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Preface

Nowadays, there is significant scientific and industrial interest in developing a 
robust interface to connect the human brain to a computer-controlled system. The 
potential capabilities of such a system include a wide range of disability services, 
prosthetic organ control, and industrial and military applications. The aim of studies 
in brain-computer interfacing (BCI) is to provide a working tool for patients with 
disabilities to communicate neurophysiological activities into physical actions. The 
human-machine controller expands the degree of freedom and the available options 
for manipulation and navigation of the system by using direct cognitive commands.

This book presents some recently established methods for processing and deep 
learning methods for categorizing EEG signals. The chapters cover a range of topics 
including noninvasive and invasive signal acquisition, signal processing methods, 
deep learning approaches, and implementation of BCI in experimental problems.

The book provides a comprehensive summary of conventional and novel methods for 
processing brain signals. These methods include some subcategories of deep learning 
methods to show the contribution of this methodology to BCI. It also provides an 
overview of the applications of BCI to highlight the growing idea of interfacing 
minds with machines. I hope this book will inspire academic readers and researchers 
with new ideas in this area. I would like to acknowledge the chapter authors for their 
excellent contributions.

Vahid Asadpour
Department of Research and Evaluation,

Kaiser Permanente,
Pasadena, California

Research Scientist (Former),
UCLA,

Los Angeles, California
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Chapter 1

Language as the Working Model
of Human Mind
Amitabh Dube, Umesh Kumar, Kapil Gupta, Jitendra Gupta,
Bhoopendra Patel, Sanjay Kumar Singhal, Kavita Yadav,
Lubaina Jetaji and Shubha Dube

Abstract

The Human Mind, functional aspect of Human Brain, has been envisaged to be
working on the tenets of Chaos, a seeming order within a disorder, the premise of
Universe. The armamentarium of Human Mind makes use of distributed neuronal
networks sub-serving Sensorial Mechanisms, Mirror Neurone System (MNS) and Motor
Mechanisms etching a stochastic trajectory on the virtual phase-space of Human Mind,
obeying the ethos of Chaos. The informational sensorial mechanisms recruit attentional
mechanisms channelising through the window of chaotic neural dynamics onto MNS
that providing algorithmic image information flow along virtual phase- space coordinates
concluding onto motor mechanisms that generates and mirrors a stimulus- specific
and stimulus-adequate response. The singularity of self-iterating fractal architectonics
of Event-Related Synchrony (ERS), a Power Spectral Density (PSD) precept of
electroencephalographic (EEG) time-series denotes preferential and categorical
inhibition gateway and an Event-Related Desynchrony (ERD) represents event related
and locked gateway to stimulatory/excitatory neuronal architectonics leading to
stimulus-locked and adequate neural response. The contextual inference in relation
to stochastic phase-space trajectory of self- iterating fractal of Off-Center α ERS
(Central)-On-Surround α ERD-On Surround θ ERS document efficient neural dynamics
of working memory., across patterned modulation and flow of the neurally coded
information.

Keywords: Human Mind, Chaos, Stochastic Trajectory, Mirror Neurone System,
Neural Dynamics, Electroencephalograph (EEG), Event Related Synchronisation
(ERS)/Desynchronisation (ERD)

1. Introduction

1.1 The multi-dimensional hierarchy of organisational levels in brain

Brains are characterised by every property that engineers and computer scientists
detest and avoid. They are chaotic, unstable, nonlinear, non-stationary, non-
Gaussian, asynchronous, noisy, and unpredictable in fine grain, yet undeniably
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they are among the most successful devices that a billion years of evolution has
produced. Brain systems operate on many levels of organisation, microscopic,
mesoscopic and macroscopic, each with its scales of time and space. Dynamics, the
modelling of change, is applicable to every level, from the atomic to the molecular,
and from macromolecular organelles to the neurones into which they are incorpo-
rated. In turn the neurones form populations, these form the sub-assemblies of
brains, and so on up to embodied brains interacting purposively with the material,
interpersonal, and politico-social environments.

Subsequently, the mesoscopic level, very aptly characterised by nonlinear
dynamical electroencephalographic (EEG) electrical activity [1], seems to be the
optimally suited substratum of interplay of neuronal discharge and its patterning, that
seems to have been very beautifully and intelligently decrypted and decoded through
the armamentarium of digital biological signal processing across linear (relative
and absolute power spectral densities, coherence and others) and non-linear classi-
fiers (entropy, fractal dimensions and others).

The varied discrete and quantal features of Human Brain working and co-opting,
in tandem and in sync, across the dimensions and coordinates of space and time
evolve into the phase-space stochastic trajectory of abstruse and arcane domain of the
Human Mind observing the principles of non-linear dynamics of Chaos [2]. The human
brain provides the scaffold and framework for the functional dynamics of human
mind in real time [3] following the principles of Chaos, further documented by our
centre in 2009 [4] (Figure 1).

Carl Jung has very aptly outlined the schema as “In All Chaos There is A Cosmos, In
All Disorder A Secret Order”. The Secret Order as has been exemplified by Carl Jung
forms the nidus to explore further the realms of Chaos.

Figure 1.
Hilbert transform of EEG lead pair across EEG lead pair for EEG frequency-waveform bands of δ, θ, α, β, γ
representing the stochastic trajectory of neural dynamics in real-time.
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2. The working of the human brain

The Human Brain communicates and interfaces through electrical and chemical
processes in a fractal and self-iterating fashion. The neurones fire at a rate of 5–50/
second through integrate-and-fire neurones and resonate and fire neurones with a
summated thought-processing time of around 329 milliseconds [5].

3. Neurotransmitters

The chemicals deployed by the Human Brain involve neurotransmitters, neurohor-
mones, neuropeptides, neuromodulators inclusive of dopamine, serotonin, acetylcholine,
gamma aminobutyric acid (GABA), glutamate, glycine, adenosine triphosphate (ATP) to
name some of the chemicals. The neurotransmitters seem to be the key to functioning
and influencing the neurophysiology of the Human Brain and are diffusely distributed
with selective cerebral predominances responsible for the genesis of a select personality-
trait brain waves and rhythms. The precursors to the neurotransmitters, amino acids, are
readily available in the diet and the diet (and its interaction with the specific metabolic
patterning of an individual) determines the persona/qualia of an individual.

4. The rigid versus distributed functional patterning

• The Frontal Lobe has a dominance of dopamine and is responsible for the
generation of β, beta-rhythm that represents the state of alertness in an
individual,

• The Prefrontal Lobe being the site of spiritual experience and consciousness
generates the fast brain waves of γ, gamma-rhythm (with frequency of more
than 30/second) through the action of glutamate neurotransmitter that excites
the fast inhibitory synapses interconnecting inhibitory neurones [6].

• The Parietal Lobe has a dominance of acetylcholine that engenders the α,
alpha-waves,

• The Occipital Lobe with the dominance of the neurotransmitter serotonin
induces δ, delta-waves of sleep and memory consolidation and

• The Temporal Lobe does the overall function of a tranquilliser and/or analgesic
through the help of GABA inducing θ, theta wave pattern along the human
mental phase-space.

However, the modular aspect of the Human Brain with rigid configurations (as
proposed by Cajal way back in 1913) has given way to the model of distributed
neuronal networks that has resilience and the capacity to adjust and be flexible to the
demands of internal and external milieu, wherein the mind-set with positivity influ-
ences and modulates the distributed neuronal pools and networks evolving the cogni-
tive abilities of an individual.

A subtle and perceptible paradigm shift has been witnessed across the frontiers of
Neurosciences and Neurology wherein the Human Mind, once thought to be working
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along the framework of modular architectonics, is now envisaged to be traversing
the alleyway along the distributed neuronal pools conjuring onto dedicated and
apportioned networks that have the ability and the interface to crosstalk.

The building block scaffold of the respective dedicated neuronal pools is the
archetypal neurone that has the endowed potential to respond in a space and time
coordinate-locked precept of action potential, the espoused all-or-none phenomenon
that incidentally happens to be the singular canonical principle of functional neurones.
The armamentarium of neuronal language evolved through the presence and/or
absence of action potential all-or-none phenomena along with differential neuronal
architectonics processing inclusive of serial, parallel, divergent, convergent,
reverberating along with inter-neuronal reverberations [7].

The unitary and singular neuronal tenet got segregated through the remarkable
neurophysiological characteristic of learning into dedicated neuronal pools that
became functionally conspicuous and perceptible as sensory, mirror, motor and
interneurones. Such dedicated neuronal pools then evolved the distinctive patterned
waveforms as evinced through electroencephalographic (EEG) signals [8] of theta (θ),
delta (δ), alpha (α), beta (β) and gamma (α) waves and such distributed neuronal
pools then evolved discrete neurodynamical phenomena of

• Event-Related Desynchrony (ERD) [evinced as decrease in Power Spectral Density
(PSD)] and

• Event-Related Synchrony (ERS) [an increase in PSD] in respective wave-forms
bands.

5. The human mind

The Human Mind is the neurophysiological precept that tends to amalgamate the
Triune Brain Complex through the distributed electro-chemical neural circuitry that
follow the non-linear chaotic neural dynamics simulating the principles of Chaos in
Nature [9]. The primacy and singularity of chaos and chaotic systems (Complex
Dynamic Systems) depict behaviours of determinism, paradox, self – generation, self
– iteration, self – organisation, intrinsic unpredictability within the confines of the
defined geometry across space – time that is sustained by the complex feedback loops. The
qualia of chaotic systems include the sensitivity to initial conditions with disproportion-
ate responsiveness to stimuli, the translatability from micro-through mesoscopic and
macroscopic proportions, and the attractor-centring that is shuffled across space – time
and is apparently a – causal (enfolded; implicate/explicate), global singularity and is
flexible and amenable to creation. The Strange Attractor-Centred Stochastic Trajec-
tory so evolved through the neuronal oscillations [4, 10] that sublimes the awe and
grandeur of Human Mind seems to be the gateway and/or portal to flow of informa-
tion that is legible, reproducible and stands the vagaries and vicissitudes of the flow of
space and time.

In this backdrop and the chance brush and close encounter with Chaotic Nonlinear
Neural Dynamics of Human Mind [4], our centre came across the novel finding of
Dysfunctional Mirror Neurone System [‘Broken Mirrors’ of Professor V. S.
Ramachandran and Oberman [11]] in children with Attention Deficit Hyperactivity
Disorder (ADHD), a disorder of social intelligence, an antecedent sequel to ‘Broken
Mirrors’, that was neurodynamically represented as the phenomenon of Event-Related
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Synchrony (ERS) of mu rhythm (alpha waveform along somatosensory EEG lead pairs)
[12]) when the ADHD participant children aped and imitated the action protocol of
hyperventilation, while an Event-Related Desynchrony (ERD) was observed in the
similar rhythm of mu waveform in EEG lead pairs of normal control children.

The Human Mind replicates the transmutation and metamorphosis of the non-
linear dynamics of chaos wherein a fine interplay between matter and energy takes
place, i.e., the abstruse versus the intangible with quantum shift being appreciated
through the perturbations of space–time synthesising sensory–mirror–motor neurones–
cognition tangible precepts plunging along the ethos and tenor of chaos, journeying to
the most fundamental or primal state of consciousness – Chaos, when shift in primal
image of self becomes possible through its de-structured nature in entirety. In this
qualified state of Chaos, the Human Mind evolves onto a rhythm/pattern that seems
to be reverberating with Cosmic Consciousness.

It is conceivable that the sensorial stimulus evinces a characteristic event/stimulus-
related synchrony (ERS) of theta (θ) wave-form reflective of an antecedent and
incidental entrainment of attentional neuronal mechanistic resources that seemingly
feeds onto and opens the portal of the algorithmic flow of mirror neurone system arsenal
through means of event/stimulus-related desynchrony (ERD) of alpha (α) wave-form
that seems to feed onto themotor neuronal system responding through ERD to effect a cogent,
logical and stimulus/event-locked response. Such a model of intricate dance of
event/stimulus-related synchrony (ERS) of theta (θ) waveform and event/stimulus-
related desynchrony (ERD) of alpha (α) wave-form [13, 14] has been hypothesised to
be the mainstay of the working Human Mind.

The Human Mind is conceived as an entity forming the functional singularity of
Human Brain that evolves through the integration of quantum mechanics of wave-
particle espousing the inter-convertibility of mass into energy waveform and vice versa, the
Higgs Boson being the interface and the amalgamating particle.

A set of neuronal pools, referred to as fractals with the inherent capability of self-
organising and self-iterating, are recruited to sub-serve a distinct selected function
limited by the coordinates of space–time with a time decay of 2–3 seconds recouped
and retrieved by another set of neuronal pools observing similar fractal
neurodynamical dimensions of synced ERD and ERS. The set of neuronal pools that
evolve during the course of time rhyme and oscillate with a specific wave-pattern that
is construed and translated onto the stochastic phase-space trajectory with the strange
attractor specific for the function being attended to silhouetting and profiling the
Human Mind.

Taking the analogy further, Cosmic Consciousness seem to be the predicate of mass-
energy wave-form interface as exemplified by the God particle, Higgs Boson. The effer-
vescent and evolving Human Mind works on the same principle of Cosmos with a
tendency to cohere and sync with the flow of Cosmic Consciousness.

6. The working model of language

The working of Human Mind along with its functional and morphological correlates
has been an arena that has overwhelmed and beguiled mankind since times
immemorial.

The Neurophysiologists and Cognitive Neuroscientists have resorted varied pro-
cedures, both non – invasive and invasive, to gain an insight and to reveal the mystics
of working human mind, wherein Electroencephalography (EEG) and Event Related
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Potentials (ERPs) [15–17] provide the desired armamentarium to record underlying
neural dynamics of human mind in real – time, through precepts of flow of space and
time namely, amplitude and latency, respectively, that are time-locked to specific
sensory, motor and/or cognitive modalities of stimuli [18].

EEG and ERPs seem to be the tools with temporal precision but poor
spatial localisation for appreciation of underlying neuronal dedicated networks and
their dynamics for various higher mental and cognitive functions to identify, isolate
and register across space – time, the physical qualia of the stimulus (features detec-
tion, the so-called feature-detectors). The neural dynamics of working memory have
been envisaged to be funnelled onto the language acquisition processes and the inter-
play between multiple frequency wave-forms in the cortical neural networks play an
elementary deciding role in such an intricately woven process [19–22].

Neurolinguistics, an interdisciplinary domain that draws in inputs from applica-
tion disciplines of neurosciences, linguistics, cognitive sciences, computers electronics
and communications, neuropsychology and neurophysiology, and basic sciences of
mathematics and physics, explores the underlying neural mechanisms of human
brain and its correlation with the phenomenon of the means of communication, that is
Language.

7. The ontogeny of language: The piggyback ride of working memory

At birth young infants exhibit a universal capacity to detect differences between
phonetic contrasts used in world’s language [23]. The mother (or father) has to entrain
the attentional mechanisms of the child through Social Gaze with subsequent
motherese (or fatherse or parentese), a form of language that involves lot of changes
in pitch, is melodious and repetitive. Social Gaze or Eye Contact with the mother forms
the essence or pre-requisite of genesis of language, wherein the vowels (and that too
the extremes of vowels, i.e., ‘a’ and ‘o’ ‘u’) precede consonants for the mere fact that lips
movements is maximal for vowels and due to the simplified mechanism(s) that
underlie the neurolinguistics of vowel. The language development or transition of the
human mind onto the axes of language has been hypothesised to take place along two
neural phases, namely Phase I and Phase II.

7.1 Phase I (neurodynamical phase)

The neurodynamical phase also known as the general open-system is uncommitted
and open to change and plasticity and is the phase where priming of the human mind
takes place. The universal capacity of the human mind is dramatically altered by the
language experience starting as early as 6 months for vowels (a, e, i, o, u) and by
10 months for consonants. The extremes of vowels, namely ‘a’, ‘o’ and ‘u’ involve maximal
movements of the lips that the child gets enamoured through the mental landscape so
formed by the stochastic trajectory initiated in the Phase-Space of Human Mind by the
system of Mirror Neurones.

7.2 Phase II (linguistic phase)

It represents the language specific phase wherein the human mind becomes com-
mitted to the specific language that is being acquired and usually starts from end of
the first year of life. Neural oscillations across the coordinates of time (brainwaves),
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within individual neurones or through interactions among neurones, are rhythmic or
repetitive patterns of neural activity of the central nervous system and such patterned neural
dynamics signify and describes the respective neurophysiological functional characteristics.
The techniques of Biological Signal Processing (BSP) have been employed to classify
and categorise EEG signals through linear domain of power spectral density (PSD),
linear discriminant analysis (LDA) and varied non – linear domains of neural
networks.

The concept of human mind in acquisition of language or general learning mecha-
nism(s) contribute to such an evolved mechanism of spoken and written language
that imprisons the mechanistic of mirror neurone system (MNS) and synaptic
neuroplasticity. MNS plays a pivotal role and is considered to be an interface between
the qualia of sensorium and motor system of the intricately woven Human Mind,
wherein activation of Mirror Neurone System initiates the process of image formation
in the virtual phase-space trajectory of human mind so evolved by the baseline rever-
berating chaotic neural dynamics, a phenomenon learnt and hard-wired through the
neurophysiological process of memory.

The neural signature ofWorking Memory (WM), the primacy of emergent Human
Mind [24], for Encoding, Registration and Retrieval of Memory [25, 26] inputs has been
postulated to be served by three EEG Wave-Forms Complex of Theta [27, 28], Alpha and
Gamma frequency bands [10] with a bootstrapping blueprint wherein the gamma wave-
forms or bursts hitchhike or piggy back rides the theta wave responsible for feature
detection along with alpha-theta wave-form that coincidentally allocates attentional
resources onto the evolved dedicated neuronal circuitry that are stimulus-specific [29, 30].
These frequency oscillations have been observed tomodulate neuronal excitability by
controlling neuronal firing, and could be responsible for holding of stimulus-specific
information in space and time along the coordinates of working memory neuronal
pool [31]. Such a neural synchronisation proposal may provide a solution to underlying
mechanism(s) of synthesis and amalgamation of features of an object through
coordinated firing patterns that in essence underlie the feature detector mechanism(s) of
neuronal process [32].

It has been envisioned that,

• ERS in θ, theta frequency waveform is related to encoding and retrieval of
episodic or new information, and

• ERD in α, alpha frequency waveform is related to encoding and processing of
semantic information [29, 30, 33–37].

Pfurtscheller and Klimesch [38], Pfurtscheller and Aranibar [39] and Pfurtscheller
and Lopes da Silva [40] had reported that during visual stimulation alpha wave-form
desynchronises giving rise to ERD over occipital recording sites whereas over
motor cortex synchrony in form of ERS could be observed. Sauseng et al. [41], [42]
put forward the observation of change in PSD of alpha wave-form that is observed
at the occipital and pre-frontal areas during top-down processing in a working
memory task, wherein a decrease in alpha PSD power at occipital site with a conse-
quential increased alpha PSD power is observed at prefrontal EEG electrode site.
The ERD quantum of alpha frequency wave-form during encoding in a visual
working memory task has been correlated with the memory load [29, 30, 33–36].

However, [43] reported that the processing of working memory of encoding and
retention involves the oscillatory activities along multiple frequency bands of
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EEG wave forms inclusive of alpha frequency as well through local and long-range
neural networks proposing the existence of multiple parallel functional mecha-
nisms of alpha oscillations [44]. In this context of equivocal representation of alpha
oscillations, it would be interesting to examine changes in alpha oscillations pattern
that could be sensitive and characteristic to working memory task.

The observation documented from our laboratory of theta wave form band syn-
chrony, known as Event-Related Synchrony (ERS)mirroring increased PSD, across
distributed range of task relevant areas of brain namely,

• The Retention Function being primarily centred along select frontal and
temporal areas,

• The Semantic Manipulation along select frontal, temporal and parietal with

• The Backward Manipulation involving frontal, central and temporal areas
[Neuropsychological Trends in print] during working memory task of registration,
retention and retrieval processing is reflective of dynamical linking, an
observation that had been documented by EEG studies of [41, 42, 45] as well,
though [46–48] could not appreciate such breakthrough linkage (Figure 2).

The assessment of power-spectral density of EEG signals from our laboratory
paved the way for appreciation of closely intertwined intricate dance of ERS/ERD
along the coordinates of space and time that probably seems to be the flip-flop switch for the
flow of corporeal and legible information (Figure 3) [49]. The ERS of theta wave-form
with significantly appreciable change in Power Spectral Density (PSD) at EEG elec-
trode pair of T4 (Figure 1) along with concomitant ERD of alpha wave form skewing

Figure 2.
Power spectral densities (PSDs) of theta frequency wave form in three memory conditions of retention, semantic
manipulation and backward manipulation with raw EEG data being processed through BESS software where
epochs (epoch length = 1000 ms) were separated for each trial [54 trials being part of delayed-match-to-sample
(DMTS) task] and data was averaged separately respectively for each electrode for each condition (FP1, FP2, F7,
F3, AFz, Fz, F4, F8,T3, C3, Cz, C4,T4, P7, P3, Pz, P4, P8, O1, O2 electrodes were selected). ERS as evinced
through enhanced PSD (increase in mean amplitude power in sq. microvolts), was observed in theta wave-form in
all three conditions/manoeuvres of retention (FZ, F3, F4, F7,T3,T4) semantic forward information processing
(FP1, FP2, AFZ, FZ, F3, F4, F7, F8, C3, P7,T3,T4) and backward information processing (FP1, FP2, AFZ, FZ,
F3, F4, F7, F8, C3,T3,T4) of EEG electrode pairs and on comparative evaluation with basal EEG time-series run
along said EEG electrode pairs, significant difference in PSD could be appreciated only along T4 EEG electrode
pair in conditions of retention (p = 0.05), semantic manipulation (p = 0.05) and backward manipulation
(p = 0.01) by using one way ANOVA at 5% level of significance.
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onto left hemisphere lateralisation of neurophysiological processes [as exemplified by
Oblique Lateral Asymmetry Index (LAI)] during the select conditions of retention,
semantic manipulation and backward manipulation (Figure 2) is yet another example
of concomitant stimulatory and inhibitory dedicated neuronal pools that evolve dur-
ing and are responsible for the stimulus-specific adequate response. More likely, the
looped fractals of neuronal pools (modules) of on-centre ERS theta wave form, on-
centre ERD alpha and offsurround ERS alpha or off-centre ERS alpha and onsurround
ERD alpha have a tendency to self-iterate that tends to etch the stochastic trajectory
along the Human Mind Phase-Space.

The characteristic of temporal distribution of ERS/ERD PSD along the run of
EEG time-series was evaluated in our laboratory and during the DMTS task, the
temporal distribution across two frequency bands of theta and alpha was accessed
to assess neuronal oscillatory activities during WM tasks across select cortical regions
[50–52] and to assess modular memory facets and processes that entrain dedicated
self-iterating fractals of neuronal pools in human brain resulting in memory
consolidation processes concluding into language acquisition, manipulation and
comprehension processes.

These chunks of information or memory codes might generate a particular
patterned rhythm which later during retrieval of information from dedicated neural
networks might follow the phenomena of pattern matching during its response for
same memory inputs.

Figures 4 and 5 depicts ERD/ERS percentage change {ERD% = (Actual Power-
Reference Power)/Reference Power � 100} of Power Spectral Densities of Alpha frequency
wave form when compared among male and females in Retention Condition where
significant difference could be seen at CZ, P8, T4 electrode sites and Figure 5 displays
results of ERD/ERS alpha activity in Semantic Condition, exhibiting significant differ-
ences along CZ, P4, T4 EEG electrode sites. The common denominator appreciates the

Figure 3.
Portrays Lateral Asymmetry Index (LAI) ratio of different conditions of Alpha Frequency Band at P3-P4 EEG
electrode site. Significant difference could be appreciated at parietal region of P3-P4 EEG electrode pair along alpha
frequency band using T-test with p = 0.004, p=0.002 (p < 0.05) at 5% level of significance with left hemisphere
lateralisation (skewed neurophysiological processes) during retention condition and semantic manipulation condition,
respectively. In backward manipulation condition, significant difference could be appreciated at additional parietal
EEG lead pairs of P7-P8 besides P3-P4 with p = 0.02 in both electrode pairs (p < 0.05) at 5% level of significance
with left hemisphere lateralisation. 1 = Control Condition, 2 = RetentionCondition, 3 = Semantic Condition, 4 =
Backward Condition. LAI = [P (left) - P (right)]/[P (left) + p (right)].
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intricate interwoven Off-Centre α ERS (Central)-On-Surround α ERD Neural
Dynamics as could be deduced and envisioned from observations of Figures 4 and 5
that seem to be intertwined and interlocked through observations of findings of
Figures 2 and 3, with the self-iterating trajectorial pathways of the looped alpha and
theta wave forms through respective precepts of Event-Related Synchrony (ERS) and
Event-Related Desynchrony (ERD).

In this context and with the characteristically patterned observations data from the
present study [Neuropsychological Trends in print] the precepts of Neural Dynamics of
Working Memory Model has been conceptualised as:

• The Retention Precept singularly involves Theta ERS along temporal regions
with antecedent etched LAI (Lateral Asymmetry Index) Alpha ERD along fractal
neuronal networks of parietal region.

• The Semantic (Forward) Processing appreciating the relevance of ascendance
(increasing quantal framework) observes a similar patterned and looped Theta
ERS (temporal region) with LAI Alpha ERD along parietal regional precept of
fractal neuronal networks.

Figure 5.
Illustrates ERD/ERS percentage change {ERD% = (Actual Power-Reference Power)/Reference Power � 100} of
Power Spectral Densities of Alpha frequency wave form when compared among male and females in Retention
Condition where significant difference could be seen along CZ, P4,T4 EEG electrode sites.

Figure 4.
Depicts ERD/ERS percentage change [ERD% = (Actual Power-Reference Power)/Reference Power � 100] of
Power Spectral Densities of Alpha frequency wave form when compared among males and females in Retention
Condition where significant difference could be observed at CZ, P8 and T4 EEG electrode sites.
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• The Backward Processing in Memory warrants a similar Theta ERS-LAI Alpha
ERD looping along temporal and parietal region (with additional inputs from
parietal areas).

The hypothesis posited is that the concept of Neural Dynamics of Working Memory
Model reflects as under:

• The Theta Frequency Wave-Form ERS along temporal region with concomitant and
antecedent LAI Alpha Frequency wave-form ERD along parietal terrain
characterise the Retention and Semantic Forward Information Processing
Precepts and

• The Backward Information Processing Precept exemplified through Theta
Frequency Waveform ERS along temporal area with concomitant and antecedent
LAI of Alpha Frequency Waveform ERD along extended parietal region (Figure 6).
The contextual inference from the present study (refer Figures 1–6) in relation
to the above stochastic phase-space trajectory of Off-Center α ERS (Central)-
On-Surround α ERD-On Surround θ ERS document a significantly enhanced
PSD values of said trajectorial path in females as compared to that observed in
males, endowing the female gender with neurophysiologically efficient neural
dynamics of working memory.

It seems that there are two aspects of processing of LTM in terms of mean PSD and
LAI along theta and alpha frequency waveforms.

• The Skewed Theta frequency waveform ERS along right temporal region during
retention, semantic forward information processing and backward information
processing conditions along with

Figure 6.
ERD/ERS percentage change of Power Spectral Densities (PSDs)of Theta frequency wave form when compared
among male and females in all the three conditions where significant difference could be appreciated at F3 in
Retention condition; at FP1,F8 in Semantic manipulation condition and at AFz in Backward manipulation
condition and results could reflect same as Alpha frequency wave form that females outperformed in the visuo-
spatial DMTS task compared to males using T-test at 5% confidence level. The contextual inference from the
present study in relation to the above stochastic phase-space trajectory of Off-Centre α ERS (Central)-On-
Surround α ERD-On Surround θ ERS document a significantly enhanced PSD values of said trajectorial path in
females as compared to that observed in males, endowing the female gender with neurophysiologically efficient
neural dynamics of working memory.
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• The Alpha frequency waveform ERD with Lateral Asymmetry Index spreading
through parietal region during retention and semantic forward information
processing conditionis suggestive of laterality restricted looping of ERS-ERD console
within the left hemisphere.

The precept of Hemispheric Encoding/Retrieval Asymmetry (HERA) so
documented had been first hypothesised by Tulving et al. [53] supported by Nyberg
et al. [54] as well that advocates the premise of preferential and skewed involve-
ment of left hemisphere in semantic (algorithmic non-linear neural information
flow) retrieval and encodingwhereas right hemisphere seems to be more involved
with the episodic retrieval.

The visual sensory inputs/information so perceived in the form of varied protocols
of Delayed Matched to Sample Task (DMTS) is essentially relayed to primary visual
cortex underlying EEG occipital region electrode pairs where information is
processed. Primary visual cortex (V17) [55] subserves the qualia of perception and
visual association areas (V18, 19) [56]. Lisman and Jensen [57] concluded the process
of recognition through patterned-matching of the gamma-burst, alpha-theta
waveforms looping or the bootstrapping (piggy-back riding) of gamma burst onto
alpha-theta combine waveforms. The visual inputs as a part of visuo-spatial DMTS
are perceived by occipital region and it has been modelled [58] that such visual
impulses are then translated and transmogrified into auditory impulses in the
differently-abled angular gyrus (anterolateral region of parietal lobe, near the superior
edge of temporal lobe and immediately posterior to the supramarginal gyrus), a
feature that could be observed as increase in the amplitude (ERS) of Theta Frequency
wave-form in EEG. The visual–auditory interface impulse is then transferred onto
Wernicke’s area/auditory neural codes (Brodmann area 22, superior temporal gyrus)
in order to appreciate and decode the semantics of visuo-auditory interface impulse
perceived as symbols, letters, words and matching sounds accordingly [59].

ERS of Theta Waveform so evolved by interacting stimulus-locked dedicated
neuronal pools with ERD of Alpha waveform functionally and neurophysiologically
representing the dedicated reverberating mirror neuronal pool system seems to be
representing the working model of Human Memory-Language. It seems that the gen-
eration of language shapes into the virtual stochastic phase-space of human mind
through the help of reverberating Lateral Asymmetry of Alpha wave-form ERD,
representative of Mirror Neurone System (MNS). Previous studies have reported
that Alpha ERD during motor response in a WM task has been interpreted as the prepara-
tion of a movement-specific motor task but does not reflect processing for the specific
task itself [43, 60]. The alpha ERD in the sensorimotor system may buttress the
concept of a preparatory role of alpha ERD. Alpha ERD had been also posited even
during anticipation of an event [61], again emphasising the role of preparation for a
motor response. In this background, the role of alpha ERD could be perceived as
developing a preparatory schema intricately interwoven with the Mirror Neurone System
(MNS) creating and evolving an image (an alter-image in the stochastic phase-space of
Human Mind) during the ensuing encoding interval.

The findings of ERS in theta wave-form with a significant change in PSD along select
EEG electrode pairs a recent study from our laboratory have also been reported by
[62, 63], though Burke et al. [21] and [46, 47] could not observe such a patterned and
locked differential EEG theta wave-form PSD during the manoeuvres of retention,
semantic and backward manipulation and hypothesised a possibility of contextual
overlapping between encoding and retrieval tasks.
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The above documentation of ERS Theta Frequency waveform bootstrapping with
concomitant ERD of Alpha Frequency waveform seem to evolve an envelope of Working
Memory that translates into a comprehensible means of communication, Language. The
interplay between these frequency wave-form forms the ground of working memory
which is thought to be an important constituent component instrumental in language
acquisition, comprehension and manipulation. The amount of information/memory
inputs restricted by day-to-day working memory might be useful and can be consid-
ered as the focus for processing and acquisition of language e.g., semantics of letters
and words (positioning and placement), syntactics of words (reproducible
neurodynamically grammatically cogent disposition/sequence), word frequency,
plausibility, discourse context, intonational information, etc.

The processing of letters or words in the form of memory inputs give an insight into
the underlying neuro-physiological processing and neural dynamics responsible for the
evolution and progression of the evolved phenomena of written and spoken language
that make use of semantic and episodic memory. The EEG Power Spectral Densities
(PSDs) of alpha frequency band during semantic memory and information processing
and the PSDs of theta frequency band during episodic memory and information
processing that follow separate paths in their nativity could be responsible for holding
relevant information across coordinates of space and time (freezing the flow of space
and time in the process) providing a gateway for synthesis of a structured and evolved
system of communication, known as language.

The above observations create the platform for an integrating function and role of
principles of Working Memory in generation and evolution of a synthesised and coordi-
nated communication system as outlined by the structured Language of Human Mind.

8. The arena of language acquisition: probable neural substrates
and signature

The major debate regarding neural substrates underlying language acquisition (inclu-
sive of the capacity to detect phonetic distinction and develop language – specific phonetic
capacity and acquire legible, valid and comprehensible words) lies in the belief if nativist
(innate rather than acquired) domain – specific dedicated neural mechanism(s) oper-
ate exclusively on linguistic data, wherein the neural architecture is decided before-
hand for an individual in acquisition of language or general learning mechanism(s)
contribute to such an evolved mechanism of spoken and written language. The nativ-
ist approach posits the universal capacity to detect differences in phonetic contrasts in
all languages. It has further been hypothesised from ERP studies that the response
profile of Human Mind in terms of ERPs that are locked in space and time to varied
phonetics is a significantly important component contributing to elementary building
blocks of language and initial language phonetic learning is an essential pathway to
learning.

Hence, it seems that the fine dance of ERS Theta Frequency wave-form
observed at temporal EEG lead pair closely looped with LAI of Alpha Frequency
wave-form ERD seem to evolve a synthesising envelope of Working Memory that
translates into comprehensible means of communication, Language. The theta and
alpha frequency waveforms with the available resources, the interplay between these
frequency waveforms, initiate the ground of working memory which seemingly is
hitched-hiked onto language acquisition, comprehension and manipulation. The
dynamical power spectral interplay of theta and alpha frequency wave-forms along the
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coordinates of space and time during the Working Memory tasks of retention, semantic
(forward processing) and backward processing seem to form the gateway of primacy
opening the portal of algorithmic flow of neural information so needed for the
neurocognitive primacy of language. The amount of information/memory inputs
constraint by quotidian working memory might be utilitarian and can be considered
as cynosure for processing and acquisition of language e.g., semantics of letters and
words, syntactics of words, word frequency, plausibility, discourse context, intona-
tional information, to name some of the intricate and fascinating nuances.

Subsequently, it is conceived that self-iterating fractal of interacting ERD and ERS
through respective frequency waveforms theta (θ) and alpha (α) waveforms is con-
strued with θwaveform band singularity of ERS across frontal and midline regions with
antecedent αERD across respective mirror neurone system domain along withαERS at
central region. The singularity of ERS denotes a preferential and categorical inhibition
gateway and an ERD represents an event related and locked gateway to stimulatory/
excitatory neuronal architectonics presumably responsible for stimulus-locked and
adequate neural response. The fine and intricate interplay of θ ERS (frontal and midline
areas fine-tuned excitation), α ERD (parietal and temporal floral activation) and α ERS
(central selective inhibition) evolves the self-evolving florid landscape of an ERD on-
centre and ERS off-surround loci along with an ERS off-centre and ERD on-
surround. The evolution of frontal and midline excitatory θ ERS along stochastic phase-
space trajectory is a reflection of an evolving fractal self-iterating excitatory gateway
with antecedent fine-tuned channelisation of attentional mechanisms onto the stimulus/
event restricting extraneous interfering neural mechanisms in the process. The florid α ERD

Figure 7.
The theta (θ) ERD on centre, alpha (α) ERD on centre and alpha (α) ERS off surround model.
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is representative of an evolving excitatory stochastic phase-space trajectory dynamically
mirroring the functional Mirror Neurone System (MNS) responsible for algorithmic
information flow onto subsequent MNS along with antecedent central selective inhibi-
tion through α ERS inhibiting interfering contrivances (an example of α ERS Off-Centre
with α ERD on-surround with θ ERS on-surround). These self-iterating fractal architec-
tonics of central inhibitory, Off-Centre α ERS, surround excitatory on-surround α ERD
and on surround θ ERS, representative of interwoven PSD singular Off-Centre α ERS
(Central)-On-Surround α ERD-On Surround θ ERS phenomenology seem to define
the qualia and quanta of underlying neural mechanisms of working memory (Figure 7).

The contextual inference in relation to stochastic phase-space trajectory of
Off-Centre α ERS (Central)-On-Surround α ERD-On Surround θ ERS document a
neurophysiologically efficient neural dynamics of working memory (Figure 8) [49].

The above model envisages a self-iterating fractal of θ ERS On-Centre along with α
ERD On-Centre and α ERS Off-Surround mirrored along θ ERS On-Centre, α ERS Off-
Centre and α ERSD On-Surround, the so-called EEG micro states that tend to oscillate
through the execution of the respective cognitive manoeuvre and these self-iterating fractals
of lateral asymmetry index (LAI) of alpha (α) ERD and ERS along with theta (θ) ERS
tend to open the gateway/portal of effective cognitive network.

In this connectome, the Human Mind is envisaged as an esoteric concept that
probably represents a logical synthesis of functional mass and energy, so represented
by the characteristically patterned modulation and flow of the neurally coded
information.

Figure 8.
The theta (θ) ERS on centre, alpha (α) ERS off centre and alpha (α) ERD on surround model.
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In conclusion, the neural architectonics subserving language seem to evolve across
the self-iterating fractal features of phenomenology of on-centre/off surround and off
centre/off surround of ERD and ERS represented through electroencephalographic frequency
waveforms of θERS, αERD and αERS that synthesise and evolve the fine-tuned cognate
neural mechanisms that evolve into the structured means of communication, language.
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Chapter 2

A Brief Summary of EEG Artifact 
Handling
İbrahim Kaya

Abstract

There are various obstacles in the way of use of EEG. Among these, the major 
obstacles are the artifacts. While some artifacts are avoidable, due to the nature of 
the EEG techniques there are inevitable artifacts as well. Artifacts can be categorized 
as internal/physiological or external/non-physiological. The most common internal 
artifacts are ocular or muscular origins. Internal artifacts are difficult to detect and 
remove, because they contain signal information as well. For both resting state EEG 
and ERP studies, artifact handling needs to be carefully carried out in order to retain 
the maximal signal. Therefore, an effective management of these inevitable arti-
facts is critical for the EEG based researches. Many researchers from various fields 
studied this challenging phenomenon and came up with some solutions. However, 
the developed methods are not well known by the real practitioners of EEG as a tool 
because of their limited knowledge about these engineering approaches. They still use 
the traditional visual inspection of the EEG. This work aims to inform the research-
ers working in the field of EEG about the artifacts and artifact management options 
available in order to increase the awareness of the available tools such as EEG prepro-
cessing pipelines.

Keywords: Artifact, Artifact removal methods, EEG, EEG preprocessing,  
Muscular artifacts, Ocular artifacts, Preprocessing pipelines

1. Introduction

A signal is a function that conveys information about the behavior or attributes of 
some phenomenon [1]. On the other hand, information can be anything. A waveform 
can have multiple overlapping information in the same space–time. The signal in a 
waveform is subjective, it can be color for one and shape for the other. In electrophysi-
ology, waveform under inspection can be separated into two as the signal of interest 
and noise. The signal can be electrocardiography (ECG), Electroencephalogram 
(EEG), or any other physiological signal, noise is any unwanted wave source 
ınterfering with the signal. If we consider EEG as the signal, it is recorded from the 
scalp by electrodes and consists of the overall electrical activities of neural popula-
tions and a contribution of glial cells [2]. EEG has a wide range of use in both clinical 
practice and engineering applications in medicine, particularly neurology, sleep, and 
epilepsy research.
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2. Background

The EEG recording environment and subject related electrical activities during 
recording deteriorate the signal quality. Artifacts are undesired signals that may 
introduce changes in the measurements and affect the signal of interest [3]. EEG can be 
contaminated in frequency or time domain by artifacts that are resulted from internal 
sources of physiologic activities and movement of the subject and/or external sources 
of environmental interferences, equipment, movement of electrodes and cables [4]. 
Artifact types and sources are listed in the Table 1. External artifacts can be prevented 
by proper shielding, grounding cables, isolating and moving cables away from record-
ing sites since they act as antennas during operation. On the other hand, internal or 
physiological artifacts are challenging for researchers because of their inclusion of 
signal or resemblance to the signals. The most important artifacts in a typical EEG 
recording are ocular electro-oculogram (EOG) artifacts and muscular (EMG) artifacts.

