
Middleware Architecture
Edited by Mehdia Ajana El Khaddar

Edited by Mehdia Ajana El Khaddar

Middleware refers to the intermediate software layer that bridges the gap between
the heterogeneous hardware platforms and the backend applications requirements. It
allows providing common services and programming abstractions and hiding the low-
level management of the connected hardware. With the recent advances in distributed

systems and enabling technologies, such as RFID, WSNs, IoT, IoE, cloud computing,
context-aware pervasive computing, ubiquitous computing, etc., middleware design

and development has become a necessity, taking increasing importance. This book
provides a comprehensive overview of the different design patterns and reference
models used in middleware architectures in general, followed by a description of
specific middleware architectures dedicated to the use of the different emerging
technologies, such as IoT, cloud computing, IEEE 802.11, etc. This book intends
therefore to bring together in one place up-to-date contributions and remaining

challenges in this fast-moving research area for the benefit of middleware systems’
designers and applications developers.

Published in London, UK

© 2021 IntechOpen
© CIPhotos / iStock

ISBN 978-1-83969-406-6

M
iddlew

are A
rchitecture

Middleware Architecture
Edited by Mehdia Ajana El Khaddar

Published in London, United Kingdom

Supporting open minds since 2005

Middleware Architecture
http://dx.doi.org/10.5772/intechopen.92536
Edited by Mehdia Ajana El Khaddar

Contributors
Mehdia Ajana El Khaddar, Gary S.D. Farrow, Jagdish Chandra Patni, Rochak Bajpai, Jyoti Tripathi,
Sridhar Iyer, Atul Bansal, Muzaffar Rao, Thomas Newe

© The Editor(s) and the Author(s) 2021
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright,
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED.
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of
the individual chapters, provided the original author(s) and source publication are appropriately
acknowledged. If so indicated, certain images may not be included under the Creative Commons
license. In such cases users will need to obtain permission from the license holder to reproduce
the material. More details and guidelines concerning content reuse and adaptation can be found at
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of
information contained in the published chapters. The publisher assumes no responsibility for any
damage or injury to persons or property arising out of the use of any materials, instructions, methods
or ideas contained in the book.

First published in London, United Kingdom, 2021 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales,
registration number: 11086078, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Middleware Architecture
Edited by Mehdia Ajana El Khaddar
p. cm.
Print ISBN 978-1-83969-406-6
Online ISBN 978-1-83969-407-3
eBook (PDF) ISBN 978-1-83969-408-0

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

5,600+
Open access books available

156
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

138,000+
International authors and editors

170M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

BOOK
CITATION

INDEX

CL
AR

IVATE ANALYTICS

IN D E X E D

Selection of our books indexed in the Book Citation Index (BKCI)
in Web of Science Core Collection™

Meet the editor

Dr. Mehdia Ajana El Khaddar obtained her Ph.D. in computer
science from ENSIAS School in Rabat, Morocco (Ecole Natio-
nale Supérieure d’Informatique et d’Analyse des Systèmes) and
both her Bachelor of Science in computer science and Master
of Science in computer networks from Al Akhawayn University
in Ifrane (AUI), Morocco. Her research fields include, but are
not limited to, the following: RFID, middleware design, WSNs,

pervasive computing, ubiquitous computing, context-awareness, policy-based
systems, ontologies, IoT, IoE, IoNT, etc. Dr. Mehdia Ajana El Khaddar is a pioneer-
ing researcher of middleware architecture for RFID applications, WSNs, and IoT,
appointed as the best reviewer by international journals and proofreading or editing
companies, and holder of best paper awards from many recognized international
conferences for her research papers.

Contents

Preface XI

Section 1
Middleware Applications 1

Chapter 1 3
Middleware Solutions for the Internet of Things: A Survey
by Mehdia Ajana El Khaddar

Chapter 2 29
Middleware Architecture - History and Adaptation with IEEE 802.11
by Rochak Bajpai, Atul Bansal, Jyoti Tripathi and Sridhar Iyer

Chapter 3 41
Middleware Application, Suitable to Build an Automated and Connected
Smart Manufacturing Environment
by Muzaffar Rao and Thomas Newe

Section 2
Cloud Computing Middleware 51

Chapter 4 53
Middleware Patterns for Cloud Platforms
by Gary S.D. Farrow

Chapter 5 75
Cloud Security in Middleware Architecture
by Jagdish Chandra Patni

Contents

Preface XIII

Section 1
Middleware Applications 1

Chapter 1 3
Middleware Solutions for the Internet of Things: A Survey
by Mehdia Ajana El Khaddar

Chapter 2 29
Middleware Architecture - History and Adaptation with IEEE 802.11
by Rochak Bajpai, Atul Bansal, Jyoti Tripathi and Sridhar Iyer

Chapter 3 41
Middleware Application, Suitable to Build an Automated and Connected
Smart Manufacturing Environment
by Muzaffar Rao and Thomas Newe

Section 2
Cloud Computing Middleware 51

Chapter 4 53
Middleware Patterns for Cloud Platforms
by Gary S.D. Farrow

Chapter 5 75
Cloud Security in Middleware Architecture
by Jagdish Chandra Patni

Preface

The idea of having this book came from my interest in producing a practical book
about middleware design and architecture and gathering all the recent research
studies in this field. My previous work about radio-frequency identification (RFID)
middleware design and its application to many areas, such as, library management,
supply chain management (SCM), and health care, has motivated me to edit this
book concerning the different existing middleware design patterns and applications
that have emerged recently due to the technological revolution and the increasing
demand to develop smart environments.

Middleware refers to the distributed software layer that bridges the gap and
removes impediments between the heterogeneous hardware platforms and the
backend applications requirements. It serves as an intermediate layer providing
common services and programming abstractions and hiding the low-level manage-
ment of the connected hardware. With the recent advances in distributed systems
and enabling technologies, such as RFID, wireless sensor networks (WSNs),
internet of things (IoT), internet of energy (IoE), cloud computing, context-aware
pervasive computing, ubiquitous computing, etc., middleware design and develop-
ment has become a necessity, taking increasing importance. A dedicated middle-
ware solution is required for managing and monitoring the different hardware
devices, as well as processing dynamically generated high volumes of data, applying
contextual rules before disseminating these data to the different connected backend
applications, supporting rapid applications development, and also targeting the
security, privacy, and other issues both at the hardware and applications levels.

This book provides a holistic view about the different design patterns and reference
models used in middleware architectures in general, followed by a detailed survey
of recent propositions of specific middleware architectures dedicated to the use of
the different emerging technologies, such as, automating technologies, including
but not limited to IoT, RFID, WSNs, and cloud computing.

The aim of this book is to approach middleware systems from an architectural and
application perspective and to cover the middleware design and implementation
challenges related to each application field. This book, therefore, intends to provide
a comprehensive body of knowledge for the benefit of middleware systems' design-
ers and developers in different application domains and to bring together in one
place important and up-to-date contributions in this fast-moving research area, and
also the remaining issues and challenges that still need to be considered by research-
ers in their future works.

The organization of this book is directed by middleware design patterns and applica-
tions' development considerations. The first section of this book presents middleware
applications: Chapter 1 discusses and presents the different IoT middleware design
patterns and surveys the most recent existing middleware solutions for each pattern;
Chapter 2 presents the middleware architecture and its adaptation to IEEE 802.11
protocol, and Chapter 3 presents a case of middleware application used to build a
connected and smart manufacturing environment. The second section of this book

Preface

The idea of having this book came from my interest in producing a practical book
about middleware design and architecture and gathering all the recent research
studies in this field. My previous work about radio-frequency identification (RFID)
middleware design and its application to many areas, such as, library management,
supply chain management (SCM), and health care, has motivated me to edit this
book concerning the different existing middleware design patterns and applications
that have emerged recently due to the technological revolution and the increasing
demand to develop smart environments.

Middleware refers to the distributed software layer that bridges the gap and
removes impediments between the heterogeneous hardware platforms and the
backend applications requirements. It serves as an intermediate layer providing
common services and programming abstractions and hiding the low-level manage-
ment of the connected hardware. With the recent advances in distributed systems
and enabling technologies, such as RFID, wireless sensor networks (WSNs),
internet of things (IoT), internet of energy (IoE), cloud computing, context-aware
pervasive computing, ubiquitous computing, etc., middleware design and develop-
ment has become a necessity, taking increasing importance. A dedicated middle-
ware solution is required for managing and monitoring the different hardware
devices, as well as processing dynamically generated high volumes of data, applying
contextual rules before disseminating these data to the different connected backend
applications, supporting rapid applications development, and also targeting the
security, privacy, and other issues both at the hardware and applications levels.

This book provides a holistic view about the different design patterns and reference
models used in middleware architectures in general, followed by a detailed survey
of recent propositions of specific middleware architectures dedicated to the use of
the different emerging technologies, such as, automating technologies, including
but not limited to IoT, RFID, WSNs, and cloud computing.

The aim of this book is to approach middleware systems from an architectural and
application perspective and to cover the middleware design and implementation
challenges related to each application field. This book, therefore, intends to provide
a comprehensive body of knowledge for the benefit of middleware systems' design-
ers and developers in different application domains and to bring together in one
place important and up-to-date contributions in this fast-moving research area, and
also the remaining issues and challenges that still need to be considered by research-
ers in their future works.

The organization of this book is directed by middleware design patterns and applica-
tions' development considerations. The first section of this book presents middleware
applications: Chapter 1 discusses and presents the different IoT middleware design
patterns and surveys the most recent existing middleware solutions for each pattern;
Chapter 2 presents the middleware architecture and its adaptation to IEEE 802.11
protocol, and Chapter 3 presents a case of middleware application used to build a
connected and smart manufacturing environment. The second section of this book

gives an overview of middleware solutions and design patterns for cloud platforms,
which is presented in Chapter 4, followed by an overview of the concept of middle-
ware in the context of cloud computing and a detailed discussion of the major cloud
security challenges and solutions given, which is presented in Chapter 5.

Mehdia Ajana El Khaddar
Al Akhawayn University in Ifrane,

Morocco

IVXIV

1

Section 1

Middleware Applications

3

Chapter 1

Middleware Solutions for the
Internet of Things: A Survey
Mehdia Ajana El Khaddar

Abstract

The Internet of Things (IoT), along with its wider variants including numer-
ous technologies, things, and people: the Internet of Everything (IoE) and the
Internet of Nano Things (IoNT), are considered as part of the Internet of the future
and ubiquitous computing allowing the communication among billions of smart
devices and objects, and have recently drawn a very significant research attention.
In these approaches, there are varieties of heterogeneous devices empowered by
new capabilities and interacting with each other to achieve specific applications in
different domains. A middleware layer is therefore required to abstract the physical
layer details of the smart IoT devices and ease the complex and challenging task
of developing multiple backend applications. In this chapter, an overview of IoT
technologies, architecture, and main applications is given first and then followed by
a comprehensive survey on the most recently used and proposed middleware solu-
tions designed for IoT networks. In addition, open issues in IoT middleware design
and future works in the field of middleware development are highlighted.

Keywords: Internet of Things (IoT), WSNs, radio frequency identification (RFID),
virtual machine, events, services, middleware architecture, context awareness,
ubiquitous computing, machine-to-machine (M2M) communication

1. Introduction

Nowadays, various new generation-connected objects or things are invading our
daily lives including sensors, radio frequency identification (RFID) tags, smartphones,
wearables, and actuators among others, due to the emergence of new technologies.
With the development of cloud computing and wireless technologies, and the emer-
gence of new connected devices at a decreasing price, the IoT market is expected to
grow rapidly fostering the development of applications in different domains, including
but not limited to healthcare, manufacturing, logistics and transportation, traffic
management, home automation, smart cities, smart grids, smart agriculture, etc. [1].
These applications will use the raw data generated by the different connected things/
objects and provide new services in the targeted domains [2]. The Global System for
Mobile Communications Association (GSMA) forecasts that “by 2025, the IoT connec-
tions will reach almost 25 billion globally” [3]. These predictions are therefore high-
lighting the role of IoT in providing new ways of communication over the Internet.

The IoT network is considered a heterogeneous network with a complex structure,
connecting a wide range of devices using different evolving technologies such as
Bluetooth, ZigBee, Wi-Fi, 3G, 4G, 5G. The ubiquitous computing environment of IoT
connecting heterogeneous devices, technologies, and applications, and generating a

Middleware Architecture

4

large number of events continuously brings in important and new challenges, such as
interoperability, security, confidentiality, privacy, and energy-efficient operations [4].
For example, location tracking by the IoT devices may be allowed by some people to get
personalized services; however, it may violate their privacy. The middleware, which
is a software application, can hide the things details from the applications by commu-
nicating with the heterogeneous connected devices/things, filtering the raw captured
data, and processing them before dissemination to the connected applications, and
therefore easing the backend applications’ development and offering multiple com-
mon services [5]. The middleware can also deal with the interoperability, security, and
privacy issues facing the IoT. The IoT middleware development is an active research
area; there exist many middleware solutions addressing the IoT environment require-
ments in terms of context awareness, scalability, interoperability across heterogeneous
things, device management, data storage and management, security, privacy, and
service deployment. A major challenge faced by application developers today is finding
the most appropriate IoT middleware solution in terms of the provided functionalities
that should meet the application requirements and the underlying used technologies.
Therefore, the existing works on IoT middleware architecture need to be analyzed to
address their existing technical challenges, issues, and gaps in this domain and suggest
further improvements. This chapter provides a detailed overview of existing middle-
ware solutions for IoT and is organized as follows: Section 2 provides background
about IoT characteristics, architecture, and applications, and gives an overview of the
IoT middleware general architecture. Section 3 presents the IoT middleware design
considerations and requirements. Section 4 provides a comprehensive review of
currently existing research work in designing IoT middleware platforms. Section 5
discusses criteria for choosing the right platform according to the application require-
ments, along with some open issues and challenges, and the last Section 6 provides
some concluding comments recommending future research directions in this area.

2. Background

2.1 IoT architecture and applications

The Internet of Things (IoT) consists of two words: The “Internet” is defined
“a network of networks and a global system of interconnected computer networks
that use TCP/IP as a standard Internet Protocol (IP) to connect millions of users
and multiple private, public, academic, business, and government networks,” and
“Things” include “any real-world object/physical element such as home appliances,
clothes, smartphones, etc. or living things like people, animals, or plants” [6].
The International Telecommunication Union (ITU) considers IoT as “a worldwide
network of interconnected objects, allowing anything and anyone to be connected,
anytime and anyplace using any network and any service” [7]. Therefore, in IoT,
many heterogeneous devices will be connected to the Internet and will provide a
large volume of data and even services. The major components of IoT include wire-
less sensors and actuators networks, machine-to-machine (M2M) communications,
and RFID/near-field communication (NFC) as shown in Figure 1.

2.1.1 IoT infrastructure characteristics

2.1.1.1 Heterogeneous intelligent devices

In IoT, heterogeneous devices in terms of features, capacities, sensor comput-
ing natures (high end, middle end, and low end), costs, embedded intelligence

5

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

(adapting to the context, environment, and circumstances), and from different
vendors are expected to communicate and exchange information [8]. Also, new
types of devices are emerging continuously in the future as new technologies are
developed [8]. Figure 2 shows the main technologies used in IoT.

2.1.1.2 Context and location awareness

The different connected devices/things capture large volumes of data that need
further processing; it should be filtered, interpreted, and put in a context to have a
meaning. Context awareness helps to make the interpretation of data easier by adding
context information to the raw data captured by the IoT things, which allows perform-
ing M2M communication that is considered a core element in an IoT environment [9].

Figure 1.
IoT major components.

Figure 2.
IoT technologies.

Middleware Architecture

6

Also, the spatial/location information about things is important to understand their
interactions with other surrounding things (e.g., objects and people) [10].

2.1.1.3 Limited resources

IoT devices including small embedded sensors, RFID tags and readers, actuators,
etc., are constrained in terms of processing, communication capacity, battery, and
memory [8]. Also, the cost of these devices may increase when their performance
increases in terms of processing, communication capacity, or the use of the battery
to power them (e.g., active RFID tags are more expensive than the passive ones [5]).

2.1.1.4 Voluminous data and a continuous generation of spontaneous events

There are trillions of connected objects that are exchanging and storing hun-
dreds of Exabytes of noisy data in IoT, and therefore forming an ultra-large-scale
network [11]. These sudden interactions among things will also continuously gener-
ate events causing network congestion [11].

2.1.1.5 Dynamic distributed infrastructure

The IoT network is considered as an ad hoc network; there is no dedicated server
for managing the resources of devices/things, and devices can join or leave the
network anytime they want, or they can disconnect due to battery power shortage
or connectivity problems. Cooperation between nodes will be needed to keep an
active and stable network, and support multiple applications’ development [11].
Therefore, the IoT network is considered a globally distributed network like the
Internet and a local one within an application domain/context.

2.1.2 IoT applications characteristics

2.1.2.1 Diverse application domains

The IoT applications can be developed to cater to the needs of different domains
and environments, having different requirements and deployment architectures,
such as logistics and supply chain management, healthcare, environmental moni-
toring, smart home/buildings, smart agriculture [6]. Figure 3 gives an overview of
the potential IoT applications.

2.1.2.2 Real-time delivery of data and services

IoT applications in some specific domains such as transportations and healthcare
need to communicate real-time data and deliver on-time services to avoid critical
situations [6].

2.1.2.3 Security and privacy concerns

In the IoT network, the security of applications and communications among
the different nodes should be considered, along with the privacy of people’s
captured data such as location, daily activities, buying habits [12]. An efficient
and scalable security mechanism should be implemented considering the ad hoc
nature of the IoT network, and also, the privacy issues should be considered not
to prohibit the deployment of applications that violate citizen’s privacy by the
law [12].

7

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

2.2 IoT middleware platform general architecture

Given the IoT infrastructure and applications’ characteristics stated above, and
based on my previous research work done on middleware architecture for RFID
[5], context aware, and ubiquitous computing [13], an IoT middleware solution can
generally provide the following functionalities:

• Device abstraction, discovery, management, and control: It includes interop-
eration among the heterogeneous connected devices/things using different
standards. Application programming interfaces (APIs) are used for abstracting
the communication with the physical layer and also for disseminating data and
services to the different connected backend applications, hiding all details and
complexities.

• Data management and dissemination: It provides the different data preprocess-
ing functionalities, such as filtering, duplicate removal, aggregation.

• Context detection and processing

• Security, privacy, and business rules processing

• Application abstraction

The IoT middleware architecture is depicted in Figure 4. The main layers
include device abstraction and resource management layer, which handle the
interoperability and interaction with the heterogeneous devices, and manage the
low-level hardware parameters such as the used protocols, communication technol-
ogies, standards, and air interface; data management layer is responsible for storing

Figure 3.
IoT potential applications.

Middleware Architecture

8

and processing (filtering, aggregation, inference, etc.) the raw data captured by the
different devices/things; event management and context detection layer include
the application of policies and business rules requested by the applications (e.g.,
security and privacy rules); and application abstraction layer allows the communi-
cation of applications with the different devices and helps them to get the desired
processed data and generated events from the middleware.

3. IoT middleware design considerations and requirements

The role of a middleware platform is to provide a software layer shielding the
complexities of the hardware layer including the operating systems from the applica-
tions and allowing the applications’ developers to be concentrated mainly on the
requirements/problem to be solved. As described in Section 2, in the context of IoT,
there is a considerable variation in the used technologies, standards, and network
communications. We describe herein, a set of design considerations and require-
ments for a middleware to suit the IoT infrastructure and application characteristics.

3.1 Resource discovery and management

Since the IoT infrastructure is dynamic by its nature, the IoT middleware
should provide an automatic device discovery and enable the IoT heterogeneous
hardware devices (e.g., RFIDs, sensors, smartphones) to detect their neighbors in
the network and show their presence and available resources to them. In this case,
the middleware should consider the characteristics of the resource-constrained IoT
devices and be scalable in terms of the number of connected devices in the network.
The middleware should also manage the devices, monitor their resource usage,
and resolve any resource conflicts when potential and spontaneous new devices are
connected to satisfy the application requirements.

3.2 Data management, context awareness, and event management

The IoT middleware should provide data management and processing function-
alities to the backend applications; these include but are not limited to data detec-
tion and acquisition from the different connected devices/things, data preliminary

Figure 4.
IoT middleware architecture.

9

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

processing, such as filtering, duplicate removal, compression, aggregation, and data
storage. The IoT middleware should also manage the high number of generated
events in an IoT environment, such as real-time dissemination of events to the appli-
cations, event transformation based on contextual/location data, and inferences.

The IoT-middleware should provide context detection and processing for it to
adapt to smart applications requirements; it should collect context data and then
process them to generate inferences and decisions. This could be achieved by using
different techniques such as knowledge database, data mining algorithms, semantic
context aware multimodal visualization approach, and the use of optimized mes-
sage communication between the middleware users.

3.3 Scalability and adaptability

The IoT network can include a large number of connected things/devices and
provide multiple services; therefore, the IoT middleware should be scalable allow-
ing the growth of the IoT network, including the emergence of new heterogeneous
devices that could be monitored, added, or removed without any impact on exist-
ing middleware functionalities, the provision of new services/functionalities, the
addition/removal of network nodes, and the connection of multiple interesting
applications in the middleware services without complexity. The use of IPv6, loose
coupling, and virtualization are considered as useful ways for improving scalability
in middleware solutions. Also, the use of a service-oriented architecture (SOA)
makes the middleware flexible to the applications’ requirements in terms of new
services. The IoT middleware should also be dynamically adaptive to the different
circumstances and changes in the IoT environment.

3.4 Real-time data capture and services

The IoT network deals with multiple real-time/time-critical applications
requiring a timeliness delivery of processed data and services without any delay, for
example, healthcare applications; therefore, the middleware should provide real-
time services and information to these applications. In this case, the middleware
should manage the large data volumes detected from the multiple connected devices
and therefore use novel methods to detect, process, and disseminate these data to
the interested applications. The challenge of transaction handling, indexing, and
querying these data should also be handled. This could be ensured through the use
of agents, query processors, notification managers, etc.

3.5 Reliability and availability

Every component or layer in the IoT middleware should be operational including
communication, data processing, events management, technologies, devices con-
nectivity, and application management, even when failures occur. It should provide
a stable service for applications/users even at times of failure. The middleware must
also be available at all times for mission-critical applications that require a high fault
tolerance, for example, medical applications; in the case of failure, the recovery
time should be reduced to cater to the applications’ availability requirements.

3.6 Security and privacy

The IoT middleware should consider the security and privacy rules and policies
required by the connected applications. The use of context awareness in the middle-
ware can disclose some personal information about individuals such as location;

Middleware Architecture

10

therefore, it needs to protect people’s privacy using policies/rules/ontologies depending
on the applications’ specific needs [12]. Also, most of IoT middleware solutions are
evolving into the cloud, which requires more mechanisms to be put in place to deal with
the security and privacy issues, making users safe and protecting their personal data.

3.7 Ease of use and deployment

The IoT middleware should be lightweight, and easily used and deployed by the
end-users of devices or applications without any complicated setup procedures.

3.8 Distributed implementation

If the IoT infrastructure is distributed, the middleware implementation should
also be distributed, for example, when the devices, applications, and users are
located in different geographical areas.

