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Preface

Campylobacter is well recognized as the leading cause of bacterial food-borne 
diarrheal infections worldwide. Symptoms can range from mild to severe condi-
tions, including permanent neurological symptoms. Recent studies have shown 
that 31% of Guillain-Barré syndrome cases, a neurologic disease that causes 
ascending paralysis, are attributable to Campylobacter infection. Campylobacter is 
a thermophilic bacterium. Generally, the strains of Campylobacter are apathogenic 
in poultry, although newly hatched chicks and turkeys may develop transient 
diarrhea following C. jejuni infection. Modern intensive poultry production favors 
the introduction of disease into commercial growing units, resulting in intestinal 
colonization during the second to fourth weeks. The organism is carried in the 
intestines of many wild and domestic animals; hence, routes of infection in com-
mercial poultry include contaminated fomites, infected water supplies, rodents, 
insects, and free-living birds. Intestinal colonization results in healthy animals 
as carriers, and epidemiological data suggest that contaminated products of 
animal origin, especially poultry, contribute significantly to Campylobacteriosis. 
Consequently, the reduction of raw poultry contamination has a significant 
impact on reducing the incidence of infection. Contamination of poultry prod-
ucts occurs both on the farm and in processing plants. Routine procedures on the 
farm, such as feed withdrawal, poultry handling, and transportation practices, 
have a documented effect on Campylobacter levels at the processing plant. At 
the plant, defeathering, evisceration, and carcass chillers have been reported 
to cross-contaminate poultry carcasses. The high frequency of Campylobacter 
spp. transmission from poultry to humans has prompted scientists to consider 
and create alternative intervention strategies to control the pathogen in poultry 
production since excessively high numbers of Campylobacter (often > 108 cfu/g 
of poultry intestinal material) potentiate high numbers of the organism in the 
processed broiler carcass, with an increasing consequent human health risk. 
Interventions during poultry production portend the most excellent opportunity 
for reducing the risk of disease. However, amelioration of infection by applying 
improved hygiene standards and decontamination approaches, such as wash-
ing carcasses and applying chemical disinfectants and gamma irradiation, can 
reduce the prevalence of Campylobacter contamination in poultry meat. This book 
assesses the significance of Campylobacter as a food-borne pathogen and consoli-
dates recent advances in isolation, identification, role of immune responses and 
microbiota, new perspectives, and novel control strategies.

The editors express their sincere appreciation to all the authors who contributed to 
this book for their hard work and dedication, as well as to the IntechOpen editorial 
team for allowing us to complete this project.
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Chapter 1

Introductory Chapter: The 
Significance of Campylobacter as 
Foodborne Pathogen
Saeed El-Ashram, Cheng He, Guillermo Tellez-Isaias,  
Victor M. Petrone-Garcia, Musafiri Karama, 
Beniamino Cenci-Goga, Luca Grispoldi, Reem Alajmi  
and Abdulaziz S. Alouffi

1. Introduction

1.1 Campylobacter

Campylobacter is related to Arcobacter, Helicobacter, and Wolinella and is 
classified as proteobacteria in the order Campylobacteriales and the family 
Campylobacteraceae [1, 2]. Sebald and Veron (1963) were the first to propose 
the genus Campylobacter, which now has 27 species and 8 subspecies [3]. 
Campylobacter is gram-negative bacteria that are curved, spiral, or rod-shaped and 
do not produce spores. They are tiny (0.2–0.9 μm in width and 0.2–5 μm in length). 
With the exception of the nonmotile Campylobacter gracilis and Campylobacter 
showae, which possess numerous flagella, most species have a corkscrew-like move-
ment through a single polar flagellum or bipolar flagella [4]. This genus of bacteria 
is chemoorganotroph, meaning they get their energy from amino acids and tricar-
boxylic acid cycle intermediates. They have high dietary requirements and need a 
variety of nutritional settings, including anaerobic or micro-aerobic conditions. 
Some species of this genus are considered commensal organisms. However, they 
are linked to a broad range of illnesses in animals and humans. The three species of 
the genus, including Campylobacter jejuni, Campylobacter coli, and Campylobacter 
lari, which are usually referred to as thermophilic species, account for the bulk 
of human infections. C. coli is the second most prevalent Campylobacter species 
related to human sickness, and it is often found in pigs. C. jejuni subspecies jejuni 
(also known as C. jejuni) and C. jejuni subspecies doylei are the two subspecies 
of C. jejuni. C. jejuni is a pathogen that is found as a commensal in chickens and 
is considered a major foodborne pathogen. C. jejuni subspecies doylei is distinct 
from C. jejuni in that it does not have any animal hosts [5, 6]. Since its discovery, 
Campylobacter has been recognized as a significant human gastrointestinal patho-
gen globally. According to the Emerging Pathogens Institute’s Foodborne Illness 
Risk Ranking Model (FIRRM), Campylobacter is the most prevalent foodborne 
pathogen in the United States, posing the greatest public health burden [7]. Since 
2013, Campylobacter infection has been the most frequently detected infection in 
FoodNet locations, and the rate of infection seems to be rising. The poultry indus-
try is a significant source of Campylobacter. Campylobacter is a zoonotic-causing 
commensal bacteria found in the gastrointestinal tracts of many wild animals 
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(birds like ducks and gulls), agricultural animals (cattle and pigs), and companion 
animals (dogs and cats) [8]. C. jejuni causes the majority of cases within a vast and 
varied collection of species, while C. coli causes 1–25% of Campylobacter-related 
disorders [9]. Due to occasional exposure to this disease, vulnerable populations 
of Campylobacter have been found to be concentrated in the United States and 
European nations [10]. Campylobacteriosis has been shown to be seasonal, with a 
surge in the summer months, perhaps due to an increase in flies and other vectors 
[11]. In flocks, the infection passes horizontally from the environment to 2- or 
3-week-old chicks due to protective maternal antibodies retained in serum for a 
week after hatching. Then progressively reduce it until the third week is complete. 
Campylobacter infection quickly spreads horizontally among the population, with 
an incidence rate of 2.37 cases per day. One infected bird may spread Campylobacter 
to 20,000 chickens within a week. Numerous investigations have shown that 
vertical Campylobacter infection is possible. Campylobacter was recovered from 
the internal and external surfaces of eggshells, the maternal reproductive system, 
and rooster sperm [12]. The majority of human illnesses are caused by eating raw, 
infected animal products, including meat and milk, particularly chicken meat. 
People may be infected by drinking contaminated water, coming into contact with 
animals, and other environmental causes [11]. Campylobacteriosis is characterized 
by acute diarrhea that is often accompanied by abdominal cramping, headache, 
and fever [13]. Campylobacteriosis is a self-limiting illness with a latent phase of 
2–5 days and a clinical duration of up to 2 weeks [14]. However, the symptoms 
may persist for many weeks, and in 10% of reported cases, medical intervention 
is necessary [15]. Guillain-Barre syndrome (GBS), a life-threatening autoimmune 
illness that causes peripheral neurological injury and has a death rate of 2–7% and a 
poor prognosis, is attributed to C. jejuni infection [16, 17].

1.2 Human campylobacteriosis

Recent advances in epidemiological monitoring, including the use of genetic 
techniques, have resulted in the detection of at least ten additional Campylobacter 
spp., other than C. jejuni and C. coli, in gastroenteritis patients; these have been 
designated as emerging Campylobacter pathogens [18]. Campylobacter concisus and 
Campylobacter upsaliensis have the greatest incidence among them. Furthermore, in 
samples obtained from southern Ireland, Campylobacter ureolyticus seems to have sur-
passed C. coli as the second most prevalent causal agent of campylobacteriosis. Except 
for ten Campylobacter species, all have been linked to human sickness, and infections 
are most often induced by the eating of infected meat, especially chicken, milk, or 
water, or by contact with the environment [19]. Infections with Campylobacter usually 
induce acute gastroenteritis, but they may potentially cause severe extra-intestinal 
sickness or long-term neurological or gastrointestinal problems (Figure 1, [20]).

For the most part, Campylobacter infections are self-limiting gastroenteritis 
with no long-term repercussions. Campylobacter jejuni is the most commonly 
encountered cause of Campylobacter gastroenteritis worldwide, followed 
by Campylobacter coli. “Emerging Campylobacter species, “ which include 
Campylobacter concisus, Campylobacter lari, Campylobacter ureolyticus, and 
Campylobacter upsaliensis, have also been found often in patients with gastroen-
teritis [20]. Complicated cases of campylobacteriosis, including extra-intestinal 
infections and long-term sequelae, contribute significantly to the total illness 
burden of Campylobacter, even though they are very uncommon. Individuals who 
are immunocompromised, pregnant, or old are more likely to get extra-intestinal 
infections. Campylobacter-associated bacteremia, septicemia, meningitis, sponta-
neous abortion, neonatal sepsis, abscesses, soft tissue infections, cardiovascular 
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problems, and periodontal disease have all been reported. A tiny percentage of 
individuals with Campylobacter gastroenteritis suffer long-term post-infectious 
sequelae, such as Guillain-Barré syndrome (0.07%), reactive arthritis (2.86%), 
and IBS (irritable bowel syndrome) (4.01%) [21]. Guillain-Barré syndrome (GBS) 
is the most severe post-infectious consequence, with immediate flaccid paralysis 
and ophthalmoplegia, while Miller Fisher syndrome (MFS), a clinical variation 
of GBS, causes ophthalmoplegia and cerebellar-like ataxia [22]. While immuno-
logical diseases are well-known long-term effects of campylobacteriosis, there is 
also mounting evidence of a link between Campylobacter infection and chronic 
gastrointestinal illnesses, including inflammatory bowel disease (IBD), IBS, celiac 
disease, esophageal disease, and colon cancer [21, 23].

1.3 Campylobacter in livestock

The species Campylobacter fetus, which was most likely the first Campylobacter 
identified, is primarily responsible for the clinical relevance of Campylobacter 
infection in animals. C. fetus subsp. fetal and C. fetus subsp. veneralis are the two 
subspecies of the species. C. fetus subsp. the fetus has been found in a variety of 
animals, including poultry, reptiles, and humans, but is most often related to sheep 
and bovine miscarriage [24, 25]. Immunocompromised humans, as well as instances 
of neonatal sepsis and septic abortion, have all been discovered to have the patho-
gen. Bovine genital campylobacteriosis and infected venereal illness are caused by 
C. fetus subsp. veneralis, which may cause infertility, abortion, and embryo mortal-
ity [26]. Campylobacter is present in a broad spectrum of birds and animals as an 
asymptomatic colonizer and is regarded as a public health issue when identified 
in cattle and pets [8, 20]. Campylobacter spp., such as C. jejuni and C. coli, but also 
C. upsaliensis, C. concisus, C. lari, and Campylobacter lanienae, are often found as 
colonizers in the digestive tracts of chickens, pigs, and cattle. Once Campylobacter 
has been introduced to a flock, it may quickly spread. It usually leads to the life-long 
colonization of poultry [8].

Figure 1. 
Campylobacter infections in humans: Sources and clinical symptoms. The main sources and pathways of 
Campylobacter transmission are shown on the left side of the figure. Arrows indicate transmission routes that 
are still under investigation. The variety of clinical symptoms of Campylobacter infections documented in 
humans is shown on the right-hand side of the figure.
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1.4 Campylobacter in poultry

Campylobacter infection has been the most commonly found infection in 
FoodNet sites since 2013, and the prevalence of infection seems to be increasing. 
According to the Emerging Pathogens Institute’s FIRRM, Campylobacter is the 
most common foodborne pathogen in the United States, causing the highest public 
health risk [7]. According to epidemiologic research based on molecular epidemiol-
ogy, chicken may be the leading cause of human campylobacteriosis [27]. In the 
meanwhile, owing to its greater feeding efficiency and quicker development rate 
than pork and beef, poultry is one of the world’s most significant animal protein 
resources [28]. The consumption of meat has shifted to poultry. This reflects 
the cheaper price of chicken compared to other meats in low-income developing 
nations, while it demonstrates a growing preference for white meats in high-income 
countries, which are easier to cook and seen as a healthier dietary option. Poultry 
meat is expected to account for 41% of total protein derived from meat sources 
worldwide in 2030, an increase of 2% from the baseline period (OECD/FAO, 
2021–2030). Campylobacter is commensal bacteria that cause chronic infections in 
birds, causing little or no visible symptoms despite extensive colonization. Poultry 
is extensively colonized by Campylobacter, particularly C. jejuni and C. coli, and 
serves as a natural reservoir for these bacteria. C. jejuni infection is the most com-
mon cause of food-borne gastroenteritis in individuals worldwide [29]. When the 
first bird in a flock gets colonized, illness quickly spreads throughout the flock [11]. 
Campylobacter spreads rapidly throughout the flock, most likely as a consequence of 
fecal-oral transmission exacerbated by shared water and feed [15]. C. jejuni can also 
survive in feather follicles and pores on chicken skin at a depth of 20–30 m upon 
contact with its poultry host, which gives C. jejuni an appropriate microenviron-
ment with little exposure to oxygen, appropriate humidity, and temperature to 
endure stress conditions [30]. C. jejuni colonization may continue throughout the 
broiler’s lifecycle, resulting in carcass contamination at the slaughter site. Although 
Campylobacter may be detected in the mucous layer of broiler chickens’ intestines, 
it is more often found in the cecal and cloacal crypts, where it does not attach to 
epithelial cells [31]. Broiler chickens may harbor C. jejuni at concentrations of up to 
106 to 1010 CFU per gram of feces [15]. C. jejuni discovery in tissues other than the 
intestine, such as the spleen, lung, heart, and liver, shows that this virus may trans-
locate intestinal epithelial cells and become systemic [32]. Epidemiological tests 
suggest that a two-log unit decrease in C. jejuni contamination in chicken carcasses 
may result in a 30-fold reduction in the risk of human infection [33]. Additionally, 
this shows that eradicating C. jejuni on farms would have a major influence on the 
lowering of campylobacteriosis in humans.
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Abstract

Salmonellosis and campylobacteriosis are the furthermost common zoonotic 
infections around the world that are transferred. The spread of Salmonella enterica 
serotypes Enteritidis (SE) and Typhimurium (ST) has increased dramatically in 
the last 50 years due to the consumption of food contaminated and the emergence 
of SE and ST infections with multiple antibiotic resistance. Retrospective inves-
tigations imply an epidemiological link between people and poultry. It has been 
argued that farm modernization and global exports of progenitor birds have had 
a vital role in spreading SE and ST. On the other hand, campylobacteriosis is more 
common than salmonellosis in affluent countries. Campylobacter jejuni has been 
identified as the primary cause of acute diarrheal illnesses, frequently associated 
with animal-derived foods, particularly poultry meat. The current review examines 
immunological and molecular biological techniques that allow for the quick detec-
tion of asymptomatic animal carriers, as well as recent characterizations of relevant 
taxonomic and pathogenic characteristics of these organisms. We further urge 
epidemiological research to evaluate the incidence of human diseases arising from 
poultry eating, based on preliminary non-publisher findings implying a prevalence 
of salmonellosis and campylobacteriosis in Mexican poultry farms comparable to 
other nations.

Keywords: Salmonella, Campylobacter, poultry, epidemiology, zoonosis

1. Introduction

Animal protein is the source of a significant number of zoonosis in humans. 
Salmonellosis and campylobacteriosis are currently important zoonoses in industri-
alized countries [1].

Salmonellosis is predicted to cause about 18,000 sicknesses and 500 diseases 
in the USA annually [2]. In Denmark, the yearly cost of infection in humans is 
estimated to be USD 15.5 million. Denmark spent USD 14.1 million in a program 
to eradicate SE, which is considered low to USD 25.5 million estimated for losses 
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caused by non-work and medical treatment [3]. Unfortunately, information related 
to the cost of foodborne illness is generally not well reported or published in devel-
oping countries [3].

In some countries, salmonellosis problems have increased 20-fold between the 
eighties and nineties of the last century [4].

A retrospective analysis of salmonellosis cases carried out in Norway between 
1966 and 1996 suggests an epidemiological relationship between birds and humans 
[5]. In the United Kingdom, salmonellosis and campylobacteriosis have been found 
to increase between June and August, which is attributed to the lack of timely 
refrigeration of food being stored in refrigeration just as the ambient tempera-
ture rises and also due to the habit of consuming barbecue since the meat is not 
adequately cooked during the summer [2].

Over the past decade, the number of salmonellosis cases recorded in Sweden has 
doubled due to more infections of SE, with four salmonella enterica serotypes were 
responsible for 60% of the cases detected in that country in 2001: ST (22.1%), SE 
(17.7%), S. Newport (10%), and S. Heidelberg (5.9%) [6].

In 2005, three serotypes of Salmonella were responsible for more than 70% of 
human cases in France: SE (33%), ST (32%), and S. Hadar (6%) [7].

Among the Salmonella serotypes that were most isolated in Mexico between 1972 
and 1999 were SE, ST, S. Derby, S. Agona, and S. Anatum, in decreasing order [8].

The clinical form of SE infection usually manifests as an episode of self-limiting 
enterocolitis, with symptoms that resolve within five days. It takes 8–72 hours for 
the infection to manifest itself, with clinical signs of diarrhea and intestinal pain. 
Antibiotics are not usually required in most cases of recovery. Although rare, severe 
diarrhea can occur, and a person may become ill to the point where they require 
hospitalization. Age (Children and elderly) and immunocompromised individuals 
are more susceptible than the general population. The infection in these patients can 
move from the intestines into the bloodstream and then to other organs, potentially 
leading to death unless the patient receives quick treatment with antibiotics [9].

Salmonella Enteritidis is a bacterium that causes intestinal infection in various ani-
mal species, particularly birds, without showing any symptoms. A strain of SE enters 
the ovaries of otherwise healthy hens, infecting the eggs before the shell is formed 
and contaminating the eggs, causing high mortality rates in neonate chickens [7].

Campylobacter jejuni is surpassing infections caused by Salmonella spp. and 
Shigella spp. in developed countries [10]. Most of the time, the origins of this 
infection are associated with animal feed, specifically poultry products [11]. In 
the United Kingdom and Denmark, outbreaks of campylobacteriosis are related 
to the consumption of undercook poultry products [12, 13]. Campylobacteriosis 
in animals destined for slaughter is rare in Mexico, and the disease’s influence on 
human health is unknown.

2. Characterization of salmonellosis

Salmonella belongs to the Enterobacteriaceae family. They are Gram-negative 
bacilli that do not form spores. In this genus, there are three types of antigens: 
somatic O, flagellar H, and capsular Vi, which are used to distinguish more than 
2500 serotypes based on their agglutination properties, which are used to determine 
more than 2500 serotypes. New serotypes are added to the Kauffmann-White list 
every year, which is updated with the latest information [14].

Salmonella is a genus that contains only two species: salmonella bongori and S. 
enterica, which is subdivided into six subspecies: entericae, salamae, arizonae, diari-
zonae, houtenae, and indica. Salmonellosis in humans and higher animals is caused 
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by serotypes of the subspecies entericae, which account for nearly 99% of all cases 
[15]. A serotype of S. enterica, subspecies entericae, serotype enteritidis, abbreviated 
SE is used for practical diagnostic and epidemiological purposes [16].

Serotypes can be further separated by developing biotypes and phagotypes, 
which can then be used for more detailed studies of taxonomy and pathogenesis. 
The biotype denotes the biochemical variance between organisms of the same 
serotype, whereas the phenotype states the varied vulnerability of organisms of the 
same serotype to bacteriophage lysis [16].

Salmonella enterica serotypes Typhi and Parathyphi produce severe infections in 
humans known as a septicemic syndrome and typhoid fever, respectively, but are 
not pathogenic to animals. S. Gallinarum and S. Abortus-ovis cause avian typhoid 
and abortions in sheep, respectively, but rarely cause mild or asymptomatic infec-
tions in people. However, there are serotypes of S. Choleraesuis that produce severe 
disease in its usual carrier, the pig, but can also be pathogenic in humans. SE and ST 
infect both people and animals, however, in the latter, primarily hens, they cause 
asymptomatic illnesses [15, 17]. Undercook poultry products and the increased 
antibiotic resistance are linked to the increased number of infections in humans [7].

The mechanisms causing the rise in SE infections in birds have not been fully 
identified, making it challenging to identify illness in otherwise healthy chickens. 
Infections with SE in many animals, particularly chickens, with no apparent clinical 
indications and no acute outbreaks with mortality have been identified [16]. However, 
these healthy carriers can spread infection by fecal contamination of meat and egg. It is 
challenging to detect SE when the number of bacteria present is less than 9% [18].

The mechanization of poultry production and the export of parent birds have 
both contributed to the global spread of SE. For example, in the USA, molting of lay-
ing hens is a common practice that reduces or eliminates feeding of the birds’ weight 
loss in birds; this practice speeds up molting but renders chickens more susceptible 
to SE infection, and once infected, they excrete the microorganism in feces in 
significantly high concentrations, which in turn increases the risk of egg contamina-
tion [19]. In poultry, vertical transmission to the progeny is common [20]. According 
to research in the Netherlands, flocks of laying hens, are primarily infected through 
direct contact with contaminated farm environments [21]; however, the epidemic 
that occurred in the United Kingdom in the early 1980s is attributed to the introduc-
tion of lines of progenitor birds infected with the phage type 4 [22].

S. Enteritidis can be introduced into flocks by rodents, which are highly vulner-
able to infection, to the point that purposeful infection was employed to eliminate 
mice [23, 24]. S. Enteritidis, which was employed as a pesticide in the United 
Kingdom in 1940, was a type 6 phage [24, 25]. However, it has been demonstrated 
that acquiring the IncX plasmid changes phage 4 to phage 6 strain [26].

The dramatic increase in infection with Salmonella Enteritidis, a type 4 phage 
in humans in Europe since 1980, suggests that the bacterium has recently acquired 
new virulence genes [27].