2.1 Ocular artifacts

Electrical potentials due to eye opening/closure, blinks, eyelid flutter and eye 
movements propagate over the scalp and produce hostile EOG artifacts in the 

Artifact Type Source

Eye blink Ocular Internal/Physiological

Eye movement Ocular Internal/Physiological

REM Sleep Ocular Internal/Physiological

Scalp contractions Muscle Internal/Physiological

Glossokinetic artifact Muscle Internal/Physiological

Chewing Muscle Internal/Physiological

Talking Muscle Internal/Physiological

EKG Cardiac Internal/Physiological

Swallowing Muscle Internal/Physiological

Respiration Respiratory Internal/Physiological

Galvanic Skin Response Skin Internal/Physiological

Sweating Skin Internal/Physiological

Electrode movement Instrumental External/Extra-physiological

Electrode Impedence Imbalance Instrumental External/Extra-physiological

Cable movement Instrumental External/Extra-physiological

Electromagnetic coupling Electromagnetic External/Extra-physiological

Powerline Electrical External/Extra-physiological

Head movement Movement External/Extra-physiological

Body movement Movement External/Extra-physiological

Limbs movement Movement External/Extra-physiological

Table 1. 
EEG artifact types and sources. Adapted from [4, 5].
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recorded EEG. Eye movements are major sources of contamination of EEG. The 
origin of this contamination is disputable. Cornea-retinal dipole movement, retinal 
dipole movement and eyelid movement are the three main proposed causes of the eye 
movement related voltage potential [6]. The direction of eye movements affects the 
shape of the EOG waveform while a square-like EOG wave is produced by vertical 
eye movements and blinks which leads to a spike-shaped waveform [7]. Blinks which 
are attributable to the eyelid moving over the cornea, occurring at intervals of 1-10s, 
generate a characteristic brief potential of between 0.2 s and 0.4 s duration due to 
eyelid movement over cornea [8, 9]. The blinking artifact generally has an amplitude 
much larger than that of the background EEG [6]. It is advantageous to have a refer-
ence EOG channel during EEG recording for the cancellation of ocular artifact from 
EEG activity [3].

2.2 Muscular artifacts

Electrical activity on the body surface due to the contracting muscles are recorded 
via Electromyogram (EMG) [3]. Since independent myogenic activities of head, 
face and neck muscles are conducted through the entire scalp, it can be monitored 
in the EEG [10, 11]. The amplitude of this type of artifact is dependent on the type 
of muscle and the degree of tension [3, 12]. The frequency range of EMG activity is 
wide, being maximal at frequencies higher than 30 Hz [13, 14].

2.3 Cardiac artifacts

The electrical potential due to cardiac activity can exhibit itself in the EEG as 
ECG artifacts. Typical high frequency waveforms similar to EKG P-QRS-T shape are 
characteristics of EKG artifacts in EEG [15].

2.4 Other artifacts

Head, body and limb movements cause irregular high voltage artifacts. Artifacts 
can be produced by tremors in patients such as Parkinson disease and movement 
disorders. Changing patient position into a calm comfortable stable position helps 
reducing artifacts. Another prevention for respiratory related movement artifacts is 
to use a towel or a firm material support for the neck. The changes in the impedance 
or electrical potential between scalp and electrode may cause electrode artifacts. 
These can result from poor electrode contact, broken lead, electrolyte gel insuf-
ficiency. This type of artifact usually exhibits itself in sudden electrode pops. These 
electrode artifacts can be eliminated by using proper electrolyte gel, checking 
electrode impedance, changing the broken electrodes, and shifting the electrode 
position slightly.

3. Artifact handling methods

A typical EEG recording system is shown in Figure 1. At the heart of a recording 
setup is the biopotential amplifier. It should have high common mode rejection ratios, 
however it should not have high gains, this can saturate the signal due to large half-
cell potentials at the electrodes. Unequal electrode impedances are major sources of 
common mode artifacts such as powerline.
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Environmental artifacts can be eliminated by bringing the electrodes leads closer 
together, moving the electrodes and subject away from the noise sources, using single 
isolated earth for the whole setup, and shielding the cables, machines and artifact 
sources with a metal tape connected to the common earth. Moreover, the environ-
mental conditions should satisfy the following requirements for proper recordings. 
These can be listed as, quiet atmosphere, comfortable temperature and humidity, 
controlled proper lighting, using a comfortable bed or chair, and separating the 
powerline of the EEG system from the other machines in the lab.

3.1 Averaging methods to suppress ERP artifacts

Event Related Potentials (ERP) are electrical signals generated in response to inter-
nal or external events and they are recorded by EEG [16]. In evoked potentials, each 
stimulus produces an evoked potential embedded in EEG. However, since the ERP or 
evoked potential signals are generally subtle in EEG, averaging of many epochs are 
needed to make them distinguishable. An ensemble averaging method to enhance the 
ERPs was defined by [17]. This relies on the assumption that by synchronous averag-
ing of each epoch, signal ERP amplitude adds constructively and EEG background 
noise diminishes destructively.

In ERP and evoked potential research, artifacts contaminate the final ensemble 
average signal of interest. One method to overcome this adverse effect is to benefit 
from a weighted averaging [18]. In weighted averaging technique each epoch is 
weighted inversely with the non-stationary noise maximum amplitude in the epoch. 
In [19], each trial’s contribution to ensemble average is multiplied by a weight accord-
ing to its correlation with the rest of the data. This factor is inversely related to its 
probability of being an artifact. For example, a large amplitude EEG is likely to be 
an artifact and the contribution factor for the trial involving large amplitudes will 
be low whereas the factor for a small amplitude EEG is high (Figure 2). Davila and 
Mobin [20] showed that weighted averaging of auditory EP has higher SNR than 
conventional ensemble averaging. John et al. [21] studied the effects of such tech-
niques as sample-weighted averaging, noise-weighted averaging, amplitude based 
artifact rejection, percentage based artifact rejection, and normal averaging on the 
steady state auditory evoked potentials. It concluded in favor of weighted averag-
ing for better SNR of steady state responses. On the other hand, according to [22], 
weighted averaging underestimates the ERP signal amplitude. Determination of the 
optimal weighting factor is not straightforward and this limits the performance of 

Figure 1. 
EEG recording system and experiment setup.
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the weighting averaging method. Mühler and Specht [23] developed a method called 
‘sorted averaging’. In sorted averaging, epochs are sorted with RMS values from small 
to large, since noisy artifactual epochs have large RMS values compared to low noise 
signals. The signal averaging is performed by addition of epochs from the low noise 
RMS to large RMS sorted order until a maximum peak of SNR2 is obtained [24]. This 
eliminates the high RMS noisy epochs and yields a better ERP waveform. Compared 
to weighted averaging, sorted averaging had significantly higher SNR2 [23].

Median averaging is another approach to ERP artifact handling and it is based on 
taking the median points of all the epochs and adding them to form a median average 
instead of classic mean average [25]. Some advantages of the median averaging are 
that; it elicits hidden signals more clearly and it is not affected by infrequent large 
artifacts that much compared to mean averaging [25]. Özdamar and Kalayci [26] 
supported the advantages of median averaging over the conventional mean averaging 
in a study on the ABR signals. Median averaging is an efficient way to remove adverse 
effects of the outliers on the final averaged signal, yet it also removes the valuable data 
in the outliers causing significant loss of information [27, 28].

3.2 Artifact handling methods for EEG

Artifact avoidance, artifact rejection, manual rejection, automatic rejection, and 
artifact removal are the common methods to deal with artifacts [29]. Although it 
seems a simple solution to cancel EOG and EMG artifacts by instructing subject to 
avoid blinking or movement, it can result in change of amplitudes in evoked poten-
tials as well as the additional cognitive load [29–31]. On the other hand, artifact rejec-
tion or manual rejection may require a person dedicated to this purpose of eliminating 
artifacts visually one by one in an EEG. Moreover, the artifact detection by an expert 
may be subjective, tedious, and time consuming. In addition, it can not be appli-
cable to online removal [3]. However, automatic rejection can automate this artifact 
rejection procedure but it can eliminate non-artifact signals if not properly tuned. 
The automatic rejection of artifact containing EEG can depend on artifact amplitude 
based or EEG segment RMS based artifact detection and rejection. An example of a 

Figure 2. 
Various EEG artifacts are shown.
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simple blink artifact removal is depicted in Figure 3. Since blinks have low frequency 
content compared to EEG, by low pass filtering, EEG can be reduced while blink 
artifact still remains at a high voltage level. Thus, an amplitude threshold based 
artifact rejection can be applied. As seen from Figure 3, red traces are the EEG and 
blue are the low pass filtered EEG signal. While a simple artifact rejection (without 
low pass filtering) using a threshold of 20 μV will produce false positives (red traces 
over 20 μV), in the low pass filtered EEG these false positives are prevented.

Usually one or two channels are dedicated to detect EOG artifacts. There are 
two widely used procedures for EOG artifacts, first EOG rejection where EEG trials 
with EOG artifacts having VEOG greater than a preset threshold are omitted, and 
second EOG correction where the effect of eye movement is tried to be removed from 
EEG [6].

Artifacts can distort the EEG in a way that the electrophysiologists or physi-
cians can be misled in their clinical interpretation [32]. This makes artifact removal 
critical in the pre-processing phase prior to analysis. There are many methods to 
remove artifacts such as Artifactual Segment Rejection, Filtering, Wiener filtering, 
Adaptive Filtering, Time-Frequency Representation, Wavelet Transform, Discrete 
Wavelet Transform (DWT), Adaptive Noise Cancelation (ANC), Wavelet Packet 
Transform (WPT), Kalman Filtering, Linear Regression, Blind Source Separation 
(Principal Component Analysis (PCA), Independent Component Analysis (ICA), 
Canonical Correlation Analysis (CCA), Minor Components Analysis (MCA)), Source 
Decomposition, Empirical Mode Decomposition (EMD), Support Vector Machine 
(SVM), and hybrid methods [3, 4, 29, 33–38]. A functional dedicated artifact channel 
which provides complementary aid to identify ECG/EOG is required to remove ocular 
or cardiac artifacts in the most of the available methods [4].

Regression is a common and well established technique in artifact removal, yet it 
cannot be used to remove muscle noise or line noise, since these type of artifacts have 
no reference channels [39]. Having a good regressor (e.g., an EOG) is critical in both 
time and frequency domain regression methods. It is an inherent weakness that eye 
movements and EEG signals are bidirectional. When unacceptable amount of data 
are lost in artifact rejection, delicate artifact removal methods which will preserve 

Figure 3. 
Low pass filtering based EEG blink rejection. Red is raw EEG, blue is low pass filered EEG with 6th order 
Butteworth low pass filter at 8 Hz cut off. The detected artifact containing EEG epochs are shown in dashed 
rectangles.
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the essential EEG signals while removing artifacts are necessary [39]. One of the most 
important artifacts is EOG. EEG regions infected with EOG can be rejected from 
overall EEG signal with simplest artifact rejection where these portions are detected 
by EOG channels, however these regions still carry brain signals in addition to ocular 
artifacts and total rejection or subtraction of EOG from them results in loss of brain 
data [40–42].

Blind Source Separation (BSS) algorithms utilize multiple channels in an unsuper-
vised learning algorithm to extract brain related activity from the ensemble EEG sig-
nal which can be assumed a linear superposition of brain signals, noise and artifacts 
[38]. Three common BSS algorithms are Independent Component Analysis (ICA), 
Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA).

ICA, a BSS method, is often used to remove EEG artifacts based on statisti-
cal approach of spatial filtering and separation of multiple channel EEG data into 
spatially fixed and temporally independent components [39, 43, 44]. Since the EEG 
sources and artifacts are usually of different origins, they can be assumed to be linear 
summation of each independent components. ICA method finds these statistically 
independent components and enable us to eliminate artifactual ones from the desired 
EEG [45]. On the other hand, ICA provides extraction of the eye related signals 
present in the EOG, and removal of this information or artifact, rather than the 
complete EOG which still has some brain activity [40], is possible. However, detec-
tion and removal of transient artifacts such as head and neck muscle contractions and 
movement are difficult with ICA [46]. Moreover, adapting ICA as an online method 
requires high computational power [46]. On the other hand, an advantage of ICA 
is that it does not rely on a reference channel [39]. However, many artifact removal 
algorithms are compared in [3], and Revised Aligned-Artifact Average (RAAA) and 
Second Order Blind Identification (SOBI) and Adaptive Mixture of Independent 
Component Analyzers (AMICA) are the preferred artifact removal methods for EOG, 
EMG and ECG artifacts.

PCA uses orthogonal transform of correlated time domain signal into linearly 
uncorrelated principal components (PCs) [47]. These principal components possess 
as much as variance of the EEG as possible. Artifact containing PCs can be eliminated 
if they are uncorrelated with the brain EEG. Application of PCA into ocular artifacts 
was provided in [48].

CCA is also another method utilized in removing artifacts. In CCA second order 
statistics are employed, correlation between two multivariate datasets are maximized 
by canonical variables. CCA offers shorter computational time compared to ICA [38].

Another method is filtering in frequency domain. Usually a high-pass filter 
starting from 0.5-1 Hz is applied for baseline drift removal. Notch filters are used to 
remove powerline-noise. Another one, EMG activity of contracting scalp sites can 
hinder the signals of interest in the EEG recordings during an epileptic seizure [49]. 
It was possible to remove this high frequency content EMG activity from EEG spectra 
by filtering out signals over 25 Hz. Adaptive Filters, Wiener Filtering and Bayesian 
Filters are three filtering methods applied in EEG signal preprocessing. Adaptive 
Filters are the most commonly used for artifact removal [47]. In Adaptive Filtering a 
reference channel for artifacts is subtracted from the EEG recursively. This reference 
is multiplied by a weight factor obtained from the output of the filter by a learning 
algorithm and this weighted reference is subtracted from the recorded EEG yielding 
output artifact free EEG changing adaptively [50].

In wavelet transform, many scaled and time shifted wavelets are used to produce 
coefficients for the particular signal and wavelet type by convolution of the signal and 
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wavelets. These coefficients indicate similarity between the corresponding wavelet 
and the signal. In artifact removal via wavelet transform, the main idea is that the 
signal which can be highly correlated with a basis mother wavelet and can be sepa-
rated from artifacts which might have no correlation to the principal mother wavelet 
[50]. Some examples of Wavelet Transform in artifact removal are for ocular artifact 
removal as in [51, 52].

3.3 EEG pre-processing pipelines available

Recently many preprocessing pipelines have been introduced in order to reduce 
the burden of artifact handling by an expert one by one visual inspection. This 
laborious task can be fastened by using existing automatized preprocessing methods 
in order. An efficient pre-processing pipeline not only helps the artifact management 
time but also provides objective evaluation with predefined criteria compared to 
highly subjective artifact handling by a human expert. The preprocessing pipelines 
usually consist of the combination of the following stages; filtering, re-referencing, 
bad channel identification (and interpolation), bad channel and epoch removal, 
artifact detection using ICA, artifact correction and removal [53], see Figure 4.

Fully Automated Statistical Thresholding for EEG artifact Rejection (FASTER) 
[54] algorithm is a state of the art method which is available in EEGLAB toolbox [55]. 
FASTER has filtering, line noise removal, bad channel detection and interpolation, 
segmentation, and artifact rejection on segments by identifying bad channels, blinks, 
eye movements and muscular artifacts using combination of statistical threshold-
ing and ICA [56]. It requires an extra EOG channel. The Automatic Pre-processing 
Pipeline (APP) removes powerline noise, bad channels, eye movements, blinks and 
muscular artifacts using ICA to identify artifactual components [53], see Figure 4. 
However, it also requires extra EOG channels. Da Cruz et al. [53] has found that 
APP performs better than FASTER yielding higher amplitude in ERP study. Another 
pipeline is Tool for Automated Processing of EEG data (TAPEEG) [57]. It uses 
automated routines of FASTER and Fieldtrip for artifact identification and performed 
similar to visually analysis by an expert [58]. TAPEEG handles the resting state EEG 
data as well. Both FASTER and TAPEEG are based on z- scores and have difficulty 
in handling outliers, this leads to loss of signal content due to false positive artifact 
detection and rejections [53]. Another standardized preprocessing method for large 
EEG datasets, PREP pipeline, handles line noise removal, bad channel detection, and 
referencing to standardize and normalize the data before processing [58]. It is also 
available as plug-in in EEGLAB toolbox.

Automagic is a toolbox developed for standardized handling of large growing 
EEG/ERP datasets by time [56]. The power of Automagic comes from the fact that it 
exploits many existing pipelines and methods, such as PREP pipeline for bad channel 
identification and for average referencing, Cleanline [59] to remove power line noise, 
EOG regression [60], Multiple Artifact Rejection Algorithm (MARA), ICA or robust 
PCA for artifact correction [61]. MARA is a plug-in available in EEGLAB which 
automatically identifies artifacts not only ocular or muscular but also any general arti-
factual source component in ICA [61]. Pedroni et al. [59] showed that combination 
of a preprocessing pipeline to identify bad channels and MARA method is efficient to 
remove most of the artifacts.

None of the methods offers a perfect robust and high accurate management of all 
types of artifacts. In general, they are all limited with the training dataset and fail to 
achieve high success with new type of artifactual data.
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3.4 Simultaneous EEG and f-MRI artifact handling

Since EEG is widely used as a clinical tool to monitor or diagnose patients, doctors 
can be misguided in case of artifacts and EEG can be misinterpreted. For this reason, 
artifact removal becomes a crucial point for some cases such as epilepsy monitoring 
in an EEG/fMRI recording room. Today EEG and fMRI are two distinct but closely 
related and complementary methods. While fMRI provides high spatial resolution 
for localization of phenomena in the brain, EEG on the other hand results in better 
temporal resolution [62–65]. One should be careful about the experiments involv-
ing both fMRI and EEG because there are many unwanted electromagnetic sources 
interfering with EEG. For example, the false identification of spikes are highly 
possible since residuals of Ballistocardiogram (BCG) artifacts have similar shapes as 
epileptic spikes [66]. The factors that can lead to differences in the artifact are linked 

Figure 4. 
APP artifact management flow diagram from [53].
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to the subject and experimental setup, [67]. There are imaging artifacts, cardiac 
related Ballistocardiogram artifacts (BCG), EOG and EMG artifacts in an EEG inside 
MRI [44]. Static field (B0) and the time-varying fields of radio-frequency excitations 
and of imaging gradients, generate artifacts in the EEG known as Ballistocardiogram 
(BCG) and imaging artifacts [44, 68–70]. The pulse artifact which can be observed 
in EEGs recorded inside MR scanners easily, is due to a fundamental cause that any 
movement of electrically conductive muscles in a static magnetic field generates 
electromagnetic induction and it is proportional to the static field, generally larger 
at higher field strengths [67, 71]. Pulsations of the scalp arteries are the main cause 
of this type of BCG artifact [72, 73]. The study of Grouiller et al. [44] compared 
different imaging artifact removal techniques and various cardiac artifact correction 
techniques in both simulated EEG data and in real experimental data. They concluded 
that there is no key for every door, some algorithms work well for some case and oth-
ers might work well for other cases. Certain algorithms may be preferred depending 
on the type of data and analysis method [44]. Another algorithm, adaptive Optimal 
Basis Set (aOBS), automatically eliminates BCG artifacts yet preserving the neural 
origin signals in EEG [74]. It can be used efficiently for simultaneous fMRI and EEG 
recordings.

3.5 Sleep stage classification artifact handling

Manual artifact detection is still the most common method for artifact handling 
for sleep stage classification, however, the long time required and the difficulty 
to apply it to large datasets poses the main disadvantages [75]. Malafeev et al. [75] 
compared 12 simple algorithms that are applicable with a single EEG channel for 
ease of use. It was found that automatic artifact detection in EEG during sleep within 
large datasets is possible with simple algorithms. Among these, Power thresholding 
25–90 Hz (PT25), Power thresholding 45–90 Hz (PT45) and Autoregressive (AR) 
models had Reciever Operating Characteristic (ROC) areas above 0.95. In addition, 
online detection is also possible with the majority of these simple algorithms.

3.6 BCI Artifact handling

Artifact removal in BCI applications are getting more attention. By studies it was 
shown that artifacts generated by EOG and EMG activities affect the neurological 
signals utilized in a BCI system [10, 76]. Although there are extensive researches into 
artifact removal for BCIs and developed efficient methods such as Fully Online and 
Automated Artifact Removal (FORCe), Lagged Auto-Manual Information Clustering 
(LAMIC), Fully Automated Statistical Thresholding for EEG artifact Rejection 
(FASTER) and K-Singular Value Decomposition (K-SVD), the field lacks an effec-
tive artifact removal [12, 54, 77–82]. The surrogate-based artifact removal (SuBAR) 
technique proposed by Chavez et al. [33] effectively cancels EOG and EMG artifacts 
from single-channel EEG. Chang et al. [83] proposed a method for detection of eye 
artifact from single prefrontal channel which is useful for headband-type wearable 
EEG devices with a few frontal EEG channels. Compared to conventional methods the 
accuracy of detecting ocular artifact contaminated epochs was significantly better. 
Daily-life EEG-BCIs are getting popular and artifact removal techniques for these 
BCIs must have some critical features such as; must be performed outdoor, with por-
table wearable wireless device, with real EEG signals, compatible with daily life tasks, 
must have simple electrical montage, must use dry electrodes, must remove complex 
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artifacts, must work only EEG without reference, must work online and must work 
with single electrode channel. More research into artifact removal other than ocular 
and cardiac artifacts is necessary especially for those daily-life EEG BCIs [36].

While ICA and PCA are common artifact removal methods, Artifact Subspace 
Reconstruction (ASR), which is a powerful automated artifact removal method 
available for both online real-time and offline, can be applied to prevent transient and 
large artifact [46, 84]. It also does not require additional channel and cleans the data 
from artifacts.

4. Conclusion

The number of artifact handling techniques and algorithms are increasing 
drastically, however the artifact problem is still challenging for many applications. 
Particularly, the internal or physiologic artifacts are difficult to distinguish and 
remove. While simple measures such as artifact avoidance and artifact rejection can 
be utilized in some applications, most of the cases require special methods dedicated 
to handle artifacts in order to significantly reduce their harmful effects on signal 
of interest. Due to the varying nature of artifacts a generic method for all sorts of 
artifacts is still missing. However preprocessing pipelines provides some efficient 
approaches to this challenge. In future, the progress in machine learning and deep 
learning based approaches may yield more efficient, accurate and robust artifact 
removal options. Online artifact removal methods such as ASR must be developed to 
overcome various artifacts in daily life to be efficient for BCIs.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

Diagnosing pain mechanisms is one of main approaches to improve clinical treat-
ments. Especially, detection of existence and/or level of pain could be vital when oral
information is not present for instant for neonates, disabled persons, anesthetized
patients and animals. Various researches have been performed to originate and clas-
sify the pain; however, consistent results are surprising. The aim of this study is to
show a strict relation between electroencephalography (EEG) features and perceptual
pain levels and to clarify the relation of classified signal to pain origin. Cortical regions
on scalp are assigned based on an evolutional method for optimized alignment of
electrodes that improve the clinical monitoring results. The EEG signals are recorded
during relax condition and variety of pain conditions. Evolutionary optimization
method is used to reduce the features space dimension and computational costs. A
hybrid adaptive network fuzzy inference system (ANFIS) and support vector
machine (SVM) scheme is used for classification of pain levels. ANFIS optimizer is
used to fine tune the non-linear alignment of kernels of SVM. The results show that
pain levels could be differentiated with high accuracy and robustness even for few
recording electrodes. The proposed classification method provides up to 95%
accuracy.

Keywords: electro-encephalogram, pain, adaptive network fuzzy inference system,
support vector machine

1. Introduction

Diagnosis of the pain is one of the main concerns in clinical treatments procedure.
In particular, detection of chronic or acute stage of the pain could be vital in the
situations that oral information is not available for example instant for neonates,
disabled persons, anesthetized patients and also animals. Multiple research projects
have been done to originate and classify the pain. It is shown that achieving consistent
is a challenge.

Identification of the human sensory perception have been of high interest in recent
years. These studies are required for protection of the body and for restoring the
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embodiment sense. The advance in this field shows that not only the accurate design
of the sensors improves the sensitivity of the identification but understanding the
dynamics of pain perception and successful reversing of the coding mechanism are
essential stages of the processing and classification process.

Localization of the source of the pain is very important for the neurological thera-
peutic processes [1]. The localization of cortical sources and observation of the spa-
tiotemporal activation is also used for pre-treatment monitoring and surgical process
[2]. The studies in this area would create an infrastructure for real-time monitoring of
the pain to be used in alarming systems, surgery monitors and automated activated
systems.

The aim of this work is to show the relation of EEG signal and perceptual level of
pain. We also try to clarify the relation between the signal and the origin of the pain.
The alignment of electrodes in cortical regions on scalp are assigned based on an
evolutional algorithm to improve the clinical monitoring results. The normal and pain
conditions are used for recording the signal. Some defined spectral features are com-
bined with non-linear features including approximate entropy and Lyapunov expo-
nent to create the feature vector. It is shown that there is consistency between these
features and the dynamical characteristic of EEG signals. Evolutionary optimization
method is used for reduction of the features space dimension and computational costs.
A hybrid adaptive network fuzzy inference system (ANFIS) and support vector
machine (SVM) scheme is used as the classifier. ANFIS optimizer is used for align-
ment of kernels of SVM. The classification results show that pain levels could be
differentiated with high accuracy, sensitivity, and specificity with few recording
electrodes. This research shows that electrical variations of brain patterns could be
used for determination of pain levels. The proposed classification method reaches an
accuracy of 95%.

2. Literature review

The study of human brain functionality in special conditions like stress and pain
has significantly improved in the last decades [2]. Only some few changes in EEG
signal have been observed during pain condition. An experimental pain stimulus
will cause a decrease in alpha spectrum and an increase in gamma power in the surface
of cortex while tonic muscle pain usually led to a stronger beta activity [3]. In most of
the works a cold press has been mainly used to induce pain to the subjects. The
achieved results are not necessarily consistent and do not allow for generalization of
the events.

The staging of the signals has shown more progress regardless of the specificity of
the described EEG changes for pain. The EEG spectrum is affected by sensory
processing in general and cognitive sensory signals change during these events. The
ambiguity of the effects of these events on EEG is probably a consequence of the
methods used for EEG analysis, which do not allow for sufficient experimental con-
trol. In the present work a machine learning approach is used for classification and
recognition of pain to be used for diagnosing purposes.

The aim of this research is to identify the difference between “normal”, “low pain”
and “pain” conditions. A kernel based SVM is used for the classification of the signals
in the desired classes [4]. The optimized hyperplane is adjusted by finding the maxi-
mum distance from the nearest training points. An ANFIS optimizer is used for
adjusting the hyper-planes of SVM classifier. ANFIS is trained by the features in the
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data set and adjusts the system parameters according to the error criteria [5]. Our
results show that the combination of ANFIS-SVM results to the best performance on
nonlinear features.

3. Materials and methods

3.1 Energy ratio features

The EEG signal could be categorized based on the spectrum in the frequency
domain. The spectrum analysis could provide a demonstration of the functionality of
the brain. Because of the spectrum changes in pain condition the Energy ratios
between different bands could be used as the classification features. The ratio of
Alpha, Beta, Delta, and Theta energy to the total spectrum on each EEG lead are used
as the features for the classifier.

3.2 Approximate entropy

Approximate entropy is a non-negative number that is assigned to a time series
that is a measure of the complexity or irregularity in the data. EEG signal has a steady
pattern during synchronized cooperative function of cortical cells with low entropy
index values. In contrast concentric functions and higher levels of brain activity led to
high values of entropy. The entropy H is defined as:

H ¼ �
XN
i¼1

Pi log 2Pi (1)

in which Pi is the average probability at i th frequency band of brain rhythm that is
grater that r times of standard deviation andN is the total number of frequency bands.
H is 0 for a single frequency and 1 for uniform spectrum distribution over total
spectrum. Approximate entropy can be used as a powerful tool in the study of the EEG
activity because of the non-linear characteristics of EEG signals. The accuracy and
confidence of the entropy estimate improves as the number of matches of length m
and mþ 1 increases. m and r are critical in finding the outcome of approximate
entropy. The approximate entropy is estimated with m ¼ 3 and r ¼ 0:25 based on an
investigation on original data sequence in this work.

3.3 Fractal dimension

Fractal dimension is a demonstration of the geometric property of basin of attraction
in the feature space. This dimension shows geometrical property of attractors and is also
computed very fast [6]. Features were extracted from each one second segment with
50% overlap, and sequence of 9 extracted features was considered as the feature vector
of a five second segment. We have used Higuchi’s algorithm, in which k new time series
are constructed from the signal under study as [7]:

xkm ¼ x mð Þ, x mþ kð Þ, x mþ 2kð Þ, … , x mþ ⌊
N �m

k
⌋k

�� �
(2)
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in which m ¼ 1, 2, … , k and k indicate the initial time value, and the discrete time
interval between points, respectively. For each of the k time series xkm the length Lm kð Þ
is calculated as:

Lm kð Þ ¼
P

i¼1 x mþ ikð Þ � x mþ i� 1ð Þkðj j N � 1ð Þ
⌊N�m

k ⌋k
(3)

in which N is the total length of the signal x. An average length is computed as the
mean of the k lengths Lm kð Þ (form ¼ 1, 2, … , k ). This procedure is repeated for each k
ranging from 1 to kmax , obtaining an average length for each k. In the curve
of ln L kð Þð Þ versus ln 1

k

� �
, the slope of the best matched line to this curve is the estimate

of the fractal dimension.

3.4 Lyapunov exponent

Lyapunov exponents are used as a measure for differentiating between types
of orbits in feature space based on the initial conditions. These features can determine
the stability of steady-state and chaotic behavior [8]. Chaotic systems show aperiodic
dynamics because the phase space trajectories with similar initial states tend to move
from each other at an exponentially increasing speed that is defined as Lyapunov
exponent. This feature is extracted from the observed time series. The algorithm starts
from the two nearest neighboring points in phase space at the beginning time 0 and at
the current time t that corresponds to the distances of the points in the i th direction
are δXi 0ð Þk k and δXi tð Þk k, respectively. The Lyapunov exponent is defined as the
average growth rate λi of the initial distance [9]:

δXi tð Þk k
δXi 0ð Þk k ¼ 2λi t ! ∞ð Þ (4)

or

λi ¼ lim
t!∞

1
t
log 2

δXi tð Þk k
δXi 0ð Þk k (5)

The existence of a positive Lyapunov exponent is an indication of chaos. Lyapunov
exponents can be extracted from observed signals using two approaches. The first
method is based on the following of the time-evolution of nearby points in the state
space. This method can only estimate the largest Lyapunov. In the other approach the
Jacobi matrices and can estimate all the Lyapunov exponents for a systems that often
called their Lyapunov spectra [10]. This vector is used as the parameter vector in this
work.

4. Classification

SVM classifiers discriminants the hyperplanes to reach optimal classification. The
hyperplanes should be adjusted to maximize the margin of classification boundaries.
The distance from the nearest training points is measured using a non-linear kernel to
map the problem from the feature space into the linear space [11]. Radial Basis
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Function (RBF) kernel is proposed in this paper and the Lagrangian optimization of
the kernel is performed using an ANFIS structure. This proposed method leads to
adjustable soft-decision classification because of the conceptual nature of the pain for
patients.

4.1 SVM with RBF kernel

Training of the SVM is a quadratic optimization problem on the hyperplanes that
are defined as:

yi wΦ xi, yj
� �

þ b
� �

≥ 1� ξi, ξi ≥0, i ¼ 1, … , l, j ¼ 1, … ,m (6)

that xi is the feature vector, b is the bias, w is the weight vector, ξi is class
separation factor, Φ xi, yj

� �
is the RBF mapping kernel, l is the number of training

vectors, j is the number of output vectors, and yj is the desired output vector. The

Figure 1.
Block diagram of RBF-SVM classification system.
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weight parameter should be optimized to maximize the margin between the
hyperplane and the neighboring points in the feature space. This is a compromise
between the maximization of margin and the number of misclassified points.
Optimization of Eq. (6) results to optimum weight w.

Figure 1 shows the RBF kernel SVM classification system. The kernel parameters
could be selected by optimizing the upper bound of the generalization error based on
the training data. The support vector fractions and the relation between the number of
support vectors and all the training samples define an upper bound on the error
estimate. The resulting decision function can only change when support vectors are
excluded. A low fraction of support vectors could be used as a criterion for the
parameter selection.

4.2 Adjustable ANFIS optimization

An ANFIS is used with for optimization of the SVM classification kernels. The
optimization process would be less reliant on expert knowledge compared to the
conventional fuzzy systems using this adaptive method. The result of the learning
algorithm for this architecture is to adjust all the parameters of the kernel to adjust the
hyperplanes for optimized output. Since the initial parameters are not fixed, the
search space becomes larger, and the convergence of the training becomes slower. The
training method is using a combining of the least squares and the gradient descent
method is used to train the network. The hybrid algorithm is composed of forward
and backward pass. The least squares method on the forward pass is used to optimize
the consequent parameters with the fixed premise parameters. The backward pass is
using the gradient descent method afterward to optimize the consequent parameters
and to adjust the premise parameters corresponding to the fuzzy sets in the input
domain. The output of the ANFIS network is achieved by defuzzification of the
consequent parameters in the forward pass. The output error is used to adjust the
premise parameters using a standard back propagation algorithm.

5. Results

Three montages of electrodes are used for clinical experiments as are shown in
Figure 2. The classification results of for the arrangements are compared with each
other to find the best montage. All of the experiments performed with 70% training
and 30% testing signals. Table 1 shows the classification accuracy rates for ANFIS-
SVM using these electrode arrangements. Montage III led to best classification and is
used as the electrode set for pain classification in this work. The SVM parameters and
the related Kernel function are adjusted to achieve the best possible results. This
optimization was done using ANFIS as described in the materials and methods section.
The over fitting is reduced by controlling the compromise between the training error
minimization and the learning capacity of the fuzzy if-then functions. The final
decision function parameters can be updated because they depend on the support
vectors only.

Furthermore, approximate entropy, Lyapunov exponent and fractal dimension are
also examined as non-linear features. An evolutionary feature selection was applied on
these elements that showed the theta and alpha ratio and the entropy led to best
classification rates for ANFIS-SVM classifier. The accuracies for classification of two
classes of pain and no pain are shown in Table 2 for two cases of using all the features
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in the feature vector and using the high rank features only. The results for SVM and
ANFIS-SVM show the identification rate shows a reduction of 7% and 8% for reduced
features, respectively. This reduction happens for identification based on three most
effective features, and it could be concluded that the effect of “standard deviation”
and “fractal dimension” could not be neglected. The accuracy of 95 % is achieved for
ANFIS-SVM proposed method using non-reduced features.

Another evaluation is performed on feature space to find the feature sets for
ANFIS-SVM classification. The features are classified as spectral feature set that
includes “theta ratio” and “alpha ratio,” and nonlinear features namely that include
“entropy,” “standard deviation” and “fractal dimension.” Table 3 shows the results
for classification of pain and no-pain condition. It could be observed that non-linear
features result into about 17% improvement for SVM and 14% improvement for
ANFIS-SVM classification.

Features SVM (%) ANFIS-SVM (%)

Non-reduced features Standard deviation, theta ratio, alpha ratio,
entropy, lyapunov, and fractal dimension

90 95

Reduced Features Theta ratio, alpha ratio, and entropy 83 87

Table 2.
Classification rates of SVM and ANFIS-SVM for reduced and non-reduced features.

Montage I Montage II Montage III

Classification rate for ANFIS-SVM 78% 81% 88%

Table 1.
ANFIS-SVM Classification rate for three electrode arrangements.

Spectral features (%) Non-linear features (%)

SVM 75 89

ANFIS-SVM 80 93

Table 3.
Classification rate for ANFIS-SVM with two sets of features.

Figure 2.
The electrode arrangement (a) I, (b) II, and (c) III for electrodes based on 10/20 standard.
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6. Discussion

The aim of this chapter was to introduce a classification method base on ANFIS-
SVM method for identification of pain condition in EEG signal. In this study, we
explored the effectiveness of the identification of pain level and localization of the
signals on cortex for therapeutic use [12]. The extracted features of EEG including
standard deviation, theta ratio, alpha ratio, entropy, Lyapunov, and fractal dimension
and the recording channels in pain EEG signals are studied. The classification method
is optimized to identify acute pain. The results of the experiments show that non-
linear features combined with the proposed classification method are capable of
effective classification. The feature vector is built by entropy, fractal dimension and
conventional spectral features. The results also show that the reduction of the number
of features could improve the accuracy of the system. Therapeutic usage of this
system would be beneficial with patients with anesthesia and the patients who are
unable of regular communication.
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Chapter 4

Multivariate Real Time Series Data 
Using Six Unsupervised Machine 
Learning Algorithms
Ilan Figueirêdo, Lílian Lefol Nani Guarieiro  
and Erick Giovani Sperandio Nascimento

Abstract

The development of artificial intelligence (AI) algorithms for classification purpose 
of undesirable events has gained notoriety in the industrial world. Nevertheless, 
for AI algorithm training is necessary to have labeled data to identify the normal 
and anomalous operating conditions of the system. However, labeled data is scarce 
or nonexistent, as it requires a herculean effort to the specialists of labeling them. 
Thus, this chapter provides a comparison performance of six unsupervised Machine 
Learning (ML) algorithms to pattern recognition in multivariate time series data. The 
algorithms can identify patterns to assist in semiautomatic way the data annotating 
process for, subsequentially, leverage the training of AI supervised models. To verify 
the performance of the unsupervised ML algorithms to detect interest/anomaly 
pattern in real time series data, six algorithms were applied in following two identical 
cases (i) meteorological data from a hurricane season and (ii) monitoring data from 
dynamic machinery for predictive maintenance purposes. The performance evalu-
ation was investigated with seven threshold indicators: accuracy, precision, recall, 
specificity, F1-Score, AUC-ROC and AUC-PRC. The results suggest that algorithms 
with multivariate approach can be successfully applied in the detection of anomalies 
in multivariate time series data.

Keywords: unsupervised learning, pattern recognition, multivariate time series, 
machine learning, anomaly detection

1. Introduction

Today, the industry is changing by what experts call the “Fourth Industrial 
Revolution”, also called Industry 4.0. This change is strongly associated with the 
integration between physical and digital systems through, for example, installing 
sensors. The integration of these environments allows the collection of a large amount 
of acquired data in different fields such as: industrial processes, meteorological 
monitoring stations, stock exchanges etc. This amount of both collected and stored 
data enables faster and more directed information exchange [1].
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In many fields, it is essential for the process to identify unusual patterns that can 
be generated by unpredictable or unwanted behavior. These behaviors may be due 
to some problem that may be occurring in the related process, for example, in an 
industrial environment companies can use machine monitoring data to identify mal-
function operating due its abnormal behaviors. This fact, when it is not detected in 
time, can generate false data and lead experts to misinterpret the operating condition 
of the machine. Another example would be a credit card operator who can monitor 
each user’s transaction to look for unusual behavior that could point to fraudulent 
transactions. These unwanted and abnormal behaviors are often called interest pat-
terns and can be extracted from data due a variety of reasons, all presenting a certain 
level of relevance to the analyst. It is important that this analysis takes into account 
any changes in the behavior of the parameter to identify opportunities to improve, 
prevent or correct any situation [2].

The detection of interest/anomaly patterns is usually carried out by specialists 
which comprises the dynamics of the system under analysis. However, it is often not 
feasible to analyze and label them due to the large volumes of data generated. Thus, 
there is a limitation regarding the ability of specialists to process a large amount of 
data, requiring many hours of work that, in general, are involved in other activities 
and do not have the time necessary for this relevant activity. Thereby, there is a great 
need to automate the process of identifying hidden interest patterns in time series 
data [3].

Unsupervised machine learning (ML) has been research hotspot in intelligence 
artificial (IA) field to extract useful features from unlabeled raw data. Instead of 
selecting features by a human operator, the unsupervised learning is quite intelligent 
and independent of specific knowledge of processing techniques and field expertise 
in a data-driven way. Thus, there is no escape from the requirement of labeled data 
to train classifiers at the phase of diagnosis problems, but it is hard to label a mass of 
collected data before the determination of interest patterns [4].

In an industrial environment, data collection is often carried out through mul-
tiple sensors due the possibility of a more robust representation of the phenomena 
involved, as example, the monitoring of industrial assets is carried out through both 
acquisition of vibration and temperature data of the machine. Another example is the 
monitoring of meteorological conditions, which generally collect data on wind speed, 
air humidity and ambient temperature. However, multivariate data presents a greater 
challenge for the application of Machine Learning (ML) algorithms, as they must 
be able to recognize patterns and predict behaviors in a greater amount of data and 
attributes to be correlated [5].

Anomaly detection algorithms seek for patterns in data that do not conform to an 
expected behavior. Anomaly detection is essential in industrial applications to opti-
mize economic performance and minimize safety risks. The advent of system health 
monitoring methods was realized to preserve system functionality within harsh 
operational environments. Hence, to develop an anomaly detection model based on 
multi-sensor signals, three major challenges must be faced [6]:

i. online multi-sensor signals are often available in the form of complex, multi-
variate time series, as different sensors measure various aspects of data over 
fairly long periods of time, and since there is a large amount of heterogeneous 
data, it can become impractical to human specialists to label anomalies or 
unknown events within the data;
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ii. especially in industrial applications, it is likely to have extremely imbalanced 
datasets, since far more data is obtained during normal operations rather than 
abnormal;

iii. the dataset may contain uncertainties and spurious data, especially when it 
involves manually recorded data.