Some of the requirements stated above are considered to be mandatory for some
applications while optional for others; for example, the real-time data capture and ser-
vices are highly required in the case of medical applications, but it is optional for other
applications that do not use timeliness information. However, the security, privacy,
and interoperability functionalities are strictly required by all types of applications.

4. Overview of existing IoT middleware solutions

Many middleware solutions, using a single design approach (e.g., service-
based, agent-based, database-based) or a hybrid one (combining different design
approaches), and providing different functionalities in many application domains
have been proposed and implemented in the IoT. These initiatives aim to offer a
standard platform used to abstract the lower-level details of the connected physical
devices and offer multiple services to the users and/or applications. In this chapter,
the existing IoT middlewares are surveyed based on their used design approach and
are grouped into six categories: service-oriented middleware, agent-based middle-
ware, event-based middleware, virtual machine-based middleware, database-
oriented middleware, and application-oriented middleware. A comparison of these
design approaches is given in Table 1.

4.1 Service-oriented middleware solutions

The service-oriented middleware (SOM), based on the service-oriented design
pattern, provides services to the applications, such as service discovery and man-
agement, data management, and quality of service (QoS) management. There exist
many service-oriented IoT middleware solutions. Some of the commonly used
service-oriented IoT middleware solutions are described as follows:

Hydra is a SOM for ubiquitous computing providing many management compo-
nents for resources, security, and services [19]. Hydra is a lightweight middleware
supporting dynamic self-reconfiguration and optimizing energy consumption in
battery-constrained devices. The security and privacy requirements are ensured by
Hydra through the use of Web Services enriched by semantic resolution [20].

The SenseWrap [21] middleware solution uses virtual sensors with the Zeroconf
protocols to abstract the sensors’ low-level details from the applications, and allow
them to discover sensor-hosted services. This middleware solution applies virtual-
ization only to sensors, which makes it unsuitable for IoT environments including
heterogeneous devices and application domains.

11

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Io
T

 m
id

dl
ew

ar
e r

eq
ui

re
m

en
ts

/f
ea

tu
re

s

M
id

dl
ew

ar
e

ap
pr

oa
ch

M
id

dl
ew

ar
e

so
lu

tio
ns

Ta
rg

et

en
vi

ro
nm

en
t

In
te

ro
pe

ra
bi

lit
y

Sc
al

ab
ili

ty
A

da
pt

ab
ili

ty
Re

al

tim
el

in
es

s
Se

cu
ri

ty

an
d

pr
iv

ac
y

Re
lia

bi
lit

y
C

on
te

xt

aw
ar

en
es

s
Ea

se
 o

f
us

e a
nd

de

pl
oy

m
en

t

D
at

a
m

an
ag

em
en

t
Ev

en
t

m
an

ag
em

en
t

Se
rv

ic
e-

or
ie

nt
ed

H
yd

ra
W

SN
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Se
ns

eW
ra

p
V

ir
tu

al
 se

ns
or

s
Ye

s
Ye

s
N

o
N

o
N

o
N

o
N

o
Ye

s
N

o
Ye

s

M
U

SI
C

U
bi

qu
ito

us
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
N

o
Ye

s

SE
N

SE
I

Se
ns

or
s/

ac
tu

at
or

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s

T
in

yS
O

A
W

SN
s

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

N
o

N
o

Se
ns

or
sM

W
W

SN
s

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

Se
rv

ill
a

W
SN

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
N

o
N

o

SO
CR

A
D

ES
H

et
er

og
en

eo
us

de

vi
ce

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

M
id

dl
ew

ar
e

ba
se

d
on

 R
ES

T

A
PI

H
et

er
og

en
eo

us

de
vi

ce
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

N
o

Ye
s

3S
O

A
Io

T
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s

Cl
ou

d-
ba

se
d

Se
riv

ce
-o

rie
nt

ed
G

oo
gl

e
Fi

t
Io

T,
 cl

ou
d

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
o

X
iv

el
y

Io
T,

 cl
ou

d
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
Ye

s
Ye

s
Ye

s
Ye

s

C
ar

rI
oT

s
Io

T,
 cl

ou
d

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ec
he

lo
n

Io
T,

 cl
ou

d
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
Ye

s
Ye

s
N

o

Middleware Architecture

12

Io
T

 m
id

dl
ew

ar
e r

eq
ui

re
m

en
ts

/f
ea

tu
re

s

M
id

dl
ew

ar
e

ap
pr

oa
ch

M
id

dl
ew

ar
e

so
lu

tio
ns

Ta
rg

et

en
vi

ro
nm

en
t

In
te

ro
pe

ra
bi

lit
y

Sc
al

ab
ili

ty
A

da
pt

ab
ili

ty
Re

al

tim
el

in
es

s
Se

cu
ri

ty

an
d

pr
iv

ac
y

Re
lia

bi
lit

y
C

on
te

xt

aw
ar

en
es

s
Ea

se
 o

f
us

e a
nd

de

pl
oy

m
en

t

D
at

a
m

an
ag

em
en

t
Ev

en
t

m
an

ag
em

en
t

M
ic

ro
se

rv
ic

es
-

ba
se

d
A

rr
ow

he
ad

Fr

am
ew

or
k

[1
4]

Io
T

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

D
at

a
ex

ch
an

ge
Ye

s

G
en

er
al

m

ic
ro

se
rv

ic
e

ar
ch

ite
ct

ur
e [

15
]

Io
T

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Sm
ar

t C
ity

 [1
6]

Io
T

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

O
ce

an
 [1

7]
Io

T
Ye

s
Ye

s
Ye

s
ye

s
N

o
N

o
Ye

s
Ye

s
Ye

s
N

o

W
eb

 o
f O

bj
ec

ts

A
rc

hi
te

ct
ur

e [
18

]
Io

T
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
Ye

s
ye

s
Ye

s
N

o

A
ge

nt
-b

as
ed

Im
pa

la
W

SN
s

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

Ye
s

N
o

Ye
s

A
ct

or
N

et
W

SN
s

N
o

N
o

N
o

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

A
gi

lla
W

SN
s

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

U
bi

w
ar

e
Io

T,
 am

bi
en

t
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
Ye

s
Ye

s
Ye

s
Ye

s

Sm
ar

t m
es

sa
ge

s
W

SN
s,

Em
be

dd
ed

Sy

st
em

s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

N
o

AC
O

SO
-b

as
ed

m

id
dl

ew
ar

e
Io

T
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

13

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Io
T

 m
id

dl
ew

ar
e r

eq
ui

re
m

en
ts

/f
ea

tu
re

s

M
id

dl
ew

ar
e

ap
pr

oa
ch

M
id

dl
ew

ar
e

so
lu

tio
ns

Ta
rg

et

en
vi

ro
nm

en
t

In
te

ro
pe

ra
bi

lit
y

Sc
al

ab
ili

ty
A

da
pt

ab
ili

ty
Re

al

tim
el

in
es

s
Se

cu
ri

ty

an
d

pr
iv

ac
y

Re
lia

bi
lit

y
C

on
te

xt

aw
ar

en
es

s
Ea

se
 o

f
us

e a
nd

de

pl
oy

m
en

t

D
at

a
m

an
ag

em
en

t
Ev

en
t

m
an

ag
em

en
t

Ev
en

t-b
as

ed
EM

M
A

Io
T,

 C
lo

ud
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Li

m
ite

d
N

o
Ye

s
N

o
Ye

s

H
er

m
es

La
rg

e-
sc

al
e

di
st

rib
ut

ed

an
d

ub
iq

ui
to

us

sy
st

em
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

Ev
en

t-
ba

se
d

M
id

dl
ew

ar
e

fo
r S

yn
ta

ct
ic

al

In
te

ro
pe

ra
bi

lit
y

in
 Io

T

Io
T

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

V
ir

tu
al

-
m

ac
hi

ne
-B

as
ed

M
at

é
W

SN
s

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

N
o

V
M

*
W

Sn
s

N
o

Ye
s

N
o

Ye
s

N
o

N
o

N
o

Ye
s

N
o

Ye
s

M
el

et
e

W
SN

s
N

o
Ye

s
Ye

s
Ye

s
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s

D
at

ab
as

e-
or

ie
nt

ed
SI

N
A

W
SN

s
N

o
Ye

s
N

o
Ye

s
N

o
N

o
N

o
Ye

s
Li

m
ite

d
Ye

s

Ir
isN

et
W

SN
s

N
o

Ye
s

N
o

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

Se
ns

at
io

n
W

SN
s

N
o

Ye
s

N
o

Li
m

ite
d

N
o

N
o

N
o

N
o

Ye
s

N
o

Ti
ny

D
B

W
SN

s
N

o
N

o
N

o
Li

m
ite

d
N

o
N

o
N

o
N

o
Ye

s
N

o

H
yC

ac
he

W
SN

s
N

o
N

o
N

o
Li

m
ite

d
N

o
N

o
N

o
N

o
Ye

s
N

o

Middleware Architecture

14

Io
T

 m
id

dl
ew

ar
e r

eq
ui

re
m

en
ts

/f
ea

tu
re

s

M
id

dl
ew

ar
e

ap
pr

oa
ch

M
id

dl
ew

ar
e

so
lu

tio
ns

Ta
rg

et

en
vi

ro
nm

en
t

In
te

ro
pe

ra
bi

lit
y

Sc
al

ab
ili

ty
A

da
pt

ab
ili

ty
Re

al

tim
el

in
es

s
Se

cu
ri

ty

an
d

pr
iv

ac
y

Re
lia

bi
lit

y
C

on
te

xt

aw
ar

en
es

s
Ea

se
 o

f
us

e a
nd

de

pl
oy

m
en

t

D
at

a
m

an
ag

em
en

t
Ev

en
t

m
an

ag
em

en
t

A
pp

lic
at

io
n-

or
ie

nt
ed

Au
to

Se
c

D
ist

rib
ut

ed
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
Ye

s
Ye

s
Ye

s
Ye

s

A
da

pt
iv

e
m

id
dl

ew
ar

e
W

SN
s/

H
ea

lth
ca

re
N

o
Ye

s
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
N

o
Ye

s

M
lL

A
N

W
SN

s/
H

ea
lth

ca
re

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

Ye
s

Ye
s

N
o

Ye
s

M
id

Fu
si

on
W

SN
s/

In
fo

rm
at

io
n

Fu
sio

n

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

Ti
ny

Cu
bu

s
D

riv
er

A

ss
ist

an
ce

Sy

st
em

s

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

Ye
s

Ye
s

N
o

Ta
bl

e
1.

C

om
pa

ri
so

n
of

 ex
ist

in
g I

oT
 m

id
dl

ew
ar

e s
ol

ut
io

ns
.

15

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

The MUSIC middleware [22] supports building systems in ubiquitous environ-
ments where service providers and consumers may change dynamically based on
context. Its architecture is composed of different managers providing different
functionalities, including the context manager, service discovery manager, QoS
manager, SLA monitoring, and adaptation manager. The use of context data by
the MUSIC middleware may increase the risk of privacy leakage in an IoT environ-
ment. SENSEI [23] is another middleware solution including context services and a
context model for the real world Internet including IoT. Its resources use ontologies
for their semantic modeling, which makes it unsuitable for large-scale IoT networks
since there are no standard established ontologies yet.

TinySOA [24] is a service-oriented middleware used for WSN applications
development. It provides a management of WSN devices and communica-
tions, and allows applications to get processed data from the connected sensors.
TinySOA allows only a few functionalities, such as abstraction and resource dis-
covery related to WSNs, and does not support other devices; therefore, it could not
be used fully within an IoT network [24]. Another SOM providing the manage-
ment of quality of service in WSNs is called SensorsMW [25]. Servilla middleware
also facilitates application development using heterogeneous WSNs; however, it
is not widely used due to the privacy and security threats caused by the individual
sensor-level access [26].

SOCRADES middleware [27] contains a layer for devices and services monitor-
ing responsible for devices/things management and service discovery, and another
one for application services such as event storage. The middleware provides a
security solution by using authentication to control access to the different devices.
However, the privacy of sensitive information is not ensured, since a direct access to
the connected devices and their offered services is allowed by the middleware.

There exist many other cloud-based service-oriented IoT middleware solutions,
such as Google Fit, Xively, CarrIoTs, Echelon; however, there are still many concerns
about the cloud platform security and privacy, especially for mission-critical IoT
applications [28].

Recent studies have been conducted concerning the design and implementation
of service-oriented IoT middleware solutions including the one in [29] that suggests
a middleware based on REST API to collect data from different devices, intending to
deal with the heterogeneity issues. The authors in [30] presented a 3SOA (Sensing-
as-a-Service run-time Service-Oriented Architecture) middleware solution that
allows interoperability among IoT platforms, and highly abstracts the applications
from the low-level details of IoT hardware platforms and communication languages.

In conclusion, most old SOMs manage only WSNs and do not scale to the
use of multiple heterogeneous devices as in the context of IoT. Recent suggested
service-based middleware platforms provide solutions for the interoperability and
heterogeneity problems; however, they still offer a limited security through the use
of authentication, do not use unified service standards, and require automation
for service configuration and optimization due to the recurring demands of new
services by the interesting applications.

Another type of microservices-based architecture has been recently proposed
to develop IoT platforms that meet the heterogeneous and distributed nature of
IoT devices, and provide dynamic, scalable, maintainable, and interoperable IoT
environments. Delsing et al. [14] propose an Arrowhead Framework architecture
enabling scalability, security, and real-time performance in a multi-cloud setting.
This architecture supports multiple IoT devices based on SOA architecture in local
clouds to exchange inter- and intra-cloud information, and allows organizations to
move toward a multi-stakeholder cooperation catering to market requirements and
supporting efficiency, flexibility, and sustainability [14].

Middleware Architecture

16

A general microservice architecture for IoT applications development is proposed
by Sun et al. [15], providing flexibility, scalability, maintainability, light-weightness,
and loose coupling to deal with the different challenges of the continuous IoT
development. The authors focus on the system design based on microservices and
device communication protocols used between the service layer and physical device
layer. This framework allows, therefore, more interoperability, automation, and intel-
ligence and provides big data and geo-localization services [15].

Another recent architecture based on microservices is proposed by Lai et al. [16]
to provide IoT services for multi-mobility in a smart city. The architecture provides
flexibility and scalability to efficiently manage the different heterogeneous IoT
devices using independent microservices, which could be separately deployed in a
distributed system [16]. The authors used real-case scenarios to test the architecture
using multi-mobility services for citizens in a smart city.

A recent study [17] also shows how the use of a framework based on microser-
vices allows to mitigate the critical challenges of IoT devices and applications, and
increases their scalability when deployed in the ocean where there is a continuous
increasing growth of big data.

Many other microservices-based IoT platforms have been proposed in various
application domains such as smart farms [31], smart logistics/factories [32], smart
cars [33], and smart commerce [34]. Jarwar et al. [18] also proposed a cross-
domain/general-purpose Web of Objects Architecture for IoT service provisioning
in which a virtual object is used as an abstraction of a physical object.

4.2 Agent-based middleware solutions

Agent-based middleware solutions use mobile agents to facilitate distribution
throughout the network and allow a partial failure tolerance. The use of mobile
agents in the IoT network provides many advantages including interoperability with
the heterogeneous devices, reliability and availability, resource and code manage-
ment taking into consideration the resource-constrained devices, and application
management. Some of the most commonly used agent-based middleware solutions
are highlighted below.

Impala [35] is an agent-based middleware solution enabling code management,
application modularity, resource management, mobility, and openness in WSNs. Its
architecture also allows an improvement of the efficiency of resource-constrained
nodes. However, Impala middleware does not provide the raw data cleaning func-
tionality, which is necessary for an IoT setting.

Other examples of agent-based WSN middleware solutions include ActorNet
[36] that provides context management and allows application development taking
into consideration the limited resources in a WSN environment. However, ActorNet
uses a service discovery mechanism leading to a slow network. Agilla [37] is another
example of agent-based platforms, which deploys independent event-related
mobile agents in every sensor node; however, this is limited due to the constrained
resources of nodes, which may cause message loss and interference with program-
mability and code management tasks.

Ubiware [38] is considered a dedicated agent-based middleware solution for
IoT, which supports resource discovery, invocation, monitoring, and the develop-
ment of multiple extensible applications. Ubiware is a Java-based solution with a
three-layer architecture where resources are interpreted as Java components; it uses
ontologies and policies to satisfy the security and interoperability requirements;
however, these policies do not include all the available WSN standards. There exist
many other Java-based middleware solutions dedicated to WSN applications, such
as AFME, MAPS, MASPOT, and TinyMAPS to name a few [39].

17

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Smart messages [40] middleware is a highly flexible solution for dynamic net-
work configurations; it overcomes the limitations of volatile, heterogeneous, and
resource-constrained embedded systems using agent migration. However, it is
limited in terms of the number of connected applications and its support to mul-
tiple devices in the case of an IoT context.

The authors in [41] present a new approach for increasing the smart objects’ self-
adaptation and allowing them to make autonomous decisions and be smarter based
on a multi-agent system (MAS). The authors in [42] also presented a new multi-
agent-based approach called ACOSO (Agent-based Cooperating Smart Objects) and
its related middleware catering for the heterogeneous IoT platforms. The flexibility
and effectiveness of this middleware were proved through the implementation of a
“Smart University system.”

The autonomous behavior of agents used in middleware solutions may lead
to the IoT network’s self-organization and fault tolerance. However, the dynamic
behavior of agents may lead to message loss; therefore, most of the above-discussed
middleware solutions could not be used within the large-scale IoT networks requir-
ing a heterogeneous infrastructure, including resource-constrained devices.

4.3 Event-based middleware solutions

All the components of an event-based middleware solution use a publish/
subscribe model; the event sending component is called the producer or publisher,
and the receiving component is called the consumer or subscriber. The consumers
are registered for a particular event published by the producers for which they are
frequently receiving notifications. The event-based approach provides timeliness,
security, scalability, availability, reliability, and fault tolerance.

EMMA [43] is an available Java Message Service middleware, which is a type of
event-based approach designed for video communication systems to provide many
types of messaging. However, it is not energy efficient and provides only a limited
reliability.

Hermes middleware [44] also provides scalability, interoperability, and reliabil-
ity, and it is also fault tolerant. However, it provides only a limited adaptation and
does not allow a composite and persistent storage of events.

The authors in [45] proposed an event-based middleware solution implemented
using the publish-subscribe pattern to solve the problem of interoperability in IoT.
The interoperability assessment methodology was used to test the middleware
performance, and it was shown that it is qualified compared to previous systems.

There exist many other event-based middleware solutions including GREEN
[46], RUNES [47], Steam [48], PSWare [49], PRISMA [50], and TinyDDS [51],
which are appropriate for systems involving a high mobility and failure occurrence.
However, they do not adequately address the context awareness, adaptability,
interoperability, security, privacy, and timeliness requirements of the IoT. Also, the
concurrency of the event in this type of middleware solutions may lead to reduced
system reliability.

4.4 Virtual machine-based middleware solutions

The virtual machine (VM) middleware approach considers virtualizing the
network infrastructure, where the different network nodes are holding a VM and
applications are designed as separate modules distributed throughout the network.
This ensures self-management, and a high level of abstraction and adaptability.
Maté [52] is a middleware solution based on VM, which addresses the different
challenges in WSNs and is designed for nodes with limited energy and bandwidth

Middleware Architecture

18

resources. Mate is based on a VM approach and provides byte code interpretation
and tackles the different challenges in WSNs; however, it does not provide event
management and does not allow a single sensor node to support multiple applica-
tions. Some other middleware solutions based on the VM approach were built on
top of Mate to extend its capabilities, including VM* [53] and Melete [54]. These
provide resource management, code dissemination, and an easy concurrent applica-
tion deployment; however, they do not handle a dynamic network topology.

There exist some middleware solutions based on Java virtual machine (JVM),
such as MagnetOS, Squawk, and Sensorware which allows them to support multiple
portable applications; however, they are unsuitable for the IoT resource-constrained
devices since they use heavy mechanisms for interlayer communication and compu-
tation consuming memory and processing power [55]. These constraints make the
VM-based approach suitable only for resource-rich devices.

The application-specific virtual machine (ASVM) approach has been developed
to target specific application domains. Middleware solutions based on this approach
include but are not limited to TinyVM [56], SwissQM [57], and TinyReef [58].
However, the ASVM approach is still heavyweight, which makes it unsuitable for
the limited-resource devices in an IoT network deployment.

4.5 Database-oriented middleware solutions

The whole network in this type of middleware solution is viewed as a relational
database, managed using a query language like SQL. For example, the Sensor
Information Networking Architecture (SINA) middleware [59] enables applications to
send queries, collect results, and monitor network changes in a WSN setting. It also
supports resource management and monitoring, event monitoring, data prepro-
cessing, while clustering sensor nodes to ensure scalability and energy-efficient
operations. However, SINA is not context aware, and it does not support security,
privacy, and interoperability. IrisNet [60] is another distributed and lightweight
database-oriented middleware solution providing simultaneous heterogeneous
WSN services using queries over the collected data from the sensor nodes. However,
it does not resolve the issues related to energy efficiency, interoperability, adaptive-
ness, and context awareness. Other examples of database-oriented middleware
solutions include Sensation [61], TinyDB [62], and HyCache [63]. In these solutions,
database queries are used to get approximate data of interest from the sensor nodes;
they do not support the real-time requirement of the IoT infrastructure. They are
also energy inefficient and use a centralized model, which does not scale to the
ultra-large dynamic IoT networks [59]. Also, they do not provide the data aggrega-
tion and knowledge discovery functionalities.

4.6 Application-oriented middleware solutions

Application-oriented middleware solutions are dedicated to specific domain
requirements and infrastructure. For example, the Automatic Service Composition
(AutoSec) middleware supports one application at a time using resource provi-
sioning and information collection policies set by the different applications [64].
Adaptive middleware is designed for smart home applications providing context
awareness, and it also supports adaptation for other applications and ensures the
quality of information collection and transmission between the network nodes
[65]. Other examples include MlLAN middleware [59] that targets the healthcare
applications and adapts to their QoS requirements at runtime, MidFusion [66]
designed for information fusion applications such as intrusion detection systems,

19

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

and TinyCubus [59] designed for driver assistance systems that satisfies the applica-
tion requirements by customizing its generic components.

The application-specific approach leads to the design of special-purpose
middleware systems dedicated to a specific application domain, using a centralized
mechanism for resource discovery. This makes them unsuitable for the distributed
and fault-tolerant nature of IoT environments.

4.7 Hybrid approach middleware solutions

There exist some middleware platforms using a hybrid approach, combining two
or more design approaches stated above. For example, both SOCRADES [27] and
Servilla [26] service-oriented middleware solutions use also the virtual machine
(VM)-based approach. The VM in Servilla, for example, serves to execute applica-
tion tasks, while the service provisioning framework (SPF) (the service-oriented
part) is used to discover and execute services on individual sensor nodes in a WSN.
A middleware solution designed for the manufacturing domain using the hybrid
approach is also proposed in [67], taking the advantages of both the database-
oriented and semantic modeling approaches for ensuring an accurate and efficient
data management and communication among the different devices and applications.

Table 1 shows the IoT requirements/features available in each middleware
design approach and provides a comparison of the different IoT middleware
solutions described in Section 4. The choice of the comparison criteria is based
on the works cited above, from which the most common, essential, critical, and
important characteristics that are shared between the different IoT platforms have
been extracted. The description of each criterion is given above in Section 3 (IoT
Middleware Design Considerations and Requirements). There exist many addi-
tional/non-functional criteria and features, which could be available in some IoT
platforms such as recoverability, fault-tolerance, maintainability, configurability,
mobility, reusability. But these are not subject of this review since it targets only the
most essential design features/functionalities of IoT middleware solutions.