More microbial genomes have been sequenced and compared recently, allowing 
the frequency of mutations to be approximated. The recombination mechanisms 
implicit in the replication process through the acquisition or loss of gene-carrying 
areas are a significant source of evolution. Plasmids, genomic islands, bacterio-
phages, transposons, and insertion sequences are other mechanisms of transferring 
or acquiring virulence genes [27]. These mobile components provide advantages to 
microbes in adapting to infecting specific cells [28]. Pathogenicity islands, or genes 
associated with virulence, arise outside of bacteria as mobile elements. Acquired 
pathogenicity islands contribute to the aggressive nature of bacteria by contain-
ing clusters of genes that boost virulence and can change a benign organism into 
a pathogenic one. Twelve islands of pathogenicity for Salmonella spp. have been 
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described, some of which are shared by all serotypes of the species, while others are 
exclusive to individual serotypes [7].

Salmonella Gallinarum can induce flock immunity against serotype 09, indicating 
cross-immunity with Salmonella Enteritidis. As a result of this immunological feature, 
it has been proposed that to the extent that Salmonella Gallinarum has been removed 
by vaccination and slaughter of afflicted birds, its elimination may have allowed 
Salmonella Enteritidis to establish itself [7, 29]. Conversely, in Great Britain, the 50% 
decrease in Salmonella Enteritidis infection in birds since 1997 corresponds to the 
introduction of new live vaccines against serotype 09, in place of vaccines with bac-
teria killed in formalin [22]. For practical purposes, in terms of controlling transmis-
sible zoonoses, vaccination of birds against Salmonella Enteritidis of serotype 09 may 
be indicated even in situations where Salmonella Gallinarum has been eradicated.

Integrons, which typically carry one or more antibiotic resistance genes, are 
another key source of microbial variety [30]. The growth and spread of antibiotic-
resistant bacteria is an unavoidable side consequence of antibiotic treatment. Some 
Salmonella strains are resistant to most common antibiotics, including fluoroquino-
lones, with the latter resistance being related to point mutations in the gyrA gene [31].

Considering that integrons may spread antibiotic-resistant genes in addition to 
transposons, genomic islands, and plasmids, treatment with antimicrobial agents 
may contribute to the increase in the population of bacteria resistant to related 
antimicrobial agents, and therefore the use of antimicrobials in animal feed may 
have adverse effects on human health, for its selection effect on the resistant bacte-
rial population [7].

3. Characterization of campylobacteriosis

The classification of the genus Campylobacter has been revised, and 16 spe-
cies are now acknowledged [32]. These bacteria have spiral or curved rod shapes, 
are Gram-negative, have flagella that let them move, and are microaerophilic. 
The three species of medical and veterinary significance are as follows: C. jejuni, 
Campylobacter coli, and C lari. C. jejuni is divided into two subspecies: C jejuni 
jejuni, referred to simply as C. jejuni, which is associated with disease to humans, 
and Campylobacter jejuni doylei, which only sporadically affects humans [33].

Campylobacter spp. are oxidase-positive, reduce nitrates, are methyl red and 
Voges-Proskauer negative, and do not hydrolyze gelatin. Except for some strains of 
Campylobacter lari, most species are urea negative. Microorganisms that have been 
exposed to water for an extended period take the form of coconuts, which are more 
challenging to develop and may not even be cultivable. C. jejuni, C. coli, and C. lari 
are thermophilic, meaning they grow best at 42°C and 43°C and do not grow at 
temperatures lower than 25°C [34, 35]. Culture in selective media takes two days, 
and confirmatory testing on the species takes two more days [36].

Human infection is restricted to the gastrointestinal system and results in 
various forms of diarrhea. Infection can induce neurological abnormalities in rare 
cases [37]. The majority of illnesses are caused by the consumption of chicken and 
pork. In addition, C. jejuni, C. coli, and C. lari cause gastroenteritis in humans. 
Nevertheless, C. lari derived from pigs accounts for just 3% of the isolates [10].

4. Relevant aspects of pathogenicity mechanisms

Salmonella Enteritidis causes infection by attaching the intestinal mucosa and 
then invading the enterocytes. Salmonella Enteritidis adheres to the surface of 
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enterocytes via the fimbriae and flagella. Salmonella Enteritidis’ primary fimbriae 
are SEF14, SEF17, and SEF21. Salmonella Enteritidis colonization in birds occurs 
primarily in the cecum. Glycosphingolipid (GSL) GlcCer (N-1) and ganglioside 
GM3 (G-1) from chicken intestinal mucosa, found in ileum and cecum, have been 
studied as Salmonella Enteritidis SEF21 fimbria receptors [38].

When Salmonella Enteritidis crosses the epithelium and reaches the intestinal 
lamina propria, it invades the macrophages, and as it is generally resistant to the 
action of these, these cells serve as a vehicle to invade other organs [39].

C. jejuni and C. coli are commensals that reside in the intestines of numerous 
animals, including poultry, and survive in temperatures as low as 4°C for several 
weeks [40].

Campylobacter jejuni, produces enterotoxins and cytotoxins, which are the main 
cause of digestive symptoms in humans [33].

Until recently, the primary source of Campylobacter transmission in birds was 
thought to be horizontal from garbage, water, insects, equipment, and wildlife. 
Given the failures in attempts to grow Campylobacter from incubators or newborn 
chicks [41, 42]. However, considering that C. jejuni has been isolated in the repro-
ductive organs of hens and the sperm of parent roosters, vertical transmission 
through the egg must be considered as a probable route of infection [43].

5. The problem of diagnosis and detection

The main problem is that Salmonella and Campylobacter are inhabitants of 
the intestine of birds, and in that environment, many bacterial organisms grow. 
Therefore, when trying to isolate a pathogenic species, it may not be possible 
to detect if the number is proportionally deficient and hidden by other organ-
isms’ growth. For this reason, the use of immunological and molecular biology 
techniques has been recommended to detect the existence of carrier animals in a 
short time. Isolation and identification of Campylobacter are problematic since it is 
slow-growing and easily confused with bacteria of the genus Arcobacter. The biggest 
drawback is that these are inert organisms that do not metabolize the sugars that 
are traditionally used to differentiate enterobacteria. That different environmental 
conditions, temperature, and antimicrobial sensitivity, as well as the hydrolysis of 
hippurate and indoxyl acetate, are used during isolation of Campylobacter [44].

Salmonella detection techniques based on polymerase chain reaction (PCR) have 
been developed for naturally and artificially contaminated food [45]. Several sensi-
tive and precise PCR approaches for the detection of Campylobacter spp. are also 
available, which reduce diagnosis time to 48 hours and can detect up to one CFU 
(colony forming unit)/gram of sample [33, 46].

6. Foresight in Mexico

Unpublished results (isolation and identification) from a recent study in a 
commercial poultry company in Mexico revealed that from 30 broiler chickens, 
8 chickens were positive for SE, and 2 were positive for ST. Without intending to 
conclude a single farm’s sampling, given the homogeneous conditions under which 
modern poultry farming is carried out, these preliminary findings suggest that the 
prevalence of Salmonella in poultry farms in Mexico may be comparable to that of 
other countries with technical poultry farming. In the same study, 9/30 chickens 
were C. jejuni positives, and 2/30 were C. coli positives. According to these prelimi-
nary findings, C. jejuni and C. coli are likely to live as commensals in the intestinal 
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tracts of broiler chicken in commercial flocks in Mexico, implying that studies 
involving representative segments of national poultry farming will be helpful soon. 
Campylobacteriosis in people must be expected in Mexico; hence, epidemiological 
research is a top priority. Given its sensitivity and specificity, the PCR approach 
is recommended to detect salmonellosis and campylobacteriosis in animals, food, 
and the environment to strengthen the foundations for the development of relevant 
epidemiological markers in Mexico.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
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Abstract

Million cases of campylobacteriosis and complications of post-Campylobacter 
jejuni infection occur every year around the world with huge life losses and eco-
nomic burdens of billions of dollars. Few therapy options, such as antibiotics, 
are available to relieve severe cases of the enteritis. The slow progression on new 
intervention discovery and application is partially resulted from limited mecha-
nistic understanding on campylobacteriosis pathogenesis. As a type of intestinal 
disorders, campylobacteriosis shares many common features with other intestinal 
diseases such as inflammatory bowel diseases (IBD) and Clostridium difficile 
infection. In pace with the advancement of the gastroenterology field, a large 
body of knowledge is accumulating on the factors influencing campylobacteriosis 
onset, development, and outcomes, including host immune response, intestinal 
microbiota, and its metabolites. In this chapter, we review the intestinal immune 
system, intestinal microbiome, and microbiome modulation of inflammation in the 
development of campylobacteriosis. The interplay between immunity, microbiota, 
and its metabolites may play essential roles on campylobacteriosis pathogenesis and 
the finding on the interaction may lead to new prevention and treatment options. 
The purpose of this chapter is to provide updated knowledge on the role of host–
microbe interaction and the therapeutic potential on campylobacteriosis.

Keywords: colitis, infection, adaptive immunity, innate immunity,  
microbial metabolite, bile acids

1. Introduction

Campylobacter enteritis (also known as campylobacteriosis) is defined as an 
infection of the intestines that is manifested in the form of acute diarrhea followed 
by pain in abdomen, fever as well as other constitutional clinical indications [1]. 
Campylobacteriosis is a common foodborne pathogen disease worldwide caused 
by Campylobacter jejuni [2]. C. jejuni is a Gram-negative, microaerobic bacterium. 
Because of the large consumption and industrialized production of animal meat, 
the main reservoir of C. jejuni is food animals such as chickens and turkeys. 
Campylobacter is one of the most frequent causes of foodborne bacterial pathogen, 
particularly in developed countries. C. jejuni and C. coli are the foremost causes of 
infections in the vast majority of population [3]. According to CDC’s report, 24% 
raw chicken meat carried C. jejuni [4]. Around 1.5 million cases reported in USA 
every year [5] and causing $6.9 billion losses annually [6].
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C. jejuni is able to establish infection in the intestine with ingestion of minimum 
500 viable bacteria, but the infection efficiency is influenced by host antibacterial 
defenses such as gut immune system and the intestinal commensal microbes [7]. 
The innate and adaptive immunity in gut actively surveils the luminal microbes, 
processes the intestinal cues, and establishes defense actions, resulting in constant 
gastrointestinal homeostasis [8]. The complex gut resident microbes live on and 
inside the host including bacteria, fungi, protozoa, viruses, and their metabolic 
products [9]. The gut microbes are important participants for food digestion, 
fermentation, and energy accommodation of intestinal tract [10]. During physi-
ological process, metabolites, such as short chain fatty acid, bile acid, vitamins, and 
amino acids, are produced. The microbes, along with their metabolites play impor-
tant roles in keeping the homeostasis of gastrointestinal immunity, and affecting 
their resistance to the invasion of pathogens [11]. In the following sections, we will 
have a detailed discussion on gut immunity, resident microbes, and their role on 
campylobacteriosis.

2. Intestinal immunity on campylobacteriosis

The immune system is comprised of a complex network of biological molecules 
and activities in organs, tissues, and cells to protect an organism against foreign 
substances or microbes (Figure 1). The immunity is generally categorized into 
two subsystems of innate and adaptive immunity [12]. The innate immunity 
initiates a quick immune response [13], while the adaptive immunity generates a 
comprehensive and long-lasting immune defense [12]. These two immune branches 
work closely together to defense host against the encountered foreign substances 
or microbes. The intestinal immunity is highly involved with C. jejuni-induced 
colitis. C. jejuni–induced severe campylobacteriosis in Il10−/− mice as showed by 
extensive intestinal immune cell infiltration, epithelial damage, goblet cell deple-
tion and crypt hyperplasia and abscesses compared with uninfected mice [14]. In 
this section, we will briefly review recent advancement of intestinal immunity and 
campylobacteriosis.

Figure 1. 
Schematic illustration of the role of innate (left side) and adaptive (right side) immunity in 
campylobacteriosis.
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2.1 Intestinal immunity and campylobacteriosis

In the gastrointestinal tract, the innate immunity is consisted of innate cells 
and soluble molecules, which are an important defense mechanism against foreign 
substances or microbes. The cellular innate immunity is consisted of various types 
of cells, including intestinal epithelial cell (IEC), granulocyte (neutrophil, baso-
phil, and eosinophil,) dendritic cell (DC), macrophage, natural killer cell (NK), 
master cell, and innate lymphoid cell (ILC), and γδ T cell [15]. Only a single layer 
of IEC separates nearly sterile internal intestinal tissue from microbe-rich intes-
tinal lumen, hence the integrity of IEC is essential for intestinal health. Notably, 
IEC line breakdown is often implicated in various intestinal disorders such as IBD 
[16], irritable bowel syndrome (IBS) [17], colorectal cancer [18], and C. difficile 
infection [19]. The destruction of IEC line and tissue upon invasion of C. jejuni 
[20] clearly demonstrates the important role of the epithelial cells. The innate 
effector cell of scavenging macrophage phagocytoses microbes and secretes both 
pro-inflammatory and antimicrobial mediators [21]. In addition, macrophage is 
essential for eliminating diseased and damaged cells through its programmed cell 
death. Macrophage uptakes and kills C. jejuni in vitro [22], although the role of 
macrophage in campylobacteriosis remains to be determined. Neutrophil is the 
most abundant type of granulocytes and consists of 40% to 70% of all white blood 
cells in humans [23]. Although neutrophil eliminates invaded microbes, the over-
inflammatory response of neutrophil is responsible for the campylobacteriosis in 
a Il10−/− mouse model [24]. C. jejuni-induced colitis increases ILC1 (50% vs. 18%) 
but decreases NCR − ILC3 (13% vs. 43%) in the colonic lamina propria of germ free 
Il10−/− mice, compared to uninfected mice [25]. Effort is needed to investigate the 
role of various innate cells on campylobacteriosis pathogenesis.

At the molecular level, the innate cells recognize the microbes of their microbial-
associated molecular patterns (MAMPs), such as lipopolysaccharides (LPS) and 
flagellin. MAMP is a component of a microbe and is sensed by innate cellular patho-
gen recognition receptors (PRRs), such as toll-like receptors (TLRs), nucleotide 
oligomerization domain (NOD) like receptors (NLRs), and retinoic acid inducible 
gene-I (RIG-I) like receptors (RLRs) [26, 27]. Previous articles have comprehen-
sively reviewed the interaction between MAMP and PRR [28], hence we will not 
devote too much on them. Relevant to the topics of this chapter, LPS is expressed on 
the surface of Gram-negative bacteria such as E. coli, and it is recognized by TLR4 
at the innate cell surface. C. jejuni expresses lipo-oligosaccharide (LOS) instead of 
LPS [29] and LOS is possibly recognized by TLR4 in DC and Il10−/− mouse model 
[20, 30]. Muramyl dipeptide (MDP) is the minimal bioactive peptidoglycan motif 
common to all bacteria and is sensed by NOD2 in innate cytoplasm. Microbiota-
disturbed Il10−/−; Nod2−/− mice are susceptible to C. jejuni-induced colitis compared 
to Il10−/− mice [31], suggesting the role of NOD2 in host shown preventive mecha-
nism against the pathogen. It is much needed to investigate various PRRs on detect-
ing C. jejuni infection and to elicit immune response.

After trigged by PRRs detecting MAMP, innate response of a network of sig-
naling pathways are activated, including TLR-MyD88/TRIF and inflammasome. 
MyD88 is a downstream adaptor protein of TLR and is essential for the signal 
transduction of the TLR signaling pathway [32]. The TLR signaling pathway is 
classified into either MyD88-dependent or MyD88-independent. With the excep-
tion of TLR3, all downstream signaling pathways of TLRs mediate through MyD88 
[33]. For MyD88 dependent pathway, TLR signaling recruits and activates a number 
of molecules, including IRAK, TRAF6, TAK1, IKK, and NF-κB [32]. The TLR/
Myd88/NF-κB signaling pathway then induces proinflammatory and cell survival 
responses. NF-κB signaling is activated in C. jejuni-induced colitis using germ free 
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Il10−/−; NF-κBEGFP mouse model. mTOR signaling is a downstream target of MyD88 
and mediates C jejuni-induced colitis in Il10−/− and Il10−/−; Rag2−/− mice, suggesting 
independence of T-cell activation [14, 24]. Blocking mTOR signaling with pharma-
cological inhibitor rapamycin attenuates C jejuni-induced intestinal inflammation, 
immune cell infiltration and the pathogen invasion, while rapamycin increases 
splenocyte autophagy [14]. In addition, C. jejuni–induced MyD88 downstream 
target PI3K-γ signaling mediates intestinal inflammation in Il10−/− mice through 
modulating neutrophil migration/infiltration into intestinal lamina propria [24]. 
During inflammation, damaged or dying cells release endogenous danger molecules 
called damage-associated molecular pattern (DAMP) such as high-mobility group 
box 1 (HMGB1), S100 proteins, and heat shock proteins (HSPs). The DAMP is 
sensed by TLR and inflammasome and is investigated extensively in non-infectious 
inflammation disorders [34]. Inflammasome is responsible for processing proIL1β 
and proIL18 into active forms [35]. It would not be surprised to find that DAMP-
induced inflammation in C. jejuni-induced colitis, hence such work would yield 
important leads to understanding campylobacteriosis pathogenesis.

2.2 Intestinal adaptive immunity and campylobacteriosis

Despite the effective, fast, and general/non-specific response of innate immu-
nity against infection, adaptive immunity is often developed in vertebrate animals, 
particularly in the case of unresolved innate response. With the assistance of innate 
immunity, the adaptive immunity of lymphocytes recognize and remember a 
foreign substance’s or pathogen’s unique antigens and builds an antigen-specific 
response to eliminate it [12]. Two major lineages of T and B lymphocytes are 
generated in the thymus and the bone marrow or the avian bursa of Fabricius [36]. 
The adaptive immunity mounts two types of activities: B cell mediated antibody 
responses, and T cell mediated immune response. DC, B-cell, and macrophage 
express specific “co-stimulatory” ligands recognized by co-stimulatory receptors 
on T cells, and are named antigen-presenting cells (APCs) for T cell activation. 
During the early developmental stages, B lymphocyte progenitor cells make somatic 
hypermutation for specific antibody, while T and B cells rearrange different sets of 
immunoglobulin (Ig) variable (V), diversity (D), and joining (J) gene segments to 
make the antigen binding regions of the T cell receptors (TCRs) and B cell receptors 
(BCRs) [37]. Campylobacter infection-induced Guillain-Barré syndrome (GBS), 
an autoimmune disease, demonstrates the implication of adaptive immunity in the 
pathogen infection.

T cells are grouped into two types based on the surface antigens: CD4-expressing 
T-helper cells, and CD8-expressing cytotoxic T-cells [38]. It remains elusive the 
role of CD8 cells in campylobacteriosis, but accumulating evidence supports the 
notion on the important role of CD4 cells in campylobacteriosis pathogenesis. 
The major intestinal CD4+ T cells are T help cell 1 (Th1), Th17, and regulatory T 
cell (Treg, Foxp3-expressing) cells, although Th2, Th9, Th22, follicular helper T 
(Tfh), iTreg, and type 1 regulatory T cell (Tr1) are present [39, 40]. The adaptive 
immunity is actively influenced by innate immunity. In gut lamina propria, intesti-
nal innate tolerogenic CD103+ DCs induce FoxP3+ Tregs by stimulating CCR7 and 
integrin-αIVβ7 on T cells resided in mesenteric lymph nodes [41–43]. The differential 
interaction between Campylobacter LOS and siglec-7 receptors on APC cell-surface 
influences the fate of naïve CD4 cells into different type of effector Th cells [44, 45]. 
Specifically, siglec-7 receptors on APC binds with α2, 8-linked sialylated LOS 
induces the Th1 polarization, while its interaction with α2, 3-linked sialic acid 
induces a Th2 development [45]. Generally, Th1 cells activate more cytotoxic CD8 
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cells and macrophages to enhance immunity against the invading or intracellular 
microbes, while Th2 cells mediate class switching of B-cells to eliminate the extra-
cellular microbes [38]. Besides Th1 and Th2 cells, Th17, Th22, and Treg may also 
be induced in campylobacteriosis as evidenced by the elevated cytokine markers 
of IL-17, IL-18, IL-22, IL-23, and IL-10 in patients’ serum following infection with 
Campylobacter [26, 46].

After Th2 cell activation, B-cells are induced to produce antibody (Ab) against 
Campylobacter infection. At 7 days post-infection (acute phase), blood Abs, IgA and 
IgM increase in serum [47]. From 1 week up to 1-year post-infection (convalescent 
phase), anti-Campylobacter Ab is detectable in serum and saliva of campylobacteri-
osis patients and could protect the subjects against subsequent Campylobacter infec-
tion [48, 49]. Similarly, IgA and IgM are persistent in campylobacteriosis patients 
for up to 20 days or 2 months post-infection. The downside to the adaptive humoral 
response is the incidence of GBS. Campylobacter often alters its LOS outer core to 
mimic human neuronal gangliosides for escaping from the host immune system but 
resulting in GBS [50]. α2, 3-linked sialic acid in C. jejuni LOS is one of the culprits. 
Developing effective vaccine or monoclonal antibody to control C. jejuni infection 
is, therefore, imminent.

3. Intestinal microbiome and campylobacteriosis

Human body, particularly gastrointestinal tract, inhabits trillions of diverse 
microbes including bacteria, archaea, virus, and eukarya [51]. These microbes 
called microbiota (Figure 2), and their metabolic activities and metabolites are 
collectively named microbiome [52]. The microbiota demonstrates a complex and 
diverse phylogeny of notable microbial species [53–55]. The human microbiota 
is comprised of 2172 prokaryotic species and the main phyla are Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria [56]. The inhabitant gut microbiota 
influences important biological processes, such as metabolism of food, produc-
tion of fat and vitamins, activation of angiogenesis as well as safeguard against 
adversary pathogens [53, 54]. Relevant to the topic of this chapter, the colonization 
of gut microbiota effectively inhibits the colonization and excessive growth of 

Figure 2. 
Schematic illustration of the role of microbiota and its metabolites in campylobacteriosis.
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potential pathogenic microbes, called colonization resistance [55]. The coloniza-
tion resistance is through various mechanisms including direct competition of 
spatial and nutrients, production of antimicrobial defensin and metabolites, and 
indirect inhibition via stimulation of innate and adaptive immunity [57]. Certain 
microbiota phyla reduction is associated with an abolished biological coloniza-
tion resistance [7, 58]. The colonization resistance, therefore, prevents pathogen 
attachment to the respective target site, depletes nutrients, and blocks virulence 
expression.

