasma or serum in order to develop non-invasive 
blood-based biomarkers with the ability to diagnose, detect progression and assess 
prognosis as well as recurrence of PCa [114]. Jin et al. investigated 10 serum-circulating 
miRNAs as non-invasive molecular biomarkers in 31 BPH and 31 PCa patients. The 
expression levels of miR-375, miR-200b, and miR-141 levels were significantly elevated 
in the PCa patients compared with those in the BPH group, and miR-200b was the 
most effective diagnostic marker with AUC = 0.923 [115]. An association was found 
between the three miRNAs and tPSA, as well as miR-200b and GS [115]. The upregula-
tion of miR-141 was also observed in a study by Ibrahim et al. that comprised 80 PCa 
(30 metastatic and 50 localized), 30 BPH patients and 50 healthy controls (Table 2). 
Plasma miR-141, miR-221, miR-18a and miR-21 levels were significantly higher in PCa 
patients than healthy controls. miR-18a differentiate PCa from healthy individuals with 
the highest AUC of 0.966, while miR-221 has a sensitivity of 92.9% and specificity of 
100% at differentiating localized from metastatic PCa [116]. Likewise, another study 
differentiated PCa from BPH as higher significant expressions of the two onco-mRNAs 
miR-375-3p and miR-182-5p were found in the plasma of PCa compared with BPH 
patients (specificity = 90.2%) [131]. Similarly, the expressions levels of miR-375-3p 
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and miR-182-5p were evaluated for their diagnostic and prognostic potential in a 
cohort of 98 PCa and 52 normal controls. The plasma miR-182-5p expression level was 
significantly higher in PCa patients compared with controls, and it detected the disease 
with AUC = 0.64 (specificity of 77% and NPV of 99%). The authors also found that the 
levels of both miRNAs were associated with higher GS, and miR-182-5p was signifi-
cantly elevated in metastatic PCa [132].

miRNAs exhibited both diagnostic and prognostic ability and these could be 
considered for possible use in clinical practice [108]. Cai and Peng investigated the 
diagnostic potential of miR-494 in a study comprising 90 BPH and 90 PCa patients, 

miRNA Identified Study type Specimen Outcome References

miR-141, miR-182, miR-
200b, and miR-375

31 PCa and BPH patients Serum Diagnosis [115]

miR-21, miR-141, miR-
18a and miR-221

80 PCa, 30 BPH and 50 
controls

Plasma Diagnosis [116]

miR-494 90 PCa and 90 BPH Serum Diagnosis [117]

miR-301a 13 BPH and 28 PCa Serum and 
tissue

Diagnosis/
prognosis

[118]

miR-410-5p 149 PCa, 121BPH and 57 
controls

Serum Diagnosis [119]

miR-320a/-b/-c 145 PCa, 31 BPH and 19 
controls

Serum Diagnosis [120]

miR-128 129 PCa patients Serum and 
tissue

Diagnosis, 
prognosis

[121]

miR-628-5p 40 PCa patients and 32 
controls

Serum Diagnosis, 
prognosis

[122]

miR-4286, miR-27a-3p, 
and miR-29b-3p

78 PCa and 77 BPH Serum Diagnosis [123]

miR-15a, miR-126, miR-
192 and miR-377

35 PCa, 35 BPH and 30 
controls

Serum Diagnosis/risk [124]

let-7b, miR-34a, miR-
125b, miR-143, miR-
miR-145 and miR-221

2 Prospective cohorts (12 
mPCa and 25 controls; 149 
PCa patients)

Plasma and 
tissue

Diagnosis [125]

miR-210-3p, miR-23c, 
miR-592 and miR-93-5p

159 PCa fresh tissues and 
60 plasma samples

Plasma and 
tissue

Risk 
stratification

[126]

miR-141-3p and 
miR-375-3p

84 mCRPCa patients Serum Therapy [127]

miR-1825, miR-484, 
miR-205, miR-141, and 
let-7b

72 PCa and 34 controls Serum Prognosis/
therapy

[128]

miRNA-223, miRNA-24 
and miRNA-375

196 PCa patients for 
training and 133 PCa 
patients for validation

Serum Surveillance [129]

miR-200c and miR-200b 102 PCa patients and 50 
controls

Plasma Diagnosis, 
prognosis

[130]

Table 2. 
Summary of miRNA expression studies on plasma or serum samples from prostate cancer patients.
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and 90 healthy controls. The serum expression of miR-494 was significantly higher 
in PCa compared with BPH patients and healthy controls, and positively correlated 
with GS, tumor size and stage, and serum tPSA levels. miR-494 was suggested to 
be a sensitive biomarker of PCa as the AUC was 0.809 [117]. A similar investigation 
was carried out for miR-301a extracted from serum and tumor samples in a study 
design involving two cohorts (cohort 1 of 13 BPH and 25 PCa, and cohort 2 of 12 BPH 
and 13PCa). miRNA-301a expression in serum and tissue was significantly higher in 
PCa compared with BPH patients, and there was correlation with increased GS for 
miR-301a in radical prostatectomy specimens [118]. Also, miR-410-5p was inves-
tigated as a potential serum biomarker for PCa in a study comprising 149 PCa and 
121 BPH patients, and 57 healthy controls. The serum expression of miR-410-5p was 
significantly elevated in PCa compared with BPH patients or healthy controls. The 
diagnostic accuracy of serum miR-410-5p indicated by an AUC of 0.810 suggests that 
it is a potential molecular biomarker for the diagnosis of PCa [119].

Other miRNAs have been overexpressed or under-expressed in circulation thus 
demonstrating their diagnostic and prognostic potentials. Lieb et al. in a study of 
145 PCa and BPH patients, and 19 healthy controls reported that the serum levels of 
miRNA family members (miR-320a, miR-320b and miR-320c) differed among the 
three groups been highest in the PCa patients. In addition, the serum levels of all three 
miRNAs were significantly higher in older patients, high tumor stage and those with 
tPSA >4 ng/mL [120]. Conversely, decreased miR-128 expression was found in the 
serum of 128 PCa patients which was associated with disease progression and short 
biochemical recurrence-free survival (Table 2) [121].

miRNA profiling experiments followed by validation showed decreased 
expression of serum miR-25, miR-628-5p, and miR-101 in African American and 
Caucasian Americans with PCa compared with healthy controls [122]. Other serum 
or plasma miRNAs which have been identified as potential non-invasive biomarkers 
for PCa include: has-miR-101-3p and has-miR-19b-39 (diagnosis and prognosis) 
[133], miR-940 (diagnosis, AUC = 0.75) [134], panel of miR-27a-3p, miR-424-5p, 
miR-29b-3p, miR-4286 and miR-365a-3p (detecting early stage PCa) [123], panel 
of miR-126, miR-377, miR-15a and miR-192 (detection of localized PCa and risk 
stratification) [124] as well as panel of miR-373, miR-141, miR-21, miR-125b,  
miR-126, miR143 and let-7b (diagnosis of metastatic PCa) (Table 2) [125].

3.4.2.2 Diagnosis, prognosis and therapeutic potential of miRNAs in tissue

The profiling of miRNAs in tissues of PCa patients shows pattern that are different 
compared with those from healthy controls. These distinct miRNA expressions in PCa 
tissues could afford tools for improved diagnosis, prognosis and therapeutic approaches 
for PCa [114]. Huang et al. investigated the clinical utility and prognostic potential of 
hsa-miR-30c and hsa-miR-203 in tissues of 44 PCa patients. The expressions of the 
two miRNAs in tumor tissues were significantly different from those in neighboring 
normal tissue indicating their diagnostic potential. All the PCa patients were followed 
up for 36 months and the data showed that the mean survival times of high and low 
expressions of hsa-miR-203 and has-miR-30c respectively were significantly lower, 
which attest to their possible prognostic utility for PCa [135]. In a study involving tissue 
samples from 14 BPH and 60 PCa patients (cancerous and noncancerous prostate 
samples) and the employment of qRT-PCR followed by validation, the expression levels 
of 4 miRNAs (miRNA-141-5p, miR-183-5p, miR-32-5p and 187-3p) differed signifi-
cantly between PCa and BPH samples [136]. The data suggests that these four miRNAs 
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could detect cancer in prostate biopsy as they were able to differentiate between 
malignant and nonmalignant prostates [136]. Likewise, the expressions of miR-27b 
were higher in PCa compared with BPH tissues, and correlated with GS and clinical 
stages in PCa. The researchers further posited that PCa patients with higher expression 
of miR-27b had worse progression free as well as overall survival [137]. There are other 
studies that have shown an overexpression of miR-153 in PCa tissue which was associ-
ated with worse overall survival (Table 3) [145], and the deregulation of miR-30c and 
miR-29b with decreased expression in PCa tissues and ability to differentiate between 
PCa and adjacent para-cancerous tissues (AUC = 0.944 for miR-30c and AUC = 0.924 
for miR-29b) (Table 3) [138].

There are a few studies that have investigated the therapeutic potential of miRNAs 
for PCa treatment because of their ability to bind targets using prostate tissue and 
cell lines [149]. Wang et al. explored the prognostic potential and possible use of 
miR-1231 as a therapeutic tool by measuring its expression levels in PCa tissues. The 
miR-1231 expression was decreased in PCa tissues and significantly associated with 
shorter overall survival, higher TNM stage, lymph node metastasis and higher clinical 
stage. The data also showed that epidermal growth factor receptor (EGFR) is a target 

miRNA Identified Study type Specimen Outcome References

miR-128 128 PCa cases Tissue Prognosis [121]

hsa-miR-203 and 
hsa-miR-30c

44 PCa patients Tissue Diagnosis, 
prognosis

[135]

miR-187-3p, miR-
183-5p, miR-32-5p, 
and miR-141-5p

14 BPH and 60 PCa tissue 
samples

Tissue Diagnostics [136]

miR-30c and 
miR-29b

187 cases of PCa Tissue Diagnosis [138]

miR-424-3p Prostatectomy specimens 535 PCa 
patients

Tissue Therapy [139]

miR-20b 127PCa patients Tissue Prognosis [140]

miR-17-5p 535 PCa patients Tissue Prognosis [141]

miR-148b-3p PCa and BPH samples Tissue Diagnosis [142]

miR-1231 PCa tissues and cell lines Tissue Prognostic, 
therapy

[143]

miR-615-3p 239 PCa patients Tissue Prognosis [144]

miR-153 143 pairs of PCa tissues Tissue Prognosis [145]

miR-130b PCa tissue from African 
Americans

Tissue Prognosis and 
race disparity

[146]

miR-27b 28 BPH and 63 PCa tissues Tissue Diagnosis, 
prognosis

[137]

miR-1207-3p 404 post-prostatectomy prostate 
tumor tissue samples

Tissue Prognosis [147]

miR-301a 75 formalin fixed paraffin 
embedded localized PCa tissue, 4 
mPCa tissue and 13 BPH tissue

Tissue Prognosis [148]

Table 3. 
Summary of miRNA expression studies on tissue from prostate cancer patients.
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of miR-1231 and its over-expression reduced migration, proliferation and invasion of 
PCa cell lines in vitro. Based on the evidence, the researchers suggested that miR-1231 
has a tumor-suppressive role, may be a prognostic biomarker, and a therapeutic tool 
for PCa treatment in the future (Table 3) [143]. In another study involving naïve 
radical prostatectomy specimens from 535 PCa patients, decreased expression of miR-
424-3p was significantly associated with the aggressive phenotype of PCa and clinical 
failure-free survival. Based on the evidence, the authors posited that miR-424-3p 
could be a possible target for treatment of PCa (Table 3) [139].

3.4.3 Exosomes

Exosomes are minute membrane-bound extracellular vesicles with diameters of 
30–150 nm. They are released from many cell types into body fluids and the extracel-
lular environs after the amalgamation of multi-vesicular bodies fuse with the plasma 
membrane [150]. Exosomes comprised of a number of cytoplasmic biomolecules such 
as lipids, glycol-conjugates, proteins, DNA and RNA including miRNAs surrounded 
by a lipid bilayer membrane. They are found in blood (plasma and serum), urine, 
saliva and semen and cell culture medium [140, 151]. During PCa development and 
metastasis, exosomes are secreted by tumor cells and have been reported to play a 
critical role in initiation, promotion, immuno-regulation, angiogenesis, annexation 
and metastasis [152]. As exosomes play a role in PCa development via a number of 
mechanisms of actions, they are valuable biomarkers for PCa diagnosis, prognosis 
and monitoring [153, 154].