5. Open issues in IoT middleware design

According to the previous comparison, most of the works concentrate their
efforts on providing basic functionalities such as ease of deployment, data manage-
ment, event management, and real-timeliness. A considerable effort must be made
in interoperability and adaptability, which allows devices/things using heterogeneous
protocols to connect. Context awareness is also a feature that is not considered by
most of the described middleware solutions and still encounters many shortcomings.
In addition, security and privacy features need particular attention from researchers,
because they are missed in almost all the reviewed middleware solutions above.

In summary, the most challenging issues that still persist in IoT-middleware
design, implementation, and deployment are listed below:

• Standardization: The use of heterogeneous devices within a variety of applica-
tion domains in the IoT makes the use of a single standard for a middleware
solution impossible. However, many research works tend to implement a
standardized middleware solution for a specific domain, such as semantic
web applications domain, sensor networking environments, and smart offices
[59, 65]. This will allow application developers to select a middleware solution
following the desired standard within a certain domain.

Middleware Architecture

20

• Storage capacity: The storage capacity of the heterogeneous connected things
within the IoT should be considered when implementing a middleware
solution. For example, if the middleware solution offers many services and
data management functions, it will be difficult to use it with low-level storage
devices. This issue could be addressed by defining storage requirements by the
different types of backend applications, taking into consideration the applica-
tion domain, before choosing an adequate middleware solution.

• Security and privacy: IoT middleware solutions can rely on a single layer for
providing security and privacy to the backend applications, or distribute the
security and privacy support among all the middleware layers. Either way, secu-
rity and privacy support will add more processing overhead to the middleware
platform, and it should also take into consideration the security and privacy
requirements and rules for each specific application with minimum overhead.

• Applications abstraction: The IoT middleware should include an application
abstraction layer to allow multiple backend applications to be registered with
the middleware, and to specify the set of services and data processing func-
tions needed. The applications can also specify policies/rules concerning some
functionalities, such as context awareness, security, privacy, data processing,
and event processing and inferences.

6. Conclusion and future work

Middleware is becoming a necessity for managing heterogeneous devices in
the IoT network and developing applications in different domains. There exist a
variety of middleware platforms designed for IoT. This chapter provides a detailed
overview of existing IoT middleware solutions, and discusses the technical chal-
lenges and open issues involved in designing these platforms including device and
application abstraction, scalability, context awareness, event management, unfixed
infrastructure, security, and privacy. In future work, the open issues in IoT could
be further investigated to suggest possible new approaches to solve them. Also, a
new middleware design approach may be proposed to include a new perspective
for managing the IoT devices/things and applications, including a solution for the
unexplored open issues in a specific application domain, such as security, privacy,
and interoperability. A test of this new approach could be performed using my
previous proposed middleware solution for RFID described in [5].

21

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Author details

Mehdia Ajana El Khaddar
Alakhawayn University, Ifrane, Morocco

*Address all correspondence to: mehdia.ajana@gmail.com

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

22

Middleware Architecture

[1] Mahmoud Elkhodr M, Shahrestani S,
Cheung HS. Internet of Things
applications: Current and future
development. In: Hassan QF, editor.
Innovative Research and Applications in
Next-Generation High Performance
Computing. 1st ed. Hershey,
Pennsylvania: IGI Global; 2016. pp.
397-427. DOI: 10.4018/978-1-5225-
0287-6.ch016

[2] GLOBE NEWSWIRE. Internet of
Things (IoT) Market—Growth, Trends,
Forecasts (2020-2025) [Internet]. 2020.
Available from: https://www.
globenewswire.com/news-release/
2020/05/13/2033070/0/en/The-global-
IoT-market-is-expected-to-reach-a-
value-of-USD-1256-1-billion-by-2025-
from-USD-690-billion-in-2019-at-a-
CAGR-of-10-53-during-the-period-2020-
2025.html [Accessed: 01 March 2021]

[3] GSMA. IoT Connections Forecast:
The Rise of Enterprise [Internet]. 2019.
Available from: https://www.gsma.com/
iot/resources/iot-connections-forecast-
the-rise-of-enterprise/ [Accessed:
21 February 2021]

[4] Jason IH, James AL. Four Technological
Challenges in Ubiquitous Computing and
their Influence on Interaction Design
[Internet]. Available from: https://
citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.419.5005&rep=rep1&type=pdf
[Accessed: 21 February 2021]

[5] Ajana ME, Boulmalf M, Harroud H,
Elkoutbi M. RFID middleware design and
architecture. In: Turcu C, editor.
Designing and Deploying RFID
Applications. Rijeka: InTechOpen; 2011.
DOI: 10.5772/16917. ISBN: 978-953-307-
265-4. Available from: http://www.
intechopen.com/books/designing-and-
deploying-rfid-applications/
rfid-middleware-design-and-architecture

[6] Ajana ME, Boulmalf M. Smartphone:
The ultimate IoT and IoE device. In:

Mohamudally N, editor. Smartphones
from an Applied Research Perspective.
Rijeka: IntechOpen; 2017. DOI: 10.5772/
intechopen.69734. Available from:
https://www.intechopen.com/books/
smartphones-from-an-applied-
research-perspective/smartphone-the-
ultimate-iot-and-ioe-device

[7] Gopalsamy BN. Communication
trends in Internet of Things. In:
Sugumaran V, editor. Developments and
Trends in Intelligent Technologies and
Smart Systems. 1st ed. Hershey,
Pennsylvania: IGI Global; 2018. pp.
248-305. DOI: 10.4018/978-1-5225-
3686-4.ch014

[8] Yacchirema Vargas DC, Palau
Salvador CE. Smart IoT gateway for
heterogeneous devices interoperability.
IEEE Latin America Transactions.
2016;14(8):3900-3906. DOI: 10.1109/
TLA.2016.7786378

[9] Ntalasha D, Renfa L, Wang Y.
Internet of thing context awareness
model. EAI Endorsed Transactions on
Context-aware Systems and
Applications. 2016;3(7):151084. DOI:
10.4108/eai.12-2-2016.151084

[10] Cristea V, Dobre C, Pop F. Context-
aware environments for the Internet of
Things. In: Bessis N, Xhafa F,
Varvarigou D, Hill R, Li M, editors.
Internet of Things and Inter-cooperative
Computational Technologies for
Collective Intelligence. USA: Springer;
2013. pp. 25-49. DOI: 10.1007/978-
3-642-34952-2_2

[11] Krishnamurthi R, Kumar A,
Gopinathan D, Nayyar A, Qureshi B. An
overview of IoT sensor data processing,
fusion, and analysis techniques. Sensors.
2020;20(21):6076. DOI: 10.3390/
s20216076

[12] Oorschot P C Van, Smith S W. The
Internet of Things: Security challenges.

References

23

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

IEEE Security & Privacy. 2019;17(5):7-9.
DOI: 10.1109/MSEC.2019.2925918

[13] Ajana ME, Chraibi M, Harroud H,
Boulmalf M, Elkoutbi M, Maach A.
FlexRFID: A security and service
control policy-based middleware for
context-aware pervasive computing.
International Journal of Advanced
Research in Artificial Intelligence
(IJARAI). 2014;3(10):26-34. DOI:
10.14569/IJARAI.2014.031004

[14] Delsing J et al. The arrowhead
framework architecture: Arrowhead
framework. In: Delsing J, editor. IoT
Automation. United States: CRC Press
Publisher; 2017. DOI: 10.1201/97813
15367897-4. ISBN: 9781498756754

[15] Sun L, Li Y, Memon RA. An open
IoT framework based on microservices
architecture. China Communications.
2017;14(2):154-162. DOI: 10.1109/
CC.2017.7868163

[16] Lai C, Boi F, Buschettu A, Caboni R.
IoT and microservice architecture for
multimobility in a smart city. In:
Proceedings of the IEEE 7th
International Conference on Future
Internet of Things and Cloud (FiCloud);
26-28 August 2019; Istanbul, Turkey.
New York: IEEE; 2019. pp. 238-242. DOI:
10.1109/FiCloud.2019.00040

[17] Razzaq A. Microservices architecture
for IoT applications in the Ocean:
Microservices architecture based
framework for reducing the complexity
and increasing the scalability of IoT
applications in the Ocean. In: Proceedings
of the 20th International Conference on
Computational Science and Its
Applications (ICCSA); 1-4 July 2020;
Cagliari, Italy. New York: IEEE; 2020.
pp. 87-90. DOI: 10.1109/ICCSA50381.
2020.00025

[18] Jarwar MA, Kibria MG, Ali S,
Chong I. Microservices in web objects
enabled IoT environment for enhancing

reusability. Sensors. 2018;18(2):352.
DOI: 10.3390/s18020352

[19] Eisenhauer M, Rosengren P,
Antolin P. HYDRA: A development
platform for integrating wireless devices
and sensors into ambient intelligence
systems. In: Giusto D, Iera A, Morabito G,
Atzori L, editors. The Internet of Things.
New York: Springer; 2010. pp. 367-373.
DOI: 10.1007/978-1-4419-1674-7_36

[20] Reiners R, Zimmermann A,
Jentsch M, Zhang Y. Automizing home
environments and supervising patients
at home with the hydra middleware:
Application scenarios using the hydra
middleware for embedded systems. In:
Proceedings of the First International
Workshop on Context-aware Software
Technology and Applications; 24 August
2009; Amsterdam, The Netherlands.
New York: ACM; 2009. pp. 9-12. DOI:
10.1145/1595768.1595772

[21] Zgheib R, Conchon E, Bastide R.
Semantic middleware architectures for
IoT healthcare applications. In:
Ganchev I, Garcia N, Dobre C,
Mavromoustakis C, Goleva R, editors.
Enhanced Living Environments. Cham:
Springer; 2019. pp. 263-294. DOI:
10.1007/978-3-030-10752-9_11

[22] Rouvoy R, et al. MUSIC: Middleware
support for self-adaptation in ubiquitous
and service-oriented environments. In:
Cheng BHC, de Lemos R, Giese H,
Inverardi P, Magee J, editors. Software
Engineering for Self-Adaptive Systems.
Berlin: Springer; 2009. pp. 164-182. DOI:
10.1007/978-3-642-02161-9_9

[23] Tsiatsis V et al. The SENSEI real
world internet architecture. In:
Georgios T, et al., editors. Towards the
Future Internet—Emerging Trends from
European Research. Amsterdam, The
Netherlands: IOS Press; 2010. pp. 247-
256. DOI: 10.3233/978-1-60750-539-6-247

[24] Avilés-López E, García-Macías JA.
TinySOA: A service-oriented

Middleware Architecture

24

architecture for wireless sensor
networks. Service Oriented Computing
and Applications. 2009;3:99-108. DOI:
10.1007/s11761-009-0043-x

[25] Anastasi G F, Bini E, Lipari G.
Extracting data from WSNs: A service-
oriented approach. In: Anastasi G,
Bellini E, Di Nitto E, Ghezzi C, Tanca L,
Zimeo E, editors. Methodologies and
Technologies for Networked
Enterprises. Berlin: Springer; 2012. p.
329-356. DOI: 10.1007/978-3-
642-31739-2_17

[26] Chien-Liang F, Gruia-Catalin R,
Chenyang L. Servilla: A flexible service
provisioning middleware for
heterogeneous sensor networks. Science
of Computer Programming.
2012;77(6):663-684. DOI: 10.1016/j.
scico.2010.11.006

[27] de Souza LMS, Spiess P, Guinard D,
Köhler M, Karnouskos S, Savio D.
SOCRADES: A web service based shop
floor integration infrastructure. In:
Floerkemeier C, Langheinrich M,
Fleisch E, Mattern F, Sarma SE, editors.
The Internet of Things. Berlin: Springer;
2008. pp. 50-67. DOI: 10.1007/
978-3-540-78731-0_4

[28] Ngu AH, Gutierrez M, Metsis V,
Nepal S, Sheng QZ. IoT middleware: A
survey on issues and enabling
technologies. IEEE Internet of Things
Journal. 2017;4(1):1-20. DOI: 10.1109/
JIOT.2016.2615180

[29] Mesmoudi Y et al. A Middleware
based on service oriented architecture
for heterogeneity issues within the
Internet of Things (MSOAH-IoT).
Journal of King Saud University—
Computer and Information Sciences.
2020;32(10):1108-1116. DOI: 10.1016/j.
jksuci.2018.11.011

[30] Hammoudeh M et al. A service
oriented approach for sensing in the
Internet of Things: Intelligent

transportation systems and privacy use
cases. IEEE Sensors Journal. 2020;
21(14):15753-15761. DOI: 10.1109/
JSEN.2020.2981558

[31] Taneja M et al. SmartHerd
management: A microservices-based
fog computing-assisted IoT platform
towards data-driven smart dairy
farming. Software Practice and
Experience. 2019;49:1055-1078. DOI:
10.1002/spe.2704

[32] Herrera-Quintero LF et al. Smart ITS
sensor for the transportation planning
using the IoT and Bigdata approaches to
produce ITS cloud services. In:
Proceedings of the IEEE 8th Euro
American Conference on Telematics and
Information Systems (EATIS); 28-29
April 2016; Cartagena, Colombia. New
York: IEEE; 2016. pp. 1-7. DOI: 10.1109/
EATIS.2016.7520096

[33] Kanti Datta S et al. IoT and
microservices based testbed for
connected car services. In: Proceedings
of the IEEE 19th International
Symposium on “A World of Wireless,
Mobile and Multimedia Networks”
(WoWMoM); 12-15 June 2018; Chania,
Greece, Piscataway, NJ: IEEE; 2018. pp.
14-19. DOI: 10.1109/
WoWMoM.2018.8449768

[34] Banerjee A, Jiang B. A Blockchain-
based IoT platform integrated with
cloud services. In: Proceedings of the
International Conference on Parallel
and Distributed Processing Techniques
& Applications; July 29th - August 1st
2019; Las Vegas, Nevada. C. S. R. E.
A., 2020.

[35] Liu T, Martonosi M. Impala: A
middleware system for managing
autonomic, parallel sensor systems. ACM
SIGPLAN Notices. 2003;38(10):107-118.
DOI: 10.1145/966049.781516

[36] Kwon Y, Sundresh S, Mechitov K,
Agha G. ActorNet: An actor platform for
wireless sensor networks. In:

25

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Proceedings of the 5th International Joint
Conference on Autonomous Agents and
Multiagent Systems; 8-12 May 2006;
Hakodate, Japan. New York: ACM, 2006.
DOI: 10.1145/1160633.1160871

[37] Fok CL, Gruia-Catalin Roman GC,
Lu C. Agilla: A mobile agent middleware
for self-adaptive wireless sensor networks.
ACM Transactions on Autonomous and
Adaptive Systems. 2009;4(3):1-26. DOI:
10.1145/1552297.1552299

[38] Vasile-Marian Scuturici VM, Surdu S,
Yann G, Petit JM. UbiWare: Web-based
dynamic data & service management
platform for AmI. In: Proceedings of the
Posters and Demo Track Conference; 3
December, 2012; Montreal Quebec
Canada. New York: ACM; 2012. DOI:
10.1145/2405153.2405164

[39] Aiello F, Fortino G, Galzarano S,
Vittorioso A. TinyMAPS: A lightweight
java-based mobile agent system for
wireless sensor networks. In:
Proceedings of the 5th International
Symposium on Intelligent Distributed
Computing (IDC 2011); October 2011;
Delft, the Netherlands: Springer-Verlag
Berlin Heidelberg; 2012. DOI: 10.1007/
978-3-642-24013-3_16

[40] Kang P et al. Smart messages: A
distributed computing platform for
networks of embedded systems. The
Computer Journal. 2004;47(4). DOI:
10.1093/comjnl/47.4.475

[41] Chekati A, Riahi M, Moussa F.
Agent-based modelling approach for
decision making in an IoT framework.
In: Barolli L, Woungang I, Enokido T,
editors. Advanced Information
Networking and Applications. AINA;
2021. Lecture Notes in Networks and
Systems, vol 226. Springer, Cham. DOI:
10.1007/978-3-030-75075-6_21

[42] Fortino G et al. An Agent-Based
Middleware for Cooperating Smart
Objects. In: Proceedings of the 11th
International Conference on Practical

Applications of Agents and Multi-Agent
Systems; 22-24; May, 2013; Salamanca,
Spain: Springer-Verlag Berlin
Heidelberg; 2013. pp. 387-398. DOI:
10.1007/978-3-642-38061-7_36

[43] Rausch T, Nastic S, Dustdar S.
EMMA: Distributed QoS-aware MQTT
middleware for edge computing
applications. In: Proceedings of the
IEEE International Conference on Cloud
Engineering (IC2E); 17-20 April, 2018;
Orlando, FL, USA: IEEE; 2018. pp.
191-197. DOI: 10.1109/IC2E.2018.00043

[44] Pietzuch PR. Hermes: A scalable
event-based middleware. University of
Cambrige Computer Laboratory
Technical Report N° 590; 2004. ISSN
1476-2986. Available from: https://www.
cl.cam.ac.uk/techreports/UCAM-
CL-TR-590.pdf

[45] Pramukantoro ES, Anwari H. An
event-based middleware for syntactical
interoperability in Internet of Things.
International Journal of Electrical and
Computer Engineering. 2018;8(5):3784.
DOI: 10.11591/ijece.v8i5.pp3784-3792

[46] Sivaharan T, Blair G, Coulson G.
Green: A configurable and
reconfigurable publish-subscribe
middleware for pervasive computing.
In: Meersman R, Tari Z, editors. On the
Move to Meaningful Internet Systems.
Berlin: Springer; 2005. pp. 732-749. DOI:
10.1007/978-3-540-78731-0_4

[47] Costa P, et al. The runes middleware
for networked embedded systems and its
application in a disaster management
scenario. In: Proceedings of the IEEE 5th
Annual International Conference on
Pervasive Computing and
Communication (PerCom’07); 19-23
March 2007; White Plains, NY, USA:
Computer Society; 2007; pp. 69-78. DOI:
10.1109/PERCOM.2007.36

[48] Meier R, Cahill V. Steam: Event-
based middleware for wireless ad hoc
networks. In: Proceedings of the IEEE

Middleware Architecture

26

22nd International Conference on
Distributed Computing Systems
Workshops; 2-5 July 2002; Vienna,
Austria: IEEE; 2002. pp. 639-644. DOI:
10.1109/ICDCSW.2002.1030841

[49] Lai S, Cao J, Zheng Y. Psware: A
publish/subscribe middleware
supporting composite event in wireless
sensor network. In: Proceedings of the
IEEE International Conference on
Pervasive Computing and
Communication (PerCom’09); 9-13
March 2009; Galveston, TX, USA: IEEE
Computer Society; 2009. pp. 1-6. DOI:
10.1109/PERCOM.2009.4912862

[50] Silva JR, et al. PRISMA: A publish-
subscribe and resource-oriented
middleware for wireless sensor networks.
In: Proceedings of the 10th Advanced
IEEE International Conference on
Telecommunications; 20-24 July 2014;
Paris, France. International Academy,
Research, and Industry Association
(IARIA); 2014. pp. 87-97

[51] Boonma P, Suzuki J. TinyDDS: An
interoperable and configurable publish/
subscribe middleware for wireless
sensor networks. In: Hinze A,
Buchmann A, editors. Principles and
Applications of Distributed Event-Based
Systems. Hershey, Pennsylvania: IGI
Global; 2010. p. 206. DOI: 10.4018/978-
1-60566-697-6.ch009

[52] Levis P, Culler DE. Maté: A tiny virtual
machine for sensor networks. In:
Proceedings of the Tenth ACM
International Conference on Architectural
Support for Programming Languages and
Operating Systems; 5-9 October 2002; San
Jose, California, United States: ACM;
2002. DOI: 10.1145/605406.605407

[53] Koshy J, Pandey R. Vm: Synthesizing
scalable runtime environments for
sensor networks. In: Proceedings of the
3rd International Conference on
Embedded Networked Sensor Systems
(SenSys ‘05); 2-4 November 2005; San

Diego, California, USA: ACM; 2005. pp.
243-254. DOI: 10.1145/1098918.1098945

[54] Khalid Z, Fisal N, Rozaini M. A
survey of middleware for sensor and
network virtualization. Sensors.
2014;14(12):24046-24097. DOI: 10.3390/
s141224046

[55] Costa N, Pereira A, Serodio C.
Virtual machines applied to WSN’s: The
state-of-the-art and classification. In:
Proceedings of the Second International
Conference on Systems and Networks
Communications (ICSNC 2007); 25-31
August 2007; Cap Eterel, France, IEEE
Computer Society; 2007. pp. 50-50.
DOI: 10.1109/ICSNC.2007.83

[56] Hong K et al. Tinyvm: An energy-
efficient execution infrastructure for
sensor networks. Software: Practice and
Experience. 2012;42(10):1193-1209.
DOI: 10.1002/spe.1123

[57] Mueller R, Alonso G, Kossmann D.
SwissQM: Next generation data
processing in sensor networks. In:
Proceedings of the Third Biennial
Conference on Innovative Data Systems
Research (CIDR); 7-10 January 2007;
Asilomar, CA, USA. Online Proceedings.
Available from: www.cidrdb.org 2007.
pp. 1-9. DOI: 10.3929/ethz-b-000004843

[58] Marques IL, Ronan J, Rosa NS.
TinyReef: A register-based virtual
machine for Wireless Sensor Networks.
In: Proceedings of the IEEE International
Conference on SENSORS; 25-28 October
2009; Christchurch, New Zealand: IEEE;
2009. pp. 1423-1426. DOI: 10.1109/
ICSENS.2009.5398437

[59] de Freitas EP. A Survey on Adaptable
Middleware for Wireless Sensor
Networks. Halmstad University Technical
Report IDE0851; 2008. Available from:
http://www.diva-portal.org/smash/get/
diva2:239429/FULLTEXT01.pdf

[60] Deshpande A, Suman N,
Gibbons PB, Seshan S. IrisNet:

27

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Internetscale Resource-Intensive Sensor
Services. In: Proceedings of the ACM
SIGMOD International Conference on
Management of Data; 9-12 June 2003;
San Diego, California, USA: ACM; 2003.
p. 667. DOI: 10.1145/872757.872856

[61] Hasiotis T et al. Sensation: A
middleware integration platform for
pervasive applications in wireless sensor
networks. In: Proceedings of the IEEE
Second European Workshop on Wireless
Sensor Networks; 31 January - 2 February
2005; Istanbul, Turkey: IEEE; 2005.
pp. 366-377. DOI: 10.1109/EWSN.2005.
1462028

[62] Madden S, Franklin MJ,
Hellerstein JM, Hong W. TinyDB: An
acquisitional query processing system
for sensor networks. ACM Transactions
on Database Systems. 2005;30(1):122-
173. DOI: 10.1145/1061318.1061322

[63] Zhao D, Raicu I. HyCache: A
user-level caching middleware for
distributed file systems. In: Proceedings
of the IEEE International Symposium
on Parallel & Distributed Processing,
Workshops and PhD Forum(IPDPSW);
20-24 May 2013; Cambridge, MA, USA:
IEEE; 2013. pp. 1997-2006. DOI:
10.1109/IPDPSW.2013.83

[64] Han Q, Venkatasubramanian N.
Autosec: An integrated middleware
framework for dynamic service
brokering. IEEE Distributed Systems
Online. 2001;2(7):22-31

[65] Huebscher MC, McCann JA.
Adaptive middleware for context aware
applications in smart-homes. In:
Proceedings of the 2nd Workshop on
Middleware for Pervasive and Ad-hoc
Computing; 18-22 October 2004;
Toronto, Ontario, Canada, United
States: ACM; 2004. pp. 111-116. DOI:
10.1145/1028509.1028511

[66] Alex H, Kumar M, Shirazi B.
MidFusion: An adaptive middleware for
information fusion in sensor network

applications. Information Fusion.
2008;9(3):332-343. DOI: 10.1016/j.
inffus.2005.05.007

[67] Grevenitis K et al. A hybrid
framework for industrial data storage
and exploitation. Procedia CIRP.
2019;81:892-897. DOI: 10.1016/j.procir.
2019.03.221

29

Chapter 2

Middleware Architecture - History
and Adaptation with IEEE 802.11
Rochak Bajpai, Atul Bansal, Jyoti Tripathi and Sridhar Iyer

Abstract

Communication, which intends to provide a link between any two people, is now
moving towards man-to-machine and machine-to-machine connection for transfer-
ring different types of data. This transmission scenario, with and ever expanding
number of active and passive users, lays the foundation to variety of communica-
tion protocols owing to the different types of data which is involved in the process.
Within this ever expanding communication arena, Middle-ware can be thought of
as a set of hardware and software which is used to connect different platforms with
the end-users that are increasing in number day-by-day, with a possible wide spread
over any region spanning from few meters to several kilometers. IEEE 802.11 is the
set of standards which guides the wireless technology for device implementation
and demands seamless integration across the entire protocol stack. This in turn
demands an overview of the middleware architecture in broader perspective. This
chapter explores the concept of middleware in the existing communication sce-
nario, current trends and future scope.