During its metabolism of nutrients, microbiota synthesizes varied range of 
metabolites and related small molecules [59–62]. It is recognized that the micro-
biota metabolites are absorbed across the gastrointestinal tract in circulation and 
impact host physiology [63–65]. Accumulating findings strongly support the 
important role of microbiota metabolites against gut pathogens. One example of 
the metabolite is short-chain fatty acids (SCFA). SCFA is fermented from carbo-
hydrates (e.g., starch and fiber) and influences the gut microbiota community by 
reducing luminal pH level [66–69]. Another abundant microbiota metabolite is bile 
acid. Bile acids produced in the liver are excreted into the intestine as conjugated 
(taurine or glycine) forms to facilitate in digestion of dietary lipids. The bile acids 
are deconjugated in small intestine by bile salt hydrolases (BSH) [70] and absorbed 
up to 95% along intestinal line through enterohepatic cycle [71]. Furthermore, 
microbiota produces bacterial toxic and short peptides (e.g. bacteriocin) and 
bacterial toxins to inhibit the growth and colonization of other species [72]. The 
bacterial toxic peptides are categorized into those produced by Gram-negative 
bacteria (mostly by Enterobacteriaceae) and those produced by Gram-positive 
bacteria (lactic acid bacteria and some Streptococcus species) [73, 74]. The peptides 
are further classified into subgroups based on molecular weight, such as microcins 
(lower molecular weight peptides) and colicins (higher molecular weight proteins). 
The inhibition mechanism of bacteriocin is to change nucleic acid metabolism and 
to form cell membrane pores for eliminating other bacteria [75–78]. In this section, 
we will briefly review recent advancement on the interaction of microbiome and 
campylobacteriosis.

3.1 Microbiota and campylobacteriosis

To colonize in the gut, C. jejuni has to overcome numerous hurdles and endures 
in diverse environments. With minimum 500 viable bacteria, the pathogen has to 
establish in the intestine against host antibacterial defenses such as the intestinal 
bile acids and the intestinal microbiota [7]. The pathogenesis of Campylobacter-
induced enteritis remains elusive because of lacking reliable animal models. 
Notably, C. jejuni is often colonized in birds without any pathological symptom 
[79, 80], while specific pathogen free mice, but not germ-free mice, are resistant 
to the pathogen colonization [24, 81]. Humans are susceptible to C. jejuni-induced 
enteritis, but the pathogen is often cleared within 1 to 2 weeks [82]. The reason why 
C. jejuni colonizes animals differentially remains elusive. Because the intestinal 
microbiota is different between animals, it is possible the gut microbiota influences 
bacterial pathogen colonization [55].

Chickens are susceptible to C. jejuni asymptomatic colonization and their 
microbiota could be friendly to C. jejuni infection. In 35-day old broiler chickens, 
families Lactobacillaceae and Clostridiaceae in the ileum and Lachnospiraceae and 
Ruminococcaceae in ceca are dominant, while genera Ruminococcus and Oscillospira 
account for 35% in ceca operational taxonomic units (OTUs) [80]. In a field study 
of 35-day old broiler chickens at four farms in Italy, the relative abundance of 
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class Clostridiales is higher in caeca of Campylobacter-negative farms than positive 
farms, while Bacteroidales is the opposite (80.0% vs. 65.7%) [83]. In 56-day old 
broiler chickens, C. jejuni colonization is associated with reduced genera abun-
dance of Corynebacterium and Lactobacillus but increased genera Ruminococcaceae 
and Streptococcus [84]. The authors also found that C. jejuni colonization is 
positively associated with genera Escherichia, Alistipes, Enterococcus, Bacteroides, 
Shigella, Gallibacterium, Campylobacter, Faecalibacterium, Blautia, Enterobacter 
and Clostridium. In mice, two genera of Clostridium sensu stricto and Enterococcus 
are associated with mice susceptible to C. jejuni-induced colitis in a microbiota 
transplantation model [85]. Ampicillin treatment increases cecal genus Barnesiella 
but reduced Clostridium XIVa in the microbiota of C. jejuni-susceptible mice [86]. 
The abundance of E. coli is positive associated with C. jejuni colonization in mice 
[87]. Human campylobacteriosis patients have an increased abundance of genera 
Escherichia, Bacteroidetes, Phascolarctobacterium, and Streptococcus in stool [3]. 
Comparably, microbiota sequencing data from cross-sectional IBD patients showed 
that IBD is associated with dysbiosis characterizing by reduced gut bacterial diver-
sity, together with increased genera Fusobacterium, Escherichia, Faecalibacterium, 
Roseburia, Ruminococcaceae, Peptostreptococcaceae, Christensenellaceae, and Collinsella 
[88]. The changes in the gut microbiota of IBD patients show an increase in fac-
ultative anaerobes, including Escherichia coli [89], and a decrease in obligately 
anaerobic [90]. IBD patients with active disease have increased gut Enterococcus, 
Fusobacterium, Haemophilus, Megasphaera, Campylobacter, while Roseburia, 
Christensenellaceae, Oscillibacter, and Odoribacter are enriched in the gut of IBD 
patients with inactive disease [88]. Although increasing evidence supports the role 
of microbiota promoting C. jejuni infection or other enteritis, additional studies are 
much needed.

On the other hand, SPF mice are resistant to C. jejuni colonization and their 
microbiota could be hostile to C. jejuni colonization. Through mining 16S DNA 
sequencing datasets, the core microbiota of healthy mice in cecum is found to be 
comprised of 37 genera, including Anaerostipes, Parabacteroides, Anaerotruncus, 
Oscillibacter, Clostridium XlVb, Flavonifractor, Bacteroides, Barnesiella, Alistipes, Heli
cobacter, Saccharibacteria, Prevotella, Lachnoanaerobaculum, Lactobacillus, 
Intestinimonas, Roseburia, Alloprevotella, Rikenella, Enterorhabdus, Erysipelotric
haceae_incertae_sedis, Eggerthella, Allobaculum, Lachnospiracea_incertae_sedis, 
Pseudoflavonifractor, Bifidobacterium, Marvinbryantia, Mucispirillum, Clostridium 
XIVa, Blautia, Anaerofilum, Parasutterella, Odoribacter, Olsenella, Turicibacter, 
Gordonibacter, Ruminococcus, and Acetatifactor [91]. Eight genera of Clostridium 
XI, Oscillibacter, Bifidobacterium, Butyricicoccus, Hydrogenoanaerobacterium, 
Lactobacillus, Roseburia, and Coprobacillus are increased in the microbiota of C. 
jejuni-resistant mice [85]. Supplementation of Bifidobacteria and Lactobacillus spe-
cies has been shown to reduce the colonization of Campylobacter in birds [92–95]. 
The probiotics against Campylobacter colonization are through promotion of immu-
nological defense mechanisms such as stimulation of defensins and interleukins as 
well as alteration of integrity of epithelial cell barrier [96].

In human subjects with Campylobacter-negative, the abundance of genera 
Clostridiales, unclassified Lachnospiraceae, and Anaerovorax are increased [3]. 
Comparably, the Campylobacter-negative individuals showed increased abundance 
of family Lachnospiraceae, particularly its two genera Dorea and Coprococcus [97]. 
People who consume plant-based low fat and polysaccharide rich diet are more 
resistant to C. jejuni infection compared to individuals consuming western diet [98]. 
Hence, increasing studies are being performed to investigate the role of microbiota 
against C. jejuni infection.
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3.2 Microbial metabolites and campylobacteriosis

The questions following section 3.2 are how microbiota facilitates or reduces 
C. jejuni infection. Besides direct inhibition by competition of space and nutrients 
[53, 54], microbiota metabolites may exert indirect antagonism against C. jejuni. 
The intestinal microbiota generates a variety of bioactive metabolites after metabo-
lizing nutrients from diets and host secretions. A few data are available on the 
relationship of microbiota metabolites and C. jejuni infection, but accumulating 
data are present in the field of IBD (Crohn’s Disease-CD and Ulcerative Colitis-UC), 
a close enteritis to campylobacteriosis. The metabolomics of IBD patients is shifted 
from healthy subjects with characterization of increased bile acids, taurine, and 
tryptophan [99]. Out of the 2,729 differentially abundant metabolites, the major-
ity (71%) are significantly depleted in IBD relative to non-IBD controls; 8% are 
significantly elevated in both CD and UC; 19% are specifically elevated in CD; and 
only 3% are specifically elevated in UC [100]. Specifically, IBD enriches lactate, 
sphingolipids, and primary bile acids of cholate (CA) and chenodeoxycholate 
(CDCA) but with reduction of triterpenoids, pantothenate, long-chain fatty acids, 
phenylbenzodioxanes, cholesterols (including cholestenone), triacylglycerols 
(TAGs), and secondary bile acids deoxycholic acid (DCA) and lithocholic acid 
(LCA). Interestingly, IBD patients show a decrease in obligately anaerobic produc-
ers of short-chain fatty acids [90].

Furthermore, IBD patients have increased polyunsaturated fatty acids (e.g., 
adrenate and arachidonate) but reduced pantothenate and nicotinate [101]. CD 
patients have increased levels of conjugated and sulfated bile acids in the feces 
[102]. In a functional analysis with shotgun metagenomics data, sulfur metabolism 
is identified with an enrichment of sulfonate, methionine, cysteine and taurine 
transport systems in mice colonized with microbiota from active IBD patients 
[88]. These metabolic changes are consistent with the increased abundance of 
sulfate-reducing bacteria (e.g., Desulfovibrio, Clostridia, Bilophila, and Bacteroides 
fragilis), some of which use sulfate as a terminal electron acceptor for respiration 
and concomitantly produce hydrogen disulfide, a toxic metabolic byproduct [88]. In 
accordance with IBD, secondary bile acid DCA, but not LCA and ursodeoxycholic 
acid, reduces C. jejuni counts and moderates intestinal microbiota composition 
in broiler birds [79]. DCA also reduces C. jejuni-induced colitis in ex-germ free 
Il10−/− mice [85]. Together, microbiota metabolites play an essential role on enteritis 
such as campylobacteriosis and IBD, and finding additional metabolites will assist 
development of therapeutic agents.

One specific and well-studied bacteria-bacteria interaction through microbial 
metabolites is called quorum sensing (QS) [103]. When the number of bacteria 
in the surrounding environment reaches certain level, bacteria activate QS and 
release specific signaling molecules of autoinducers (AIs) to modulate the expres-
sion of themselves and surrounding others on virulence, the ability for invasion 
and colonization, and the formation of biofilm [104]. Two types of AIs have been 
studied. AI-1 is produced by N-acyl-homoserine lactones (AHL) synthase and 
mediates intraspecies communication in Gram-negative bacteria. AI-2 is produced 
by S-ribosylhomocysteine lyase (LuxS) and mediates both intra- and interspecies 
communication in Gram-positive or Gram-negative bacteria [103, 104]. LuxS/AI-2 
system plays important roles in cell–cell interactions in C. jejuni [105, 106]. Because 
biofilm is crucial for C. jejuni survive outside of hosts and facilitates its transmission 
from chicken reservoirs to humans, LuxS-mutant strains show deficient in biofilm 
formation and possible reduction of their transmission [107]. C. jejuni 81176 luxS 
mutant shows significant decreased colonization in chickens [108]. Deletion of luxS 
gene in C. jejuni NCTC IA3902 strain completely inactivates its colonization in the 
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intestinal of chickens [109] or guinea pig [110], while the complemented strain with 
luxS gene restores the colonization ability comparable to the wildtype. It remains 
largely elusive what is the role of QS in the interaction of microbiota and C. jejuni 
and on the pathogen infectious capacity of colonization and induction of intestinal 
inflammation.

4. Microbiome-modulated immunity and campylobacteriosis

Because of their proximity, microbiome and gut immune system are actively 
interact with each other against the foreign substances and pathogens [11]. Gut 
microorganisms form a microbial community co-existed with the gut-associated 
lymphoid tissue [111], which is the largest immune organ in our body. Under 
normal circumstances, the intestinal epithelium and resident flora are separated 
by mucus layer, which not only provides static shielding, but also limits normal 
microbiomes’ immunogenicity by imprinting dendritic cells [112, 113] that have 
ability to distinguish antigens present by normal microbiota and invaded pathogens 
[114]. Thus, the normal flora can live along with the host without causing damage, 
or getting removed by the host immunity [115]. The elimination of microbiomes 
results in a deficiency function of immunity, as a fact, antibiotics treated mice can 
be used as a model for the study of pathogen colonization [116]. Infectious patho-
gens often break gut microenvironment’s equilibrium to generate ill effects, which 
may cause the gastrointestinal illnesses like campylobacteriosis. The normal flora 
have the capacity to induce lymphoid tissue’s immune response to protect host from 
pathogens infection [117].

As one of the enteritis, campylobacteriosis has a common feature of leading 
extensive intestinal inflammation driven by Th1 and Th17 lymphocytes and TLR4 
when homeostatic is perturbed [118], sharing typical pathology at cellular levels, 
such as neutrophils infiltration, leukocytes existence in fecal, and crypt abscesses. 
However, the pathogenesis of campylobacteriosis is not well studied. C. jejuni is 
commensalism with chickens [111], but causes diseases in humans [119]. Increasing 
data show that microbiomes play a pivotal role in modulating host immunity against 
campylobacteriosis and other enteritis. Better understanding the complex interac-
tion between gut microbiome, pathogen C. jejuni, and host immune response is 
crucial for discovering new therapies to prevent and treat campylobacteriosis.

4.1 Immunity, microbiota, and C. jejuni interaction

The gut homeostasis is dependent on the symbiotic relationship interacts 
between microbiota and immunity, with the occasional breaks by intestinal diseases 
such as IBD and campylobacteriosis (Figure 3). Signals derived from gut microbiota 
are essential for the development of the immune system. Germ-free mice display 
impaired immunity maturation such as defective Peyer’s patches (PPs), plasma 
cells, intraepithelial lymphocytes (IELs), antimicrobial peptide, IgA secretion, 
epithelial barrier function, and CD4+ T cell maturation [120–122]. Comparably, 
manipulating microbiota by antibiotic treatment or microbiota reconstitution (fecal 
microbiota transplantation, FMT) shows the essential role of the microbiota in 
immune homeostasis. FMT reduces dextran sulfate sodium (DSS)-induced mouse 
colitis with reduced CD4+ T, CD8+ T cells expressing, CD107a, MHC II-expressing, 
professional antigen present cells (APCs) expressing, while innate lymphocytes 
ILC2 and ILC3 are increased [123]. Human FMT to mice fails to resist Salmonella 
infection and restore the low levels of CD4+ and CD8+ T cells, proliferating T cells, 
dendritic cells, and antimicrobial peptide expression compared to mouse FMT 
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[124], suggesting that gut immune maturation is dependent on colonization with a 
host-specific microbiota. Fecal Microbiota Transplantation (FMT) is successfully 
conducted on Clostridium difficile infection (CDI) patients by providing them with 
microbiomes from healthy donors to rebuilt the gut immunity [125] by inhibit-
ing the activity of T cells and Th1 differentiation, preventing leukocyte adhe-
sion, and production of inflammatory factors [126]. Consistently, ILC2-secreted 
IL-33 is essential for eosinophilia and tissue repair and survival, and its secretion 
is dependent on microbiota and can be rescued with FMT therapy to reduce 
Clostridium difficile infection (CDI) [127]. FMT of mouse anaerobic microbiota 
to germ free Il10−/− mice prevents C. jejuni-induced intestinal inflammation with 
reduced inflammatory genes of Cxcl2, Il17 and Il1β as well as massive immune cell 
infiltration into gut lamina propria [85]. DCA-modulated anaerobes could attenu-
ate chicken transmission exacerbated campylobacteriosis in mice by reduction of 
inflammatory genes, Il17a, Il1β, and Cxcl1 expression in cellular level and inhibiting 
mTOR signaling pathway [128].

Beside microbiota transplantation, individual or groups of probiotics 
have been studied to reduce enteric pathogens, such as Lactobacillus helveticus 
[129], Lactobacillus rhamnosus LGG [130], Lactobacillus gasseri SBT2055 [131], 
Lactobacillus strains N8, N9, ZL4 and ZL5 [132], Bifidobacterium longum infantis 
[133]. Lactobacillus enhances macrophage elimination of C. jejuni in vitro and 
increases the expression of Il1β, Il12p40, Il10, and Cxcl2 and the co-stimulatory 
molecules CD40, CD80, and CD86 [134]. Oral gavage of Lactobacillus johnsonii 
CJLJ103 inhibits LPS-induced NF-κB activation and Tnfα and Il1β expression, while 
expression of IL-10 and tight-junction proteins was increased [135]. Lactobacillus 
plantarum LC27 and Bifidobacterium longum LC67 inhibits LPS, or 2,4,6-trini-
trobenzesulfonic acid (TNBS)-induced colitis by suppress of NF-κB activation, 
CXCL4 expression and restored Th17/Treg balance [136]. Studies have shown that 
filamentous bacilli closely adhered to intestinal epithelium can induce Th17 reaction 
and increase the number of the anti-inflammatory Treg cells in the colon, and single 
colonization of Bacillus fragilis possesses immunomodulatory molecule-polysac-
charide A (PSA), facilitates IL-10 producing through the conversion of CD4+ T cells 
into Foxp3+ Treg cells [137], and plays an important role in preventing and treat-
ment of colitis in animals [138]. Faecalibacterium prausnitzii was reduced in patients 
with Crohn’s disease [139]. F. prausnitzii supplementation prevents dinitrobenzene 
sulfonic acid (DNBS)-induced mouse colitis with inactivation of NF-κB signal 

Figure 3. 
Schematic illustration of the interaction of microbiota and immunity in campylobacteriosis.
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pathway, down-regulation of MPO, pro-inflammatory cytokines, and T-cell levels 
[140]. With the advanced research on microbiota and immunity, it is expected that 
individual bacteria or groups of bacteria will be used to control C. jeuni infection in 
the near future.

4.2 Immunity, microbial metabolite, and C. jejuni interaction

In addition to the direct talk between microbiota and gut immunity, microbiota 
metabolites influence intestinal immune homeostasis, which is dependent on the 
balance of pro- and anti-inflammatory response (Figure 4). As discussed in section 
2.2, Treg is the key ant-inflammatory T cell with its signature cytokine IL-10. IBD 
patients show reduced SCFAs in stool compared to healthy people, a consistent 
observation with reduced butyrate-producing bacterial taxa [141]. SCFAs, such 
as butyrate, acetate, and propionate, are microbial fermentation products of 
polysaccharides [142]. SCFAs are the energy source for colonocytes that lining the 
gastrointestinal tract [143], which have antiproliferative and anti-inflammatory 
features [144, 145]. SCFAs promotes the differentiation of Treg cells and their anti-
inflammatory IL-10 secretion [146]. Butyrate or mixtures of SCFAs in enemas show 
clinical and histological improvement in active UC patients and diversion colitis 
[147, 148]. At the molecular level, butyrate in enemas decrease NF-κB activation 
in macrophages from distal colon tissue of UC patients [149], and reduce LPS-
induced cytokine expression, NF-κB activation in lamina propria, and the number 
of peripheral blood monocytes in CD patients [150]. C. jejuni expresses the highest 
levels of the SCFA-related genes (ggt, peb1c, and Cjj0683) and colonizes efficiently 
in SCFAs-rich chicken ceca compared to other intestinal segments [151]. It remains 
elusive what is the role of SCFAs on C. jejuni-induced campylobacteriosis.

Besides microbiota metabolites regulation immune cells, they also modulate 
immune signaling pathways. Caffeic acid (CaA) is a hydrolyzed metabolite of 
chlorogenic acid by gut microbial esterase. CaA reduces DSS-induced in C57BL/6 
mice colitis through blocking NF-κB signaling pathway, suppressing the secretion 
of IL-6, TNFα, and IFNγ, and inhibiting the infiltration of CD3+ T cells, CD177+ 
neutrophils and F4/80+ macrophages [152]. L-arabinose, the digestion production 
of fiber, inhibits DSS-induced colitis by downregulating p38−/p65-dependent 
inflammation activation [153]. β-glucan is a polysaccharide naturally appeared 
in the cell walls of cereals, bacteria, and fungi. β-glucan reduces DSS-induced 
IBD by downregulating pro-inflammatory cytokines (TNFα, IL-6 and IL-8) and 

Figure 4. 
Schematic illustration of the role of microbiota metabolites and immunity in campylobacteriosis.
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inflammatory mediators (iNOS, COX-2 and PEG2) [154]. Oxyberberine, a gut 
microbiota metabolite of berberine, shown anti-colitis effect through the inhibition 
of TLR4-MyD88-NF-κB signaling pathway with reducing phosphorylation of IκBα 
and translocation of NF-κB p65 from cytoplasm to nucleus [155]. Notably, micro-
biota metabolic product DCA reduces C. jejuni-induced intestinal inflammation 
in Il10−/− mice with reduced inflammatory genes of Cxcl2, Il17 and Il1β as well as 
massive immune cell infiltration into gut lamina propria [85]. Increasing microbiota 
metabolites will be discovered to attenuate C. jejuni-induced campylobacteriosis.

Furthermore, microbiota mediated metabolites are the important nutrients for 
host growth and immunity. Germ-free mice are usually more susceptible to infec-
tion diseases and show deficient to Vitamin K and B6 [156, 157]. Gut microbiota-
synthesized Vitamins B12 and folate are vital for red blood cells synthesis, and red 
blood cells are crucial for supplying oxygen to immune cells and participating in 
the defensive process against pathogens [158]. Vitamin E delta-tocotrienol and its 
metabolite 13′-carboxychromanol inhibit tumor-associated colitis by reduction of 
pro-inflammatory cytokines GM-CSF, MCP-1, and IL-1β, respectively [159].

