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Preface

Computational algorithms nowadays play a definitive role is most real-life applica-
tions, from mobile phones to supercomputers, Internet servers, manufacturing, and 
more. A computational algorithm is designed to optimize some measure for a given 
problem. A discrete algorithm built for an optimization problem normally deals with a 
large set of feasible solutions (ones that respect problem restrictions) and tries to find 
a feasible solution that fits better-given optimization criteria. Hence, an intelligent 
method for the enumeration of feasible solutions may lead to an efficient computa-
tional algorithm. This book contains some recent work on optimization methods and 
heuristics for complex real-life problems that aim to find suitable and feasible solu-
tions. For example, it includes information on Particle Swarm Optimization (PSO), 
which is one of the renowned swarm optimization approaches. It has been used over 
the last few decades in various forms and capacities. Due to its sound foundation, 
it offers many stable and substantial solutions for complex and difficult real-world 
problems. Recently, it has been used in more modern and emerging complex problems 
such as training of deep neural networks alongside design and resource management 
problems of modern wireless communication networks. The book also provides useful 
guidance on the implementation and use of PSO in various problems.

Chapter 1 presents novel improvement strategies for a recently developed swarm 
intelligence algorithm called the Crow Search Algorithm (CSA). This type of swarm 
intelligence algorithm is motivated by the social behavior of crow flocks. In a CSA, 
given a current solution, its neighbor, to be considered next, is determined ran-
domly. This may lead to the convergence to a local optimum, due to the local search 
that is typically used in such algorithms. The chapter considers the multi-strategy 
search that uses different search strategies for the selection of each next solution. 
This augmented version of CSA performs well in practice.

Chapter 2 considers a hybrid genetic approach for the solution of complex optimi-
zation problems. It reviews different types of genetic algorithms and considers the 
existing methods of integration of some search and optimization techniques within 
the genetic algorithm framework. As an illustrative sample, the chapter proposes 
a new hybrid genetic algorithm for the mechanical sizing of a composite structure 
located in the upper part of a launcher. Given structural constraints that define the 
feasible solution space, the objective here is to minimize the overall mass of the 
construction.

Chapter 3 deals with project management issues, concentrating on scheduling strat-
egies for optimal project management. It reviews related methods and algorithms 
for project management and suggests a matrix-based model and a scheduling algo-
rithm that can handle renewable resources. The framework can also be extended 
to handle nonrenewable resources. The proposed risk evaluation tool is used to 
compare the efficiency of different scheduling rules for project management.

Chapter 4 presents an approach to help train convolutional neural networks in the 
recognition of human activities. Recently, search algorithms, especially swarm 
intelligence algorithms, have been utilized in training machine learning models. 



Chapter 5 introduces another PSO algorithm to solve the wave scattering problem 
in inhomogeneous media. Variants of PSO enhanced with chaos theory and other 
accelerating components have been implemented and tested for better perfor-
mance. The chapter describes and discusses the results of this testing.

Chapter 6 investigates the efficiency issues surrounding the use of PSO in the gate-
way placement problem of short- and long-range networks designed for Internet of 
Things (IoT) implementations. One of these networks is LoRaWAN, which requires 
gateway placement for high efficiency. Different variants of PSO have been devel-
oped and tested to tackle efficiency issues. This chapter reviews these algorithms 
and proposes the best-performing PSO for the problem.

Chapter 7 discusses PSO and its multi-objective implementations. Research on 
multi-objective optimization has increased due to it being more realistic for solving 
real-world problems. PSO has been used in multi-objective studies for solving geo-
physical problems and has demonstrated good success, as described in this chapter.

Nodari Vakhania
Professor, 

Centro de Investigación en Ciencias, 
Universidad Autónoma del Estado de Morelos, 

Cuernavaca, Mexico 

Mehmet Emin Aydin
University of the West of England,

Bristol, England 
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Chapter 1

Multi Strategy Search with Crow
Search Algorithm
Rafet Durgut and Mehmet Emin Aydin

Abstract

Crow Search Algorithm (CSA) is one of the recently proposed swarm
intelligence algorithms developed inspiring of the social behaviour of crow flocks.
One of the drawbacks of the original CSA is that it tends to randomly select a
neighbour on search strategy due to its low convergence rate, which pushes the
search to stick in local optima due to the same search strategy applied across
iterations. The multi-strategy search for CSA (CSA-MSS) has been proposed to
enrich the search facilities and provide diversity to overcome these drawbacks. The
multi-strategy search implies utilising a pool of strategies consists of six different
types of search operators. The multi-strategy approach with a selection mechanism
has not been proposed for CSA before and implemented first time. The comparative
performance analysis for the proposed algorithm has been conducted over solving
24 benchmark problems. The results demonstrate that the proposed approach is
outperforming well-known state-of-the-art methods.

Keywords: swarm intelligence, crow search algorithm, global optimisation,
strategy selection, operator selection schemes

1. Introduction

Over the last two decades, many nature-inspired metaheuristic optimisation
algorithms (MOAs) have been proposed to solve many abstract and real-world
problems including combinatorial, binary and real engineering problems [1]. MOAs
are generally iterative processes developed imitating natural phenomena and animal
behaviours to obtain optimal solutions for given problems [2]. Although these
algorithms provide satisfactory solutions to various optimisation problems, they do
not always guarantee an optimal way of solving them in different scales [3, 4]. In
this respect, MOAs has recently received increasing interest from scholars in related
fields (e.g. engineering, business, logistics, etc.) as a way to design algorithms that
specify a solution to general problems using a certain pattern of behaviour inspired
by a given society. An example in this respect is the study of a colony of insects or
the behaviour of other animals’ societies [5]. Swarm intelligence algorithms tend to
simulate social behaviours of the imitated societies, where some renown swarm
intelligence algorithms are particle swarm optimisation (PSO) inspired of bird
flocks and fish schooling [6, 7], artificial bee colony (ABC) simulates collective food
searching behaviour of honey bees [8, 9], cuckoo search algorithm is based on the
brood parasitism of some cuckoo species [10, 11], group search optimiser (GSO) is
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based on animal searching behaviour [12, 13], and firefly algorithm (FA) is based on
the flashing light patterns of tropic fireflies [14, 15].

Crow Search Algorithm (CSA) is another swarm intelligence metaheuristic
framework inspired of feeding behaviours of crow flocks [1]. Similar to many other
MOAs, CSA needs a balance in between exploration and exploitation activities
throughout the search process in order to approximate global optimal solutions [16].
In this respect, exploitation refers to the use of gained experience in deepening the
search within the locality of the current solution while exploration implies diversi-
fication, e.g. jumping to another region of the search space, in order to reach the
optimal solution. The majority of the real-world problems are multi-model prob-
lems, which possess numerous local optimum solutions hard to avoid, the exploit-
ative search has higher probability to get stuck into a local optimum. In contrast,
exploration helps enrich the search with higher diversity to let the search move to
other feasible regions within the search space, which may end up with a better
payoff due to that a new region may lead to global best. In addition, a well-balanced
exploration would let the algorithm to avoid sub-optimal solutions. It is known that
a search strategy with balance in between exploration and exploitation facilitates
finding sub-optimal solutions close to the global optimal [17] in shorter time, while
CSA is known with its higher exploitation capability as designed [18].

In order to balance exploration and exploitation capabilities for MOAs, a number
of approaches have been implemented; among these, three categories can be
highlighted; (i) dynamic parameterisation on the fly [19], (ii) implementing differ-
ent perturbation search strategies [20] and (iii) using multiple strategies in the
search [21] instead of single one. For the latest approach, a strategy pool consisting
of different strategies is constructed. The algorithm chooses the appropriate strat-
egy according to search process circumstances and dynamics. In this article, an
implementation of CSA approach with multiple strategies is introduced to solve
functional optimisation problems using a pool of six different search strategies. The
main contribution of the study is the use of multi-strategy search policy with CSA
and suggesting a selection scheme in order to respond best to the search dynamics
for solving functional optimisation problems.

2. Related works

Studies related to this work can be viewed into two categories: modified version
of CSA and adaptation approaches. Zamani et al. [22] proposed new version of CSA,
called Conscious Neighbourhood-based CSA (CCSA), with three new search strat-
egies to improve local and global search capabilities of CSA. Sonuc [23] proposed
BinCSA, a pure binary version of CSA, in which a logic gate was used as a search
strategy. Majhi et al. [24] developed a new version of CSA, called OBL-CSA-MO, in
which they tried to escape from local optima by using opposition learning strategy
and mutation operator.

CSA has two control parameters: namely awareness probability (AP) and flight
length (FL). AP is randomly generated solution probability and controls intensifi-
cation and diversification balance. FL controls searching effect of algorithm. Rizk-
Allah et al. [25] proposed a new version of CSA integrated with chaos theory for
solving fractional optimisation problems. Coelho et al. [26] developed a modified
CSA in which Gaussian distribution function is used in order to control two algo-
rithmic parameters. Necira et al. [27] proposed an enhanced version of CSA, called
dynamic crow search algorithm (DCSA), in which there are two modifications on
CSA. Awareness probability is linearly adjusted throughout iterations, and FL is
expressed as pareto probability density function. There are several studies aiming to
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improve the efficiency and robustness of CSA; for more details and further modifi-
cations of CSA, the reader is referred to the surveys [28, 29]. To the best knowledge
of the authors, CSA has not been studied with multiple search strategies to avoid
local optima problem, and this article presents the first ever study in this respect.

3. Materials and methods

3.1 Crow search algorithm

Crows are known to be among the smartest bird species based on their natural
talents [30]; they can remember the location where they or other bird species store
food [31], often times even called ‘thieves’. With such a sound memory skill, they
can even recall faces and warn the flock using complex communication channels in
dangerous situations [32]. CSA is developed as a metaheuristic optimisation algo-
rithm inspired by such smart behaviours [1] where each crow represents a valid
solution within the search space. The crow’s memory represents the best solutions
for the given problem set. Let N be the number of crows in the flock and the search
space be D dimensional. Then the position of the ith crow at jth time should be as
xi,j ¼ xi,jd , where d∈D, i∈N and j∈T.

The position of the information held by each crow in the memory should be mi,j,
where m information stored in memory holds the best position information avail-
able up to that iteration, and T is the maximum iteration number. There are two
options once the crows move towards the food positions in mind: (i) moving
towards position m blind of being followed by another crow (k); (ii) moving to any
random position aware of being followed by another curious crow. The choice
between these two options is modelled as follows:

xi,jþ1 ¼ xi,j þ ri � FL� mk,j � xi,j
� �

, r j >AP
arandom position, otherwise

(
(1)

where ri and r j are two uniformly distributed random variables within the range
of 0, 1½ �, FL is the flight distance, and AP is the probability of awareness, k is a
randomly specified integer parameter that takes value from 1 to N. If the obtained
position information of the solution—new solution—is better than the one in the
memory, then, the position information is updated. The exploration and
exploitation capabilities are managed with FL and AP in this approach, where FL is
used to obtain better solutions, while AP is used to discover new solutions. If a high
value is set for the AP, it will then come into play at the local minimum in the
exploration phase of the algorithm. If a low value is set for the AP, late convergence
will occur in the exploitation phase. Therefore, the AP value needs to be adjusted
well [1].

The general overview of the CSA is given in Algorithm 1 in a pseudo code.
Firstly, the algorithmic parameters are determined based on the position of each
crow randomly generated in a d-dimensional search space. Once the first population
is adopted as the initial best set of solution in the flock memory. Then the main loop
of the algorithm starts working. Each crow in the flock makes decision for whom to
follow within the flock. Next, the probability of AP is calculated randomly, as a
threshold value, to identify if the crow is to move towards the food or to reach a
new random position. If the new position information is a valid/feasible one and
better than the solution in the memory, the crow updates its own memory. The
method continues until the specified criteria are obtained.
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Algorithm 1. The pseudo code of the CSA.

1: Initialising of parameters (D, T, AP, FL)
2: Randomly initialise crows positions
3: Memorise the positions
4: while termination criteria is not met do
5: for i = 1:N do
6: Selection Phase
7: Determine AP
8: if rand() > ¼ AP then
9: Calculate xi,jþ1 by the Eq. (1)
10: else
11: Generate Random Position
12: end if
13: end for
14: Bound Control
15: Evaluate
16: Memorise
17: end while

3.2 Search strategies

Search strategies are used to help algorithms to switch from one solution to
another within the neighbourhood. However, use of single search strategy with any
metaheuristic algorithm ends up with serious limitations with respect to the
balance in between the exploration ant exploitation capabilities. In order to
deliver search with a balance, we decided to use a pool of search strategies
composed of six different search strategies. The five different approaches picked up
from to the literature inspired of the update rules used in differential evolution
(DE) and artificial bee colony (ABC) algorithms, where some modifications
applied [5, 33].

Eq. (2) is the original update rule used by CSA to generate candidate
solution, while Eq. (3) is extended with global best guided search strategy
(GCSA) [34] in order to improve exploitation capability. Eq. (4) is a global
best-guided search strategy embedded with flock memory (BCSA). Eq. (5) is
added to the strategy pool to enhance exploration ability with which it brings two
different randomly chosen crows’ position in the scene (CBCSA). Eq. (6) is
developed inspiring of DE/RAND/1 to offer higher exploration capability (RCSA).
Eq. (7) is also an implementation of DE/RAND/1 rule inserting memory solutions
in use (RMCSA). In the all strategies, k is a randomly selected neighbour solution
from the flock.

xi,jþ1 ¼ xi,j þ ri � FL� mi,j � xi,j
� �

(2)

xi,jþ1 ¼ xi,j þ ri � FL� mk,j � xi,j
� �þ gbest � xi,j

� �� �
(3)

xi,jþ1 ¼ gbest þ ri � FL� mk1,j �mk2,j
� �

(4)

xi,jþ1 ¼ xi,j þ ri � mi,j � xi,j
� �þ xk1,j � xk2,j

� �� �
(5)

xi,jþ1 ¼ xk1,j þ ri � xk2,j � xk3,j
� �

(6)

xi,jþ1 ¼ mk1,j þ ri � mk2,j �mk3,j
� �

(7)
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where i ¼ 1, ::,N and j ¼ 1, ::,T are indexes for the number of crows and
iterations, respectively, while k1, k2, k3 are three random integers required to hold
k1 6¼ k2 6¼ k3.

3.3 CSA with multi-strategy search (CSA-MSS)

As explained in the previous section, search-based on single strategy imposes
limitations which enforce local optima. This renowned problem is tackled with
various ways in the literature. Memetic algorithms [35], modified swarm intelli-
gence algorithms [36], hybrid solutions [37] are the studies seeking for resolutions
for this issue. Recently, adaptive operator selection schemes [8, 38] look promising
to overcome this issue in an easier way. The proposed approach in this study is
based on a multi-strategy search approach, CSA-MSS, which implies adaptive use of
multiple search strategies in order to overcome the limitations of single strategy
search. It consists of two main components: credit assignment and strategy selec-
tion. In order to evaluate the performance of the applied strategy, reward value, ri,j,
is calculated as follows:

ri,j ¼ f xð Þ
gbest

f xð Þ � f x0ð Þð Þ (8)

where f xð Þ is the objective value of the current solution, and f x0ð Þ is the objective
value of the candidate solution which is generated by search strategy i. To balance
reward value in the course of iterations, improvement on objective function is
normalised over global best solution value. In Eq. (9), credit values are assigned to
each strategy.

ci,jþ1 ¼ 1� αð Þci,j þ α
ri,j

si,j þ 1

� �
(9)

where α is the learning rate, ci,j and si,j are credit value and the number of
successful improvements so far for strategy i at iteration j, respectively. The average
reward is calculated for iteration j.

Adaptive pursuit approach is used as the strategy selection scheme for selecting
the search strategy to operate due to its proven good performance in literature [8].
In this selection scheme, each strategy has a probability value which is calculated
with Eq. (10).

pi,jþ1 ¼
pi,j þ β pmax � pi,j

� �
, if i ¼ i ∗j

pi,j þ β pmin � pi,j
� �

, otherwise

0
B@ (10)

where β is the learning rate in 0, 1½ �, pmin is the minimum selection probability,
and i j ∗ is the best strategy for iteration i. In this approach, the best strategy wins
the maximum selection probability. The general overview of the CSA-MSS is given
in Algorithm 2. The proposed approach starts with selecting a strategy to operate. If
there is any non-rewarded strategy within the pool, a random selection is conducted
to let these strategies have a chance to be opted. The selected strategy is operated on
the current solution to generate a candidate solution—a neighbouring solution. A
reward value is calculated for the opted strategy and recorded if it is successful in
the running iteration. The credit values are updated from the reward values
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obtained/recorded at the end of each iteration. Both average and maximum reward
values are calculated through a sliding window over the last W iterations.

Algorithm 2. The general overview of CSA-MSS.

1: Initialising of parameters (D,Tmax,M,AP,FL)
2: Randomly initialise crows positions
3: Memorise the positions
4: while termination criteria is not met do
5: for i = 1:N do
6: Selection Phase
7: Determine AP
8: if rand() > ¼ AP then
9: if Any strategy has not rewarded then
10: Select the strategy randomly
11: else
12: Assign probabilities using Eq. (10)
13: Select the strategy using roulette-wheel

selection
14: end if
15: Generate candidate solution
16: else
17: Generate Random Position
18: end if
19: Bound Control
20: Evaluate
21: Calculate reward using Eq. (8)
22: if reward > 0 then
23: Add reward and increase s for selected strategy
24: end if
25: end for
26: Memorise
27: Credit assignment using Eq. (9)
28: end while

3.4 Benchmark functions

In order to compare and analyse the performance of the approaches
under-consideration alongside CSA, a number of well-known numeric benchmark
functions have been used, which are collected from the literature [39, 40] as in
Table 1. The characteristics of each are depicted in the second column with UN,
MN, SP and NP standing for unimodality, multimodality, separable and non-
separable, respectively. If the functions have only one local optima as the global
optima, then it is called as unimodal function [41]. These types of functions can be
used to demonstrate exploitation ability of the algorithms. If the functions have
more than one local optima, then it is called a multimodal function, where
exploration is also needed significantly to travel among the regions, i.e. modals,
that have their local optima. If the relationship between any two inputs of a
function is loose, i.e. can be easily operated standalone, then it is considered
separable, non-separable otherwise [42].
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4. Experimental results

This section presents the experimental study for testing the performance of
proposed algorithm in comparison to a number of state-of-the-art algorithms. To
fairly compare the performance of proposed approach, each algorithm was exe-
cuted with 30 different runs; each seeded randomly. The algorithmic parameters of
proposed approach and other variants, AP, FL, N are set to 0:1, 2, 30, respectively.
The maximum function evaluation is set to 1:5Eþ 5. Firstly, proposed approach is
compared with the original CSA in Table 2. After that, CSA-MSS is compared with
all strategies in Tables 3–6. The parameters of strategy selection scheme, i.e. Adap-
tive Pursuit, are set to α ¼ 0:1, beta ¼ 0:1, the reward value is calculated with
extreme approach, i.e. maximum, over the last W ¼ 5 iterations. All parametric
settings are delivered using parameter tuning experiments.

Table 2 shows the results of CSA and CSA-MSS algorithms on 30- and 60-
dimensional benchmark functions. For the 30D problems, CSA looks slightly com-
peting with the CSA-MSS. The column with Sign headings represents Wilcoxon
signed sum rank test result. If the sign is þ, it means that the result is statistically
sound, otherwise not sound, where the results of four out of 23 functions do not
look statistically sound. In eight out of 19 functions, CSA produces better solutions
while, in 11 out 19 functions, CSA-MSS performs better. When we look at the
characteristics of the functions best obtained with CSA, it is clearly shown that most
of them are multi-modal, because CSA has good performance on these types of
problems. On the other side, CSA-MSS has improved the success over the CSA on
uni-modal functions. For the 60D functions, CSA-MSS outperforms CSA in both
mean and standard deviation statistics of the best solutions. And the success of
CSA-MSS is statistically sound for all benchmark functions.

The comparative experimental results with 30 D benchmark functions for dif-
ferent search strategies are presented in Tables 3 and 4. CSA-MSS has produced the
minimum mean values for F1, F2, F3, F4, F5, F8, F9, F10, F14 functions, while CSA
achieves slightly better results for F7, F13, F15, F16, F20, F21 functions. For F6, F7,
F12, F17, F19 functions, GCSA produced better solutions than the others. RMCSA
found the minimummean values for F11, F18, F22, F23 functions, while CBCSA and
RCSA have lower performance than the others presumably due to their poorer
exploitation capabilities. The tables for both dimensions are combined to conduct
statistical confidence test of the success, which demonstrated that the success of
CSA-MSS over the others is found statistically sound with an exemption that the
success of RMCSA for the functions F11 and F18 is not statistically different from
CSA-MSS. It is noted that the mean rank values by CSA-MSS remain slightly better
than the other methods.

The comparison of the experimental results for 60 D benchmark functions with
different search strategies are provided in Tables 5 and 6. CSA-MSS has the mini-
mum mean values except for F6, F7, F10, F11, F12, F13, F15, F19, F20 functions.
Nevertheless, for all functions considered in the test, CSA-MSS produced better
solutions than CSA. It is also observed that GCSA produced better solutions than
CSA-MSS for F6, F7, F10, F12, F13, F19 functions, and RMCSA produced better
solutions than CSA-MSS for F11, F15, F20 functions. CSA turns to poorer perfor-
mance when the problem dimension increases. The statistical soundness of the
success of CSA-MSS is approved except for F21, F22 functions. For the comparison
of mean rank values, CSA-MSS outperforms the other methods.

Figure 1 depicts the convergence comparison of the methods over the iterations.
As seen, CSA-MSS has higher convergence speed from the others for F1,F2,F3 and
F4 functions. For the 60 D problems, Figure 2 shows the convergence history for
the all methods.
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Figure 1.
The converge graphs of compared methods on 30D benchmark functions. (a) F1 Function. (b) F2 Function. (c)
F4 Function. (d) F8 Function.

Figure 2.
The converge graphs of compared methods on 60D benchmark functions. (a) F16 Function. (b) F21 Function.
(c) F17 Function. (d) F3 Function.
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5. Conclusions

In this article, a multi-strategy search with crow search algorithm is proposed for
solving global optimisation problems. In the proposed approach, adaptive pursuit is
used to select search strategies according to the search dynamics. Search strategies
are obtained from other state-of-the-art metaheuristics and implemented into crow
search algorithm. Twenty-three benchmark functions with different characteristics
have been used to compare strategies’ performance. The proposed approach is
demonstrated that it helps improve the performance of original crow search algo-
rithm especially on the higher-dimensional problems. Future works of this study
would be dynamic and adaptive parametric settings, especially for awareness prob-
ability and flight length distance. It may also include embedding machine learning
approaches to develop high-performance adaptive strategy selection schemes into
the algorithm to achieve transfer learning.
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Chapter 2

Hybrid Genetic Algorithms
Leila Gharsalli 

Abstract

Hybrid optimization methods have known significant interest in recent years 
and are being growingly used to solve complex problems in science and engineer-
ing. For instance, the famous evolutionary Genetic Algorithm can integrate other 
techniques within its framework to produce a hybrid global algorithm that takes 
advantages of that combination and overcomes the disadvantages. Several forms 
of integration between Genetic Algorithms and other search and optimization 
techniques exist. This chapter aims to review that and present the design of a hybrid 
Genetic Algorithm incorporating another local optimization technique while 
recalling the main local search methods and emphasizing the different approaches 
for employing their information. A test case from the aerospace field is presented 
where a hybrid genetic algorithm is proposed for the mechanical sizing of a com-
posite structure located in the upper part of a launcher.

Keywords: genetic algorithm, evolutionary algorithm, hybridization, local search, 
mechanical sizing, aerospace field

1. Introduction

Solving an optimization problem consists in exploring a search space in order 
to maximize (or minimize) a given objective function. The complexities (in size or 
structure) of the search space and the function to be optimized lead to the use of 
radically different resolution methods. However, the so-called global optimization 
methods are generally the best suited ones considering their main advantage: that of 
identifying the promised regions and converging towards a global optimum.

The zero-order optimization Genetic Algorithm (GA), initially laid down by 
Holland [1], remain the most recognized and practiced form of Evolutionary 
Algorithms (EA) which are global stochastic optimization techniques that mimic 
Darwin’s principles of natural selection and genetic dynamics. In fact, known 
advantages of the GA include its ability to combine both exploration and exploita-
tion in an optimal way [1] in addition to its ability to be used in the case of discon-
tinuous objective functions, within disjoined and/or non-convex design spaces, 
and together with discrete, continuous, or even mixed design variables. Besides, 
as a population-based method, GA, if initially well-tuned, minimizes the risk to 
converge to a local optimum thanks to the simultaneous processing of the whole 
candidate solutions instead of, for instance, gradient-based methods, giving thus 
the designer a multitude of options.