3.4.3.1 Exosome-contained microRNAs

Exosomal miRNAs are small-stranded non-coding RNA (about 17–25 nucleotides in 
length) and changes in their concentration in body fluids make them useful molecular 
biomarkers of PCa progression [155]. There is increasing interest in exosomal miRNAs 
in serum and plasma samples due to their stability and as non-invasive molecular 
biomarkers for PCa diagnosis and recurrence [156]. Li et al. conducted a study com-
prising 31 PCa patients and 19 healthy persons and found that plasma exosomal miR-
125a-5p levels were significantly decreased in the former compared with the latter. The 
researchers also found that plasma exosomal miR-141-5p levels mildly increased in PCa 
patients, and the miR-125a-5p/miR-141-5p ratio was able to distinguish these patients 
from healthy controls (AUC = 0.793) [157].

In a recent study, Guo et al. examined the predictive potential of 6 plasma 
exosomal miRNAs in a first validation prospective cohort of 42 CRPCa and 108 
treatment-naive PCa patients, and found that miR-423-3p was associated with CRPCa 
(AUC = 0.784). In a second validation study reported by the same authors, plasma 
exosomal miR-423-3p expression was significantly higher in 30 CRPCa patients 
undergoing androgen depletion treatment compared with 36 non-CRPCa patients 
(AUC = 0.879). The authors suggested that plasma exosomal miR-423-3p may serve as 
a useful molecular biomarker for early diagnosis and prognosis of castration resis-
tance in PCa patients [153]. Moreover, in an earlier study that examined the overall 
survival in a prospective cohort of 23 CRPCa patients, significantly elevated levels of 
plasma exosomal miR-375 and miR-1290 were associated with worse clinical outcome 
and overall survival in CRPCa patients [158].

There are serum exosomal miRNAs that are investigated for potential clinical utility 
for PCa. In an investigation by Li et al., the expression of serum exosomal miR-141 was 
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significantly higher in PCa patients compared with those of BPH patients and healthy 
individuals. Serum exosomal miR-141 expression was also significantly higher in PCa 
patients with metastasis compared with localized disease. The authors suggested that 
serum exosomal miR-141 could be a valuable molecular biomarker for the diagnosis 
of metastatic PCa [159]. In preclinical vivo and in vitro studies, exosomal miR-1246, a 
tumor suppressor was downregulated in PCa cell lines, and clinical tissues correlated 
with the presence of metastasis, poor prognosis and increasing GS [160].

Urinary exosomal miRNAs have been found to be valuable noninvasive and 
diagnostic molecular biomarkers of PCa [161]. Shin et al. investigated the clinical 
utility and profiles of urinary exosomal miRNA expressions in 149 PCa cases and 
the identification of those associated with metastasis. Urinary exosomal miR-21 and 
miR-451 expressions were upregulated and miR-636 downregulated in metastatic PCa 
patients compared to those with localized disease. These three exosomal miRNAs were 
used to develop a Prostate Cancer Metastasis Risk Scoring (PCa-MRS) model for PCa 
patients with high scores showing significantly worse biochemical recurrence-free 
survival [162]. Similarly, in a recent study comprising of a next-generation sequenc-
ing cohort (6 PCa patients and 3 healthy individuals) and use of qRT-PCR (28 BPH 
patients, 47 PCa patients and 25 gender- and age-matched healthy controls), urinary 
exosomal miR-486-5p, miR-486-3p, miR-375, miR-486-5p and miR-451a expressions 
discriminated PCa patients from healthy controls with AUCs ranging from 0.704 to 
0.796. The researchers found that urinary exosomal miR-375 differentiated metastatic 
PCa from localized (AUC = 0.806), and miR-451a along with miR-375 distinguished 
localized PCa from BPH (AUC = 0.726) [155]. In an earlier study comprising 90 PCa 
patients, 10 BPH and 50 healthy controls, urinary exosomal miR-2909 was reported 
to be a non-invasive diagnostic molecular biomarker of PCa and disease aggressive-
ness [163]. Preclinical studies also revealed that urinary exosomal miR-574-3p and 
miR-375 were detected by molecular beacons in PCa cells such as PC-3 and DU145 
[164]. Furthermore, urinary exosomal miR-532-5p expression was upregulated in 26 
PCa patients with biochemical recurrence and exhibit poor prognosis in those with 
intermediate-risk disease [165].

The findings from these observational studies indicated that circulating exosomal 
miRNAs in serum, plasma or urine may assist in the diagnosis, prognosis and out-
comes of PCa and could be adopted into routine clinical practice in the near future.

3.5 Potential prostate cancer biomarkers in development

3.5.1 Prostarix

Prostarix is another PCa biomarker that has potential value in screening/diagnosis. 
It is a post-DRE urine test that is used to predict the likelihood of having a negative 
prostate biopsy versus one with occult PCa. This is done using a risk score. The risk 
score is generated using an algorithm which ranges from 0% to 100%. One hundred 
percent equates to a 100% chance of having PCa on a prostate biopsy. Therefore, 
it is used to determine which men will undergo prostate biopsy. Prostarix is used 
when there is an elevated tPSA and normal DRE, and in some cases, for men who are 
candidates for a repeat prostate biopsy [166, 167].

Prostarix measures four metabolites using liquid chromatography mass 
spectrometry. These metabolites are sarcosine, alanine, glycine and glutamate. 
Sarcosine especially, has been linked with PCa progression [168]. A study con-
ducted by McDunn et al. 2013, showed that these metabolites improved prediction 
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of organ confinement (AUC, 0.53–0.62) and 5-year recurrence (AUC, 0.53–0.64) 
[166]. However, a study done by Sroka et al. in 2017 that evaluated various amino 
acids as PCa biomarkers found that sarcosine was not a definitive indicator of PCa 
when analyzed in pre and post-prostate massage urine samples. Also, the amino 
acids arginine, homoserine, and proline were mostly seen in the urine samples 
of PCa patients as opposed to patients with a benign prostatic disease [169]. It is 
evident that more studies need to be done on Prostarix, and of note, it is not FDA 
approved.

3.5.2 Prostate Core Mitomic Test

Prostate Core Mitomic Test (PCMT) is a tissue based biomarker for detecting PCa. 
It is an RT-PCR test that detects large-scale mitochondrial deletions in prostate biopsy 
samples. It is able to identify tumor activity at the molecular level and detects molecu-
lar changes that occur at the mitochondrial DNA (mDNA) level. The large-scale 
deletion of 3.4 kb of the mitochondrial genome has been known to occur as a part of 
the prostate “cancerization” field effect [170]. Cancerization field effect occurs when 
cells adjacent to primary tumors become transformed [171]. This takes place at the 
start of oncogenesis. Cancerization field effect is seen in some type of cancers includ-
ing PCa. Histopathology would have otherwise labeled these prostate biopsy samples 
with cancerization field effects as “normal” appearing tissue.

PCMT is used to predict repeat biopsy outcomes with an initial negative biopsy. 
This test can therefore, aid in reduction of the number of unnecessary biopsies and 
also reduce health care costs. According to Robinson et al. in 2010, the sensitivity and 
specificity of this mitochondrial deletion in predicting repeat biopsy outcomes were 
found to be 84% and 54% respectively. It also showed a NPV of 91% and an AUC of 
0.749 [172]. Legisi et al. performed a multicenter observational study to assess the 
use of the PCMT in the decision making of repeated biopsy among patients with a 
strong suspicion of PCa. Using two independent query language databases, the PCMT 
addressed sampling errors related to prostate biopsy and gave more evidence concern-
ing the clinical uncertainty surrounding an initial negative prostate biopsy [173]. 
Notably, the PCMT is not FDA approved.

4. Discussion

Globally, PCa is regarded as the most predominant malignancy in males and the 
principal cause of cancer-related mortality. Given the negative impact of PCa as it 
relates to morbidity and quality of life as well as mortality, early detection of the 
disease is of critical importance. Presently, tPSA and DRE are used in the diagnosis 
of PCa but there are a number of limitations which include low specificity and 
sensitivity leading to over-diagnosis and subsequent unnecessary prostate biopsies. 
In the early stage of PCa development there are no symptoms so there is a need for 
biochemical and molecular diagnostic tests for accurate and prompt detection. This 
review documents a number of PCa diagnostic and prognostics tests that have been 
discovered in the last two decades due to improvements in genomic technologies. 
Among them are serum PHI and 4K score, urine PCA3 and SelectMDx, and tumor 
tissue Oncotype DX, Decipher and Prolarix. These biomarkers are used in clinical 
decision making for PCa such as suspected patients who are required to undertake an 
initial prostate biopsy, or those who need a second biopsy given that the initial one 
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was negative for the disease. These tests have generated new prospects for advancing 
PCa diagnosis, prognosis such as the prediction of metastatic disease recurrence and 
decisions regarding therapy. In particular, Oncotype DX afford information regarding 
risk stratification which aid in identifying PCa patients that should receive treat-
ment after a positive prostate biopsy, and Decipher those individuals to be treated 
 post-surgery [174].

There have been a substantial number of miRNA-based assays and evidence in 
the literature demonstrates increased or decreased expression levels of miRNAs in 
peripheral blood (serum and plasma), prostate tissues and body fluids (urine and 
seminal) that differentiate between PCa and BPH patients, as well as healthy con-
trols. This review presented findings on the clinical utility of miRNAs as diagnostic 
and prognostic biomarkers, and possible therapeutic targets for PCa. The find-
ings are encouraging particularly the downregulation or upregulation of miRNAs 
expressions in plasma, serum or urine which facilitates the non-invasive nature, fast 
and cost-effectiveness of the tests. However, significant work is warranted if the 
miRNAs biomarkers are to translate from bench to routine clinical use. Also, larger 
observational prospective studies are needed with the intent of substantiating the 
validity of miRNAs and determining precise stratification based on the expression 
levels of miRNAs in PCa at different stages along the continuum of the disease. 
Furthermore, there are issues to be addressed such as the absence of guidelines for 
miRNAs development including isolation protocols, differences in study designs, 
pre-analytical variables such as specimen collection issues and tumor heterogeneity, 
need for validation and the selection of the best detection method (qRT-PCR vs. 
microarray) [175].

The presence of proteins and miRNAs in exosomes of prostate tissues makes them 
a valuable molecular diagnostic biomarker and therapeutic tool for PCa treatment. 
The development of these biomarkers is still in its early stages, but the results are very 
encouraging. The evidence presented in this review suggests that serum, plasma and 
urine exosomal miRNAs are useful for early detection as it differentiate metastatic 
from localized PCa together with prognosis of mCRPCa. There is a paucity of studies 
on exosomal proteins such as serum claudin 3 and survivin as well as urine-based 
LAMTOR1, TMEM256 and PARK7. This is an exciting area and research is continuing. 
However, there are challenges such as the complex process of obtaining appropriate 
samples, the lack of suitable isolation protocols and the need to standardized purifi-
cation and quantification methods [176]. Overcoming these obstacles in preclinical 
research could result in these exosomal biomarkers being applied in the clinical 
setting for risk stratification, prognosis and the monitoring of PCa.

Moreover, PCa biomarkers employ diverse types of samples such as blood (serum 
or plasma), urine, prostate tissue (specimen from transurethral resection, biopsy 
and radical prostatectomy) and seminal fluid [177]. Assays comprising these PCa 
biomarkers are evaluated as their clinical use involved improving early diagnosis and 
risk stratification of localized tumor, reducing the number of needless biopsies with 
subsequent saving on use of expensive intervention strategies [177].

Traditionally blood, a minimally invasive and easily obtained sample is the chief 
source of PCa biomarkers for example serum tPSA and in recent years emerging 
biomarkers such miRNA has been developed. Panels for new PCa biomarkers will per-
mit fingerprinting of the biologic behavior of the tumor with possibly personalized 
therapy and monitoring [178]. The collection of urine sample for the assessment of 
PCa biomarkers is a simple, non-invasive approach and assays can be used to monitor 
PCa with heterogeneous tumor foci [179]. Currently some of the emerging protein 
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and non-protein non-invasive urinary PCa biomarkers comprise TMPRSS2, PCA3, 
miRNAs and SelectMDx [180]. Genomic studies and biotechnological advancement 
have improved the sensitivity and specificity of these urinary PCa biomarkers thus 
enhanced clinical outcomes relating to early diagnosis and better selection of treat-
ment approaches [181].

Tissue-based PCa biomarkers are invasive and fewer, and in the area of molecular 
diagnostics there is more focus on assays for blood and urine-based biomarkers 
with diagnostic and prognostic potential. However, there is growing interest on 
tissue-based PCa biomarkers such as ProMark, Oncotype DX and Decipher as well as 
miRNA and exosomal miRNA [182].

Finally, there are emerging molecular biomarkers that are at different phases of 
development, and many are in the preclinical phase. It is hope that in the next decade 
or so a significant collection of biomarkers with excellent diagnostic good sensitivity 
and specificity together with significant prognostic potential will be available for use 
by physicians in the clinical setting [183–185].