5. Conclusion

Given the fast research advancement on mucosal immunology, microbiota, and 
metabolomics recently in gastroenterology field, it is better than ever to investigate 
the mechanism of immunity-microbiota interaction and to use the knowledge to 
prevent and treat campylobacteriosis. The gut adaptive and innate system is the key 
for the permission or resistance to enteric pathogens and their induction of intestinal 
inflammation. Microbiota and its metabolic products or metabolites are essential for 
preventing gut pathogen invasion and the enteritis. Together, the development and 
function of the intestinal immunity is modulated by intestinal microbiota and its 
metabolic activities and products. Indeed, microbiota reconstitution by FMT is able 
to prevent or treat a number of intestinal disorders such as human CDI and mouse 
campylobacteriosis. Consistently, supplementing microbial metabolite of secondary 
bile acid DCA prevents campylobacteriosis in mice. Based on the successful or failed 
examples of the microbiome intervention on intestinal diseases, it is reasonable to 
conclude that a better knowledge on disease etiology and microbiome status during 
health and the diseases are essential for specifically targeting the pathogenic driving 
factors to prevent and treat the enteritis. Additional research will open new avenues 
to elucidate the in-depth understanding of the role of immunity and microbiota and 
to develop therapeutic approaches to control enteritis such as campylobacteriosis.
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Abstract

Campylobacter species are among the most common causes of bacterial gastro-
enteritis in humans worldwide. The genus Campylobacter consists of at least 39
validly published species with wide distribution in various hosts and environments,
which are either pathogens for humans or animals, or not pathogenic as identified
so far. Various methods have been used for detecting campylobacters including
conventional culture methods, molecular (such as polymerase chain reaction),
immunological methods and genome sequencing. Currently, isolation and subse-
quent identification of the target campylobacters are required by most of the regu-
latory bodies globally. The multiple Campylobacter species exhibit diverse
physiological and metabolic characteristics and growth requirements, which can
interfere with the sensitivity and specificity of culture-dependent methods. Fur-
thermore, strains among each species may behavior differently in various culture
media and under various culture conditions. Therefore, it is important to apply
appropriate isolation and identification methods for different types of species and
samples based on specific purposes. This chapter will review the development and
the current status of culture-dependent methods for the isolation and detection of
various Campylobacter species from food and food-related environments during the
next generation sequencing era.

Keywords: campylobacter species, foodborne, physiological characteristics,
isolation and identification

1. Introduction

1.1 Organisms and brief history

For the last three decades, Campylobacter species have been the focus of growing
attention because of the increasing frequency with which they have been isolated
from various sources including man, animals, food and water [1]. Campylobacter
species are among the most common causes of bacterial gastroenteritis in human
worldwide [2–4], which account annually for approximately 166 million foodborne
illnesses around the world [5].

The name “Campylobacter” is an ancient Greek word meaning “curved rod”.
Campylobacter species are Gram-negative, spiral, rod-shaped, or curved bacteria
with a single polar flagellum, bipolar flagella, or no flagellum depending on the
species, non-spore-forming, and approximately 0.2 to 0.8 by 0.5 to 5 μm [6–8].
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The typical shape of Campylobacter looks more like a spiral or helical one rather
than a curved rod shape, which can change its shape into filamentous or coccoid to
adapt to the stressful conditions [9, 10]. When two or more bacterial cells are
grouped together, an “S” or a “V” gull-wing shape is formed [11]. The majority of
Campylobacter species have a characteristic corkscrew-like motion due to a single
polar flagellum at one or both ends of the cell [11], with the exceptions that
C. gracilis is non-motile and C. showae contains multiple flagella [12].

Escherich observed the Campylobacter-like non-culturable spiral-shaped organ-
ism in infants’ stool samples in 1886 [1, 13]. These bacteria, called related Vibrio by
then, were first isolated from the uterine mucus of a pregnant sheep from a flock of
150 ewes that were experiencing an abortion rate of 33% in 1906 by McFadyean and
Stockmanin in the United Kingdom [14]. A few years later, an apparently identical
organism, firstly named as a spirillum and then as Vibrio fetus,was isolated from the
fetal membranes of aborting cattle by Smith and Taylor in the United States [15, 16].
In 1949, Stegenga and Terpstra demonstrated the pathogenic role of V. fetus
venerealis in enzootic sterility in cows [1, 17]. In 1931, winter dysentery in calves was
attributed to infection with a “vibrio” that they called Vibrio jejuni [18], and a
similar organism associated with swine dysentery was identified by Doyle [19].

Campylobacter-like organisms, were first isolated from humans in 1938 from the
blood of patients suffering from diarrhea in a milk-borne outbreak affecting 355
people in the United States, and the causative bacterium for this outbreak was
named “V. jejuni” [20]. This has been regarded as the first well-documented
instance of human Campylobacter infection [1]. Subsequently, V. fetus was isolated
from the blood of three pregnant women admitted to hospital because of fever of
unknown origin in 1947 [21], and King described the isolation of “related Vibrio”
from blood samples of children with diarrhea in 1957 [22]. Up to 1972, only 12 cases
of ‘related vibrio’infections were reported in the literature [1]. The reason for these
small numbers of the reports was that the optimal or specific selective culture
techniques for the isolation of ‘related vibrio’, later called as Campylobacter [23, 24],
from feces were not developed at that time.

The first successful isolation of Campylobacter from feces or stool samples of
patients with diarrhea was accomplished in Belgium using the technique of direct
membrane filtration onto agar medium containing several antibiotics in 1968 and
published in 1972 [25]. This study also found that C. jejuni was highly susceptible to
erythromycin [26]. Consequently, in 1977, a selective culture procedure was
recommended using selective medium containing antibiotics with incubation at
43°C in a microaerobic atmosphere (5% oxygen, 10% carbon dioxide, and 85%
hydrogen) [27]. This facilitated the isolation of campylobacters, C. jejuni and C. coli
(the two species known at the time to cause gastroenteritis), with greater ease [27].
The successful isolation of campylobacters from human feces based on the above
selective media led to the recognition that Campylobacter is a leading cause of
human diarrheal illness in many countries [5, 28].

Since the establishment of genus Campylobacter in 1963 with Campylobacter fetus
as the species type [23], the taxonomy of the family Campylobacteraceae has
transformed extensively [12]. The genus Campylobacter belongs to the family
Campylobacteraceae proposed in 1991, the order Campylobacterales, the class
Epsilonproteobacteria, and the phylum Proteobacteria. The class Epsilonproteobacteria
presently comprises four closely related genera, Campylobacter, Arcobacter,
Dehalospirillum and Sulfurospirillum [http://www.bacterio.net/index.html].
By 2021, the genus Campylobacter consists of 39 validly published species, 11
subspecies and 4 biovars [https://lpsn.dsmz.de/genus/campylobacter] (Table 1).

In addition, species within the Campylobacter genus can be grouped according to
association with different host environments (e.g. animal intestinal tracts and
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Taxon Host Disease Foodborne References

In human In animal

C. armoricus Surface water,
human stool

humans
displaying enteric
infection

Unknown [29]

C. aviculae Lab Zebra Finches Unknown Unknown [30]

C. avium Poultry Unknown Unknown Yes [31, 32]!!!

C. blaseri sp. nov. Common seals Unknown Unknown

C. canadensis Whooping cranes Unknown Unknown Yes

C. coli Pigs, poultry,
ostriches, cattle,
sheep, penguin

Gastroenteritis
meningitis, acute
cholecystitis

Gastroenteritis,
infectious
Hepatitis

Yes

C. concisus Humans, domestic
pets

Gastroenteritis,
periodontitis,
IBD

Unknown Yes

C. corcagiensis lion-tailed
macaques

Unknown

C. cuniculorum Rabbits Unknown Unknown

C. curvus Humans Periodontitis,
gastroenteritis

Unknown

C. estrildidarum Lab Zebra Finches Unknown Unknown [30]

C. fetus subsp.
fetus

Cattle, sheep,
reptiles

Gastroenteritis,
septicemia

Spontaneous
abortion

C. fetus subsp.
venerealis

Cattle, sheep Septicemia Infectious
infertility

C. fetus subsp.
venerealis bv.
intermedius

Cattle Unknown Genital
campylobacteriosis

C. fetus subsp.
testudinum

Human, reptile Unknown Unknown

C. geochelonis sp.
nov

Western
Hermann’s tortoise

Not known Unknown

C gracilis Humans Periodontitis Unknown

C. helveticus Dogs, cats Periodontitis Gastroenteritis

C. hepaticus sp.
nov

Poultry Unknown Sporty liver
disease

[33]

C. hominis Humans Unknown Unknown

C. hyointestinalis
subsp.
hyointestinalis

Cattle, deer, pigs,
hamsters

Gastroenteritis Gastroenteritis Yes

C. hyointestinalis
subsp. lawsonii

Pigs Unknown Unknown Yes

C. insulaenigrae Seals, porpoises Unknown Unknown Yes

C. iguaniorum sp.
nov

Reptile (lizards) Unknown Unknown

C. jejuni subsp.
doylei

Humans Septicemia,
gastroenteritis

Unknown Yes

C. jejuni subsp.
jejuni

Poultry, cattle,
pigs, ostriches,
wild birds, penguin

Gastroenteritis,
Guillain-Barré
syndrome

Spontaneous
abortion, avian
hepatitis

Yes
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human oral cavity) [35] and propensity to cause disease in animal and human
hosts [13, 36] and (Table 1). Zoonotic Campylobacter species are commensal
organisms found in the intestinal tract of a variety of mammals, birds and reptiles as
well as in related environments, including water and soil [8, 11, 13, 37]. Among the
zoonotic species, C. jejuni is responsible for approximately 81% of human
gastrointestinal-related Campylobacter infections with C. coli, C. fetus, C. lari and
C. upsaliensis being responsible for 8.4%, 0.2%, 0.1% and 0.09%, respectively. The

Taxon Host Disease Foodborne References

In human In animal

C. lanienae Cattle Unknown Unknown Yes

C. lari subsp.
concheus

Shellfish Gastroenteritis Unknown Yes

C. lari subsp. lari Wild birds, dogs,
poultry, shellfish,
horses

Gastroenteritis,
septicemia

Avian
gastroenteritis

Yes

C. lari subsp.
ornithocola

Wild bird Unknown

C. mucosalis Pigs Unknown Unknown Yes

C.
novaezeelandiae
sp. nov.

Birds and water Unknown Unknown

C. peloridis Shellfish Unknown Unknown Yes

C. portucalensis Preputial mucosa
of bulls

Unknown Unknown [34]

C. rectus Humans Periodontitis Unknown

C. showae Humans Periodontitis Unknown

C. sputorum bv.
sputorum

Humans, cattle,
pigs, sheep

Gastroenteritis,
abscesses

Spontaneous
abortion

Yes

C. sputorum bv.
fecalis

Sheep, cattle Unknown Unknown

C. sputorum bv.
paraureolyticus

Human, cattle Unknown Unknown

C. subantarcticus Birds in the
subantarctic

Unknown Unknown Yes

C. taeniopygiae Lab zebra finch Unknown Unknown [30]

C. troglodytes sp.
nov

Wild chimpanzees Unknown Unknown

C. upsaliensis Dogs, cats Gastroenteritis Gastroenteritis

C. ureolyticus Humans Gastroenteritis,
Crohn’s disease

Unknown

C. volucris Black-headed gulls Unknown Unknown

C. vulpis wild red foxes fox Unknown Unknown

!: Valid species (39 species, 11 subspecies (subsp), and 4 biovars (bv)) as included on the website: https://lpsn.dsmz.de/ge
nus/campylobacter
!!: Indicated as “sp. nov” in the table.
!!!: All the reference is referred to [31] and [32], except those indicated differently.

Table 1.
List of validly published! And newly proposed!! Species, subspecies and biovars in the genus campylobacter
and their common hosts and disease associations in humans and animals.
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remainder of human Campylobacter infections are from other species or undiffer-
entiated “campylobacters” [38]. Other zoonotic species including C. fetus,
C. hyointestinalis, C. upsaliensis, C. sputorum, C. concisus and C. ureolyticus have also
been recognized as causal agents of human gastroenteritis [2, 37]. Of these,
C. concisus, C. upsaliensis and C. ureolyticus are considered as emerging or under-
recognized disease-associated species, where due to the advances in molecular
biology and culture methodologies these species are becoming increasingly recog-
nized as pathogens [7, 11]. In addition to causing gastroenteritis in humans, a
number of Campylobacter species are potential oral pathogens and have been com-
monly isolated from the human oral cavity. These include C. concisus, C. showae,
C. gracilis, C. curvus, C. rectus, and C. ureolyticus [35]. While campylobacters do not
typically cause disease in animals, C. fetus subspecies fetus and C. fetus subspecies
venerealis are important causes of reproductive system disorders and abortions in
ruminants, and particularly C. fetus subsp. venerealis is restricted to cattle and causes
bovine genital campylobacteriosis, and C. hepaticus causes Spotty Liver Disease in
layer chickens [13, 33, 36] (Table 1). Based on the route of transmission to humans,
campylobacters can also be classified as foodborne or non-foodborne groups
(Table 1) [31]. This chapter will focus on the foodborne campylobacters potentially
from food and food-related environments.

King [22] observed that the incubation at 42°C enhanced the growth of cam-
pylobacters, which led to the concept of “thermophilic” campylobacters. Tradition-
ally, based on the tolerance to the temperature 42°C - 43°C (able to grow at this
temperature), campylobacters are also referred as “thermophilic” and “non-
thermophilic” groups, with C. jejuni, C. coli, C. lari and C. upsaliensis as the four
human pathogenic species of Campylobacter and are often referred to as the ther-
mophilic Campylobacter species. However, these species do not exhibit true
thermophily (growth at 55°C or above) [39]. For example, the D value (the time it
takes to reduce a microbial population by 1 logarithm) at 50°C for C. jejuni strains in
skimmed milk was demonstrated to be between 1.3–4.5 min, and inoculation of a
heat tolerant strain of C. jejuni into roast beef at a level of 5:9� 106 /g resulted in no
survivors by the time the internal temperature had risen to 55°C [40]. Similarly, a
low D value between 0.7–1.4 at 60°C for C. jejuni and C. coli strains was found [41].
Therefore, it was suggested that the organisms which could grow at 41–43°C,
should be referred to as “thermotolerant” Campylobacter species [42]. Therefore,
the term “thermotolerant” is used in this chapter.

1.2 Distribution and diseases

Campylobacter species are commensal microorganisms of the gastrointestinal
tract of many wild animals (birds such as ducks and gulls), farm animals (cattle and
pigs), and companion animals (such as dogs and cats) (Table 1) [8, 11, 13]. The
organisms can also be found in the internal organs of animals [43, 44]. The main
route of transmission to humans is generally believed to be foodborne, via
undercooked meat and meat products, particularly the poultry products, as well as
raw or contaminated milk [11, 13]. Despite it is well-known fastidious nature,
Campylobacter is also isolated from environmental sources, such as lake, river, soil,
sea, and sewage, suggesting that environmental water is a possible vehicle that
transmits Campylobacter to humans [8]. Different species of the Campylobacter
genus naturally colonize a wide range of hosts (including pets, farm animals and
wild animals) and are frequently detected in contaminated food products, indicat-
ing that these organisms are potentially transmissible to humans [7].

Many Campylobacter species are known pathogens in either humans or animals,
or both [7] (Table 1). The main disease in humans caused by campylobacters is
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gastroenteritis worldwide, which is mainly due to C. jejuni [2, 7] and accounts
annually for approximately 166 million foodborne illnesses around the world [5].
Meanwhile, C. jejuni infection may lead to autoimmune conditions known as
Guillain-Barré syndrome (GBS) and Miller Fisher syndrome. Campylobacter species
have also been associated with a range of gastrointestinal conditions, including
inflammatory bowel diseases (IBD), Barrett’s esophagus, and colorectal cancer [7].
In addition, they have been reported to be involved in extragastrointestinal mani-
festations, including bacteremia, lung infections, brain abscesses, meningitis, and
reactive arthritis, in individual cases and small cohorts of patients [2, 7]. The precise
role of Campylobacter species in the development of these clinical conditions is
largely unknown. A growing number of Campylobacter species other than C. jejuni
and C. coli have been recognized as emerging human and animal pathogens. The
development of new molecular and innovative culture methodologies enhanced the
detection and isolation of a range of under-recognized or emerging, and nutrition-
ally fastidious Campylobacter species, including C. concisus, C. upsaliensis and C.
ureolyticus. It has been found that these emerging Campylobacter species are associ-
ated with a range of gastrointestinal diseases, particularly gastroenteritis, IBD and
periodontitis. Some cases of the gastrointestinal tract infection by these bacteria can
lead to life-threatening extragastrointestinal diseases [2, 7]. Based on the high
number of recent Campylobacter infections reported in the region, campylobac-
teriosis ranks as the third cause of death behind listeriosis and salmonellosis in the
EU [38].

1.3 Objectives

Various methods have been used for detecting campylobacters including con-
ventional culture methods, molecular (such as polymerase chain reaction or PCR)
and immunological methods, and genome sequencing analysis. Currently, isolation
and subsequent identification of the target campylobacters are required by most of
the regulatory bodies globally. The multiple species of Campylobacter exhibit
diverse physiological and metabolic characteristics, and growth requirements,
which can interfere with the sensitivity and specificity of culture-dependent
methods. Furthermore, strains among each species may behave differently in vari-
ous culture media and under various culture conditions. Therefore, it is important
to apply appropriate isolation and identification methods for different types of
species and samples based on specific purposes. The subsequent detection and
characterization can also be challenging for comprehensive and accurate identifica-
tion, particularly for source attribution and epidemiological investigations. This
chapter will firstly reviews the physiology of the organism in order to better under-
stand the isolation procedure, followed by a review of the culture-dependent
detection methods in combination with technologies newly developed for various
Campylobacter species from food and food-related environment that may
contaminate the food chain.

2. Physiology of campylobacters and growth requirements of different
species

It is important to understand the unusual physiology of campylobacters in vivo
and in vitro for the development of optimal culture procedures in vitro. A review by
Park [45] indicated that compared with most foodborne bacterial pathogens which
are considered to have stronger ability to survive the harmful conditions imposed
by food processing and preservation, Campylobacter species require uniquely
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fastidious growth conditions and are usually more sensitive to environmental stress.
It is generally believed that campylobacters may also lack many of the well-
characterized adaptive responses that support the resistance to stress in other bac-
teria [45]. These factors may lead to the difficulty to recover the campylobacters
from food and food-related environment. However, several reports indicated that
campylobacters have peculiar mechanisms such as their inherent genome plasticity
and gene regulators that respond to changing environments which enhance their
survival in hostile conditions [46–48].

2.1 Microaerobic requirement

As microaerophilic and capnophilic microorganisms, Campylobacter species
generally require a microaerophilic atmosphere with reduced oxygen (approxi-
mately 5–10% O2) and elevated carbon dioxide (5–10% CO2) concentrations for its
optimal growth in vitro [2, 11]. They have a respiratory type of metabolism. Several
Campylobacter species including C. concisus, C. curvus, C. gracilis, C. mucosalis,
C. rectus, C. showae and some strains of C. hyointestinalis require extra hydrogen
(3–7% H2) or formate acting as an electron donor for microaerobic growth and
successful recovery. Although most of the Campylobacter species require
microaerobic conditions for growth, however certain species such as C. concisus can
grow under or prefer anaerobic conditions for growth [2, 49]. There are also some
strains being aerotolerant [50–52].

2.2 Optimal growth and survival temperature, pH and water content

The minimum, optimum and maximum growth temperatures (°C) of campylo-
bacters are 32, 42–43 and 45 respectively, and minimum, optimum and maximum
growth pH values are pH 4.9, 6.5–7.5 and 9.5 [11, 45, 53]. Campylobacter species will
not survive below a pH of 4.9 and above pH 9.0 and grow optimally at pH 6.5–7.5
[11]. The organisms will grow with water activity (aw) at 0.987 and 0.997
[11, 45, 53]. Growth does not occur in environments with aw lower than 0.987
(sensitive to concentrations of sodium chloride (NaCl) greater than 2%w/v), while
optimal growth occurs at aw ¼ 0:997 (approximately 0.5% w/v NaCl) [11].

Generally, some Campylobacter species (e.g. C. jejuni, C. coli, C. lari, C.
upsaliensis, C. helveticus and C. insulaenigrae) are referred to thermotolerant with an
optimal growth temperature of 37–42°C and a maximum temperature of �46°C.
The remaining Campylobacter species are considered not thermotolerant in the
literature, with an optimal growth temperature of 37°C [54, 55]. However, based on
the official publications for the validated species and subspecies in Campylobacter
genus classification up to date (https://lpsn.dsmz.de/genus/campylobacter;
accessed on 2021-12-21), among 39 validly published species, 28 species with 2
subspecies are indicated as thermotolerant (able to grow at 42°C) with the majority
of the strains (90–100% strains) able to grow at 42°C [Table 1 with relevant
references]. These thermotolerant species/subspecies include C. armoricus,
C. aviculae sp. nov., C. avium, C. blaseri, C. canadensis, C. coli, C. corcagiensis,
C. estrildidarum sp. nov., C. helveticus, C. hepaticus, C. hyointestinalis subsp.
hyointestinalis, C. hyointestinalis subsp. lawsonii, C. jejuni subsp. jejuni, C. lanienae,
C. lari subsp. concheus, C. lari subsp. lari, C. mucosalis, C. novaezeelandiae,
C. ornithocola, C. peloridis, C. portucalensis, C. sputorum, C. subantarcticus,
C. taeniopygiae sp. nov., C. upsaliensis, C. volucris and C. vulpis. Seven species with
three subspecies are non-thermotolerant or poorly thermotolerant (only 0–10%
strains thermotolerant), including C. fetus subsp. venerealis, C. geochelonis,
C. iguaniorum, C. insulaenigrae, C. jejuni subsp. doylei, C. pinnipediorum subsp.
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caledonicus and C. pinnipediorum subsp. pinnipediorum. Others are partially
thermotolerant (26–89% strains), which can be divided into three groups, namely,
(�) (11–25% strains are thermotolerant) including C. hominis and C. rectus; (V)
(26–74%) including C. curvus, C. fetus subsp. testudinum, C. gracilis, C. showae and
C. ureolyticus; and (+) (75–89%) including C. concisus, C. cuniculorum and C. fetus
subsp. fetus. It is worthwhile to note that there are different degrees of tolerance to
growth temperatures among the strains of the same species, which should be taken
into consideration when the incubation temperatures are chosen for the diagnostic
testing.

