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Chapter 1

Basics of Fluid Dynamics
Nahom Alemseged Worku

Abstract

In this chapter, studies on basic properties of fluids are conducted. Mathematical
and scientific backgrounds that helps sprint well into studies on fluid mechanics is
provided. The Reynolds Transport theorem and its derivation is presented. The well-
known Conservation laws, Conservation of Mass, Conservation of Momentum and
Conservation of Energy, which are the foundation of almost all Engineering mechan-
ics simulation are derived from Reynolds transport theorem and through intuition.
The Navier–Stokes equation for incompressible flows are fully derived consequently.
To help with the solution of the Navier–Stokes equation, the velocity and pressure
terms Navier–Stokes equation are reduced into a vorticity stream function. Classifica-
tion of basic types of Partial differential equations and their corresponding properties
is discussed. Finally, classification of different types of flows and their corresponding
characteristics in relation to their corresponding type of PDEs are discussed.

Keywords: Navier–Stokes equation, engineering simulation, conservation laws,
Reynolds transport equation, modeling, simulation, fluid dynamics, fluid flow,
nonlinear differential equations

1. Introduction

1.1 Mathematical background

In this subsection, important mathematical formulations and ideas that help
understand fluids are discussed.

All mathematical formulations presented in this chapter will be performed using
vectors. Therefore, it is advised to have a good knowledge of the fundamental
theorems of vector calculus.

1.1.1 Green’s theorem

Assuming a closed curve C, the Green’s theorem expresses contour integral of C
in terms of a two dimensional region R, bounded by C [1–3].

The Green’s theorem is given as

ð

R

∂Q
∂x

� ∂P
∂y

� �
dA ¼ ∮

c
Pdxþ Qdy (1)

1.1.2 Stokes theorem

Let Q be a vector field, s be an oriented surface be a closed surface oriented by
the Right hand rule, Stokes theorem states that

1
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ð

s
∇�Q½ �ds ¼ ∮Qdr (2)

where r is such that dr/ds is the unit tangent vector and s the arc length of C. The
curve of the line integral, C, must have positive orientation, meaning that dr points
counterclockwise when the surface normal, dS, points toward the viewer, as per
the right-hand rule [1–3].

1.1.3 Divergence theorem

Divergence theorem is a relation to convert volume integral into areal integral.
Let v be a volume in a three dimensional space, and Ω be the surface boundary.

Let η be a unit normal pointing outward from the surface. Q being any vector field,
the Divergence theorem is given as

ð

v
Q:vdv ¼

ð

Ω
Q :ηdA (3)

The Divergence theorem is a very important concept, as shall be discussed in
later sections, in the area of fluid dynamics, especially in studying the Flux terms
[1–6].

The Divergence Theorem is equally applicable to tensors.

1.1.4 Leibniz integral rule

Leibniz integral rule gives a formula for differentiating a definite integral whose
limits are a function of definite variable [1–6]. If Q be a field that is a function of
time t and space X, the Leibniz Rule is given as

d
dx

ðb tð Þ

a tð Þ

f x, tð Þdx ¼
ðb tð Þ

a tð Þ

∂f
∂x

dxþ b0 tð Þf b tð Þ, tð Þ � a0 tð Þf a tð Þ, tð Þ (4)

If a and b are constant, the second and third terms go to zero.

1.2 Background on fluids

1.2.1 What are fluids?

Air is all around us. We drink water every day. We clean ourselves and our
environment using water. Almost 71% of the earth is covered with water. Our lives
are highly interrelated with fluids. This highly necessitates the study of fluids.

Fluids can be found in liquid or Gaseous state.
Fluids, in its Engineering sense, can be defined as a material that shear con-

stantly in the presence of a very small disturbance (Force and/or Gradient). Assume
we pour water over a horizontal plate. The water will flow horizontally in all
directions even if there is no gradient applied until it reaches stable position of a
very minimal depth.

The study of fluid dynamics is a very important area and is very useful in the
area of modeling and simulation of fluid flow.
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1.2.2 Scale

Scale is a very important concept when studying a natural phenomenon.
It helps understand where to position oneself to look at his/her study. There are

two major categories of scales, namely, microscopic and macroscopic scales.
If we see water with our naked eye, it is continuous and smooth, i.e. macro scale.

But when looked under microscope, we see small discontinuity. Zooming it a bit
more, it becomes more discontinuous. It somehow looks like a dense crowd in a
subway. Again zooming it more, we see groups (large chunks) of circles grouped
together and moving along with each other. Finally, if we zoom it enough, we can
see groups with three circles joined and moving together. The three circles joined
together are water molecules (H2O), with two hydrogen atoms and one oxygen
atom (micro scale).

The scale below molecular level, i.e., molecules, atoms, subatomic particles are
microscopic scale. The scale above which can be seen with the naked eye is com-
monly called macroscopic scale. In fluid mechanics, and also in solid mechanics,
macroscopic level of study is performed. In fluid mechanics, as in the case of solid
mechanics, materials are continuous and are thought of being composed of macro-
scopic elements (chunks). A chunk of fluid and solid, called a control volume, is
used to study the overall property of fluids and solids respectively.

1.2.3 Frame of reference

In engineering mechanics, there are three types of frame of reference. The
lagrangian, Eulerian and the Arbitrary-Lagrangian–Eulerian frame of reference [7].

• Lagrangian Frame of Reference (L.F.R):- In the lagrangian frame of
reference, properties of material points are studied by tracing individual
material elements. Let us assume there is a hypothetical grid of reference
aligned with the material element. In the L.F.R., the reference grid is not
stationary and deforms together with the domain.

In fluids, the L.F.R. study can be implemented by using streak lines (dyes). The
movement of the dye in the fluid is assumed to be a particle of fluid to be
studied. There are some cases that the lagrangian approach can be used. In
cases of solid mechanics, since the particles undergo very small deformations,
we can allow the reference grid to deform along with the body. Hence, the
Lagrangian frame of reference is preferred.

• Eulerian Frame of Reference(EFR):- In the EFR case, we assume a stationary
reference grid to monitor properties at a specific point and time. Normally, in
fluids, it is very difficult and can be unnecessary to track infinitely many fluid
particles. Hence, the Lagrangian frame of reference cannot be used.

Instead, the Eulerian frame of reference studies properties of fluids at a specific
space and time, which makes it convenient to study fluids. It is performed by
tracing properties of the fluid at each stationary grid point.

• Arbitrary Eulerian Lagrangian Frame of Reference (ALE):

We have seen that in case of the Lagrangian Frame of Reference, the reference
grid moves independently and in the case of the Eulerian Frame of Reference,
the grid is stationary.
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In the case of the Arbitrary Eulerian Lagrangian Frame of Reference, the
reference grid moves independently with the material element. This type of
frame of reference is called the ALE. The ALE frame of reference is widely used
in the study of fluid–structure Interaction problems.

1.2.4 Types of flow

1.2.4.1 Laminar and Turbulent Flow

Flows can be broadly classified as Laminar and Turbulent flows. At a certain
velocity and viscosity, flows are stable and have a defined property. The viscosity
tend to dissipate the velocity and pressure terms and take the responsibility of
calming the flow that it has a defined property, which is termed as Laminar flow
[1, 8].

But when the viscosity is small as compared to that of velocity of the flow, the
flow shall have unpredictable and chaotic property, thereby called Turbulent flow
[1, 8].

The relation between the velocity and viscosity of a flow can be described by a
dimensionless number called Reynold’s Number, which is given as the ratio of
Velocity times a length scale to that of viscosity.

Re ¼ ρUl
μ

(5)

Where Re is the Reynold’s Number, ρ is the density of the fluid, U is the velocity,
l is the Length scale, and μ is the dynamic Viscosity.

As the Re is below a certain value for a specific value for a certain flow, the flow
is classified as a Laminar Flow, and is classified as Turbulent when Re is higher than
the stipulated value for the specific type of flow.

1.2.4.2 Viscous and Inviscid Flow

A fluid is formally termed viscous if the shear stress is directly proportional to
the shear strain rate. In solids, materials with stress directly proportional to strain
are called Elastic material, or said to obey Hook’s Law.

A fluid is inviscid if shear stress is not directly proportional to shear strain rate.
By the same token, solids are termed as Inelastic if stress and strain are not directly
related.

Viscous fluids exhibit nonlinear behavior. This can intuitively be demonstrated
by the feel someone will have if s/he spills a ketchup or oil and water. Water is
relatively in viscid while oil or ketchup is viscous.

Viscosity dissipates energy thereby, stabilizes a fast moving Laminar flow
[1, 2, 8–12]. But, it can some destabilize a flow more in some Turbulent flow.

While viscosity dissipates energy, elastic materials store energy.

2. Conservation laws

In fluid mechanics, for convenience, individual fluid particles are called fluid
particles. And a set of fluid particles comprise a fluid element or a fluid system.
Therefore, one fluid element can comprise of many fluid particles, as can be seen in
Figure 1.
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To find answers to different physical problems that arise in fluids, we can simply
apply the fundamental laws of physics. But, the problem is that, physical laws are
obtained in the Lagrangian frame of reference form. Therefore, it is necessary to
customize it to the Eulerian frame of reference. To do that, we use the famous the
Reynolds Transport Theorem.

2.1 Reynold’s transport equation

Many of Fluid Dynamics problems are of interest in understanding and solving
what is currently going on at a specific point and time, rather than tracking particles
(Eulerian rather than Lagrangian Study).

But unfortunately, Physical laws like Newton’s laws can be applied in the
Lagrangian Frame of Reference (Figure 2).

The Reynolds transport theorem converts Eulerian Study into the
Lagrangian one so that the physical laws can be customized to the Eulerian frame
of reference.

The above figure shows a material element (fluid element) in a motion. At time
t, the fluid element was at position 1. And after a time increase of Δt,i.e. at time
t + Δt, it moves to position 3. In the moving process, the element t and t + Δt
intersected at position 2.

Now, let N be any arbitrary extensive property. Then,

Nt ¼ N1ð Þt þ N2ð Þt,  and NtþΔt ¼ N2ð ÞtþΔt þ N3ð ÞtþΔt: (6)

Figure 1.
Schematic diagram for fluid particle and fluid element.

Figure 2.
Schematic of fluid particle motion to visualize Reynolds transport.
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The rate of change of property N with respect to time t is given as

dN
dt

¼ lim
Δt!0

NtþΔt �Nt

Δt
, (7)

Solving Eq. (2), we can obtain

dN
dt

¼ lim
Δt!0

N2ð ÞtþΔt � N2ð Þt
Δt

þ N3ð ÞtþΔt � N1ð Þt (8)

Here, region 2 is our control volume. And region 1 is property ready to enter the
control volume and region 3 is a region leaving the control volume [7].

In Eq. (4), the first term on the right hand side is the rate of *change of material
property N with respect to time. The second term is the outflow from the control
volume and the third term is the inflow to the control volume.

Therefore, Eq. (4) can be read as the rate if change of a material property N with
respect to time t is equal to the rate of increase of N in the control volume plus the
net flux i.e. Outflow minus the inflow rate of the system.

Rate of change of N = Net rate of change w.r.t. time + Net flux into and out of C.V.
Net flux >0 if inflow is less than outflow and.
Net flux <0 if inflow is greater than outflow.
Now, let us introduce a derived property Φ, which is the rate of N per unit mass.

N ¼ Φ ∗m:

Flux is written in terms of control surface instead of control volume. Therefore,
using divergence theorem, the net flux is given by

ð

cs

ρϕu:nds (9)

Where u is the velocity of the fluids and n is the outward unit normal.
The outward unit normal is normal to the surface since only the normal compo-

nents of the flux terms enter and leave the control volume.
Hence, the general transport equation of extensive property Φ is

d
dt

ð

v

ρϕdv ¼ ∂

∂t

ð

cv

ρϕdvþ
ð

cs

ρϕu:nds (10)

2.2 Conservation of mass

The conservation of mass states that mass of fluids in a system is conserved [1, 2,
8–12].

Rate of Mass increase in a fluid element ¼ Net rate of flow of mass in the fluid:

So using the transport equation, we can derive the conservation of mass general
equation.

Now, let the property N be mass m. Therefore, our desired property Φ be m/m
which is equal to 1. Therefore, plugging this into Eq. (10) yields,

d
dt

ð

v

ρdv ¼ ∂

∂t

ð

cv

ρdvþ
ð

cs

ρu:nds (11)
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But, since mass is conserved, the term on the left hand side is zero, i.e. the net
rate of change of mass is zero. Therefore,

∂

∂t

ð

cv

ρdvþ
ð

cs

ρu:nds ¼ 0 (12)

To write Eq. (12) in compact form, the flux term can be written in the form of
control volume, instead of control surface. Hence,

ð

cs

ρu:nds ¼ �
ð

cv

∇:ρudv (13)

∂

∂t

ð

cv

ρdvþ
ð

cv

∇:ρudv ¼ 0 (14)

Finally, the compact form of conservation of mass is given by

ð

cv

∂ρ

∂t
þ ∇:ρu

� �
dv ¼ 0 (15)

Physical Intuition method of deriving the conservation of Mass Equation.
We describe the behavior of the fluid in terms of macroscopic properties, such as

velocity, pressure, density and temperature, and their space and time derivatives.
These may be thought of as averages over suitably large numbers of molecules. A
fluid particle or point in a fluid is then the smallest possible element of fluid whose
macroscopic properties are not influenced by individual molecules. We consider
such a small element of fluid with sides δ x, δ y and δ z.

From Figure 3, we can see that there are six faces labeled as N, S, W, E, T and B.
The positive directions are given in the figure (Figure 4).

We should notice that all properties are functions of space coordinates X, Y, Z
and time component t.

The element under consideration is so small that fluid properties at the faces can
be expressed accurately enough by means of the first two terms of a Taylor series
expansion. Let N be an arbitrary material property, then N at the W and E faces,
which are both at a distance of 1/2 δ x from the element center, can be expressed as

N � ∂N
∂x

∗
1
2
δx and N þ ∂N

∂x
∗
1
2
δx: (16)

Figure 3.
Infinitesimal fluid element.
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The net rate of increase of fluid element is given by

∂m
∂t

¼ ∂ ρdvð Þ
∂t

(17)

∂ ρdvð Þ
∂t

¼ ∂ρ

∂t
δxδyδzð Þ (18)

Assuming inflow to the fluid element to be positive and outflow to be negative.
The net flow rate into and out of the fluid element is given as

ρu� ∂ ρuð Þ
∂x

δx
2

� �
δyδz� ρuþ ∂ ρuð Þ

∂x
δx
2

� �
δyδz

þ ρv� ∂ ρvð Þ
∂y

δy
2

� �
δxδz� ρvþ ∂ ρvð Þ

∂y
δy
2

� �
δxδz

þ ρw� ∂ ρwð Þ
∂z

δz
2

� �
δxδy� ρwþ ∂ ρwð Þ

∂z
δz
2

� �
δxδy

(19)

Therefore, equating Eq. (18) and (19), we obtain

� ∂ ρuð Þ
∂x

þ ∂ ρvð Þ
∂y

þ ∂ ρwð Þ
∂z

� �
¼ ∂ρ

∂t
(20)

∂ρ

∂t
þ ∂ ρuð Þ

∂x
þ ∂ ρvð Þ

∂y
þ ∂ ρwð Þ

∂z

� �
¼ 0 (21)

∂ρ

∂t
þ ∇: ρuð Þ ¼ 0 (22)

Eq. (21) is an unsteady, three dimensional mass conservation or continuity
equation.

In case of incompressible fluids like water, the density do not change with time
and space and hence Eq. (35) can be reduced to

Figure 4.
Infinitesimal fluid element of mass transfer.
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∇:u ¼ 0 (23)

In the long hand notation, the equation becomes

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ 0 (24)

Rates of change following a fluid particle and for a fluid element.
Let the value of a property per unit mass be denoted by Φ. The total or

substantive derivative of Φwith respect to time following a fluid particle, written as
D Φ/Dt, is

Dϕ

Dt
¼ dϕ

dt
þ dϕ

dx
dx
dt

þ dϕ
dy

dy
dt

þ dϕ
dz

dz
dt

(25)

Here, dx/dt = u, dy/dt = v, dz./dt = w. and hence,

Dϕ

Dt
¼ dϕ

dt
þ u

dϕ
dx

þ v
dϕ
dy

þw
dϕ
dz

(26)

Dϕ

Dt
¼ dϕ

dt
þ u:grad ϕð Þ (27)

Where u, v and w are velocity in the x, y, and z direction.
Dϕ
Dt Is a property that is defined as the property per unit mass. But, we are

interested in developing equations of rates of change per unit volume. Therefore. By
multiplying the term Dϕ

Dt by density, we can obtain rates of change per unit volume.
Therefore,

ρ
Dϕ

Dt
¼ ρ

dϕ
dt

þ u:grad ϕð Þ
� �

(28)

The generalization of these terms for an arbitrary conserved property is

∂ ρϕð Þ
∂t

þ ∇:ρϕu ¼ 0 (29)

The above equation Eq. (41) expresses the rate of change in time of Φ per unit
volume plus the net flow of Φ out of the fluid element per unit volume. It is now
rewritten to illustrate its relationship with the substantive derivative of Φ.

∂ ρϕð Þ
∂t

þ ∇:ρϕu ¼ ρ
∂ ϕð Þ
∂t

þ ∇:ϕu
� �

þ ϕ
∂ ρð Þ
∂t

þ ∇:ρu
� �

∇:ϕu ¼ ∂ ϕuð Þ
∂x

þ ∂ ϕvð Þ
∂y

þ ∂ ϕwð Þ
∂z

(30)

∂ ϕuð Þ
∂x

þ ∂ ϕvð Þ
∂y

þ ∂ ϕwð Þ
∂z

¼ uþ vþw½ �: ∂ ϕð Þ
∂x

þ ∂ ϕð Þ
∂y

þ ∂ ϕð Þ
∂z

� �

∇:uϕ ¼ u:∇ϕ

But since the second term on the right hand side is the conservation of mass
equation which is zero, therefore
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ρ
Dϕ

Dt
¼ ∂ ρϕð Þ

∂t
þ ∇:ρϕu ¼ ρ

∂ ϕð Þ
∂t

þ u:∇ϕ
� �

(31)

2.3 Conservation of momentum

The conservation of Momentum states that the sum of the rate of change of
momentum on a fluid particle is equal to the sum of forces on the particle. This is
basically Newton’s second law.

Rate of change of Momentum On a fluid particle
¼ Sum of forces on a fluid particle

Our property N is now momentum P. Therefore, P = m*u. Therefore, Φ is the
velocity u since momentum is equal to mass times velocity.

From Reynolds’s transport theorem, we can obtain

∂

∂t

ð

cv

ρudvþ
ð

cs

ρu:u:nds ¼ 0

ð

cv

∂ ρuð Þ
∂t

þ ∇:ρuu
� �

¼ 0

(32)

Eq. (32), which is the integral form is used for the fluid element.
For fluid particle, we can use the differential form as.
Table 1. Conservation equations in vector form

∂ ρuð Þ
∂t

þ ∇:ρuu
� �

¼ 0 (33)

But Eq. (33) deals with the rate of change of Momentum. Now we shall see the
force components of the equation.

2.3.1 Types of forces on fluid particles

There are generally two types of forces on fluids.
Surface Forces: Are type of forces that are applied on surfaces (area). Some of

the Surface forces pressure forces, viscous and the like [8].
Body Forces: Are type of forces that are applied on volumes. Some of the Body

forces gravity forces, electromagnetic forces, centrifugal forces [1, 8].
There are nine viscous stress terms as state of stress and one pressure term as can

be seen on Figure 5.

X-Momentum U ρDu
Dt

∂ ρuð Þ
∂t þ ∇:ρuu

h i

Y-Momentum V ρ Dv
Dt

∂ ρvð Þ
∂t þ ∇:ρvu

h i

Z-Momentum W ρ Dw
Dt

∂ ρwð Þ
∂t þ ∇:ρwu

h i

Energy E ρ DE
Dt

∂ ρEð Þ
∂t þ∇:ρEu

h i

Table 1.
Vector notation of conservation Laws.
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The pressure, a normal stress, is denoted by p. Viscous stresses are denoted by τ.
The usual suffix notation τij is applied to indicate the direction of the viscous
stresses. The suffices i and j in τij indicate that the stress component acts in the j
direction on a surface normal to the I th-direction [1, 8] (Figure 6).

Therefore, the summation of forces in the X direction is given below.
Summation for the Pressure term is given as

P� ∂P
∂x

δx
2

� �
� Pþ ∂P

∂x
δx
2

� �� �
δyδz (34)

Eq. (46) can be reduced to

� ∂P
∂x

δxδyδz (35)

Similarly, for the viscous shear stress along the X-direction at the east and west
sides is given as

τxx þ ∂τxx
∂x

δx
2

� �
� τxx � ∂τxx

∂x
δx
2

� �� �
δyδz (36)

∂τxx
∂x

δxδyδz (37)

Similarly, for the viscous shear stress along the X-direction at the North and
South sides is given as

τyx þ
∂τyx
∂y

δy
2

� �
� τyx �

∂τyx
∂y

δy
2

� �� �
δxδz (38)

∂τyx
∂y

δxδyδz (39)

Again for the viscous shear stress along the X-direction at the Top and Bottom
sides is given as

τzx þ ∂τzx
∂z

δz
2

� �
� τyx � ∂τzx

∂z
δz
2

� �� �
δxδy (40)

Figure 5.
Infinitesimal fluid element of momentum transfer with shear stress.
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ρ
Dϕ

Dt
¼ ∂ ρϕð Þ

∂t
þ ∇:ρϕu ¼ ρ

∂ ϕð Þ
∂t

þ u:∇ϕ
� �

(31)

2.3 Conservation of momentum

The conservation of Momentum states that the sum of the rate of change of
momentum on a fluid particle is equal to the sum of forces on the particle. This is
basically Newton’s second law.

Rate of change of Momentum On a fluid particle
¼ Sum of forces on a fluid particle

Our property N is now momentum P. Therefore, P = m*u. Therefore, Φ is the
velocity u since momentum is equal to mass times velocity.

From Reynolds’s transport theorem, we can obtain

∂

∂t

ð

cv

ρudvþ
ð

cs

ρu:u:nds ¼ 0

ð

cv

∂ ρuð Þ
∂t

þ ∇:ρuu
� �

¼ 0

(32)

Eq. (32), which is the integral form is used for the fluid element.
For fluid particle, we can use the differential form as.
Table 1. Conservation equations in vector form

∂ ρuð Þ
∂t

þ ∇:ρuu
� �

¼ 0 (33)

But Eq. (33) deals with the rate of change of Momentum. Now we shall see the
force components of the equation.
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There are generally two types of forces on fluids.
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There are nine viscous stress terms as state of stress and one pressure term as can
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Dt
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∂t þ ∇:ρuu

h i
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Dt

∂ ρvð Þ
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h i

Z-Momentum W ρ Dw
Dt

∂ ρwð Þ
∂t þ ∇:ρwu

h i

Energy E ρ DE
Dt

∂ ρEð Þ
∂t þ∇:ρEu

h i

Table 1.
Vector notation of conservation Laws.
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The pressure, a normal stress, is denoted by p. Viscous stresses are denoted by τ.
The usual suffix notation τij is applied to indicate the direction of the viscous
stresses. The suffices i and j in τij indicate that the stress component acts in the j
direction on a surface normal to the I th-direction [1, 8] (Figure 6).

Therefore, the summation of forces in the X direction is given below.
Summation for the Pressure term is given as

P� ∂P
∂x

δx
2

� �
� Pþ ∂P

∂x
δx
2

� �� �
δyδz (34)

Eq. (46) can be reduced to

� ∂P
∂x

δxδyδz (35)

Similarly, for the viscous shear stress along the X-direction at the east and west
sides is given as

τxx þ ∂τxx
∂x

δx
2

� �
� τxx � ∂τxx

∂x
δx
2

� �� �
δyδz (36)

∂τxx
∂x

δxδyδz (37)

Similarly, for the viscous shear stress along the X-direction at the North and
South sides is given as

τyx þ
∂τyx
∂y

δy
2

� �
� τyx �

∂τyx
∂y

δy
2

� �� �
δxδz (38)

∂τyx
∂y

δxδyδz (39)

Again for the viscous shear stress along the X-direction at the Top and Bottom
sides is given as

τzx þ ∂τzx
∂z

δz
2

� �
� τyx � ∂τzx

∂z
δz
2

� �� �
δxδy (40)

Figure 5.
Infinitesimal fluid element of momentum transfer with shear stress.

11

Basics of Fluid Dynamics
DOI: http://dx.doi.org/10.5772/intechopen.96312



∂τzx
∂z

δxδyδz (41)

Therefore, the Total net force per unit volume along the X-axis is given as

∂ �Pþ τxxð Þ
∂x

þ ∂τyx
∂y

þ ∂τzx
∂z

(42)

Finally, the General Conservation of Momentum Equation is given as

∂ �Pþ τxxð Þ
∂x

þ ∂τyx
∂y

þ ∂τzx
∂z

¼ ρ
Du
Dx

(43)

And the Final equation for X-Momentum is

∂ �Pþ τxxð Þ
∂x

þ ∂τyx
∂y

þ ∂τzx
∂z

þ Sx ¼ ∂ ρuð Þ
∂t

þ ∇: ρuuð Þ (44)

Similarly, Total Y-Momentum

∂ τxy
� �
∂x

þ ∂ �Pþ τyy
� �

∂y
þ ∂τzy

∂z
þ Sy ¼ ∂ ρvð Þ

∂t
þ ∇: ρuvð Þ (45)

And for the Z-Momentum

∂ τxzð Þ
∂x

þ ∂ τyz
� �
∂y

þ ∂ �Pþ τzzð Þ
∂z

þ Sz ¼ ∂ ρwð Þ
∂t

þ ∇: ρuwð Þ (46)

The sign of the Pressure term is opposite to the stress term in the same direction
because, normally, the sign convention for the normal tensile stress is positive. But,
since the pressure term is compressive, their signs are opposite.

Figure 6.
Infinitesimal fluid element of momentum transfer with shear stress and pressure term.
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2.4 Conservation of energy equation in three dimension

The energy equation is derived from the first law of thermodynamics, which
states that the rate of increase of energy on a particle is equal to the sum of the net
rate of heat addition on to the fluid particle and the work done on the particle.

Rate of Energy on a fluid particle
=

Net rate of heat added
+

Work done on a fluid particle

The rate of increase of Energy of fluid per unit volume is given as

∂ ρEð Þ
∂t

þ ∇:ρEu
� �

¼ ρ
DE
Dt

(47)

2.4.1 Work done on a fluid particle

Work done by the surface forces per unit volume are equal to the stress and
pressure terms multiplied by the velocity. The sum of these terms (work done) can
be obtained multiplying the terms we derived by the Momentum equation with the
velocity components [8].

Pressure terms:

� ∂ puð Þ
∂x

þ ∂ pvð Þ
∂y

þ ∂ pwð Þ
∂z

� �
¼ �∇: puð Þ (48)

The work done due to the stresses is given as.
Total surface stress = Stress in X-direction + Stress in the Y Direction + Stress in

the Z Direction

∂ u:τxxð Þ
∂x

þ ∂ u:τyx
� �
∂y

þ ∂ u:τzxð Þ
∂z

� �
þ ∂ v:τxy

� �
∂x

þ ∂ v:τyy
� �
∂y

þ ∂ v:τzy
� �
∂z

� �

þ ∂ w:τxzð Þ
∂x

þ ∂ w:τyz
� �
∂y

þ ∂ w:τzzð Þ
∂z

� �
(49)

Therefore, the total work done on a fluid particle can be given as

�∇: puð Þ þ ∂ u:τxxð Þ
∂x

þ ∂ u:τyx
� �
∂y

þ ∂ u:τzxð Þ
∂z

� �
þ ∂ v:τxy

� �
∂x

þ ∂ v:τyy
� �
∂y

þ ∂ v:τzy
� �
∂z

� �

þ ∂ w:τxzð Þ
∂x

þ ∂ w:τyz
� �
∂y

þ ∂ w:τzzð Þ
∂z

� �

(50)

The first term is Energy Flux due to heat Conduction.
The second component that contributes to the rate of Energy addition is the rate

of heat flux.
From Figure 7, we can see the relation

� ∂qx
∂x

�
∂qy
∂y

� ∂qz
∂z

¼ �∇:q (51)
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Figure 6.
Infinitesimal fluid element of momentum transfer with shear stress and pressure term.

12

Computational Overview of Fluid Structure Interaction

2.4 Conservation of energy equation in three dimension

The energy equation is derived from the first law of thermodynamics, which
states that the rate of increase of energy on a particle is equal to the sum of the net
rate of heat addition on to the fluid particle and the work done on the particle.

Rate of Energy on a fluid particle
=

Net rate of heat added
+

Work done on a fluid particle

The rate of increase of Energy of fluid per unit volume is given as

∂ ρEð Þ
∂t

þ ∇:ρEu
� �

¼ ρ
DE
Dt

(47)

2.4.1 Work done on a fluid particle

Work done by the surface forces per unit volume are equal to the stress and
pressure terms multiplied by the velocity. The sum of these terms (work done) can
be obtained multiplying the terms we derived by the Momentum equation with the
velocity components [8].

Pressure terms:

� ∂ puð Þ
∂x

þ ∂ pvð Þ
∂y

þ ∂ pwð Þ
∂z

� �
¼ �∇: puð Þ (48)

The work done due to the stresses is given as.
Total surface stress = Stress in X-direction + Stress in the Y Direction + Stress in

the Z Direction
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∂x

þ ∂ u:τyx
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� �
þ ∂ v:τxy
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� �
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(49)

Therefore, the total work done on a fluid particle can be given as
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� �

(50)

The first term is Energy Flux due to heat Conduction.
The second component that contributes to the rate of Energy addition is the rate

of heat flux.
From Figure 7, we can see the relation

� ∂qx
∂x

�
∂qy
∂y

� ∂qz
∂z

¼ �∇:q (51)
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But from Fourier’s series, we can relate heat conduction to the temperature
gradient as

q ¼ �k∇T (52)

Therefore, the energy addition due to heat is given as

div k:grad:Tð Þ (53)

2.4.2 Total energy equation

The energy equation mostly deals with the heat transfer analysis of a given system.
There are three main forms of energy namely, kinetic energy per unit mass 1/2

(u2 + v2 + w2), Internal (thermal) energy (i), and gravitational potential Energy
[8]. The gravitational potential energy can be regarded as a source term as it does
work when the fluid pass through a gravitational field.

As derived earlier, the energy equation is given as

ρ
DE
Dt

¼ �∇: puð Þ þ ∂ u:τxxð Þ
∂x

þ ∂ u:τyx
� �
∂y

þ ∂ u:τzxð Þ
∂z

� �

þ ∂ v:τxy
� �
∂x

þ ∂ v:τyy
� �
∂y

þ ∂ v:τzy
� �
∂z

� �

þ ∂ w:τxzð Þ
∂x

þ ∂ w:τyz
� �
∂y

þ ∂ w:τzzð Þ
∂z

� �
þ div k:grad:Tð Þ þ SE

(54)

The mass and momentum conservation equations are solved for flow equations.
Alongside them, energy equation is solved for heat transfer problems.

3. Navier–stokes equation

3.1 Basics of the Navier–stokes equation

The Navier- Stokes equation is a general equation that is used to understand
properties of fluid flow. It is a core mathematical equation used to solve very

Figure 7.
Infinitesimal fluid element of heat energy.

14

Computational Overview of Fluid Structure Interaction

important parameters like Pressure and velocity in the area of fluid Flow (fluid
Engineering Simulation). It is basically the general conservation of momentum
equation with the force (stress terms) more complicated and include viscosity terms
as the viscosity induce stress on fluid particles.

One basic assumption here is that the fluid is considered isotropic. It does not
behave differently at different points in nature.

In many fluid flows the viscous stresses can be expressed as functions of the local
deformation rate or strain rate. In three-dimensional flows the local rate of
deformation is composed of the linear deformation rate and the volumetric
deformation rate.

And hence, the deformations can be found as

Sxx ¼ ∂u
∂x

, Syy ¼ ∂v
∂y

, Szz ¼ ∂w
∂z

(55)

These are the main stress terms.
For the linear shearing terms, which we have six of them, we have

Sxy ¼ Syx ¼ 1
2

∂u
∂y

þ ∂v
∂x

� �
, Syz ¼ Szy ¼ 1

2
∂v
∂z

þ ∂w
∂y

� �
, Sxz ¼ Szx ¼ 1

2
∂u
∂z

þ ∂w
∂x

� �
(56)

The volumetric deformation can be obtained by

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ div uð Þ (57)

In fluid flow, there are two viscous term constants of proportionality, namely
the linear viscous term (μ), and the volumetric viscous constant (λ). But the
volumetric viscosity constant can be considered negligible.

τxx ¼ 2μ
∂u
∂x

� �� �
þ λ∇:u, τyy ¼ 2μ

∂v
∂y

� �� �
þ λ∇:u, τzz ¼ 2μ

∂w
∂z

� �� �
þ λ∇:u (58)

And for the linear shearing viscous stresses, we obtain

τxy ¼ τyx ¼ μ
∂u
∂y

þ ∂v
∂x

� �
, τyz ¼ τzy ¼ μ

∂v
∂z

þ ∂w
∂y

� �
, τxz ¼ τzx ¼ μ

∂u
∂z

þ ∂w
∂x

� �
(59)

Inserting the general terms into the Navier stokes equation in the three
dimensions yields,

ρ
Du
Dt

¼ � ∂p
∂x

þ ∂

∂x
2μ

∂u
∂x

þ λ∇:u
� �� �

þ ∂

∂y
μ

∂u
∂y

þ ∂v
∂x

� �� �
þ ∂

∂z
μ

∂u
∂z

þ ∂w
∂x

� �� �
þ Sx

ρ
Dv
Dt

¼ � ∂p
∂y

þ ∂

∂x
μ

∂u
∂y

þ ∂v
∂x

� �� �
þ ∂

∂y
2μ

∂v
∂y

þ λ∇:u
� �� �

þ ∂

∂z
μ

∂v
∂z

þ ∂w
∂y

� �� �
þ Sy

ρ
Dw
Dt

¼ � ∂p
∂z

þ ∂

∂x
μ

∂u
∂z

þ ∂w
∂x

� �� �
þ ∂

∂y
μ

∂w
∂y

þ ∂v
∂z

� �� �
þ ∂

∂z
2μ

∂w
∂z

þ λ∇:u
� �� �

þ Sz

(60)
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But from Fourier’s series, we can relate heat conduction to the temperature
gradient as

q ¼ �k∇T (52)

Therefore, the energy addition due to heat is given as
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2.4.2 Total energy equation

The energy equation mostly deals with the heat transfer analysis of a given system.
There are three main forms of energy namely, kinetic energy per unit mass 1/2

(u2 + v2 + w2), Internal (thermal) energy (i), and gravitational potential Energy
[8]. The gravitational potential energy can be regarded as a source term as it does
work when the fluid pass through a gravitational field.

As derived earlier, the energy equation is given as
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DE
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The mass and momentum conservation equations are solved for flow equations.
Alongside them, energy equation is solved for heat transfer problems.

3. Navier–stokes equation

3.1 Basics of the Navier–stokes equation

The Navier- Stokes equation is a general equation that is used to understand
properties of fluid flow. It is a core mathematical equation used to solve very
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important parameters like Pressure and velocity in the area of fluid Flow (fluid
Engineering Simulation). It is basically the general conservation of momentum
equation with the force (stress terms) more complicated and include viscosity terms
as the viscosity induce stress on fluid particles.