5. Conclusion

This review provides evidence of the use of established and emerging biomarkers 
detected in body fluids as diagnostic and prognostic tools for PCa. Despite the prom-
ising findings in preclinical and clinical research among the increasing body of inves-
tigations, there are challenges which delay the translation of a number of biomarkers 
from bench to bedside. Nonetheless, the considerable prospect of the biomarkers such 
as miRNAs and exosomal miRNAs in clinical practice as therapeutic tools for PCa is 
widely acknowledged and hopefully will be a reality in the not too distant future.
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Chapter 6

The Role of Registration in Cancer 
Control and Prevention
Yelda A. Leal

Abstract

Cancer is one of the major causes of morbidity and mortality in the world, with 
18.1 million new cases and 9.6 million deaths, and an estimated prevalence during 
the last 5 years of 43.8 million persons with the disease, according to 2018 World 
Health Organization (WHO) report. Disparities between developed and developing 
countries have been documented—nearly 57% of cancer cases (8 million) and 65% of 
cancer deaths (5.3 million) occurred in developing countries. Although more cases are 
detected in countries with a high or very high human development index, mortality 
rates are similar in both low-to-middle-income countries and high-to-very high-
income countries. The global picture of the impact of cancer worldwide can only be 
calculated from registry data, which allow for estimations of the burden of cancer for 
different geographic areas, as well as for the fundamental role in cancer control and 
prevention.

Keywords: Cancer, registration, population, bioinformatics, prevention, control

1. Introduction

Noncommunicable diseases (NCDs), including cancer, are the leading causes of 
preventable and premature death, killing 40 million persons each year and accounting 
for about 70% of all deaths globally. Some 15 million of those deaths include people 
between 30 and 69 years of age, and more than 80% of these premature deaths occur 
in low-income and middle-income countries (LMIC); thus, NCDs are important and 
growing causes of health inequalities and inequities [1, 2].

Cancer remains a huge and leading cause of morbidity and mortality worldwide, 
with an annual incidence of 18.1 million new cases, and it is the second most common 
cause of death globally, accounting for an estimated 9.6 million deaths in 2018.

The burden of cancer is rising globally, but not equally; the greatest impact of can-
cer and the fastest increase in the cancer burden over the coming decades is projected 
to be in LMIC [3].

Controlling cancer is a multifaceted issue that requires multimodel solutions; one 
of the main solutions is the establishment of a cancer-control plan to overcome the 
growing cancer burden. The World Health Organization (WHO) defines the national 
cancer control plan (NCCP) as a public health program designed to reduce the inci-
dence and mortality of the disease through the systematic and equitable implementa-
tion of evidence-based strategies for prevention, early detection, treatment, palliation, 
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and to improve the quality of life of cancer patients, through the best use of available 
resources. Cancer registration is the priority issue for data-based evidence, which is 
essential for determining the cancer burden [2].

The burden of cancer is solely measured by cancer registration through the 
collecting of information on new cases (incidence). Cancer incidence by type has 
been included as a core indicator in the WHO-Global Monitoring Framework for 
the Prevention and Control of NCD, and the latter was reaffirmed at the recent 70th 
World Health Assembly [4, 5].

Cancer registration is much more than an epidemiological center; the surveillance 
of cancer incidence is quite different due to the complexity of cancer, which is not a 
single disease but rather a distinct entity that varies biologically, clinically, and epi-
demiologically. Many cancers are complex and heterogeneous in their characteristics, 
with hundreds of histological and biological subtypes. Given the diversity of cancer 
types in different geographic areas, it is necessary to base cancer-control activities on 
customized, individualized cancer profiles obtained through cancer registries, since 
each area has different circumstances and needs [6, 7].

Cancer registries provide the cancer-information patterns essential for planning 
and evaluating health services for the prevention and control of cancer. These regis-
tries comprise the main issue in terms of the effectiveness of health systems, public 
health interventions, and survivorship in order to assess treatment effectiveness, 
as well as for the primary prevention, early detection, screening, and treatment of 
cancer. Hence, cancer registration plays an essential role in the planning and evalua-
tion of effective control and prevention policies [8].

2. Cancer registration

The cancer burden is rising globally, exerting a significant strain on populations 
and health systems at all income levels. The increasing number of cancer cases 
observed during the last decades is due in part to the epidemiological transition 
that took place worldwide, resulting mainly from the net growth of the population, 
the aging effect, and changing fertility rates, increased longevity, and changing 
 lifestyles [9–11].

The differing cancer profiles in individual countries and between regions indicate 
marked geographic diversity, due to the distribution of patterns that implicate envi-
ronmental determinants, lifestyles, occupation, physical activities, and other cancer 
risk factors. Variations in the prevalence of cancer risk factors influence the differ-
ent cancer profiles between the different geographic areas because these factors are 
generally present in different magnitudes across different populations. For instance, 
infection-related and poverty-related cancers are common in developing countries, 
whereas in high-income countries, the cancer profile is most often associated with 
lifestyle. However, the cancer burden is greatest in low- and middle-income countries 
(LMIC), where approximately 75% of cancer deaths occur and where the number of 
cancer cases is rising most rapidly [10–13].

Global cancer control has been a growing priority for the authorities; for instance, 
WHO, in a joint effort with the World Health Assembly, the United Nations Agenda 
(UN), and local authorities, have made a commitment to global cancer control 
through the Global Cancer Plan on the Prevention and Control of NCD, in the 2030 
United Nations Agenda for Sustainable Development Goals (SDG). One of the most 
important cutting-edge actions taken is that of the 2017-World Health Assembly 



119

The Role of Registration in Cancer Control and Prevention
DOI: http://dx.doi.org/10.5772/intechopen.101331

Resolution 70.12 on cancer prevention and control. This is an integrated approach 
that ensures access to treatment and care, palliative and survivorship care, and 
comprehensive data collection through robust cancer registries, because the incidence 
by cancer type is a core indicator of progress within the WHO-Global Monitoring 
Framework for NCD [1, 4, 12].

Accordingly, short- and long-term recommendations for tackling the rising cancer 
burden include the implementation of the national cancer control plan (NCCP). 
Thus, strategies for addressing the global cancer burden must be tailored to the local 
reality; the strategy must account for a country’s most frequent cancer type and be 
tackled according to the country’s available resources. Hence, to allocate resources 
properly, accurate and comprehensive cancer registries are essential for providing 
information on the cancer burden in the country. Therefore, all of the decisions 
involved must be based on the best available evidence and accurate epidemiological 
data addressed within the national cancer control plan [2, 12].

Cancer registries collect data on cancer cases over time. The main purpose of 
the cancer registry is to collect data continuously and systematically and to classify 
information on all cancer cases from various data sources in a defined area, in order 
to produce statistics for providing a framework for assessing and controlling the 
impact of cancer on the community, through estimating the current cancer burden, 
examining recent trends, and predicting their probable future evolution. The scale 
and profile of cancer can be evaluated in terms of incidence and mortality, but other 
dimensions are often considered, including prevalence, person-years-of-life-lost, and 
quality- or disability-adjusted life years. An appraisal of the current situation provides 
a framework for action, and cancer-control planning should include the establish-
ment of explicit targets, which permits the success or otherwise of the interventions 
to be monitored [14, 15].

Cancer registration can be described in five central processes—1) identification: 
For a clear meaning of the definition and classification of each case included, the 
data should be standardized to facilitate data comparability; 2) collection: For each 
cancer case, essential information such as patient data, tumor, and bases of diagnosis 
must be included; 3) coding: The standardization of the nomenclature and the coding 
for each cancer case should provide an enabled database for comparison between 
different geographic areas and ease-of-analysis; 4) capture: Due to a large amount of 
processed information in a cancer registry, it is recommended to use a data-processing 
program in order to capture data and to store information, and 5) analysis and 
report: The analysis of the data in registries should periodically provide information 
on the cancer burden in a specific population. The report should include background 
information on the registry, registration procedures, catchment population, degree of 
data completeness and validity, methods of analysis, and findings (Figure 1) [16].

The statistical information produced by cancer registries could be used in different 
fields, including the following—etiological investigation; primary prevention (evalu-
ation of cancer-control programs); secondary prevention (evaluation and monitor-
ing of screening and early-detection programs), and tertiary prevention (survival 
analysis) and service planning, in a manner that benefits individuals as well as society 
as a whole [15].

2.1 Types of cancer registries

According to WHO, we could describe three different types of cancer registries—
pathology-based; hospital-based, and population-based. The roles of the three types 
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of registries are different and complementary. The first two types serve important 
administrative and clinical functions, but only the population-based registry provides 
an unbiased profile of the present cancer burden and how it changes over time. Thus, 
population-based cancer registries (PBCR) play a unique role in planning and evalu-
ating population-based cancer-control actions aimed at reducing the cancer burden. 
Thus, PBCR is considered the gold standard, (Figure 2) [14]. These registries are 
described briefly as follows:

a. Pathology-based Cancer Registry (PthBCR). It collects information on 
neoplasms of in situ and malignant behavior from one or more pathology 
laboratories. Pathological data represents a potentially excellent source of case 
ascertainment and offers the prospect of increasing the validity of diagnosis and 
the accuracy of the information recorded on morphology. However, the informa-
tion from PthBCR is utilized mainly for administrative laboratory purposes and 
represents an incomplete and skewed cancer profile, which is essentially deter-
mined by the types of tissues that the laboratory can process. Consequently, that 
reliance by a cancer registry on pathology data alone may lead to the loss of detail 
on the subsite, the registration of rare tumors, and the failure to identify cases of 
recurrence.

b. Hospital-based Cancer Registry (HBCR). It collects information on patients 
with cancer treated at one or more hospitals. The main purpose of such registries 

Figure 2. 
Cancer registration process.

Figure 1. 
Cancer registries coverage.
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is to contribute to the care of patients by providing readily accessible information 
on subjects with cancer regarding the treatment they receive and the outcome. 
Information from HBCR is employed mainly for administrative purposes, for 
reviewing clinical performance, and for prioritizing hospital resources. In 
addition, HBCR facilitates the monitoring of health programs and allows for the 
detection of the patterns or frequencies of different types of cancer treated in the 
hospital, as well as the monitoring of the outcomes of treatment, survival rates, 
quality of life, and adverse treatment effects, and also supply a convenient source 
of patients for clinical and epidemiological studies. Information sources for 
HBCR include out-patient clinics, anatomopathology laboratories, hematology 
laboratories, nuclear medicine laboratories, autopsy and death-certificate offices, 
and departments of surgery, oncology, radiotherapy, chemotherapy, imaging, 
endoscopy, etc. HBCR provides an incomplete and skewed cancer profile because 
they are determined by the population treated at a specific medical center, clinic, 
or hospital.

c. Population-based Cancer Registry (PBCR). These registries are concerned with 
collecting data on all new cases of cancer occurring in a well-defined popula-
tion, and with being able to distinguish between residents of the area and those 
from outside the area. The key feature of the PCBR is the use of multiple sources 
of information on cancer cases. Information sources for PBCR are public and 
private—hospitals; cancer centers; medical offices; out-patient clinics; anato-
mopathology laboratories; hospice centers; hematology laboratories; nuclear 
medicine laboratories; imaging detection clinics; endoscopy detection clinics; 
chemotherapy and radiotherapy clinics; civil registry offices (death certificates); 
and health insurance offices. Hence, this strategy in PBCR facilitates the identifi-
cation of as many as possible of cases diagnosed among the residents of the area 
defined by the registry. This procedure permits the identification of the same 
cancer case from different sources. This is regardless of whether the information 
on the same cases is received from several sources; indeed, this feature comprises 
a quality control that may be employed to evaluate success in case finding, as long 
as duplicate registries are avoided.

PBCR provides a more reliable cancer profile for estimating population indicators; 
therefore, these registries play an important role in cancer epidemiology, permitting 
the estimation of incidence rates by tumor location, age, gender, and other factors. 
Through patient tracking, it is possible to estimate cancer survival, which provides a 
useful indicator of this disease in the community. This method is also an affordable 
and efficient resource for enrolling cases for intervention and for cohort and case–
control studies. Additionally, PBCR can identify geographical and temporal changes 
by means of the estimation of trends [15].

Additionally, the expanded role of PBCR in health systems includes the follow-
ing—a) assessing differences in cancer incidence and mortality in order to address 
inequality in cancer prevention and care utilizing the assessment of variations in 
cancer frequency between different geographic areas, according to the ethnic origin, 
occupation, and sociodemographic status; b) monitoring the effect of primary 
cancer-prevention campaigns by assessing trends in cancer frequency; c) monitoring 
the effectiveness of cancer treatment and that of screening programs; d) planning 
the future needs of cancer services employing projections of cancer frequency with 
assumed trends in risk factors and intervention.
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2.2 Procedures and quality control

In cancer registration, the quality of the data is more important than the quantity, 
especially for certain features and due to the large number of data produced every 
day. In general, medical databases possess heterogeneity, but in particular, cancer 
is a complex and heterogeneous disease, with hundreds of histological and biologi-
cal subtypes, while on the other hand, it affects a wide range of ages, from those of 
children to the elderly and involves the complexity of biological variation by ethnicity. 
Thus, the quality-controlled data produced by the cancer registry are valued as far 
more effective.