Generally speaking, campylobacters are unable to grow below 30°C [45, 56]. It
was suggested that the absence of cold-shock proteins might be responsible for the
inability of this pathogen to grow at lower temperatures [57]. However, although not
growing,C. jejuniwas found to survive for more than 4 h at 27°C and 60–62% relative
humidity on food contact surfaces [58]. These physiological characteristics reduce the
ability of campylobacters to multiply outside of an animal host, and in food during
their processing and long term storage [45]. Due to the fluctuation of body tempera-
tures in reptiles, Campylobacter species in reptiles have adapted to larger temperature
ranges and are more tolerant to lower temperatures than those found in mammals
and birds. For example, the proposed Campylobacter geochelonis sp. nov., isolated
from western Hermann’s tortoise grows at 25°C and not at 42°C [54].

In pure cultures, Campylobacter spp. are normally inactivated by frozen storage
at �15°C in as few as 3 days [59], although freezing does not eliminate the pathogen
from contaminated foods [60]. Hazeleger [57] revealed that aged C. jejuni cells
survived the longest at 4°C. Under the cold and other stress conditions, campylo-
bacters may enter viable but non-culturable (VBNC) state [11]. The campylobacters
at VBNC state may affect the sensitivity of culture-dependent detection procedures.

2.2.1 Antibiotics resistance

Most campylobacters are resistant to a few antibiotics including amphotericin B,
cefoperazone, colistin, cycloheximide, polymyxin B, rifampin and trimethoprim at
different concentrations, which have been used as supplements in selectivemedia [61].
In addition, C. jejuni, C. coli, C hyointestinalis and C, fetus, but not C. upsaliensis, have
also been shown to be resistant to Aztreonam [62]. There is evidence that some strains
of C. coli and even a few strains of C. jejuni are likely to have been missed due to their
sensitivity to cephalothin. Several species, includingC. hyointestinalis,C. upsaliensis and
C. fetus are inhibited by the high amount of cefoperazone contained in the selective
medium [61, 63, 64]. Generally speaking,C. upsaliensis, a commonly believed to be an
important human pathogen, is sensitive to the antibiotics routinely used inCampylo-
bacter selective media. The recovery of this organism will rely on the development of
widely applicable, effective techniques for its isolation, such as membrane filtration
based techniques [63]. The presence of these antibiotics in the selectivemedia generally
used for the isolation of Campylobacter species (e.g., Skirrow’s medium) may well lead
to the suboptimal identification ofC. upsaliensis in clinical specimens at most centers. It
has been shown that the procedure (Cape Town Protocol) using membrane filtration
and antibiotic-free agar isolate more Campylobacter species than the agar alone with
antibiotics [65]. Therefore, the usage of antibiotics must be carefully selected for the
culture media to avoid the false negative results.

2.2.2 Essential nutrient requirements for growth in vitro

Campylobacters obtain their energy sources from amino acids or tricarboxylic
acid cycle intermediates [6, 66]. Campylobacter is generally considered a non-
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saccharolytic bacterium because of inability to ferment or use glucose and other
carbohydrates as growth substrates, which has been supported by genome sequence
analysis [67–69] and recent growth-independent phenotype microarray analyses
that allows monitoring the respiratory activity of metabolically active cells [70].
Furhter studies confirmed that pentoses and hexoses like glucose, fructose, galac-
tose, rhamnose and the disaccharides lactose, maltose, trehalose and sucrose do not
enhance the respiratory activity of C. jejuni [66, 71–73]. The Campylobacter culture
media contains mainly the peptamin or peptone that provides amino acids (source
of carbon), sulfide, and nitrogen required for making their energies, yeast extract
provides B vitamins (coenzymes), and sodium chloride to maintain osmotic equi-
librium [74]. Campylobacter enrichment broth must contain sources of iron, such as
blood, hemin, and ferrous sulfate [61].

2.2.3 Considerations for developing a new media or culture procedure or strategies

Taken together, the studies of metabolic activities have been mainly focused on
C. jejuni, which showed an intriguing metabolic diversity among different strains.
The diverse growth properties of C. jejuni isolates result from the presence or
absence of various metabolic genes involved in the strain-specific utilization of
particular substrates such as fucose, asparagine or glutamine and peptides. In addi-
tion, C. jejuni isolates contain different sets of group A chemoreceptor tlp genes that
respond differently to potential nutrients [75, 76]. The presence of various
chemosensory receptor genes in C. jejuni suggests that different strains may not
respond equivalently to certain nutrients and consequently cannot utilize and ben-
efit from the same growth substrates. These may affect the isolation of all the strains
from the same Campylobacter species using the same medium.

3. Isolation and detection

Traditionally, campylobacters have been detected using culture-dependent pro-
cedures followed by the identification, confirmation and typing of the isolates using
biochemical, immunological and molecular methods [11, 13, 77]. Cultural isolation
remains the gold standard for confirming the presence of live bacteria in a sample.
Molecular and immunological methods, particularly PCR [13], and recently the whole
genome sequencing tools [78–82] have also been used for detection of Campylobacter
species in different sources. The following will review the methods of culture, iden-
tification and confirmation, and, characterization of the isolates in detail.

3.1 Culture methods

3.1.1 History of methods development

Campylobacter-like organisms were first isolated from the blood of humans in
1938 using tryptose phosphate beef broth or brain broth at 37°C, but cultures using
media including Endo medium, blood agar, plain agar, Herrold’s, Loeffler’s, liver
agar, and milk agar for fecal samples failed [1, 20]. King in 1957 [22] demonstrated
that campylobacters referred to as the V. fetus group and the “related vibrios” by
then, grew in thioglycollate medium under microaerophilic condition in a Brewer
anaerobic jar. Some strains grew on MacConkey’s agar, but failed to grow on several
solid media such as SS (Shigella-Salmonella) agar, Simmons’ citrate agar or
Christensen’s urea agar. In addition, it was found that the V. fetus strains preferred a
temperature between 25°C and 37°C with very little or no growth occurring at 42°C,
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while “related vibrios” (now C. jejuni) strains failed to grow at 25°C, but grew
optimally at 42°C, with no growth occurring at 52°C. The first successful isolation of
Campylobacter from feces of patients was accomplished in 1968 and published in
1972, by using the technique of direct membrane filtration (0.65 μm pore size) onto
fluid thioglycolate-agar medium containing antibiotics (bacitracin, polymyxin B
sulfate, novobiocin and actidione [1, 25]. This was followed by the development of a
selective medium in 1977, which enabled the isolation of C. jejuni and C. coli from
human feces [27]. In Skirrow’s study, initially the filtrates of fecal suspensions
prepared by passing samples through Millipore filters based on that described
by [25] were cultured on plain blood agar. Then this study also developed a proce-
dure using medium containing vancomycin, polymyxin B, and trimethoprim, and
incubation condition at 43°C in an atmosphere of 5% oxygen, 10% carbon dioxide,
and 85% nitrogen [27]. The successful isolation of campylobacters from human
feces based on the above selective media led to the recognition that Campylobacter is
a leading cause of human diarrheal illness in many countries [5, 28]. Since then,
extensive efforts have been made to develop, evaluate and validate the existing and
new media, and procedures for the isolation and identification of campylobacters
from food and food-related environments.

The main media and procedures currently in use were developed during
1980s [61]. The characteristics of these organisms allowing growth and selection
have been largely understood [83]. The prescence of Campylobacter cells in larger
numbers from clinical (or animal fecal) sample makes their recovery reasonably
straightforward. The ability of thermotolerant campylobacters particularly C. jejuni
and C. coli, to grow at 42°C, has enhanced the selective isolation of thermotolerant
campylobacters by inhibiting the growth of other bacterial species. The applications
of antibiotic cocktails in selective media have become refined in their combinations
of the types and concentrations over time with continuously improved bacterial
recovery rates. For food and water samples, and perhaps clinical samples requiring
lengthy periods of transportation before analysis, the recovery of stressed cells can
also be challenging [11, 83]. The procedures for the isolation of Campylobacter spp.
from foods were adapted originally from clinical microbiology protocols since the
1970s [61, 84]. So far more than 20 of each selective enrichment broth and selective
agar media have been developed (Table 2) with different scales of evaluation and
validation [13, 37, 61, 77, 83, 85]. As campylobacters do not ferment carbohydrates,
peptones are included in all media as a nutrient source. Some such as Preston broth,
Bolton broth, Exeter broth and Campylobacter enrichment broth contain meat or
yeast extract [61]. Most media are developed based on several commonly used
media such as nutrient broth or agar, Brucella, Columbia, thioglycollate media with
the addition of various antibiotics and with or without blood [61]. Most Campylo-
bacter media contain antibiotics and blood which neutralizes trimethoprim antago-
nists. Oxygen quenching agents are also used to overcome the adverse effects of
toxic oxygen derivatives that can form when media are exposed to light (e.g.
hydrogen peroxide and superoxide) [61]. Selective or non-selective blood agar
media were successful in isolating new Campylobacter species [61]. Depending on
the purposes, quantitative and qualitative procedures have been developed. Cur-
rently there are a few agar plates available for detection and enumeration purposes.
In addition to those developed in the early days including the most used currently,
modified charcoal cefoperazonedeoxycholate agar (mCCDA), Skirrow, Campy
BAP, Karmali, and Abeyta-Hunt-Bark, several new agar plates have been devel-
oped, including Campy-Line, Campy-Cefex and several commercially available
chromogenic agars during the last two decades (Table 2) [96]. Currently, the most
commonly used enrichment media include Bolton broth, Preston broth and Exeter
broth [85].
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Enrichment broth media Agar media

Name Reference Name Reference

Thioglycollate broth [22, 61] Thioglycollate [61, 85]

Preston broth [61] Dekeyser [85]

VTP Brucella-FBP broth (VTP) or
VTP FBP broth

[61] Skirrow blood [27, 61, 85]

Modified charcoal cefoperazone
deoxycholate (mCCD) broth

[61] Blaser A [85]

Doyle and Roman enrichment
broth

[61] Blaser-Wang [85]

Park and Sanders broth [61] Butzler and BU40 (modified
Butzler) (contains
bacitracin, novobiocin,
cycloheximide, colistin, and
cefazolin)

[61]

Exeter broth [61] Butzler (Virion) (BV)
(cefoperazone, rifampin,
colistin, and amphotericin
B)

[61]

Christopher broth [85] Butzler (Oxoid) [61]

Lander broth [85] Butzler selective medium or
Campy BAP

[61]

Waterman broth [85] Preston agar
(Campylobacter Agar)

[61]

Hunt and Radle broth [61] Waterman agar [85]

Bolton broth (Campylobacter
enrichment broth – Bolton
formula)

[61] Modified Butzler agar
(MBA)

[61, 86]

Campylobacter enrichment broth
(CEB) (a commercial version of
Bolton broth with A commercially
available enrichment broth varies
only in the substitution of
natamycin for cycloheximide

[87] Blaser medium or Campy
BAP (with vancomycin,
trimethoprim, polymyxin B,
cephalothin, and
amphotericin)

[61]

Rosef and Kapperud
Campylobacter enrichment broth
(RKCEB),

[61, 86] Charcoal cefoperazone
deoxycholate (CCDA)
(Campylobacter Blood-Free
Selective Agar)

[61]

Rosef [61] mCCD agar [61]

Lovett’s broth (Brucella broth with
FBP, vancomycin, polymyxin B)

[88] Campylobacter Selective
medium (CAT)

[61]

Blood-free Campylobacter medium
(BFCM)

[86] Karmali agar [61]

Mueller and Hinton broth without
or with antibiotics (MHBH)

[61] Campy Brucella agar
(CBAP),

[61, 86]

Fennell’s medium [61] Mueller and Hinton agar
with antibiotics (MHBA) or
without antibiotics

[61]

Semi-solid medium or selective
semisolid Brucella medium
(SSBM),

[61, 86] Columbia Blood Agar [61]

53

Isolation and Identification of Campylobacter species from Food and Food-Related…
DOI: http://dx.doi.org/10.5772/intechopen.103114



3.1.2 Current culture procedures

So far, three types of basic culture procedures have been commonly employed
for the isolation of campylobacters. These methods include 1) membrane filtration
onto non-selective or selective agar media; 2) direct plating on selective agar, either
blood-based or charcoal-based; and 3) selective enrichment in broth followed by
streaking onto selective agar [61, 77]. Various culture supplements and procedures
have been examined or standardized to improve selective isolation of Campylobacter
species [11, 13, 37, 61, 77, 83]. The above three approaches have been used for
qualitative detection or enumeration (semi-quantitative and quantitative) using the
most probable number (MPN) procedure or direct plating method [97].

Although many culture-independent detection methods have emerged over
time, isolation by culture is still the “gold” standard procedure for the detection of
campylobacters for regulatory bodies. Despite the continued improvements in the
isolation procedures of Campylobacter, however, challenges remain, which reduce

Enrichment broth media Agar media

Name Reference Name Reference

Buffered Peptone Water
(transportation and carcass rinse
and pre-enrichment)

[61, 89, 90] Abeyta–Hunt–Bark (A-H-B)
agar (Heart infusion agar
with yeast extract and
antibiotics)

[91]

Weybridge’s (Transportation
media)

[92] Campy-Cefex [93]

Wang’s semi-solid Transportation
Medium

[89] Campy Line agar with
sulfamethoxazole (CLA-S),

[94]

Wang’s Freezing/storage Medium [89] CampyFood agar
Internationally validated
method for detection &
enumeration (ISO 16140/
AOAC)

BioMérieux,
France

Cary-Blair transportation medium [91] CASA Chromogenic
Medium for enteric
Campylobacter species

AES Chemunex,
France

A-H slant [91] RAPID’ Campylobacter agar
(chromogenic)

Bio-Rad (Certified
NF VALIDATION
according to the
ISO 16140
standard)

Brain Heart Infusion broth
(motility testing)

[95] CHROMagar™
Campylobacter CAC
(chromogenic for
thermotolerant
Campylobacter)

CHROMagar,
Paris, France

The aztreonam amphotericin
vancomycin (AAV) experimental
campylobacter selective medium

[61, 62] Brilliance CampyCount
AGAR (chromogenic for
Campylobacter jejuni and
Campylobacter coli)

ThermoFisher
Scientific

CampyFood broth (Internationally
validated method for detection &
enumeration (ISO 16140/AOAC))

BioMérieux,
France

Campylosel Bio-Mérieux,
France

Table 2.
List of culture media used for isolation, transportation and maintenance of campylobacters.
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the efficiency of these methodologies [98]. As discussed in the section related to the
growth requirements, Campylobacter exhibits dynamic and malleable physiological
and metabolic characteristics that have impacts on the sensitivity and specificity of
culture-dependent methods. So far, there is no single or “standard” accepted
method of isolating and detecting all Campylobacter species from all kinds of sample
types, due to different requirements of temperature, microaerobic conditions,
nutrients and susceptibility to selective antibiotics. However, there are some gener-
ally agreed procedures for common types of Campylobacter species and some types
of food samples [13, 37, 61, 77, 83, 85]. Several protocols have been published or
recommended by recognized authorities, such as 1) the International Standards
Organization [99, 100]; 2) US Food and Drug Administration (FDA) [91]; 3) the
U.S. Department of Agriculture (USDA) - Food Safety and Inspection Service
(FSIS) [89]; 4) the Public Health England [95]; 5) World Organization for Animal
Health (OIE) [92]; 6) Health Canada (HC) [101]; 7) Australia and New
Zealand [102]. These methods use the most effective protocols to isolate
thermotolerant Campylobacter spp. (mainly C. jejuni and C. coli) from food, pri-
marily poultry products [77]. Cape Town protocol is also a well-known protocol
used in South Africa, which employs membrane filtration and antibiotic-free agar
plating for a broad spectrum of Campylobacter species [65].

The method of choice to isolate low numbers of Campylobacter from contami-
nated food samples is the combination of enrichment broth with selective plating or
direct plating on selective agars. For analysis of fecal samples or certain types of
food samples, direct plating is often preferred due to the presence of large numbers
of non-stressed campylobacters in feces. Several selective agars have been used for
various purposes including regulatory requirement in US [65, 89, 95]. However, due
to the slow growth of Campylobacter species, many are lost to competition by
contaminant bacteria naturally present in foods. As mentioned earlier, certain anti-
biotics in the selective media may inhibit the growth of certain Campylobacter
species and strains. By taking advantage of the unique motility of campylobacteria,
the membrane filtration method known as “Cape Town protocol” allows these
organisms in samples to penetrate the cellulose filters of 0.45-mm or 0.65-mm pore
sizes to antibiotic-free blood or other agar. This method has shown a great advan-
tage in isolating a wider spectrum of Campylobacter species, including C. upsaliensis,
C. concisus, C. curvus, C. rectus, C. sputorum biovar sputorum and C. hyointestinalis as
well as the standard C. jejuni and C. coli from human stools [65]. However, this
method takes longer time, i.e., a couple of days more than conventional direct
plating [103] and also depends on the presence of a large number of Campylobacter
cells with cell motility [104]. The membrane filtration method has been evaluated
for food and water samples [104–107]. One study [104] showed that the minimum
numbers of motile bacteria required for this method were 2.2 and 2.1 log colony
forming unit (CFU) for 24-h cultures and centrifuged cells, respectively, and 4.1
and 3.4 log CFU of coccoid and nonmotile mutant cells, respectively. Broiler meat
samples after enrichment in Bolton’s broth showed that approximately 1.7 log CFU
of Campylobacter can be detected with pure colonies on agar plates using this
filtration method. The results from the studies [104–107] demonstrate that the
motility of the bacteria influences passage through cellulose filters and that
0.65-mm-pore-size filters on agar plates help obtain pure Campylobacter colonies
from enriched food samples [104, 105]. A novel and simple filtration procedure
after enrichment in Rosef’s enrichment broth was developed using a hydrophobic
grid membrane filter (HGMF) on antibiotic-free semisolid medium (SSM). The
HGMF-SSM method showed higher recovery rates using turkey samples and pig
fecal samples compared with Rosef’s broth enrichment procedure [105]. A study
using selective enrichment combined with membrane filtration has shown a similar
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recovery rate but with 20-fold fewer false-positive for campylobacters in water
compared with the enrichment procedure [106]. Another study [107] showed that
the filtration method, and real-time PCR and digital PCR were more sensitive than
enrichment culture method using inoculated sprouts samples. The filtration method
showed a similar detection ability to PCR in all samples.

For the enrichment procedures, particularly for the samples with low numbers
of cells under stress, a preliminary (resuscitation) period of incubation at reduced
temperature (37°C) for about 4 h prior to increasing the temperature to 42°C (for
thermotolerant species) for the remainder of the 48 h of incubation time has been
used commonly. However, procedures using staged periodic increases in tempera-
ture to aid adaptation and recovery can be time-consuming and overly com-
plex [61]. Several factors have been considered during the development or
application of the media for campylobacters from food, including incubation at
37°C instead of 42 or 43°C and changes in the types and concentrations of antibi-
otics or various combinations of selective enrichment broth with selective agars,
in order not to inhibit a wider spectrum of the organisms such as C. upsaliensis,
C. jejuni subsp. doylei and some strains of C. coli and C. lari [108–111]. The use of
immunomagnetic separation methods to concentrate all cells and to remove
competitive microorganisms could be used as an option. However, this method is
problematic due to low capture efficacy because of the unique movement of cam-
pylobacters and with the few studies undertaken on campylobacters showing lim-
ited efficacy when applied to naturally contaminated samples [112], and possible
surface antigenic variations of the campylobacters if a single antibody is used for
capture [83]. Considerably less studied are the prevalence and importance of spe-
cies other than C. jejuni and C. coli, especially as related to food as a source of illness.
Most Campylobacter species have different growth requirements to C. jejuni and
C. coli, and until recently, specific methods for isolation have not been applied. In
order to enhance the detection sensitivity and accuracy, and shorten the turnaround
time of culture process, the screening of the presence of campylobacters in the
enrichment broth during or after enrichment could be conducted using various
methods, such as PCR [89].

Microaerobic systems are also important to support Campylobacter growth
in vitro. Different methods have been developed to generate microaerobic atmo-
spheres for routine use during the enrichment of food samples or during the incu-
bation of inoculated plate media. The microaerobic atmosphere is usually generated
in a gassed jar system, either by continuous flow of the mixed gas through the
containers or by evacuation and gas replacement. If a large number of samples are
processed, the evacuation-replacement is a more economical and practical way, for
which, the air in the jar or gas tank is removed by a vacuum pump, and then
replaced with a desired microaerobic gas mix [61, 91, 113]. Other commercial
sachets that generate microaerobic conditions can also be used, particularly for a
small number of samples or when other evacuation-replacement system(s) not
available [114]. Plastic bags utilized to freeze food products with a “ziplock” type
closing to prevent air leaks have been successfully used with gas-generating sachets
and manual evacuation-replacement systems to be flushed with a desired
microaerophilic gas mixture [115, 116]. Due to specific growth requirements, cer-
tain species or stains require H2 content [6]. For a large number of samples, or to
create unique microaerobic gas mixes with increased H2 content, more sophisti-
cated microaerobic workstations can be used [44]. In addition to generating the
microaerobic conditions, there have been several attempts to use O2-quenching
agents added to enrichment broths and agar plates for the isolation of Campylobac-
ter species to reduce the toxic effects of oxygen radicals. These O2-quenching agents
include blood or alkaline hematin, charcoal, iron salts, norepinephrine, ferrous
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sulfate, sodium metabisulfite and sodium pyruvate (known as FBP supplement). In
general, if blood or charcoal is added to agar plates, no other O2 quenching com-
pounds are required [61, 108]. Optimum growth can also be maintained in a tri-gas
incubator [117] or a continued culture bioreactors [118]. Possibly even further
neglected is the requirement for gaseous hydrogen in the cultivation atmosphere,
without which many species cannot grow. From that perspective, the lack of com-
mercially available”gas packs”to generate a microaerobic atmosphere that includes
H2 is unfortunate, especially since the growth of C. jejuni and C. coli are also
enhanced in the presence of H2. The inclusion of oxygen quenching supplements in
pre-enrichment media seems to be a widely adopted practice to allow broth cultures
to be incubated in air [61, 91, 101].