Nevertheless, like any optimization technique, GA has also its drawbacks start-
ing with the numerous parameters sensitivity analysis to do to maximize efficiency 
and have a good initialization of the algorithm. In addition to the most notable 
drawback which is generally the great number of required iterations, and they 
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slow convergence, especially in the neighborhood of the global optimum. Indeed, 
although GAs can rapidly locate the region in which the global optimum exists, 
they take a relatively long time to locate the exact local optimum in the region of 
convergence. Each generation of the algorithm consists of many objective func-
tion evaluations resulting in a lot of computational time in addition to being very 
expensive.

To overcome this main limitation and lessen function evaluation time, different 
alternatives have been proposed. But particularly the trend of hybridization has 
been observed in many works carried out on metaheuristics over the past 20 years, 
where it consists of incorporating a faster Local Search (LS) (or individual learn-
ing) optimization algorithm into a GA in order to improve the performance of the 
global resulting method, often known as Memetic Algorithm (MA). This latter was 
first introduced by Moscato [2] and is representing one of the recent growing areas 
of research in evolutionary computation [3] by offering the important challenge 
of the tradeoff between global searching and local searching in terms of time and 
computational effort. In fact, this integration aims to keep advantages of both opti-
mization methods while offsetting their both disadvantages [4] As LS algorithms 
are actually capable to find the local optimum with high accuracy and fast conver-
gence but suffer from the problem of foothills. Hence through their integration with 
the population-based method, the time needed to reach the global optimum can 
be further reduced since the local knowledge is used to accelerate finding the most 
promising search region in addition to locating the global optimum starting within 
its attraction basin.

These hybrid algorithms have also been used under the name of hybrid evolu-
tionary algorithms, Baldwinian evolutionary algorithms, Lamarckian evolutionary 
algorithms, cultural algorithms, or genetic LS. They also have been successfully 
applied to hundreds of real-world problems in a wide variety of domains ranging 
from aircraft [5], aerospace [6], pattern recognition [7], control systems [8], vehicle 
routing [9], pharmaceutical industry [10] etc.

An example of a hybrid GA applied to the mechanical structures’ optimization 
is presented in this chapter. This test case reflects the relevance of this hybridiza-
tion in the mathematical resolution of optimization problems related to the aero-
space field.

The organization of the chapter is as follows: the second section is dedicated 
to the description of the different hybridization design including the combination 
between GAs and LS methods. General mechanisms of GAs are remained in the 
third section. Hybrid GAs are discussed in the fourth section then the test case with 
the problematic presentation and the obtained results is given in the fifth section. 
Finally, conclusions are given in the last section.

2. Hybridization design

As mentioned before, in an optimization problem solving approach, it can be 
extremely beneficial to combine two solving techniques, knowing that it is possible 
to hybridize all exact and metaheuristic techniques. Hence, the hybridization can 
take place in one or more components of a research method. It can also consist in 
assembling several hybridization methods to form a single hybrid method. Two 
strategies can be used depending on the optimization technique which drives the 
hybrid method:

Strategy 1: we can approach the global optimum by a stochastic technique and 
then refine the result by successively applying a local one. In this case, the result 
will be ameliorated but unfortunately time consuming. An optimal way to use 
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hybridization in this case may be by applying a global optimization method and 
find the right time to switch to a local one.

Strategy 2: we can try to find a local minimum and keep it as a winning solu-
tion if it is the best of all the local (global) minimums. For instance, in the method 
of multiple initializations or (multi Start), a local optimization technique is used 
several times at different stress points; the solution of the optimization problem 
would be then the best obtained result.

According to the author in [11], a taxonomy for hybrid meta-heuristics can be 
proposed by classifying them into three categories depending on their architecture 
(see Figure 1):

• Sequential hybridization: it is the most popular type; it performs different 
research methods sequentially so that the result of the first one serves as an 
initial solution for the next one.

• Synchronous parallel hybridization: this hybridization is carried out by incor-
porating a particular research method in an operator. It is more complex to 

Figure 1. 
Hybridization classification.

Figure 2. 
Possible hybridization schemes.
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implement than the previous one. The aim is to combine a LS with a global 
search for the purpose of improving convergence.

• Asynchronous parallel hybridization: the hybrid methods belonging to this 
class are characterized by an architecture such that two algorithms A and B are 
involved simultaneously, and each one adjusts the other. The Algorithms A and 
B share and exchange information throughout the research process.

A global view of the different possible hybridization schemes is shown in 
Figure 2 where we can see hybridization between stochastic (particularly meta-
heuristics) and analytical optimization methods. Indeed, the common point 
between all these hybridizations is that they try to merge the strengths and elimi-
nate the weaknesses of the different concepts. Therefore, the efficiency of the 
search solution space can still be improved, and new opportunities emerged which 
may lead to even more powerful and flexible research methods.

3. Genetic algorithm

GAs use a vocabulary inspired from natural genetics. However, the natural 
processes to which they refer is more complex [12]. They are iterative optimiza-
tion procedures that repeatedly apply GA operators (such as selection, crossover, 
and mutation) to a group of solutions until some criterion of convergence has 
been satisfied. Note that the essential element of the genetic vocabulary is the 
“individual” that belongs to a set of individuals called “population”. The indi-
vidual is made up of a “chromosome” which is itself made up of “genes” which 
contain the inheritance characteristics of the individual. The principles of “selec-
tion”, “crossover” and “mutation” are the main genetic operators that are inspired 
by the same natural processes. First, the selection operator includes generally two 
variants; the parental selection devoted for reproduction and the replacement 
selection devoted to keeping the population size constant by individuals who will 
survive in the next generation. A selection favors the best individuals but has also 
to give a chance to the less good to avoid the problems of premature convergence. 
Note that the “fitness” or “evaluation” function characterizing how well adapted 
the solution is to its environment, is closely related to the selection process. Then, 
the crossover operator involves combining the information from two parents to 
create one or two new individuals (or “offspring”) making it possible to diversify 
the population and explore more the research space. At last, the mutation opera-
tor causes a small perturbation on an individual’s chromosome thus allowing to 
guarantee gene diversity so that the algorithm does not get stuck in local minima. 
This process continues, throughout the generations, until the stop criteria is 
reached. The latter can be in various forms such as for example several global 
iterations defined in advance or the difference between the average population’s 
fitness and the best one.

It is also important to underline that during the implementation of the algorithm 
it is necessary to take into account the encoding of the different parameters. In 
fact, one of the characteristics of GAs is their need to a genetic representation of 
the desired problem using an encoding. Therefore, the algorithm can evaluate the 
fitness of every individual and computes the problem’s objectives and constraints 
based only on the encoding without any further knowledge of real parameters.

Figure 3 shows the optimization flowchart offered by GA whereas Reference 
[13] provides further discussion on the theoretical properties of GAs and on 
standard genetic operators.
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4. Hybrid genetic algorithm

The most natural hybridization in the literature is the use of a single solution 
meta-heuristic algorithm embedded in a population-based meta-heuristic algo-
rithm like the unmissable GA in order to improve the qualities of the solutions. In 
fact, whereas population-based meta-heuristics tend to diversify the search space 
by exploring it different parts, LS meta-heuristics tend to intensify the search by 
exploiting only one part of the space.

LS methods are based on a neighborhood relation and on a procedure exploiting 
this neighborhood. They consist in moving from one solution to another closer in the 
space of the candidate solutions, until a solution considered as optimal is found, or the 
allowed time is exceeded. We can therefore summarize the main idea of a LS as follows:

• Start from an initial solution,

• Improve that solution,

• Repeat the process several times.

Hence, through the hybridization, individuals attempt to identify promising 
areas of the solution space which are then explored in more detail by LS methods. 
The best known among the latters are the simulated annealing, the tabu search or 
simply descent methods (iterated local searches).

Concerning the hybridization adopting the global GA, as its decision-making 
mechanics are based on random principles, this detailed research can be difficult to 
carry out. Heuristics therefore serve to fill this weakness. In a general way, at all 
generations, an individual (or some individuals) are randomly selected among the 
best in the population. Then, a set of solutions defining its (their) neighborhood is 
constructed. Afterwards, each of these neighbors is evaluated in order to check 
whether there is an improvement in the evaluation function. GA then manipulates 
solutions that have already been improved locally. This has the effect of allowing 
even more advantageous solutions to be generated more quickly. However, as there 
are several ways to hybridize GAs while maintaining a fairly modular program 
structure, a sequential approach could be advantageous in such a way that it is 

Figure 3. 
Flowchart of the optimization procedure based on a genetic algorithm.
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enough to let the GA run to a substantial level of convergence, then let the local 
optimization procedure follow up the process, for example by taking the 5% or the 
10% best individuals of the last generation. However, two main approaches are also 
often followed: firstly, the Lamarckian approach [14] where direct learning trans-
mits the best characteristics of each individual from generation to generation. 
Hence, both change in genotypic information and fitness are transmitted to the 
individual as genotypic information at the end of the LS, altering thereby the 
chromosomes. Secondly, the Baldwinian approach [14] where only the improved 
fitness function value is changed after the LS and not the genotypic information. 
The first approach is known to be faster than the second one but may cause prema-
ture convergence [13].

Note that usually the individuals that undergo LS are chosen uniformly at 
random, but it would be more efficient to use a tuning technique which consists of 
a primary conducted experiment aiming to find the optimal part of the population 
that should perform LS. This part is commonly referred to as the LS probability 
mentioned above that is used to run the actual experiment and remains fixed during 
the algorithm execution. In the literature, several techniques aim to reduce unneces-
sary local optimization and therefore additional calculation time, such as distribu-
tion-based techniques [15], fitness-based techniques [15] and LS potential [16] that 
have been proposed to select the optimal individuals among the given population 
that should do a LS. In the following, some main LS methods are remained.

4.1 Simulated annealing (SA)

Simulated annealing is an optimization technique inspired by the simulation 
methods of Metropolis (1950s) in statistical mechanics. It is distinguished by the 
introduction of a temperature parameter which is adjusted during research [17]. 
Moreover, in optimization, this method considers a neighborhood exploitation 
procedure which makes it possible to go towards a neighboring solution of less good 
quality with a non-zero probability, thus allowing to escape the local optima.

At the beginning, a “temperature” parameter T is determined and decreases 
throughout the algorithm to tend towards 0. The probability of accepting deterio-
rated solutions depends on the value of this parameter (the more the temperature 
T decreases, the more this probability decreases). The interest of simulated anneal-
ing lies in the fact that there is a proof of its asymptotic convergence. Thus, when 
certain conditions are verified (decrease diagram of T), we are guaranteed to obtain 
the optimal solution. However, the parameterization recommended by theory is 
not very realistic and it takes a long time to get to parameterize these methods. Note 
that this method may also require a stop criterion, if the “optimal” setting has not 
been found. Hybridization between GA and SA algorithms has been used in several 
domains [18–20].

4.2 Tabu search (TS)

Tabu search was introduced as a new strategy to escape local optima using a 
notion of memory [21]. Exploitation of the neighborhood makes it possible to move 
from the current solution to its best neighbor (this one not necessarily having a 
better quality than the current solution). To avoid cycling between a local optimum 
and its best neighbor, the method prohibits moving to a recently visited solution. 
To do this, a tabu list containing the attributes of the last visited solutions is kept up 
to date. Each new solution considered removes the oldest visited solution from this 
list. Thus, the search for the following current solution is done in the neighborhood 
of the current solution without considering the solutions belonging to the tabu list. 
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However, the size of this list is a method parameter that is difficult to adjust. In 
addition, this strategy requires the definition of a stopping criterion. We find the 
hybridization between GA and TS in many applications such as image processing 
[22], computational grids [23] and flow shop scheduling problem [24].

4.3 Iterated local search (ILS)

The descent methods are quick and simple to implement but generally do not 
lead to the best optima because they stop as soon as a local optimum is found [25]. 
In order not to get stuck on this local optimum, there are various strategies which 
allow the search to continue after having found an optimum. One strategy to over-
come the abrupt stopping of the search for a local optimum is to iterate the descent 
method. The following steps are carried out from the found optimum:

• Apply a perturbation on the current solution,

• Apply a descent method on that solution.

• Chose via an acceptance criterion if the new optimum becomes the cur-
rent solution and go back to the first step until the stop criterion is reached. 
Common stop criteria are the execution time, the number of iterations and the 
number of total evaluations.

The disturbance can consist in restarting a solution taken randomly in the search 
space or in choosing a solution in a neighborhood far from the optimum or even in 
choosing a neighbor of the same quality as the optimum.

Heuristic Iterative Local Search (ILS) [26] is based on a simple idea: instead 
of repeatedly applying a LS procedure from randomly generated solutions, ILS 
generates the starting solution for the next iteration by applying a perturbation 
on the local optimum found at the current iteration. This is done in the hope that 
the disturbance mechanism provides a solution located in the attraction basin of a 
better local optimum. Therefore, the disruption mechanism is a key part of ILS. In 
addition, an acceptance criterion defines the conditions that the new local optimum 
must meet in order to replace the current local optimum (Figure 4). Thus, the 
acceptance criterion, combined with the disruption mechanism, helps to control the 
trade-off between intensification and diversification. However, many acceptance 

Figure 4. 
From a local minimum s, a disturbance of the latter generates a minimum s’ from which a LS is launched to 
arrive at a third local minimum s” potentially better than s.
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criteria which reconcile the two objectives can be applied [12]. Hybridization 
between GA and ILS is one of the simplest and common hybridizations that can be 
found in several works [27–29].

4.4 Variable neighborhood search (VNS)

The Variable Neighborhood Search (VNS) is a meta-heuristic algorithm [30], 
based on the principle of systematic neighborhood change during LS. Indeed, at 
the initialization step, a set of neighborhood structures must be defined. These 
neighborhoods can be chosen arbitrarily, but often a sequence ordered in size 
growing neighborhoods is used. The VNS procedure consists of three stages: (1) the 
disturbance (shaking), (2) the LS and (3) the displacement. Recently, a variety of 
problems have involved hybridization between GA and VNS [31–33].

5. Test case

We consider here the following optimization problem: search for the mini-
mum mass of an inter-stage skirt made of composite sandwich with Carbon Fiber 
Reinforced Polymer (CFRP) skins and aluminum Nida core (composites are fabri-
cated by attaching two thin but stiff skins to a lightweight but thick core) that are 
located between the first stage and the second stage situated on the upper part of a 
linear launcher (Figure 5).

The structure is subjected to pressure oscillations from upstream solid propel-
lant engines to ensure “payload comfort”. The skirt therefore has a filtering role in 
order to limit the vibratory levels at the top of the launcher. To best dampen these 
oscillations, the structure must be mechanical sized according to a compromise 
between rigidity and flexibility linked to the need to hold in buckling, in addition 
to composite manufacturing constraints (mirror symmetry, balancing, grouping) 
[34]. Note that we need to optimize only one skin plus the core hence the final result 
is obtained by symmetry.

Figure 5. 
Simplified model of the sandwich composite inter-stage skirt (in red) located on the upper part of the linear launcher.
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Mathematically speaking, we can write the optimization problem as follows:
Objective: minimize the total mass (M).
Subject to:

 Constraints: 
( )( )

( )( )
( )

>


<



′

′

2,03
2e8 N / m

 

structure s buckling B
structure s stiffness S

fabrication constraints FC
 

 Design variables:




      
 

total number of plies forming the skin
plies thicknesses

 

5.1 Proposed hybrid genetic algorithm

To solve the above optimization problem, we have chosen the global GA. In fact, 
during the mechanical sizing of a composite structure, plies thicknesses are often 
predetermined, and plies orientations are usually restricted to a small set of angles 
due to manufacturing constraints and/or limited availability of experimental data. 
Most of the time, this gives rise mathematically to a discrete optimization problem. 
Hence GA is a suitable optimization method that we also decided to hybridize with a 
LS method to overcome the drawbacks of GA cited throughout this chapter.

First of all, an appropriate representation of the problem is recommended 
through the encoding of all the parameters. In fact, the initial population of the GA 
is composed of a set of skin plies (sandwich case) characterized by fiber orientations. 
Thus, an individual in the population is equivalent to a laminate (set of plies) and can 
simply be represented by an orientation chromosome (see Figure 6). Plies and core 
thicknesses of the structure are predefined based on composite design constraints 
[35] and are not considered herein as optimization variables. Therefore, an individual 
(a laminate) is represented by one chromosome regrouping one skin plies character-
ized by orientation angles (0°, 90°, ± 45°, ± 30°), encoded according to 5 possible 
values {0, 1, 2, 3, 4} called the chromosome domain where particularly add where 0° 
is encoded by 0, 90° is encoded by 1, ± 45° is encoded by 2, “no ply” is encoded by 3 
and finally ± 30° is encoded by 4. “no ply” is encoded by 3.

To handle constraints, concerning the composite manufacturing ones, a repair 
strategy is adopted during the decoding phase (Figure 7). More explanation about these 
constraints handling method could be seen in [36]. Whereas mechanical constraints 
(buckling and stiffness) are managed through the genetic selection operator.

The proposed Hybrid Genetic Algorithm (HGA) herein is based on a strong and 
sequential cooperation between GA and a descent LS technique for the entire course 

Figure 6. 
The genetic representation of the design variables.
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of the algorithm where the LS optimization is integrated at the beginning of the GA 
previous to the genetic operators to intensify research only around selected promis-
ing solutions. Hence, the adopted scheme is as follows: for every new iteration, the 
best individual reached by the GA is selected as an initialization for the LS method. 
Then, a set of two neighbors is built following a well-defined structure. The latter 
aims to verify if there is any neighboring orientation that allows an improvement of 
the individual’s fitness by randomly selecting a gene related to the orientation and 
flipping it to either the previous or the next value in the concerned chromosome’s 
domain while of course respecting all manufacturing constraints via the repair cited 
repair strategy. For example, if the selected gene’s code is 2, the value of this gene 
will be replaced by 1 in the first neighbor and by 3 in the second one. However, if 
the randomly selected gene is the domain’s upper bound (4) or the lower one, then 
the two neighbors are built by flipping firstly the gene to the previous value in the 
domain (3) then to the lower bound (0) or conversely.

Afterwards, each neighbor is evaluated and if one’s fitness turns out to be 
better, then it is introduced in the population to replace the first individual and so 
on Figure 7 shows an example of the decoding and repair stategy where the steps 
decoding then reparing are explained, the randomly selected gene’s code is 2, corre-
sponding to 90°. In order to respect the balancing composite rule, that gene should 

Figure 8. 
Flowchart of the optimization procedure based on the hybrid genetic algorithm (HGA).

Figure 7. 
Example of the decoding and repair strategy.
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be replaced by -30° (repair) so the entire laminate respects the composite design 
constraints. The Figure 8 shows the adopted HGA flowchart.

5.2 Application and results

A comparative study between the classical GA and the proposed HGA is  
presented in the following. GA and HGA are implemented in a Python 3 environment 
and computed based on the same parameters (see Table 1). Note that at each iteration, 
the algorithms run through a database containing individuals already assessed with 
their respective fitness calculated through the finite element analysis program called 
NASTRAN [37] and look for the latter from the stacks previously evaluated. Besides, 
two criteria are implemented to stop the running of GA: the first stops the algorithm 
after a fixed number of generations have been created whereas the second stops after 
a given number of generations without improvement of the best individual in the 
population. This second criterion assures a certain quality of the best design, even if it 
is only relative to the previous best design. The comparison criterion is the fitness and 
the execution time associated with the number of iterations to achieve convergence. 
Concerning the HGA, the stop criteria is a prior fixed number of iterations.

Table 2 summarizes the optimization results. After 100 iterations, the best 
reached laminate is composed of 6 plies per skin against 8 initially and respects 
all the design constraints of composite structures thanks to the adopted decoding 
and repair strategy. Besides both stiffness and buckling constraints are satisfied 
with margins of +39.2% and + 5.9% for GA and HGA, respectively. Furthermore, 
the total mass is decreased by 8.4% compared to reference. This shows that gener-
ally all genetic processes perform well by offering a convincing solution. In fact, 

Parameters Values

Total number of iterations 100

Number of individuals per generation 30

Chromosomes’ size 8

Mutation probability 0,2

Mutant gene per individual 1

Crossover probability 1

Number of individuals chosen during the selection 1

Number of iterations for the LS 5

Number of neighbors per individual 2

Table 1. 
Initialization of the algorithms’ parameters.

Laminate (°) S < 2e8 (N/m) B .2 03> M (Kg) Convergence 
(Iterations/Time CPU)

NASTRAN [45/0/30/0/−30/0/45/90] 1.9e8 2.73 357 —

GA [30/0/−30/30/−30/90] 1.4e8 2.15 327 26/70 min

HGA [30/0/−30/30/−30/90] 1.4e8 2.15 327 18/54 min

Table 2. 
Results of the comparative study between GA and HGA.
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the program converges always towards the optimal solution. However, HGA 
provides a decrease from 26 to 18 in the number of needed iterations to converge 
with a gain of 24 minutes on the associated elapsed time. Thereby, HGA can outper-
form the standard GA on this sandwich composite structure optimization problem 
which highlight the hybridization mechanism and its capacity in the improvement 
of convergence.

6. Conclusion

In this chapter we have underlined the importance of the process of hybridiza-
tion in ameliorating the global genetic algorithm behavior and especially its conver-
gence. In fact, although genetic algorithms are effective complete search algorithms 
able to combine both exploration and exploitation with crossover and mutation 
operators, they suffer from being computationally expensive and can hence be 
improved using local search methods, so they can be made competitive with other 
algorithms when the search space is too large to explore. More generally, the com-
bination of metaheuristics based on population as well as on local search, may offer 
more effective and dynamic methods for the solution of several problems.

The following important questions were asked: (1) when to apply local search 
optimization (2) to which individuals in the genetic algorithm should local searches 
be applied, and (3) what are the possible hybridizations that could improve the 
optimization results. Some answers to these questions have been provided par-
ticularly the reminder of the hybridization strategies and its different possible 
architectures in addition to the main local search methods known by their relevant 
coupling with the classical genetic algorithm. The latter being able to undergo dif-
ferent forms of hybridization thanks to its flexibility which is nevertheless one of its 
strongest points.

The application possibilities of these approaches are unlimited but in this 
chapter the test case that was presented is about an optimization algorithm com-
bining traditional genetic operators with an iterated local search method specially 
designed to pursue the problem of mechanical sizing of a composite structure. The 
genetic algorithm was chosen as the global optimization tool because of its ability to 
deal with non-convex and discrete optimization problems, of which the design of 
laminated composites is an example. Besides, its flexible structure makes it possible 
to integrate the management of different mechanical and manufacturing con-
straints through genetic operators and the implementation of specific optimization 
processes such as the decoding and repair strategy. The developed hybrid algorithm 
was validated by comparing its results to those obtained via the classical genetic 
algorithm as well as a reference finite element analysis software. That test case 
showed hence that the developed hybrid genetic approach is able to obtain efficient 
results in a real-world problem related to the aerospace sector.
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Chapter 3

Flexible Project Scheduling
Algorithms
Zsolt T. Kosztyán

Abstract

Despite the emerging importance of flexible project management approaches,
such as agile extreme and hybrid methodologies, the algorithmic support of these
approaches is still insufficient. In addition, single project scheduling has received far
more attention than have schedules of multilevel projects, such as project portfolios
or multi projects. This lack of scheduling techniques is especially true for flexible
portfolios, such as agile, hybrid, and extreme project portfolios. While multilevel
project scheduling algorithms already exist for fixed multilevel project structures,
they are not able to handle flexible structures. This chapter proposes algorithms to
schedule both flexible single and multilevel projects. The proposed algorithms
handle both flexible and unplanned tasks and dependencies. They handle both
single and multimode completion modes, and both renewable and nonrenewable
resources. In addition, this chapter proposes a matrix-based risk-valuation
framework to evaluate risk effects for flexible projects and portfolios. With this
framework, project scheduling approaches are compared.