Collecting information in cancer registration can be active or passive; in general, 
the majority of registries utilize a combination of both methods. The active procedure 
involves visiting the sources of information, reviewing these, and abstracting the 
information into a special format by the cancer-registry staff, while the passive 
procedure relies upon routine notifications from hospitals, laboratories, and death 
records; thus, the registry may periodically receive abstracts, notifications, or 
databases [8, 16].

Depending on utility, purpose, logistics, and budget, the cancer registry must 
collect essential information on the patients, the tumor, the source, and additional 
information. It is recommendable that each domain contains the following informa-
tion in as complete a form as possible; 1) Patient information: Full name, age, gender, 
birthplace, address, identification number (if applicable, because some countries use 
a unique ID number), and ethnic group; 2) Tumor information: Incidence date, pri-
mary tumor site (topography), laterality (if applicable), morphology, behavior, the 
base of diagnosis, and date of death (if applicable); 3) Information source: Hospital, 
clinic, and laboratory name or number (the place where the cancer was diagnosed), 
and 4) Other details: It is recommended that these be collected, depending on the 
capacity and applicability of the registry, such as the following—biomarkers; genomic 
information; disease stages; treatment information (surgery, radiation, chemother-
apy, hormone therapy, and immunotherapy), and outcomes such as vital status (alive, 
dead, or lost to follow-up) [14, 17].

Patient Information: Identification items such as name, gender, and date of birth 
are important to avoid multiple registrations of the same patient or the tumor, in 
order to obtain follow-up data and record linkage. The patient’s address is essential for 
establishing residence status. Data on ethnicity is important in populations containing 
diverse ethnic groups.

Tumor Information: Incidence date is primarily the date of the first histological 
or cytological confirmations of the malignancy, as this is a definite, consistent, and 
reliable point in time that can be verified from records. If this information is not avail-
able, the date should be taken of the first diagnosis by the physician, or the date of the 
first pathological report, or the date of death, if no information is available other than 
that the patient died or if the malignancy is discovered at autopsy.

Since cancer is not a single disease, but instead a complex and heterogeneous 
one with hundreds of histological and biological subtypes, it is thus recommended 
that the cancer registry use the International Classification of Diseases for Oncology 
(ICD-O) to code the tumor. The ICD-O is a multi-axial classification of topography 
(site of primary tumor), morphology (histological type), behavior (benign, 
borderline, in situ, malignant), grading (differentiation), and bases of diagnosis 
(information on how the tumor was diagnosed, by means of a clinical history only, or 
by exploratory surgery, laboratory, biomarkers, autopsy, imaging (X-ray, ultrasound, 
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etc.), or anatomopathologically). The topography of the tumor is the most important 
data item recorded and provides the main basis for the tabulation of registry data.

Information Source: For purposes of future checking, it is important for the 
registry to collect data on the sources of the cancer case-finding, for instance, name of 
the physician, hospital, laboratory, biopsy number, etc. This additional information 
will help to trace the medical records of the patients.

Recommendations. a) New record: For new cancer cases, it is recommendable to 
use a unique registration number for each patient. If the patient has more than one 
primary tumor, a different number is given to each tumor in order to facilitate the 
consultation, operation, management, and analysis. One key challenge is to store 
the patient’s identifiable data, which is mandatory for safeguarding the patient’s 
privacy; for each patient, personal information data, including name and national 
identification number (ID), and personal sensitive data such as addresses, phone 
number, and gender, must be unidentified. All of the databases should contain 
a security framework to provide authentication, authorization, and to audit the 
systems. b) Multiple tumors: If there are several records for the same patient, the 
most appropriate primary tumor by topography, morphology, and incidence date 
must be determined. The second primary tumor is defined as a new record on an 
individual who has already been recorded. c) Duplicate tumor: When matching 
by name, allowance must be made for errors in spelling (the phonetic spelling of 
names or errors due to the illegibility of hospital records). The strategy is to match 
first by name, then by age, gender, address, and diagnosis, to ensure that it is a real 
duplicate. If there is no match, it is a new patient who should be registered as a new 
record [14, 16].

Cancer registration is not only a system for the classification and the coding of 
neoplasms. It also requires a clear definition of what constitutes a cancer case, the 
definition of the date of incidence, and the rules for dealing with multiple primary 
cancers, including the need to differentiate between a new case of primary cancer 
and the extension, recurrence, or metastasis of an existing one. Therefore, trained 
personnel and adherence to international standards for registering cancer cases are 
necessary.

Because data collection by the different registries around the world may vary 
according to local needs and the availability of information, the value of cancer-
registry information depends on producing reliable and comparable national and 
international cancer data; hence, cancer registry must adopt and follow rules for 
coding, data-quality standards, and procedures. The International Association of 
Cancer Registry (IACR), the International Agency for Research on Cancer (IARC), 
and the Global Initiative for Cancer Registry (GIRC) have produced guidelines and 
recommendations regarding the data items collected [14, 18].

The Global Initiative for Cancer Registry Development (GICR) was launched and 
is coordinated by IARC, with its main purpose being to support local planning and 
reduce the cancer-registration disparities between low- and middle-income countries 
by building local and sustainable infrastructure through regional centers of expertise-
denominated IARC regional hubs. Over the last few years, IARC has established 
regional hubs for cancer registration in Africa, Asia, and Latin America. These hubs 
provide a set of local activities in a given country for increasing data quality, coverage, 
and utility in terms of cancer-control proposes, through technical guidance, training, 
advocacy, data collection, analysis, and promoting cancer research by identifying top-
ics of common interest to the community that directly contribute to cancer control, 
thus fostering collaborative cancer research across countries [14].
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According to IARC, cancer registries should be able to furnish some objective indi-
cation of the quality described in the following four dimensions—a) Comparability: 
Because one of the main topics of cancer registries is the comparison of statistical 
results, the standardization is required of practices concerning the classification and 
coding of new cases and regarding consistency in definitions of incidence, such as 
rules for the recording and reporting of multiple primary cancers occurring in the 
same patient. WHO published the International Classification Diseases of Oncology 
(ICD-O) as a standard for classifying and coding cancer as follows; b) Exhaustivity: 
It defines the degree of the population covered by the registry; in particular, PBCR 
should, by definition, register every single case that occurs in its catchment population. 
On the other hand, for the case ascertainment, there are certain methods to determine 
the degree of completeness of registration, such as comparison with death certificates 
and cancer-registry records; c) Validity: It defines the accuracy of the work of the staff 
with the accuracy of recorded data that are greatly enhanced by consistency checks 
carried out at the time of data entry. Data validity can be assessed in several ways, such 
as the proportion of cases with microscopic verification of diagnosis, a very useful 
index, because it may represent the incompleteness of data collection, and such as 
re-abstracting and re-coding a sample of cases to assess validity data. d) Opportunity: 
It defines the trade-off between data timeliness and the extent to which the data are 
complete for reporting. Timeliness depends on the time during which the registry can 
collect, process, and report complete and accurate data. Methods such as a delay model 
estimate the undercount at the time of reporting, which gives an indication of the 
degree of completeness relative to other registries [19, 20].

2.3 Prevention and control

Accurate information on cancer burden is important in establishing priorities 
and targeting cancer-control activities. PBCR forms an essential part of rationale 
programs of cancer control. The annual number of incident cancer cases (new cases) 
provides an indication of the resources needed for primary treatment, and the num-
ber of prevalent cancer cases (new and old cases) describes how many individuals are 
in need of regular long-term follow-up [15]. Therefore, cancer-registry data can be 
utilized in a wide variety of areas of cancer control, ranging from etiological research 
through primary prevention, health-care planning, and patient care. Consequently, 
prevention, screening, and early detection entertain overlapping goals—either that of 
avoiding cancer altogether or treating it when the odds of success are at their highest. 
Thus, prevention can be primary when avoiding the effective contact of a carcino-
genic agent with a susceptible target person. Prevention is secondary when stopping 
the disease from the beginning by the detection of a precursor lesion at an individual 
patient’s check-up, or through population screening, while it is tertiary when it 
includes strategies to promote the early detection of second primary cancers, as well 
as follow-up and treatment-related complications in cancer survivors.

a. Primary prevention. Prevention is implemented in two ways—a) by the avoid-
ance, interruption, or abatement of carcinogenic exposure, and b) by vaccination, 
such as that of hepatitis B virus (HBV) or papillomavirus (VPH) or by dietary 
chemoprevention (increasing vegetable intake). Hence, cancer registries can play 
an important role in monitoring and evaluating the effectiveness of primary pre-
vention. For instance, trends in the incidence of cancer can be related to changes 
over time in exposure to cancer risk factors. Therefore, public-health initiatives 
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such as reducing smoking, curbing obesity, and improving cancer screening and 
vaccination rates could be furthered by targeting messages to the person at risk of 
cancer or those with susceptibility to cancer, based on cancer-registry informa-
tion. Cancer-registry information can also be employed for monitoring occupa-
tional groups of individuals at risk for exposure to various carcinogens or even 
to promote health-care education that influences behavior or social influences or 
directly on patients [15, 21].

b. Secondary prevention. Prevention by screening or early detection involves the 
use of tests to detect cancer before the appearance of signs or symptoms. The 
value of early detection lies in the possibility of detecting cancer when it is still 
localized and more easily curable. Cancer registries can play an important role 
in the evaluation and monitoring of screening programs aimed at detecting 
preinvasive conditions; in some cases, the disease can be detected in a premalig-
nant state, for instance, dysplasia of the cervix or stomach, and adenomas of the 
colon. Cancer-registry information has been used in routine data-based studies 
to examine trends in disease rate in relation to screening frequencies within a 
population and to compare disease rates between different populations with the 
coverage offered by their screening programs. The benefits of secondary preven-
tion include the possibility of simpler and less expensive treatment, as well as less 
pain and disability [15, 22].

c. Tertiary prevention. Tertiary prevention includes the ongoing surveillance, care, 
and rehabilitation of patients with cancer, the early detection of second primary 
malignancies, and other treatment-related complications in cancer survivors. 
Tertiary prevention should reduce risk factors for second malignancies and for 
other long-term complications. Although more persons are living longer after 
an initial diagnosis of cancer, environmental and lifestyle risk factors, treatment 
modalities, and the underlying genetic basis of many cancers predispose survivors 
to develop second primary malignancies. Other complications that have recently 
become more evident are long-term adverse effects from chemotherapy that 
require assessment and early management, these effects include cardiotoxicity, 
neuropathy, ototoxicity, renal failure, and the development of osteoporosis in 
women with hormone-dependent malignancies. Cancer registries can play an 
important role in providing survival-analysis data that are useful in the evaluation 
of cancer care in the area covered by the registry, in that all cancer cases will be 
included regardless of the type of treatment they may have received. Time trends 
in survival are useful to assess the extent to which advances in treatment have 
exerted an effect on the population. Cancer survival is a key index of the overall 
effectiveness of health services in the management of patients. Differences in 
survival have prompted or guided cancer-control strategies [15, 23].

2.4 From the manual to the bioinformatics era

The approach of recording information on all cancer cases in defined communities 
dates from the first half of the twentieth century, and there has been a steady growth in 
the number of cancer registries. Prior to past decades, data from tumors and patients 
were collated via a manual process; consequently, this led to a limited variety, slow 
procedure, and low accuracy. In manual cancer registries, the incoming documents 
were checked against an index, this index generally with information recorded on cards 
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and arranged alphabetically by name. Each index card would contain the complete case 
information. With the beginning of computer technology and the increasing number 
of computerized data sources for cancer registries, the traditional operation changed, 
moving from paper to digital-data sources, and with the introduction of electronic 
medical records, it currently generates gigabytes of information per day [16, 18].

Perhaps the biggest change and the most relevant innovation in health-care data is 
related to information technology (IT), which is a multidisciplinary area that com-
bines software bioengineering, electronics, and computer science. These technologi-
cal advances can also improve cancer registration by integrating electronic medical 
records, linkage with data sources, digital monitoring, and new diagnostic technolo-
gies, which at present produce an unprecedented quantity and diversity of routine 
electronic data. Cancer-registry databases are often combined with other electronic 
health records, such as laboratory results, vital signs (imaging files, radiography), 
physician notes, etc., because patients may receive cancer care at multiple services 
within a clinic or hospital, both public or private, within a region or geographic area. 
Consequently, the amount of data collected and stored digitally is growing expo-
nentially, and it is critical for the adoption of new IT is critical to attend to this large 
amount of data in order to acquire a more comprehensive and accurate picture of the 
cancer burden [24].