One basic assumption here is that the fluid is considered isotropic. It does not
behave differently at different points in nature.

In many fluid flows the viscous stresses can be expressed as functions of the local
deformation rate or strain rate. In three-dimensional flows the local rate of
deformation is composed of the linear deformation rate and the volumetric
deformation rate.

And hence, the deformations can be found as

Sxx ¼ ∂u
∂x

, Syy ¼ ∂v
∂y

, Szz ¼ ∂w
∂z

(55)

These are the main stress terms.
For the linear shearing terms, which we have six of them, we have

Sxy ¼ Syx ¼ 1
2

∂u
∂y

þ ∂v
∂x

� �
, Syz ¼ Szy ¼ 1

2
∂v
∂z

þ ∂w
∂y

� �
, Sxz ¼ Szx ¼ 1

2
∂u
∂z

þ ∂w
∂x

� �
(56)

The volumetric deformation can be obtained by

∂u
∂x

þ ∂v
∂y

þ ∂w
∂z

¼ div uð Þ (57)

In fluid flow, there are two viscous term constants of proportionality, namely
the linear viscous term (μ), and the volumetric viscous constant (λ). But the
volumetric viscosity constant can be considered negligible.

τxx ¼ 2μ
∂u
∂x
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þ λ∇:u, τyy ¼ 2μ

∂v
∂y
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þ λ∇:u, τzz ¼ 2μ

∂w
∂z

� �� �
þ λ∇:u (58)

And for the linear shearing viscous stresses, we obtain

τxy ¼ τyx ¼ μ
∂u
∂y

þ ∂v
∂x

� �
, τyz ¼ τzy ¼ μ

∂v
∂z

þ ∂w
∂y

� �
, τxz ¼ τzx ¼ μ

∂u
∂z

þ ∂w
∂x

� �
(59)

Inserting the general terms into the Navier stokes equation in the three
dimensions yields,

ρ
Du
Dt

¼ � ∂p
∂x

þ ∂

∂x
2μ

∂u
∂x

þ λ∇:u
� �� �

þ ∂

∂y
μ

∂u
∂y

þ ∂v
∂x

� �� �
þ ∂

∂z
μ

∂u
∂z

þ ∂w
∂x
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þ Sx

ρ
Dv
Dt

¼ � ∂p
∂y

þ ∂

∂x
μ

∂u
∂y

þ ∂v
∂x

� �� �
þ ∂

∂y
2μ

∂v
∂y

þ λ∇:u
� �� �

þ ∂

∂z
μ

∂v
∂z

þ ∂w
∂y

� �� �
þ Sy

ρ
Dw
Dt

¼ � ∂p
∂z

þ ∂

∂x
μ

∂u
∂z

þ ∂w
∂x

� �� �
þ ∂

∂y
μ

∂w
∂y

þ ∂v
∂z

� �� �
þ ∂

∂z
2μ

∂w
∂z

þ λ∇:u
� �� �

þ Sz
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Therefore, from this equation, we can rearrange the terms to obtain

∂

∂x
μ
∂u
∂x

� �
þ ∂

∂y
μ
∂u
∂y

� �
þ ∂

∂z
μ
∂u
∂z

� �

þ
∂

∂x
μ
∂u
∂x

� �
þ ∂

∂y
μ
∂v
∂x

� �
þ ∂

∂z
μ
∂w
∂x

� �
þ λ∇:u ¼ Sx½ �

(61)

Eq. (73) can be summarized as

¼ ∇: μ∇Uð Þ þ Sx (62)

Therefore, the general Navier Stokes equations in three dimensions can be
written as

ρ
Du
Dt

¼ � ∂P
dx

þ ∇: μ∇Uð Þ þ Sx

ρ
Dv
Dt

¼ � ∂P
dy

þ ∇: μ∇Vð Þ þ Sy

ρ
Dw
Dt

¼ � ∂P
dz

þ ∇: μ∇Wð Þ þ Sz

(63)

3.2 Basics of transport equation

The Transport equation traces the transport of a flow property Φ, which can be
pollutants or temperature. The differential form of the Transport Equation can be
written as [1, 8].

∂ ρϕð Þ
∂t

þ ∇: ρϕuð Þ ¼ ∇: Γ∇ϕð Þ þ Sx (64)

The first term, ∂ ρϕð Þ
∂t mentions the rate of increase of Φ in a fluid element. The

second term is a convective term that represents convective outflow transport. The
third term to the right of the equality sign is a diffusive transport term to mean rate
of increase of ϕ due to diffusion.

The last term is the increase of ϕ in a fluid element due to production from the
source.

3.3 Vorticity stream function

The vorticity stream function is a method of reducing unknowns and solving the
Navier–Stokes equation.

Generally, for a two dimensional flow, we usually use three equations, two
momentum equations in X and Y directions and one is Conservation of mass
(Continuity equation) for case of incompressible flow [13].

∂u
∂x

þ ∂v
∂y

¼ 0 (65)

du
dt

þ u
∂u
∂x

þ v
∂u
∂y

¼ � 1
ρ

∂P
dx

þ ν
∂
2u
∂x2

þ ν
∂
2u
∂y2

þ Smx (66)
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dv
dt

þ u
∂v
∂x

þ v
∂v
∂y

¼ � 1
ρ

∂P
dy

þ ν
∂
2v
∂x2

þ ν
∂
2v
∂y2

þ Smy (67)

Here, in Eq. (63), we have three equations and three unknowns namely u,v and
P. But, we can reduce the number of equations and the number of unknowns.

To do that, we can introduce a vorticity term.

ω ¼ ∇�U

U ¼ f n u, v,w, tð Þ
(68)

The vorticity term has three components,

ωx ¼ ∂w
∂y

� ∂v
∂z

,ωy ¼ � ∂u
∂z

� ∂w
∂x

� �
, andωz ¼ ∂v

∂x
� ∂u

∂y
(69)

Here, ωx and ωy contain terms varying with respect to Z, which we are not
considering. Therefore, we shall take ωz since it is valid and have variations X and
Y, and not Z.

Therefore, differentiating the whole Y momentum equation with respect to X
and the X momentum equation with respect to Y,

∂ x�momentumð Þ
∂y

� ∂ y�momentum
� �

∂x
(70)

and finally subtracting it yields,

dw
dt

þ u
∂w
∂x

þ v
∂w
∂y

¼ ν
∂
2w
∂x2

þ ν
∂
2w
∂y2

þ Smx (71)

Now let us introduce stream function to reduce the number of equations and
unknowns. The Stream function combines velocity components u and v into one
variable ψ. Let

u ¼ ∂ψ

∂y
 and v ¼ � ∂ψ

∂x
(72)

Substituting Eq. (72) into (71), we obtain a single equation

∂ ∇3ψ
� �
∂t

þ ∂ψ

∂y
∂ ∇2ψ
� �
∂x

� ∂ψ

∂x
∂ ∇2ψ
� �
∂y

¼ ν ∇4ψ
� �

(73)

Which is a final vorticity stream function.

3.4 Classification of simple partial differential equations

Independent variable in a PDE can be either Temporal or Spatial, or only spatial
in more than one dimension [8].

Let a PDE be of form

A
∂
2ϕ

∂x2
þ B

∂
2ϕ

∂x∂y
þ C

∂
2ϕ

∂y2
þD

∂ϕ

∂x
þ E

∂ϕ

∂x
þ Fϕþ G ¼ 0 (74)

17

Basics of Fluid Dynamics
DOI: http://dx.doi.org/10.5772/intechopen.96312



Therefore, from this equation, we can rearrange the terms to obtain
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Let coefficients be a,b,c,d,e,f and g be constants to maintain Linearity to make it
simple.

The behavior of PDEs can be determined from its higher derivative terms, as in
this case, the second order derivatives (Table 2).

It can be seen that the discriminant of the higher order terms are more determi-
nant factor as to how a physical phenomenon modeled by a PDE behave [8].

Reduced form of Transport, Advection equation and Navier Stokes equations
can be put in a form of a Matrix. Determinants and Eigenvalues can then be
obtained from the Matrix, which can inform about the type of equation (PDE).

Det A� λIj j ¼ 0 (75)

If λ = 0, the equation is Parabolic,
λ 6¼ 0 and all are of the same sign, Elliptic,
λ 6¼ 0 and all but one are of the same sign, Hyperbolic.

3.5 Classification of fluid flow

Different flow types can be categorized, based on their properties, into different
PDEs. Some of the flow types and their corresponding equation types are defined
below.

As can be seen from Table 3, type of equation of Inviscid flow is different from
that of the Navier Stokes equation because of the absence of a higher order term
(Viscosity term).

Mach number is considered the measure of Compressibility of a fluid. It is the
ratio of Speed of the Fluid to that of Speed of sound.

Flow with Mach number greater than one is termed as Supersonic flow and
subsonic flow if less than one.

b2-4 ac Equation Type Characteristics

>0 Hyperbolic Two Real Characteristics

<0 Elliptic No Real Characteristics

=0 Parabolic One Real Characteristic

Table 2.
Equation types and their real characterstics.

Flow Type Steady Flow Unsteady Flow

Viscous Flow Elliptic Parabolic

Thin Shear Layer Flow Parabolic Parabolic

Inviscid Flow M > 1, Hyperbolic
M < 1,Elliptic

Hyperbolic

Navier Stokes Equation Elliptic Parabolic

Energy Equation Elliptic Parabolic

Table 3.
Flow types and their corresponding equations.
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4. Conclusion

Fundamental derivation and discussions of Fluid dynamics is discussed in this
chapter.

Initially, Mathematical background of fluid to help the reader sprint toward the
area of fluids is discussed.

Green’s theorem, Stoke ‘s theorem and Divergence theorem, which are basic
tools to manipulate and convert among Line, surface and Volume integral was
discussed briefly. The Divergence theorem is widely applicable to convert flux
terms (Volume to surface integral) is discussed.

Leibniz’s Rule, which helps solve Integro-differential equation was also included
in this section.

Consequently, background on fluids was highlighted, followed by basic concepts
that helps to understand fluids fundamentally, including appropriate scale of study,
frame of reference and basic flow types.

In the main part of this chapter, Reynold’s transport equation, which helps
customize Lagrangian physical laws to Eulerian frame of reference is discussed.

Conservation of Mass and Momentum, which are fundamentals of fluid dynam-
ics are discussed.

Energy equation, which is used to study heat flow within fluids are then
discussed.

Considering Incompressible viscous flow, the famous Navier–stokes equation is
then derived and discussed.

Application of Vorticity stream function, which is mostly used to solve the
Navier–Stokes equation by reducing variables was derived and discussed.

Consequently, classification and characteristics of Partial Differential equations
namely Parabolic, Elliptic and Hyperbolic equations are discussed.

Finally, classification of flows and their corresponding types like the Navier-
Stokes equation, Inviscid and viscous flows, Compressible and Incompressible flows
are then discussed.
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Chapter 2

Fluid Instabilities and Transition
to Turbulence
Michael S. Roberts

Abstract

Fluid instabilities show up in many places in everyday life, nature and
engineering applications. An often seemingly stable system with a gradient will
often give rise to the development of instability, which can cascade eventually into
turbulence. Governed by the parameters of the flow and fluids, when exposed to
perturbation in the system, some wavelengths will grow, while others will not. This
selectivity of specific structure sizes can be determined by using linear stability
theory and then accounting for viscosity. Once these unstable wavelengths have
grown to a substantial degree, the system typically becomes nonlinear before
turbulence eventually sets in. Initially, looking at buoyancy-driven instabilities, one
can clearly see how certain wavelengths can be selected. This can be extended to
shear-driven instabilities and to geophysical systems. For some flows, simplifica-
tions can be made to analyze the specific fluid structures, while for others, only
broad conclusions can be drawn about the stability criteria. With parallel shear
flows (like that over wings and through pipes), the applications are more obvious,
but the equations more difficult. However, conclusions can be drawn as to how one
can control, prevent and initiate instability to suit our engineering needs.

Keywords: instability, turbulence, transition, Rayleigh-Taylor,
Richtmyer-Meshkov, Kelvin-Helmholtz, Orr-Sommerfeld

1. Introduction

Fluid instabilities show up everywhere in nature. Fluid flow will start off laminar
and smooth and then quickly transition to an irregular pattern eventually
transitioning to turbulence. All you have to do to see its prevalence is look up at the
sky on a cloudy day when the conditions are right such that there will be large
clouds rolling past one another and spirals develop. This is the Kelvin-Helmholtz
instability (where there is a shear between two fluids with different relative veloc-
ities). Another common instability is when you add cold milk to hot tea. The larger
density of the cold fluid falls and displaces the hotter less dense fluid, and it is clear
that specific structures form. A similar phenomenon occurs for contained flows,
such as in pipes, or as in unbounded flow, such as that over a wing or out of a faucet.
In all of these cases, solving too simplified equations of motion would lead to the
solution that our ignorant view of the world might expect, where the fluids retain
their smooth laminar structure, but this does not happen. Instead a specific size and
shape of structure forms, usually in a periodic fashion, and this structure grows
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until finally becoming more and more chaotic until the flow is not longer laminar,
but has transitioned to turbulence. A normal mode analysis can often be performed
(where the equations of motion are assumed to be in a form where different
wavelengths can be tested), and through solving the equation, the growth rate of
various wavelength is found. This will tell us what specific configuration is
expected.

When engineering new devices that involve fluid flows, it is important to
account for these instabilities. This can be to try and minimize the onset of turbu-
lence (or speed it up) or to understand the different wavelengths that may form and
possibly causes resonances or unwanted behavior.

2. Stratified fluid instabilities

From a fluid instability perspective, stratified fluid systems are in some ways the
easiest to understand and visualize, so we will start there. It is often the case when
there is a fluid system in which two fluids with different properties, an unstable
configuration can be realized. Here we will mainly consider the case where there is a
clear boundary between two fluids, but this concept can be extended to a continu-
ous variation between fluids, but the diffusion effects would damp out any pertur-
bation and instability, so would not be as pronounced.

We can start our discussion by taking a vorticity perspective to the instability
growth. If we start in two-dimensions with the inviscid Navier-Stokes equation and
add a background velocity base state to the perturbed equation (here we are con-
sidering small perturbations to the base state), some conclusions can be drawn
although not a rigorous derivation.

∂u!

∂t
þ u! � ∇u! ¼ � 1

ρ
∇P

! ) ∂ux þUx

∂t
þ ux þUxð Þ ∂ ux þUxð Þ

∂x
þ ∂uy

∂t
þ uy

∂uy
∂y

¼ � 1
ρ
∇P

!
(1)

In Eq. 1, where u and U are the velocities of the perturbation and base state,
respectively, ρ is the density and P is the pressure. We will neglect products of small
quantities and also subtract the equation for the background flow. This will leave us
with an extra term representing the product of our base velocity and perturbed
velocity. We will now take the curl of this equation to arrive at a representation of
the vorticity.
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From this we see that a pressure gradient across a density gradient can create
vorticity (this is a buoyancy-driven instability) and a velocity gradient can create
vorticity as well (shear-driven instability). Both of these require a perturbation at
the interface to develop.

2.1 Buoyancy-driven instabilities

Buoyancy-driven fluid instabilities occur in a stratified fluid system when the
light fluid is accelerated into the heavier one often by means of a pressure gradient.
One way to understand this form of instability is from the baroclinic torque present
at the stratified, perturbed interface. This baroclinic torque is created from the
misalignment of the pressure and density gradients at the perturbed interface.
When in the unstable configuration, for a particular harmonic component of the
initial perturbation, this torque between the two fluids will create vorticity. This
vorticity will impose a velocity field that will tend to increase the misalignment of
the gradient vectors, which in turn will create additional vorticity, leading to more
misalignment. This is observed in Eq. 4, where if we neglect the velocity gradient in
the base flow as we have not considered that here, an increase in vorticity will be

realized if 1
ρ
!2 ∇ρ� ∇P

!
, which means that for instability ∇P

! � ∇ρ
!<0.

Illustrated in Figure 1, it is observed that the two counter-rotating vortices with
strength ω have velocity fields that sum at the peak and trough of the perturbed
interface. In the stable configuration the vorticity, and thus the induced velocity
field, will be in a direction that decreases the misalignment and therefore stabilizes
the system. In order for the instability to develop, ∇P � ∇ρ<0. This pressure is
increasing in the direction from the more dense to the less dense fluid.

Two specific buoyancy-driven instabilities are the Rayleigh-Taylor (character-
ized by a constant acceleration) and Richtmyer-Meshkov (characterized by an
impulsive acceleration).

2.1.1 Rayleigh-Taylor instability

The Rayleigh-Taylor instability (RTI) is a buoyancy-driven instability where the
acceleration is constant with respect to the fluid flow time. The most notable
example of the Rayleigh-Taylor instability is when a heavy fluid lies atop a light one
while in the presence of a downward acting gravitational field. This instability is
displayed in Figure 2 of the experimental images of Roberts [1]. Here, the initially
light over heavy stable fluid configuration is made unstable by accelerating the

Figure 1.
Visualization of an unstable buoyancy instability configuration where baroclinic torque at the interface creates
vorticity and induces a velocity field that increases the baroclinic torque.
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until finally becoming more and more chaotic until the flow is not longer laminar,
but has transitioned to turbulence. A normal mode analysis can often be performed
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various wavelength is found. This will tell us what specific configuration is
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From this we see that a pressure gradient across a density gradient can create
vorticity (this is a buoyancy-driven instability) and a velocity gradient can create
vorticity as well (shear-driven instability). Both of these require a perturbation at
the interface to develop.

2.1 Buoyancy-driven instabilities

Buoyancy-driven fluid instabilities occur in a stratified fluid system when the
light fluid is accelerated into the heavier one often by means of a pressure gradient.
One way to understand this form of instability is from the baroclinic torque present
at the stratified, perturbed interface. This baroclinic torque is created from the
misalignment of the pressure and density gradients at the perturbed interface.
When in the unstable configuration, for a particular harmonic component of the
initial perturbation, this torque between the two fluids will create vorticity. This
vorticity will impose a velocity field that will tend to increase the misalignment of
the gradient vectors, which in turn will create additional vorticity, leading to more
misalignment. This is observed in Eq. 4, where if we neglect the velocity gradient in
the base flow as we have not considered that here, an increase in vorticity will be
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strength ω have velocity fields that sum at the peak and trough of the perturbed
interface. In the stable configuration the vorticity, and thus the induced velocity
field, will be in a direction that decreases the misalignment and therefore stabilizes
the system. In order for the instability to develop, ∇P � ∇ρ<0. This pressure is
increasing in the direction from the more dense to the less dense fluid.

Two specific buoyancy-driven instabilities are the Rayleigh-Taylor (character-
ized by a constant acceleration) and Richtmyer-Meshkov (characterized by an
impulsive acceleration).

2.1.1 Rayleigh-Taylor instability

The Rayleigh-Taylor instability (RTI) is a buoyancy-driven instability where the
acceleration is constant with respect to the fluid flow time. The most notable
example of the Rayleigh-Taylor instability is when a heavy fluid lies atop a light one
while in the presence of a downward acting gravitational field. This instability is
displayed in Figure 2 of the experimental images of Roberts [1]. Here, the initially
light over heavy stable fluid configuration is made unstable by accelerating the
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system downward at a rate greater than gravity (essentially switching the direction
of gravity so that it is upward). As can be seen, a specific wavelength appears out of
the background which grows and eventually creates a turbulent mixing region.

A simplified way to understand how we may have a Rayleigh-Taylor (RT) stable
(or unstable) stratified configuration is by considering the situation in which there
is an acceleration geff acting downward (in the negative z direction) on a stratified
fluid system as depicted in Figure 3 [1]. Considering a fluid particle, we can look at
the forces acting on it in reference to the coordinate system in which z is directed
upward. The acceleration produces a pressure gradient ∂P

∂z ¼ �ρgeff inside the fluid
which may create a force imbalance upon the fluid particle. If we choose a fluid
particle in the upper fluid with density ρ2, we see that the force, due to pressure, at
the lower surface of this particle would be P0 � ρ1geffℓ� ρ2geff z� ℓð Þ� �

A (where A
is the area) and would be P0 � ρ1geffℓ� ρ2geff z� ℓþ Δzð Þ� �

A for the upper surface.
We have chosen the geometry of the fluid particle here to simplify the equations.
The force due to gravity on the fluid particle is �ρ2Vgeff ¼ �ρ2ΔzAgeff (where V is
the volume). Writing out Newton’s second law we have (lower pressure
force � upper pressure force + gravity force = mass � acceleration),

F ¼ m€z ¼ ρ2geffΔzA� ρ2geffΔzA ¼ ρ2V þ ρ1βð Þ d
2z
dt2

¼ 0, (5)

where we have also included the added mass ρ1β to account for the other fluid
that must be accelerated away with the fluid particle. For this configuration, the
fluid particle does not move, which is expected. If we interchange the fluid particle

Figure 2.
Experimental images of Roberts [1] in which an unstable Rayleigh-Taylor configuration is formed where the
light over heavy fluid system is made unstable. A progression of a specific wavelength is observed to develop and
eventually a turbulent mixing region.
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with one from the lower fluid where the density is ρ1, from Newton’s second law,
for the initial particle, we obtain (noting that the pressure forces have changed since
we are in the lower fluid),

P0 � ρ1geffz
� �

A� P0 � ρ1geff zþ Δzð Þ� �
A

� �� ρ2geffΔzA

¼ ρ1geffΔzA� ρ2geffΔzA ¼ ρ2V þ ρ1βð Þ d
2z
dt2

:
(6)

From this, if ρ1 > ρ2, the fluid particle is pushed back to where it came from (the
system is stable). However, if ρ2 > ρ1, the fluid particle is pushed further away from
where it originated and the system is unstable.

This concept of a fluid particle moving across the interface resulting in instability
can be extended to the deflection of an interface in the Rayleigh-Taylor instability and
illustrates the necessity of an initial perturbation on the interface since there is no
mechanism to interchange a fluid particle across the interface. An example of a simple
interface is shown in Figure 4, where the coordinate system is the same as in Figure 3.
The interface has been deformed, simulating perturbations on the interface. For sim-
plicity the geometry of the interface deformation has been chosen to be rectangular
(the derivation here can be generalized to an individual Fourier mode so that any
interface deformation would follow the same behavior). The fluid particle relocation is
caused by deformation of the interface. The pressure force on the fluid particle’s lower
surface is P0 � ρ1geffℓ

� �
A and is P0 � ρ1geffℓ� ρ2geffΔz

� �
A for the upper surface. The

force due to the weight of the fluid particle (which has density ρ1) is �ρ1V geff ¼
�ρ1ΔzAgeff . Note that once again we have chosen the interface deformation shape to
simplify the calculations. We can then form the equation for the force balance as,

ρ2geffΔzA� ρ1geffΔzA ¼ ρ1V þ ρ2βð Þ d
2z
dt2

: (7)

In this arrangement, if ρ1 > ρ2, the fluid particle is pushed back to its original
position (and thus the interface is brought back to equilibrium, so the system is

Figure 3.
A fluid particle in the upper fluid is interchanged with one from the lower fluid in a stratified system with
downward acting acceleration [1]. Once displaced to the bottom fluid, the force balance on the particle might
yield a configuration where it will continue to move from equilibrium. If ρ2 > ρ1, the fluid particle is accelerated
further downward and the system is unstable. If ρ2 < ρ1, the fluid particle is pushed back across the interface
and the system is stable.
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system downward at a rate greater than gravity (essentially switching the direction
of gravity so that it is upward). As can be seen, a specific wavelength appears out of
the background which grows and eventually creates a turbulent mixing region.

A simplified way to understand how we may have a Rayleigh-Taylor (RT) stable
(or unstable) stratified configuration is by considering the situation in which there
is an acceleration geff acting downward (in the negative z direction) on a stratified
fluid system as depicted in Figure 3 [1]. Considering a fluid particle, we can look at
the forces acting on it in reference to the coordinate system in which z is directed
upward. The acceleration produces a pressure gradient ∂P

∂z ¼ �ρgeff inside the fluid
which may create a force imbalance upon the fluid particle. If we choose a fluid
particle in the upper fluid with density ρ2, we see that the force, due to pressure, at
the lower surface of this particle would be P0 � ρ1geffℓ� ρ2geff z� ℓð Þ� �

A (where A
is the area) and would be P0 � ρ1geffℓ� ρ2geff z� ℓþ Δzð Þ� �

A for the upper surface.
We have chosen the geometry of the fluid particle here to simplify the equations.
The force due to gravity on the fluid particle is �ρ2Vgeff ¼ �ρ2ΔzAgeff (where V is
the volume). Writing out Newton’s second law we have (lower pressure
force � upper pressure force + gravity force = mass � acceleration),

F ¼ m€z ¼ ρ2geffΔzA� ρ2geffΔzA ¼ ρ2V þ ρ1βð Þ d
2z
dt2

¼ 0, (5)

where we have also included the added mass ρ1β to account for the other fluid
that must be accelerated away with the fluid particle. For this configuration, the
fluid particle does not move, which is expected. If we interchange the fluid particle

Figure 2.
Experimental images of Roberts [1] in which an unstable Rayleigh-Taylor configuration is formed where the
light over heavy fluid system is made unstable. A progression of a specific wavelength is observed to develop and
eventually a turbulent mixing region.
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with one from the lower fluid where the density is ρ1, from Newton’s second law,
for the initial particle, we obtain (noting that the pressure forces have changed since
we are in the lower fluid),

P0 � ρ1geffz
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(6)

From this, if ρ1 > ρ2, the fluid particle is pushed back to where it came from (the
system is stable). However, if ρ2 > ρ1, the fluid particle is pushed further away from
where it originated and the system is unstable.

This concept of a fluid particle moving across the interface resulting in instability
can be extended to the deflection of an interface in the Rayleigh-Taylor instability and
illustrates the necessity of an initial perturbation on the interface since there is no
mechanism to interchange a fluid particle across the interface. An example of a simple
interface is shown in Figure 4, where the coordinate system is the same as in Figure 3.
The interface has been deformed, simulating perturbations on the interface. For sim-
plicity the geometry of the interface deformation has been chosen to be rectangular
(the derivation here can be generalized to an individual Fourier mode so that any
interface deformation would follow the same behavior). The fluid particle relocation is
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force due to the weight of the fluid particle (which has density ρ1) is �ρ1V geff ¼
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simplify the calculations. We can then form the equation for the force balance as,

ρ2geffΔzA� ρ1geffΔzA ¼ ρ1V þ ρ2βð Þ d
2z
dt2

: (7)

In this arrangement, if ρ1 > ρ2, the fluid particle is pushed back to its original
position (and thus the interface is brought back to equilibrium, so the system is
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and the system is stable.
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stable). However, if ρ2 > ρ1, the fluid particle is pushed further away from where it
originated (deforming the interface further) and thus the system is unstable.

From this derivation, it is seen how the instability progresses, but does not say
much about the initial stages (for that we need to use linear stability theory, Section
2.1.4) or late time. For the late time development, from Eq. (7), we can make some
back of the envelope assumptions and arrive at a well known expression for the late
time turbulent Rayleigh-Taylor instability. If we assume β in the added mass is the
same as the Volume and rearrange and integrate twice, we can arrive at the well
known expression:

h ¼ αAgt2, (8)

where α is the growth constant and A is the Atwood number (derived from the
ratio of density difference to sum). This equation has been consistently found to fit
the Rayleigh-Taylor instability in late time after it has become turbulent [2].

2.1.2 Richtmyer-Meshkov instability

We can extend our understanding of the Rayleigh-Taylor instability to that of
the Richtmyer-Meshkov instability (RMI). From the vorticity argument for the
instability it is obvious that all that is needed is ∇P � ∇ρ<0. The pressure term does
not necessarily need to be constant as is for gravity, it can be impulsive as well. That
is the case of the Richtmyer–Meshkov instability. In an instant, a large amount of
vorticity gets deposited on the interface and the instability grows. The progression
of the instability follows the progression of the constant acceleration case.

2.1.3 Transition to turbulence

The evolution of the Rayleigh-Taylor instability follows four main stages. Ini-
tially, if the perturbation amplitudes are small when compared to wavelength, the
growth is exponential (following linear stability theory). Eventually, this will form
spikes (fluid structures of heavy fluid growing into light fluid) and bubbles (fluid
structures of light fluid growing into heavy fluid) from the individual sinusoidal
modes on the interface. The growth of these structures can be modeled by using a

Figure 4.
Here an interface is shown [1] downward acting acceleration of a fluid particle displaced from the lower to
upper fluid by means of interface deformation. If ρ2 > ρ1, the system is unstable (the fluid particle moves up
farther from the center further deforming the interface). If ρ2 < ρ1, the fluid particle is moved back toward the
center and the system is stabilized.
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buoyancy drag model and the growth is linear in time (the velocity is constant); this
is the second stage [3]. At this time, non-linear terms in the equations of motion can
no longer be ignored and mode-coupling will begin to play a role. Then, the spikes
and bubbles interact with each other through bubble merging and competition,
where fluid structures merge to create larger structures and larger structures
envelop smaller ones respectively; this is the third stage. This eventually develops
into a region of turbulent mixing, which is the fourth and final stage.

The mixing region that develops is believed to be self-similar and turbulent if the
Reynolds number is large enough [4]. Figure 5 represents the evolution of the
Rayleigh-Taylor instability from small wavelength perturbations at the interface.

The turbulent mixing that takes place represents active-scalar, level 2 mixing
where the mixing is coupled to the flow dynamics [4]. The flow is postulated to
follow the model h ¼ αAgt2, where h is the mixing layer width, A � ρ2�ρ1

ρ2þρ1
(the

density contrast) is the Atwood number, g is the acceleration and t is time [5].
Under the self-similar hypothesis, the flow at different times has the same geometry
and there is no obvious temporally constant length scale for the mixing region to be
scaled with; the mixing layer width is only coupled to the length scales within the
mixing region. Thus, the mixing layer width and the internal wavelengths increase
in time and must grow proportionally with each other. Eventually, the range of
scales within the mixing region form a sufficient inertial range for fully developed
turbulence to be assumed. A derivation, through dimensional analysis, of this self-
similarity is presented by Roberts [1]. A fully developed turbulent flow implies self-
similarity, but since a self-similar flow does not necessarily imply turbulence,

Figure 5.
This figure represents the evolution of the Rayleigh-Taylor instability from small wavelength perturbations at
the interface (a) which grow into the ubiquitous mushroom shaped spikes (fluid structures of heavy into light
fluid) and bubbles (fluid structures of light into heavy fluid) (b) and these fluid structures interact due to
bubble merging and competition (c) eventually developing into a mixing region (d) [1].
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stable). However, if ρ2 > ρ1, the fluid particle is pushed further away from where it
originated (deforming the interface further) and thus the system is unstable.
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known expression:
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spikes (fluid structures of heavy fluid growing into light fluid) and bubbles (fluid
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modes on the interface. The growth of these structures can be modeled by using a
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buoyancy drag model and the growth is linear in time (the velocity is constant); this
is the second stage [3]. At this time, non-linear terms in the equations of motion can
no longer be ignored and mode-coupling will begin to play a role. Then, the spikes
and bubbles interact with each other through bubble merging and competition,
where fluid structures merge to create larger structures and larger structures
envelop smaller ones respectively; this is the third stage. This eventually develops
into a region of turbulent mixing, which is the fourth and final stage.

The mixing region that develops is believed to be self-similar and turbulent if the
Reynolds number is large enough [4]. Figure 5 represents the evolution of the
Rayleigh-Taylor instability from small wavelength perturbations at the interface.

The turbulent mixing that takes place represents active-scalar, level 2 mixing
where the mixing is coupled to the flow dynamics [4]. The flow is postulated to
follow the model h ¼ αAgt2, where h is the mixing layer width, A � ρ2�ρ1

ρ2þρ1
(the

density contrast) is the Atwood number, g is the acceleration and t is time [5].
Under the self-similar hypothesis, the flow at different times has the same geometry
and there is no obvious temporally constant length scale for the mixing region to be
scaled with; the mixing layer width is only coupled to the length scales within the
mixing region. Thus, the mixing layer width and the internal wavelengths increase
in time and must grow proportionally with each other. Eventually, the range of
scales within the mixing region form a sufficient inertial range for fully developed
turbulence to be assumed. A derivation, through dimensional analysis, of this self-
similarity is presented by Roberts [1]. A fully developed turbulent flow implies self-
similarity, but since a self-similar flow does not necessarily imply turbulence,
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fluid) and bubbles (fluid structures of light into heavy fluid) (b) and these fluid structures interact due to
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turbulence cannot be assumed without quantifying the statistical properties of the
flow or by making comparisons to other studies where flow statistics are quantified.

When studying the mixing region produced by the Rayleigh-Taylor instability,
discrepancies between experiments and simulations make it obvious that it is nec-
essary to verify that fully developed turbulence is indeed being reached. One
method of doing this is to look at the spectra and verify that it obeys the Kolmogo-
rov �5/3 energy cascade in the inertial subrange. Also, with the loss of initial
conditions that is indicative of turbulent flow, verifying the self-preserving behav-
ior of the flow is a possibility.

2.1.3.1 Kolmogorov energy cascade

It is well accepted that fully developed turbulence displays the k�5=3 dependence
for the velocity spectrum. The same wavenumber dependence will be present in an
initially smooth scalar field that is disturbed by the same turbulence [6], which is
often more testable for the buoyancy-driven instabilities we have discussed. One
method of testing this is by using a normalized power spectrum of the FFT of the
concentration profiles and comparing to that of the Kolmogorov �5/3 law. It was
observed by Dalziel et al. [7] that the RT instability roughly fits this and by
Ramaprabhu and Andrews [8] as well.

2.1.3.2 Self-preservation

An important aspect of fully developed turbulence is the concept of self-
preservation. In the case of the turbulent Rayleigh-Taylor instability this would
require the various turbulent properties along the mixing zone to have a shape that
maintains itself in time. When normalized by the proper scale, the curves should
collapse on top of each other.

Comparison of self-similarity is a difficult task when it comes to experiment, but
Ramaprabhu and Andrews [8] does this with the use of PIV measurements. It is
indeed observed that when normalizing with mean velocity, there is a collapse of
the curves for profiles in later time. This can also be observed by looking at the
similarity of different concentration profiles in time (Figure 6) from the experi-
ments of Roberts and Jacobs [2]. From the profile images the self-similarity
becomes obvious, thus implying turbulence.

2.1.4 Linear stability theory

Linear stability theory is often used derive equations governing the stability of a
fluid system. It has been done many times in the past for the Rayleigh-Taylor
instability. One such derivation is that done by Roberts which combines both the
Rayleigh-Taylor and Richtmyer-Meshkov instabilities [9]. The way in which the
derivation begins, is by considering a slightly perturbed interface and plugging this
into the Navier-Stokes equations. By assuming small perturbations of the interface,
simplifications can be made since squares of small values should be neglected. The
full derivation will not be performed here, just some notable points for discussion.

We consider two stratified incompressible fluids where the interface is assumed
infinitesimally thin and a sinusoidal disturbance is imposed upon it, in both the x
and y directions, as displayed in Figure 7. Since each fluid region is considered to be
initially at rest, they are irrotational. Here vorticity can only be introduced at the
boundaries (in this case the interface) and then transmitted into the rest of the flow
by viscous diffusion.