Keywords: Middleware architecture, Communication protocols, IEEE 802.11,
Network layer, Application layer, TPM, RPC, MOM, ORB

1. Introduction

Widespread usage of communication technology, intended to transfer informa-
tion from one person to another, is moving rapidly towards information exchange
between man and machine. The advent of computer along with digital formatted
communication in light of advanced algorithms, low cost VLSI (Very Large Scale
Integration) and high efficiency in computation paves the way for massive informa-
tion exchange among individuals.

Simultaneously, ubiquitous computing paradigm with sensor based data com-
munication presents unique man-to-machine information exchange which not only
spread across large area but is also found to be a source of voluminous data, that
needs to be carefully segregated and segmented for figuring out intelligence from a
large pile of existing data.

Conventionally, middleware is said to be collection of algorithms, components
and devices which enables the information exchange between different entities.
As per the OSI model, middleware can be placed between the transport and the
application layer, as shown in Figure 1.

In existing literature, the concept of middleware was discussed starting in the
year 1968 in a report of the North Atlantic Treaty Organization [1], where it was
placed between the application programs and the service routines. This paradigm

Middleware Architecture

30

was quite pragmatic due to its ability to interconnect new components with the
existing hardware within the same distributed system.

With the advent of the recent 5G technologies along-with strong data network-
ing capability, a plethora of innovative sensor-based application are appearing
over the horizon. This motivates us to look at the middleware architecture at a
microscopic level as it involves different sensors with their applications without
considering the interconnection involved i.e. it hides the heterogeneous nature of
the underlying sensing data to yield the support system with the help of unified
interface for the final application. This results in an easy access of the network by
sensors as well as different applications, which can call the sensing network with
the middleware open interface. This helps in the reduction of the design and the
development cost with improved efficiency.

2. History and motivation

The initial development of the computer was based on the premise and promise of
high-speed calculations which was iterative in nature. It was initially proposed through
mechanical gear system but was found to be excessively time consuming. With the
advent of vacuum tubes, the hurdle of timing is attended to and further, investigation
in the field of solid state electronics which results in devices such as, diodes, transistors
and operation amplifiers paves way for low power consuming, portable size devices
which are termed as analog computers. This was the first era of computers [2]. The
more robust, fast and complex Integrated Circuits (IC) were responsible for the design
and development of digital computers which are having tremendous capability to
perform high speed and complex calculations [3].

With the elaboration of theoretical concepts and their implementation in terms
of ideas such as, distributed computing, abstraction, object-oriented programming,
etc., results in the coding of complex software programs to an easily solvable prob-
lem at hand. At the same time, in order to reduce the design and development cost
of the software and its interaction with the hardware, the concept of re-usability
comes into software design paradigm [4].

The parallel progress in networking paradigm, which was simply started with
possible interconnection of machines, later resulted in the development of OSI

Figure 1.
Location of middleware in OSI reference model.

31

Middleware Architecture - History and Adaptation with IEEE 802.11
DOI: http://dx.doi.org/10.5772/intechopen.97124

model to yield a layered structure of communication among different machines [5].
The layered architecture is profoundly based on the software abstraction model
which felicitates a very specific section/property of the network to change without
hampering the process of communication among other machines through different
layers. This paradigm was the primary basis of middle ware architecture which was
placing it between the transport and the application layer, as shown in Figure 1.

With the expansion of networking paradigm, Middleware architecture found its
place among the widely used concepts, especially in the era of plug and play design
methodology. In the subsequent section, we will look at the different attributes
which Middleware workable.

2.1 Features of middleware

As discussed in the introduction, middleware is a set protocol for data exchange
between the transport and the application layer. It helps different machines to share
the data with the network and vice versa without considering the heterogeneity of
the underlying data from both sides, and results in reduced development cost and
improvement in the efficiency [6].

The following features are the major attributes of the middleware architecture:

1. From the Software management perspective, Middleware is found to be more
and more integrated into the operating system, which results in the applica-
tion evolved in a machine to be safely ported on the network as well, wherein
the network is acting as an up-scaled version of the machine. Also, this results
in resource management mechanism based on service quality and the flexible
configuration capability [7].

2. With the widespread availability of the Internet, middleware architecture pro-
vides web-based services and resource sharing capacity, making middleware
architecture almost like connecting glue which supports in the running of the
application software successfully. Also, the resource sharing methods based on
Internet services are more universal, cost effective and efficient.

3. Middleware architecture has transformed the conventional spoke and wheel
system into the distributed system by combining different technologies such
as, cloud computing, big data and virtualization, which provides the capacity
to integrate different resources and yields more robust service capability. With
this architecture, one can solve the issue of data storage, processing and trans-
mission among the different internetworked systems.

Depending on the different attributes, the middleware architecture can be clas-
sified into four types [8, 9].

1. Transaction Processing Monitors (TPM)

2. Remote Procedure Call (RPC)

3. Message-Oriented Middleware (MOM)

4. Object Request Brokers (ORB)

These types are based on the varied services offered by the specific process.

Middleware Architecture

32

Transaction Processing Monitors (TPM) is designed to monitor the suc-
cessful transactions from one stage to another stage. In case of any error, TPM
takes an appropriate action to rectify the error. A TPM supports optimal resource
sharing among the applications with the following functionalities:

• Monitoring operation/transactions

• Managing queues

• Coordination among resources

• Creating new processes on requirement

• Secure access to services

• Wrapping data messages into messages

• Unwrapping messages into data packets

• Handling errors

• Hiding the details of inter-process communications from programmer

Remote Procedure Call (RPC) is an inter-process communication facility
generally used in a client server based model with the following functionalities:

• Supports process-oriented or thread-oriented models

• Hiding details of inter-process communications from programmer

• Useful in local environment as well as distributed environment

• Performance improvement can be achieved by omitting unwanted
protocol layers

Message-Oriented Middleware (MOM) is an asynchronous technique
that passes the messages between transmitting and receiving application with a
communication channel. Its asynchronous nature makes the applications
decoupled from each other as MOM is responsible for message manage-
ment system.

Object Request Brokers (ORB) acts like a broker between a client request for a
service from a distributed object and the completion of that request with following
functionalities:

• Life cycle service

• Persistence service

• Naming service

• Event Service

• Concurrency control service

33

Middleware Architecture - History and Adaptation with IEEE 802.11
DOI: http://dx.doi.org/10.5772/intechopen.97124

• Transaction service

• Relationship service

• Externalization service

• Query service

In view of the above-mentioned services offered by the different types of
middleware, following are the major attribute of services offered by any middle-
ware structure [8]:

• Presentation management: Forms manager, graphics manager, hypermedia
linker, and printing manager.

• Computation: Sorting, math services, internationalization services (for
character and string manipulation), data converters, and time services.

• Information management: Directory server, log manager, file manager,
record manager, relational database system, object-oriented database system,
repository manager.

• Communications: Peer-to-peer messaging, remote procedure call, message
queuing, electronic mail, electronic data interchange.

• Control: Thread manager, transaction manager, resource broker, fine grained
request scheduler, coarse-grained job scheduler.

• System management: Event notification service, accounting service, con-
figuration manager, software installation manager, fault detector, coordinator,
authentication service, auditing service, encryption service, access controller.

3. IEEE 802.11 adaptation with middleware

The emerging trend of wireless technology and the associated innovative appli-
cations has changed the communication landscape drastically. Now, the reduced
cost of data, high computation power of smartphones and the 5G enabled sensor
technology is the major driving force behind the widespread adaptation of network
services such as, map enabled movement, shipment tracking, and interactive gam-
ing such as, Pokemon.

Inherently, multimedia services are found to be wideband in nature which,
with the unpredictable channel characteristic of wireless medium, place a chal-
lenging condition to maintain reliable communication with a predefined Quality of
Service (QoS).

IEEE 802.11 standard, proposed by IEEE for local area network (LAN) protocol,
specifies the physical layer (PHY) and media access control (MAC) protocols for
the implementation of wireless local area network (WLAN) communication in the
frequency bands such as, 2.4 GHz, 5 GHz, 6 GHz, and 60 GHz. Presently, various
tributaries of IEEE 802.11 are framing our day-to-day communication across the
world. As per the convention, IEEE 802.11 standards are defined for physical and
data link layer of the OSI data communication network protocol and become the de
facto standard for wireless communication.

Middleware Architecture

34

Moreover, the heterogeneous nature of different services such as, Wi-max,
Wi-Fi, Bluetooth, and many more, with their unique data link layer presentation
have their own quality control mechanism for data transmission. This results in
a complex connection strategy management at network, data link, and physi-
cal layer.

In comparison, at the application layer, the QoS management parameters such
as, semantic, presentation etc., have their own constraints to be followed. These
constraints may not be followed every time due to resource limitations at the physi-
cal layer or multiplexing issue due to the fluctuating number of users sharing the
resource pool in the end system and the network.

In the process of communication, wireless channel demands adaptive QoS
implementation for peer-to-peer communication, due to its dynamic behavior. This
places a bound on the middleware to manage the communication as it connects the
lower layers of the communication protocol (which actually perform the commu-
nication at the data level) to the application layer (which is responsible for com-
munication in the correct semantic and form) [10, 11]. Thus, the unique position
of middleware demands a monitoring as well as an adaptive perspective such that
the desired QoS requirements can be maintained at the application layer without
disturbing the underneath communication.

This QoS maintenance requires a two-fold strategy, first is the monitoring
of application performance and the second is adaptation of service to maintain
pre-specified quality of service [11]. This adaptation strategy requires a perfect
synchronization of middleware level with lower level of protocols.

These conditions lay the foundation for the middleware control framework. The
middleware control framework has three primary concerns to address [12]:

• Coordinate the adaptation of all the concurrent application tasks in the end
system globally i.e., maintain fairness in the architecture.

• Increase the adaptation effectiveness to maintain the QoS.

• To monitor on-the-fly dynamics in the heterogeneous environment to achieve
optimum control over the smooth functioning of the applications.

3.1 IEEE 802.11 - an interesting journey

IEEE 802 project was aimed to establish the standards for physical layer (PHY)
and medium access control (MAC) layer to support deployment of the local area
network. The first candidate was IEEE 802.3, popularly known as Ethernet. It was
a wired connection mechanism to connect devices based on carrier sense multiple
access with collision detection (CSMA/CD) mechanism. Its wide acceptability with
industry and home users, motivates the researcher to look for its replication in wire-
less domain as well which yields the IEEE 802.11 standard [13, 14].

Due to inherent unpredictable nature of radio/wireless medium paves the way
for numerous deliverables of IEEE 802.11 standards, which have been flourished
over the last twenty years [15, 16], such as 802.11a, 802.11e, 802.11f, 802.11 t and
so on. Readers are encouraged to refer [17] to explore the need and their solutions
under IEEE 802.11 horizon.

3.2 Middleware in IEEE 802.11 environment

Under the middleware architecture a brief account of various cases has been
summarized below.

35

Middleware Architecture - History and Adaptation with IEEE 802.11
DOI: http://dx.doi.org/10.5772/intechopen.97124

Authors in [18] address the issue of mobility management in increasing integra-
tion of Internet with telecommunication network which give rise to distributed
computing environment. Authors proposed three mobile computing services by
incorporating user virtual environment (UVE), mobile virtual terminal (MVT),
and virtual resource management (VRM) based on mobility middleware solution
for mobile agent.

In [19], the Authors illustrate Quality of Service (QoS) maintenance for multi-
media applications over wireless network which are characterized by their limited
bandwidth. Authors proposed a novel two level QoS architecture by providing
service differentiation at network level and service adaptation at the middleware
level. Authors validate their results with experiments and show that specific QoS
levels for multimedia applications can be optimally achieved in IEEE 802.11 based
wireless network.

Costa et al. in their path breaking work proposed the real time-WiFi architecture
to address the issues faced by IEEE 802.11 networks in high density industrial envi-
ronment [20]. Authors compare the performance of proposed architecture against
the standard distributed coordination function (DCF), point coordination function
(PCF), hybrid coordination function (HCF) controlled channel access (HCCA) and
enhanced distributed channel access (EDCA) medium access control mechanism.
Authors used a realistic error-prone model to monitor the impact of message losses
in the real time Wi-Fi architecture and their result confirm that the proposed
architecture performs better as compared to existing IEEE 802.11 standard mecha-
nisms. Their architecture also offers almost consistent access delay which is one of
the major requirements for real time applications.

Authors in [21] use context meta-information to improve the system perfor-
mance by describing a context management middleware that can successfully
handle context irrespective of the execution environment’s heterogeneity.

Cruz et al. in [22], reviewed the middleware framework for Internet of Things
(IoT) from software perspective. Authors rigorously explored the existing literature
and analyzed the reference model for IoT platforms and proposed the basic security
feature for this software. Authors also detailed the difficulties in achieving and
enforcing a universal standard for middleware in the IoT structure.

Authors in [23], present a fundamental analysis to quantify the goodput perfor-
mance parameter for IoT. Authors show the closed form expression of goodput as
a function of the data payload length, frame retry count, data rate of transmission
and wireless channel condition. Authors proposed a novel link adaptation scheme
for MAC protocol data units for known wireless channel model.

Increasing use of mobile devices for location sharing applications such as Google
map, OLA, Uber, pose a challenge of maintaining adequate user privacy with loca-
tion sharing services and exchange of information across high heterogeneity among
connecting technologies and devices. Authors in [24] proposed a middleware
prototype to answer these challenges with two level proxy-based architecture as a
solution.

Hamidreza et al. in [25], proposed service-oriented architecture for middleware
to resolve the issue of heterogeneity among various sensors in IEEE 802.15 based
wireless sensor network.

Authors in [26] discuss different types of sensor network applications with
overview of related middleware and infer that none of the existing approaches can
provide all the management tools required by sensor network applications. Authors
showcase their new middleware MILAN with sensor-based health monitor-
ing system.

In [27], the authors explored the concept of inter-vehicular communications.
The field of vehicle to infrastructure and vehicle to vehicle communications were

Middleware Architecture

36

undertaken as well. This work provides detailed account of underlying technology
under each layer with rich resource references.

Authors in [28], address the combination of vehicular ad-hoc networks
(VANETs) with the social Internet of things (SIoT). Their work describes two fold
relations which can be established between the vehicles and between the vehicle
and road side unit (RSU). Authors proposed a social Internet of vehicle middleware
to incorporate the functionalities of the intelligent transportation systems station
architecture, defined by ISO and ETSI standards to integrate VANET with SIoT.
They present their proof of concept with simulation results.

Pease et al. in [29] present an adaptive middleware methodology to provide
robust mission critical/ military communication by providing timely MANET com-
munications with predictive selection and dynamic contention reduction, without
going for invasive protocol modification. To address the issue they proposed a novel
Real-time Optimized Ad hoc Middleware based architecture (ROAM). They dem-
onstrate the adaptability, scalability of the architecture along-with the capability
to bound maximum delay, jitter and packet loss in complex and dynamic MANET’s
with extensive simulations.

In [30], the authors elaborated a novel mobile collaboration architecture
(MoCA), a service oriented middleware architecture which support the develop-
ment and deployment of distributed context-aware applications for mobile users.
Authors explained the compatibility of proposed MoCA with existing software
engineering principles responsible for design and implementation of context aware
applications. Authors also present different prototype applications that have been
developed on the top of MoCA.

Authors in [10] addressed end to end delays and security issues in application
implementation. Authors proposed an integrated solution with middleware adapta-
tion to provide tunable delay and security support according to network condition.
To Support the proof of concept, authors perform test-bed experiments to showcase
successful meeting of delay and security requirements in IEEE 802.11 based wire-
less environment.

4. Conclusion

Middleware architecture defines the connection protocol between the network
layer and the application layer. In view of the on-going advances in the mobile
communication, there is a requirement of a better understanding about Middleware
functionality with IEEE 802.11 protocols which are responsible for the design rules
of modern wireless communication.

In this chapter, we addressed the key functionalities of the middleware architec-
ture in addition to its adaptation to the IEEE 802.11 protocols.

In the current scenario, where the need of ubiquitous connectivity is reality,
the need of minimum end to end delay with almost no loss in data i.e. maintaining
stringent Quality of Service at every end, is a challenging task.

This monograph will be helpful for the researchers to investigate middleware
architecture in IEEE 802.11 framework to deliver robust design solution in wireless
network.

Conflict of interest

“The authors declare no conflict of interest.”

37

Middleware Architecture - History and Adaptation with IEEE 802.11
DOI: http://dx.doi.org/10.5772/intechopen.97124

Author details

Rochak Bajpai1*, Atul Bansal2, Jyoti Tripathi3 and Sridhar Iyer4

1 KIET Group of Institutions, Delhi, NCR, India

2 GLA University, Mathura, India

3 G.B. Pant Government Engineering College, Okhla, New Delhi, India

4 S.G. Balekundri Institute of Technology, Belagavi, India

*Address all correspondence to: rochakbajpai@gmail.com

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

38

Middleware Architecture

[1] Bauer F.L., Bolliet L., Helms H. J.,
“Software Engineering: Report on a
conference sponsored by the NATO
science committee”, Garmisch,
Germany, Tech. Rep. Jan. 1969. \url{
http://homepages.cs.ncl.ac.uk/brian.
randell/NATO/nato1968.PDF}
[Accessed: 04 January 2021]

[2] Mindell DA. “Between human and
machine: feedback, control, and
computing before cybernetics”. JHU
Press; 2002 Oct 11.

[3] Graham S, Baliga G, Kumar PR.
“Abstractions, architecture,
mechanisms, and a middleware for
networked control”. IEEE Transactions
on Automatic Control. 2009 Jun
30;54(7):1490-503.

[4] Prieto-Diaz R. “Status report:
Software reusability”. IEEE software.
1993 May;10(3):61-6.

[5] Kumar S, Dalal S, Dixit V. “The OSI
model: Overview on the seven layers of
computer networks”. International
Journal of Computer Science and
Information Technology Research. 2014
Jul;2(3):461-6.

[6] Dong H. “Middleware Technologies”.
Journal of Anhui Vocational College of
Electronics \& Information Technology.
2006:04.

[7] Lu ZJ, Yan Z. “Middleware
Technology Research and Interface
Design in Ubiquitous Network”. In2015
Seventh IEEE International Conference
on Measuring Technology and
Mechatronics Automation 2015 Jun 13
(pp. 659-662).

[8] Bernstein PA. “Middleware: a model
for distributed system services”.
Communications of the ACM. 1996 Feb
1;39(2):86-98.

[9] Tian Y, Geiger JV, Su H, Kumar SV,
Houser PR. “Middleware-based sensor

web integration”. IEEE Journal of
Selected Topics in Applied Earth
Observations and Remote Sensing. 2010
Jun 21;3(4):467-72.

[10] Li B, Nahrstedt K. “A control-based
middleware framework for quality-of-
service adaptations”. IEEE journal on
selected areas in communications. 1999
Sep;17(9):1632-50.

[11] Ong CS, Xue Y, Nahrstedt K. “A
middleware for service adaptation in
differentiated 802.11 wireless networks”.
InProceedings. 2004 12th IEEE
International Conference on Networks
(ICON 2004)(IEEE Cat. No. 04EX955)
2004 Nov 19 (Vol. 1, pp. 364-
368). IEEE.

[12] Li B, Nahrstedt K. A control-based
middleware framework for quality-of-
service adaptations. IEEE journal on
selected areas in communications. 1999
Sep;17(9):1632-50.

[13] Tanenbaum AS, Wetherall D.
Computer networks. Prentice-Hall
international editions. 1996 Mar:I-XVII.

[14] Peterson LL, Davie BS. Computer
networks: a systems approach. Elsevier;
2007 Apr 16.

[15] Stallings W. Local networks. ACM
Computing Surveys (CSUR). 1984 Mar
29;16(1):3-41.

[16] Stallings W. Data and computer
communications. Pearson Education
India; 2007.

[17] Hiertz GR, Denteneer D, Stibor L,
Zang Y, Costa XP, Walke B. The IEEE
802.11 universe. IEEE Communications
Magazine. 2010 Jan 22;48(1):62-70.

[18] Bellavista P, Corradi A, Stefanelli C.
Mobile agent middleware for mobile
computing. Computer. 2001
Mar;34(3):73-81.

References

39

Middleware Architecture - History and Adaptation with IEEE 802.11
DOI: http://dx.doi.org/10.5772/intechopen.97124

[19] Ong CS, Xue Y, Nahrstedt K. A
middleware for service adaptation in
differentiated 802.11 wireless networks.
InProceedings. 2004 12th IEEE
International Conference on Networks
(ICON 2004)(IEEE Cat. No. 04EX955)
2004 Nov 19 (Vol. 1, pp. 364-
368). IEEE.

[20] Costa R, Lau J, Portugal P,
Vasques F, Moraes R. Handling real-time
communication in infrastructured IEEE
802.11 wireless networks: The RT-WiFi
approach. Journal of Communications
and Networks. 2019 May
29;21(3):319-34.

[21] da Rocha RC, Endler M.
Middleware: Context management in
heterogeneous, evolving ubiquitous
environments. IEEE Distributed
Systems Online. 2006 May 15;7(4).

[22] da Cruz MA, Rodrigues JJ,
Al-Muhtadi J, Korotaev VV, de
Albuquerque VH. A reference model for
internet of things middleware. IEEE
Internet of Things Journal. 2018 Jan
23;5(2):871-83.

[23] Qiao D, Choi S, Shin KG. Goodput
analysis and link adaptation for IEEE
802.11 a wirelessLANs. IEEE
transactions on Mobile Computing.
2002 Oct;1(4):278-92.