One way to mitigate these problems is to perform some type of anomaly detection 
technique, which are usually computationally intensive algorithms, and then flag 
unusual patterns for further inspection by human specialists [3]. Other way of deal-
ing with it are based on supervised machine learning anomaly detection algorithms, 
which require a training dataset that contains a set of instances of anomalies, and a set 
of instances of non-anomalous (or normal) data, at least. From the training data, the 
algorithm learns a model that distinguishes between the normal and the anomalous 
patterns. Such supervised learning algorithms typically require tens or hundreds of 
thousands of labeled samples to obtain good quality performance. Nevertheless, as 
stated before, the scarce availability of labeled data poses a challenge to the usage and 
application of supervised learning techniques for anomaly detection in multivariate 
time series data.

Hence, unsupervised learning algorithms step up as a viable and feasible alterna-
tive to tackle this challenging problem. Since they are designed to deal with unlabeled 
data, they are able to learn and identify interesting patterns from the data’s own inter-
nal structure, meaning that they can be used to point out anomalous patterns when 
the labels are unknown. Thus, unsupervised machine learning models are essential to 
solve the addressed challenges [7].

Several works proposed the development and application of unsupervised ML 
algorithms over the past years to detect anomalous patterns in time series datasets, 
which are based on major approaches that are summarized in Table 1. A detailed 
description and evaluation of each of these approaches is beyond the scope of this 
chapter.

Most of the works based on unsupervised ML algorithms employs clustering 
techniques, which are either distance-based [10] or density-based [11]. On the one 
hand, the advantages of clustering methods are that they are simple, robust, and easy 
to program. However, the problem is the need to define the parameters related to the 
data observations beforehand such as defining a similarity function or the number 
of clusters that should exist in the data, and that becomes the responsibility of the 
designer to determine how these parameters should be used, even if the data has a 
random structure [9]. The work [12] proposed the K-means to automate diagnosis of 
defective rolling bearing. To overcome the sensitivity of choosing the initial clusters 
number, the initial centers were selected using features extracted from simulated 
signals. However, K-means depends mainly on distance calculation between all data 
points and the centers, therefore, the cost of the computational time will be higher for 
big data.

To reduce the time cost of K-means, [13] proposed a Fast K-means algorithm based 
on two stage. The first stage is a fast distance calculation using only a small fraction 
of the data to originate the best possible location of the centers. The second stage is 
a slow distance calculation in which the initial centers are taken from the first stage. 
Besides that, the K-means is optimized through grid search method that is efficient 
when the number of parameters is small.
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Aiming to prove the reduction quality of the dataset, [14] demonstrated the 
superiority of the autoencoder in the feature dimensional reduction comparing with 
the PCA method. The reduced feature set obtained from the PCA method revealed 
overlaps of classes and features that are scattered on the large space, while the autoen-
coder represented the superior ability in the clear and concentrated distribution.

The work [15] presented a similar comparative study to evaluate the performance 
of the autoencoder to the original feature set, PCA reduction and real-valued negative 
selection. The dimensional reduction of the autoencoder, once again, have performed 
a highly improved anomaly detection compared to the others. Moreover, PCA space 
transformation requires complete knowledge about normal and faulty data classes.

Two methods for feature selection were proposed by [15]. The first one is based 
on k-NN for clustering using feature similarity influence, and the second one is the 
pretraining using sparse autoencoders. The classification performance obtained 

Algorithm Description

K-means It is used to divide a group of data points into hard clusters. It assumes a balanced cluster 
size, the joint distribution of features with equal variance, and independent features with 
similar cluster density. Determining the optimal K can be difficult, but for small values, 
it is computationally fast and efficient. In addition, it is important to choose the most 
appropriated distance or similarity function, since it is one of the key aspects used to 
determine whose cluster a certain data point belongs to.

Gaussian 
mixture model

It uses a Gaussian distribution-based parametric model to identify the underlying 
populations. These can be explained by a normal distribution in the midst of many 
heterogeneous populations. However, in many practical situations, the data distribution 
may not have any explicit clusters. As a result, each point can be assigned with different 
weights or probabilities to soft clusters.

Random forest It operates by constructing a multitude of decision trees at training time and outputting 
the class that is either the mode of the classes (classification) or the mean prediction 
(regression) of the individual trees. Random forest can learn arbitrary relationships 
between the features and the outcome, even non-monotonic relationships.

k-NN It assigns data points according to the majority of its nearest neighbors to find anomalous 
data points by measuring the local deviation. A choice needs to be made on the value of K, 
i.e. the number of neighbors, to avoid overfitting/underfitting issues.

DBSCAN It recognizes the clusters as dense regions having some coincidence that is diverse from 
the other sparse region. The algorithm may use a reduced number of points and a distance 
measure to merge the data points that are similar to each other. Moreover, DBSCAN 
requires two parameters to operate, which are the epsilon (eps) and the minimum points 
(minpoints). Eps determines the smallest distance existing between two points in a cluster, 
while minpoints defines the least number of points required to form a dense region [8].

PCA Principal Component Analysis (PCA) based anomaly detection techniques are able extract 
the main features of a certain dataset without losing its ability to represent the original 
data, then using these features to analyze which constitute a normal class and applies 
distance metrics to identify cases that represent anomalies. This allows to train a model 
using existing imbalanced data.

Autoencoders It is a neural network that attempts to reconstruct its input. Similarly to PCA, it can serve as 
a form of extract main features to produce a compressed representation of its input at the 
encoder. This representation can be mapped to its original form using a decoder. Anomaly 
detection uses the reconstruction error to measure how well the decoder is performing.

Adapted [9].

Table 1. 
Unsupervised ML approaches found in literature for anomaly detection in time-series.
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by the k-NN algorithm is comparable to the result obtained from the autoencoder 
(slightly lower in accuracy). The criterion for choosing the “k” parameter is based 
on the combinations that frequently appear in the subsets reduced by the technique 
itself. In other words, the criterion adopted is purely empirical.

Furthermore, even though several unsupervised techniques have been proposed in 
literature, their performance depends a lot on the data and application they are being 
used in. This indicates that most of these methods have little systematic advantages 
over the other when compared across many other datasets.

In this context, this chapter discuss the level of accuracy and reliability of six 
unsupervised ML algorithms for pattern recognition and anomaly detection with no 
need of labeled data. Two real cases were applied for performance evaluation of the 
algorithms abilities to detect the interest patterns in the multivariate time series data. 
The real cases were: (i) meteorological data from a hurricane season and (ii) monitor-
ing data from dynamic machinery for predictive maintenance purposes.

2. Unsupervised ML algorithms

This section will review the concept and application of six unsupervised ML 
algorithms for anomaly/pattern detection applied in this research. It is important to 
inform that among the six algorithms described in this chapter, only the methods in 
Sections 2.1 and 2.3 has its intrinsic characteristic to perform a multivariate analysis, 
while the other algorithms are only able to perform a univariate analysis. Therefore, a 
univariate performance evaluation is computed in each dimension of the data to then 
calculate an average performance, except algorithms in 2.1 and 2.3 sections.

2.1 C-AMDATS

The Cluster-based Algorithm for Anomaly Detection in Time Series Using 
Mahalanobis Distance (C-AMDATS) is a clustering ML unsupervised algorithm. The 
model has only two hyperparameters that user can manipulate: (i) Initial Cluster 
Size (ICS) and Clustering Factor (CF). First the ICS clusters the observed sequences 
of time series data A, where each cluster may represent a behavior status. After the 
initial clustering, a new and better clustering in the dataset is remade according 
to the data points distribution over timeline. This ability is due to the usage of the 
Mahalanobis distance in the algorithm. In general, clustering techniques use the 
Euclidean distance function, which makes the clustering assumes the geometric shape 
of a circle, then it does not consider the variance of each dimension or feature of the 
dataset. However, there are situations in which the variance between each dimension 
(or feature) is different. Conversely, by using the covariance matrix, the Mahalanobis 
distance can detect the variance of each dimension. Eq. (1) presents the Mahalanobis 
distance formula.

 ( ) ( ) ( )1, T
md x x S xµ µ µ−= − −  (1)

Where: ( ),md x µ  is the Mahalanobis distance between a specific point in the time 
series and its respective centroid; x = (x1, x2, …, xn)T is a specific variable in the time 
series data, where n is the number of variables; μ = (μ1, μ2, …, μn)T is a certain cluster 
centroid; and S is the covariance matrix relative to that cluster.
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After the new clustering through the Mahalanobis distance, the algorithm calcu-
lates the similarity of each cluster in the time series A to find the respective hidden 
patterns P. This similarity is calculated using the standard deviation σy of the actual 
values of the A samples, the Y coordinate of each centroid and the CF. If the modulus 
of the difference between the y coordinate of the centroids of two cluster is less than 
or equal to the product of CF and σy, then these clusters can be merged, meaning that 
they will represent the same pattern P. This task is carried out until every cluster have 
been analyzed.

The last step of C-AMDATS is to calculate the probability of the pattern P to be an 
anomaly R. The Anomaly Score measures the anomaly R for each pattern P (found 
in the previous step). The score is calculated by the ratio of the size of the entire time 
series to the sum of the sizes of the clusters present in P. The anomaly score assesses 
the degree of relevance of P in terms of anomaly detection. Then, all set P is ordered 
by R in descending order, and the anomalous patterns will be those with the highest 
anomaly score values. The higher the anomaly score value for a pattern P, the greater 
probability is of being an anomaly behavior in A [2]. Eq. (2) presents the Anomaly 
Score formula.

  
iP

i

Anomaly Score
T
P

=  (2)

Where  
iP

Anomaly Score  is the anomaly score of the pattern Pi, |Pi| is the size of the 
pattern Pi, and |T| is the size of the time series T.

2.2 Luminol Bitmap

Bitmap is an available unsupervised learning algorithm in Luminol library for 
anomaly detection or time series correlation. The background of Bitmap algorithm is 
based on the idea of time series bitmaps. The logic of the algorithm is to make a 
feature extraction of the raw time series data - by converting them into a Symbolic 
Aggregate Approximation (SAX) representation - and use it to compute the informa-
tion about the relative frequency of its features to color a bitmap in a principled way. 
SAX allows a dimensionality reduction of the raw time series C of arbitrary length n to 
a string arbitrary length w (w < n, typically w < < n) by a vector C . It transforms the 
data into a Piecewise Aggregate Approximations (PAA) representation to symbolize it 
into a discrete string [16]. Eq. (3) presents the calculation of the ith element of C :

 
( )1 1

n i
w

i j
nj i
w

wC C
n

= − +

= ∑  (3)

After transformed a time series dataset into PAA, the algorithm applies a further 
transformation to obtain a discrete representation with equiprobability [16]. The 
conversion of the time series into a SAX words is made by a slider window (also called 
feature window). Bitmap algorithm use two concatenated slider windows together 
across the sequence, the latter one is called lead window, showing how far to look 
ahead for anomalous patterns and the former one is called lag window, whose size 
represents how much memory of the past to remember it.
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In summary, the algorithm approach is to convert both feature windows into SAX 
representation, then count the frequencies of SAX subwords at the desired level and 
get the corresponding bitmaps. The distance between the two bitmaps is measured 
and reported as an anomaly score at each time instance, and the bitmaps are drawn 
to visualize the similarities and differences between the two windows. The user must 
choose the length of the feature windows N and the number n of equal sized sections 
in which to divide N [3].

2.3 SAX-REPEAT

SAX-REPEAT algorithm is an approach that relies on extending the original SAX 
implementation to handle multivariable data. The algorithm takes as input a set of K 
multivariable time series Xi of lengths Ti, and dimensionality D, that represent differ-
ent instances of the raw data to be learned. The user can set the parameters of the final 
string length N and an alphabet size M.

The algorithm applies SAX to each dimension of the data separately, and then 
combine the output string by assigning each possible combination of symbols, 
resulting in D strings to a unique identifier. This leads to a string of length N, but an 
extended alphabet of length DM . So, to maintain the requirement of the final string 
to be an alphabet of symbols M (parameter set by the user), the algorithm clusters the 
resulting characters into M clusters through K-means method and replace each 
character with the centroid of its cluster [17].

Although SAX-REPEAT can recognize interesting patterns, the original algorithm 
does not calculate the probability of the patterns being anomalous. Thereby, this 
work implemented an anomaly score for each found cluster (pattern). As C-AMDATS 
algorithm, the score is computed by the ratio between the size of the entire time series 
and the sum of the sizes of each cluster. Therefore, each cluster is sorted according to 
the respective anomaly score in descending order, and the anomalous patterns will be 
those with the highest anomaly score values.

2.4 k-NN

The k-Nearest Neighbors (k-NN) algorithm is one of the most popular method to 
solve both classification and regression problems. However, in this study, we will use 
it only for classification problem as unsupervised learning.

The algorithm assumes that similar data points exist in proximity, i.e, they are near 
to each other. The algorithms capture the idea of the similarity (also known as distance, 
proximity, or closeness), calculating the distance between points on a graph. Distance 
calculation is usually done by Euclidean distance, but it can be calculated using  
other distance functions. The Euclidean distance between the points P = (p1, p2,…,pn)  
e Q = (q1, q2,…,qn), in a n-dimensional Euclidean space, it is defined in Eq. (4):

 ( ) ( )2

1
, n

e i ii
d p q p q

=
= −∑  (4)

Where, p = (p1, p2, …, pn) and q = (q1, q2, …, qn) are two points in Euclidean n-space.
The k-NN algorithm depends on two parameters, a metric used to compute the 

distance between two points (in this case Euclidean function), and a value k of the 
number of neighbors to consider. When k is underestimated, the algorithm can 
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overfit, i.e. it will classify just based on the closest neighbors instead of learning sepa-
rating frontier between classes, but if k is overestimated, the algorithm will underfit, 
in the limit if k = n, the algorithm will consider every point belongs to the class that 
has more samples [18, 19].

2.5 Bootstrap

Bootstrap algorithm uses the computational power to estimate almost any 
 summary statistics, such as the confidence interval, mean, or standard error. The 
method depends on the notion of a bootstrap sample B, which is a resampling of size 
n drawn to replace the original dataset Z = (Z1, Z2, …, Zn). The bootstrap sample is 
represented ( )1 2, , , nZ Z Z Z∗ ∗ ∗ ∗= … . Each iZ

∗  is one of the original Z values randomly 
selected, the selection probability for each Z value is equipollent, for example: 

7 2 5 3 9 4 7, , ,Z Z Z Z Z Z Z Z∗ ∗ ∗ ∗= = = = , etc. Note that the same original value can appear 
zero, one or more times, in the example, 7Z  appeared twice, i.e, the selection of 
Z value is not exclusive. The name Bootstrap concern to the use of the original dataset 
to generate new datasets Z∗ . The idea is to generate a larger number of Bootstrap 
sample B of each size n using a random number device to perform the algorithm 
training. The number of bootstrap repeats defines the variance of the estimate, i.e, 
higher the number is, better is the variance, but in contrast, the computational cost 
increases with the increasement of the B number [20, 21].

In this sense, we are interested in calculating a confidence interval using 
Bootstrap, which is performed by requesting the statistics stored during the training 
and selecting values in the chosen percentile for the confidence interval. The chosen 
percentile is denoted as δ  (Alpha or Significance Level). Eq. (5) defined the calcula-
tion to estimate the distribution of δ* for each Bootstrap sample.

 x xδ ∗ ∗= −  (5)

Where: x∗  is the mean of an empirical bootstrap sample and x  is the mean of the 
original data.

Therefore, the confidence interval for a Significance Level of 0.05 is defined by 
Eq. (6).

 .05 .95onfidence interval ,C x xδ δ∗ ∗ = − −   (6)

Where, x  is the mean of the original data, .05δ ∗  is significance level at the 5th 
percentile, and .95δ ∗  is significance level at the 95th percentile.

So, in order to obtain a very accurate estimate of .05δ ∗  and .95δ ∗ , it is important to 
generate a large number of bootstrap samples.

2.6 RRCF

Robust Random Cut Forest (RRCF) algorithm is an ensemble technique for 
detecting outliers. The idea is based on an isolation forest algorithm that uses an 
ensemble of trees. In graph theory, trees are collections of vertices and edges where 
any two vertices are only connected by one edge, it is an ordered way of storing 
numerical data.
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In this view, the algorithm takes a set of random data points, cuts them to the same 
number of points and creates trees. The algorithm starts by constructing a tree of n verti-
ces, then it creates more trees of the same size, which in turn creates the forest. The user 
can choose the number of trees and the number of data point of each tree has, which is 
randomly sampled from the dataset. After the construction of the forest, the algorithm 
injects a new data point p into the trees to follow the cuts and to compute the average 
depth of the point across a collection of trees. The point is labeled an anomaly if the score 
overtake a threshold, which corresponds to the average depth across the trees [22].

3. Comparative analysis between the algorithms

This section will discuss the details of the datasets, the algorithm parameters set-
tings, the evaluations performance method, and a comparative analysis between the 
algorithms.

In order to summarize the advantages and limitations of each algorithm, Table 2 
shows advantage and limitations of the ML algorithms.

ML algorithms Advantage Limitations

C-AMDATS • Multivariate approach

• Easy to parameterize

• Considers the variances of each 
dimension

• Take more CPU time due to the need to 
compute the inverse of the covariance matrix 
for each cluster

• Sensitive to noisy data, missing values and 
outliers

Luminol Bitmap • Quick calculation time

• Runs well on big data

• Not too sensitive to parameter 
choices

• Univariate approach

SAX-REPEAT • SAX Multivariate approach • Hard to parameterize

• Slow calculation time due the k-means 
clustering

• Sensitive to missing values and outliers

k-NN • Quick calculation time

• Easy to implement

• Variety of distance criteria can 
be chosen

• Does not work well with large dataset

• Does not work well with high dimensions

• Sensitive to noisy data, missing values and 
outliers

• Univariate approach

Bootstrap • Quick calculation time

• Does not require large sample 
size

• Can be computationally expensive depending 
on the bootstrap sample number

• Univariate approach

RRCF • Different dimensions are 
treated independently

• Designed to run in a streaming 
data

• Univariate approach

• Can be computationally expensive depending 
on the number of trees

• Sensitive to noisy data, missing values

Table 2. 
Advantage and limitations of the unsupervised ML algorithms.



Brain-Computer Interface

64

The advantages and limitations of each algorithm will be discussed throughout the 
development of this chapter.

3.1 Characterization of case studies

This chapter brings two sets of real data, which were collected for the purpose of 
detecting anomalies in multivariate time series. The databases applied in this study 
will be detailed in the next sections.

3.1.1 Case study 01 - meteocean data in hurricane season

The chosen set is a public meteocean data available online in the National Data 
Buoy Center of the National Oceanic and Atmospheric Administration’s (NOAA). 
The dataset was collected in the Atlantic Ocean off the Bahamas coast (23,838 N; 
68,333 W). The data were structured in hourly frequency and it begins in June 2012 
until November 2012 (213 days and 22 hours), comprising 15,315 data points. This 
period corresponds to the hurricane season in the Ocean Atlantic, which that year was 
especially active with 19 tropical cyclones (winds above 52 km/h), which 10 cyclones 
became hurricanes (winds above 64 km/h).

Hurricanes can be detected by several meteorological variables that consequently 
are directly impacted. In this case study, the following analysis variables were con-
sidered: (a) significant wave height (WVHT); (b) sea level pressure (PRES); and 
(c) wind speed (WSPD). Within the period of the dataset, three hurricanes transited 
through the Bahamas coast region: (i) Isaac; (ii) Rafael and (iii) Sandy.

Isaac had his first alert issued on August 21 by the National Hurricane Center. 
Several islands in the Lesser Antilles have been placed under hurricane surveillance 
or tropical storm warnings. Isaac was tracked between Guadalupe and Dominica 
on August 22, it passed over Haiti and Cuba with a strong tropical storm force. 
On August 26, the Isaac approaches Florida Keys and the next day entered the eastern 
Gulf of Mexico causing several economic impacts in the USA. There was a gradual 
intensification and Isaac reached its peak intensity as a category 1 hurricane, with 
sustained 1-minute winds of 80 mph (130 km/h) [23].

Hurricane Rafael produced minor damage in the northeastern Caribbean Sea in 
mid-October 2012. The first alert was issued to Bermuda on October 14, but was can-
celed on October 17 when the hurricane passed northeast of the island. On October 
16, Rafael reached his peak intensity with maximum sustained winds of 90 mph 
(150 km/h). Rafael intensified in a category 1 hurricane [24].

Hurricane Sandy was the deadliest and most destructive, as well as the strongest, 
hurricane of the 2012 Atlantic hurricane season. Inflicting nearly $70 billion USD in 
damage, Sandy was a Category 3 storm at its peak intensity when it made landfall in 
Cuba. On October 24, Sandy became a hurricane reaching the coast near Kingston 
and Jamaica. On October 25, it hit his peak intensity in Cuba. On October 31, Sandy 
was already off the coast of Maine in the United States of America [25].

The Figure 1 illustrates the period of hurricanes Isaac, Rafael and Sandy in the 
multivariate time series data.

In Figure 1, it is possible to visualize a behavior similarity between the three 
hurricanes. During the passage of the hurricanes, the variables WVHT and WSPD 
presented upward spikes, but on the other hands, PRESS presented downward  
spikes.
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It is worth noting that the period of hurricanes in the Figure 1 represents the time 
of its trajectory on the coast of Bahamas, and not its life span throughout its trajectory 
in the Atlantic Ocean.

3.1.2 Case study 02: monitoring data from dynamic machinery

The public dataset provided by the KNIME was acquired from 28 sensors installed 
in a dynamic machine. The sensors were installed to collect eight mechanical compo-
nents parts (1st column of Table 3). The data starts on January 1st of 2007 and goes 
until April 20th of 2009 (838 days), comprising 16,660 data points.

The dataset was composed of 28 time series from 28 sensors. The signals were 
pre-processed with Fast Fourier Transform (FFT). The Table 3 shows the groups and 
description of the sensors.

Each sensor group had at least 3 collections with different frequency bands, except 
the torque variable (M1), which had only one collection.

Signs of rotor malfunction could be traced back to March 6, 2008. The breakdown 
event happened on July 21, 2008. The break was visible only to some sensors, espe-
cially with low frequency bands.

For a cleaner and clearer view, Figure 2 illustrates the multivariate time series only 
for sensors that detected the malfunction zone of the dynamic machine. Therefore, 
of total of 28 sensors, 18 were chosen to illustrate the multivariate time series. The 
machinery malfunction was detected in all sensor groups, except for the M1.

Figure 1. 
Visualization of three variables in the same time domain (a) significant wave height, (b) sea level pressure and 
(c) wind speed. Color boxes represent hurricanes Isaac, Rafael and Sandy. Source: produced by the authors.
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In Figure 2, it is possible to verify a behavior change in the multiple sensors 
inside the malfunction zone (begging of March until the end of July). The Figure 2 
also illustrates two alarms in the beginning of 2007 triggered by the KNIME system. 
However, these two alarms can be considered as pre-mature, as the history of the 
machinery continued to run normally over one year. Another detail is that, afterwards 
the breakdown and rotor replacement, the signals were recorded much cleaner.

3.2 Parameterization of the ML algorithms

The parameters of unsupervised ML algorithms were settings to achieve the best 
possible performance to find the patterns of interest. The parameterization requires 
several attempts of success and error to achieve the best possible result. SAX-REPEAT 
was the most difficult method of setting the parameters due the high sensitivity of 
the variables. Whereas the Luminol Bitmap revealed not too sensitive to parameter 
choices, where the Bitmap Detector Score demonstrated the most determinant param-
eter for the algorithm. The Bootstrap showed a similar result for iterations above 200 
and confidence level above 95%. C-AMDATS, RRCF and k-NN are easy algorithms 
to set the parameter due the small number they have. As an example of experiment 

Figure 2. 
Multivariate time series of 18 sensors that detected the malfunction zone of the machine.

Sensor Group Sensor Description

A1 Input shaft vertical

A2 Second shaft horizontal upper bearing

A3 Third shaft horizontal lower bearing

A4 Internal gear 275 degrees

A5 Internal gear 190.5 degree

A6 Input shaft bearing 150

A7 Input shaft bearing 151

M1 Torque kNm

Table 3. 
The eight parts of the rotor monitored through groups of sensors.
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case 2, it was necessary to run SAX-REPEAT with 76 different combinations of 
parameters to identify the best configuration, k-NN was necessary to run 21 times, 
C-AMDATS 20 times, RRCF 11 times, Luminol 12 times, and Bootstrap 10 times.

The Table 4 summarizes the parameter settings of the presented algorithms for 
the two real cases applied in this chapter.

All ML algorithms in this paper were implemented in Python 3.6 programming 
language and executed on a high performance computing named AIRIS (Artificial 
Intelligence RSB Integrates System) at the Supercomputing Center for Industrial 
Innovation at SENAI CIMATEC. The AIRIS processor model is the Intel(R) Xeon(R) 
Gold 6148 CPU @ 2.40GHz and has 376 GB RAM memory.

3.3 Case study experiment 01 - meteocean data in hurricane season

All monitoring variables at the meteocean data were processed in ML algorithms 
using the settings presented in the Table 4. The results were compared to the period 
of hurricanes life as shows in Figure 1. The hurricanes behaviors are more visually 
clear through the WVHT variable. Thereby, for the better understanding of the 
reader, we only illustrated the ML results in the WVHT variable, even though was 
made a multivariate analyzed. Figure 3 shows the detection of the six algorithms.

In Figure 3, the C-AMDATS algorithm detected three distinct behavior patterns 
in the multivariate time series. Patterns 0 and 1 had the highest anomaly score 
and are well situated in hurricanes regions, so these patterns where considered as 
anomaly behavior. However, pattern 1 also appear in November and December, 
which had no records of hurricane or tropical depression or tropical storm in the 
Bahamas cost, revealing to be a false positive signal. The Luminol bitmap and 
RRCF algorithms failed to isolate the patterns of interest. Luminol demonstrated a 
little sensitivity for detecting anomalies in this experiment, because it was possible 

Algorithm Parameter Setting

Case 01 Case 02

C-AMDATS CF = 3.0
ICS = 24

CF = 1.8
ICS = 30

Luminol Bitmap Bitmap Detector Score = 1.0
Precision = 40
Lag Window Size = 10
Future Window Size = 10
Chuck Size = 24

Bitmap Detector Score = 0.35
Precision = 40
Lag Window Size = 10
Future Window Size = 10
Chuck Size = 30

SAX-REPEAT Window size = 1155
PAA size = 3
Alphabet length = 2

Window size = 120
PAA size = 3
Alphabet length = 3

k-NN k = 5
Metric = Euclidean Distance

k = 150
Metric = Euclidean Distance

Bootstrap Confidence = 0.95
Number of Iterations = 200

Confidence = 0.95
Number of Iterations = 200

RRCF Number of Trees = 10
Tree Size = 5105

Number of Trees = 20
Tree Size = 595

Table 4. 
Parameter setting of the Unsupervised ML algorithms. CF: Cluster Factor - ICS: Initial Cluster Size - PAA: 
Piecewise Aggregate Approximations - k: Neighbors number.
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to verify a few data points detected as anomaly. SAX-REPEAT returned 6 distinct 
patterns, which patterns 4 and 5 were the top 2 of the anomaly score. These two 
patterns are precisely in the regions of interest, however, it is possible to verify 
these patterns also in other regions, also indicating false positive signals. Bootstrap 

Figure 3. 
Results of the unsupervised algorithms of Case 1. (a): C-AMDATS, (b): Luminol Bitmap, (c): SAX-REPEAT, 
(d): K-NN, (e): Bootstrap, and (f): RRCF.
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and k-NN had similar results, both algorithms detected spikes caused by hurricanes, 
but with many false positives, especially Bootstrap.

Therefore, it is possible to ascertain that the algorithms with the best performance 
in detecting the patterns of interest in case 01 were C-AMDATS and SAX-REPEAT. 
But a quantitative analysis will still be performed.

3.4 Case study experiment 02 - monitoring data from dynamic machinery

Analogous to the experiment performed in case 1, the experiment case 2 brings the 
results of the patterns and anomalies detection of unsupervised learning algorithms 
in the KNIME dataset.

All 28-monitoring data were processed using the settings in Table 4. The results 
were compared to the period of malfunction of the machine as show in Figure 2.

The machine malfunction is more visually clear through the sensor 1. Therefore, 
Figure 4 only illustrated the results of Sensor 1, although the analysis was  performed 
in a multivariable way.

In Figure 4, the C-AMDATS algorithm detected three distinct behavior patterns 
in the multivariate time series. Patterns 0 had the highest anomaly score and is well 
situated in the interest region, so this pattern was assumed to be anomalous. Luminol 
and RRCf again failed to isolate the fault, both algorithms had many false positives 
and false negatives. SAX-REPEAT detected 15 different patterns, which is not desired 
as it makes difficult for the specialist to analyze many patterns. Nevertheless, patterns 
0 and 4 had the lowest punctuation in the anomaly score ranking, so these patterns 
were assumed to be normal and the others as anomaly. The k-NN and Bootstrap 
methods also demonstrated a good performance in  isolating the period of interest, 
with few false positives and false negatives.

Therefore, the algorithms were able to isolate the anomalous region well in case 02, 
with exception of Luminol Bitmap and RRCF.

3.5 Performance evaluation

The performance evaluation of the algorithms - in their ability to identify the 
same anomalous patterns - was performed through the calculation of seven metrics: 
accuracy (ACC), precision (PR), recall (REC), specificity (SP), F1-score (F1), area 
under the curve (AUC) of receiver operating characteristics (AUC-ROC), and AUC of 
precision and recall curve (AUC-PRC).

However, the performance evaluation would not be properly fair, as the Luminol, 
k-NN, Bootstrap and RCCF algorithms made the analysis univariably (different from 
C-AMDATS and SAX-REPEAT). Thereby, in an attempt to obtain a more appropriate 
analysis, the threshold metrics was calculated for all proposed variables and then 
extracted an average evaluation, except C-AMDATS and SAX-REPEAT.

All the evaluation metrics are calculated by comparing the real data points 
(classified by experts) with the predicted data points (predicted by ML algorithms). 
So, the ACC reveals the correct prediction in a general approach, but it may hide 
the error rate of the model, that is why it is prudent to measure the performance 
jointly with other metrics. PR indicates the true positive value compared to the false 
negative. REC reveals out the true positive value with the false positive. Both metrics 
(PR and REC) reveal the model’s ability to predict positive values, but with different 
perspectives. SP demonstrated the capacity of the model to predict the true negative 
over false positives perspective. The F1 is a harmonic average between REC and PR. 
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AUC-ROC is the area under the curve on the true positive (REC) and false positive 
(1- SP) rates. The AUC-PRC is the area below the curve between PR and REC. AUC-
PRC is an important metric for assessing unbalanced datasets, being a great advantage 
over the others, since in the vast majority of cases, especially real data, have a higher 
volume of normal than abnormal data.

Figure 4. 
Results of the unsupervised algorithms of Case 2. (A): C-AMDATS, (B): Luminol Bitmap, (C): SAX-REPEAT, 
(D): K-NN, (E) Bootstrap, and (F): RRCF.
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The seven performance assessment metrics for all proposed variables of case 1 and 
case 2 experiments are listed in the Table 5.

The performance evaluation presented in the Table 5 revealed that the C-AMDATS 
was the one that stood out amongst the other algorithms. C-AMDATS was superior 

ML Algorithms Metrics Case #1 Case #2 Average

C-AMDATS ACC 96% 96% 96%

PR 90% 98% 94%

REC 80% 89% 85%

SP 80% 89% 85%

F1 84% 92% 88%

AUC-ROC 81% 89% 85%

AUC-PRC 76% 88% 82%

Luminol Bitmap ACC 86% 72% 79%

PR 55% 58% 57%

REC 55% 61% 58%

SP 55% 61% 58%

F1 55% 58% 57%

AUC-ROC 56% 61% 58%

AUC-PRC 52% 56% 54%

SAX-REPEAT ACC 86% 89% 88%

PR 66% 82% 74%

REC 92% 90% 91%

SP 92% 90% 91%

F1 70% 85% 78%

AUC-ROC 92% 90% 91%

AUC-PRC 66% 79% 73%

k-NN ACC 94% 86% 90%

PR 80% 81% 80%

REC 67% 68% 67%

SP 67% 68% 67%

F1 69% 71% 70%

AUC-ROC 66% 68% 67%

AUC-PRC 61% 67% 64%

Bootstrap ACC 79% 85% 82%

PR 59% 72% 65%

REC 73% 75% 74%

SP 73% 75% 74%

F1 59% 73% 66%

AUC-ROC 73% 75% 74%

AUC-PRC 56% 70% 63%
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in ACC, PR, AUC-PRC and F1 metrics against SAX-REPEAT, which was the second 
algorithm that stood out. Nevertheless, it is relevant to note that C-AMDATS was 10% 
superiority in AUC-PRC of SAX-REPEAT. Then, in decreasing order of algorithm 
position in the performance evaluation would be: (i) C-AMDATS, (ii) SAX-REPEAT, 
(iii) k-NN, (iv) Bootstrap, (v) Luminol and (vi) RRCF. Both algorithms that have a 
multivariate analysis intrinsically were superior. However, more case studies must be 
carried out to affirm the superiority of the algorithms studied here.

Therefore, the results presented in this study strengthens the idea that unsuper-
vised machine learning algorithms can assist the data annotation and labeling process. 
This approach can optimize much of the specialists’ time and leverage the supervised 
AI models.

4. Conclusions and future work recommendations

This work demonstrated the effectiveness of a multivariate analysis using six 
different unsupervised ML algorithms for time series. To verify the performance of 
the unsupervised ML algorithms to detect interesting/anomalous patterns in real time 
series data, the six algorithms were applied in two different real cases: (i) meteocean 
data in hurricane season and (ii) monitoring data from dynamic industrial machinery. 
The experimental results showed that clustering methods as C-AMDATS have higher 
capacity to recognize and isolate the anomaly region, revealing the ability to assist 
experts to label raw data with unsupervised ML algorithms with great performance.

Future works include the extension of this analysis to more real cases aiming 
to develop a broader analysis, as well as an extensive study and investigation of 
approaches of semi-supervised learning to train deep learning algorithms to predict 
and classify unknown data in different dataset.
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ML Algorithms Metrics Case #1 Case #2 Average

RRCF ACC 80% 66% 73%

PR 55% 44% 50%

REC 55% 45% 50%

SP 55% 45% 50%

F1 54% 44% 49%

AUC-ROC 55% 45% 50%

AUC-PRC 53% 49% 51%

Table 5. 
Performance Evaluation of unsupervised ML algorithms to detect interesting/anomalous patterns in multivariate 
time series data.
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Children and Adolescents  
with ADHD
Horst Schneider, Jennifer Riederle and Sigrid Seuss

Abstract

In this observational study the outcomes of an EEG-based infra-low-frequency 
(ILF) neurofeedback intervention on patients with attention deficit (hyperactivity) 
disorder (ADHD) are presented. The question is addressed whether this computer-
aided treatment, which uses a brain-computer-interface to alleviate the clinical 
symptoms of mental disorders, is an effective non-pharmaceutical therapy for ADHD 
in childhood and adolescence. In a period of about 15 weeks 196 ADHD patients were 
treated with about 30 sessions of ILF neurofeedback in an ambulant setting. Besides 
regular evaluation of the severity of clinical symptoms, a continuous performance 
test (CPT) for parameters of attention and impulse control was conducted before and 
after the neurofeedback treatment. During and after the therapy, the patients did not 
only experience a substantial reduction in the severity of their ADHD-typical clinical 
symptoms, but also their performance in a continuous test procedure was signifi-
cantly improved for all examined parameters of attention and impulse control, like 
response time, variability of reaction time, omission errors and commission errors. In 
a post neurofeedback intervention assessment 97% of patients reported improvement 
in symptoms of inattention, hyperactivity or impulsivity. Only 3% of the patients 
claimed no noticeable alleviation of ADHD-related symptoms. These results suggest 
that ILF neurofeedback is a clinically effective method that can be considered as a 
treatment option for ADHD and might help reducing or even avoiding psychotropic 
medication.

Keywords: Infra-low frequency (ILF) neurofeedback, ADHD, therapy, continuous 
performance test, clinical study

1. Introduction

Hyperkinetic disorder, also known as attention deficit disorder (ADD) or attention 
deficit hyperactivity disorder, is a disorder that typically occurs in childhood. The 
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core symptoms include increased inattention and/or hyperactivity and impulsivity as 
well as lack of emotional self-control and motivation. ADHD is a complex psychiatric 
and neurologically based disorder that usually is comorbid with other conditions: 
over one-half of children with ADHD have accessory symptoms like learning disabili-
ties, conduct disorders, poor coordination, depression, anxiety, obsessive–compulsive 
disorders and bipolar disorders [1, 2]. Accordingly, the pathophysiological causes of 
ADHD are to be found in the central nervous system (CNS). Corresponding studies 
on ADHD patients show changes in dopaminergic and noradrenergic neurotransmis-
sion [3–6] as well as a (presumably related) developmental delay of the cortex, espe-
cially in the prefrontal region relevant for executive functions, attention and motor 
control [7]. In addition to these functional changes in defined brain areas, functional 
imaging studies in ADHD patients also have demonstrated changes in neuronal 
networks, e.g., in frontostriatal, frontoparietal and ventral attention networks [8, 9] 
and in the default mode network (DMN) [10].

According to current estimations about five percent of children worldwide 
meet the diagnostic criteria of ADHD [11] and if left untreated, symptoms may 
persist into adulthood. Therefore, innovative and effective treatment methods that 
show long-lasting effectivity without the accompanying unwanted side effects of 
psychotropic drugs are of great relevance. Neurofeedback has been proven to be a 
treatment method that offers comparable effects in the therapy of ADHD like the use 
of pharmacological substances such as methylphenidate [12–17]. Follow-up studies 
and meta-analyses six, 12 or even 24 months after neurofeedback treatment show a 
sustained improvement of ADHD core symptoms [18, 19].

Neurofeedback is a computer-aided therapy method for clinical use, mainly as a 
treatment for mental disorders with the aim to improve self-regulation processes of the 
brain using a brain-computer interface (BCI). During a neurofeedback session selected 
parameters of the patient’s electroencephalogram (EEG) are extracted according to 
their frequency and power density, processed, transformed into audio-visual feedback 
signals which then are being made perceptible for the patient’s sensory organs by 
computer animations. By utilizing specific frequency components of the continuously 
measured full band EEG, the corresponding cerebral activities and their dynamics are 
reported back (feedback) to the central nervous system from where they originate. 
Due to the high performance of today’s modern EEG and computer systems, electrical 
potential fluctuations of cerebral origin can continously be recorded from the skull 
with a high dynamic range. Furthermore, the neurofeedback-specific processing up 
to the generation and visual and acoustic presentation of the feedback signals can take 
place almost in real time, so that there is a minimal time delay only between the brain’s 
generation of electrical activity, its electroencephalographical measurement and the 
presentation and perception of the EEG-derived audio-visual feedback signals. As a 
result, the brain can interact with the perceptual audio-visual “echo” of parts of its 
own activity, by improvement of its self-regulatory abilities [20, 21].

It has been known for a long time that brain functions can be influenced by 
feedback mechanisms [22], but neurofeedback was only developed in the late 1960s – 
without its clinical potential being recognized at first. A few years later, the first 
clinical studies showed particularly good therapeutic success using this technique in 
patients with severe epilepsy [23–26]. It was later shown that the effects remained 
even ten years after the end of the neurofeedback treatment [27]. Since self-regulation 
is an essential and fundamental function of the brain, the clinical treatment spectrum 
of neurofeedback is broad. Thus, in addition to epilepsy and the already mentioned 
hyperkinetic disorder, neurofeedback has also been shown to be an appropriate 
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treatment for many other neurological disorders involving brain dysregulation, such 
as autism spectrum disorder (ASD) [28–33], migraine [34, 35], post-traumatic stress 
disorder (PTSD) [36–40], schizophrenia [20] and several others.

The various neurofeedback methods used typically differ in the extraction of the 
frequency components of the measured EEG that are used to calculate and control the 
feedback signals. In so-called frequency band training, the focus is on conventional 
frequency ranges of the human EEG between 1 and 40 Hz. Brain activities in this 
range usually dominate the EEG due to their clearly visible wave-like characters. It has 
long been confirmed in clinical studies that neurofeedback training in these fre-
quency ranges, namely 4–8 Hz (theta range), 12–15 Hz (sensorimotor rhythm, SMR), 
and 16–20 Hz (beta range), can be an appropriate and effective treatment for children 
with ADHD [40–42]. However, the full band EEG also contains long-lasting potential 
shifts that are assigned to slow activities of the frequency range below 0.1 Hz. Such 
potential fluctuations typically are created by cortical neurons in preparation for 
sensomotoric tasks as well as for motor or cognitive behavior and events [16, 43]. 
According to their functional significance, these voltage signals are either classified as 
readiness potentials or, according to their time course, referred as slow cortical poten-
tials (SCPs). It is assumed that slow surface negative potentials of cortical neurons 
represent a measure for the excitability of cortical neurons, while positive defections 
of such SCPs in the EEG signify a widespread absence of facilitation [43–45]. By 
influencing SCPs with weak external direct current voltage stimuli applied to the 
head, it could be shown that slow cortical negativity in certain cortical areas leads 
to better performance in sensorimotor tasks [16]. Abnormalities in SCP size seem to 
affect behavior and it has, for instance, been shown that children with ADHD show 
EEG abnormalities in the frequency range of SCPs [46, 47]. Children with attention 
deficits show smaller negative SCPs during the anticipation phase of a task in com-
parison to children without attention problems [16]. The two neurofeedback training 
methods that utilize such slow potentials in the EEG are ILF- and SCP-neurofeedback. 
Various studies document SCP neurofeedback training as an effective form of therapy 
for ADHD [18, 48, 49].