Particularly, the cancer-registration database should provide several function-
alities, such as patients’ information, medical records, analyses, and reports. WHO 
launched CanReg software, an open-source tool developed by IARC especially 
designed to input, store, check, and analyze population-based cancer-registry data. 
CanReg software is updated with checks on consistency according to the international 
guidelines as follows—age-incidence-birth place; age-site-histology; site-histology; 
behavior-site; behavior-histology; and basis of diagnosis-histology. CanReg5 is 
available in the Chinese, English, French, Portuguese, Russian, and Spanish languages 
and can be downloaded free of charge from the International Association of Cancer 
Registries (IARC) [14].

Advancing data-processing technologies and bioinformatics are of paramount 
importance in understanding Big Data in cancer registration. Bioinformatics uses 
advanced mathematical algorithms and technological platforms to store and trans-
form data into an interpretable format. Recently, there has been an increased usage 
of virtual repositories or “data clouds” to link and improve access; additionally, the 
cognitive computing of “artificial intelligence” and machine learning are gaining in 
popularity [25]. The use of new cutting-edge disciplines to generate and analyze data 
is a trend that has evolved between traditional medicine and precision medicine.

a. Big Data: Usually, this has been used to develop systems to organize and 
compile large-scale datasets that cannot be captured, managed, or processed 
by common software tools. Currently, Big Data is characterized by the 5V as 
follows—1)  volume: Big Data is large in size, containing many data records of 
multiple subjects; these include diagnostic work-ups such as clinical, radiologi-
cal, and pathological and treatment data, and surgery, systematic therapy, 
radiotherapy, response, and complications; 2) variety: Big Data comprises an 
enormous variability in data types and include several given data types such 
as weight, laboratory results, etc. Many different data types enrich the quality, 
and usefulness and challenges regarding whether their heterogeneity warrants 
standardization; 3) velocity: Big Data possesses two velocity aspects—a) to 
create at an increasingly high speed, and b) to be computed relatively rapidly; 
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4) veracity: Incorrect data values or missing data undermine the ability to draw 
acute statistical conclusions on the distribution of values and the relationship 
between data elements, and 5) value: Setting up a data infrastructure to collect 
and interpret data is only worthwhile if it enables the generation of data-derived 
conclusions or measurements based on accurate data that can truly lead to meas-
urable improvements or impacts on cancer healthcare [26, 27]. However, the 
potential of Big Data remains to be discovered for cancer registration, especially 
in LMIC, because medical Big-Data mining continues to face challenges, mainly 
due to that in these countries the hospital electronic medical-records system is 
missing or is poor in openness, scalability, and budget.

b. Data Mining: This can search for potentially valuable knowledge from a large 
amount of data, mainly divided into data preparation, data mining, and the 
expression and analysis of results, processed with methods in terms of the struc-
ture, storage, design, management, and application of the database. The purpose 
of the emergence of data-mining technology is not to replace traditional statistical-
analysis technology but is the extension of the statistical-analysis methodology. 
Data-mining methods can be divided into the following two categories that can be 
applied in cancer registration—descriptive and predictive. Descriptive patterns 
characterize the general nature of data, including association analysis and cluster 
analysis, while predictive patterns are summarized on current data, including 
classification and regression [27].

c. Artificial Intelligence: This paradigm represents a novel frontier and innova-
tive tools for cancer control. Current epidemiological research in conjunction 
with cutting-edge informatics technologies produces data mining and artificial 
intelligence (AI). Artificial intelligence is conventionally defined as the ability of 
a computer system to perform acts of problem solving, reasoning, and learning, 
and, among all of the latter, independent learning is the most important ability, 
as it mitigates the need for human intervention to continually enhance the per-
formance of the system for it to work more efficiently with increased reliability 
and timeliness [28, 29].

3. Conclusion

Given the diversity of cancers in different geographic areas, it is necessary to base 
cancer-control activities on customized cancer profiles obtained through cancer 
registration.

Global figures of the burden of cancer across the different geographic areas are 
made possible by cancer-registry data. The most efficient method for addressing the 
cancer challenge is by means of the development and implantation of a cancer-control 
plan whose core indicator is the cancer registry.

Cancer-registry statistical results could be used in different fields. These include 
etiological investigation, primary prevention (evaluation of cancer-control programs 
to avoid carcinogenic exposure and vaccination), secondary prevention (evaluation 
and monitoring of screening and early-detection programs), and tertiary preven-
tion (evaluation of care and rehabilitation in cancer survivor patients, the impact of 
changes over time, and survival analysis), for the benefit of individuals as well as of 
society as a whole.
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Abstract

To conform to FAIR principles, data should be findable, accessible, interoperable,
and reusable. Whereas tools exist for making data findable and accessible, interoper-
ability is not straightforward and can limit data reusability. Most interoperability-
based solutions address semantic description and metadata linkage, but these alone
are not sufficient for the requirements of inter-comparison of population-based
cancer data, where strict adherence to data-rules is of paramount importance.
Ontologies, and more importantly their formalism in description logics, can play a
key role in the automation of data-harmonization processes predominantly via the
formalization of the data validation rules within the data-domain model. This in
turn leads to a potential quality metric allowing users or agents to determine the
limitations in the interpretation and comparability of the data. An approach is
described for cancer-registry data with practical examples of how the validation
rules can be modeled with description logic. Conformance of data to the rules can
be quantified to provide metrics for several quality dimensions. Integrating these
with metrics derived for other quality dimensions using tools such as data-shape
languages and data-completion tests builds up a data-quality context to serve as an
additional component in the FAIR digital object to support interoperability in the
wider sense.

Keywords: cancer registries, data interoperability, ontologies, description logics data
harmonization, data validation, data quality, FAIR data

1. Introduction

Comparison of cancer indicators across different regions and countries is important
to understand the effectiveness of cancer prevention and control measures. Consider-
able care has to be taken however to ensure that the data are indeed comparable and
have the necessary level of quality not to result in the production of biased or mislead-
ing statistics. Centralized processes to ensure comparability of data are costly in terms of
time and resources and should ideally be supported with efficient and effective
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automated tools. The goal towards the eventual federation of such processes requires
the means of formally ascertaining the level of the quality of the underlying data.

1.1 Population-based cancer registries

Population-based cancer registries (CRs) are information systems designed for the
collection, storage, and management of data on cancer patients. They collate infor-
mation on all cancer cases occurring in a defined population and play a critical role in
the planning and evaluation of cancer control activities at population level (particu-
larly via trends in incidence, mortality, prevalence, and survival), as well as in identi-
fying good practices of patient care [1, 2]. They also provide the means for evaluating
the effectiveness of screening programs and contribute actively to cancer epidemio-
logical research.

CRs may be nationally based, covering the entire country (such as in Europe for
Finland, Sweden, and Slovenia), or regionally based (such as in France, Italy, and
Spain). Whereas regional CRs may provide total coverage of the country, in some
cases they only provide partial coverage and estimations based on the partial coverage
are used to provide national statistics. The production of reliable statistics is directly
dependent on the quality of the underlying CR data.

1.2 CR data collection and cleaning process

The data collected by a CR are in accordance with the purpose for which the registry
has been established, dependent on the available information and resources. Neverthe-
less, the accent is on the quality of the data rather than on the quantity [3]. Whereas the
initial focus was on monitoring cancer incidence and the trends over time, many
registries now collect patient follow-up details in order to compute survival.

CRs need to register all cancers diagnosed in a defined area and have consequently
to access multiple data sources, including hospital discharge and outpatient records,
pathology laboratory results, oncology/radiotherapy/clinical hematology records and
death certificates. The combination of such sources is the cornerstone of the data
collection process [4]. Additional data sources include screening programs, commu-
nications from general practitioners, drug prescriptions, and insurance reimburse-
ment claims.

Sets of rules and linkage routines are normally used to create provisional incidence
records, which are then verified within a few months to confirm or discard cases [5].
Once the incidence data set has been consolidated, the data are thereafter cleaned
according to specific data-cleaning rules. Additional to the local CR procedures,
wider standards for data collection, coding, reporting, and validation are required to
facilitate data interoperability. Such standards are generally defined and agreed at
national or transnational level, especially in relation to the data comprising the base
denominator or the common data set.

1.3 Importance of CR data harmonization

Within the last couple of decades, CR data have improved dramatically in quality
and quantity, due largely to technological advances and the improved means for
reliable record linkage [6, 7]. Owing to the fact that CRs collect and integrate data
from very heterogeneous multiple information sources, a process of data harmoniza-
tion is required both preceding and following linkage according to national and
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internationally accepted procedures. This process of harmonization has been defined
as “all efforts to combine data from different sources and provide users with a com-
parable view of data from different studies” [8] and is a critical element for accurate
and meaningful inter-comparison of CR data. It is also extremely important for the
correct usage of anonymized or aggregated CR data in secondary-data analyses [9].

An example of the importance of CR data harmonization relates to the implemen-
tation of the 1995 European Network of Cancer Registries’ (ENCR) recommendations
for the coding of bladder tumors in the Scottish CRs in the year 2000. After the
introduction of the recommendations, bladder tumor incidence rates halved [10] and
became similar to those of other registries following the same rules. Notwithstanding
such changes in coding, it always remains possible to calculate rates with the previous
rules in order to assess time trends.

1.4 CR associations and networks

In the US, the North American Association of Central Cancer Registries (NAACR)
develops and promotes uniform data standards for cancer registration. These stan-
dardization efforts are of direct importance to the North American Surveillance,
Epidemiology, and End Results (SEER) program [11] involving twenty-one North
American CRs covering more than one third of the U.S. population.

Within Europe, the standardization efforts of the ENCR, comprising over 150
individual registries, are similarly of importance to the European Cancer Information
System (ECIS) [12]. The International Association of Cancer Registries (IACR), the
International Agency for Research on Cancer (IARC), the European Commission, and
ENCR have all played an essential role in European CR harmonization.

The harmonization efforts ultimately benefit endeavors to compare cancer statis-
tics at the global level [13, 14]. Data harmonization for inter-comparison purposes is
generally achieved via the specification of common data sets in which the ranges and
interdependencies of a core set of variables are defined by an agreed set of specific
rules. The harmonization process is time consuming and requires consultation and
agreement across a wide range of stakeholders, especially when the common data set
serves multiple purposes. An example of a common data set comprising some fifty
data variables and the rules specifying the variable values/ranges and the inter-
variable relationships is provided in [15]. The ENCR common data set includes vari-
ables related to the patient, the tumor (including stage), treatment, and follow-up.

Owing to the need to ensure a high and consistent level of quality and harmoniza-
tion, the CR common data sets are currently collected and processed centrally. Whereas
centralized processes help control and ensure consistency, they add extra time delays in
making the data available – not least from the overheads occasioned by increasingly
stricter data-protection paradigms. Data cleaning and harmonization for CR inter-
comparison purposes could be made more efficient by devolving the centralized pro-
cesses to the local level – so long as consistency and data quality can be assured.
Conformance of CR data to the FAIR data principles is key to realizing this aim.

1.5 FAIR data principles

The four principles of FAIR data, encompassed in their felicitously named
acronym, underlie the need for data to be: findable, accessible, interoperable, and
reusable [16], also at a machine-readable and inferable level. The meaning of each
term is elaborated by a set of three or four qualifying elements. The challenges to
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making data FAIR, in terms of the questions that have to be addressed, and some of
the mechanisms towards meeting those challenges are summarized in Table 1.

The foundations of FAIR were in fact laid down in several earlier initiatives [17]
and the EU is actively supporting activities to progress the underlying concepts.
Interoperability is arguably the most challenging of the four FAIR data principles
outside of access to personalized data and is discussed further in Section 2. In relation
to findable data, health data providers in many countries have started to create data
portals and data catalogs.

Whereas a number of international CR portals provide access to anonymized and
aggregated CR data sets [11, 12], it is not usually possible to provide secure access to
record-level data through automated protocols due to the sensitive nature of health
data, although SEER does provide an example of a way to access cancer data following
a set of specific conditions. The challenges to CR data accessibility as far as record-
level data are concerned are in fact less technical than administrative in view of the
legal aspects of data-protection laws. Indeed, they are generic to all data where iden-
tification of a person is possible and, even with anonymized data sets, care has to be
taken to ensure that persons cannot be re-identified using other data sources. Steps are
being taken in the EU, where the data-protection laws are amongst the strictest in the
world, to address mechanisms to facilitate authorized access to health data.

FAIR data
principle

Questions to address Possible means for addressing the needs

Findable Do the data exist and where exactly? Data catalogs and inter-linkage of catalogs,
with relevant search functions; registration
of the data under unique identifiers;
persistent links and identifiers; searchable
metadata; appropriate synonym lists for
search terms

Accessible Is authorization needed to access the data?
How can the data be accessed physically?

Data access and user identification controls;
authorization request interfaces; application
programing interfaces; data extraction
scripts; file format metadata; identification
of relevant application tools

Interoperable Can the data be integrated/combined fully/
partially with another data set? Can the data
be loaded from different applications? Are
the data properly comparable with other
data? What is the context of the data? How
do the variables inter-relate? What are the
measurement units of the variables? How
can the measurement units be mapped to
similar terms in another data set measured
in different units?