3.1.3 Regulatory use for risk assessment and control

The prevention of transmission to humans is paramount in reducing the inci-
dence and burden of Campylobacter disease in humans. In the last two decades,
extensive risk assessment and baseline studies on the distribution of the organisms
in the food chain have been conducted in several countries [8, 31, 119]. The ubiquity
of Campylobacter in the environment and poultry products presents difficulties in
investigating the complex pathways for infection with no single specific point for
effective prevention and control. Regardless of the high levels of contamination by
this pathogen, particularly in poultry carcasses and its products, raw meat contam-
inated with Campylobacter is still allowed to be sold at retail in most countries. Since
raw poultry is the main source of infection, poultry has been the focus for reduction
with various success using different approaches in several countries including Ice-
land, New Zealand and UK [8, 31, 119]. Recently, the United States of America has
introduced a standard and a compliance guide for poultry industries to reduce the
campylobacters in raw poultry [120]. In Europe, a Process Hygiene Criterion (PHC)
(Commission Regulation (EU) 2017/1495 of 23 August 2017 amending Regulation
(EC) No 2073/2005) for Campylobacter spp. came into effect in January 2018. This
PHC set a limit of the Campylobacter load (less than 1000 CFU/g) on broiler
carcasses to control contamination of carcasses during the slaughtering process
through monitoring and taking corrective actions when the mandated targets are
breached [121].

3.1.4 Impacts of sampling and culture procedures on the recovery sensitivity and isolation
of strain types

3.1.4.1 Detection sensitivity

According to the US Centers for Disease Control and Prevention (CDC), in
approximately 80 and 56% of the cases of foodborne illness and death respectively
in the USA, causal agents were not identified [122, 123]. In Canada, among 115
foodborne outbreaks reported from 2008 to 2014, 7.8% of outbreaks did not iden-
tify the etiologic agent [124]. Campylobacterosis is ranked as one of the major
foodborne illnesses [123]. Campylobacter species. may account for some of the
illnesses for which etiological agents were not identified. In fact, a study [125] in
Canada indicated that current methods for isolation of Campylobacter species from
clinical samples might fail to recover isolates from positive samples, particularly
those in cryptic taxa of Campylobacter. Furthermore, patients may also be colonized
with more than one genotype of Campylobacter [126]. Existing isolation methods
have technical limitations in isolating this fastidious bacterium, such as a growth
competition with indigenous bacteria in food samples. When compared with PCR
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methods, it was demonstrated that Campylobacter culture failed to correctly detect
Campylobacter in 30% of positive patient stool specimens [127] or detected fewer
species [128]. The studies comparing the culture and PCR methods for food have
demonstrated that PCR methods identified more positive samples than culture
methods [107, 129].

Several reasons could attribute to the relatively low sensitivity of culture
methods compared with molecular methods. Sample collection and preparation for
the sensitive recovery of live campylobacters may be important [77, 130]. For food
and water samples, and perhaps clinical samples requiring lengthy periods of trans-
portation before analysis, the recovery of stressed cells can be challenging [83].
Another interfering factor is the influence of microbiologically diverse and complex
food or other sample matrices. A study [111] compared the effects of Bolton and
Preston selective media on the microbiota compositions and isolation frequencies
using next-generation sequencing (NGS) analysis of 16S rRNA. The results showed
that Bolton and Preston-selective enrichments generated different microbiota com-
munities and that the sequence of combining the selective media also critically
affects the isolation frequency by altering microbiota compositions. For example,
the highly prevalent Escherichia coli in Bolton media negatively affected the efficacy
of Campylobacter isolation. The study [78] compared five different commercialized
selective Campylobacter media for the ability to isolate Campylobacter from broiler
fecal samples using 16S rRNA tagged-pyrosequencing of the isolated colonies.
Sequencing results indicated that 0.04% of the total fecal microbial community was
Campylobacter, and 88–97% of the putative colonies were in fact Campylobacter.
The study also revealed that incubation atmosphere had little effect on recovery,
but a significant difference in media specificity was found at 42 vs. 37°C. Different
culture media showed different non-Campylobacter sequence types. Therefore,
there are significant challenges in culturing Campylobacter on selective and/or dif-
ferential media due to the presence of other competitive microorganisms, which
can likely influence the metabolism of Campylobacter. In addition, the diversity of
various host or environment matrices, such as poultry- or bovine-specific matrices,
may also induce biochemical changes in Campylobacter, which further obscure
isolation and identification. In addition, exposure to environmental stresses such as
temperature, pH, aw, and starvation triggers a response that often results in the
so-called “viable but non-culturable” (VBNC) form that appears to be capable of
surviving as an intact and potentially infectious agent yet resistant to conventional
culture [48, 83].

3.1.4.2 Impact on the isolation of different strain types

Most official protocols including that of the ISO, US FDA and HC require 25 g of
meat for testing. However, retail packages typically contain multiple meat pieces
with weights exceeding the required amount. This raises a concern that the testing
of the required amount taken from only one of multiple pieces of meat from the
same package may not be representative of the whole package. In addition, several
studies have shown multiple strains could be present in a single chicken flock
[131–134], chickens from a positive flock could contaminate the raw chicken meat
at the slaughterhouse [134, 135] and internal organs and raw meat samples had
multiple Campylobacter strains [43, 44]. Therefore, slaughter and packaging pro-
cesses could lead to the contamination of chicken carcasses/raw meat from the same
or different flock(s) with multiple strains. The selection of samples from the same
package may affect the isolation of different strains in contaminated samples.
Furthermore, the effects of various culture procedures on the isolation of different
genotypes of campylobacters are not well understood. Overall, the culture
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conditions including temperature and types of media affected the genotypes of
campylobacters recovered from raw chicken [136–138].

Taken together, specific isolation procedures and culture media influence the
diversity of Campylobacter species recovered from samples. Temperature, media,
time, and enrichment all influence the ability to isolate Campylobacter. The infective
dose of the pathogen is low (approximately 500 CFU) [139, 140]. These studies
highlight the importance of method sensitivity, and the need to collect multiple
isolates from both clinical samples and potential sources of infection to support
source attribution and epidemiological investigations.

3.2 Identification, confirmation and typing methods

The next step for the successful isolation of a strain is the identification and
confirmation of the presumptive isolate. Traditionally, identification and confirma-
tion of an isolate consisted of the examination of colony morphology, phase-
contrast microscopic examination of morphology and corkscrew-like motility of the
suspect, followed by confirmation using immunological assays (e.g., agglutination
tests), biochemical and phenotypical testing, and molecular approaches [91, 101].
More recently, microbial identification based on proteomic profiling using Bruker
® MALDI Biotyper and genomic sequencing approaches have been
recommended [82, 89, 98]. However, different published official protocols use
different tests screening, confirmation and detection using agar colonies or enrich-
ment broth. The identification and selection of suspect colonies from the selective
agar are the first and crucial steps. To assist the accurate identification and selection
of the Campylobacter-like colonies on the agar plate, particularly when the colonies
are atypical or mixed with other floral microorganisms, specific, rapid and quanti-
tative colony blot immunoassay [137, 141] and molecular tests, such as PCR, can be
used [107].

The final stage in strain characterization is subtyping to allow rigorous assess-
ment for epidemiology and source attribution purposes. Various strain subtyping
approaches, including phenotyping and genotyping, have been developed and
applied. The classic techniques for differentiating isolates phenotypically are based
on the presence or absence of biological or metabolic activities expressed by the
organism. Since 1980s, a few phenotyping schemes have been developed, including
Skirrow-Benjamin and Preston biotyping schemes [142, 143], Penner (haemagglu-
tination) and Lior slide agglutination serotyping schemes [144, 145], plasmid
typing [146, 147], bacteriophage typing [148], and multilocus enzyme electropho-
resis [149]. The most popularly used phenotypic methods to differentiate
thermotolerant Campylobacter (mainly C. jejuni and C. coli) isolates include
Skirrow-Benjamin biotyping scheme, Penner and Lior serotyping schemes, and
multilocus enzyme electrophoresis [91, 101, 119, 149]. Although most of these
methods lack discriminatory power, they are still used and are efficient to charac-
terize bacterial food-borne pathogens [149]. All of the tests described above can
be used alone or in combination to isolate and identify Campylobacter species,
particularly C. jejuni and C. coli.

The need to enhance the limited discriminatory power of the traditional
phenotyping methods in epidemiological investigations has led to the development
of molecular typing methodologies. These improved technologies have been instru-
mental in reporting source attributions of sporadic infections and outbreaks with
Campylobacter by providing information on the genetic subtypes. Many molecular
subtyping methods have been developed to characterize Campylobacter species, but
only a few are commonly used in molecular epidemiology studies [83, 138, 150, 151].
The commonly used methods include: pulsed-field gel electrophoresis (PFGE), flaA
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short variable region sequence typing (flaA-SVR), flaA restriction fragment length
polymorphism analysis (flaA-RFLP), multi-locus sequence typing (MLST),
extended MLST (eMLST), ribotyping, random amplification of polymorphic DNA
(RAPD), microarray comparative genomic hybridization (MCGH), comparative
genomic fingerprinting, single nucleotide polymorphisms, high-resolution melting
analysis (HRM), Matrix-assisted laser desorption ionization-time of flight mass
spectrometry (MALDI-TOF MS), and nucleotide and whole genome sequenc-
ing [150, 152]. The molecular typing methods have played a significant role in
tracking sources of Campylobacter spp. infection [150]. However, most of the
above-mentioned technologies are based only on a small fraction of the
genome [150, 152]. In recent years, various emerging next generation sequencing
(NGS) platforms and various pipelines for different purposes have been devel-
oped [153]. The NGS has been applied in the development of molecular tests, and in
recent years various platforms have been used for whole strain genome sequencing
for campylobacters for various purposes including strain differentiation with more
discrimination power [82, 152, 154]. The method has been recommended for use
with the detection and typing of campylobacters by several regulatory organizations
such as USDA [89].

Overall, typing methods play an instrumental role in the identification, moni-
toring, and prevention of Campylobacter infections. The use of multiple phenotypic
and genotypic or molecular typing methods can improve species and subspecies
discrimination and is appropriate when trying to identify pathogenic organisms like
C. jejuni, C. coli, and C. laridis [151]. Serotyping and biotyping methods have been
commonly used for identifying bacterial isolates and for epideomiological purposes
in the past and currently in some countries [155]. These phenotypic methods,
however, cannot provide as much discriminatory power as genotyping methods.
The MLST, PFGE and AFLP have been found to have greater discriminatory powers
when compared with techniques like ribotyping and flagellin typing. It is not yet
possible to identify a perfect typing method for all non-pathogenic and pathogenic
Campylobacter species. However, currently available techniques including NGS,
when used in concert, would fulfill the requirements for epidemiological and source
attribution purposes. The development of a validated and practical typing method
or methods could make routine subtyping of Campylobacter species feasible.

4. Discussion and conclusion

Currently, the genus Campylobacter contains 39 validly published species, 11
subspecies and 4 biovars, according to the list of prokaryotic names with standing in
nomenclature. These diversified species of the genus Campylobacter transit through
various animal and environmental compartments to humans and animals, which
emphasize the need to adopt an integrated One-Health approach in Campylobacter
epidemiology, risk assessment and prevention. Thermotolerant campylobacters,
such as C. jejuni, C. coli and C. lari, are the most implicated species in Campylobacter
infections in humans. However, there are many other emerging and unusual spe-
cies, which cannot be detected using the currently available culture methods. Prob-
lems with recovering different strains within the same species or specific relevant
strains using the same media formulation are often encountered because of the
multiple resistance of campylobacters to antibiotics. Many studies highlight the
importance of method sensitivity and the need to collect multiple isolates from both
clinical samples and potential sources of infection to support epidemiological
investigations. All the above-mentioned testing limitations may have contributed to
missed or inadequate source attribution and a limited understanding of the
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epidemiology of Campylobacter gastroenteritis. Therefore, the development of the
new strategies, employing comprehensive procedures to isolate and detect all the
strains and species of campylobacters would be ideal. In order to prevent and
control the transmission of foodborne campylobacters to humans, the baseline
studies and risk assessments at larger scales with more systemic and collaborative
approaches have been strengthened in recent years. The measures to reduce the
burden of campylobacters in poultry products have been implemented in several
countries with success, including the regulatory requirements to meet the limit of
Campylobacter load on the carcasses of young chicken and turkeys in the US and
Europe. To overcome difficulties in preserving most fresh foods with short shelf-
life, the food industry urgently demands novel rapid tests at reasonable cost that
employ improved culture and culture-independent methods able to accurately
detect low numbers of viable Campylobacter cells. These innovative methods will
reduce significant economic loss and the health risks to public.
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Chapter 5

Conventional and Molecular 
Detection Methods of the 
Opportunistic Bacterial Pathogen 
Campylobacter concisus
Mohsina Huq and Taghrid Istivan

Abstract

Campylobacter concisus is an emerging pathogen that causes gastroenteritis and 
is a suspected cause of inflammatory bowel diseases. Its importance is enhanced 
by the chronic sequela that results from acute infection. This bacterium has been 
under-diagnosed in intestinal infectious diseases, and its clinical importance has 
not been determined yet. In order to establish the implication of this emerging bac-
terial species in human gastroenteritis and other infections, different approaches 
and procedure have been performed, where molecular typing methods have played 
a central role. The chapter provides a comprehensive past and recent updates on the 
detection of C. concisus by biochemical and molecular methods.

Keywords: Campylobacter concisus, hydrogen-requiring microaerophilic, 
opportunistic pathogen, PCR, PCR-DGGE, MALDI-TOF

1. Introduction

Campylobacter concisus is a fastidious, microaerophilic and hydrogen-requiring 
mesophile. It is a Gram-negative curved rod bacterium that is normally found in 
the human oral cavity and is actively motile with a single polar flagellum [1] with 
a cell size of (0.5–1) × (2–6) μm [2]. This small, non-pigmenting, asaccharolytic 
bacterium [3] usually grows slowly and requires enriched media. Such character-
istics could be linked to its small genome that has a low G + C content (34% -38%) 
[3]. Unlike other Campylobacter spp., C. concisus does not have any known primary 
animal reservoir yet. Probably the human gastrointestinal tract is its only habitat 
where potential infections may spread via the inter-personal route. However it is 
worth to note that C. concisus was reported to be isolated from slaughtered porcine 
samples but not from live animals [4], while its DNA has been detected in few 
animal sources, such as the saliva of domestic pets using PCR-DGGE method [5], 
and in diarrheic faecal samples from domestic dogs by quantitative PCR [6].

Historically, in 1981 Tanner et al. [3] first recognised C. concisus as a member of 
the microflora of the oral cavity. Oral cavity parts are lips, buccal mucosa, teeth, 
gums, tongue, the floor of the mouth below the tongue, and the hard bony roof 
and soft palate. Twenty years later, in addition to its status as a coloniser of the oral 
cavity in humans, C. concisus (with other Campylobacter spp.) was considered as an 
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opportunistic pathogen under certain medical conditions by Macuch, Tanner [7]. 
Since the recognition, there have been many approaches to detect and isolate this 
bacterium, but it remains unclear whether C. concisus is an opportunistic pathogen 
of inflamed tissues, an oral pathogen, or is simply a commensal of the oral cavity. 
Here we focus on past and current isolation and detection techniques used to detect 
this bacterium in clinical samples and other sites of the human’s gastrointesti-
nal tract.

2. C. concisus in the oral cavity

Several studies examined the composition of the subgingival microbiota of chil-
dren and found that the detection rate of C. concisus in permanent teeth is signifi-
cantly higher than that of indeciduous teeth (p < 0.001) [8, 9]. The prevalence of 
C. concisus in the human oral cavity was detected by a PCR targeting the 16S rRNA 
gene and it was found in 100% (11/11) of saliva samples collected from healthy 
individuals [5]. Similar outcomes have been reported by Dewhirst et al. [10], when 
both cultivation and molecular methods were used to identify the human’s oral 
microbiota. Another study conducted by Zhang et al. [11] also suggested that  
C. concisus was commonly present in the human oral cavity. The study reported 
the isolation of C. concisus from saliva of healthy controls, where 75% (44/59) were 
culture positive and 97% (57/59) were PCR positive. It is worth to mention here 
that our research team has successfully isolated this bacterium from 100% healthy 
human adults, using conventional culture and molecular techniques (unpublished 
data). These collective data indicate that the human oral cavity is the primary 
colonisation site of this bacterium.

The association of C. concisus with human periodontal diseases is also well 
reported [3, 9, 12], for example this bacterium was found attached to the teeth in 
higher numbers than other sites of the oral cavity in patients with periodontitis [13]. 
Immune responses against C. concisus in persons with periodontal diseases were also 
investigated, with higher antibody levels detected in periodontally diseased subjects 
compared to healthy controls [14]. Yet in other studies the bacterium was reported 
to be associated with gingivitis, periodontal sites in addition to healthy sites [15].  
C. concisus was also reported to be detected in bleeding sites more than non-bleed-
ing sites in periodontitis [8, 9, 16], and in enlarged lesions of gingivitis [17]. The 
same group reported in a later study that it was more associated with periodontitis 
in smokers than non-smokers participants [18]. The association of C. concisus with 
periodontitis was also supported by significantly higher isolation rates when gingi-
val crevicular fluids (GCF) of patients were positive for aspartate aminotransferase 
(AST) compared to patients with negative result for AST [19]. Later, C. concisus was 
included into one of the six successional complexes that are believed to be involved 
in periodontal diseases [20].

3.  C. concisus in acute gastroenteritis and chronic gastrointestinal 
diseases

The correlation between C. concisus and gastroenteritis was first reported in 
1989 by Vandamme et al. [21]. C. concisus along with other Campylobacter spp. 
such as C. upsaliensis, C. hyointestinalis, and C. fetus have been reported as caus-
ative agents of gastroenteritis, but the bacterium remained unidentified when 
conventional culture techniques with antibiotics in the culture medium were used 
[22–24]. The introduction of hydrogen to the microaerophilic incubation conditions 
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significantly improved the isolation rates of C. concisus from patients with diarrhoea 
[25]. In 1995 a study in Sweden reported that 6% of the total cases of children with 
diarrhoea were found to be related to C. concisus [26]. Another study conducted 
in the same year, in Melbourne, reported that 56% of the “Campylobacter like 
organisms” isolated from children with diarrhoea, were identified to be C. concisus 
by conventional culture techniques [27]. The identity of these isolates was also 
confirmed by molecular techniques in a following study which concluded that 
C. concisus was associated with diarrhoea particularly in infants between 0–35 months 
of age [28]. Van Etterijck et al. [29] did not report a significant difference in 
C. concisus isolation rate from children with and without diarrhoea (9% in control 
and 13.2% in patients). However, other studies reported that this bacterium is 
associated with gastroenteritis cases in children [30–32]. Furthermore, C. concisus 
DNA has been detected in stool samples of patients with gastroenteritis in several 
studies [24, 33–36], with Nielsen et al. [37] reporting the incidence of C. concisus 
in patients with gastroenteritis, almost as high as the common C. jejuni or C. coli in 
a population-based study in Denmark. A more recent study associated C. concisus 
with travellers’ diarrhoea in Nepal using 16S rRNA PCR of Campylobacter [38].

C. concisus was linked to inflammatory bowel diseases (IBD) since 2009 [11] 
when it was first isolated from stool samples of IBD patients [39]. Furthermore, 
Zhang et al. [11] found a significantly higher prevalence of C. concisus in children 
with CD than in controls (p < 0.001). In 2010, C. concisus DNA was detected in fae-
cal samples of CD patients, in a significantly higher ratio (65%) than that of healthy 
and non-IBD controls (33%) [40]. Hence, in 2011, C. concisus was considered to be 
associated with UC cases [41]. Furthermore, the prevalence of C. concisus DNA was 
significantly higher in biopsy specimens (p = 0.0019) of adult UC patients (33.3%) 
as compared with controls (10.8%), which was supported by another study in the 
same year [42]. Ismail et al. [43] compared enteric and oral C. concisus isolates from 
eight patients with IBD (four UC and four CD) and six controls by multi-locus 
sequence typing (MLST), invasion assays, protein analysis, and scanning electron 
microscopy. Interestingly, the MLST results showed that the majority (87.5%) of 
C. concisus isolates from IBD patients were in one cluster compared to those from 
the control group (28.6%) (p < 0.05). This study provided the first evidence that 
patients with IBD are colonised with specific oral C. concisus strains and these 
strains may undergo natural recombination. Exotoxin 9, a putative virulence factor 
which may be associated with increased survival in the cell [44], and the zonula 
tight junction occludens toxin (Zot) [45] have been associated with virulence 
properties of C. concisus isolates from IBD cases.

4. Identification

4.1  Laboratory diagnosis, isolation, and detection of C. concisus in clinical 
specimens

Since C. concisus is usually present with other commensal microorganisms, the 
filtration culture techniques and/or molecular identification methods are more 
reliable than standard culture methods.

4.2 Culture and incubation conditions

C. concisus is routinely cultured on Columbia agar base or blood agar base 
supplemented with 5–6% defibrinated horse blood (HBA) in a special gas mixture 
containing 7% H2, 7% CO2, 5–7% O2 and ~ 79% N2 in an anaerobic jar incubated 
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for 48–72 hours at 37 °C [28, 46, 47]. The microaerophilic growth conditions can 
also be generated by evacuating an anaerobic jar to −7 bar and then gassing with a 
mixture of 10% H2, 10% CO2 and ~ 80% N2 [46, 47]. C. concisus appears on HBA as 
colonies measuring 1–2 mm in diameter, round, entire, semi translucent and grey in 
colour [28].

4.3 Identification by cultural and biochemical properties

As C. concisus is a fastidious slow growing bacterium that is biochemically inert 
or inactive, it has been under-reported due to difficulties in isolation and improper 
identification. Sensitivity to cephalothin and nalidixic acid, growth temperature 
and colony colour have been used to identify C. concisus [48]. Arylsulfatase activ-
ity test is another important test, used to differentiate it from C. mucosalis and C. 
upsaliensis [49]. C. concisus was misidentified as C. mucosalis when initially isolated 
from samples other than the oral cavity [21]. Now, C. concisus is reported more 
often from patients with diarrhoea and other sites because of improvement of the 
culture system and the use of the stool filtration technique named the “Cape Town 
Protocol” [50]. In Cape Town, South Africa, the identification rate was reported to 
be increased by 31% when this technique was used with incubation in a hydrogen-
enriched environment [31, 51]. However, as mentioned earlier, recently Nielsen et 
al. [52] demonstrated the polycarbonate filter is superior to the cellulose acetate 
filter for detection of C. concisus.