[24] Bellavista P, Corradi A, Giannelli C.
Efficiently managing location
information with privacy requirements
in wi-fi networks: a middleware
approach. In2005 2nd International
Symposium on Wireless
Communication Systems 2005 Sep 5
(pp. 91-95). IEEE.

[25] Abangar H, Barnaghi P, Moessner K,
Nnaemego A, Balaskandan K,
Tafazolli R. A service oriented
middleware architecture for wireless
sensor networks. InProceedings of
future network and mobile summit
conference 2010 Jun.

[26] Heinzelman WB, Murphy AL,
Carvalho HS, Perillo MA. Middleware to

support sensor network applications.
IEEE network. 2004 Jun 28;18(1):6-14.

[27] Jawhar I, Mohamed N, Zhang L.
Inter-vehicular communication systems,
protocols and middleware. In2010 IEEE
Fifth International Conference on
Networking, Architecture, and Storage
2010 Jul 15 (pp. 282-287). IEEE.

[28] Nitti M, Girau R, Floris A, Atzori L.
On adding the social dimension to the
internet of vehicles: Friendship and
middleware. In2014 IEEE international
black sea conference on
communications and networking
(BlackSeaCom) 2014 May 27 (pp.
134-138). IEEE.

[29] Pease SG, Phillips IW, Guan L.
Adaptive intelligent middleware
architecture for mobile real-time
communications. IEEE Transactions on
Mobile Computing. 2015 Apr
27;15(3):572-85.

[30] Viterbo J, Sacramento V, Rocha R,
Baptista G, Malcher M, Endler M. A
middleware architecture for context-
aware and location-based mobile
applications. In2008 32nd Annual IEEE
Software Engineering Workshop 2008
Oct 15 (pp. 52-61). IEEE.

41

Chapter 3

Middleware Application, Suitable
to Build an Automated and
Connected Smart Manufacturing
Environment
Muzaffar Rao and Thomas Newe

Abstract

The current manufacturing transformation is represented by using different
terms like; Industry 4.0, smart manufacturing, Industrial Internet of Things
(IIoTs), and the Model-Based enterprise. This transformation involves integrated
and collaborative manufacturing systems. These manufacturing systems should
meet the demands changing in real-time in the smart factory environment.
Here, this manufacturing transformation is represented by the term ‘Smart
Manufacturing’. Smart manufacturing can optimize the manufacturing process
using different technologies like IoT, Analytics, Manufacturing Intelligence, Cloud,
Supplier Platforms, and Manufacturing Execution System (MES). In the cell-based
manufacturing environment of the smart industry, the best way to transfer the
goods between cells is through automation (mobile robots). That is why automation
is the core of the smart industry i.e. industry 4.0. In a smart industrial environment,
mobile-robots can safely operate with repeatability; also can take decisions based on
detailed production sequences defined by Manufacturing Execution System (MES).
This work focuses on the development of a middleware application using LabVIEW
for mobile-robots, in a cell-based manufacturing environment. This application
works as middleware to connect mobile robots with the MES system.

Keywords: MES, Robots, Cell-based manufacturing, Middleware, ROS

1. Introduction

Initially, the drive of automation was to upturn productivity and to decrease the
cost associated with human operators. But now the automation also emphasizes to
improve flexibility and quality in a manufacturing process [1]. Automation is an
essential part of the Industry 4.0 strategy, which is fully reshaping the old manu-
facturing process and supporting the growth of the business. Industrial automation
refers to a mechanism that combines hardware and software. Industrial automa-
tion is the use of control systems and information technologies to handle different
types of machinery and processes in an industry to replace a human being. Robotic
automation [2–4] is used in several areas of manufacturing industries. Robots can
be used to perform tasks like assembly, welding, shipping, product packing, and
handling raw materials. Many manufacturers are leveraging robotic automation

Middleware Architecture

42

for many applications. Robotic automation offers manufacturers growing oppor-
tunities and to remain competitive. Currently available industrial robots are
multi-functional, so a single robot can be used for several different tasks. Sharing
of the same workspace for robots and humans is becoming necessary in a smart
manufacturing environment. To achieve this, robots should have the capabilities
to sense and communicate. Modern mobile-robots (AIVs) can move autonomously
from one place to another to achieve defined goals. For two decades, mobile-robots
are in continuous research, and the rapid advances in robotics, computer vision &
artificial intelligence are resulting in robots that can potentially hear and see more
precisely than humans. This advancement in mobile-robots demands their rapid
deployment in an industrial environment. The manufacturing process is evolving
and from the robotics aspect, the industries are moving from Autonomous Guided
Vehicles (AGVs) to Autonomous Intelligent Vehicles (AIVs). The use of AIVs is also
reshaping the production lines in a smart factory.

A production line is a configuration of a factory that consists of a sequence
of manufacturing steps. The current ideology of manufacturing depends on the
linear production line. This ideology works in case of high volume demand of
identical goods. But, the linear production line is not the most efficient way in the
case of a large volume of goods with several choices. Manufacturers are looking
for a cell-based approach to offer products with different varieties. As the cell-
based approach involves more complex production flows so for this, conveyor line
production systems are not suitable [5]. In cell-based manufacturing, the best way
to handle the goods shifting between cells is the use of mobile-robots. Intelligent
mobile-robot that knows the environment in which it operates, and that can
calculate the optimized route between different cells are the best to use in the above
mentioned cell-based manufacturing system. The linear and cell-based production
line concept in a factory that manufactures PCBs is shown in Figure 1.

This work is about the development of a middleware application using
LabVIEW software to control/manage the mobile-robot. This middleware

Figure 1.
Linear vs. cell-based production line concept. (a) Traditional linear production line. (b) Cell-based
production line.

43

Middleware Application, Suitable to Build an Automated and Connected Smart Manufacturing...
DOI: http://dx.doi.org/10.5772/intechopen.97397

application is installed on the remote system mentioned in Figure 2. This work
is part of an ongoing project, which involves the integration of fleets of mobile-
robots and Manufacturing Execution System (MES) [6–8]. Here, the focus is on
the development/testing of the LabVIEW application that can communicate with
mobile-robots. The LabVIEW software is used by keeping in mind the future
advancement of this application, which needs communication of fleets of robots
with MES and this can be achieve using LabVIEW as middleware. The designed
software application can be used with any ROS (Robot Operating System) based
Robot. Here, turtlebot-3 [9, 10] and RB-1 (Robotnik) [11] are used for real-time
testing.

This paper is organized as follows: Section 2 covers the industrial automation
details and Section 3 discusses Mobile Robots (AIVs). Section 4 is about Robot
Operating System (ROS) and Section 5 provides details of the target application. In
Section 6 development of the LabVIEW application is given while Section 7 pro-
vides a discussion and Section 8 concludes.

2. Industrial automation

Manufacturers continuously face pressure to increase productivity and
as mentioned in the introduction section, automation is the key to enable
manufacturers to move closer to that goal in addition to meet the flexibility and
quality requirements. There are numerous advantages of industrial automation, out
of which some are given as [12]:

2.1 Quality control

Quality control is needed to build the customers’ trust. A high level of quality
compliance can be achieved by using robots in a manufacturing environment.

2.2 Repeatability

To be sure about consistency and the same quality end product is difficult
without automation and this is achievable using repeatability. While, repeatability
can be achieved using robots that are capable to perform the exact similar task in
exactly the same way, repeatedly. This can help to save time as fewer errors result in
less wasted time.

2.3 Waste reduction

The repeatability (mentioned above) allows manufacturers to minimize overall
waste. Less error, as a result of repeatability, helps not only to save time, but it
also minimizes the amount of material needed to yield the product. For example,
robots can use less wire for welding, cut closer to the edge, and can use less amount
of paint.

Figure 2.
Controlling of mobile-robots from a remote system using LabVIEW.

Middleware Architecture

44

2.4 Faster cycle times

The production cycle time can be greatly improved using a robot. The more
production helps to get the higher demand and ultimately brings more money.

2.5 Improved workplace

Safety Robots can be used in places which are not suitable for human. So,
automation also helps to build safety environment.

2.6 Reduction of labor costs

Robots can replace jobs by removing workers from tough roles, which can help to
reduce labor costs.

2.7 Reduced floor space

It’s easy to start spreading out across the shop floor with extra materials,
machinery, and tools. Robots can help to reduce the footprint of the required
workspace by optimizing everything into a smaller, confined space.

2.8 Integration with business systems

Machinery and Robots can talk with each other to give a better view of the
operating environment. This can help to make a smart decision on how to improve
their process.

The next section describes mobile-robots with the focus on the robotic platform
used here for testing.

3. Mobile-robots (AIVS)

Almost half a century ago, the first simple robot stepped onto the factory floor
[13]. Today, a modern manufacturing business can be hardly imagined without the
involvement of robots. The integration of robots with smart technologies allows the
creation of more independent robotic systems that are not only able to carry out
basic repetitive operations such as assembling, loading or modifying parts, but can
also perform cognitive tasks, improving processes without human intervention and
making instant decisions. In this work, turtlebot-3 and RB-1 (Robotnic) robots are
used for the real-time testing of the developed LabVIEW application.

Turtlebot is a robot that is based on ROS Standard. There are three versions of
turtlebot, turtlebot-1, turtlebot-2 and turtlebot-3 released in 2010, 2012, and 2017
respectively. There are two models of turtlebot-3 namely burger and waffle. Here,
the burger model of turtlebot-3 is used, which is an affordable, small, and the ROS
based mobile-robot. The core technology of the turtlebot-3 is SLAM (Simultaneous
Localization and Mapping), Navigation, and Manipulation. Turtlebot-3 uses a
Laser Distance Sensor (LDS-01), which is a 2D laser scanner capable of sensing 360
degrees that collects a set of data around the robot to use for SLAM. The turtlebot is
connected/controlled through a remote system using wifi connection. The designed
LabVIEW software is also tested with RB-1, which is used for real-time implemen-
tation in a factory environment. RB-1 is an autonomous and configurable robot,
focused on the field of research in indoor applications. RB-1 is also based on ROS
and uses an open architecture and modular control. The RB-1 platform comes with

45

Middleware Application, Suitable to Build an Automated and Connected Smart Manufacturing...
DOI: http://dx.doi.org/10.5772/intechopen.97397

a Hokuyo URG-04LX-UG01 [14], a 2D laser range finder for navigation. Turtlebot-
3(burger) and RB-1 are shown in Figure 3.

The mobile-robots used in this work are based on Robot Operating System
(ROS), which detail is given in the next section.

4. Robot operating system (ROS)

ROS is a meta-operating system for robots [15]. This is an open-source platform
which functions are equivalent to what we expect from an operating system. These
functions include low-level device control, hardware abstraction, message passing
between processes, implementation of commonly-used functionality, and package
management. The ROS meta operating system (shown in Figure 4) also provides
libraries and tools for obtaining, building, writing, and running code across
multiple computers. This meta-operating system is different than conventional
operating systems in a way that it can be used for a different combination of
hardware implementation.

However, unlike conventional operating systems, it can be used for numerous
combinations of hardware implementation. Furthermore, it is a robot software
platform that gives many development environments specialized for developing
robot application programs. ROS runs on Ubuntu operating system; here we used
Ubuntu 16.40 LTS. ROS supports many programming languages; here we used C++.
There are different versions of ROS; here ROS Kinetic is used. In ROS, the smallest
running unit of the processor is called a node. The first step is to run ROS_Master.
Upon startup of the master, a node registers information such as name, message
type, URI address, and port number of the node. The registered node can act
as a publisher or subscriber based on the registered information, and nodes can
exchange messages using topics and services. In this work, as mentioned earlier, the
software application is developed using LabVIEW, which has support for ROS. The
ROS for LabVIEW is a set of LabVIEW VIs that enables two-way communication

Figure 3.
Turtlebot-3(burger) and RB-1(Robotnik).

Figure 4.
Meta-operating system [15].

Middleware Architecture

46

between ROS (running on Ubuntu machine) and LabVIEW (running on a windows
machine). The LabVIEW ROS allows users to initialize nodes, publish and subscribe
to various types of topics, and creates a ROS_Master within LabVIEW.

The next section mentioned target application details, which will help to
understand the overall project concept.

5. Target application

This work is part of an ongoing project related to the integration of a fleet
of mobile-robots and MES, targeted to design for the cell-based manufacturing
environment. The target plant used traditionally linear manufacturing production
lines for the assembly of its products. This approach takes a continuous flow in-line
with balanced operations. The concern with this approach moving forward is the
high up-front investment cost to achieve a Return On Investment (ROI). The line is
designed for one product type, it is not flexible and is unsuitable for new product
demand due to new product business or product revisions that may arise. The
development of new smart manufacturing assembly lines i.e. cell-based will allow
for flexibility to volume fluctuations, will support product ramp up/down, and
the use of the latest automation technologies such as Industry 4.0 and the Internet
of Things (IoT). The smart manufacturing assembly line will be used for multiple
products, having the capability of a flexible production system for all production
operations.

In cell-based manufacturing, different cells will be connected by an
automatic product delivery system which will transport the product through the
manufacturing process from process cell to process cell as defined by detailed
production sequences using an MES. The automatic product delivery system will
take the form of a fleet of AIVs with the ability to collect and deliver products to
process cells in a format suitable for product feed. As mentioned earlier, this work
focuses on one part of this target application i.e. development of a LabVIEW
application that can communicate between the fleet of robots and MES. Details of
this development are given in the next section.

6. Development of LabVIEW application

To prepare the ROS package for mobile-robots, ROS Kinetic is installed on
Ubuntu 16.04 system and a code is prepared in C++ to publish and subscribe
messages. This code declares a subscriber that subscribes to a topic (published
by LabVIEW publisher) to receive commands for the robot and publishes a topic
(subscribed by LabVIEW subscriber) to send an acknowledgment. Therefore,
we can say that here publisher/subscriber sends/receives data to/from LabVIEW
respectively. To take coordinates of physical location a map is generated using
SLAM. Initially, the robot is taken around the workplace and allowed to scan the
surrounding area with its main LiDAR sensor. It stitches that information together
to form a complete static map of the workplace. The robot uses the map to calculate
the best route between any two points. Here we are using hard codded coordinates
of physical locations. The coordinates are taken using amcl node, which takes laser
scans, transforms messages and outputs estimated pose.

The LabVIEW code consists of two while loops; one for publisher and the other
for a subscriber. The ROS node is initialized using ROS_Topic_init subVI. The
input of this subVI is connected with topic name, topic type, action (publisher
or subscriber), and update rate and queue size. The node name (/LV1) is also

47

Middleware Application, Suitable to Build an Automated and Connected Smart Manufacturing...
DOI: http://dx.doi.org/10.5772/intechopen.97397

assigned using the ‘node’ terminal of ROS_Topic_init.vi. The ROS_Topic_init.vi
is connected to ROS_Topic_Read.vi (in case of subscriber) and ROS_Topic_Write.
vi (in case of publisher). The ‘msg_in’ input of ROS_TOPIC_Write.vi is connected
with ‘msg_out’ of add_string.vi. The message which needs to publish is connected
with the ‘String’ terminal of add_String.vi. While, in subscriber the ‘Reply’ terminal
of ROS_TOPIC_Read.vi is connected with ‘msg-in’ of parse_string.vi. The string
output of the parse_string.vi is connected as an indicator, which shows the robot
response. The subscriber and publisher topics are closed using ROS_Topic_Close.vi.
Multiple instances of the LabVIEW application are used to control more than one
Mobile-Robots.

The developed software application is initially tested using turtlebot-3, as
mentioned in Section 3. For this testing, two Linux systems and one windows
system are used. Out of two Linux systems, one is used as remote-PC (Ubuntu
16.04) and the other is referring to turtlebot-PC (Raspbian). The ROS packages
and all dependent packages are installed on remote PC and turtlebot-PC. All steps
mentioned in [16] are followed to setup turtlebot, remote-PC, and turtlebot-PC.
The Windows PC is used to run the LabVIEW. ROS communicate between systems
using IP addresses; so, the turtlebot-PC, remote-PC, and windows-PC connected
to the same wifi router. The .bashrc file is edited on turtlebot-PC and remote-PC in
such a way that ROS_Master runs on remote-PC. The map is generated using SLAM
node and then we noted coordinates of target physical locations. These coordinates
are needed for ROS packages. Testing is started by running ROS_Master on
remote-PC and then bring-up packages of turtlebot are executed. Navigation node
runs as a next step (on remote-PC), which opens the rviz (visualization tool) with
the selected map. The map shows turtlebot at some random point, so the estimated
posture of robot is set in rviz. Upon running the ROS node, it keeps looking for a
message from LabVIEW. The LabVIEW application pops-up a window to enter the
Master_IP_address that is the address of remote-PC where ROS_Master is running.
LabVIEW application sends some predefined strings that receive by subscriber
running on remote-PC. Based on the received strings, target location coordinates
are transferred to turtlebot. Upon reaching the target location, turtlebot sends
an acknowledgment. This shows a successful communication between LabVIEW
and mobile-robots. The same testing is done using RB-1, only the difference is that
here we need only two systems (LabVIEW system and RB-1 system) as in this case
ROS_Master runs on RB-1.

This work provides the foundation to develop a software application to control
mobile- robots that can be used to integrate a fleet of mobile-robots to the MES
system. Direct communication between MES and the mobile-robots is not possible
that’s why we introduced the middleware LabVIEW application and presented this
idea in [17], which summary is given below.

Previously presented work [17] emphases on the integration of an MES and AIV
that is needed to develop a completely automated, connected smart manufacturing
environment. This integration requires a middleware application to execute the
command translations between MES and AIVs. Here, a LabVIEW based application
is built as the middleware. The middleware application development is divided
into 03 major parts: (1) LabVIEW & MES communication, (2) LabVIEW & AIV
communication, and (3) scheduler. In part (1), the middleware application imports
relevant webservices of MES and produce corresponding LabVIEW VIs. The
produced LabVIEW VIs are configured using the LabVIEW. NET functions. In part
(2), the middleware application utilizes the ‘ROS for LabVIEW’ (LabVIEW add-on)
to establish communication with an AIV. Part (3) comprises of a full cycle of
scheduler operation, that consists of eight steps. These eight steps are: checking of
pickup locations status, selection of one pickup location, pick the product, confirm

Middleware Architecture

48

to the MES about completion of pickup operation, checking of drop-off locations
status, selection of one drop-off location, drop the product, and confirm to the
MES about the completion of the drop-off operation. The middleware application
was tested in two stages, during the development phase, the Turtlebot-3 robot
was used for testing and finally, the middleware application was commissioned
using the Robotnik ‘RB-1′robot in an actual factory environment. The developed
middleware application supports 03 pickup and 03 drop-off locations. The pickup
and drop-off locations are chosen based on pre-defined rules. The interface of the
developed middleware application can be easily used by a non-technical operator
and it displays a live log of operation.

The presented concept can be expended at a fleet level using the following:
(a) Communication between multiple instances of LabVIEW application with
each robot on the factory floor – this is a decentralized approach and the problem
with this approach is the risk of assigning the same tasks at the same time to more
than one robot. But this approach is ideal when each robot is assigned a dedicated
zone in a manufacturing environment (b) Running ROS_Master using LabVIEW
application and control all robots in the field – The issue with this centralized
approach is that there will be no communication with robots in the field in case
if the system running LabVIEW stops working. This chapter focused on the case
(a). The LabVIEW application will take the instructions from MES and send the
command to robots in the field accordingly. The LabVIEW-MES communication is
not the focus of this chapter.

7. Conclusion

This work is part of an on-going project which involves the integration of a
fleet of mobile-robots (AIVs) with MES. This integration can be achieved using
LabVIEW software as middleware because it can support both LabVIEW-to-Robots
and LabVIEW-to-MES communication. This work focuses on the development/
testing of LabVIEW-to-Robots communication. In the final setup, the LabVIEW
system will work as a middleware between multiple Robots and MES. The designed
LabVIEW application will be further developed to meet the overall requirements
of fleet management. The updated version of the application will allow more
complex production flows and the process of calling robot to pick the load; will be
more intelligent by linking with MES in a fleet environment. This will provide an
even larger boost to productivity, flexibility, and quality in a smart manufacturing
environment.

Acknowledgements

This publication has emanated from research supported in part by a grant from
Science Foundation Ireland under Grant numbers 13/RC/2094 and 16/RC/3918.
For the purpose of Open Access, the author has applied a CC BY public copyright
license to any Author Accepted Manuscript version arising from this submission.

Conflict of interest

The authors declare no conflict of interest.

49

Middleware Application, Suitable to Build an Automated and Connected Smart Manufacturing...
DOI: http://dx.doi.org/10.5772/intechopen.97397

Author details

Muzaffar Rao and Thomas Newe
Centre for Robotics and Intelligent Systems (CRIS), Department of Eelectronic and
Computer Engineering, University of Limerick, Ireland

*Address all correspondence to: muzaffar.rao@ul.ie

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

50

Middleware Architecture

[1] M. Wiktorsson , A. Granlund, M.,
Lundin, B. Södergren, “Automation and
Flexibility: Exploring Contradictions in
Manufacturing Operations”
Conference: 23rd EurOMA conference,
Trondheim, Norway

[2] R. Szabó and A. Gontean, "Industrial
robotic automation with Raspberry PI
using image processing," 2016
International Conference on Applied
Electronics (AE), Pilsen, 2016, pp. 265-268

[3] S. Choi, W. J. Eakins and T. A.
Fuhlbrigge, "Trends and opportunities
for robotic automation of trim & final
assembly in the automotive industry,"
2010 IEEE International Conference on
Automation Science and Engineering,
Toronto, ON, 2010, pp. 124-129

[4] B. Chu et al., "Robotic automation
system for steel beam assembly in
building construction," 2009 4th
International Conference on
Autonomous Robots and Agents,
Wellington, 2009, pp. 38-43

[5] B. Shishir, (2010). Changing from
conveyor to work-cell-based systems to
deal with fluctuations in demand.
Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 224(1),
169-176. URL: https://doi.
org/10.1243/09544054JEM1374

[6] Hennessey, T. MES is an Essential
Part of Smart Manufacturing URL:
https://www.ibaset.com/blog/
mes-is-an-essential-part-of-
smartmanufacturing/(online)

[7] MESA International. MES Explained: A
High Level Vision for Executives.Available
online: https://services.mesa.org/
resourcelibrary/showresource/334444c
5-388f-4360-beb4-3c86dc0f4de4

[8] SAP MES. Available online: https://
www.sap.com/uk/produc ts/execution-
mes.html.

[9] D. Singh, E. Trivedi, Y. Sharma and
V. Niranjan, "TurtleBot: Design and
Hardware Component Selection," 2018
International Conference on
Computing, Power and Communication
Technologies (GUCON), Greater Noida,
Uttar Pradesh, India, 2018, pp. 805-809.