30

Computational Overview of Fluid Structure Interaction

Considering diffusion effects to be confined to the infinitesimally thin interface
we can say that the fluid is irrotational throughout the two regions. By using the
potential functions: u ¼ ∂ϕ

∂x, v ¼ ∂ϕ
∂y and w ¼ ∂ϕ

∂z (where ϕ is a function of x, y, z and t),
one can then derive the continuity equations for the two fluid regions. In general on

Figure 6.
From the experiments of Roberts and Jacobs [2], an experimental sequence of images where the images of an
ensemble average of many experiments is shown progressing in time. Horizontally averaged intensity values are
superimposed on the images. The profiles have the characteristics of a self similar flow as time progresses.

Figure 7.
Interface representing our fluid configuration [1].
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the interface there is surface tension and this can give us an equation relating the
pressure at the interface. This taken with the geometry of the interface itself gives
an interfacial boundary condition. Since we are considering the flow to be irrota-
tional, we can use the unsteady Bernoulli equation for each fluid region to solve the
equations. After much equation manipulation one can arrive at the well known
linearized stability ODE,

€a� ρ2 � ρ1
ρ2 þ ρ1

� γk2

ρ2 þ ρ1ð Þgeff :

" #
kgeff :a ¼ 0, (9)

where a is the acceleration of the interface due to the fluid flow, ρ2,1 represents
the density of the upper and lower fluids respectively, γ is the surface tension, geff :
is the effective gravity and k is the wavenumber (2π over the wavelength). By
neglecting surface tension, one can simplify the expression to,

€a� Akgeff :a ¼ 0: (10)

This equation applies both to the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities.

2.1.4.1 Rayleigh-Taylor instability

In Eq. (10), when considering a constant acceleration for geff :, we have an ODE
that represents the R-T instability. This is a second-order ODE and can be solved
easily.

Representing σ2 ¼ kAgeff: we arrive at

a ¼ C1eσt þ C2e�σt: (11)

If Ageff : <0, σ is imaginary and therefore the equation yields a stable condition.
If Ageff : >0, σ is real and therefore the equation is unstable (it grows in time).

This equation can also be represented in a better way in which the coefficients
represent the initial amplitude and velocity of the sinusoidal disturbance,

a ¼ a0 cosh σtð Þ þ _a0 sinh σtð Þ: (12)

2.1.4.2 Richtmyer-Meshkov instability

Eq. (10) can also be considered when geff : is an impulsive acceleration defined by
geff : ¼ δ tð ÞV, where V is the velocity produced by the impulse.

This can be integrated to yield

ðaþ0
a�0

€a ¼ AkV
ðtþ
t�
aδ tð Þdτ, (13)

where

a0 ¼ a 0ð Þ: (14)

) _a ¼ AkVa0 þ _a 0ð Þ:
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by integrating once more we acquire

a ¼ AkVa0tþ _a0tþ a0 ) a ¼ a0 kAVtþ 1ð Þ þ _a0t: (15)

2.1.5 Small wavelength damping and stabilization

The effects of viscosity act only at small scales in RT instability and therefore act
to select particular wavelengths as opposed to others. Since viscosity only acts at
small scales, its effect can be neglected once the instability has become larger than
these scales. This can be understood by comparing the terms of RT growth with that

of viscous damping. First, The RT growth term from inviscid theory is e
ffiffiffiffiffiffiffiffiffi
kAgeff

p
t [9]

and that of viscous damping is e�2νk2t [10]. It is of interest here to see when the RT
growth term is much larger than the viscous term,

e
ffiffiffiffiffiffiffiffiffi
kAgeff

p
t > > e�2k2νt: (16)

This yields

k< <

ffiffiffiffiffiffiffiffiffiffiffi
Ageff
4ν2

1=3

r
: (17)

Eq. (17) gives us a way to calculate an approximate wavelength at which larger
than which we can ignore viscosity effects. As an example, with water and air at
room temperature, k ¼ 13, 485. This translates to a wavelength of approximately
0.46 mm. The dominant scales that we are measuring are certainly larger than this,
so for this regime we can neglect viscous effects. Next, for completeness the RT
growth from the self-similar model will be compared to the viscous damping term.
Again, let us examine when the RT growth is a lot larger than the viscous damping,

αAgeff t
2 > > e�2k2νt: (18)

This yields

k< <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln αAgeff t2
� �
�2νt

s
: (19)

As an example, from the experiments of Roberts and Jacobs [2], by assuming an
approximate α value of 0.05 and a time of 300 ms (this time corresponds to the
beginning of the measurable mixing region development in their experiments) we
conclude that the wavenumbers should be less than approximately 2500 (2.5 mm).
This does fall in line with the small wavelengths and structures we observe in the
images shown previously.

Keep in mind, this is an approximation to the viscous effects where a viscous
damping was used. If a detailed analysis is necessary to determine the fastest
growing wavelength, the derivations of Chandrasekhar [11] will give a more
detailed explanation and more exact solution.

Another damping effect at small wavelengths is that due to interfacial tension.We
use the term interfacial tension here to be more general, but the most obvious example
of this is surface tension where there is a free surface - such as in the air water interface
created in a glass of water or a straw. Interfaces of oil and water will also have an
interfacial tension which will act to shift the fastest growing wavelength to the larger
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kgeff :a ¼ 0, (9)

where a is the acceleration of the interface due to the fluid flow, ρ2,1 represents
the density of the upper and lower fluids respectively, γ is the surface tension, geff :
is the effective gravity and k is the wavenumber (2π over the wavelength). By
neglecting surface tension, one can simplify the expression to,

€a� Akgeff :a ¼ 0: (10)

This equation applies both to the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities.

2.1.4.1 Rayleigh-Taylor instability

In Eq. (10), when considering a constant acceleration for geff :, we have an ODE
that represents the R-T instability. This is a second-order ODE and can be solved
easily.

Representing σ2 ¼ kAgeff: we arrive at

a ¼ C1eσt þ C2e�σt: (11)

If Ageff : <0, σ is imaginary and therefore the equation yields a stable condition.
If Ageff : >0, σ is real and therefore the equation is unstable (it grows in time).

This equation can also be represented in a better way in which the coefficients
represent the initial amplitude and velocity of the sinusoidal disturbance,

a ¼ a0 cosh σtð Þ þ _a0 sinh σtð Þ: (12)

2.1.4.2 Richtmyer-Meshkov instability

Eq. (10) can also be considered when geff : is an impulsive acceleration defined by
geff : ¼ δ tð ÞV, where V is the velocity produced by the impulse.

This can be integrated to yield
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where
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by integrating once more we acquire
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2.1.5 Small wavelength damping and stabilization

The effects of viscosity act only at small scales in RT instability and therefore act
to select particular wavelengths as opposed to others. Since viscosity only acts at
small scales, its effect can be neglected once the instability has become larger than
these scales. This can be understood by comparing the terms of RT growth with that

of viscous damping. First, The RT growth term from inviscid theory is e
ffiffiffiffiffiffiffiffiffi
kAgeff

p
t [9]

and that of viscous damping is e�2νk2t [10]. It is of interest here to see when the RT
growth term is much larger than the viscous term,

e
ffiffiffiffiffiffiffiffiffi
kAgeff
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t > > e�2k2νt: (16)

This yields

k< <

ffiffiffiffiffiffiffiffiffiffiffi
Ageff
4ν2

1=3

r
: (17)

Eq. (17) gives us a way to calculate an approximate wavelength at which larger
than which we can ignore viscosity effects. As an example, with water and air at
room temperature, k ¼ 13, 485. This translates to a wavelength of approximately
0.46 mm. The dominant scales that we are measuring are certainly larger than this,
so for this regime we can neglect viscous effects. Next, for completeness the RT
growth from the self-similar model will be compared to the viscous damping term.
Again, let us examine when the RT growth is a lot larger than the viscous damping,

αAgeff t
2 > > e�2k2νt: (18)

This yields
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As an example, from the experiments of Roberts and Jacobs [2], by assuming an
approximate α value of 0.05 and a time of 300 ms (this time corresponds to the
beginning of the measurable mixing region development in their experiments) we
conclude that the wavenumbers should be less than approximately 2500 (2.5 mm).
This does fall in line with the small wavelengths and structures we observe in the
images shown previously.

Keep in mind, this is an approximation to the viscous effects where a viscous
damping was used. If a detailed analysis is necessary to determine the fastest
growing wavelength, the derivations of Chandrasekhar [11] will give a more
detailed explanation and more exact solution.

Another damping effect at small wavelengths is that due to interfacial tension.We
use the term interfacial tension here to be more general, but the most obvious example
of this is surface tension where there is a free surface - such as in the air water interface
created in a glass of water or a straw. Interfaces of oil and water will also have an
interfacial tension which will act to shift the fastest growing wavelength to the larger
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scales by damping out smaller scales as well as viscosity. However, interfacial tension
has more than just a damping effect but actually has a stabilizing effect, such that there
becomes a critical wavelength smaller than which the instability will not grow.

2.1.6 Applications

The classic observation of the Rayleigh-Taylor instability is the simple inversion
of a glass of water. Due to gravity, air (the less dense fluid) moves into the water
(the more dense fluid) and the instability develops as a consequence of perturba-
tions at the interface (as typically is in a natural environment). If one were to look at
simple fluid statics, the water should not “fall” out. Since the bottom of the glass is
covered, atmospheric pressure should hold the water in place when fluid statics
alone is considered; this does not take place because of the instability. An interesting
phenomenon is that of a covered straw with water in it. The same configuration is
present, however the water stays in place. By considering surface tension, we must
recognize that it has a stabilizing affect on the instability for smaller wavelengths.
The diameter of the straw is often smaller than the critical wavelength and therefore
nothing larger can develop and the wavelengths that do are not unstable. This has
implications for any engineering applications that rely on gravity. If the diameter is
too small, you cannot rely on the presence of the instability to assist and you would
need to account for the pressure difference given by fluid statics and atmospheric
pressure. An extension of this example can be made to the Richtmyer-Meshkov
instability. With the straw example, instead of just allowing the water to remain
under gravity, you can shake the straw thus creating impulsive accelerations that
(if strong enough) may shift the critical wavelength low enough such that the flow
becomes unstable and the liquid flows out. The same can be thought of for the bottle
of ketchup that needs that impulsive acceleration to start flowing. Although the
physics of the ketchup are more complicated since it is a non-Newtonian fluid, at
least at the beginning of the flow, RM instability plays a role. The extension here to
our pipe under gravity example would be that in a situation where some external
pressure differential is applied, but not necessarily enough to overcome atmo-
spheric pressure and the diameter of the pipe is too small for the RT instability alone
to work, pulsing the pressure source might help trigger a RM instability.

A more natural occurrence of these instabilities is in supernovae. Here, there are
stratified gases of different density. This difference in density arises from the fact
that the gas closer to the center is hotter (and therefore less dense), due to its
proximity to the burning fuel, than the gas farther from the center. This, in addition
to the outward acceleration that was produced by the explosion (both impulsive and
constant), creates unstable RT and RM configurations [12]. This in turn will gener-
ate mixing which will alter the way in which the flow progresses and how heat is
distributed. Astronomers can use this information to better understand and find
these phenomena. In relation to studying the stars, RTI also shows up when we
explore them. Hall-effect thrusters are becoming very popular for space flight
(especially satellites) due to their large specific impulse. In these thrusters, the wall
at the thruster exit has been shown to erode due to the instability and therefore a
better understanding is necessary [13]. We also see RTI in salt domes. Here, the less
dense salt that is buried beneath more dense sediment experiences an upward
acceleration due to gravity [14]. Although the timescales and effective viscosities
are very large, this still forms a RTI on geologic timescales.

Another important application is inertial confinement fusion (ICF), which if
mastered would lead to cheap and plentiful energy from water. In ICF, a capsule
containing a Deuterium/Tritium (DT) mixture is bombarded with energy originating
from high powered lasers with the purpose of causing a fusion reaction to take place;
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the two isotopes fuse producing He4, a neutron and energy [15]. ICF experiments are
currently being performed at the National Ignition Facility (NIF) in Lawrence Liver-
more National Laboratory (LLNL). The ICF capsule is a sphere comprised of three
main layers. The outer shell is an ablator material made from plastic doped with other
elements such as Beryllium or Germanium. Interior to that is a layer of DT ice
surrounding DT gas. There are two main types of ICF, direct and indirect drive. In
direct drive, lasers directly irradiate the target. In indirect drive, lasers enter a
hohlraum which has the capsule in the center. The hohlraum is a hollow cylinder that
is composed of a high Z (large atomic number) material, such as gold. The lasers
irradiate the inside of the hohlraum which re-emits the energy as x-rays. In the
indirect drive method, a more uniform energy distribution is deposited on the ablator
layer. The energy deposited on the ablator causes it to blow off, and by Newton’s third
law, PdV work is done on the interior of the capsule. The compression of the DT gas
region results in an increase in pressure at the center of the capsule causing very high
temperatures to develop. In addition, shocks (caused by the ablation) pass into the DT
gas region, which also add to the pressure and temperature rise. The pressure rise at
the center eventually acts to decelerate the initially accelerating implosion until a
stagnation point is reached [16]. This “hot spot” will reach the conditions for ther-
monuclear burn if a high enough temperature is achieved. During this process, there
are two ways in which the Rayleigh-Taylor and Richtmyer-Meshkov instabilities can
develop which acts to mitigate ignition and decrease total yield.

Firstly, RTI and RMI can occur at the interface of the outer ablator shell (after
becoming a plasma) and the DT ice layer during the initial implosion of the target.
In this configuration, the smaller density of the outer ablator plasma layer and the
larger density DT ice inner layer create an inward acting density gradient. This in
conjunction with the outward acting pressure gradient results in an RT/RM unstable
configuration. By choosing layers of gradually varying density with different dop-
ants such as Germanium, for the ablator material, the density difference can be
decreased; thus, decreasing RT growth. Also, by using indirect drive (to produce a
more uniform energy deposition), the effect of the instabilities can be minimized as
well by effectively decreasing the perturbations necessary to begin the instability.
The second way that RTI and RMI can occur is during the deceleration phase
between the high temperature, high pressure DT gas and the outer, colder DT ice
layer. Here, the pressure gradient is directed inward and the density gradient is
directed outward which is also an RT/RM unstable configuration. The RTI gener-
ated in both these instances causes mixing. This mixing brings cold fuel from the
outer layer into the center “hot spot,” lowering the temperature and decreasing the
reaction rate; this process may prevent ignition altogether [17]. By more fully
understanding this instability, more efficient capsules can be designed. In addition
to this, other methods to control the onset of RTI in fusion experiments using
rotating magnetic fields is being studied [18].

There are some situations where one does not want to prevent these instabilities
from forming at all, but actually want to encourage it and the increased mixing that
happens from it. One such example for RMI is that for a scramjet. With scramjets
(supersonic combustion ramjets), we wish to do combustion at supersonic speeds.
This is as opposed to standard ramjets in which the flow is slowed in the engine so
that proper mixing can occur. To accomplish this in scramjets, RMI is utilized to
enhance the mixing [19]. The geometry of the engine can be configured to create
shockwaves that will interact at specific fuel/air boundaries; this will impart impul-
sive accelerations that trigger RMI and eventually turbulent mixing. This extra
mixing is necessary to get a proper fuel/air mixture.

As can be observed, there are many applications to studying these instabilities to
control, prevent or encourage their growth.
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alone is considered; this does not take place because of the instability. An interesting
phenomenon is that of a covered straw with water in it. The same configuration is
present, however the water stays in place. By considering surface tension, we must
recognize that it has a stabilizing affect on the instability for smaller wavelengths.
The diameter of the straw is often smaller than the critical wavelength and therefore
nothing larger can develop and the wavelengths that do are not unstable. This has
implications for any engineering applications that rely on gravity. If the diameter is
too small, you cannot rely on the presence of the instability to assist and you would
need to account for the pressure difference given by fluid statics and atmospheric
pressure. An extension of this example can be made to the Richtmyer-Meshkov
instability. With the straw example, instead of just allowing the water to remain
under gravity, you can shake the straw thus creating impulsive accelerations that
(if strong enough) may shift the critical wavelength low enough such that the flow
becomes unstable and the liquid flows out. The same can be thought of for the bottle
of ketchup that needs that impulsive acceleration to start flowing. Although the
physics of the ketchup are more complicated since it is a non-Newtonian fluid, at
least at the beginning of the flow, RM instability plays a role. The extension here to
our pipe under gravity example would be that in a situation where some external
pressure differential is applied, but not necessarily enough to overcome atmo-
spheric pressure and the diameter of the pipe is too small for the RT instability alone
to work, pulsing the pressure source might help trigger a RM instability.

A more natural occurrence of these instabilities is in supernovae. Here, there are
stratified gases of different density. This difference in density arises from the fact
that the gas closer to the center is hotter (and therefore less dense), due to its
proximity to the burning fuel, than the gas farther from the center. This, in addition
to the outward acceleration that was produced by the explosion (both impulsive and
constant), creates unstable RT and RM configurations [12]. This in turn will gener-
ate mixing which will alter the way in which the flow progresses and how heat is
distributed. Astronomers can use this information to better understand and find
these phenomena. In relation to studying the stars, RTI also shows up when we
explore them. Hall-effect thrusters are becoming very popular for space flight
(especially satellites) due to their large specific impulse. In these thrusters, the wall
at the thruster exit has been shown to erode due to the instability and therefore a
better understanding is necessary [13]. We also see RTI in salt domes. Here, the less
dense salt that is buried beneath more dense sediment experiences an upward
acceleration due to gravity [14]. Although the timescales and effective viscosities
are very large, this still forms a RTI on geologic timescales.

Another important application is inertial confinement fusion (ICF), which if
mastered would lead to cheap and plentiful energy from water. In ICF, a capsule
containing a Deuterium/Tritium (DT) mixture is bombarded with energy originating
from high powered lasers with the purpose of causing a fusion reaction to take place;
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the two isotopes fuse producing He4, a neutron and energy [15]. ICF experiments are
currently being performed at the National Ignition Facility (NIF) in Lawrence Liver-
more National Laboratory (LLNL). The ICF capsule is a sphere comprised of three
main layers. The outer shell is an ablator material made from plastic doped with other
elements such as Beryllium or Germanium. Interior to that is a layer of DT ice
surrounding DT gas. There are two main types of ICF, direct and indirect drive. In
direct drive, lasers directly irradiate the target. In indirect drive, lasers enter a
hohlraum which has the capsule in the center. The hohlraum is a hollow cylinder that
is composed of a high Z (large atomic number) material, such as gold. The lasers
irradiate the inside of the hohlraum which re-emits the energy as x-rays. In the
indirect drive method, a more uniform energy distribution is deposited on the ablator
layer. The energy deposited on the ablator causes it to blow off, and by Newton’s third
law, PdV work is done on the interior of the capsule. The compression of the DT gas
region results in an increase in pressure at the center of the capsule causing very high
temperatures to develop. In addition, shocks (caused by the ablation) pass into the DT
gas region, which also add to the pressure and temperature rise. The pressure rise at
the center eventually acts to decelerate the initially accelerating implosion until a
stagnation point is reached [16]. This “hot spot” will reach the conditions for ther-
monuclear burn if a high enough temperature is achieved. During this process, there
are two ways in which the Rayleigh-Taylor and Richtmyer-Meshkov instabilities can
develop which acts to mitigate ignition and decrease total yield.

Firstly, RTI and RMI can occur at the interface of the outer ablator shell (after
becoming a plasma) and the DT ice layer during the initial implosion of the target.
In this configuration, the smaller density of the outer ablator plasma layer and the
larger density DT ice inner layer create an inward acting density gradient. This in
conjunction with the outward acting pressure gradient results in an RT/RM unstable
configuration. By choosing layers of gradually varying density with different dop-
ants such as Germanium, for the ablator material, the density difference can be
decreased; thus, decreasing RT growth. Also, by using indirect drive (to produce a
more uniform energy deposition), the effect of the instabilities can be minimized as
well by effectively decreasing the perturbations necessary to begin the instability.
The second way that RTI and RMI can occur is during the deceleration phase
between the high temperature, high pressure DT gas and the outer, colder DT ice
layer. Here, the pressure gradient is directed inward and the density gradient is
directed outward which is also an RT/RM unstable configuration. The RTI gener-
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2.2 Shear-driven instabilities

Another class of stratified instabilities is shear-driven ones—where there is a
difference in shear forces across the interface for instance. One such instability is
the Kelvin-Helmholtz instability that happens if there is a jump in velocity across an
interface. From Eq. 4, we see that if the velocity gradient is large enough, then a
stabilizing buoyancy instability effect will be overcome and we will have vorticity

deposited. 1
ρ2 ∇ρ

!2 � ∇P
! þ ∂UX

∂y
ux
∂x >0. As can be seen in Figure 8, when we ignore the

effects of buoyancy, a velocity difference between top and bottom fluid (a gradient
in the direction orthogonal to the flow) will create vorticity due to the torque from a
perturbed interface. If a U2 is larger than U1, this vorticity will create even more
shear, which will create more vorticity. This instability can be observed in clouds
when there is stratification with high velocity present or even when one pours a
bottle of oil and vinegar salad dressing. Another interesting application of this
instability is in semiconductor manufacturing where the ion beams used in chemical
vapor deposition and ion implantation becomes subjected to this instability [20].

3. Baroclinic instability

All of the instabilities mentioned so far often occur in nature as there are often
stratified flows in the atmospheres and oceans. Another extension of this is on the
much larger geophysical scale, where the Coriolis force due to the earth rotation and
velocity difference at different lines of latitude as the radius with the rotation axis
varies. In this configuration, we have both the hydrostatic balance ∂p

∂z ¼ ρg and the

geostrophic balance 2ΩsinθU ¼ � 1
ρ
∂p
∂y, where Ω is the earth’s rotation and density ρ is

a function of temperature (Figure 9).

It is then determined that for instability that,
H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ρ0

∂p
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� �q

Ω [21], where H is the

height in the vertical and ∂p
∂y is the pressure gradient due to a temperature gradient.

As can be observed, there are very specific conditions for this instability to develop.
If the temperature gradient is too small or too high, this particular instability will
not develop, but also a part of this is the vertical height and the earth’s rotation. This
instability shows up quite often as the development of vorticity in the earth’s oceans
and atmosphere and is a large contributing factor to weather patterns.

Figure 8.
Vorticity created when there is velocity gradient in the base flow and a perturbed interface. It is clear here that a
torque would be created when the interface is misaligned.
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4. Parallel shear flow instability

A very broad and far reaching class of flows is that of parallel shear flows. These
are flows that are mostly unidirectional and have velocity profiles created by the no
slip condition at the boundary. This includes and has historically been studied for
pipe flow by Reynolds [22]. The flow can also be extended to that of unbounded
flows and even base flows in which there is a slight curvature, but parallel to a first-
order approximation, such as flow over a wing. Under certain conditions, these
flows can become unstable leading to turbulence and separation which has implica-
tions to engineering design. First, we will consider inviscid flow and then discuss
viscosity effects.

4.1 Inflection points and adverse pressure gradients in inviscid flow

It was Rayleigh [23] who first recognized the importance of inflection points in
the velocity profile. He proposed that for instability to be present, a necessary
condition is an inflection point in the velocity profile. This was expanded upon by
Fjørtoft [24] who proposed that another necessary condition for instability is that
∂
2U
∂z U � Usð Þ<0 somewhere in the flow where zs is a point at which ∂

2U
∂z ¼ 0 and

Us ¼ U zsð Þ [25]. This basically means that in a velocity profile, not only does there
need to be an inflection point (change in curvature or where it goes from concave
up to down or vice versa), also, if you follow along the profile, at some points in the
flow, the difference in velocity there to that at the inflection point times the
curvature should be negative. This typically happens when there is an adverse
pressure gradient (pressure that pushes in the opposite direction of the flow). In
this situation, the velocity profile starts as one would expect (bulging forward), but
it eventually starts bulging backwards which is unstable and can lead to flow
separation in an unbounded flow.

One way that an inflection point occurs is with an adverse pressure gradient. In
pipe/duct flow this can be difficult to realize if the main flow is caused by a pressure
gradient. However, we can have a situation where a localized pressure gradient
(caused by a fan or impeller) creates a forward moving velocity profile, but there is

Figure 9.
The rotation of the earth sets up a situation in which instability can occur due to the combined action of the
hydrostatic and geostrophic balances.
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back pressure in the over all configuration that will make an unstable flow config-
uration. Adverse pressure gradients are a bit more obvious with unbounded flows.
We can start by looking at the boundary layer equation,

u
∂u
∂x

þ v
∂u
∂y

¼ � 1
ρ

∂p
∂x

þ ν
∂
2u
∂y2

(20)

where the pressure gradient is based has the form from the base flow as�ρU dU
dx

� �
.

In this situation, at the wall (due to the no slip condition and continuity equation), we
have zero velocity components which yields,

μ
∂
2u
∂y2

� �

wall
¼ ∂p

∂x
: (21)

Therefore, in the immediate vicinity of the wall, the curvature of the velocity
profile is dictated by whether the pressure gradient is positive or negative. Thus, an
adverse pressure gradient will lead to an inflection point. Over a wing, what creates
lift (and a pressure gradient in the y direction) is streamline curvature. The
streamlines must curve to fit the body at first, but this also means that toward the
trailing edge they must then curve back to the background stream, and there will be
an adverse pressure gradient. Decreasing the degree of curvature over the trailing
edge will decrease the magnitude of the adverse pressure gradient and thus prevent
separation further along the wing, thus minimizing drag. In addition, “tripping” the
boundary layer by making it turbulent early on also prevents separation as there is
more momentum in the flow giving a wider velocity profile that can withstand an
adverse pressure gradient longer.

4.2 Orr-Sommerfeld equation

The criteria for stability so far have been considered for inviscid flow. To extend
this to include viscosity as well does make the equations much more complicated.
We will not derive this here. It can be derived by using linear stability theory on the
Navier-Stokes equations as done by Cohen and Kundu [21] yielding the result,

U � cð Þ ∂
2ϕ

∂y2
� k2ϕ

� �
� ∂

2U
∂y2

ϕ ¼ 1
ikRe

∂
4ϕ

∂y4
� 2k2

∂
2ϕ

∂y2
þ k4ϕ

� �
, (22)

where c is the wave speed, k is the wavenumber and ϕ is defined such that the
perturbation velocities, u ¼ ∂ϕ

∂y and v ¼ �ikϕ. As can be observed, this is a fourth-
order differential equation which is very difficult to solve. The only way to approach
such a problem would be to solve this equation a numerical simulation. Since it is an
ordinary differential equation, there are many methods that can be used. But, better
yet is to use one of the inviscid simplifications discussed previously.

4.3 Engineering applications

Parallel shear flows have become some of the most obvious flows around us and
thus have strong engineering importance. From pipe flow to flow over wings and
cars there is great importance. With flow in pipes, it was noticed by Rayleigh [23]
that turbulent spots develop above a certain Reynolds number and then eventually
the flow becomes fully turbulent. This happens at a Reynolds number of approxi-
mately 3000. This is important to take note of as a turbulent flow will be noisier and
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the extra flow non-uniformity can lessen the life of pipes. For flow over bodies, we
have to also look at the pressure gradient and whether it is adverse or not. An
adverse pressure gradient will eventually lead to separation, but this can be delayed
if the flow is turbulent. This means, that although we need to locally introduce
irregularities in the flow to induce turbulence, at the same time we would want to
minimize the adverse pressure gradient to prevent separation (which will in turn
increase drag). A pictorial representation of a simplified view of the flow over the
wing is shown in Figure 10.

As can be observed from the flow over a wing, at first there is a favorable
pressure gradient, which eventually turns into an adverse pressure gradient at the
trailing edge. In order to make lift, we want to have a pretty large wing curvature at
first (this creates the pressure gradient perpendicular to the wing that creates lift),
but then we can smoothly allow the wing and streamlines transition to free stream
to try and push back the section where we have an adverse pressure gradient. In this
adverse pressure gradient region is where the velocity profile can get an inflection
point which could eventually lead to back flow in the velocity profile and flow
separation. Once the flow separates, you will have increased pressure drag as there
will be a low pressure region in this separated trailing edge region. It also turns out
that since turbulent boundary layers are fuller and have more momentum, it takes
longer for an inflection point to create backflow and therefore the flow stays
attached longer. One can “trip” the boundary layer (by depositing a small amount
of vorticity in the flow right in the boundary layer (small triangular surfaces seen on
a wing’s leading edge) such that the boundary layer becomes turbulent, but the rest
of the flow does not.

5. Conclusions

Fluid instabilities show up everywhere in nature. In this chapter we have
discussed some of the main instability classes. Stratified fluid flows were discussed
first as it is in some ways the simplest to understand. They show up in our coffee,

Figure 10.
Initially, the flow is in a favorable pressure gradient, but this eventually changes to adverse one where an
inflection point forms in the velocity profile and the flow is in danger of separation which would increase drag.
The top row of velocity profiles represent that for laminar flow, whereas the bottom row represents that for a
turbulent flow which is seen to be fuller and thus less susceptible to backflow.
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our condiments, in the atmosphere and the oceans, basically wherever there is a
density difference present between the two layers. Depending on the orientation of
the density difference, vorticity can be generated in a self-sustaining process. Using
linear stability theory, it is determined how different wavelengths grow at different
rates for the system and how interfacial or surface tension acts has a stabilizing
effect. One can also look at the effects of viscosity which has a damping effect on
the smaller wavelengths, thus giving rise to a fastest growing wavelength which has
direct implications to engineering applications as the geometry of the system can act
to directly prevent or create these wavelengths, therefore controlling instability
growth. Once the instability has grown enough, the linearized equations no longer
hold and non-linear effects including interactions between structures will take
place. This eventually leads to turbulence. This instability can then be extended to
include the case where instead of a density difference at an interface, there is a
velocity difference causing what is known as shear-driven instabilities. Once these
two base instabilities are discussed, it is an easy extension to that of the baroclinic
instability which is a primary cause of many of the earth’s weather patterns. Due to
interactions of velocity and density gradients (caused by temperature gradients), it
is a natural extension to the previously discussed instabilities. From this, the more
complicated case of parallel shear flows was discussed. This includes flow over
wings and flows in pipes. In this case, first the stability criteria was discussed, but
then extended to the full Orr-Sommerfeld equation, where unlike linear stability
theory, does not remove viscosity from its initial derivations and allows for non-
linear effects. Here we discuss instability more as an eventual path to turbulence
and how controlling, preventing and even creating it can be advantageous to
reducing drag, or preventing noise. In this chapter, much was covered but a broad
understanding of how different fluid instabilities all relate together and can be
understood to thus control them when designing and running our engineering
systems.
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Chapter 3

Fluid Structure Interaction 
Analysis of Wind Turbine Rotor 
Blades Considering Different 
Temperatures and Rotation 
Velocities
Mayra K. Zezatti Flores, Laura Castro Gómez  
and Gustavo Urquiza

Abstract

Wind energy is the clean energy source that has had the highest installation 
growth worldwide. This energy uses the kinetic energy in the airflow currents to 
transform it into electrical energy through wind turbines. In this chapter, a rotor 
of a 2 MW of power wind turbine installed in Mexico is analyzed considering the 
wind velocity data and temperatures at each season of the year on the zone for the 
analysis in Computational Fluid Dynamics (CFD); subsequently, a Fluid–Structure 
Interaction (FSI) analysis was carried out to know the stress of the blades. The 
results show a relationship between temperature, air density, and power.

Keywords: FSI, wind turbine, CFD

1. Introduction

1.1 Wind energy in Mexico

Mexico has great potential for generating electricity from renewable resources. 
At the end of 2018, 75.88% of the energy used in the Mexican Republic comes from 
fossil fuels: such as oil, coal, and natural gas. Renewable energy generation reached 
17.29% (hydroelectric, biogas, photovoltaic, wind, geothermal, and bagasse) and 
6.83% from other clean energies (nuclear, efficient cogeneration, and black liquor) 
as illustrated in Figure 1, where it is observed the percentage distribution of total 
generation. There are currently 45 wind farms located in the country’s eastern 
region (Oaxaca), where 59% of the total installed capacity is concentrated [1]. 
Also, other regions such as the northeast, northwest, western, peninsular, and Baja 
California.

Wind energy is generated from the kinetic energy in air currents and is trans-
formed into electrical energy through wind turbines. Some important aspects for its 
generation are wind velocity and direction (Coriolis force), height, and temperature 
[2]. A minimum wind velocity of 3–5 m/s is required to start the rotor’s rotation 
until reaching its maximum power.
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In the present work, a rotor of a wind turbine with a capacity of 2 MW is studied 
considering the real conditions of wind velocity at the temperatures presented in 
the year, first a Computational Fluid Dynamics (CFD) analysis, and subsequent 
a Fluid–Structure Interaction (FSI) analysis to know the stress of the blades of a 
turbine installed in a wind farm in the north of the country.

1.2 State of art

The rotor of a wind turbine is one of the most important components, for which 
it has been the object of study by some authors: Abolfazl Pourrajabian, carried out 
a study of the effect that air density has with respect to the torque of a small wind 
turbine of two meters in diameter, finding that the air density decreases as altitude 
increases, as well as the rotor torque [3]. Dong-Hoon Kim, studied a 5 MW turbine 
by means of fluid–structure, modeling in 2D only 1/3 of the rotor with different 
radial and longitudinal amplitudes of the rotary domain, considering a lineal 
composite material, obtaining the stress for a redesign of this [4]. Liping Dai, car-
ried out a numerical study of the fluid structure of a Tjæreborg wind turbine, with 
a rotor diameter of 61.1 m, modeling a cylinder with the three blades to determine 
the behavior of deflection in a structural analysis, due to the effect of the veloc-
ity of wind with different angles of the YAW bearing [5]. Lanzafame analyzed a 
micro rotor of a horizontal axis turbine, to validate a BEM model in one dimension, 
comparing it with a CFD analysis performed in three dimensions; as a cylinder and 
two blades, and an experimental model, finding that the errors between simulated 
results in its power curve and the experimental data were less than 6% for all 
simulations [6]. With the previously analyzed studies, the characteristics, and con-
ditions to carry out our case study were determined, such as domain dimensions, 
meshing with surface elements, turbulence model, wind velocity range, as well as 
the importance of determining the pressures. to perform a fluid–structure analysis.

2. Methodology

A wind turbine’s operation is characterized by its power curve that indicates the 
range of wind velocities in which it can be operated and the one it generates.

(Eq. (1)) shows that the wind power depends on the swept area or the rotor 
exposed to a flow, as illustrated in Figure 2, on the fluid density and the wind 

Figure 1. 
(a) Distribution of total generation electricity in 2018 (b) renewable energy generation.
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velocity. As Albert Betz demonstrated, wind energy is not used 100%; the limit he 
established was 59% for an ideal rotor. Additionally, the machine has mechanical, 
electrical, and aerodynamic losses [2, 7–9].

 P AVr= 31
2

  (1)

The Fluid–Structure Interaction (FSI) is the coupling of fluid and structural 
analysis. It considers the pressure or temperature of a CFD analysis and the direct 
consequences of this load on the structural analysis.

Two different software interact in the development of the fluid–structure 
analysis, where the independent fluid analysis is performed, and the required 
results are exported to the structural mesh for the solution. In this type of study, the 
CFD evaluation is solved in Fluent; then, the results are exported and imported to 
structural analysis, as illustrated in Figure 3.

2.1 CFD analysis

This analysis is carried out in three stages: pre-processing, processing, and post-
processing. For the pre-processing development, the rotor geometry was generated 

Figure 2. 
Swept area of the blades of a wind turbine.

Figure 3. 
Ansys diagram for the development of the FSI analysis.
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in a CAD program from the information shown in Table 1, exported to another 
CAE program for the discretization.

Two domains were generated: rotary and stationary. Figure 4 shows its dimensions, 
which were established according to the rotor diameter.