Metadata descriptions of data variables;
linkage of metadata terms to standard data
dictionaries; mapping systems; knowledge
organization systems; data quality contexts

Reusable Does the data set contain limitations/
disclaimers/assumptions? Are there data
restrictions/licenses? Can the data be used
for other purposes? Will the data still be
accessible at a future date? May the data
change over time?

Contextual and provenance metadata; data-
usage licenses; data persistence
mechanisms; data-maintenance policies

Table 1.
Challenges involved in making data FAIR, some of the questions that have to be addressed, and possible
mechanisms for addressing them.
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Reusability for CR data mainly refers to their use for secondary-data purposes and
hinges on accurate and comprehensive description of the data in both the contextual
and semantic sense. In this regard, there is a close relationship with the principle of
semantic interoperability (c.f. Section 2.1) – if the data are comprehensively
described, the possibility for data reuse is greatly assisted. The latter may be appreci-
ated to some extent by considering SEER data, which are well described in terms of
metadata and draw from data adhering to the NACCR data standards. SEER data have
consequently led to hundreds of scientific publications on cancer epidemiology. In
contrast, the health data environment in Europe is extremely fragmented, but recent
initiatives on data reuse are described in [18], including national initiatives in Finland,
France, Portugal, and Italy. Within the EU as a whole, the first preparatory steps have
been undertaken to create a European Health Data Space (EHDS) [19] for facilitating
primary and secondary reuse of health data.

2. Data interoperability

The three qualifying elements defined under FAIR’s interoperability principle [16]
are in relation to knowledge representation – with particular reference to the use of
formal, shared languages and vocabularies as well as linkage to other data descriptors/
metadata. Such aspects largely refer to syntactic and semantic interoperability.

2.1 Semantic interoperability

Mechanisms to address semantic interoperability include metadata schemas draw-
ing on standard data dictionaries and thesauri, metadata catalogs (e.g. Data Catalog
Vocabulary, DCAT [20]), metadata registries (e.g., ISO/IEC 11179 metadata registry
standard [21]), knowledge organization systems (e.g. Simple Knowledge Organization
System – SKOS [22]), linked open data (LOD) or any combination of these. Such
mechanisms can be incorporated into frameworks and architectures designed for the
purposes of supporting FAIR data processes.

A non-exclusive list of FAIR-supporting infrastructures include: beacons [23, 24],
used primarily for discovering and sharing of genomic data; a federated semantic
metadata registry framework [25], which also provides a potential model for
population-based patient registries including CRs [26]; the MOLGENIS data platform
for data sharing [27]; the Apache Atlas data governance and metadata framework
[28]; the European Open Science Cloud (EOSC) interoperability framework [29]; and
the FAIR digital object framework [30]. The way in which the FAIR digital object
concept is able to support data interoperability, particularly with reference to EOSC,
has been discussed in [31].

The main challenges to semantic interoperability lie in the interlinkage, mapping,
and maintenance of metadata between different standards and systems. The availability
of standard dictionaries and ontologies together with knowledge organization systems
such as SKOS allow data providers to describe their record-level metadata variables in
ways meaningful for data users to combine data sets from different data sources. The
fact that these standard resources are available in machine-readable ways opens up the
possibility for automation of the data-linkage process by intelligent agents, especially
when used in conjunction with data registration and cataloging systems.

As important as the semantic context of data is, it does not fulfill all the require-
ments to make data interoperable. According to the Data Interoperability Standards
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Consortium [32], data interoperability concerns “the ability of systems and services
that create, exchange and consume data to have clear, shared expectations for the
contents, context and meaning of that data.”

Whereas semantic definitions and linkages of metadata can help describe the
context and meaning of data, they cannot per se vouch for the quality of the data. Data
quality is of prime importance for CRs whose data are compared between regions and
countries for epidemiological purposes or for gauging the effectiveness of cancer
healthcare policy initiatives.

2.2 Data quality

Without having some information regarding the quality and veracity of the data sets
to be combined, any assumptions drawn from the data integration will at best be
speculative. The FAIR data principles do not explicitly address such aspects, apart from
in the sense that the usefulness of the data is somehow determinable by the user [33].
One of the qualifying elements under the reusable principle however does require that
(meta)data meet domain-relevant community standards, of which quality could argu-
ably form a part, and acknowledgement is given to the critical importance of the quality
dimension as identified in the initiatives on which FAIR builds [17].

Various ways for defining data quality have been propounded, particularly in
relation to terms of classification/categorization. The ideas build on research
conducted in the 1990s, mainly in relation to total data quality management (TDQM)
for business processes. An overview of this early work [34] further developed the
ideas and formulated a hierarchical data-quality framework in order to addresses the
contemporary needs of big data with a view to developing data-quality evaluation
algorithms. The hierarchy consists of fourteen elements (with a number of associated
indicators) classified under the five dimensions of: availability, usability, reliability,
relevance, and presentation quality. Most of these dimensions turn out to be closely
aligned with the FAIR data principles and are therefore inherent to the objectives of
the FAIR digital object framework (FDOF) [30]. The FDOF provides the means of
resolving the identifier associated with a FAIR digital object into sets of information
relating to the features required by the FAIR data principles. Factoring out these
commonalities essentially removes all but the “reliability” dimension (equating to the
trustworthiness of data) in the hierarchy of [34] and one of the elements (Timeliness)
under the “availability” dimension as summarized in Table 2.

Despite the lack of a universally agreed data-quality system, five of the resulting
six elements are common to five of the six quality dimensions identified in [35], which
also provides suggested metrics. The different sixth elements are “auditability” and
“uniqueness” respectively. In total, the seven quality elements (which we refer to as
quality dimensions in line with the terminology used in [35]) are described in Table 3
together with the proposed means of measurement:

ISO 8000 is an international standard for managing, measuring, and improving the
quality of data. Part 8 of the standard [36] (Information and data quality: Concepts
and Measuring) can be used independently of the other parts and is specifically
focused on providing the means for measuring the quality of data and information
against scales that the standard requires the enterprise to establish. It can therefore be
used as a means for auditing the data quality.

ISO 8000-8 categorizes data/information quality under: syntactic quality,
semantic quality, and pragmatic quality. Syntactic quality relates to the degree in
which the data/information conforms to its metadata specifications and the standard
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Dimension Measure Unit of measure

Completeness Degree in which all the essential data are
provided. Can be measured at both data level
(missing data records) and variable level
(missing variables within a record)

Percentage/ratio (e.g. proportion of
captured data against potential of 100%)

Integrity/
Validity

Degree in which data types are standardized
or conform to rules and relations
encapsulated in the data.

Percentage/ratio (e.g. number of non-
conformant data elements missing as a
ratio of number of records).

Consistency Differences found for data entities (or their
representations) that should be identical or
equivalent

Number (e.g. number of differences)

Accuracy Degree in which the real-life situation is
different from its representation

Percentage (e.g. percentage of records to
that pass pre-specified data-accuracy
rules;

Timeliness Degree in which the data are representative
of the current situation

Time difference

Uniqueness Redundancy of data which could otherwise
be derived, leading to maintenance and
consistency issues

Percentage to total of duplicates data/data
variables

Auditability Ease in which/extent to which auditors can
evaluate the quality of the data

An agreed or standardized scale

Table 3.
Description and proposed units of measurement of the seven generally agreed data-quality dimensions.

Big data quality dimension Big data quality element FAIR principle

Availability Accessibility A

Timeliness —

Authorization A

Usability Definition/documentation I,R

Credibility R

MetaData F,I

Reliability Accuracy —

Integrity —

Consistency —

Completeness —

Auditability —

Relevance Fitness R

Presentation quality Readability A,I

Structure A,I

Table 2.
Cross-matrix of the quality dimensions (and associated elements) proposed for big-data quality [34] with the
different FAIR principles.
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requires the specification of a full set of syntactic quality rules. Semantic quality
relates to the correspondence/relationships of data or information to other entities as
represented in a conceptual model. The standard requires a documented conceptual
model and a description of the means used for verification against the model. Prag-
matic quality concerns usage-based requirements that have to be expressed as specific
perspectives or dimensions not covered by the other two quality criteria. It can relate
to such aspects as accessibility, completeness, security, etc. Using a standard such as
ISO 8000-8 would address the issue of auditability as well as allow the means for
formally specifying the other six quality dimensions and the metrics for their
measurement.

2.2.1 Quality metrics of CR common data set

Regarding the CR common data set, the metrics related to variable-completeness
(i.e. completeness of the common data mandatory variable set), timeliness, and
uniqueness can be relatively easily defined. The common data set specifies the per-
mitted set of variables and qualifies which variables are mandatory. Timeliness can be
ascertained from the most recent batch of case registration dates, and uniqueness can
be addressed by ensuring that the common data-set template does not lead to dupli-
cation of data contained in another variable. The more intricate quality dimensions
regard integrity, accuracy, consistency, and data-completeness (completeness of the
cancer cases within the catchment area of the population).

Whereas integrity and consistency can be assessed from the data, accuracy and
data-completeness have to be ascertained from the real-life situation [35]. It is a
process followed by CRs when cross checking summary values against data from the
primary data feeds (e.g. hospital/clinical records). There may also be accuracy issues
within the primary records themselves, such as incorrect data entry, which may be
difficult to ascertain at the CR level. Integrity and consistency checks may be able to
serve as a proxy in some instances where data entry is incorrect and in violation of the
data rules; more subtle, systematic errors could possibly be detected using variances in
frequency measures on variables. Establishing a formal data-quality process such as
ISO 8000-8 at the first point of data capture is however perhaps the only way in which
to assess the steps taken to ensure data accuracy. Such a process if harmonized across
the data sources could provide a standard metric to integrate into the quality stamp of
further processing operations. Metrics for estimating data completeness of CR data
have been summarized in [37]. The data-quality dimensions most relevant to each
stage of the CR data throughput chain are depicted in Figure 1.

The decision processes underlying the choices to combine data sets dependent on
their quality metrics will depend largely on the intended purpose of the end applica-
tion. The means for one possible decision-making framework is proposed in [38]. The
framework is presented in terms of business-related data but raises a number of
important considerations. It lays down five requirements for data-quality metrics and
argues these requirements in practical examples of metrics proposed by others for
measuring the specific quality dimensions of timeliness, completeness, reliability,
correctness, and consistency (where correctness corresponds to accuracy and the
metric for consistency can be applied also to integrity). The five requirements are:

1.provision of minimum and maximum values;

2.provision of interval-scaled values;
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3.means of determining the metric values on the basis of the associated
configuration parameters and also whether the quality-criteria objectivity,
reliability, and validity of the metric are fulfilled;

4.consistent aggregation of metric values on different data-view levels; and

5.economic efficiency of the metric (i.e. the cost incurred by the metric).

3. Ontologies and underlying foundations on description logics

Ontologies are relevant for describing the semantic relationships between entities
in a data model. Bioportal [39] provides a comprehensive repository of biomedical
ontologies. The Web Ontology Language (OWL) [40] underlies many of these ontol-
ogies and represents the concept definitions and relations between them as sets of
Resource Description Framework (RDF) [41] graphs.

Interestingly however, ontologies formulated on description logic (such as OWL)
can also be made to provide a basis for ascertaining the quality of data sets. A single
tool can thereby be developed to handle both the semantic and the data-quality
contexts. Whereas we present a model for achieving this for CR data, the concept is
sufficiently generic to be applied to other data domains. An important requirement is
that some form of data-validation rules are specified a priori.

For the purposes of comparing CR data, a common data set specifies the
metadata of a minimum set variables to be included. Whereas, the availability of a
common data set is not necessarily an essential aspect of the data-quality model, it
does however aid the process to provide data-quality metrics easily interpretable by
the end application.

Figure 1.
Data-quality dimensions relevant to the different stages in the CR common data set throughput process.
Auditability can span all processes.
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3.1 Description logics

Description logics (DLs) are a family of languages used to represent in a structured
and formal sense knowledge about a given domain [42]. They also provide the means
for a degree of machine-reasoning allowing automated inferences to be made on the
basis of statements concerning that knowledge.

DL languages are classified by language expressivity. Expressivity basically deter-
mines the richness of the modeling capacity of the language; a language with greater
expressivity is able to model more complex relationships but at a cost of computing
performance. In view of the latter, it is generally preferable to limit the DL
expressivity to the minimum needed for the modeled aspects of the domain.

Knowledge about a domain can be captured in an OWL ontology using DL state-
ments that are be classified into TBox and ABox axioms. TBox axioms refer to the
terminological part of the ontology and ABox axioms, to the assertional part. The
terminological part is analogous to the database concept of a database schema, which
describes the structure or layout of the database while the assertional part is analogous
to a particular instance or population of a database described by that schema [43].
Thus, OWL TBox axioms describe the hierarchies and relationships between OWL
classes and ABox axioms describe specific instances of classes, also referred to as
individuals.