The phenotypic characteristics used to identify C. concisus in several studies are 
listed in Table 1.

Test [3] [2] [53] [54]

Active motility + + + +

Oxidase + + (60–93%) + V

Catalase — — — —

Urease — — — NA

Hippurate hydrolysis NA — — —

Benzidine reaction +

Indoxyl acetate hydrolysis NA — — —

Nitrate reduction + + (14–50%) + (−)

Selenite reduction + (14–50%) NA

H2S/TSI + —b −/+ NA

Benzyl viologen reduction + NA NA

Neutral red reduction + NA NA

Growth at 25 °C NA — —

Growth at 42 °C NA + (60–93%) — (+)

Growth stimulated by formate and fumarate + NA NA

Alpha-hemolysis NA NA —

MacConkey agar NA NA —

Nutrient agar — NA —

Growth on minimal media — — NA

NaCl (2.0%) NA + (14–50%) NA —
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4.4 Isolation from clinical samples

There is no standard technique for the isolation of C. concisus from faeces, saliva 
or tissue. However, the most common technique used to isolate this bacterium 
from faeces is the ‘Cape Town protocol’, which involves filtration of samples onto 
enriched media such as HBA containing antibiotics or onto antibiotic free HBA 
[31, 32]. Initially the faecal sample is suspended in liquid medium or phosphate 
buffered saline (PBS) at 1:2 to 1:10, then, 4–5 drops are placed on a cellulose acetate 
filter (pores size 0.65 μm) positioned on HBA. The soaked filter should be kept 
on the medium for approximately 10 min to allow the small sized bacterial cells to 
pass through its pores. Once the filter is discarded, a streak dilution of the primary 
inoculum is performed then the plate is incubated for 3–5 days in the gas mixture 
conditions as previously explained [46].

To isolate C. concisus from tissue samples such as intestinal biopsies, the 
homogenised sample is spread on HBA plates containing 10 mg/ml of each trim-
ethoprim and vancomycin prior to incubation under the suitable growth conditions 
[11, 42]. Alternatively, a two-step enrichment-filtration method can be used [55] as 
follows: Step 1, the biopsy is enriched by initial incubation for 48 h in microaero-
philic conditions in a tube containing 3 ml of Ham’s F-12 medium with foetal bovine 
serum (5% FBS) and 10 μg/ml of vancomycin; step 2, filtration of 200 μl of the 
enrichment broth from the growth mixture obtained from step 1 onto HBA medium 
containing 10 μg/ml of vancomycin; followed by incubation in similar growth 
conditions for 2–4 days [55].

The isolation of C. concisus from saliva samples can be achieved by streaking 6 μl 
of saliva on a HBA medium containing 10 μg/ml vancomycin and incubation under 
the above mentioned growth condition for 3 days. The mixed bacterial culture is 
then collected as a suspension in BHI broth and filtered using cellulose filter (pores 
size 0.65 μm) on a fresh HBA plate and incubated for 2 days [56]. However, this 
method might not reflect the original load of C. concisus in saliva due to potential 
further growth during both incubation periods. Furthermore, commensals that are 
resistant to vancomycin could also compete and reduce the growth of C. concisus.

5. Detection and confirmation by molecular methods

Historically, C. concisus has been identified based on conventional methods such 
as culturing. This technique poses many challenges and can provide false negative 
results due to several external factors. Molecular biology allows more reliability as 

Test [3] [2] [53] [54]

Glycine (1.0%) NA NA —

Safranin (0.02%) + + (14–50%) NA v

Sodium deoxycholate (0.1%) + + (14–50%) NA —

Nalidixic acid (32 mg/ml) + + (60–93%) R +

Cephalothin (32 mg/ml) NA NA S —

Metronidazole (4 mg/ml) MIC: 0.5–2 + (14–50%) NA —
bTrace quantities, (−) most strains are negative, (+) most strains are positive, v variable, R Resistant, S Sensitive, 
NA not available.

Table 1. 
Biochemical characteristics of C. concisus.
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well as a higher sensitivity when detecting the presence or absence of the pathogens. 
Therefore, a variety of molecular methods have been developed to detect C. con-
cisus. For a bacterium of a fastidious nature, like C. concisus, molecular techniques 
can improve detection and identification in clinical samples. However, genetic 
variations should be considered in these detection methods otherwise some strains 
might be missed.

5.1 Direct detection of DNA in clinical samples

The presence of C. concisus DNA was investigated directly in faeces, intestinal 
biopsy, and saliva samples [11, 35, 56]. Initially a primer set (C412F and C1288R) 
designed by Linton et al. [22] to amplify the 16S rDNA gene (816 bp), was used 
as one step PCR to detect C. concisus from colonic biopsies [11]. Then, to identify 
C. concisus, the PCR product was sequenced and aligned to published sequences 
[11]. Soon after, a specific nested PCR was developed by Man et al. [40] to detect 
C. concisus in faecal specimens targeting the 16S rDNA gene. In the first PCR step, 
the primer set (C412F and C1288R) designed by Linton et al. [22], was used, while 
in the second step a new primer set (ConcisusF and ConcisusR) was developed to 
amplify a specific 560 bp region from the first PCR product of the 16S rDNA gene. 
Man et al. [40] applied this PCR to detect C. concisus from children’s stool samples 
with CD, non-IBD patients and healthy controls. Later, this nested PCR method was 
also applied to detect C. concisus from saliva samples collected from IBD patients 
and healthy controls [56]. This nested PCR has been used for C. concisus DNA 
detection in other human clinical specimens including intestinal biopsies and saliva 
[40–42, 56].

Later on, Huq et al. [35] developed a multiplex PCR (m-PCR) to detect  
C. concisus and other campylobacter spp.. in faecal samples, based on the size of 
PCR product. When this m-PCR was applied on spiked faecal samples, C. concisus,  
C. jejuni, and C. coli were specifically identified at 105 cells/gm of faeces. However, 
as C. concisus is present in very low numbers in intestinal samples, using the nested 
PCR could be more sensitive than the m-PCR method.

5.2 Molecular confirmation and typing

The first specific PCR used for C. concisus identification was developed in 1995 
by Bastyns et al. [57] using the forward primer MUC1 and a mix of two reverse 
primers CON1/CON2 to amplify the 23S rDNA region of C. concisus isolates. In 
2004, we modified the this PCR method used by Bastyns et al. [57] to identify and 
group 19 clinical isolates from children with diarrhoea into two genomospecies 
using primers MUC1/CON1 (genomospecies A) and MUC1/CON2 (genomospecies 
B) [28]. However, there were some reports on that the primers designed for this 
PCR constantly cross reacted with C. showae and Wolinella succinogenes and pro-
duced a similar size PCR product [31].

Other techniques which successfully identified C. concisus were later developed 
including a two-step identification scheme for Campylobacter, Arcobacter and 
Helicobacter based on analysis of the 16S rRNA gene by PCR-RFLP (PCR-restriction 
fragment length polymorphism) by Marshall et al. [58]. Another PCR assay was 
developed, in 2001, from a 1.6 kb DNA fragment isolated from C. concisus genomic 
library for molecular identification, where a single PCR product was obtained without 
any cross reaction from other Campylobacter spp. [51]. Another primer set (Pcisus5-F 
and Pcisus6-R) developed by Matsheka et al. [51] was initially used to amplify DNA 
fragments (344 bp) obtained from a C. concisus genomic library and later showed to 
specifically amplify C. concisus [28, 35, 51]. This primer set amplifies gyrB [35].
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6. Detection by MALDI-TOF

Matrix-assisted laser desorption/ionisation (MALDI) with time-of-flight 
mass spectrometry (TOFMS) is a technique developed more than three decades 
ago, which can be used to detect and characterise pathogens on the basis of larger 
biomolecules. Few studies proved the feasibility to identify C. concisus using MALDI-
TOF-MS analysis of protein biomarkers from protein extracts of cell lysates or from 
whole cells [59–61]. The first attempt was in 2005 [62] using MALDI-TOF-MS to 
identify a number of Campylobacter species from their protein biomarkers, where 
they have identified a 10.5-kDa protein as the DNA-binding protein HU, and the 
potential species-identifying biomarker ions (SIBI) for C. concisus strains. Later 
this DNA-binding protein HU (10.5-kDa) was suggested to be used as a strain-
specific biomarker for analysis by ‘top-down’ proteomics techniques [59]. However, 
a confirmed C. concisus isolate, by sequencing part of the 16S rRNA gene, could 
not be identified by MALDI-TOF by using database 3995 main spectra (June 2011) 
[63]. While a score ≥ 2.0 is considered reliable species identification, and between 
1.7 and 2.0 represent reliable identification at the genus level, the isolate had only 
a score of 1.62, as C. concisus was not included in the database. The first successful 
identification and characterisation of C. concisus by MALDI-TOF and ClinProTools 
2.2 software was in 2016 [60]. The study correctly identified all 14 C. concisus strains, 
despite evident differences between the isolates, with a scores ≥2.0 for secure species 
identification. There was a clear separation between other Campylobacter species and 
C. concisus by grouping of MSP dendrogram, with sufficient conserved peaks found 
for species identification. However, no distinguished biomarker has been identified 
to differentiate between the two genomospecies which can be easily differentiated 
by the 23S rDNA PCR [28]. Recently the lipo-oligosaccharide (LOS) structure (an 
important virulence factor which activates TLR4) of C. concisus clinical isolates 
correlated the inflammatory potential of each isolate with bacterial virulence by 
MALDI-TOF MS [61]. The presence of multiple bands in the SDS-PAGE profiles of 
C. concisus and C. jejuni LOS indicated their heterogeneity. The mass spectrometric 
analyses of lipid A indicated a novel hexa-acylated diglucosamine moiety, which 
cloud be an indicator of a potential virulence property.

7. Diversity of strains

As C. concisus is a genetically diverse organism, there is no standard molecular 
method yet to fully address this diversity. The standard typing of C. concisus could 
determine whether isolates obtained from diarrhoeic or IBD patients differ from 
those colonising healthy individuals [7, 64–66]. Applying such standard typing 
methods would help researchers to have a better understanding of C. concisus trans-
mission, natural habitat, virulence and the host’s immunological responses [67].

7.1 Typing by protein profiling techniques

It has been suggested that sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) and immunotyping were excellent tools for C. concisus 
identification. SDS-PAGE has been applied successfully to distinguish C. concisus 
from other small bacteria with very similar characteristics, such as C. mucosalis, 
other species of Gram-negative rods, as well as non-pigmenting and asaccharolytic 
bacteria [68, 69]. Other studies have used SDS-PAGE to identify clusters within 
C. concisus; the number of clusters identified varied from two to five [28, 65]. 
Therefore, the protein profiling technique could be discriminative for C. concisus 
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isolates, but the discriminative power might be improved if combined with another 
typing technique such as genotyping. It should also be noted that protein profiling 
failed to separate C. concisus isolates from IBD patients and healthy controls [43].

7.2 Genomic typing by PCR and other techniques

There is no documented standard technique for genotyping C. concisus isolates. The 
first genetic method to type C. concisus was DNA–DNA hybridization [21]. The authors 
used electrophoretic protein profiles, immunotyping and DNA: DNA hybridization to 
identify 22 strains named as EF (E Falsen) group 22 which were identified as C. conci-
sus. The 22 strains showed a considerable heterogeneity (42%) with the C. concisus type 
strain. The genetic diversity was later confirmed by analysis of 100 C. concisus isolates 
using randomly amplified polymorphic DNA (RAPD) [29, 70]. Another approach, 
which is a modification of the 23S rDNA PCR amplification method of Bastyns et al. 
[57], was used successfully used to type C. concisus by Istivan et al. using either the 
specific primer set (MUC1 and CON1) or (MUC1 and CON2) [28, 46]. In this system, 
isolates amplified by MUC1 and CON1 were assigned to genomospecies A while those 
amplified by MUC1 and CON2 were designated as genomospecies B [28, 66, 71].

The multi-locus sequence typing (MLST) was another technique applied to type 70 
oral and intestinal C. concisus isolates from 8 patients with IBD and 6 healthy controls 
[43]. Subsequently, the neighbour-joining tree divided these isolates into 26 types and 
two major groups. Most isolates (87.5%) in cluster 1 were from IBD patients compared 
with only 28.6% in cluster 2 (P < 0.05). It was also reported that all of the invasive C. 
concisus isolates were localised in cluster 1 [43]. Two major groups were also demon-
strated by MLST using a different set of housekeeping genes (aspA, atpA, glnA, gltA, 
glyA, ilvD, and pgm), applied to 60 C. concisus faecal isolates [72]. However, in both of 
these studies, it was not clear whether the two major groups were correlated with geno-
mospecies A and B. A more recent study in 2016, Nielsen et al. [60] determined the 
genetic diversity of 67 C. concisus isolates from Danish diarrheic patients using MLST 
and specific differences in the 23S rRNA, and reported the high diversity of C. concisus 
with 53 sequence types (STs). However, dendrogram profiles of each allele showed a 
division into two groups, which was more or less correlated with genomospecies A and 
genomospecies B but had no association to the clinical severity of disease.

In addition to the previous techniques, the pulsed field gel electrophoresis 
(PFGE) indicated the diversity of C. concisus isolates and assigned them into two 
groups according to the source of the isolates (faeces and oral cavity) and into several 
subgroups [73]. Furthermore, C. concisus isolates have been allocated into four groups 
using the amplified fragment length polymorphism analysis technique (AFLP) [66, 
71]. AFLP groups 1 and 2 aligned with genomospecies A and B (based on 23S rDNA 
PCR); while groups 3 and 4 could not be amplified by 23S rDNA PCR [66].

7.3 Typing by denaturing gradient gel electrophoresis (DGGE)

The PCR-DGGE technique was initially used to evaluate the microbial diver-
sity in complex environments [5]. In environmental microbiology applications, 
universal primers are designed to target the 16S rDNA gene for the detection of 
mixed bacterial communities and differentiation of Campylobacter, Helicobacter and 
Arcobacter from clinical samples and C. concisus [5]. The PCR product is separated 
by polyacrylamide gel electrophoresis based on the use of different melting tem-
peratures and its mobility in gradient denaturation of formamide and urea [74]. 
Previously, the DGGE technique was applied on 21 C. jejuni and one C. coli isolates 
using primer sets targeting the flagellin gene (fla-DGGE) [75]. A study conducted 
on DNA extracted from human saliva using PCR-DGGE to detect Epsilobacteria 
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(Campylobacters, Helicobacters and Arcobacters and related bacteria) reported 
that three reference C. concisus strains fell into two different DGGE profile groups 
[5]. However, Cornelius et al. [76] assigned C. concisus isolates from healthy volun-
teers and diarrhoea specimens into only one DGGE profile group by a semi-nested 
PCR-DGGE from 16S rRNA gene. The authors suggested that PCR-DGGE can be a 
useful tool for a direct detection of Epsiloproteobacteria.

Elshagmani [77] used Muyzer primer sets (518R: R-ATTACCGCGGCTGCTGG;  
341F-GC: F-CCTACGGGAGGCAGCAG and 907R: R-CCGTCAATTCMT 
TTGAGTTT) [78, 79] to amplify the 16S DNA of C. concisus. Those primers were 
originally designed to detect and analyse the genetic diversity of mixed bacte-
rial populations in environmental samples. As the DNA of all C. concisus tested 
isolates could be amplified using both Muyzer primer sets (1 and 2) to amplify 
16S rDNA, it was suggested these sets could be used in clinical samples to detect 
C. concisus in mixed extracted DNA samples. Moreover, the analysis showed that 
all Campylobacter spp. isolates can be divided into four distinct groups that were 
defined as group I, II, III and IV. All C. concisus genomospecies B isolates fall into 
group II consistently, however, most genomospecies A isolates were allocated to 
group I but some were allocated in group II [77].

7.4 Typing by rrn analysis

The diversity of the ribosomal RNA (rrn) operon (5S rRNA, 16S rRNA, 23S 
rRNA genes, and the ITS regions) is considered a useful tool for differentiation of 
the heterogeneous C. concisus species [80]. The sequences of C. concisus rrn operons 
were used in a recent study for the purpose of strain typing and delineation of 
phylogenetic relationships within these operons. A total of 38 indels were identified 
in the rrn operon within C. concisus genome. Five indels found in the 23S rRNA gene 
were significantly associated with either genomospecies A or B (p ≤ 0.05). The 
phylogenetic trees generated from 15 rrn operons and 23S rRNA genes also dem-
onstrated sequence differences between strains within the rrn. Hence, the study 
confirmed that C. concisus can be classified into two genomospecies (A& B) based 
on the presence of the indels in the rrn operon and the 23S rRNA gene is a more 
reliable target for C. concisus typing than the 16S rRNA gene [80].

7.5 Whole genome sequencing

Whole-genome sequencing (WGS) is becoming increasingly available and afford-
able technique. Until 2011, there was only one C. concisus fully sequenced genome 
available for a strain (id. 13826) isolated from faeces of acute gastroenteritis patient 
and sequenced in 2007. The second C. concisus strain (UNSWCD) isolated from an 
intestinal biopsy of a patient with Crohn’s disease was sequenced in 2011 [81]. Only 
76% of genes were homologues between C. concisus 13826 and UNSWCD [82]. More 
C. concisus strains isolated from various clinical sources were sequenced and their 
genomes showed evidence of gene shuffling in C. concisus [83]. Few years later, another 
study defined the C. concisus core-genome and identified genomospecies-specific 
genes [84]. It concluded that the C. concisus core-genome, housekeeping genes, and the 
23S rRNA gene consistently divided the 36 strains used in the study into two genomo-
species. The study also reported novel genomic islands that contain type IV secretion 
system and putative effector proteins, in addition to other new genomic features. A 
study by our team investigated the rrn operon (5S rRNA, 16S rRNA, 23S rRNA genes, 
and the ITS regions) for four newly sequenced whole genomes extracted from intesti-
nal and oral C. concisus strains, along with eight available WGSs online and established 
a clear correlation between the rrn operons and genomospecies [80].
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More recently, the complete genome sequence of the C. concisus type strain 
ATCC 33237 and the draft genome sequences of eight additional well-characterised 
C. concisus strains were added to the database [85]. This was followed by a 
study in 2018 which analysed the genomes of 63 oral C. concisus strains isolated 
from patients with IBD and healthy controls, of which 38 genomes were newly 
sequenced. The genomes were examined to identify pathogenic molecular mark-
ers and the researchers reported a C. concisus molecular marker, which is a novel 
secreted enterotoxin B homologue (csep1-6bpi) potentially associated with active 
CD [86]. Moreover, in 2018 [87], a study to identify C. concisus virulence proper-
ties and adaptations capability to reside in the GI tract, produced robust genome 
sequencing data and comprehensive pangenome assessment from 53 new C. concisus 
strains. The researchers identified few genetic differences between oral and gut 
isolates from the same patient and suggested that the variability in bacterial secre-
tion system content may play an important role in their virulence potential [87].

8. Conclusion

This chapter discussed the various approaches used to identify and differentiate 
C. concisus, since it was identified and named almost 40 years ago. This bacterium 
has been associated with periodontal diseases, acute enteritis, and IBDs, with the 
strongest evidence relating to acute and chronic intestinal diseases. However, its 
identification has always been challenging due to its inert biochemical charac-
teristics and to the extremely high degree of genetic heterogeneity. The studies 
presented and explored in this chapter show that C. concisus is a genetically diverse 
species, but the extent of the difference between strains remains largely unknown. 
However, with the limitation of biochemical tests to identify C. concisus, molecular 
detection approaches including the PCR, of 23S rDNA, DGGE, m-PCR, MALDI-
TOF and whole genome sequencing, have all made the identification and differen-
tiation of this bacterium much easier than before.
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Abstract

Health care associated infections also termed as nosocomial infections are 
notable cause of morbidity and mortality especially in resource limited countries 
like Pakistan. Newborns and aged people have more probability of being infected by 
Health care associated infections because of immunosuppressant. Central line asso-
ciated blood stream infections (CLABSI) are considered as one of the promising 
negotiator associated with Health Care associated infections. Improper health care 
setting and unaware medical staff play a championship protagonist in prevalence of 
health care associated infections. Standard hygienic measures should be adopted to 
reduce risk of Health care associated infections. So, there is a pressing need to take 
on control policies by Government to handle this dilemma. This chapter gives new 
intuition to healthcare associated microbes, infections and provides comprehensive 
detailed on ironic precaution to scientific community.

Keywords: Palindromic rheumatism, Rheumatoid arthritis, Environmental risk 
factors, Genetic risk factors, Therapies

1. Introduction

In health care safety issues, health care associated infections (HCAIs) are a 
significant cause of morbidity and mortality in developing countries specially 
in Pakistan. Environment of hospital favors certain infections during the period 
of admission patients, these are termed as Health care associated infections. 
Contaminated equipment’s, unaware medical staff, unhealthy hospital environ-
ment and not satisfactory standard measures promote Hospital acquire infections, 
nosocomial infections/Health care associated infections (HCAIs). Prevalence of 
health care associated infection is high in developing countries due to unhealthy 
health care settings, where it affects more than 25–30% patients. Unhealthy 
Standard hygienic measures and risk of HCAIs are directly related which clearly 
address a pressing need to follow standard hygienic guidelines [1–3]. Prevalence of 
HCAIs is roughly about 10–30% in developing countries and 5–10% in developed 
countries [4].
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Of all hospitalized patients about 15% are infected by HCAIs. In developing 
countries ten in every hundred acquire HCAIs. Neonates, patients of organ trans-
plant, patients of burn surgery and patients at Intensive Care Unit (ICU) are more 
prone to HCAIs. High rate of infection is observed in ICU ward. HCAIs not only 
down health of patients who are already ill with other diseases but also impose socio 
economic burden for developing countries by increasing health care cost [5, 6]. This 
review article not only addresses endemic threat for patients but also covers counter 
measures to handle this problem as shown in Figure 1.

Role of medicines in treatment of diseases is understood by many of us but in 
recent years awareness about communication of diseases through health care is 
increased [7]. Ignaz Phillip Semmelweis was medical doctor who realized commu-
nication of puerperal sepsis through hospitals. He found increased rate of women 
death in clinic. To reduce rate of maternal deaths Semmelweis introduced chlori-
nated lime for hand washing. It is estimated that about 100,000 people are killing in 
world through HCAIs [8].