The discretization was carried out using an unstructured tetrahedral mesh. 
A refined mesh was realized in the zones near the rotatory interface and over the 
blade [10].

Were realized four meshes with different element sizes to perform an analysis 
of the independence of grid. This analysis consists of simulating at the same 
boundary conditions with a velocity inlet at 13 m/s and evaluating the torque 
results in these meshes.

It was calculated the percentage of relative error based on the torque result 
according to (Eq. (2)), considering the exact value of the one reported by the 
manufacturer in its power curve for a speed of 13 m/s, showing the values cal-
culated in Table 2. According to the results, the mesh used has a relative error of 
3.76%, illustrated in Figure 5, which shows the mesh in both domains.

 exact approximate

exact

V V
Relative error

V
-

=   (2)

The definition of the physical models and solver configuration of the ANSYS 
Fluent software are shown in Table 3.

Statistical studies of the frequency for wind velocity and temperature were 
carried out (illustrated in Figure 6). The values of wind velocity are shown in the 

Wind turbine Characteristic

Diameter 87 m

Swept area 5,945 m2

Rotation velocity 9–19 rpm

Profile FFA + W3

Blade length 42.5 m

Design life 20 years

Table 1. 
Rotor characteristics.

Figure 4. 
Domain dimensions (a) stationary (b) rotary.
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red box of the histogram of the frequency. On the other hand, for the tempera-
ture, the data were obtained by taking an average for the months of each season of 
the year: spring 20°, summer 38°, autumn 15° and winter −5 ° C, verifying them 
with the maps of the National Meteorological Service of the same year during the 
months of each season and considering these temperature values for the proper-
ties of air in the CFD analysis.

Ten analyzes were carried out for each temperature value in a wind velocity 
range of 4–13 m/s. As shown in Table 4, using the characteristics described above, 
obtaining the torque calculates the mechanical power with the (Eq. (3)) and its 
respective angular velocity.

 = wP M   (3)

Type of mesh Torque (N/m) Relative error (%)

Reference ( exactoV ) 1,981,000

Mesh1 1,647,193 16.85%

Mesh 2 1,696,181 14.38%

Mesh 3 1,906,495 3.76%

Mesh 4 1,865,284 5.84%

Table 2. 
Calculation of the relative error.

Figure 5. 
Meshed domain (a) stationary (b) rotary.

Configuration Characteristic

Type of analysis Stationary

Turbulence model kω-sst

Interfaces input, output, outline

Solution method SIMPLE

Boundary conditions Vel inlet, pressure output, wall, symmetry

Table 3. 
Solver configuration.
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The post-processing of the results is presented in section 3.

2.2 FEM analysis

The rotor geometry is illustrated in Figure 7a, which was generated with sur-
faces following the data in Table 1, and Figure 7b demonstrates the thickness [11] 
imposed on the blades from root to the tip from 50 to 8 mm across the surface.

An analysis was performed with three different element sizes as seen in Table 5, 
with a rotational velocity of 19 rpm as a boundary condition to verify the  
maximum stress.

According to the results, it was decided to take mesh no.1 since the change in the 
data obtained is less than 5% with respect to mesh no.3. The numerical model of the 
rotor used is shown in Figure 8, which was carried out with second order elements 
shell281 [12].

The material of the hub and the blade was considered as a linear composite 
material [4]. As a boundary condition, support was imposed on the rotor hub and 
the rotational velocity in the direction of clockwise (Clockwise).

Wind velocity (m/s) Temperature (°C)

4 −5, 15, 20, 38

5 −5, 15, 20, 38

6 −5, 15, 20, 38

7 −5, 15, 20, 38

8 −5, 15, 20, 38

9 −5, 15, 20, 38

10 −5, 15, 20, 38

11 −5, 15, 20, 38

12 −5, 15, 20, 38

13 −5, 15, 20, 38

Table 4. 
Operating conditions.

Figure 6. 
Histogram of frequency of wind velocity during one year of operation.
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Additionally, the evaluation’s pressure results in CFD are included, imported 
to the structural analysis of each of the data obtained through interpolation of the 
ICEM mesh to the mesh generated in Ansys Workbench for the structural part.

The stress and strain results are shown in the next section.

3. Results

The CFD and FEM analysis simulation results are presented below, showing the 
mechanical power, pressures, and stress results, respectively.

3.1 CFD

Figure 9 shows four power curves, one curve for each temperature, and for each 
temperature ten analysis was performed for each value of wind speed in the range 

Figure 7. 
Rotor characteristics (a) geometry (b) thickness distribution.

Mesh type Number of nodes Size element (mm) Stress (MPa)

1 147,934 80 35.81

2 95,434 100 47.658

3 357,852 50 37.071

Table 5. 
Von Mises stress results with different mesh sizes.

Figure 8. 
Numerical rotor model.
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of 4-13 m/s, obtaining a total of 40 simulations. The temperature directly affects 
the calculated power as seen in the figure, hence the air density [3].

When the temperature is increased, the air density decreases, and the power 
(Eq. (1)) shows that they are directly proportional.

The maximum power in the wind turbine area will be found during the winter 
when their temperature is −5 °C and the lowest during the summer that reaches 
38 °C in the installed area.

The absolute pressure contour was obtained at all nodes on the rotor surface 
(Figure 10). The maximum stress is found at the edge of the profile outlet because 
the wind velocity is normal to the blade’s plane, and as the profile rotates, it is the 
edge with the most significant impact.

3.2 FEM

An analysis was carried out at the different rotation velocitys in the operat-
ing range of 9–19 r.p.m. reported by the manufacturer. It can be noticed that the 

Figure 9. 
Power at different temperatures.

Figure 10. 
Absolute pressure contour al blades (Pa).
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contribution is minimal since the maximum stress of 8.5 MPa was obtained with the 
lower limit and 37.9 MPa with the upper limit.

The results at 19 r.p.m. are shown in Figure 11, in (a) the maximum stress distri-
bution at the root of the blade in conjunction with the cylinder due to the change in 
thickness and b) the maximum displacement found at the tip of the blade.

3.3 FSI

The obtained pressures were exported to ANSYS Mechanical at each wind veloc-
ity for its structural analysis, adding the mentioned boundary conditions to obtain a 
stress state.

The state of stress at different temperatures in the predominant velocity range 
of 4-13 m/s show in Figure 12. It is observed that at 38 °C during the summer, the 
stresses are less than during the winter, at −5 °C. The centrifugal force contributes 
approximately 30% of the total effort with the pressure exerted by the air on the 
rotor’s surface.

Figure 11. 
Results at 19 r.p.m. (a) Von Mises stress state (b) maximum displacement.

Figure 12. 
Von Mises stresses at different temperatures.
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the calculated power as seen in the figure, hence the air density [3].

When the temperature is increased, the air density decreases, and the power 
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Figure 9. 
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Figure 13(a) shows the Von Mises stress distribution at a maximum wind 
velocity of 13 m/s, in which the blade root zone is affected by the bending of the 
blade tip, and on (b) illustrates the maximum displacement located at the tip of 
the blade, where the effect of the rotation and the pressure of the air entering to 
the surface affects the area with the minimum thickness.

4. Conclusions

The CFD methodology used in the present work was validated by comparing the 
results between the calculated power with the manufacturer power, obtaining a valid 
approximation to the real phenomenon, taking into account the ideality of the case 
under study, in addition to not considering the aerodynamic, mechanical and electri-
cal losses of the wind-power generator.

Was performed ten CFD simulations for each value of temperature to obtain 
the pressures for the structural analyses. It was demonstrated that the mechanical 
power has a directly proportional relationship with the temperature and with the air 
density, with which it is concluded that the maximum power in the year is generated 
during the winter, average power in summer and autumn, and a minimum power in 
the summer in the installation area.

The fluid–structure analyses include the forty simulations performed for 
CFD’s and the stress for the structural analysis at different rotation velocities. The 
maximum stress was found at 13 m/s, lower for 38 °C and higher for −5 °C, located 
mainly at the blade’s root due to the change in thickness and rotation velocity and 
the pressure exerted by the air. Which 120 MPa does not exceed the yield stress of 
240 MPa.

Figure 13. 
Rotor results at 13 m/s. (a) Von Mises stress state (b) maximum displacement.
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Dynamics of Rayleigh-Taylor
Instability in Plasma Fluids
Sukhmander Singh

Abstract

The chapter discusses the evolution of Rayleigh-Taylor instability (RTI) in
ordinary fluids and in a plasma fluid. RT instability exits in many situations from
overturn of the outer portion of the collapsed core of a massive star to laser implo-
sion of deuterium-tritium fusion targets. In the mixture of fluids, the instability is
triggered by the gravitational force acting on an inverted density gradient. The
motivation behind the study of the instability has been explored by discussing the
applications of RT instability. The basic magnetohydrodynamics equations are used
to derive the dispersion relation (for an ordinary fluid and plasmas) for two fluids
of unequal densities. The conditions of the growth rate of the instability and the
propagating modes are obtained by linearizing the fluid equations. The perturbed
potential is found to increase with the plasma parameters in a Hall thruster.

Keywords: instabilities, plasma, Navier-Stokes, growth rate, Hall thruster

1. Introduction

Flow instabilities are used to increase the heat and mass transfer rates as well as
to fuse the fluids of dissimilar properties (viscosity, elasticity, density, etc.). In
other technological applications, these instabilities are accountable to unstable the
multilayer and free-surface flows. Multilayer flows are used in coating processes
and lubricated pipeline transport. The presence of the instabilities in the system
leads to nonuniform film thickness and defects, where good optical finishing and
smooth edges are required by the industry, which further leads to poor product
quality. Suppression of these instabilities has been a major task from a long time by
the researchers to improve the product quality [1, 2]. Rayleigh-Taylor (RT) insta-
bility takes place when a lighter fluid supports a heavy fluid, then any perturbation
of the interface grows and leads to spikes of the heavier fluid penetrating into the
lighter one and the interface becomes unstable. The contact discontinuity between
the two fluids is unstable to perturbations that grow by converting potential energy
to kinetic energy, causing bubbles of the low-density fluid to rise, and spikes of the
high-density fluid to sink. If the light fluid is above the heavy fluid, the interface is
stable. In a magnetized plasma, the Rayleigh-Taylor instability can occur because
the magnetic field acts as a light fluid supporting a heavy fluid (the plasma).

In curved magnetic fields, the centrifugal force on the plasma due to the charged
particle motion along the curved field lines acts as an equivalent gravity force.
When forces associated with the density gradient and gravity oppose each other,
the RT instability sets in [3, 4]. The box of fluid shown in Figure 1 is now filled with
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two incompressible fluids of differing densities, separated by an interface with a
perturbation imposed as shown in Figure 1. Here, RTI is seen to play a wider role in
many branches of science from astrophysical systems to industries.

2. Review of status of research

This instability occurs in many interesting physical situations, such as implosion
of inertial confinement fusion capsules, core collapse of supernovae, or electromag-
netic implosions of metal liners. The Rayleigh-Taylor problem was first studied by
Lord Rayleigh in 1883 and Sir G.I. Taylor in 1950 [3]. Taylor used the theory of
linearization for the small oscillations at the interface and obtained an exponential
growth rate. Chandrasekhar, in 1961, studied the magnetic field case analytically for
the fluids that are incompressible, inviscid, and have zero resistivity. Qin et al. [5]
reported the synthesis of chains of metal nanoparticles with well-controlled particle
sizes and spacing induced by the Rayleigh instability. Bychkov et al. [6] derived the
dispersion relation for the internal waves and the RT instability in a nonuniform
unmagnetized quantum plasma with a constant gravitational field. They have
shown that the quantum effects always play a stabilizing role for the RT wave
instability. Cao et al. [7] studied the RT instability incorporating the quantum
magnetohydrodynamic equations and solved the second-order differential equation
under different boundary conditions with quantum effects. Khomenko et al. [8]
modeled the growth rate of the instability and the evolution of velocity and mag-
netic field vector in the prominence plasma (closer to Sun’s surface) under the
presence of neutral atoms. Diaz et al. [9] derived the criterion for the growth rate of
the RT instability in partially ionized plasma using single fluid theory. Ibrahim and
Marshall theoretically investigated the impact of velocity profile on RTI within the
jet to examine the effects of its relaxation on intact length [10]. Carlyle and Hillier
experimentally verified that stronger magnetic fields can suppress the growth of the
rising bubbles of the RTI [11]. Litvak and Fisch derived the necessary instability
conditions of azimuthally propagating perturbations in a Hall thruster plasma [12].
Recently, investigators derived the dispersion for the Rayleigh-Taylor instabilities
in a Hall thruster using the two - fluid theory [13, 14]. Shorbagy and Shukla
investigated the RT instability in a nonuniform multi-ion plasma in a Hall thruster
to obtain the growth rate of the instability [15]. Ali et al. [16] derived the modified
dispersion relation for the Rayleigh-Taylor instability under the quantum correc-
tions incorporating the terms of Fermi pressure and the Bohm potential force.

Figure 1.
Two fluids inside of a large box.
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3. Basic fluid equations and Bernoulli’s theorem

First, we consider the two simple fluids separated by a smooth interface to
derive the dispersion relation. Let us assume that in each separate region, the
density is constant. The coordinate x is in the horizontal, z in the vertical, and y is
going into the page. We consider a flow in the x-direction, which in the lower half-
space z<0ð Þ has density ρ1, whereas in the upper half-space z>0ð Þ has density ρ2.
In addition there can be a homogeneous gravitational field g pointing into the
negative z-direction. We write the basic fluid equations for the ion and electron
fluids as Navier-Stokes equations for an incompressible fluid are

∂ρ

∂t
þ ∇

! � ρυ
!� �

¼ 0 (1)

dυ!

dt
¼ ∂υ

!

∂t
þ υ

! � ∇!
� �

υ
! ¼ �∇

!
P
ρ

þ g þ η∇2 υ
! (2)

Here, we have used total time derivative. Partial time derivative keeps an eye on
a point and represents the rate of velocity change at that point. Total time derivative
keeps an eye on fluid element and measures its velocities at t and tþ Δt.

Let us consider the fluid is inviscid, so that we take viscosity η ¼ 0. We also

assume that the fluid is irrotational, that is ∇
! � υ

! ¼ 0. Then the term υ
! � ∇!
� �

υ
!

reduces to 1
2∇
!
υ2. The Stokes’ theorem permits us to express the velocity in terms of

gradient of scalar function, that is υ
! ¼ �∇

!
ϕ. The variable ϕ is called the scalar

velocity potential of fluid. We rewrite gravity acceleration into a gradient of gravity

potential g ¼ �∇
!

gzð Þ. Eq. (2) can be rewritten in terms of scalar function ϕ under
the above assumptions:

∇
! ∂ϕ

∂t
þ 1
2
∇
!
υ2 ¼ �∇

!
P
ρ

� ∇
!

gzð Þ (3)

If the density remains constant in one region, we can write Eq. (3) as

∇
! ∂ϕ

∂t
þ 1
2

∇
!
ϕ

� �2
þ gz

� �
¼ �∇

!
P
ρ

(4)

Now integrating the above equation in horizontal and vertical directions, we get
unsteady equation for the Bernoulli theorem.

∂ϕ

∂t
þ 1
2

∇
!
ϕ

� �2
þ gzþ P

ρ
¼ Const (5)

That is, the total mechanical energy of the moving fluid comprising the gravita-
tional potential energy of elevation, the energy associated with the fluid pressure,
and the kinetic energy of the fluid motion remains constant.

Let υ!1 and υ
!
2 be the velocities of the fluid in the lower half-space (z<0) and

upper half-space (z>0) respectively. Now, it is convenient to write velocities of
fluid in terms of scalar velocity potential ϕ in both regions such that

υ
!
1 ¼ �∇

!
ϕ1 (6)
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For the incompressible fluid, Eq. (1) yields that ∇
! � υ! ¼ 0. This also states that

both fluids will satisfy the Laplace equation in both regions
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!
ϕ1

� �2
þ ρ1gz0 þ P1

����
z¼z0

¼ ρ2
∂ϕ2

∂t
þ 1
2
ρ2 ∇

!
ϕ2

� �2
þ ρ2gz0 þ P2

����
z¼z0

(9)

To understand the interface, we must impose boundary conditions. First of all
the vertical velocities of the fluids must match with the interface, so we impose the
kinematic boundary condition. Now we need to introduce the location of the inter-
face by assigning variable z ¼ z0 tð Þ. Then dz0

dt will represent the velocity of the
interface in the z-direction. In addition, at the interface, the velocity of both fluids
must be continuous.

dz0
dt

¼ ∂

∂t
þ υ

! � ∇!
� �� �

z0 ¼ ∂ϕ1

∂z

����
z¼z0

¼ ∂ϕ2

∂z

����
z¼z0

(10)

Let us say that the pressure is continuous along the interface, that is P1 ¼ P2.
Then Eq. (9) leads to

ρ1
∂ϕ1
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þ 1
2
ρ1 ∇

!
ϕ1

� �2
þ ρ1gz0 ¼ ρ2

∂ϕ2

∂t
þ 1
2
ρ2 ∇

!
ϕ2

� �2
þ ρ2gz0 (11)

4. Asymptotic boundary conditions at far field

We are looking for changes only on the interface at z ¼ z0, therefore the velocity
potentials and their derivatives must vanish at the boundaries, that is ϕ1 ! 0 as
z ! �∞ and ϕ2 ! 0 as z ! ∞.

5. Linear analysis

Eq. (9) contains a nonlinear term ρ1 ∇
!
ϕ1

� �2
of the second order. If the amplitude

is chosen to be much smaller than the wavelength of the instability, the equations of
motion can be linearized. We assume that all the perturbed quantities and various

derivatives such as ϕ and ∇
!
ϕ are very small. In other words ∂ϕ1

∂z

��
z¼z0

� ∂ϕ1
∂z

��
z¼0. Hence,

the difference in second order derivatives will be much smaller. Now we impose all
boundary conditions at z ¼ 0, which yields the following set of equations,

∇
!2

ϕ1 ¼ 0 (12)
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∇
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ϕ2 ¼ 0 (13)

dz0
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����
z¼0

¼ ∂ϕ2
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(14)

ρ1
∂ϕ1

∂t
þ ρ1gz0

����
z¼0

¼ ρ2
∂ϕ2

∂t
þ ρ2gz0

����
z¼0

(15)

6. Eigenvalue solution

Let us consider all the perturbed variables ϕ and z0 to have oscillating behavior
such that ϕ ¼ ϕ0 exp i kx� ωtð Þ½ � and should satisfy the Laplace Eq. (12). This
implies

∂
2ϕ1

∂z2
¼ k2ϕ1 (16)

The general solution of Eq. (16) is written as

ϕ1 zð Þ ¼ A exp kzð Þ þ B exp �kzð Þ, (17)

The above two solutions must satisfy the boundary conditions such that ϕ1 ! 0
as z ! �∞ and ϕ2 ! 0 as z ! ∞. So, we need to discard the unsatisfactory part of
the solutions of Eq. (16) taking into account the boundary conditions. Therefore, z
dependence goes as ϕ1 zð Þ∝A exp kzð Þ and ϕ2 zð Þ∝B exp �kzð Þ. We note that the
eigenfunction decreases exponentially on either side of the interface and the per-
turbation of wave number k penetrates to a depth of order 1

k ¼ λ
2π.

This solution further leads to the following form in Fourier mode,

ϕ1 x, z, tð Þ ¼ ϕ01 exp kzð Þ exp i kx� ωtð Þ½ � (18)

ϕ2 x, z, tð Þ ¼ ϕ20 exp �kzð Þ exp i kx� ωtð Þ½ � (19)

z0 x, tð Þ ¼ z00 exp i kx� ωtð Þ½ � (20)

Here ϕ01, ϕ02, and z00 are the amplitude of the modes. By substituting these
solutions into Eq. (14), we obtain the boundary conditions at the interface.

kϕ01 ¼ �kϕ02 ¼ �iωz00 at z ¼ 0 (21)

Then Eq. (20) changes into the form

z0 x, tð Þ ¼ ikϕ01

ω
exp i kx� ωtð Þ½ � (22)

Eq. (15) gives

�iωρ1ϕ10 þ ρ1g
ikϕ01

ω
¼ �iωρ2ϕ20 þ ρ2g

ikϕ01

ω
(23)

Using Eq. (21) in Eq. (23) results in

�iωρ1ϕ10 þ ρ1g
ikϕ01

ω
¼ iωρ2ϕ10 þ ρ2g

ikϕ01

ω
(24)
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Since the perturbed quantity ϕ01 6¼ 0, the possible nontrivial solution of Eq. (25)
gives the dispersion relation for small perturbations of the wave as below,

ω2 ¼ g ρ1 � ρ2ð Þk
ρ1 þ ρ2

¼ Atgk (25)

Eq. (25) contains complete information about the linear stability of the two
superposed fluid layers of different densities. The Atwood number At ¼ ρ1�ρ2ð Þ

ρ1þρ2
is a

dimensionless number in fluid dynamics used to study the hydrodynamic
instabilities in unequal density flows. Since the dispersion relation Eq. (25) is
quadratic in ω, it has two real or complex conjugate roots depending on the values
of the densities of the fluids. Here, we will discussion different cases.

6.1 First case: capillary-gravity waves (ρ2 ¼ 0)

Hence ω ¼
ffiffiffiffiffi
gk

p
and Vph ¼

ffiffiffi
g
k

r
(26)

It is classical dispersion relation for gravity-capillary waves in deep water
[17, 18]. These are also called short gravity waves. In this category the longer waves
travel faster. Any initial disturbance may be regarded as the superposition of waves
of a broad spectrum of lengths. The above relation then says that waves of different
lengths will eventually separate, that is, disperse. This phenomenon is called dis-
persion, hence above relations are also known as the dispersion relation.

6.2 Second case: propagating modes (ρ1 > ρ2)

If the lighter fluid is supported by heavier fluid, that is, ρ1 > ρ2, then solutions of
the equation leads to two waves with constant amplitude propagating in opposite

directions with phase velocity ω�
k with ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ρ1�ρ2ð Þk
ρ1þρ2

q
. Then the interface is stable

and will only oscillate when perturbed. The phase velocity is given by

Vph ¼ ω�
k

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ρ1

ρ2
� 1

� �

k ρ1
ρ2
þ 1

� �

vuuut (27)

Figure 2 shows the variations of phase velocity of RT instability with (a) density
ratio and (b) wave number respectively.

6.3 Third case: Rayleigh-Taylor instability (ρ2 > ρ1)

The frequency of oscillations will be negative imaginary and unstable if ρ2 > ρ1,
that is, when heavier fluid is supported by lighter fluid. Writing ω ¼ iγ where γ is
real and positive gives

γ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ρ2 � ρ1ð Þk
ρ1 þ ρ2

s
(28)
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γ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ρ2

ρ1
� 1

� �
k

1þ ρ2
ρ1

vuut (29)

Substituting the value of ω ¼ iγ into Eq. (18), the amplitude grows exponentially
with the perturbation and is given by

ϕ1 x, z, tð Þ ¼ ϕ01 exp kzð Þ exp ikxð Þ exp �γtð Þ (30)

The term exp γtð Þ increases the amplitude of the oscillation exponentially as
time progress. Figure 3(a) and (b) shows the variations of growth rate of RT
instability with (a) density ratio and (b) wave number. The inverse of the growth
rate γ�1 ¼ tchar is called the linear characteristic timescale of the RTI. In other words,
characteristic timescale has to be the order of the lifetime of the plasma oscillations
to observe the RT instability. On the other hand, if the linear characteristic time-
scale is much larger than the oscillation lifetime, the plasma instability would not be
observed.

Figure 2.
Variation of phase velocity of RT instability with (a) density ratio and (b) wave number respectively.

Figure 3.
Variation of growth rate of RT instability with (a) density ratio and (b) wave number respectively.
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ratio and (b) wave number respectively.
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Substituting the value of ω ¼ iγ into Eq. (18), the amplitude grows exponentially
with the perturbation and is given by
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The term exp γtð Þ increases the amplitude of the oscillation exponentially as
time progress. Figure 3(a) and (b) shows the variations of growth rate of RT
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7. Rayleigh-Taylor instability in plasma thruster

In the previous section, the general idea of RT instability has been explored.
Here we have derived the RT equation for a plasma fluid using two fluid theory. In a
Hall thruster, the propellant (plasma) is ionized and then accelerated by electro-
static forces. It has high thrust resolution, so it is best suited for the adjustment of
the location of the satellite onboard [19–27]. Let us consider a plasma with
nonuniform density confined under the crossed electric and magnetic fields.

Figure 4 shows the typical diagram of a Hall plasma thruster [26]. RT instability
is common in Hall thrusters. Studies show that Rayleigh instability is driven by the
presence of gradients in axial density, magnetic field, and velocity of the plasma
species. Here we deduce a Rayleigh equation under the presence of ion temperature
and check the variations of perturbed potential with plasma parameters.

7.1 Theoretical model for RTI in plasma

We consider plasma comprising of ions and electrons immersed in a magnetic

field B
! ¼ Bẑ. The magnetic field is strong enough so that only electrons get magne-

tized, but the ions remain unaffected due to their Larmor radius being much larger
than the dimension of the thruster. These trapped electrons (due to crossed fields)
drift in azimuthal direction along the annular channel [24]. The applied electric

field E
!
is along the x-axis (axis of the thruster) and the magnetic field B

!
is taken

along the z-axis (along the radius of the thruster). Hence, the azimuthal dimension
is along the y-axis. We use Ωz ¼ eB

m as the electron gyro frequency and u0 ¼ � E0
B ŷ as

the initial drift of the electrons [14–17] and write the continuity equation and
equation of motion for plasma species as

∂ni
∂t

þ ∇
! � υ

!
ini

� �
¼ 0 (31)

∂

∂t
þ υ

!
i � ∇

!
� �

υ
!
i ¼ eE

!

M
� ∇

!
pi

Mni
(32)

Figure 4.
Typical diagram of a Hall plasma thruster.

62

Computational Overview of Fluid Structure Interaction

∂ne
∂t

þ ∇
! � υ

!
ene

� �
¼ 0 (33)

∂

∂t
þ υ

!
e � ∇

!
� �

υ
!
e ¼ ∇

!
ϕ

m
� υ

!
e � Ω

!
z

� �
(34)

We use the linearized form of the above equations for small perturbations of the
ion and electron densities, their velocities, and electric field. We write perturbed
densities of ions (electrons) by ni1 (ne1) velocities by υ

!
i1 (υ

!
e1). The unperturbed

electrons’ drift is u0 in the y-direction. The unperturbed density (electric field) is

taken as n0 E0ð Þ and the perturbed value of the electric field is taken as E
!

(corresponding potential ϕ). Hence, the linearized form of Eqs. (31)–(34) reads

∂ni1
∂t

þ υix1
∂n0
∂x

þ n0 ∇
! � υ!i1

� �
¼ 0 (35)

∂υ
!
i1

∂t
¼ e

M
E
! � ∇

!
pi1

n0M
(36)

∂ne1
∂t

þ u0
∂ne1
∂y

þ n0 ∇
! � υ!e1

� �
þ υex1

∂n0
∂x

¼ 0 (37)

∂υ
!

e1

∂t
þ u0

∂υ
!
e1

∂y
¼ ∇

!
ϕ� υ

!
e1 � Ω

!
z

� �
(38)

The unperturbed ions’ velocity υ0 is taken zero here for the case of simplifica-
tion. We are looking for oscillating solution of the above equations that should vary
as f ¼ f0 exp iωt� ikyy

� �
. The ion thermal velocity can be written as V2

thi ¼ YiTi
M .

With the help of Eqs. (35) and (36) we obtain the following expression for the
perturbed ion density in terms of the perturbed electric potential ϕ:

ni1 ¼ en0
M ω2 � V2

thiky
2� � ky

2ϕ� ∂
2ϕ

∂x2
� YiTi

en0

∂
2n0
∂x2

� �
(39)

Eq. (38) provides the velocity components of electron

i ω� kyu0
� �

υex1 ¼ e
m
∂ϕ

∂x
� Ωzυey1 (40)

i ω� kyu0
� �

υey1 þ υex1
∂u0
∂x

¼ �iky
e
m
ϕþΩzυex1 (41)

In the above equations, the coordinate x lies in the interval 0< x< d, where d is
the channel length. Let us define ω� kyu0 by ω̂ in the above set of expressions.
Further we readily obtain from the above equations

υex1 ¼
e
m iω̂ ∂ϕ

∂x þ e
m ikyΩzϕ

Ωz
2 � ω̂2 �Ωz

∂u0
∂x

(42)

υey1 ¼ e
mΩz

∂ϕ

∂x
þ

e
m ω̂2 ∂ϕ

∂x þ e
m ω̂kyΩzϕ

Ωz Ωz
2 � ω̂2 �Ωz

∂u0
∂x

� � (43)

The electron cyclotron frequency is almost Ωz � 108/s (corresponding to 200
Gauss magnetic field). Generally, Ωz is much larger than the frequency of the
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We use the linearized form of the above equations for small perturbations of the
ion and electron densities, their velocities, and electric field. We write perturbed
densities of ions (electrons) by ni1 (ne1) velocities by υ

!
i1 (υ

!
e1). The unperturbed

electrons’ drift is u0 in the y-direction. The unperturbed density (electric field) is

taken as n0 E0ð Þ and the perturbed value of the electric field is taken as E
!

(corresponding potential ϕ). Hence, the linearized form of Eqs. (31)–(34) reads
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The unperturbed ions’ velocity υ0 is taken zero here for the case of simplifica-
tion. We are looking for oscillating solution of the above equations that should vary
as f ¼ f0 exp iωt� ikyy

� �
. The ion thermal velocity can be written as V2

thi ¼ YiTi
M .

With the help of Eqs. (35) and (36) we obtain the following expression for the
perturbed ion density in terms of the perturbed electric potential ϕ:

ni1 ¼ en0
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Eq. (38) provides the velocity components of electron
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� �
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m
∂ϕ

∂x
� Ωzυey1 (40)
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e
m
ϕþΩzυex1 (41)

In the above equations, the coordinate x lies in the interval 0< x< d, where d is
the channel length. Let us define ω� kyu0 by ω̂ in the above set of expressions.
Further we readily obtain from the above equations
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e
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The electron cyclotron frequency is almost Ωz � 108/s (corresponding to 200
Gauss magnetic field). Generally, Ωz is much larger than the frequency of the
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oscillations. Therefore, under the condition Ωz > >ω, kyu0, ∂u0
∂x , the velocity

components of electrons are reduced into the form

υx1 ¼ ie
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∂x
kyϕ

� �
(44)
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The electron continuity equation gives the perturbed electron density ne with the
help of Eqs. (44) and (45)

ne1 ¼ en0
mΩz
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The plasma frequency of oscillations for ion (electron) is defined as

ωi ωeð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2

M mð Þε0

s
(47)

The Poisson’s equation ε0∇2ϕ ¼ e ne1 � ni1ð Þ (48)

Using Eqs. (39) and (46) in Eq. (48) gives the perturbed potential in the
following form:
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In the case of high frequency of oscillations and in the absence of ion thermal
pressure, Eq. (49) turns into Rayleigh’s equation of fluid dynamics as below

∂
2ϕ

∂x2
� ky

2ϕ

� �
þ ϕky

ω� kyVy
� � ∂

2Vy

∂x2
¼ 0 (50)

Here Vy is the flow velocity in the y-direction and ϕ is called the flow function

related to Vy ¼ ∇
!
ϕ. The analytical eigenvalue solution of Eq. (49) is given in Ref. [12].

Resonance condition for the RT instability
From Eq. (49), it is clear that propagating mode may lead to instability if

parameter Ωz
∂

∂x ln
B
n0
� ∂

2u0
∂x2 ¼ 0 at some point inside the Hall thruster.

7.2 Variations of perturbed potential

The RT Eq. (49) is solved numerically for the perturbed potential ϕ along with
the boundary conditions such that ϕ 0ð Þ ¼ ϕ dð Þ ¼ 0. We plot perturbed potential of
the instability with magnetic field B, initial drift of the electrons u0, channel length
d, and ion temperature Ti. These parameters can have values as B ¼ 100� 250ð Þ G,
n0 ¼ 5� 1017–1018=m3, Ti ¼ 0�1� 5 eV, and u0 � 106 m/s [13, 15].

Figure 5 shows the variation of the perturbed potential with the magnetic field
and it has been observed that the potential increases with the increasing magnetic
field. These results are consistent with Keidar and Boyd model [28] and that other
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investigators [13, 14] for the potential of plasma plume. This situation is correspond
to the plasma jet enters a transverse magnetic field with a high velocity under the
condition that the magnetic field is relatively weak so that only the electrons are
magnetized whereas the ions move out of the effect of magnetic field. However,
ambipolar (both electrons and ions moving in opposite directions) plasma flow
across the magnetic field may require an electric field to appear under the
above conditions. Therefore, we can expect the potential to increase across the
magnetic field.

The perturbed potential gets increased with the higher value of electron’s initial
drift velocity (shown in Figure 6). Similar behavior of the potential was reported
experimentally by King et al. [29] for the potential of plasma plume. Similar results
are also reported in Refs. [13, 14]. The enhanced perturbed potential ϕ with the ion
temperature is shown in Figure 7 which is consistent with an experiment [30].

Figure 5.
Effect of magnetic field on the perturbed potential ϕ.

Figure 6.
Dependence of perturbed potential ϕ on the drift velocity of the electrons.
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8. Discussions and summary

In conclusion, we can say that short-wavelength perturbations blow up expo-
nentially much more quickly in RTI. The primary source by which this instability is
triggered is the gravitational force acting on an inverted density gradient (e.g., a
heavy fluid supported by a light fluid). Stable and steady flows may become unsta-
ble depending on the ranges of the flow parameters. The instability takes free
energy from the mean flow or externally supplied heat and the amplitude of waves
grows exponentially. The instabilities exist in all natural and artificial phenomena
(in smoke from chimneys, in rivers, in flickering flames) and their effects result in
turbulence or random waves. The presence of plasma density and magnetic field
gradients is one of the main sources for plasma instabilities in Hall thrusters. It is
found that perturbed potential increases with the higher value of electrons’ drift
velocity, magnetic field, and ion temperature.
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Figure 7.
Variation of perturbed potential ϕ with the ion temperature.
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Chapter 5

Evolutions of Growing Waves
in Complex Plasma Medium
Sukhmander Singh

Abstract

The purpose of this chapter to discuss the waves and turbulence (instabilities)
supported by dusty plasma. Plasmas support many growing modes and instabilities.
Wave phenomena are important in heating plasmas, instabilities, diagnostics, etc.
Waves in dusty plasma are governed by the dynamics of electrons, ions and dust
particles. Disturbances in solar wind, shocks and magnetospheres are the sources of
generation of plasma waves. The strong interest in complex plasma provides us better
understanding of physics of dusty universe, solar winds, shocks, magnetospheres,
dust control in plasma processing units and surface modifications of materials. The
theory of linearization of fluid equation for small oscillation has been introduced.
The concept of fine particles in complex plasma and its importance is also explained.
The expressions for the growth rate of the instabilities in turbulence plasma have
been derived.