Keywords: agile, extreme, hybrid projects, schedule, multilevel projects, agents

1. Introduction

Despite the flexibility, such as agile (APMa), hybrid (HPMa), and extreme
(EPMa), project management approaches come from the software project environ-
ment [1], and they are being increasingly used in nonsoftware environments as well.
Flexible project management methods require flexible project scheduling methods,
which allow flexible project structure [2]. Because of the time complexity, only a few
methods handle the flexible nature of the projects. Nevertheless, in recent years, a new
family of flexible schedulingmethods [3] has been proposed. Instead of network-based
methods, these algorithms are based on domain mapping (DMM) [4] and
multidomain mapping matrices (MDMs) [5]. To support the agile project manage-
ment approach, the proposed matrix-based methods handle both the priority of the
task completions and the flexibility of dependencies between tasks [2, 6]. In addition
to supporting extreme project management approaches, unplanned tasks can be
scheduled [7]. The proposed matrix-based method can also be used to plan traditional,
nonflexible projects. In this way, multimode completions can be specified. Neverthe-
less, the multimode and flexible project structures can also be combined to support
hybrid project management approaches. The proposed flexible scheduling algorithms
can be used not only in the projects but also at the project portfolio level [8].

The proposed matrix-based algorithm is based on the former studies [2, 6–8];
however, they are unified into the common matrix-based model, and they are
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extended to handle nonrenewable resources too. The proposed matrix-based model
and the scheduling algorithm have the following features.

1.They handle fixed, but also flexible dependencies and mandatory but also
supplementary tasks; therefore, traditional but agile project plans can also be
modeled.

2.They handle planned, but also unplanned tasks, therefore, they can also model
extreme project plans.

3.They handle single, but multimode completion modes; therefore they can also
model traditional, but hybrid project plans, too.

4.They can handle renewable, but non-renewable resources, too.

5.They can model single, but also multilevel project plans.

In order to keep the adaptability of the proposed method, all features in italic
style are optional. It means, when scheduling traditional project plans, there is no
need to plan any supplementary tasks, flexible dependencies, or unplanned tasks;
however, these features are optionally used in a flexible, such as agile, hybrid, or
extreme project planning. Selecting from the multiple completion modes (called
discrete technologies) is only relevant if there are more alternative technology. And
last but not least, planning in a multilevel project environment is also an optional
feature; however, it is crucial in the case of planning the resource sharing within the
multi-projects.

In addition to the tasks, the risk effects of project scheduling can also be modeled
[9]. The matrix-based risk evaluation has the following features:

1.Risk factors, risk effects, goals, and stakeholders can be modeled in a unified
matrix-based model.

2. It handles independent, but also interdependent risk factors.

3.Both the planning and the tracking phases are covered.

All the proposed algorithms have software application support [10]. Therefore, after
the model has been developed, the proposed methods can be compared. The MATLAB
add-on [10] with examples guides users from the project planning to the risk evaluation.

The aim of this chapter is twofold. First, the chapter shows how to model
flexible single and multilevel project plans and their risks. Second, the chapter
summarizes the algorithms, so-called project management agents, that simulate a
decision maker. In this way, the different project management approaches can
compete, and the best one can be selected.

2. Matrix-based project planning models

In terms of scheduling, a project is a set of tasks, which has to be solved,

1.within a time-frame (= time constraint, Ct),

2.within the budget (= cost constraint, Cc),
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3.within the renewable/nonrenewable resources (Cr,Cn), and

4.with adequate quality (Cq),

5.with adequate scope (Cs).

The fixed dependency between (successor and a predecessor) tasks specifies,
that a successor task may start if the predecessor task has finished (sequential
completion). While flexible dependency, based on a later decision either allows
either a sequential or a parallel completion.

In terms of planning and scheduling, the multilevel project is the set of projects.
Within a multilevel project, at least two overlapping projects specify amultiproject
[11], if they have common resources. While at least two projects specify programs, if
the goals of the projects are similar and they have dependency between them. In terms
of scheduling, project portfolios can contain single projects, multiprojects, and
programs too. While,multilevel projects can contain project portfolios, too.

Apart from network planning methods, matrix-based project planning is used to
model complex project plans [12]. Matrix-based project planning methods are often
based on the design (or dependency) structure matrix (DSM) [13]. The domain
mapping matrix (DMM) is an extended version of the DSM, with multiple domains
[4]. In this chapter, a modified project-oriented version of a domain mapping
matrix (DMM) is used, which is called the project domain matrix (PDM) [2].

The PDM contains two mandatory and four supplementary domains.
LD The logic domain is an n by n matrix, where n is the number of tasks. Each

cell contains a value from the [0,1] interval.
TD The time domain is an n by m matrix with positive real values, where m is

the number of completion modes1.
The first mandatory domain is the logic domain. Diagonal values in LD repre-

sent the priority values of the tasks. If a diagonal value is 0, then this task will not be
completed. If the diagonal value is 1, then the task is a mandatory task, while if the
diagonal value is between 0 and 1, then it is a supplementary task, which means that
depending on the decision, either it will be completed or omitted/postponed. Out-
diagonal values represent the dependency between tasks. If an out-diagonal value
LD½ �ij ∈LD is 1, then task i precedes task j. In the case of LD½ �ij ¼ 0, there is no
precedence relation from task i to task j. If 0< LD½ �ij < 1, then there is a flexible
dependency between task i and task j, which means the dependency is on whether
decision task i precedes task j. Since all project networks from the considered
databases do not contain any cycle, in other words, they can be ordered topologi-
cally, the logic domain of the topologically ordered project networks is an upper
triangular (sub) matrix. Formally LD½ �ij ≔0, if i> j. The other mandatory domain of
the PDM is the time domain. The positive values of the time domains represent the
possible duration of tasks. For each task, k duration values can be assigned; never-
theless, the duration values may also match each other.

The additional supplementary domains are:
CD Cost domain, which is an n by m nonnegative matrix of task costs
QD Quality domain, which is an n by m nonnegative matrix of quality

parameters of tasks

1 A task within a project can be solved by different kind of technology, which requires different kind of

(time, cost, quality, resource) demands and it has different kind of quality parameters. These

technologies are called as completion modes.
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ND The nonrenewable resource domain is an n by m � η nonnegative matrix of
nonrenewable resource demands, where η is the number of types of nonrenewable
resources.

RD The renewable resource domain is an n by m � ρ nonnegative matrix of
renewable resource demands, where ρ is the number of types of renewable resources.

Table 1 shows an example of a fully filled PDM matrix. There are 3 (2 manda-
tory, 1 supplementary) tasks, 3 (2 fixed, 1 flexible) dependencies, 2 completion
modes, 2 nonrenewable resources, and 3 renewable resources. The optional domains
can be either ignored or filled out with zero values.

Since PDM can model flexible dependencies and task priorities, it can be used to
model both traditional and flexible approaches, such as agile and extreme
approaches, and hybrid project planning approaches (see details in Section 3).
Nevertheless, handling completion priorities and flexible dependencies alone raises
the number of possible project plans.

The project can be organized into a multilevel project. The projects in the applied
M5 (matrix-based multimode multilevel (project) management model) share their
domains. Table 2 shows an example of a multilevel project plan. The common logic
domain allows us to plan flexible dependencies both within and between projects. It

P D M Logic
domain

Time
domain

Cost
domain

Quality
domain

Nonrenewable
resource domain

Renewable resource
domain

A B C t1 t2 c1 c2 q1 q2 n11 n12 n21 n22 r11 r12 r21 r22 r31 r31

A 1 1 .6 1 2 3 2 .7 .8 4 5 3 6 3 6 3 5 4 2

B 0 .7 1 2 2 4 3 .8 .9 3 3 4 4 4 7 4 6 4 3

C 0 0 1 4 3 5 3 .9 .8 4 2 5 3 4 2 4 7 6 4

Table 1.
The structure of the project domain matrix.

Table 2.
Matrix-based multimode multilevel (project) management model.
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handles the different completion modes; therefore, all the traditional, hybrid, and
agile project plans can be planned (see Table 2).

Because of the numerous possible project plans, there is no chance to compute all
possible projects or multilevel project plans. A fast, exact method is required to find
the best project or multilevel project structure.

After deciding which tasks are completed, which flexible dependency is
required, and which completion mode is selected, we obtain a (multilevel) project
plan. Table 3 shows, a single (a) and a multilevel (b) project schedule matrix
(PSM).

Table 3(a) shows a project schedule matrix of PDM (see Table 1), which contains
6 domains. Table 3(b) shows a possible project schedule M5 matrix representation of
a hybrid multilevel project (see Table 2), where there are 4 domains. In both models,
empty cells represent 0 values, and ‘X’ represents 1 value. ‘X’ also indicates that this
value is the result of a decision. The decision is always binary: either include or
exclude a task or a dependency. The PSM contains only one mode, i.e., the selected
completion mode for every task. PSM optionally contains the scheduled starts (SS) of
tasks. Otherwise, the default start is the early start (ES) of tasks.

3. Project management agents

Previously, [1] found that in his study of the practices of software project
managers, only 20% of IT projects were managed by a traditional project manage-
ment (TPM) methodology. Generally, methods for investment and construction
projects cannot be directly applied to software development or R&D projects, as
these are managed by agile project management (APM) approaches. Currently,
hybrid (i.e., combinations of traditional and agile and extreme) approaches are
becoming increasingly popular [14]. However, flexible approaches are thus far not
privileges for software development projects [15]. Rapidly changing environments
increasingly enforce flexible approaches. Project planning and scheduling

Table 3.
Single and multilevel PSM.

41

Flexible Project Scheduling Algorithms
DOI: http://dx.doi.org/10.5772/intechopen.101838



algorithms can support decision makers in managing projects; however, there are
only a few algorithmic procedures that can support flexible approaches. Therefore,
it is important to study how to extend project planning and scheduling methods to
handle flexible and changing environments. Planning and scheduling methods, as
agents, can also imitate decision makers; therefore, not only the methods but also
the scheduling and project planning approaches can be modeled (see Table 4).

While, a project manager who follows a traditional project management (TPM)
approach can use tradeoff or multimode methods to reduce task duration or cost/
resource demands, an agile and extreme project manager tries to restructure the
project. If the project structure is flexible (see Table 4), then the project duration
can be reduced without increasing the project cost by reducing the number of
flexible dependencies. In addition, in real project situations, decision makers can
choose from different kinds of technologies (i.e. completion modes); therefore, the
TPM and APM approaches can be integrated. Agile approaches usually split the
projects into smaller so-called “sprints” that are usually 2�6 weeks. The content of
sprints is specified by the customer and developers together. However, when run-
ning a sprint, unplanned new tasks and new requirements can be involved only
until the next sprint. The extreme project management (EPM) approach handles
the new tasks and new requirements during the implementation of the project.
Extreme project management can confirm the extra costs and the increased project
duration due to the extra tasks.

Flexible approaches require flexible project structures; however, in addition to
the opportunity to reorganize the project, different kinds of technology (completion
modes) should also be considered; therefore, traditional and flexible approaches
should be combined into hybrid project management approaches [14–16]. Never-
theless, hybrid approaches should be supported by algorithmic methods to help
decision makers ensure the project’s success.

There are different combinations of agile and traditional project management
approaches [14–16]. However, there are very few exact algorithms (see, e.g., [6, 7])
that can be used to solve hybrid multimode problems that can handle unplanned
tasks and dependencies. Nevertheless, R&D and IT projects, such as introducing
and setting up new information systems, may require reorganizing part of the
project, and R&D projects may require handling unplanned tasks, particularly in
the development phase. However, decreasing the time demands of mandatory tasks
and those of the new unplanned tasks may also be an important requirement.
Neither the agile approach, nor the extreme approach can handle this situation
properly, nor can traditional approaches. Traditional approaches, or network-based
methods, assume static logic plans, but the reorganization of projects may produce
insufficient reductions in project duration and/or supplementary tasks, and impor-
tant tasks may be excluded from the project due to budget constraints and/or
project deadlines. A hybrid project management (HPM) approach can combine
traditional, agile, and extreme approaches; however, these kinds of HPM

Planning approaches Features

Project structure New tasks Multimode Constraints

Traditional (TPM) Fixed Not allowed Handled Fixed

Agile (APM) Flexible Not allowed Not handled Fixed

Extreme (EPM) Flexible Allowed Not handled Flexible

Hybrid (HPM) Flexible Allowed Handled Optional

Table 4.
Comparison of the traditional and flexible approaches.
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approaches are not yet supported by project planning methods. The proposed algo-
rithm combines agile, extreme, and traditional approaches. This method extends
the traditional multi-mode resource-constrained project scheduling problem by
allowing for the restructuring and reorganizing of projects and handling of
unplanned new tasks.

The proposed hybrid time–cost and hybrid time-quality-cost tradeoff models [6]
and multimode methods [7] manage flexible project plans and allow us to restructure
or reorganize these project plans to satisfy customer and management claims. In
contrast to the traditional project scoring and selection methods, there is no need to
specify all project alternatives to select the most desirable project scenario or the one
with the shortest duration or lowest cost. The following definition specifies a matrix
representation of a flexible (multilevel) project plan and its possible realization.

Definition 1. Denotes �f g as a supplementary domain, which can be an empty
matrix. Denote M ¼ LD,TD, CDf g, QDf g, NDf g, RDf g½ � as a flexible (multilevel)
project plan, where LD and TD are mandatory but CD,QD,ND,RD are supple-
mentary domains. M00 ¼ LD00,TD00, CD00f g, QD00f g, ND00f g, RD00f g½ � is a realized
(fixed) (multilevel) project plan of M ifM00 is at least an n by nþ 1 but maximum n
by nþ 3þ ηþ ρ matrix with two mandatory and six supplementary domains. The
following properties are satisfied: if m denotes the number of nodes, ρ denotes the
number of renewable resources, η denotes the number of nonrenewable resources,
and p denotes the number of projects, then.

LD″: n by n logic domain, where L00
ik, js

¼ LD00½ �ik, js ∈ 0, 1f g:. L00
ik, js

¼ Lik, js ¼
LD½ �ik, js, if Lik, js ∈ 0, 1f g and either L00

ik, js
¼ 1 or L00

ik, js
¼ 0, if 0<Lik, js < 1, k, j ¼ 1, ::, p.

TD″: n by 1 column vector (time domain), where T 00
i ¼ TD00½ �ik ¼ T ik,ωik

¼
TD½ �ik,ωik

, and ik ¼ 1, 2, ::, nk,ωik ∈ 1, 2, ::,mf g, k ¼ 1, 2, ::, p.

CD″: n by 1 column vector (cost domain), where C00i ¼ CD00½ �ik ¼ Cik,ωik
¼

CD½ �ik,ωik
, and ik ¼ 1, 2, ::, nk,ωik ∈ 1, 2, ::,mf g, k ¼ 1, 2, ::, p.

QD″: n by 1 column vector (quality domain), where Q 00
i ¼ QD00½ �ik ¼ Qik,ωik

¼
QD00½ �ik,ωik

, and ik ¼ 1, 2, ::, nk,ωik ∈ 1, 2, ::,mf g, k ¼ 1, 2, ::, p.

ND″: n by η nonrenewable resource domain, where N 00
ik,w ¼ RD00½ �ik,w ¼

N ik,m� w�1ð Þþωik
¼ ND½ �ik,m� w�1ð Þþωik

, and ik ¼ 1, 2, ::, nk,ωi ∈ 1, 2, ::,m, k ¼
1, 2, ::, p,w∈ 1, ::, ηf g.

RD″: n by ρ renewable resource domain, where ℛ00
ik,r ¼ RD00½ �ik,r ¼

ℛik,m� r�1ð Þþωik
¼ RD½ �ik,m� r�1ð Þþωik

, and ik ¼ 1, 2, ::, nk,ωi ∈ 1, 2, ::,m, k ¼
1, 2, ::, p, r∈ 1, ::, ρf g.

Definition 1 proposes a unified matrix-based model, both for single and
multilevel project plans, and both for single and multimode completions. In
addition, by increasing n allows involving the unplanned tasks.

3.1 Demands

Definition 2. Let M00 ¼ LD00,TD00, CD00f g, QD00f g, ND00f g, RD00f g½ � be a matrix
representation of the realized (multilevel) project, which contains p> 1 projects.
Assume that ik < jk ) LD00½ �ik, jk ¼ 0. Denote SFik ¼ SSik þ T ik as the scheduled
finish time of task ik from project k, where SSik is the scheduled start time and tik is
the duration of task i from project k. Denote Rr,k τð Þ as the maximum resource
demand of renewable resource r for project k at a time τ. Denote τ0k as the start time
of project k and τ0 as the start time of the multilevel project. The total project values
are defined as follows:
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TPT: Total project time TPTkM00) of project k and the duration of the multilevel
project (TPTM00).

TPTkM00 ¼ max
ik

SFik , (1)

TPTM00 ¼ max
i

SFi: (2)

TPC: Total project cost (TPCkM00) of project k and the total cost of the
multilevel project (TPCM00).

TPCkM00 ¼
X
ik

CD00½ �ik , (3)

TPCM00 ¼
X
k

TPCkM00 (4)

TPQ: (relative) total project quality (TPQkM
00) of project k and the total quality

of the multilevel project (TPQM00).

TPQkM
00 ¼

X
ik

QD00½ �ik=max
m

QD½ �im,k
, (5)

TPQM00 ¼
X
k

TPQkM
00=max

m
QD½ �im,k

(6)

where m is the completion mode.
TPN: Total project nonrenewable resource demands j (TPNe,kM00) of project k

and the total nonrenewable resource e of the multilevel project (TPNeM00).

TPNe,kM00 ¼
X
ik

ND00½ �ik , (7)

TPNeM00 ¼
X
k

TPNe,kM00 (8)

TPR: Total project renewable resources (TPRr,kM00) of project k and the total
project resources of the multilevel project for resource r (TPRrM00).

TPRr,kM00 ¼ max
τ0k ≤ τ≤TPTkM00

Rr,kτ, (9)

TPRrM00 ¼ max
τ0 ≤ τ≤TPTM00

Rrτ (10)

TPS: Total project score (TPSkM,M00) of project k and the total score of the
multilevel project (TPSM,M00).

TPSkM,M00 ¼
X

l00ik ,ik¼1

lik,ik , (11)

TPSM,M00 ¼
X
l00i,i¼1

li,i: (12)

3.2 Relative constraints

Definition 3. Denote CX,X ∈ T,C,Q,N,R, Sf g as the time, cost, quality,
nonrenewable resource, renewable resource, and score constraints, respectively.
Denote CX% ¼ CX�TPXmin

TPXmax�TPXmin
as the relative constraints.
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It is important to note that the relative constraint should be within the [0,1]
interval (CX%∈ 0, 1½ �) to find a feasible solution. Nevertheless, the minimal and
maximal demands (TPXmax,TPXmin) can be calculated without specifying all pos-
sible solutions (see Section 3.4).

(CXk) constraints can be defined not only for project k ¼ 1, ::, p but also for
multilevel projects.

3.3 Target function

Either simple or composite target functions can be specified both for single and
multilevel projects.

Simple target functions:

TPTk ! min ,TPT ! min : (13)

TPCk ! min ,TPC ! min : (14)

TPQk ! max ,TPQ ! max : (15)

TPNe,k ! min ,TPNe ! min : (16)

TPNr,k ! min ,TPNr ! min : (17)

TPSk ! max ,TPS ! max : (18)

where k ¼ 1, ::, p, e ¼ 1, ::, η, r ¼ 1, ::, ρ.
The composite target function handles all possible targets with their importance:

Y
X ∈ T,C,N,Rf g

TPX � TPXmin

TPXmax � TPXmin

� �vX

�
Y

X ∈ Q, Sf g

TPXmax � TPX
TPXmax � TPXmin

� �vX

! min

(19)

where vX is the weight of the importance of demands (
P

XvX ≔ 1).

3.4 Main properties of the exact evaluation

Due to the size constraints, only the main feature of the proposed algorithm is
summarized. See the details in [6, 8].

1.The evaluation contains three steps.

a. First, the diagonal values of the LD are evaluated. All supplementary
tasks (0< LD½ �ii < 1) are decided either to exclude from or to include in
the (multilevel) project.

b. In the second step, all flexible tasks (0< LD½ �ij < 1, i> j) are evaluated.
They are either excluded or included.

c. In the third step, all completion modes are evaluated. For every task, a
completion mode is selected.

2.For every kind of multilevel project plan, the minimal (maximal) demands can
be specified without calculating all possible solutions.
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a. If all supplementary tasks are excluded (included), the TPS is minimal
(maximal).

b. If all supplementary tasks are excluded (included), and all completion
modes require minimal (maximal) demands, TPC and TPN are minimal
(maximal).

c. If all supplementary tasks are excluded (included), and all dependencies
are excluded (included) and all completion modes require minimal
(maximal) demands, TPT is minimal (maximal).

d. If all supplementary tasks are excluded (included), but all dependencies
are included (excluded) and all completion modes require minimal
(maximal) demands, TPR is minimal (maximal).

3.Due to the evaluation, if the minimal (maximal) demands are greater (lower)
than the constraint, neither the project plan nor their derived plans are
feasible.

Based on these properties, exact back and forth algorithms are proposed to find a
single project schedule [7] or multilevel project structure [8]. All methods contain

Table 5.
The phases of the computation.
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three phases. In the first phase, binary decisions select supplementary tasks to include
the project plan. The excluded tasks’ demands and dependencies (i.e., rows and col-
umns in the PDM) are also ignored. The result is a project scenario, which still contains
flexible dependencies, but it is decided that all tasks will be completed. Phase two
decides flexible dependencies to include or exclude, or in other words, the flexible
dependency between tasks either to be specified or to be ignored. A single (multilevel)
project structure is the result of this phase, which contains only fixed dependencies. In
the last phase, we obtain traditional project plans, which must be solved by standard
project scheduling algorithms. The result of this phase is the single (multilevel) project
schedule, where the completion modes and start times of all tasks are specified.

Table 5 shows an example for the computation process of a single project, where
the target function is the minimal project duration. Task E is unplanned, which
means, the constraints are specified before task E occurs. Table 5(a) shows the
original project plan, where there are 3 completion modes, 2 renewable resources,
cost demands, and quality parameters. There is no nonrenewable resource, how-
ever, the cost demand can be considered as a special nonrenewable resource. While
keeping constraints, the algorithm has to find a minimal project duration.

Theminimal TPT occurs if all flexible tasks and dependencies are excluded,
however, neither the scope nor the quality constraint does not allow to exclude all tasks
(seeTable 5(b)), but only task D. In addition, all flexible dependencies cannot be
excluded. For example, in the case of the parallel execution of task A and task C, the
resource constraint cannot be kept (seeTable 5(c)). The algorithm excludes the infea-
sible structures in phases 1�2. The result of phase 2 provides a multimode resource-
constrained project scheduling problem, which can be solved by traditional scheduling
algorithms. The final result is a project schedulematrix (PSM) (seeTable 5(d)), where
both the structure of the project plan and its demands are specified (seeTable 5(e)).

4. Risk evaluation

Kosztyán et al. [9] proposed a flexible matrix-based method for risk evaluation
for single projects, where all the risk factors, such as changes of durations, changes of
resource demands, or even the changes of the task priorities; risk effects, such as
delays, overbudgets, etc.; stakeholders, such as managers, vendors and developers
and their goals, such as minimal project duration, minimal costs, maximal quality,
etc., and their inter-dependencies can be modeled. Nevertheless, phases of risk
evaluation can be extended to the multiproject level.

The proposed survival analysis-based risk evaluation (SABER) contains three
stages (or phases). In all phases, the feasibility of the projects is checked. A project
plan is a surviving project plan if it is still feasible at the end of the risk evaluation
process. The evaluation process covers the preparatory, planning, and tracking
stages. With SABER, the agents can be compared and competed with each other.
The decision maker decides whether a traditional approach, such as TPMa, or a
flexible approach, such as APMa, EPMa, or even the hybrid (HPMa) approach,
should be applied. The SABER contains the following stages:

1.Since before starting projects, the boundary conditions of the project are
agreed upon, at stage one, the effects of changing constraints are examined.

2.At stage two, a two-step Monte Carlo Analysis (MCA) is applied. In the first
step, the set of tasks and the relationship of risk factors are selected, while in
the second step, the changes in demands and priorities are changed for the
selected tasks.
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3.At stage three, the two-step MCA is also applied, but only for the remaining and
running tasks of running projects.

Figure 1 shows the simulation framework of the SABER.
The simulation framework indicates, which project plans survive. It shows the

performances of applied agents and sensitivities of risk effects, and in addition, the
interdependency of risk factors and risk effects, see in detail in [9].

5. Computer applications

There are free available matrix-based project planning tools for flexible projects
[10]. This plug-in can be applied both for project planning and for risk evaluation. It
contains 5 domains, such as LD, TD, CD, QD, and RD. It solves several project
scheduling problems (PSPs) for flexible projects, such as Pareto-optimal
(multimode) resource-constrained PSPs for a single target function and their
Pareto-optimal solutions for multiple targets.