[10] Turtlebot (online), URL: https://
www.turtlebot.com/

[11] Robotnik(RB-1) (online), URL:
https://www.robotnik.eu/
manipulators/rb-one/

[12] RobotWorx, “Advantages of
Industrial Automation with Robots”
Robotic Articles(online), URL: https://
www.robots.com/articles/
advantages-of-industrial-
automationwith-robots

[13] SaM Solutions, “Five Reasons to
Implement Robotics in Manufacturing”
(online), URL: https://www.
samsolutions.com/blog/category/
manufacturing/

[14] Hokuyo “Distance Data Output/
URG-04LX-UG01”(online), URL:
https://www.hokuyo-aut.jp/search/
single.php?serial=166

[15] Y. Pyo, H. Cho, R. Woon J., T. Lim,
“ROS Robot Programming ” First
Edition Dec 22, 2017 Published by
ROBOTIS Co.,Ltd ISBN
979-11- 962307-1-5

[16] Robotics e-manual Turtlebot-3
(online), URL: http://emanual.robotis.
com/docs/en/platform/turtlebot3/
overview/

[17] M. Rao; L. Lynch; J. Coady; D. Toal;
T. Newe, “Integration of an MES and
AIV Using a LabVIEW Middleware
Scheduler Suitable for Use in Industry
4.0” Applications. Appl. Sci. 2020, 10,
7054. https://doi.org/10.3390/
app10207054

References

51

Section 2

Cloud Computing
Middleware

53

Chapter 4

Middleware Patterns for Cloud
Platforms
Gary S.D. Farrow

Abstract

This chapter explores how traditional system architectures are being affected by
the emergence of ‘Uber’ style platform models that provide business services with
huge global reach. The specific demands and characteristics of such platforms are
discussed which in turn dictate their technical requirements. The chapter will explain
how middleware technologies have evolved to support today’s requirements for such
massively scalable platform solutions. The latest preferred architectural paradigms
dictate the use of micro-services and APIs are central to the design of such platforms.
Similarly, event based architectures are another key paradigm that must be supported.
The role of modern middleware and cloud technologies to support these newly
dominant paradigms will be explained. Key architectural patterns pertinent to global
platform solutions are illustrated. The role of modern middleware in fulfilling these
patterns is highlighted using real-world examples from the field of open finance.

Keywords: Cloud architecture, migration patterns, API ecosystem,
event-based architecture, microservices, cloud migration, PSD2, open banking

1. Introduction

This Chapter describes advanced patterns relating to the use of cloud platforms
in hosting IT solutions. The context for the patterns is the evolution towards open
information ecosystems, mandated to a large degree by regulatory initiatives such
as PSD2 [1], but also by competitive necessity. In this future business environment,
there is an expectation of a significant increase in transaction volumes as new and
innovative services become available for consumers.

The Chapter describes why cloud platform are the essential technology to
provide cost effective scalability for IT solutions. The patterns highlight how new
application components in the cloud are used in conjunction with existing on
premises applications in a hybrid approach to deployment. Further, the Chapter
also highlights how the patterns can then be used as part of a phased, but fully
complete, migration to the cloud. Finally, specific real world usage scenarios for the
patterns are highlighted.

The patterns are presented in a cloud vendor agnostic way and can be imple-
mented in any of the key cloud provider technologies; Amazon Web Services
(AWS), Google Cloud Platform (GCP) or Microsoft Azure.

The Chapter is structured as follows; Section 2 provides the background in terms
of the business environment and the associated business drivers that necessitate the
move to cloud. It further explores the technology perspectives of cloud that provide
the specific advantages over conventional infrastructure technologies to support

Middleware Architecture

54

the emerging business environment. Section 3 introduces the definition of a cloud
platform in the specific business context outlined.

Section 4 provides the underpinnings of the key cloud platform patterns in the
form of relevant established architecture patterns and outlines the essential build-
ing blocks for cloud solutions. Section 5 then uses these underpinnings to describe
the proposed cloud platform architecture patterns. Section 6 illustrates the use of
the cloud patterns to achieve a migration from conventional IT solution deploy-
ment via a multi-phased approach. Finally, in Section 7, real-world scenarios are
described to which the cloud patterns are directly applicable.

2. Background

Cloud computing has revolutionised the provisioning of infrastructure for
IT services. As the maturity of the cloud offerings has increased, the richness of
the of capability has progress from, initially, Infrastructure as a Service (IaaS),
through to Platform as a Service (PaaS) and then Software as a Service (SAAS).
The latest generation of cloud services relate to the availability of cloud plat-
forms; domain specific applications connecting users of a particular services
with the service providers via the concept of a cloud platform. There are numer-
ous examples now appearing but, one of the earliest and a classic example of
such is Uber.

The Chapter introduces some key business drivers for the use of cloud platforms.
Specifically, the context of regulatory changes relating to open banking are used to
illustrate trends in financial services domain. Its consequences in terms of impacts
to IT system non-functional requirements, particularly those relating to the ability
to scale on demand and cost effectively, are highlighted. This creates a problem for
an organisation’s IT function in supporting these trends.

The use of cloud technology and cloud platforms is now ubiquitous in most
organisations IT architectural thinking, with the promise of providing:

• On demand and self-service characteristics; hence being suitable for agile
delivery lifecycles

• Highly scalable architectures supporting platforms having huge global reach

• Capability to store of huge volumes of data and derive useful insights to inform
a variety of downstream services

Various patterns for the migration of components to the cloud have been identified
previously [2]. These have focussed on basic technology migration patterns such as:

• Re-Deployment

• Cloudification

• Relocation

This focus of this Chapter is in defining advanced, application migration pat-
terns that exploit the advantages of cloud computing for use in emerging and future
open information ecosystems. The patterns highlight the essential adoption and use
of cloud platforms through:

55

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

• Enabling the caching and aggregation of customer data from which insights
can be determined and further support downstream customer services

• Catering initially for a hybrid co-existence with ‘on premises’ IT systems and
services such that these can be retained in the short term and provided cost
effectively

• Ultimately supporting the complete migration of IT systems from on premises
deployment to a cloud platform

2.1 Business drivers

The introduction of new financial market regulation, notably the revised
Payments Services Directive [1] (or PSD2), has mandated banks to open up account
information and payment services to third parties. The regulation is considered
an important enabler for the creation of new and innovative customer proposi-
tions. PSD2 is recognised as a trigger for the wider concepts of ‘open banking’ and,
beyond this, ‘open finance’ in which ultimately a rich variety of financial services
are accessible to an ecosystem of third parties comprising third parties, business
partners and industry bodies.

Open banking has led to a corresponding rise in financial technology organisa-
tions – namely the “fintechs”. Indeed, information pertaining to the take up of open
banking services confirms that 94% of fintechs view open banking as a major area
of opportunity [3].

The net effect of this is that there is likely to be a growth in financial transactions
accessing customer accounts as new services, founded on the open access regula-
tion, are brought to market. This presents a challenge for financial institutions; that
of scaling their IT systems cost effectively to support the new market dynamics
with increased transaction volumes.

To summarise:

• Within financial services, open banking is recognised a key area for driving
business growth

• To enable rapid pace of change and innovation, businesses must adopt technol-
ogy that scales effectively and enables an engaging customer experience

• Cloud technology is considered essential to achieve scalability of the banks
underlying systems to meet the demand for future services

Organisations are therefore faced with a key problem to address of how to
combine the value of their existing mature core applications with the advantages
that cloud technology provides. Superficially, they are faced with a number of
high-level architecture challenges:

• Do they lift and shift applications to the cloud?

• Do they invest in rewriting applications to take advantage of the cloud
technologies?

• Do they migrate to greenfield cloud platforms providing new implementations
of core services?

Middleware Architecture

56

This Chapter helps organisations to address these key issues by describing a
variety of patterns highlighting relevant cloud platform usage scenarios includ-
ing hybrid deployments and patterns to support, ultimately, the full migration of
services to a cloud platform.

2.2 Cloud technology drivers

In this Section, a precis of the features of cloud technologies is provided. These
reinforce what makes a cloud platform suitable for supporting the provision of scal-
able information services in general and the specific emerging trends in banking.
The notable technology features are:

• Elastic scaling. As transaction volumes increase or decrease, cloud autoscaling
technologies scale the computing resource required automatically.

• Compact Data Notation using Java Script Object Notation (JSON).
Compact data representation standard based on name-value pairs. Again this
infers requires less bandwidth than other data formats such as XML when
transmitting data, making it more suitable for internet usage.

• RESTful API standards. A RESTful API uses standard HTTP requests to invoke
remote processing on data. REST is the preferred API technology of choice as it
is based on open standards and the use of a ‘lightweight’ stateless HTTP protocol
for its requests and responses. This again reduces computing and networking
resource requirements and makes a cloud solution inherently more scalable.

• ‘No SQL’ database technology. ‘Document’ style storage databases allow
for the storage of data is the same format as which it transmitted, specifically
JSON. This approach requires no, or minimal, format translation from data
store through to payload, further reducing the computing resources required
in supporting a transaction from data deserialization through its transmission
and presentation to a consumer.

• Use of Open Source middleware. Open Source middleware is prevalent for
cloud deployments. Such software licencing models are much more scalable
as the software is free, or at the very least the pricing models are better geared
to the highly elastic solutions enabled by the cloud. Thus, cloud solution
runtime costs are close to that of a linear ‘utility’ model, rather than having the
incremental costs breaks associated with traditional middleware and vendor
software. Hence this ultimately more cost efficient.

Consider now a traditional IT architecture that supports banking and other infor-
mation systems. The underlying customer information will typically reside in a ‘system
of record’, the implementation of which typically fall into one of two categories:

1. A bespoke legacy system, such as a mainframe, developed over many years;
often difficult to maintain with rigid release cycles for enhancements

2. A vendor package, providing a complete or modular domain solution. e.g. a
core banking platform or payment engine.

In the context of open information access, the ability to scale on demand and at
a cost that is linear to the transaction load becomes a key requirement. However,

57

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

both of the above implementation options present challenges in meeting the non-
functional characteristics of a new open information ecosystem outlined since the
ability to scale cost effectively becomes difficult.

One reason for this is that both legacy and vendor product pricing are typically
very dependent on supporting hardware and the number of CPUs required. Hence
cost breaks relating to hardware and vendor product licencing tend to be highly
non-linear. To accommodate the open information ecosystem and expected transac-
tion growth via a traditional IT architecture typically means over-engineering to
allow for sufficient headroom in the capacity. Thus, mitigating the scalability risk
in a traditional IT architecture is likely to be highly cost inefficient given the wide
range of loads that could be experienced.

2.3 Open information ecosystem requirements

The difference in usage profiles between open banking and traditional banking
are now explored. In general, traditional banking is subject to highly predictable
loads based on:

• A finite customer base for a given banks

• Online usage patterns that are well understood and predictable

• System processing that is based on periodic cycles

 ○ Daily processing cycles such as overnight batch processing

 ○ Monthly processing cycles, such a billing

It is reasonable to assume that net transaction volumes will inevitably increase
substantially as third parties develop their propositions and these gain maturity
in the marketplace. This alone will result in customers interacting with their bank
more frequently, albeit indirectly via the third parties applications in ‘customer
present’ scenarios. Also, there will be an increase in transaction volume driven
from the third parties directly. Third parties, having obtained consent from the
customer for specific account information, will exercise their right under PSD2 to
access that information up to four times daily in ‘customer not present’ scenarios.

However, with open banking, transactional loads are likely to be significantly less
predictable. The open banking transaction volumes have a more complex and less
deterministic relationship with existing customer volumes and their access patterns:

• Customers may employ the services of several third parties and thus a
multiplier will apply to the volume of transactions normally associated with a
given customer base. This multiplier is difficult to quantify as:

i. The percentage of account holders that subscribe to use PSD2 services is not
yet known

ii. The number of PSD2 services that customers subscribe to is likely to be
highly variable

• third parties will undoubtedly access account information and transaction
history without the customer being present up to the limit defined by the
regulation.

Middleware Architecture

58

• Information access patterns are less predictable and determined by the third
party rather than via predictable customer access patterns that are well
understood by the banks’.

These characteristics translate to specific IT issues for the account information
provider, notably:

• How to achieve scalability of the mandated services to meet a, potentially huge,
increase in transactions volume

• How to accommodate peak loads at non predictable times

• How to ensure performance and availability of the regulatory interface to
support the open information services

3. Cloud platform approach

Given the challenges highlighted for open information access, the role of a cloud
platforms in the providing solutions to this problem have previously been identified [4].

3.1 Platform definition

In brief, a platform is a business based on enabling value-creating interactions
between external producers and consumers. The platform provides an open,
participative infrastructure for these interactions and operates within governance
conditions set for them. The platform’s overarching purpose: to consummate
matches among users and facilitate the exchange of goods, services, or social cur-
rency, thereby enabling value creation for all participants.

3.2 Technical service provider platforms

A Technical Service Provider (TSP) is a non-regulated participant in the PSD2
ecosystem. They provide services on behalf of a regulated entity and provide the
necessary IT components to implement the required PSD2 services, intermediat-
ing between an Account Provider and a Third Party Provider via their platform, as
illustrated in Figure 1. Standards for PSD2 access to account services (e.g. from the
Berlin Group [5]) universally employ application programming interfaces (APIs),
these being the de facto standard for B2B interfaces over the Internet. Further, as the
ecosystem expands to accommodate broader open banking services, there is an expec-
tation that additional, non-regulatory, services will also be implemented using APIs.

Figure 1.
Cloud platform context.

59

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

TSP platforms can accommodate such open banking services on behalf of an
account provider.

3.3 Summary

The concept of a cloud platform has been introduced and the associated advan-
tages highlighted. In practice such a platform can either be provided by a third party,
known as a TSP, or by the bank themselves in the form of a private cloud. For the
purposes of the patterns now described below and their rationale, this distinction is
not significant.

4. Pattern building blocks

4.1 Command query response segregation

Command Query Response Segregation (CQRS) is a fundamental design pattern
identified by Young [6] and Fowler [7]. Up until recently, the use of this pattern was
quite limited and, furthermore, its usage came with caveats about the additional
implementation complexity required. Through an implementation of this pattern,

Figure 2.
Abstract CQRS pattern.

Middleware Architecture

60

it will be shown that certain key benefits of a cloud platform can be realised. The
pattern is shown conceptually in Figure 2.

In its abstract form, the pattern is very simple:

• One mechanism is used to read data – the Query element of the pattern

• A different mechanism is used to write data – the Command element of the pattern

• Data subject to an update in the Data Master (illustrated) is propagated to the
Read Only Cache once an update has occurred occur.

The pattern is unspecific regarding implementation.
The significant feature of this pattern is that is reduces loading on the Data

Master, since only write operations are performed on this data store. In the context
of financial services this is highly significant. Consider the Data Master as sup-
porting a system of record such as an accounting application. Since the majority
of transactions on accounts are in fact read operations (typically 80%), by having
a separate data cache for read only transactions, this approach becomes highly
effective in reducing the net load on the system of record.

In the cloud patterns described in this Chapter, it will be shown how the query
service and the command service can be implemented independently and deployed
to a cloud platform in a phased approach if necessary. This enables scalability and
performance and ultimately can facilitate a complete migration of a system to a
cloud platform.

4.2 Publish-subscribe architecture

Publish-Subscribe is an architectural pattern that is exploited in the proposed
patterns for cloud platforms. The components of the pattern are illustrated in
Figure 3. The pattern is fundamentally about message distribution:

• An Event Publisher creates and sends a message

• An Event Subscriber receives and processes messages

• The messages delivery is facilitated by a Publish/Subscribe Engine.

Figure 3.
Publish - subscribe architecture.

61

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

The Publish/Subscribe engine manages the distribution of messages based on
the set of subscriptions. When an event is published, the engine matches the sub-
scribers, typically based on the assignment of ‘topics’ and transports the message to
the destination accordingly.

4.3 API gateway

A brief description of an API Gateway is provided here for the purpose solely of
illustrating its role in the cloud patterns. In short, an API Gateway provides services
for the management of APIs. These services broadly equate to a set of policy driven
capabilities that dictate the characteristics and behaviour of an API. Typical policies
relate to:

• Security management of the API

• Performance management, viz. throttling of endpoint connections

In addition, an API Gateway acts as an audit point and the logging of API
usage. A number of commercial and open source API Gateway offerings are
available.

4.4 Micro services architecture

The Service Oriented Architecture (SOA) paradigm has previously dominated
architectural thinking. This paradigm relied on the constructs of a layered hierarchy
of web services to fulfil a request. The services were specified and implemented via
strongly typed interface definitions using XML. Similarly the invocation protocol,
SOAP, was a verbose XML implementation.

Microservices have a similar concept of an interface definition but this is speci-
fied and implemented using a much simpler data typing language, namely JSON
with services invocation via a ‘lighter’, stateless protocol, denoted Representational
State Transfer (ReST).

However, whilst there are technical differences in the way that web services and
microservices are specified and invoked, the difference in architectural style goes
much deeper that the underlying technologies. Specifically, a microservice architec-
ture has the following characteristics:

• It is not a ‘layered’ architecture in that each microservice should be designed
to perform a specific function through from data presentation to the data
persistence

• Each microservice should therefore encapsulate all the functionality to support:

 ○ Presentation of data, irrespective of whether presentation layer is a graphical
or ‘headless’ data payload.

 ○ Business logic associated with the service. e.g. business validation logic.

 ○ Data retrieval and update services.

• They employ a ‘lightweight’ ReST protocol for the invocation of each
microservice.

Middleware Architecture

62

It is useful to emphasise the difference between this and the traditional service-
oriented architecture paradigm as this is key to the effectiveness of the cloud plat-
form patterns presented here. In order to compare, Figure 4 illustrates the typical
layering of a SOA architecture. This is shown alongside the concept of a microser-
vices architecture, with each microservice encapsulating a vertical ‘slice’ through
this layering. In its simplest form, the microservice architecture is a series of such
vertical slices with each microservice being a completely independent construct and
having zero coupling to other microservices.

4.5 Event based architecture

An event-based architecture is another mature architecture paradigm that
complements perfectly a microservices architecture by supporting the commu-
nications between them. The design principle for this style of communication,
again relates to ensuring decoupling between microservices. Independence of
each microservice supports the ability to design, build and deploy microservices
without impact to other microservices supporting the concept of Domain Driven
Design [8].

Thus, rather than create dependencies between microservices using point
to point connections between them (i.e. one microservice explicitly invoking
another microservices via it interface), using an event driven architecture pattern,
a microservice will publish data via an event construct. Microservices that are
potentially impacted by the event, subscribe to the event and receive the event and
its associated data.

Figure 4.
SOA versus microservice architecture paradigm.

63

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

To implement this architecture pattern a Publish-Subscribe Engine component
is required. This component manages the publication of events, typically via the
definition of topics. Consumers of the events are defined by their subscriptions to
the variety of topics.

4.6 Bounded data context

In its general from, a bounded data context defines the necessary data enti-
ties and attributes to support a given business domain. This is another idea
that is integral to the concept of Domain Driven Design [8]. In simple terms, a
bounded data context defines a key domain entity such as a Customer, an Order
or an Account. The data attributes for the bounded data context contains foreign
keys that allow linkages to other domains. For example, a ‘Customer’ bounded
context may contain a list or collection of ‘Account IDs’ to define linkages to the
Account domain entities that equate to the Account bounded context. Limited
hierarchical nesting of the data enables implementation using JSON data
type definitions rather than a stronger typed data structure implementation
such as XML.

By constraining the data set in this way, a relatively simple data structure can
thus support the microservice in respect of its CRUD services. Since the bounded
contexts each define a self-supporting and independent data set, this in turn sup-
ports low coupling between the microservices allowing for independence of design,
through to packaging and deployment.

4.7 No SQL databases

SQL databases relate to a very specific data entity relationship model and associ-
ated query model based on tables. NoSQL databases are a technology that provide
an alternative to traditional data entity relationship models and storage and support
data retrieval mechanism that are different to the traditional entity relationship
model. There are a several fundamentally different types: columnar, document (aka
object) databases, key-value pair and graph NoSQL databases.

The bounded data context approach is well suited to an implementation using
a NoSQL database, specifically the document style. Data can be serialised and
de-serialised efficiently without any paradigm shift in the data representation.
In this respect, JSON microservice payloads can translate directly to serialised
document objects and vice versa.

5. Platform patterns

A prime focus of the patterns for cloud platforms presented in this Chapter is
the notion that you for a specific functional service, you use a different approach
to update information than the approach you use to read information. The original
idea stems from a pattern known as Command Query Responsibility Segregation
outlined in Section 6 above.

Consider now the business context attributed to open banking described in
Section 2. When deconstructed into its constituent parts, the CQRS the pattern can
be seen to be highly useful in supporting organisations in meeting a number of the
business drivers that have been identified, specifically:

• To meet their regulatory requirements for open access to their
customer’s data

Middleware Architecture

64

• To scale ageing legacy systems cost effectively to meet growth needs

• To ultimately support migration of complete legacy platforms to a new cloud-
based platform, helping to meeting the requirements for an agile IT organisa-
tion supporting IT changes with a high cadence.

In this respect this Section highlights the following patterns each using ele-
ments of the original CQRS pattern to meet a specific use case. The following cloud
platform patterns are identified:

• Cloud Data Cache

• API Façade

• Data Hydration

Further, it is shown that, through the sequencing of these new patterns, they can
be used to facilitate the complete migration of a on premises legacy system of record
to a new cloud platform. The cloud patterns are now described in detail.

5.1 Data cache

This pattern relates to the provision of read only services via a cloud platform.
The business context of this pattern is that information services, traditionally
provided by an organisations’ core systems, such as a system of record, can now
be invoked indirectly via a third party, such as is mandated by the open banking
regulation. In such a scenario there arises an increase in demand for services. This
in turn places demands of increased transactions and additional load on the core
system of record.

Consider now that, for applications such as core banking systems, read transac-
tions typically account for 80% of transaction volume. In these circumstances, to
alleviate transaction load on the core system, the pattern provides a read-only data
cache of data derived from the system of record. As described in Section 2.2, this
solution therefore provides a highly scalable solution to this particular business
scenario by using the cloud platform pattern, notably through:

• Use of low-cost, open-source licencing models for the cloud component
technologies and middleware.

• Avoidance of high cost, monolithic scaling of the underlying system of record
having high cost-breaks.

The key advantage of this pattern is that, in response to such increased demand for
read only information services, the organisations information services can be scaled in
a far more cost-effective way than by scaling the underlying system of record.

The components of this pattern are illustrated in Figure 5 and their role
described in Table 1.

5.2 Hydration engine

This pattern relates to population of the data stores cache to support the Data Cache
Pattern described above. Each of the populated data stores represents a bounded data
context for the microservices in the Data Cache pattern above.

65

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

The population of the data stores relies on the implementation of the
publish-subscribe pattern described in Section 4.2 To populate the data stores,
a single subscriber microservice is defined for each bounded data context
identified.

The components of this pattern are illustrated in Figure 6 and their role
described in Table 2.

Figure 5.
Data cache cloud pattern.

Component Role

API Gateway Hosts proxy APIs for each microservice and acts as the Policy Enforcement Point (PEP)
for access to the services.

Microservice A microservice is associated with each API offered via the Gateway and provides read
access to a given data cache.

Data Cache A number of data stores are provided each relating to a single bounded data context

Hydration
Engine

Its purpose is to populate the data caches and keep them synchronised with the system
of record. This component is itself a pattern and may have a number of implementation
variants.

Table 1.
Data cache pattern components and role.

Middleware Architecture

66

5.3 API Façade

This pattern is a cloud specific implementation of the well-known Bridge pat-
tern [9]. The pattern assumes that there are an existing set of services that provide
integration with the system of record. The pattern implementation provisions a set of
modern API interfaces, functionally equivalent to those provided by the combination
of the system of record overlayed by its existing integration services. Such existing
integration services could be implemented by a number of technologies, including:

Figure 6.
Hydration engine cloud pattern.