Keywords: plasma oscillations, dispersion, turbulence, instabilities, dusty plasma,
fine particles, Hall thrusters, resistive plasma, growth rate

1. Introduction to dusty plasma

The presence of fine particles of mass 10�10 to 10�15 kg and size 1 to 50 microm-
eter in an electron-ion plasma is called dusty plasma. Dusty plasma also termed
complex plasma, plasma crystals, colloidal crystals, fine particle plasma, coulomb
crystal or aerosol plasma and has been found in naturally in solar system, planetary
rings, interplanetary space, interstellar medium, molecular clouds, circum-stellar
clouds, comets, Earth’s environments, etc. Manmade plasmas are ordinary flames,
dust in fusion devices, rocket exhaust, thermonuclear fusion, Hall thruster, atmo-
spheric aerosols etc. [1–7]. The detail of existence of dusty plasma is given in Table 1.
Earlier works shows that dust in plasmas has been considered as unwanted consti-
tuents and researchers had tried various methods to eliminate dust particles from
plasma-processing units. For the moment, Positive aspects of dusty plasmas emerged,
dust particles are playing various positive roles in plasma processing devices. The dust
particles experience different forces in plasma. The Gravitational force, drag force,
electromagnetic forces, polarization force and radiation pressure [1–8].

2. Physical processes in dusty plasma

There are many circumstances when astrophysical plasma and dust particles are
found to coexist together. The study of dusty plasmas systems has an exciting
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The concept of fine particles in complex plasma and its importance is also explained.
The expressions for the growth rate of the instabilities in turbulence plasma have
been derived.

Keywords: plasma oscillations, dispersion, turbulence, instabilities, dusty plasma,
fine particles, Hall thrusters, resistive plasma, growth rate

1. Introduction to dusty plasma

The presence of fine particles of mass 10�10 to 10�15 kg and size 1 to 50 microm-
eter in an electron-ion plasma is called dusty plasma. Dusty plasma also termed
complex plasma, plasma crystals, colloidal crystals, fine particle plasma, coulomb
crystal or aerosol plasma and has been found in naturally in solar system, planetary
rings, interplanetary space, interstellar medium, molecular clouds, circum-stellar
clouds, comets, Earth’s environments, etc. Manmade plasmas are ordinary flames,
dust in fusion devices, rocket exhaust, thermonuclear fusion, Hall thruster, atmo-
spheric aerosols etc. [1–7]. The detail of existence of dusty plasma is given in Table 1.
Earlier works shows that dust in plasmas has been considered as unwanted consti-
tuents and researchers had tried various methods to eliminate dust particles from
plasma-processing units. For the moment, Positive aspects of dusty plasmas emerged,
dust particles are playing various positive roles in plasma processing devices. The dust
particles experience different forces in plasma. The Gravitational force, drag force,
electromagnetic forces, polarization force and radiation pressure [1–8].

2. Physical processes in dusty plasma

There are many circumstances when astrophysical plasma and dust particles are
found to coexist together. The study of dusty plasmas systems has an exciting
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properties which has attracted researchers over the world. These fine particles
acquire some charges from the electrons to get charged. Moreover, in ordinary
plasma, the charge considered to be constant on each particle, whereas, the charge
on the dust particle varies with time and position [9, 10]. The charge on the dust
particle generally depends on the type of dust grain, the surface properties of dust
grain, the dust dynamics, the temperature, density of plasma and the wave motion
in the medium. The plasma environments around these particles determine the
nature of the charge (positive or negative) of these dusty plasmas. Although, most
of the cases, these charged dust particles are negatively charged through different
charging process. Their electric charge is determined by the size and composition of
the grains [9, 10]. The fact that the frequencies associated with dust particles are
smaller than those with electrons -ions and presences of fine particles modifies the
dynamics of plasma motions and give rise to new types of propagating modes.
For Dust acoustic waves, where ions and electrons are supposed to be inertia less
pressure as gradient is balanced by the electric force, leading to Boltzmann electron
and ion number density perturbations, whereas the mass of the dust play an
important role in dust dynamics. In the dust acoustic wave the inertia is provided by
the massive dust particles and the electrons and ions provide the restoring force.
The effect of dust is to increase the phase velocity of the ion acoustic waves. This
can be interpreted formally as an increase in the effective electron temperature
which has important consequences for wave excitation. The dusty plasma also has a
trend to oscillate at its plasma frequency [9, 10].

3. Parameters of dusty plasma

Dusty plasma and ordinary (electron-ion) plasma are different from each other
due to the charge to mass ratio difference.

3.1 Dust plasma frequency

The electron and ion plasma frequency is much greater than the dust plasma
frequency and it is defined as

Cosmic dusty
plasmas

Dusty plasmas in the
solar system

Dusty plasmas on
the earth

Man-made dusty plasmas

Solar nebulae Cometary tails and
comae

Ordinary flames Rocket exhaust

Planetary nebulae Planetary ring Saturn’s
rings

Atmospheric
aerosols

Dust on surfaces of space
vehicle

Supernova shells Dust streams ejected
from Jupiter

charged snow Microelectronic fabrication

Interplanetary
medium

Zodiacal light lightning on
volcanoes

Dust in fusion devices

Molecular clouds Cometary tails and
comae

Thermonuclear fireballs

Circumsolar rings Dust precipitators used to
remove pollution from

Asteroids

Table 1.
Classification of dusty plasmas.
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ωpd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2e2nd0
εomd

s
< <ωpi,ωpe (1)

3.2 Gyro frequency in dusty plasma

When charged dust grain/particle executes a spiral motion about the magnetic
lines of force, then dust particle moves perpendicular to the magnetic field with
Gyro frequency of the dust particle. The centrifugal force is balanced by the Lorentz
force. In mathematically,

mdυ2

rd
¼ eZυB (2)

The radius of gyration is

rd ¼ mdυ

eZB
¼ υ

Ωcd
(3)

where, Ωcd ¼ eZB
md
, is called the dust cyclotron frequency.

3.3 Macroscopic neutrality

The quasi-neutrality condition is obtained for the negatively charged dusty
plasma by ne0 ¼ ni0 þ Znd0, here nd0 is equilibrium dust particle density and Z is the
electric charge number on the dust particles.

3.4 Strongly vs. weakly coupled dusty plasma (Coulomb correlation
parameter)

The property of dust particles in the plasma is expressed by coupling
parameter Γ. It is the ratio of the interparticle Coulomb potential energy to
the thermal energy of the particles. When the value of Γ exceeds unity, the
species are termed to be strongly coupled otherwise weakly coupled dusty plasma.
if rd is the average interparticle separation between particles, then coupling
parameter

Γ ¼ e2Z2

4πε0rdkBTd
(4)

The interparticle separation can be found out by the relation rd ¼ 4πnd
3

� ��1
3.

For the typical values of Ze ¼ 5000e, kBTd ¼ 0:05 eV, nd ¼ 1010 m�3, the
coupling parameter comes out to be 1500. It is also experienced that, when
Γ � 170, the dust particles are found in arranged fashion and said to be Coulomb
crystals.

4. Applications of ordinary plasma

Plasma technology is safe, less costly and playing important roles in every fields
of daily life. Some of these applications are discussed in Table 2.
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4.1 Applications of dusty plasma

The presence of dust particles in a system also has positive impacts and has
many applications in nanotechnology to synthesize the desired shape and size of the
particles by controlling the dynamics of charged dust grains. Surface properties of
the exposed materials could be improved by coating with plasma enhanced chemi-
cal vapor deposition method. Methane plasma is used to synthesize productive
Carbon nanostructures which have like high hardness and chemical inertia. Dusty
plasmas are also used for the fabrication of semiconductor chips, solar cells and flat
panel displays.

5. Current status of the research

As we know that plasma support electrostatic as well as electromagnetic waves
because of the motions of the charged particle. Studies of these waves provide the
useful information about the state of the system. The resonance frequencies of
plasmas waves can be used as diagnostics tool to characterize the plasma parame-
ters. Plasma waves are generated for acceleration of energetic particles and heating
plasmas. The exponential growing waves and modes in plasma removes the free
energy from the system and permit the system to become unstable. The study of
dusty plasma has gained interest in the last few decades due to its observations [1–
10] and applications in the space and laboratory [1–10]. Many authors studied the
linear and nonlinear electrostatic wave in the presence and absence of the external
magnetic field [11–13]. Sharma and Sugawa studied the effect of ion beam in dusty
plasma on ion cyclotron wave instability [13]. The presence of the charged dust
grains in the plasma modifies the collective behavior of a plasma and excites the
new modes [12–14].

The present charged dust particles introduces dust acoustic and dust ion acoustic
waves in the plasma after altering the dynamics of electrostatic and electromagnetic

Fields Applications

Telecommunication The Global Positioning System (GPS) use ionosphere’s plasma layer to reflect
the signal transmitted by GPS satellite for further communication usage.

Sterilization To sterilize the surgical equipments, which are directly connected with
patient’s immune system, where cleanliness is difficult

Medical treatment Plasma treatment is contact-free, painless hardly damage tissue.

In dentistry Plasmas treatment are used inside the root canal to kill the bacteria

Pollution controlling Plasma technology is used to control gaseous and solid pollutions.

Water Purification for destroying viruses and bacteria in a water, Ozone (O3) generated by
plasma technology is more effective and less costly at large scale than existing
chlorination method

Etching and cleaning of
materials

To removes contaminants and thin layers of the substratum by bombarding
with the plasma species which break the covalent bonds. It is also used to
control the weight of the exposed substrate.

fusion research Plasma is used to achieve high temperature to run the controlled
thermonuclear fusion reactors

nanotechnology Plasma discharges are helpful in growing the nanoparticles for nano world.

Table 2.
Applications of plasma in different fields.
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waves of ordinary plasma [11–14]. The charged dust grain also introduces growing
and damped modes. Tribeche and Zerguini studied the dust ion-acoustic waves in
collisional dusty plasma [15]. Rao et al. [16] predicted the existence of dust-acoustic
wave in an unmagnetized plasma that has inertial dust and Maxwellian distributed
electrons and ions. Shukla and Silin [17] showed the existence of dust-ion acoustic
wave in a plasma. Barkan experimentally investigated that negatively charged dust
grains enhances the growth rate of the electrostatic ion cyclotron instability [18].
Akhtar et al. [19] studied the dust-acoustic solitary waves in the presence of hot and
cold dust grains. The existence of dust-acoustic wave and dust ion acoustic wave has
been confirmed by many investigators in a laboratory experiments [18–20]. Ali [21]
reported the electrostatic potential due to a test-charge particle in a positive dusty
plasma. Bhukhari et al. derived generalized dielectric response function for twisted
electrostatic waves in unmagnetized dusty plasmas [22]. Mendonça et al. showed
that a modified Jeans instability lead to the formation of photonbubble in a dusty
plasma which in turn form two different kinds of dust density perturbations [23].
Pandey and Vranjes predicted that growth rate of the instability is proportional to
the whistler frequency in a magnetized dusty plasma [24].

6. Plasma model and basic equations

Phase and group velocity can be calculated by finding the relation between ω
and k. This relation ω ¼ ω kð Þ, is called the dispersion relation and contains all the
physical parameters of the given medium in which wave propagates. If the
frequency has an imaginary part, that indicates an instability. Plasma instability
involves some growing modes, whose amplitude increases exponentially. In other
words instability represents the ability of the plasma to escape from a configuration
of fields [8, 9].

6.1 Electrostatic and electromagnetic waves in ordinary (electron-ion) plasma

Charged particles in a plasmas couples to electromagnetic field. Because of this
effect various kinds of waves are formed in plasmas. Plasma waves are electrostatic
or electromagnetic based on perturbed (oscillated) magnetic field. If there is a

perturbed magnetic field (B
!
1 6¼ 0), plasma support electromagnetic waves. If the

oscillating magnetic field associated with the wave is absent (B
!
1 ¼ 0), then only

electrostatic waves are supported by plasma. In addition, Electrostatic waves may
have longitudinal and transverse component depending on the direction of propa-
gation with the perturbed electric field [8, 9].

A thermal unmagnetized plasma support many modes as discussed by Tonks
and Langmuir in 1929. One is transverse waves in a plasma have dielectric constant

εr ωð Þ ¼ ε ωð Þ
ε0

¼ 1� ωpe
2

ω2

� �
. In case of a lower frequency wave (ω<ωpe), the dielectric

constant would be negative. It turn out that if refractive index become imaginary,
then waves cannot propagate but are damped (absorbed). Therefore plasma
behaves like a waveguide with propagation and cut-off regions depending on the
range of frequencies [8, 9].

The electron plasma wave and ion acoustic wave are the examples of electro-
static longitudinal modes, that is particle oscillate parallel to the direction of wave
propagation. Ion acoustic waves are electrostatic waves, when both ions and
electrons are allowed to oscillate in the wave-field. IA waves are low frequency
longitudinal wave and we can use the plasma approximation, ne1 ≈ ni1 ≈ n0.
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The electron plasma wave (Langmuir mode) satisfy the dispersion relation ω kð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpe

2 þ 3k2 kBTe
me

q
, whereas the ion acoustic mode satisfy the dispersion relation

ω kð Þ ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλDe

2k2
p kBTe

mi
, here λDe is the Debye length of electron [8, 9]. The propagation

of electromagnetic waves in the unmagnetized plasma yield the dispersion relation

ω kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωpe

2 þ k2c2
q

.

7. Theoretical formulation for the studies of waves in dusty plasma

We consider a unmagnetized collisionless plasma consisting of electrons, ions and
dust particles. Here we use the fluid equations and Maxwell’s equations to derive the
dispersion relations in dusty plasma corresponding to ordinary electron –ion plasma.
We denote υ

!
α and nα are the plasma velocity and density of the different species

(α ¼ e, i, d) having massmα, temperature Tα in electron-volt. We write the equations
of continuity and equation of motion of particles to derive the dispersion relation.
Then the equations of motion governing the plasma can be written as

∂nα
∂t

þ ∇
! � υ

!
αnα

� �
¼ 0 (5)

dυ!α

dt
¼ ∂

∂t
þ υ

!
α � ∇

!� �� �
υ
!
α ¼ Q

mα
E
! þ υ

!
α � B

!� �
� Tα∇

!
nα

mαnα
(6)

If we define thermal velocities VTα ¼
ffiffiffiffiffi
Tα
mα

q
.

In the above equation, the derivative dυ!α
dt is called the convective derivative. dυ

!
α

dt can

be viewed as the time derivative of υ!α taken in a “fluid” frame of reference moving

with a velocity of υ!α relative to a rest frame. ∂υ
!

α
∂t represents the rate of change of υ!α at

a fixed point in space and υ
!
α � ∇

!� �
υ
!
α represents the change of υ

!
α measured by an

observer moving in the fluid frame into a region where υ
!
α is inhomogeneous.

7.1 Linearization of fluid equations

We consider the perturbed density nα1 and velocity υ
!
α1 indicated by subscript 1

along with their unperturbed density nα0 and velocity uα0. The unperturbed electric

field (magnetic field) as E
!
0 (B

!
0) and the perturbed value of the electric field

(magnetic field) is taken as E
!
1 (B

!
1). To linearize all the equations, let us write nα ¼

nα0 þ nα1, υ
!
α ¼ υ

!
α1 þ υ

!
α0 and E

! ¼ E
!
1 þ E

!
0. If the amplitude is chosen to be much

smaller than the wavelength of the instability, the equations of motion can be
linearized. The perturbed quantities f α1 are much smaller than their unperturbed

values f α0, that is f α1 < < f α0. If υ
!
α0 and nα0 are constant, the terms υ

!
α0 � ∇

!� �
nα0,

nα0 ∇
! � υ!α0

� �
and nα1 ∇

! � υ!α0

� �
are equal to be zero. Further the terms υ

!
α1 � ∇

!� �
nα1,

and nα1 ∇
! � υ!α1

� �
are neglected as they are quadratic in perturbation. The linearized

form of the fluid equations can be written as
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∂nα1
∂t

þ nα0∇
! � υα1ð Þ þ υα0:∇

!
nα1 ¼ 0 (7)

∂υα1
∂t

þ υα0 ∇
! � υα1
� �

þ V2
thα

nα0
∇
!
nα1 ¼ Q

mα
�∇

!
φ1 þ υ

!
α1 � B

!
0

� �
(8)

ε0∇2φ1 ¼ ρ ¼ e ne1 þ Znd1 � ni1ð Þ (9)

Let us define δ ¼ nd0
ni0

is the relative dust density, then quasi-neutrality condition
follow

ne0
ni0

¼ Zδþ 1 (10)

Thus, the assumptions of small oscillation give a set of linear equations.

7.2 Dust-acoustic waves (DAW)

The DAW is an electrostatic wave generated in dusty plasma, where inertia is
provided by the dust grains. It is same to the ion-acoustic wave in general plasma,
where inertia is provided by the ions. The frequency ωpd of dust acoustic wave is
very low due to the high dust mass than the ion (electron) plasma frequency
(ωpi,ωpe). That why dusty plasma supports low frequencies waves. In mathemati-

cally, ωpd ¼
ffiffiffiffiffiffiffiffiffiffiffi
e2Z2nd0
εomd

q
< <ωpi,ωpe, where nd0 is the equilibrium dust density.

Let us consider a situation, when dust density is get disturbed. This change will
alter the charge on the dust particles and results to an enhancing negative space
charge due to the process of negative dust charging. This total space charge density
of dust ρd ¼ eZnd0 is shielded by the surrounding plasma ions and electrons.
Therefore an electric field is generated due to the space charge by the fluctuations of
dust charge density. This oscillating electric field imparts the force on the dust
particle, which further pushes the fluctuations in the direction of the electric field
and thus the wave propagates.

We consider that fluctuations are plane wave, which propagating inside the

dusty plasma having the form f ¼ f o exp i k
! � r! � ωt
� �n o

. Them the time deriva-

tive ∂=∂tð Þ can be replaced by �iω and the gradient ∇
!
by ik. Here f 1 � nα1, υ

!
α1, E

!
1,

B
!
1. The electrons and ions are assumed to inertia less as compared with mass of the

dust grains and should have a Boltzmann distribution, namely

ne ¼ ne0 exp
eϕ1

Te

� �
ffi ne0 1þ eϕ1

Te

� �
(11)

ni ¼ ni0 exp � eϕ1

Ti

� �
ffi ni0 1� eϕ1

Ti

� �
(12)

Here, ne0 and ni0 denote the unperturbed values of the electron and ion density
respectively. Let us limit that, all the unperturbed velocities are zero, then equation
of continuity and equations of motion follows.

The above three equations can be written as

�iω nd1 þ iknd0υd1 ¼ 0 (13)

�iω υd1 þ ik
V2

thd

nd0
nd1 ¼ Ze

md
ikϕ1 (14)
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2 þ k2c2
q

.

7. Theoretical formulation for the studies of waves in dusty plasma

We consider a unmagnetized collisionless plasma consisting of electrons, ions and
dust particles. Here we use the fluid equations and Maxwell’s equations to derive the
dispersion relations in dusty plasma corresponding to ordinary electron –ion plasma.
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!
α and nα are the plasma velocity and density of the different species

(α ¼ e, i, d) having massmα, temperature Tα in electron-volt. We write the equations
of continuity and equation of motion of particles to derive the dispersion relation.
Then the equations of motion governing the plasma can be written as

∂nα
∂t

þ ∇
! � υ

!
αnα

� �
¼ 0 (5)

dυ!α

dt
¼ ∂

∂t
þ υ

!
α � ∇

!� �� �
υ
!
α ¼ Q

mα
E
! þ υ

!
α � B

!� �
� Tα∇

!
nα

mαnα
(6)

If we define thermal velocities VTα ¼
ffiffiffiffiffi
Tα
mα

q
.

In the above equation, the derivative dυ!α
dt is called the convective derivative. dυ

!
α

dt can

be viewed as the time derivative of υ!α taken in a “fluid” frame of reference moving

with a velocity of υ!α relative to a rest frame. ∂υ
!

α
∂t represents the rate of change of υ!α at

a fixed point in space and υ
!
α � ∇

!� �
υ
!
α represents the change of υ

!
α measured by an

observer moving in the fluid frame into a region where υ
!
α is inhomogeneous.

7.1 Linearization of fluid equations

We consider the perturbed density nα1 and velocity υ
!
α1 indicated by subscript 1

along with their unperturbed density nα0 and velocity uα0. The unperturbed electric

field (magnetic field) as E
!
0 (B

!
0) and the perturbed value of the electric field

(magnetic field) is taken as E
!
1 (B

!
1). To linearize all the equations, let us write nα ¼

nα0 þ nα1, υ
!
α ¼ υ

!
α1 þ υ

!
α0 and E

! ¼ E
!
1 þ E

!
0. If the amplitude is chosen to be much

smaller than the wavelength of the instability, the equations of motion can be
linearized. The perturbed quantities f α1 are much smaller than their unperturbed

values f α0, that is f α1 < < f α0. If υ
!
α0 and nα0 are constant, the terms υ

!
α0 � ∇

!� �
nα0,

nα0 ∇
! � υ!α0

� �
and nα1 ∇

! � υ!α0

� �
are equal to be zero. Further the terms υ

!
α1 � ∇

!� �
nα1,

and nα1 ∇
! � υ!α1

� �
are neglected as they are quadratic in perturbation. The linearized

form of the fluid equations can be written as
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∂nα1
∂t

þ nα0∇
! � υα1ð Þ þ υα0:∇

!
nα1 ¼ 0 (7)

∂υα1
∂t

þ υα0 ∇
! � υα1
� �

þ V2
thα

nα0
∇
!
nα1 ¼ Q

mα
�∇

!
φ1 þ υ

!
α1 � B

!
0

� �
(8)

ε0∇2φ1 ¼ ρ ¼ e ne1 þ Znd1 � ni1ð Þ (9)

Let us define δ ¼ nd0
ni0

is the relative dust density, then quasi-neutrality condition
follow

ne0
ni0

¼ Zδþ 1 (10)

Thus, the assumptions of small oscillation give a set of linear equations.

7.2 Dust-acoustic waves (DAW)

The DAW is an electrostatic wave generated in dusty plasma, where inertia is
provided by the dust grains. It is same to the ion-acoustic wave in general plasma,
where inertia is provided by the ions. The frequency ωpd of dust acoustic wave is
very low due to the high dust mass than the ion (electron) plasma frequency
(ωpi,ωpe). That why dusty plasma supports low frequencies waves. In mathemati-

cally, ωpd ¼
ffiffiffiffiffiffiffiffiffiffiffi
e2Z2nd0
εomd

q
< <ωpi,ωpe, where nd0 is the equilibrium dust density.

Let us consider a situation, when dust density is get disturbed. This change will
alter the charge on the dust particles and results to an enhancing negative space
charge due to the process of negative dust charging. This total space charge density
of dust ρd ¼ eZnd0 is shielded by the surrounding plasma ions and electrons.
Therefore an electric field is generated due to the space charge by the fluctuations of
dust charge density. This oscillating electric field imparts the force on the dust
particle, which further pushes the fluctuations in the direction of the electric field
and thus the wave propagates.

We consider that fluctuations are plane wave, which propagating inside the

dusty plasma having the form f ¼ f o exp i k
! � r! � ωt
� �n o

. Them the time deriva-

tive ∂=∂tð Þ can be replaced by �iω and the gradient ∇
!
by ik. Here f 1 � nα1, υ

!
α1, E

!
1,

B
!
1. The electrons and ions are assumed to inertia less as compared with mass of the

dust grains and should have a Boltzmann distribution, namely

ne ¼ ne0 exp
eϕ1

Te

� �
ffi ne0 1þ eϕ1

Te

� �
(11)

ni ¼ ni0 exp � eϕ1

Ti

� �
ffi ni0 1� eϕ1

Ti

� �
(12)

Here, ne0 and ni0 denote the unperturbed values of the electron and ion density
respectively. Let us limit that, all the unperturbed velocities are zero, then equation
of continuity and equations of motion follows.

The above three equations can be written as

�iω nd1 þ iknd0υd1 ¼ 0 (13)

�iω υd1 þ ik
V2

thd

nd0
nd1 ¼ Ze

md
ikϕ1 (14)
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�k2ϕ1 ¼
e
ε0

ne0 þ ne1 þ Znd0 þ Znd1 � ni0 � ni1ð Þ (15)

Eqs. (13) and (14) gives

nd1 ¼ k2nd0ϕ1Ze
md k2V2

thd � ω2
� � (16)

After substituting into Poisson’s equation, we obtain

�k2ϕ1 ¼
e
ε0

ne0 þ Znd0 � ni0ð Þ þ e
ε0

ne0 1þ eϕ1

Te

� �
� ni0 1� eϕ1

Ti

� �� �
þ Z

e
ε0

nd1

(17)

The first term reduces to zero under the quasi-neutrality condition (ni0 ¼ ne0 þ
Znd0). Let, the relative dust density is defined by δ ¼ nd0=ni0, then we get

�k2ϕ1 ¼
e2ni0
ε0Ti0

1þ Ti

Te
1� δZdð Þ

� �
ϕ1 þ Z

e
ε0

� k2nd0ϕ1Ze
md k2V2

thd � ω2
� � (18)

After simplification for the nontrivial solution, we readily obtain

ω2 ¼ k2V2
thd þ

ωpd
2

1þ 1
λDi

2k2
1þ Ti

Te
1� δZdð Þ

� � (19)

the dispersion relation of the DAW shows depends on dust density, temperature
of electron, ion and dust. It also shows depends on the inertia of electron and ion.

7.2.1 Limiting cases

In the limit of cold dust (Td ¼ 0) and cold ions (Ti < <Te). Then, the dispersion
relation simplifies into the dispersion relation of ion-acousticwave in an ordinary plasma

ω ¼ kλDiωpdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λDi

2k2
p , (20)

which is the same as for the ion-acoustic wave in classical plasma.

7.2.2 Behavior at low wave length

For small wave numbers k2λ2D,i < < 1 the wave is acoustic ω ¼ kCDAW with the
dust-acoustic wave speed

CDAW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εZ2

d
kTi

md

s
(21)

7.2.3 Behavior at high wave length

For large wave numbers k2λ2D,i > > 1, the wave is not propagating and just
oscillates at the dust plasma frequency.
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7.3 Dust ion acoustic wave (DIAW)

In the previous expression of ion-acoustic wave, the wave speed depends on ion
temperature and on the mass of the dust. In the DIAW, the dust particles are
supposed to immobile. We write the equation of motion, continuity and Poisson’s
equation

∂ni
∂t

þ ∇
! � υinið Þ ¼ 0 (22)

∂υi
∂t

þ υi
∂υi
∂x

¼ e
mi

∂ϕ

∂x
(23)

∂
2ϕ

∂x2
¼ � e

ε0
ni � neð Þ (24)

The Poisson’s equation contains the perturbed electron and ion densities. The
electrons are treated as Boltzmann distributed as follow

ne ¼ ne0 exp
eφ
kTe

� �
(25)

The only place, where the dust properties enter is the quasi-neutrality condition

ni0 ¼ ne0 þ Zdnd0 (26)

Eqs. (24), (25) and (26) gives the dispersion relation for the DIAW as

ω2 ¼ ω2
pik

2λ2D,e

1þ k2λ2D,e

¼ ni0
ne0

� �
kTe

mi

k2

1þ k2λ2D,i

(27)

Using Eq. (25)

ω2 ¼ ω2
pik

2λ2D,e

1þ k2λ2D,e

¼ 1þ Znd0
ne0

� �
kTe

mi

k2

1þ k2λ2D,i

(28)

It is clear from Eq. (27), that phase speed of the DIAW is increase as dust charge
density increases. But the electron density has opposite effect on the speed of the
DIAW.

8. Dissipative turbulence/instabilities in Hall thruster plasma

The section is devoted to the existing instabilities in a Hall thruster plasma. The
principle of thrusters is the ionization of a Noble gas (propellant) in a crossed filed
discharge channel. The accelerated heavy ions of inert gas are used to generate a
thrust by the use of electrostatic forces. Xenon is used as an ion thruster propellant
because of its low reactivity with the chamber and high molecular weight [25–33].
These types of devices support many waves and instabilities because of the turbu-
lence nature of the plasma. These instabilities affect the performance and the
efficiency of the device. In order to control these instabilities and further conse-
quences, it has become necessary to study the growth rate of these instabilities. In
a Hall thruster, the electrons experiences force along the azimuthal direction
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because of E
! � B

!
drift. The collision momentum transfer frequency (v) between the

electrons and neutral atoms are also taken into account to see the resistive effects in
the plasma. Since ions do not feel magnetic field because of their larger larmor
radius compared to length of the device. There equation of motion for ions can be
written as

M
∂

∂t
þ υ

!
i � ∇

!� �� �
υ
!
i ¼ eE

!
(29)

Motion of electrons under the electric and magnetic fields

mne
∂

∂t
þ υ

!
e � ∇

!� �
þ v

� �
υ
!
e ¼ �ene E

! þ υ
!
e � B

!� �
� ∇

!
pe (30)

8.1 Linearization of fluid equations

Let us denote the perturbed densities for ions and electrons as ni1 and ne1 velocities
as υ!i1 and υ

!
e1 respectively. The unperturbed velocities υ0 and u0 are taken in the x-

and y-direction respectively. The amplitude of oscillations of the perturbed densities
are taken small enough. The linearized form of Eq. (29) and Eq. (30) are written as

M
∂

∂t
þ υ0

∂

∂x

� �
υ
!
i1 ¼ �e∇

!
ϕ1 (31)

m
∂

∂t
þ u0

∂

∂y
þ v

� �
υ
!
e1 ¼ e ∇

!
ϕ1 � υ

!
e1 � B

!
0

� �
� Te∇

!
ne1

n0
(32)

The continuity equations of electrons and ions can be linearized as below

∂

∂t
þ υ0

∂

∂x

� �
ni1 þ n0 ∇

! � υ!i1

� �
¼ 0 (33)

∂

∂t
þ u0

∂

∂y

� �
ne1 þ n0 ∇

! � υ!e1

� �
¼ 0 (34)

Fourier analysis: We seek the sinusoidal solution of the above equations, there-

fore the perturbed quantities are taken as f 1 � f 0 exp iωt� ik
! � r!

� �
. Them the time

derivative ∂=∂tð Þ can be replaced by iω and the gradient ∇
!
by ik, here f 1 � ni1, ne1,

ϕ1, υ
!
i1, υ

!
e1, E

!
1 together with ω as the frequency of oscillations and k

!
as the

propagation vector.
By using Fourier analysis from Eq. (31)–(34), the perturbed ion and electron

densities are given as follows,

ni1 ¼ ek2n0ϕ1

M ω� kxυ0ð Þ2 (35)

ne1 ¼
en0 ω� kyu0 � iv
� �

k2ϕ1

mΩ2 ω� kyu0
� �þm ω� kyu0 � iv

� �
k2Vth

2 (36)

The expression for the electron density ne1 is derived under the assumptions that
Ω> >ω, kyu0 and v in view of the oscillations observed in Hall thrusters.
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8.2 Dispersion equation and growth rate of electrostatic oscillations

Finally, we use the expressions for the perturbed ion density ni1 and electron
density ne1 in the Poisson’s equation ε0∇2ϕ ¼ e ne1 � ni1ð Þ in order to obtain

�k2ϕ1 ¼
ωe

2ω̂k2ϕ1

Ω2 ω� kyu0
� �þ ω̂k2Vth

2 �
ωi

2k2ϕ1

ω� kxυ0ð Þ2 (37)

For the nontrivial solution of the above equation, the perturbed potential ϕ1 6¼ 0,
we have from Eq. (37)

ωe
2ω̂

Ω2 ω� kyu0
� �þ ω̂k2VthE

2 þ
ω� kxυ0ð Þ2 � ωi

2

ω� kxυ0ð Þ2 ¼ 0 (38)

This is the dispersion relation that governs the electrostatic waves in the Hall

thruster’s channel. In the above equations, we introduced parameter ωe ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e2n0

m Mð Þε0

q
,

Ω ¼ eB0
m and Vth ¼

ffiffiffiffiffiffiffi
YeTe
m

q
.

After simplification of Eq. (38) we obtain

ω3 ωe
2 þΩ2 þ k2Vth

2� �� ω2 ωe
2 þ Ω2 þ k2Vth

2� �
kyu0 þ 2kxυ0
� �þ iv ωe

2 þ k2Vth
2� �� �

þω kx
2υ0

2ωe
2 þ 2kxυ0 kyu0ωe

2 þ ivωe
2 þ ivk2Vth

2� �þ k2Vth
2 þ Ω2� �

2kxυ0kyu0 þ kx
2υ0

2 � ωi
2� �� �

� kx
2υ0

2 � ωi
2� �

kyu0 Ω2 þ k2Vth
2� �þ ivk2Vth

2� �� ωe
2kx

2υ0
2 kyu0 þ iv
� � ¼ 0

(39)

This is the dispersion equation that governs the electrostatic waves in the
Hall thruster’s channel. It is clear from the above equation that Hall thruster
support different waves and instabilities which satisfies the dispersion relation (39).

8.3 Results and discussion

To estimate the growth rates of the instability, we numerically solve Eq. (39) by
giving typical values of all parameters used for the thruster [25–32]. Therefore, for
investigating the growths of the waves, we plot the negative imaginary parts of the
complex roots (correspond to the instabilities) in Figures 1–3.

It is found that the growth of the wave is enhanced for the larger values of the
wave number of the oscillations as shown in Figure 1. In others words, the oscilla-
tions of larger wavelengths are stable. The findings are consistent to the results
predicted by Kapulkin et al. [34]. In Figure 2, the variation of growth of the
wave with the momentum transfer collision frequency is shown and it has been
depicted that instability grow at faster rates in the presence of more electron
collisions. This is mainly due to the resistive coupling with electrons’ drift’s in the
presence of more collisions. The similar results are also predicted by Fernandez
et al. [35] in the simulation studies of dissipative instability which shows that the
growth of the instability is directly proportional to the square root of the collision
frequency.

In Figure 3 it is noted that the wave grows faster if the electrons carry higher
temperature. The present finding matched with the same results observed by other
investigators [36, 37] of dissipative instability in an plasma.
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υ
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The continuity equations of electrons and ions can be linearized as below
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After simplification of Eq. (38) we obtain
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2υ0
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2 kyu0 þ iv
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(39)

This is the dispersion equation that governs the electrostatic waves in the
Hall thruster’s channel. It is clear from the above equation that Hall thruster
support different waves and instabilities which satisfies the dispersion relation (39).

8.3 Results and discussion

To estimate the growth rates of the instability, we numerically solve Eq. (39) by
giving typical values of all parameters used for the thruster [25–32]. Therefore, for
investigating the growths of the waves, we plot the negative imaginary parts of the
complex roots (correspond to the instabilities) in Figures 1–3.

It is found that the growth of the wave is enhanced for the larger values of the
wave number of the oscillations as shown in Figure 1. In others words, the oscilla-
tions of larger wavelengths are stable. The findings are consistent to the results
predicted by Kapulkin et al. [34]. In Figure 2, the variation of growth of the
wave with the momentum transfer collision frequency is shown and it has been
depicted that instability grow at faster rates in the presence of more electron
collisions. This is mainly due to the resistive coupling with electrons’ drift’s in the
presence of more collisions. The similar results are also predicted by Fernandez
et al. [35] in the simulation studies of dissipative instability which shows that the
growth of the instability is directly proportional to the square root of the collision
frequency.

In Figure 3 it is noted that the wave grows faster if the electrons carry higher
temperature. The present finding matched with the same results observed by other
investigators [36, 37] of dissipative instability in an plasma.
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8.4 Conclusion

In summary, we can say that dusty plasma physics has vital role in novel mate-
rial processing and diagnostics tools. The nanoparticles of desired shape can be
synthesized by controlling the dynamics of charged particles in the semiconductor
industry. For example, the rotation of the dust particles can extract the electron flux
in the magnetron sputtering unit. Thus, dusty plasma is a remarkable field in all
areas of natural sciences. Though, the elimination of dust particles in the semicon-
ductor industry is still a main alarm. The advanced development tools to learning

Figure 1.
Growth rate versus azimuthal wave number, with parameters of Hall plasma thrusters as B0 � 100� 200 G,
n0 � 5� 1017 1018 m3, Te ¼ 10� 15 eV, u0 � 106 m/s, v � 106 /s and υ0 � 2� 104 � 5� 104 m/s.