ILF neurofeedback was primarily developed empirically based on clinical observa-
tions from the frequency band and SCP methods. It utilizes the conventional fre-
quencies between 1 and 40 Hz within nine fixed bands and transforms any dynamic 
progression of their spectral power above individual thresholds into a certain set of 
feedback signals (“Inhibits”). By this mechanism, the brain receives feedback about 
sudden changes in spectral power densities, which are linked directly to the respective 
brain activity components in the EEG. At the same time, the amplitudes and dynam-
ics of the very slow cortical potentials of the “infra-low” frequency range of <0.1 Hz 
are determined in the EEG and, after setting an individual gain factor via a lowpass 
filter cutoff frequency by the therapist, transferred as a second set of feedback signals 
(“Signal”). The ILF neurofeedback protocol determines that the EEG is recorded in a 
bipolar montage. Thus, not the dynamically changing brain activity underneath each 
two electrodes is the targeted signal but their ratio and consequently, ILF neurofeed-
back represents a coherence training.

Other essential and standalone elements of the ILF neurofeedback protocol are 
that neither specific frequencies of brain activity in the EEG are actively promoted 
or suppressed via the feedback process, nor is the patient supposed to produce brain 
activity of specific frequencies voluntarily. Rather, the therapeutic work in ILF 
neurofeedback is based on the assumption that the symptoms of the patient indicate 
over- or under-excitation in certain multiple association areas of the brain [50]. 
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By placing the EEG electrodes above such multiple association areas on the head of 
the patient, the brain receives continuous feedback on its internal states. This happens 
via up to 15 different computer-generated audio-visual feedback signal parameters to 
trigger neurophysiological modulation on an unconscious level.

The patient may become aware of the feedback-induced cerebral changes through 
the conscious perception of temporary positive sensations, like relaxation, increased 
concentration or motoric calmness or a reduced level of alertness. However, such 
temporary sensations could also be mild sensations of fatigue, headaches, increased 
motor activity or dizziness and thus, unwanted effects. The therapist is therefore 
encouraged, to always observe the patient for signs of relaxation, stress, comfort or 
discomfort and to also inquire at regular intervals about perceived feelings. In case 
of positive observations or reports from the patient the therapist will proceed with 
the actual settings of the training parameters or change them to eliminate unwanted 
effects.

In addition to these partly subjective effects of the training, there were recently 
also reports published that demonstrate defined neurophysiological changes in the 
brain which can be attributed to the use of ILF neurofeedback. A quantitative analysis 
of 19-channel EEG recordings before and after 20 sessions of ILF neurofeedback 
training shows a significant increase in spectral power in the 0.5 Hz frequency band 
[51, 52]. The general increase in spectral power of the ILF component of the EEG 
indicates that ILF neurofeedback training induces a modified baseline brain state. 
Another study using functional magnetic resonance imaging (fMRI) shows that even 
a single session of ILF neurofeedback leads to significant changes in connectivity in 
the brain [53].

While SCP and frequency band training have been used for many years to treat 
ADHD, there are only a few studies in which ILF neurofeedback has been used as a 
treatment method [54]. ILF neurofeedback could represent a particularly effective 
treatment method for pathologies in which the brain is dysregulated. It combines 
the above-mentioned components that characterize the procedure with the meth-
odological immanence for the therapist to adapt the treatment to the patient’s indi-
vidual symptomatology. In consequence, the natural question arises concerning the 
evidence-based level of ILF neurofeedback therapy. The present study therefore aims 
to clarify the question whether ILF neurofeedback is an effective therapy for children 
and adolescents with ADHD. In addition, little research has been done on the effec-
tiveness of neurofeedback for ADHD in everyday life, so the present study tracks the 
individual symptom profiles. This examines if the effect of ILF neurofeedback leads 
to an improvement in life quality of those affected.

2. Methods

2.1 Study operator and therapists

The present study was conducted as a pilot project of a network of five practices 
for child and adolescent psychiatry in Germany. It is in accordance with the declara-
tion of Helsinki. All interventions mentioned in this study were carried out by a 
total of 25 specialist therapists who had qualified in a certified training course of ILF 
neurofeedback lasting several days.

The data of the present observational study was collected by the participating 
practices in the course of treatment of their patients. A declaration of consent for the 
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anonymized collection and processing of the data in the sense of an observational 
study with a pilot character was enclosed with the treatment contract, which the 
patients received before the start of the therapy, and which was signed by the patients 
or, in the case of minors, by the parents.

2.2 Participants

Participants in this study were recruited from children and adolescents who 
visited one of the participating practices due to ADHD-related symptoms or already 
diagnosed ADHD. Some of them were already under drug treatment with methyl-
phenidate medication at the beginning of the study. In addition to age and informed 
consent, the clinically validated diagnosis of attention deficit (hyperactivity) disorder 
was another inclusion criterion for study participation. Figure 1 shows the inclusion 
criteria for the study.

A total of 251 patients participated in the data collection and received therapy in 
the form of ILF neurofeedback treatment. On average, these patients had an age of 
12.1 years (SD: 2.8, interval: 7.3–21.5), with 82% belonging to the age group 7–14 years 
and 18% to the age group 15–21 years. The gender distribution of the participants 
shows a majority of 79% males and 21% females.

2.3 Study design

In the present observational study, a symptom tracking procedure was used to 
measure subjectively perceived expression and severity of ADHD-typical symptoms 
before the start (T0) and at the end (T2) of ILF neurofeedback therapy. A QIKtest 
device was used for continuous performance tests to measure for attention, sustained 
attention, and impulse control at T0 and T2. For each participant the therapy consisted 

Figure 1. 
Inclusion and exclusion criteria of this observational study. Included into the study were children and 
adolescents with an age between 7 and 21 years, a diagnosed hyperkinetic disorder and a signed consent for a ILF 
neurofeedback therapy.
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of approximately 30 ILF neurofeedback sessions, each lasting up to 50 minutes, with 
about two sessions every week and thus, a therapy period of about 15 weeks (see 
Figure 2).

2.4 Electrophysiology and software

The ILF neurofeedback interventions were performed with neurofeedback 
systems from BEE Medic Inc. (Germany), that consist of a 2-channel EEG differential 
amplifier EEG NeuroAmp® II (Corscience Inc., Germany) with full bandwidth (DC 
to 100 Hz), 32 bit resolution, a sampling rate of 500 sps and integrated impedance 
meter (impedance range 0–140 kOhm) as well as the software Cygnet® (BEE Medic 
Inc., Germany).

Before applying the electrodes, the skin at the electrode positions was treated with 
an abrasive cleaning paste (Nuprep®, Weaver and Company, USA) and then Ag/AgCl 
electrodes were applied using conductive paste (Ten20®; Weaver and Company, USA) 
to ensure a proper conductivity.

2.5 ILF neurofeedback protocol

The used neurofeedback-method was according to the ILF neurofeedback protocol 
and followed the description of Susan Othmer [55]. It consists of a 2-channel EEG 
that was recorded from the scalp of a patient using a bipolar montage and electrode 
placement sites in accordance with the international 10–20 EEG system. Electrodes 
were placed individually according to the protocol guide [55], with starting place-
ments at T3-T4 or T4-P4 electrode sites.

The neurofeedback process and the audio visual feedback was controlled and 
applied using Cygnet® software. During continuous EEG recording, features of the 
EEG were extracted in near real time to build two different dynamically changing 
components of the feedback process: “Inhibits” and “Signal”.

To calculate the “Inhibits” component, the supra-threshold EEG power densi-
ties of nine filter blocks in fixed frequency steps in the range between 1 and 40 Hz 
were summed up. The thresholds of the nine frequency bands were individually and 
dynamically set and adjusted to maintain the actual EEG power density of a frequency 
band to be sub-threshold for about 95% of the time. Due to this calculation method of 
dynamically adapting threshold values, a sudden increase in power density in an EEG 
frequency band instantly leads to suprathreshold values and thus immediately to an 
increase in the “inhibits” component.

Figure 2. 
Study design showing the different phases.
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To calculate for the “Signal” component the EEG power density of a “infra-slow” 
frequency band was extracted and determined. In the neurofeedback protocol used 
“infra-slow” frequencies are defined as frequencies below 0.1 Hz. Accordingly, the 
therapist is required to set the cut-off frequency of a low-pass filter in the millihertz 
frequency range via the software in order to extract the “infra-slow” “signal” compo-
nent from the EEG and to continuously determine its signal strength.

One of the core features of the ILF neurofeedback is the subsequent transforma-
tion of the continuously determined “inhibit” as well as “signal” components into 
animated audio-visual feedback signals, which are presented to the patient on a sepa-
rate computer screen. Typically, this is done via an animated computer game in which 
certain acoustic and visual parameters are directly coupled to either the “inhibit” or 
“signal” component or their ratio. Various feedback “games” were available to the 
ADHD patients for free selection and their common feature was that the calculated 
“inhibit” component modulated the volume of the underlying music and determined 
the color contrast and brightness of the animated environment. The simultaneous 
modulatory effects of the “Signal” component concerned the speed of the animated 
game character and the volume of its sounds.

The promotion of CNS stability is the first objective of brain training [37]. Because 
brain stability is an individual feature, an individualized training strategy, in which 
the reinforcement “infra-slow” frequency is optimized for each individual, is a man-
datory element of the ILF neurofeedback protocol [55]. According to the protocol, the 
“signal” frequency has to be adjusted by the therapist during the first sessions to the 
state in which the person is maximally calm, attentive and as euthymic as the nervous 
system is capable of being at that moment. The fine-tuning of the optimal reinforce-
ment frequency (ORF) then is done on the basis of reports from the patient on their 
own status or observations of the therapist. In this study, the ORF for the infra-low 
signal was determined individually during the first 1–3 sessions based on the report 
of the patient or from observing behavioral signs of stress, alertness, wellbeing or 
relaxation on the patient by the therapist. Thereafter, the ILF neurofeedback therapy 
was proceeded with the “signal” frequency set to the patient’s individual ORF.

2.6 Continuous performance test (CPT)

In order to measure changes in attention, sustained attention and impulse control, 
a CPT with the QIKtest device (BEE Medic Inc., Germany) was carried out before the 
start and at the end of neurofeedback therapy. The QIKtest is a mobile, stand-alone 
test display/input device with a standardized test procedure that is used in particular 
to record selective attention, sustained attention and impulsive behavior. The CPT 
of the QIKtests consist of displaying “GO/NO GO “tasks for 21 minutes. The test is 
divided into five phases, in which the occurrence, incidence and intervals of “GO” 
tasks differ to measure four parameters of attention: average reaction time (RT), vari-
ability of reaction time (VAR), omission errors (OM) and commission errors (CO).

During the CPT, two simple visual conditions (“target”/“GO” and “non-
target”/“NOGO”) are presented once every two seconds to the patients on the screen 
of the QIKtest device via nine luminous fields: “GO” when all fields except the middle 
field light up and “NO-GO” when all nine fields light up.

In a period of 2 seconds, in a seemingly (for the patient) random fashion one of the 
two stimulus conditions lights up for a duration of 100 milliseconds. The subject’s task 
is to press a button on the QIKtest device as quickly as possible only when the “GO” 
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condition appears. This results in two possible types of errors: Omission errors, when 
the required reaction to the “GO” condition failed to appear, and commission errors, 
when the reaction button on the QIKtest device was pressed after a “NO-GO” signal was 
displayed. In addition, the QIKtest device measures the reaction time for each correct 
reaction with a measurement accuracy of 0.1 milliseconds and calculates RT and VAR.

The statistical evaluation of the test results was carried out using PSPP (GNU 
 project, open source), version 1.2.0.

In order to qualitatively classify changes in the investigated attention parameters 
and those of impulse control, the CPT database of EEG Expert (EEG Expert Limited, 
Ankara, Turkey) was used. The “equivalent mental age”, derived from the mean result 
of a reference group for the specific age, was determined for RT, VAR, OM and CO 
from the corresponding norm curves. The CPT database contains >50,000 records of 
individuals of both sexes aged 6–70 years in 40 age groups, with at least 500 records 
per age group.

2.7 Symptom tracking

To assess symptom changes through ILF neurofeedback therapy, patients were 
asked to track their individual symptoms out of a catalog of 137 ADHD-specific and 
other symptoms from the categories of sleep, attention and learning behavior, sensory 
and perception, behavior, emotions, physical symptoms and pain, before (T0) and 
after the ILF neurofeedback intervention (T2). Between the two points of measure-
ment (T0 = Pre and T2 = post) was the phase of neurofeedback intervention (T1) (see 
Figure 2). Participating patients could indicate a severity level between 0 (symptom 
does not apply at all) and 10 (symptom occurs very frequently or is maximal pro-
nounced) for each of the 137 given symptoms.

The statistical evaluation of the symptom survey was done using the software 
PSPP, version 1.2.0.

3. Results

Of the 251 ADHD patients treated with ILF neurofeedback during the entire data 
collection period, only 196 had pre-post QIKtest data collected. The average duration 
of therapy in terms of neurofeedback sessions was 38.5 (SD = 21.6), three participants 
dropped out of therapy.

3.1 Continuous performance test

The pre-post data at T0 and T2 of 196 participants were included in the evalua-
tion of the continuous performance test using the QIKtest device. Changes in four 
variables were analyzed: average reaction time (RT), variability of reaction time 
(VAR), omission errors (OM) and commission errors (CO). The averaged RT of the 
patients improved during the duration of the ILF neurofeedback training by about 
21 ms - from 457 ms at T0 to 436 ms at T2 (see Table 1). In parallel, VAR improved as 
well by about 18 ms - from 122 ms at T0 to 104 ms at T2. To examine their statistical 
significance, the values of RT and VAR were compared separately using independent 
Student’s t-tests, as a normal distribution with equal variances was given. According 
to the t-test results, the improvements of RT and VAR after ILF neurofeedback treat-
ment were statistically highly significant (see Table 1). The third attention parameter 
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that was measured, OM, too improved from an average of 9.6 errors (SD = 15.1 errors) 
at T0 to 5.0 errors (SD = 9.3 errors) at T2. The test parameter that determines impulse 
control CO improved from 19.1 errors (SD = 17.3 errors) on average at T0 to 9.0 errors 
(SD = 9.0 errors) at T2. The significance of the improvements was examined statisti-
cally using a non-parametric Wilcoxon signed-rank test, because OM and CO did not 
follow a normal distribution. According to their Wilcoxon signed rank test results, the 
improvements of OM and CO after ILF neurofeedback treatment were statistically 
highly significant (see Table 1).

To investigate the relevance (“quality”) of the improvements in the studied 
parameters of attention and impulse control in relation to mental maturity, the 
respective “equivalent mental age” for RT, VAR, OM and CO was determined from 
the corresponding norm curves of the CPT database. On average, the participating 
ADHD patients had an age of 12.1 years. However, their averaged performance in the 
CPT before the start of the ILF neurofeedback training was clearly below their aver-
aged actual age when compared with the CPT database (see Figure 3): the averaged 
performances for the attention parameters RT, VAR and OM of the average 12.1-year-
old ADHD patients corresponded to the 10.2 (RT), 10.0 (VAR) and 8.9 (OM) years 
age groups in the CPT database and thus, lack a mental maturity of around 2 years. 
For the tested parameter of impulse control, CO, the averaged performances of the 
ADHD patients corresponded to the 8.5 (CO) years age group in the CPT database and 
thus, showed an even slightly more delayed mental maturity of about 3.5 years.

Figure 3. 
Improvements of the equivalent mental age for the different test parameters of the continuous performance test.

N = 196 Pre (T0) Post (T2) Difference p

Reaction Time (RT) 457 ± 88 ms 436 ± 85 ms −21 ms <0.00011

Variability of RT (VAR) 122 ± 31 ms 104 ± 30 ms −18 ms <0.00011

Omission Errors (OM) 9.6 ± 15.1 5.0 ± 9.3 −4.6 <0.00012

Commission Errors (CO) 19.1 ± 17.2 9.0 ± 9.0 −10.1 <0.00012

1Student’s t-test.
2Wilcoxon signed rank test.

Table 1. 
Results of the continuous performance test.
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In terms of “equivalent mental age” that was derived from the CPT database, the 
ADHD patients benefited considerably from the therapy. After the ILF neurofeedback 
training equivalent mental age of the ADHD patients clearly increased for RT from 
10.2 to 12.3 years, for VAR from 10.0 to 12.8 years, for OM from 8.9 to 10.3 years and 
for CO from 8.5 to 15.0 years (see Figure 3).

3.2 Symptom tracking

According to the patients’ self-disclosure or evaluation by the therapists, 97% of 
the patients experienced an improvement of the symptoms which had been individu-
ally perceived as stressful before the neurofeedback therapy, like inattention, hyper-
activity, impulsivity, difficulties to fall asleep, distractibility, rage and others. Only 
3% of the patients claimed no noticeable improvement of the symptoms.

The course of symptom severity before, during and after approximately 30 
sessions of ILF neurofeedback was assessed in 43 ADHD patients for the three core 
symptoms of their disorder: inattention, hyperactivity and impulsivity. Before the 
start of the ILF neurofeedback intervention at T0 the patients evaluated the core 
symptoms of their disorder as to be very pronounced, with high average values for 
inattention, hyperactivity and impulsivity (see Table 2).

Figure 4. 
Improvements in ADHD symptom ratings.

Symptom Time Severity of Symptoms p

Inattention T2 5.4 ± 2.2 0*

T0 8.3 ± 1.4

Hyperactivity T2 4.6 ± 2.5 0.012*

T0 8.1 ± 1.2

Impulsivity T2 6.1 ± 2.5 0.018*

T0 7.4 ± 1.8

Table 2. 
Severity of the different ADHD symptoms (statistics by Wilcoxon signed rank test).*= statistical significance 
attained.
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Comparison of these averaged severity values with the individually evaluated 
severity levels of these symptoms after the treatment with ILF neurofeedback at T2 
and determination of the level of significance by Wilcoxon signed rank test, all three 
core symptoms had been improved significantly. For the symptom of inattention, the 
participants reported at T2 a highly significant decrease of the individually perceived 
severity by 2.9, for hyperactivity by 3.5 and impulsivity by 1.3 (see Figure 4).

4. Discussion

Since the first reports of successful neurofeedback treatment in ADHD [56], sev-
eral studies have investigated the effects on symptoms of ADHD such as inattention, 
impulsivity and hyperactivity with neurofeedback protocols that utilize brain activity 
of conventional frequencies in the EEG. Such reports include those which facilitated 
the sensorimotor EEG rhythm (SMR) and inhibited beta rhythmicity and those which 
facilitated beta EEG rhythm and inhibited theta rhythmicity [40, 42, 57–60]. Another 
neurofeedback approach that is assumed to regulate cortical excitability and is used 
with positive results in the treatment of ADHD is training of Slow Cortical Potentials 
(SCP) [48, 61]. However, in this study Infra-low Frequency (ILF) neurofeedback 
was used, a modern, relatively new and effective neurofeedback treatment method 
for mental disorders. It utilizes both, brain activity of conventional frequencies in 
the human EEG (1–40 Hz) as well as activities in the frequency range of slow corti-
cal potentials below 0.1 Hz. Other characteristics of the ILF neurofeedback protocol 
include a bipolar montage of the electrodes, placement of the electrodes on the skull 
according to individual criteria of the patient’s arousal level and mental strength, and 
continuous feedback of the parameters extracted from the full-band EEG in audio-
visual computer animations that have a game-like character.

Recent reports demonstrate that ILF neurofeedback not only utilizes slow brain 
activity in the EEG but also can directly lead to a significant increase in spectral power 
in the sub 0.5 Hz frequency band [51, 52]. Clinically, it has been shown that children 
with attention deficits show smaller negative SCPs during the anticipation phase of a 
task in comparison to children without attention problems [16] or other EEG abnor-
malities in the frequency range of SCPs [46, 47]. In the light of these findings, we 
conducted this multi-center study to address the question of whether ILF neurofeed-
back is an effective and significant treatment for ADHD and leads to an improvement 
in quality of life of those affected.

A total of 251 ADHD child and adolescent patients were included in this study 
and received a treatment consisting of an average of 39 ILF neurofeedback sessions 
over a period of at least 15 weeks (about two sessions of neurofeedback per week). 
Only three patients decided to discontinue treatment prematurely. Although we did 
not investigate this aspect scientifically, it can be concluded from the low dropout 
rate that the ILF neurofeedback was well accepted as a treatment method by the vast 
majority of the ADHD patients (and their parents). According to the patients’ self-
disclosure or evaluation by the therapists, 97% of the patients reported an improve-
ment of the symptoms which had been individually perceived as stressful before the 
neurofeedback therapy. Only 3% of the patients claimed no noticeable improvement 
of the symptoms by the ILF neurofeedback training. The general effect of the ILF 
neurofeedback treatment therefore can be rated as excellent.

In order to make the patients’ subjective assessment of their symptoms measur-
able, they were asked before and after the end of treatment to perform an evaluation 
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of their most prominent symptoms on the basis of severity levels between 0 and 10. 
The most severe symptoms were chosen from a questionnaire of 137 ADHD-specific 
and other symptoms. This included the categories sleep, attention and learning 
behavior, sensory and perception, behavior, emotions, physical symptoms and pain. 
Regarding symptom tracking, complete data sets were unfortunately only available 
from 43 patients (and thus only from about 1/6 of the participating children and 
adolescents). Nevertheless, the size of this sample is sufficient for a statistical analysis 
in which we focused on the three core symptoms of the ADH disorder, inattention, 
hyperactivity and impulsivity. Before the ILF neurofeedback intervention, the sever-
ity of inattention was rated to be at 8.3 in average and thus, experienced as to be very 
pronounced. A similar average severity level was reported by the participants for the 
symptom of hyperactivity, which was 8.1. The impulsivity was rated at 7.4 on average 
and thus, only slightly less severe than the aforementioned symptoms. This shows 
that the three core symptoms of ADH disorder are indeed perceived by the patients as 
highly burdening. After the therapy of approx. 30 sessions of ILF neurofeedback, the 
patients assessed these symptoms as significantly less stressful, with a clear average 
improvement in inattention by 1.9 severity points and in hyperactivity by as much 
as 3.5 severity points. Regarding the severity of their impulsivity, the participating 
children and adolescents rated slight but significant decrease of 1.3 severity points 
after the treatment. From these results, it can be concluded that 30 sessions of ILF 
neurofeedback, according to the subjective perception of the patients, are sufficient 
to improve hyperactivity and inattention symptoms in children and adolescents with 
ADHD. The treatment can also lead to a slightly milder, but still significant improve-
ment in impulsivity in the same group of patients. These effects of ILF neurofeedback 
therapy are in accordance with the results of controlled studies on ADHD using other 
neurofeedback protocols. In these studies high to moderate effect sizes were also 
found on inattention and impulsivity as well as on hyperactivity ([12, 13, 15, 62, 63], 
for a review see [64]).

These positive results are mainly based on the subjective sensations and experi-
ences of ADHD patients. In order to examine and monitor the quality and effective-
ness of the ILF neurofeedback treatment on the basis of more objective criteria, the 
participants completed a 21-minute visual GO/NOGO continuous performance test 
(CPT) before the start and after the end of the intervention. Through this measure 
the parameters of attention and impulse control could be directly examined in detail. 
The three attention parameters that were tested are the response time, the variability 
of the response time and omission errors. The reaction or response time (RT) is the 
mean of all correct reaction times to a target stimulus (“GO” condition) and is a 
measure of the speed of responses. This attention parameter is accompanied by the 
variability of the response time (VAR), which is a measure of the consistency of the 
response. Finally, omission errors occur when the subject does not respond correctly 
to a target stimulus, which is assessed as a sign of inattention. A comparison of the 
test results prior and after about 15 weeks of ILF neurofeedback intervention revealed 
a significant improvement of all three attention parameters. The averaged Reaction 
time decreased for 21 ms, VAR for 18 ms and the averaged OM by −4.6 errors. To 
transform these results into more tangible values, the conversion into an “equivalent 
mental age” (EMA) was done based on the large CPT database of EEG Expert. Here, 
the “equivalent mental age” indicates the specific age of the reference group whose 
norm test result corresponds with the test result of the patient.

The improvements in the three tested attention parameters are reflected in a 
significant increase in the EMA. Before the start of the ILF neurofeedback therapy the 
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ADHD children and adolescents were about 2 years of EMA behind, but regarding 
the attention parameters examined, they were able to make up for this delay within 
the 15 weeks of neurofeedback training. Most prominent was the improvement in 
averaged consistency of the response time (VAR) which led to an increase of EMA by 
+2.8 years and the shorter mean response time (RT) which increased the EMA by 
+2.1 years. The improvement in omission errors was slightly less pronounced because 
it resulted to +1.4 years in equivalent mental age. For the three tested attention param-
eters it therefore can be stated that – within the 15 weeks period of ILF neurofeedback 
treatment - the brain of the ADHD patients had gained in maturation corresponding 
to a developmental progress of about two years.

Commission errors (CO) in the CP test occur when the patient responds (incor-
rectly) to a non-target (“NOGO”) task, which makes this test parameter a good 
measure for impulsivity. In all participating patients, impulse control improved sig-
nificantly from an average of 19.1 CO errors before the ILF neurofeedback treatment, 
to only 9.0 CO errors after the intervention. In terms of equivalent mental age, this 
means that the performance of the ADHD patients improved from a below-average of 
8.5 years to an above-average EMA of 15.0 years after the EEG-assisted neurofeedback 
intervention.

All objective improvements in the attention and impulsivity parameters examined 
in the CP testing are completely consistent with the ADHD patients’ subjectively 
perceived reductions in the severity of their symptoms of inattention, hyperactivity 
and impulsivity, which were rated as highly distressing prior to ILF neurofeedback 
treatment. Based on the data and feedback from clinicians and patients it therefore 
can be concluded that ILF neurofeedback can be seen as an effective method to treat 
ADHD in children and adolescents.

Due to the fact that ADHD on one hand is a complex psychiatric and neurologi-
cally based disorder which usually is associated with many comorbidities as social 
behaviors disorders, affective disorders, depression, anxiety, obsessive–compulsive 
disorders, bipolar disorders and others [1, 2] and ILF neurofeedback on the other 
hand is indicated for all of the mentioned ADHD comorbidities [65, 66]. It would 
therefore be interesting to undertake a more comprehensive evaluation of the symp-
tom severities of ADHD patients and to investigate in a controlled study to what 
extent ILF neurofeedback therapy leads to further improvements in cerebral self-
regulation, which also encompasses the areas of other comorbidities of ADHD.

5. Conclusion

This observational clinical study could show significant improvements in major 
symptoms of ADHD - being inattention, hyperactivity and impulsivity - along with 
an improvement of attention, sustained attention and impulse control as well as the 
mental age equivalents in young patients with ADHD after ILF neurofeedback inter-
vention. These results fit in line with presented study outcomes on neurofeedback in 
the treatment of ADHD - given the particularity that symptom based and individual-
ized ILF neurofeedback presents a modern approach to EEG neurofeedback therapy 
options. Patients, parents and therapists evaluated the implementation and therapeu-
tic outcome pleasant and positive. Whatsoever based on this and prior results it can be 
concluded that neurofeedback can be assessed as an effective, non-invasive, non-drug 
and pain-free treatment opportunity enlarging the ADHD treatment options. These 
promising results should motivate further research, especially studies overcoming the 
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limitations of this one and including an interventional design, control parameters, 
further validated research instruments and long-term observations.

From a therapeutic point of view ILF neurofeedback can add a value to the treat-
ment of children and adolescents with ADHD but further and more controlled 
research is needed to determinate outcome differences, especially in comparison to 
standard of care treatment.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 6

Training the Conductor of the 
Brainwave Symphony: In Search of 
a Common Mechanism of Action 
for All Methods of Neurofeedback
Jen A. Markovics

Abstract

There are several different methods of neurofeedback, most of which presume an 
operant conditioning model whereby the subject learns to control their brain activity 
in particular regions of the brain and/or at particular brainwave frequencies based on 
reinforcement. One method, however, called infra-low frequency [ILF] neurofeed-
back cannot be explained through this paradigm, yet it has profound effects on brain 
function. Like a conductor of a symphony, recent evidence demonstrates that the 
primary ILF (typically between 0.01–0.1 Hz), which correlates with the fluctuation of 
oxygenated and deoxygenated blood in the brain, regulates all of the classic brain-
wave bands (i.e. alpha, theta, delta, beta, gamma). The success of ILF neurofeedback 
suggests that all forms of neurofeedback may work through a similar mechanism that 
does not fit the operant conditioning paradigm. This chapter focuses on the possible 
mechanisms of action for ILF neurofeedback, which may be generalized, based on 
current evidence.

Keywords: EEG biofeedback, neurofeedback, electroencephalography, infra-low 
frequency [ILF], infra-slow oscillations [ISO]

1. Introduction

Neurofeedback is biofeedback for the brain. It is a method that developed out of 
research curiosity and demonstrated efficacy as a therapeutic modality for improving 
brain function, although it has taken more than half a century to gain some level of 
acceptability into the Western medical establishment. Now that it has gained some 
respectability as a therapy for symptoms of brain and mental health disorders, it is 
becoming increasingly important to develop a concise theory of the mechanism of 
action for how neurofeedback causes its effects. There have been many proposed 
mechanisms, but they are often very narrowly applicable to the particular method 
of neurofeedback discussed. Furthermore, some lines of investigation have provided 
evidence to suggest that most of the proposed, straightforward mechanisms are 
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likely incorrect, which may actually explain some of the inconsistent results that have 
plagued the research literature. Thus, it is important to consider that there may be one 
overarching mechanism of action explaining how neurofeedback works, which takes 
into account and applies to all the various methods of neurofeedback. In this article, 
several hypothetical mechanisms of action are presented, which were derived from 
the various methods of neurofeedback, from which a single hypothesis is proposed 
that attempts to incorporate all of the common features of the other mechanisms in 
order to more generally explain how all neurofeedback may work.

2. Neurobiology underlying mechanisms of neurofeedback

Since the field of neurofeedback essentially co-developed with our modern under-
standing of neurobiology, the neurobiological concepts underlying the mechanism(s) 
of neurofeedback that are presented here are as putative as the neurofeedback 
mechanisms, themselves. In many ways, the application of neurofeedback, itself, has 
helped to elucidate the underlying neurobiology. Therefore, it is important not to 
over-commit to any particular theory or hypothesis, since, in the future, after more 
information is revealed through rigorous scientific investigation, it may be proven 
wrong. Scientists must always be willing to pivot from one model to another and not 
hold too tightly to any piece of “knowledge”. Herein, a non-exhaustive description of 
the current neurobiological foundations in which neurofeedback works to produce its 
effects are presented.

2.1 The brain as a prediction device

To understand how the brain works, it’s necessary to consider some basic func-
tions of the brain and the obstacles it needs to overcome in order to perform such 
functions. As we all know, the brain is how we perceive and function in our physical 
reality/world. Everything we are and do is controlled by the brain, such as sensory 
perception, motor activity (voluntary and involuntary), and cognition/executive 
functions. Those are the three basic forms of brain function, covering everything that 
we perceive and do. For example, the only way we know that there is a tree in front 
of us is because we see it (i.e. visual perception), we smell the bark and leaves (i.e. 
olfactory perception), and maybe we even touch it (i.e. tactile perception), which are 
all sensory percepts that are processed in the brain. Does that tree really exist outside 
of the brain? Well, of course, that’s a question for philosophers. It’s essentially the 
same question as: If a tree falls in the forest but nobody sees or hears it, does it really 
fall? Most of us would say, yes, but we have no way to “prove” it (not to mention that 
the concept of “proof” is also moot in science, but that’s another topic), because that 
requires some sort of observation or exchange of information, which is lacking in the 
given scenario.

In order to perceive and function in the world, the brain must be able to take in the 
information from the environment via our senses, process it (“bottom-up processing”), 
make a decision on how to react, then implement that action (often involving motor 
output or “top-down processing”) [1]. These processes are not instantaneous, but take 
time, which is a critical obstacle if a quick response is necessary, such as when a lion 
attacks or a child runs into oncoming traffic. Thus, the brain needs to overcome this 
relatively slow processing speed by not re-acting to the world, but pro-acting to it, or 
predicting it [1, 2]. Prediction is based on prior information about the regularities or 
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patterns in the environment, and it is a key feature of brain function that helps create 
an accurate representation or model of the sensory environment and any actions 
required to navigate it [1].

One way in which the brain is able to make predictions is through constant, ongo-
ing activities, such as waves of electrical potentials that are created by oscillations of 
local field potentials (LFPs) throughout neural networks in the cerebral cortex and 
subcortical structures, which commonly called brainwaves [3–5]. Anything cyclical 
or periodic is inherently predictive. While oscillatory activity lends itself easily as 
a mechanism for temporal prediction (i.e. predicting ‘when’), it is also an effective 
mechanism for predictive coding (i.e. predicting ‘what’) [3, 6].

Another way in which the brain predicts future activity is through prepotent mod-
els of the sensory environment and prepotent models of actions that it forms based 
on patterns from past situations/scenarios/contexts from which it learned [2]. For 
instance, in the GO/NOGO task employed for the analysis of event-related potentials, 
the subject is instructed to press a button every time they see a target for the GO 
condition, for which the brain creates a prepotent model of the action of pressing a 
finger down on a button as soon as the target stimulus is presented [7]. Then, once 
the target is shown, that activity encoded in the prepotent model is easily and quickly 
performed without much effort since it was pre-planned. However, if a non-target is 
shown, instead, such as in the NOGO condition, the brain needs to actively put the 
brakes on that pre-planned action, which actually takes more energy than following 
through on that action [7, 8]. This brain function is called “response inhibition” and is 
carried out by the prefrontal cortex, which is primarily an inhibitory cortex, and the 
primary inhibitory neurotransmitter is gamma aminobutyric acid (GABA) [7, 8].

People whose prefrontal cortices are not fully developed, such as children, 
teenagers, some young adults, and those who have been diagnosed with attention 
deficit/hyperactivity disorder (ADHD), have difficulties with response inhibition 
[7]. These difficulties may manifest in impulsive behaviors, compulsive behaviors, 
obsessive thoughts, inappropriate remarks or behaviors, etc. [7]. A couple of other 
examples of brain dysfunction that shed light on the ongoing functions of the brain 
are automatisms and alien hand syndrome [9, 10]. Automatisms are behaviors that 
sometimes occur during an epileptic seizure where a set of motor behaviors occur in a 
particular sequence without conscious thought or agency but may appear purposeful, 
except for the fact that they do not achieve any particular function and the individual 
is usually in an altered state of consciousness [9]. Most of the time, those of us who 
have excellent functioning prefrontal cortices are able to inhibit automatic behav-
iors that do not have a purpose, but sometimes, particularly when inebriated with 
mind-altering substances, the brain becomes disinhibited, allowing these behaviors 
to come out [11].

Alien hand syndrome is probably one of the most fascinating phenomena that 
reveals brain and body function in a unique and strange way. Some people with intrac-
table epilepsy have surgery that severs the connection between the two hemispheres 
of the brain – these people are often called “split-brain” patients [12]. Some of these 
“split-brain” patients, or others who have had a stroke or some other injury or insult, 
have severed connections between the pre-supplementary motor area (pre-SMA), the 
anterior and medial cingulate cortices (ACC and MCC), and the sensorimotor cortex 
(SMC) in either hemisphere [10, 13, 14]. This severance releases the hand contralat-
eral to the SMC lesion from conscious, voluntary control, allowing it to behave as if it 
has a mind of its own [10, 13, 14]. What is particularly interesting is that this usually 
does not mean that the hand does nothing and just sits listlessly at the side of the 
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person. Instead, the hand literally behaves as if it has a mind of its own, revealing what 
a hand would do if it was not told to stop – that is, to grab or clutch [13, 14]. A hand 
without conscious control will grab anything it “sees” (although it does not actually 
“see”, but since the feedback connection between the visual cortex and the SMC is not 
severed, information from the visual cortex can directly drive hand motor action since 
it cannot be inhibited by the dominant prefrontal cortex), such as a glass, a pencil, or 
even a woman’s breast (if you are someone who likes women’s breasts) [14]. One of the 
only ways to get the alien hand to stop grabbing things is to put something in it to hold 
so it is occupied and unable to grasp anything else [10].

2.1.1 Feedback as general mechanisms of learning and neuroplasticity

A second major characteristic of the brain is its ability to learn and adapt. The 
neurobiological mechanism of learning is called neuroplasticity, which means that 
the brain changes – it’s considered malleable like plastic, as opposed to something 
that cannot change easily, like a rock or metal. Learning requires information to be 
remembered, but it also requires error correction to make sure that the information 
retained matches the information taught. It is also the mechanism by which we fine 
tune our performance, which is just another form of learning. For instance, in order 
to walk, we must move our legs, but in order to know that we are walking, we must 
get information from our feet that they have met the ground and maybe also from our 
eyes to see it touch the ground. If all of these bits of sensory information agree they 
are then integrated together in a feedback loop with the motor action to confirm that 
what was pre-planned (the motor activity of taking a step) is what actually occurred. 
This mechanism of feedback is called the sensorimotor loop and is a form of predic-
tive processing, which is a primary mechanism by which the brain is able to respond 
to the environment and self-correct when errors or perturbations occur [2–5].

Based on feedback loops, predictive processing can be considered a strategy of 
control systems [2–5]. If the body is a collection of bodily systems, the brain is the 
control system, defined as a stable system in which its elements interact to preserve 
stability for both internal control and response to perturbations from external sources 
[4, 5]. Control systems are characterized by feedback loops, which can either be 
closed or open [4]. Negative feedback loops in closed systems create oscillatory activ-
ity, which are generated in the brain by coupling excitatory and inhibitory neuronal 
activity in circuits [4, 5]. These oscillatory activities, which can be measured in LFPs, 
regulate the excitability of the cortex, which regulates the ease with which long-term 
potentiation (LTP) or learning can occur [15].

A key aspect of learning (i.e. neuroplasticity) is timing. Learning, which requires 
memory formation, occurs through LTP and is primarily established through spike-
timing dependent plasticity (STDP), the conventional form of which is through 
Hebbian plasticity [16]. Nearly all of our synaptic connections are weakly formed in 
the first two years of life [17]. After this period of neurogenesis and synaptogenesis, 
our brains go through nearly two decades of experience-dependent synaptic strength-
ening and both experience- and neglect-dependent synaptic pruning [17, 18].

According to Hebb’s postulate, the strengthening of a synapse requires the precise 
timing of the activation of two neighboring synapses on the same post-synaptic 
neuron such that a pre-synaptic signal from the weak synapse is quickly followed by 
a stronger, post-synaptic signal (coming from an established synapse upstream of it), 
causing the weaker synapse to appear to co-fire with the stronger synapse, linking 
them to create an action potential that propagates down the neuronal axon [19, 20]. 
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The timing of these coordinated signals must be very precise, such that the signal 
from the pre-synaptic neuron into the weak synapse must fire within milliseconds 
(ms) (generally around 20–40 ms) before the stronger, established synapse on the 
post-synaptic neuron fires in order for LTP to occur [21]. If the post-synaptic neuron 
fires first, however, long-term depression (LTD) can occur, which further weakens 
the synapse, ultimately resulting in synaptic pruning [21]. The typical timeframe 
for LTD requires that a spike from the presynaptic neuron reaches the weak synapse 
within 20–40 ms after the spike from the postsynaptic neuron [21]. To complicate 
the matters, different neuronal populations in different brain regions have their own 
specific temporal patterns of STDP [16]. The brainwave most frequently implicated in 
LTP and memory formation is the theta (θ) band [15], which has a phase-amplitude 
cross-frequency coupling with the gamma (γ) [22] band in the hippocampus. This 
θ-γ coupling is believed to play complementary functions in memory formation: θ 
oscillations are involved in encoding whereas γ oscillations (which form ripples) are 
involved in consolidation [23].