This review paper provides us advances knowledge about hospital infections 
and provide instruction to government for the improvement of medical condi-
tions. In this paper, we have summarized the various health care associated 
infections by which patients are more vulnerable ultimately conditions will 
be severe.

Figure 1. 
Overview of hospital acquired infections.
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2. Types of HCAIs

2.1 Central line-associated bloodstream infections (CLABSI)

Central line-association bloodstream infections are the infections of central 
venous catheter (CVC) by which catheter tube is only route for microorganisms 
to enter patient body and central line is required for infections progression within 
48 hour [9]. There are two major routes which are adopted by microorganism, 
intraluminal and extraluminal but intraluminal route is important in the sense of 
causing severity through catheter hub [10]. In above luminal routes, biofilms are 
formed due catheter hub infection, composed of bacteria which is formed mostly 
extracellular matrix within 24 hour of catheter insertion [11]. CLABS-infections 
leads to cancers and other neurodegenerative diseases in those patients which are 
immunosuppressant [12], agonize chemotherapy and confess in ICU. Central-Line 
Insertion [13] is best method to control CLABSIs in ICU patients, but it is very cost 
effective.

CLABSIs effect the neonatal life, in the form of sepsis which cause the 
20–36% [14] due to CVCs. In most cases, the babies which are premature, 
exposed to CLABSIs, have poor growth [15], high death rate and neurodegenera-
tive diseases. Fever, hypothermia, apnea and bradycardia are most disastrous 
indicators which are appeared in the 1 year < age children [16]. CLABSIs also 
effect the adult life, the proportion of gram-negative bacteria including Klebsiella 
pneumoniae, E. coli, and Enterobacter cloacae, exceeded [17] due to translocation 
from gastrointestinal tract which enhances the bowel wall infections and mucosa 
infections. All these microorganisms enter the human to mutate the normal body 
functioning.

The potential pathway for source of microorganism are following catheter inser-
tion site, hands of healthcare worker, contaminated disinfected, patient skin flora 
during catheter hub operation, contaminated drugs or fluids, catheter infections 
and hematogenous dissemination as a secondary infections [18]. Through these 
routes, microorganism enters in body and form biofilm at insertion site. Biofilms 
contains colony of bacteria which is formed firstly extracellular at catheter site but 
with a passage of time, move towards intracellular matrix [19]. The pathophysiolog-
ical features are low metabolic rate, tiniest inhibitory concentration, less vulnerable 
to antibiotics and high penetrance rate to antibiotic, adapted by microorganism to 
spread the infections [20].

According recent researches there are 84,000-204,000 [21] people, infected 
by CLABSIs and 25,000 death. Death incidence rate of CLABSI is about 12–25%. 
Catheters are used for intravenous therapies, for delivery of specific medicine and 
specific treatment. Through contaminated infusion of catheter and unhealthy 
environment microbes gain access to bloodstream which cause CLABSI. Coagulase 
negative staphylococci for example Staphylococcus epidermidisis and S. aureus [22] 
which are most common cause of CLABSI in developing countries including south 
Korea [23]. According to a study of intensive care unit in Pakistan CLABSI has 
highest incidence rate in all HCAIs [24].

To overcome such rate, government and hospital admin should adopt fol-
lowing aliments, sterile barrier [25] are used during catheter insertion and use 
disinfectants in case of intravenous administration [26]. Government should also 
give priority the potent disinfectants including’s, chlorhexidine, povidone iodine, 
iodophor and 70% alcohol but optimal timing is unclear yet [9]. Awareness in medi-
cal staff, PICC site assortment, CVC insertion and maintenance by intervention 
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bundles, applications skin antiseptics, In-line filters, umbilical catheter, catheter 
dressing, prophylactic antimicrobial and antimicrobial locks are the methods of 
preventions for CLABSI.

Awareness in medical staff Basic principle to control any disturbance, educate 
the people to specific issue. CLABSI incidence rate would be higher day by day than 
the responsibility of government and hospital admin to educate their staff [27]. 
Government should also publish proper set of rules and guidelines for maintained 
and insertion of catheter, insist the staff to follow these rules and do more practice 
[28]. The potential way to prevent CLABSI, to enrolled only skilled nurse for inser-
tion and upheld of catheter and nurse-to-patient ratio should kept normal specifi-
cally in ICU [9].

PICC site assortment Upper and lower limb [29] considered as PICC site but the 
exact location is unknown yet. Subclavian and femoral vein [30] are the most suit-
able site for insertion as compare to jugular vein because it is more susceptible for 
infections and biofilms formation [28].

CVC insertion and maintenance by intervention bundles Intervention bundles 
(IBs) are widely used to control bloodstream infections and maintenance of 
CVC but before introducing the IBs, medical staff must be monitored checklist 
to reassure compliance and the recommendations. Recent health care report 
revealed that 40% CLABSI patient abridged by using intervention bundles in 
USA [31].

Applications of skin antiseptics Skin antiseptics stunt the growth of microor-
ganisms on living tissues, 70% alcohol, tincture of iodine or alcoholic chlorhexi-
dine gluconate (CHG)solutions are widely used before inserting catheter [32]. 
Researchers proved that there is no recommendation for preference or valuable any 
antiseptics among others but precautions for usage of antiseptic should be followed 
such as antiseptic must be dried up before inserting catheter and changing the 
dressing [33]. Most important thing, application of antiseptic (CUG Solution) on 
infants could lead to skin cancer and neurological disorder. Overindulge of iodine 
tincture metamorphose the functional veracity of thyroid gland which need iodine 
to release thyroxin [34, 35].

In-line filter, a device which is used to pour the material into body but not to 
prevent the CLABSI. According to reported data, there are two inline filters used 
such 0.2 μ and 1.2 μ used for liquid and large molecule insertion respectively. In-line 
filter basically reduced the mortality and morbidity in neonates [36].

Umbilical Catheter It is used for monitoring the sickness in neonates through 
arterial and venous umbilical catheter. So, before inserting the catheter on 
umbilical site, antiseptic must be applied to prevent complications. Despite 
of these, antibiotics especially low dose of heparin is also used to control 
CLABSIs. Optimal time period for catheter is 5 to 14 days either for venous or 
arteriosus [9].

Catheter dressing including gauze and transparent clothing are mostly used in 
CLABSI-site until used when the bleeding or oozing is not stunt. But researcher 
endorsed that antibiotic is not a helpful font to stop these type of infection because 
antibiotics induced the fungal infections and resist the bacterial at catheter inser-
tion site [9].

Prophylactic antimicrobial is most effective agent to stunt the mortality rate in 
newborn and resist the microorganisms but the exact mechanism for usage of agent 
on CLABSI is not clear [37].

Antimicrobial locks including fusidic acid, vancomycin and amikacin are most 
effective agents to prevent the CLABSI specifically in newborn babies [38].
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2.2 Catheter associated urinary tract infections (CAUTI)

Catheterization is a process of introducing urinary catheter into urinary bladder 
which functions both as therapeutic tool and diagnostic tool. In health care facilities 
catheter associated urinary tract infections (UTIs) are most common infection. 
Infection can occur during insertion of catheter and cleaning of catheter if process 
is done inadvertently. For number of reasons about 25% of all hospitalized patients 
need catheter and risk of catheter associated urinary tract infection is much higher 
in Intensive Care Unit (ICU). Among all HCAIs catheter associated urinary tract 
infection account for about 40% [39, 40], catheter related UTIs 70% and 95% 
UTIs in intensive care units [41]. To reduce risk of catheter associated urinary tract 
infections there is a pressing need to follow standard measures during catheter-
ization process and safe maintenance of catheterization. If Catheter associated 
urinary tract infections are ignored for long time serious kidney disorders may 
arise [42, 43].

Pandemic nature of CAUTIs, 150 million affect the people annually which show 
following symptoms such as somber sequelae, recurrences, pyelonephritis with 
sepsis, blood with urine, catheter obstruction and renal damage [44]. Accounted 
symptoms are the result of severe complex metabolic reactions due to overdose 
of antibiotic, frequently usage of antimicrobial drugs such as Clostridium dif-
ficile colitis.3 [45]. There are two major category of UTIs, complicated UTIs and 
Uncomplicated UTIs based on pathophysiological complication [46]. In case of 
uncomplicated UTIs are also known as community-onset-cystitis [47] in which 
patient remain healthy, not develop any neurological problems of urinary system 
[48]. These types of complications mostly recorded in female, but infant or older 
men could be exposed for UTIs [49, 50].

Recent discoveries proved that complicated UTIs totally dependent on physi-
ological pools of patients [51]. If a person has weak immune defense system, 
renal failure, renal stones, urodynamics and indwelling catherization (IC), are 
major indicator for UTIS but the IC is most communal agents to progress the 
 infections [52].

E. coli is most common cause of CAUTIs but other are listed in graph:1. These 
microorganisms progress the infections after 24–48 hours of catheter insertion. 
Entrance of microorganisms form the biofilms inside the catheter-site, which 
prevent the action of antibiotics but permit the microorganism to inside the patient 
body [52]. Microbes divide rapidly to develop infections, patient suffered 3–7% 
microbes daily after catheter-insertion [53]. These microbes mostly gram-negative 
bacteria which cause CAUTIs, enter the urinary system via crossing periurethral 
area [44]. The gram-negative bacteria are potential reservoir of infections, patients 
of CAUTIs are epidemic in nature so these gram-negative bacteria have efficient 
resistant again antimicrobial therapies [54]. If a patient remains untreated than this 
disease become acute [53].

This infection can be diagnosed by urinalysis test which address the presence 
of leucocytes and nitrites in urine but not detach these compound. The pres-
ence of leucocytes and nitrites signpost that a person is suffered from CAUTIs 
and progression of infections. Leucocytes in urine are the result of, activation 
of leucocytes esterase (LE), which is immune system product, triggering the 
malformed and break down of normal WBCs through the action of microor-
ganisms. But the presence of nitrites, developed curiosity in nitrogen-feeding 
bacterial colony reside inside the catheter site, which break the nitrogen 
wastes [55].
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The most effective way to prevent the CAUTIs, give proper guidance to medi-
cal staff and insist the nurse to do more practice [56]. In United Kingdom [57] 
developed the set rules in the name of “epic3 Guidelines “which based one scientific 
literature and expertise of medical staff. This booklet proposed that application 
catheter insertion must be done when there is no alternative because catheter 
insertion exceed the chance of urinary tract infections [58]. Catheter dressing, 
sterile catheter bag, length of catheter accordance to patient, gloves and aprons are 
properly used during catheter-insertion. One most important point to change the 
urinary drainage bag after every 7 days [55].

2.3 Surgical site infections

After urinary tract infections surgical site infections are most common HCAIs. 
According to a study about 13% of patients who undergo surgery become infected 
with Surgical Site Infections and SSI account for about 20% of all Health care 
associated infections and account for 77% deaths of surgical patients. SSI adopt 
the pandemic nature; overdose of antibiotic and hospital stay cause the recorded 
cases in Spain (26.1%) and Europe (19.6%). Reported data shown that SSIs 
are most common in china, but major microbes associated with SSIs are E. coli 
(25.9%), S. aureus (14.3%) and P. aeruginosa (11.9%) [25, 59]. Adverse outcomes 
of SSI include failure of wound healing, increase hospital stay, increase health care 
cost and mortality. Surgical site infection can occur after days and year of expo-
sure. Center of Disease Control and Prevention (CDC’s) classified the SSIs into 
three major group on the basis of site of infection such as superficial incisional 
(Skin infection), Deep incisional (Muscle infections) and Organ or Space (any 
part of body except skin and muscle) [60]. According to WHO resource limited 
countries like have no more data about surgical site infections. According to an 
observation study conducted in Pakistan about 6.5% patients who undergoes 
surgery develop surgical site infections and Staphylococcus aureus is most common 
bacteria that cause SSI. However, Klebsiellapneumonia, Pseudomonas aeruginosa, 
Escherichia coli, Acinetobacter and Proteus mirabilis can play significant role in SSI. 
Time duration of surgery is directly related to infection rate. Caesarian sec-
tion surgery that last for more than 1.5 hours increases the risk of SSI Infection. 
Patients with gastrointestinal surgery and wound contamination have high 
incidence of SSI [61]. Duration of surgery, age of patients, co morbidity and 
obesity are risk factors for developing surgical site associated infections. Control 
measures, proper antibiotics prophylaxis, patients’ hygienic conditions and good 
surgery setting can reduce risk of SSI. In ICU Skin and soft tissue infections are 
most common condition with fatality rate of about 1.3–7.2%. Among 2 million 
nosocomial infection (20–25%) [62] that occurs every year they account one 
quarter of these infections [63–65].

A recent study shows that Patients with neurosurgery have evidences of men-
ingitides mostly caused by Staphylococcus aureus. Per year number of cases of CHD 
(Coronary heart disease) is greater which need surgery. Surgery results in many 
postoperative infections which cause morbidity and mortality of children with 
CHD. Complexity of surgery, age and contaminations are risk factors for nosoco-
mial infections [64, 66, 67].

Despite of pathophysiological feature of SSIs, government and medical staff 
should be recommended the preoperative and intraoperative measures to control 
infections.

Balanced Dietplays a critical role in healing of wound if proper nutrient would 
not take, then it could alter the physiological nature of wound [68]. Proper nutrition 
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boosts up immune response for infection, if a patient should be used “immune-
nutrition” [69], it increases the anti-inflammatory response to infection and healing 
of wound would be rapidly recovered in immunosuppressant patients which suffer 
with major surgery [70].

Refinement _ Nasal Mupirocin It is a monocarboxylic acid antibacterial agent 
which is used to stunt the growth of methicillin-resistant Staphylococcus aureus 
(MRSA) [71] specifically in cardiac surgery [72] infections [68, 73].

Immunomodulatory Therapies Inflammatory diseases, Transplant patients and 
preoperative discontinuations are the risk factor to progression of SSIs [74]. Despite 
of these factor, scientists are crucial to overcome these limitation in these patient 
by the application anti-inflammatory drug, methotrexate, which is continuously 
supplied to patient at preoperative period [75–77].

Bathing/Shower For proper disinfection of skin, chlorhexidine soap [78] and 
povidone-iodine soap [79] best non-pharmacological soap to eradicate the bacteria 
but timing, types of soap and number of applications are also mandatory with 
respect of location such as axilla, groin and skin folds [80].

Oral Antibiotics Consortia of oral antibiotic and bowel [81] is efficient method to 
reduce the risk of SSIs approximately 4%, specifically in colon surgery [82] which 
face the exposure of Clostridium difficile [83]. This type of antibiotic is very work-
able on gram-negative bacteria and anaerobes which mutate the surgical complica-
tion into severe problem in organs except skin and muscles [84, 85].

Antibiotic Prophylaxis β-lactams is a prophylaxis antibiotic which is used to 
reduce the chances of SSI in therapeutic tissue [86]. But timing, dosage and indica-
tion are the optimal factors to insert in therapeutic tissue. Disproportionate use of 
antibiotic, which increase toxicity, resistance of bacteria and cost of antibiotics.

Hair Removal from surgical site also enhances the chances of SSIs that’s why sci-
entists not recommended hair removal during surgery. But the instrument, which 
is used to remove hair, really matter for the progression of surgical site infections. 
Electric shaver, razor blades and depilatory creams are widely used for vigilant hair 
removal on surgical site [87].

2.4 Ventilator associated pneumonia (VAP)

Ventilator associated pneumonia is one of significant health care issue among 
health care associated infections. 9–27% patients on ventilators have Ventilator 
associated pneumonia. 86% of nosocomial pneumonia is ventilator associated. 
Patients at Intensive Care Unit are more prone to VAP. In Asian countries especially 
in developing countries incidence of VAP is higher than European countries where 
poor implementation of standard measures make ICU a major transmitter of 
Pathogens.

Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter and enterococcus 
are most common causative agents of VAP in Asian countries. Chronic obstructive 
pulmonary diseases increase incidence of Ventilator associated pneumonia. Old 
Age, co morbidity, gender and severity of illness are significant risk factors for VAP. 
Among mechanically ventilated patients in Intensive Care Unit VAP is second most 
common infection [88]. Studies have shown that critically ill patients on ventilator 
can also develop nosocomial sinusitis [89].

2.5 Gastroentirites

Inflammation of Gastrointestinal tract is termed as infectious diarrhea or Gas-
troenteritis. In 2015 globally 1.3 million deaths were reported due to gastroenteritis. 
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In developing countries prevalence of gastroenteritis is most. Most common 
causative agent is virus (rotavirus, norovirus, astrovirus and adenovirus) however 
bacteria, parasites and fungi can also cause gastroenteritis. Most studies in literature 
show that most of nosocomial gastroenteritis infections were caused by rotavirus 
and mostly effects children under age of five [90, 91]. According to a study con-
ducted in Pakistan in 2015 about 80% of hospitalized children have viral infections 
and about 95% were positive for rotavirus in addition to others [92].

2.6 Puerperal fever

During childbirth and after childbirth or miscarriage women get infected 
with puerperal sepsis. Annually about 75,000 women die worldwide due to puer-
peral sepsis and developing countries have more death annually than developed 
countries. Puerperal sepsis is a leading cause of maternal mortality in developing 
countries like Pakistan due to multiple reasons. Most common causative agent of 
puerperal fever is bacteria. Data from developing countries as Pakistan shows that 
more than half of women do not get hospital facilities during delivery. Unhygienic 
conditions during delivery, long duration of labour, miscarriage, frequent vaginal 
examination, malnutrition, premature membrane rupturing, and anemia are risk 
factors for puerperal fever [92]. Most common infection that cause postpartum is 
endometritis and mostly occur in women who gave birth by cesarean section [93].

3. Causative agents

Bacteria, viruses, and fungus parasites are causative agent responsible for noso-
comial infections however most common causative agents are bacteria. In bacteria 
Enterobacteria, Staphylococcus and Pseudomonas and Legionella are more common 
cause of HCAIs.

80–87% of HCAIs are caused by 12–17 microorganisms P. aeruginosa, A. bau-
mannii, Enterobacter species, Proteus species, Candida species (eg, albicans, glabrata), 
K. pneumoniae and Klebsiella oxytoca, E. coli, coagulase-negative Staphylococci, 
Enterococcus species, Yeast NOS, Bacteroides species and others. In these 16–20% 
is multidrug resistance and most of these are gram negative organisms. However 
causative agents and resistance varies throughout world [94–96]. Bacteria are most 
common pathogen for HCAIs. Actinobacteria constitutes about 80% infections. 
Contaminated hands and wounds are mostly affected by Methicillin-resistant S. 
aureus (MRSA) and cause pneumonia and cause surgical site infection [5]. Like 
bacteria viruses also cause HCAIs. Common viruses causing nosocomial infections 
are herpes simplex virus, rota virus, influenza, HIV and hepatitis. Fungus such 
as Aspergillus sp, Candida albicans, and Cryptococcus neoformans can cause HCAIs 
[97]. In addition to bacteria and viruses, fungus (Aspergillus and Candida), prions 
and plasmodium can also cause nosocomial infections [98]. Summary of causative 
agents is shown in Table 1.

3.1 Risk factors

Unhealthy hospital environment (poor hygienic conditions, poor medical waste 
management), unaware medical staff (improper use of invasive devices and medi-
cal devices) and susceptibility of patient are risk factors for Health care associated 
infections (HCAIs).

As these risk factors are mostly associated with poverty so resource limited 
countries are at more risk to develop HCAIs due to impropriate control policies [98].
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4. Transmission of HAIs

4.1 Hospital environment

Unhealthy hospital setting serves as best source to transmit infections. 
Contaminated utensils, medical devices, air, food, beds, and windows can transmit 
pathogens. Supply of filtered air must be maintained in ICU [61, 98].

4.2 Medical staff

Medical staff plays a significant role in prevalence of nosocomial infection. Use 
of unsterilized medical equipment by unaware medical staff in healthcare delivery 
increases chances of infection of HCAIs. Improper handling and management of 
hazardous medical waste by unaware medical staff can act as significant reservoir 
of HCAIs. Most of studies in Pakistan show non satisfactory behavior of medical 
staff towards standard precautions [5]. Micro flora of patient can also become 
source of infection if they effect surgical site or wounds [5].

5. Preventions for HCAIs

5.1 Standard precautions

In health care unit medical staff should adopt proper standard hygienic mea-
sures (hand hygienic, sterilized equipment, use of gowns, gloves, respiratory 

Figure 2. 
Prevention against hospital acquired infections.



101

Health Care Associated Infections (HCAIs) a New Threat for World; U-Turn from Recovery…
DOI: http://dx.doi.org/10.5772/intechopen.97193

hygienic) to reduce chances of HCAIs. Medical staff should be trained for biosafety 
and hazardous waste management should also be maintained. Public should be 
aware about risk factors consequences of HCAIs as there are number of group of 
bacteria and viruses in health care centers. Medical staff must be aware with appro-
priate use of antibiotic to avoid antibiotic resistance which is a significant cause of 
death in south-East Asian countries where one child died in every five minutes due 
to antibiotic resistance [5, 97, 122–124]. Preventive measures are the best way to 
control these type of infections as shown in Figure 2.

5.2 Government policies

As HCAIs is leading cause of morbidity and mortality, health institute must plan 
efficient infection control programs to handle this problem. It is responsibility of 
government to promote safety of health care centers through availability of trained 
medical staff, appropriate use of medications and medical equipment and quality 
eye care. Workload and staff capacity of health care must be directed by govern-
ment to encourage good health care settings. Government must plan control policies 
(awareness about HCAIs through media) to reduce risk of Health care associated 
infections [2].

6. Conclusion

HCAIS is posing serious threat to economy of world specially to developing 
countries. In resource limited countries infections control program are unsatisfac-
tory. Surveillance for HCAIs mainly serves purpose of prevention interventions. 
Unhealthy hospital environment and unaware medical staff and susceptibility 
of patient mainly lead to HCAIs. Government must play its role by forming new 
policies and committees for modification in national guidelines and for hiring 
trained and educated staff to promote healthy health care setting. Government 
should promote implementation of standard strategies by providing resources and 
policies.
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