The primary two semantic constructs DLs use are: unitary predicates (or concepts)
describing entities equating to OWL classes/individuals; and binary predicates (or
roles, equating to OWL properties) that describe relationships between entities. DLs
are termed as decidable fragments of first-order logic [42] and TBox and ABox
statements can in fact be expressed as first-order logic statements. The expressivity of
a DL language determines the set of operators permitted. The Attributive Language
with Complement (ALC) expressivity allows quite a rich modeling language to handle
most of the validation checks in the ENCR common data set. ALC includes: subclasses
(⊑), intersections (⊓), unions (⊔), negation (⌐), existential restrictions (∃), and
universal restrictions (∀). The restriction operators are used for qualifying the entities
on which a given role acts, with ∃ specifying the notion of an “at-least-one relation-
ship” and ∀ the notion of an “only relationship” and are similar to the existential and
universal quantifiers of first-order logic.

3.2 Transcribing the data model and validation rules in DL

The data-validation rules encapsulate the part of the domain model that minimally
needs to be modeled. The challenge lies in designing the ontology in a way that is
straightforward to understand, easy to maintain, and models the data relationships
satisfactorily whilst performing efficiently under automatic reasoning. Consideration
should also be given to its potential reuse and extensibility. In practice, the interplay
between all these factors may lead to a number of compromises.

Protégé [44] is a convenient, free, and open-source ontology-editing tool that
provides a friendly user interface for creating and testing axioms. Such editing tools
are particularly useful for aiding the design process in which the most appropriate
design patterns may not be immediately obvious. Taking the example of the ICD-O-3
[45] spindle cell sarcoma with morphology code 8801 and tumor behavior code 3
(malignant behavior), the compound code (morphology-behavior) can be modeled in
the ontology in several ways (where the morphology code has been prepended with
the letter “M_” for more convenient class-naming purposes):
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M_8801_3⊑M_8801⊓BehaviorCode3 (1)

M_8801_3⊑M_8801⊓ ∃ hasBehaviour:BehaviorCode3 (2)

M_8801⊓BehaviorCode3⊑M_8801_3 (3)

Eqs. (1) and (2) are similar apart from the fact that behavior in Eq. (2) has been
expressed in terms of an existential restriction. Behavior may not even need to be
modeled at all and just left implicit in the name of the class (since the trailing digit
denotes the behavior code). The choice ultimately depends on how the morphology-
behavior class will be used in other classes. For instance, a prostate tumor can have
ICD-O-3 topography code C619, morphology code 8801, and behavior code 3 and may
be modeled in a similar fashion to Eqs. (1)–(3):

ProstateTumor⊑C619⊓M_8801_3 (4)

ProstateTumor⊑ ∃ hasTopography:C619⊓ ∃ hasMorphology:M_8801_3 (5)

C619⊓M_8801_3⊑ProstateTumor (6)

It could also be modeled as an Abox axiom to denote that this is a specific
instance of a more general prostate cancer class. It is not necessarily a simple
choice since there are advantages and disadvantages to each approach. With
Eq. (5) the concepts of topography and morphology can be declared disjoint (a
topography is not a morphology), but then modeling a tumor type or signature (e.g.
∃ hasTumorSignature:ProstateTumor) would hide the topography and morphology
codes in two existential restrictions:

∃ hasTumorSignature: ∃ hasTopography:C619⊓ ∃ hasMorphology:M_8801_3ð Þ (7)

and thereby makes it a harder task to access the code values without increasing the
language expressivity (such as including inverse operations or complex role inclusion
axioms or other rules). It would be even harder to access the behavior code had Eq. (2)
been used owing to the chain of existential restriction. Eq. (6) results in automatic
class subsumption of the conjunction C619⊓M_8801_3 under the class ProstateTumor
but can lead to higher processing costs than Eq. (4) [46].

Nevertheless, subsumption is a primary mechanism used by automatic reasoners to
make inferences on a knowledge base and is perhaps the most critical factor to take
into account in the design of an ontology that models validation rules predominantly
using TBox axioms. OWL uses the open world assumption (OWA) in which the truth
of a statement is unknown unless it is expressly known to be true/false – the philoso-
phy being that there may always be extra information not yet declared in the knowl-
edge base that has further bearing on the statement. The consequence is that an entity
having topography C619 and morphology M_8801_3 would not be considered as a
ProstateTumor using Eq. (4) for the reason that there may be other as-yet undisclosed
information to describe it further. The work-around would be either to make an
equivalence – which can lead to subtle unintended consequences in more complex
expressions – or to use the form of Eq. (6), which Protégé refers to as a general
concept inclusion (GCI). CGIs provide several benefits in the correct context [47].

Also relevant is the balance between pre- and post-coordination of the ontology [48]
– in pre-coordination, all the relationships are explicitly declared a priori, whereas in
post-coordination a reasoner is used to infer relationships between entities a posteriori.
In addition, other types of rules can be incorporated into OWL ontologies using the
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Semantic Web Rule Language (SWRL). SWRL extends the expressivity of OWL DLs
using Horn-like logic rules (in which logic statements are written in terms of an impli-
cation) and can overcome some limiting cases in OWL at the potential cost of decid-
ability and interoperability [49]. Table 4 summarizes some of the more important
mechanisms that can be employed in validation-type tests.

There are thus a number of careful choices to be made dependent upon how the
ontology will be used. The consequence of these design decisions may compromise the
ability to reuse existing ontologies as well as render the ontology developed unsuitable
for wider purposes.

3.3 Data shapes languages

An alternative to using an ontology for data validation, but which still draws
directly from the data model, is to use a data shapes language such as the Shapes
Constraint Language (SHACL) [50] or Shapes Expressions (ShEx) [51]. Both lan-
guages benefit from the possibility of formulating the rules under the closed world
assumption (CWA) which, contrary to the OWA, considers a statement to be false
unless it has otherwise explicitly been declared to be true.

The degree of complexity that can be handled for the inter-variable validation
checks is more limited, but in cases where this does not pose a problem, SHACL in
particular provides a number of advantages. SHACL is specifically intended as a

Pre/post
coord

Mechanism Utilization Advantages/disadvantages

Post Subsumption Defined classes
(TBox)

Ensures subsumption (since classes are
equivalent). Can give rise to unintended
equivalences

Post Subsumption General Concept
Inclusions (TBox)

Ensures subsumption if the ontology design is
correct. Needs careful ontology design to ensure
the specific order of subsumption, which may
conflict with other requirements

Post Subsumption Individuals and
higher DL
expressivities (ABox)

Greater flexibility and functionality. More
difficult to control logic, and computationally
expensive

Post Inconsistency of
class structure

Disjoint class
definitions

Straightforward to catch any validation errors.
Can lead to unintended class inconsistencies for
ontologies with many class inter-relations

Post Additional logic
(internal to
ontology)

SWRL Provides extra functionality. Difficult to control if
many rules and can lead to portability issues

Both Additional logic
(external to
ontology)

Programming logic Considerable control and extra functionality.
Requires a dedicated computer program and extra
maintenance

Pre Comprehensive
assertions

Predefinition of all
entities and
relationships

All the relationships are known a priori. Ontology
can be very large and lead to performance issues if
interfaced with ontologies requiring automatic
reasoning

Table 4.
Summary of the most important ontology-based mechanisms that can used for data validation purposes with their
main associated advantages/disadvantages.
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language for describing constraints on RDF data and has been used to describe ontol-
ogy design patterns for validating data in Electronic Health Records (EHRs)
conforming to Clinical Information Modeling Initiative (CIMI) models [52].

ShEx can also be used to validate data but the underlying philosophy is different
from that of SHACL. As noted in [53], ShEx is more grammar-related whilst SHACL is
more constraint-related with the result that ShEx puts greater focus on validation
results in contrast to SHACL that gives more attention to validation errors. As
discussed in Section 4.4, ShEx is particularly useful in detecting syntactic and range
errors in the preprocessing stages of CR data validation. Figure 2 provides an over-
view of the applicability of the semantic-web tools to the different data-validation
steps and the quality dimensions they are able to address.

4. Quality criteria for CR data

Before CR data can be compared at inter-regional or international level, they have
to pass through a rigorous cleaning process. From the point of view statistical analysis,
assessment of the quality and reliability of data hinges on the basic requirement of the
representativeness of the data. A large CR data set for which reasonable doubts exist
concerning the data representativeness has less value than a small CR data set with
high representativeness.

More specifically for statistical analyses to derive incidence and survival indicators
from CR data, the two required dimensions are completeness (the confidence that all
diagnosed cancers in the population are actually included in the data set) and accuracy
(the confidence that the proportion of cases with a given set of characteristics truly
reflects reality [37, 54]). Whereas timeliness is another important dimension [54], it
may lead to some trade-off with the degree of data completeness [55].

Figure 2.
Applicability of the semantic-web tools to the different steps of the validation process and the quality dimensions
they are able to measure. Shape languages such as ShEx and SHACL provide the means for finding non-
compliance to the more straightforward data validation rules. More complex validation checks require the
increased functionality offered by DLs maybe in combination with SWRL and dedicated program logic.
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One cause of incompleteness observed in cancer survival studies results from the
varying risk of death from other causes than cancer, and is more pronounced for the
older age brackets [56] (competing-risks phenomenon). Other observational studies
performed with the availability of additional, post factum data reveal that the level of
incompleteness can also be cancer-site specific [55].

In addition, high-quality cancer data should have high comparability between
different populations over time, which can best be achieved using up-to-date, homo-
geneous, and consistent data collection and recording procedures [54]. Application of
the standard data validation rules is one way of ascertaining the comparability of data
between different CRs, as discussed in the following sub-sections.

4.1 Inferring TNM stage

TNM (Tumor, Nodes, Metastases) is a globally recognized cancer staging classifi-
cation system for describing the extent and spread of solid tumors in terms of tumor
size, invasion of lymph nodes, and presence of metastases. One of the validation
checks relates to the validity of TNM stage on the basis of the associated TNM
parameters (including: topography, morphology, pathological/clinical T, N, and M
codes, TNM edition, as well as age, and grade for certain tumor sites). Validity can be
ascertained using the automatic reasoner to infer the stage from the parameters and
compare it with the value provided by the registry. Axioms to model stage can be
defined along the lines of the example taken for stage I prostate cancer:

TNMEd7SiteProstate⊓ ∃ hasBehavior:BehaviorCode3⊓ ∃ hasT: T1⊔T2að Þ⊓
∃ hasN:N0⊓ ∃ hasM:M0⊑TNMStageI

(8)

in which:

∃ hasTopography:C619⊓ ∃ hasMorphology:Carcinoma⊑TNMSiteProstate (9)

TNMEd7SiteProstate⊓ ∃ hasTNMEdition:TNMEd7⊑TNMEd7SiteProstate (10)

and all the ICD-O-3 morphologies associated with carcinoma have the form
similar to:

∃ hasMorphology:M_8140⊑ ∃ hasMorphology:Adenocarcinoma (11)

in which, for example:

Adenocarcinoma⊑Carcinoma (12)

The resulting subsumption process for a CR case record passed in with the values:
topography C619, morphology 8140, TNM edition 7, and TNM parameters: T2a, N0,
M0 would be the following:

a. morphologyM_8140 is subsumed under the class Carcinoma from Eqs. (11) and
(12);

b. topography C619 together with the subsumed morphology M_8140 under the
class Carcinoma, are further subsumed under the class TNMEd7SiteProstate
from Eqs. (9) and (10);
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c. the subsumpton result of (b) together with the specified TNM parameters, are
finally subsumed under the stage class TNMStageI.

The value of stage inferred by the reasoner can then be compared with the stage
value provided with the CR case record in order to validate the record. Axioms
described in this manner can be developed to provide a modular structure to model
TNM stage for all editions of TNM.

4.2 Multiple primary tumors validation check

For the purpose of deriving cancer incidence indicators, it is important in patients
with multiple cancer case records to distinguish between tumors that are linked with
an existing case and those that are not. The latter are referred to as multiple primary
tumors and they need to be validated.

An international set of rules provides the definition of multiple primary tumors
[57]. Transcribing the rules into DL requires a higher expressivity owing to the need
for ABox statements, inverse relationships, and qualified number restrictions. These
requirements arise from the need to analyze the different permutations of the possible
tumor pairings according to the rules. The latter can be transcribed as a set of TBox
axioms which are used by the reasoner to test the dependencies of multiple tumor
cases defined as a set of ABox axioms. TBox axioms take the form of constructs
encapsulated in Eqs. (13)–(16) below (described in greater detail in [58]):

∃ hasMorphology:MorphGroupX ⊓ ∃ hasMorphoplogy:MorphGroupXDep
⊑DuplicateMorphologyGroup

(13)

Eq. (13) models the conjunction of two dependent morphology groups as a
sub-class of the class depicting a duplicate morphology, according to one of the
multiple primary tumor rules:

DuplicateMorphologyGroup⊓ ∃ hasMorphoplogy:ICDO3HematologicalMorphology
⊑DuplicatePrimaryCondition

(14)

Eq. (14) models the conjunction of a previously-determined duplicate morphology
with a hematological morphology type as a duplicate primary tumor condition,
according to another of the multiple primary tumor rules.