Figure 2.
Growth rate versus collision frequency.
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dusty plasma will lead to additional discoveries about the astrophysical events and
new scientific findings. The different dispersion relations are derived to see the
behavior of the wave with wave number in complex plasma. The theory of lineari-
zation has been used for the smaller amplitude of the oscillations to derive the
perturbed quantities. In the last section, the growth rate of dissipative instability has
been depicted in a Hall thruster turbulence plasma. The instability grow faster with
the collision frequency, azimuthal wave number and the electron temperature.
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Chapter 6

Oseen’s Flow Past Axially
Symmetric Bodies in Magneto
Hydrodynamics
Deepak Kumar Srivastava

Abstract

In the present technical note, drag on axially symmetric body for conducting
fluid in the presence of a uniform magnetic field is considered under the no-slip
condition along with the matching condition(ρ2U2 ¼ H0

2μ3σ) involving Hartmans
number and Reynolds number to define this drag as Oseen’s resistance or Oseen’s
correction to Stokes drag is presented. Oseen’s resistance on sphere, spheroid, flat
circular disk (broadside) are found as an application under the specified condition.
These expressions of Oseen’s drag are seems to be new in magneto-hydrodynamics.
Author claims that by this idea, the results of Oseen’s drag on axially symmetric
bodies in low Reynolds number hydrodynamics can be utilized for finding the
Oseen’s drag in magneto hydrodynamics just by replacing Reynolds number by
Hartmann number under the proposed condition.

Keywords: stokes drag, Oseen’s resistance, conducting fluid, magnetic field,
Hartman number, Reynolds number

1. Introduction

There are many fluids like plasmas, liquid metals, salt water, and electrolytes etc.
lies under the class of magneto hydrodynamics and attracted the attention of
mechanical engineers, scientists and chemists for a longer period of time. The main
significant quantity of magneto hydrodynamic fluid past an axially symmetric
particle or object is the drag experienced by the stationary body or moving through
the fluid.

It was George Gabriel Stokes [1] who gave the idea of Stokes drag on sphere by
solving the Navier–Stokes equation combining with continuity equation under no-
slip boundary condition by neglecting the convective inertia terms in the vicinity of
spherical body. The then, this idea is known as Stokes law. This Stokes law or Stokes
approximation is valid only in the vicinity of the body which breaks down at
distance far away from the body. This breaks down of Stokes solution at far distance
from the body is known as Whitehead’s paradox [2]. It was Oseen [3], who
pointed out the origin of Whitehead’s paradox and suggest a scheme for its resolu-
tion (see [4]). In this scheme, Oseen has corrected the drag on the sphere, called
Oseen’s correction to Stokes drag, namely.
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D ¼ Ds 1þ 3=8ð Þ R½ �, (1)

where Ds is the classical Stokes drag and ‘R’ is the Reynolds number.
Chester [5] studied the effect of magnetic field on Stokes flow in a conducting

fluid and modified the classical Stokes drag solution by magnetic field, which is
uniform at infinity and is in the direction of flow of the fluid, given as

D ¼ Ds 1þ 3
8
Mþ 7

960
M2 � 43

7680
M3 þ O M4� �� �

, (2)

Where Ds is the classical Stokes drag and ‘M’ is the Hartmann number. He also
proved that when the magnetic Reynolds number Rm, is small the magnetic field is
essentially independent of the fluid motion. Ludford [6] discussed the effect of an
aligned magnetic field on Oseen flow of a conducting fluid. Payne and Pell [7] have
tackled the Stokes flow problem for a class of axially symmetric bodies and found
the general expression of Stokes drag on axially symmetric bodies in terms of
stream function. Imai [8] has discussed the flow of conducting fluid past bodies of
various shapes. Gotoh [9] has discussed the magneto hydrodynamic flow past a
sphere and calculated the drag on sphere. Chang, I-Dee [10] studied the problem of
Stokes flow of a conducting fluid past an axially symmetric body in the presence of
a uniform magnetic field and gave the formula of drag on axially symmetric body
placed in the conducting fluid under the effect of uniform magnetic field. He
utilizes the perturbation technique given by Proudman and Pearson[11]. In his Ph.
D. thesis at Harvard University, Blerkom [12] studied the magneto-hydrodynamic
flow of a viscous fluid past a sphere.

Brenner [13] calculated the Oseen resistance of a particle of arbitrary shape in
terms of classical Stokes drag and Reynolds number ‘R’. Chester [14] investigated
the validity of the Oseen equations, for incompressible, viscous flow past a body, as
an approximation to the Navier–Stokes equations. He determined the drag correctly
to the first order in the Reynolds number, though the detailed velocity field is not
correct to this order. Moreover, this force can be deduced simply from knowledge
of the force on the body according to Stokes’s approximation. He also analyzed the
generalization of drag including the magneto-hydrodynamic effects when the fluid
is conducting and the flow takes place in the presence of a magnetic field. Kanwal
[15] has obtained the drag on solid bodies moving through the viscous and electri-
cally conducting fluids. Mathon and Ranger [16] tackled the problem of magneto-
hydrodynamic streaming flow past a sphere at low Hartmann numbers. Bansal and
Kumari [17] have studied the MHD slow motion past a sphere and calculated the
drag on sphere in both Stokes and Oseen’s limits. Datta and Srivastava [18] proved
a new form of Stokes drag on axially symmetric bodies based on geometric vari-
ables. Venkatalaxmi et al. [19] have obtained a general solution of Oseen equations
based on the suggestions given by Lamb [20]. The Oseenlet is used for application
purposes in their work. Srivastava and srivastava [21] calculated the Oseen’s drag
on axially symmetric bodies with the use of DS-conjecture given by Datta and
Srivastava [18]. Sellier and Aydin [22] provided the fundamental free-space solu-
tions for a steady axi-symmetric MHD viscous flow. Ghosh et al. [23] studied the
effect of penetration of magnetic field on full magneto hydrodynamic flow past a
circular cylinder. Ibrahim and Tulu [24] discussed the MHD boundary layer flow
past a wedge with heat transfer and viscous effects of Nano fluid embedded in
porous media. Reza and Rajasekhar [25] tackled the problem of shear flow over a
rotating plate in the presence of magnetic field.

For in depth information regarding the classical Stokes drag and Oseen’s drag on
axi-symmetric bodies in relativistic fluid mechanics and magneto hydrodynamics,
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the books of Oseen [4] (in German Language), Happel and Brenner [26], Childress
[27], Ferraro and Plumpton [28], Milne-Thompson [29], Cabannes [30], Mirela and
Pop [31], Kim and Karrila [32] are referred by author.

2. Formulation of problem

We consider the equation of low Reynolds number flow of an incompressible
conducting fluid past an axi-symmetric body in a magnetic field which is uniform at
infinity. Chester [5] proved that when the magnetic Reynolds number Rm is small
the magnetic field is essentially independent of fluid motion. For the case where the
body and the fluid have nearly the same permeability, a uniform magnetic field will
result i.e.H0 ¼ H0 i = magnetic field at infinity. This indicates from the symmetry
that there is no electric field, since for all such flows the electric currents form
closed circuits. The governing equations and the no-slip boundary conditions for
the present problem now becomes [10]

�∇pþ ∇2v‐M2 v� v:ið Þi½ � ¼ 0, (3)

∇:v ¼ 0 (4)

v ! i as r ! ∞ r2 ¼ x2 þ y2 þ z2
� �

, (5)

v ¼ 0 at the body: (6)

In Eqs. (3–5), all entities are non-dimensional and their abbreviations are as
follows;

U = free-stream velocity,
a = characteristic length of body,

v ¼ v0

U
, p ¼ a p0 � p0

∞

� �
ρνU

, x ¼ x0

a
, etc:,

Re ¼ Ua
ν

¼ Reynolds number,

Rm ¼ Uaμσ ¼ magnetic Reynolds number,

M ¼ μH0a
σ
ρν

� �1
2

¼ Hartmann number,

i ¼ unit vector along x‐direction:

Other symbols have their usual meanings in electro-hydrodynamics and
magneto-hydrodynamics. Primed entities are in physical units (as per [5, 10]).

Following the perturbation method given by Proudman and Pearson [11],
Chang [10] has solved the above equations under the no-slip boundary conditions
and obtained the drag on axially symmetric body in terms of classical Stokes drag Ds

and Hartmann number as

D ¼ Ds 1þ Ds

16πμaU
M

� �
þ O M2� �

, (7)

where Ds is the Stokes drag for flow without magnetic field.
Now, in the section-4, we prove that the solution of drag given in Eq. (7) is

Oseen’s drag or Oseen’s correction to Stokes drag by utilizing the idea of Oseen’s
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Chester [5] studied the effect of magnetic field on Stokes flow in a conducting

fluid and modified the classical Stokes drag solution by magnetic field, which is
uniform at infinity and is in the direction of flow of the fluid, given as

D ¼ Ds 1þ 3
8
Mþ 7

960
M2 � 43

7680
M3 þ O M4� �� �

, (2)
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resistance given by Brenner [13] for axially symmetric body under some specific
constraints on dimensionless parameters responsible for the two flow
configurations. The matching condition for Hartmann number and Reynolds
number is provided as well.

3. Oseen’s equations and Oseen’s drag

Let us consider the axially symmetric arbitrary body of characteristic length ‘a’
placed along principal axis (x-axis, say) in a uniform stream U of viscous [4, 13]
fluid of density ρ and kinematic viscosity ν. When particle Reynolds number Ua/ν is
low, the steady motion of incompressible fluid around this axially symmetric body
is governed by Stokes equations [26],

0 ¼ � 1
ρ

� �
grad pþ ν ∇2u, div u ¼ 0, (8)

subject to the no-slip boundary condition. It wasOseen in 1910, who pointed out
the origin of Whitehead’s paradox and suggest a scheme for its resolution (see [4]).
In order to rectify the difficulty, Oseen proposed that uniformly valid solutions of
the problem of steady streaming flow past a body at small particle Reynolds num-
bers could be obtained by solving the linear equations

U:gradð Þu ¼ � 1
ρ

� �
grad pþ ν ∇2u, div u ¼ 0, (9)

known as Oseen’s equation. Oseen [4] obtained an approximated solution of
his equations for flow past a sphere, from which he obtained the Stokes drag
formula [Happel and Brenner [26] p. 44, (Eqs. 2-8)] under the no-slip conditions
(Eqs. 5, 6) as

D ¼ 6 π μ a U 1þ 3
8
Re þO Re 2� �� �

, (10)

where Re = ρUa/μ is bodies Reynolds number.
Based on Oseen’s above idea and Chang’s[10] expression of drag in terms of

Hartmann number ‘M’, Brenner gave the expression of Oseen drag on axially
symmetric body moving with equal velocity U and identical orientation through the
unbounded fluid in terms of Reynolds number ‘Re’ as

D ¼ Ds 1þ Ds

16πμUa
Re

� �
þO Re 2� �

, (11)

where ‘a’ is any characteristic particle or body dimension and Re = ρUa/μ is the
particle Reynolds number.

4. Matching condition for Hartmann number and Reynolds number

In the expression of drag (Eq. 7) given by Chang[10], the Hartmann number
‘M’ is treated as small. Similarly, in the expression of drag (Eq. 11) given by
Brenner [13], the Reynolds number ‘Re’ is also treated as small. Now, we can define
the drag D (Eq. 7) as Oseen’s correction to classical Stokes drag Ds on axially
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symmetric body having characteristic length ‘a’ placed under uniform stream
velocity U parallel to the principal axis(x-axis, say) when the two small dimension-
less parameters M and Re matches to be equal i.e. M = Re provides

ρUa
μ

¼ μH0a
σ
μ

� �1=2

,

or ρ2U2 ¼ H0
2μ3σ: (12)

Under this condition, drag on axially symmetric body in the presence of a
uniform magnetic field described by Chang[10] is defined as Oseen’s drag or
Oseen’s correction to Stokes drag in magneto-hydrodynamics. In the next section,
we find the Oseen’s drag on sphere and spheroid in terms of Hartmann number ‘M’

as an application which is the main task of interest for mechanical engineers.

5. Flow past sphere

We consider the sphere generated due to the revolution of circle of radius ‘a’
about axis of symmetry. The Oseen’s drag on sphere of radius ‘a’ placed under
conducting fluid of uniform velocity U and uniform magnetic field H0 is given by
(7) as

D ¼ Ds 1þ Ds

16πμaU
M

� �
þ O M2� �

,

but for sphere, the classical Stokes drag Ds = 6πμUa, then, we have

D ¼ Ds 1þ 3
8
M

� �
þ O M2� �

, (13)

which is in confirmation with Oseen’s drag (Eq. 10) on sphere given by Oseen
[4] and Chester [5] under the aforesaid condition(Eq. 10).

6. Flow past spheroid

6.1 Prolate spheroid

We consider the prolate spheroid generated by revolution of ellipse having semi-
major axis length ‘a’ and semi-minor axis length ‘b’ about axis of symmetry. Stokes
drag on prolate spheroid placed in uniform axial flow, with velocity U, parallel to
axis of symmetry (x-axis) is given as (by utilizing DS conjecture given in [18])

Ds ¼ 16 π μ U a e3

�2eþ 1þ e2ð Þ ln 1þe
1�e

� � : (14)

Now, the Oseen’s correction as well as the solution of Oseen’s equation (Eq. 9)
may be obtained for same prolate spheroid by substituting the value of Stokes drag
(Eq. 14) in Brenner’s formula (Eq. 11) under the matching condition (Eq. 10) as
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where Re = ρUa/μ is bodies Reynolds number.
Based on Oseen’s above idea and Chang’s[10] expression of drag in terms of
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where ‘a’ is any characteristic particle or body dimension and Re = ρUa/μ is the
particle Reynolds number.
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In the expression of drag (Eq. 7) given by Chang[10], the Hartmann number
‘M’ is treated as small. Similarly, in the expression of drag (Eq. 11) given by
Brenner [13], the Reynolds number ‘Re’ is also treated as small. Now, we can define
the drag D (Eq. 7) as Oseen’s correction to classical Stokes drag Ds on axially
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symmetric body having characteristic length ‘a’ placed under uniform stream
velocity U parallel to the principal axis(x-axis, say) when the two small dimension-
less parameters M and Re matches to be equal i.e. M = Re provides

ρUa
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¼ μH0a
σ
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� �1=2

,

or ρ2U2 ¼ H0
2μ3σ: (12)

Under this condition, drag on axially symmetric body in the presence of a
uniform magnetic field described by Chang[10] is defined as Oseen’s drag or
Oseen’s correction to Stokes drag in magneto-hydrodynamics. In the next section,
we find the Oseen’s drag on sphere and spheroid in terms of Hartmann number ‘M’

as an application which is the main task of interest for mechanical engineers.

5. Flow past sphere

We consider the sphere generated due to the revolution of circle of radius ‘a’
about axis of symmetry. The Oseen’s drag on sphere of radius ‘a’ placed under
conducting fluid of uniform velocity U and uniform magnetic field H0 is given by
(7) as
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� �
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,

but for sphere, the classical Stokes drag Ds = 6πμUa, then, we have

D ¼ Ds 1þ 3
8
M

� �
þ O M2� �

, (13)

which is in confirmation with Oseen’s drag (Eq. 10) on sphere given by Oseen
[4] and Chester [5] under the aforesaid condition(Eq. 10).

6. Flow past spheroid

6.1 Prolate spheroid

We consider the prolate spheroid generated by revolution of ellipse having semi-
major axis length ‘a’ and semi-minor axis length ‘b’ about axis of symmetry. Stokes
drag on prolate spheroid placed in uniform axial flow, with velocity U, parallel to
axis of symmetry (x-axis) is given as (by utilizing DS conjecture given in [18])

Ds ¼ 16 π μ U a e3

�2eþ 1þ e2ð Þ ln 1þe
1�e

� � : (14)

Now, the Oseen’s correction as well as the solution of Oseen’s equation (Eq. 9)
may be obtained for same prolate spheroid by substituting the value of Stokes drag
(Eq. 14) in Brenner’s formula (Eq. 11) under the matching condition (Eq. 10) as

91

Oseen’s Flow Past Axially Symmetric Bodies in Magneto Hydrodynamics
DOI: http://dx.doi.org/10.5772/intechopen.96440



D
Ds

¼ 1þ 16 π μ U a e3

16 π μ U a �2eþ 1þ e2ð Þ ln 1þe
1�e

� �MþO M2� �
,

¼ 1þ e3

�2eþ 1þ e2ð Þ ln 1þe
1�e

� �MþO M2� �
, (15)

¼ 1þ 3
8

1� 2
5
e2 � 17

175
e4:…

� �
MþO M2� �

, (16)

where M ¼ μH0a
σ
ρν

� �1
2
is Hartmann number and R ¼ ρU a

μ

� �
is the Reynolds

number. The same solution may be re-written, when we take particle Reynolds

number R ¼ ρUb
μ

� �
, by using b/a = (1-e2)1/2, as

¼ 1þ e3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
�2eþ 1þ e2ð Þ ln 1þe

1�e

� �Mþ O M2� �
, (17)

¼ 1þ 3
8

1þ 1
10

e2 þ 109
1400

e4:…
� �

MþO M2� �
: (18)

Equations (Eq. 16) and (Eq. 18) immediately reduces to the case of sphere
(given in Eq. 13) in the limiting case as e ! 0. On the other hand, the closed form
expressions (Eq. 15) and (Eq. 17) due to Oseen for prolate spheroid appears to be
new for magneto hydrodynamics as no such type of expressions are available in the
literature for comparison.

6.2 Oblate spheroid

We consider the oblate spheroid generated by revolution of ellipse having semi-
major axis length ‘b’ and semi-minor axis length ‘a’ about axis of symmetry. Stokes
drag on oblate spheroid placed in uniform axial flow, with velocity U, parallel to
axis of symmetry (x-axis) is given as (by utilizing DS conjecture given in [18])

Ds ¼ 8 π μ U a e3

e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1� 2e2ð Þ sin �1e

h i : (19)

Now, the Oseen’s correction as well as the solution of Oseen’s equation (Eq. 19)
may be obtained for same oblate spheroid by substituting the value of Stokes drag
(6.6) in Brenner’s formula (Eq. 11) under the matching condition (Eq. 10) as

D
Ds

¼ 1þ 8 π μ U a e3

16 π μ U a e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1� 2e2ð Þ sin �1e

h iMþ O M2� �
,

¼ 1þ e3

2 e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1� 2e2ð Þ sin �1e

h iMþO M2� �
, (20)

¼ 1þ 3
8

1� 1
10

e2 � 31
1400

e4:…
� �

Mþ O M2� �
, (21)
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where M ¼ μH0a
σ
ρν

� �1
2
is Hartmann number and R ¼ ρU a

μ

� �
is the Reynolds

number. The same solution may be re-written, when we take particle Reynolds

number R ¼ ρU b
μ

� �
, by using b/a = (1-e2)1/2, as

¼ 1þ e3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1� 2e2ð Þ sin �1e

h iMþO M2� �
, (22)

¼ 1þ 3
8

1þ 2
5
e2 þ 61

200
e4:…

� �
MþO M2� �

: (23)

Equations (Eq. 21) and (Eq. 23) immediately reduces to the case of sphere (given
in Eq. 13) in the limiting case as e ! 0. On the other hand, the closed form
expressions (Eq. 20) and (Eq. 22) due to Oseen for oblate spheroid appears to be
new as no such type of expressions are available in the literature for comparison.

7. Flat circular disk (broadside on)

Lamb [20] provided the Stokes drag on flat circular disk of radius ‘a’ placed
broadside on facing towards the uniform stream of velocity U as.

Ds ¼ 16μUa: (24)

Now, under the matching conditions (Eq. 10), the Oseen’s drag on circular disk
placed under the effect of magnetic field is given by Chang’s rule (Eq. 7) in terms of
Hartmann number as

D ¼ Ds 1þ Ds

16πμaU
M

� �
þO M2� �

or

D ¼ 16μaU 1þ 16μaU
16πμaU

M
� �

þO M2� �

¼ 16μaU 1þM
π

� �
þO M2� �

, (25)

where M ¼ μH0a
σ
ρν

� �1
2
is Hartmann number and R ¼ ρU a

μ

� �
is the Reynolds

number. This drag immediately reduces to the classical one as D=Ds defined by
Lamb [20]. This Oseen’s drag (Eq. 25) may also be reduced directly from oblate
result (Eq. 20) by taking e ! 1 or b ! 0.

8. Conclusion

The problem of Oseen flow of an incompressible conducting fluid past axially
symmetric body in the presence of a uniform magnetic field is tackled. The
matching conditions are obtained by equating the small dimensionless Hartmann
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D
Ds

¼ 1þ 16 π μ U a e3

16 π μ U a �2eþ 1þ e2ð Þ ln 1þe
1�e

� �MþO M2� �
,

¼ 1þ e3

�2eþ 1þ e2ð Þ ln 1þe
1�e

� �MþO M2� �
, (15)

¼ 1þ 3
8

1� 2
5
e2 � 17
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e4:…

� �
MþO M2� �

, (16)
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1� e2

p
�2eþ 1þ e2ð Þ ln 1þe

1�e

� �Mþ O M2� �
, (17)
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8
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e2 þ 109
1400

e4:…
� �
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: (18)
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(given in Eq. 13) in the limiting case as e ! 0. On the other hand, the closed form
expressions (Eq. 15) and (Eq. 17) due to Oseen for prolate spheroid appears to be
new for magneto hydrodynamics as no such type of expressions are available in the
literature for comparison.

6.2 Oblate spheroid
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major axis length ‘b’ and semi-minor axis length ‘a’ about axis of symmetry. Stokes
drag on oblate spheroid placed in uniform axial flow, with velocity U, parallel to
axis of symmetry (x-axis) is given as (by utilizing DS conjecture given in [18])
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Now, the Oseen’s correction as well as the solution of Oseen’s equation (Eq. 19)
may be obtained for same oblate spheroid by substituting the value of Stokes drag
(6.6) in Brenner’s formula (Eq. 11) under the matching condition (Eq. 10) as

D
Ds
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1� 2e2ð Þ sin �1e
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,
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2 e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1� 2e2ð Þ sin �1e

h iMþO M2� �
, (20)
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8

1� 1
10

e2 � 31
1400

e4:…
� �

Mþ O M2� �
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where M ¼ μH0a
σ
ρν

� �1
2
is Hartmann number and R ¼ ρU a

μ

� �
is the Reynolds

number. The same solution may be re-written, when we take particle Reynolds

number R ¼ ρU b
μ

� �
, by using b/a = (1-e2)1/2, as

¼ 1þ e3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1� 2e2ð Þ sin �1e

h iMþO M2� �
, (22)

¼ 1þ 3
8

1þ 2
5
e2 þ 61

200
e4:…

� �
MþO M2� �

: (23)

Equations (Eq. 21) and (Eq. 23) immediately reduces to the case of sphere (given
in Eq. 13) in the limiting case as e ! 0. On the other hand, the closed form
expressions (Eq. 20) and (Eq. 22) due to Oseen for oblate spheroid appears to be
new as no such type of expressions are available in the literature for comparison.

7. Flat circular disk (broadside on)

Lamb [20] provided the Stokes drag on flat circular disk of radius ‘a’ placed
broadside on facing towards the uniform stream of velocity U as.

Ds ¼ 16μUa: (24)

Now, under the matching conditions (Eq. 10), the Oseen’s drag on circular disk
placed under the effect of magnetic field is given by Chang’s rule (Eq. 7) in terms of
Hartmann number as

D ¼ Ds 1þ Ds

16πμaU
M

� �
þO M2� �

or

D ¼ 16μaU 1þ 16μaU
16πμaU

M
� �

þO M2� �

¼ 16μaU 1þM
π

� �
þO M2� �

, (25)

where M ¼ μH0a
σ
ρν

� �1
2
is Hartmann number and R ¼ ρU a

μ

� �
is the Reynolds

number. This drag immediately reduces to the classical one as D=Ds defined by
Lamb [20]. This Oseen’s drag (Eq. 25) may also be reduced directly from oblate
result (Eq. 20) by taking e ! 1 or b ! 0.

8. Conclusion

The problem of Oseen flow of an incompressible conducting fluid past axially
symmetric body in the presence of a uniform magnetic field is tackled. The
matching conditions are obtained by equating the small dimensionless Hartmann
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number and Reynolds number ensuring the Chang’s[10] solution of drag to be
Oseen’s drag on same body in terms of Hartmann number and classical Stokes drag.
Under no-slip boundary conditions, the closed form expressions are calculated to
obtained the Oseen’s drag on spheroid (prolate and oblate) and flat circular disk in
terms of classical Stokes drag and Hartmann number. These expressions are further
extended to the form containing powers of eccentricity ‘e’. All forms reduces into
the classical Oseen’s drag on sphere of radius ‘a’ given by Oseen’s [4] and Chester
[5, 14]. These expressions of Oseen’s drag are seems to be new in magneto-
hydrodynamics. Following the same idea, the Oseen’s drag may be calculated in
terms of Hartmann number for other body configurations like deformed sphere,
cycloidal body of revolution, egg-shaped body, cassini oval, hypocycloidal body etc.
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A Note on Heat Transport with
Aspect of Magnetic Dipole and
Higher Order Chemical Process for
Steady Micropolar Fluid
Assad Ayub, Hafiz A. Wahab, Zulqurnain Sabir
and Adnène Arbi

Abstract

Heat transfer through non-uniform heat source/sink is the most significant aspect
in view of many physical problems. Heat sink/source with heat transfer help to
change the energy distribution in fluids, which consequently disturbs the particle
deposition rate like as nuclear reactors, semiconductors and electronic devices. Fur-
ther, also, the vital role of heat transfer is to enhance the thermal conductivity of
micro sized solid particles in fluid. This study scrutinizes the heat transport of steady
micropolar fluid via non-uniform heat sink/ source and mass transfer is scrutinized
through higher order chemical reaction over a stretching surface with variable heat
flux. Moreover, the velocity of micropolar fluid is studied by considering aspects of
magnetic dipole and Newtonian heating; velocity slip conditions are also examined.
The numerical results have been performed by using the well-known numerical
shooting technique and comparison is performed with the Matlab built-in solver
bvp4c. Geometrically explanation reveals the properties of numerous parameters that
are the system parts. The observed outcomes show that the local skin-friction coeffi-
cient and Sherwood number values goes upwith the increase of chemical reaction rate
parameters and Schmidt numbers. Chemical reaction based parameters boosts up the
rate of heat as well as mass transfer. The stress of wall couple increased by increasing
the Schmidt and chemical parameters. Moreover, the plots of dimensionless
parameters have been drawn, as well as some parameter results are tabulated.

Keywords: heat sink/source, heat transportation, magnetic dipole effect,
Newtonian heating effect, micro polar fluid, slip velocity

1. Introduction

Magnetohydrodynamic (MHD) flow possesses real world applications for
example, in the extrusion of a polymer sheet procedure, several product properties
and significant control of cooling rate [1–3] and it controls under investigated
physical state of the problem. Due to these important features of MHD flow, many
researchers put their active attention towards the study of MHD and derived several
numerical and theoretical results in mechanism of fluid flow. Andersson [4] did
investigated about MHD flow of viscoelastic fluid with geometry of stretching
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micro sized solid particles in fluid. This study scrutinizes the heat transport of steady
micropolar fluid via non-uniform heat sink/ source and mass transfer is scrutinized
through higher order chemical reaction over a stretching surface with variable heat
flux. Moreover, the velocity of micropolar fluid is studied by considering aspects of
magnetic dipole and Newtonian heating; velocity slip conditions are also examined.
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1. Introduction

Magnetohydrodynamic (MHD) flow possesses real world applications for
example, in the extrusion of a polymer sheet procedure, several product properties
and significant control of cooling rate [1–3] and it controls under investigated
physical state of the problem. Due to these important features of MHD flow, many
researchers put their active attention towards the study of MHD and derived several
numerical and theoretical results in mechanism of fluid flow. Andersson [4] did
investigated about MHD flow of viscoelastic fluid with geometry of stretching
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surface. Thermal radiation and MHD flow are interrelated and have massive appli-
cations in industries to know impact of thermal radiation on MHD flow explored by
Raptis et al. [5]. Khan et al. [6] examined the MHD flow of boundary layer using the
electric behavior of the fluid due to the cause of stretching in an elastic plane surface
along the magnetic field. Abergel et al. [7] did work on different problems related to
different physical situations and existence of such solutions to control problems,
like boundary and boundary control in a channel. Moreover, he provided basic
numerical algorithms named as conjugate gradient and steepest descent methods.
Agrawal et.al [8] did research to investigate the transfer of heat with MHD flow by
applying an unvarying suction over stretching surface. These investigations were
classified to the Newtonian fluids. However, a novel phase to evaluate the theory of
fluid using MHD flow is categorized by Aliakbar et al. [9]. Chemical reactive flow
and its relationship with magnetic dipole impact on Cross model is investigated by
khan et al. [10]. Mahanthesh et al. [11] explore preparation of numerical results
related to MHD nanofluid flow with bidirectional linear stretching surface. Babu
et al. [12] published his study about MHD slip flow of nanofluid with mass transfer
via thermophoresis and Brownian motion. Nadeem et al. [13] examined time
dependent MHD three- dimensional flow due to stretching/shrinking sheet.

Class of fluid that exhibits microscopic effects arising the phenomenon of
micromotion of fluid particles is called micropolar fluid. This fluid consists of rigid
macromolecule of individual motion that supports stress, body moment by spin
inertia. These fluids contain micro-constituents that are capable of undergoing the
rotation and have several practical applications in different areas, like depicting the
attitude of exotic lubricants, turbulent shear flow, colloidal suspensions of
nanofluid flow, human and animal blood, exotic lubricants, additive suspensions,
colloidal fluids, liquid crystal, real fluids with interruptions and so forth [14].
Soundalgekar et al. [15] described an outstanding analysis of the micropolar fluids
(MPFs) along with its applications. In another work, Soundalgekar et al. [16]
explored the suction/injection effects in the flow passing over a semi-infinite porous
plate using (MHD) MPF flow. Hady et al. [17] obtained the analytical results for the
heat transfer model to a MPF using a non-stretching sheet. Ishak et al. [18] worked
on the heat transfer over a stretching surface together with variable or uniform
surface in (MHD) MPFs. Hassanien et al. [19] numerically discussed the suction/
blowing effects on the heat/flow transfer using the MPF on a stretching surface.
Hayat et al. [20] studied the two-dimensional mixed convection steady and stagna-
tion point flow using (MHD) MPF on a stretching surface. Sajid et al. [21, 22]
studied the true results for thin-film flows using MPF.

Vital role of thermal transport in various engineering problems, like as nuclear
reactor cooling, metallurgical processes and continuous strips in which the perfor-
mance of machine strongly dependent on the heat transfer rate and many hydro-
dynamic methods. Heat transfer through heat source/sink is most noteworthy
aspect in view of many physical models. Heat generation/absorption can help to
change the distribution energy in the fluid that consequently disturbs the particle
deposition rate in the network like as semiconductors, nuclear reactors and elec-
tronic devices. Heat source/sink is assumed to be constant, temperature or space
dependent. In this study, contains non-uniform heat sink/ source, i.e., temperature
and space dependent heat source/sink. Motivated by the submissions of heat trans-
fer with non-uniform heat source, numerous theoretical soundings have been
discussed the heat transfer phenomenon in flows close to the stagnation point
region [23]. Mabood et al. [24] used a shooting approach by considering the effects
of thermal conductivity and variable viscosity using the MHD flow together with
the transfer of heat in MPF through non uniform heat sink/source on a stretching
sheet. The induction of flow is noticed because of an elastic sheet that is stretched
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back as well as forward. Reddy et al. [25] explored the heat transport via heat
generation and mass transfer effects on MHD flow together with inclined porous
plate. Ravidran et al. [26] implemented the non-uniform single/double effects of
slot suction/injection into an unstable mixed convection of an electrically
conducting. Ghadikolaei et al. [27] expressed detailed study with MHD flow heat
transport inspired by the thermal radiations as well as heat generation over a porous
stretching sheet. Sandeep et al. [28] scrutinized the non-uniform heat source/sink
influences, chemical reaction and mass transfer on the mixed convection flow using
a MPF along with viscous dissipation.

Most significance aspect of daily life is chemical reaction, and without chemical
reaction there is no concept of daily life because chemical reactions appear in
biomedical field, agriculture, photosynthesis, reproduction system, chemical
industry, even earth is fertile with the chemical reactions and used in many engi-
neering applications. Chemical reaction helps to transport the mass of fluid flow
and many researchers did work on transport of mass with taking different models
of fluid like Cross, Carreau, sisko and Maxwell model of non-Newtonian fluid.
Numerical interpretation related mass transfer of 3D Cross fluid with chemical
reaction is made by [29]. First order chemical reaction impact in MPF is studied by
damesh et al. [30]. Das et al. [31] published their investigations on chemical reac-
tion and thermal radiation on heat and mass transfer flow of MHD micropolar fluid
with rotating frame of reference Further Magyari et al. [32] depicted that Combined
effect of heat generation or absorption and first-order chemical reaction on
micropolar fluid flows over a uniformly stretched permeable surface. Effects of
higher order chemical reaction on micropolar fluid and Influence of thermophoresis
and chemical reaction on MHD micropolar fluid flow is discussed by [33]. Sajid
et al. investigate the effects of variable molecular diffusivity, nonlinear thermal
radiation, convective boundary conditions, momentum slip, and variable molecular
diffusivity on Prandtl fluid past a stretching sheet [34].

From many year scientists did a lot of work with different fluid models to
investigate heat/ mass transport through heat generation/ absorption and activation
energy respectively. But here in this manuscript we deal transport of heat of MPF
via non uniform heat sink/ source because this transportation deal disposition rate
of particle (space dependent) and mass transfer is carried out through chemical
reaction. Further linear velocity of MPF is scrutinized by magnetic dipole aspect
and also angular movement of said fluid is made in this struggle.

The remaining parts of the paper are organized as: Section 2 shows the problem
formulation, Section 3is designed the methodology, Section 4 shows the results and
discussion, while conclusion is drawn in the final Section.

2. Problem formulation

The problem is formulated by using the equations based on conservation of
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surface. Thermal radiation and MHD flow are interrelated and have massive appli-
cations in industries to know impact of thermal radiation on MHD flow explored by
Raptis et al. [5]. Khan et al. [6] examined the MHD flow of boundary layer using the
electric behavior of the fluid due to the cause of stretching in an elastic plane surface
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back as well as forward. Reddy et al. [25] explored the heat transport via heat
generation and mass transfer effects on MHD flow together with inclined porous
plate. Ravidran et al. [26] implemented the non-uniform single/double effects of
slot suction/injection into an unstable mixed convection of an electrically
conducting. Ghadikolaei et al. [27] expressed detailed study with MHD flow heat
transport inspired by the thermal radiations as well as heat generation over a porous
stretching sheet. Sandeep et al. [28] scrutinized the non-uniform heat source/sink
influences, chemical reaction and mass transfer on the mixed convection flow using
a MPF along with viscous dissipation.