2.1.2 Functional networks

Due to technological advances in imaging, neuroscience has grown exponentially 
in the past few decades. Using a technique called functional magnetic resonance imag-
ing (fMRI), researchers identified networks of metabolic activity in the brain that 
work together at the same time (i.e. synchronously) over spatially distant regions, 
which are connected via white matter tracts [24–27]. These networks are called func-
tional networks. Furthermore, there are both task-positive and task-negative networks 
(a.k.a. resting state networks), meaning that some networks are associated with some 
sort of voluntary endeavor or task whereas other networks are not associated with 
a particular activity but are active during times of “rest” or non-directed thought 
[27]. Eventually, researchers discovered that many of these resting state networks are 
shared with task-positive networks, with one exception, the default mode network 
(DMN), which will be discussed in more detail later [25]. Researchers were surprised 
to see that functional networks continue to be active during times of rest, but those 
of us who have thoughts streaming through our heads nonstop already knew this 
about our brains! Even those who do not have thoughts constantly streaming through 
their brains, however, also have resting state network activities. In fact, the only time 
when the brain does not seem to be flowing through different functional networks 
is during states of unconsciousness, or at least the networks during unconsciousness 
show less connectivity, and the dynamics between networks are slower [28]. The 
brain continues to switch between resting state networks even during sleep, which is 
an altered state of consciousness, although their dynamics are also slower than during 
 wakefulness, but not as slow as during unconsciousness or coma [29].

The key aspect of fMR imaging, which differentiates it from regular MR imaging, 
is the additional signal analyzed, which is the blood oxygen level dependent (BOLD) 
signal that causes the magnetic resonance to shift in intensity by approximately 1% 
depending on oxygen-rich or oxygen-poor blood in the region [24, 25]. Essentially, 
the premise of fMRI that gives it its functionality is the notion that where there is 
oxygen-rich blood in the brain neural activity is occurring. Furthermore, the BOLD 
signal fluctuates or oscillates at a typical frequency which is between 0.01–0.1 Hz, or 
one cycle per every ten seconds to one cycle every 100 seconds [24, 26]. This fre-
quency is the same as the primary infra-low frequency (ILF) that can be measured by 
electroencephalography (EEG) [26, 30, 31].
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Each publication on resting state functional networks seems to characterize a 
 different number and general description of networks, although some networks 
appear to be consistent across reports, such as the dorsal and ventral attention 
networks (DAN; VAN), the central executive network (CEN), the salience network 
(SN), the basal ganglia/limbic network (BGLN), and a series of sensory-related and 
motor networks [27, 32]. The most consistently characterized network in all reports 
is the DMN, making it the network in which the brain spends most of its time and 
energy [30]. The DAN, VAN, CEN and sensory- and motor-related networks are all 
considered “task-positive” networks as they are associated with specific attentional, 
executive, sensory, and motor tasks, but they have also been detected at times of rest, 
as well [26]. The DMN, however, is exclusively associated with times of rest and relax-
ation, self-reference, and projecting into the mind of others (i.e. “theory of mind”), 
which are all considered part of the “core self” [30, 33, 34]. The DMN has particular 
significance in the mechanism of neurofeedback, and its role may be to integrate the 
self with the three-dimensional body and world in which it inhabits [30, 33, 34].

2.1.2.1 Inter-network dynamics

These functional networks break up into two basic systems of internally-focused 
(i.e. the DMN) and externally- or task-focused (the so-called “task-positive net-
works, which essentially refer to all of the other networks) [26]. Since these networks 
are very dynamic, even at rest, their very characterizations have been relatively 
elusive, depending heavily on statistical analyses of correlated activities at different 
nodes or hubs [24]. The characterization of the DMN, however, seems to have great 
consensus among researchers, revealing it as probably the most important network, 
which anti-correlates with all of the other networks with little exception [26, 35]. This 
anti-correlation means that when the DMN is activated, the task-positive networks 
are deactivated or inhibited [26, 30, 35].

Studies on network inter-dynamics suggest preferential directionalities in these 
dynamics where certain networks tend to be activated before or after other  networks 
and how different networks modulate the activity of other networks [35–38]. 
Specifically, the DMN and the SN regulate switching between internally-generated, 
self-referential/self-focused processing (in the DMN) and externally-generated infor-
mation processing (such as from the senses) or other cognitive functions that are not 
self-focused or self-referential (such as math, reading, etc.) in the attention networks, 
the sensory networks, and the executive networks, etc. (i.e. the “task-positive” net-
works) [38]. Some of the same network hubs that overlap between the DMN and the 
SN are also part of the executive networks, which make their differentiation somewhat 
ambiguous, but both models - where the DMN interacts exclusively with the SN and 
where the DMN interacts with both the SN and the executive networks – reflect the 
same underlying mechanism whereby the SN regulates switching between the DMN 
and task-positive networks, including executive functions [37]. Furthermore, both 
models make intuitive sense when considering that when you are internally focused 
you cannot also be externally focused since these are mutually exclusive states.

Network dynamics may be a good neurophysiological measure of neuroflexibility, 
which can manifest as cognitive and behavioral flexibility, particularly for networks 
involving the frontal lobes [39]. The level of dynamic switching between networks 
and their interactions also appears to be more strongly correlated to conscious 
processes, as opposed to intra-network connectivity, alone [28]. Greater dynamics 
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in functional connectivity correlates with better behavioral responses and results 
in cognitive tasks, as well as better mental health [40–43]. These results imply that 
a more flexible brain, one which easily engages and disengages in brain states, is a 
better functioning brain.

The variation in network participation at inter-network hubs correlates with 
retrospective self-generated thoughts, which are considered correlates of unhappiness 
and are precursors for a negative mood [44]. This variation in membership at inter-
network hubs, as well as the stability of densely interconnected nodes (considered to 
be the ‘rich club’) diminish with age [44–46]. This reduction in network modularity 
with age suggests less distinct functional divisions between networks, resulting in 
less information sharing and processing across networks [46]. Furthermore, there 
are specific changes in inter-network dynamics which also change with age, but the 
developmental trajectories are specific to the particular interacting networks and 
may also be specific to certain functions that depend on the particular activities and 
interests of the individual over their lifetime [45, 47].

2.1.3 Glial cells

Neurons get all of the attention when it comes to the brain and the nervous system, 
but they can only do what they do because glial cells provide protection, nutrients, 
neurotransmitters, insulate axons (creating myelin), assist in synapse formation and 
remodeling, protect against foreign attack, clean up extracellular debris, maintain 
structural integrity of the tissue, etc. [48–50]. The ratio of glial cells to neurons in the 
human brain has typically been reported as anywhere from 4 to even 50, although 
these numbers are inaccurate due to the region-specific ratios, while total numbers of 
neurons and glia have a ratio of nearly 1:1 [51]. Despite the variability in these regional 
ratios, an argument could be made that glial cells, as opposed to neurons, are the most 
important cells of the brain.

The term, glia, is derived from the Greek word meaning glue, and reflects the 
original function that these cells were believed to do, which was essentially holding 
neurons together in the brain like glue [48, 49]. In recent years, however, scientists 
have discovered that these cells provide substantially more functions than just struc-
tural integrity of the brain. For instance, astrocytes or astroglia, which are named 
for their star shape, help create and maintain the blood brain barrier, regulate the 
formation, maturation, maintenance, and stability of synapses, and regulate specific 
neuronal network activities through the inhibition of local, non-specific activities 
[18, 52, 53].

Astrocytes, in fact, play a central role in regulating neuronal activity through 
metabolic coupling and neurotransmitter recycling [52]. Through their foot processes 
that wrap around the endothelium of the capillaries and their intimate contact with 
synapses (creating the tripartite synapse), astrocytes play crucial roles in neurovascu-
lar coupling [54]. This coupling allows astrocytes to regulate the metabolic activity 
of the neurons associated with these synapses through the release of ATP, as well as 
the removal of metabolites and the recycling of ions and neurotransmitters into the 
synapse [52, 53].

Recent studies on astrocytes have revealed their heterogeneity in the human brain, 
which may be as diverse as all of the different neural circuits and networks [55, 56]. In 
fact, astrocytes are implicated in the development, plasticity, and function of neural 
circuits [18]. Furthermore, astrocytes have bioelectrical properties that are created 
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by calcium fluctuations across its membrane, which couple with neuronal firing and 
are likely the source of LFPs, which create the brainwaves that can be detected by 
EEG [57, 58].

The two other glial cell types in the central nervous system, microglia and 
oligodendrocytes, play important roles in neurodevelopment, neuronal signaling, 
neuroplasticity, and neuroprotection [49]. Oligodendrocytes create the myelin 
sheath on neurons, allowing for faster and more efficient propagation of the action 
potential down the axon, while microglia are critical for neuroprotection as the 
resident phagocytic immune cells of the brain [49]. Microglia also play critical roles in 
neurodevelopment and neuroplasticity (particularly during synaptic pruning), and 
their dysfunction is implicated in the etiology of many neurodevelopmental disorders 
and neuroinflammation [59]. Despite the critical functions that these cells play in the 
brain, no significant and/or unique roles have been ascertained for them at this time 
in the possible mechanisms of neurofeedback.

2.2 Clinical benefits of neurofeedback training

There have been many reports on the clinical benefits of neurofeedback training 
but describing in detail all of the studies on the efficacy of different neurofeedback 
methods in improving the multitude of brain-related symptoms reported in the 
literature is beyond the scope of this chapter. Therefore, the reader is referred to some 
recent reviews of the subject [60–64]. Briefly, a general description of neurofeedback 
effects that modify different symptoms are presented here.

2.2.1 Seizures

The first clinical effect of neurofeedback was the reduction of seizure incidence, 
duration, and severity in cats, which was then recapitulated in humans [65–67]. 
This original protocol, which trains the so-called sensorimotor rhythm (SMR), 
which was originally developed for cats, is still used for the treatment of seizures in 
humans today, but the seizure-reduction benefits are not exclusive to that method 
and can be achieved using other forms of neurofeedback, as well [63, 68, 69]. 
Furthermore, the method is generally the same no matter what kind of seizures 
the subject has, including psychogenic non-epileptic seizures (PNES), unless it’s a 
focal seizure, which could require specific electrode placements to target the focus 
[68, 69, personal experience].

2.2.2 Attention/focus

Most of the research in the field of neurofeedback has centered around its benefits 
for improving executive functions in people who have been diagnosed with ADHD 
[60, 65, 66]. In fact, in 2013, the American Association of Pediatrics endorsed neuro-
feedback at level 1 effectiveness for the treatment of ADHD, which is the same level 
endorsed for ADHD medications [70]. Due to the fact that the literature is over-
saturated with these reports on the efficacy of neurofeedback for ADHD, the reader is 
directed to some excellent, recent reviews [71–73]. The main point is that neurofeed-
back has been used to improve symptoms of ADHD, particularly executive dysfunc-
tions such as inattention and difficulty shifting tasks, etc., but also hyperactivity and 
impulsivity [71–73]. Improving symptoms of ADHD, however, is merely the tip of the 
iceberg of what neurofeedback training can achieve.
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2.2.3 The multitudes of symptoms improved by neurofeedback

It’s truly difficult to describe all of the symptoms, behaviors, and other effects that 
neurofeedback has affected, and even more difficult to show evidence of these effects 
via randomized, controlled trials (RCTs), which are the gold standard for determin-
ing evidence-based practice in our Western healthcare system. However, despite the 
challenges of designing, obtaining funding, implementing, then publishing such 
studies, the field of neurofeedback has continued to progress due to the very real 
benefits that clients continue to gain from it, spreading the word to others who then 
try it and also witness its benefit [74, 75]. Of course, the issue is that this method of 
utility and expansion of the field is unsustainable in a healthcare system dependent on 
insurance where insurance will only pay for what the Western medical establishment 
considers evidence-based practice.

Clearly, evidence-based practices are ideal in order to demonstrate efficacy and 
build trust in the field, but the only way to get evidence is to practice. It’s been a bit of 
a Catch-22 to reach the level of evidence-based practice when grant lending agencies 
have been reluctant to fund studies in the field of neurofeedback, but in order to 
get funding, the clinicians need to establish some level of efficacy of the practice to 
recruit enough subjects for the gold standard RCTs. In the meantime, the clinicians 
have done their best on their own to optimize neurofeedback for its benefits to their 
clients in the absence of funding for these gold standard studies [66, 74, 75].

In addition to its benefits in reducing seizures and improving ADHD symptoms, 
some of the multitude of benefits of neurofeedback training are reductions in head-
aches, migraines, anxiety, irritability, post-traumatic stress symptoms, etc., and 
improvements in sleep regulation, pain management, mood, peak performance, etc. 
Most of these effects have been documented in case studies and/or experimental trials 
that are less rigorous than RCTs [61–63, 74, 76]. Essentially, any function of the brain 
can be modulated using neurofeedback, which theoretically means that everything we 
do, think, and feel can be improved using neurofeedback.

3. A very brief history of neurofeedback

Neurofeedback originated as EEG biofeedback and developed nearly at the same 
time as EEG, itself, beginning in the 1930s with Hans Berger and his colleagues toying 
around with this new machine to watch how their brainwaves changed with different 
perturbations [60, 65, 66, 77, 78]. However, neurofeedback as a therapy did not start 
until the 1960s after Barry Sterman discovered that neurofeedback training could 
protect cats against jet fuel-induced seizures [67]. Around the same time, another 
scientist, Joe Kamiya, was also conducting neurofeedback using alpha (α) training, 
which he found was able to reduce anxiety [77, 78]. After publishing an article about 
his experience with α training, public awareness and interest was piqued, so more 
people decided to try it out. Some people who tried α training had a spiritual experi-
ence, which is great for them, but, unfortunately, it did not bode well for the reputa-
tion of the emerging field of neurofeedback since the spiritual effects were seen as 
contrary to true medical treatment or therapy [66, 77, 78].

Although the remainder of the history of neurofeedback is quite interesting and 
provides a good background for why the field is so divergent today (primarily due to 
in-fighting between pioneering researchers), it is not within the scope of this article 
to present. Therefore, the reader is directed to many other resources where they might 
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find a history of the field [65, 66, 77, 78]. The main points here are that neurofeedback 
began as EEG biofeedback, which developed out of pure curiosity about how one 
might be able to control their brainwaves through visual feedback of their activities, 
and the original methods that were developed were α training and SMR/beta (β) 
training.

3.1 A very brief history of electroencephalography

Neurons communicate quickly through electrical impulses that travel down 
long axon tails, ending at a synapse, which is where the electrical signal changes to 
a chemical signal between neurons [19]. Neurons can also communicate directly 
through electrical synapses, as well, although this is not as versatile of a signal (i.e. 
it cannot be regulated to the same degree as a chemical signal) [19]. We can detect 
the electrical signal in the brain using EEG, which is a technique that detects changes 
in electrical potential via electrodes that are placed on the scalp [7]. Since the elec-
trodes are several millimeters away from the cerebral cortex, and their surface area 
is thousands-to-millions of times larger than the surface area of a single neuron, 
they are actually picking up the summed electrical field potentials from millions of 
neurons and their surrounding glial cells, both cell types of which can establish an 
electrical potential across their membrane [7, 52, 57].

Hans Berger was the first person to publish an article with the first human EEG in 
1929 [65, 77, 79]. After placing an electrode on the back of the head, Berger observed 
a wave of electrical potential with an approximate frequency of ten cycles per second 
or 10 Hertz (Hz), which he coined as α waves [60, 77, 79]. After this initial discovery, 
several other brainwave bands were discovered, which will be discussed in more detail 
in the next section [77].

3.1.1 Brainwaves

As mentioned in the previous section, the invention of EEG led to the discovery 
of ongoing electrical oscillatory activity in the brain, which could be detected using 
electrodes placed on the scalp. Following the discovery of α waves, β waves (≥ 13 Hz) 
were then discovered, then delta (δ) waves (1–3 Hz), and θ waves (4–7 Hz) [77]. 
γ waves are a subset of very high β waves (> 30 Hz) [79]. Collectively, we have dubbed 
these brainwaves [57]. These brainwave bands show specific patterns of activity at 
specific times, locations, and during specific brain activities, although their precise 
functions are not abundantly clear [57, 79]. Furthermore, the origins or oscillators 
that generate the brainwaves are also not very clear or easily defined, although studies 
suggest key oscillatory roles for the thalamus, the reticular activating system (RAS) 
of the brainstem, and specific layers of pyramidal neurons and astroglia in the cortex 
[57, 79, 80].

Characterizations of the classic brainwave bands are primarily derived from sleep 
studies and studies of patients with epilepsy [81]. Early neurofeedback studies also 
attempted to functionally characterize these brainwave bands, but their functional 
characterization has been elusive due to the promiscuity of associated activities 
[57, 79, 81]. One intriguing theory posits that the different brainwave bands are evo-
lutionarily related and similar in categorization as the triune model of brain structure 
and function [82]. In this model, δ oscillations are analogous to the brainstem’s basic 
functions, representing the evolutionarily oldest structures and functions of the 
brain, while θ and α oscillations are analogous to the limbic system and basal ganglia, 
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dominating in lower mammals, and the fastest brainwaves, β and γ, are analogous to 
the neocortex, which is the evolutionarily newest structure with associated functions 
such as higher order cognitive processing and self-awareness [82]. Although this 
model is very intriguing, it remains to be substantiated with experimental evidence.

A more complex picture of brainwave activities has emerged in recent years 
that describes different ways in which brainwaves interact with each other through 
cross-coupling [22]. Much like functional networks, researchers discovered different 
coupling patterns in ongoing activity that spatially organize in networks similar to 
and often overlapping with the intrinsic functional networks that were discovered 
by fMRI [22]. These intrinsic coupling modes (ICMs), as they have been dubbed, 
demonstrate more precise correlations with function than single brainwave bands, 
indicating a much more richly complex structural and functional architecture to the 
electrophysiology of the brain [22]. For example, a specific difference in visual per-
ception – whether two lines appear to bounce away from each other or pass through 
each other – correlated with the percentage of coherence in a β phase ICM in specific 
visual processing regions (i.e. those with higher β coherence perceived bouncing, 
whereas those with lower coherence perceived passing) in a study using the bounce-
pass paradigm [83]. Delineating function to specific brainwave bands is challenging 
because: (1) the function can be highly specific, which means each specific brain 
function would require definition by experimentation, (2) each brainwave band is 
associated with many different specific functions with little generalizability between 
them, and (3) functions of brainwaves are spatially and temporally specific, and may 
be specific to certain cross-frequency couplings [22, 57, 79].

3.2 Modern neurofeedback

Today, there are many methods of neurofeedback using different technologies, 
data, and protocols (for some reviews, see [61, 63–65, 84]). Different research-
ers group the methods in different ways. For instance, some researchers group the 
methods according to their neuroimaging technology (i.e. EEG or fMRI) [75]. Other 
researchers group the methods according to the temporal structure of the data, such 
as methods that use discrete events (e.g. frequency training, fMRI, etc.), in which 
there are periods of target activity and periods of rest, and methods that use continu-
ous “events” (e.g. ILF), in which the target signal is continuous and the goal is not nec-
essarily to modulate its activity [65]. Two general categories of methods have emerged 
in the field of neurofeedback, those that employ a directive, operant conditioning 
approach, which require explicit awareness and learning by the subject, and those 
that are non-directive in nature, employing a passive approach, which only require 
implicit learning of self-regulation of which the subject is likely unaware [84, 85]. The 
directive methods are the most abundant and commonly used neurofeedback meth-
ods, and the theories behind them are the easiest to understand and explain. Thus, the 
directive methods are presented first.

3.2.1 Directive methods

Directive methods of neurofeedback refer to the methods that require the clini-
cian to direct the subject to consciously control specific brainwaves by learning what 
it feels like to modulate the brainwaves during the session. These methods have 
also been called explicit methods of neurofeedback, which refers to the fact that the 
subject learns to become consciously aware of their brain states [84]. The purpose of 
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the directive methods is to learn to voluntarily regulate specific brain activities and, 
by reinforcing them, these specific activities increase, altering the pattern of brain 
activity. Thus, there are two outcomes for directive methods of neurofeedback: (1) 
how well the subject learned to regulate their own specific brain activities, and (2) 
improved symptoms and behaviors [84, 86].

These directive methods are based on assumptions of how the brain should work, 
using these assumptions to tell the brain what it needs to correct and how to correct it, 
using an operant conditioning model to “fix” the broken brain. Developed by the pio-
neering behaviorist, B.F. Skinner, operant conditioning is a method of learning that is 
based on positive reinforcement and punishment or rewards and inhibits, respectively 
[87]. When the subject does the desired behavior or learns the desired skill, then 
they receive some sort of reward, which may or may not have anything to do with the 
new behavior or skill. Since the reward is desirable, the subject will then repeat such 
behavior or skill with greater frequency. The behavior or skill is considered learned 
when the subject can perform it even without the reward. The original neurofeedback 
methods and most methods still employed today use this operant conditioning model 
to both direct the procedure as well as to explain how neurofeedback works [61, 64].

3.2.1.1 Conventional EEG-based training

As mentioned previously, the original neurofeedback training protocols used 
operant conditioning to train the brain to modulate the power of conventional EEG 
bands, such as the SMR, which is in the low β band, and α training [65]. These pro-
tocols continue today, but now they have expanded to include more brainwaves and 
different properties of the EEG, such as coherence (also called “synchronization”) 
and phase [63]. With the development of quantitative EEG (QEEG) methods, where 
a cap of 19 electrodes on the head records all channels simultaneous and the activities 
in each region can be quantitatively compared to others, databases have been created 
using both normative data from healthy controls as well as comparative data from 
brains with different symptomologies and diagnoses [7, 74]. These databases can be 
used as a resource to determine the significant differences between a subject’s QEEG 
activity and that in the normative database, providing a statistical score called a 
“z-score”, which indicates how significantly different the activity is and in what direc-
tion (i.e. increased or decreased) [7, 74]. Some methods utilize this resource as part of 
their protocol to train the brain closer to the norms, presuming that the most com-
mon QEEG patterns are preferred for better functioning [60, 61, 63, 88, 89]. These 
additional methods are discussed briefly in this section, although full and complete 
descriptions are not within the scope of this article and the reader is directed to the 
previously mentioned review articles and their references within for a more in-depth 
understanding.

3.2.1.1.1 Frequency training

As mentioned, there are a plethora of conventional EEG-based neurofeedback 
protocols. These protocols range from single frequency trainings to whole frequency-
band trainings to two or more frequencies or frequency band trainings at the same 
time, etc., training in different directions –“up” or “down” - meaning increasing or 
decreasing the power and incidence of that frequency or frequency band [61, 62, 64]. 
Sometimes the protocols are designed based on differences in the QEEG from 
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the normative database, while other times the protocols are determined based on 
symptom presentation [7, 60]. Some classic frequency training protocols are SMR 
for epilepsy, as previously mentioned, but also for ADHD, α-θ training for trauma 
reorganization, midline θ training and θ/β training for focus/concentration, as well as 
training each individual conventional EEG band for various conditions [7, 60–64, 74].

3.2.1.1.2 Other EEG-based methods

As mentioned at the top of the section, other EEG-based methods of neurofeed-
back use different aspects of the EEG data to train the brain. For instance, QEEG-
based training uses z-scores as the substrate for the feedback, where the brain is 
rewarded as the QEEG pattern normalizes closer to a z-score of 0 [60, 61, 63, 88, 89]. 
The issue with this method is that it presumes that the most common QEEG pat-
terns in healthy individuals reflects the best, most optimal pattern of brain function. 
However, just because something is typical or common does not mean it is the best. 
In fact, one might hypothesize that anyone who has an exceptional brain, maybe with 
a very high I.Q. or great talent, might also show differences from the norms – quite 
possibly significant differences, in fact – but we might presume that these particular 
differences confer their exceptional abilities as opposed to pathology.

Another method that uses a full cap of 19 electrode placements is low resolution 
electromagnetic tomography [LORETA] training [61, 75, 88]. LORETA is a method by 
which QEEG data is analyzed using blind source separation methods like independent 
component analysis (ICA) to localize the neural source of the signal in the brain and 
projects that source onto a three-dimensional map of the brain, including subcortical 
nuclei [7, 88]. The EEG substrates that can be monitored via LORETA are EEG band 
power, coherence, and/or phase, as well as z-scores [60, 61, 90].

Low-energy neurofeedback system (LENS) is another method of neurofeedback 
based on EEG data, but it diverges from all other methods in that it actually delivers 
a very weak electromagnetic pulse into the subject’s brain while they lay motionless 
with their eyes closed [61]. LENS is a very quick treatment and does not require 
months of sessions, but it is the only neurofeedback methodology that activity adds 
an exogenous signal to the subject, so it may be considered less “non-invasive” than 
the other techniques [60]. The basic hypothesis behind LENS is that it perturbs the 
brain’s typical activity by delivering the weak electromagnetic pulse in order to get it 
“unstuck” [60].

3.2.1.2 Hemodynamics-based training

Since neuronal activity is tightly coupled to hemodynamics (blood flow), several 
forms of neurofeedback use hemodynamics as a measure of brain activity in specific 
regions of the brain as substrates for feedback [61, 63]. The most well-known method 
is fMRI training, which monitors the BOLD signal in brain structures with high spa-
tial resolution [91–93]. Other hemodynamic-based methods that are less well-known 
are hemoencephalographic (HEG) training and functional near-infrared spectros-
copy (FNIRS) training, which have less spatial resolution than fMRI but greater 
than that of EEG [67, 94, 95]. FMRI neurofeedback has the greatest number of gold 
standard RCTs, likely due to the fact that the principal investigators on those studies 
typically are medical doctors and tend to receive more funding than non-medical 
doctors [91, 93].
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3.2.2 Non-directive methods

Non-directive methods of neurofeedback, which have also been called implicit 
neurofeedback, do not rely on directions from a clinician to the subject, nor do they 
rely on the subject to consciously regulate their brain activity [84, 85]. In fact, the 
subject does not need to do anything to receive the benefits of these methods of 
neurofeedback as they are entirely passive processes. These methods have only been 
in development over the past 10–15 years or so, partly due to their dependency on 
technological advances of the neurofeedback equipment and software [65, 96, 97].

3.2.2.1 Infra-low frequency training

ILF training grew out of conventional EEG frequency training [65, 74, 76, 97]. It 
is based on rewards and inhibits, which are aspects of conventional EEG frequency 
training, but these concepts no longer make sense at such low frequencies (the current 
Cygnet software, version 2.0.7.4, can now filter out frequencies as low as 0.0001 mHz, 
which is approximately one cycle per 116 days). Even though there are biorhythms 
that are as slow and slower than the current limit of detection by this EEG amplifier 
[95], there are no known neural or glial origins of these very slow oscillations, causing 
controversy over the source of the signal [65, 76, 97]. However, a recent study dem-
onstrated that 20 sessions of ILF neurofeedback training increased the power of all of 
the ILFs (≤ 0.1 Hz), including the typical peak around 0.01–0.1 Hz, which is called 
the infra-slow oscillation (ISO) and correlates with the BOLD signal [98, 99].

One of the differences between ILF and conventional EEG training is that ILF 
training cannot work through an operant conditioning model since there are no dis-
crete events to reward [65]. Interestingly, though, there is a complex multi-frequency 
band algorithm of inhibits that follow the individual subject’s regular pattern of EEG 
activity using thresholds that reset moment-to-moment to allow for approximately 
95% success rate (which can be modulated in the software) of the signal remain-
ing below the threshold [100, 101]. The inhibits are a summation of over-threshold 
signals from the different conventional brainwave bands, causing the screen to gray 
out and the sound volume to reduce, which essentially tells the brain not to make 
any sudden moves or EEG spikes [100, 101]. These inhibits, therefore, function to 
stabilize brain activity while the “reward” or training frequency provides continuous 
information on cortical excitability.

3.2.2.2 Dynamical neurofeedback (i.e. NeurOptimal®)

The final method of neurofeedback that requires some mentioning due to its 
proliferation in recent years uses a nonlinear dynamical approach and is implemented 
with equipment and software called NeurOptimal® [102]. Unfortunately, there 
are no peer-reviewed publications that describe this method and only a very few 
publications were found of studies using it [103, 104]. Thus, it is hard to describe this 
method due to the fact that the details on what it is are murky and based entirely on 
non-peer-reviewed content on the NeurOptimal® website [102]. Descriptions of the 
method, however, suggest a similar form of training as described for the inhibits used 
in ILF neurofeedback in the previous section.

Based on theories developed by Val Brown, who originally came up with a 
five-phase model of neurofeedback training [105], and empirical experimentation 
performed by his wife, Susan Cheshire Brown, NeurOptimal® claims to train neural 
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dynamics by providing feedback information on how these dynamics change [102]. 
This information is obtained through threshold boxes on either filtered or fast Fourier 
transformed EEG frequency bands that set both a minimal and a maximal power for 
each (several frequencies or frequency bands are monitored at once), and violations 
of these threshold boxes drive the feedback [102]. Essentially, when the signal power 
is outside of the threshold box, it causes the sound to reduce or stop in a manner 
to inhibit this change in activity [102]. Due to neither training frequencies directly 
“up” or “down”, the creators claim that this method of passive observation of sudden 
activity changes is 100% safe and has no adverse effects [102]. However, this method 
requires substantially more research to verify its effects and more transparency in its 
process to allow other researchers to investigate its potential mechanism of action, 
as well.

4. Hypotheses for the mechanism of action of neurofeedback

These different methods of neurofeedback have led to the development of differ-
ent hypotheses for how neurofeedback works to improve brain function. It is possible 
that different methods of neurofeedback work through different mechanisms to 
produce their effects, but the simplest model would be that all neurofeedback meth-
ods work through the same or a similar mechanism of action. Thus, the true mecha-
nism of action of neurofeedback has yet to be determined and collectively confirmed. 
Here, several general hypotheses based on different methods of neurofeedback are 
presented, then the common denominator(s) of these hypotheses is discussed more 
thoroughly as a possible true underlying mechanism of action of neurofeedback, 
awaiting experimental designs to test and confirm its validity.

4.1 Hypotheses from directive methods: operant conditioning

Directive methods of neurofeedback, which use operant conditioning, rely on the 
clinician’s assumptions about what is wrong with the subject’s brain and how to fix 
it. This seems like a tall order, but it is the primary paradigm by which the Western 
medical establishment operates. Medical doctors spend four years of their education 
memorizing everything there is to know about the body, what goes wrong, and how 
to fix it. Thus, this same paradigm has been applied to neurofeedback with varying 
success.

The problem with this “clinician knows all” paradigm, however, is that it does not 
leave room for the unknown. In general, when a medical doctor cannot find anything 
“wrong” with a patient using any of their tests, they tell the patient that there’s 
nothing wrong and that whatever is happening to them is psychological or psycho-
somatic. There are even fancy terms for findings that the doctor cannot explain, such 
as “idiopathic”, which just means that the doctor knows that there’s a problem, but 
no one knows what it really is. Another issue with this paradigm is that knowledge 
changes and what if what we thought we knew for sure turns out to be wrong or at 
least sufficiently incomplete? In that scenario, whatever the doctor or clinician says 
and/or does based on this faulty knowledge will either have little to no benefit or may 
even be harmful for the patient. Of course, this scenario has happened in the past, as 
well – for example, there was a time when doctors recommended smoking cigarettes 
as a treatment for asthma [106], but now we know that smoking cigarettes is not only 
not healthy, but actually harmful, hastening disease and death.
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There are basically two types of directive methods, those based on brainwave 
frequency information and those based on blood flow or BOLD activity. In general, 
brainwave data has high temporal and low spatial resolution whereas blood flow or 
BOLD data has high spatial but low temporal resolution [107]. However, blood flow 
and BOLD data are more directly and generally associated with overall brain activity 
in a region, while all regions of the brain have some sort of brainwave activity at all 
times, so the level and type of brain activity visualized in the EEG is differentiated 
by the particular brainwave frequencies, their amplitudes, and their cross-frequency 
coupling [22, 79]. Understanding the functional meaning of brainwaves in any 
region at any point in time has been the focus of much research for decades and 
remains incomplete and somewhat ambiguous [22, 57, 79, 81, 108]. Thus, neurofeed-
back that is based on the functional meaning of specific brainwaves identified from 
specific locations on the scalp remains controversial due to the controversial and 
non-consensus nature of the underlying science.

4.1.1 Fixing bad brainwave patterns

The first and primary hypothesis of EEG biofeedback is based on the idea that 
there are normal and healthy patterns of brainwave activities during rest and/or 
tasks and that mental illness is caused by abnormal brainwave patterns [7]. There is 
evidence that certain brainwave patterns, either at rest or during a task, are associ-
ated with specific symptoms and mental disorders, but their causal roles are far from 
established [7, 109]. Due to the fact that altering these brainwave patterns has shown 
moderate success in diminishing such symptoms, these hypotheses have gained some 
traction in the biofeedback field [7, 63]. However, there are alternative explanations 
for the success of the neurofeedback that are not consistent with the hypothesis of a 
causal role for “bad brainwaves” in symptoms of mental illness.

One hypothesis that has driven much of the neurofeedback field for use in 
improving attention for people with ADHD is that β waves are associated with focus 
and attention [7]. Although this hypothesis is likely true at times since β waves do 
correlate with both activating (i.e. glutamate-mediated) and inhibiting (i.e. GABA-
mediated) neurotransmission [7], it is not always the case that [beta symbol] activity 
reflects a focused or attentive brain. β activity has also been associated with anxiety/
agitation, so increasing β activity to improve executive functions could backfire if it 
increases anxiety, which, of course, inhibits executive functioning [7]. From a techni-
cal perspective, using β activity to drive feedback may also result in modulation of 
muscle activity due to electromyographic [EMG] artifacts in the β range of the EEG, 
which tend to be of greater amplitude than true β brainwave activity [64].

A more nuanced view takes into account θ power, as well, and its ratio with β 
power in the frontal cortex, called the θ:β ratio (TBR), which is supposedly higher 
in ADHD brains compared to non-ADHD brains [110]. As the only FDA-approved 
biomarker for ADHD, the TBR should then be able to differentiate between individu-
als with ADHD and those without the diagnosis [111]. Unfortunately, there is only a 
very short window in childhood when the TBR can efficiently be used to distinguish 
between children with ADHD and those without ADHD, and it cannot differentiate 
ADHD from non-ADHD adults at all [110–112].

The unreliability of the TBR as a biomarker for ADHD symptoms and behaviors 
is exemplified in the fact that, although θ-β neurofeedback training can result in 
improved ADHD symptoms and behaviors, individual learning curves and increases 
in β power do not correlate with these behavioral outcomes, meaning that, although 
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the neurofeedback training did work to improve ADHD symptoms and behaviors, 
it was not because the subjects normalized their TBR [113]. Other studies support 
this notion that frequency training neurofeedback learning, which is the measure-
ment of how well subjects are able to consciously control their brainwaves, does not 
always correlate with behavioral improvements [86, 114]. These results indicate that 
this hypothesis of “fixing brain wave patterns” is incorrect and that there is a better 
explanation for the effects of neurofeedback training.

4.1.2 Increasing brain activity in specific regions

Another very simple hypothesis for the mechanism of action of neurofeedback 
training is the idea of increasing brain activity in specific brain regions. This hypoth-
esis is most applicable to the hemodynamic training methods like HEG, FNIRS, 
and primarily fMRI neurofeedback, which has the greatest spatial resolution [107]. 
Specifically, the idea is to provide information on where the brain is active in real-
time, and to reward the subject when the brain is active (or inactive) in the target 
region, such as the prefrontal cortex or the amygdala, training up for attention and 
down for emotional calming, respectively [93]. The straight-forward hypothesis here 
is that the different brain regions are associated with different functions and activat-
ing or inactivating these regions should increase or decrease those functions, respec-
tively. There has been no evidence to negate this hypothesis, but the technology used 
for the greatest spatial resolution (i.e. fMRI) is not practical for use in a therapeutic 
setting.

4.2 Hypotheses from non-directive methods: State-based shifts

Hypotheses for the mechanism of action of non-directive methods of neurofeed-
back have been more challenging to define and test compared to the directive meth-
ods due to the fact that they do not follow a straightforward operant conditioning 
model. These hypotheses are typically fairly general, involving the concept of calming 
the body system by shifting from a sympathetic nervous system (SNS)-dominant 
state to a parasympathetic nervous system (PNS)-dominant state, improving self-
regulation of regulatory biorhythms, such as the circadian and ultradian rhythms, 
and  increasing network system dynamics and stability.

4.2.1 Biorhythm regulation

In addition to brainwaves, there are a plethora of biorhythms in the body, not to 
mention the global rhythms of nature, itself. These rhythms span several orders of 
magnitude from sub-daily rhythms (ultradian) to daily (circadian), monthly (men-
strual), seasonally (circannual), into yearly, decadal (10 years), and so on [95]. If 
these rhythms were approximated as frequencies, these longer biorhythms fit neatly 
into the ILF range at 0.1 mHz (ultradian), 0.01 mHz (circadian), 0.0025 mHz (men-
strual) and 0.0001 mHz (circannual, approximately 3 months), which are all within 
the parameters of ILF neurofeedback training using the current version of Cygnet® 
(v.2.0.7.4, beemedic.com, 2021). Therefore, one of the hypotheses for the mechanism 
of ILF neurofeedback, specifically, is that it trains and improves these biorhythms 
using intrinsic error correcting through feedback.

When the software could only reach as low as 0.1 mHz, which translates to 
an ultradian rhythm, David Kaiser proposed a mechanism through which ILF 
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neurofeedback trains the ultradian rhythm, which is created by astrocytes [48]. 
Although astrocytes may be a key contributor to the mechanism, it is unlikely that the 
ultradian rhythm is the primary mechanism through which ILF neurofeedback works, 
since, as the software continues to improve, most subjects tend to have optimal train-
ing frequencies at the bottom of the register, which changes with nearly every update 
of the software (although it is unlikely to continue to change indefinitely) [115]. 
Furthermore, an electrophysiological signal corresponding to these slower, lower 
frequencies (< 0.1 mHz) has yet to be described, particularly with a neural or glial 
source. These slower biorhythms are created through clock gene feedback loops which 
regulate cascades of signaling pathways throughout the body, including hormonal 
regulation and even telomere length throughout life [95, 116]. Thus, it is unlikely 
that direct regulation of long, slow biorhythms, such as the ultradian, circadian, and 
circannual rhythms, are responsible for the effects of neurofeedback.

4.2.2 Polyvagal theory and the default space model of consciousness

Polyvagal theory is a theory describing the tripartite development of the auto-
nomic nervous system and the functions of the resulting subsystems [116]. Through 
three phylogenetic stages in evolution, three subsystems of the autonomic nervous 
system have arisen in higher-order organisms: the sympathetic nervous system, which 
produces the “fight-or-flight” response, and two branches of the parasympathetic sys-
tem via the vagus nerve, one branch corresponding to the ventral vagus nerve, which 
produces a social communication system through facial expression, vocalization, 
and listening, and the other branch corresponding to the dorsal vagus nerve, which 
produces the “freeze” response if attempts to fight or escape do not resolve the threat 
[116–118]. The theory further postulates that many neuropsychiatric disorders may be 
due to low vagal tone in one or more of these branches, particularly the ventral vagal 
neurons in the nucleus ambiguus [118, 119].

A key feature of the polyvagal theory is that it integrates neural circuits and 
rhythms of the brain with those of the heart and gut, which are relevant to all bio-
feedback modalities [119]. Another, similar theory that integrates these visceral func-
tions with brainwave activities is a theory of consciousness called the Default Space 
Model, which proposes that at very slow oscillations, the brain synchronizes with the 
cardiorespiratory rhythm, activating the DMN, which integrates external and inter-
nal sensory input to create a three-dimensional conscious experience [30, 33]. Thus, 
according to this hypothesis, ILF neurofeedback induces the brain into the DMN, and 
engages the ventral vagal system, which promotes calming, self-soothing, and socially 
engaging behaviors [34, 118].

4.2.3 Control system dynamics and stability

Despite the lack of information on the NeurOptimal® method of neurofeedback, 
its description as a nonlinear dynamical neurofeedback system has been helpful in 
elucidating how neurofeedback training may interact and influence the dynamical 
system processes of the brain. As mentioned in Section 2.1.1 on feedback mechanisms 
in learning, control systems, such as the brain, are characterized by feedback loops, 
and feedback loops create oscillatory activities, which are inherently dynamic [4]. 
By exercising these dynamics through neurofeedback, the brain resonates with itself, 
causing an amplification of this activity and creating both greater stability as well as 
increasing dynamics [4, 5].
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4.3  The global hypothesis: self-resonance and system dynamics with microstate 
stability

There are two aspects that are common to all of these hypotheses: (1) self-reso-
nance from the self-referential feedback, itself, and (2) increased system dynamics 
with microstate stability. All biofeedback provides self-resonance, which is subjectively 
calming and comfortable for the subjects [4, 120]. No matter the modality of biofeed-
back, the resonance of brainwaves or heart rate or baroreflex fluctuations synchronize 
with each other, ultimately settling comfortably in a PNS-dominant or ventral vagal 
state, which is restorative, clarifying, and energy-efficient [30, 33, 116, 120].