6. Application examples

The application example guides us through matrix-based planning and risk
evaluation phases.

The first step is to specify a matrix-based project plan. It can come from the
original network-based project plan, but it can be generated. In this case, at least the
number of tasks, number of modes, and number of resources have to be specified.

Figure 2(a) shows the logic structure of the flexible project plan. The minimal
structures and their demands contain only mandatory tasks and fixed dependen-
cies, while the maximal structure and its demands save all tasks and dependencies,
and therefore, all demands. Figure 2 shows the minimal/maximal demands.

Figure 2 shows that there are significant differences between the minimal and
maximal structures and their demands. Flexible and hybrid approaches can

Figure 1.
The simulation framework.

Figure 2.
Minimal/maximal structures and demands (the number of tasks was 30, and the number of completion modes
and the number of renewable resources was 2).
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reorganize project structures and reprioritize task completion to save the project
plan as feasible. Figure 3(a) shows the result project structures of the project
management approaches. Figure 3(b) compares the project demands. The target
function was the minimal distance from the minimal demands, while the constraint
was 2/3 of the maximal demands. The vertical axis of 3(b) is the performance
(TPX%) of the project plans, which is the relative distance between the minimal
demands.

TPX% ¼ TPX � TPXmin

TPXmax � TPXmin
(20)

If TPX%∈ 0, 1½ � for all demands, then the project plan is feasible.
Figure 3 shows that the flexible and hybrid project management approaches try

to parallelize task completions and exclude low priority tasks, while TPMa tries to
reduce demands but keeps all tasks.

Figure 4 shows the comparison of scheduling performances of the project man-
agement approaches under risks. Figure 4 shows that in this case, only the HPMa
ensures the survival of the project plan.

Figure 3.
The comparison of project management approaches.

Figure 4.
The scheduling performances of project management approaches under risks.
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7. Conclusions

In this chapter, matrix-based approaches are proposed to schedule traditional,
flexible, and hybrid project plans. In addition, a risk evaluation tool is proposed to
compare project management approaches. It is important to note that there is
usually no superior project management approach. If the goal is to complete all
tasks, traditional approaches are required; however, flexible projects require flexi-
ble project management approaches. Nevertheless, hybrid approaches can better
ensure the survival of the project. The study also offers freely available matrix-
based project planning applications; therefore, all traditional, flexible, and hybrid
project management, planning and scheduling approaches can be supported.
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Nomenclature

CD cost domain
LD logic domain
ND nonrenewable resource domain
QD quality domain
RD renewable resource domain
TD time domain

Variables

n number of tasks
m number of completion modes
p number of projects
η number of nonrenewable resources
ρ number of renewable resources
τ actual time of a running project

Constraints

Ct time constraint (upper bound, scalar)
Cc cost constraint (upper bound, scalar)
Cq quality constraint (lower bound, scalar)
Cn nonrenewable resource constraint (upper bound, 1 by η vector)
Cr renewable resource constraint (upper bound, 1 by ρ vector)
Cs score/scope constraint (lower bound, scalar)

Simple target functions

TPT ! min minimize project duration
TPC ! min minimize project cost
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TPQ ! max maximize project quality
TPNe ! min minimize the sum of nonrenewable resources e, e ¼ 1, ::, η
TPRr ! min minimize the maximum of renewable resources r, r ¼ 1, ::, ρ
TPS ! max maximize project score/scope

Abbreviations

APM(a) agile project management (agent)
DMM domain mapping matrix
DSM design/dependency structure matrix
EF early/earliest finish time
EPM(a) extreme project management (agent)
ES early/earliest start time
HPM(a) hybrid project management (agent)
LF late/latest finish time
LS late/latest start time
M5 matrix-based multimode multilevel (project) management model
MCA Monte Carlo analysis [MDM] multidomain matrix
MPE reverse extreme project management
MPR multilevel project ranking algorithm
NDSM numerical dependency structure matrix
PDM project domain matrix
PSP project scheduling problem
PSM project schedule matrix
SABER survival analysis-based risk evaluation
SF scheduled finish time
SS scheduled start time
TPC total project cost
TPM(a) traditional project management (agent)
TPN total project nonrenewable resources
TPQ total project quality
TPR total project renewable resources
TPS total project scenario score
TPT total project time
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Chapter 4

Particle Swarm Optimization of
Convolutional Neural Networks
for Human Activity Prediction
Preethi Gunishetty Devarakonda and Bojan Bozic

Abstract

The increased usage of smartphones for daily activities has created a huge
demand and opportunities in the field of ubiquitous computing to provide person-
alized services and support to the user. In this aspect, Sensor-Based Human Activity
Recognition (HAR) has seen an immense growth in the last decade playing a major
role in the field of pervasive computing by detecting the activity performed by the
user. Thus, accurate prediction of user activity can be valuable input to several
applications like health monitoring systems, wellness and fit tracking, emergency
communication systems etc., Thus, the current research performs Human Activity
Recognition using a Particle Swarm Optimization (PSO) based Convolutional Neu-
ral Network which converges faster and searches the best CNN architecture. Using
PSO for the training process, intends to optimize the results of the solution vectors
on CNN which in turn improve the classification accuracy to reach the quality
performance compared to the state-of-the-art designs. The study investigates the
performances of PSO-CNN algorithm and compared with that of classical machine
leaning algorithms and deep learning algorithms. The experiment results showed
that the PSO-CNN algorithm was able to achieve the performance almost equal to
the state-of-the-art designs with a accuracy of 93.64%. Among machine learning
algorithms, Support Vector machine found to be best classifier with accuracy of
95.05% and a Deep CNN model achieved 92.64% accuracy score.

Keywords: Human Activity Recognition, Particle Swarm Optimisation,
Convolutional Neural Network, Time Series Classification, Deep Learning, Sensors

1. Introduction

1.1 Background

Activity Recognition aims at identifying the activity of users based on series of
observations collected during the activity in a definite context environment. Appli-
cations that are enabled with activity recognition are gaining huge attention, as
users get personalized services and support based on their contextual behavior. The
proliferation of wearable devices and smartphones has provided real-time monitor-
ing of human activities through sensors that are embedded in smart devices such as
proximity sensors, cameras, microphone, magnetometers accelerometers, gyro-
scopes, GPS etc., Thus, understanding human activities in inferring the gesture or
position has created a competitive challenge in building personal health care

55



systems, examining wellness and fit characteristics, and most pre-dominantly in
elderly care, abnormal activity detection, diabetes or epilepsy disorders etc.,

Thus, Human Activity Recognition (HAR) plays a significant part in enhancing
people’s lifestyle, as it should be competent enough in learning high level quality
information from raw sensor data. Effective HAR applications are incorporated for
contextual behavior analysis [1], video surveillance analysis [1], gait investigation
(to determine any abnormalities in walking or running), gesture and position
recognition.

1.2 Research problem

Human Activity Recognition (HAR) is evolving to be a challenging time series
classification task which involves predicting the human activity based on sensor
data where the data points are recorded at regular intervals. Though HAR seems to
be the straightforward approach of performing HAR, there are numerous issues and
challenges that are encountered in selecting the appropriate feature processing
technique and thus choosing the correct modeling algorithm for the time series data
is crucial. Thus, the conventional approaches have made extraordinary progress on
Human Activity Recognition (HAR) by incorporating machine learning algorithms
such as Naïve Bayes, Decision Tree, Support Vector Machine, Logistic Regression as
there are only few labeled data. It requires domain knowledge to manually process
the feature extraction. On the other hand, deep learning algorithms has seen high
performance in areas like Natural language Processing, Object Recognition etc., In
spite of these advancements, another line of research has emerged in applying
nature-inspired meta heuristic optimization techniques like Particle Swarm Opti-
mization, Genetic Algorithms on Neural Networks. The research question that is
aimed to be addressed in the current study can be concisely stated as below.

“To what extent can the Particle Swarm Optimized Convolutional Neural Network
significantly enhance the recognition of human activity from raw inertial sensor data when
compared with supervised machine learning algorithms and Deep Learning Algorithms”.

Algorithms: Naive Bayes, Support Vector Machine (SVM), Random Forest
(RF) Long Short-Term Memory (LSTM), Convolutional Neural Network
(CNN), PSO Optimized Convolutional Neural Network.

1.3 Research objectives

The most feasible solution in overcoming these challenges could be by looking
into existing works and analyzing the experimental set up. Thus, picking the right
sensor and right gestures with demonstrated capabilities can significantly eliminate
the chances of inaccurate sensor data. The traditional machine learning algorithms
require large amount of labeled static data and manually performing the feature
selection tasks. But in real applications most of the activity data are unlabelled and
entire data needs to be analyzed. Since Deep Learning methods can perform train-
ing on the entire data, and analyzing the complex features, this study focuses on
investigating the performance various deep learning models in classifying the time
series data.

Convolutional Neural Network requires large number of parameters to tune and
it is time consuming. The study explores the optimization using metaheuristic
algorithm Particle Swarm Optimization for Convolutional Neural Network. Thus,
the study has a deep investigation towards major approaches followed in HAR
namely, machine learning using hand-crafted features and deep learning using raw
inertial signals. The process in which the research carried to achieve the results is
mentioned below.
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1.Exploring the previous works on Human Activity Recognition, identifying
gaps in the research with a detailed analysis.

2.Data Preparation and Data Pre-Processing is conducted by considering two
versions of the dataset.

3.Designing a solution to perform Human Activity Recognition by using Particle
Swarm Optimized Convolutional Neural Network.

4.Implementing the solution fortified in the proposed design and tune the
models to obtain the expected accuracy.

5.Evaluate the performance of the various models.

6.Comparing the results obtained for different models and place the findings in
the study.

2. Review of existing literature

This section provides an overview on Human Activity Recognition and its
applications. Various approaches for HAR task are discussed. Particularly, Sensor
based HAR is detailed with different sensor modalities. Additioanlly gives an over-
view of the modeling approaches for HAR.

Sensor Based Human Activity Recognition: Due to the immense growth of
sensor technology and ubiquitous computing, sensor-based Human Activity Recog-
nition is gaining attention which is widely used with enhanced protection and
privacy. According to [2], the HAR task can be achieved by placing the sensors at
different locations to recognize human activity for specific context Table 1 based
on sensor placements at different locations. HAR with different sensor modalities
are listed below.

Body-worn sensors/wearable sensors Wearable sensors are one of the widely
used sensor modalities in HAR. These sensors are often worn or attached to the
users, namely an accelerometer, gyroscope, and magnetometer. As the human body
moves, the acceleration and angular velocity are varied, this data is further analyzed
to predict the activity. These sensors can be embedded in smart phones, smart
watches, fit bands, headbands etc., The Figure 1 shows the different wearable
sensors that can be used by humans [4, 5] studies the significance of sensor and its
appropriate position to be placed on the body of the user. Many research are
conducted to investigate the variability in accuracies by placing the sensors on

Modality Description Sensor Types

Wearable Usually Worn by the user to capture the
body movements

Smartphone, watches gyroscope,
accelerometer

Object Sensors Mounted on objects to capture objects
movements

RFID, accelerometer on objects

Ambient Sensors Mounted in environment surroundings to
record user interaction

Bluetooth,Sound,WiFi,

Hybrid Sensors Combination of multiple sensors Multiple types, often deployed in
smart environments

Table 1.
Sensor modalities for human activity recognition tasks [3].
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different pasts of human body. One such study is performed by [6] by placing
sensors on chest and wrist for duration of two hours which gave 83% classification
accuracy.

Thus, wearable sensors were widely used for HAR [7] in various health moni-
toring systems. In recent days, inertial sensing, that uses movement-based Sensors
which can be attached on user’s body has been studied widely [8]. Among those
work, the accelerometer is mostly used sensor for collecting position details. Gyro-
scope and magnetometer are also used in combination with accelerometer.

2.1 Modeling approaches for human activity recognition

In any data mining project, the choice of the appropriate modeling algorithm does
not depends only on the type of problem to solve, but also on the type of input data.
Due to the natural ordering of the temporal feature data, the Human Activity Recog-
nition is considered as a typical pattern-recognition system where it involves classi-
fying the human activity based on the series of data. The main difference between
Machine Learning Algorithms and Deep Learning Algorithms in recognizing human
activity is the way the input features are extracted. In this aspect, the below sections
explain the methodology chosen for the task of Human Activity Recognition.

Machine Learning Algorithms for Human Activity Recognition: Considering
HAR as one of the pattern recognition problem, the conventional pattern recognition
methods have seen extraordinary results by utilizing machine learning algorithms like
hidden Markov models, decision tree support vector machine, naive Bayes [9]. The
Figure 2 illustrates the process of Human Activity Recognition using hand-crafted
features modeled with machine learning algorithms. The raw inertial activity signals
received from the sensors are subjected to feature -extraction process by domain
knowledge experts [10]. The features that are usually extracted are based on two
main domain features namely; time domain and frequency domain [11]. The time

Figure 1.
Body worn sensors [4].
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domain features are computed based on mathematical functions to extract statistical
details from the signals. The frequency domain features possess mathematical func-
tions that record recursive patterns of signals. Thus, in machine leaning approach for
HAR, the input data are always extracted from human engineered hand-crafted
features. These features may be further pre-proceed using Data Dimensionality
Reduction techniques to select the significant features.

Selecting important features is more significant than choosing a classification
algorithm [12], this is because poor quality features may hinder the performance of
the classifier. Hassan et al. [13] in his recent work, employed Kernel Principal
Component Analysis (KPCA) which works based on statistical analysis before
applying modeling. Furthermore, [14] employed Stepwise Linear Discriminant
Analysis (SWLDA) which is a non-linear method, selects the subset of features by
using regression combined with F-test. The model showed enhanced performance
after applying Data Dimensionality Technique.

Different modeling algorithms have been employed to predict the human activ-
ity recognition. Ravi et al. [15] in his work used Naïve Bayes classifier with few
parameter settings to classify 8 different activities, which outperformed other clas-
sification algorithms. Several research employed Naive Byes as the primary classi-
fier for human activity recognition [16, 17].

In recent times, learning algorithms which are based on error computation
namely; Artificial Neural Networks [18, 19] Support Vector Machine [20, 21]
new are used for predicting HAR without any Data pre-processing technique
applied.

The most used modeling algorithms that showed efficient results as per the
study are Naive Bayes, Multinormal Logistic Regression, K - Nearest Neighbor
Hidden Markov Models, Support Vector Machine and Artificial Neural Network.

Deep Learning Approaches for Human Activity Recognition: Though, con-
ventional Pattern Recognitions (PR) approaches gained satisfactory results in HAR,
these methods heavily rely on hand crafted feature generation usually done by
domain expertise [22]. This sometimes leads to error in collection data and missing
some significant data points. On the other hand, Deep Neural Networks are capable
of automatic feature extraction without human intervention. In fact, the model
becomes more robust when data is large [23].

The Figure 3 illustrates the process of HAR followed by Deep Learning Algo-
rithms. Initially, the raw sensor signals collected from inertial sensors (accelerome-
ter, gyroscope etc.,) are it is directly subjecting to modeling, where no feature
extraction step is performed. Additionally, deep learning follows a unsupervised,
incremental learning which makes it more feasible to implement HAR tasks [24].

Figure 2.
Process of human activity recognition using hand-crafted features modeled with machine learning algorithms.
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Several Deep learning mode were employed to perform Activity Recognition in
various contexts. Liu et al. [25] investigated the performance of Restricted
Boltzmann Machines for Activity Recognition from data collected through smart
watches. The method outperformed other models and gained high accuracy results
with less computation time.

Additionally, Long short-term memory (LSTM) models has been utilized to
predict the activity performed for unbalanced real world data where the model
performance wss evaluated using f1 score due to imbalance nature of data [26].
Vepakomma et al. [27] the hand-crafted features are obtained from inertial sensors,
and these features are added into DNN algorithm. In this aspect, [28] used PCA as a
Dimensionality Reduction Technique before modeling to Deep Neural Network
(DNN). However, since domain knowledge is used for feature extraction, the model
cannot be generalized.

Some works used Recurrent Neural Network (RNN) for the HAR [26, 29],
where the learning rate and computational power are the main constraints. More
time is invested in finding the optimal set of hyper parameters that provides the
best results. Inoue et al. [30] identified various model parameters and
recommended a model that would achieve high accuracy of HAR by turning the
hyperparameters. The main constraint of RNN based Human Activity Recognition
models is to deal with the time, power constraint environment, while still thriving
to achieve good performance results.

Furthermore, CNN’s are used more extensively for HAR tasks with varied
experimental settings. In general, CNNs are mostly used for image classification
using 2-Dimensional Convolution since it accepts the data with shape n * n. Several
works resized the single dimension input data to a 2D image so as to make use of 2D
convolution. Ha et al. [31] used similar approach in reshaping the input data to a 2D
image. While [7] designed a complex design of CNN algorithm by transforming
time series data into an image. Other works include [32, 33] performed data trans-
formation to achieve CNN model driven results.

3. Why particle swarm optimization?

As seen from the above section, deep learning networks have gained better
results with less efforts in parameter settings. In particular, Deep Convolutional
Neural Networks are used extensively due to its flexibility in both data driven
approach (Using 1D Convolution for signal data) and model driven approach

Figure 3.
Process of human activity recognition using raw inertial signals modeled with deep learning algorithms.
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(data transformation of signal data to a 2D image). In order to gain higher perfor-
mance of the model, several layers has to be used and parameter initialization has to
be done carefully. This needs a detailed knowledge on CNN architecture and also on
the dataset.

Thus, to find the optimal CNN architecture automatically without human inter-
vention, a meta heuristic algorithm Particle Swarm Optimisation is utilized which is
easy to implement with lower computational cost.

Theory:
Particle Swarm Optimization (PSO) is a nature inspired, meta-heuristic algo-

rithm often used for discrete, continuous and sometimes for combination optimi-
zation problems. The PSO was first introduced by Kennedy and Eberhart in 2001
[34] which is inspired by the pattern followed by a flock of words during flying.
PSO works by making only few or no assumptions regarding the problem being
optimized and possess the ability to search large spaces of candidate solutions in an
efficient manner.

In PSO, a particle is called a single solution and the total of all such solutions is
termed as swarm. The main ideology behind PSO is that each particle is well known
of its velocity and the best configuration achieved in the past (pBest), and the
particle which is the current global best configuration in the swarm of particles
(gBest). Hence, at every current iteration, each particle updates its velocity in such
a way that its new position will be close enough to global gBest and its own pBest at
the same time. The velocity and particle vector are adjusted based to the following
Eqs. 2.1 and 2.2 respectively:

vid tþ 1ð Þ ¼ w ∗ vid tð Þ þ c1 ∗ r1 ∗ Pid � xid tð Þð Þ þ c2 ∗ r2 ∗ Pgd � xid tð Þ� �
(1)

xid tþ 1ð Þ ¼ xid tð Þ þ vid tþ 1ð Þ (2)

where vid indicates the velocity of ith particle in the dth dimension, zid indicates
the position of ith particle in the dth dimension, Pid and Pgd represents the local best
and the global best in the dth dimension, r1 and r2 are the random numbers between
the range 0 and 1, c1, c2 and w, are acceleration coefficient for exploitation,acceler-
ation coefficient for exploration and inertia weight respectively. Since the encoded
vector in the proposed method is fixed-length and consists of decimal values, and
PSO is effective to search for the optimal solution in a fixed-length search space of
decimal values, the proposed method will use PSO as the search algorithm. One of
the advantages of PSO is that they converge at a faster rate than Genetic Algorithms
(GA).

Gaps in the Research:
The literature review outlines the existing works on Human Activity Recogni-

tion in terms of the modeling approaches chosen. However, certain gaps are found
in both the approaches.

Some research works employed Machine Learning Approach to perform HAR
with hand-crafted features faced low performance as only shallow features are
explored and learned by the classifiers. Before deep learning was used extensively,
shallow neural network classifiers, that is Multi-Layer Perceptron (MLP), was con-
sidered to be a promising algorithm for HAR. In this aspect, [35] performed HAR
with algorithms like logistic regression, decision tree and MLP and MLP
outperformed the other two models.

As deep convolutional neural networks (CNNs) has been used to obtain the
excellent results in most of the image classification benchmarks datasets, they have
overcome the need of human experts for classification. But still, it remains a chal-
lenging task to find the meaningful CNN architecture that would apply for all type
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of domains. As a result of some of the successful CNN’s architecture like ResNet
[36], VGG16 [37], DenseNet [38] were introduced recently considering domain
knowledge. The results from this outperformed the state-of-the-art baseline CNN
model. However, the CNN’s architecture are designed by doing lot of trial and error
methods and are suitable to handle problems only in specific context.

PSO algorithm was employed to train an Artificial Neural Network by [39]. The
results show that ANN’s training time was reduced with PSO greatly. In this aspect,
[40] designed PSO algorithms for two tasks that is to train ANN and to find better
architecture. This resulted in achieving competitive result than other models.

Thus, most of the works in PSO was used to find optimal architectures in full
connected networks [41], but these cannot be used for tasks like image classification,
activity recognition which indeed used a complex deep layers. Human Activity Rec-
ognition. Recently, [42] came up with PSO trained for CNN architecture that is
suitable for only image classification with 2-Dimensional Convolutions. The experi-
ment was performed with 10 benchmark datasets, and the results were outstanding.

However, there is not much work done on using 1-Dimensional Convolution for
finding optimal architectures in CNN. Considering the gaps in the literature review,
the current research aims to address few issues and find solutions that generalizes
the models for Human Activity Recognition tasks.

Research Question: Thus, considering the gaps in the above mentioned litera-
ture review, this research aims to address the below research question.

“Towhat extent can the Particle SwarmOptimized Convolutional Neural Network
significantly enhance the recognition of human activity from raw inertial sensor data when
compared with supervised machine learning algorithms andDeep Learning Algorithms”.

4. Experiment design and methodology

This chapter gives the plan and the research methodology used for performing
the research. The Cross Industry Standard Process for Data Mining (CRISP–DM), a
well proven methodology with a structured approach (Piatetsky, 2014) is employed
to conduct the current study.

The Figure 4 shows the design flow to be followed for the current research. The
experiment begins with the Business Understanding phase, which indicates what is
to be accomplished from a business perspective. The expected outputs of this phase

Figure 4.
Design flow.
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form the main objectives of the project. Here the insights and goals of the project are
defined. In order to answer the research question, the experiment is conducted with
two versions of the datasets which is explained in Data Understanding Phase.
Additionally, data description report is prepared to understand each filed descrip-
tion. This is done separately for both the datasets.

The third phase is the Data preparation stage. Here the data is checked for
duplicates, null records and appropriate action is taken to address them. Further,
new derived fields can be formed based on the domain knowledge. Data from
multiple databases are integrated to form the final dataset for modeling. The fourth
step is the modeling stage.

Based on initial analysis done from the literature review, suitable modeling
technique is chosen and applied on the two versions of the dataset. Next phase is
Evaluation phase. Based on the evaluation criteria, models are evaluated to see if it
meets the business objective.

Business Understanding: The primary aim of the project is to identify a best
classification algorithm which identifies the different human activities in motion
accurately. Thus, the predicted activity can be applied to multiple applications like
health monitoring and controlling systems, wellness and fit tracking, alarming to
emergency situations etc.,

• Business Success Criteria: The solution for the research problem must not only
find the models which performs in classifying target data, but also ensure to
show the confirmation that the results obtained are significant and is consistent
when tried to repeat the solution. By considering the above business objectives,
evaluation criteria and constraints, below hypothesis is formed to answer the
research question.

Hypothesis 1

• Null Hypothesis (H0): If Particle Swarm Optimized Convolutional Neural
Network is used instead of supervised machine learning then there is no
significant improvement in classification of Human Activity in terms of
accuracy and the F1 score.

• Alternate Hypothesis (HA): If Particle Swarm Optimized Convolutional Neural
Network is used instead of supervised machine learning, then there is
significant improvement in classification of Human Activity in terms of
accuracy and the F1 score.

Hypothesis 2

• Null Hypothesis(H0): If Particle Swarm Optimized Convolutional Neural
Network is used instead of deep learning algorithms, then there is no
significant improvement in classification of Human Activity in terms of
accuracy and the F1 score.

• Alternate Hypothesis (HA): If Particle Swarm Optimized Convolutional Neural
Network is used instead of deep learning algorithms, then there is significant
improvement in classification of Human Activity in terms of accuracy and the
F1 score.