Component Role

Data Cache A number of data stores are provided each relating to a bounded data context.

Subscriber
Microservice

Each subscriber microservice subscribes to a set of event services sufficient to
populate the bounded data context of the data store.

Publish/Subscribe
Engine

This component maintains the set of events for publishing data and maintains the
set of subscribers to the events.

Connector The connector provides integration with the source system. The connector detects
changes in the underlying data in the system of record and translates these into
events for processing by the Publish/Subscribe Engine.

System of Record This component represents the master application that is the source of the data
being cached.

Table 2.
Hydration engine pattern components and roles.

67

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

• SOAP web services

• Messaging services, such as MQ Series, Rabbit MQ, AWS Simple Queuing System

• CICS transaction processing technology

In this respect, the APIs represent a new interface definition and constitute a
‘façade’ for the existing integration services. The APIs are hosted within the cloud
platform, fronted by an API Gateway that provides API management controlled
through policies as described in Section 4.3.

The components of this pattern are illustrated in Figure 7 and their role
described in Table 3.

Figure 7.
API facade cloud pattern.

Component Role

API Gateway Providing policy based access to the APIs.

Facade Microservice Provides the implementation of the API interface by consuming the existing
legacy integration services.

Existing Integration
Services

This component represents existing integration services that are consumed by the
new microservices to access the underlying systems of record.

System of Record This component represents the master application that is the source of the data
and the target of data updates.

Table 3.
API facade pattern components and role.

Middleware Architecture

68

6. Cloud platform migration

This Section provides an illustration of how the three patterns outlined previ-
ously can be used to achieve a migration of an on-premises legacy application,
such as a system of record, to a modern cloud platform. Three potential phases of
the migration are identified, fulfilling gradual ‘strangulation’ [10] of the legacy
 platform as shown in Figure 8(a)-(c).

Phase 1 of the migration provides a set of selected read services via the cloud
platform using the Data Cache and the Hydration Engine patterns. This migration
step itself can be a phased approach, gradually incrementing the number of the
bounded contexts that are supported in the cloud platform.

Phase 2 of the migration then provides complementary write services for
the read services and their bounded data contexts. To affect this migration the
API Façade Pattern is used to support the write services. Having both read and
write services for a given bounded data context allows integration in the form
of update via events between the system of record and the cloud platform to be
switched off.

A caveat to this happening is that the consuming applications must be migrated
to use the new cloud platform services and not continue their use of the legacy
services. Without this occurring, the architecture becomes complicated by the
fact that any updates made via the cloud platform must also be propagated back to
system of record. To support this, the system of record must also be a subscriber
to events derived from updates via the write microservices. Similarly, any updates
made to the system of record must be propagated to the cloud platform. To support
the latter, the hydration engine must be retained in the architectural solution at
this stage.

To avoid such a complication requires the coordination of:

• Provision of the write services to complement the read services within the
cloud platform for each of the bounded contexts.

• Migration of the service consumers to the new cloud platform services as they
become available.

• Discontinuing use of the equivalent legacy services.

Achieving a clean separation of write services can be difficult, particularly if
there is not a simple correspondence between the legacy and cloud platform ser-
vices. Similarly, Phase 2 can represent the target state architecture where a residual
set of legacy services are retained that existing consumers still continue to use.
This is very much a realistic scenario in the cases where it not feasible to change
the legacy consuming applications to use the new API based cloud services. A
strategy of maintaining the legacy system of record for legacy consuming clients
may therefore be necessary. Alternatively, new consumer applications may be built
to complement the existing legacy client applications and the legacy clients may
ultimately be deprecated.

If the intention is to fully deprecate the system of record, then the migration
process can proceed on a per bounded context basis until all the data that was
originally managed by the system of record is represented in the cloud platform.
The consumers of the legacy services must be migrated to consume the new
services offered by the cloud platform as the bounded contexts are gradually

69

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

migrated. Once the migration has completed, the legacy system of record can
then be deprecated. In these circumstances, to replace the legacy client applica-
tion, refactored or completely new client applications must be built on top of
the new cloud platform services. The end state architecture in post migration is
shown in Figure 9.

Figure 8.
(a)-(c). Migration to a Cloud Platform via Strangulation.

Figure 9.
End state architecture post migration.

Middleware Architecture

70

7. Pattern usage scenarios

This Section describes four specific example usage scenarios for the cloud pat-
terns introduced here.

7.1 Open banking account and transaction data

Regulatory initiatives such as the PSD2 [1] in Europe and the Competition and
Market Authority Order [11] in the UK dictated banks must provide information
services relating to customer’s account details and their historical transactions to
approved third parties, subject to customer consent.

Using the data they obtain about the customer from their banks, the third
parties are thus empowered to create innovative, value add, services that entice the
bank’s customers. These new services create a demand profile for information from
the banks that is significantly different to existing customer behaviours; these being
typically highly predictable and with a tendency to be based on a point in time
transactional need e.g., to check their account balance, to make a transfer. Given
that third parties are permitted to access customer information multiple times per
day, this will result in a significant increase in transaction frequency from the banks
perspective as third parties will take advantage of this to keep their data up to date
to reflect a given customer’s intra-day transactions.

As explained in Section 2.2, faced with a choice of scaling their existing account-
ing systems of record to accommodate this increased transaction volume, the bank
should implement the Data Cache Pattern described in Section 5.1 and the support-
ing pattern in Section 5.2 to achieve cost effective scaling to support the increased
transaction volumes.

7.2 Public and private API hosting

Once again, in response to the landmark regulatory initiatives for open
information access previously described, financial institutions, notably banks,
are mandated to provide access to account services to third parties. In terms of
the technology to offer these services the de facto architectural style for imple-
mentation of these services is that of ReSTful APIs. Similarly, to complement
the regulatory services, banks may also choose to offer their own services for
consumption by their partner organisations or to monetise additional, non-
regulatory services for consumption by third parties.

The net effect of this is that banks need to offer a wide range of ReSTful API
services for consumption by external parties. To support these services bank should
implement the API Façade cloud pattern of Section 5.3, enabling controlled policy
based access to the set of APIs implementing the functional services and leveraging
existing integrations to the systems of record where appropriate.

7.3 Customer data aggregation

A third usage scenario relates to the aggregation of customer data. Third parties
access and accrue account information for a given customer from multiple financial
institutions. This data should be captured according to the Data Cache pattern and
serves to support the third party provider in obtaining a convenient and full picture
of the customer’s financial position. This data supports their provision of value add
services to their customers. A key observation is that the cloud platform implemen-
tation is provided by the third party provider, not by the account provider, resulting
in a demand side cloud platform [5].

71

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

A variant of this is that, within a given financial institution, data about a
customer may be aggregated from a number of different account systems of record
(e.g., current account savings account, credit card account) via the same Data
Cache Cloud Pattern. Conversely, this usage scenario represents a supply side
platform. The two styles of platform are illustrated in Figure 10 below.

7.4 Legacy system remediation

A common problem for banks and other financial institutions is that of vendor
lock-in to legacy technologies caused by a variety of circumstances:

• Low risk appetite of the organisation to undertake a complex migration to a
new replacement system of record

• Sheer effort to refactor the legacy application using a modern IT architecture

At the same time, drivers to move from the legacy platform have increasing
immediacy:

• Scarcity of resources to maintain and enhance the legacy system

• Correspondingly high maintenance costs

• Inability to support business resiliency due to slow development timescales and
long delivery cycles for changes

In this context, the phased migration using the strangulation pattern outlined
in Section 6 offers a viable solution to the vendor lock-in problem. By allowing for
a phased migration the approach this significantly de-risks the migration to a new
system of record.

• New services are introduced in a controlled manner, rather than one
‘big bang’

• The approach has low initial complexity, focusing on read services for new
consumers

• It has the advantage that legacy application service consumers are not initially
impacted by introduction of new services.

8. Summary

This Chapter has highlighted the key business and technical drivers to lever-
age cloud platforms in an era of open information services. Specific examples and
scenarios from the financial services domain have been provided, but these are
considered readily able to generalise to other business domains.

As open access to information becomes more prevalent, either though regula-
tion or competitive necessity, there will be a need to support increased volume of
transactions to access information. In these circumstances, to support scalability of
the underlying information systems, it is considered vital to leverage the properties
of cloud infrastructure. To do this effectively the key architecture patterns have
been identified to support this business prerogative.

Middleware Architecture

72

Figure 10.
(a) Supply side and (b) demand side cloud platforms.

The patterns accommodate both:

• A hybrid approach, leveraging existing infrastructure, co-existing with a cloud
platform and;

• A phased, but ultimately complete, migration from a conventional infrastruc-
ture deployment to that of a cloud platform

The patterns have been presented in a cloud provider agnostic manner and there
are a significant number of technology implementations that can be considered that
map to the middleware capabilities that have been highlighted. This makes them
highly realisable with current cloud middleware technologies and the key global
cloud providers; AWS, GCP and Azure.

Glossary

API Application Programming Interface
AWS Amazon Web Services
B2B Business to Business
CQRS Command Query Response Segregation
CICS Customer Information Control System
CRUD Create Read Update Delete
GCP Google Cloud Platform
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
JSON Java Object Notation
MQ Message Queue
PaaS Platform as a Service
PEP Policy Enforcement Point
PSD2 Payment Services Directive 2
ReST Representational State Transfer
SaaS Software as a Service
SOA Service Oriented Architecture

73

Middleware Patterns for Cloud Platforms
DOI: http://dx.doi.org/10.5772/intechopen.98884

Author details

Gary S.D. Farrow
Triari Consulting Ltd, Manchester, UK

*Address all correspondence to: gary.farrow@triari.co.uk

SOAP Simple Object Access Protocol
SQL Structured Query Language
TSP Technical Service Provider
XML eXtensible Markup Language

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

74

Middleware Architecture

[1] Directive (EU) 2015/2366 of the
European Parliament and of the
Council of 25 November 2015 on
payment services in the internal market,
amending Directives 2002/65/EC,
2009/110/EC and 2013/36/EU and
Regulation (EU) No 1093/2010, and
repealing Directive 2007/64/EC (Text
with EEA relevance), available at:
https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX%3A32015L2366,
last accessed on 7 Feb 2020

[2] “Pattern-based Multi-Cloud
Architecture Migration”, Pooyan
Jamshidi1, Claus Pahl2, Nabor C.
Mendonc , Software Practice and.
Experience. 2016; 00:1-25

[3] Ernst & Young (2018) ‘FinTech Open
Banking Snapshot’, available at: https://
assets.ey.com/content/ dam/ey-sites/
ey-com/en_gl/topics/banking-and-
capital-markets/ey-FinTech-open-
banking-snapshot. pdf Last accessed 6
June, 2021.

[4] The Berlin Group (2020)
‘NextGenPSD2 XS2A Framework —
Implementation Guidelines, Version
1.3.6’, available at: https://www.berlin-
group.org/nextgenpsd2-downloads. Last
accessed 8 Jun 2021

[5] “Open Banking: The Rise of the Cloud
Platform”, G. S. D Farrow, Journal of
Payments Strategy & Systems, Volume
14 Number 2, 2020.

[6] Young, Greg. "CQRS Documents"
(PDF) http://cqrs.files.wordpress.
com/2010/11/cqrs_documents.pdf. Last
accessed 7 May 2021

[7] Fowler, Martin. "CQRS". https://
martinfowler.com/bliki/CQRS.html.
Last accessed on 7 May 2021

[8] Domain Driven Design: Tackling
Complexity in the Heart of Software. Eric
Evans, Sept 2003, ISBN-10032112515

[9] Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides (1994). Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley.
pp. 151ff. ISBN 0-201-63361-2.

[10] An Agile Approach to a Legacy
System, Chris Stevenson and Andy Pols,
http://cdn.pols.co.uk/papers/agile-
approach-to-legacy-systems.pdf. Last
accessed 10 May, 2021

[11] ‘Competition and Marketing
Authority Report - RETAIL BANKING
MARKET INVESTIGATION, “The
Retail Banking Market Investigation
Order”’, 2017.

References

75

Chapter 5

Cloud Security in Middleware
Architecture
Jagdish Chandra Patni

Abstract

The new Internet of Things (IoT) has increased the need for computing, con-
nectivity, and storage capacities as the amount of sensitive data grows. Since it
provides on-demand access to a common pool of resources such as processors, stor-
age, software, and services, cloud computing can seem to be a convenient solution.
However, there is a cost, as excessive communications burden not only the core net-
work, but also the cloud data centre. As a result, it’s critical to consider appropriate
approaches and security middleware solutions. In this chapter, we define a middle-
ware architecture to address security concerns and explore the general concept of
cloud to achieve a higher level of security. Since it is designed to pre-process data at
the network’s edge, this security middleware functions as a smart gateway. Data can
be processed and stored locally on fog or sent to the cloud for further processing,
depending on the information obtained. Furthermore, the devices communicate
via middleware, which gives them access to more computing power and improved
security capabilities, allowing them to conduct safe communications. We discuss
these concepts in detail, and explain how this is effective to cope with some of the
most relevant security challenges.

Keywords: Internet of things, Cloud middleware, Software-as-a-Service,
Platform-as-a-Service, Infrastructure-as-a-service, Amazon web service,
Microsoft Azure, Virtual machine, Virtualization

1. Introduction

Cloud security ensures the secure cloud computing environment from both the
internal and external cybersecurity attacks. Cloud computing, deliver the services
to the end users by using information technology tools and methods that is now
most demanding area of research for the public as well as private sectors those
want to accelerate in the field on research and innovation. Widespread use of cloud
computing technology also emerge the security challenges to the cloud developers.
It becomes more interesting to create the cloud security solutions to prevent from
unauthorised users or cybersecurity attacks/threats [1].

1.1 Cloud computing categories

Basically four main categories of cloud computing in practice and they are as
follows:

Middleware Architecture

76

1.1.1 Public cloud services, by public cloud provider

Public cloud services are the services provided by the public cloud providers, are
SaaS, IaaS, and PaaS.

In public cloud type all the computing resources are available for the public
use via internet [2]. All the resources may be varied depending upon the services
providers but all include storage, applications or virtual machines. It provides the
resource sharing and processing power distribution that is difficult to achieve by an
organisation on its individual capacity.

Some public cloud services are free to use for all the users and some services are
restricted to selected individuals or organisations. The use of resources are available
to rest of users by paying the charges or subscriptions that vary one to another. That
will save the huge amount of money of an organisation that want higher processing
speed without setting its own setup (Figure 1).

While cloud services are used by public, security becomes the major concern
and that need to be addressed properly. To address the security concern we needed
the experienced staff and set of methods and protocols those can deal with security.
Strict policies and procedures have to deployed to protect data from other different
intended users.

1.1.2 Benefits and challenges of public cloud

The cloud services provides the faster and complete solution that is really not
possible with the individual capacity of an organisation. It also ensures that no need
to go for additional hardware and software solutions once the business is growing.

Cloud based services and applications can be used with the help of less hardware
and software with great performance. We can also explain that end users not need
to worry about installing and updating the hardware as well as software. It always
ensures that all the applications will be up to the mark all the time without investing
too much infrastructure and budget.

Public cloud helps to the organisations to grow without accumulating substantial
costs. Examples of public cloud include like Amazon AWS, MS Azure are charging
as per the usage by customers or organisations that reduce the operational cost of
the organisations.

Figure 1.
Cloud computing architecture [3].

77

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

1.1.3 Private cloud services, managed by a public cloud provider

The for the individual customers that can be operated by third party.

• Operated by internal staff — The cloud services are managed and maintained
by data centre internal staff as per the individual customer requirement in a
virtual environment they control.

• The computing will be dedicated to the individual business of individual
entity. This can be setup by cloud providers on the customer premises.

• By deploying cloud services it enhanced the control given to the individual
business organisation.

• It is a type of virtual private cloud that can be set as at the customer unit or by
virtual environment (Figure 2).

1.1.4 Benefits of private cloud

The following are the benefits to use the private cloud [4]:
Security and compliance: Compliance is critical for companies operating in

highly regulated industries. Since confidential data is stored on hardware that no
one else can access, private cloud storage allows businesses to comply with strict
regulations. This benefit is available both in on-premises hardware installations and
in hosted services.

Customization: An on-site cloud architect builds a completely private cloud,
allowing stakeholders to decide exact environment required to run specific appli-
cations. The benefits of private clouds are similar to those of on-premise private

Figure 2.
Virtual private cloud [3].

Middleware Architecture

78

clouds, but they do not need any on-site configuration. The company collaborates
with a provider to set up and maintain a cloud that is solely for its use.

Hybridization: Hybridization expands the capabilities of a both private cloud
and public cloud to ensure uptime without the need to mount new physical serv-
ers when an application requires more computing resources. This will be a cost-
effective option for businesses that need protection of a private cloud also require
the powerful services of public cloud for other functions.

1.1.5 Challenges of private cloud

If a company’s computing needs aren’t predictable, a private cloud can be prob-
lematic. When resource demand fluctuates, a private cloud can be unable to scale
efficiently, thereby costing the company high investment. Some key considerations
for IT peoples to think about.

Direct cost on Investment: It require significant investment to deploy the fully
functional private clouds that hosted on-site and it may be value for the organisa-
tion after long time. Hardware cost is very high to establish a private cloud, and
the environment would need to be set up, maintained, and managed by an expert
cloud architect. Hosted private clouds, on the other hand, will significantly reduce
these costs.

Capacity utilisation: The company is solely responsible for optimising resources
usage in private cloud model. A cloud deployment that is underutilised can cost a
company a lot of money.

Scalability: Where more computing power needed from private clouds, scaling
the resources of private cloud that can take more time and money. This procedure
would typically take more time to scale a virtual machine or requiring more services
from a public cloud service provider.

1.1.6 Private cloud providers

Organisations who want to use the private cloud but do not have the funds to
invest in an on-site solution will partner by using private cloud service provider.
Some of the most well-known names in this field are:

Hewlett Packard Enterprise
HPE is a big name in the field of cloud computing era. Offering robust services

as per the organisational needs. Customers can select hardware as well as software
as per their needs.

Cisco
On-demand storage, advanced application performance management and

automated container management are all available from Cisco. Data protection that
have sufficient workloads to improve compliance is provided by Cisco solutions.
Cisco have teamed up to provide stable application, desktop, networking and cloud
delivery solutions to help businesses grow into digital enterprises.

Microsoft
Any corporate data centre will benefit from Microsoft’s Azure Stack solution,

which brings the power of an integrated cloud to any data centre. Azure is ready for
hybridization, so businesses can take advantage of compliance features while still
taking advantage of the full Azure cloud solution as required. Learn how Citrix and
Microsoft are working together in the cloud to help you keep up with the pace of
business.

Dell, IBM, VMware, Oracle and Red Hat are other big names in the field of
private cloud providers [3].

79

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

1.1.7 Hybrid cloud services

Price, protection, operations, and access can all be optimised by combining private
and public cloud computing configurations to host workloads and data. Internal per-
sonnel and, if desired, the public cloud provider would be involved in the operation.

A hybrid cloud services are combining the on premises computing infrastruc-
ture with private cloud services and public cloud services to get the higher comput-
ing, storage and services.

1.1.8 Hybrid cloud benefits

While cloud providers can help you save money, their real value comes from
their ability to support a fast-paced digital business transformation. There are two
priorities in any technology management organisation: various key points like IT
and business transformation. Traditionally, The IT key points more focused on
cost-cutting. ON the other hand digital transformation focused on making money
from investments.

The main advantage of a hybrid cloud is its flexibility. A central concept of
a digital company is the need to adapt and change direction quickly. To achieve
the high performance and robustness the organisations combines all three public
clouds, private clouds with on-premises resources [5].

1.1.9 What about hybrid Cloud good of bad?

Everything cannot belongs in the public cloud, the progressing businesses are
opting for a hybrid cloud solution. Hybrid clouds combine the advantages of both
by using existing data centre architecture.

This approach enables its components and other applications to communicate
across boundaries, instances of cloud, and architectures. Data needs the same
degree of delivery and access flexibility. In the complex digital world, whether
you are dealing with workloads or databases, you can prepare for things to change
around in response to changing needs.

1.1.10 Hybrid cloud scenarios

• Dynamic workload Conditions- For our dynamic workloads, use scalable
public cloud and computing sensitive workloads on private clouds or in our
private data centres.

• Categories between critical and less-sensitive workloads- We use a public
cloud to compute our other business applications and other sensitive or critical
applications on our private cloud.

• Processing huge amount of Data- It’s unlikely that you’ll be able to process
large amounts of data at a near-constant rate. Instead, we could use highly scal-
able public cloud tools for our big data analytics and to keep our confidential
data with complete protection we can use the private clouds with higher set of
security systems.

• Easy switching of data - Use a public cloud or a private cloud for rest of the
miscellaneous workloads. Also see the best suit for the organisation and switch
accordingly between public and private.

Middleware Architecture

80

• Temporary arrangements of Resources- Whenever our requirements are for
a short time so instead to setting our cloud setup go with a public cloud that
reduces the extra burden on us.

1.2 Comparison between public, private and hybrid cloud

A private cloud, also known as a corporate cloud, is either provided by a service
provider or built on-site at a company’s data centre. In either case, since the services
are earmarked for particular users only, the private cloud appears to provide more
protection.

As resource demand increases, a hybrid cloud environment extends a stable
private cloud to a public cloud. This model enables businesses to remain compliant
while still taking advantage of public resources. Organisations that use hybrid cloud
will get the most out of their internal resources without causing a resource overload
if demand spikes unexpectedly [6].

To access the applications and services from online computer is a key benefit
of public cloud services. We can use the critical or complex applications virtually
because the computer performs little to no computation.

To ensure smooth and fast disaster recovery, a service provider can store repli-
cated files across multiple data centres. Public cloud platform also ensure the data
safely from outside world that considered secure from the majority of threats.
Public clouds can be configured differently:

1.2.1 Software as a service (SaaS)

In which a provider distributes its computing hosted in the cloud is known as
software as a service (SaaS). The programme is accessed via the internet. Individual
users are not required to install software on their personal computers under this
model. This lowers the organisation’s hardware requirements while also lowering
service and repair costs.

1.2.2 Platform as a service (PaaS)

Platform as a service (PaaS) is a computing model that enables a company to
build software without having to worry about the infrastructure. In essence, a pro-
vider creates and maintains an optimised environment that users can easily access
by internet. Version control and compile facilities, as well as computing and storage
tools, are often included in PaaS.

Figure 3.
Cloud services [2].

81

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

1.2.3 Infrastructure as a service (IaaS)

Infrastructure as a service (IaaS) is a business model under which a company
outsources the entire data centre to a cloud provider. The provider manages the
virtualization of the environment and hosts. Cloud adoption is made easier with
IaaS. Purchasing and repairing hardware on-site is also more expensive than using
the device (Figure 3).

2. Cloud security responsibilities

All the services like data, applications are hosted by a third party while using
a public cloud computing service, which is a significant difference between cloud
computing and traditional IT services, where data is stored within a network
that managed by self. First and main step in developing a cloud security plan is to
understand security responsibilities [7].

Major cloud providers strive to provide consumers with a stable cloud.
Preventing breaches and retaining public and consumer confidence is central to
their business model. Cloud providers may try to prevent cloud security problems
with their services, but they have no control about how consumers use them, add
data and those are going to access the data. The provider and the cloud client share
various levels of security obligation in each public cloud service form. These are the
different types of services:

• Software-as-a-service- Users are self-responsible to secure the data and
its access.