The second part of the global hypothesis refers to the increasing dynamics of the 
neuroelectric functional network system. Each method of neurofeedback relies on 
sensory information to provide the feedback, which requires the brain to enter into the 
various sensory functional networks in order to process it. However, the information, 
itself, may not reflect activity in the sensory networks, and the calming aspect of the 
self-resonance will activate the DMN, which is mutually exclusive with the sensory net-
works [26, 30, 35]. In fact, several studies show that neurofeedback training increases 
DMN connectivity, supporting this hypothesis of activating the DMN [34, 121–123].

Acquiring the neurofeedback, itself, requires dynamic shifts between task-positive 
networks and the DMN, thus strengthening this shifting ability or network dynamics. 
These effects can be seen in emergent subnetworks that are present immediately after 
neurofeedback training that combine hubs from the SN, basal ganglia/reward net-
work, and the visual network (presumably due to visual feedback) [85]. Furthermore, 
the specific brain location or brainwave that is the substrate for the feedback strength-
ens and stabilizes that brain activity or microstate [5, 123]. They are called ‘micro-
states’ because they are short-lived due to the nature of dynamics, but their stability 
is in the strength of their connections (in the case of functional networks) or peak 
power intensity (in the case of brainwaves), conferring the brain resiliency against 
perturbations [5]. These effects translate to improved brain function in the same 
manner that increased inter-network dynamics improves brain function, as described 
in Section 2.1.2.1.

Essentially, this common hypothesis combines general mechanisms of biofeedback 
that confer a calm, parasympathetic-dominant state with specific mechanisms of 
neurofeedback that exercise inter-network dynamics while stabilizing intra-network 
connections. As described earlier, these increased dynamics result in improved cogni-
tion and mental wellbeing, while the increased stability results in greater resilience. 
Thus, all methods of neurofeedback improve overall brain self-regulation, where 
some methods may achieve this more globally and other methods achieve it through 
more specific detailed aims, such as training very specific brainwave patterns or 
regions of activity.

4.3.1 The regulatory functions of the infra-slow oscillations

As mentioned in Section 3.1.1, different brainwaves can interact with each other 
and become coupled, meaning that their activities correlate [22]. These correlations 
may occur according to phase (where the phase of the slower brainwave regulates 
the discrete activity of the faster brainwave) or envelope (where the envelope of the 
slower brainwave modulates the amplitude of the faster brainwaves) [22]. Thus, these 
forms of cross-frequency coupling of electrical oscillations in the brain suggest that 
information about one brainwave automatically provides information about another, 
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usually slower, brainwave, which is embedded in its fluctuating activity. However, the 
resolution of the information of the slower brainwave embedded in the information 
of the faster brainwave is lower than if the slower brainwave was observed directly.

Although there are many reports on the significance of the cross-frequency 
coupling of conventional EEG brainwave bands, such as θ-γ in the hippocampus or 
δ-θ-γ in the auditory cortex or δ-α in the left and right homologous regions of the 
attention networks, these are short-lived interactions that are both spatially and 
functionally-specific [22]. One cross-frequency interaction that is constant, however, 
is between the ISO (typically between 0.01–0.1 Hz) and all of the faster, conventional 
EEG brainwaves, including δ through γ bands (~1–40 Hz) [99]. This interaction is a 
phase-amplitude coupling where the amplitudes of all of the faster frequencies are 
regulated by the phase of the ISO [99].

Studies show that the ISO and the BOLD signal from fMRI correlate and may be 
part of the same activity, representing the fluctuations of oxygenated and deoxygen-
ated blood [30, 31]. Since neither oxygen nor blood, themselves, create LFPs, the 
source of the ISO is likely calcium fluctuations across astrocyte membranes as they 
provide energy and neurotransmitters to local neuronal circuits and regulate their 
activity [50, 58]. Furthermore, these oscillations also correlate with cognitive perfor-
mance as well as sleep patterns [31, 99].

These findings suggest that all brainwaves and bodily rhythms, such as the cardio-
respiratory rhythm, baroreflex fluctuations, and oxyhemoglobin/deoxyhemoglobin 
fluctuations, etc., are correlated, particularly when calm and relaxed, which occurs 
with self-resonance [30, 33]. This means that information from one rhythm contains 
embedded information about other rhythms, albeit at varying levels of resolution. 
Therefore, each biofeedback modality can work through a similar mechanism of 
action to effect change, while the differences in intensities of the effects may be due to 
the level of resolution of the underlying master regulatory rhythm as conferred by the 
particular form or substrate of the feedback.

5.  Using ILF neurofeedback to train the conductor of the brainwave 
symphony

Despite an attempt to present this information fairly and objectively, my personal 
bias for ILF neurofeedback is likely obvious. The way I describe ILF neurofeedback to 
my clients nowadays is to consider the brain like an orchestra and the brainwaves like 
a symphony, which, of course, is not my own original analogy [66]. Each brainwave 
is like the music playing from each section of the orchestra, such as the winds, brass, 
strings, or percussion sections. You can train each section separately, but, due to the 
nature of systems, by training - and possibly changing - one section, the other sections 
will also likely be perturbed in some way that may not be readily discernable or ben-
eficial. Alternatively, you can train the conductor, which, in this analogy, is the ISO or 
ILF. Thus, when you train the ILF, you train the entire symphony of brainwaves, which 
continue to play together, but with greater harmony after neurofeedback training.

6. Conclusions

The future of neurofeedback depends on the diverse field of methods coming 
together and defining the mechanism(s) of action of neurofeedback that can be 
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applied to all methods. Detailed mechanisms of action are likely different for the 
different methods, but their fundamental processes should not contradict each 
other. Not only will this help advance the field, but it will also help potential clients 
to understand how all neurofeedback works in general, then they can choose which 
methodology works best for them based on the specific characteristics of that 
method. A two-part mechanism of action is presented here, one that is general for all 
forms of biofeedback, and one that is more specific to neurofeedback, yet still general 
enough to be applicable to each specific method. Hopefully, other neurofeedback 
practitioners and researchers will consider these hypotheses, possibly further devel-
oping them and testing them through well-designed research studies. As the field and 
use of neurofeedback grows, these mechanistic models can be further refined to fit all 
methodologies and conditions.

Acknowledgements

The author acknowledges Susan Othmer, Clinical Director of the EEG Institute, 
Woodland, Hills, CA, for her methodical pursuit of developing the ILF neurofeed-
back technique and training thousands of clinicians from around the world in the 
method, and always being available to provide assistance and guidance. Siegfried 
and Kurt Othmer are also acknowledged for their theoretical perspectives on the 
underlying science as well as practical help in implementation of the neurofeedback 
business model. The author also acknowledges their father, James M. Markovics, for 
his constant support, in-depth theoretical discussions, and training assistance, which 
launched the author’s second career as a neurofeedback practitioner.

Conflict of interest

The author declares no conflicts of interest.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Brain-Computer Interface

118

[1] Teufel, C, Fletcher, PC. Forms of 
prediction in the nervous system. Nature 
Reviews Neuroscience. 2020;21;231-242. 
DOI: 10.1038/s41583-020-0275-5

[2] Greve, PF. The role of prediction in 
mental processing: A process approach. 
New Ideas in Psychology. 2015;39;45-52. 
DOI: 10.1016/j.newideapsych.2015.07.007

[3] Arnal, LH, Giraud, A-L. Cortical 
oscillations and sensory predictions. 
Trends in Cognitive Science. 
2012;16(7);390-398. DOI: 10.1016/j.
tics.2012.05.003

[4] Lehrer, P, Eddie, D. Dynamic 
processes in regulation and some 
implication for biofeedback and 
biobehavioral interventions. Applied 
Psychophysiology & Biofeedback. 
2013;38(2);143-155. DOI: 10.1007/
s10484-013-9217-6

[5] Ros, T, Baars, BJ, Lanius, RA, 
Vuilleumier, P. Tuning pathological brain 
oscillations with neurofeedback: a 
systems neuroscience framework. 
Frontiers in Human Neuroscience. 
2014;8;1008. DOI: 10.3389/
fnhum.2014.01008

[6] Hovseypyan, S, Olasagasti, I, & 
Giraud, A-L. Combining predictive coding 
and neural oscillations enables online 
syllable recognition in natural speech. 
Nature Communications. 2020;11;3117. 
DOI: 10.1038/s41467-020-16956-5

[7] Kropotov, J. (2016). Functional 
Neuromarkers of Psychiatry: Applications 
for Diagnosis and Treatment. San 
Francisco: Academic Press, 2016. 462 p. 
ISBN: 978-0-12-410513-3

[8] Luck, SJ, Kappenman, ES. The Oxford 
Handbook of Event-Related Potential 

Components. New York: Oxford 
University Press, 2011. 664 p. DOI: 
10.1093/oxfordhb/9780195374148. 
001.0001

[9] McCaldon, RJ. Automatism. 
Canadian Medical Association Journal. 
1964;91(17):914-920.

[10] Sarva, H, Deik, A, Severt, WL. 
Pathophysiology and treatment of alien 
hand syndrome. Tremor and Other 
Hyperkinetic Movements. 2014;4;241. 
DOI: 10.7916/D8VX0F48

[11] Chmielewski, WX, Zink, N, 
Chmielewski, KY, Beste, C, Stock, AK. 
How high-dose alcohol intoxication 
affects the interplay of automatic and 
controlled processes. Addiction biology. 
2020;25(1);e12700. DOI: 10.1111/
adb.12700

[12] Faber, R, Azad, A, Reinsvold, R. 
A case of the corpus callosum and alien 
hand syndrome from a discrete 
paracallosal lesion. Neurocase. 
2010;16(4);281-285. DOI: 10.1080/ 
13554790903456217

[13] Brugger, F, Galovic, M, Weder, BJ, 
Kägi, G. Supplementary motor complex 
and disturbed motor control – a 
retrospective clinical and lesion 
analysis of patients after anterior 
cerebral artery stroke. Frontiers in 
Neurology. 2015;6;209. DOI: 10.3389/
fneur.2015.00209

[14] Hassan, A, Josephs, KA. Alien hand 
syndrome. Current Neurology and 
Neuroscience Reports. 2016;16(8). 
DOI: 10.1007/s11910-016-0676-z

[15] Law, CSH, Leung, LS. Long-term 
potentiation and excitability in the 
hippocampus are modulated 

References



119

Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism…
DOI: http://dx.doi.org/10.5772/intechopen.98343

differentially by theta rhythm. eNeuro. 
2018;5(6);ENEURO.0236-18.2018. 
DOI: 10.1523/ENEURO.0236-18.2018

[16] Shulz, DE, Feldman, DE. Spike 
timing-dependent plasticity. In: 
Rubenstein, JLR, Rakic, P, editors. 
Neural Circuit Development and 
Function in the Brain. San Francisco: 
Academic Press; 2013. p. 155-181. DOI: 
10.1016/B978-0-12-397267-5.00029-7

[17] Moulson, MC, Nelson, CA. 
Neurological development. In: Haith, 
MM, & J.B. Benson, JB, editors. 
Encyclopedia of Infant and Early 
Childhood Development. San Francisco: 
Academic Press; 2008. p. 414-424.  
DOI: 10.1016/b978-012370877-9.00109-2

[18] Perez-Catalan, NA, Doe, CQ, 
Ackerman, SD. The role of astrocyte-
mediated plasticity in neural circuit 
development and function. Neural 
Development, 2021;16;1. https://doi.
org/10.1186/s13064-020-00151-9

[19] Byrne, JH, Roberts, JL, editors. From 
Molecules to Networks: An Introduction 
to Cellular and Molecular Neuroscience. 
2nd ed. San Francisco: Academic Press; 
2009. ISBN: 978-0-12-374132-5.

[20] Fox, K, Stryker, M. Integrating 
Hebbian and homeostatic plasticity: 
introduction. Philosophical 
Transactions of the Royal Society B. 
2017;372;20160413. DOI: 10.1098/
rstb.2016.0413

[21] Frölich, F. Network Neuroscience. 
San Francisco: Academic Press; 2016. 482 
p. DOI: 10.1016/C2013-0-23281-5

[22] Engel, AK, Gerloff, C, Hilgetag, CC, 
Nolte, G. Intrinsic coupling modes: 
Multiscale interactions in ongoing brain 
activity. Neuron. 2013;80;867-886. 
DOI: 10.1016/j.neuron.2013.09.038

[23] Korte, M., Schmitz, D. Cellular and 
systems biology of memory: Timing, 
molecules, and beyond. Physiological 
Review, 2016;96;647-693. DOI: 10.1152/
physrev.00010.2015

[24] Lv, H, Wang, Z, Tong, E, Williams, 
LM, Zaharchuk, G, Zeineh, M, 
Goldstein-Piekarski, AN, Ball, TM, 
Liao, C, Wintermark, M. Resting-state 
functional MRI: Everything that 
nonexperts have always wanted to know. 
American Journal of Neuroradiology. 
2018;39(8);1380-1399. DOI: 10.3174/
ajnr.A5527

[25] Medaglia, J.D., Lynall, M.E., & 
Bassett, D.S. Cognitive network 
neuroscience. Journal of Cognitive 
Neuroscience, 2015;27(8);1471-1491. 
https://doi.org/10.1162/jocn_a_00810

[26] Raichle, ME. The Restless Brain. 
Brain Connectivity. 2011;1(1);3-12. 
DOI: 10.1089/brain.2011.0019

[27] Raichle, ME. The restless brain: how 
intrinsic activity organizes brain 
function. Philosophical Transactions of 
the Royal Society B. 2015;370;20140172. 
DOI: 10.1098/rstb.2014.0172

[28] Barttfeld, P, Uhrig, L, Sitt, JD, 
Sigman, M, Jarraya, B, Dahaene, S. 
Signature of consciousness in brain 
dynamics. Proceedings of the National 
Academy of Sciences. 2015;112(3):887-
892. DOI: 10.1073/pnas.1418031112

[29] Chow, HM, Horovitz, SG, Carr, WS, 
Picchioni, D, Coddington, N, Fukunaga, 
M, Xu, Y, Balkin, TJ, Duyn, JH, Braun, 
AR. Rhythmic alternating patterns of 
brain activity distinguish rapid eye 
movement sleep from other states of 
consciousness. Proceedings of the 
National Academy of Sciences of the 
United States of America. 2013;110(25); 
10300-10305. DOI: 10.1073/
pnas.1217691110



Brain-Computer Interface

120

[30] Jerath, R, Crawford, MW. Layers of 
human brain activity: A functional 
model based on the default mode 
network and slow oscillations. Frontiers 
in Human Neuroscience. 2015;9;248. 
DOI: 10.3389/fnhum.2015.00248

[31] Watson, BO. Cognitive and 
physiologic impacts of the infraslow 
oscillation. Frontiers in Systems 
Neuroscience. 2018;12;44. DOI: 10.2889/
fnsys.2018.00044

[32] Wen, X, Yao, L, Fan, T, Wu, X, Liu, J. 
The spatial pattern of basal ganglia 
network: A resting state fMRI study. 
In: Proceedings of 2012 International 
Conference on Complex Medical 
Engineering; 1-4 July 2012; Kobe, Japan. 
p. 43-46. DOI: 10.1109/ICCME.2012. 
6275632

[33] Jerath, R, Beveridge, C. Mysteries of 
the mind: Insights into the default space 
model of consciousness. Frontiers in 
Human Neuroscience. 2018;12;162. DOI: 
10.3389/fnhum.2018.00162

[34] Ioannides, AA. Neurofeedback and 
the neural representation of self: lessons 
from awake state and sleep. Frontiers in 
Human Neuroscience. 2018;12;142. 
DOI: 10.2289/fnhum.2017.00142

[35] Di, X, Biswal, BB. Modulatory 
interactions of resting-state brain 
functional connectivity. PLoS ONE. 
2013;8(8);e71163. DOI: 10.1371/journal.
pone.0071163

[36] Baker, AP, Brookes, MJ, Rezek, IA, 
Smith, SM, Behrens, T, Probert Smith, 
PJ, Woolrich, M. Fast transient networks 
in spontaneous human brain activity. 
eLife. 2014;3;e01867. DOI: 10.7554/
eLife.01867

[37] Di, X, Biswal, BB. Modulatory 
interactions between the default mode 
network and task positive networks in 

resting-state. PeerJ. 2014;2;e367. DOI: 
10.7717/peerj.367

[38] Zhang, D, Liang, B, Wu, X, Wang, Z, 
Xu, P, Chang, S, Liu, B, Liu, M, Huang, 
R. Directionality of large-scale resting-
state brain networks during eyes open 
and eyes closed conditions. Frontiers in 
Human Neuroscience. 2015;9;81. DOI: 
10.3389/fnhum.2015.00081

[39] Uddin LQ. Cognitive and behavioural 
flexibility: neural mechanisms and 
clinical considerations. Nature Reviews 
Neuroscience. 2021;22(3);167-179. DOI: 
10.1038/s41583-021-00428-w

[40] Cohen, JR. The behavioral and 
cognitive relevance of time-varying, 
dynamic changes in functional 
connectivity. Neuroimage. 2018;180 
(Pt B);515-525. DOI: 10.1016/j.
neuroimage.2017.09.036

[41] Durstewitz, D, Huys, QJM, Koppe, 
G. Psychiatric illnesses as disorders of 
network dynamics. Biological Psychiatry: 
Cognitive Neuroscience and 
Neuroimaging, 2020. DOI: 10.1016/j.
bpsc.2020.01.001

[42] Jia, H, Hu, X, Deshpande, G. 
Behavioral relevance of the dynamics of 
the functional brain connectome. Brain 
connectivity. 2014;4(9);741-759. 
DOI: 10.1089/brain.2014.0300

[43] Rashid, B, Damaraju, E, Pearlson, 
GD, Calhoun, VD. Dynamic connectivity 
states estimated from resting fMRI 
identify differences among 
Schizophrenia, bipolar disorder, and 
healthy control subjects. Frontiers in 
Human Neuroscience. 2014;8;897. DOI: 
10.3389/fnhum.2014.00897

[44] Schaefer A, Margulies, DS, 
Lohmann, G, Gorgolewski, KJ, 
Smallwood, J, Kiebel, SJ, Villringer, A. 
Dynamic network participation of 



121

Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism…
DOI: http://dx.doi.org/10.5772/intechopen.98343

functional connectivity hubs assessed by 
resting-state fMRI. Frontiers in Human 
Neuroscience. 2014;8;195. DOI: 10.3389/
fnhum.2014.00195

[45] Escrichs A, Biarnes C, Garre-Olmo J, 
Fernández-Real JM, Ramos R, 
Pamplona R, Brugada R, Serena J, 
Ramió-Torrentà L, Coll-De-Tuero G, 
Gallart L, Barretina J, Vilanova JC, 
Mayneris-Perxachs J, Essig M, Figley CR, 
Pedraza S, Puig J, Deco G. Whole-Brain 
Dynamics in Aging: Disruptions in 
Functional Connectivity and the Role of 
the Rich Club. Cerebral Cortex. 
2021;31(5):3466-2481. doi:10.1093/
cercor/bhaa367

[46] Song J, Birn RM, Boly M, Meier TB, 
Nair VA, Meyerand ME, Prabhakaran V. 
Age-related reorganizational changes in 
modularity and functional connectivity 
of human brain networks. Brain 
Connect. 2014;4(9);662-76. DOI: 
10.1089/brain.2014.0286

[47] Qin, J, Chen, S-G, Hu, D, Zeng, L-L, 
Fan, Y-M, Chen, X-P, Shen, H. Predicting 
individual brain maturity using dynamic 
functional connectivity. Frontiers in 
Human Neuroscience. 2015;9;418. DOI: 
10.3389/fnhum.2015.00418

[48] Kaiser, DA. The role of glia and 
astrocytes in brain functioning. In: Kirk, 
HW, editor. Restoring the Brain: 
Neurofeedback as an Integrative Approach 
to Health. Boca Raton, FL: CRC Press; 
2016. p. 51-58. ISBN: 978-1-4822-5877-6

[49] Maynard, RL, Downes, N. The Brain 
and Spinal Cord. In: Anatomy and 
Histology of the Laboratory Rat in 
Toxicology and Biomedical Research. 
San Francisco: Academic Press; 2019. 
p. 231-260. ISBN: 978-0-12-811837-5

[50] Sardar, D, Cheng, Y-T, Szewcyk, LM, 
Deneen, B, Molofsky, AV. Mechanisms of 
astrocyte development. In: Rubenstein, J, 

Rakic, P, Chen, S, senior editors. 
Patterning and Cell Type Specification in 
the Developing CNS and PNS. 2nd ed. San 
Francisco: Academic Press; 2020. DOI: 
10.1016/B978-0-12-814405-3.00032-1

[51] Verkhratsky, A, Butt, AM. The 
history of the decline and fall of the glial 
numbers legend. Neuroglia. 2018;1;188-
192. DOI: 10.3390/neuroglia1010013

[52] Mederos, S, González-Arias, C, 
Perea, G. Astrocyte-neuron networks: 
A multilane highway of signaling for 
homeostatic brain function. Frontiers in 
Synaptic Neuroscience. 2018;10;45. 
DOI: 10.3389/fnsyn.2018.00045

[53] Spampinato, SF, Bortolotto, V, 
Canonico, PL, Sortino, MA, Grilli, M. 
Astrocyte-derived paracrine signals: 
Relevance for neurogenic niche regulation 
and blood-brain barrier integrity. 
Frontiers in Pharmacology. 2019;10;1346. 
DOI: 10.3389/fphar.2019.01346

[54] Simard, M, Arcuino, G, Takano, T, 
Liu, QS, Nedergaard, M. Signaling at the 
gliovascular interface. The Journal of 
Neuroscience. 2003;23(27);9254-0262.

[55] Huang, AY, Woo, J, Sardar, D, Lozzi, 
B, Bosquez Huerta, NA, Lin, CJ, Felice, 
D, Jain, A, Paulucci-Holthauzen, A, 
Deneen, B. Region-specific 
transcriptional control of astrocyte 
function oversees local circuit activities. 
Neuron 2020;106(6);992-1008.e9. DOI: 
10.1016/j.neuron.2020.03.025

[56] Hwang, SN, Lee, JS, Seo, K, Lee, H. 
Astrocytic regulation of neural circuits 
underlying behaviors. Cells. 2021;10(2); 
296. DOI: 10.3390/cells10020296

[57] Buskila, Y, Bllot-Saez, A, Morley, JW. 
Generating brain waves, the power of 
astrocytes. Frontiers in Neuroscience. 
2019;13;1125. DOI: 10.3389/
fnins.2019.01125



Brain-Computer Interface

122

[58] Martinez-Banaclocha, M. Astroglial 
isopotentiality and calcium-associated 
biomagnetic field effects on cortical 
neuronal coupling. Cells. 2020;9;439. 
DOI: 10.3390/cells9020439

[59] Najjar, S, Pearlman, DM,  
Alper, K, Najjar, A, Devinsky, O. 
Neuroinflammation and psychiatric 
illness. Journal of Neuroinglammation. 
2013;10;43. DOI: 10.1186/1742- 
2094-10-43

[60] Larsen, S. The Neurofeedback 
Solution: How to Treat Autism, ADHD, 
Anxiety, Brain Injury, Stroke, PTSD, 
and More. Fairfield, CT: Healing Arts 
Press; 2012. 424 p. ISBN: 978-1- 
59477-366-2

[61] Marzbani, H, Marateb, HR, 
Mansourian, M. Neurofeedback: A 
comprehensive review on system design, 
methodology and clinical applications. 
Basic and Clinical Neuroscience, 
2016;7(2);143-158. DOI: 10.15412/J.
BCN.03070208

[62] Micoulaud-Franchi, J-A, McGonigal, 
A, Lopez, R, Daudet, C, Kotwas, I, 
Bartolomei, F. Electroencephalographic 
neurofeedback: Level of evidence in 
mental and brain disorders and 
suggestions for good clinical practice. 
Clinical Neurophysiology. 2015;45; 
423-433.

[63] Niv, S. Clinical efficacy and potential 
mechanisms of neurofeedback. 
Personality and Individual Differences. 
2013;54(6);676-686. DOI: 10.1016/j.
paid.2012.11.037

[64] Omejc, N, Rojc, B, Battaglini, PP, & 
Marusic, U. Review of the therapeutic 
neurofeedback method using 
electroencephalography: EEG 
Neurofeedback. Bosnian Journal of Basic 
Medical Sciences. 2018;19(3);213-220. 
DOI: 10.17305/bjbms.2018.3785

[65] Othmer, S. History of neurofeedback 
In: Kirk, HW, editor. Restoring the Brain: 
Neurofeedback as an Integrative 
Approach to Health. Boca Raton, FL: 
CRC Press; 2016. p. 23-50. ISBN: 
978-1-4822-5877-6

[66] Robbins, J. A Symphony in the Brain: 
The Evolution of the New Brain Wave 
Biofeedback. New York: Grove Press; 
2008. 272 p. ISBN: 978-0802143815

[67] Sterman, MB, LoPresti, RW, 
Fairchild, MD. Electroencephalographic 
and behavioral studies of monomethyl 
hydrazine toxicity in the cat. Journal of 
Neurotherapy: Investigations in 
Neuromodulation, Neurofeedback and 
Applied Neuroscience. 2010;14(4);293-
300. DOI: 10.1080/10874208.2010.523367

[68] Nigro, SE. The efficacy of 
neurofeedback for pediatric epilepsy. 
Applied Psychophysiology and 
Biofeedback. 2019;44(4);285-290. 
DOI: 10.1007/s10484-019-09446-y

[69] Walker, JE., Kozlowski, GP. 
Neurofeedback treatment of epilepsy. 
Child and adolescent psychiatric clinics 
of North America. 2005;14(1);163–viii. 
DOI: 10.1016/j.chc.2004.07.009

[70] American Academy of Pediatrics. 
Evidence-based child and adolescent 
psychosocial interventions. Itasca, IL: 
American Academy of Pediatrics;  
2013.

[71] Cueli, M, Rodríguez, C, Cabaleiro, P, 
García, T, González-Castro, P. 
Differential efficacy of neurofeedback in 
children with ADHD presentations. 
Journal of Clinical Medicine. 2019;8;204. 
DOI: 10.3390/jcm8020204

[72] Enriquez-Geppert, S, Smit, D, 
Pimenta, MG, Arns, M. Neurofeedback a 
treatment intervention in ADHD: 
Current evidence and practice. Current 



123

Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism…
DOI: http://dx.doi.org/10.5772/intechopen.98343

Psychiatry Reports. 2019;21;46. DOI: 
10.1007/s11920-019-1021-4

[73] Pigott, HE, Cannon, R. 
Neurofeedback is the best available 
first-line treatment for ADHD:  
What is the evidence for this claim? 
NeuroRegulation. 2014;1(1);4-23. 
DOI: 10.15540/nr.1.1.4

[74] Legarda, SB, McMahon, D, Othmer, 
S, Othmer, S. Clinical neurofeedback: 
Case Studies, proposed mechanism, and 
implicatios for pediatric neurology 
practice. Journal of Child Neurology. 
2011;26(8);1045-1051. DOI: 
10.1177/0883073811405052

[75] Orndorff-Plunkett, F, Singh, F, 
Aragón, OR, Pineda, JA. Assessing the 
effectiveness of neurofeedback training 
in the context of clinical and social 
neuroscience. Brain Sciences. 2017;7;95. 
DOI: 10.3390/brainsci7080095

[76] Othmer, S, Othmer, S. Infra-low 
frequency neurofeedback for optimum 
performance. Biofeedback. 2016;44(2): 
81-89. DOI: 10.5298/1081-5937-44.2.07

[77] Brenninkmeijer, J. Brainwaves and 
psyches. History of the Human Sciences. 
2015;28(3);115-133. doi:10.1177/ 
0952695114566644

[78] Masterpasqua, F, Healey, KN. 
Neurofeedback in Psychological Practice. 
Professional Psychology: Research and 
Practice. 2003;34(6);652-656. 
doi:10.1037/0735-7028.34.6.652

[79] Herrmann, CS, Strüber, D, Helfrich, 
RF, Engel, AK. EEG oscillations: From 
correlation to causality. International 
Journal of Psychophysiology. 
2015;103;12-21. DOI: 10.1016/j.
ijpsycho.2015.02.003

[80] Idris, Z, Muzaimi, M, Ghani, R, 
Idris, B, Kandasamy, R, &Abdullah, J. 

Principles, anatomical origin and 
applications of brainwaves: a review, our 
experience and hypothesis related to 
microgravity and the question on soul. 
Journal of Biomedical Science and 
Engineering. 2014;7;435-445. DOI: 
10.4236/jbise.2014.78046

[81] Stern, JM. Atlas of EEG Patterns. 2nd 
ed. Philadelphia: Lippincott, Williams & 
Wilkins; 2013. ISBN: 978-1451109634

[82] Knyazev, GG. EEG delta oscillations 
as a correlate of basic homeostatic and 
motivational processes. Neuroscience and 
Biobehavioral Reviews. 2012;36;677-695. 
DOI: 10.1016/j.neurobiorev.2011.10.002

[83] Hipp, JF, Engel, AK, Siegel, M. 
Oscillatory synchronization in large-scale 
cortical networks predicts perception. 
Neuron. 2011;69(2);387-396. DOI: 
10.1016/j.neuron.2010.12.027

[84] Muñoz-Moldes, S, Cleeremans, A. 
Delineating implicit and explicit 
processes in neurofeedback learning. 
Neuroscience and Biobehavioral Reviews. 
2020;118;681-688. DOI: 10.1016/j.
neubiorev.2020.09.003

[85] Dobrushina, OR, Vlasova, RM, 
Rumshiskaya, AD, Litvinova, LD, 
Mershina, EA, Sinitsyn, VE,  
Pechenkova, EV. Modulation of 
intrinsic brain connectivity by implicit 
electroencephalographic neurofeedback. 
Frontiers in Human Neuroscience. 
2020;14;192. DOI: 10.3389/
fnhum.2020.00192

[86] Weber, LA, Ethofer, T, Ehlis, A-C. 
Predictors of neurofeedback training 
outcome: A systematic review. 
Neuroimage. 2020;27;102301. DOI: 
10.1016/j.psychres.2011.12.041

[87] Goldstein, EB. Cognitive Psychology: 
Connecting Mind, Research and 
Everyday Experience. 4th ed. Stamford, 



Brain-Computer Interface

124

CT: Cengage Learning; 2014. 464 p. 
ISBN: 978-1285763880

[88] Coben, R, Hammond, DC, Arns, M. 
19 channel z-score and LORETA 
neurofeedback: Does the evidence support 
the hype? Applied Psychophysiology and 
Biofeedback. 2019;44;1-8. DOI: 10.1007/
s10484-018-9420-6

[89] Simkin, DR, Thatcher, RW, Lubar, J. 
Quantitative EEG and neurofeedback in 
children and adolescents: Anxiety 
disorders, depressive disorders, addiction 
and attention-deficit/hyperactivity 
disorder, and brain injury. Child and 
Adolescent Psychiatric Clinics of North 
America. 2014;23(3);427-464. DOI: 
10.1016/j.chc.2014.03.001

[90] Koberda, JL. Z-score LORETA 
Neurofeedback as a Potential Therapy in 
Depression/Anxiety and Cognitive 
Dysfunction. In: Lubar, JF, Thatcher, RW, 
editors. Z Score Neurofeedback. San 
Diego: Elsevier Science; 2015. p. 93-113. 
DOI: 10.1016/b978-0-12-801291- 
8.00005-4

[91] Dudek, E, Dodell-Feder, D. The 
efficacy of real-time functional magnetic 
resonance imaging neurofeedback for 
psychiatric illness: A meta-analysis of 
brain and behavioral outcomes. 
Neuroscience and biobehavioral reviews. 
2021;121;291-306. DOI: 10.1016/j.
neubiorev.2020.12.020

[92] Emmert, K, Kopel, R, Sulzer, J, 
Brühl, AB, Berman, BD, Linden, D, 
Horovitz, SG, Breimhorst, M, Caria, A, 
Frank, S, Johnston, S, Long, Z, Paret, C, 
Robineau, F, Veit, R, Bartsch, A, 
Beckmann, CF, Van De Ville, D, Haller, S. 
Meta-analysis of real-time fMRI 
neurofeedback studies using individual 
participant data: How is brain regulation 
mediated? NeuroImage. 2016;124(Pt A); 
806-812. DOI: 10.1016/j.neuroimage. 
2015.09.042

[93] Thibault, RT, MacPherson, A, 
Lifshitz, M, Roth, RR, Raz, A. 
Neurofeedback with fMRI: A critical 
systematic review. NeuroImage. 
2018;172;786-807. DOI: 10.1016/j.
neuroimage.2017.12.071

[94] Gomes, JS, Ducos, DV,  
Gadelha, A, Ortiz, BB, Van Deusen, AM, 
Akiba, HT, Guimaraes, L, Cordeiro, Q, 
Trevizol, AP, Lacerda, A, Dias, AM. 
Hemoencephalography self-regulation 
training and its impact on cognition: A 
study with schizophrenia and healthy 
participants. Schizophrenia Research. 
2018;195;591-593. DOI: 10.1016/j.
schres.2017.08.044

[95] Refinetti, R. Integration of biological 
clocks and rhythms. Comprehensive 
Physiology. 2012;2;1213-1239. DOI: 
10.1002/cphy.c100088

[96] Llewellyn Smith, M, Collura, TF, 
Ferrera, J, de Vries, J. Infra-slow 
fluctuation training in clinical practice: 
A technical history. NeuroRegulation. 
2014;1(2);187-207. DOI: 10.15540/
nr.1.2.187

[97] Othmer, S, Othmer, SF, Kaiser, DA, 
Putnam, J. Endogenous neuromodulation 
at infra-low frequencies. Seminars in 
Pediatric Neurology. 2013;20(4);246-257 
DOI: 10.1016/j.spen.2013.10.006

[98] Grin-Yatsenko, V, Kara, O, 
Evdokimov, SA, Gregory, M, Othmer, 
S, Kropotov, JD. Infra-low frequency 
neuro feedback modulates infra-slow 
oscillations of brain potentials: a 
controlled study. Journal of Biomedical 
Engineering and Research. 2020;4;1-11. 
DOI: 10.5772/intechopen.77154

[99] Monto, S, Palva, S, Voipio, J, Palva, 
JM. Very slow EEG fluctuations predict 
the dynamics of stimulus detection and 
oscillation amplitudes in humans. The 
Journal of Neuroscience. 2008;28(33); 



125

Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism…
DOI: http://dx.doi.org/10.5772/intechopen.98343

8268-8272. DOI: 10.1523/JNEUROSCI. 
1910-08.2008

[100] Othmer, S. (2019). EEGInfo 
Protocol Guide for Neurofeedback 
Clinicians. 7th ed. Woodland Hills, CA: 
EEG Info; 2019. 166 p. ISBN: 
978-0-9895432-7-9

[101] Wiedemann, M. The evolution of 
clinical neurofeedback practice. In: Kirk, 
HW, editor. Restoring the Brain: 
Neurofeedback as an Integrative 
Approach to Health. Boca Raton, FL: 
CRC Press; 2016. p. 59-91. ISBN: 
978-1-4822-5877-6

[102] NeurOptimal®. Discover 
NeurOptimal® [Internet]. 2021. 
Available from: https://neuroptimal.com/
discover-neuroptimal-usa/

[103] Alvarez, J, Meyer, FL, Granoff, DL, 
Lundy, A. The effect of EEG biofeedback 
on reducing postcancer cognitive 
impairment. Integrative cancer therapies, 
2013;12(6);475-487. DOI: 
10.1177/1534735413477192

[104] Harris, S, Lambie, GW, Hundley, G. 
The effects of neurofeedback training on 
college students’ attention deficit 
hyperactivity disorder symptoms. 
Counseling Outcome Research and 
Evaluation, 2018;1-14. doi:10.1080/21501
378.2018.1442679

[105] Brown, VW. Neurofeedback and 
Lyme’s disease. Journal of Neurotherapy. 
1995;1(2);60-73. DOI: 10.1300/
j184v01n02_05

[106] Jackson, M. “Divine Stramonium”: 
The rise and fall of smoking for asthma. 
Medical History, 2010;54;171-194.

[107] Kohl, SH, Mehler, DMA, Lührs, M, 
Thibault, RT, Konrad, K, Sorger, B. The 
potential of functional near-infrared 
spectroscopy-based neurofeedback – A 

systematic review and recommendations 
for best practice. Frontiers in 
Neuroscience. 2020;14;594. DOI: 
10.3389/fnins.2020.00594

[108] Steriade, M, Gloor, P, Llinas, RR, 
Lopes de Silva, FH, Mesulam, M-M.  
Basic mechanisms of cerebral rhythmic 
activities. Electroencephalography and 
Clinical Neurophysciology. 1990;76; 
481-508.

[109] Newson, JJ, Thiagarajan, TC. EEG 
frequency bands in psychiatric disorders: 
A review of resting state studies. 
Frontiers in Human Neuroscience. 
2019;12;521. DOI: 10.33889/
fnhum.2018.00521

[110] Ogrim, G, Kropotov, J, Hestad, K. 
The QEEG theta/beta ratio in ADHD and 
normal controls: Sensitivity, specificity, 
and behavioral correlates. Psychiatry 
Research. 2012;198(3);482-488. DOI: 
10.1016/j.psychres.2011.12.041

[111] Arns, M, Conners, CK, Kraemer, 
HC. A decade of EEG theta/beta ratio 
research in ADHD: A meta-analysis. 
Journal of Attention Disorders. 
2011;17(5);374-383. DOI: 10.1177/ 
1087054712460087

[112] Snyder, SS, Rugino, TA, Homig, M, 
Stein, MA. Integration of an EEG 
biomarker with a clinician’s ADHD 
evaluation. Brain and Behavior. 
2015;0(0);e00330. DOI: 10.1002/
brb3.330

[113] Janssen, TWP, Blink, M, Weeda, 
WD, Geladé, K, van Mourik, R, Maras, 
A, Oosterlaan, J. Learning curves of 
theta/beta neurofeedback in children 
with ADHD. European Child & 
Adolescent Psychiatry. 2017;26;573-582. 
DOI: 10.1007/s00787-016-0920-8

[114] Zuberer, A, Brandeis, D, 
Drechsler, R. Are treatment effects 



Brain-Computer Interface

126

of neurofeedback training in children 
with ADHD related to the successful 
regulation of brain activity? A review on 
the learning of regulation of brain 
activity and a contribution to the 
discussion on specificity. Frontiers in 
human neuroscience. 2015;9;135. DOI: 
10.3389/fnhum.2015.00135

[115] Othmer, S, Othmer, S, Legarda, S. 
Clinical neurofeedback: Training brain 
behavior. Treatment Strategies-Pediatric 
Neurology and Psychiatry. 2011;2;67-73.

[116] Jansen, R, Han, LKM, Verhoeven, 
JE, Aberg, KA, van den Oord, ECGJ, 
Milaneschi, Y, Penninx, BWJH. An 
integrative study of five biological clocks 
in somatic and mental health. eLife. 
2021;10;59479. DOI: 10.7554/eLife.59479

[117] Porges, SW. The polyvagal theory: 
New insights into adaptive reactions of 
the autonomic nervous system. 
Cleveland Clinic Journal of Medicine. 
2009;76(Suppl 2);S86-S90. DOI: 10.3949/
ccjm.76.s2.17

[118] Huttunen, MO, Mednick, SA. 
Polyvagal theory, neurodevelopment and 
psychiatric disorders. Irish Journal of 
Psychological Medicine. 2018;35;9-10. 
DOI: 10.1017/ipm.2017.66

[119] Porges SW. The polyvagal 
perspective. Biological psychology. 
2007;74(2);116-143. DOI: 10.1016/j.
biopsycho.2006.06.009

[120] Hinterberger, T, Walter, N, Doliwa, 
C, Loew, T. The brain's resonance with 
breathing - decelerated breathing 
synchronizes heart rate and slow cortical 
potentials. Journal of Breath Research. 
2019;13(4);046003. DOI: 10.1088/1752-
7163/ab20b2

[121] Imperatori, C, Della Marca, G, 
Amoroso, N, Maestoso, G, Valenti, EM, 
Massullo, C, Carbone, GA, Contardi, A, 

Farina, B. Alpha/theta neurofeedback 
increases mentalization and the default 
mode network connectivity in a non-
clinical sample. Brain Topography. 
2017;30(6);822-831. DOI: 10.1007/
s10548-017-0593-8

[122] Russell-Chapin, L, Kemmerly, T, 
Liu, W-C, Zagardo, MT, Chapin, T, Daily, 
D, Dinh, D. The effects of neurofeedback 
in the default mode network: Pilot study 
results of medicated children with 
ADHD. Journal of Neurotherapy: 
Investigations in Neuromodeulation, 
Neurofeedback and Applied 
Neuroscience. 2013;17(1);35-42. DOI: 
10.1080/10874208.2013.759017

[123] Yamashita, A, Hayasaka, S, Kawato, 
M, Imamizu, H. Connectivity 
neurofeedback training can differentially 
change functional connectivity and 
cognitive performance. Cerebral Cortex. 
2017;27;4960-4970. DOI: 10.1093/
cercor/bhx177



Chapter 7

Entropy and the Emotional Brain:
Overview of a Research Field
Beatriz García-Martínez, Antonio Fernández-Caballero and
Arturo Martínez-Rodrigo

Abstract

During the last years, there has been a notable increase in the number of studies
focused on the assessment of brain dynamics for the recognition of emotional states
by means of nonlinear methodologies. More precisely, different entropy metrics have
been applied for the analysis of electroencephalographic recordings for the detection
of emotions. In this sense, regularity-based entropy metrics, symbolic predictability-
based entropy indices, and different multiscale and multilag variants of the afore-
mentioned methods have been successfully tested in a series of studies for emotion
recognition from the EEG recording. This chapter aims to unify all those contributions
to this scientific area, summarizing the main discoverings recently achieved in this
research field.