Data Understanding: The dataset used in this study is downloaded from UCI
Machine Learning Repository created at SmartLab, one of the Research Laboratories
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at DIBRIS at University of Genova. (Anguita, 2006) experimented on a group of 30
volunteers within a range of age between 19 and 48 years who were performing
daily activities. Each subject are volunteer performed daily activities which are
monitored while carrying a smartphone (Samsung Galaxy S II) that is waist-
mounted. The smartphone was embedded with inertial sensors.

With the help of this embedded accelerometer and gyroscope, 3-axial linear
acceleration and 3-axial angular velocity were captured at a constant rate of 50 Hz.
To label the data manually, the experiments are captured in the form of video.
Additionally, the sensor signals accelerometer and gyroscope were processed by
including noise filters and sampled with fixed width sliding windows of 2.56 sec-
onds and 50% overlap that indicates 128 readings per sliding window. The resulting
processed signals is a combination of gravity acceleration and body acceleration
components and were subjected into a low pass filter to get the separated compo-
nents with the gravitational force components cut off at the lower end of the filter.
As such, vectors are formed from each window to obtain time and frequency
domain variables.

Thus, each record in the dataset includes below features:

• total acceleration and approximate body acceleration which is obtained from
Triaxial Accelerometer.

• Triaxial Angular velocity is extracted from gyroscope.

• A 561-feature vector with time and frequency domain variables.

• activity as target.

• An identifier which indicates the participant who performed the experiment.

Data Gathering: Two versions of the data was made available for modeling
purposes. These are mentioned as follows

• Hand-crafted features of activity windows- Version 1: Each recorded window
possess a 561 column vector with time and frequency domain variables
rectified separately, a activity label ID indicating the activity performed by the
subject and an identifier or the ID of the subject who carried out the
experiment.

• Raw Inertial sensor data - Version 2: Raw signals which are tri-axial from the
gyroscope and accelerometer sensor are collected by placing wearable sensors
on the volunteer called subjects.

4.1 Modeling

The Figure 5 shows the distribution of target activities. Modeling algorithms are
sued to predict the target class.

4.1.1 Machine learning algorithms – with hand-crafted features – Version 1

As discussed, Version �1 dataset is modeled with classical machine learning
algorithms. Each modeling algorithms along with the parameter settings are
discussed below.
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Naïve Byes: Naïve Byes classifier implements Bayes Theorem providing proba-
bilistic classification [30]. This is suitable for fast computation especially in huge
data.

Random Forest: Random Forest Classifier is nothing but a combination of
multiple decision Trees which is an ensemble learning method for classification,
regression and other machine learning tasks. This performs training by building
multiple decision trees and designating the output of the class which is mode in case
of classification of the individual trees.

Support Vector Machine: Support Vector Machine is one of the baseline
models which gained highest accuracy in human activity recognition when com-
pared with other classical machine learning algorithms. SVM is implemented for
both classification and regression tasks and this works by building builds the
hyperplane margin between classes.

4.1.2 Deep learning algorithms – With raw inertial signals – Version 2

Sensor based activity recognition requires domain-level knowledge about
human activities to analyze even the minute details of sensor data. Though tradi-
tional machine algorithms have shown some extra-ordinary performance in classi-
fying human activities, it requires domain knowledge and few labeled data. In
contrast, Deep Learning exhibits the capability of training real time activity data
that are coming in stream or sequence. Considering Human Activity Recognition as
a Time Series Classifications problem which aims at classifying sequences of sensor
data, two well-known algorithms LSTM and CNN are modeled on the raw inertial
signal data - Version 2.

Long Short-TermMemory (LSTM): Long Short-Term Memory networks – are
a special kind of Recurrent Neural Network (RNN), capable of learning long-term
dependencies. LSTMs are designed to avoid the long-term dependency problem.
The LSTM learns to map each sliding window of sensor data to an activity, where

Figure 5.
Distribution of target class.
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the data points or samples in the input sequence are read one at a time, and each
time step may consist of one or more variables.

Convolutional Neural Network (CNN): CNN has achieved good results in
image classification, sentiment analysis and speech recognition task by extracting
features from signals. CNN has been used for time series classification problems
especially in classifying real time activity data because of scaling invariable and local
dependencies. Local dependency means the nearby signals in Human Activity Rec-
ognition (HAR) are likely to be correlated to each other, while scale invariant means
that the scale remains same for different time and domain frequencies. Thus, CNN
has a better understanding of learning features that are present in recursive patterns.

Particle Swarm Optimization Based CNN: Though CNN’s have showed good
results in HAR, there are multiple parameters to take care to find the optimal CNN
architecture. The main focus of any neural network is to minimize the error
between training targets and predicted outputs. It is cross-entropy in case of CNN’s,
which is carried out by backpropagation and gradient descent. Even a simple CNN’s
have many parameters to tune them. Thus, it is significant to find algorithms which
finds and evaluates CNN architecture with less time. Thus, motivated from this, a
new PSO-CNN is utilized for Human Activity Recognition. The below Figure 6
shows the working of the model.

Figure 6.
Particle swarm optimization training for convolutional neural network.
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The working of PSO-CNN can be divided into five stages as below

• CNN Training – The CNN is trained with some pre-denied weights initialixed..
It uses a CNN with 1D convolutional layer, since the HAR dataset consist of
signals in shape [samples, time_steps, no of features]. The output is one hot
vector encoded which is 6 (target activity to be predicted).

• Pre-PSO Training – Here weights are captured from CNN training and it is
converted to particle.

• Particle Swarm Optimization Training - After initializing the values of
convergence, cognitive value, social value, number of particles, stopping
condition and number of epochs, PSO algorithms searches the hyperplane for
optimized vector using the CNN loss function .

• Update CNN Architecture - Using the values of weight in previous phase, the
final results are computed. A new CNN architecture is created is created based
on these weights rather than basis of the output.

• Computation of Prediction Accuracy and Results - The output of the CNN is
formed and the final accuracy, loss valued are evaluated.

5. Implementation

Parameter Settings for Particle Swarm Optimization: The parameters used in
this category control the behavior of the Particle Swarm Optimisation algorithm. It
consists three parameters namely, the number of iterations, the size of the swarm,
(Cg) represents the probability of selecting a layer from global best while comput-
ing each particle’s velocity. The number of iterations specify the actual number of
iterations that the optimal search algorithm will run before optimization is com-
pleted. The best CNN architecture that is with best accuracy is saved at after the
optimization of the last particle. The swarm size indicates number of particles in the
PSO algorithm. Here, each individual particle is a one complete CNN architecture
whose performance to be tested by the algorithm Table 2.

Parameter Settings for initializing CNN architecture: The parameter settings
used in the second category control the initial movement of the particles. It involves
eight parameters listed in the table below Table 3. In this step, an initial population
of swarm which is of CNN architectures. This initial population consists of individ-
uals with CNN architectures picked randomly as defined by these parameters. To
limit the number of feature maps from a output of a convolution layer, minimum
and maximum number of outputs must be defined. The size of the kernel is always
chosen will between the range of the minimum and maximum size of a

Description Value

Number of iterations 10

Swarm Size 20

Cg 0.5

Table 2.
Parameter initialization for particle swarm optimization.
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convolutional kernel. Only the initial architecture is controlled by these parameters,
after first initialization the architecture is updated based on design specified.

Parameter Settings for training Convolutional Neural Network: The param-
eters here specify the training process of each particle. It includes four parameters
to set which is listed in Table 4. These parameters control the weight updating
process during the training of each particle. The number of epochs specifies the
total number of times the particle is trained using entire dataset before its accuracy
is evaluated. The dropout parameter is used in the particle to avoid overfitting.
Furthermore, the model includes batch normalization between the layers to avoid
overfitting during training process.

6. Evaluation metrics

In order to evaluate the performance of the modeling algorithms, appropriate
metric is chosen. Based on the research question that the study is going to address,
appropriate performance criteria and its measure has to be chosen. Should also
consider the ability and feasibility of the work and the study.

Confusion Matrix Confusion Matrix - Confusion matrix is also known as con-
tingency table, provides a overall performance of the classification model. The
Figure 7 shows the format of a confusion matrix.

This confusion matrix provides important elements of the modeling results, they
are described below

• True Positives (TP): The number of observations in the positive target class
which were correctly classified by the model.

• False Negatives (FN): The number of observations in the positive target class
which were incorrectly classified as in the negative target class by the model.

Description Value

Minimum number of outputs from a conv layer 3

Maximum number of outputs from a conv layer 256

Minimum number of neurons in a FC layer 1

Minimum number of layers 3

Maximum number of layers 20

Minimum size of a Conv kernel 3

Maximum size of a Conv kernel 7

Table 3.
Parameter settings for initializing CNN architecture.

Description Value

Epochs for particle evaluation 100

Epochs for global best 256

Dropout rate 0.5

Batch normalizer layer outputs yes

Table 4.
Parameter settings for training convolutional neural network.
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• False Positives (FP): The number of observations in the negative target class
which were incorrectly classified as in the positive target class by the model.

• True Negatives (TN): The number of observations in the negative target class
which were correctly classified by the model.

HAR is a Multilablel classification problem. The main challenge in classification
task is to correctly classify the target variables. Only accuracy score cannot give us
the overall performance of the model. Hence, confusion matrix which gives the
actual number of correct and incorrect predictions made for each target class is
considered. Additionally, precison, recall and f1 score is computed. But for
comparisions accuracy and f1 score are considered.

7. Results and discussion

The performance of PSO-CNN is evaluated against Machine Learning and Deep
Learning Algorithms.

Comparing PSO-CNN with machine learning algorithms: The analysis of
results is performed by comparing PSO-CNN with Machine Learning Algorithms.
The below Figure 8 shows the results.

From the table, it is evident that Support Vector Machine achieved accuracy of
95.04% and F1 score 95.1%. The machine learning models were built using Hand-
crafted features -Version 1 Dataset. The model achieved satisfactory results without
performing any Data Dimensionality reduction techniques. On the other hand,
PSO-CNN also achieved considerable results with raw sensor data with accuracy of
93.64%. However, the hand-crafted feature extraction process requires human
effort to manually design the features.

Comparing PSO-CNN with Deep learning algorithms: The analysis of results
is performed by comparing PSO-CNN with Deep Learning Algorithms. The below
Figure 9 shows the results.

Figure 7.
Confusion matrix.

Figure 8.
Comparsion of PSO-CNN with machine learning algorithms.

69

Particle Swarm Optimization of Convolutional Neural Networks for Human Activity Prediction
DOI: http://dx.doi.org/10.5772/intechopen.97259



From the table, it is clear that PSO-CNN was able to achieve high performance
of accuracy when compared with LSTM and CNN models. LSTM performance was
low with accuracy 84.71% and F1 score with 84.42%. This, PSO-CNN gained better
results than the state-of-the art CNN model. For a classification problem, the capa-
bility of the modeling algorithm to classify each target class correctly also plays a
major role. Each The algorithm’s ability to classify each activity like walking, sitting,
laying are discussed. From the classification report of PSO-CNN Figure 9, it is
evident that PSO-CNN was able to classify most number of activities correctly.

7.1 Hypothesis evaluation

Two hypothesis are formed for the evaluation of the experiment.
Hypothesis 1

• Null Hypothesis(H0): If Particle Swarm Optimized Convolutional Neural
Network is used instead of supervised machine learning then there is no
significant improvement in classification of Human Activity in terms of
accuracy and the F1 score.

• Alternate Hypothesis (HA): If Particle Swarm Optimized Convolutional Neural
Network is used instead of supervised machine learning, then there is
significant improvement in classification of Human Activity in terms of
accuracy and the F1 score.

From the Figure 5.13 which compares the results of PSO-CNN with machine
learning algorithms, it is evident that PSO-CNN did not achieve better results than
SVM. Hence, there is no significant evidence to reject the null hypothesis.

Hypothesis 2

• Null Hypothesis(H0): If Particle Swarm Optimized Convolutional Neural
Network is used instead of deep learning algorithms, then there is no
significant improvement in classification of Human Activity in terms of
accuracy and the F1 score.

• Alternate Hypothesis (HA): If Particle Swarm Optimized Convolutional Neural
Network is used instead of deep learning algorithms, then there is significant
improvement in classification of Human Activity in terms of accuracy and the
F1 score.

From the Figure 5.14, it is evident that PSO-CNN achieved higher accuracy than
deep learning algorithms CNN and LSTM. Hence we have significant evidence to
reject the null hypothesis.

Figure 9.
Comparsion of PSO-CNN with deep learning algorithms.
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8. Conclusion

This section provides a overall review of the current research. Gives a summary
of the research overview, problem definition along with key findings in Experiment
Design. Suggestions for future work are highlighted.

Research Overview: The main aim of the research was to predict the human
activity using the data collected from Inertial sensors. Detailed analysis on the
existing research is made which includes the type of data used and approaches used
for Human Activity Recognition task. Broadly, HAR task was achieved using two
approaches namely machine learning and deep learning by which used hand –

crafted features data and raw inertial sensor data, respectively.
There was not much exploration done on the meta-heuristic optimisation algo-

rithms like Particle Swarm Optimization. With this motivation and considering the
gaps in research, the current study was aimed to perform the experiments with two
versions of the datasets using various algorithms. As a result, the data gathering,
and preparation was performed separately for both the datasets. To compare the
performance of PSO based CNN, various modeling algorithms were chosen, and
was evaluated using the performance metrics.

The research conducted with the objective to find the classifier with high pre-
dictive accuracies compared with two different family of modeling algorithms.

Design/Experimentation, Evaluation & Results: CRISP-DM approach was
followed through out the project to get the best outcomes at each step. Accordingly,
the implementation began with performing Data Gathering, Data Understanding
and Data Preparation for both the data sets separately.

The design involved performing experiments with two versions of the data sets.
For hand-crafted features, Machine Learning Algorithms were used for modeling.
And since, deep neural networks have capability to take the raw input without any
domain-knowledge applied, raw inertial signals data was used. Furthermore, the
performance of PSO-CNN is evaluated with suitable metric.

The results were tabulated and detailed analysis was given and it is proved that
PSO-CNN showed good results than Deep Learning algorithms, but failed to
achieve satisfactory results compared to machine learning algorithms.

Contributions and impact:
Detailed literature review was performed emphasizing on the applications of

Human Activity Recognition in various fields. In particular, Sensor Based HAR is
highlighted for the readers. This also detailed about the current state of the art
techniques in HAR.

A systematic investigation is done for importing two versions of the sensor
datasets. This can be used as reference for future works.

Illustrated that PSO based CNN proved to be the best classifier for data where
human-engineered feature knowledge is not needed.

Additionally, the work tries to enhance the performance of state-of-the-art
design of the CNN model by using Optimisation. This adds up to the generalization
of using PSO-CNN model for other Activity Recognition tasks.

In the current research PSO algorithm is used to find the optimal architectures in
deep convolutional neural network. Furthermore it make use of the benefits of
global and local exploration capabilities of the particle swarm optimization tech-
nique PSO and the gradient descent back-propogation thereby to form an efficient
searching algorithm this is because the performance of deep convolution network
extremely depends on their network structure used and hyper-parameter selections.

In order to find the best hyper parameters lot of training time is employed which
requires the deep understanding of CNN architecture and also the domain knowl-
edge. Hence PSO-CNN is employed to optimize these parameter configurations and
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through which efficient parameters are evolved that would increase the perfor-
mance with less training time.

Future Work and recommendations The current research can be explored and
improved in many ways so as to improve the human activity recognition tasks. The
proposed approach also provides a flexible methodology where one can change the
initial parameter settings of both PSO and CNN. In this way a trade-off between the
model generalization capabilities and complexity of the model can be justified.
From the experimental results it is illustrated that PSO has been shown to converge
faster and find the best configuration with less training time. This exceed he per-
formance of state-of-the-art results obtained in the domain of HAR.

To some extent, the algorithm failed to recognize the similar he activities like
WALKING_UPSTAIRS andWALKING, LAYING and SITTING. This may be due to
the insufficient data. The solution can be further explored with large time series
data.

The experiment is conducted to explore the capability of deep learning algo-
rithms in HAR tasks. In order to generalize the model capability, this can be applied
to other Activity Recognition tasks which includes Time Series data.
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Chapter 5

Particle Swarm Optimization
Algorithms with Applications to
Wave Scattering Problems
Alkmini Michaloglou and Nikolaos L. Tsitsas

Abstract

Particle Swarm Optimization (PSO) algorithms are widely used in a plethora of
optimization problems. In this chapter, we focus on applications of PSO algorithms
to optimization problems arising in the theory of wave scattering by inhomoge-
neous media. More precisely, we consider scattering problems concerning the exci-
tation of a layered spherical medium by an external dipole. The goal is to optimize
the physical and geometrical parameters of the medium’s internal composition for
varying numbers of layers (spherical shells) so that the core of the medium is
substantially cloaked. For the solution of the associated optimization problem, PSO
algorithms have been specifically applied to effectively search for optimal solutions
corresponding to realizable parameters values. We performed rounds of simulations
for the the basic version of the original PSO algorithm, as well as a newer variant of
the Accelerated PSO (known as “Chaos Enhanced APSO”/ “Chaotic APSO”). Feasi-
ble solutions were found leading to significantly reduced values of the employed
objective function, which is the normalized total scattering cross section of the
layered medium. Remarks regarding the differences and particularities among the
different PSO algorithms as well as the fine-tuning of their parameters are also
pointed out.

Keywords: Swarm Intelligence, optimization, particle swarm optimization (PSO),
accelerated particle swarm optimization (APSO), chaos-enhanced APSO,
chaotic APSO (CAPSO), wave scattering, cloaking

1. Introduction

Particle Swarm Optimization (PSO) is a population-based, stochastic optimiza-
tion algorithm. It is modelled after the intelligent behavior patterns found in
swarms of animals when they manage their biological needs. It was first introduced
in 1995 [1], and since then many enhancements and new versions of the algorithm
have appeared. The model originates from the behavior of flocks (swarms) of birds
when in search of food sources. It was inspired by research carried out by Heppner
and Grenander [2], in order to experiment on a “cornfield model”. Exploiting these
studies, Kennedy and Eberhart developed the PSO algorithm, in which the mem-
bers of the swarm, called particles have some form of memory and common knowl-
edge and are motivated by a common goal; in the mathematical framework this goal
is the global optimum of the objective function of the optimization problem. The
particles’ positions represent the solutions, and depending on the method, they can
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also have velocity or other characteristics, or even a societal structure. The swarm
acts in alliance, aims to be effective, and there exists enough individuality to achieve
diversity in possible solutions. By design, particle swarm optimization is inseparable
from Swarm Intelligence. The swarm, as defined in literature, is designed to follow
the basic principles of Swarm Intelligence, namely proximity, quality, diverse
response, stability and adaptability.

In this chapter, two PSO algorithms are presented. First, the original PSO, which
utilizes a global best position g ∗ and an individual best position x∗ for the particles,
which are described by both their position and velocity. This is considered to be the
basic PSO algorithm, and the version chosen [3] also utilizes an inertia mechanism
to describe the particles’movement. The second algorithm is an enhancement of the
Accelerated Particle Swarm Optimization (APSO) algorithm, referred to as the
Chaotic APSO (CAPSO) [4]. In this algorithm, the particles update their position in
a single step and are only described by position, not velocity vectors. Additionally,
they only use the global best position g ∗ as an attraction to the optimum. Specified
parameters get updated to fine tune the process, and precisely, the attraction
parameter β updates through the use of chaotic maps.

Both aforementioned algorithms have been applied to wave scattering problems,
and results of numerical implementations alongside with conclusions are provided.
Precisely, we consider the cloaking problem concerning the excitation of a layered
spherical medium with perfect electric conducting (PEC) core by an external
dipole. The main purpose is to determine suitable parameters of the magneto-
dielectric layers covering the PEC core so that the scattered far-field is significantly
reduced for a wide range of observation angles. Obtained optimal designs demon-
strating efficient cloaking performance are presented exhibiting reduced values of
the bistatic scattering cross section for realizable coatings parameters. It is particu-
larly stressed that the CAPSO determines optimal values of the scattering problem’s
variables, which yield highly-efficient cloaking designs by employing ordinary
coatings materials.

PSO algorithms in computational methodologies and engineering applications
involving electromagnetic waves were initially developed in [5, 6], where
implementations in antenna design were also proposed. A quantum PSO algorithm,
based on Quantum Mechanics rather than the Newtonian rules considered in the
original versions of the algorithm, was developed in [7] and applied for finding a set
of infinitesimal dipoles producing the same near and far fields of a circular dielectric
resonator antenna. A molecular dynamics formulation of the PSO algorithm leading
to a physical theory for the swarm environment was presented in [8] and applied to
problems of synthesis of linear array antennas. Variants of PSO algorithms with
relevant applications in electromagnetic design problems, like microwave absorbers
and base station antenna optimization for mobile communications were analyzed in
[9]. Specifically, concerning the cloaking behavior of layered media, related opti-
mization problems were investigated in [10–16]. Optimization techniques for meta-
devices design are overviewed in [17].

2. Particle Swarm Optimization (PSO)

In this section, the basic principles of Particle Swarm Optimization (PSO) are
presented and an in depth description of the algorithms that have been developed
and applied for the considered cloaking problems is given. After discussing the
theoretical basis of the swarm optimization method and its ties to Swarm Intelli-
gence, the PSO algorithm and the chaotic-enhanced version (CAPSO) of the accel-
erated particle swarm optimization (APSO) algorithm are described.
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2.1 Introduction to PSO

PSO is a population-based stochastic optimization algorithm, modelled after the
behavior of swarms of animals, like flocks of birds, swarms of various types of
insects or ants or school of fish [18]. In literature, it is also categorized as a
metaheuristic algorithm. Usually, the population is referred to as a swarm. These
types of methods are also considered to be and referred to as behaviorally-inspired,
opposed to evolutionary-based methods like genetic algorithms, although some
parallels can be drawn between them, with regards to their inner workings. Another
similar research field is artificial life. The term, as well as the algorithm, was
originally proposed in 1995 [1] and although PSO’s precursor was the study and
simulation of animal behavior (even in the hopes of studying human social behav-
ior), it grew into an optimizer, with a simple, yet well-defined description. By
definition, PSO is indissolubly linked to Swarm Intelligence.

The appeal of swarm optimizers is due to numerous reasons. There exist many
types of biological swarms, so one can safely assume that they constitute a promis-
ing pool of inspiration and resources to draw methods and conclusions from. The
global adaptive behavior of the swarm, and its co-operational behavior and decision
making, is practical but not strictly utilitarian, since a swarm behaves with fluid and
elegant coordination. Additionally, the way a biological swarm acts can be clearly
and directly perceived by humans. Thus, we have a better understanding of the
animals’ purpose, goals, communication and utility unlike other natural phenom-
ena, which can be way more abstract, complicating the creation of a well-structured
model or method.

Since the initial introduction of PSO, several variations of the method have been
introduced. A plethora of algorithms have been and are still being designed with
different parameters and applications in mind, in order to adjust to specific prob-
lems. These numerous variants are widely used and examined, and, thus, PSO has
grown to be a very effective technique. In the following subsection, a more generic
description of the swarm and its behavior is presented, while detailed descriptions
of specific algorithms are given in the sequel.

2.1.1 The Particle Swarm

The term “particle” refers to the points in the n-dimensional space (where n is
the number of variables of the objective function) which represent the biological
entities of the swarm. Let us assume that the representative animal species is birds.
The swarm consists of the entirety of the particles, making up the population. The
particles have neither mass, nor volume and although they could be considered
points in space, the term particle has been chosen as a good compromise, due to its
more active usage in literature [1].

Each particle maintains information about two characteristics; its position x and
velocity u. The position is strictly the most important characteristic, since it repre-
sents the solutions to the objective function of the optimization problem. The
particles also have some common memory of useful information, since they share
information regarding the best position the swarm has achieved (based on the
objective function), referred to as the “global best” g ∗ . In nature, this knowledge
could refer to food, shelter or destination. Depending on the variant or type of PSO
algorithm being used, they can also remember their individual best position x∗ , or a
set of best positions if they follow a different type of structure, or even a best
position that represents their social clan and/or leader.

According to [19], the biological swarm has three specific qualities. First, cohe-
siveness: the members are not unrelated to each other and all of them are part of the
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same group, thus to an extent, they “stick together”. Second, there is separation, the
members actively try to not collide with each other and move with some respect to
the average distance between them. Last, there is alignment, the whole population
actively tries to move towards the same direction as a group effort. In Biology, this
is the source of food, while in Optimization it is the optimum of the problem. Of
course, since particles are designed to be without mass and volume, separation is
not a physical quality the swarm is forced to have. When converging to a solution,
all particles end at or near to the specific position representing this solution. How-
ever, separation exists as a principle, since particle “collision” does not hinder their
movement in any way, shape or form. Particles are separate entities to each other to
a certain degree since they are created with their individual attributes (e.g. initial
positions, individual best, clan leader and more, depending on the algorithm) and
act accordingly, having a degree of autonomy, while searching in unison with
respect to the swarm.