• Platform-as-a-service-Users are self-responsible to secure the data and its
access and applications used by them.

• Infrastructure-as-a-service-Users are self-responsible to secure the data
and its access, applications used by them, operating systems and network
traffic.

2.1 On-premise SaaS vs. PaaS vs. IaaS

Clouds were once all white fluffy stuff in the sky, and the IT services are restored
at on-premise. Almost all of the applications and processes can now be run on the
Cloud platform.

• IaaS: Cloud services as per use and pay option for various services like storage
and virtualization.

• PaaS: Various tools in place of hardware and software that are available with
cloud providers.

• SaaS: software’s that we can use with the help of third party using cloud
platform.

• On-premise: The software and services are going to be installed within the
organisation (Figure 4).

Middleware Architecture

82

Most of the companies are using the combination of all three computing models,
and few of the organisations are hiring the developers for PaaS-based applications.

Google Apps, Salesforce, Dropbox, MailChamp, ZenDesk, DocuSign, Slack,
Hubspot are the examples of IaaS.

AWS Elastic, Windows Azure, Force.com, OpenShift, Apache Stratos, are the
examples of PaaS Cloud Services.

AWS EC2, Google Compute Engine, Digital Ocean, are the examples of SaaS
cloud services.

Customers are responsible for protecting their data and monitoring who has
access to it in all forms of public cloud services. Cloud storage data protection is
critical to effectively implementing and reaping the advantages of cloud
computing. Organisations considering common SaaS services such as Microsoft
Office 365 or Salesforce should think about how they’ll handle their shared
responsibility for cloud data security. IaaS providers such as Amazon Web
Services (AWS) and Microsoft Azure need a more systematic strategy that begins
with data [8].

2.2 Cloud security architecture- Consumer’s perspective

Cloud services come in a variety of flavours, including SaaS, PaaS, and IaaS
(SPI), using the public, private, and hybrid operating models. The issue and solu-
tions pertaining to Cloud security depends on the patterns. The defined architec-
ture should be aligned with all the issues, and security controls built into the cloud
architecture.

So, when designing applications for computing models, what architectural
requirement and resources needed for cloud application development and their
disposal. In this post, I’ll go over how to build “adequate” protection into your IaaS
and PaaS applications [9].

2.3 Cloud security model

Let us start with the operational model for cloud protection. In public cloud
protection obligations are shared between the cloud service providers and cloud
users, while the customer manages all the activities in a private cloud. The shared
infrastructure, like routers, is the responsibility of cloud service providers.

Within a cloud service, the figure below depicts the layers that are protected by
the provider versus the client (Figure 5).

Figure 4.
SaaS, PaaS, and IaaS examples [2].

83

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

It’s important to do a difference review on cloud service capabilities before sign-
ing up with a provider. This exercise should assess the cloud platform’s maturity,
accountability, and compliance with enterprise security requirements (such as ISO
27001) as well as regulatory standards like PCI DSS, HIPAA, and SOX. Application
migration can be sped up with the use of cloud security maturity models.

The following the security measures are used to ensure the proper safety of the
cloud services.

• Security policies, compliance and practices: Industry standard frameworks
such as ISO 27001, SS 16, and the CSA Cloud controls matrix should be demon-
strated by the cloud service provider. Controls approved by the vendor should
meet the enterprise data protection standard’s control requirements. The scope
of controls should be reported when cloud services are approved for ISO 27001
or SSAE 16 [10].

• Cloud Security architecture: As per the enterprise norm, the cloud service
provider should report security architectural information that either support
or impede security management. For example, the virtualization architecture
that ensures tenant isolation should be made public.

• Automation – Providers can adopt the security automation by publishing API’s
that used to allow the users to access the logs, privileges and other security
threats.

• Governance and Security Management: The customer’s governance and
security management obligations should be specifically defined in comparison
to those of the cloud provider.

2.4 Cloud mitigation and security threats

Is cloud computing making the application more vulnerable to security threats?
What are the most pressing emerging threats? What are the traditional risks that

Figure 5.
Layered architecture of Cloud services [5].

Middleware Architecture

84

have been exacerbated or muted? Answers are contingent on the implementation
and operating models used by cloud services. The threats will be like data leakage,
misconfiguration of services, weakness of VM, attacks via API and failure of VM.
The problems can be resolved by making Hardening of VM, incorporating encryp-
tion, authentication with security automation, etc. [11].

Threats to service availability, information confidentiality and honesty, must be
factored into the design.

2.5 Threat to cloud service availability

DDoS attacks or misconfiguration errors by cloud service providers or custom-
ers can interrupt cloud services (SaaS, PaaS, IaaS). These errors have the ability to
spread across the cloud, disrupting the network, processes, and storage that are
used to host cloud applications. Cloud systems should be designed to survive distur-
bances to shared resources in order to achieve continuous availability. Applications
that were designed to withstand faults within an area, on the other hand, were
largely unaffected by the outage and remained accessible to users. As a design
philosophy, assume that something will go wrong in the cloud and plan accordingly.
Physical hardware failure as well as service interruption within a geographic area
should not be a problem for applications.

2.6 Cloud architecture- security services

As a first step, architects should learn about the security features that cloud
platforms have (PaaS, IaaS). The framework for integrating protection into cloud
services is depicted in the diagram (Figure 6).

Offerings and capabilities in terms of security continue to change and differ
between cloud providers. As a result, you’ll sometimes find that security features
like key management and data encryption aren’t available. For example, encrypting
security objects and keys escrowed to a key management service requires an AES
128 bit encryption service. For such applications that rely on internal resources,
a “hybrid cloud” deployment architecture pattern may be the only viable choice.
Single Sign-On is another common use case (SSO). If it is a federation architecture

Figure 6.
Cloud security architecture [5].

85

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

using SAML 1.1 or 2.0 provided by the cloud service provider, SSO deployed within
an organisation may not be extensible to cloud applications.

The following are best practices used in cloud security to mitigate risks to cloud
services:

2.6.1 Security service architecture

In the cloud, application implementations necessitate the orchestration of various
resources, such as DNS, load balancing, network QoS, and so on. Security automa-
tion encompasses the automation of firewall policies between cloud security zones,
certificate provisioning (for SSL), virtual machine device configuration, privileged
accounts, and log configuration, among other things. Security-related application
deployment processes, such as firewall policy development, certificate provisioning,
key delivery, and application pen testing, should be moved to a self-service model. This
method eliminates human interaction and allows for a security-as-a-service scenario.

2.6.2 Implement identity, access management architecture and practice

Strong user access management infrastructure will be needed as a result of scal-
able cloud bursting and elastic architecture, which will rely less on network-based
access controls. User provisioning and deprovisioning, authentication, federation,
authorization, and auditing are all aspects of user and access management lifecycles for
both end users and privileged users that should be addressed by cloud access control
architecture. In public, private, and hybrid cloud models, a sound architecture would
allow reusability of identity and access services for all use cases. Stable token facilities,
as well as correct consumer and entitlement provisioning with audit trails, are best
practises. The first step in expanding enterprise SSO to cloud services is to construct a
federation architecture. Cloud protection partnership is a good place to start.

2.6.3 Automate safeguards

To allow automation, any new security services should be deployed with an API
(REST/SOAP). At the time of application deployment, APIs can help simplify fire-
wall rules, configuration hardening, and access control. This can be accomplished
by combining open source resources like puppet with the API provided by the cloud
service provider.

2.6.4 Encrypt sensitive data

Private cloud applications can be deployed in the public cloud tomorrow. As a
result, regardless of the potential operating model, design applications to encrypt
all confidential data.

2.6.5 Authenticate IP address and services

Since IP addresses in the cloud are ephemeral, you cannot rely on them to
enforce network access control. To allow SSL between cloud providers, use
certificates.

2.6.6 Log, log, log

All security activities should be logged centrally in order to build an end-to-end
transaction view of non-repudiation characteristics. Logs and audit trails are the

Middleware Architecture

86

only accurate evidence used by forensic engineers to analyse and understand how
an application was compromised in the case of a security incident.

2.6.7 Continuously monitor cloud services

Given that preventive controls cannot meet all enterprise requirements,
monitoring is an essential feature. To perform security event correlation, security
monitoring should use logs produced by cloud services, APIs, and hosted cloud
applications. The CSA’s cloud audit (cloudaudit.org) will help with this mission.

2.7 Cloud security principles

The product development culture, emerging technology implementation, IT ser-
vice delivery models, technology policy, and investments made in the field of security
tools and capabilities all show that each company has a different level of risk toler-
ance. When a company’s business unit chooses to use SaaS for business purposes, the
technology architecture changes. The security architecture should also be consistent
with the technology architecture and principles. An enterprise technology architect
should understand and configure the following cloud security concepts [12]:

• Cloud-based services should adhere to the concept of least privilege.

• Using firewalls and container – isolation between different protection zones
should be ensured. Cloud firewall policies should adhere to data sensitivity-
based trust zone isolation requirements.

• End-to-end transport level encryption (SSL, TLS, IPSEC) can be used by
applications to protect data in transit between cloud and business applications.

• Authentication and authorization should be delegated to trusted security
providers by applications. SAML 2.0 can be used to support single sign-on.

• Enterprise standard VM images can be used to deploy applications in a
trusted zone.

• When implementing a virtual private cloud, industry standard VPN protocols
including SSL, SSH, etc.

• Using an API, cloud security monitoring can be combined with existing
security tools and services.

2.8 Cloud security architecture patterns

Cloud security risks can be mitigated by designing effective security controls
that secure the CIA of information in the cloud. The vendor, the enterprise, or
a third-party provider can provide security controls as a service (Security-as-a-
Service). The point of security controls (safeguards) – technologies and processes
– is usually where security architectural trends are expressed [13].

Security architecture trends act as a compass, allowing developers to move
applications to the cloud faster while minimising security risks. Furthermore, cloud
security architecture trends should emphasise the trust boundary between different
cloud services and components. Normal interfaces and protection protocols (SSL,
TLS, IPSEC, LDAPS, and so on) should also be highlighted in these patterns.

87

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

Finally, the patterns can be used to build security checklists that can be auto-
mated using configuration management software such as puppet.

For each of the security resources consumed by the cloud application, trends
should highlight the following attributes (but not limited to):

• Logical place – in-house, third-party cloud, native to cloud service The ser-
vice’s efficiency, availability, firewall policy, and governance can all be affected
by its venue.

• Protocol(s) – Which protocol(s) is/are used to call the service? For e.g., for
service requests, REST with X.509 certificates.

• Service feature – What is the service’s purpose?

• Input/output – What are the security service’s inputs, including monitor-
ing methods and outputs? Input = XML doc and Output = XML doc with
encrypted attributes, for example.

• Overview of the security control – What security controls does the security
service provide? For instance, information confidentiality at rest, user authen-
tication, and device authentication.

2.8.1 Security services based on infrastructure

A cloud service provider is required to provide security controls for DoS privacy,
as well as confidentiality and integrity protection for sessions originating from
mobile and PC, according to the pattern.

2.8.2 Application based security services

Identification, authentication, access enforcement, system identification, cryp-
tographic services, and key management can all be handled by the cloud service
provider, the corporate data centre, or a combination of the two (Figure 7).

Figure 7.
Identity and access pattern [5].

Middleware Architecture

88

User registration, authentication, account provisioning, policy compliance,
logging, auditing, and metering are all examples of typical cloud access control
use cases illustrated in this pattern. It focuses on the actors who communicate with
cloud, in-house (enterprise), and third-party hosted services:

2.9 Identifications of security services

• An authentication service that allows users to log in via an enterprise portal
(Local AuthN UI) and is usually provided via the SAML protocol. A cloud
session store stores the authenticated session state.

• The account and profile provisioning service facilitates the development of
new accounts and user profiles, usually through the use of SPML (Service
Provisioning Markup Language).

• The cloud policy admin service is used to manage policies that control which
cloud services end users have access to. Cloud service owners (enterprises) can
use this service to perform administrative tasks, while end users can request
access to cloud services. The cloud policy store is where cloud policies are held.

• The logging and auditing service can be used for two purposes. The first is
cloud-based event reporting, which includes security events, and the second is
auditing. This service can be accessed using Cloud Audit protocols and APIs.

• The metering programme keeps track of how much cloud resources are being
used. This service can be used for chargebacks as well as billing reconciliation
by finance departments.

2.10 Identity security services in the Enterprise

• Domain registration UI is a user interface for registering, managing, and
provisioning new cloud services. The cloud providers implement
authentication and authorization.

• End users produce usage reports using the cloud usage reporting UI.

• A cloud provisioning service is used to make cloud resources accessible
(compute, storage, network, application services).

2.11 Third party identification of security services

Identity services provided by a third party and hosted at their location are used
by cloud applications. Third-party users who need access to cloud infrastructure to
conduct business functions on behalf of the company may get help from services.
Backup and device control, for example. The third-party provider is in charge of
user authentication, provisioning and access enforcement.

3. Cloud security challenges

According to Gartner, the global public cloud services market will increase 17
percent to $266.4 billion in 2020, up from $227.8 billion in 2019. In its study “high
risk to Cloud Computing: Egregious Eleven,” the CSA (cloud security alliance)
outlined the following major cloud challenges.

89

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

3.1 Data breaches

The effects of data breaches will include the following:

• Impact on customer or partner credibility and confidence

• Loss of intellectual property (IP) to rivals, which could have an effect on the
release of goods.

• Regulatory ramifications that could lead to financial loss.

• Brand effect, which may result in a decrease in market value due to the factors
mentioned above.

• Legislative and contractual obligations.

• Expenses incurred as a result of incident response and forensics

3.2 Improper change management

This is one of the most popular cloud challenges. In 2017, a misconfigured AWS
Simple Storage Service (S3) cloud storage bucket exposed 123 million American
households’ detailed and private data. Experian, a credit bureau, owned the data
collection, which it sold to Alteryx, an online marketing and data analytics firm.
Such occurrences have the potential to be catastrophic.

3.3 Poor architecture and mechanism

Organisations all over the world are moving parts of their IT infrastructure
to public clouds. The introduction of sufficient security infrastructure to with-
stand cyberattacks is one of the most difficult challenges during this transition.
Unfortunately, many businesses are still baffled by this operation. Another contrib-
uting factor is a lack of awareness of the shared security obligation model.

3.4 Improper identification and key management

Multiple improvements to standard internal system management procedures
related to identity and access management are introduced by cloud computing
(IAM). These aren’t even brand-new problems. Rather, when dealing with the
cloud, they are more serious concerns because cloud computing has a significant
effect on identity, certificate, and access management.

3.5 Threats within the organisation

The employee within the organisation can be a threat by using the sensitive data
in their personal use or sharing the confidential data with others.

3.6 Wrong interfaces and API

Customers can manage and communicate with cloud services through a series
of software user interfaces (UIs) and APIs exposed by cloud computing providers.
The security and availability of general cloud services are also reliant on these APIs’
security. APIs that aren’t well-designed can lead to misuse or, worse, a data breach.

Middleware Architecture

90

APIs that have been broken, leaked, or compromised have resulted in significant
data breaches.

4. Cloud security solutions

To address the primary cloud security challenges in terms of visibility and
control the following requirement need to be accessed [14, 15].

4.1 Access to the cloud service

Direct access to the cloud service is needed for a full view of cloud data. An
application programming interface (API) access to the cloud service is used by cloud
security solutions to achieve this. It is possible to access data using an API link:

• Where does your data go in the cloud?

• Who is making use of cloud data?

• The positions of consumers of cloud service access.

• With whom do cloud users share data?

• The location of cloud data.

• The location from which cloud data is accessed and downloaded, as well
as the user.

4.2 Cloud data control

Need to apply the controls that best suit the organisations demands. These
safeguards include:

• Classification — As data is generated in the cloud, classify it on multiple levels,
such as confidential, controlled, or public. Data may be prohibited from enter-
ing or exiting the cloud service after it has been classified.

• Implement a cloud data loss prevention (DLP) solution to protect data from
unauthorised access and automatically disable access and data transport when
suspicious behaviour is detected.

• Manage collaboration controls in the cloud service, such as reducing file and
folder permissions for specific users to editor or viewer, deleting permissions,
and revoking shared links. Ensure the cloud data should be encrypted from
unauthorised users.

4.2.1 Data access and its applications

Security relies heavily on access control.

• User access control — Set up device and application access controls to ensure
that only approved users have access to cloud data and applications. To imple-
ment access controls, a Cloud Access Security Broker (CASB) may be used.

91

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

• User access control — If a personal, unauthorised device attempts to access
cloud data, access is denied.

• Malicious behaviour detection — Use user behaviour analytics (UBA) to
detect compromised accounts and insider attacks, preventing malicious data
exfiltration.

• Malware protection — Use techniques like file inspection, device whitelisting,
machine learning-based malware identification, and network traffic analysis to
keep malware out of cloud services.

4.3 Compliance standards and policies

The policies and standards should be updated and expanded as per the current
and forthcoming threats.

• Risk assessment — Re-evaluate and upgrade risk assessments to incorporate
cloud services. Identify and mitigate the risks posed by cloud environments
and providers. To speed up the evaluation process, risk databases for cloud
providers are available.

• Application regulatory requirements like PCI, HIPAA, Sarbanes-Oxley, etc.
and its assessment.

4.4 Cloud security importance

According to news reports, one out of every four businesses that use public cloud
services has had data stolen by a malicious actor. An additional one out of every five
people has had an advanced assault on their public cloud infrastructure. According
to the same survey, 83 percent of businesses said they store confidential data in the
cloud. With 97 percent of businesses using cloud services today, it’s critical that
everyone assesses their cloud security and establishes a data-protection strategy.

McAfee’s cloud protection helps businesses grow faster by allowing them
complete visibility and control over their data in the cloud. Find out more about
McAfee’s cloud protection technologies.

Cloud MVISION
The enterprise’s multi-cloud protection platform. Create a single protec-

tion policy that can be used through SaaS, PaaS, IaaS, Containers, and the Web.
Accelerate cloud adoption by simplifying security for a distributed workforce.

Unified Cloud Edge (UCE) is a component of MVISION Cloud that integrates
data security from devices, the network, and the cloud to make SASE architecture
adoption easier.

Platform for Cloud-Native Application Security (CNAPP).
CNAPP, which is part of MVISION Cloud, audits and secures the entire IaaS/

PaaS stack, including containers and private clouds.

5. Conclusion

We can integrate protection into your software without having to reinvent the
wheel inside your app’s boundaries, saving money on “bolt-on” safeguards. Creating
security standards and architectural patterns that can be used in the design process
is a good practise. During the design process, architectural trends will assist in

Middleware Architecture

92

Author details

Jagdish Chandra Patni
School of Computer Science, University of Petroleum and Energy Studies,
Dehradun, India

*Address all correspondence to: patnijack@gmail.com

articulating where controls are applied (Cloud versus third party versus enterprise)
so that sufficient security controls are baked into the application design. When
designing cloud protection trends, keep in mind the applicable threats and the risk-
appropriate principle. Discussed the various security challenges and its possible
security solutions that mostly needed for the secure system. Finally, a cloud protec-
tion architecture should meet the needs of developers in terms of protecting the
confidentiality, integrity, and availability of data processed and stored in the cloud.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

93

Cloud Security in Middleware Architecture
DOI: http://dx.doi.org/10.5772/intechopen.98541

[1] Move confidently to hybrid
multicloud and integrate security into
every phase of your cloud journey, The
premier hybrid cloud and AI event May
11-May 12, Americas

[2] The Different type of cloud
computing and how they differ, https://
www.vxchnge.com/ (April 2021)

[3] https://www.citrix.com/en-in/
glossary/what-is-public-cloud.html
(March 2021)

[4] Six Common Challenges of Cloud
Implementations, white paper,
September 2014.

[5] Managed Cloud Services for Hyper
Performance and Uninterrupted
Continuity, Cloud 4C, CtrlS
(March 2021)

[6] Introduction to Cloud Security
Architecture from a Cloud Consumer’s
Perspective by Subra Kumaraswamy,
InfoQ, Dec 07, 2011

[7] The cloud-based energy and asset
management platform from Siemens
powered by MindSphere

[8] Roshana Gul, The Relationship
between Reputation, Customer
Satisfaction, Trust, and Loyalty, Journal
of Public Administration and
Governance ISSN 2161-7104 2014, Vol.
4, No. 3, September 22, 2014

[9] Jaydip Sen, Security and Security and
Privacy Privacy Privacy Issues in Cloud
Computing Computing, Innovation
Labs, Tata Consultancy Services Ltd.,
Kolkata, INDIA

[10] Security for Cloud Computing Ten
Steps to Ensure Success, Cloud
Standards Customer Council, 2017

[11] What is cloud Security, https://
www.mcafee.com/ (May 2021).

[12] Cloud Security Challenges, https://
cloudsecurityalliance.fr/ (April 2021)

[13] Hybrid Cloud, https://www.netapp.
com/hybrid-cloud/what-is-hybrid-
cloud/ (April 2021)

[14] Wissam Razouk, Daniele
Sgandurra, and Kouichi Sakurai. 2017. A
new security middleware architecture
based on fog computing and cloud to
support IoT constrained devices. In
Proceedings of the 1st International
Conference on Internet of Things and
Machine Learning (IML '17).
Association for Computing Machinery,
New York, NY, USA, Article 35, 1-8.

[15] J. Yang, L. Zhang and X. A. Wang,
“On Cloud Computing Middleware
Architecture,” 2015 10th International
Conference on P2P, Parallel, Grid,
Cloud and Internet Computing
(3PGCIC), 2015, pp. 832-835, doi:
10.1109/3PGCIC.2015.46.

References

Middleware Architecture
Edited by Mehdia Ajana El Khaddar

Edited by Mehdia Ajana El Khaddar

Middleware refers to the intermediate software layer that bridges the gap between
the heterogeneous hardware platforms and the backend applications requirements. It
allows providing common services and programming abstractions and hiding the low-
level management of the connected hardware. With the recent advances in distributed

systems and enabling technologies, such as RFID, WSNs, IoT, IoE, cloud computing,
context-aware pervasive computing, ubiquitous computing, etc., middleware design

and development has become a necessity, taking increasing importance. This book
provides a comprehensive overview of the different design patterns and reference
models used in middleware architectures in general, followed by a description of
specific middleware architectures dedicated to the use of the different emerging
technologies, such as IoT, cloud computing, IEEE 802.11, etc. This book intends
therefore to bring together in one place up-to-date contributions and remaining

challenges in this fast-moving research area for the benefit of middleware systems’
designers and applications developers.

Published in London, UK

© 2021 IntechOpen
© CIPhotos / iStock

ISBN 978-1-83969-406-6

M
iddlew

are A
rchitecture

ISBN 978-1-83969-408-0

	Middleware Architecture
	Contents
	Preface
	Section 1
Middleware Applications
	Chapter1
Middleware Solutions for the Internet of Things: A Survey
	Chapter2
Middleware Architecture - History and Adaptation with IEEE 802.11
	Chapter3
Middleware Application, Suitable to Build an Automated and Connected Smart Manufacturing Environment

	Section 2
Cloud Computing Middleware
	Chapter4
Middleware Patterns for Cloud Platforms
	Chapter5
Cloud Security in Middleware Architecture