Keywords: Emotion recognition, Electroencephalographic recordings,
Entropy metrics, Nonlinear analysis, Survey

1. Introduction

Emotions are essential in our daily lives, with an enormous repercussion on per-
ception, cognition, learning and rational decision-making processes [1]. As a result,
the affective neuroscience has emerged with the purpose of studying the influence of
emotions on areas like psychology, philosophy or neurobiology, among many others
[1]. The emotional states defined in the literature range from a few basic emotions [2]
to several complex emotions created as combinations of the basics [3]. These emo-
tional states can be classified according to different models, being the circumplex
model of Russell one of the most widely used [4]. This bidimensional model distrib-
utes all the existing emotional states according to two emotional parameters, namely
valence and arousal. Valence represents the degree of pleasantness or unpleasantness
produced by an emotional stimulus, whereas arousal measures the activation or deac-
tivation that a stimulus provokes. The location of each emotional state in the
circumplex model is determined by its level of both dimensions, as shown in Figure 1.

Emotions also play a key role in human communication and interaction processes.
Nevertheless, the human-machine interfaces (HMIs) are still not able to identify
human emotional states. In a digital society in which those systems are daily intro-
duced in multiple ordinary scenarios, it becomes crucial to supplement this lack of
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emotional intelligence of HMIs. In this sense, the aim of the Affective Computing
science is to endow those systems with the capability to automatically detect and
interpret human emotions and decide which actions to execute accordingly, thus
improving the interactions between people and machines [5, 6].

The detection of emotional states can be conducted by means of the assessment of
bodily reactions to emotional stimuli, for which different physiological variables can
be measured and analyzed. One of the most widely studied in the last years is the
electroencephalography (EEG), which represents the electrical activity generated in
the brain due to neural connections [7]. The selection of EEG recordings instead of
other physiological signals is justified by the fact that the brain generates the first
impulse against any stimulus, and then it is spread to the rest of peripheral systems
through the central nervous system. In this sense, EEG signals represent the activity of
the source of the emotional response, whereas the rest of physiological variables can
be considered as secondary effects of the brain’s performance [8]. As a consequence,
the number of works focused on the analysis of EEG time series for emotions detec-
tion has notably increased in the last years [9].

The evaluation of EEG recordings has been traditionally conducted from a linear
perspective, especially in the frequency domain, studying features such as the spectral
power or the asymmetry between the two brain hemispheres in different frequency
bands [10]. However, the brain activity is far from being considered linear. Con-
trarily, neural processes follow a completely heterogeneous and nonstationary perfor-
mance even at both cellular and global level [11]. With this respect, the application of
linear algorithms may not report a complete description of the brain’s behavior [12].
For this reason, nonlinear methodologies have been widely applied for discovering
underlying information unrevealed by traditional linear techniques [13]. Indeed,

Figure 1.
Circumplex model of Russell for classification of emotions based on their level of valence and arousal.
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nonlinear indices have already outperformed the results derived from the application
of those linear algorithms for the evaluation of various mental processes, including the
recognition of emotions [13].

Among the different nonlinear methodologies that can be found in the literature,
entropy indices have been widely applied in the context of emotions recognition with
EEG recordings [14]. Entropy represents the rate of information reported by a time
series, describing the nonlinear characteristics of a nonstationary system [15]. Hence,
entropy metrics become promising tools for the assessment of the chaotic dynamics of
a nonstationary system such as the brain. Indeed, in the literature many studies have
applied these nonlinear methodologies for the identification of emotional states from
EEG recordings. The present manuscript summarizes the main discoverings of the last
years in the scientific field of emotions recognition from EEG signals with entropy
indices.

2. Entropy indices

Entropy was firstly defined in thermodynamics, referring to the distribution
probability of molecules in a fluid system [15]. In information theory and signals
analysis, this concept was adapted by Shannon, who defined entropy as a measure of
the information provided by a time series, describing its complexity, irregularity or
unpredictability [16]. With respect to the EEG analysis, many entropy indices have
been introduced and successfully applied for the study of various physical and mental
disorders, like epilepsy [17], Alzheimer [18], autism [19] or depression [20], among
others. As a result of the valuable outcomes, entropy metrics have also been intro-
duced in the research field of emotions recognition from EEG recordings [14]. The
following subsections give a brief mathematical description of the entropy metrics
mainly applied for emotions detection.

2.1 Regularity-based entropy indices

The irregularity of a signal represents the rate of repetitiveness of patterns,
reaching higher values for non-repetitive and disordered time series, and lower for
sequences with a high rate of occurrence [21]. One of the regularity-based entropy
metrics widely used is the approximate entropy (ApEn), which evaluates the
probability of having repetitive patterns and assigns a non-negative number to each
sequence in terms of its repetitiveness, with lower values for more recurrent patterns
[22]. Mathematically, ApEn is computed as

ApEn m, rð Þ ¼ Cm rð Þ � Cmþ1 rð Þ, (1)

where Cm rð Þ and Cmþ1 rð Þ are the correlation integrals that represent the likelihood
of having two sequences matching form and formþ 1 points, respectively, within the
threshold r [22]. Nevertheless, ApEn also considers the self-matching of each
sequence, thus influencing on the final result. Therefore, the sample entropy
(SampEn) was developed to address this issue [23]. SampEn eliminates the self-
matching and makes results independent of the value of the vector length m selected.
If Bm rð Þ is the probability that two patterns match for m points, and Bmþ1 rð Þ is the
probability that two patterns match for mþ 1 points, defined to exclude self-matches,
then SampEn is calculated as
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SampEn m, rð Þ ¼ � ln
Bmþ1 rð Þ
Bm rð Þ

� �
: (2)

Moreover, quadratic sample entropy (QSampEn) emerged as an improvement of
SampEn to make it insensitive to the value of the threshold r chosen for its calculation
[24]. This independence of the parameter r is achieved by simply adding the term
ln 2rð Þ to the SampEn equation:

QSampEn m, rð Þ ¼ SampEn m, r,Nð Þ þ ln 2rð Þ: (3)

2.2 Predictability-based and symbolic entropy indices

The predictability of a nonstationary system is related to its stable and determinis-
tic evolution in time. Most of the entropy metrics for predictability measurement are
symbolic indices that convert the original signal into a sequence of discrete symbols to
form sequences [25]. After this symbolization, the evaluation of the predictability of a
time series can be carried out with multiple techniques. The most commonly used is
the Shannon entropy (ShEn), which quantifies the predictability of a signal in terms
of the probability distribution of its amplitudes [16]. The mathematical expression of
ShEn is

ShEn mð Þ ¼ �
Xm
i¼1

p xið Þ � ln p xið Þð Þ, (4)

being p xið Þ the probability of appearance of each symbolic sequence xi of length m.
The Rényi entropy (REn) is a generalization of ShEn that is also widely used for the

quantification of underlying dynamics in symbolized signals [26]. Concretely, REn
provides a better characterization of some rare and frequent ordinal sequences, and it
is defined as

REn m, qð Þ ¼ � 1
1� q

ln
Xm
i¼1

p xið Þq, (5)

being q (q≥0 and q 6¼ 1) the bias parameter that enables a more accurate charac-
terization of a nonlinear signal [26]. Indeed, ShEn is the particular case of REn for
q ¼ 1, thus being REn a more flexible index than ShEn [26].

The version of ShEn for continuous random variables, called differential entropy
(DEn), has received growing interest in the last years [27]. This entropy index can be
expressed as

DEn Xð Þ ¼ �
ð

X
f xð Þ log f xð Þð Þdx (6)

where X is a random signal and f xð Þ is its probability density function. In the case
of time series governed by the Gauss distribution N μ, σ2ð Þ, being μ and σ its mean and
variance, respectively, DEn can be defined as

DEn Xð Þ ¼ �
ð∞
�∞

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
x�μð Þ2
2σ2 log

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
x�μð Þ2
2σ2

� �
dx ¼ 1

2
log 2πeσ2
� �

: (7)
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As EEG signals follow a Gaussian distribution after the application of a band-pass
filtering approach, the DEn of each sub-frequency band previously obtained by a Fast
Fourier transform can be obtained according to the aforementioned equation [27].

Another widely used predictability-based entropy metric is permutation entropy
(PerEn), which is a fast and insensitive to noise metric that evaluates the order of the
symbols within a pattern [28]. Briefly, the original time series is symbolized to obtain
ordinal sequences xi that are associated with m! permutation patterns κi. Considering
p πkð Þ as the probability of apperarance of each permutation pattern, PerEn can be
then computed by means of ShEn:

PerEn mð Þ ¼ � 1
ln m!ð Þ

Xm!

k¼1

p πkð Þ � ln p πkð Þð Þ: (8)

One of the limitations of PerEn is that it only considers the order of the symbols in
a pattern, without taking into account their amplitudes. This limitation has been
recently solved by means of the introduction of amplitude-aware permutation
entropy (AAPE) [29]. This improvement of PerEn computes the probability p ∗ πkð Þ of
appearance of patterns evaluating the average absolute and relative amplitudes of the
symbolic sequences, and applying an adjustment coefficient to weight those parame-
ters. Finally, AAPE is calculated in a similar manner as PerEn [29]:

AAPE mð Þ ¼ � 1
ln m!ð Þ

Xm!

k¼1

p ∗ πkð Þ � ln p ∗ πkð Þð Þ: (9)

Another option for the assessment of predictability of a time series is the spectral
entropy (SpEn) [30]. In this case, the spectral power of a determined frequency is
computed and normalized with respect to the total power, which gives a probability
density function pf . SpEn is then computed through ShEn or REn [30].

2.3 Multilag and multiscale entropy indices

The time series generated by nonlinear and nonstationary systems like the brain
usually present highly complex dynamics derived from different simultaneous mech-
anisms that operate in multiple time scales [31]. As a result, the brain behavior cannot
be completely described by means of single-scale methods. Therefore, multiscale
variations of the aforementioned entropy metrics have been introduced with the
purpose of revealing undiscovered information related to the multiscale nature of the
EEG recordings. For the computation of multiscale entropy (MSE), the original signal
x nð Þ is firstly decomposed into coarse-grained time series y κð Þ, with κ as the scale
factor, as follows:

y κð Þ ¼ 1
κ

Xjκ

i¼ j�1ð Þκþ1

x ið Þ, 1≤ j≤
N
κ
: (10)

Therefore, all the previously defined entropy indices can be computed in a
multiscale form for the coarse-grained series as defined above.

Another multiscale option is the wavelet entropy (WEn), which makes use of the
decomposition of the original signal in different scales by means of the wavelet
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transform [32]. After the decomposition of the time series, the probability distribution
pj of the energy at each decomposition level is computed. Finally, WEn is estimated
through ShEn:

WEn ¼ �
Xq

j¼1

pj � ln pj
� �

: (11)

On the other hand, the characteristics of the autocorrelation function of some
signals require the consideration of a lag or time delay τ for a correct quantification of
the complexity and nonlinear dynamics of the time series. In this sense, multilag
entropy approaches are helpful to reduce the influence of the autocorrelation function
for a proper characterization of a nonlinear signal [33]. One of those multilag
approaches is the permutation min-entropy (PerMin), which is a symbolic time-
delayed improvement of PerEn [34]. Starting from a generalization of PerEn through
replacing ShEn by REn, the Rényi permutation entropy (RPE) is obtained as

RPE m, q, τð Þ ¼ 1
ln m!ð Þ �

1
1� q

ln
Xm!

k¼1

pτ πkð Þq
 !

: (12)

Finally, PerMin is obtained in the limit q ! ∞ and presents the following
expression:

PerMin m, τð Þ ¼ � 1
ln m!ð Þ ln max

k¼1, 2, … ,m!
pτ πkð Þ½ �

� �
: (13)

3. Literature overview

In the literature, there are various studies that have applied regularity-based
entropy measures for emotions detection with EEG recordings. A brief summary of
those works is presented in Table 1, with information about the year of publication,
the experimental design (including the number of emotions detected, subjects, EEG
channels and type of stimulus), the features extracted, the classification models
implemented, and the results obtained in each case. As can be observed, the interest in
these metrics started growing in 2014, especially computing ApEn and SampEn for
the detection of a number of emotions ranging between 2 and 4. In many cases, the
signals analyzed were extracted from the publicly available Database for Emotion
Analysis using Physiological Signals (DEAP), which consisted on a total of 32 healthy
subjects watching emotional videoclips during the registration of their EEG with 32
channels [47]. Hence, different studies tested their methods on the same EEG record-
ings, thus allowing a direct comparison of the results obtained [37–39, 41, 42, 48].
The rest of works had different experimental designs. In terms of the classification
models, support vector machines (SVM) were selected in most of the cases [35, 37,
38, 40, 43–45]. The outcomes derived from these studies presented a classification
accuracy (Acc) ranging between 73% and 95%, being the frontal and parietal brain
regions the most relevant for the detection of emotional states with these regularity-
based entropies.

On the other hand, the predictability-based entropy indices have been the most
applied for the assessment of different emotional states from EEG recordings. The
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main studies that have used these entropy metrics for that purpose are included in
Tables 2 and 3. It can be observed that only a few works studied these indices
between 2011 and 2015 [49–52, 63]. Nevertheless, the interest in these predictability
measures has notably increased since 2017 until nowadays. More precisely, DEn is the
predictability-based metric that has gained a considerable visibility since 2018, thus
Table 3 only includes studies based on the application of DEn. The rest of
predictability-based entropy metrics, i.e. ShEn, REn, SpEn, and permutation indices,
are contained in Table 2. It is interesting to note that the majority of these works in
Table 2 analyzed the EEG signals contained in the DEAP database, whereas only a few

Ref. (Year) Experimental design Features Classifier Results

[35] (2011) 2 emotions, 15 subjects, 5 EEG
channels, images

ApEn + others SVM1 Acc = 73.25%

[36] (2014) Depression, 60 subjects, 24 EEG
channels, eyes open/closed, no
stimuli

ApEn + others — Higher irregularity for
healthy than for
depressed

[37] (2014) 4 emotions, DEAP2 SampEn SVM Acc = 80.43%

[38] (2016) 4 emotions, DEAP SampEn +
others

SVM Acc = 94.98% (two
classes) and 93.20% (four
classes)

[39] (2016) 2 emotions, DEAP SampEn,
QSampEn +
others

DT3 Acc = 75.29%

[40] (2017) 3 emotions, 44 subjects, 31 EEG
channels, images

ApEn + others SVM Acc = 75.5%

[41] (2018) Valence and arousal, DEAP SampEn +
others

MLP4,
DST5

Acc = 87.43% (arousal)
and 88.74% (valence)

[42] (2018) 4 emotions, DEAP SampEn +
others

PSAE6 Acc = 93.6%

[43] (2018) 4 emotions, 10 subjects, 14 EEG
channels, film clips

ApEn + others SVM,
DBN7

Acc = 87.32%

[44] (2019) 4 emotions, 8 subjects, 12 EEG
channels, music

ApEn, SampEn
+ others

SVM,
C4.5,
LDA8

Acc = 84.91% (valence)
and 89.65% (arousal)

[45] (2020) 3 emotions, SEED9 DySampEn10 SVM Acc = 84.67%

[46] (2021) 2 emotions, DEAP CSampEn11 — More coordination in
parietal and occipital

1SVM: Support vector machine.
2DEAP: Database for emotion analysis using physiological signals.
3DT: Decision tree.
4MLP: Multi-layer perceptron.
5DST: Dempster-Shafer theory.
6PSAE: Parallel stacked autoencoders.
7DBN: Deep belief networks.
8LDA: Linear discriminant analysis.
9SEED: SJTU emotion EEG database.
10DySampEn: Dynamic SampEn.
11CSampEn: Cross-sample entropy.

Table 1.
Studies of emotions recognition from EEG recordings with regularity-based entropy indices.
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tested those metrics with different experiments. As for the regularity-based indices,
the number of emotions identified in works in Table 2 ranged from 2 to 4, and only
one study recognized 5 emotional states [49]. In terms of the classifiers implemented,
SVM approaches were preferred over other models in the majority of the studies. The
results obtained presented inconsistent Acc values, ranging from 65–99%, being the

Ref. (Year) Experimental design Features Classifier Results

[49] (2011) 5 emotions, 20 subjects,
24 and 62 EEG channels,
videos

ShEn, SP1 LDA, KNN2 Entropy better than
linear. Acc = 83.04%
with 62 channels

[50] (2013) Stress, 13 subjects, 3 EEG
channels, eyes closed, no
stimuli

REn + others ANOVA3 Lower complexity in
stress than in calmness

[51] (2015) 4 emotions, 8 subjects,
20 EEG channels,
audiovisual stimuli

ShEn, REn MC-
LSSVM4

Acc = 84.79%

[52] (2015) 4 emotions, 25 subjects, 3
EEG channels, music

SpEn SVM, KNN,
CFNN5

Acc = 93.66% (valence)
and 93.29% (arousal)

[53] (2017) 2 emotions, DEAP PerEn, AAPE,
QSampEn

SVM Acc = 81.31%

[54] (2017) Valence and arousal,
DEAP

SpEn, ShEn LSSVM6,
D-RFE7

Acc = 78.96% (arousal)
and 71.43% (valence)

[55] (2017) 4 emotions, DEAP SpEn, ShEn + others Three-stage
decision
method

Acc = 86.67%

[56] (2018) Arousal and valence,
DEAP

SpEn, spectral and
statistics

SVM, KNN,
NB8

Spectral and statistics
better than SpEn

[57] (2018) 2, 3, 4 and 5 emotions,
DEAP

REn + others SVM Acc = 73.8–86.2%

[58] (2018) Depression, 213 subjects,
3 EEG channels, sounds

ShEn, SpEn + others KNN Acc = 79.27%

[59] (2019) 4 emotions, DEAP ShEn, SpEn + others LSSVM Acc = 65.13%

[60] (2019) 4 emotions, DEAP ShEn, PerEn + others SVM Best results with PerEn

[61] (2020) 2 emotions, DEAP CEn9, QSampEn SVM Acc = 80.31%

[62] (2020) 4 emotions, DEAP SpEn, ShEn + others SVM, NB,
ANN10

Acc = 98.7% with ANN

[48] (2021) 4 emotions, DEAP AAPE, PerMin + others SVM Acc = 96.39%
1SP: Spectral power.
2KNN: K-nearest neightbor.
3ANOVA: Analysis of variance.
4MC-LSSVM: Multiclass least-square support vector machine.
5CFNN: Cascade-forward neural network.
6LSSVM: Least-square support vector machine.
7D-RFE: Dynamical recursive feature elimination.
8NB: Naive Bayes.
9CEn: Conditional entropy.
10ANN: Artificial neural network.

Table 2.
Studies of emotions recognition from EEG recordings with predictability-based entropy indices (ShEn, SpEn, REn,
PerEn, AAPE.
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frontal and parietal/occipital lobes the most relevant in emotional processes. With
respect to the studies in Table 3, it can be noticed that the majority of them followed
the same experimental procedure, but in this case, another public dataset different
from DEAP was selected. Indeed, recordings from the SJTU Emotion EEG Dataset
(SEED) were chosen and assessed for the detection of three emotional states, namely

Ref. (Year) Experimental design Features Classifier Results

[63] (2015) 3 emotions, SEED DEn, SP,
statistics

DBN DEn better than SP
and statistics.
Acc = 85%

[64] (2018) 4 emotions, two experiments: DEAP and
SEED

DEn + others GELM1 Acc = 69.67%
(DEAP) and 91.07%
(SEED)

[65] (2018) 3 emotions, SEED DEn HCNN2 Best results in β and
γ

[66] (2018) 3 emotions, 14 subjects, 64 EEG
channels, film clips

DEn + others GRSLR3 Acc = 80.27%

[67] (2018) 3 emotions, two experiments: DEAP and
SEED

DEn — Best results with
SEED database

[68] (2018) 3 emotions, SEED DEn, SP,
statistics

DGCNN4 DEn better than SP
and statistics.
Acc = 90%

[69] (2019) 3 emotions, SEED DEn LDA Acc = 68%

[70] (2019) 2 emotions in patients with disorder of
conciousness, 18 subjects, 32 EEG
channels, videos

DEn SVM Acc = 91.5%

[71] (2019) 3 emotions, SEED DEn STNN5 Acc = 84.16%

[72] (2019) 3 emotions, SEED DEn LR6 Acc = 86%

[73] (2020) 3 emotions, SEED DEn MTL7 Acc = 88.92%

[74] (2020) 3 emotions, SEED DEn CNN Acc = 90.63%

[75] (2020) 3 emotions, SEED DEn CNN Acc = 90.41%

[76] (2020) High-low valence and arousal, DEAP DEn + others LORSAL8 Acc = 77.17%

[77] (2020) 3 emotions, SEED DEn + others CNN Acc = 99.7%

[78] (2020) 3 emotions, SEED DEn + others SRU9 Acc = 83.13%

[79] (2021) Valence and arousal, DEAP DEn CNN Acc = 90.45%
(valence) and
90.6% (arousal)

1GELM: Graph-regularized extreme learning machine.
2HCNN: Hierarchical convolutional neural network.
3GRSLR: Graph regularized sparse linear regression.
4DGCNN: Dynamical graph convolutional neural network.
5STNN: Spatial–temporal neural network.
6LR: Linear regression.
7MTL: Multisource transfer learning.
8LORSAL: Logistic regression via variable splitting and augmented Lagragian.
9SRU: Simple recurrent unit network.

Table 3.
Studies of emotions recognition from EEG recordings with predictability-based entropy indices (DEn).
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positive, neutral and negative [63]. This database contained EEG recordings with 62
channels from 15 subjects during the visualization of film clips with emotional content
[63]. The selection of the classification approaches was quite inconsistent across the
different studies. However, it can be observed that deep learning approaches like
convolutional neural networks (CNN) have been progressively introduced in the
literature for their application in emotion recognition researches. The accuracy results
reported in these works were between 68% and 99%. Furthermore, some of them
demonstrated that DEn was more suitable than some linear metrics for the identifica-
tion of emotions [63, 68].

Finally, Table 4 shows the main works focused on the application of multiscale
and multilag entropy approaches for detecting emotions with EEG recordings. As can
be observed, the study of these indices has emerged in the last few years, especially
since 2019 until nowadays. In these works, the number of emotional states studied
ranged from 2 to 5, which is in line with the rest of entropy metrics evaluated.
Furthermore, the signals from the DEAP database were also chosen by some of the
studies included in the table. It can be noticed that the selection of the classification
models was slightly inconsistent among the different studies, although SVM and
deep learning approaches were the most selected. As in the previous cases, the final
outcomes obtained presented accuracy values with a high variability, ranging from
73–98%.

4. General findings

The application of entropy metrics for the recognition of emotions from EEG
signals has received increasing attention in the last years, reporting valuable insights

Ref. (Year) Experimental design Features Classifier Results

[80] (2016) 5 emotions, 30 subjects, 6
EEG channels, video clips

MMSampEn1 — Higher irregularity for
higher arousal levels

[81] (2019) 2 emotions, DEAP CMQSampEn2,
CMAAPE3

SVM, DT Acc = 86.35%

[82] (2019) 4 emotions, DEAP WEn SVM, FCM4 Acc = 73.32%

[83] (2019) 2 emotions, DEAP PerMin, DPerEn5 KNN Acc = 92.32%

[84] (2020) 3 emotions, 10 subjects, 14
EEG channels, video clips

WEn ANN Acc = 98%

[85] (2021) 3 emotions, SEED MSpEn6 + others ARF7 Acc = 94.4%

[86] (2021) Enjoyment, 28 subjects, 8
EEG channels, art pieces

MSampEn SVM, RVM8 Acc = 91.18%

1MMSampEn: Multivariate-multiscale SampEn.
2CMQSampEn: Composite multiscale QSampEn.
3CMAAPE: Composite multiscale AAPE.
4FCM: Fuzzy cognitive map.
5DPerEn: Delayed PerEn.
6MSpEn: Multiscale SpEn.
7ARF: Autoencoder based random forest.
8RVM: Relevance vector machine.

Table 4.
Studies of emotions recognition from EEG recordings with multiscale and multilag entropy indices.
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about the brain’s performance under different emotional conditions. However, the
high variability of the results obtained could be justified by various aspects. On the
one hand, the experimentation is different for each study, since there are no gold
standards of experimental procedures. In this sense, the number of participants and
their gender, age, or cultural characteristics, are very incosistent among studies, thus
the results may not be representative of the whole population. In addition, the type of
stimulus used for emotions elicitation (images, sounds, videos, etc.) is also inconsis-
tent, since there is no consensus about which is the optimum option for triggering a
strong emotional response [87]. The duration of the stimulus is another unclear point,
thus different criteria are followed by each research group. Finally, although the
locations of EEG electrodes are standardized, the number of EEG channels recorded is
different in each experiment, ranging from 3 to 64. Moreover, some works assessed
the signals corresponding to only one brain area, thus discarding the information that
could be reported by the rest of regions.

All those experimental differences could bias the possibility of obtaining universal
results that could be generalized to the whole population. As a consequence of all
those discrepancies between experimental procedures, the studies presented in this
manuscript should be carefully interpreted and compared. In addition, as not all the
publications give a thorough description of their methodology, their experiments
could not be reproduced by other research groups. Therefore, the assessment of
signals extracted from publicly available databases, like DEAP or SEED, could elimi-
nate this limitation, since the experimental procedure would be the same for different
authors. In this sense, the reproducibility and comparability of the results obtained
would be guaranteed, and the differences in the outcomes would directly appear due
to the diversity of analysis methods and classification approaches.

The variability of the results could also be a consequence of the intrinsic differ-
ences of the entropy metrics evaluated. Indeed, regularity-based, predictability-based,
and multiscale/multilag approaches evaluate the complexity of time series from dif-
ferent perspectives. Therefore, the application of either one or other type of entropy
index on the same problem could report completely divergent outcomes. Neverthe-
less, instead of considering these inequalities as contradictory, it should be regarded as
a sign of complementarity between the different entropy metrics. For instance, some
characteristics of a nonlinear signal could be properly assessed with regularity-based
entropies, and other dynamics would be better described by predictability and sym-
bolic entropy measures. Consequently, the selection of either one or other type of
entropy index should be done taking into account the information that is wanted to
be extracted from a nonstationary time series, also considering that the combination
of different entropies would report a more complete description of the nonlinear
processes.

The promising outcomes presented in these studies make the entropy metrics a
useful tool for the recognition of emotions from EEG recordings. However, the
majority of the works are mainly focused on obtaining great classification accuracy
values, for which advanced classification models with hundreds of input features are
implemented. Despite providing notable numerical results in many cases, the combi-
nation of such a large amount of data in complex classification schemes derives in a
total loss of clinical interpretation of the results. In this regard, information about
which are the most relevant brain regions, or which EEG channels do a higher contri-
bution to the classification model, cannot be obtained. Thus, it becomes impossible to
make a thorough analysis of the brain’s behavior under the emotional states detected.
As a result, it would be interesting to modify some methodological aspects in this kind
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of studies in order to ensure the clinical interpretation of the results and reveal new
insights about mental processes under emotional conditions.

5. Conclusions

Given the nonlinear and nonstationary nature of the brain, entropy indices are
suitable tools for a complete description of the brain dynamics in different scenarios,
including the recognition of emotional states. This chapter summarizes the main
recent contributions to the research field of emotions detection through the applica-
tion of entropy indices for the analysis of EEG recordings. In this sense, regularity-
based, predictability-based, and multiscale/multilag entropy approaches have dem-
onstrated their capability to discern between different emotional states and discover
new insights about the brain dynamics in emotional processes. Taking into account
the valuable results obtained in the studies presented in this chapter, entropy metrics
could become one of the first options to be considered in systems for automatic
emotions identification from EEG signals.
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Chapter 8

Evaluating Steady-State Visually
Evoked Potentials-Based
Brain-Computer Interface System
Using Wavelet Features and
Various Machine Learning Methods
Ebru Sayilgan, Yilmaz Kemal Yuce and Yalcin Isler

Abstract

Steady-state visual evoked potentials (SSVEPs) have been designated to be appro-
priate and are in use in many areas such as clinical neuroscience, cognitive science,
and engineering. SSVEPs have become popular recently, due to their advantages
including high bit rate, simple system structure and short training time. To design
SSVEP-based BCI system, signal processing methods appropriate to the signal struc-
ture should be applied. One of the most appropriate signal processing methods of
these non-stationary signals is the Wavelet Transform. In this study, we investigated
both the effect of choosing a mother wavelet function and the most successful com-
bination of classifier algorithm, wavelet features, and frequency pairs assigned to BCI
commands. SSVEP signals that were recorded at seven different stimulus frequencies
(6–6.5 – 7 – 7.5 – 8.2 – 9.3 – 10 Hz) were used in this study. A total of 115 features were
extracted from time, frequency, and time-frequency domains. These features were
classified by a total of seven different classification processes. Classification evaluation
was presented with the 5-fold cross-validation method and accuracy values.
According to the results, (I) the most successful wavelet function was Haar wavelet,
(II) the most successful classifier was Ensemble Learning, (III) using the feature
vector consisting of energy, entropy, and variance features yielded higher accuracy
than using one of these features alone, and (IV) the highest performances were
obtained in the frequency pairs with “6–10”, “6.5–10”, “7–10”, and “7.5–10” Hz.

Keywords: steady-state visually-evoked potentials (SSVEP), brain-computer
interfaces (BCI), wavelet transform (WT), mother wavelet selection, pattern
recognition, machine learning (ML)

1. Introduction

Electroencephalogram (EEG) signals are one of the most widely used types of bio-
medical signals for Brain-Computer Interfaces (BCIs), owing to their portability, high
time resolution, ease of acquisition, and cost-effectiveness as compared to other brain
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activity monitoring techniques [1–3]. There are four typical EEG-based BCI paradigms:
steady-state visual-evoked potentials (SSVEP), slow cortical potentials (SCP), the P300
component of evoked potentials, and sensory-motor rhythms (SMR) [4–6].

The SSVEP signal is a periodic response to a visual stimulator modulated at a
frequency greater than 6 Hz [7] or 4 Hz [8]. The amplitude and phase characteristics
of the SSVEP depend on stimulus intensity and frequency. SSVEP events can be
repeatedly produced if the stimuli are provided under controlled conditions [9]. For
instance, staring at a flickering light that flashes at a constant frequency stimulates the
human visual pathway. The flickering frequency is radiated throughout the brain.
This stimulation produces electrical signals in the brain at the base frequency of the
flashing light, as well as at its harmonics [10]. Practically, there is a marked reduction
in the power of the SSVEP signals from the second harmonics onwards. This has been
attributed to the low signal-to-noise ratio of the SSVEP signals at high frequencies and
can be accounted for the brain dynamics that act as a low pass filter [11].

The analysis of EEG signals using machine learning (ML) methods is developed to
help physicians in accurate diagnosis and provides fast and valid tools in assistive
applications designed for individuals. Among the various approaches available in the
literature, the Wavelet Transform (WT) has proven to be an effective time-frequency
analysis tool for analyzing transient signals [12, 13]. Various wavelet families are
available to define and adapt signal characteristics [14]. However, choosing an appro-
priate mother wavelet is very important for the analysis of these signals. Research
studies to date for EEG-signal classification using the wavelet technique have mostly
been done using the Daubechies (Db) family. The maximum accuracy achieved in this
study was 95.00% [15]. However, in this study, although the signal was suitable for
Discrete Wavelet Transformation (DWT), analysis was performed using the Contin-
uous Wavelet Transformation (CWT) method. Furthermore, in the same study, anal-
ysis was performed for a single frequency. In this chapter, a detailed analysis was
performed using multiple frequencies. Also, in Ref. [16], the SSVEP signal was used
for a single wavelet type (Db40), but no mother wavelet selection was made. Thus,
the mother wavelet selection for SSVEP is still an unanswered question.

The research presented in this chapter is especially about selecting the most suit-
able wavelet function for signal analysis of SSVEP signals, detailed investigation of
energy, entropy, and variance attributes, and examining the appropriate frequency(s)
for SSVEP based BCI design.

There is not any, to our knowledge, in-depth study on the selection of stimulation
frequencies. It was noticed that higher accuracy rates could be obtained for pattern
recognition by examining the frequency selection and the differences between the
frequencies. The frequency or frequencies that might result in higher higher accuracy
rates and time advantages are considered to help design user-friendly BCI systems.
Due to the shortcomings in the literature mentioned above, this study was considered
to be conducted.

2. Materials and methods

2.1 Data recording process and users

In this study, the dataset (AVI SSVEP Dataset) containing SSVEP signals designed
and recorded by Adnan Vilic was used [17]. The data set contains data that include EEG
measurements of healthy individuals (three men and one woman having ages range
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from 27 to 32) looking at the flickering target to trigger responses of SSVEP signals at
different frequencies, and the data set used for this study is publicly available. Using the
standard international 10–20 system for electrode placement, the reference electrode is
positioned in Fz with the signal electrode in Oz and Fpz in the ground electrode. In this
experiment, individuals had been seated 60 cm away from a monitor staring at a single
flashing target whose color changed rapidly from black to white. The test stimulus was a
flashing box at seven different frequencies (6–6.5 - 7 - 7.5 - 8.2 - 9.3 - 10 Hz) presented
on the monitor. The data set comprises of four sessions with four different participants.
Each trial in a session lasts 30 seconds and participants take a short break between trials.
Experiments were repeated at least three times for each frequency.

In Figure 1, a) the raw signal stimulated at a frequency of 10 Hz and b) the power
spectrum density computed signal (with its 1st and 2nd harmonics) are shown.

2.2 Feature extraction

It is possible to define the neurophysiology of the human visual system, the neuronal
activity of the visual cortex is replaced by visual stimulation, and variations of the brain
response related to the features of the visual stimulus such as brightness, contrast and
frequency [18]. Neurons in the visual cortex synchronize their flickering to the fre-
quency of blinking of the visual stimulus. SSVEP signals are generated when visual
stimuli are repeatedly presented, creating almost sinusoidal oscillations [19]. Applying a
visual stimulus flashing at a constant frequency increases the energy of brain activities
comparing to the case of applying a constant visual stimulus [7]. The strongest response
occurs in the visual cortex of brain (occipital), but other areas of brain are also activated
to different degrees [8, 9]. SSVEP marks can be detected even for narrow frequency
bands around the visual stimulation frequency with signal processing methods that take
advantage of the specific features of the signal such as timing, frequency, and rhythm
[20]. For this reason, this study is designed on accepted signal processing strategies that
validate the comprehensive scenarios analyzed.

2.2.1 Time-domain based feature extraction

The SSVEP time-domain features are extracted from available literature informa-
tion in the original field of the EEG signal. Table 1 describes the relevant and

Figure 1.
a) SSVEP raw signal b) power spectrum of the 10 Hz stimulated SSVEP signal and topography.
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distinctive SSVEP time-domain features we identified. These features are based on the
amplitude (e.g. average amplitude change value, root mean square, interquartile
ranges, etc.) and statistical changes of the EEG signal (e.g., mean, variance, skewness,
and kurtosis, etc.) [20].

2.2.2 Frequency-domain based feature extraction

SSVEP signals are identified by oscillations with frequencies synchronized with the
stimulus frequency [6, 21]. For this reason, many SSVEP-based BCI systems use
frequency information embedded in the signal in the feature extraction process
[22, 23]. Within the scope of this chapter, SSVEP frequency features were extracted
from the frequency domain representation of the SSVEP signal using a Fourier trans-
form. The relevant and distinctive SSVEP frequency characteristics we detected are
based on the spectral information of SSVEP signals for each EEG rhythm, such as
energy, variance and spectral entropy.

These features explain how power, variance, and irregularity (entropy) change in
certain related frequency bands. In practice, this implies that these features will use
their power in certain frequency bands [24].

Features based on power spectrum, energy of each frequency band,

F fð Þ
1 ¼ Energyf ¼

XM

k¼1

y kð Þ2 (1)

Here is the Fourier transform of the analytic signal y of a real discrete time EEG

signal x.F fð Þ
1 ¼ Energyf stands for the EEG features computed from y, and M corre-

sponds to the maximum frequency.
Features based on variance of each EEG frequency band,

EEG Time-domain features F tð Þ
i

� �

No. Features No. Features

1. EEG minimum value 14. Kurtosis of EEG signal

2. EEG maximum value 15. Skewness of EEG signal

3. EEG mean value 16. Hjorth identifiers: 1) Activity

4. EEG standard deviation value 17. Hjorth identifiers: 2) Mobility

5. Integrated EEG value 18. Hjorth identifiers: 3) Complexity

6. Mean absolute value 19. Signal range (max-min.)

7. Simple square integral value 20. Inter-quarter intervals 1st Quartile

8. EEG variance value 21. Inter-quarter intervals 2nd Quartile (Median)

9. Root mean square value 22. Inter-quarter intervals 3rd Quartile

10. Waveform length value 23. Zero-crossing

11. Average amplitude change value 24. Slope-change value

12. Absolute difference in standard deviation 25. Mode value of the signal

Table 1.
EEG time-domain features (EEG signal is represented by x, and F tð Þ

i stands for the EEG features computed from x).

152

Brain-Computer Interface



F fð Þ
2 ¼ Variancef ¼ 1

M� 1

XM

k¼1

yk � y
� �2 (2)

“y” in the formula stands for the average of the “y” signal.
Feature based on entropy of each EEG frequency band: Spectral entropy measures

the regularity of the power spectrum of EEG signal,

F fð Þ
3 ¼ Entropyf ¼

1
log Mð Þ

XM

k¼1

P y kð Þð Þ logP y kð Þð Þ (3)

2.2.3 Wavelet transform based feature extraction

2.2.3.1 Wavelet decomposition

SSVEP signal is non-stationary [18]. Consequently, WT has been used to examine
not only spectral analysis of the signal but also the spectral behavior of the signal over
time. This method is characterized by a smooth and fast oscillating function that is well
localized in frequency and time [12]. WT can be applied as a specially designed dual
Finite-Impulse Response (FIR) filter. The frequency responses of FIR filters separate
the high frequency and low-frequency components of the input signal. The point of
dividing the signal frequency is usually between 0 Hz and half the data sampling rate
(Nyquist frequency). In the Multi-resolution Algorithm (MRA) of theWT, the identical
wavelet coefficients are used in both low-pass (LP) and high-pass (HP) filters. The LP
filter coefficients are associated with scaling parameter, which will determine the oscil-
latory frequency and the length of the wavelet. At the same time, the HP filter is
associated with the wavelet function. The outputs of the LP filters are called the
approximation (a) coefficients, and the outputs of the HP filters are called the detail (d)
coefficients. In MRA of WT, any time-series signals can be entirely decomposed in
terms of a and d coefficients based on decomposition level. Implementation of DWT on
raw signal produces an MRA of various statistical and non-statistical parameters across
time and frequency [24]. The subsets of the wavelet coefficients of the decomposition
tree were selected as input vectors to the classifier. The SSVEP signals are decomposed
into 9 decomposition levels, and i = 1, 2,. .., 9 for 512 Hz sampling frequency.

2.2.3.2 Parameters for feature extraction

Using different DWT functions (Haar, Db2, Sym4, Coif1, Bior3.5, Rbior2.8),
SSVEP signals are subdivided into frequency bands (delta, theta, alpha, beta, gamma),
and the energy, entropy and variance were calculated for each band [13, 14]. Every
DWT frequency band is associated with one or two EEG rhythms. Thus, a number of
features represented in the frequency bands were obtained.

Energy at each decomposition level was calculated using the following Equations [24]:

F wð Þ
1 ¼ Edi ¼

XN
j¼1

dij
�� ��2, i ¼ 1, 2, 3, … , l (4)

F wð Þ
1 ¼ Eai ¼

XN
j¼1

aij
�� ��2, i ¼ 1, 2, 3, … , l (5)
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where dij and aij represent detail and approximate coefficients, respectively, formedby
the wavelet level corresponding to each EEG band (delta, theta, alpha, beta, gamma). i ¼
1, 2, 3, … , l is the wavelet decomposition level from levels 1 to l. Finally, N stands for the
number of detail and approximate coefficients at each decomposition level.