2.1.2 Basic Principles of Swarm Intelligence

In order to clearly establish the link between PSO and Swarm Intelligence, we
present a comprehensible list of Swarm Intelligence principles, in reference to
Millonas’ categorization [1, 18, 20]. Let us refer to a group of entities that collec-
tively act and behave. This group has Swarm Intelligence if these principles are true.

1.Proximity principle. The members of the group should be able to handle and
do elementary space and time computations. This means that the group can
behaviorally respond to environmental stimuli and changes. Also, they should
be able to do so in order to better conduct their main utilities and functions
which are specific to this group. Such activities vary, depending on the group,
for example a swarm of ants could have a main utility of food foraging.

2.Quality principle. The group should not only react to time and space stimuli,
but also check for quality factors and parameters, e.g. safety.

3.Principle of diverse response. The group should not respond to its
environment in an absolutely ordered manner. There should be safety locks,
and insurance policies for it to survive in case of unpredicted changes and
fluctuations in the environment. Resources should not all rely to a single point
of focus. Therefore, the swarm must be prepared to act and respond with
diverse and alternative solutions.

4.Principle of stability. The group as a whole, should not reform its behavior
patterns into a completely alternate mode every time a change happens, since
such an intense structural and behavioral change wastes too much energy, and
might eliminate the possibility of reaching good results.

5.Principle of adaptability. However, the group should also be able to switch its
behavioral mode, provided this change is a positive one and the group has
ways of knowing so.

One can observe that stability and adaptability are principles that go hand-in-
hand and the best strategy to approach, is to safely explore a viable middle ground.
Some level of randomness or noise should exist in the group, to a degree that diverse
response is allowed to happen. That is the reason why such parameters are usually
very important to the algorithms and can dramatically change their results.
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PSO dictates that the swarm acts in a way which is complicit with the aforemen-
tioned principles. In the original PSO publication, Kennedy and Eberhart do confirm
that the PSO algorithm has been designed to function in this manner. Similar expla-
nations and proofs were provided in literature [1, 18]. As it has been briefly men-
tioned, in PSO, particles maintain their position and velocity, and have the ability to
react to environmental time and space stimuli in order to update them. They do so in
time steps-iterations, thus following the proximity principle. The swarm reacts to the
global best value g ∗ alongside with other quality factors when doing said updates, so
it enforces the quality principle. Said quality factors, do not prevent the diverse
response, because the swarm avoids behaving in an excessively restricted manner. This
is encouraged by diversity and noise existing within the swarm. Lastly, the swarm
bases its behavioral change(s) on a well-defined criterion (which includes the global
best position g ∗ ), thus providing adaptability without jeopardizing the swarm’s
stability. The mode of behavior changes when it is beneficial and cost-effective.

2.2 The PSO algorithm

In this section, we refer to the original PSO algorithm [1], alongside with the
upgrade proposed in 1998 [3] which utilizes an inertia mechanism.

2.2.1 Description

The PSO algorithm follows all the principles and characteristics mentioned so
far. By default, a maximization optimizer is considered due to the way the model
works, but there exist methods to effectively utilize the algorithm in order to find
minima as well.

The behavior of the flock was heavily inspired by and based upon Heppner’s [2]
simulation of a bird flock, referred to as a cornfield model or cornfield vector. Heppner
wanted to simulate the way a flock of birds moves while searching for food (namely
“cornfield” in the simulation). The birds’ behavior in real life, hints to the existence
of what we refer to as a common sense or knowledge, meaning that members of the
flock have the ability to share knowledge originating from their peers without
having experienced it themselves. This serves as both a cognitive function and a
means of communication. Very often, we do witness this phenomenon; flocks of
birds can discover a new bird feeder in their area in a matter of few hours, and an
increasing number of them will systematically start visiting it. This behavior was
modelled in the simulation, in which the birds were given two types of memory. For
the flock’s memory of food sources they were given what we previously referred to
as the global best g ∗ and for their individual memory, they kept information of the
best position they have individually visited, their x∗ . There were also extra param-
eters to adjust how effectively each memory spot affects the birds’ movement and
behavior.

Kennedy and Eberhart [1] utilized Heppner’s simulation model, and designed
the PSO algorithm in order to use these advantageous observations. So, in the PSO
algorithm, the model is as follows.

1.When particles locate a good solution to the optimization problem, this
knowledge is transmitted to the whole swarm, meaning that the g ∗ value is
known to each member.

2.All particles do gravitate towards good solutions, but not in an absolute forced
way, because,
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3.all particles maintain their personal memory spot for their own value x∗ , thus
preserving some ability for independent thinking.

The particles move with respect to Newton’s laws of motion, while there exist
parameters to insert some randomness. There exist also learning rates that the
particles adhere to.

In 1998, Shi and Eberhart [3] proposed strategies on how to fine-tune the
parameters of the original PSO algorithm. Particularly, they suggested the use of an
inertia weight mechanism θ applied to the particles’ movement because it was
found in experimentation that the particle velocities built up too fast and the
maximum of the objective function can be skipped. Usually, the inertia decreases in
a linear manner while the iterations of the algorithm run, and it gets updated once
per iteration i. For the inertia, the values θmax ¼ 0:9 and θmin ¼ 0:4 are commonly
used [19].

θi ¼ θmax � θmax � θmin

imax
i (1)

Therefore, the velocity and position updates are described, respectively, in the
following formulae, with respect to iteration i:

ui ¼ θiui�1 þ c1r1 x∗ � xi�1½ � þ c2r2 g ∗ � xi�1
� �

(2)

xi ¼ xi�1 þ ui, (3)

where the parameters c1 and c2 are the cognitive (individual) and social (group)
learning rates and are usually assumed to both be 2, so that the particle overflies the
target approximately half of the time. It is interesting to note that if c1 and c2 are
different to each other, then the particles will in time favor one type of best position
(or behavior) over the other. In a way, this would conceptually translate to the
particles choosing to be more selfish than social and vice versa. This could lead to
less optimal solutions than the ones expected. The parameters r1 and r2 are uni-
formly distributed random numbers in the range from 0 to 1.

2.2.2 Algorithm

After describing the model of the algorithm, a concrete and defined algorithm
can be presented for the computational implementation. The algorithm is depicted
in pseudo code form in Figure 1.

Regarding the various parameters, we make the following remarks. Usually a
size of 20 to 30 for N is assumed, but these numbers can vary depending on the
optimization problem. The bigger the swarm, the more evaluations of the objective
function f are made during each iteration, thus due to the computations, the
algorithm becomes more time consuming. From a programmer’s point of view, f
does not necessarily need to be an input, however, it is depicted in this manner for
reasons of clarity.

2.3 The CAPSO algorithm

As we have previously mentioned, in the original version of the PSO algorithm,
both a global (g ∗ ) and an individual best (x∗ ) are used, with the particles’ position
being greatly affected by them. The accelerated particle swarm optimization algo-
rithm (APSO) however, introduced by Yang [21], follows a different approach. The
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chaos-enhanced particle swarm optimization, or chaotic APSO (CAPSO) is a
variation of the APSO algorithm.

2.3.1 Accelerated Particle Swarm Optimization

It is noted that the individual best x∗ in PSO, acts as a creator of diversity in the
swarm. That is not necessarily the only purpose of the individual best, but it is a
very prominent one. Thus, this diversity could be recreated by utilizing randomness
to bypass the use of the individual best. There exist some algorithms that belong in
this more “simplistic” philosophy, and try to use only the most necessary parame-
ters and formulae. The accelerated particle swarm optimization algorithm (APSO),
follows this route. APSO has been applied in many optimization problems and is a
solid method with good results. One can safely develop and use APSO, and similar
methods or variants, while keeping in mind that PSO, or even more its standard
versions, is still in general a better option if the optimization problem of interest is
highly nonlinear and multimodal [21].

Ergo, the APSO algorithm only uses the global best g ∗ to generate the velocity
vector u, resulting to using a simpler mathematical formula. For a specific particle,
during the i� th iteration, the velocity is:

Figure 1.
The PSO algorithm pseudo code.
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ui ¼ ui�1 þ α r� 1=2ð Þ þ β g ∗ � xi�1
� �

(4)

where r is a random variable with values from 0 to 1, and the 1/2 is used as a
means of convenience. It is suggested [21], that a normal distribution αri is used,
where r is drawn from N(0,1). Thus, velocity and positions updates are given,
respectively, by

ui ¼ ui�1 þ β g ∗ � xi�1
� �þ αri�1, (5)

xi ¼ xi�1 þ ui (6)

In [21], the following simplified formula is also suggested for the particle
location update in a single step:

xi ¼ 1� βð Þxi�1 þ βg ∗ þ αri�1, (7)

hence there is no need of utilizing structs or vectors for the velocity, while
separate initializations and updates are also avoided.

The typical parameter values for this accelerated PSO are α∈ 0:1, 0:4½ � and
β∈ 0:1, 0:7½ �. More generally, we must keep in mind that these parameters should
scale with respect to the scales of the problem variables. A further improvement to
APSO [21] is to reduce the randomness as iterations proceed. This means that we
can use a monotonically decreasing function specifically for the parameter α, e.g.

α ¼ α0γ
t, 0< γ < 1ð Þ (8)

or

α ¼ α0e�γt: (9)

Other non-increasing functions α tð Þ can be used like the example provided in
code in [21].

2.3.2 Chaos-Enhanced APSO

Gandomi et al. proposed a variation of the APSO algorithm, the chaotic APSO
(CAPSO) [4]. According to the study, the attraction parameter β in (Eq. (7)) is
crucially important in determining the speed of the convergence and how the
algorithm behaves, since this parameter characterizes the variations of the global
best attraction. A well tuned β is of great importance. After parametric investiga-
tions, it is suggested that β should be in 0:2, 0:7½ � for most problems solved by
APSO. Additionally, it is noted that the parameter β has no practical reason of
remaining a constant. On the contrary, a varying β can offer an advantage in terms
of convergence speed and algorithm behavior.

The method suggested for tuning the parameter β is chaotic maps. In Mathemat-
ics, chaotic maps are evolutionary functions that exhibit some sort of chaotic
behavior [22]. Chaotic maps often occur in the study of dynamical systems. Also,
they are used to generate fractals. They can change in time in a continuous or
discrete manner, but usually chaotic maps are discrete ones. Therefore, they take
the form of iterated functions. Chaotic maps are normalized, their variations are
always between 0, 1½ �, so they can safely be used for tuning the parameter β.

In the original proposal of CAPSO [4], many chaotic maps were tested in terms
of convergence and effectiveness. The results were listed in detail, and it was noted
that the Sinusoidal map was the best performing one, and the Singer map was the
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second best. Consequently, the Sinusoidal map is the best choice for applications. It
was noted that chaotic maps with a unimode centered around their middle tend to
produce better results, and Sinusoidal and Singer maps fall into this category. They
are as follows:

Sinusoidal Map:

xkþ1 ¼ axk2 sin πxkð Þ (10)

As an alternative, the following simplified form has also been suggested and
applied [4, 23]:

xkþ1 ¼ sin πxkð Þ (11)

Singer Map:

xkþ1 ¼ μ 7:86xk � 23:31xk2 þ 28:75xk3 � 13:302875xk4
� �

, (12)

where μ∈ 0:9, 1:08½ �.

2.3.3 The CAPSO Algorithm

Having described the basis of the APSO algorithm, as well as the improvements
added from chaotic maps, the CAPSO algorithm is now presented in pseudo code
form in Figure 2.

The following information is provided for the various paramaters. Usually a size
of 40 for N is considered sufficient, but these numbers can vary depending on the
optimization problem. The parameter α gets updated through a chosen α tð Þ (which

Figure 2.
The CAPSO algorithm pseudo code.
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is a monotonically decreasing function or a non-increasing function in general). For
α, the initial value depends on the scale of the problem variables and on α tð Þ. One
can apply the values proposed for APSO, or alternatively α ¼ 10 can be chosen for
an initial value as a starting point. Testing with different initial values is encour-
aged. The parameter β is updated through a chaotic map, preferably the Sinusoidal
map. In the original paper [4], the maximum iteration number is suggested to be
250. One must keep in mind that depending on the problem, these values might
have to be re-evaluated and re-adjusted.

2.4 Development suggestions

Many suggestions can be made regarding the robustness of algorithms, as well as
the speed, effectiveness and organization of the code. All these highly depend on
the programming language, development technique, programmer expertise, com-
putational load of the optimization problem and numerous more parameters. When
developing these algorithms, we must take into consideration all of the above, and
more, since applications can greatly diversify from one another.

Below, two suggestions are made regarding the PSO and APSO/CAPSO algo-
rithms, which, when applied, improved the testing process on a complicated wave
scattering optimization problem detailed below. However, they are not heavily
dependent on the nature of said optimization problem, and they could be proven to
be helpful regardless.

1.Application of constraints/bounds. A method that reassures that the
variables remain in their allowed bounds is vital. This is very common in
optimization. If a variable crosses a bound, the lower or higher permitted value
can be enforced, with respect to which bound was crossed. This reassures that
the swarm will not go out of bounds if it gets driven to do so by a nearby
invalid optimum. Additionally, it ensures that the final output of the algorithm
is a valid and applicable one, even if it is not the best optimum. For complex
optimization problems, constraint/bound checking can be complicated, if for
example the variables have to follow specific rules, or have specific
characteristics in relation to each other. We can see this technique being
applied in APSO’s code [21].

2.Convergence checking. By default, in most PSO related algorithms, it is
implied that the algorithm stops when it reaches a pre-defined maximum of
iterations. However, many times, the swarm can find a solution faster than
that. Thus, if there is a convergence criterion (representing the degree in
which the population agrees on a solution), it can be applied as an end
condition for the algorithm. For example, a very common convergence
criterion is standard deviation.

3. Particle swarm optimization in wave scattering problems

In this section, PSO optimizations to representative applications of wave scat-
tering theory are presented. Precisely, we investigate the electromagnetic cloaking
of spherically layered media excited by an external source. The optimizations con-
cern the determinations of the physical (material) and geometrical characteristics of
the layered medium so that the scattered far field generated by the layered medium
is significantly reduced.
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The scattering geometry is depicted in Figure 3. It consists of a layered spherical
medium V with external radius a1. The interior of V is divided by P� 1 concentric
spherical interfaces r ¼ ap p ¼ 2, … ,Pð Þ into P� 1 homogeneous magneto-
dielectric layers Vp p ¼ 1, … ,P� 1ð Þ, consisting of materials with real relative
dielectric permittivities εp and magnetic permeabilities μp, and surrounding a
perfect electric conducting (PEC) core (layer VP). The exterior V0 of V has
permittivity ε0, permeability μ0, and wavenumber k0. Medium V is excited by an
external magnetic dipole, with position vector r0 on the z-axis and dipole moment
along the direction ŷ.

The exact solution of the considered scattering problem was determined in
[24–26] by means of a combined Sommerfeld and T-matrix methodology in con-
junction with suitable eigenfunctions expansions. Specifically, the electric fields in
each spherical shell are decomposed into primary and secondary components,
which are then expressed as series of the spherical vector wave functions. The
unknown coefficients in the expansions of the secondary fields are determined
analytically by imposing the transmission boundary conditions on the interfaces of
the spherical shells and applying a T-matrix method. It is emphasized that the exact
solution of the scattering problem (here this is obtained in the form of a Mie series)
is crucial for the fast and efficient implementation of the PSO algorithm in the
present setting.

By applying the above-described methodology, we obtain the following
expression of the total scattering cross section

Figure 3.
Geometrical configuration of the considered spherically-layered medium excited by an external dipole.
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σt r0ð Þ ¼ 1
4π

ð

S2
σ θ,ϕ; r0ð Þds r̂ð Þ

¼ 2π

k20

X∞
n¼1

2nþ 1ð Þ γnj j2 þ δnj j2
h i

,
(13)

where S2 denotes the unit sphere in 3, and σ θ,ϕ; r0ð Þ is the bistatic (differen-
tial) scattering cross section given by

σ θ,ϕ; r0ð Þ ¼ 4π

k20
Sθ θ; r0ð Þj j2 cos 2ϕþ Sϕ θ; r0Þð j2 sin 2ϕ

�� i
,

h
(14)

while functions Sθ θ; r0ð Þ and Sϕ θ; r0ð Þ are defined by

Sθ θ; r0ð Þ ¼
X∞
n¼1

�1ð Þn 2nþ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 1ð Þp δn

P1
n cos θð Þ
sin θ

� γn
∂P1

n cos θð Þ
∂θ

� �
, (15)

Sϕ θ; r0ð Þ ¼
X∞
n¼1

�1ð Þn 2nþ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 1ð Þp γn

P1
n cos θð Þ
sin θ

� δn
∂P1

n cos θð Þ
∂θ

� �
, (16)

with P1
n the first-order Legendre function of degree n, and

γn ¼
hn k0r0ð Þ
h0 k0r0ð Þ i

nαn, δn ¼ ĥ0n k0r0ð Þ
ĥ0 k0r0ð Þ

in�1βn, (17)

where hn is the spherical Hankel function of order n, and ĥn zð Þ ¼ zhn zð Þ. The
coefficients αn and βn are defined in [24].

The objective function we consider in the optimization schemes is the normal-
ized total scattering cross section σt r0ð Þ= πa2PEC

� �
, where aPEC is the radius of the PEC

sphere to be cloaked when covered by suitable coating magneto-dielectric layers.
Achieving small values of this objective function provides efficient designs in terms
of significant reductions in the scattered far-field. In [27], the backscattering cross
section σ θ, 0; r0ð Þ was used as the objective function. The latter can yield efficient
designs only in traditional monostatic scenarios, while the present consideration of
the total scattering cross section as the objective function shows the actual scattered
far-field’s characteristics for all observation angles.

For the numerical solution of the scattering problem, we used the code devel-
oped in [24], which is valid for an arbitrary number P of layers. The above-
described PSO algorithms were implemented in MATLAB®. The swarms were
MATLAB structs or arrays for which we followed the steps of Algorithms 1 or 2
presented above. The components of the position vector consisted of the optimiza-
tion variables ap of the radii, εp of the dielectric permittivities, and μp of the
magnetic permeabilities of the first P� 1 dielectric layers. The radius aP of the PEC
core was chosen constant at k0aP ¼ k0aPEC ¼ 2π (one free-space wavelength). In
this way, for a medium with P layers, the number of optimization variables for the
particles position is 3 P� 1ð Þ.

The conducted experiments focused on small values of P in order to obtain
designs with a relatively small number of coating layers, which also facilitate the
fabrication procedure. For the variations of the variables of the optimization prob-
lem, different ranges were considered. Particularly, the differences k0 apþ1 � ap

� �
between two consecutive layers radii were considered in π

10 , π
� �

or π
10 ,

π
2

� �
, while the

values of the permittivities εp and permeabilities μp in [0.5,10], [0.4,5] or [0.5,5].
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The external magnetic dipole was taken at r0 ¼ 5aPEC. The two above-described
particle swarm optimization algorithms were developed to minimize the normal-
ized total scattering cross section for a spherical medium with P ¼3 or 4 total
number of layers. The actual reductions in the far-field with respect to the angles of
observation are demonstrated in Figures 4 and 5, depicting the normalized bistatic
scattering cross sections σ θ,ϕ; r0ð Þ= πa2PEC

� �
versus the angle θ in the xOz and yOz

planes, respectively. In these figures, the corresponding cross section curves for a
bare (containing no coating layers) PEC sphere are also shown, for comparison
purposes.

Significant reductions in the far-field contributions with respect to the bare PEC
sphere are observed for large ranges of the observation angles. Particularly, the
CAPSO algorithm determines optimal variables corresponding to notably smaller
objective function’s values for a wide range of observation angles than the classic
PSO algorithm. Moreover, the improved performance of the CAPSO algorithm is
exhibited by the fact that the attained solutions yield reduced scattered far-field’s
values for all angles in the yOz plane and for nearly all angles in the xOz plane (apart
from a resonance region of the bare PEC cross sections curves around θ ¼ 140o).
Another interesting conclusion is that the optimal solutions for P ¼ 3 (two covering
layers) generate smaller–in general–far field’s values for a wider angular range than
the optimal solutions for P ¼ 4 (three covering layers).

Figure 4.
Normalized bistatic cross section in the xOz plane versus the angle θ for P ¼ 3 (left panel) and P ¼ 4 (right
panel) optimized layers with parameters computed by the classic PSO and the CAPSO algorithms.

Figure 5.
As in Figure 4, but for the normalized bistatic cross section in the yOz plane.
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Besides, the effectiveness of the cloaking performance of the layered medium
with respect to variations of the dipole’s distance from the external boundary r ¼ a1
of the medium as well as the sensitivity of the results versus inevitable fabrications
imperfections are also important to be examined. Some preliminary numerical
results to this direction were presented in [28] by applying the classic PSO algo-
rithm. Extensions to spherical antennas [29] and inhomogeneous media [30] can
also be considered by modifying and extending the algorithms presented in this
work.

4. Conclusions

Since its introduction to the scientific community, particle swarm optimization
(PSO) has gone through many enhancements and variants, and has been applied to
numerous diverse problems. The particles that compose the swarm’s population act
in a manner that follows the basic principles of Swarm Intelligence, as presented in
literature. The algorithms utilize the intelligent swarm in order to discover the
optima of objective functions. In this chapter, two algorithms were described. The
PSO algorithm (1998 version), and the CAPSO algorithm which is a variant of the
APSO algorithm. In the PSO, particles move with respect to Newton’s laws of
motion, and they are described by both position and velocity. Particles’ position and
velocity updates are affected by the global best g ∗ at the time and the individual
best x∗ . The algorithm includes their learning rates, adjusted in a manner that
ensures equal weights to social and individual learning. An inertia mechanism is
added to prevent the particles from moving too quickly, thus missing the discovery
of optimal solutions. In contrast, the CAPSO algorithm particles do not keep mem-
ory of an individual best. They follow a more simplistic approach and update their
position in a single step, affected only by the global best at the time. However, there
are two parameters, α and β to fine-tune the swarms movement and insert neces-
sary randomness. In CAPSO, the very crucial attraction parameter β, updates
through chaotic maps. Specifically, in this work, the Sinusoidal map and the Singer
map were considered and applied. It is noted that these maps have a unimode
centered around their middle, and have provided the best results in relative
research and testing. Both of the discussed algorithms were also provided in
pseudocode format.

The PSO and CAPSO algorithms were developed and tested for cloaking prob-
lems concerning the covering of a perfectly conducting core by a number of coating
layers with optimal parameters so that the total scattered field is significantly
reduced. The resulting scattering performance of the medium was examined and it
was demonstrated that both PSO and CAPSO algorithms are effective in achieving
the goal of the scattered field reduction. Particularly, the CAPSO was shown to be
successful in determining optimal solutions yielding enhanced cloaking behavior for
a notably large range of the observation angles.

It is noted that the developed algorithms do not utilize a population topology
mechanism since the global best is well known to all particles. Thus, in future
research, alternative variants of these algorithms could be explored, for example the
SPSO 2011 [31] or the Adaptive Clan PSO [32].
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Chapter 6

On the Efficacy of Particle Swarm
Optimization for Gateway
Placement in LoRaWANNetworks
Clement N. Nyirenda

Abstract

The efficacy of the Particle Swarm Optimization (PSO) in determining the
optimal locations for gateways in LoRaWAN networks is investigated. A modified
PSO approach, which introduces gateway distancing measures during the initiali-
zation phase and flight time, is proposed. For the ease of comparisons and the
understanding of the behavior of the algorithms under study, a square LoRaWAN
area is used for simulations. Optimization results on a LoRaWAN script,
implemented in NS-3, show that the modified PSO converges faster and achieves
better results than the traditional PSO, as the number of gateways increases. Results
further show that the modified PSO approach achieves similar performance to a
deterministic approach, in which gateways are uniformly distributed in the net-
work. This shows that for swarm intelligence techniques such as PSO to be used for
gateway placement in LoRaWAN networks, gateway distancing mechanisms must
be incorporated in the optimization process. These results further show that these
techniques can be easily deployed in geometrically more complex LoRaWAN fig-
ures such as rectangular, triangular, circular and trapezoidal shapes. It is generally
difficult to figure out a deterministic gateway placement mechanism for such
shapes. As part of future work, more realistic LoRaWAN networks will be devel-
oped by using real geographical information of an area.