Most significance aspect of daily life is chemical reaction, and without chemical
reaction there is no concept of daily life because chemical reactions appear in
biomedical field, agriculture, photosynthesis, reproduction system, chemical
industry, even earth is fertile with the chemical reactions and used in many engi-
neering applications. Chemical reaction helps to transport the mass of fluid flow
and many researchers did work on transport of mass with taking different models
of fluid like Cross, Carreau, sisko and Maxwell model of non-Newtonian fluid.
Numerical interpretation related mass transfer of 3D Cross fluid with chemical
reaction is made by [29]. First order chemical reaction impact in MPF is studied by
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Consider a mixed convective steady state incompressible MPF passing over a
porous plate that shrinks and stretches towards the velocity u ¼ suw xð Þ, whereas,
uw xð Þ ¼ ax, a is a dimensional constant towards the flow axis (Figure 1). The sheet
is stretched with the speed that vary with distance ℓ, further consider the flow
region is y > 0 and B0 is the magnetic field towards they-axis. Presence of boundary
layer heat transport, non-uniform source of heat, viscous dissipation along with
magnetic field is presented. The components of micro-rotation and velocity com-
ponents are (0, 0, w) and (u, v, 0), respectively. The basic equations are accounted
in the presence of heat source and viscous dissipation. The flow positions are x and
y � axis along with the slip flow model, i.e., u-slip as well as the Newtonian heating
are conditions as:

∂u
∂x

þ ∂v
∂y

¼ 0, (6)

u
∂u
∂x

þ v
∂u
∂y

¼ μþ χ

ρ

� �
∂
2u
∂y2

þ χ

ρ

∂w
∂y

� σβ20
ρ

uþ g1βC C� C∞ð Þ þ g1βT T � T∞ð Þ, (7)

u
∂w
∂x

þ v
∂w
∂y

¼ γ

ρ j

 !
∂
2w
∂y2

þ χ

ρ j
2wþ ∂w

∂y

� �
, (8)

u
∂T
∂x

þ v
∂T
∂y

¼ k
ρCp

∂
2T
∂y2

þ μ

ρCp

∂T
∂y

� �2

þ q‴

ρCp
, (9)

u
∂C
∂x

þ v
∂C
∂y

¼ Dm
∂
2C
∂y2

þDm
KT

Tm

∂
2T
∂y2

� ξ C� C∞ð Þ: (10)

Figure 1.
Geometry of the problem.
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To consider the spin gradient viscosity as

γ ¼ μþ χ

2

� �
j ¼ μ 1þ K

2

� �
j, K ¼ χ

μ
and j ¼ ν

a
(11)

are the material parameter as well as micro inertia density, and ν ¼ μ
ρ. Here q‴ is

the non-uniform heat source and defined as

q‴ ¼ kUw xð Þ=xvð Þ A ∗ T∞ð Þ f 0 ηð Þ þ B ∗ T � T∞ð Þ� �
(12)

Moreover, v0 >0 and v0 <0 indicate the velocities based on suction as well as
injection of the permeable plate.

The associated conditions are:

u ¼ suw xð Þ þ uslip, v ¼ v0,w ¼ �n
∂u
∂y

, k
∂T
∂y

¼ �hsT,C ¼ Cw, at y ¼ 0, (13)

u ! 0,w ! 0,C ! C∞,T ! T∞, as y ! ∞: (14)

where n is constant and can be 0≤ n≤ 1, when, n = 0 leads to the concentration
based micro-elements in MPF close to sheet that are do not rotate for w ¼ 0, while
n = 1 implies the turbulent flow. Moreover, uslip represents the slip velocity and
given as:

uslip ¼ 2
3

3� εl3

ε
� 3

2
l� l2

kn

" #
d
∂u
∂y

� 1
4

l4 þ 2

k2n
1� l2
� �

" #
d2

∂
2u
∂y2

, (15)

uslip ¼ A
∂u
∂y

þ B
∂
2u
∂y2

, (16)

where l is min 1
kn

� �
, 1

h i
that goes to 0< l≤ 1. The Knudsen number is kn and ε

represents the coefficient of momentum that lies in the range of 0< ε≤ 1. The term
d remains positive and shows the mean molecular free path, while B is accordingly
negative. By presenting the following suitable transformations as:

Ψ x, yð Þ ¼ ffiffiffiffiffi
aν

p
xf ηð Þ,ϕ ηð Þ ¼ C� C∞

Cw � C∞
, θ ηð Þ ¼ T � T∞

T∞
, η ¼ y

ffiffiffi
a
ν

r
, (17)

w ¼ axh ηð Þ
ffiffiffi
a
ν

r
, u ¼ ∂Ψ

∂y
¼ ax f 0 ηð Þ, v ¼ � ∂Ψ

∂x
¼ � ffiffiffiffiffi

aν
p

f ηð Þ, (18)

where Ψ is called stream function. The momentum and heat equations are
transformed to the governing momentum and heat transfer equations into the
coupled ordinary differential equations as:

1þ Kð Þf‴þ f f 00 � f 02 þ Kh0 �Mf 0 þ λθ þ λAϕ ¼ 0, (19)

1þ K
2

� �
h00 þ f h0 � f 0h� K f 00 þ 2h

� � ¼ 0, (20)

θ00 þ Prfθ0 þ Ec f 00
� �2 þ A ∗ f 0 þ B ∗ θ ¼ 0, (21)

ϕ00 þ Sc fθ0 þ Srθ00 þ Cmϕ
0½ � ¼ 0, (22)
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The boundary conditions are

f ¼ f w, f
0 ¼ sþ α f 00 þ β f ‴, h ¼ �n f 00, θ0 ¼ �δ 1þ θð Þ,ϕ ¼ 1 at η ¼ 0,

f 0 ηð Þ ! 0, h ηð Þ ! 0, θ ηð Þ ! 0,ϕ ηð Þ ! 0, as η ¼ ∞:

(
(23)

Where the dimensionless parameters are defined as:

K ¼ χ
μ , Pr ¼

μCp

k , Ec ¼ a2x2
cp

, M ¼ σB2
0

ρa , λ ¼ Grx
Re x

, Grx ¼ gβTT∞x
aν , Cm ¼ ξ

a , β ¼ hs
k

ffiffi
υ
a

p
,

Sr ¼ DmkT Tw�T∞ð Þ
Tmν Cw�C∞ð Þ , Du ¼ DmkTρcp Cw�C∞ð Þ

cscpk T∞ð Þ , f w ¼ � aυ½ ��1
2ν0, Re x ¼ ax2

υ , Λ ¼ gβc Cw�C∞ð Þ
βTT∞

,

a ¼ A a
υ

� �
>0 and β ¼ Ba

υ

� �
<0.

The physical quantities based on skin-friction coefficient c f is cfx ¼ � τw
ρU2

w
the

wall shear stress, τw is given as:

τwx ¼ μþ χð Þ ∂u
∂y

þ χw
����

����
y¼0

, (24)

The value of c f is given as:

cfx Re x
1=2 ¼ � 1þ K � nKð Þ f 00 ηð Þ��y¼0, (25)

Here Rex is the Reynolds number. The skin-friction coefficient defined in
Eq. (18) does not contain the micro rotation term. In the temperature field, the heat
transfer rate is defined as:

Nux ¼ � xqw
T � T∞

, where qw ¼ ∂T
∂T

� �

y¼0
: (26)

The local Nusselt number is shown as:

Nux Re xð Þ�0:5 ¼ δ 1þ 1
θ ηð Þ

� �

η¼0
: (27)

The couple stress is given as:

Mx ¼ �mw

ρx axð Þ2 ,mw ¼ μþ χ

2

� �
j
∂w
∂y

� �

y¼0
,Mx Re x ¼ � 1þ K

2

� �
h0 0ð Þ: (28)

Furthermore, the mass diffusion flux and Sherwood number become as:

Shx ¼ xSm
C� Cwð Þ , (29)

Sm ¼ ∂C
∂y

� �

y¼0
: (30)

Finally, Sherwood number becomes as:

Shx= Rexð Þ�1=2 ¼ �ϕ ηð Þð Þη¼0: (31)

The results of the above nonlinear equations have been performed by using a
well-known shooting technique and comparison is performed with the bvp4c. The
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shooting technique is fast convergent scheme and have been used to solve the
extensive applications of fluid dynamics [35–40]. For the implementations of the
shooting scheme, the boundary value system has been converted into the initial
value equations. The nonlinear Eqs. (19)-(22) take the form as:

f ¼ n1, f 0 ¼ n2, f 00 ¼ n3,

n03 ¼
1

1þ K
Mn2 � n1n3 þ n22 � Kn5 � λn6 � λΛn8
� �

,

n4 ¼ h, n04 ¼ n5,

n05 ¼
1

1þ K
2

� � n2n4 � n1n5 þ K 2n4 þ n3ð Þ½ �,

n6 ¼ θ, θ0 ¼ n7,
n07 ¼ �Prn1n7 � Ecn23 � A ∗ n2 þ B ∗ n6ð Þ� �

,

n8 ¼ ϕ,ϕ0 ¼ n9,
n09 ¼ �Sc n1n7 þ Srn07 þ Cmn8

� �� �
:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(32)

The concerned initial conditions are written as:

n1 ¼ f w, n2 ¼ sþ αn3 þ βn03, n4 ¼ �nn3, n7 ¼ �δ 1þ n6ð Þ, n8 ¼ 1 at η ¼ 0,

n2 ¼ n4 ¼ n6 ¼ n8 ¼ 0 as η ¼ ∞:

�
(33)

Matlab bvp4c technique procedure is given as
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For the satisfaction of the results, Table 1 is provided is based on the literature
results as well as the shooting and bvp4c for f 00 0ð Þ using numerous value of α by
putting K = 0 and M = 0. The matching of the shooting and bvp4c results with the
literature results [38, 39] depicts the satisfaction and validity of the scheme.

3. Results and discussions

In this section, the detail of the numerical results is presented to solve the system
of nonlinear equations using shooting scheme. The effects of velocity profile, with
physical parameters K,M,A, are examined, while Pr, Ec, A ∗, B ∗, are checked on
temperature profile. Moreover, the influences of Sc, Sr,Cm is drawn on concentra-
tion profile through Figures 2–14 as well as evaluation of physical quantities like c f ,
Nu, Mx, Shx are provided.

3.1 Physical interpretation of parameters with velocity

The effects of parameter K,M,A, are examined by on the velocity profile and
presented by Figures 2–6. Each parameter has its own impact for all the profiles
along with its physical significance. As s is increasing, the sheet stretches due to this
velocity increases n∈ 0, 1ð Þ. When n = 0, then the MPF flow get closer to the sheet
that are inept to rotate, likewise for n = 1 indicates the turbulent flow. The values of
material constant ‘K’ enhance the velocity due to its materialistic properties. The
velocity state decreases due to the Lorentz force by increasing the values of ‘M’.
Influence of the suction/injection parameter ‘fw’ on the velocity component of the
sheet shows an increment in the suction factor shows a decrease in the velocity
together with the increment of the similarity values of the variable.

3.2 Physical interpretation of parameters with energy

The effects of different parameters are drawn on temperature profile are noticed
in Figures 7–12. Temperature is decreasing for growing value of Pr, and B ∗ because
of Pr reduces thermal conductivity and B ∗ is internal heat generation so negative
values reduces the temperature. For also positive value of A ∗ temperature grows
up. The energy intemperance exhibits a considerable increase with the wall tem-
perature. This is reliable with the physical state because of elastic deformation

fw α β - f 00 0ð Þ - f 00 0ð Þ - f 00 0ð Þ - f 00 0ð Þ

Ref [27] Ref [28] Bvp4c Shooting

2.0 0.5 �1 0.341213 0.3412 0.341214 0.341214

2.0 0.5 �2 0.203824 0.2038 0.203825 0.203825

2.0 1.0 �1 0.290548 0.2905 0.29057 0.29057

2.0 1.0 �2 0.184657 0.1846 0.18463 0.18463

3.0 0.5 �1 0.262681 0.2626 0.26281 0.26281

3.0 0.5 �2 0.147012 0.1470 0.14712 0.14712

3.0 1.0 �1 0.232017 0.2320 0.2314 0.2314

3.0 1.0 �2 0.136905 0.1369 0.13605 0.13605

Table 1.
Comparison value of f 00 0ð Þ for different values of the f w.
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work, ohmic and frictional heating are considered that become the cause of
incrementing the thermal based boundary layer.

3.3 Physical interpretation of parameters with concentration

Figures 11–14 depicts the angular velocity of MPF with attached parameters, for
increasing value of Pr, n, M angular velocity increases. For growing Pr temperature

Figure 2.
s effects on f profile.

Figure 3.
n effects on fprofile.
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loses due to this movement of particle slows down due to this rotation gets down,
and n is constant and there is no rotation when n = 0, so increase in n results growth
in angular velocity. Similarly, a greater value of M produces Lorentz force due to
this linear velocity downs but angular velocity uplifts. As the material parameter
increases, it is observed that the boundary layer thickness increases due to this fact
angular velocity decreases. The concentration profile became down with increment

Figure 4.
M effects on f profile.

Figure 5.
K effects on f profile.
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of Pr, Sc, Sr, f w and Cm. The increasing values of ‘Pr’ depicts that temperature
decreases, as a result decrement is noticed in concentration. The concentration
along with thickness of boundary layer decreases by enhancing the ‘Sc’. The Soret
term, i.e., ‘Sr’ shows the temperature gradients effects on the profile of concentra-
tion. it is noticed that increment in ‘Sr’, temperature together with concentration
increases (Figures 15–19).

Figure 6.
f w effects on f profile.

Figure 7.
Pr effects on θ profile.

107

A Note on Heat Transport with Aspect of Magnetic Dipole and Higher Order Chemical Process…
DOI: http://dx.doi.org/10.5772/intechopen.95302



loses due to this movement of particle slows down due to this rotation gets down,
and n is constant and there is no rotation when n = 0, so increase in n results growth
in angular velocity. Similarly, a greater value of M produces Lorentz force due to
this linear velocity downs but angular velocity uplifts. As the material parameter
increases, it is observed that the boundary layer thickness increases due to this fact
angular velocity decreases. The concentration profile became down with increment

Figure 4.
M effects on f profile.

Figure 5.
K effects on f profile.

106

Computational Overview of Fluid Structure Interaction

of Pr, Sc, Sr, f w and Cm. The increasing values of ‘Pr’ depicts that temperature
decreases, as a result decrement is noticed in concentration. The concentration
along with thickness of boundary layer decreases by enhancing the ‘Sc’. The Soret
term, i.e., ‘Sr’ shows the temperature gradients effects on the profile of concentra-
tion. it is noticed that increment in ‘Sr’, temperature together with concentration
increases (Figures 15–19).

Figure 6.
f w effects on f profile.

Figure 7.
Pr effects on θ profile.

107

A Note on Heat Transport with Aspect of Magnetic Dipole and Higher Order Chemical Process…
DOI: http://dx.doi.org/10.5772/intechopen.95302



3.4 Physical quantities interpretation

Skin friction is called the rate of heat transfer that shows the increment for
greater value of K, Sc, Cm and decreases for growing values of A and f w. Couple

Figure 8.
Ec effects on θ profile.

Figure 9.
A ∗ effects on θ profile.
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stress Mx Re x values vary with parameter K. In this study, an increment is found in
the couple stress Mx Re x for growing value of K. Local mass diffusion flux namely
Shx goes down for rising value of K and numerical result of the present study in
Table 2 is listed.

Figure 10.
B ∗ effects on θ profile.

Figure 11.
Pr effects on h profile.
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4. Concluding remarks

The key purpose of the current work is to discuss the effects of heat transporta-
tion and source/sink of heat with magnetic effect on boundary layer MPF. This
study elaborates that angular velocity and linear velocity of MPF with different
facts which impact on temperature and concentration of said fluid. For the

Figure 12.
n effects on h profile.

Figure 13.
M effects on h profile.
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numerical purpose, the shooting scheme has been implemented and comparison of
the results with bvp4c is presented. Moreover, main key points of study are
provided as:

1.Velocity of flow raises for growing of s, n, K.

Figure 14.
K effects on h profile.

Figure 15.
Sr effects on ϕ profile.
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2.Velocity of flow downs for growing of M, f w.

3.For also positive value of A ∗ and increasing value of Ec temperature grows up

4.Mass field and corresponding boundary layers thickness downs by increasing
the ‘Sc’.

5.An increasing in ‘Sr’ causes a increase in the concentration and temperature
through the boundary layer.

Figure 16.
Sc effects on ϕ profile.

Figure 17.
s effects on ϕ profile.

112

Computational Overview of Fluid Structure Interaction

Figure 19.
Cm effects on ϕ profile.

Figure 18.
f w effects on ϕ profile.

K A Sc Cm fw cfx Re x
1=2 Nux Rexð Þ�1=2 Mx Re x Shx= Rexð Þ�1=2

0 0.3455454 1.658233 0.164237 0.7418682

0.5 0.4135856 1.668674 0.193939 0.7471964

1.0 0.482298 1.678695 0.2210438 0.7525225
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Nomenclature of parameters and short terms

f Body force
l Body couple
V translational vector
Ω micro-rotation vector
K Thermal conductivity
p Pressure
α0, β0, γ0, χ,

K
Material constants

cs Concentration susceptibility
M Magnetic parameter
j Micro-inertia
μ dynamic viscosity
φ dissipation function
τ Ratio parameter
C Concentration of fluid.
T Temperature of the fluid
V translational vector
Ω micro-rotation vector
T∞ Infinite temperature
A Usual constant

K A Sc Cm fw cfx Re x
1=2 Nux Rexð Þ�1=2 Mx Re x Shx= Rexð Þ�1=2

1.5 0.5488359 1.678766 0.2460082 0.7575476

2.0 0.6130726 1.688377 0.2691283 0.7622267

0.5 0.5 0.4189335 1.668688 0.1939364 0.9283288

1.0 0.41838978 1.688139 0.193138 0.9291135

1.5 0.4178619 1.7081801 0.192349 0.9298976

2.0 0.4173480 1.738553 0.191564 0.9306813

0.5 0.5 0.4135858 1.668739 0.162426 0.7471966

1.0 0.4319673 1.668286 0.169963 1.148792

1.5 0.4431084 1.668264 0.174907 1.488861

2.0 0.4507155 1.6687357 0.1785145 1.800042

0.5 0.0 0.4014076 1.6683189 0.157579 0.1215778

0.5 0.4135857 1.668763 0.162424 0.7471969

1.0 0.4216537 1.6685654 0.1657039 1.148795

1.5 0.4274917 1.668875 0.1681314 1.488867

2.0 1.0 0.431996 1.748467 0.170059 1.800044

0.5 0.5 0.420988 1.288242 0.212292 0.799846

0.0 0.4189334 1.998349 0.193938 0.842233

�0.5 0.4147433 1.808545 0.174625 0.885127

�1.0 0.3915482 1.69878 0.1535629 0.9283398

Table 2.
Behavior of skin friction, Nusselt number, couple stress, and Sherwood number.
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A Constant
a first order slip flow parameter
Tw Temperature of the plate
cp Specific heat
ρ Fluid density
Dm coefficient of mass diffusivity
α Thermal diffusivity
Du Dufour number,
β Second order slip flow parameter
MPF Micropolar fluid
q000 Non-uniform heat source
A*, B* Coefficients of space and temperature
D Mass diffusivity
KT Thermal diffusion ratio
Dm Coefficient of mass diffusivity
Tm Mean fluid temperature.
N Constant
α ∗ Slip coefficient
w Micro rotation component
h Heat transfer coefficient
Pr Prandtl number
G Micro rotation parameter
Ec, Eckert number
σ Reaction rate parameter
βo Strength of magnetic field.
Sc Schmidt number
λA Activation energy parameter
Biθ Thermal Biot number
α slip parameter
γ1 Thermal concentration parameter.
Sr Soret number
f w Suction or injection parameter
Shx Sherwood number
ν Kinematic viscosity
cf Skin-friction coefficient
Rex Local Reynold number
Nux Nusselt number
mw couple-stress
δ Newtonian heating parameter
MHD Magnetohydrodynamic
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Chapter 8

Numerical Investigation of 
Natural Convection and Entropy 
Generation of Water near Density 
Inversion in a Cavity Having 
Circular and Elliptical Body
Nguyen Minh Phu and Nguyen Van Hap

Abstract

In this chapter, a water-filled square cavity with left hot wall and right cold wall 
was numerically investigated. The hot and cold wall temperatures are 10°C and 0°C 
respectively to examine the density inversion of natural convection water, i.e. water 
at 4°C. In the middle of the square, there are circular and elliptical bodies to study 
fluid–structure interaction in terms of the thermohydraulic behavior and entropy 
generation. 2D numerical simulation was performed using finite volume method in 
Ansys fluent software with the assumption of laminar flow. The simulation results 
are compared with benchmark data to determine reliability. The results indicate 
that the body insertions increase the convection heat transfer coefficients at the best 
heat transfer positions due to impingement heat transfer. An increase in heat trans-
fer rate of 1.06 times is observed in the case of circular body compared to none. 
There are three primary eddies in the cavity with bodies, whereas the cavity without 
body has two primary eddies. Maximum entropy generation was found in the upper 
right corner of cavity mainly due to high horizontal temperature gradient. Bodies of 
circle and vertical ellipse have almost the same thermohydraulic and entropy gen-
eration characteristics due to the same horizontal dimension which mainly effects 
on the downward natural convection current. The entropy generation of cavity with 
circular body is 1.23 times higher than that of the cavity without body. At positions 
y/L = 1 on the hot wall and y/L = 0.74 on the cold wall, the convection heat transfer 
coefficient is close to zero due to stagnant fluid.

Keywords: natural convection, density inversion, numerical simulation,  
entropy generation, fluid-conic structure interaction

1. Introduction

Water is a fluid with special thermophysical properties compared to many 
pure substances. That is, the specific heat of water is so large that water is often 
thought of as a thermal storage media and the density inversion around 4°C 
alters the natural convection heat transfer mechanism around this temperature 
[1]. Early, Sasaguchi et al. [2, 3] examined water cooling with density inversion 
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taken into account. They concluded that the position in vertical direction of the 
cold cylinder surface had a remarkable effect on the rate of water cooling. Tong 
[4] reported the effect of the aspect ratio of the cavity on the natural convection 
heat transfer rate of water around its maximum density. The results show that 
the aspect ratio of 3 enhances the density inversion. Varol et al. [5] investigated 
a rectangular cavity with porous media. Flow pattern and isotherms have been 
presented and analyzed in this study at different Rayleigh numbers. Recently, Hu 
et al. [6] numerically investigated circular, rectangular, and triangular cavity with 
inner blocks of circles, squares and triangles. They concluded that increasing the 
aspect ratio increases the number of vortex and that the effect of cavity’s shape on 
heat transfer is stronger than that of the inner blocks. More recently, Cho et al. [7] 
simulated natural convection in a cavity with circular and elliptical objects. They 
confirmed that the elliptical object placed at top increased the Nusselt number by 
2.1% compared to the two circular objects [8].

The above works have been done regarding the thermo-hydraulic properties of 
natural convection in an enclosure. Entropy generation or exergy destruction is a 
second consideration to comprehensively evaluate an energy system to fulfill the 
laws of thermodynamics [9–11]. However, the entropy generation assessment due 
to natural convection in an enclosure with internal objects has been little interest 
by researchers. Some of the works that can be found in literature are as follows. 
Kashani et al. [12] investigated entropy generation due to natural convection in 
an enclosure with vertical wavy walls. They reported that both thermal hydraulics 
phenomena and entropy generation are strongly influenced by density inversion. 
Tayebi and Chamkha [13] investigated the entropy generation of a nanofluid in a 
square cavity with a conducting empty cylinder. Results showed that inserting the 
cylinder significantly changed the heat transfer mechanism and the irreversibility 
of the enclosure. Li et al. [14] examines a cylinder inside an inclined enclosure. The 
effects of radiation and electromagnetic fields on natural convection and entropy 
production were considered in this study. They reported that the largest Bejan 
number was reached at an inclination angle of 60°.

From the literature review above, it can be seen clearly that the addition of 
objects into the cavity alters the thermal properties, fluid flow and entropy genera-
tion in natural convection. However, a study of natural convection of water around 
its maximum density with circular and elliptical objects within cavity has not been 
found. In this chapter, both the thermohydraulic and entropy generation mecha-
nisms of the above problem were investigated to characterize the energy and exergy 
aspects of the density inversion associated with the inserts.

2. Model description and validation

Figure 1 shows the 38 mm square cavity examined in this study. Inside the cavity 
there are circular and elliptical bodies with basic dimensions of 18 mm and 9 mm. 
The cavity without body is considered as base case (Case 1). The five different conic 
sections of the body include circle (Case 2), vertical ellipse (Case 3), horizontal 
ellipse (Case 4), left inclined ellipse (Case 5), and right inclined ellipse (Case 6). 
Accelerate gravity vector is vertical and in the opposite direction to the y-axis to 
investigate natural convection in the cavity. The boundary conditions of the com-
putational domain include the temperature TH = 10°C in the left wall, TC = 0°C in 
the right wall. The remaining walls are considered adiabatic. Natural convection 
currents in cavity are assumed laminar, two-dimensional and incompressible fluid 
[2, 3, 6, 15]. The following equations are the governing equations under current 
consideration:
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where ρ0 is the reference density of water, its value of 999.8 kg/m3 in the pres-
ent study.

The density of water in the temperature range from 0 to 10°C was fitted from the 
EES software (F-chart software) as follows:
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where ρ is water density (kg/m3) and T is water temperature (K).

Figure 1. 
Computational domain and investigated cases.
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where ρ0 is the reference density of water, its value of 999.8 kg/m3 in the pres-
ent study.

The density of water in the temperature range from 0 to 10°C was fitted from the 
EES software (F-chart software) as follows:
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where ρ is water density (kg/m3) and T is water temperature (K).

Figure 1. 
Computational domain and investigated cases.
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Figure 3. 
Face interpolation in finite volume method. (a) Vertex, face, and volume definition. (b) Pressure and velocity 
components stored in center of a volume. (c) Face interpolation by means of curvilinear coordinate system ξ-η.

It can be observed the difficulty when dealing with the Navier–Stokes gov-
erning equation. This is due to the fact that left hand side of the momentum 
equations is non-linear term. Secondly, a pressure variable does not present 
in the continuity equation. To overcome drawbacks, a semi-implicit method 
was adopted in the present numerical study. The selected method is SIMPLE 
(Semi-Implicit Method for Pressure Linked Equations) algorithm which linear-
izes convection term in momentum equations and is used to couple velocity and 
pressure variables in Eqs. (1) and (2). Application of the SIMPLE algorithm to 
curved surfaces of circle and ellipse can be resolved by an interpolation between 
grid vertexes which are not coincident with the boundaries leading to low accu-
racy of the solution. Therefore, the geometric imperfection is eliminated by using 
a curvilinear coordinate system [16, 17].

Figure 2 shows the meshing in a typical computational domain. Refinements are 
enhanced for the surfaces to increase accuracy in predicting phenomena in conjunc-
tion with the boundary layer. For hybrid grids as displayed in Figure 2 and enlarged 
in Figure 3a, the velocity and pressure variables are stored in the center of a control 
volume as illustrated in Figure 3b. Thus, these qualities at a face could be interpo-
lated by center-stored pressure and velocity of two adjacent control volumes. The 
face interpolation can be treated by using the curvilinear coordinate system ξ-η as 
seen in Figure 3c where n is the vector normal to the face, eξ and eη the unit vectors 
along ξ-η axes [18].

Figure 2. 
Mesh generation with refinement.
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Grid independence check for case 1 was conducted with the number of nodes of 
18,214, 28,454, 54,609 and 181,524 showing that the number of nodes 54,609 has 
small error compared with data in the literature and computation cost is moderate. 
The residuals of 1e-4 and 1e-6 are set for the momentum and energy equations, 
respectively. Figure 4 displayed a comparison of velocity components in case 1 
along the x-axis at the horizontal center line y = 19 mm with the number of nodes 
of 54,609, where X = x/L, X-velocity = uL/α, Y-velocity = vL/α, α is the thermal 
diffusivity. The comparison result with published data [19] showed a fairly good 
agreement. From these settings and confirmations, grids of about 56,000 nodes are 
obtained for 5 cases having a body in the middle of cavity.

The thermal and entropy generation parameters were deduced from the simulated 
data. The local heat transfer coefficient (HTC) at hot and cold walls is computed as:
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where k is the conductivity of water.

Figure 4. 
Validation with published data [19].
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The local entropy generation inside the domain can be estimated by [20, 21]:
The local entropy generation due to heat transfer:
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where μ is the water dynamic viscosity.
Average total entropy generation can be found by the volumetric integral as:
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where V is the volume of computational domain.

3. Results and discussion

Figure 5 shows the velocity distribution in square cavity. Fluid–structure inter-
actions can be clearly observed for six cases. The contour in the Figure 5 exhibited 
high-speed upward flow near the heat exchange surfaces and downflow in the 
middle due to the density difference. The maximum natural convection velocity 
is about 0.9 mm/s. Case 1 (without body) showed a lightly higher velocity than 
others due to motion obstruction of the body. It can be seen that the flow pattern of 
case 2 (circle) and case 4 (horizontal ellipse) is nearly the same. This is because the 
horizontal size of the two bodies is the same (18 mm). This is the main length that 
affects downward stream.

The temperature field inside the cavity can be seen in Figure 6. The temperature 
stratifications are clearly visible in the upper half cavity. The upper left corner has 

Figure 5. 
Velocity magnitude.
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high temperature due to the fluid that receives heat from the hot surface and rises. 
There is a region with relatively low temperature near the cold surface due to the 
interference between the downstream and the upstream causing stagnant fluid 
(point E on Figure 5).

The flow pattern in the cavity can be observed through the streamlines as shown 
in Figure 7. It is clear that the number of vortices increases from 2 to 3 for the 
absence of body to its existence. The third swirl located on the upper right side of 
the body. The one more vortex is formed by the separation of the downstream flow 
by the bodies. The eddies in the body-inserted cases are smaller than those of the 
base case due to the occupation of the bodies.

Figure 8 shows the total entropy generation distribution. It can be seen that the 
largest entropy generation is the upper right corner, the second largest is the lower 
left corner. Case 2 had the largest entropy generation and case 1 indicated the smallest 

Figure 6. 
Isotherms.

Figure 7. 
Streamlines.
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one. The maximum entropy generation is about 190 W/m3-K. The entropy genera-
tion distribution is quite similar to that of Kashani et al. [12]. The laminar flow and 
the low velocity lead to small entropy generation due to friction. Entropy generation 
in the cavity is prevailed by heat transfer. Figure 9 shows the temperature gradients 
in case 2 to clarify the effect of the components. Combining Figures 6 and 9 shows 
that the horizontal temperature variation is large in the upper right corner. Since 
downward flow is accompanied by strong heat exchange, the temperature gradient in 
x direction has considerably high magnitude. The second largest entropy generation 
is close to the stagnant point on cold wall caused by a large temperature gradient in 
y-direction. Figure 10 compares the mean entropy generation for the cases under 
consideration. The largest and smallest average entropy generations are 3.7 W/ m3-K 
and 3 W/m3-K respectively, corresponding to the entropy generation in case 2 of 1.23 
times higher than the base case. The other cases have the average entropy generation 
of 3.35 W/m3-K.

Figure 11 reported the local heat transfer coefficient (HTC) on hot and cold 
surfaces. The largest HTC for the hot surface finds near the bottom wall due to reverse 
flow causing impingement heat transfer. The local heat transfer coefficient decreased 

Figure 8. 
Total entropy generation.

Figure 9. 
Temperature gradients in case 2.
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Figure 10. 
Average entropy generation.

Figure 11. 
Local heat transfer coefficient. (a) Hot wall; (b) cold wall.
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Figure 12. 
Comparison of maximum heat transfer coefficient.

with increase in height. This is due to the fact that the fluid increases the temperature 
leading to reduce the temperature difference between the hot wall and the adjacent 
fluid. At the top of the hot surface (y = L) the fluid was not moving. Therefore, the con-
vection heat transfer coefficient approaches zero. Body insertion increased the HTC at 
the best heat transfer position (y ≈ 0). This is because the flow is guided by the body 
and acts perpendicular to the hot surface as seen in Figure 5 (point C). In this region, 
circular body gives the highest heat transfer coefficient because its shape plays a role as 
a guide vane. Similar phenomena can be observed for HTC of the cold side as shown in 
Figure 11b. At position y = 35 mm HTC is the largest due to impingement heat transfer 
(see more point D on Figure 5). At y = 28 mm (y/L = 0.74), the HTC is approximately 
zero due to the stagnant fluid as explained above. When y increases from 0 to 28 mm, 
the HTC decreases due to the decrease in temperature gradient in x-direction. At 
the best heat transfer position of the cold surface, i.e. y = 35 mm, we can see that the 
circular body gives the highest HTC and the base case results in the smallest HTC.

Figure 12 compares the maximum heat transfer coefficient on hot (y ≈ 1.5 mm) 
and cold (y ≈ 35 mm) walls. It can be seen that the HTC of a circle-inserted cavity 
is 1.06 times (≈ 167/157) higher than that of the base case (Case 1). Once again, we 
can see that the HTC of cases 2 and 4 is quite identical. Because circular body and 
elliptical body have the same horizontal dimension (18 mm). The natural convec-
tion flow in an enclosure is prevailed by width of a body due to upwelling and 
downwelling plumes. Among the inserted cavity, case 3 (vertical ellipse) has the 
smallest HTC due to its smallest horizontal length.

4. Conclusions

The numerical study of the natural convection of water around its maximum 
density was carried out in this chapter. Fluid-conic structure interaction and 
natural convection heat transfer were presented and analyzed. The characteristics 
of temperature distribution, water fluid flow, local entropy generation and local 
convection heat transfer coefficient were investigated. The main findings from the 
chapter are as follows:
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Chapter 9

Seismic Response Characteristics
of RCC Dams Considering
Fluid-Structure Interaction of
Dam-Reservoir System
Khaled Ghaedi, Farzad Hejazi, Meisam Gordan,
Ahad Javanmardi, Hamed Khatibi and Ali Joharchi

Abstract

In analysis of different types of dams, i.e. arch, gravity, rockfill and Roller
Compacted Concrete (RCC) dams, the effect of hydrodynamic water pressure as an
effective factor must seriously be taken into consideration. In present study, the
hydrodynamic effect is precisely deliberated in RCC dams and compared to hydro-
static pressure effect. For this purpose, Kinta RCC dam in Malaysia is selected and
2D finite element (FE) model of the dam is performed. The Lagrangian approach is
used to solve the dam-reservoir interaction, fluid–structure interaction (FSI), and in
order to evaluate the crack pattern, Concrete Damaged Plasticity (CDP) model is
implemented. Comparisons show that hydrodynamic pressure significantly changes
the dam behaviour under seismic excitations. Moreover, the hydrodynamic effect
modifies the deformation shape of the dam during the ground motions, however,
it increases the magnitudes of the developed stresses causing more extensive
tension crack damages mostly in the heel and upstream zones of the dam.