≥ 2hasTopography: C26⊔C68⊔C76ð Þ⊑DuplicateTopographyGroup (15)

Eq. (15) models the rule that if the two topographies of a tumor pairing are in any
of the “other or ill-defined” topography groups or subgroups they are considered a
duplicate topography group.

DuplicateMorphologyGroup ⊓DuplicateTopographyGroup⊑
DuplicatePrimaryCondition

(16)

Eq. (16) models a resulting duplicate primary tumor for the case of a duplicate
morphology and a duplicate topography.
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ABox axioms are built up using permutations of tumor morphologies and topog-
raphies, where a tumor is defined by the TBox axiom as the conjunction of one
morphology and one topography:

ICDO3Tumor �¼ 1 hasMorphology:ICDO3Morphology⊓ ¼ 1 hasTopography:ICDO3Topography

(17)

Accessing the morphologies from two tumor individuals to derive a morphology
permutation can be performed using the ABox axiom:

p1_tpM1 : ∃ hasMorphology: ∃ hasMorphology�: p1_t1ð Þð Þ⊓
∃ hasMorphology: ∃ hasMorphology�: p1_t2ð Þð Þ

(18)

where the name of the individual p1_tpM1 refers to the first morphology
permutation of the two individual tumors p1_t1, and p1_t2 of a given patient p1.
Since the morphologies have already been assigned in the tumor ABox axioms
according to the pattern of Eq. (17), their specific values can be extracted using the
inverse relationships in Eq. (18). Similar axioms can be defined for the topography
permutations.

ABox axioms for the tumor pairings (containing a morphology pairing and a
topography pairing) can then be specified according to the template:

p1_tc1, p1_tpM1ð Þ : ∃ hasTumorPermutationMorphology ⊓

p1_tc1, p1_tpT1ð Þ : ∃ hasTumorPermutationTopography
(19)

in which p1_tc1 refers to the first tumor pairing for patient p1 and p1_tpM1 and
p1_tpT1 refer to the first morphology pair and topography pair respectively.

The axioms can be constructed automatically from the input records since the
cancer-case records have a patient identifier and a tumor identifier and therefore
all the tumor-pairing permutations can be ascertained in a preprocessing step. On the
basis of the TBox axioms, the reasoner classifies the ABox axioms under the class
DuplicatePrimaryCondition for instances where the multiple-primary rules are violated.

4.3 Tumor signature validation check

The third batch of validation checks concerns the specificities of tumor types,
particularly in relation to parameters including basis of diagnosis, grade, age at diagno-
sis, sex, and topography-morphology-behavior inter-dependencies. These checks con-
cern many of the rule tables provided in [15] and are examples of rules that be modeled
in a variety of ways as discussed in Section 3.2 and which ultimately can be related to
the balance between pre- and post-coordination of classes [48].

A tumor type, which we refer to as a tumor signature, comprises a topography/set
of topographies in association with a set of morphologies. The topographies and
morphologies may additionally specify a number of restrictions on values of associ-
ated variables such as age of patient at diagnosis, sex, basis of diagnosis, grade, etc.

Pre-coordination allows the greatest control over the definition of tumor signa-
tures since it allows each tumor signature at its most granular level to be defined
independently. Consequently, the permissible ranges of values of all the dependent
variables can be specified for each tumor signature individually. The drawback to this
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approach is that it would result in over 200,000 unique tumor-signature classes and
could have implications on reasoning speeds of other ontologies that use them.

The design used by SNOMED CT [59] to handle all the possible clinical terminol-
ogy class definitions is to create a number of general classes in a pre-coordinated way
and capture the specializations of those classes either in equivalent classes or GCI
expressions that would be determined in a post-coordinated way by means of the
reasoner [48]. Emulating such a design would allow, for instance, the qualifying rule
of age on a given morphology/set of morphologies to be expressed as a specialization.
Taking as an example the morphology M_8970 (Hepablastoma) which has a qualify-
ing rule for ages greater than five, the associated morphology class can be sub-classed
from a data property such that:

M_8970⊑ ∃ ageAtDiagnosis: ≥ 6f g (20)

The resulting subsumption for hepablastomas thereby provides a mechanism
through which it can be ensured that all qualifying rules are respected in the data.

4.4 Data quality metric

Once the rules have been established in the ontology, the individual data
records can be validated according to the various groups of tests (e.g. stage,
multiple primaries, tumor signature, etc.). Of the seven generally agreed dimensions
for data quality listed in Section 2.2, integrity, consistency, and variable-completeness
of CR common data sets are ascertained in a relatively straightforward manner for
each of the tests and scored in percentage terms of conforming records using the
metric:

1� Re

RT

� �
� 100 (21)

where Re is the total number of non-conforming records to the particular test
parameters and RT is the total number of records used within the test. Eq. (21) takes a
similar form to that proposed in [60] for both completeness and consistency quality
dimensions and was assessed in [38] to fulfill all the five data-metric requirements
discussed in Section 2.2.1.

Variable-completeness would describe the extent of the availability of informa-
tion/variables necessary for running the specific test. Integrity would provide infor-
mation on the number of records passing the test. Consistency would then be a
measure of data conformity across tests – e.g. consistency of the morphology-
topography code combinations not just within one individual test but across all tests
(TNM, multiple primary and tumor signature).

The syntactic part of the integrity dimension (as differentiated in ISO 8000-8) can be
measured from a preprocessing stage which in general is necessary to ensure the correct
format of the cancer-case records before passing them into the DL-based validation
checks. This preprocessing stage can itself be performed also with direct reference to the
datamodel using a shape language such as ShEx as discussed in Section 3.3. ShEx is
particularly appropriate for validating the format and ranges of the variable values and
benefits from the possibility of formulating the rules under the closed world assumption.
The output of this stage can therefore provide ametric for data-type integrity also in
percentage terms of records conforming to the ShEx schema.
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As noted in Section 2.2.1, the quality dimensions posing greatest difficulty are data-
completeness and accuracy. Variousmetrics to estimate the former have been proposed
[37] and those based onmortality-incidence ratios or survival probabilities conformwell
to the data-metric requirements of [38].Whereas accuracy issuesmay be insinuated from
the result of the integrity/validity checks, the surest way of detecting themwould be
through a data-auditing process such as that advocated by ISO 8000-8.

4.5 Process automation

The chain of processes from preparation of the CR common data set to reading
cancer case records into the ontology and performing the validation checks and
counting the non-conforming records can be automated using the OWL application
program interface (OWL-API) [61]. The OWL-API provides methods for accessing
the ontology axioms, invoking the reasoner, and polling the results of the reasoning
process. The API also allows the incorporation of program logic to permit greater
expressivity although at the expense of increased maintenance.

The strength of the ontological approach is that the data model and the data-quality
model – at least for the integrity and consistency dimensions remain in synchronization
owing to the fact that they are integrated in the same sets of ontologies. Not only does this
aid transparency of the validation process but it also simplifies maintenance and version
control via the URIs pointing to themost current version of the ontology.

Moreover, the outputs of the validation process are readily verifiable by a trusted
third party since it would basically be a matter of rerunning the checks on the CR file
and comparing the outputs. For situations where the integrity of the quality metrics is
important, the trusted third party can provide such assurance by integrating the
validation checks together with the tests for data completeness and accuracy into a
data-quality certification scheme such as ISO 8000-8.

5. Constructing a data-quality context

The quality context is as important as the semantic context for interoperability of
CR data and as applicable to machine-based reasoning as it is to human-based reason-
ing; even though the semantics might admit the apparent compatibility of data sets,
any inferences drawn from their combination could be legitimately challenged with-
out due attention to the data quality. The importance of taking CR data completeness
into consideration when comparing survival estimates between different populations
has been emphasized previously [62]. In short, data quality is a critical issue for health
data where erroneous inferences could lead to potentially dire consequences [63].
Encapsulating quality metrics in the metadata associated with the data set would
adapt well to the FAIR digital object framework, and indeed such a model was
proposed as far back as 1999 [64] and more recently in [65].

Agreeing a common set of data-quality metrics is however not an easy task and
perhaps explains the lack of an overall framework. Whereas the difficulties are more
acute for unstructured data [66] and require complicated semantic enrichment tech-
niques [66], processes dealing with structured data pose less difficulty. The key to a
potentially elegant solution able to unify both semantic and quality aspects of inter-
operability may lie in the use of OWL ontologies for describing common data models,
or at least relevant parts of them.
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If designed carefully, OWL axioms can be used for validating CR data sets against
predefined rules as discussed in Section 4, thereby providing a quantitative quality index
or set of indices for certain quality dimensions onwhich to base pragmatic decisions
regarding the compatibility/comparability of different data sets. The availability of such a
decision framework is critical to any eventual devolution of the centralized data-cleaning
processes to the local level. It is also critical for purposes of secondary-data usagewhere the
end user/application has to be aware of issues limiting the extent and purpose for which
different data sets can be used.

With respect to the generally agreed seven quality dimensions, completeness of the
mandatory variable set (variable-completeness), integrity and consistency are ascer-
tainable from the validation process of the CR common data sets with each dimension
being measured in percentage terms of conforming records as suggested in [35] and
according to Eq. (21). Uniqueness can be ensured by a correct definition of the
common data set template and therefore be provided as a default measure for all CR
common data sets. Timeliness can be determined directly from the data set variable
relating to cancer-case registration date providing a metric easy to measure. Data-
completeness can be estimated in several ways as discussed in [37], one of which also
provides a quantifiable metric along the lines of Eq. (21). The metrics for these quality
dimensions would therefore all fulfill the requirements stipulated for a data metric
supporting a decision-based framework [38].

The remaining quality dimension, accuracy, is dependent on the primary-data
capture process, which is outside the control of cancer registries. Whereas, perfor-
mance of the validation checks and frequency analyses of selected variables may
provide some proxy measures for systematic errors, a more robust method would

Figure 3.
Depiction of a FAIR cancer-registry data set in terms of a FAIR digital object (FDO). The FDO comprises the data
itself and an associated set of metadata components that describe the data and their context. The FDO is registered
in a catalog to make it findable. One of the metadata components provides information on how to access the data.
Another metadata component describes the metadata and semantics of the data-set variables and links to standard
dictionaries using the semantic relations of knowledge organization systems (e.g. SKOS). The semantic context
provides an essential part of data interoperability and reusability. A further metadata component provides the
data-quality context and “dots the ‘i’ of interoperability” by adding the second vital ingredient towards making the
data interoperable and reusable.
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need a data-auditing process in the various stages of the data pipeline. The resulting
accuracy metrics could then be passed along through each stage to form a compound
accuracy measure on the data set.

In thisway, a comprehensive and structured data-quality context could be constructed
and thereafter provided as an additional component of the associated FAIR digital object,
as illustrated in Figure 3. This component would provide a direct means for decision-
basedmechanisms to compute quantitative differences between quality measures of data
sets and thereby infer the suitability of their integration in some fashion.

6. Conclusions

Achieving data interoperability, at least in the widest sense, is a major challenge. In
order to be able to integrate or compare heterogeneous data sets, data users non-
expert in the respective data domains need a considerable amount of contextual
information. Whereas these needs can be met partially by semantic linkage of meta-
data, the aspect of data quality is crucial especially in quality-critical disciplines such
as health. The FAIR data principles acknowledge the importance of data quality but do
not address it directly.

A means of quantifying the data quality context in CR data sets along a number of
representative and widely accepted quality dimensions has been presented. These
metrics provide a quality context that can serve as an additional set of metadata within
the associated FAIR digital object and made available with any aggregated data
derived from it. The latter is an important consideration for entities having access only
to the aggregated data sets for which the information is no longer available to verify
the data quality directly from the validation rules themselves.

Having access to this type of data-quality information, even if measured in rela-
tively simple terms, would enable data-processing entities to make certain informed
decisions on the likely compatibility with other data sets. Not only is this a funda-
mental prerequisite to being able ultimately to federate the CR data-harmonization
processes themselves but also to promoting the availability of CR data in ways that
would prove useful and informative for secondary-data purposes. It would also allow
more scrutiny and transparency on the results of secondary analyses that may have
potentially far-reaching consequences.

Although the focus has been on CR data, the ideas are sufficiently generic to apply
as a general framework to other data domains and is amenable to formalization in a
data-quality auditing process such as ISO 8000-8 by providing a conceptual model
and the defined means of verification against the model.
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