Keywords: Internet of Things, Particle Swarm Optimization, Networks,
Simulation, LoRaWAN

1. Introduction

As more and more devices are being embedded with networking capabilities, the
Internet of Things (IoT) paradigm is becoming more entrenched in the society. IoT
devices communicate with other devices on the Internet seamlessly. To date, IoT
has found ample applications in diverse areas such as health, agriculture, safety and
security, smart homes, smart water management, smart grids, fleet management
and traffic monitoring.

With the accelerated adoption of 5G, companies’ plans to invest in IoT solutions
will increase even more rapidly. The recent fourth annual Global IoT Executive
Survey [1] shows that the number of IoT devices will increase from 8 billion in 2019
to more than 41 billion IoT devices by 2027. Furthermore, the IoT market is geared
to grow to over $ 2.4 trillion annually by 2027.
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IoT connectivity was primarily based on short range wireless technologies such
as Bluetooth mesh networking, Wi-Fi (IEEE 802.11 standard) and Zigbee (IEEE
802.15.4 standard). The trend is, however, shifting toward Low-Power Wide Area
Networks (LPWANs), which provide low power, low data rate and long range
wireless transmission in the unlicensed frequency bands, configured in a star
topology network [2–4]. Interest in LPWANs is further fueled by low deployment
costs, large coverage, and the absense of competitors from cellular technologies in
the IoT arena [3]. Examples of LPWAN technologies include Sigfox,
Narrowband-IoT (NB-IoT) and Long-Range Wide Area Networks
(LoRaWAN) [5].

The LoRaWAN technology currently enjoys greater popularity because it is
supported by the LoRa Alliance, which is a non-profit association of more than 500
member companies [6]. It is for this reason that this work focuses on this technol-
ogy. The LoRaWAN network is a star-of-stars topology, where messages are relayed
between end devices (EDs) and the central network server (NS) through gateways
(GWs). Gateways are linked to the network server through standard IP connec-
tions. They act as transparent bridges by converting RF packets to IP packets and
vice versa [7].

Although gateways in LoRaWAN networks can cover large areas of end devices,
coverage problems still arise when the areas are too big. In such cases, the need to
deploy multiple gateways arises [8, 9]. In [8] the impact of redundant packet
reception at multiple gateways on data reliability in the LoRaWAN architecture
studied, while in [9], an adaptive algorithm for spreading factor selection in
LoRaWAN networks with multiple gateways is proposed. In the latter, the maxi-
mum number of number of gateways was four and their locations were fixed
deterministically.

This work builds on those earlier works by investigating the efficacy of Particle
Swarm Optimization (PSO) for gateway placement in a LoRaWAN network. It
draws its the motivation from recent studies on PSO based placement of Master
Nodes (MNs) in smart water metering networks (SWMNs) [10, 11]. In these net-
works, Wi-Fi links were used to create a mesh network for the transmission of
readings from Smart Meters to Master Nodes. The need to extend PSO approach to
LoRaWAN arises naturally because of the advantages of this technology and its
growing popularity in the IoT community.

This work adopts a square area, where EDs are deployed randomly and gate-
ways are deployed by using three approaches: 1) the optimal approach based on
the standard PSO; 2) the optimal approach based on the PSO algorithm that
incorporates gateway distancing mechanisms to prevent gateway interference;
3) and the deterministic approach, where the area is broken down into a number
of equally-sized sub-areas, according to the number of gateways and having one
gateway deployed at the centre of each sub-area. The LoRaWAN scripts have
been implemented using the LoRaWAN NS-3 [12] module [13]. For the PSO
approaches, the optimiser which operates at a higher level, invokes the
LoRaWAN script, on every function evaluation to calculate the Packet Delivery
Ratio for the gateway position configuration created by the algorithm at that
moment.

The rest of this Chapter is organized as follows. Section 2 briefly describes the
LoRaWAN technology. An overview of Particle Swarm Optimization (PSO) is given
in Section 3. Section 4 presents the distancing mechanisms that have been added to
standard PSO in order to enhance the spreading of the gateways in the network.
Section 5 presents the experimental setup, the results and discussions, and Secton 6
concludes the Chapter.
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2. Overview of the LoRaWAN technology

This section gives a brief overview of the aspects of LoRa and LoRaWAN tech-
nologies, that are relevant to this study.

2.1 LoRa

LoRa (Long Range) [6] is a physical layer LPWAN technique, developed by
Cycleo in France and acquired by Semtech [14]. This technique uses the chirp
spread spectrum (CSS) technology, which spreads a narrow-band signal over a
wider channel bandwidth. This process greatly enhances the signal’s robustness to
interference thereby creating long range, low data rate communication over the
license-free sub-1GHz Industrial Scientific Medical (ISM) radio bands. The trans-
mission range in LoRa depends on various parameters: bandwidth, coding rate,
transmission power, carrier frequency, and six spreading factors (SF), ranging from
7 to 12. These SFs are known to be quasi-orthogonal because they enable simulta-
neous receptions of packets with different SFs. Another important characteristic is
that the increase in SF is accompanied by the signal’s resilience to noise, at the
expense of data throughput.

2.2 LoRaWAN

LoRaWAN is an upper layer technique that relies on the physical layer LoRa
technique. While the LoRa technology is proprietary, LoRaWAN is an open stan-
dard, developed and supported by the LoRa Alliance [6]. It is an ALOHA-based
protocol which organizes networks in a star-of-stars topology, with the following
major components:

1.End devices (EDs), which generate uplink data and send it to the network
server through the gateway through a single-hop LoRa communication. EDs
also receive downlink traffic from the gateways.

2.Gateways (GW), which serve as link between the EDs and the network servers
by using and IP backbone. They collect data sent by EDs and forward it to
network servers. They also relay packets sent by the network servers to the
EDs.

3.Network Server (NS), which serves as the central coordinator and controller of
the LoRaWAN network.

The LoRaWAN standard defines three types of EDs, namely Class A, Class B,
and Class C. Class A is the default class which must be supported by all LoRaWAN
EDs. In this class, communication is always initiated by the ED and is fully asyn-
chronous. Uplink transmission is followed by two short downlink windows, to cater
for bi-directional communication and/or the transmission of network control com-
mands. In addition to all the components of Class A, Class B EDs provide regular
receive windows for potential downlink traffic. In Class C, the EDs remain in
continuous receive mode thereby reducing latency on the downlink path.

The LoRaWAN standard also supports an Adaptive Data Rate (ADR) scheme,
which enables the NS to maximize both battery battery life of the EDs and overall
network capacity, by setting the data rate (DR) and RF output power for each ED
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individually. When radio conditions are bad, data rate is lowered by increasing th
SF, leading to low coverage. Conversely, when radio conditions are good, data rate
is increased by lowering the SF or by reducing the transmit power of a node in order
to maximize the battery lifetime and optimize overall network capacity. LoRaWAN
also suffers from collisions of packets at the gateways [9, 15–17]. This happens when
two or more signals arrive at the the gateway in same time duration. These collisions
lower the data rates drastically.

Furthermore, this standard also faces the problem of network coverage when the
network area is very large. In this case, one GW cannot cater for all the EDs in the
area. As a result, there is a need for multiple gateways. To ensure that the network is
optimally covered, there is a need for sufficient inter-gateway distance. The work in
[9] implemented a maximum of 4 gateways in a 16 km � 16 km square area, in
which the gateways are located at the centres of the four quadrants. The results of
this work show that higher packet delivery rates are achieved with 4 GWs as the
network coverage area increases. In [8], the impact of redundant packet reception
at multiple gateways on data reliability is studied. This work models the Average
Successful Transmission Probability (ASTP) as a function of end device density,
gateway density, and traffic intensity thereby providing useful insights into the
deployment of multiple gateways in LoRaWANs.

Since this work focuses on the determining the effectiveness of Particle Swarm
Optimization (PSO) for the placement of multiple gateways, the next section pre-
sents an overview of the standard PSO algorithm.

3. The standard particle swarm optimization algorithm

Introduced by Kennedy and Eberhart in 1995, the Particle Swarm Optimization
(PSO) draws inspiration from the social behavior of animals living in swarms, such
as flocks of birds [18]. PSO is initialized with a population of N particles that are
generated randomly in a pre-determined search space S of D dimensions. Each
particle denotes a candidate solution to a problem and is characterized by three
main parameters: its current position, current velocity and the best position ever found
by the particle during the search process. The particles fly in the search space in
order to find the optimal solution. The trajectory of a particle is influenced by the
particle’s own experience as well as it’s neighboring particles. The velocity of the i-th
particle is updated at every iteration by using

vi tð Þ ¼ ω ∗ vi t� 1ð Þ þ c1r1 pbi � xi tð Þ
� �þ c2r2 gb � xi tð Þ

� �
, (1)

where i ¼ 1, 2, … ,N; c1 and c2 are constants denoting cognitive and social
parameters respectively.

The values of c1 and c2 are chosen in the range 0:5, 2:5½ �. They are applied to cater
for the influence of the particle’s historical best position pbi and the swarm’s best
position gb respectively. Parameters r1 and r2 are random numbers uniformly
distributed within 0, 1½ �, while ω denotes the inertia weight; it helps to dampen the
velocities of the particles to assist in the convergence to the optimum point at the
end of the optimization iteration.

In order to keep the particle’s velocity bounded, a further arbitrary parameter
Vm ¼ vm1, vm2 … vmDð Þ∈ S, was defined. Whenever, a vector element, exceeds the
corresponding element of Vm, the element is reset to its upper limit. Once the

98

Optimisation Algorithms and Swarm Intelligence



velocity has been updated by using Eq. (1), the position of each particle is updated
at each iteration by using

xi tþ 1ð Þ ¼ xi tð Þ þ vi tþ 1ð Þ: (2)

In terms of implementation, the PSO algorithm goes through the following steps:

1.Initialization: It begins by initiliazing N, c1, c2, ω, and G, which denotes the
maximum number of iterations. Then the initial population of N particles is
generated with random values from the search space and initial velocities for
each particle are set to 0. The fitness function values for all N particles are
evaluated based on their initial positions. The initial positions of each particle
are set as the personal best positions for the respective particles, and the
overall best position found so far is set as best solution for the swarm.

2.Flight time: Once the initialization process is done, the algorithm goes into the
iterative process. At each iteration, the particle positions in the search space
are updated using Eqs. (1) and (2); fitness function values of all particles are
updated based on their new positions. If necessary, personal best and global
best values are updated accordingly.

3.Termination: This iterative process is terminated once G iterations are
completed. At this point, the best solution for the swarm becomes the optimal
solution for the optimization run.

The next section discusses the gateway distancing measures that have been
incorporated in the standard PSO algorithm in order to spread out the locations of
gateways in the LoRaWAN network.

4. Gateway distancing measures in PSO

This section presents the gateway distancing measures that were incorporated in
the PSO algorithm. Properly distanced GWs will help to ensure that the network
coverage is high, thereby increasing the packet delivery rate (PDR). Before
presenting these measures, the GW placement optimization problem has to be
presented.

4.1 The GW placement optimization problem

The GW placement optimization problem adopts the approach used in the
Master Node optimization problem in [10, 11]. A LoRaWAN network is assummed
to contain ned EDs in a rectangular area defined by L�M, where L and M are in
kilometers. The number of GWs in the network is denoted by ngw. The location of
each GW is defined by the x and y coordinates. As a result, the number of variable
parameters in the vector of GW coordinates that depicts the locations of all the ngw
GWs is 2 ∗ ngw. In PSO terminology, this vector is called a particle. For instance, for
a LoRaWAN network with 4 GWs, the number of parameters in the particle will be
8. The aim of the optimization process is to obtain the particle that achieves the
highest packet delivery ratio (PDR), where PDR is defined by
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PDR ¼ Pr=Ps, (3)

where Pr is the number of packets received at the NS, excluding duplicate
packets, while Ps denotes the number of packets sent by by the EDs. The location
information for the 2 ∗ ngw GWs can be encoded in a particle by using

p ¼ p0, p1 … pD�1

� �
, (4)

where p0 and p1 are the coordinates of the first GW; p2 and p3 are the
coordinates of the second GW; pD and pD�1 are the coordinates of the final GW;
D ¼ 2 ∗ ngw. If the standard PSO is used, each even-indexed element of the particle
is defined within 0,L½ �, while each odd-indexed element is defined within 0,M½ �,
denoting the x and y-cordinates respectively. When GW distancing measures are
employed, this process is modified as explained in the next subsection.

4.2 The PSO algorithm with GW distancing measures

GW distancing measures can be applied during the initialization process as well
as during flight time. During initialization, the initial GW positions can be set in
such a way that they are sufficiently far away from each other. During the iterative
process, only those particles that depict sufficient average inter-gateway distance
are evaluated. Next, the two techniques that would address GW distancing require-
ments will be presented.

4.2.1 GW distancing during initialization

This technique aims at initiliazing the locatons for the respective GWs to some
equal but distinct sub-areas of the LoRaWAN. The lengths of the sides of each of
those sub-areas be denoted by ΔL and ΔM can be defined by

ΔL ¼ L=
ffiffiffiffiffiffiffi
ngw

p
(5)

and

ΔM ¼ M=
ffiffiffiffiffiffiffingw

p
: (6)

Figure 1.
Illustration of the sub-areas used in the GW initialization process.
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For instance, if 4 GWs are initialized in a square LoRaWAN area of sides 4 km
by 4 km, L ¼ M ¼ 4km, ΔL and ΔM would both be equal to 2 km as illustrated in
Figure 1. Each GW will be initialized in the distinct sub-area such that the
coordinates for the four GWs will be initialized as follows: for GW1, x∈ 0, 2½ � and
y∈ 0, 2½ �; for GW2, x∈ 0, 2½ � and y∈ 2, 4½ �; for GW3, x∈ 0, 2½ � and y∈ 2, 4½ �; and for
GW4, x∈ 2, 4½ � and y∈ 2, 4½ �.

For some LoRaWAN network areas and designated number of GWs, it will not
be possible to fit all the GWs into the network by using the aforementioned
approach. In such cases, the extra GWs can be randomly initialized with coordi-
nates drawn from the entire area. The number of extra GWs negw can be determined
by using

negw ¼ ngw � M=ΔM ∗L=ΔLð Þ (7)

4.2.2 GW distancing during flight time

The parameter that governs GW distancing during flight time is the average
inter-gateway distance dk, which is defined for each particle k in the swarm by
using

dk ¼ 1
ne

Xngw

i¼0

Xngw

j¼iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pk,2i � pk,2j

� �2
þ pk,2iþ1 � pk,2jþ1

� �2
r

, (8)

where ne is the number of edges among the GWs, which is defined by

ne ¼
ngw ngw � 1

� �
2

: (9)

After the initialization process, the initial average inter-gateway distance dinitk is
calculated for all particles by using Eqs. (8) and (9). During flight time, an inter-

gateway distance dflightk is calculated after every particle position update using the
same equations. Fitness function evaluation for the particle k is triggered by using
the probabilty pr which is defined by

pr ¼
dflightk

dinitk

, if dflightk ≤ dinitk

1, otherwise

8>><
>>:

(10)

The decision on whether to evaluate particle k or not is governed by the follow-
ing rule: if randðÞ< pr, then evaluate particle k, else try to get new position for the
particle and test the rule again. The parameter randðÞ is a random number in the
range 0:0, 1:0½ �. This process will continue until the rule fires.

Algorithm 1 shows the modified PSO algorithm, with the GW distancing mea-
sures highlighted in blue color. On lines 15 and 30, the LoRaWAN script is invoked
and the PDR value emanating from that process is construed as the fitness function
value, F xkð Þ, for each particle k.
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Algorithm 1: PSO with GW Distancing Measures

5. Simulation environment, results and discussions

Since the goal of this work is to determine the efficacy of PSO in GW placement
in LoRaWAN networks, the standard PSO and the modified PSO (with distancing
measures) are compared with a deterministic approach. For brevity, the standard
PSO, will be referred to as PSO, while the modified PSO will be refered to as
PSODIST. For purposes of ease of comparison and discussion of the ensuing results,
a square LoRaWAN area is adopted. Parameters L and M are both set to 50 km and
50 km respectively. The number of GWs ngw is varied by using 4, 9, 25, and 49,
which are all square numbers. This caters for the ease of deployment in the deter-
ministic approach, which uniformly distributes the GWs as illustrated in Figure 1
for 4 GWs. The expectation is that such a deterministic approach will yield the best
result for the square LoRaWAN network area. If a PSO based approach can achieve
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similar results to the deterministic approach, the effectiveness of the PSO approach
for GW placement will be proved.

5.1 The LoRaWAN script and simulation parameters

The LoRaWAN script is implemented in the NS-3 LoRaWAN module [13]. In
order to reduce the simulation time for the LoRaWAN script during the optimiza-
tion process, the number of EDs, ned is set 400. These EDs are set up randomly in
the LoRaWAN area and the resulting text file is saved on the system. The ED
locations are loaded to the simulation together with the GW locations on every
LoRaWAN script invocation.

With the introduction of multiple GWs, a single packet may find its way to the
Network Server (NS) through two or more GWs. In order to remove such packets
from the number of unique packets received at the NS, some modifications were
made to the LoRaWAN module. The default LoRa physical layer parameters in [13]
were used in the simulations. The rest of the parameters in the LoRaWAN script are
shown in Table 1. For the PSO algorithms, parameters are set as follows:N ¼ 20,
c1 ¼ 1:5, c2 ¼ 1:5, ω ¼ 0:7, and G ¼ 50. They are all within the ranges that are
commonly used in literature.

The basic C++ PSO code used in this study have been downloaded from [19].
The PSODIST code was developed by incorporating the GW distancing measures,
explained in Section 4, in the basic PSO code. A personal computer with an Intel®
Core™ i7-7500U CPU @ 2.70GHz � 4 processor with 8 GB RAM, running on
Ubuntu 18.04.5 LTS, was used in this study. Ten optimization runs were conducted
for each specific number of GWs for the PSO and PSODIST approaches. The
LoRaWAN script was seeded with the same values, in order to ensure that the same
simulation conditions prevail in all the optimization runs.

5.2 The efficacy of GW distancing measures

In this subsection, the efficacy of the GW distancing measures in the PSODIST
algorithm is investigated by examining the mechanics of PSODIST against the basic
PSO approach. Figures 2–5 show the evolution of the optimization process for PSO
and PSODIST approaches for the best optimization runs for 4, 9, 25, and 49 GWs. In
the case of 4 GWs, in Figure 2, the difference in the evolution of the PDR value
between the two approaches is very minimal. In fact, contrary to expectation, the
PSODIST approach starts from a worse off position at around 36% while PSO starts
from 38%. The GW distancing process during the initialization process does not
help simply because the partitions in which the GWs are initialized are too big. The
flight time GW distancing process helps to push PSODIST barely above the PSO. It
can, therefore, be observed that GW distancing measures do not improve the
performance of PSO when the number of GWs is low.

Parameter Value

Spreading factors 7, 8, 9, 10, 11 and 12

GW height 20 m

ED height 2 m

Packet generation rate 12 packets/h

Simulation time 3000 s

Table 1.
LoRaWAN simulation parameters.
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In the case of 9 GWs, as shown in Figure 3, PSODIST starts with a PDR of 49.2%
while PSO starts with 45.5%. The trend becomes even more prominent as the
number of GWs increases (see Figures 4 and 5). At 25 GWs, PSO and PSODIST
register initial PDR values of 47.4% and 52.3% respectively, while at 49 GWs, the
initial PDR values are 47% and 49.9% respectively. This shows that the benefits of
GW distancing measures in the initializition process are only realized as the number

Figure 2.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 4.

Figure 3.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 9.
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of GWs increases. This is due to the reduction in the sizes of the partitions in which
the GWs are initialized.

As the number of GWs increases, the flight time GW distancing process seems
to be more effective than in the case of 4 GWs. Figure 3 shows that at 9 GWs,
PSODIST converges to a PDR value of 51.63% at the 24th generation, while PSO
converges to 50.98% at the 38th generation. In the case of 25 GWs, as shown in
Figure 4, PSODIST converges to a PDR value of 53.95% at the 27th generation,

Figure 4.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 25.

Figure 5.
PDR values of the best particle in the PSO swarms as the number of generations increases, with the number of
GWs set to 40.
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while PSO converges to 50.65% at the 38th generation. When 49 GWs are used, as
shown in Figure 5, PSODIST converges to a PDR value of 54.8% at the 34th
generation, while PSO converges to 51.1% at the 37th generation. These results show
that the basic PSO suffers from delayed convergence as well as suboptimal conver-
gence because the initial positions of the GWs are not properly distanced. It can,
therefore, be concluded that GW distancing measures improve the performance of
PSO when the number of GWs is increased.

Figure 6.
Locations of 25 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSO swarm.

Figure 7.
Locations of 25 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSODIST swarm.

106

Optimisation Algorithms and Swarm Intelligence



Figures 6–9 illustrate the spread of the GW locations in the LoRaWAN area.
From these graphical presentations, it is easy to see that the PSODIST achieves a
better GW spread than PSO. In the PSO approach, there are some sections where
the GWs are too crowded. For instance, in Figure 6, the subarea bounded by
coordinates (20, 0), (20, 10, 30, 10, 30, 0), has four GWs, while in the north-
western corner, there are no GWs in a subarea that is 2.5 times the former. In
Figure 8, a similar trend is observed as there are even up 6 GWs in the central

Figure 8.
Locations of 49 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSO swarm.

Figure 9.
Locations of 49 GWs in the 50 km � 50 km area, as depicted by the best particle in the PSODIST swarm.
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10 km x 10 km subarea. The EDs in the subareas with little GW coverage suffer
from GW reachability issues. On the other hand, subareas with many GWs also
suffer from increased downlink traffic interference. Both of these conditions lead to
the reduction of PDR.

5.3 Benchmarking PDR performance of PSO with the deterministic approach

A separate simulation exercise was conducted using the deterministic approach
for benchmarking purposes. Ten simulation runs were also conducted for 4, 9, 25,
and 49 GWs. Table 2 shows the minimum, mean and maximum PDR values from
the two PSO approaches along with the deterministic approach. Results depicting
the best performing approach are shown in bold text. For 4 GWs, there is no
significant difference among the three approaches as best minimum value of 39.8%
is from PSO. On the other hand, the deterministic approach and PSODIST achieve
the best mean and maximum values of 40.23% and 40.70% respectively. With 9
GWs, PSODIST seems to have an upper hand in the sense that it achieves the best
minimum and mean values of 51.28% and 51.51% respectively, while the determin-
istic approach gets the best maximum value of 52.38%. At 25 GWs, all the best

No. of GWs Deterministic PSO PSODIST

Min Mean Max Min Mean Max Min Mean Max

4 38.66 40.23 42.68 39.58 40.06 40.58 39.55 40.17 40.70

9 48.15 49.95 52.38 48.28 49.81 50.98 51.28 51.51 51.63

25 49.70 51.78 53.28 50.65 51.50 52.15 53.50 53.74 53.95

49 54.25 55.29 57.18 50.43 50.81 51.10 53.50 54.33 54.80

Table 2.
Benchmarking of PSO approaches with the deterministic approach.

Figure 10.
A comparison of the PDR values for the three approaches when the number of GWs is set to 4, 9, 25 and 50.
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values come from PSODIST, while at 50GWs, they all come from the deterministic
approach. The basic PSO seems not to compete well with the other two approaches.

Figure 10 illustrates the same results from a graphical perspective, where the
performance of PSODIST compares fairly well with the deterministic approach. It
even outperforms the deterministic approach at 25 GWs. This clearly shows that
when PSO approach is used for GW placement in LoRaWAN networks, there is a
need for GW distancing mechanisms in order to prevent GWs from accumulating
in some specific zones thereby jeopardizing performance in terms of PDR.

6. Conclusions

This Chapter investigated the efficacy of using Particle Swarm Optimization
(PSO) in determining the optimal locations for gateways in large LoRaWAN net-
works. The coordinates of the gateways are coded into a vector, which denotes
particle in PSO terminology. Gateway distancing measures have been proposed for
the initiliazation and flight time phases of the PSO in order to spread out the
gateways in the network. This process created a modified PSO algorithm, herein
refered to as PSODIST. During initialization, the LoRaWAN area is broken down
into a number of subareas and each gateway is initiliazed in a specific area. If there
are some extra gateways, which cannot fit in the subareas, such gateways are
initialized randomly within the entire area. During flight time, only new particle
positions, that exhibit a sufficiently high inter-gateway distance, are evaluated.
Optimization experiments are conducted to verify the effectiveness of the PSODIST
approach. The LoRaWAN script, used in the optimization process, is implemented
in NS-3 [12] using the recently proposed LoRaWAN module [13]. The function
evaluation routines in the PSO algorithms invoke the LoRaWAN script and the
resulting packet delivery rate (PDR) is retained as the fitness for the respective
particle.