Keywords: fluid–structure interaction, hydrodynamic pressure, earthquake,
concrete damaged plasticity, Kinta dam

1. Introduction

Earthquake as an unpredictable event [1] is one of the main concerns of struc-
tural engineers. However, to protect civil structures such as buildings and bridges
against ground motions several approaches have so far been used [2–9], but more
attention must be payed to construct water control structures such as dams, where
the water weight effect combined with earthquake force increases the danger of
structural destruction. Recently, application of RCC technology in dam construc-
tion was launched, early 2002. This technology provides some advantages for dam
engineers in terms of equipment, manpower, construction speed and cost. Analysis
of gravity dams subjected to earthquake excitations considering different aspects of
analysis including interactions, boundary conditions, reservoir length and height
have been addressed by many researchers [10–15]. The difference between consti-
tutive relationship of RCC and conventional concrete invites the investigators to
study different aspects of analysis of the RCC dams such as dam-foundation,
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dam-reservoir and dam-reservoir-foundation interaction. For instance, Fenves and
Chopra [16] presented a simplified method to evaluate the response of concrete
gravity dams utilizing fundamental vibration mode considering dam-reservoir with
impounded water interaction and dam-foundation interaction. Malkar [17] investi-
gated the seismic responses of several gravity dams considering different heights by
means of Automatic Dynamic Incremental Nonlinear Analysis (ADINA) code. The
crack propagation model was also investigated using fracture criterion of tensile
stresses. Ayari [18] used the effective simulation of fracture mechanics and discrete
crack (DC) closure under transient dynamic circumstances to develop new models
in order to investigate the crack propagation of concrete gravity dams. To this end,
the Koyna gravity dam was selected to be analysed. Espandar and Lotfi [19] applied
bidirectional accelerations to the Shahid Rajaee arch dam to investigate the non-
linear seismic response of the dam using the nonlinear techniques of continuum
mechanics i.e. elasto-plastic and non-orthogonal smeared crack (NOSC) models.
Later on, the accuracy of the models was compared to experimental results. It was
concluded that, the NOSC model was much better than the linear elastic analysis to
evaluate the dam stresses. Lotfi and Espandar [20] developed a special FE program
using combination of DC and NOSC methods, known as DC-NOSC technique,
which was employed to examine the nonlinear behaviour of an arc dam. It was
found that the results of the DC-NOSC model were more reliable compared to DC
and NOSC method used alone. Akkose et al. [21] examined the response of arc dams
considering the effect of different water levels. The yield criterion of Drucker–
Prager was implemented to idealize the concrete dam in nonlinear analysis. The
reservoir water was modelled according to the Lagrangian method. Akkose and
Simsek [22] investigated the influence of both near- and far-fault excitations on the
nonlinear response of a gravity dam considering dam-reservoir-foundation-
sediment interaction. Kartal [23] imposed a three-directional earthquake to a RCC
dam in order to study the response of the dam considering material and geometry.
The effect of reservoir water was inspected using the Lagrangian method through
fluid FEM. Zhang et al. [24] investigated the effect of strong after-shocks and their
potential to damage the concrete gravity dams. Hence, the hardening behaviour was
taken into account for material properties of the dams to deliberate the crack
propagation. Ghaedi et al. [25] studied the influence of flexible foundations on
seismic response of RCC dams using FEM considering hydrodynamic pressure of
the reservoir water. Wang et al. [26] studied the correlation between period of
ground excitations and damage severity in gravity dams using twenty ground
motion records with different time frames. They showed that, durations of the
ground motions had no remarkable effect on damage levels. Ghaedi et al. [27]
investigated the effect of openings (galleries) considering different sizes and shapes
on dynamic response of RCC dams. The results showed that, RCC dams with
circular openings behave better compared to other geometric shapes such assquare
and octagon. Wang and Jia [28] made an attempt to propose a new approach to test
and design hydraulic fracturing of high concrete gravity dams with more than
200 m height. For that purpose, a cylindrical sample with embedded crack was
prepared to model the hydraulic fracture of concrete gravity dam heel, while the
sample was subjected to a uniaxial load at both ends of the sample. Wang et al. [29]
constructed a large-scale concrete-rockfill combination dam (CRCD) and crucial
factors such as deformation, acceleration time history, slope failure and dynamic
earth pressure were examined to investigate the dynamic performance of the
CRCD.

Based on the above literature, it is a crucial issue to take hydrodynamic reservoir
pressure effect into account in order to investigate the behaviour of RCC dams
under seismic motions. To aid the aim, an attempt is made to investigate the
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nonlinear behaviour of a RCC dam subjected to earthquake excitations considering
the hydrodynamic water pressure effect through the Lagrangian approach. For this
purpose, Kinta RCC dam located in Malaysia is chosen as a case study and a two-
dimensional Finite Element Model (FEM) is implemented via ABAQUS software. In
order to predict the crack propagation, the Concrete Damaged Plasticity (CDP)
model is used. In addition, the model change technique is used to model the RCC
layers of the dam.

2. Kinta RCC dam (case study)

The Kinta RCC dam location in the city of Ipoh, 205 km north from Kuala
Lumpur. The Kinta dam is the first constructed RCC dam in Malaysia, as shown in
Figure 1, and for the first time RCC technology had been utilized in the world to
construct the steps of spillway. To build the dam, RCC with zero-slump was used
while several slim horizontal layers were compacted using vibratory rollers. In the
present study, the Kinta RCC dam is chosen as a case study to evaluate the seismic
behaviour of the dam when the effect of reservoir water pressure is taken into
consideration. The structural geometry of the deepest section of the Kinta RCC dam
used in the study is depicted in Figure 2 [31] (see also [27]).

As shown in Figure 2, the dam comprises three sections including the dam body
which is surrounded by Conventional Vibrated Concrete (CVC) upstream and
downstream face as well as CVC foundation.

3. Finite element model (FEM)

For eismic analysis of the Kinta RCC dam, the dam is accurately modelled using
FE software, ABAQUS. To discretize the dam body as well as CVCs, a 2D
isoparametric elements with four nodes bilinear plane stress quadrilateral, reduced
integration and hourglass control is implemented. Besides, to discrete the reservoir

Figure 1.
Location of Kinta RCC dam.
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water, a 2D acoustic quadrilateral FE with four nodes linear is conducted. The
details of the dam and CVCs discretization are indicated in Table 1. Figure 3 shows
the FEM of the Kinta dam. Furthermore, the material properties are used for
modelling of the dam as demonstrated in Table 2 [32]. The tensile strength is
characterized as 10% of the compressive strength [33]. The density, ρ, and the bulk
modulus, Kw, for the reservoir water are taken as 1000 Kg/m3 and 2107 MPa,
respectively.

3.1 Fluid–structure interaction (FSI)

Three basic methods are frequently utilized to solve the fluid–structure interac-
tions using the FEM, i.e. Eulerian method, Westergaard method, and Lagrangian
method. In Eulerian method, translations (displacements) are considered as vari-
ables in structure, whereas, variables of fluid are pressures. Because the structure and

Figure 2.
Geometry of the Kinta RCC dam [30].

Block No. of nodes No. of elements

Dam Body 609 560

CVC Upstream Facing 56 27

CVC Downstream Facing 58 26

CVC Foundation 42 19

Reservoir Water 551 504

Table 1.
Finite element discretization of the Kinta RCC dam.
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fluid variables are not same in this method, a special purpose computer is required to
solve the coupled systems. In Westergaard method, added mass, connected to the
structure, is used to represent fluid–structure system. In Lagrangian method, vari-
ables in both fluid and structure are similar. Therefore, in this method the equilib-
rium as well as the compatibilities are repeatedly converged along the interface nodes.
This is displacement-based FE for fluid elements that is quite appropriate because it is
not required unusual interface equations and it can be performed via general-purpose
computers [27]. As a result, in the present study in order to investigate the effect of
water pressure, the Lagrangian method was used.

3.2 Finite element equation

The FSI has to be considered for purpose of the nonlinear analysis of the dam
during earthquake excitation. Therefore, the finite element discretization of the
differential equation defines the displacement of the dam structure as below:

Ms€uþ Cs _uþ Ks ¼ Fg þ FP (1)

where the Ms is mass and Cs and Ks are damping and stiffness, respectively. €u, _u
and uú, ú∧u are the relative acceleration, velocity and displacement of the dam with
respect to the time, t. In addition, Fg and FP are the force and extra force vectors
described as:

Fg ¼ �MsI€ug tð Þ (2)

Material property Young
modulus
(MPa)

Poisson
ratio

Density
(Kg/m3)

σcuσcu(MPa)
Ultimate

compressive stress

σtu(MPa)
Ultimate tensile

stress

RCC DAM BODY 23000 0.2 2386 20 2.5

CVC-FACING 32000 0.2 2352 40 5

CVC-FOUNDATION 23000 0.2 2325 20 2.5

Table 2.
Material properties used in the present study.

Figure 3.
FEM of the Kinta RCC dam.
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and

FP ¼ QP (3)

In which, I is the influence vector and FP is the hydrodynamic force acting
towards the dam at the upstream face. This force is a function of unidentified
parameters of the nodal pressure vector of the water, P, through the transformation
matrix, Q , that is determined as:

Q ¼
ð
NT

UnNpdr (4)

where Np is the shape function of the pressure fields and NU is the nodal
displacement of the dam. r1 is the dam-reservoir interface and n is the unit normal
vector. This explanation is owing to the discretization of the boundary conditions.
The energy dissipation inside the dam is also categorized by the Rayleigh damping
matrix that is written as below equation:

Cs ¼ αMs þ βKs (5)

in which α and β are the Rayleigh damping parameters of the first and last mode
of vibrations. It is commonly agreed that, damping ratios of the dams have a range
between approximately 2–5%. For all mode of vibrations, herein, the properties of
material damping are adjusted to be as 5% fraction of the critical damping [27] for
the first mode of the dam vibration during the dynamic analysis. In the present
study, the damping ratio (5%) is tuned for the entire dam under free vibration.
Accordance with this analysis, the natural frequencies of the dam are determined
and ranged between ω1= 9.571 Hz and ω2= 51.238 Hz for the first and last mode of
the dam vibrations. Consequently, by taking the natural frequencies into consider-
ation, the values of the Rayleigh damping parameters are obtained as α = 0.806 and
β = 0.00164 in the dynamic analysis of the Kinta RCC dam [34] in this study.

3.3 Coupled dam-reservoir (FSI) equations

During earthquake motions, the dam interacts with reservoir. Thus, the
hydrodynamic pressure effect owing to the reservoir water and its interaction with
the dam has to be taken into account. Consequently, to deliberate the reservoir
hydrodynamic pressure, the force vector, Fq, due to the acceleration (€u) is imposed
to the upstream side of the dam. Accordingly, the force vector can be determined as:

Fq ¼ �
ð

r1
NT

p ρ€u:ndr (6)

Substituting the acceleration vector into the nodal vector, that is €u ¼ Nu €U
provides the transposed matrix of the QT in Eq. (4). Multiplying the transposed
matrix by reservoir water density, ρ, presents the equation below:

KFP ¼ �ρQT €U (7)

In which, KF ¼ G�1� �T
A½ � G�1� �

, A is the linear element matrix, G is the basic
solution of Laplace’s equation or Green function and KFP ¼ Fq. Then, the pressure
vector can be concluded as:
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P ¼ �ρK�1
F QT €U (8)

Substituting Eq. (8) into Eq. (3) gives the dynamic equation for displacement of
the structure as below:

Ms þ ρQK�1
F QT� �

€U þ Cs €U þ KsU ¼ F (9)

This is the renowned equation in FEM for solving fluid–structure systems. In
this study, the reservoir water pressure is subjected to the boundary conditions at:
(1) reservoir bottom (2) free surface of the reservoir (3) reservoir far-end and (4)
upstream side of the dam as described by [27] and as depicted in Figure 4. For FSI,
node to node interaction method is used in order to assess the real behaviour of the
RCC dam during seismic excitation.

4. Concrete damaged plasticity (CDP)

The linear assumption may not be fit to investigate RCC dams subjected to
dynamic motions [35–38]. To date, many techniques such as smeared crack model,
isotropic and anisotropic damage model have proposed to investigate the constitu-
tive model of concrete materials and their complex mechanical reaction while
subjected to ground excitations. In this regard, a basic model known as plastic-
damage model was proposed [39] and adapted [40]. The nonlinear performance of
each synthetic material in a multiphase compounded material is commonly
expressed by the CDP model and it can be used to examine the cracking. Besides,
the CDP model factorizes the uniaxial compressive and tensile strength into two
parts to describe the permanent degradation of stiffness and deformation. The
plastic-damage model considers two major failure mechanisms for concrete mate-
rials in both compression and tension conditions, namely crushing and cracking,
respectively.

The incremental theory of plasticity splits the strain tensor (ε) into two sections,
i.e. the elastic strain (εe) and the plastic strain (εp) in which the equation of linear
elasticity can be written as:

Figure 4.
Boundary conditions of the Kinta dam-reservoir system.
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This is the renowned equation in FEM for solving fluid–structure systems. In
this study, the reservoir water pressure is subjected to the boundary conditions at:
(1) reservoir bottom (2) free surface of the reservoir (3) reservoir far-end and (4)
upstream side of the dam as described by [27] and as depicted in Figure 4. For FSI,
node to node interaction method is used in order to assess the real behaviour of the
RCC dam during seismic excitation.

4. Concrete damaged plasticity (CDP)

The linear assumption may not be fit to investigate RCC dams subjected to
dynamic motions [35–38]. To date, many techniques such as smeared crack model,
isotropic and anisotropic damage model have proposed to investigate the constitu-
tive model of concrete materials and their complex mechanical reaction while
subjected to ground excitations. In this regard, a basic model known as plastic-
damage model was proposed [39] and adapted [40]. The nonlinear performance of
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expressed by the CDP model and it can be used to examine the cracking. Besides,
the CDP model factorizes the uniaxial compressive and tensile strength into two
parts to describe the permanent degradation of stiffness and deformation. The
plastic-damage model considers two major failure mechanisms for concrete mate-
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respectively.
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ε ¼ εe þ εp (10)

The variables εe, εp, κf g are time-dependent. By using these parameters, the
below equation can express the stress tensor:

σ ¼ 1� dð Þ�σ ¼ 1� dð ÞE0 ε� εpð Þ (11)

Where d ¼ d κð Þ is the scalar stiffness degradation which ranges from 0
(undamaged) to 1 (fully damaged); E0 is the undamaged elastic stiffness. The
material failure mechanism associates with damage, thus, reduction of the elastic
stiffness is considered as a function of the internal variable κð Þ i.e. compressive and
tensile variables; κ ¼ κc, κtð Þ. The damage functions, tension dtð Þ and compression
dcð Þ, are considered as the nonlinear functions and they can be calculated using
uniaxial compressive response alongside with practical data. Therefore, the
effective stress can be defined as:

�σ ¼ σ=1� dð Þ ¼ E0 ε� εpð Þ (12)

5. Loading on the dam

5.1 Hydrostatic load

Dams are usually constructed for the purpose of raising the water level of
waterways on the upstream face. The rising water results hydrostatic pressure and
leads the structure to slip horizontally and overturn about the toe or bottom edge of
the downstream side. This pressure acts as a linear force along the dam height. In
this study, the hydrostatic pressure is considered as a perpendicular force to the
upstream surface so that the hydrostatic pressure is increased linearly along the dam
height from zero at the free surface to 802458 Pa at the base level of the Kinta dam
in the upstream side.

5.2 Hydrodynamic load

Vertical acceleration of an earthquake decreases the unit weight of material
of concrete dams and the horizontal component acting on the stored water
results an immediate pressure increase in the reservoir water. As a result, dam
accelerates in direction of the reservoir when the water attempts to prevent the
motion because of its inertia. The further pressure applied with this trend is
called hydrodynamic pressure. In the present study, a reservoir with a height of
81.8 m, as displayed in Figure 5, is modelled to validate the hydrodynamic
force at the interface of the dam-reservoir. An attempt is made to consider the
hydrodynamic pressure by modeling of the accumulated water at the upstream
face of the dam body. The foundation is assumed to be rigid and the
impounded water in the reservoir is considered as the compressible fluid during
the analysis, while the sediment absorption effect of the reservoir bottom is not
deliberated.

5.3 Seismic Loading

To investigate the effect of earthquake motions on the Kinta RCC dam, Koyna
earthquake records (India, 1967) with peak ground acceleration (PGA) of 0.47 g in
horizontal (longitudinal) direction and 0.31 g in vertical (transverse) direction were
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applied to the Kinta dam, as shown in Figure 6. The period of the applied earth-
quake is selected for 10 seconds with defining step time of 0.01 second for each
interval during excitations.

6. Results and discussions

Prior to the interpretation of results and discussions, it is necessary to define the
topmost node and the lowest node of the modelled dam at the upstream face in
order to investigate the maximum relative acceleration and displacement response
of the dam. In other words, to obtain the maximum relative acceleration and
displacement response, the difference of the maximum acceleration and displace-
ment responses of the topmost node and the lowest node (nodal acceleration and
nodal displacement) has to be taken into account. For this purpose, the nodes
located at the dam crest and heel zone is selected as shown in Figure 7.

6.1 Displacement response

The relative horizontal and vertical displacements of different dams have been
reported by many researchers. Herein, the maximum relative horizontal displace-
ment of the dam crest with hydrostatic and hydrodynamic pressure effect is inves-
tigated and indicated in Figure 8. As it is obvious in the figure, the seismic response
of the relative horizontal displacement of the dam crest is 2.32 cm at 4.02 second
due to the hydrostatic pressure and 2.8 cm at 3.689 second due to the hydrodynamic
water pressure. The occurred horizontal displacements for both cases at the men-
tioned seconds are also demonstrated in Figures 10(a) and 11(a) as the displace-
ment contour. Therefore by subtracting the values in those figures, the relative

Figure 6.
(a) Horizontal and (b) Vertical acceleration of the Koyna excitations (India, 1967).

Figure 5.
Dam-reservoir model used to study hydrodynamic pressure on the Kinta RCC dam.

143

Seismic Response Characteristics of RCC Dams Considering Fluid-Structure Interaction…
DOI: http://dx.doi.org/10.5772/intechopen.97859



ε ¼ εe þ εp (10)

The variables εe, εp, κf g are time-dependent. By using these parameters, the
below equation can express the stress tensor:

σ ¼ 1� dð Þ�σ ¼ 1� dð ÞE0 ε� εpð Þ (11)

Where d ¼ d κð Þ is the scalar stiffness degradation which ranges from 0
(undamaged) to 1 (fully damaged); E0 is the undamaged elastic stiffness. The
material failure mechanism associates with damage, thus, reduction of the elastic
stiffness is considered as a function of the internal variable κð Þ i.e. compressive and
tensile variables; κ ¼ κc, κtð Þ. The damage functions, tension dtð Þ and compression
dcð Þ, are considered as the nonlinear functions and they can be calculated using
uniaxial compressive response alongside with practical data. Therefore, the
effective stress can be defined as:

�σ ¼ σ=1� dð Þ ¼ E0 ε� εpð Þ (12)

5. Loading on the dam

5.1 Hydrostatic load

Dams are usually constructed for the purpose of raising the water level of
waterways on the upstream face. The rising water results hydrostatic pressure and
leads the structure to slip horizontally and overturn about the toe or bottom edge of
the downstream side. This pressure acts as a linear force along the dam height. In
this study, the hydrostatic pressure is considered as a perpendicular force to the
upstream surface so that the hydrostatic pressure is increased linearly along the dam
height from zero at the free surface to 802458 Pa at the base level of the Kinta dam
in the upstream side.

5.2 Hydrodynamic load

Vertical acceleration of an earthquake decreases the unit weight of material
of concrete dams and the horizontal component acting on the stored water
results an immediate pressure increase in the reservoir water. As a result, dam
accelerates in direction of the reservoir when the water attempts to prevent the
motion because of its inertia. The further pressure applied with this trend is
called hydrodynamic pressure. In the present study, a reservoir with a height of
81.8 m, as displayed in Figure 5, is modelled to validate the hydrodynamic
force at the interface of the dam-reservoir. An attempt is made to consider the
hydrodynamic pressure by modeling of the accumulated water at the upstream
face of the dam body. The foundation is assumed to be rigid and the
impounded water in the reservoir is considered as the compressible fluid during
the analysis, while the sediment absorption effect of the reservoir bottom is not
deliberated.

5.3 Seismic Loading

To investigate the effect of earthquake motions on the Kinta RCC dam, Koyna
earthquake records (India, 1967) with peak ground acceleration (PGA) of 0.47 g in
horizontal (longitudinal) direction and 0.31 g in vertical (transverse) direction were

142

Computational Overview of Fluid Structure Interaction

applied to the Kinta dam, as shown in Figure 6. The period of the applied earth-
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6. Results and discussions
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topmost node and the lowest node of the modelled dam at the upstream face in
order to investigate the maximum relative acceleration and displacement response
of the dam. In other words, to obtain the maximum relative acceleration and
displacement response, the difference of the maximum acceleration and displace-
ment responses of the topmost node and the lowest node (nodal acceleration and
nodal displacement) has to be taken into account. For this purpose, the nodes
located at the dam crest and heel zone is selected as shown in Figure 7.
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reported by many researchers. Herein, the maximum relative horizontal displace-
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tigated and indicated in Figure 8. As it is obvious in the figure, the seismic response
of the relative horizontal displacement of the dam crest is 2.32 cm at 4.02 second
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Dam-reservoir model used to study hydrodynamic pressure on the Kinta RCC dam.
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displacement can be obtained. For instance in Figure 10(a), 17.30 cm –

14.98 cm = 2.32 cm. This values confirm that the displacement response is increased
by 21% when the influence of the hydrodynamic pressure is taken into consider-
ation. In addition to this, the movement is in the positive direction towards the
downstream side.

In like manner, the maximum relative vertical displacement of the Kinta dam is
shown in Figure 9. Based on this figure, the relative vertical displacement of the
dam is �0.7 cm at 4.024 second for the hydrostatic effect and � 1.17 cm at
4.391 second for the hydrodynamic water effect. This effect is also shown in
Figures 10(b) and 11(b) which are selected at the mentioned seconds. This differ-
ence in values again proves the significant effect of hydrodynamic pressure by 67%
increase in the vertical direction.

The displacement contours of the Kinta RCC dam in the horizontal and vertical
directions due to the Koyna earthquake considering the hydrostatic and hydrody-
namic pressure effect are shown in Figures 10 and 11. The selected seconds in these
figures is chosen accordance with Figures 8 and 9 in which the maximum relative
horizontal and vertical displacement of the RCC dam is occurred. As depicted in
Figure 10(a), the nodal horizontal displacement of the dam crest and the heel is
17.30 cm and 14.98 cm, respectively when the hydrostatic pressure is taken into
account (17.30–14.98 = 2.32 cm which was described in Figure 8 as the relative
horizontal displacement), whereas, the nodal horizontal displacement of the crest

Figure 7.
The location of the topmost node (crest) and the lowest node (heel) at the upstream face.

Figure 8.
Relative horizontal displacement of the dam.
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and the heel is 21.13 cm and 18.34 cm considering hydrodynamic water pressure
effect (21.13–18.34 = 2.8 cm which was shown in Figure 8 as the relative horizontal
displacement). The comparison of the difference between obtained values shows
the hydrodynamic water effect by 22% increase in the horizontal displacement
response of the dam. On the other hand, Figures 10(b) and 11(b) illustrate the

Figure 10.
Displacement (m) contours considering the hydrostatic pressure. (a) Horizontal direction. (b) Vertical
direction.

Figure 11.
Displacement (m) contours considering the hydrodynamic pressure. (a) Horizontal. (b) Vertical.

Figure 9.
Relative vertical displacement of the dam.
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and the heel is 21.13 cm and 18.34 cm considering hydrodynamic water pressure
effect (21.13–18.34 = 2.8 cm which was shown in Figure 8 as the relative horizontal
displacement). The comparison of the difference between obtained values shows
the hydrodynamic water effect by 22% increase in the horizontal displacement
response of the dam. On the other hand, Figures 10(b) and 11(b) illustrate the

Figure 10.
Displacement (m) contours considering the hydrostatic pressure. (a) Horizontal direction. (b) Vertical
direction.

Figure 11.
Displacement (m) contours considering the hydrodynamic pressure. (a) Horizontal. (b) Vertical.

Figure 9.
Relative vertical displacement of the dam.
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maximum vertical displacement of the crest and heel nodes of the dam. As depicted
in Figure 10(b), the nodal vertical displacement of the dam crest and the heel is
25.31 cm and 26.02 cm, respectively when the hydrostatic pressure is taken into
account (25.31–26.02 = �0.7 cm which was described in Figure 9 as the relative
vertical displacement), whereas, the nodal vertical displacement of the crest and the
heel is 16.05 cm and 17.22 cm considering hydrodynamic water pressure effect
(16.05–17.22 = �1.17 cm which was shown in Figure 9 as the relative vertical
displacement). The comparison of the difference between obtained values shows
the hydrodynamic water effect by approximately 36% reduction in the vertical
displacement response of the dam. It is because that, the modelled water alongside
its assigned weight in the hydrodynamic situation causes smaller vertical movement
on both the crest and heel nodes compared to same movements of the aforesaid
nodes deliberating the hydrostatic effect on the upstream side.

6.2 Acceleration response

The values of the relative horizontal and vertical acceleration of the dam are
indicated in Figures 12 and 13. It can be seen from Figure 12 that, the increase of
acceleration response of the dam by 7% from 4 m/s2 to 4.28 m/s2 confirms the effect
of hydrodynamic pressure on the nonlinear dynamic analysis. However, absorption
of acceleration by 2.2 m/s2 in vertical direction considering the hydrodynamic water
effect is approximately similar in compare to the hydrostatic water effect which is
only 2.3 m/s2.

Figure 12.
Relative horizontal acceleration.

Figure 13.
Relative vertical acceleration.
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6.3 Stress

Time history analysis of the maximum principal stresses at the crest and heel
elements considering hydrostatic and hydrodynamic pressure effect is plotted in
Figure 14. It can be seen from the figure that, unlike to the heel element, which
experiences the maximum principal stress at initial seconds of the excitations, the
crest element experiences no stress at the upstream face in both hydrostatic and
hydrodynamic conditions up to second 1.81. Later on, the crest element starts to
take an amount of stress and obtains its highest value by 0.195 MPa at 3.19 second
under hydrostatic water effect and 0.212 MPa at 3.68 second under hydrodynamic
water effect. For the heel element, as shown in Figure 14(a) and (b), the stress
value is 2.37 MPa at approximately 0.001 second from the earthquake initiation
considering both hydrostatic and hydrodynamic pressure effect on the dam. Take
note that, the stresses in the heel element after about 5 second is approximately
zero. Since during earthquake the stress is changed from an element to another,
therefore, after this period the heel element almost does not absorb any serious
stress like the other elements. Figure 15 indicates the maximum principal stresses
taken by the heel element (considered as the critical element) at the exact second of
absorbing the maximum stress (0.001 second) as expressed above.

Figure 16 indicates the time history analysis of the minimum principal stresses
of the crest and heel elements considering hydrostatic and hydrodynamic water
pressure. As indicated in the figure, for both the crest and heel elements, the stress

Figure 14.
Time history of the maximum principal stress at the upstream face. (a) Crest element. (b) Heel element.

Figure 15.
Maximum principal stress contour of the Kinta RCC dam considering heel element. (a) Hydrostatic effect.
(b) Hydrodynamic effect.
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therefore, after this period the heel element almost does not absorb any serious
stress like the other elements. Figure 15 indicates the maximum principal stresses
taken by the heel element (considered as the critical element) at the exact second of
absorbing the maximum stress (0.001 second) as expressed above.

Figure 16 indicates the time history analysis of the minimum principal stresses
of the crest and heel elements considering hydrostatic and hydrodynamic water
pressure. As indicated in the figure, for both the crest and heel elements, the stress

Figure 14.
Time history of the maximum principal stress at the upstream face. (a) Crest element. (b) Heel element.

Figure 15.
Maximum principal stress contour of the Kinta RCC dam considering heel element. (a) Hydrostatic effect.
(b) Hydrodynamic effect.
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is smaller when the hydrodynamic water pressure is deliberated. The minimum
principal stress for the crest element is �0.283 MPa considering the hydrostatic
effect and � 0.256 MPa considering the hydrodynamic pressure effect as shown in
Figure 16(a). Moreover, the time history of the minimum principal stresses
attracted by the heel element during the analysis is demonstrated in Figure 16(b).
The minimum stress value of the element where the dam interacts with the hydro-
static pressure is �7.84 MPa and � 6.10 MPa in the hydrodynamic interaction
condition (22% reduction). Figure 17(a) and (b) displays the stress contour of the
dam at the selected seconds so that the minimum stress values is occurred on the
heel element, as explained in Figure 16(b), in both the hydrostatic and hydrody-
namic conditions. Apart from the stress values of the heel element in both condi-
tions, the stress propagation inside the dam body is also demonstrated that, the
hydrodynamic pressure can influence and change the stress pattern of the dam at
different time frame of the analysis.

6.4 Seismic damage of the RCC dam

In the present study, the evaluation of damage level and assessment of the
seismic performance of the dam is conducted based on the Concrete Damaged
Plasticity (CDP) model. The tensile damage of the considered models is displayed in

Figure 16.
Time history of the minimum principal stress at the upstream face. (a) Crest element. (b) Heel element.

Figure 17.
Minimum principal stress contour of the Kinta RCC dam considering heel element. (a) Hydrostatic effect. (b)
Hydrodynamic effect.
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Figure 18. Accordance to this figure, the dam in both cases experiences damage
(cracking) at the heel elements in the upstream side. Although, the onset of crack
pattern is formed in the upstream side at the heel elements, but as the acceleration
intensifies, the cracks propagate and develop in different zones of the dam consid-
ering the hydrodynamic water effect. Figure 18(a) illustrates the crack propagation
for the hydrostatic condition which is started from heel zone. When the crack is
initiated, it propagates in the horizontal direction toward the downstream side.
Figure 18(b) gives a picture of tensile damage (cracking) owing to the hydrody-
namic effect. As depicted in the figure, the severity of cracking of the dam due to
the hydrodynamic pressure effect is not limited to the heel elements but also the
dam suffered from additional cracks at the middle zone of the upstream side. This
confirms the significance of the nonlinear analysis of the dam considering hydro-
dynamic pressure effect under seismic ground motions.

Numerous researchers have investigated and reported failure (sliding) mecha-
nism of dams using different approaches [41–45]. It can be concluded from the
literature that, there is a direct relationship between opening cracks and sliding
(failure) mechanism. Thus, in this study the failure mechanism of the dam and
particularly in the heel elements, as the critical elements, considering hydrody-
namic pressure effect is presented in Figure 19. Figure 19(a) shows the crack
propagation opf the Kinta RCC dam at the end of the seismic analysis considering
hydrodynamic water pressure effect (as is previously illustrated in Figure 18(b)).
Since, the heel elements at the upstream face are the first elements prone to crack-
ing, therefore, it is tried to investigate the dam failure due to cracking of these
elements because of overturning moment owing to the combined effect of the
hydrodynamic force and ground motions as shown in Figure 19(b).

According to Figure 19(a), the Kinta RCC dam experiences cracking at the heel
elements nearby the upstream face, whilst, the downstream face has no sign of
cracking. But, due to the dam overturning and according to description of Figure 19
(b), at the end of the analysis the RCC dam has a movement with magnitude of
12.57 cm (7.65 cm in horizontal direction and 9.97 cm in vertical direction), exactly
at the last element of the dam toe. As shown in Figure 19(a), the first six elements
are fully cracked and influence the next three elements to be as semi-cracked
elements, whereas other 11 elements (elements number 479–489) towards the
downstream side are not cracked.

The time history of crack propagation of the heel element (as the critical ele-
ment) considering hydrostatic and hydrodynamic water pressure effect under the

Figure 18.
Tensile damage at the end of analysis. (a) Hydrostatic effect. (b) Hydrodynamic effect.
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is smaller when the hydrodynamic water pressure is deliberated. The minimum
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Koyna excitation is indicated in Figure 20. The damage range in this figure is
provided based on the concrete tension stiffening used in the modeled dam which
has direct relation to the tensile strength of the dam concrete as presented in
Table 2. Based on this explanation and from Figure 20 it can be concluded that, the
heel element until 0.137 second under both hydrostatic and hydrodynamic water
pressure effect does not take any damage (cracking). Increasing the reservoir water
pressure effect, especially in the hydrodynamic condition, expedites the damage
(cracking) procedure of the heel element and leads the dam to experience cracking
in the heel zone faster than the condition that the hydrostatic effect is present.
Consequently, it is an important matter for the nonlinear seismic analysis of dams
to take the hydrodynamic water pressure effect into consideration.

Figure 21 displays the tensile damage process for both the hydrostatic and
hydrodynamic conditions during the nonlinear analysis. As given in this figure,
some selected times are taken to show the development of cracking inside the dam
body under seismic loading. It can be detected from the figure that, from initial
time up to 2.73 second the crack propagation trends same pattern. By increasing the

Figure 19.
Failure (sliding) mechanism of the dam during seismic excitations. (a) selected elements. (b) sliding
mechanism.

Figure 20.
Time history analysis of damage (cracking) development procedure of the selected heel element.
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Figure 21.
Tensile damage (cracking) of the Kinta RCC dam at different times considering reservoir hydrostatic (left side)
and hydrodynamic (right side) pressure effect. (a) Extension of crack, t = 2.73 sec. (b) Crack propagation at
the base affecting more neighboring finite elements, t = 3.67 sec. (c) Severe cracking, t = 4.03 sec.
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seismic load and by nearing to the PGA of the Koyna earthquake, at time 3.67 sec-
ond, the cracks appear with different propagation inside the dam body. At this time
it is clear that, the cracking launches at the upstream face towards the downstream
direction taking the hydrodynamic pressure effect into consideration. At the time
4.03 second, the orientation of cracking is trended at same level from the heel
elements to downstream direction considering the hydrostatic effect, whilst, the
hydrodynamic water effect leads the dam to experience severe cracking at the
middle zone of the upstream face towards the downstream direction.

Also, Figure 22 reveals some selected snapshots of the dynamic response of the
dam during the analysis to demonstrate the shape deformation of the dam subjected
to the seismic motions considering hydrostatic and hydrodynamic pressure effect.

Figure 22.
Snapshots of dam deformation and developed tension cracks in case of both scenarios.
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As shown in the figure, different mode shapes at selected times can be observed for
the Kinta RCC dam while the hydrostatic and hydrodynamic effect is taken into
account. For instance, at the time of 3.40 second and 5.73 second, the mode
shapes of the dam is totally dissimilar considering the hydrostatic and hydrody-
namic water effect.

7. Conclusions

In this study, an attempt has been made to evaluate the effect of the reservoir
hydrostatic and hydrodynamic pressure on the response of RCC dams subjected to
earthquake excitations. For this purpose, the Kinta RCC dam has been chosen as a
case study and a FEM of the dam-reservoir has been developed. A non-linear
seismic analysis of the dam has been conducted in both scenarios. The results of the
study have been obtained in terms of acceleration, deformation and displacement,
stress and damaged zones. Based on the obtained results, the following conclusions
are drawn:

i. The hydrostatic and hydrodynamic pressure exerted at the dam-water
interface results higher effects on horizontal than vertical acceleration
response.

ii. The nodal displacement of the crest and the heel caused by hydrodynamic
effect is increased by 22% in horizontal direction compared to the case
when it is omitted. As a result, the relative horizontal displacement of the
dam crest is increased by 21% when considering the hydrodynamic
pressure effect.

iii. In spite of the fact that, due to considering water weight in hydrodynamic
analysis, the nodal displacement of the crest and the heel is decreased by
approximately 37% in vertical direction, but the hydrodynamic effect
increases the relative vertical displacement of the dam by 67%.

iv. From the maximum and minimum stress analysis, the heel element has the
most stress absorption compared to other elements of the dam.

v. Generally, the hydrodynamic effect modifies the deformation shape of the
dam during the response and increases the magnitudes of the developed
stresses causing more extensive tension crack damages mostly in the heel
and upstream zones of the dam.

Eventually, as discussed above, the hydrodynamic pressure highly affects the
seismic response and the appearance and extent of the tensile damage zones of the
dam. Therefore, for seismic design purposes, this effect has to be seriously taken
into consideration.
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