Another feature, the entropy at each decomposition level is calculated using the
following Equation [25]:

F wð Þ
2 ¼ Enti ¼ �

XN
j¼1

dij
2 log dij

2� �
, i ¼ 1, 2, 3, … , l (6)

The variance at each decomposition level was calculated using the following
Equation [24]:

F wð Þ
3 ¼ Vari ¼ 1

N � 1

XN
j¼1

dij � μi
� �2, μi ¼

1
N

XN
j¼1

dij, i ¼ 1, 2, 3, … , l (7)

Extracted features, which consist of different combinations, (l +1) dimensional are
used as input vectors. In other words, for an ‘l’ level decomposition, the feature vector
of any parameter can be represented as Feature = [xd1, xd2, … , xdl, xal], where x
stands on energy, entropy, and variance.

2.3 Machine learning classification algorithms

The most important use of machine learning (ML) methods is classification [26].
After feature extraction, classification is performed to recognize an SSVEP signal and
convert it to command, that is, to use it as output [27]. For the classification process,
the “datasets” formed by a certain number of feature vectors, of which class it
belongs, are passed through the training period required by the classification type. As
a result of this training, a decision mechanism algorithm is created, which is used to
assign the unknown signal to the appropriate class [28, 29].

The extracted feature vectors have been tested with seven well-known and
commonly-used basic classifiers. These selected classifier algorithms are Decision
Trees, Discriminant Analysis, Logistic Regression, Naive Bayes, Support Vector Machines,
k-Nearest Neighbors, and Ensemble Learner. The classifier performances were examined
to determine which combination of mother wavelet function, wavelet features, and
classifier algorithm gives the highest accuracy.

2.4 Evaluation of machine learning algorithms performance

While training ML algorithm to classify SSVEP signals is an important step, it is
essential to consider how the algorithm is generalized on unprecedented data (test set)
[30]. We need to know if the algorithm works correctly and whether we can trust its
predictions. The machine learning algorithm can only memorize the training set.
Therefore, it can make reasonable predictions about future examples or examples that
it has not seen before. Thus, it is one of the essential steps for BCI systems to know
and apply the techniques used to evaluate how well a ML model generalizes to new,
unprecedented data [31, 32]. For this goal the “k-fold cross-validation” and “confusion
matrix” evaluation criteria were used to evaluate the performance of the ML
algorithms used in this study.
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2.4.1 k-fold cross-validation

In this method, the data set is randomly divided into k segments. Among these
segments, k-1 parts are used for the training, and the remaining part is used for the
testing. This process is repeated until all parts are used for testing separately. The test
errors are recorded each time, and the average of the errors after the last part is
reported. The performance of each classifier algorithm used is measured by carrying
out this approach [30, 31]. In this study, the data set is divided into five equal parts.

2.4.2 Confusion matrix

Confusionmatrix is, at first, calculated to evaluate the classifier performance.
The confusionmatrix is generated by comparing the responses of the classification algo-
rithmto the test setwith the actual values in the data set. In case of two-state problems, it is
a table consisting of four different situations [26]. These are True Positive (TP) value,
True Negative (TN) value, False Positive (FP) value, and False Negative (FN) value.

Accuracy value (ACC) is calculated as classifier performance based on these
values [27]:

ACC ¼ TPþ TN
TPþ FNþ FPþ TN

(8)

2.5 Experimental design and implementation details

In accordance with the objective of our study, we have designed it in a two-fold
manner for time-frequency domain features. First, we measured the accuracy of each
(feature, mother wavelet function) pair. As the second part, we combined the set of
three features with each mother wavelet function in order to discover which mother
wavelet function yields the best performance in terms of accuracy. Three important
features (i.e. energy, variance, and entropy) have been extracted for EEG bands (i.e.
delta, theta, alpha, beta, and gamma) using six different mother wavelet families
(Haar, db, sym, coif, bior, rbio). To this purpose, algorithms were implemented using
Signal Processing Toolbox and Wavelet Toolbox in Matlab 2019a. All the classifiers
and performance analyses were implemented using the Classifier Learner App tool
from Matlab version 2019a.

3. Results and discussion

Characterized as an increase in the amplitude of the stimulating frequency, the
photic driver response results in significant baseline and harmonics [33]. Thus, it is
possible to determine the stimulus frequency based on the SSVEP measurement. For
this purpose, 115 feature vectors were extracted from the SSVEP signals recorded
using seven different frequencies. The extracted feature vectors were run with seven
basic ML algorithms. Simultaneously, the frequencies that constitute the SSVEP data
set were evaluated with multiple, selected three-class, and binary classifications. Also,
the effect of the increase in the difference between frequencies on the accuracy
criterion was investigated, and the results are shown in detail between Figures 2–17,
and Tables 2–5.
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Figure 2.
Binary classification performance of the time-domain features.

Figure 3.
Percentage of classifier where the best result is the most often obtained as a result of running the algorithms 2,520
times in total.

Figure 4.
Results of selected 3-class classifications for frequency-domain features.
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Figure 5.
Binary classification performance of the frequency-domain features.

Figure 7.
Classification performance of energy, entropy, and variance as separate features.

Figure 6.
Percentage of successful classifiers that give the highest accuracies from 2,520 runs in total.
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Figure 8.
Classification performance of energy, entropy, and variance together as a feature set (all features together).

Figure 9.
Percentage of classifier where the best result is the most often obtained as a result of running the algorithms 2,520
times in total a) energy, entropy, and variance as separate features, b) energy, entropy, and variance as a feature set.

Figure 10.
Binary classification performance of the features for bior 3.5 mother wavelet function.

158

Brain-Computer Interface



Figure 11.
Binary classification performance of the features for coif 1 mother wavelet function.

Figure 12.
Binary classification performance of the features for Db 4 mother wavelet function.

Figure 13.
Binary classification performance of the features for Haar mother wavelet function.

Figure 14.
Binary classification performance of the features for Rbio 2.8 mother wavelet function.
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3.1 Time-domain features results

The multiple and binary classification results of 25 feature vectors extracted from
SSVEP signals using time-domain properties are given below, respectively.

Figure 15.
Binary classification performance of the features for Sym 4 mother wavelet function.

Figure 16.
Change of accuracy value according to the differences between frequencies for mother wavelet functions.
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Subjects ACC Classifier

Subject 1 25.90 LDA

Subject 2 50.00 Ensemble

Subject 3 52.40 Ensemble

Subject 4 42.90 Ensemble

Mean 42.80

Table 2.
Results of multiple classification for time-domain features.

Subjects ACC Classifier

Subject 1 29.20 Ensemble

Subject 2 50.00 Ensemble

Subject 3 57.10 Ensemble

Subject 4 47.60 Ensemble

Mean 45.98

Table 3.
Results of multiple classification for frequency-domain features.

Figure 17.
Percentage of classifier where the best result is the most often obtained as a result of running the algorithms 2,520
times in total (for Haar wavelet function).
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3.1.1 Multiple classification results

Presented in Table 2 are accuracy results for multiple classification. In regard to
these results, the highest performance was shown by the Ensemble Learning classifier
with 52.40%.

3.1.2 Binary classification results

According to the binary classification results shown in Figure 2, the best perfor-
mance was obtained with an accuracy value of 91.68% in 6–10 Hz frequency pairs
based on the average of the subjects. Simultaneously, when the subjects are considered
separately, a classification performance up to 100% were obtained. In addition, there
is no definitive finding related to the increase in the accuracy value parallel to the
difference between frequencies for the time-domain.

The results of classifiers to be expressed in the pie chart in Figure 3 are the number
of hits of the classifiers obtained. These numbers were obtained by running all algo-
rithms 2,520 times in total. The best classification performance is shown by the
Ensemble learning classifier.

3.2 Frequency-domain features results

For the frequency-domain characteristics used in the problem of determining
seven different frequencies, firstly, spectrum analysis was performed to detect the
stimulus frequencies more clearly than the signal. This analysis is often used to obtain
frequency information in evoked SSVEP responses. The power spectrum of SSVEP

Subject 1 Subject 2 Subject 3 Subject 4

Mother wavelet ACC Classifiers ACC Classifiers ACC Classifiers ACC Classifiers

Coif 1 29.20 KNN 34.60 Ensemble 33.30 Ensemble 33.30 LDA

Bior 3.5 55.60 LDA 23.10 Ensemble 42.90 Ensemble 28.60 Naive Bayes

Db 4 37.50 SVM 23.10 SVM 33.30 Naive Bayes 33.30 Ensemble

Sym 4 29.20 LDA 30.80 Decision Tree 38.10 Ensemble 28.60 LDA

Haar 37.50 KNN 23.10 LDA 42.90 LDA 23.80 LDA

Rbio 2.8 33.30 Naive Bayes 23.10 SVM 38.10 Ensemble 28.60 Ensemble

Mean 37.05 26.30 38.10 29.37

Table 4.
Multiple classification results of wavelet features.

Frequency pair Energy Entropy Variance Mean All features together

6–10 95.83 94.45 100.00 96.76 97.23

6.5–8.2 92.85 95.83 95.83 94.83 100.00

6.5–10 100.00 84.50 95.83 93.44 100.00

Table 5.
Classification results of the most successful frequency pairs of the Haar mother wavelet.
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signals was determined by FFT using MATLAB software to calculate its power,
entropy, and variance for each band in the frequency range corresponding to the
frequencies. For this purpose, the signal received FFT is divided into EEG bands
(delta, theta, alpha, beta, gamma), and energy, entropy, and variance values of each
band are calculated. A total of 15 feature vectors are generated.

3.2.1 Multiple classification results

According to the multiple classification results of the seven frequencies presented
in Table 3, it was determined that the best performance was in the Ensemble Learning
classifier with an accuracy value of 57.10%. Another remarkable finding here is that
the results of the classifier from all individuals are the same. This shows us that, like
the time-domain, the Ensemble Learning classifier performs better than others. In
addition, when multiple classification results of frequency-domain features are com-
pared with multiple classification results of time-domain features, it has been deter-
mined that there is an increase of 4.70% on an individual basis and 3.18% on average.

3.2.2 Selected three class classification results

In this part, three frequencies (6 Hz - 8.2 Hz - 10 Hz), which are considered to
increase the classification performance, were chosen among the seven frequencies
present in the data set, during the feature extraction phase. The reason for choosing
these frequencies are the results of the study done in Ref. [12, 13, 20].

According to the results obtained (Figure 4), the highest classification performance
for the first participant was 83.30% in the Ensemble Learning classifier, the highest
100% classification performance for the second participant was in the KNN and SVM
classifiers, and 88.90% for the third participant in the KNN classifier. Finally, in the
fourth participant, it was seen again in the Ensemble Learning classifier with 77.80%.

When the results are evaluated considering the classifiers, the performance of the
six different classifiers was calculated by taking the average of the four participants
and the highest performance was found in the Ensemble Learning classifier with an
accuracy of 79.73%.

3.2.3 Binary classification results

Considering the averages of the binary classification results of frequency features,
the performances obtained vary between the lowest 70.85% and the highest 100%.
Accordingly, the highest performance was determined with 100% accuracy value in
7.5–10 frequency pairs.

When the results are evaluated in terms of classifiers, it is clearly seen in Figure 6
that the classifier with the highest accuracy rate is the Ensemble Learning classifier.
Runner-up classifier is the SVM classifier. Other classifiers following Ensemble
Learning and SVM were identified as KNN, Logistic Regression and Naive Bayes
classifiers, in order. It is also seen that no successful results have been obtained in the
LDA and Decision Tree classifiers.

3.3 Wavelet transform features results

This section aims to analyze three crucial features, such as energy, variance, and
entropy, which are frequently used in DWT studies, have been extracted from the
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bands (delta, theta, alpha, beta, and gamma) of the EEG signal. These features were
generated for six different mother wavelets (Haar, db4, sym4, coif1, bior3.5, rbio2.8)
commonly used in the literature. The results of each were evaluated in detail for
multiple, binary, and three selected frequencies.

3.3.1 Multiple classification results

On the basis of mother wavelet selection, the results in (Table 4), reveal that
Bior3.5 and Coif1 mother wavelets were relatively successful, although there is no
dominant wavelet type. Experimenting with a larger sample size (number of
subjects), in order to generalize, can help obtain more precise results.

In contrast to the mother wavelet selection, when the classifiers are evaluated, the
success of Ensemble learning and LDA classifiers is clearly seen.

3.3.2 Classification results for three selected frequencies

In this analysis, as in the classification of frequency-domain features (Section
3.2.2), multiple classification was made by selecting 3 selected frequencies (6 Hz -
8.2 Hz – 10 Hz) where the differences between the frequencies were higher among the
seven frequencies. However, unlike the analysis made in the frequency-domain, the
selected features are classified and evaluated both they are used together, that is,
when energy, variance and entropy features are used as a single feature vector (all
features together, and they are used as separate features. Thus, detailed information
about the power, irregularity and bias of the signal was obtained. At the same time, it
is learned how to use these three features, which have the indispensable properties of
the signal, more effectively. And the contribution of these features, which are fre-
quently used in the literature, as a new form of features is wanted to be shown.

In Figure 7, the ACC values obtained by classification of the energy, entropy, and
variance features extracted using each wavelet family are presented. Mean, minimum
and maximum values of the classification results were also shown. According to these
results, the values given by the Haar wavelet function for energy, entropy, and
variance feature groups, which yield more successful results than other wavelet func-
tions, were 75.85%, 73.08%, and 73.75%, respectively. There were no major differ-
ences between the mean values of the features extracted based on the Haar wavelet.
However, it was seen that the entropy feature group had a 100% success rate com-
pared to the others.

In Figure 8, the extracted features based on wavelet were used as a feature set, and
the successful performances of the wavelet families were compared in this way. It was
seen that the most successful wavelet family was the Haar wavelet function. The
ranking of success in other wavelet families has not changed. The accuracy values are
as follows: 75.85% with Haar mother wavelet, 67.53% with bior3.5 mother wavelet,
60.85% with db4 mother wavelet, 56.25% with coif1 mother wavelet, 52.35% with
rbio2.8 mother wavelet and 44.73% with sym4 mother wavelet obtained. It was seen
that some mother wavelet performances increased when compared with the ACC
values in which the features in Figure 7 were handled separately. Mean values of
coif1, db4, and sym4 mother wavelet functions increased.

As a result of the classification processes performed separately for each subject,
when the performances of both feature groups were examined, the most successful
wavelet function was found as the Haar wavelet. When the average accuracy values of
the feature groups are examined, the results in the case that the three features are used
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as a single feature vector gave higher results for all wavelet functions than the other
feature group. Although there is no dominant result in the comparison of energy,
entropy, and variance features among themselves, the highest result was seen in the
entropy feature in Subject 3 with 100%.

The results of classifiers to be expressed in the pie chart in Figure 9 are the number
of hits of the classifiers obtained. With reference to results obtained, it is obvious that
the most successful and also the most frequent classifier in the classification was
obtained as the Ensemble classifier.

3.3.3 Binary classification results

In this analysis, feature vectors are treated as a single feature vector and individual
(separate) feature vectors, similar to those in Section 3.2.3. The resulting feature
vectors were then evaluated by binary classification in order to analyze frequencies in
detail. As the results of the experimental design, the classification performances are
obtained for:

• three features separately (energy, entropy and variance),

• average of the three features separately (Mean),

• the extracted features were grouped as a single feature set (All features together).

Each feature (energy, entropy, variance and all features together) extracted
using each wavelet family. All values of the classification results are presented in
Figures 10–15 for each mother wavelet, respectively.

According to these results, features obtained from the Haar wavelet function
yielded higher accuracies than those obtained from the other wavelet functions. Max-
imum accuracy performances were obtained in the frequency pairs “6–10”, “6.5–8.2”,
“6.5–10” in the Haar wavelet (Table 5). When the features are evaluated, it is realized
that the “All features together” feature generally has better results for all mother
wavelet functions.

And another researched hypothesis results are presented in Figure 16 for
each mother wavelet, respectively. The purpose here is to show the change in
the accuracy value according to the increase in the difference between the
frequencies.

Finally, classification results obtained are presented in Figure 17. Since the classi-
fication results of all the features ranking are similar for all the wavelet functions, the
classification result of the “All features together” for Haar wavelet function is
presented. According to these results, the most successful classifier was obtained as
the Ensemble classifier.

4. Conclusions

This chapter aimed to achieve significant optimization of cortical visual responses,
signal processing methods, and ML algorithms, as well as the accuracy and reliability
of the superior multi-command SSVEP-based BCI system. New approaches have been
explored using existing methods to develop an accurate, reliable, comfortable SSVEP-
based BCI that can offer people with severe motor neuron diseases a communication
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alternative using attention modulation without requiring neuromuscular activities or
eye movements.

As a result, the following research objectives were achieved in this study:

• When the results of the time-domain features are evaluated first, it can be seen that
these features give usable (noteworthy) results in the classification of SSVEP signals.
However, given the natural structure of the SSVEP signal, it is a fact that the results
obtained are not sufficient for a real-time SSVEP-based BCI design, since the time-
domain properties do not reflect the characteristics of the signal alone.

• According to the classification results of the frequency-domain features, were
evaluated alone, satisfactory results were obtained. Higher accuracy values were
obtained in both multi-classification and binary classification compared to time-
domain.

• And when the last feature group time-frequency domain features are used, using
mother DWT functions, SSVEP signals are divided into frequency bands and
energy, entropy and variance values of each band are calculated. In this way, feature
vectors were created and feature vectors were used as, both separately and also
together. Extracted feature vectors were tested with a binary, multiple and three
selected classes classification method to see the relationship between seven different
classifiers and each frequency in detail. Althoughmultiple classification results seem
to be low for all feature groups, there is no study with 7 frequencies (by command)
when the literature is searched according to the best knowledge of the author, but
high results were obtained compared to studies with 3 and 4 frequencies.

• For stimulation frequency detection in the SSVEP signal, a new form has been
proposed that has been proven to be more effective with respect to the use of
energy, entropy and variance features than the properties derived from the
frequency domain and time-frequency domain. According to this form, instead
of the energy, entropy and variance properties used separately, the feature
vector, which is all features together, gave better results than the others.

• By conducting detailed research on stimulation frequencies, frequency pairs
estimated with the highest accuracy were determined. Although this result
showed small differences between the mother wavelet functions, the highest
performance was obtained in the frequency pairs in which the difference was
generally high (6–10, 6.5–10, 7–10, and 7.5–10 Hz).

• In the literature, the performances of the classifier types that were not compared
before were evaluated in terms of SSVEP detection and the most successful
classifier was found to be the “Ensemble Classifier”.

• Also, does system performance increase in parallel with the differences between
frequencies? Based on this hypothesis, the relationship between frequencies was
investigated in pairs. A decrease in “Sym4” function was observed, where only
the lowest performances were obtained.

• Finally, the most successful mother wavelet selection was made. Accordingly, it
was the Haar wavelet function that gave the best results compared to others.
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Chapter 9

Brain Computer Interface Drone
Manupati Hari Hara Nithin Reddy

Abstract

Brain-Computer Interface has emerged from dazzling experiments of cognitive
scientists and researchers who dig deep into the conscious of the human brain where
neuroscience, signal processing, machine learning, physical sciences are blended
together and neuroprosthesis, neuro spellers, bionic eyes, prosthetic arms, prosthetic
legs are created which made the disabled to walk, a mute to express and talk, a blind to
see the beautiful world, a deaf to hear, etc. My main aim is to analyze the frequency
domain signal of the brain signals of 5 subjects at their respective mental states using
an EEG and show how to control a DJI Tello drone using Insight EEG then present the
results and interpretation of band power graph, FFT graph and time-domain signals
graph of mental commands during the live control of the drone.

Keywords: Brain Computer Interface, fast Fourier transform, emotiv insight, DJI
Tello drone, band power, EEG, Neuroscience, Machine Learning, Signal Processing

1. Introduction

The brain computer interface (BCI) technology makes the possible manipulation
of embedded systems using signals generated by brainwaves. A characteristic of the
BCI system can easily capture brain signals generated by neural activities, it can also
recognize differently firing neural activity patterns, and these signals can transform
them into useful commands [1]. These commands can be utilized to control the
machines or the devices. BCIs are most commonly applied in prosthetic limbs for
paralyzed patients, exoskeletons, robotics, autonomous vehicles, virtual keyboard and
computer games [2]. The BCI system can be classified as invasive, non-invasive (these
are classified based on the location of placement of EEG biosensors). Non-invasive
BCIs are based on electroencephalography (EEG) to record the brain activities using a
series of biosensors disposed on the scalp will be able to measure the potential gener-
ated by the electrical activity of thousands to billions of cortical neurons inside our
brain [3]. Our study is focused on noninvasive BCI using an Electroencephalogram.
The neocortex is a convoluted surface which resides at the top of the brain. It is about
⅛ of 1 inch thick. It has 30 billion neurons arranged in 6 layers. Each neuron makes
around 10,000 synapses with other neurons, which results in around 300 trillion
connections in the total [4]. The most common type of neuron in the cortex is the
pyramidal neuron, populations of which are arranged in columns oriented perpendic-
ular to the cortical surface. The surface of the cortex is convoluted, with Fissures sulci,
Ridges gyri. The neocortex exhibits functional specialization. Each area of the cortex is
specialized for a particular function. The occipital areas near the back of the head
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specialize in basic visual processing [5]. The parietal areas towards the top of the head
specialize in spatial reasoning and motion processing [6]. Visual and auditory recog-
nition occurs in the temporal areas (towards the sides of the head) while frontal areas
are involved in planning and higher cognitive functions. Inputs to a cortical area
mainly come into the middle layers, Outputs of the cortical area leave from the upper
and lower layers [7]. Based on these input–output patterns, the cortex roughly acts as
an organized network of sensory, motor areas. Coming to the EEG, it is a device that
extracts, organizes, and filters the electric signals which exist due to the neural firings
(action potential) of the brain it is used for various diagnosing purposes, it is a popular
non-invasive technique for recording the neuronal firing using electrodes placed on
the scalp. The currents originating deep in the brain due to the firing of the neurons
are not detected by EEG because the voltage fields will fall off with the square of the
distance from the source [8]. The time domain signal displays the signals from differ-
ent electrodes in a graph known as electroencephalography. EEG will reflect the
summation of postsynaptic potentials occurring due to firing of thousands of neurons
which are oriented radially to the scalp but not due to tangential electrodes. The
spatial resolution of EEG is poor in a square centimeter range because of the imped-
ance caused due to the presence of skull, scalp, CSF, meanings [9]. These layers’ act as
volume conductors and low pass filters to smear the original signals, whereas coming
to the temporal resolution is good at the range of milliseconds [9]. This time domain
signal from EEG is then converted into frequency domain signal using different
transforms in the signal processing such as discrete Fourier transform, fast Fourier
transform, etc. The amplified frequencies (according to the fast Fourier transform)
which are extracted from brain by electroencephalogram into 4 ranges they are theta
(θ) which ranges from 4 Hz to 8 Hz, alpha (α) which ranges from 8 to 12, beta (β)
ranges from 12 to 25 Hz and finally gamma (γ) ranges minimum from 25 Hz to
maximum of 45 to 75 Hz [10]. After performing many experiments on many patients
specifically to observe the type of waves and the amplified frequencies (when will
they occur, in what state of patient these waves can be observed) they have presented
a generalized form of relation between their frequency ranges and normal human
functions. When a person is ready or about to perform tasks or if he/she is in an alert
state then more percentage of α frequency waves are generally observed and if a
person is task oriented or if he is in a busy state or anxiously thinking or actively
concentrating then high percentages of β frequency waves are generally observed, if a
person is performing high motor functions, or if the person is switching the activities
during multitasking then high percentage of γ frequency waves are observed mostly in
the frontal lobe of the human brain. After performing several tests, I was able to
predict that in my meditation state a high percentage of θ frequency waves were
observed even in a sleeping state where the mind is in a relaxed condition there are
high percentages of θ frequency waves. The Emotiv Insight is an EEG Brain wear
device which is composed of five sensors that are projected to acquire and measure the
key activity from the entire functional areas of the cortex. The device can provide raw
EEG Signals, Mental Commands (conscious thoughts), Facial Expressions - Facial
mimicry and Measurements of performance of the brain. The principal key charac-
teristics of this scientific design is the dynamic brain-computer interface interactions
with more degrees of freedom for controlling physical and virtual objects. The device
accurately identifies mental states and emotion such as Engagement, Focus, Excite-
ment, Meditation, Relaxation, Stress [11]. There is a possibility to build brain activity
models in real-time based on spatial resolution. A deeper perspective on specific
patterns of an individual’s brain activity. The very important problem in EEG
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processing is low signal to the noise ratio since there are many layers between the
neural cortex and the scalp and also due to the artifacts which result with great
amplitude, the solution to minimize the noise is we can use filtering techniques and
noise reduction techniques to remove the noise from the raw EEG data and extract the
brain activity signals [12]. Since the EEG signal is non-stationary signal we use classi-
fiers which are trained on user data (which is limited, this is also another main
problem) we can generalize those results poorly to the already trained data on the
same individual (different for different individuals because of physiological differ-
ences, this also limits the use of EEG applications) at different times. The accuracy
might increase as we increase the number of training sessions but generalizing for
subjects, i.e., to handle inter-subject variability processing pipelines with domain-
specific approaches are used in order to clean, extract relevant features and classify
(Riemannian geometry based classifiers, adaptive classifiers) EEG data. The subset of
Machine Learning which is Deep Learning is used mainly to extract the features,
Recently CNNs (convolutional neural networks) are used to simultaneously extract
the feature and the classifier in order to achieve end to end supervised feature learn-
ing. Hence the devices use CNNs and recurrent neural networks of 3 to 10 layers in
total [13].

2. Common EEG patterns

2.1 EEG

In most of the Neurosurgery hospitals or the hospitals where the diagnosis of the
human brain takes place, they mostly use EEG which have very high Temporal and
spatial resolutions, devices also occupy huge amounts of space. But in the study of
Brain Computer Interface wherein we are required to develop the applications to
control the external environment in such a way that the patient or subject or the user
must not be facing the adaptability issues to significant extent [14]. If we observe the
EEG devices which are used in the Hospitals, they generally require minimum of 2 to
3 hours for just equipping the device or placing the electrode in proper locations over
the scalp, where in the contact optimizing fluid needs to be applied all over the head
and the electrodes needs to be placed which is a tedious and complex process. But
recently the company Emotiv has come up with a very sophisticated and easily
adaptable device named as INSIGHT. This Insight device is equipped with very effi-
cient specifications, where in which It has 3 axis gyroscope and 3 axis Magnetometer
which are very helpful to remove the artifacts due to the head movements which is
absent in the case of hospital EEGs (therefore the patients is instructed not to move
their head/to avoid the motor movements). There are 5 important electrodes installed
in the device which are made of semi-dry polymer. The electrode locations are 2 in the
frontal region, 2 in the temporal region and another is at the central peritoneal region.
The nomenclature of these electrodes are given according to the international 10–20
system. Where the frontal left electrode is named as AF3, frontal right electrode is
named as AF4, temporal left electrode is named as AT7, temporal right electrode is
named as AT8 and peritoneal central electrode is named as Pz plus DRL reference
mastoid electrode on the left, the channels with built in digital 5th order sinc filter,
bandwidth of 0.5-43 Hz with digital notch filters at 50 Hz and 60 Hz, 2.4 Hz wireless
connectivity, 8400uV is the dynamic range (input referred), sequential sampling, 128
samples per second is the sampling rate, 14bit motion resolution, the electrodes are
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semi dry polymers, with 14bits 1 LSB = 0.51muV (16 bit ADC, 2 bits instrumental
noise floor discarded) EEG Resolution. Main principle of EEG devices is the differen-
tial amplifier which has 2 inputs Input 1 and Input 2. From both the inputs the
information is fed, the information can be mathematical or any signal it gives the
output resultant signal which is the relative deference chunk of signal. Mounting the
device over the subject’s scalp is a crucial procedure, where saline glycerol solution is
applied to the semi dry electrodes in order to maintain the optimum contact quality
with the scalp of the head. The electrodes were being placed in active locations
according to the International 10–20 system protocol and the optimal 100%
contactivity is ensured. The subject is instructed to not to move to avoid motion
artifacts and stay focused on mental commands. Connection between the insight and
the laptop is achieved by following the EmotivApp protocol, connection can be
established either using Insight dongle or through the Bluetooth connection. Authen-
tic Interpretation of EEG requires a very high amount of training and experience in
analyzing and predicting the Graphical data. The most important set of rules which
needs to be followed while analyzing the EEG data is the type of montages used, the
time domain of the subject state compared to the EEG data at that current time in
order to check that there are no external noises or movements made by the subject.
There are different types of montages such as longitudinal bipolar Montage,
longitudinal-transverse bipolar montage, circumferential bipolar montage, temporal
bipolar montage, Cz referential Montage, Ipsilateral ear referential Montage in order
to analyze the patient’s cognitive state in different ways in order to predict the correct
result. In the EmotivePro app in MacBook Air laptop to record raw EEG data for the
experiments I have used an Ipsilateral ear referential montage where one input of the
differential amplifier will be a DRL reference mastoid electrode and the other input
will be any one of the active electrodes. I set up the channel spacing to 400 μV
minimum amplitude to �100 μV, maximum amplitude to +100 μV, with a high pass
filter.

2.2 EEG pattern in eye blinks

As we know that the cornea is positively charged and the retina is negatively
charged, when there is a movement of the eyes towards upwards due to the bell’s
phenomenon Figure 1, when eyes are closed this will result in the abnormal signals in
the frontal electrodes [15]. There is an upward peak then downward peak when eye is

Figure 1.
Bell’s phenomenon during eye blink.
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blinked once, I blinked the eye continuously therefore crist and troughs continuously
occurred only at the AF3, AF4 frontal electrodes in the Figure 2, this is because of the
bells phenomenon when the eyes are closed the cornea moves up due to which there is
a change is potential observed near the frontal electrodes, there is an upward peak at
the first when the eyes are closed which implies that there is a relative positive
potential of AF3/AF4 with the reference electrode and when eyelids opened there is a
downward peak which implies that there is a relative negative potential of AF3/AF4
with the reference electrode.

2.3 Meditation

To cross check a theoretical aspect of the brain frequencies also in order to validate
and prove that the device is authentic, we performed meditation mental tasks for
diverse subjects and analyze their signal frequencies of their respective time domain
signals using the Fast Fourier Transform (FFT) in the MATLAB.

2.3.1 Test dataset acquisition and observation

The test is being conducted in an anechoic chamber as we can observe at the
background of the subjects in Table, in order to minimize the external noise and to
isolate the experiment. The subject’s voluntary consent has been taken prior for
performing this particular test experiment. Also, the subjects are strictly advised to be in
a relaxed mental condition for 10 minutes before the test perusal and before 30 seconds
of the performance of the test, the subject’s eye movements (closed state and opened
state) also analyzed by the EmotivPro application in order to remove the eye blink
artifacts. All subjects have performed the test successfully as instructed.

As the subject’s experiments begin, their mental state is being captured in the camera
and the state at which the subjects are present is being noted and presented in themental
state column ofTable 1. After ensuring the optimum contact quality, the EEG data
following common referencemontage is analyzed in the live, with EmotivPro license, it is
possible to record the current EEG data of its respective electrodes.

Figure 2.
Crests and troughs observed at AF3,AF4 electrodes in common reference montage EEG data.
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After performing the tests on the subjects, the raw EEG data which is recorded during
experimentation is stored in the EmotivPro application cloud. This recorded data is
exported to the client server system in the .csv format, Figure 3 these files can be assessed
through the links provided in the aboveTable 1 for the respective subject test.

SUBJECT Testing Photograph Subject Name Mental State csv file link Duration

Onesimus Meditation OnesimusLink 5 min

Sai Kumar Meditation SaiLink 3 min

Nithin Reddy Meditation NithinLink 1
NithinLink 2
NithinLink 3

3 min

Murty Relaxed MurtyLink 5 min

Table 1.
The table displays the specific subject with their respective mental task.
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This .csv file contains the recorded potentials of all 5 channels (AF3, AF4, T7, T8,
Pz) at their respective timestamp. This data is copied and imported into the
workspace of MATLAB. Database toolbox is used to read, write, import and export the
data of .csv files Figure 4. Digital signal processing toolbox is used for converting time
domain signal to frequency domain signal.

The main principle of fast Fourier transform is it converts the time domain signal
into frequency domain signal. As the raw data is injected into the FFT in matlab, it
analyzes the frequencies of the time domain signals. The xfft vs. absolute part of the
FFT gives us the frequency domain signal. In this case, there is a large amount of noise
observed in the frequency domain graph for the test dataset. Hence, in order to
remove the noise and the high peak which is near to zero, the smoothing filters were
applied independently and a band pass filter is also applied between 4 to 45 Hz, as the
result of the experiment lies within that particular frequency range.

1.The length of the signal is assigned to variable = nfft,

2. In order to have a good resolution of the signal the nearest 2 power value of the
length nfft is assigned to the variable nfft2.

3.The fast Fourier transform filter is applied and assigned to the variable fft.

Figure 3.
The imported data in the workplace.

Figure 4.
The subject’s EEG data in the work space.
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File Name Experimental analysis

InsightTestNithin01

InsightTestMurty05

InsightTestNithin06
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File Name Experimental analysis

InsightTestNithin07

InsightTestNithin08

InsightTestSai09
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4.In the absolute part of the fft, we can observe a symmetric curve with frequency
x axis and amplitude magnitude of the y-axis.

5. In order to remove the symmetry about the line parallel to the y-axis and only
consider the initial half part, we only consider half of the nfft2 length and that
half portion is assigned to the variable = fff.

6.For the x component of the fft signal is assigned to the variable xfft, where input
values of the sample frequency with half of the length of the data is assigned to
xfft.

7.The graphical plot is made with xfft as x-axis and fff as y-axis for that particular
time period. Savitzky Golay filter, moving average filter, smoothing filter were
applied and analyzed independently to all of the test files. After applying filters
to the signals, their respective frequencies are extracted, recorded and saved and
the smoothing filter is considered to be the best fit filter at a window of 100
neighboring samples for our test datasets.

2.3.2 Test results

The smoothing filter, band pass filter along with FFT in combination resulted in
best output for the frequency domain analysis and the results are observed, noted and
represented graphically in Table 2 as there is time domain graph at the top and
frequency domain graph at the bottom in the experimental analysis column in
Table 2.

As most of the subjects are performing the meditative test they should experience a
very high amount of theta waves they ranged between 5.1 to 7.6 Hz i.e., there will be a
maxima peak within the range of 5.1 to 7.6 Hz in the frequency domain signal and also

File Name Experimental analysis

InsightTest
Onesimus10

Table 2.
This table represents the experimental analysis graphically.
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when the subject performs a demanding motor task he experienced a high amount of
gamma waves with maxima peak at 35.9 Hz (Table 3).

Hence, the test results prove that the subject’s mental state falls within specific
range when a specific mental task is performed. This ends the validation part of the
Emotiv Insight EEG device.

3. Common EEG patterns

After connecting the device with the EmotivApp, the EmotiveBCI application is
used to train mental commands. After training, the live mode is switched ON to
control a cube with our Imagery thoughts. Next those live mental commands should
be extracted from the application to integrate with the drone. This is achieved through
cortex API documentation, for the ease I have edited the code in python language.
Then simultaneously those commands should be integrated to a dji tello drone. This is
achieved through dji tello API documentation. Finally a link between the drone and
Insight brainware is achieved.

3.1 Mental command training

Giving mental command to the EmotivBCI application will result in the movement
of the object in the desired direction. Initially numerous training needs to be done to
the device in the initial stage to get good desired output. For example during an object
movement test when the subject is thinking to move the cube towards the right
direction we can observe this in the Figures 5 and 6 represented below that there is a
movement of the cube towards the right direction. Each of the Neutral, moving left,
lift, drop mental commands were trained for 10 times.

3.2 Extraction of mental commands and assigning them to the drone

The python code is built in Atom software editor in Dell Inspiron laptop. Jason,
websocket, ssl, time, win32, requests, pyautogui, socket, keyboard, threading are

S. No File Name Mental State Frequency at
Maxima (x-axis)

Maxima (y-axis)

1 InsightTestNithin01 Mathematical Calculation 35.9 Hz 45375.0

2 InsightTestMurty05 Meditating 05.5 Hz 17920.0

3 InsightTestNithin06 Meditating 05.6 Hz 18475.0

4 InsightTestNithin07 Meditating 07.6 Hz 24568.0

5 InsightTestNithin08 Lifting 35.9 Hz 13585.0

6 InsightTestSai09 Meditating 05.1 Hz 5016.8

7 InsightTestOnesimus10 Meditating 05.6 Hz 8094.6

Table 3.
This table represents the frequency analysis of subjects numerically.
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Figure 5.
The object movement test of the subject, live mode in BCI App when the person is neutral.

Figure 6.
The object movement test of the subject, live mode in BCI App when the person thinks of moving the object left from
neutral, the cube has moved left.

Figure 7.
Procedure of interfacing EEG with a drone.
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the libraries used in the code. The control of the drone with the computer is
achieved using DJI Tello drone protocol Figure 7, where the drone is connected
to the local wifi and the laptop should also be connected to the same wifi using a
TP-Link USB Wi-Fi Adapter which is used for PC(TL-WN725N) it’s an N150
Wireless Network Adapter for laptop, UDP protocol is used to make an interface
between the computer system and dji tello drone, it should be explicit and bind to a
local port on our computer where tello can send messages. The functions that listen
for messages from tello will be printed on the screen. Connection between the
insight and the laptop is done according to the Emotiv App protocol, connection
can be established either using Insight dongle or through the Bluetooth connection.
After connecting the device with the EmotivApp, the EmotiveBCI application is
used to train mental commands. After training, the live mode is switched ON to
control a cube with our Imagery thoughts. Next those live mental commands
should be extracted from the application to integrate with the drone. This is
achieved through cortex API documentation. Then simultaneously those
commands should be integrated to a dji tello drone. This is achieved through dji
tello API documentation. Finally a link between the drone and Insight brainware is
achieved. Coming to the Insight, InsightHandler class is used then the web
connection is acquired, In order to get the approval form the Emotiv app we
have to generate client id and secret then we have to give the approval in the
emotive app. After approving then authorisation happens to generate the token
this token will create the session and loads the profile from the cortex app, then we
are going to start and stream the mental commands data in our terminal, these
commands will be integrated with the our keyboard clicks, these clicks will intern
control the drone as a controller, so basically as we are thinking of a mental
command which will be controlling our computers keyboard this will intern
control the drone.

4. Result

After several attempts the drone control was modified and whenever the power
meter of a mental command crosses 50% then that specific keyboard key will be

Figure 8.
Cube in neutral state.
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clicked. For example if the subject is in a neutral state and suppose he is thinking
of a lift command and simultaneously if the power meter of that lift mental
command is at 50% or crosses 50% then that command will be executed and the
computer keyboard key which is assigned to the push will be clicked this will
intern transmits the thrust command from the laptop and drone will receive this
command and lifts off the floor. In the terminal window and live mode in the
Mental command window controlling a cube are represented in the Figures 8–10.
The cube is in the neutral position therefore we can observe neutral in the terminal
window in Figure 8. When the person is thinking of lifting the cube, the cube
changes from its neutral position and moves upwards therefore we can observe
change from neutral to lift in the terminal window, Figure 9. The cube is in
the neutral position therefore we can observe neutral in the terminal window,
Figure 10.

The drone is in the resting state when the mental command of the subject is
neutral, Figure 11. The drone takes off when the mental command of the subject has
changed from the neutral to lift, Figure 12.

Figure 9.
Cube moving upwards.

Figure 10.
Cube moving downwards.
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Figure 12.
The drone takes off.

Figure 11.
Drone in the neutral state.
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5. Conclusions

EEG patterns such as motor movements, eyes movements, meditation,
sleeping tests are recorded and analyzed. A mathematical model is developed in
the MATLAB using concepts such as signal processing in order to analyze the theo-
retical data of the brain frequencies at different mental states. The validation of the
device by analysis of raw signal has been performed using signal processing methods
such as fast Fourier transform simultaneously applying filters to extract the signal of
interest by removing noise. These EEG patterns are analyzed on 5 different subjects
and cross validated the data with the theoretical brain frequencies data. After these
above experiments, Interface between DJI Tello Drone and Emotiv Insight BCI head-
set was achieved and the Drone was controlled with 2 mental commands moving up
and moving down from the neutral state.
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Appendices and nomenclature

CPZ Central Peritoneal Zero
Cz Central Zero
DBS Deep Brain Stimulation
DCES Direct Electrical Cortical Stimulation
ECoG Electrocorticography
EEG Electroencephalogram/Electroencephalography
fMRI Functional Magnetic Resonance Imaging
Hz Hertz
InsightTestNithin06 Insight: Device Name.

TestNithin: Testing the subject name.
06: Test number

IZ Inion Zero
kHz KiloHertz
LTD Long Term Depression
LTP Long Term Potentiation
MEG Magnetoencephalography
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MU Memory Unit
Nz Nasion Zero
OS Optical Stimulation
Oz Occipital Zero
POZ Peritoneal Occipital Zero
Pz Parietal Zero
STD Short Term Depression
STDP Spike timing dependent plasticity
STF Short Term Facilitation
STP Short Term Potentiation
TMS Transcranial Magnetic Stimulation
TUS Transcranial Ultrasound Stimulation
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