The mechanics of the optimization process show that there is no difference
between PSODIST and PSO when the number of gateways is small. Nevertheless, as
the number of gateways increases, the impact of distancing measures becomes
evident; PSODIST yields better optimization rates as well as much faster conver-
gence than PSO. The much more even spread of the gateway locations determined
by PSODIST has also been demonstrated graphically. The results from the PSO
approaches have been further compared with the deterministic approach which
arranges the gateways uniformly over the LoRaWAN area. PSODIST yields similar
PDR values as the deterministic approach in the 50 km � 50 km LoRaWAN area.
Unlike the deterministic approach, which relies on square numbers and square areas
for uniform coverage, PSODIST can work well for any number of GWs. It is,
therefore, possible to get optimal performance at a lower number of GWs, in
between square numbers. Furthermore, PSODIST is not shape-dependent. It can,
therefore, be deployed easily in geometrically more complex LoRaWAN figures
such as rectangular, triangular, circular and trapezoidal shapes. The development of
more realistic LoRaWAN network by using real geographical information of an area
will be considered in future.

Abbreviations

IoT Internet of Things
NB Narrowband
LoRaWAN Long Range Wide Area Network
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LPWAN Low-Power Wide Area Networks
LoRa Long Range
PSO Particle Swarm Optimization
ED End Devices
GW Gateway
GW Network Server
SWMN Smart Water Metering Network
SWMN Chirp Spread Spectrum
SF Spreading Factor
PDR Packet Delivery Ratio
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Chapter 7

Pareto-Based Multiobjective
Particle Swarm Optimization:
Examples in Geophysical
Modeling
Ersin Büyük

Abstract

It has been recently revealed that particle swarm optimization (PSO) is a mod-
ern global optimization method and it has been used in many real world engineering
problems to estimate model parameters. PSO has also led as tremendous alternative
method to conventional geophysical modeling techniques which suffer from
dependence to initial model, linearization problems and being trapped at a local
minimum. An area neglected in using PSO is joint modeling of geophysical data sets
having different sensivities, whereas this kind of modeling with multiobjective
optimization techniques has become an important issue to increase the uniqueness
of the model parameters. However, using of subjective and unpredictable weighting
to objective functions may cause a misleading solution in multiobjective optimiza-
tion. Multiobjective PSO (MOPSO) with Pareto approach allows obtaining set of
solutions including a joint optimal solution without weighting requirements. This
chapter begins with an overview of PSO and Pareto-based MOPSO presented their
mathematical formulation, algorithms and alternate approaches used in these
methods. The chapter goes on to present a series synthetic modeled of seismological
data that is one kind of geophysical data by using of Pareto-based multiobjective
PSO. According to results matched perfectly, we believe that multiobjective PSO is
an innovative approach to joint modeling of such data.

Keywords: particle swarm optimization, Pareto-based optimization,
multiobjective, geophysical modeling

1. Introduction

As a conventional approach, least squares and linear programming optimization
methods have been used modeling of geophysical data with a general form without
requiring any special case. However, due to some disadvantages of these methods
such as computational time and linearization problems, it has become inevitable to
tend to new approaches for the researchers. Unlike traditional optimization
methods, optimization of nonlinear models has been improved in two ways which
are derivative based and non-derivative search methods. Unfortunately, one of the
major disadvantages of derivative based methods is that solutions potentially trap
at a local minimum because of depending on initial model. On the other hand,
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non-derivative search methods partly provide a global solution, however, signifi-
cantly increase computing time.

In recent years, two approaches that are artificial intelligence and meta-heuristic
optimization algorithms have been effectively put forward in geophysical modeling
studies having complex and nonlinear models. Meta-heuristic optimization algo-
rithms called as modern global optimization methods are based on systematic char-
acteristics of biological, molecular, neurobiological and animal swarms [1]. PSO as
one of the modern global optimization algorithms, has increased its popularity with
rapid convergence compared to various optimization algorithms [2, 3], especially
when real model parameters are used [4].

PSO for multiobjective optimization has also been used in many studies in order
to solve real world engineering problems having conflicted solutions between
objective functions [5]. Despite this interest, very few researchers have studied
MOPSO for joint modeling of geophysical data such as electromagnetic and gravity
[6, 7]. In fact, simultaneous optimization of multiobjective functions is also favored
to increase uniqueness of model parameters in joint modeling of geophysical data
that are generally sensitive to different physical phenomena. Multiobjective func-
tions can be transferred into single-objective by combination of objective functions
by using weighted-sum approach. However, it is very difficult to find reasonable
and optimum weigting coefficients [5]. In engineering problems, subjective and
unpredictable weightings used to objective functions are the primary cause of a
misleading solution, because different sensitivities and unpredictable noise of dif-
ferent data sets lead to uncertainty in weighting. Pareto optimality approach is a
good way to obtain set of possible solutions including an optimum solution in
objective function space overcoming the use of weighting and combining.

The purpose of this chapter is to review the literature on Pareto-based MOPSO.
This chapter first gives a brief overview of the methods and approaches used in PSO
and Pareto-based MOPSO and to look at how mathematical formulations and
general algorithms of these optimization techniques work. In order to show the
superiority of Pareto-based MOPSO over weighting-sum approaches, the chapter
proceeds as joint modeled of two synthetic seismological data using Pareto-based
MOPSO and analyses the obtained results. The results demonstrate that Pareto-
based MOPSO is a useful approach to joint modeling of seismological data as explain
in detail in our previous paper [8], of which TÜBİTAK is the publisher. Findings
validate the usefulness of MOPSO as a technique to optimize objective functions
simultaneously without weighting requirements. Finally, conclusion section gives a
brief summary of MOPSO and critique of findings in modeling.

2. Particle swarm optimization

PSO method, inspired by social behavior of the bird or fish flock to reach to
target in a shortest route was originally introduced by [9]. It was noticed that
members of flocks suddenly change their movements as scattering and regrouping,
when trajectory of swarms was observed. A striking feature of that was an effort of
members to reduce their distance from both flock and surrounding members. It was
found that knowledge within a flock was continuously shared by all members. PSO
method was developed by defining each member in a flock as a particle. According
to PSO, particles bearing an information of decision variable or model parameters
take a position in an objective function space. Each particle is in communication and
learning with other particles as schematically illustrated in Figure 1a. If a minimi-
zation problem is considered, each particle changes its position with a velocity
vector and converges a global minimum as shown in Figure 1b.
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The basic algorithm of PSO is outlined in Figure 2. According to this scheme,
particles which velocities are initially assigned as zero are initiated by randomly
selection between the minimum and maximum value of decision variables. After

Figure 1.
For a minimization problem, schematic illustration of a swarm trajectory. Randomly distributed particles in an
objective function space (a); trajectory of a swarm towards a global best solution (b), where x and f(x) denote a
decision variable and an objective function, respectively.

Figure 2.
General PSO algorithm.
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each particle is evaluated with an objective function, particle with best fitness value
is assigned as a global best solution. Particles move to the next position with a
velocity vector

V
!kþ1

i ¼ ωV
!k

i þ c1γ1 ⊗ x!pbest,i � x!
k
i

� �
þ c2γ2 ⊗ x!gbest � x!

k
i

� �
, (1)

where,

x!
kþ1
i ¼ x!

k
i þV

!kþ1

i , (2)

subscript i is the number of particles and k is the number of iterations.

Position and velocity vector of a particle i at iteration k are shown as x!
k
i and V

!k

i ,
respectively. ω is the inertia weight term forced on velocity vector. c1 and c2 are
local and global learning constants, γ1 and γ2 are uniformly random numbers in the
range [0,1]. x!pbest,i is the best position of particle i in the past. x!gbest called as leader
of a swarm is the position of the best particle indicating the best fitness value. If one
particle position updated by a new velocity vector has a fitness value better than its
previous best, new position is assigned as x!pbest. If one of the particles has a best

fitness value than the others, it is assigned as x!gbest. These processes are repeated in a
balance between exploration and exploitation until maximum iterations or mini-
mum error criteria is not satisfied.

2.1 Selection of the PSO parameters

Velocity vector in Eq. (1) is controlled in the following factors: velocity limita-
tion, learning coefficients and inertia weight. These factors are significantly con-
tribute to prevent explosion in a swarm and ensure convergence.

Velocity limitation: In the PSO method, each particle changes its velocity
vector by stochastic process. However, this leads a tendency exploding of velocity
vector and exceeding limit of one particle constrained in a search space, especially if
the particle is far from the personal and global best position. Therefore velocity
limit approach, introduced by [10], has been exploited to avoid such problems. By
this limitation of movement, it is ensured that particle does not exceed a search
space. Fan and Shi [11] suggested that maximum and minimum velocity limits as
follows: Vmax ,min ¼ �U, where U ¼ xmax � xminð Þ=N. xmax and xmin are the upper
and lower limit of a particle. N is an interval number defined by user considering
the xmax and xmin.

Learning coefficients: Local and global learning coefficients illustrated in
Eq. (1) control acceleration of a particle. While local learning coefficient (c1Þ
enables particle to approach its individual best position, global learning coefficient
c2ð Þ enables to be pulled towards the global best solution. These parameters some-
times called as acceleration coefficients are important to control the convergence.
Higher learning coefficients can provide a rapid convergence, but also probably
prevents exploration in an objective function space. In [12], author suggested that
dynamic learning coefficients for optimization with a large number of unknown
parameters. In addition, Ozcan and Mohan [13] concluded that if c1 þ c2 > 4,
trajectory of a swarm goes to infinity.

Inertia weight or constriction factor: Inertia weight term (ωÞ introduced by
Shi and Eberhart [14] maintains a balance between exploitation and exploration by
acting upon the current velocity vector. They proposed that linearly decreasing
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inertia weight from 0.9 to 0.4 in each iteration to increase performance of the
algorithm. If ω > 1 is selected, particles tend to move away through boundary of a
search space as velocity vectors increase continuously [5]. In [15], the author
observed that particles indicate a stable and reasonable searching in case of c1 þ
c2 ≤4. Nevertheless, it has even suggested a velocity limit by [16] to prevent
drastically growing of velocity vector. In a major advance, Clerc [17] proposed a
constriction factor (χ) to the PSO velocity vector equation. PSO algorithm with a
constriction factor allowed us to rapid and reliable convergence without velocity
limit requirements in case that ϕ ¼ ϕ1 þ ϕ2 >4, where ϕ1 and ϕ2 are the learning
coefficients substituted with c1 and c2. The velocity vector is changed in the
following way:

V
!kþ1

i ¼ χ V
!k

i þ ϕ1γ1 ⊗ x!pbest,i � x!
k
i

� �
þ ϕ2γ2 x!gbest � x!

k
i

� �� �
: (3)

Eq. (3) reveals that χ influences not only current velocity, but also new velocity
vector. Theoretical studies in [18] show that if ϕ1 and ϕ2 used as 2.05, therefore ϕ =
4.1, and χ = 0.7298, rapidly convergence is observed without using velocity limits. On
the other hand, in [2] the authors analyzed that if ϕ1 and ϕ2 are used as randomly,
swarm trajectory behaves as a combination of divergence and convergence.

2.2 Swarm topologies

Network of particles in a swarm is provided by kind of neighborhood topologies
that regulate sharing of information between particles. Small-scale topologies are
selected to use in solving complex problems, whereas large-scale topologies are
selected for simpler problem [19]. Empty, local best, fully connected, star network
and tree network are the list of the neighborhood network topologies which are
generally used in PSO [20].

Empty graph: Each particle is connected to itself and compared with personal
best position. In this topology, it is considered that c2 as equal to zero.

Local best: Local best x!lbest

� �
indicates that the best particle position between

one particle and its nearest neighbors. In this topology, particles are affected by
both their personal best and local best which is also defined as equivalent to a leader.
Each particle is connected to k nearest neighbors and if k = 2, network structure of
particles is called ring topology as shown in Figure 3a.

Fully connected graph: All particles in a swarm are connected to one another as
illustrated in Figure 3b. In fully connected topology also called as star topology [21],
each particle is affected by both its personal best and a global best defined as
equivalent to leader. Kennedy [22] analyzed that this structure tends to ensure that
a rapidly, but also a premature convergence.

Figure 3.
Neighborhood topologies generally used in PSO: Ring (a), fully connected (b), star network (c) and tree
network topology (d).
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Star network: In this topology, one particle called as focal particle [23] is in
connection with others as shown in Figure 3c. Focal particle defined as equivalent
to a leader adjusts trajectory of a swarm by comparing positions of others.

Tree network: In this network structure, all particles are taken shape of a tree
and, each of nodes of tree consists of exactly one particle as illustrated in Figure 3d
[24]. One particle at the node is connected to both child nodes bottom in a tree and
a parent node directly above in a tree. If one of the child node particle has a solution
better than its parent solution, position of both particles are replaced. In this topol-
ogy, parent particle is defined as equivalent to a leader.

3. Pareto multiobjective optimization

In multiobjective optimization problems (MOOP) indicated as an optimization
of more than one objective function, “trade-off” solutions that are conflicted to each
other are obtained rather than single solution. MOOP is generally defined to obtain
decision variables

x ¼ x1, x2, x3, … … … xp
� �

∈ S (4)

Figure 4.
Conceptual representation of the non-dominated and dominated particles in objective function space. Here,
f 1 xð Þ and f 2 xð Þ are objective functions. [8].
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in p dimensional of model space S, while simultaneously optimizing of a vector

f xð Þ ¼ f 1 xð Þ, f 2 xð Þ, f 3 xð Þ… … f N xð Þ� �
(5)

including all objective functions [25]. In MOOP, all objective functions in f xð Þ
vector may not be optimized simultaneously. Therefore Pareto optimality some-
times called as Pareto dominance approach is used to find set of possible solutions.
According to Pareto approach, if x is better solution than y in minimization prob-
lem, f xð Þ dominates f yð Þ, if and only if f k xð Þ≤ f k yð Þ, k ¼ 1, … :,N. If there is no
other x∈ S satisfies a condition such that f xð Þ< f xð Þwithout deteriorating any other
objective function, non-dominated solutions called Pareto optimal set P ∗ ∈ S or
Pareto front PF ∗ ¼ f xð Þ∈f j x∈P ∗ g exists in an objective function space as
schematically illustrated in Figure 4.

All particles of Pareto front generally spreads in two ways which are concave
and L-shaped curves. Concave shaped spreading indicates that one objective func-
tion does not be ameliorated without deteriorating any other objective function(s).
On the other hand, L-shaped spreading indicates that complete optimal solution
which means that all objective functions can be optimized simultaneously [26].
Other remarkable distribution of Pareto front is its deviation from symmetry
referenced by utopia point [0,0]. Deviation is an indication that one objective
function has many local minimums relatively the others (minimum one or more)
and/or modeling has not properly accomplished with defined parameter search
space and used methods [27].

4. Pareto-based multiobjective particle swarm optimization

Several considerations that are increasing the diversity, maintaining the non-
dominated particles and selecting a leader should be taken into account when using
MOPSO. [20] A general MOPSO algorithm modified from PSO algorithm by these
considerations outlined below is shown in Figure 5.

Increasing of diversity: In MOPSO, it is expected to increase of diversity of all
particles, while dominated particles are required to converge towards to Pareto-front.
Mutation, niching and clustering techniques are generally used to increase diversity.
Mutation operator is originally a stage of the genetic algorithm and it prevents to trap
of particles a local minima by altering decision variables within the bounds of possi-
bility [28, 29]. suggested that polynomial and dynamic mutation rate which should be
changed from higher to lower degree to keep increasing diversity in an entire search
space. This feature allows particles to be explored, even in far field on this space [30].
Niching method, which was also developed for evolutionary algorithms [31], pre-
vents a premature convergence that is a leading cause of a movement of particles
towards a solution [32]. In NichePSO presented by [33], alteration of each particle is
kept track after each iteration. If some particles do not change after several iterations,
niche formed as a sub-swarm including both these particles and their surroundings is
generated with a radius called σshare as illustrated in Figure 6. By comparing of two
particles in niches, a control mechanism is provided to be adding particles to a sub-
swarm or to be merging of sub-swarms [34]. In clustering technique introduced by
[35], main swarm is divided into k sub-swarms and determined leader in each sub-
swarm is moved to centroid of its sub-swarm. Diversity is provided by a migration of
leaders to different sub-swarms [36].

Maintaining non-dominated particles: Maintaining non-dominated particles is
key component of MOPSO. External archive technique allowing a storage of non-
dominated particles is generally used to spread and maintain Pareto-front. Global
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best, personal best or local best can be stored to an archive when extending PSO to
MOPSO. However, as dominated particles tending to converge and join to Pareto-
front, a rapid increase number of particles in an archive is a disadvantage [20]. A
restriction is applied to prevent rapidly growing number of non-dominated parti-
cles. In [37], they proposed ϵ-dominance value defined as set of boxes in objective
function space as shown in Figure 7 controls adding of dominated particles to
Pareto-front by sizing of an archive. In [38], their attempts to update of external
archive is composed niching method used to add or remove particles from archive
when it is full. In [30], geographically-based global repository approach is used to
update of an archive based on removing of non-dominated solutions from cells
which have fewer particles. Li [39] proposed non-dominated sorting method to
determine Pareto-front in each iteration. In his study, rather than comparing of a
new position with a personal best, temporary swarms have been generated by
combining both of them. In fact, the fundamental condition maintaining non-
dominated particles is that a new archive should be dominant over previous
archives. ϵ-dominance approach is one of the most feasible method to provide this
condition [20].

Leader selection: Unlike one leader that guides a swarm in the PSO, non-
dominated particles of Pareto front set indicate presence of multiple leaders in
MOPSO. Neighbor density and kernel density estimator methods based on density
measurement techniques are suggested to determine particles that are most likely to
be selected as a leader. In [40], they studied and further supported the concept of
crowding factor according to nearest neighbors of a given particle. The value of

Figure 5.
General MOPSO algorithm.
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Figure 6.
Niches having radius indicated by σshare are generated to compare of particles that have not change after several
iterations.

Figure 7.
ϵ-dominance concept for minimizing two objective functions. Particle A, B and C are incommensurable particles,
however, particle a is considered to be dominant to B and C due to more closer the lower left hand corner.
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estimators are determined by perimeter of a rectangular formed between one par-
ticle and neighbors as illustrated in Figure 8. Particles which have larger value of
estimator are preferred to select as a leader.

The kernel density estimator is based on the niching method. A niche which has
radius as σshare is generated for each of non-dominated particles. It is preferable
selected a leader from the least crowded niche [41]. As for leader selection from
preferred area, different ways are used. For instance, neighbor density estimator has
been used by Raquel and Naval [42] to select a leader randomly from top a list
ranking in descending order according to estimator values. If an external archive is
full, particle has been removed by randomly selecting from bottom of the list. To
select a leader, Coello Coello et al. [30] suggested to fitness values based on the
number of particles in each hypercube formed by division of an objective function
space. A leader is randomly selected from a hypercube determined by roulette-wheel
selection scheme which its lengths of divided segments proportional to fitness values.

5. Selecting the methods and parameters for Pareto-based
multiobjective particle swarm optimization

We joint modeled two synthetic seismological data obtained by response of five-
layered models by using MOPSO. In one synthetic model, shear wave velocities
increase smoothly with depth (SM-1), while the other has a noticeable velocity
contrast at third layer interface (SM-2). In the modeling stage, we simultaneously
optimized two objective functions related with Rayleigh wave dispersion (RWD)
and horizontal to vertical spectral ratio (HVSR) methods, which have different
sensivities to physical phenomena. The estimated parameters were shear-wave
velocities and depth obtained by cumulative sum of layer thicknesses in each layer.
Parameter search space and more technical details were be given in [8].

Minimization was carried out between observed data obtained by response of
synthetic models (yobsi Þ and calculated data (ycali Þ obtained by response of models

Figure 8.
Neighbor density estimator defined by perimeter of rectangular formed between one particle and its neighbors.
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which their parameters changing with particle movements. Fitness value αð Þ
minimized at each of the objective function was calculated using,

α ¼ 1
n

Xn
i¼1

yobsi � ycali

� �2
" #1=2

, (6)

where n is the number of observations. Number of iterations and particles was
selected as 200 and 100, respectively. Number of particles was selected as 100
referenced by 10-fold the number of model parameters (thicknesses and velocities
for 5 layers). We used PSO parameters defined in [43] with velocity equation in
Eq. (3) which provides an optimization without a velocity limitation. A mutation
operator was used to increase diversity and mutation rate was selected as two
percent. ϵ-dominance approach was selected to maintain of non-dominated parti-
cles and the value of ϵ was used as 0.01 for each of the objective functions. Number
of hypercubes was selected as 30 for 100 particles recommended by [30].

Figure 9.
Results for SM-1. Synthetic model and a model obtained from the Pareto optimum particle and the parameter
search space (a); the fit between the observed and calculated RWD (b), and HVSR (c); the Pareto optimum
solution marked as + and Pareto front (dark dots) with the dominated particles (light dots) for all iterations (d);
and the Pareto optimum solution (+) with Pareto front and dominated particles at the last iteration (e) [8].
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Hypercubes having more particles were preferred for leader selection. After a
fitness hypercube was determined by using Roulette-wheel approach, a leader was
selected randomly from this hypercube.

6. Results and discussions

The results of synthetic models (SM-1 and SM-2) are shown in Figure 9 and
Figure 10, respectively. As can be seen in Figure 9a and Figure 10a, MOPSO was
successful in proving to obtain the real models with defined methods and parame-
ters. These tests showing matched perfectly between synthetic data and model

Figure 10.
Results for SM-2. Synthetic model and a model obtained from the Pareto optimum particle and the parameter
search space (a); the fit between the observed and calculated RWD (b), and HVSR (c); the Pareto optimum
solution marked as + and Pareto front (dark dots) with the dominated particles (light dots) for all iterations (d);
and the Pareto optimum solution (+) with Pareto front and dominated particles at the last iteration (e) [8].
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responses as seen in Figure 9b, Figure 9c, Figure 10b and Figure 10c, further
strengthened our confidence in MOPSO modeling such seismological data. The
most conspicuous observation to emerge from the result of both models was the
distribution of dominated particles and Pareto front. Dominated particles in
Figure 9d show a clear and balanced distribution for SM-1, however, as in
Figure 10d dominated particles tend to towards the αRWD axis for SM-2. This results
showed that if only HVSR optimization was done, many local minima and non-
unique solutions could be obtained in modeling of data obtained by response of
such as SM-2 model. In contrast to earlier findings in [27], deviation from symmetry
and divergence from an objective function axis were not only related to a improp-
erly accomplished modeling, but also to the characteristic of HVSR optimization in
case of model such as SM-2 that its optimization indicated non-uniqueness solu-
tions. In addition, as shown in Figure 9b, spreading of Pareto front in SM-1 model-
ing showed a concave shaped curve that means an objective function could not
further minimized without maximized to other objective function. However, for
SM-2 model, Pareto front showed a similar distribution to L-shape, indicating that
both objective functions were minimized independently and simultaneously.

7. Conclusion

This chapter considered is an overview of methods and parameters generally
used in PSO and Pareto-based MOPSO, in the first step. The parameters and
methods used in the literature are reliable but do not have an obvious superiority to
each other. In spite of that MOPSO has been widely applied in many real world
engineering problems, a few attempts have been made in order to modeling geo-
physical data. Until our previous study, this methodology have not been applied
modeling seismological data. A set of solutions demonstrated in this chapter support
the idea that MOPSO provides a powerful methodology for joint modeling of data
having different sensivity. The present findings have important implications in
order to solve weighting problem encountered in joint modeling approach. A clear
benefit of MOPSO in the prevention of weighting-sum approaches could be clearly
identified in this analysis. A further important implication is that divergence of
particles from an objective function axis is not only related to properly defined
parametrization and accomplished modeling, but also to non-uniqueness solutions.
Our investigations into this point are still ongoing and seem likely to confirm our
hypothesis. The evidence from this study implies that MOPSO is considered to be
very attractive for joint modeling geophysical data in the future. However, further
work needs to be performed to confirm whether MOPSO is beneficial to joint
modeling of different types of geophysical data.
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